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Editorial on the Research Topic

Deep learning techniques and their applications to the healthy

and disordered brain - during development through adulthood

and beyond

Data acquisition methods used in medical imaging have been developing at

an unprecedented pace; however, the interpretation of the data and their use for

identifying and detecting biomarkers of disease can be difficult. The use of standardized

computational aids has been proven very effective in overcoming this difficulty. Deep

learning (DL) is a sub-group of machine learning algorithms capable of automatically

extracting discriminatory features from raw input. This capacity makes DL a powerful

technique that is already transforming neuroimaging data acquisition, modeling, and

analysis. DL is a key player in MRI image reconstruction of sub-sampled k-space (Zeng

et al., 2021), making it possible to reduce the duration of data acquisition. DL is capable

of domain-specific image processing, with example applications in the retrospective

correction of movement artifacts (Küstner et al., 2019) and monitoring and quality

control of large MRI databases (Pizarro et al., 2019). Importantly, DL has been showing

promise in the early diagnosis of several diseases and disorders, including autism

spectrum disorder, Alzheimer’s disease, and Parkinson’s disease (Feng et al., 2022). The

potential of DL to be useful also to basic research—not necessarily related to diagnosis—

is high. The aim of this Research Topic is to highlight the potential of applying DL

techniques to neuroimaging methods and applications.
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The applicability of deep learning to a wide range of

neuroimaging data acquisition methods is reflected in the type

of data presented in the Research Topic, including structural

MRI, diffusion MRI, EEG, and microscopy data. Similarly,

deep learning is applicable to a wide range of neurological,

and neurodevelopmental conditions studied by neuroimaging.

Indeed, the Research Topic includes studies that apply deep

learning to data on Alzheimer’s disease, vascular cognitive

impairment, Parkinson’s disease, multiple sclerosis, autism,

and neurodevelopment in pre-term infants possibly leading to

cognitive deficits. The only psychiatric condition studied in

this Research Topic is schizophrenia. However, thanks to its

capacity to detect bio-markers that were not pre-defined, we

expect that deep learning will be central to advancing biomarker

identification of all psychiatric conditions.

Deep learning neural networks are especially capable

of performing analysis of structured data, such as images

and volumes. The Research Topic includes five studies that

developed and/or evaluated deep learning methods for image

segmentation. Brusini et al. (ms. 469755) seek ways to improve

the segmentation of the hippocampus in structural MRI

images. The structural integrity and volume of the hippocampus

have been implicated as a biomarker in neurodegenerative

conditions including Alzheimer’s disease. They propose a DL-

based hippocampus segmentation framework that embeds the

statistical shape of the hippocampus as context information for

learning. Their results suggest that adding shape information

can improve the segmentation accuracy in cross-cohort

validation, i.e., when deep neural networks are trained on

one cohort and applied to another. Another brain region

implicated in neurological and psychiatric conditions is

the amygdala, whose segmentation is challenging due to

its small dimensions. Large image patches are more likely

to be dominated by background voxels, creating a class

imbalance between the background class and the class of

the small amygdala. Segmenting small structures such as the

amygdala introduces a trade-off between capturing a sufficiently

large context and retaining fine details while alleviating the

imbalanced class issue. Alexander et al. (ms. 497969) addressed

this challenging task by developing a dual-branch dilated

residual 3D fully convolutional network (i.e., a network that

performs only convolution, sub-sampling, and up-sampling)

using receptive fields at the approximate size of the regions

of interest with parallel convolutions to extract global context.

Segmenting the neonatal cerebrum according to tissue type

is challenging given its uniquely inverted tissue contrasts.

Existing neuroimaging analysis packages are primarily designed

to work on MRI with adult contrast but inversed water-to-

cholesterol ratio in newborns leads to inverted MRI tissue

contrast, hindering analyses. Ding et al. (ms. 493147) evaluated

the performance of two architectures on segmenting T1 and

T2 MRI images of the neonatal brain according to tissue types.

HyperDense-Net performed better than LiviaNET, although

it required a longer duration of training. Hong et al. (ms.

591683) developed a DL architecture for segmenting MRI

images of the fetal cortical plate during development. They

propose a fully convolutional neural network with a novel

hybrid loss function and multi-view (axial, coronal, and sagittal)

aggregation using a test-time augmentation, enabling the use

of three-dimensional (3D) information. They demonstrate

that these methods improve the accuracy of cortical plate

segmentation. Closing the section on segmentation, Tan et al.

(ms. 481187) introduceDeepBrainSeg, a convolutional neural

network for segmenting optical microscope images. The

classical method for parcellating the brain and the cerebral

cortex relies onmicroscopic differences in neurons’ size, density,

and cortical myelin content, observed through a microscope.

Parcellation is essential for the analysis of brain structures and

their functions. DeepBrainSeg incorporates three feature levels

to learn local and contextual features in different receptive fields

through a dual-pathway convolutional neural network. It has

been applied to mouse brains but is likely to obtain similar

results if applied to larger brains.

Machine learning and deep learning carry the potential of

distinguishing healthy brains and brains with neurological or

psychiatric conditions, and diagnosing the conditions. Zhang

et al. (ms. 560709) present A survey on deep learning for

neuroimaging-based brain disorder analysis. They provide

an overview of deep learning techniques and popular network

architectures, and deep learning methods for computer-aided

analysis of Alzheimer’s disease, Parkinson’s disease, Autism

spectrum disorder, and Schizophrenia. They also discuss the

limitations of existing studies and present possible future

directions. Yamaguchi et al. (ms. 652987) take on the challenge

of overcoming one of the current limitations. They demonstrate

that a 3D convolutional autoencoder applied to structural

MRI images of schizophrenia patients can extract features

related to schizophrenia without relying on diagnostic labels.

They demonstrate that the proposed auto-encoder extracted

features retained information that could predict medication

dose and symptom severity in schizophrenia. Feature extraction

without using diagnostic labels based on the current diagnostic

criteria may lead to the development of alternative data-driven

diagnostic criteria and could have a significant contribution

to neuroimaging of neurological and psychiatric conditions.

Another neurological condition whose early diagnosis and

classification into sub-types can inform a decision on treatment

is Subcortical Vascular Cognitive Impairment. Chen Q. et al.

(ms. 543607) propose a deep learning solution using 3D

attention-based Resnet applied to single T2-weighted FLAIR

MRI images. The network only requires inputting the data from

a new patient. It achieves high accuracy of classification. It is

capable of assisting in diagnosis, leading to early treatment of

the different subtypes of sub-cortical ischemia.

Deep learning can also support the evaluation of a semi-

continuous measure of the severity of a condition. Along these
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lines, Finck et al. (ms. 889808) improve the estimation of lesion

load in multiple sclerosis. They investigate the generalizability

of a Generative Adversarial Network (GAN) for synthesizing

high-contrast double inversion recovery (DIR) images from

lower-contrast T1-weighted and FLAIR MRI images. They

also propose the use of uncertainty maps to further enhance

their clinical utility. They demonstrate that GAN is capable of

synthesizing DIR images with virtual multiple sclerosis lesions

that cannot be distinguished frommeasured real lesions. To this

end, they applied an attentionmodule and directed the network’s

attention toward the lesions. They used data obtained in several

imaging centers, thus also demonstrating the generalizability of

the model to data obtained in a center whose data were not

used for training. The method enhances the automatic counting

of multiple sclerosis lesions, which is used as a biomarker of

the disease severity and an indicator for the required treatment.

Chen M. et al. (ms. 563097) demonstrate early prediction of

measures that are used to diagnose cognitive deficits in very

preterm infants. Up to 40% of very preterm infants (≤32 weeks

gestational age) are identified with a cognitive deficit at 2 years

of age. Yet, an accurate clinical diagnosis of cognitive deficit

cannot be made until 3–5 years of age. Chen et al. obtained

diffusion MRI data, computed diffusion-based connectome, and

applied transfer learning enhanced deep convolutional neural

networks. The performance is superior to that obtained by

current methods. Moreover, Chen et al. identified the brain

regions most discriminative to the cognitive deficit. The results

suggest that deep-learning models can facilitate early prediction

of neurodevelopmental outcomes in very preterm infants.

Although deep learning has been increasingly used for

neuroimaging image analysis, classification and diagnosis, it

has not gained as much ground over standard multivariate

pattern analysis (MVPA) techniques in the classification of

electroencephalography (EEG). The high dimensionality and

large amounts of noise present in EEG data, coupled with

the relatively low number of examples (trials) that can be

obtained from human subjects are disadvantages for deep

learning. To enable the use of deep learning for MVPA,

Williams et al. (ms. 491877) present a method of “paired

trial classification” that involves classifying pairs of EEG

recordings as coming from the same class or different classes.

This makes it possible to significantly increase the number

of training examples, through the combinatorics of pairing

trials. The final classification is pursued by means of a

“dictionary” approach: compare the novel example to a group

of known examples from each class. The method can be used

as a dataset-specific distance metric that can be extended to

novel uses.

Applying deep learning in neuroimaging has become

inevitable and this trend is likely to continue in the near future.

The studies in this Research Topic show how deep learning

can be beneficial to neuroimaging and related modalities

across healthy and diseased brains. Combined with recent

developments of explainable artificial intelligence and self- or

semi-supervised methods, the findings of this Research Topic

could be enhanced for even greater impact.
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Performing an accurate segmentation of the hippocampus from brain magnetic
resonance images is a crucial task in neuroimaging research, since its structural
integrity is strongly related to several neurodegenerative disorders, including Alzheimer’s
disease (AD). Some automatic segmentation tools are already being used, but, in recent
years, new deep learning (DL)-based methods have been proven to be much more
accurate in various medical image segmentation tasks. In this work, we propose a
DL-based hippocampus segmentation framework that embeds statistical shape of the
hippocampus as context information into the deep neural network (DNN). The inclusion
of shape information is achieved with three main steps: (1) a U-Net-based segmentation,
(2) a shape model estimation, and (3) a second U-Net-based segmentation which uses
both the original input data and the fitted shape model. The trained DL architectures
were tested on image data of three diagnostic groups [AD patients, subjects with mild
cognitive impairment (MCI) and controls] from two cohorts (ADNI and AddNeuroMed).
Both intra-cohort validation and cross-cohort validation were performed and compared
with the conventional U-net architecture and some variations with other types of
context information (i.e., autocontext and tissue-class context). Our results suggest
that adding shape information can improve the segmentation accuracy in cross-
cohort validation, i.e., when DNNs are trained on one cohort and applied to another.
However, no significant benefit is observed in intra-cohort validation, i.e., training and
testing DNNs on images from the same cohort. Moreover, compared to other types of
context information, the use of shape context was shown to be the most successful
in increasing the accuracy, while keeping the computational time in the order of a
few minutes.

Keywords: hippocampus, brain MRI, Alzheimer’s disease, image segmentation, deep learning, statistical shape
model
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INTRODUCTION

Alzheimer’s disease (AD) is a chronic progressive
neurodegenerative disorder that constitutes approximately
60–70% of all dementia cases (Burns and Iliffe, 2009). The disease
is characterized, since its first stages, by the loss of synapses
and the depositions of certain lesions in several regions of the
brain, which mainly include extracellular Aβ amyloid plaques
and intracellular tau neurofibrillary tangles (Vinters, 2015).
Moreover, on a macroscopic level, one of the most characteristic
signs of the disease is brain atrophy, which is present in the
majority of AD patients and can be estimated from magnetic
resonance imaging (MRI) (Pini et al., 2016). Therefore, it is
important to study imaging biomarkers that could allow early
identification of subjects at risk of developing the disorder, as
well as quantitatively reflect the disease’s level of progression.
For example, such biomarkers should be able to distinguish AD
both from the healthy state and from mild cognitive impairment
(MCI). Indeed, MCI subjects constitute a relevant study group
for the early identification of the disease, since several MCI cases,
especially when presenting memory dysfunction, have a high
probability of later evolving toward AD (Vinters, 2015).

According to the Braak criteria for AD staging (Braak
and Braak, 1991), the progression of the disease starts
from the transentorhinal cortex (stages I and II), involving then
the hippocampus (stages III and IV), and finally spreading to the
neocortex (stage V). These steps of progressions were defined
based on the changes of accumulation of the neurofibrillary
tangles. However, similar patterns can also be seen in the
progression of brain atrophy according to multiple MRI studies,
which have shown that the atrophy of the hippocampus
measured from MRI images can be used, together with the
atrophy of the entorhinal cortex, as an early sign of AD
(Scheltens et al., 2002). By accurately measuring the volume
of these two brain regions, it is possible to separate healthy
subjects from AD patients with high precision (Liu et al.,
2010). Moreover, shape analysis of the hippocampus has also
been shown to be a valid tool for diagnosing AD and
differentiating it from other forms of dementia (Lindberg et al.,
2012). Evident patterns of hippocampal atrophy have also been
reported in several neuroimaging studies on subjects with MCI
(Tabatabaei-Jafari et al., 2015).

To properly assess the geometrical features (e.g., volume
and shape) of the hippocampus, it is important to have
accurate segmentation tools. Ideally, this should be done by
completely automated software, since manual segmentation
performed by an expert is both extremely time-consuming and
relatively subjective. Various software that performs automatic
hippocampal segmentation—as well as other brain image
processing operations—already exists and is being widely used,
for example, in the case of FreeSurfer (Fischl, 2012) or FSL
(Jenkinson et al., 2012). However, the computational time of these
well-known softwares for performing segmentation is often not
acceptable for use in the clinical routine. Moreover, reaching a
good segmentation accuracy is a challenging task due to several
factors, including, for example, variations in MRI scanners and
acquisition modalities, image artifacts, or variations in the brain

due to the presence of pathology (Akkus et al., 2017), e.g.,
hippocampal atrophy.

Several previous studies have explored alternative approaches
for automatic brain parcellation. Some of the most popular and
successful ways to segment brain MRI images into structures
of interest are atlas- and multi-atlas-based segmentation, which
consist of integrating information present in brain MRI atlases
registered to the target image by using different possible label
fusions methods (Cabezas et al., 2011; Asman and Landman,
2013; Wang and Yushkevich, 2013; Pipitone et al., 2014). On
the other hand, relevant improvements in the field of medical
image segmentation have also been obtained by applying other
techniques, such as statistical shape models (Leventon et al.,
2000) or the further integration of tissue classifications into
multi-atlas-based segmentation (Heckemann et al., 2010). In
recent years, very good results have been achieved also by using
deep learning (DL)-based methods, which are being more and
more widely used because of their superior performance in
very diverse medical image segmentation tasks (Ronneberger
et al., 2015; Shelhamer et al., 2017). Therefore, such methods—
and, in particular, those based on the use of convolutional
neural networks—have recently been employed also in several
studies on hippocampal segmentation (segmented either alone
or together with other brain structures) achieving promising
results (Kim et al., 2013; Milletari et al., 2017; Chen et al., 2018;
Thyreau et al., 2018).

To further improve the segmentation accuracy, it is general
practice to incorporate some context information into the
segmentation frameworks. The use of context information,
which enables the inclusion of likelihood and priors into the
segmentation pipeline, has played an important role in computer
vision (Oliva and Torralba, 2007; Tu and Bai, 2010). One example
of context information, which has been widely applied in medical
image segmentation tasks, is the so-called autocontext. This
approach consists of first training one classifier and subsequently
using its output as input to a second classifier (Tu and Bai, 2010;
Chen et al., 2016; Mirikharaji et al., 2018). Several recent studies
have suggested that applying the same strategy to deep neural
networks (DNNs) could also improve the segmentation accuracy
of brain structures (Chen et al., 2018). Another type of context
information can be the tissue-class (Heckemann et al., 2010).
More recently, shape context was proposed to help artificial
neural networks to segment brain structures (Mahbod et al.,
2018). This approach was later extended to DNNs in recent
studies that demonstrated how the inclusion of shape priors into
the segmentation pipeline can increase the robustness of the
network’s segmentation accuracy. Such priors were successfully
employed, for example, by adding a convolutional autoencoder to
a traditional U-Net as shape regularization network (Ravishankar
et al., 2017), by feeding a statistical shape model as an
additional input to a fully convolutional network (FCN) (Wang
and Smedby, 2017), by implementing a Bayesian model that
incorporates a shape prior into a DL-based segmentation result
(Ma et al., 2018), as well as by jointly training an FCN with a level
set (Tang et al., 2017).

In this paper, we investigate whether the integration of shape
information can improve the accuracy also in the context of
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hippocampal segmentation. We analyze the robustness of the
method by both testing it on three different diagnostic groups
of interest [healthy controls (HCs), MCI subjects, and AD
patients] and validating it on a different cohort than the one
used for training. Moreover, we compare the effect of adding
shape context with two other types of context information:
auto-context and tissue-class context. The inclusion of shape
information is obtained by building FCNs that receive as input
both a T1-weighted MRI image and a statistical shape model of
the hippocampus, as already proposed in a previous study on a
different segmentation task (Wang and Smedby, 2017). This is
done by limiting preprocessing as much as possible, in order to
obtain a very fast segmentation (in the order of a few minutes)
that could potentially be integrated in the clinical routine.

MATERIALS AND METHODS

Dataset
For training the networks and validating their performance, 54
T1-weighted structural brain MRI images from the cohort of
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack
et al., 2008) were used. The primary goal of ADNI has been to
test whether serial MRI, positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
MCI and early AD. All ADNI data are obtainable from
the ADNI database1 and updated information is available at
www.adni-info.org.

Each of the selected 54 images (of size 197 × 233 × 189,
with a voxel size of 1 × 1 × 1 mm3) had already been manually
labeled by experts according to the European AD Consortium
and ADNI Harmonized Hippocampal Protocol (HarP) (Boccardi
et al., 2015b). The used dataset includes images from scanners
of different magnetic field strength (both 1.5 and 3 T) and from
three different diagnostic groups: HCs, AD, and MCI. As shown
in Table 1, the data were selected in such a way that every possible
pair of magnetic field strength and diagnosis is represented by
the same number of subjects (i.e., nine subjects). No further
processing of the images was performed before using them for
training the proposed DL pipelines.

Another dataset was then used for further testing the
performance of the networks trained only on the above-described
ADNI data. It consists of 37 subjects from the AddNeuroMed
cohort (Lovestone et al., 2009; Simmons et al., 2009), including all
the three analyzed diagnostic groups and acquired using scanners
having a magnetic field strength of 1.5 T (see Table 1). All 37
MRI images are high-resolution T1-weighted volumes of size of
193× 229× 193, with voxel size 1× 1× 1 mm. This dataset was
chosen because its acquisition protocols were designed in a way
compatible with the one used for the ADNI cohort (Simmons
et al., 2011; Westman et al., 2011a), so that it is possible to use
those data with a DL network previously trained using ADNI
data. However, differences in terms of MRI scanner types, image
quality, and image size are inevitably present between the two

1adni.loni.usc.edu

TABLE 1 | Description of the training and test datasets.

Cohort Magnetic field
strength

HC AD MCI Number of
subjects

Training and validation of the network

ADNI 1.5 T 9 9 9 27

ADNI 3 T 9 9 9 27

Total number of subjects used for training and validation: 54

Only testing

AddNeuroMed 1.5 T 15 9 13 37

ADNI 1.5 T 213 312 179 704

ADNI 3 T 1799 875 2570 5244

Total number of subjects used only for testing: 5985

The table shows the frequency for the magnetic field strength of the scanners and
the subjects’ diagnosis in the datasets used for training and testing the proposed
hippocampal segmentation pipelines.

datasets, so it is useful to test the networks on the AddNeuroMed
data to check also their performance on images from a new
unknown cohort. Moreover, for those 37 MRI images, manual
hippocampal segmentations were performed by an expert by
following the HarP protocol, so a ground-truth segmentation
mask was available.

Finally, the trained networks were tested also on a separate
large dataset from the ADNI cohort including 5948 T1-weighted
brain images (see Table 1). For these data, ground-truth manual
segmentation masks of the hippocampus were not available.
However, segmentations from FreeSurfer 6.0—processed
through TheHiveDB neuroimaging database (Muehlboeck et al.,
2013)—could be employed to check their consistency with the
result obtained from the DL pipeline.

Segmentation Pipeline
The segmentation methods tested on the data described in the
previous section consist of a maximum of three main steps (see
Figure 1). For each method, a first 3D segmentation is performed
using three orthogonal 2D U-Nets which take the original MRI
image as input. This first segmentation approach is going to be
referred to as MRI U-Net.

Moreover, a second segmentation method is presented, which
adds a further step to the MRI U-Net. It consists of cropping
the original MRI images around both the left and the right
hippocampus (preliminarily segmented by using the MRI U-Net)
and using the cropped images as input to other three orthogonal
U-Nets. This approach is going to be referred to as Cropped
MRI U-Net.

Finally, we propose a third approach that, after cropping the
input MRI images, adds a further step consisting of fitting a
statistical shape model to the segmentation obtained from MRI
U-Net. Three other orthogonal U-Nets are employed, now taking
two images as input: (1) the cropped MRI data and (2) their fitted
shape model. This final methodology is going to be referred to as
Shape MRI U-Net.

MRI U-Net
To perform the first DL-based segmentation, an FCN
architecture was implemented: the so-called U-Net, proposed
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FIGURE 1 | Schematic representation of the implemented segmentation
pipelines. Hippocampal segmentation masks are created by applying all the
three proposed hippocampal segmentation methods: MRI U-Net (in pink);
Cropped MRI U-Net (in green); Shape MRI U-Net (in yellow). All networks
receive T1-weighted MRI volumes as inputs, which, in the case of Cropped
MRI U-Net and Shape MRI U-Net, are cropped around the hippocampus.
Shape MRI U-Net also receives a second input channel that encodes a priori
hippocampal shape information, which is represented as a distance map from
the hippocampal surface (i.e., negative values inside the surface and positive
values outside) obtained after a model fitting step.

by Ronneberger et al. (2015), which has been shown to be
particularly suitable for medical image segmentation tasks. One
of its main strengths is that it can be applied to images of any size,
providing as output a probabilistic label map whose dimension
is proportional to that of the input image. This is achieved by
replacing the fully connected layers of a classical convolutional
neural network with more convolutional layers.

Since the segmentation needs to be performed on 3D brain
volumes, we implemented three separate U-Nets, which make up
the proposed MRI U-Net architecture. Each of these U-Net was
trained independently to segment 2D slices acquired in one of
the three orthogonal views (i.e., axial, coronal, or sagittal). The
original T1-weighted image along with the manual segmentation
is the only input given to the network for training. The final
probability map of the hippocampal segmentation—including
both the left and the right hippocampus—is generated by
averaging the outputs of the three U-Nets. The final binary
segmentation mask (pink box in Figure 1) is obtained by taking
all voxels having a probability of belonging to either the left or
the right hippocampus that is greater or equal to 0.5, i.e., which at
least two of the U-Nets agree on classifying as hippocampus.

Cropped MRI U-Net
Once a binary segmentation mask has been obtained from MRI
U-Net, it is possible to automatically discriminate the left from
the right hippocampus by identifying the two major clusters
of voxels in the segmentation mask using the tool “Cluster”
from FMRIB Software Library (FSL) (Jenkinson et al., 2012).

According to the orientation of the employed images, the right
hippocampus is identified as the cluster whose center of gravity
has the lowest x coordinate, while the left hippocampus is the
remaining cluster.

Once the coordinates of the centers of gravity have been found,
it is possible to crop the original MRI image around both the left
and right hippocampus. In this way, from each subject, two new
3D volumes are obtained, each having the same predefined size
(i.e., 87 × 105 × 111). These cropped volumes are used as input
to the three new orthogonal U-Nets, making up the Cropped MRI
U-Net architecture. Also in this case, the final label map (green
box in Figure 1) is estimated by averaging the outputs of the three
U-Nets and thresholding all voxels having a probability that is
greater or equal to 0.5.

Generation of the Shape Model
The volumetric statistical shape models proposed by Leventon
et al. (2000) were employed to add the shape context to the
DL pipeline. The segmentations used to generate the statistical
model were 12 manual labels for the left hippocampus and 12
for the right hippocampus. The total 24 segmentations were
obtained from 12 images from the ADNI dataset of 54 subjects.
The selection of these images was performed in such a way
that all diagnostic groups were equally included (i.e., four HC,
four AD, and four MCI), so that the model could represent the
variability given by the different diagnoses without overfitting to
a specific group. Moreover, all the selected images were acquired
from scanners having a magnetic field strength of 3 T, in order
to create the model from data of the highest quality available.
The choice of the four subjects for each diagnostic group was
performed randomly.

Three main modifications were performed on the manual
labels. First, each of the 12 images was cropped twice—once
around the left and once around the right hippocampus—so that
each cropped image only included a region of size 87× 105× 111
around one of the regions of interest, similarly to what was done
for the input images described in Section “Cropped MRI U-Net.”
A main advantage of using cropped images also for creating the
shape model is the reduction of computational time, since we are
not interested in analyzing the rest of the 3D volume that does
not include the hippocampus. Second, all labels from the right
hippocampi were mirrored in order to match the orientation of
the left hippocampus and to create a unique model for both sides
together. Finally, each segmentation was up-sampled from 1 to
0.5 mm voxels to improve the resolution of the model. This was
done to include more structural details and at the same time avoid
large images by limiting the volumetric shape representation to
the cropped region.

To generate the model, the mean signed distance function
of each of the 24 manually segmented regions was computed,
together with five main variations extracted via principal
component analysis. Once the model is created, it is possible to fit
it to each label map derived from the previous step (presented in
section “MRI U-Net”) by solving a level set function, as described
by Leventon et al. (2000). This fitting step generates a customized
hippocampal shape that deviates from the mean shape by adding
those variations. The shape fitting step could potentially correct
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for possible segmentation errors and irregularities present in the
MRI U-Net output.

Shape MRI U-Net
The segmentation masks derived from MRI U-Net are cropped
around the centers of gravity of both the left and the right
hippocampus. Each of these two segmented sides can be
associated to its own shape context as described in the previous
section. Such shape context consists of a distance map from
the hippocampal surface obtained after the model fitting step
described in the previous section. In the distance map, the
hippocampal surface corresponds to the zero level set, while all
voxels inside the surface have negative intensity values and all
voxels outside have positive values.

After this, both the cropped original MRI volumes (described
in section “Cropped MRI U-Net”) and the distance maps from
the fitted hippocampal surface are used as inputs to three
new U-Nets, which constitute the Shape MRI U-Net pipeline.
Also in this case, the three networks are trained independently
from scratch in the three different orthogonal views. The final
segmentation mask (yellow box in Figure 1) is estimated by
averaging the outputs of the three U-Nets and thresholding the
voxels having a probability that is greater or equal to 0.5.

Implementation Details
To build the DL architecture, we used the Keras framework2.
The implemented U-Nets are identical to those proposed in the
original paper by Ronneberger et al. (2015). However, to adapt
the images to all the down- and up-sampling steps of the original
implementation, all the original brain MRI data (having size
197 × 233 × 189) are resized to 208 × 224 × 192 for the
first segmentation step, i.e., MRI U-Net. Instead, for the second
(Cropped MRI U-Net) and third (Shape MRI U-Net) approaches,
the input data (87× 105× 111) are resized to 96× 112× 112.

Two different data normalization methods are applied to the
input T1-weighted volumes and the shape context images. For the
latter ones, the voxel intensity is divided by the standard deviation
(computed from all subjects) while keeping the reference point
of 0 that corresponds to the hippocampal surface. As for the
MRI scans, their intensities are first normalized individually by
mapping the lower 5% cutting point of each subject’s histogram
to 0 and the upper 5% to 1. Afterward, the images are also
normalized all together by subtracting the group mean from
all subjects and dividing the intensities by the group standard
deviation, so that the normalized images have zero mean and a
standard deviation of 1.

During the training phase, data augmentation is also
employed by generating mini-batches of data in real-time.
The data generator randomly applies rotations (within a range
of± 10◦), width shifts (range of± 0.1 · total image width), height
shifts (range of± 0.1 · total image height), and zooming (original
100% zoom± 20%).

We used the negative Dice score as the loss function to be
minimized during the training phase. The number of epochs was
always set to 60 for all the three U-Nets of the first pipeline

2https://keras.io

that uses only the T1-weighted volumes as inputs. Instead, for
Cropped MRI U-Net and Shape MRI U-Net, the number of
epochs was reduced to 40 for all the U-Nets.

Alternative Segmentation Methods
The same images used for training and testing our architecture
had also been segmented using the last version (6.0) of
FreeSurfer3, a software tool for image analysis that is freely
available online. It is one of the most commonly used tools for
automatic segmentation of the subcortical white matter and deep
gray matter volumetric structures, including the hippocampus
(Fischl et al., 2002, 2004). For this reason, it was chosen as
a reference method for comparison of the performance of the
pipeline proposed in our work.

To better investigate the contribution given by adding
the shape-model-fitting step, we compared the performance
of our proposed pipelines with two alternative types of
context information too. They were integrated in the following
two networks:

Tissue MRI U-Net
The hippocampus is a gray matter structure that borders
with other tissue types in specific locations, so a priori tissue
type classification could help the network to identify the
boundaries of the hippocampus. Therefore, three main tissue type
segmentations (i.e., gray matter, white matter, and cerebrospinal
fluid) are used as context input to the network to be integrated to
the cropped MRI image. Such segmentations could be obtained
automatically from the original MRI image by using the FMRIB’s
Automated Segmentation Tool (FAST) from FSL (Zhang et al.,
2001; Jenkinson et al., 2012). The network thus has four input
channels in total: the cropped MRI image (obtained in the same
way as in Cropped MRI U-Net and Shape MRI U-Net), as well as
the three tissue segmentations (cropped in the same location as
the T1-weighted images).

Autocontext MRI U-Net
The autocontext strategy is used: the cropped segmentation
derived from MRI U-Net is given as second input channel to the
network. This technique is one of the most well-known types
of context information (Tu and Bai, 2010; Chen et al., 2016;
Mirikharaji et al., 2018) and we aimed at investigating its effect
also on our application of interest.

Method Evaluation
Single-Cohort Evaluation
The proposed methods were first evaluated using ninefold cross-
validation on the first dataset of 54 subjects from the ADNI
cohort, for which manual hippocampal segmentations were
available and used during training. For each fold, 48 of the cases
were used for training and the remaining six for testing, and
the test set always included all the six possible combinations of
magnetic field strength and diagnosis presented in Table 1. When
the shape context was included in the pipeline, the shape model

3http://surfer.nmr.mgh.harvard.edu/
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described in Section “Generation of the Shape Model” was always
the same and not re-created for each fold.

The evaluation metrics used to analyze the accuracy were the
Dice score, precision, recall, and Hausdorff distance. The Dice
score (Dice, 1945) is an index that measures the degree of overlap
between two segmentation masks with values between 0 (no
overlap) and 1 (matching segmentations). When comparing a
hippocampal segmentation result with its ground truth, we can
define as “true positives” (TP) the number of voxels correctly
classified as belonging to the hippocampus and “false positives”
(FP) those wrongly classified as belonging to the hippocampus.
On the other hand, voxels correctly classified as background are
“true negatives” (TN) and those wrongly classified as background
are “false negatives” (FN). Given these definitions, we could
estimate the Dice score as 2 TP

2TP+FP+FN , the precision as TP
TP+FP ,

and the recall as TP
TP+FN . Finally, as regards the Hausdorff

distance, since it is a metric that tends to be highly sensitive to the
presence of outliers (Huttenlocher et al., 1993; Taha and Hanbury,
2015), we applied the quantile method proposed by Huttenlocher
et al. (1993). This method consists of, first of all, computing the
closest distance between every point of a segmentation mask and
the ground-truth. After this, these computed distances are sorted
(from the lowest to the highest) and, instead of simply identifying
their maximum value (i.e., the classical Hausdorff distance), their
qth quantile is reported. In particular, in this paper, the 95th
percentile of the distances was computed for each subject.

Cross-Cohort Evaluation
Once the segmentation pipelines had been trained and validated
as described above, they were tested on a new unseen dataset
of 37 subjects from the AddNeuroMed cohort. Since ground-
truth segmentation masks were available for this dataset, the same
evaluation metrics described in the previous section were used.
Moreover, the performance differences between the methods
were analyzed by carrying out pairwise comparisons between
the evaluation metrics obtained from all the tested DL-based
pipelines. This was done by defining a mixed-effect analysis of
variance model with the segmentation methods and the sides
(i.e., left or right) as fixed effects, the subjects as random effect,
and the resulting evaluation metrics as dependent variables. The
statistical calculation was performed in Stata 13.1 (StataCorp,
College Station, TX, United States).

Finally, the same networks were also trained on the
AddNeuroMed dataset and tested on the ADNI dataset, which
had previously been used as training set. Dice score, precision,
recall, and Hausdorff distance were computed. This was done
in order to further investigate the effect of training the
pipelines on data from a certain cohort and testing them on a
new unseen cohort.

Evaluation on a Larger ADNI Dataset
As a final test of the trained networks, the proposed DL-
based segmentation methods, which were trained on the
above-described ADNI dataset of 54 subjects, were also
applied on a separate larger dataset of 5948 T1-weighted
brain images still from the ADNI cohort. Given the large
amount of data and the consequently long time needed to

perform all the segmentations, we only tested two pipelines
in this phase: one not including shape information—
MRI U-Net—and one including such information—Shape
MRI U-Net.

For this dataset, ground-truth manual segmentation masks
of the hippocampus were not available, but segmentations from
FreeSurfer 6.0 could be easily obtained. Therefore, they were
employed to check their consistency with the result obtained
from the DL pipelines. This choice was motivated by the
fact that FreeSurfer is still among the most commonly used
software for brain image analysis. Thus, a similarity between
our results and those from FreeSurfer could allow us to the
test the potential of our methods to possibly replace one tool
that is already well-known and established. Such consistency was
analyzed by computing the correlation between the FreeSurfer
volumes and those obtained through each DL-based pipeline.
Moreover, two additional shape similarity metrics (i.e., Dice score
and Hausdorff distance) were also computed to evaluate the
similarity between the results from the proposed pipelines and
those from FreeSurfer.

In addition, given the large amount of data in this dataset,
we investigated whether our segmentation results could reflect
the volumetric changes in the hippocampus between the three
diagnostic group of interest, i.e., AD, MCI, and HC. This
was done by selecting all subjects whose diagnosis did not
change within 2 years after the first MRI scan. Subsequently,
we computed, for each subject, the hippocampal volume at
baseline and divided it by the total intracranial volume (ICV),
which is one of the outputs measurements (eTIV, estimated
total ICV) given by FreeSurfer 6.0. This normalization is often
used in literature in order to have a more reliable estimation
of atrophy caused by neurodegeneration (Voevodskaya et al.,
2014). This measurement was then multiplied by the average
ICV for all the subjects of interest. A one-way ANOVA
test was then employed to identify whether a statistically
significant difference (p < 0.05) could be found between the
groups. Moreover, the normalized volumes were also used
to fit three binary logistic regression models (i.e., for AD
vs. HC, AD vs. MCI, and MCI vs. HC) to investigate the
possibility of predicting the diagnosis of one subjects from
the above-described volumetric measurements. In particular,
each model was generated to provide as output the probability
of a subject to belong to a certain diagnostic group as a
function of the hippocampal volume multiplied by the ratio
between the ICV and the specific subject’s ICV. The prediction
power of each binary model was analyzed by computing three
evaluations metrics: area under the curve (AUC), sensitivity,
and specificity.

Finally, in this dataset, 2704 of the scans were repeated twice
on the same subject, with the same scanner and at the same time
point (within the same week). This allowed us to perform a test–
retest analysis to make sure that the implemented methods are
reproducible and consistent between the two subsequent scans.
Therefore, for each of the tested methods, we computed the
concordance correlation coefficient (CCC) (Lin, 1989) between
the hippocampal volumes from the two subsequent scans.
This coefficient describes the agreement between two different
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measurements of the same variable. CCC varies between –1 and
1, and CCC = 1 indicates perfect reproducibility.

RESULTS

Single-Cohort Evaluation
The performance of the three types of context-aware
segmentation methods was evaluated on the first ADNI dataset
of 54 subjects through ninefold cross-validation and compared
between the preliminary segmentation step (MRI U-Net) and
the additional steps using only cropped data (Cropped MRI
U-Net) or cropped data together with shape context (Shape MRI
U-Net), as shown in Table 2. No relevant differences were found
between the three methods, which showed quite consistent
results on both the left and the right hippocampus. Among all
the tested DL-based methods, Tissue MRI U-Net showed the
worst performance, having a slightly lower accuracy and higher
Hausdorff distance in average compared to the other methods.

The average Dice score was also estimated within each of the
three diagnostic groups (HC, AD, and MCI). This was done to
check whether the system has a consistent performance across all
possible forms of hippocampal integrity. As shown in Figure 2,
all diagnostic groups showed a similar segmentation accuracy in
both the left and right hippocampus by using the three proposed
methods. However, the AD patients always presented a slightly
lower Dice score (1 or 2% lower in average) with respect to the
other two subject groups.

As presented in Table 2, our methods yielded better values
than FreeSurfer in all the considered evaluation metrics. This
applies also for the comparison between diagnostic groups (see
Figure 2), in which, contrary to the proposed DL methods,
FreeSurfer showed a higher performance loss when dealing with
MCI and—even more—AD subjects, compared to the HCs.

In order to better understand the influence of each of the
three independent U-Nets (one for each view) toward the
final segmentation, we also computed the evaluation metrics
separately for each U-Net (see Supplementary Table S1). These

results showed how, for MRI U-Net, the highest accuracy is
obtained on the axial view. By contrast, for Cropped MRI U-Net
and Shape MRI U-Net, the highest accuracy can be observed
on the coronal view. However, while no big differences can be
found across all views in MRI U-Net and Shape MRI U-Net,
Cropped MRI U-Net showed an evident decrease in performance
on the sagittal view in terms of Dice score, precision, and
Hausdorff distance.

Moreover, the present methods were proven to be more
efficient also in terms of computational time, at least when only a
hippocampal segmentation is desired. On a personal computer
with an Nvidia GTX 1080 graphic card and 32 GB of RAM,
each segmentation took between 25 and 30 s with the simple
MRI U-Net methodology. When performing one segmentation
with Cropped MRI U-Net, approximately 1 min was taken. Using
Shape MRI U-Net, about two and a half minutes was needed
for one subject.

Cross-Cohort Evaluation
Testing on the AddNeuroMed Dataset
When the proposed segmentation pipelines were tested on the
new unseen dataset from the AddNeuroMed cohort, larger
differences between the tested methods could be observed
(see Table 3).

The accuracy achieved by segmenting the MRI images
using the MRI U-Net architecture is now very close to that
obtained by using FreeSurfer 6.0. In particular, the two methods
have almost identical Dice scores, while the precision and
recall are, respectively, decreased and increased by using MRI
U-Net. Moreover, FreeSurfer has a slightly higher Hausdorff
distance in average.

When performing the segmentation using the other two
proposed pipelines, an improvement in the performance can be
observed. Dice score, precision, and recall positively increased
by using the Cropped MRI U-Net architecture and, even more,
the Shape MRI U-Net. The benefit of adding shape context
was particularly noticed in the right hippocampus, where the
average Dice score increased by 4.04% with respect to MRI U-Net

TABLE 2 | Single-cohort evaluation.

Region of interest Segmentation method Dice score Precision Recall Hausdorff distance (in voxels)

Left hippocampus MRI U-Net 90.17 ± 1.44% 89.46 ± 2.20% 90.96 ± 2.29% 2.33 ± 0.55

Cropped MRI U-Net 90.28 ± 1.30% 89.36 ± 2.20% 91.28 ± 1.85% 2.22 ± 0.53

Shape MRI U-Net 90.01 ± 1.41% 88.55 ± 2.69% 91.60 ± 1.87% 2.35 ± 0.67

Tissue MRI U-Net 88.79 ± 1.61% 86.79 ± 2.72% 91.01 ± 2.94% 2.39 ± 0.60

Autocontext MRI U-Net 89.45 ± 1.46% 86.69 ± 2.77% 92.53 ± 2.75% 2.30 ± 0.57

FreeSurfer 6.0 79.52 ± 3.14% 82.94 ± 5.01% 76.60 ± 3.94% 4.34 ± 1.08

Right hippocampus MRI U-Net 90.12 ± 1.41% 89.59 ± 2.48% 90.77 ± 2.72% 2.39 ± 0.53

Cropped MRI U-Net 90.26 ± 1.41% 89.29 ± 2.62% 91.35 ± 2.39% 2.47 ± 0.59

Shape MRI U-Net 90.08 ± 1.67% 88.50 ± 3.39% 91.86 ± 2.34% 2.54 ± 0.79

Tissue MRI U-Net 88.74 ± 1.50% 86.4 ± 2.84% 91.00 ± 3.16% 2.63 ± 0.70

Autocontext MRI U-Net 89.63 ± 1.32% 87.25 ± 2.81% 92.30 ± 2.89% 2.39 ± 0.53

FreeSurfer 6.0 80.21 ± 3.86% 83.63 ± 4.35% 77.31 ± 5.36% 4.50 ± 1.23

The performance of the proposed methods (in terms of Dice score, precision, recall, and Hausdorff distance) was computed through ninefold cross validation and
compared with that of FreeSurfer 6.0. All evaluation metrics are expressed as mean ± standard deviation.
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FIGURE 2 | Difference in segmentation accuracy (from cross validation) between the three analyzed diagnostic groups (HC, MCI, and AD). The accuracy is
expressed as the Dice score averaged across all subjects and is represented with histograms for each of the tested methods (see color legend). The error bars show
the standard deviation of the Dice score.

(compared to + 2.70% obtained with Cropped MRI U-Net),
the average precision by 3.40% (compared to + 1.43%), and
the average recall by 5.03% (compared to + 4.47%). For the
left hippocampus, the difference between Cropped MRI U-Net
and Shape MRI U-Net was less evident, but in both cases, all
evaluation metrics increased by approximately 4% with respect
to MRI U-Net.

Also for this analysis, we calculated the evaluation metrics
separately for each independent 2D U-Net (see Supplementary
Table S2). Similarly to what has been obtained for the single-
cohort analysis, MRI U-Net showed its best accuracy on the axial

input slices, while with Cropped MRI U-Net and Shape MRI
U-Net no relevant differences could be noticed between coronal
and axial views. Moreover, most of the single 2D U-Nets of
Cropped MRI U-Net showed a lower performance compared to
Shape MRI U-Net, whose results are also more consistent across
views. In particular, the sagittal 2D U-Net of Cropped MRI U-Net
was still shown to have a very high Hausdorff distance compared
to all other views and approaches, as well as particularly low Dice
score and precision.

The two alternative integrations of context information did
not achieve a better performance than the proposed methods. In
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TABLE 3 | First cross-cohort evaluation.

Region of interest Segmentation method Dice score Precision Recall Hausdorff distance (in voxels)

Left hippocampus MRI U-Net 79.09 ± 2.63% 74.72 ± 4.27% 84.23 ± 3.15% 3.44 ± 0.74

Cropped MRI U-Net 84.44 ± 2.32% 78.47 ± 4.17% 91.60 ± 2.47% 3.19 ± 0.64

Shape MRI U-Net 84.92 ± 2.56% 79.46 ± 5.03% 91.57 ± 3.60% 3.16 ± 0.77

Tissue MRI U-Net 84.32 ± 2.16% 79.04 ± 4.12% 90.59 ± 2.90% 3.33 ± 0.85

Autocontext MRI U-Net 80.55 ± 2.61% 73.99 ± 4.23% 88.67 ± 3.50% 3.33 ± 0.72

FreeSurfer 6.0 79.41 ± 3.77% 78.89 ± 5.46% 80.20 ± 4.39% 4.24 ± 1.25

Right hippocampus MRI U-Net 80.15 ± 2.25% 74.54 ± 3.12% 86.80 ± 3.08% 3.92 ± 1.14

Cropped MRI U-Net 82.85 ± 2.52% 75.97 ± 3.91% 91.27 ± 2.31% 3.80 ± 1.05

Shape MRI U-Net 84.19 ± 2.50% 77.94 ± 4.49% 91.83 ± 3.28% 3.62 ± 1.04

Tissue MRI U-Net 82.88 ± 2.35% 76.86 ± 3.60% 90.08 ± 2.71% 3.68 ± 1.11

Autocontext MRI U-Net 80.51 ± 2.20% 73.08 ± 3.27% 89.79 ± 3.03% 3.88 ± 1.16

FreeSurfer 6.0 79.57 ± 3.54% 77.71 ± 5.53% 81.78 ± 3.40% 4.61 ± 1.11

The performance of the proposed methods (in terms of Dice score, precision, recall, and Hausdorff distance) was tested on a new unseen dataset from a different cohort
(i.e., AddNeuroMed cohort) than the one used for training. The performance is reported also for the segmentations obtained using FreeSurfer 6.0 on the same data. All
evaluation metrics are expressed as mean ± standard deviation.

particular, Autocontext MRI U-Net showed a very similar result
to MRI U-Net. Instead, with Tissue MRI U-Net, the performance
is comparable to that of Cropped MRI U-Net and Shape MRI
U-Net, but never outperforming them in any of the analyzed
evaluation metrics.

As shown in Supplementary Table S3, a statistically
significant difference (i.e., p < 0.05 with Bonferroni correction)
was found in the majority of the pairwise comparisons between
the tested segmentation methods for all the evaluation metrics,
except for the Hausdorff distance. The value of this latter metric
is indeed quite consistent across all DL-based methods (except
for the difference between Shape MRI U-Net and MRI U-Net,
which resulted to be significant). Significantly larger Hausdorff
distances were, however, always found when using FreeSurfer
6.0 as opposed to the pipelines implemented in the present
work. Moreover, the choice of the subject to be segmented—
and, subsequently, the image quality, as well as the level of
degeneration—was found to highly influence the performance.
Figure 3 shows how, for each subject, the evaluation metrics
tended to vary with a consistent pattern according to the method
being used and maintained a rather similar between-subject
variability within each method.

The average Dice scores for each diagnostic group from the
AddNeuroMed dataset were also analyzed, as shown in Figure 4.
The results reflect what has been observed on the whole dataset
(i.e., averaging the results across all 37 subjects): both Cropped
MRI U-Net and Shape MRI U-Net showed a superior accuracy
compared to MRI U-Net, and in general the DL-based methods
performed better than FreeSurfer 6.0.

Testing on the ADNI Dataset
All the implemented networks were re-trained using the data
from the AddNeuroMed cohort in order to be tested on the
54 subjects from the ADNI cohort that had previously been
used for training. Average Dice score, precision, recall, and
Hausdorff distance were computed and presented in Table 4.
The results are rather consistent with what has been found for
the first cross-cohort evaluation presented in Section “Testing on

the AddNeuroMed Dataset.” The average Dice scores for MRI
U-Net and Autocontext MRI U-Net are very similar to those
obtained using FreeSurfer 6.0, while they increase when using
Cropped MRI U-Net and Shape MRI U-Net. However, in this
case, the best results in terms of Hausdorff distance could be
found in Autocontext MRI U-Net, followed by the Shape MRI
U-Net implementation.

Two major differences could be found compared to the
previous cross-cohort evaluation. First, Tissue MRI U-Net
showed a much worse performance in terms of Dice score,
precision, and recall. Second, all the other deep-learning based
methods resulted in having both higher precision and lower recall
compared to the previous analysis.

Testing on a Larger ADNI Dataset
The 5948 additional cases from the ADNI cohort were segmented
using the networks trained on the above-described balanced
ADNI dataset of 54 subjects. The correlation coefficients of the
volumetric results were rather high and consistent between each
of the two tested pipelines and FreeSurfer, as can be observed in
Figure 5. For the sake of completeness, we also computed the
correlation between the two present U-Net based pipelines as
well, which resulted in a correlation coefficient of 0.952 for the
left and 0.958 for the right hippocampus. Thus, there is a higher
correlation between the tested DL-based pipelines than between
either of these pipelines and FreeSurfer.

The scatter plots of Figure 5 highlight the presence of a few
outliers, whose number appears to be higher using MRI U-Net
but decreases with Shape MRI U-Net. For each of the proposed
pipelines, we computed the hippocampal volume of every
subject—obtained after applying one of the given segmentation
pipelines—divided by the hippocampal volume obtained, instead,
from FreeSurfer on the same subject. These ratios were then
used to extract a measure of the amount of outliers. We defined
as outliers all those subjects that, for a specific segmentation
pipeline, showed a volumetric ratio deviating from the median
ratio by at least three times the median absolute deviation. The
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FIGURE 3 | Variability of the performance within subjects on the AddNeuroMed test dataset. The plots are showing how, for each subject (see color legend), the
evaluation metrics (on the vertical axes) change according to the segmentation method (on the horizontal axes) being used. Each of the four plots represents one
specific evaluation metric: Dice score (top left), precision (top right), recall (bottom left), and Hausdorff distance (bottom right).

results confirmed what could be seen from the plot. Indeed,
for the left and right hippocampus, respectively, 104 and 140
outliers were identified using MRI U-Net, while 84 and 96 using
Shape MRI U-Net. Of these subjects, 14 appeared as outliers
(for both left and right hippocampus) in all three pipelines. All
these 14 cases were either MCI subjects or AD patients and
examples of the segmentation results in some of those are shown
in Figure 6. An expert was asked to compare the segmentations
obtained from FreeSurfer with those from MRI U-Net (which,
as in Figure 6, was chosen as reference DL-based segmentation
method for this evaluation) in these 14 subjects. In all 14
cases, FreeSurfer showed segmentation errors. With MRI U-Net,
instead, three out of these 14 cases showed good segmentation
results, five out of 14 showed inaccurate but better results
than FreeSurfer, while the remaining six cases were classified as
segmentation errors in the same manner as FreeSurfer. Moreover,
in Figure 5, the plot for the left hippocampal segmentation using
MRI U-Net and both plots for the right hippocampus show one
specific point that has a very low volume (in some cases very close
to zero). This point corresponds to the same subject in all of these
three cases. The original MRI scan of this subject was visually

inspected, and it was found to be affected by artifacts that made
the identification of the hippocampus particularly challenging.
The result obtained on the same subjects on the left hippocampus
using Shape MRI U-Net was also inaccurate, even if characterized
by a larger amount of voxels.

Two additional similarity metrics (i.e., Dice score and
Hausdorff distance) have been computed to compare the results
from FreeSurfer with those from both MRI U-Net and Shape MRI
U-Net (see Supplementary Table S4). These results showed a
rather high consistency between these methods, with an average
Dice score close to 79% for the comparison with MRI U-Net, and
around 82% for Shape MRI U-Net. Also the Hausdorff distance
was rather low (i.e., around 4 voxels in average) for all methods.

We also investigated whether there is a statistically significant
difference in the normalized hippocampal volume between the
three diagnostic groups of interest, i.e., AD, MCI, and HC.
All the three analyzed segmentation methods (MRI U-Net,
Shape MRI U-Net, and FreeSurfer 6.0) resulted in statistically
significant differences between all three diagnostic groups. As
can be seen in Table 5, the lowest normalized hippocampal
volumes were always found in the AD patients, and the highest
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FIGURE 4 | Difference in segmentation accuracy (on the AddNeuroMed test dataset) between the three analyzed diagnostic groups (HC, MCI, and AD). The
accuracy is expressed as the Dice score averaged across all subjects and is represented with histograms for each of the tested methods (see color legend). The
error bars show the standard deviation of the Dice score.

in the HCs. We then investigated the diagnostic prediction
power by computing the AUC, sensitivity, and specificity of
three logistic regression models that were fitted to classify AD
vs. HC, AD vs. MCI, and MCI vs. HC by using the above-
mentioned normalized measurements. The results, which are
reported in Table 6, show that, for all three segmentations
methods, a rather good prediction power is achieved when
comparing AD subjects and HC, with a AUC that is above 0.80.
Instead, the task of distinguishing AD from MCI and MCI from
HC subjects is more challenging, with an AUC of 0.68 for all
three methods in the classification of AD vs. MCI and slightly

lower AUCs for the classification of MCI vs. HC. Sensitivity and
specificity measurements are also shown to be consistent with
the AUC across methods and classification tasks. Moreover, the
DL-based methods have also shown to have a slightly higher
performance compared to FreeSurfer, given their overall higher
evaluation metrics.

Finally, in this dataset, we computed the CCCs between the
hippocampal volumes from all the available pairs of subsequent
test–retest scans from the same subject at the same time
point. For the left and right hippocampus, respectively, the
CCC resulted in 0.988 and 0.977 with Shape MRI U-Net,
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TABLE 4 | Second cross-cohort evaluation.

Region of interest Segmentation method Dice score Precision Recall Hausdorff distance (in voxels)

Left hippocampus MRI U-Net 80.26 ± 3.93% 87.92 ± 3.72% 74.03 ± 5.48% 3.52 ± 0.85

Cropped MRI U-Net 84.56 ± 2.45% 88.12 ± 2.77% 81.42 ± 4.00% 3.44 ± 0.82

Shape MRI U-Net 85.06 ± 2.47% 87.85 ± 3.08% 82.57 ± 3.72% 3.34 ± 0.74

Tissue MRI U-Net 73.39 ± 8.93% 75.66 ± 8.90% 71.40 ± 9.45% 4.30 ± 1.04

Autocontext MRI U-Net 79.64 ± 7.50% 77.37 ± 7.84% 82.14 ± 7.56% 3.00 ± 0.75

FreeSurfer 6.0 79.52 ± 3.14% 82.94 ± 5.01% 76.60 ± 3.94% 4.34 ± 1.08

Right hippocampus MRI U-Net 82.00 ± 3.42% 90.42 ± 2.99% 75.28 ± 5.54% 3.79 ± 0.74

Cropped MRI U-Net 85.62 ± 1.92% 88.56 ± 2.93% 83.03 ± 3.68% 3.54 ± 0.80

Shape MRI U-Net 86.06 ± 2.01% 88.20 ± 3.46% 84.21 ± 3.70% 3.47 ± 0.88

Tissue MRI U-Net 73.59 ± 6.64% 75.42 ± 6.97% 72.03 ± 7.30% 4.19 ± 0.88

Autocontext MRI U-Net 79.24 ± 6.07% 77.19 ± 6.41% 81.52 ± 6.37% 3.03 ± 0.60

FreeSurfer 6.0 80.21 ± 3.86% 83.63 ± 4.35% 77.31 ± 5.36% 4.50 ± 1.23

The proposed pipelines were re-trained on the dataset from the AddNeuroMed cohort and tested on the data from the ADNI cohort, which were previously used
for training. The performance of the methods is presented in terms of Dice score, precision, recall, and Hausdorff distance. The performance is reported also for the
segmentations obtained using FreeSurfer 6.0 on the same data. All evaluation metrics are expressed as mean ± standard deviation.

0.989 and 0.986 with MRI U-Net, and in 0.969 and 0.963
with FreeSurfer 6.0.

DISCUSSION

Comparison Between the Implemented
Pipelines
In this work, three different U-Net based segmentation pipelines
were proposed: MRI U-Net, Cropped MRI U-Net, and Shape
MRI U-Net. All three methods were shown to be accurate and
quick tools for the automatic segmentation of the hippocampus
from brain MRI data.

Single-Cohort Analysis
The first presented method, MRI U-Net, constitutes the simplest
architecture, which takes the original MRI image as input
and performs the segmentation using three orthogonal U-Nets.
When testing its performance through cross validation on 54
subjects from the ADNI dataset, it was shown to achieve
an excellent accuracy (average Dice score of approximately
90%) which was equal to each of the other two proposed
and more elaborate methods (Cropped MRI U-Net and Shape
MRI U-Net). It also yielded higher accuracy than the software
FreeSurfer. To some extent, this was expected since the
segmentation protocol of the ground-truth masks coincides
with that used to train the network, while it inevitably differs
from the atlas on which the FreeSurfer segmentation is based
(Fischl et al., 2002). However, given the very high difference
in performance between the two methods (i.e., around 10%
of improvement in the Dice score), we believe that such
comparison is valuable and worth being reported in order to
give a measure of how DL-based methods are outperforming
older—but still widely used and established—brain image
processing software.

These results suggest that, when the training and test set come
from the same cohort, the use of the simple T1-weighted scan
as input image is more efficient than both using just a portion

of the scan (cropped around the hippocampus) and including
context information. The step of cropping the image around
the hippocampus is probably not needed for the network to
increase its performance because data from the same cohort have
the same size and very similar scanning quality, and therefore
the localization and size of the hippocampal region is quite
consistent across images. As regards the lack of improvement
by adding shape context layers, it is probably due to the fact
that a high accuracy can already be reached by using the
preliminary single-channel networks and, as already observed
in a previous study (Wang and Smedby, 2017), the inclusion
of shape information is most valuable when the structure to be
segmented is rather challenging.

The analysis of each independent U-Net (i.e., trained for
each view separately) was also useful to better understand the
differences between the three approaches, which, globally, seem
to be very similar to each other. The coronal view is typically the
most used view to perform manual hippocampal segmentation.
However, its morphological details are not always sufficient to
achieve an accurate results, so the axial and sagittal views have to
be checked as well (Boccardi et al., 2015a). Therefore, a superior
performance on the coronal view was expected on all the trained
U-Nets. However, in MRI U-Net, the best performing network
was shown to be the one trained on axial slices, suggesting that
this model is able to capture some important image features
that differ from those used by the human raters. On the other
hand, both Cropped MRI U-Net and Shape MRI U-Net showed a
slightly superior performance on the coronal view, which is more
consistent with what happens in practice when the segmentation
is performed by expert radiologists. Moreover, Cropped MRI
U-Net resulted in a relevantly low performance on the sagittal
view compared to all other views. In particular, the high average
Hausdorff distance suggests the presence of several geometric
errors, which are then corrected by integrating the information
from the other two views. This could not be observed on Shape
MRI U-Net, suggesting that the use of shape information on
the sagittal view can help to prevent the occurrence of such
geometric errors.
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FIGURE 5 | Correlation between the volume of the segmentations obtained using the proposed methods (on the large ADNI test dataset) and those from FreeSurfer
6.0. The Pearson correlation coefficient (r) is reported together with its 95% confidence interval (95% CI). Results are reported for both the left (top row) and right
(bottom row) hippocampus, and for both MRI U-Net (pink) and Shape MRI U-Net (yellow) in comparison with FreeSurfer 6.0. The volumes are plotted and expressed
in terms of number of voxels in the region of interest.

Cross-Cohort Analysis
When the networks trained on the ADNI cohort were tested on a
dataset from the AddNeuroMed cohort, the observed differences
between the three implemented architectures were subject to a
consistent change.

In terms of overall accuracy, MRI U-Net and FreeSurfer, which
both process the data by receiving as input only the original T1-
weighted image, showed a very similar performance. The main
difference between them is a lower precision and higher recall
obtained, in average, by using MRI U-Net. The lower precision
may be due to an over-estimation of the hippocampal mask in
regions where hippocampal atrophy is present. This suggests the
difficulties of training a network with enough atrophic patterns to
be able to obtain accurate segmentations also on new unseen data.
On the other hand, the under-estimations obtained by FreeSurfer

may be related to other types of segmentation errors in atrophic
hippocampal areas as well, as suggested also by the general
decrease in performance in MCI and AD subjects (Figure 4). This
issue will be subject to future investigations.

Furthermore, a clearly higher accuracy was now observed by
employing Cropped MRI U-Net and, even more, Shape MRI
U-Net. Therefore, when segmenting new unseen data that differ
from those used during training (for example, in terms of image
size, scanner types, and image quality), it seems to be motivated
to perform a further processing step adding information to the
simple MRI scan. A big improvement in the accuracy was seen
already by simply cropping the image around the center of gravity
of the preliminary hippocampal segmentation, suggesting that
already this step largely harmonizes the input images to those
used during training. This could be explained by the fact that
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FIGURE 6 | Comparison between the segmentation result obtained from
using MRI U-Net and the one from FreeSurfer 6.0 in some examples slices of
different subjects from the large ADNI test dataset. The yellow areas indicate
the overlap between the two segmentation results, the light blue ones
correspond only to the MRI U-Net segmentation, and the red ones only to the
FreeSurfer segmentation. All represented subjects belong to the group of 14
cases for which the ratio between the deep-learning based volumes (from all
three pipelines) and the volume from the FreeSurfer segmentation had a value
that was considered as outlier. In (A) and (B), FreeSurfer over-estimates the
hippocampal region compared to MRI U-Net that achieves a more reliable
estimation. In (C), an unusual shape of the anatomical gyri surrounding the
hippocampus is present and both methods result in some segmentation
errors, but MRI U-Net achieves a more accurate result compared to the large
overestimation obtained by using FreeSurfer.

the second U-net is dealing with a much smaller field of view
therefore is less likely to be disturbed by imaging or structure
changes outside the core region. On the other hand, compared
to Cropped MRI U-Net, the inclusion of shape context layers
was also shown to lead to slight, but yet statistically significant,
improvements in terms of Dice score and precision. This result
supports what has already been observed in the previous section:
when a high accuracy in the segmentation is achieved from the
simple MRI U-Net implementation, adding shape information
does not improve the result; on the other hand, when the MRI
U-Net segmentation is more challenging (for example, in this
case, due to discrepancies between training and test data), the
shape context layers—together with the cropping step—can help
to increase the accuracy.

The computation of the evaluation metrics for each
independent 2D U-Net also allowed to highlight certain

differences between the three approaches that cannot be
captured from their global performance. In general, by analyzing
the performance of each view independently, the advantage of
using Cropped MRI U-Net over MRI U-Net is less noticeable,
given its larger differences between views in terms of accuracy,
as well as generally higher Hausdorff distance. However, as
described above, merging the information from all views
together seem to stabilize the result and discard many of the
FP that affect the simple 2D-based results. This highlights
the importance of integrating information from all views
together in order to obtain more reliable segmentation results.
This is very consistent with what is suggested for the manual
HarP segmentation protocol, i.e., the segmentation must be
performed using all views together in order to achieve accurate
results. Moreover, similarly to what was observed for the
single-cohort analysis, the inclusion of shape context appears
again useful to improve the performance not only globally in
3D, but also on a 2D basis. Its performance on all views is
indeed superior to the one of both Cropped MRI U-Net and of
MRI U-Nets.

The positive contribution of adding the step of shape model
fitting is further supported by the comparison with two other
types of context information. Indeed, Shape MRI U-Net was
found to be the most successful method among all those
tested. The difference between Shape MRI U-Net and all other
approaches was indeed shown to be statistically significant
for most of the evaluation metrics. In particular, as regards
Autocontext MRI U-Net, we believe that the network tends to
learn mainly from the first U-Net-based segmentation without
extracting much more information from the T1 volume. This
would explain why there is no real improvement in performance
and its accuracy is rather similar to that of MRI U-Net. In the
case of Tissue MRI U-Net, instead, we think that automatic
tissue types segmentations may tend to fail in some locations.
Therefore, this would provide “misleading” information as input
to the network, which makes this approach not robust.

The above-discussed observations could be made also when
training and test set were switched. Indeed, the average evaluation
metrics were quite consistent to those of the first cross-cohort
analysis and, also in this case, Shape MRI U-Net showed,
overall, the best performance. Only two main differences could
be found compared to the previous analysis. First of all, the
accuracy of Tissue MRI U-Net got much worse. This could
be justified by the fact that, in the AddNeuroMed dataset, the
image quality is generally lower, also because of the field strength
that is limited to 1.5 T in all subject. This may lead to more
imprecise tissue type segmentations used during training, which
cause a further degrading of the performance during the test
phase on a new dataset. Moreover, for all the other DL-based
pipelines, the precision and the recall were, respectively, higher
and lower compared to the previous analysis. This result was
expected because the training and test sets have been simply
switched and therefore possible over-estimations in the first
cross-cohort evaluation are likely to result in under-estimations
in the second one.

Finally, it should be noted that, despite the increase in
performance with Shape MRI U-Net on both cross-cohort
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TABLE 5 | Volumetric differences in the hippocampal volume between diagnostic groups in a subset of subjects from the large ADNI test dataset.

Region of interest Segmentation method AD (n = 93) MCI (n = 267) HC (n = 154) p-value (one-way ANOVA)

Left hippocampus MRI U-Net 3.54 ± 0.66 cm3 3.95 ± 0.60 cm3 4.30 ± 0.54 cm3 p < 0.001

Shape MRI U-Net 3.67 ± 0.60 cm3 4.04 ± 0.59 cm3 4.39 ± 0.51 cm3 p < 0.001

FreeSurfer 6.0 3.25 ± 0.60 cm3 3.60 ± 0.63 cm3 3.99 ± 0.58 cm3 p < 0.001

Right hippocampus MRI U-Net 3.38 ± 0.66 cm3 3.81 ± 0.66 cm3 4.25 ± 0.54 cm3 p < 0.001

Shape MRI U-Net 3.56 ± 0.61 cm3 3.93 ± 0.62 cm3 4.34 ± 0.50 cm3 p < 0.001

FreeSurfer 6.0 3.16 ± 0.59 cm3 3.50 ± 0.63 cm3 3.89 ± 0.54 cm3 p < 0.001

For each subject, the hippocampal volume was multiplied by the ratio between the average ICV and the specific subject’s ICV. Results are reported for baseline
measurements as mean ± standard deviation for each of the three diagnostic groups of interest, i.e., AD patients, MCI subjects, and healthy controls. Only subjects
whose diagnosis did not change within 2 years after the first measurement were selected. The number of subject n in each group is indicated in brackets. For each
method, a one-way ANOVA test was conducted for comparing the three diagnostic groups.

TABLE 6 | Prediction power of using the normalized hippocampal volume
measurements to classify AD vs. HC, AD vs. MCI, and MCI vs. HC.

Segmentation method AD vs. HC AD vs. MCI MCI vs. HC

MRI U-Net AUC = 0.85 AUC = 0.68 AUC = 0.67

Sensitivity = 0.75 Sensitivity = 0.60 Sensitivity = 0.62

Specificity = 0.82 Specificity = 0.65 Specificity = 0.69

Shape MRI U-Net AUC = 0.84 AUC = 0.68 AUC = 0.65

Sensitivity = 0.73 Sensitivity = 0.65 Sensitivity = 0.59

Specificity = 0.80 Specificity = 0.60 Specificity = 0.66

FreeSurfer 6.0 AUC = 0.82 AUC = 0.68 AUC = 0.64

Sensitivity = 0.73 Sensitivity = 0.66 Sensitivity = 0.60

Specificity = 0.73 Specificity = 0.60 Specificity = 0.62

The diagnostic prediction power was analyzed by fitting three different logistic
regression model (one for each binary classification case) and computing its AUC,
sensitivity, and specificity. The model was fitted to give the probability of a subject
to belong to a certain diagnostic group as a function of the hippocampal volume
multiplied by the ratio between the average ICV and the specific subject’s ICV.
Sensitivity and specificity were computed at a threshold of 0.5.

analyses, the segmentation accuracy is still lower than the
one obtained using cross-validation on the dataset from the
ADNI cohort (presented in section “Single-Cohort Evaluation”).
However, this was expected due to both the above-discussed
discrepancy between training and test cohort, as well as
the inter-rater differences when generating the ground-truth
segmentations. The experience of the rater (in terms of familiarity
with the segmentation task itself, the given image quality and the
specific MRI protocol) can indeed affect the manual delineation
of the segmentation masks.

Analysis on the Larger ADNI Dataset
For the last and largest dataset, where ground-truth masks
were not available and visually checking the accuracy was not
feasible due to the large amount of data, the performance of
the networks was checked by comparing the hippocampal
volumes with those obtained using FreeSurfer. This approach
clearly has limitations, since it cannot give a detailed
measure of the accuracy of the method in this new dataset
and could not reveal relevant differences between the three
proposed methods. However, the high correlation coefficients
(presented in Figure 5) and similarity metrics (Supplementary
Table S4) between the proposed methods and FreeSurfer

suggest both a valid and consistent performance for all the
present methods.

From Figure 5, it is possible to observe that FreeSurfer
tends to provide, in general, smaller segmentations compared
to the DL-based methods. This is in agreement with what was
discussed in Section “Cross-Cohort Analysis” when analyzing
the performance on the AddNeuroMed dataset. Indeed, in this
case, FreeSurfer was shown to have higher average precision and
lower average recall.

Furthermore, the number of identified outliers was low
in comparison with the size of the dataset, which further
supports the consistency of the results across subjects.
On the other hand, the visual inspection of some subjects
identified as outliers actually revealed a segmentation
result from MRI U-Net that did not appear to be less
accurate than the one obtained from FreeSurfer, as shown
in Figure 6. This fact further exposes the limitations of not
having a ground-truth mask to validate the performance.
On the other hand, it also suggests that the results of the
proposed DL-based approaches are promising in comparison
with other established methods, especially when dealing
with potential clinical cases (since no outliers belonged
to the HC group).

When comparing FreeSurfer with the two proposed DL-
based methods in terms of Dice score and Hausdorff distance,
a rather high consistency could also be observed, especially for
Shape MRI U-Net that showed, in average, a higher Dice score.
The resulting metrics are also rather consistent with the results
obtained when analyzing the performance of FreeSurfer both
in the single-cohort and the cross-cohort analyses. This was
expected because, as opposed to FreeSurfer, the present U-Net-
based methods were all trained on the HarP protocol used for the
manual segmentations too.

The availability of pairs of scans acquired from the same
subjects at the same time point also allowed us to perform
a test–retest analysis. This resulted in a very high CCC (i.e.,
between 0.977 and 0.989) in the hippocampal volumes between
two subsequent scans with both the tested methods, i.e., MRI
U-Net and Shape MRI U-Net. While the results obtained in
the above-described single- and cross-cohort analyses show the
accuracy of the method, these high coefficients in the test–retest
investigation demonstrate the reproducibility of the proposed
techniques. Moreover, FreeSurfer also resulted in slightly lower
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CCCs (between 0.963 and 0.969), showing how the present
methods are to some extent more reproducible.

Comparison Between Diagnostic Groups
The performance of the three proposed methods was proven to
be satisfactory in all three analyzed diagnostic groups: HC, MCI,
and AD patients. By computing the Dice score separately for
each group, we found that the segmentation accuracy is quite
consistent across the groups.

When the network was initially tested through cross-
validation on the dataset of 54 subjects from the ADNI cohort,
the AD patients’ group was the only one showing a lower
performance with respect to the other two. However, this
difference was rather small, approximately 1%. The difference
between subject groups slightly increased when testing the
network on the dataset from the AddNeuroMed cohort, which
was different from the cohort of the training data. Indeed,
in this case, a little loss in performance was seen already
in the MCI subjects, for which the Dice score showed an
average decrease of between 1 and 3% compared to HC. In
AD patients, the average decrease was between 2 and 4%
relative to HC. Observing a slightly better accuracy in the
images from HCs was expected. Indeed, MCI subjects and,
even more, AD patients are expected to present patterns
of hippocampal atrophy, which is strongly related to the
severity stage of the disease. These patterns are likely to be
quite heterogeneous if compared to the typical hippocampal
structure that can be observed on a healthy brain, making
the learning of the network more challenging for such
diagnostic cases.

Despite the little loss in performance on AD patients, the
accuracy of the proposed methods was more satisfactory than the
one obtained by applying the automatic segmentation pipeline
from FreeSurfer 6.0. FreeSurfer is also affected by a loss in
accuracy when segmenting AD patients compared to HC and
the magnitude of such loss was always higher than the ones
obtained from the presented DL pipelines. These results suggest
that the choice of a U-Net-based approach could also be favorable
when good segmentation accuracy is needed on brain images
from dementia patients. This aspect is particularly important
for a medical segmentation tool to be potentially used both in
a clinical and a research setting. Indeed, the more accurate the
segmentation is, the more reliable the estimations of hippocampal
volume and shape will be. Such geometrical features have been
shown to be strongly related to the disease progression, and
therefore it is crucial to achieve an accurate segmentation also on
demented subjects and not only on healthy ones.

The potential of the proposed methods to be used in a
clinical framework was also further shown by the comparison
between the normalized hippocampal volumes of the three
diagnostic groups present in the large ADNI dataset. All present
methodologies show significant differences in the distribution
of the hippocampal volumes between groups. In particular, the
lowest average volume was found in the AD subjects and the
highest in the HCs. This suggests that the present methods can
capture the differences in volume caused by the atrophy that is
typical of the disease progression.

The usefulness of these volumetric differences between
groups was further investigated by fitting logistic regression
models to predict the diagnosis of a subject. DL-based methods
showed a better performance than FreeSurfer 6.0 and the
highest AUC (always above 0.80) could be achieved in the
classification of AD vs. HC. Similar diagnosis classification tasks
have already been investigated in previous literature leading to
similar results. Indeed, in a study by Westman et al. (2011b),
manual hippocampal segmentations were employed to define
multivariate analysis models for diagnosis prediction, obtaining
a sensitivity and specificity of, respectively, 87 and 90% for the
AD vs. HC classification. Instead, for AD vs. MCI and MCI vs.
HC, those evaluation metrics dropped to approximately 70% in
all cases. In a later study by Voevodskaya et al. (2014), FreeSurfer
5.1 was used to extract normalized hippocampal volumes from
ADNI data and the AUC was computed for three different linear
regression models fitted for the same classification tasks. Also
in this case, the best result was obtained with AD vs. HC with
an AUC of 0.90, while poorer performance was achieved with
the other two models. Therefore, our results reflect what has
already been observed in literature, i.e., the potential of using
accurate hippocampal segmentation methods to improve the
diagnosis of AD and its discrimination from healthy cases. Even
though there are differences between different studies in their
values of AUC, sensitivity, and specificity, it has to be noted
that such discrepancies can be due to different factors. First,
the number of analyzed subjects and the model definition can
highly influence the results, e.g., the model could be affected by
overfitting. Moreover, the type and accuracy of the segmentation
method being used can also affect the performance. In addition,
the patterns of brain atrophy in AD are heterogeneous and
it has been estimated that approximately 23% of AD patients
are minimally affected by hippocampal atrophy (Poulakis et al.,
2018). Therefore, the presence of this type of patients in the
dataset can also affect the prediction power of a model based
only on hippocampal volume. However, in general, our study is
particularly consistent with the others in terms of the difference
in performance between the AD vs. HC classification compared
to the other two classification tasks. This discrepancy between
classifiers, though, will always be expected given the typical
patterns of disease progression, since the differences in atrophy
between AD and MCI subjects, as well as between MCI and HC,
are inevitably smaller compared to the differences between AD
patients and healthy subjects.

Computational Time
The present pipelines were proven to be successful not only
in terms of segmentation accuracy, but also in terms of
computational speed, which varied between approximately 30
and 150 s depending on the architecture being used. Time
efficiency is another important aspect to be taken into account
in order to use a segmentation tool in a clinical framework
as an aid for performing a diagnosis. Therefore, a DL-based
solution is promising in the context of potential clinical use.
However, it has to be noted that a computationally slower
software as FreeSurfer provides, together with the hippocampus,
the segmentation masks for many other gray and white matter
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structures, as opposed to the present study that is focused only
on hippocampal segmentation. This implies that the choice of the
most efficient segmentation method is strongly dependent on the
application of interest and on the level of accuracy that is required
from the segmentation result.

Limitations and Future Work
The present work investigates the use of a DL architecture
for an image segmentation task that is of particular interest
for AD research. Indeed, achieving an accurate hippocampal
segmentation is a crucial task for aiding research in the early
diagnosis of the disorder. Moreover, precise standards on how
to perform a good manual segmentation of the hippocampus
are available, making it easier to obtain ground-truth masks to
train the network with. However, the number of training data
used for the present work was still quite limited. This issue was
approached by using data augmentation, but in the future we
plan to expand the training dataset by adding more manual
segmentations performed by experts. Moreover, it would be
useful to obtain manual segmentations of other brain regions,
whose geometrical information could be integrated with those
from the hippocampus. Therefore, we also aim at extending the
study by testing the proposed pipelines on other brain structures
that are both of interest for Alzheimer’s research and known
to be particularly challenging for segmentation, such as the
entorhinal cortex. In particular, we want to investigate whether
the inclusion of shape information can be even more useful
in such a context.

In addition, we would like to change our architecture by using
3D U-Nets instead of the three independent 2D U-Nets. In the
present work, an implementation using 2D U-Nets was employed
mainly because of the limited 3D training data samples and its
advantage over a 3D implementation in terms of memory usage.
However, in the future, we would like to test whether the direct
use of 3D information could further improve the segmentation
accuracy in any of the proposed pipelines.

Moreover, one of the limitations of this study is that the
inclusion of shape information encoded in statistical shape
models is not entirely new, as already presented in a previous
study by Wang and Smedby (2017). In the future, we aim
at investigating a wider range of shape descriptors that could
possibly further improve the performance of our shape-aware
segmentation pipeline. However, besides the different field
of application (hippocampal segmentation instead of heart
segmentation), the main contribution of this study compared to
the one by Wang and Smedby (2017) is the extensive analysis
of the performance of Shape MRI U-Net on larger datasets
of subjects from different diagnostic groups and cohorts, as
well as the comparison with two other types of context-aware
architectures. The present work provides a new insight on how
the inclusion of a priori shape information can be employed
in cross-cohort analyses or, more in general, when a testing
dataset was not used at the time of training. In the context
of hippocampal segmentation, the use of shape information
was shown to be indeed more successful than other types of
a priori information that could be extracted from the given
anatomical structures. The integration and comparison with

other a priori information, as well as the analyses of new
cohorts, could be investigated in the future to further confirm the
present findings.

Finally, in this study, the MRI scans underwent only a
couple of preprocessing stages, i.e., resampling and intensity
normalization. A further harmonization of the inputs was later
obtained by cropping the images on Cropped MRI U-Net, as
well as including the normalized shape models on Shape MRI
U-Net. This choice was made to keep the pipeline as simple and
quick as possible. However, we would like to investigate whether
the addition of a few other preprocessing steps, such as skull
stripping, could help improving the performance of MRI U-Net.

CONCLUSION

The present work has proposed an accurate and fast method for
automatic segmentation of the hippocampus using U-Net-based
DNNs together with statistical shape modeling.

A simpler and quicker U-Net architecture, which simply uses
the original MRI scan as input image, achieved already excellent
results in a first single-cohort analysis. However, the proposed
implementation using shape context was shown to be more
successful with data from a new unseen cohort by significantly
improving the segmentation accuracy. These results suggest that
the inclusion of shape information may make the method more
robust in cases where the segmentation task is more challenging.

Our promising results across different diagnostic groups
suggest that the proposed method could not only be used as
a possible substitute for other existing segmentation tools, but
may also have a potential as an aid for studying and diagnosing
neurodegenerative disorders.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. These data
can be found here: http://adni.loni.usc.edu/.

ETHICS STATEMENT

The data acquisition for the AddNeuroMed study was approved
by the Regional Ethics Board Stockholm 2013/694-31. Data were
acquired after written informed consent.

AUTHOR CONTRIBUTIONS

CW, ÖS, EW, and IB contributed to the conception and
design of the study. OL provided the manual segmentations for
the AddNeuroMed dataset. J-SM organized the database and
provided the FreeSurfer segmentations. IB and CW developed the
segmentation pipeline and shape model. IB, CW, ÖS, EW, and
OL worked on the final method evaluation and analysis of the
results. All authors contributed to the writing of the manuscript
and its revision, as well as approved the submitted version.

Frontiers in Neuroscience | www.frontiersin.org 17 January 2020 | Volume 14 | Article 1524

http://adni.loni.usc.edu/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00015 January 22, 2020 Time: 19:37 # 18

Brusini et al. Hippocampal Segmentation Using Shape Information

FUNDING

This project was financially supported by the Swedish Foundation
for Strategic Research (SSF), the Swedish Research Council
(VR), the joint research funds of KTH Royal Institute of
Technology and Stockholm County Council (HMT), the regional
agreement on medical training and clinical research (ALF)
between Stockholm County Council and Karolinska Institutet,
the Swedish Alzheimer Foundation, and the Swedish Brain
Foundation. Data collection and sharing for this project was
funded by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (National Institutes of Health Grant U01 AG024904)
and DOD ADNI (Department of Defense award number
W81XWH-12-2-0012). ADNI is funded by the National Institute
on Aging, the National Institute of Biomedical Imaging
and Bioengineering, and through generous contributions
from the following: AbbVie, Alzheimer’s Association;
Alzheimer’s Drug Discovery Foundation; Araclon Biotech;
BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company;
CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals,
Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-
La Roche Ltd. and its affiliated company Genentech, Inc.;
Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer
Immunotherapy Research & Development, LLC; Johnson
& Johnson Pharmaceutical Research & Development LLC;

Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics,
LLC; NeuroRx Research; Neurotrack Technologies; Novartis
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging;
Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research is
providing funds to support ADNI clinical sites in Canada.
Private sector contributions are facilitated by the Foundation
for the National Institutes of Health (www.fnih.org). The
grantee organization is the Northern California Institute for
Research and Education, and the study is coordinated by the
Alzheimer’s Therapeutic Research Institute at the University
of Southern California. ADNI data are disseminated by the
Laboratory for Neuro Imaging at the University of Southern
California. AddNeuromed is supported by InnoMed (Innovative
Medicines in Europe), an Integrated Project funded by the
European Union of the Sixth Framework program priority
FP6-2004-LIFESCIHEALTH-5, Life Sciences, Genomics, and
Biotechnology for Health.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00015/full#supplementary-material

REFERENCES
Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., and Erickson, B. J. (2017).

Deep learning for brain MRI segmentation: state of the art and future directions.
J. Digit. Imaging 30, 449–459. doi: 10.1007/s10278-017-9983-4

Asman, A. J., and Landman, B. A. (2013). Non-local statistical label fusion for
multi-atlas segmentation. Med. Image Anal. 17, 194–208. doi: 10.1016/j.media.
2012.10.002

Boccardi, M., Bocchetta, M., Apostolova, L. G., Barnes, J., Bartzokis, G., Corbetta,
G., et al. (2015a). Delphi definition of the EADC-ADNI harmonized protocol
for hippocampal segmentation on magnetic resonance. J. Alzheimers Dement.
11, 126–138. doi: 10.1016/j.jalz.2014.02.009

Boccardi, M., Bocchetta, M., Morency, F. C., Collins, D. L., Nishikawa, M., Ganzola,
R., et al. (2015b). Training labels for hippocampal segmentation based on
the EADC-ADNI harmonized hippocampal protocol. Alzheimers Dement. 11,
175–183. doi: 10.1016/j.jalz.2014.12.002

Braak, H., and Braak, E. (1991). Neuropathological stageing of Alzheimer-related
changes. Acta Neuropathol. 82, 239–259. doi: 10.1007/bf00308809

Burns, A., and Iliffe, S. (2009). Alzheimer’s disease. BMJ 338:b158.
Cabezas, M., Oliver, A., Llado, X., Freixenet, J., and Cuadra, M. B. (2011). A review

of atlas-based segmentation for magnetic resonance brain images. Comput.
Methods Programs 104, e158–e177.

Chen, H., Dou, Q., Yu, L., and Heng, P.-A. (2016). Voxresnet: deep voxelwise
residual networks for volumetric brain segmentation. Neuroimage 170, 446–
455. doi: 10.1016/j.neuroimage.2017.04.041

Chen, H., Dou, Q., Yu, L., Qin, J., and Heng, P. A. (2018). VoxResNet: deep
voxelwise residual networks for brain segmentation from 3D MR images.
Neuroimage 170, 446–455. doi: 10.1016/j.neuroimage.2017.04.041

Dice, L. R. (1945). Measures of the amount of ecologic association between species.
Ecology 26, 297–302. doi: 10.2307/1932409

Fischl, B. (2012). FreeSurfer. Neuroimage 62, 774–781. doi: 10.1016/j.neuroimage.
2012.01.021

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al.
(2002). Whole brain segmentation: automated labeling of neuroanatomical
structures in the human brain. Neuron 33, 341–355.

Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn,
B. T., et al. (2004). Sequence-independent segmentation of magnetic resonance
images. Neuroimage 23(Suppl. 1), S69–S84.

Heckemann, R. A., Keihaninejad, S., Aljabar, P., Rueckert, D., Hajnal, J. V.,
and Hammers, A. (2010). Improving intersubject image registration using
tissue-class information benefits robustness and accuracy of multi-atlas based
anatomical segmentation. Neuroimage 51, 221–227. doi: 10.1016/j.neuroimage.
2010.01.072

Huttenlocher, D. P., Klanderman, G. A., and Rucklidge, W. J. (1993). Comparing
images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15,
850–863. doi: 10.1109/34.232073

Jack, C. R. Jr., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey,
D., et al. (2008). The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI
methods. J. Magn. Reson. Imaging 27, 685–691.

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., and Smith, S. M.
(2012). FSL. Neuroimage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

Kim, M., Wu, G., Li, W., Wang, L., Son, Y. D., Cho, Z. H., et al. (2013).
Automatic hippocampus segmentation of 7.0 Tesla MR images by combining
multiple atlases and auto-context models. Neuroimage 83, 335–345. doi: 10.
1016/j.neuroimage.2013.06.006

Leventon, M. E., Grimson, W. E. L., and Faugeras, O. (2000). “Statistical shape
influence in geodesic active contours,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, (Piscataway, NJ: IEEE).

Lin, L. I. (1989). A concordance correlation coefficient to evaluate reproducibility.
Biometrics 45, 255–268.

Lindberg, O., Walterfang, M., Looi, J. C., Malykhin, N., Ostberg, P., Zandbelt,
B., et al. (2012). Hippocampal shape analysis in Alzheimer’s disease and
frontotemporal lobar degeneration subtypes. J. Alzheimers Dis. 30, 355–365.
doi: 10.3233/jad-2012-112210

Liu, Y., Paajanen, T., Zhang, Y., Westman, E., Wahlund, L. O., Simmons, A.,
et al. (2010). Analysis of regional MRI volumes and thicknesses as predictors of
conversion from mild cognitive impairment to Alzheimer’s disease. Neurobiol.
Aging 31, 1375–1385. doi: 10.1016/j.neurobiolaging.2010.01.022

Lovestone, S., Francis, P., Kloszewska, I., Mecocci, P., Simmons, A., Soininen, H.,
et al. (2009). AddNeuroMed–the European collaboration for the discovery of

Frontiers in Neuroscience | www.frontiersin.org 18 January 2020 | Volume 14 | Article 1525

www.fnih.org
https://www.frontiersin.org/articles/10.3389/fnins.2020.00015/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2020.00015/full#supplementary-material
https://doi.org/10.1007/s10278-017-9983-4
https://doi.org/10.1016/j.media.2012.10.002
https://doi.org/10.1016/j.media.2012.10.002
https://doi.org/10.1016/j.jalz.2014.02.009
https://doi.org/10.1016/j.jalz.2014.12.002
https://doi.org/10.1007/bf00308809
https://doi.org/10.1016/j.neuroimage.2017.04.041
https://doi.org/10.1016/j.neuroimage.2017.04.041
https://doi.org/10.2307/1932409
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2010.01.072
https://doi.org/10.1016/j.neuroimage.2010.01.072
https://doi.org/10.1109/34.232073
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neuroimage.2013.06.006
https://doi.org/10.1016/j.neuroimage.2013.06.006
https://doi.org/10.3233/jad-2012-112210
https://doi.org/10.1016/j.neurobiolaging.2010.01.022
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00015 January 22, 2020 Time: 19:37 # 19

Brusini et al. Hippocampal Segmentation Using Shape Information

novel biomarkers for Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1180, 36–46.
doi: 10.1111/j.1749-6632.2009.05064.x

Ma, J., Lin, F., Wesarg, S., and Erdt, M. (2018). “A novel bayesian
model incorporating deep neural network and statistical shape model for
pancreas segmentation,” in Proceedings of the Medical Image Computing and
Computer Assisted Intervention – MICCAI 2018, (Cham: Springer International
Publishing).

Mahbod, A., Chowdhury, M., Smedby, Ö, and Wang, C. (2018). Automatic
brain segmentation using artificial neural networks with shape context. Pattern
Recogn. Lett. 101, 74–79. doi: 10.1016/j.patrec.2017.11.016

Milletari, F., Ahmadi, S. A., Kroll, C., Plate, A., Rozanski, V., Maiostre, J., et al.
(2017). Hough-CNN: deep learning for segmentation of deep brain regions
in MRI and ultrasound. Comput. Vis. Image Understand. 164, 92–102. doi:
10.1016/j.cviu.2017.04.002

Mirikharaji, Z., Izadi, S., Kawahara, J., and Hamarneh, G. (2018). “Deep auto-
context fully convolutional neural network for skin lesion segmentation,” in
Proceedings of the 2018 IEEE 15th International Symposium on Biomedical
Imaging (ISBI 2018), (Piscataway, NJ: IEEE).

Muehlboeck, J. S., Westman, E., and Simmons, A. (2013). TheHiveDB image data
management and analysis framework. Front. Neuroinform. 7:49. doi: 10.3389/
fninf.2013.00049

Oliva, A., and Torralba, A. (2007). The role of context in object recognition. Trends
Cogn. Sci. 11, 520–527. doi: 10.1016/j.tics.2007.09.009

Pini, L., Pievani, M., Bocchetta, M., Altomare, D., Bosco, P., Cavedo, E., et al.
(2016). Brain atrophy in Alzheimer’s Disease and aging. Ageing Res. Rev. 30,
25–48. doi: 10.1016/j.arr.2016.01.002

Pipitone, J., Park, M. T. M., Winterburn, J., Lett, T. A., Lerch, J. P., Pruessner, J. C.,
et al. (2014). Multi-atlas segmentation of the whole hippocampus and subfields
using multiple automatically generated templates. Neuroimage 101, 494–512.
doi: 10.1016/j.neuroimage.2014.04.054

Poulakis, K., Pereira, J. B., Mecocci, P., Vellas, B., Tsolaki, M., Kłoszewska, I.,
et al. (2018). Heterogeneous patterns of brain atrophy in Alzheimer’s disease.
Neurobiol. Aging 65, 98–108.

Ravishankar, H., Venkataramani, R., Thiruvenkadam, S., Sudhakar, P., and
Vaidya, V. (2017). “Learning and incorporating shape models for semantic
segmentation,” in Proceedings of the Medical Image Computing and Computer
Assisted Intervention - MICCAI 2017, (Cham: Springer International
Publishing).

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-Net: convolutional networks
for biomedical image segmentation,” in Proceedings of the Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015, (Cham:
Springer International Publishing).

Scheltens, P., Fox, N., Barkhof, F., and De Carli, C. (2002). Structural magnetic
resonance imaging in the practical assessment of dementia: beyond exclusion.
Lancet Neurol. 1, 13–21. doi: 10.1016/s1474-4422(02)00002-9

Shelhamer, E., Long, J., and Darrell, T. (2017). Fully convolutional networks for
semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651.
doi: 10.1109/TPAMI.2016.2572683

Simmons, A., Westman, E., Muehlboeck, J. S., Mecocci, P., Vellas, B., Tsolaki,
M., et al. (2009). MRI measures of Alzheimer’s disease and the addneuromed
study. Ann. N. Y. Acad. Sci. 1180, 47–55. doi: 10.1111/j.1749-6632.2009.05
063.x

Simmons, A., Westman, E., Muehlboeck, S., Mecocci, P., Vellas, B., Tsolaki, M.,
et al. (2011). The AddNeuroMed framework for multi-centre MRI assessment

of Alzheimer’s disease: experience from the first 24 months. Int. J. Geriatr.
Psychiatry 26, 75–82. doi: 10.1002/gps.2491

Tabatabaei-Jafari, H., Shaw, M. E., and Cherbuin, N. (2015). Cerebral atrophy in
mild cognitive impairment: a systematic review with meta-analysis. Alzheimers
Dement. 1, 487–504. doi: 10.1016/j.dadm.2015.11.002

Taha, A. A., and Hanbury, A. (2015). An efficient algorithm for calculating the
exact hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 37, 2153–2163.
doi: 10.1109/TPAMI.2015.2408351

Tang, M., Valipour, S., Zhang, Z., Cobzas, D., and Jagersand, M. (2017). A
Deep Level Set Method for Image Segmentation. Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support. Cham:
Springer International Publishing.

Thyreau, B., Sato, K., Fukuda, H., and Taki, Y. (2018). Segmentation of
the hippocampus by transferring algorithmic knowledge for large cohort
processing. Med. Image Anal. 43, 214–228. doi: 10.1016/j.media.2017.11.004

Tu, Z., and Bai, X. (2010). Auto-context and its application to high-level vision
tasks and 3D brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
32, 1744–1757. doi: 10.1109/TPAMI.2009.186

Vinters, H. V. (2015). Emerging concepts in Alzheimer’s disease. Annu. Rev. Pathol.
10, 291–319. doi: 10.1146/annurev-pathol-020712-163927

Voevodskaya, O., Simmons, A., Nordenskjöld, R., Kullberg, J., Ahlström, H., Lind,
L., et al. (2014). The effects of intracranial volume adjustment approaches on
multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Front.
Aging Neurosci. 6:264. doi: 10.3389/fnagi.2014.00264

Wang, C., and Smedby, Ö (2017).AutomaticWhole Heart Segmentation Using Deep
Learning and Shape Context. International Workshop on Statistical Atlases and
Computational Models of the Heart. Cham: Springer.

Wang, H., and Yushkevich, P. A. (2013). Multi-atlas segmentation with joint
label fusion and corrective learning-an open source implementation. Front.
Neuroinform. 7:27. doi: 10.3389/fninf.2013.00027

Westman, E., Simmons, A., Muehlboeck, J. S., Mecocci, P., Vellas, B., Tsolaki,
M., et al. (2011a). AddNeuroMed and ADNI: similar patterns of Alzheimer’s
atrophy and automated MRI classification accuracy in Europe and North
America. Neuroimage 58, 818–828. doi: 10.1016/j.neuroimage.2011.06.065

Westman, E., Simmons, A., Zhang, Y., Muehlboeck, J. S., Tunnard, C., Liu, Y.,
et al. (2011b). Multivariate analysis of MRI data for Alzheimer’s disease, mild
cognitive impairment and healthy controls. Neuroimage 54, 1178–1187. doi:
10.1016/j.neuroimage.2010.08.044

Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of brain MR
images through a hidden Markov random field model and the expectation-
maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57. doi: 10.1109/
42.906424

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Brusini, Lindberg, Muehlboeck, Smedby, Westman and Wang.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 19 January 2020 | Volume 14 | Article 1526

https://doi.org/10.1111/j.1749-6632.2009.05064.x
https://doi.org/10.1016/j.patrec.2017.11.016
https://doi.org/10.1016/j.cviu.2017.04.002
https://doi.org/10.1016/j.cviu.2017.04.002
https://doi.org/10.3389/fninf.2013.00049
https://doi.org/10.3389/fninf.2013.00049
https://doi.org/10.1016/j.tics.2007.09.009
https://doi.org/10.1016/j.arr.2016.01.002
https://doi.org/10.1016/j.neuroimage.2014.04.054
https://doi.org/10.1016/s1474-4422(02)00002-9
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1111/j.1749-6632.2009.05063.x
https://doi.org/10.1111/j.1749-6632.2009.05063.x
https://doi.org/10.1002/gps.2491
https://doi.org/10.1016/j.dadm.2015.11.002
https://doi.org/10.1109/TPAMI.2015.2408351
https://doi.org/10.1016/j.media.2017.11.004
https://doi.org/10.1109/TPAMI.2009.186
https://doi.org/10.1146/annurev-pathol-020712-163927
https://doi.org/10.3389/fnagi.2014.00264
https://doi.org/10.3389/fninf.2013.00027
https://doi.org/10.1016/j.neuroimage.2011.06.065
https://doi.org/10.1016/j.neuroimage.2010.08.044
https://doi.org/10.1016/j.neuroimage.2010.08.044
https://doi.org/10.1109/42.906424
https://doi.org/10.1109/42.906424
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00179 March 18, 2020 Time: 16:51 # 1

METHODS
published: 20 March 2020

doi: 10.3389/fnins.2020.00179

Edited by:
Amir Shmuel,

McGill University, Canada

Reviewed by:
Ulas Bagci,

University of Central Florida,
United States

Fatemeh Zabihollahy,
Carleton University, Canada

*Correspondence:
Anan Li

aali@mail.hust.edu.cn

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 24 July 2019
Accepted: 18 February 2020

Published: 20 March 2020

Citation:
Tan C, Guan Y, Feng Z, Ni H,

Zhang Z, Wang Z, Li X, Yuan J,
Gong H, Luo Q and Li A (2020)

DeepBrainSeg: Automated Brain
Region Segmentation

for Micro-Optical Images With
a Convolutional Neural Network.

Front. Neurosci. 14:179.
doi: 10.3389/fnins.2020.00179

DeepBrainSeg: Automated Brain
Region Segmentation for
Micro-Optical Images With a
Convolutional Neural Network
Chaozhen Tan1,2, Yue Guan1,2, Zhao Feng1,2, Hong Ni1,2, Zoutao Zhang1,2,
Zhiguang Wang1,2, Xiangning Li1,2,3, Jing Yuan1,2,3, Hui Gong1,2,3, Qingming Luo1,2 and
Anan Li1,2,3*

1 Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University
of Science and Technology, Wuhan, China, 2 MoE Key Laboratory for Biomedical Photonics, School of Engineering
Sciences, Huazhong University of Science and Technology, Wuhan, China, 3 HUST-Suzhou Institute for Brainsmatics, JITRI
Institute for Brainsmatics, Suzhou, China

The segmentation of brain region contours in three dimensions is critical for the analysis
of different brain structures, and advanced approaches are emerging continuously
within the field of neurosciences. With the development of high-resolution micro-optical
imaging, whole-brain images can be acquired at the cellular level. However, brain regions
in microscopic images are aggregated by discrete neurons with blurry boundaries,
the complex and variable features of brain regions make it challenging to accurately
segment brain regions. Manual segmentation is a reliable method, but is unrealistic to
apply on a large scale. Here, we propose an automated brain region segmentation
framework, DeepBrainSeg, which is inspired by the principle of manual segmentation.
DeepBrainSeg incorporates three feature levels to learn local and contextual features
in different receptive fields through a dual-pathway convolutional neural network (CNN),
and to provide global features of localization by image registration and domain-condition
constraints. Validated on biological datasets, DeepBrainSeg can not only effectively
segment brain-wide regions with high accuracy (Dice ratio > 0.9), but can also be
applied to various types of datasets and to datasets with noises. It has the potential
to automatically locate information in the brain space on the large scale.

Keywords: automated segmentation, brain regions, convolutional neural networks, image registration, domain-
condition constraints, micro-optical images

INTRODUCTION

Complex structures in the brain have the specificity for brain regions, which correspond to varying
brain functions. The maturation of techniques for high-resolution micro-optical imaging (Li et al.,
2010; Ragan et al., 2012; Gong et al., 2016) has allowed comprehensive measurements of the
distributions of fine structures in three-dimensional (3D) brain space. This has led to better
understanding of brain structures, such as whole-brain neuron projections (Economo et al., 2016; Li
et al., 2018), cellular and vascular distributions (Peng et al., 2017; Xiong et al., 2017). Such analyses
require 3D brain region contours as boundary preconditions. However, unlike magnetic resonance
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images (MRIs), brain regions in microscopic images are
aggregated by discrete neurons, resulting in blurry boundaries
between regions (Gahr, 1997). Identifying the boundaries
requires to combine a number of features, including cellular
staining, morphology, and distribution. Moreover, due to
individual differences and imaging processes, these complex
features are variable, making it challenging to accurately segment
brain regions. The manual segmentation of brain region contours
(Dong, 2008) by anatomists is considered to be a reliable
method, but is unrealistic to apply on a large scale for high-
resolution images. Therefore, neuroscientists urgently require an
automated and accurate method that can segment brain regions
at the cellular level.

Image segmentation has been studied extensively for
brain sciences. Classic segmentation methods (Clarke et al.,
1995; Balafar et al., 2010; Nanthagopal and Sukanesh, 2013)
based on hand-crafted features have been used for a long
time and primarily utilize the differences between features,
such as intensity and texture. For example, Feng et al.
(2017) used a 3D Otsu method with intensity features to
segment MRI brain structures. However, the features of
brain regions for micro-optical images are complex, and
vary between different individuals and imaging devices,
rendering the hand-crafted features approach inappropriate for
micro-optical brain images.

Deep learning (LeCun et al., 2015; Schmidhuber, 2015; Shen
et al., 2017) for image segmentation is another rapidly developing
field. Methods based on convolutional neural networks (CNNs)
(Krizhevsky et al., 2012; Rawat and Wang, 2017) can build
complex deep-level features based on simple low-level features,
making them competitive against classic shallow hand-crafted
features approaches. One approach for image segmentation
which uses CNNs has an end-to-end form with full convolutions
(Long et al., 2015; Milletari et al., 2016; Badrinarayanan et al.,
2017; Chen et al., 2017; Jégou et al., 2017; Yu et al., 2017; Chen
et al., 2018); i.e., the output of the network is the result of pixel-
by-pixel segmentation. For instance, U-net (Ronneberger et al.,
2015), consisting of groups of convolutional and deconvolutional
layers and skip links, is widely applied in medical image
segmentation. Whereas, due to pooling layers, the end-to-end
approach may adversely affect the image resolution and therefore
result in loss of details (Litjens et al., 2017). Moreover, since a
whole image constitutes one sample, many hours of labor are
required to label enough samples for training.

Another CNN approach, the patch-based method (Lai, 2015;
Pereira et al., 2016), is able to handle the details and label samples
to an acceptable level. This approach classifies each pixel in the
image individually by presenting it with patches extracted around
that particular pixel (Litjens et al., 2017). For example, Ciresan
et al. (2012) used a patch-based CNN to segment medical images;
furthermore, multi-scale CNNs (de Brebisson and Montana,
2015; Moeskops et al., 2016) were adopted to achieve a higher
accuracy for MR brain images with different receptive fields
(Luo et al., 2016). However, the patch-based approach has the
limitations of low efficiency and lack of global information.

Neuroanatomical studies benefit from the ability to obtain
high-resolution micro-optical images, which allows fine division

of the brain into thousands of regions (Kuan et al., 2015). The
steps for manual segmentation of brain regions by anatomists
consist in locating the structure at the macroscale, identifying
the shape and neighboring differences at the mesoscale,
and segmenting accurate boundaries at the microscale.
Correspondingly, the automated segmentation also requires
multi-level features: global, contextual, and local. While CNN
methods can learn local and contextual features, they have
difficulty utilizing global location features from the whole-brain
range at high resolution, resulting in over-segmentation for other
regions with similar local features. To locate brain structures,
Iqbal et al. (2019) segmented and classified the mouse brain
into eight regions using Mask r-cnn (He et al., 2017), while
the detected box has excessive redundancies for the region
with complex shape. Chen et al. (2019) combined a patch-
based CNN and registration to segment the murine brainstem,
whereas the accuracy of segmentation is easily affected by
the effect of registration. In other words, current automated
methods are not capable of utilizing on global, contextual,
and local information to accurately segment brain regions for
micro-optical images.

We propose a framework inspired by the principle of manual
segmentation, DeepBrainSeg, which automatically locates and
segments brain regions incorporating three level features: local,
contextual, and global. We design a dual-pathway network
with two-scale patches to acquire local and contextual features
in different receptive fields, and combine image registration
and domain-condition constraints for initial and tracking
localization. We segmented several brain-wide regions and
quantitatively evaluated the segmentation effect: which shows
a high accuracy (Dice ratio > 0.9). DeepBrainSeg achieves
more accurate results than U-net, V-net, FC-DensNet, and
Segnet. It is also suitable for datasets with noises and
can be used for various types of datasets. In addition,
DeepBrainSeg demonstrates high computational efficiency on
different platforms.

MATERIALS AND METHODS

Biological Datasets
In this study, we used 14 mouse brain datasets from four
different imaging systems. Ten datasets are Thy1-GFP M-line
transgenic mice whose whole brains are imaged using a dual
color fluorescence microscope [Brain-wide Precision Imaging
system (BPS)] (Gong et al., 2016). The other four datasets are
a Nissl-stained C57BL/6 adult mouse imaged using a Micro-
Optical Sectioning Tomography (MOST) system (Li et al., 2010),
a C57BL/6 mouse with autofluorescent signal imaged with a
serial two-photon (STP) system (Ragan et al., 2012), a C57BL/6
adult mouse imaged with MR image model T2∗ (Johnson et al.,
2010), and the Allen mouse common coordinate framework
(Allen CCF v3 brain atlas) containing an 3D average brain
image and a labeled brain region space. We got the STP
dataset from “http://www.swc.ucl.ac.uk/aMAP,” the MR dataset
from “civmvoxport.vm.duke.edu,” and the Allen CCF from
“https://atlas.brain-map.org.” The pixel resolution of the MR
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dataset is 21.5 µm isotropic; others are all sampled to
10 µm isotropic.

The Framework of DeepBrainSeg
DeepBrainSeg consists of three parts (Figure 1): network
training, initial localization, and predicting with tracking
localization. First, we obtain images and labels by manually
delineating the boundaries of brain regions, screen and
augment the samples to generate the training set, and
train the designed dual-pathway CNN (Figure 1A).
Then, for the new unlabeled image, we perform a 3D
registration with Allen CCF, and map the label from
the Allen CCF to the unlabeled image, select one two-
dimensional (2D) label slice and dilate it as the initial
localization of the brain region (Figure 1B). Finally,
the located 2D image is used for predicting by the
trained CNN, and the segmentation result is dilated as
the domain-condition constraint to locate the adjacent
images. Tracking localization and prediction are performed

alternately until the complete 3D segmentation results are
obtained (Figure 1C).

Label and Sample Extraction
The main datasets used for verification in this study are 10
datasets from BPS. Five brain regions with visible differences in
the surrounding areas were selected for training and predicting:
main olfactory bulb mitral layer (MOBmi), pyramidal and
granular layers of the hippocampus (HIP-pg), the granular layer
of cerebellar cortex (CBX-gl), outline, and facial nerve (VIIn).
For each brain region, 100 coronal planes from five datasets
were selected at intervals as the training and predicting images.
Subsequently, using the Amira (version 6.1.1; FEI, Mérignac
Cedex, France) tool, three experienced technicians generated the
“labels” by manually demarcating the boundaries of the brain
region on training and predicting images, to be used as the
ground truth (Figure 1A.1).

For the dual-pathway CNN, a sample is presented as images
with two different sizes around the particular pixel, and the

FIGURE 1 | The framework for DeepBrainSeg. (A) Network training, the acquisition of images and labels, samples extraction, building and training the CNN.
(B) Initial localization, image registration for the unlabeled image and Allen CCF, mapping the label to the image, and initial localization the brain region. (C) Predicting
with tracking localization, predicting the initial image, dilating the 2D result as the localization of adjacent images, alternating prediction and localization to obtain a 3D
result.
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value of the pixel in the label is the classification. There are
two common problems in the sample extraction: there is much
redundancy between adjacent patches, and the number of patches
where the center pixel is within the brain regions (the positive
samples) is much smaller than in other regions (the negative
samples). To solve these problems, we customized the sample
extraction scheme according to the characteristics of the brain
regions (Figure 1A.2). First, we extract samples at intervals on
coronal images to avoid excessive repetitive information. Then
the data are screened and augmented (Krizhevsky et al., 2012) to
maintain the equilibrium of positive and negative samples. The
augmentation extends the intensity range in the data to improve
the ability of the model for generalization. The process is as
follows: randomly remove 90% of negative samples containing no
pixel in the brain regions; randomly remove x% negative samples
containing parts of pixels in the brain regions; augment the rest of
samples by increasing and decreasing the intensity by 20%. The
equilibrium of positive and negative samples is as follows:

10%N1 + 3 · x%N2 = 3N3 (1)

where N1 and N2 are the number of negative samples containing
no pixel and parts of pixels in the brain regions, respectively,
and N3 is the number of positive samples. Finally, we extracted
hundreds of thousands of training samples for each brain
region, of which 80% were used as the train set and 20% as
the validation set.

Dual-Pathway CNN Training
In order to acquire the local and contextual features from
different receptive fields, we designed a dual-pathway CNN with
two-scale patches to segment brain regions. The smaller patches
mainly provide local features while the larger patches provide
contextual features. As shown in Figure 2, the network first
consists of two same-pathway structures with three hidden layers.
The first two hidden layers consist of a convolutional layer,
an active layer, a local response normalization (LRN), and a
pooling layer. The convolution kernel is 5 × 5, the stride is
1 × 1, the activation layer uses rectified linear units (ReLUs), the
pooling layer uses 3 × 3 max-pooling, and the stride is 2 × 2.
The third hidden layer consists of a convolutional layer and
an active layer. The two-pathway network results in 128 5 × 5
feature maps. Subsequently, the feature maps are cascaded and
connected by a 5 × 5 convolutional layer and a ReLU to acquire
512 1 × 1 feature maps. Then, the feature maps from the third
and the fourth layer hidden layers are input to the corresponding
fully connected layers. All the feature maps are concatenated
and input to a fully connected layer. Following this, ReLU is
applied, and dropout is used to prevent overfitting. Finally, the
SoftmaxWithLoss classifier is used to handle the feature maps.
The softmax function is defined as follows:

σi(z) =
exp(zi)∑m
j=1 exp(zj)

, i = 1, ..., m (2)

The multinomial logistic loss function is defined as

`(y, o) = − log(oy) (3)

Finally, the combined softmax and loss function are
expressed as

∼

`(y, z) = − log(
ezy∑m
j=1 ezj

) = log(
m∑

j=1

ezj)− zy (4)

The network training was implemented through Caffe (Jia
et al., 2014) to obtain five models of the corresponding brain
regions. During the training process, the batch size is 200,
and the maximum number of iterations is 50,000 with 100
epochs. The learning rate is initialized to 0.01, and the iterative
decay algorithm by step is applied every 10,000 iterations. The
momentum and weight decay are 0.9 and 0.0005, respectively.
The training is executed on the GPU to improve the efficiency.

Initial Localization by Image Registration
It is necessary to locate brain regions before predicting the
segmentation result to avoid over-segmentation and to improve
efficiency. Brain atlas is commonly used as a reference for brain
region recognition. Here, we use Allen CCF to locate the brain
region by mapping the segmented labels to new images. Allen
CCF consists of a 3D average brain image and a corresponding
labeled brain region space. First, we register the unlabeled image
and the average brain in 3D to obtain the transformation
(Figure 1B.4). Then, the label for corresponding brain region
from Allen CCF is extracted, and the label is mapped to the
new image with the transformation (Figure 1B.5), which enables
general localization of brain regions. However, due to differences
in biological samples and imaging mode, it can be difficult to
guarantee an accurate match between the mapped label and brain
region, especially where brain regions appear and disappear.
Instead of locating the whole 3D brain region, we select a 2D label
from the middle slice of the 3D label as the initial localization
and then perform a dilation of the label to eliminate registration
errors, which ensures that all pixels within the brain region are
included in the dilated label (Mask-init) (Figure 1B.6).

For image registration, a multi-resolution pyramid strategy
is used for acceleration. Each hierarchy contains both linear
and non-linear registration, and aims to maximize mutual
information between the unlabeled image and the average
brain. Symmetric diffeomorphic normalization (Avants et al.,
2008), a widely used method, is conducted as the non-linear
transformation model. Its energy function is defined as

Esym(I, J) = inf
φ1

inf
φ2

∫ 0.5

t=0
{||v1(x, t)||2L + ||v2(x, t)||2L}dt+∫

�
|I(φ1(0.5)− J(φ2(0.5)|2d� (5)

where v1 and v2 are the velocity field in opposite directions and
∅1and ∅2 are the diffeomorphism field in opposite directions.

Simultaneous Tracking Localization and
Prediction
The 3D brain region can be regarded as changes of the 2D brain
region slice in the spatial domain. High axial resolution imaging
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FIGURE 2 | The architecture of dual-pathway CNN. The network consists of dual pathways that take the smaller and larger patch as input, respectively. Each
pathway has three hidden layer which have the main components of a convolutional layer, a ReLU layer, an LRN layer, and a pooling layer. The dual-pathway feature
maps form the input to a full connection and a convolution layer. All are concatenated after a full connection, and the SoftmaxWithLoss classifier is applied at the end.

makes adjacent 2D brain region slice change less, making it
possible to track the 2D brain region in a similar way to target
tracking on a video in the time domain. Based on this idea,
we proposed a strategy to locate the brain region during the
prediction. For 3D brain region segmentation, initial localization
by image registration is performed as the first predicting image
with Mask-init, patches in the Mask-init are extracted from the
2D image as the input of trained CNN, and the 2D segmentation
result is obtained through network predicting (Figure 1C.7).
Subsequently, we dilate the 2D result as the domain-condition
constraint (Mask-track) of the adjacent images (Figure 1C.8). For
adjacent images, the network predicts patches in the Mask-track
to get the 2D result. Finally, alternate tracking localization and
prediction are performed for the rest of the corresponding 2D
images to obtain a 3D segmentation result, and postprocessing
operations including hole filling, connected component analysis,
and 3D smoothing are conducted. Figure 3 demonstrates the
segmentation effect with and without Mask-track, localization
can avoid over-segmentation of similar local features.

In addition, only the pixels in the Mask-track require
predicting, which greatly improves the efficiency. Moreover,
based on the connected domain characteristics, brain regions
are predicted at one pixel interval to reduce computation by
three quarters. These optimizations make it efficient for high-
resolution images.

Quantitative Evaluation
To assess the accuracy of our method, we used three parameters
to evaluate the segmentation effect: Dice (Dice, 1945), Precision,
and Recall. The corresponding formulae are as follows:

Dice (I, J)=
2× |I ∩ J|
|I| + |J|

(6)

FIGURE 3 | Comparison of the segmentation effect with and without
localization. (A) A superposition of the original image and the manually
segmented lines. (B) The segmentation result without localization. (C) A
superposition of the original image and Mask. (D) The segmentation result
with localization.

Precision (I, J)=
|I ∩ J|
|I|

(7)

Recall (I, J)=
|I ∩ J|
|J|

(8)

where I and J represent automated and manual binarized
segmentation images, | I| and | J| denote the numbers of pixels
in brain regions, and | I∩J| denotes the intersection of | I| and | J|
for the pixels in brain regions.

In addition, we also quantitatively assess the effect of
localization by Precision and Recall, where I represents
automatically located binarized images (Mask-init and
Mask-track).
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Testing Environments
We tested our method on two different computing platforms:
A graphical workstation equipped with a NVIDIA M6000 GPU
card, 20 CPU cores (Intel Xeon E5-2687w × 2), and 128 GB
of RAM. A GPU server equipped with four NVIDIA V100
GPU cards, 12 CPU cores (Intel Xeon xeon-6126w × 2),
and 192 GB of RAM.

RESULTS

Determination of Dilation Sizes and
Two-Scale Path Size
Here, we experimentally determined the optimal values for
parameters by investigating different dilation sizes of Mask-
init, Mask-track, and two-scale patch size. Since CBX-gl can be
wide-ranging in terms of sizes, we used it as a representative
for experiment using 10 BPS datasets. For testing of dilation
size, Precision indicates the redundancy of localization range
for the ground truth, and Recall indicates the accuracy of the
localization. To ensure subsequent segmentation accuracy, Recall
must be very close to 1. We therefore assessed sizes of 10, 20,
30, 40, and 50 pixels. As shown in Table 1, Recall ratio for
Mask-init increases as the dilation size increases, it achieves the
highest of 0.999 at 50 pixels, and Recall ratio for Mask-track
reaches 0.999 at 20 pixels. Therefore, we determine the optimal
dilation sizes for Mask-init and Mask-track with 50 pixel and 20
pixels, respectively.

For two-scale path size, the receptive field will increase
as patch size increases with the amount of information in
a wide area. This improves classification accuracy, but also

reduces positioning accuracy. To obtain optimal patch sizes,
two groups of tests were conducted by first determining the
smaller size patches and then the larger size using Dice ratio.
First, five patch sizes (23, 35, 51, 75, and 91) were chosen
to build single-scale networks. As the patch size increases, the
wider receptive field improves classification accuracy, decreasing
the numbers of outlier, and Dice ratio gradually increases
(Figure 4A), reaching a peak at 51 pixels2 (Dice ratio = 0.944),
after which it declines. We therefore selected 51 pixels2 as the
optimal parameter for the smaller size. Then, the selected smaller
patch size is multiplied by 1.5, 2, or 3 times to produce the
larger patch sizes. Figure 4B shows the Dice ratio for different
multiples. The highest value is obtained with a multiplication
factor of 1.5 (Dice ratio = 0.952), after which it declines as
the reduction of positioning accuracy has a major impact.
Meanwhile, Dice ratio also reveals that the accuracy of two-
scale is higher than the single-scale. We ultimately obtained
the optimal patch sizes of 51 × 51 and 77 × 77 pixels2 for
brain segmentation.

Segmentation for Brain-Wide Regions
In the field of neuroscience, the analysis of brain space and
information commonly requires the segmentation of multiple
brain regions which are distributed throughout the brain.
Here, we selected five brain regions from ten BPS datasets
for segmentation (see section “Materials and Methods” for
specific training and prediction procedures). Using the trained
models for each brain region, we performed localization and
prediction for 50 corresponding images from five datasets.
One dataset is used to illustrate the effects of localization
and segmentation, by showing the overlapping of the original

TABLE 1 | Performance of Recall ratio for Mask-init and Mask-track with different dilation size (bold values are the optimal).

Dilate size 10 pixels 20 pixels 30 pixels 40 pixels 50 pixels

Mask-init 0.807 ± 0.063 0.936 ± 0.032 0.975 ± 0.017 0.994 ± 0.005 0.999 ± 0.001

Mask-track 0.997 ± 0.008 0.999 ± 0.005 0.999 ± 0.004 1.000 ± 0.002

FIGURE 4 | Performance of different patch size. (A) Box plots showing the Dice ratio for five different patch sizes at a single scale. (B) Box plots showing the Dice
ratio for the larger patch at different multiples of the smaller patch size.
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images, the located Mask, and the segmented lines from the
binarized results (Figure 5). Figure 5A reveals the overall
effects for the five brain regions (MOBmi, HIP-pg, CBX-
gl, VIIn, and outline). Although there are differences in the
characteristics among each brain region, DeepBrainSeg displays
good localization and segmentation effects on all of these
regions. Figures 5B–E show enlarged images of the white
boxes in Figure 5A. The segmented lines are close to the real
boundaries in the detail images. In particular, HIP-pg and CBX-
gl, which have complicated shapes, also maintain fine effects.
Figure 5F shows a 3D reconstruction of the segmentation
results, which demonstrates the integrity and continuity of our
approach in 3D space.

We also quantitatively evaluated the performance of
localization and segmentation for these 50 images from five brain
regions. Figures 6A,B show Recall and Precision (Redundancy)

ratio for localization. Recall of all brain regions is very close
to 1, indicating that almost all pixels of brain regions are
included in the Mask, and Redundancy is between 0.14 and
0.83 for different regions. Figures 6C–E demonstrate box
plots of Dice, Precision, and Recall for the segmentation
effect. All three parameters exceed 0.95 for MOBmi, CBX-
gl, and outline, and 0.92 for the complex HIP-pg structure.
Although subtle deviations in the automated segmentation will
affect the parameters for small brain regions, the parameters
are consistently above 0.85 for VIIn. Detailed performance
statistics showing means and standard deviations are provided
in Table 2.

Segmentation for Datasets With Noises
For long-term continuous micro-optical imaging, it is easy to
generate noises such as stripes and darkened corners through

FIGURE 5 | Segmentation effects for brain-wide regions. (A) The segmentation effects for five brain regions. From top to bottom: MOBmi, HIP-pg, CBX-gl, VIIn, and
outline, each of which are shown as the superposition of four typical coronal images, localization masks, and segmented lines. (B–E) Enlarged views of the white
boxes in A. (F) A 3D reconstruction of the segmentation results of the five brain regions.
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FIGURE 6 | Performance of DeepBrainSeg for brain-wide regions. (A,B) Recall and Redundancy of localization effect. (C–E) Box plots showing Dice, Precision, and
Recall (from left to right) of segmentation effect.

TABLE 2 | Performance of DeepBrainSeg for brain-wide regions.

MOBmi Outline HIP CB VIIn

Localization Recall 1.000 ± 0.000 1.000 ± 0.000 0.996 ± 0.012 0.999 ± 0.005 0.998 ± 0.010

Redundancy 0.468 ± 0.044 0.828 ± 0.028 0.186 ± 0.023 0.391 ± 0.042 0.146 ± 0.036

Segmentation Dice 0.979 ± 0.009 0.993 ± 0.004 0.932 ± 0.016 0.967 ± 0.008 0.899 ± 0.048

Precision 0.979 ± 0.011 0.989 ± 0.009 0.920 ± 0.028 0.965 ± 0.008 0.863 ± 0.075

Recall 0.986 ± 0.007 0.996 ± 0.002 0.945 ± 0.019 0.969 ± 0.011 0.942 ± 0.038

uneven illumination (Smith et al., 2015) of partial images in
actual experiments. Noise makes the boundaries of brain regions
more difficult to identify. In this section, we specially selected
datasets with noises to verify the robustness of our method. We
added some of these noisy samples into train set; then, after
training, we predicted testing datasets. For HIP-pg and CBX-gl,
Figure 7 shows the original images (A,D), the predicted binarized
images (B,E) and the superpositions of images, the located Mask,
and the predicted boundaries (C,F). The binarized images and
the superposition images demonstrate that the localization and
segmentation results on noisy images had the same good effect
as on data without noise. Furthermore, Figures 7G–J show the
details, illustrating that the segmented lines were well matched
with the real boundaries, even in areas where the intensity
difference was not obvious.

Applicability of DeepBrainSeg for Other
Types of Datasets
We validated the effectiveness, accuracy, and robustness of
DeepBrainSeg using the BPS datasets. To further illustrate

the applicability, we present the segmentation results for
other types of data from: MOST, MRI, and STP systems.
For datasets from these three imaging systems, we selected
HIP-pg and CBX-gl, caudoputamen (CP) and hippocampus
(HIP), corpus callosum (CC) and HIP, respectively, for
segmentation. In Figure 8, the first three rows show both
the original images and the superposition images with the
located Mask and the segmented lines from each of the
three systems. DeepBrainSeg was able to effectively segment
the brain regions from multiple types of datasets. The fourth
row shows enlarged images of the areas in white boxes
(Figures 8A–F). The detail images reveal that the segmented
lines closely matched the real boundaries, indicating the wide
applicability of our method.

Comparison With Other Methods
In this section, we compared DeepBrainSeg with other widely
used methods including U-net, V-net, FC-DensNet, and Segnet.
All methods were applied to BPS datasets with the same 60
training images and test images, and CBX-gl was selected as a
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FIGURE 7 | Segmentation effects for datasets with noises. (A–C) The coronal image, the predicted binarized image, the superposition of image, the localization
masks, and the segmented lines for HIP-pg. (D–F) The same as A-C for CBX-gl. (G–J) Enlarged views of the areas in white boxes in A, C, D, and F.

FIGURE 8 | Applicability of DeepBrainSeg for other types of datasets. The first row shows the segmentation effects of HIP-pg and CBX-gl for MOST data. From left
to right: the coronal image, the superposition of image, the localization masks, and the segmented lines for HIP-pg and CBX-gl. The second and third rows show CP
and HIP for the MRI data, CC, and HIP for STP data, respectively. (A–F) Enlarged views of the areas in white boxes in the first three rows.

representative structure with which to compare segmentation
effects. The input images for DeepBrainSeg, U-net, V-net, and
Segnet were full resolution of around 600 × 1000 pixels2,
while for FC-DensNet, they are limited to 400 × 600 pixels2

due to the memory capacity of a GPU. Figure 9 shows the
results of these methods from top to bottom. The green

lines indicate the ground truth by manual segmentation, and
the red lines are the automatically segmented lines. The
second, fourth, and fifth columns are enlarged images of the
white boxes in preceding columns. These results show that
other methods achieved general segmentation effects: some
over-segmentation and erroneous segmentation were present
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FIGURE 9 | Comparison among DeepBrainSeg, U-net, V-net, FC-DenseNet, and SegNet. From top to bottom, the five rows show the segmentation effects of these
methods, respectively. The first and third images in each row are superpositions of coronal images and the segmented lines: the green lines are the ground truth and
the red lines are the automatically segmented lines. The second, fourth, and fifth images show enlarged views of the areas in front white boxes. White arrows show
the inaccurate segmentations.

TABLE 3 | Quantitative comparison among DeepBrainSeg and other methods
(bold values are the highest).

Dice Precision Recall

DeepBrainSeg 0.960 ± 0.006 0.953 ± 0.009 0.968 ± 0.010

U-net 0.929 ± 0.010 0.927 ± 0.019 0.931 ± 0.011

V-net 0.941 ± 0.007 0.929 ± 0.012 0.954 ± 0.016

FC-DensNet 0.919 ± 0.048 0.923 ± 0.014 0.922 ± 0.091

SegNet 0.911 ± 0.009 0.918 ± 0.018 0.904 ± 0.012

in the latter (marked by white arrows). In contrast, the
segmented lines from DeepBrainSeg match more accurately with
manual lines, and contain less erroneous segmentation. This
indicates that DeepBrainSeg has a stronger segmentation ability
for brain regions.

We also quantitatively evaluated the effects of the three
methods in the test data. Table 3 shows the mean and
standard deviation values of Dice, Precision, and Recall.
Our proposed method achieves the highest values for the
three parameters: 0.960, 0.953, and 0.968, respectively. In
addition, we conducted statistical tests for evaluated values by

TABLE 4 | P-values of Wilcoxson test among DeepBrainSeg and other methods.

Dice Precision Recall

U-net 1.82e-04 7.69e-04 2.46e-04

V-net 3.30e-04 7.68e-04 3.12e-02

FC-DensNet 1.83e-04 1.00e-03 5.80e-03

SegNet 1.82e-04 2.46e-04 1.83e-04

conducting Wilcoxson test between DeepBrainSeg and others.
The P-values displayed in Table 4, Dice, Precision, and Recall
values of DeepBrainSeg are significantly different from all
others (P < 0.05).

Performance Evaluation
Benefiting from the optimization of the domain-condition
constraint and prediction at intervals, our method significantly
improved the computational efficiency. Ten consecutive
coronal planes for five brain regions were selected to
evaluate the number of pixels requiring computation
before and after optimization, respectively. As shown in
Figure 10A, when predicting each pixel in the entire
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FIGURE 10 | Performance testing. (A) Comparison of the time required for full-image predictions and optimization predictions. The abscissa represents a sequence
of ten consecutive coronal images. The ordinate is the number of pixels to be calculated. Different color lines represent the calculation required for different brain
regions using full-image predictions and the optimization predictions. (B) Performance of the proposed method on different computing platforms. The abscissa
represents the five brain regions, and the ordinate is the average prediction time for each image. The orange and blue bars represent the performances of the
workstation and the GPU server platform, respectively.

image, the amount of calculation approaches 106 for the
full prediction. In contrast, using the optimization method,
the first image requires three times less calculation. For
subsequent images, only the pixels in the mask needed
to be predicted, the amount of calculation decreased by
one to three orders of magnitude according to the size of
different brain regions.

To evaluate the performance of our method on different
computing platforms, we tested five brain regions on a
graphical workstation with a M6000 GPU and on a GPU
server with four V100 GPUs. The prediction time of each
section for the five brain regions on the platforms is shown
in Figure 10B. The maximum runtime of one section was
90 s on the workstation. Furthermore, the time for that section
decreased approximately threefold when executed on the GPU
server platform.

DISCUSSION

In this study, following the principle of manual segmentation
with multi-level features, we proposed DeepBrainSeg to solve
the issue of brain region segmentation for micro-optical images
based on a CNN. We used a dual-pathway CNN to learn local
and contextual information at different scales, and provided
global localization through image registration and domain-
condition constraints. Our method can accurately segment
multiple brain-wide regions, even for datasets with noises, and
is widely applicable to various types of datasets. Moreover,
it is superior to U-net, V-net, FC-DensNet, and Segnet in
terms of accuracy.

We demonstrated the segmentation effects of our method
on four different types of data. Furthermore, DeepBrainSeg
can also be applied to solve segmentation problems in other
fields for more types of data, such as computed tomography
and electron microscopy. For other data, the patch size and

network structure require adjustment according to the ratio
of its resolution to 10 µm. Meanwhile, the potential regions
for segmentation are not limited to the examples shown in
this paper: the method is also suitable for other regions
with characteristic differences to their surroundings. For brain
region localization, DeepBrainSeg provides a location area that
is consistent with the shape of the real brain region, rather
than a regular shape like box. This irregular location area
reduces the Redundancy to improve the localization accuracy and
segmentation efficiency.

Nevertheless, our method still has some deficiencies. The
training and prediction are implemented separately that target
the characteristics of these different brain regions but introduce
some complexity. Thus, finding one model that can segment
multiple brain regions will be the subject of our future work.
In addition, for efficiency, we processed datasets at an isotropic
resolution of 10 µm. It is likely that a higher resolution could
achieved by improving the algorithm and efficiency.

Research for brain space information involves collaborative
analysis of various brain regions and datasets. Although many
methods have been applied for brain segmentation, they are
generally effective for only one type of data or a single
brain region. Our intention is to provide neuroscientists with
a consistently accurate segmentation framework that can be
applied to multiple types of data and brain regions without
requiring complex feature extraction or being subject to strict
data-quality requirements. Users would only need to input the
data into the method to quickly acquire satisfactory results. We
believe that our method provides a powerful tool by which
neuroscientists can explore the brain.
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Introduction: Deep learning neural networks are especially potent at dealing
with structured data, such as images and volumes. Both modified LiviaNET and
HyperDense-Net performed well at a prior competition segmenting 6-month-old
infant magnetic resonance images, but neonatal cerebral tissue type identification
is challenging given its uniquely inverted tissue contrasts. The current study aims
to evaluate the two architectures to segment neonatal brain tissue types at term
equivalent age.

Methods: Both networks were retrained over 24 pairs of neonatal T1 and T2 data from
the Developing Human Connectome Project public data set and validated on another
eight pairs against ground truth. We then reported the best-performing model from
training and its performance by computing the Dice similarity coefficient (DSC) for each
tissue type against eight test subjects.

Results: During the testing phase, among the segmentation approaches tested, the
dual-modality HyperDense-Net achieved the best statistically significantly test mean
DSC values, obtaining 0.94/0.95/0.92 for the tissue types and took 80 h to train and
10 min to segment, including preprocessing. The single-modality LiviaNET was better at
processing T2-weighted images than processing T1-weighted images across all tissue
types, achieving mean DSC values of 0.90/0.90/0.88 for gray matter, white matter, and
cerebrospinal fluid, respectively, while requiring 30 h to train and 8 min to segment each
brain, including preprocessing.

Discussion: Our evaluation demonstrates that both neural networks can segment
neonatal brains, achieving previously reported performance. Both networks will be
continuously retrained over an increasingly larger repertoire of neonatal brain data and
be made available through the Canadian Neonatal Brain Platform to better serve the
neonatal brain imaging research community.

Keywords: neonatal brain, brain segmentation, machine learning (artificial intelligence), convolutional neural
network, T2-weighed MRI
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INTRODUCTION

The magnetic resonance imaging (MRI) study of brain
development since birth represents one of the crucial modern
techniques to improve our understanding of developmental
neuroscience and help identify the long-term links between brain
injuries and respective developmental consequences. However,
despite mature analytical methods to process adult human brain
MRIs, analyses of brains during development and especially
at the neonatal stage remain difficult as a result of isolated
tools development and difficulty with data acquisition. The most
important step before performing quantitative brain analyses is
the tissue class segmentation of the brain. Neonatal brain medical
imaging tissue type identification is especially challenging given
its typically inverted T1/T2 tissue contrast compared to adults
(Shroff et al., 2010). Moreover, the amount of high-quality public
neonatal research neural MRI data sets is far rarer in comparison
to adult neural MRI data, making training, development, and
adoption of neonatal-specific brain segmentation approaches
challenging. From our experience in attempting to implement
majority of the open-source neonatal segmentation approaches
at the Canadian Neonatal Brain Platform (CNBP)1, many existing
computer-vision-based solutions failed to generalize beyond the
respective niche of privately held training data set. As part of
our organizational mandates, CNBP aims to validate and provide
a large variety of neonatal brain MRI processing approaches.
In this article, we focused primarily on public-data-based open-
source deep learning approaches in the context of neonatal brain
tissue segmentation.

Recent years have witnessed an explosive growth in the
number of deep learning methods – especially convolutional
neural network (CNNs) – for many vision problems, such as
classification (Krizhevsky et al., 2012), detection (Ren et al., 2015),
and semantic segmentation (Long et al., 2015). These models are
capable of learning highly complex patterns by stacking multiple
layers of convolutions and non-linear operations, presenting
impressive capabilities to learn abstract representations from raw
structured data in a data-driven manner. Particularly, the medical
field has greatly benefited from these deep models, which have
become the de facto solution for many of these tasks in highly
important fields, such as radiology, oncology, or neuroimaging
(Litjens et al., 2017).

Despite the fast adoption of these models in medical imaging,
there have been relatively few large-scale efforts to find the top
performer in pediatric brain segmentation using standardized
open data sets (Akkus et al., 2017). Two particularly large-
scale relevant competitions are known to date: the 2012
Neonatal Brains Segmentation Challenge2 and the 2017 iSeg 6-
month Infant Brain Magnetic Resonance Imaging Segmentation
Challenge3, both hosted as part of the respective Medical
Image Computing and Computer Assisted Intervention Society
(MICCAI) conferences. Out of the two competitions, the 2017
competition was particularly relevant as most contestants used

1www.cnbp.ca
2https://neobrains12.isi.uu.nl/
3http://iseg2017.web.unc.edu/

derivation of CNN architecture forgoing traditional computer
vision techniques, and some top performers openly shared their
network architecture designs and code bases.

Outside of the iSeg 2017 competition and its related
publications (Wang et al., 2019), which focus on 6-month-old
infants, there have been few other proposed deep-learning-
based segmentation approaches in neonates, despite numerous
applications in either older infants (Zhang et al., 2015) or adults
(Chen et al., 2018). The only applied neural network approach
to solve neonatal tissue segmentation to date is from Moeskops
et al. (2016). They proposed an integrated segmentation pipeline
that reportedly can handle data from neonates all the way
to 70-year-old adults using mini-patch-based 2D convolution
approaches while only requiring a single anatomical reference
MRI to achieve a respectable Dice score of at least 0.8 across five
different data sets.

The objective of the current study is to evaluate both
LiviaNET (Dolz et al., 2018b) and HyperDense-Net (Dolz et al.,
2018a) architectures for neonatal brain imaging data. While
both networks have demonstrated good performance on relevant
tasks, such as in subcortical brain segmentation and in 6-
month-old infant brain imaging data with diminished T1/T2
contrasts (Wang et al., 2012), their performance on neonatal-
specific data remains untested. We hypothesize with a high-
quality data set and ground truth, such as those from the publicly
available Developing Human Connectome Project (DHCP) first-
release neonatal data set (Hughes et al., 2017), we can achieve
performance comparable to what prior modified LiviaNET and
HyperDense-Net achieved in the adult and 6-month-old infant
brain challenges. We aim to retrain both networks using the
DHCP data set to validate the generalizability and the suitability
of these network architectures in segmenting MRI brain tissue
classes of neonatal brain images.

METHODS

Experimental Data: Participants
The participants were infants born at term from the publicly
available DHCP by Hughes et al. (2017). DHCP is the first open-
access data release of brain images of 40 healthy neonates born
at term who had an MRI shortly after birth (37–44 weeks of
gestational age). With these data, we had access to both raw
data and tissue segmentation ground truth, generated using
DrawEM and complemented further via manual correction,
for training and validations. Additional MRI data-acquisition-
related information is included in Supplementary Method as
well as the original publication.

Experimental Data: Preprocessing
The training input was preprocessed based on the source
image provided as part of the DHCP data made available
(Hughes et al., 2017), namely, magnetic resonance bias-field
correction with the N4 algorithm (Tustison et al., 2010) as
implemented in Slicer 4.10.1 on our computational platform (see
Implementation: Computation Platform section), launched
with the command “Slicer – launch N4ITKBiasFieldCorrection.”
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Then the brain was extracted using the Brain Extraction Tool
(BET2) with the default options (i.e., no additional customized
command flags) from FMRIB Software Library (Smith, 2002; see
Figure 1A). All T1-weighted images have been co-registered to
the T2-weighted volumes using rigid alignment as implemented
in SPM12 (Ashburner et al., 2014) in MATLAB (R2017b)
(MathWorks Inc., Natick, MA, United States) running on our
computational platform.

Experimental Data: Ground Truth
Segmentation
As part of the DHCP data release, these neonatal brain MRIs were
already segmented using the DHCP data pipeline built using the
DrawEM module from the Medical Image Registration ToolKit
(MIRTK) tool package (Makropoulos et al., 2014). DrawEM
is an atlas-based segmentation technique that segments the
volumes into 87 regions. Manually labeled atlases, annotated by
an expert neuroanatomist (Gousias et al., 2012), were registered
to the volume, and their labels were fused to the subject space
to provide structure priors. Segmentation was then performed
with an expectation–maximization scheme that combines the
structure priors and an intensity model of the volume. The 87
regions were further merged to provide nine tissue segmentation
labels provided with the DHCP release: (1) cerebrospinal fluid
(CSF), (2) cortical gray matter (GM), (3) white matter (WM),
(4) background, (5) ventricles, (6) cerebellum, (7) deep GM,
(8) brain stem, and (9) hippocampus and amygdala. Since both
LiviaNET and HyperDense-Net demonstrated their respective
previous performance when dealing with four class labels (i.e.,
GM, WM, CSF, and others), we used the image calculator
(ImCalc) function of SPM12 implemented in MATLAB R
(2017b) (MathWorks Inc., Natick, MA, United States) to
combine the existing nine DHCP class labels into the desired
classes. More specifically, we combined together the cortical
GM, cerebellum, deep GM, brainstem, and hippocampus and
amygdala into the class “GM” and the CSF and ventricles
into the class “CSF.” The WM class was used as it is
without change. What was originally left as the 10th class (i.e.,
unlabeled or outside) is considered as the fourth class (i.e.,
others). We included an illustration of an example subject in
Figure 1A (top right).

Implementation: Network Architectures
In terms of network architectures, we evaluated two state-
of-the-art networks that have shown outstanding performance
for different brain segmentation tasks. The first network,
referred to as LiviaNET (Dolz et al., 2018b), is a single-
modality 3-D fully convolutional network which was proposed
in the context of subcortical brain segmentation on MRI.
At the time, standard segmentation convolutional neural
networks performed slice-by-slice analyses of volumetric data.
Nevertheless, an important limitation of this strategy is that the
3-D context orthogonal to the 2-D axial plane was completely
discarded, resulting in segmentations without 3-D consistency.
To address the computational and memory requirements of 3-
D convolutions, LiviaNET adopted small kernels (273 voxels,

Figure 1A, bounding box with green tab markers), resulting in
deeper architectures with less complexity than their large-kernel
counterparts. Furthermore, global and local contexts – important
for both location and fine-grained details – were modeled by
embedding intermediate-layer outputs in the final prediction.
Figure 1B depicts the high-level architecture of LiviaNET.

The second network considered was HyperDense-Net (Dolz
et al., 2018a), ranked among the top three methods in terms
of performance in two different public data sets for adult
(MRBRainS’13)4 and isointense infant brain tissue segmentation
(iSeg 2017)5. HyperDense-Net extends the previous network,
LiviaNET, by leveraging dense connectivity in the context of
multimodal image segmentation. Particularly, in this network,
each image modality is processed in a different path, and dense
connections occur between the pairs of layers within the same
path, as well as across different paths. An example of this
hyperdense connectivity is shown in Figure 1C.

Network parameters of both networks were optimized via a
root mean square (RMS) optimizer (Hinton et al., 2014), using
cross-entropy as a cost function to measure training error. This
error was tracked throughout the training process and further
elaborated in Supplementary Method along with additional
network initialization parameters and hyperparameters.

Implementation: Experiment Design
There were 40 participants in total from DHCP data sets; they
were split into three distinct groups: 60% of the subjects were
for training (24 subjects), 20% were for validation to provide
feedback on the neural network parameter tuning during training
(eight subjects), and 20% were held out independently as the final
test on the best-trained network to evaluate its generalization
performance (eight subjects).

All subjects were randomly assigned to one of the three
groups. The composition of the groups remains consistent
throughout all experiments in both LiviaNET and HyperDense-
Net network architectures.

Both networks were trained for a duration of 30 epochs
composed of 20 subepoch each. At each subepoch, a total
of 1,000 training subsamples (each composed of 273 voxel
cubes, averaging about 41 samples per subject per setting)
were randomly selected and given to the network, with a
batch size of two.

At the end of the 30 epochs of training, the best-performing
model as indicated by the validation data sets was evaluated on
the holdout test data set in order to report the final test Dice
similarity coefficient (DSC) values.

Implementation: Computation Platform
All training and testing were done using an Ubuntu 18.04 LTS
running on a Xeon CPU E5-2600 Processor with 12 cores running
at 2.0 GHz with 32 GB CPU DDR3 1,600 MHz RAM with
a GeForce 1070 GPU with 8 GB of GDDR5 memory. Both
HyperDense-Net and LiviaNET were implemented in Python

4https://mrbrains13.isi.uu.nl/
5http://iseg2017.web.unc.edu/

Frontiers in Neuroscience | www.frontiersin.org 3 March 2020 | Volume 14 | Article 20742

https://mrbrains13.isi.uu.nl/
http://iseg2017.web.unc.edu/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00207 March 23, 2020 Time: 18:9 # 4

Ding et al. Deep CNN Neonatal Brain Segmentation

FIGURE 1 | (A) Illustration of a 3D convolution regional input (27 pixels3) to both neural networks in relation to T2, T1 and Ground truth. Bounding box with green
tab: input volume to the network (B) architecture of the LiviaNET illustrating major layer wise connections along with key parameters (C) architecture of
HyperDense-Net neural network architecture including key parameters.
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2.7 with Theano 1.0.0 library as per their source repositories
at GitHub6,7.

Performance Evaluation
The DSC was used as the metric of final performance evaluation
and computed separately in GM, WM, and CSF. In the context
of tissue classification problem, it is an objective measure of both
correctly classifying voxels of tissue where it belongs and correctly
rejecting the voxels of incorrect tissue types.

The DSC is also known as the Sørensen–Dice coefficient or F1
score. DSC ranges between 0 and 1 with the perfect performance
scored as 1. Its derivation and references are further elaborated in
Supplementary Method.

Python 3.7 stats module was used to conduct pairwise
T-tests to compare performance metrics from the same
subjects during the prediction test against ground truth
across various combinations of network architecture and data.
Pairwise T-tests were also used for inter- and intra-architectural
comparisons across epochs. Bonferroni correction was applied
where appropriate to ensure the family-wise error rate is
constrained to below 0.05. Jupyter notebook 1.0.0 and Plotly 4.0.0
library (Plotly, Montreal, Canada) were used to plot all figures in
vector format before they were touched up in Adobe Illustrator
CC 2017 (Adobe Systems Incorporation, San Jose, United States)
for readability and DPI compliance formatting.

RESULTS

Training Performance
The final model of LiviaNET using T1 achieved a stable cross-
entropy cost error of about 0.47 after approximately three epochs
(Figure 2, row 1, left). When undergoing the same training
settings but using only the T2 acquisitions, we achieved a cross-
entropy cost error of 0.33 around a similar time point, which
then remained consistent until the end of the training (Figure 2,
row 1, middle). The final model weights of the HyperDense-
Net achieved a relatively stable cross-entropy cost error of 0.24
after almost half way into the training process and experienced
a much more gradual reduction of the standard deviation of
cross-entropy cost error than LiviaNET (Figure 2, row 1, right).
LiviaNET T2 and HyperDense-Net appear to have demonstrated
reduced standard deviation of DSC during training compared
to LiviaNET T1 across tissue types (Figure 2, rows 2–5). In
addition, the superimposed trace (without standard deviation for
clarity) of training cost error (Supplementary Figure S2) and of
average DSC (Supplementary Figure S3) over training epochs
was summarized in the same chart to facilitate comparisons
of performance across architectures sharing both time and
performance axes.

Test Performance
At the end of the training, the performance of the best model
was tested against previously unseen eight holdout subjects’ data

6https://github.com/josedolz/HyperDenseNet
7https://github.com/josedolz/LiviaNET

as shown in grouped boxplots in Figure 3. The combination
of LiviaNET and T1 data showed optimal performance at the
19th epoch and when tested resulted in prediction DSC values
(mean ± standard deviation) of 0.86 ± 0.02, 0.86 ± 0.04,
and 0.82 ± 0.04 for GM, WM, and CSF, respectively. Similarly,
the optimal epoch for LiviaNET with T2 data was the 25th
epoch and resulted in DSC values of 0.90 ± 0.02, 0.90 ± 0.01,
and 0.88 ± 0.03, respectively. After accounting for multiple
comparison problems via Bonferroni correction, the results
demonstrate that LiviaNET using T2 data outperforms LiviaNET
using T1 data significantly in most tissue types except white
matter. For HyperDense-Net, the 29th epoch reported the
optimal performance DSC at 0.94 ± 0.01, 0.95 ± 0.01, and
0.92 ± 0.03 for each tissue type compare to all LiviaNET
results. Detailed statistical pairwise comparison results of the test
performance are also included (Supplementary Table S1).

Time Benchmark
Using the aforementioned computational platform with NVIDIA
GTX1070 GPU, LiviaNET took nearly 30 h to train for T1 input
data and about 31 h for T2 while requiring 8 min on average
(including preprocessing time) to segment a novel neonatal
brain T1 or T2 scan. On the other hand, HyperDense-Net took
about 86 h to train with both T2 and T1 data. In this case,
segmentation of new neonatal data set was performed in nearly
10 min (including preprocessing time).

Visual Comparison
The segmentation outputs were visually inspected for congruency
and obvious mistakes. We have uploaded the eight holdout test
subjects, including the preprocessed T1 and T2 volume and
ground truth labels to the accompanying GitLab repositories8.
The segmentation results as both binary classification masks and
tissue probability map for each subject are available for LiviaNET
T1, LiviaNET T2, and HyperDense-Net T2 and T1 weighted.
Figure 4 shows a representative view of the segmentation
output from one of the holdout test subjects. As illustrated,
LiviaNET T1 (Figure 4, fourth column) struggled to identify WM
properly especially near the deep GM regions. Across all three
rows of different view perspectives, LiviaNET T1 misclassified
multiple WM regions as GM, resulting the messiest view visually,
congruent with its lower DSC result. On the other hand, both
LiviaNET T2 and HyperDense-Net T2 and T1 segmentations
resulted in better tissue separation and provided a closer match
to the ground truth.

Comparison With Previously Reported
Performance
In Supplementary Table S2, the average DSCs across tissue types
of the best results obtained from the present experiments, along
with the ones reported in the previous implementations of it,
were listed for illustrative purposes. Since only mean accuracy
was reported with no standard deviation or raw results available,
no statistical comparisons were made.

8https://gitlab.com/dyt811/M017-Results
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FIGURE 2 | Time series plot of over 30 training epochs measuring: training loss (top row) and Dice Similarity Coefficient (DSC) of Gray Matter (Row 2), White Matter
(Row 3), Cerebrospinal Fluid (CSF Row4) and Average (Row 5) across LiviaNET using T1 (Column 1), T2 (Column 2), Hyperdense-Net using both T2 and T1 (Column
3). Blue: Mean measure across all eight test subjects. Gray boundary: standard deviation across all eight test subjects.

DISCUSSION

Summary
In this current work, both LiviaNET and HyperDense-Net
architectures were evaluated using the publicly available DHCP
neonatal data set. We demonstrated for the first time that the
dual-modality HyperDense-Net performed significantly better in
the context of neonatal brain segmentation specifically across all
tissue types versus the single-modality LiviaNET. In addition,
LiviaNET segments the neonatal brain better with T2-weighted
images than with T1-weighted images.

Intramodel
LiviaNET has been primarily employed for single-modality
inputs (i.e., T1-weighted images or T2-weighted images). Our

current empirical results applying it for segmentation of neonatal
T1- and T2-weighted data showed that LiviaNET with T2
contrasts performed statistically better for segmentation in
neonates (Figure 3 and Supplementary Table S1). This is
likely due to improved tissue contrast in neonatal T2 versus
T1 and is not surprising given that neonates typically exhibit
such tissue characteristics prior to the reduced contrast phase
from 6 to 8 months from myelination over early development
(Wang et al., 2012). This can also be observed readily in T1
and T2 raw neonatal data (Figure 4), as well as the greater
high signal intensity regions observed in a simple histogram
of voxel intensity plot (see Supplementary Figure S1). Lastly,
visual inspection of the LiviaNET output for both T1 and
T2 shows that clearly there are some deep WM which was
misclassified as GM. We suspect this may be sites of early
myelination (Deoni et al., 2012), resulting in altered contrasts
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FIGURE 3 | Grouped box plot showing the Dice similarity coefficient (y axis) obtained during the testing phase across eight holdout subjects for each tissue type
(color) and network types (x axis groups). Horizontal red lines denote family-wise error corrected statistically significant differences measured across the DSC in the
same tissue using pairwise T statistical tests.

in comparison with surrounding tissues, which resulted in
misclassification.

In terms of multimodal performance, HyperDense-Net
was initially envisioned as a dual-/multi-modality version of
LiviaNET, which derived its name from the extensive and dense
connections between the T1 and T2 streams of successive
convolutional layers. In this experiment, HyperDense-Net took
longer to stabilize the training error across the eight validation
(not test) subjects (Figure 2, row 1, right) and had also
less stable DSC which fluctuated during training (Figure 2,
rows 2–5) but eventually achieved relatively stable generalizable
performance (Figure 3) midway through the training. This
notably stronger variation during training and validation, yet
still achieving excellent generalizable results, is likely attributed
to the more interconnected complexity of the architecture,
requiring more observations to fine-tune the model weights
through back-propagation. The observed local fluctuations in
validation accuracy is a common behavior when training deep
neural networks (such as those seen around epoch 8, Figure 2,
rows 2 and 3, right). During training, the network parameters
are updated to optimize a training objective, based on training
data, which does not guarantee that the parameter updates are
optimal for the validation samples. This, together with a higher
learning rate at the beginning of the training, increases the
chances of having these local perturbations in the validation

performance, particularly in an early stage of the training.
Nevertheless, as long as the validation curve converges, these
fluctuations are not considered as a problem. Indeed, there
exist many works, including the original HyperDense-Net (see
Figure 5 in the original HyperDense-Net paper Dolz et al.,
2018a), which show that these fluctuations do not hamper the
network performance.

Intermodels
All networks, regardless of design and data input type, achieved a
reasonable test accuracy of higher than 80% in the independent
holdout data set, and all required at least 1 day of GPU
computation time to train effectively. As expected, both networks
appear to benefit from the inclusion of T2-weighted images,
potentially more so than from the inclusion of T1-weighted ones.
This is likely due to the higher contrast found on T2-weighted
images with respect to the T1-weighted ones for neonates
(Supplementary Figure S1). This phenomenon is especially
evident in LiviaNET-related experiments (Figure 2). Overall,
the current explorative results across network architectures
and data types suggest that HyperDense-Net utilizing both
T2 and T1 data achieved the best statistically significant
segmentation performance among all experiments (Figure 3
and Supplementary Figure S3) despite requiring a substantial
amount of training time (86 vs. 30 h).
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FIGURE 4 | Traverse (z = 35), coronal (y = 5) and sagittal (x = 5) slices of input data (T1-weighted, T2-weighted and ground truth tissue segmentation) registered to
the final binary segmentation output of various networks trained (LiviaNET T1, Livia NET T2, HyperDense-Net T2&T1) on a single subject from the Developing Human
Connectome Project (Subject CC00379XX17). Crosshair set at MNI coordinate of [5, 5, 35] and highlights the location of the respective slides from various views.

Compared to the modified LiviaNET version implemented
for iSeg 2017 incorporating both T1 and T2 (Dolz et al.,
2020), the current single-modality LiviaNET performance based
on T2 data appears to be weaker consistently in the CSF
classifications (Supplementary Table S2). Similarly, the current
trained HyperDense-Net potentially performs on par or even
slightly better in both GM and WM delineation while being
worse in the CSF. Upon gross visual evaluation, we could
not identify any major consistently common problems in
the CSF relation regions, save for minor encroachment from
the GM regions nearby. It might be necessary to conduct
a spatial statistical parametric mapping type of analyses to
truly evaluate the regions showing greater differences. However,
given that we are observing this type of issues across network
architectures and across data types, we suspect it might be
rooted in the fundamental neonatal tissue MRI properties
and should be further explored in more varied neonatal MRI
acquisitions in the future.

Compared to the original HyperDense-Net training accuracy
and mean DSC plot (see Figures 4, 5 from Dolz et al., 2018a),
our current experiments with HyperDense-Net show similar if
not slightly better and faster performance improvement from
the original paper. We suspect this is also due to the improved
tissue contrast at the neonatal stage versus 6-month infant
data sets where onset of myelination starts to reduce the tissue
contrast. Current neonatal data sets are all pre-myelination and
hence may provide more information for the neural network,
to better delineate tissue types, and result in faster learning and
earlier observance of the performance-plateauing phenomenon.
Another plausible explanation is related to the fact that for
DHCP data input and ground truth, the inputs have all been

preprocessed to remove non-brain-related tissues (via the Brain
Extraction Tool) and to correct for non-homogeneity (N4),
which could have substantially simplified the neural network’s
computation effort, as the bulk of the voxels within the 3-D
acquisition volumes is likely non-brain tissue.

Performance Comparison
In terms of prediction speed, HyperDense-Net segmentation
when applied to novel data was relatively fast. Although current
hardware platform during the testing phase required about
8 min per participant for this study, previous reports suggest
it can be even faster at 2–6 min with better-performing work-
station-level graphics card such as NVIDIA Tesla P100 (Dolz
et al., 2018a). Compared to other known neonatal segmentation
methods such as DHCP data analysis pipeline, which takes
around 7 h per participant (Makropoulos et al., 2014), or the
approximately 30 min run time required by the morphological
adaptive neonate tissue segmentation (MANTiS) toolbox (Beare
et al., 2016), the HyperDense-Net prediction time requirement
is well within reason. However, it is important to note that both
of the other two traditional pipelines also conduct more granular
regional identifications while both LiviaNET and HyperDense-
Net are mostly tested with 3–10 classes of segmentation goals
in the past, despite them being capable of conducting additional
class segmentation should the ground truth be available. Since
neither DHCP analyses pipeline nor MANTiS was ever officially
submitted to be validated against the iSeg 2017 challenge data
set, their unbiased accuracy can only be compared in neonatal
data sets such as DHCP. Such comparisons, although interesting,
are beyond the scope of this paper and will be the focus of our
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future work when we extend both neural networks to conduct
more anatomical regional labeling.

Limitation and Future Work
The fast-evolving field of computer vision has witnessed the
development of many deep segmentation architectures since
the seminal works such as FCN (Long et al., 2015) for
the segmentation of color scenes and UNet (Ronneberger
et al., 2015) for medical images. The choice of the networks
analyzed in the current study is based on the competitive
performance obtained in very related tasks and the public
availability of their implementations. The purpose of this paper,
however, is not to achieve the best performance on the task
at hand but to demonstrate their reproducibility and usability
for neonatal brain segmentation. We expect that this study
will have a positive impact on the neuroimaging community
toward the ever-widening adoption of these deep learning
models in neonatal brain segmentation. Thus, future work will
include more extensive evaluation of these and other state-of-
the-art segmentation neural networks, to assess the neonatal
brain segmentation problem. We aim to highlight efficient
networks which can produce accurate and reliable segmentations
while comparing them against existing traditional computer
vision approaches.

In the context of comparing with the earlier works in
neonatal brain segmentation, another important limitation to
be considered is the limited sample size of high-quality labeled
data. In the neonatal imaging world, high-quality labels coupled
with high-quality medical imaging data are exceptionally rare.
One of the other similar public neonatal data sets authors were
aware of only consists of 10 subjects (Alexander et al., 2017). We
also reviewed the subjects used in older studies in the neonatal
field and found, for instance, that most of the past highly cited
neonatal segmentation techniques applying traditional computer
vision had tested their performance on a similar if not fewer
number of subjects (Prastawa et al., 2005; Weisenfeld and
Warfield, 2009). This trend persists even in more recent work
as summarized in Moeskops et al. (2016, Tables 3, 4), with most
studies restricted to very few subjects with no more than 20.

Regardless of sample sizes and technical solution approaches,
generalization to new data is very important in the field
of image segmentation, especially given the wide array of
MRI contrasts possible and inter-scanner and inter-sequence
variations across institutions. Current results reported are
trained, validated, and tested on publicly available DHCP
neonatal data, which has identical acquisition condition, scanner
model, and manufacturer. Furthermore, deep-learning-based
models are well known for their poor generalization capabilities
on unseen data. This is particularly important in future
translation of research to practice, where (1) there exists a
shift between images acquired under different conditions and
(2) the model needs to be retrained as these images become
available. The most feasible solution to address this issue is to
adopt a continual learning strategy. This approach consists on
incrementally retraining deep models while avoiding any virtual
loss of memory on previous seen data sets, which may not be
available during retraining. This line of work will be further

explored in the near future by leveraging the infrastructure of
our Canadian Neonatal Brain Platform, which is currently in the
progress of acquiring neonatal brain imaging data with diverse
acquisition conditions from across Canada for researchers. Our
final goal is to leverage such infrastructure to continuously
improve the performance of networks through exposure to the
ever-increasing amount of neonatal data that become available
while allowing individual neonatal researchers without such
infrastructures to continuously benefit from our centralized effort
at retraining the neural networks to peak performance.

CONCLUSION

The current study compared how two related convolutional
neural network architectures addressed the automatic tissue
segmentation task on neonatal brain MRIs. Among all pathways
tested, HyperDense-Net showed the best performance in
neonatal MRI tissue classifications. A streamlined and
continuously retrained version of this will be deployed in
the Canadian Neonatal Brain Platform, and we will continuously
measure its performance against other competing segmentation
approaches and newer network architectures.
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Many recent developments in machine learning have come from the field of “deep

learning,” or the use of advanced neural network architectures and techniques. While

these methods have produced state-of-the-art results and dominated research focus in

many fields, such as image classification and natural language processing, they have not

gained as much ground over standard multivariate pattern analysis (MVPA) techniques

in the classification of electroencephalography (EEG) or other human neuroscience

datasets. The high dimensionality and large amounts of noise present in EEG data,

coupled with the relatively low number of examples (trials) that can be reasonably

obtained from a sample of human subjects, lead to difficulty training deep learning

models. Even when a model successfully converges in training, significant overfitting

can occur despite the presence of regularization techniques. To help alleviate these

problems, we present a newmethod of “paired trial classification” that involves classifying

pairs of EEG recordings as coming from the same class or different classes. This allows

us to drastically increase the number of training examples, in a manner akin to but

distinct from traditional data augmentation approaches, through the combinatorics of

pairing trials. Moreover, paired trial classification still allows us to determine the true

class of a novel example (trial) via a “dictionary” approach: compare the novel example

to a group of known examples from each class, and determine the final class via

summing the same/different decision values within each class. Since individual trials are

noisy, this approach can be further improved by comparing a novel individual example

with a “dictionary” in which each entry is an average of several examples (trials). Even

further improvements can be realized in situations where multiple samples from a single

unknown class can be averaged, thus permitting averaged signals to be compared with

averaged signals.

Keywords: EEG, MVPA, deep learning, machine learning, cognitive neuroscience

1. INTRODUCTION

Deep learning has produced state-of-the-art results in many areas of machine learning, but
adoption of deep learning for the classification of electroencephalography (EEG) signals, and
other types of human neuroscience datasets, has lagged compared to its popularity in other
fields. Although an increasing number of studies are using deep learning to process neuroimaging
datasets, the improvements in performance have typically not been as drastic as in other fields
(Lotte et al., 2018), and most human neuroscience research has continued to use more traditional
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multivariate pattern analysis (MVPA) approaches: Manual
feature extraction followed by a simple, typically linear, classifier,
such as support vector machines (SVMs; Cortes and Vapnik,
1995) or logistic regression and its derivatives, e.g., sparse
multinomial logistic regression (SMLR; Krishnapuram et al.,
2005).

Nevertheless, deep learning techniques are being explored
in EEG classification. Bashivan et al. (2015) used a recurrent
convolutional model to classify EEG data that was projected
onto a two-dimensional plane and then subjected to Fourier
analysis. The final model achieved an error rate of 8.89%, as
compared to a 12.59% error rate with a random forest. While
this is a meaningful reduction in error rate, boosting was not
employed in the training of the random forest, which likely
would have significantly shrunk the difference in performance.
Lawhern et al. (2018) explored the use of fully convolutional
neural networks; they applied convolutions in data that were
arranged in a (channels × timepoint) fashion to create a two-
dimensional matrix. These models had very few features, on
the order of 2,200. This work showed improvements over the
Filter Bank Common Spatial Pattern algorithm in a majority of
the datasets tested, including the P300 event-related potential
(ERP) in an oddball task, error-related negativity in brain-
computer interfaces, movement-related cortical potential in a
finger movement task, and sensory motor rhythm in imagined
movement. Schirrmeister et al. (2017) further demonstrated
the applicability of convolutional neural networks in decoding
raw EEG signals without hand-crafted features. They showed
that the learned filters were able to extract information in
the alpha, beta, and high gamma wavelengths, and found
a small improvement over the Filter Bank Common Spatial
Pattern algorithm in their test dataset (82.1% accuracy to
84.0%) accuracy.

There are many possible reasons for modern deep learning
techniques to underperform in EEG classification, compared to
the drastic benefits deep learning has had for other fields. For
one thing, EEG data are very noisy. The electrical activity that
makes it to the recording electrodes is spatially smoothed and
otherwise distorted by passing through poor conductors, such
as the skull and scalp. Signals propagating in opposite directions
interfere with each other and reduce the signal that makes it to
the sensor. Even more importantly, human subjects’ cognition
and brain activity naturally fluctuate from trial to trial; on some
trials, they may not be focused on the task at all, and thus may
produce brain signals that poorly reflect the trial type they are
presented with. As such, if participants’ attentiveness cannot be
inferred from behavioral performance, some trials may not be
classifiable at all, despite lacking any overt signal artifacts. While
averaging can be used in some cases to reduce the impact of this
unclassifiable data, it is not practical in all situations, such as
when working with brain-computer interfaces where real-time,
single-shot classification is the ultimate goal.

EEG data also have very high dimensionality. Signals in most
cognitive neuroscience studies are generally recorded with a
sampling rate of between about 250 and 1,000 Hz, with anywhere
between about 16 and 256 channels of data. Overfitting is
common on such high-dimensional signals. This problem is

further exacerbated by the limited number of examples (trials)1

that are usually available. It is impractical to collect EEG datasets
on the scale of hundreds of thousands of examples, as seen in
other deep learning applications, such as image classification,
as this would require extraordinarily long recording sessions
with human subjects and/or an unreasonably large number
of them. Finally, this is all further compounded by the large
individual differences between different human subjects (e.g.,
Valenzi et al., 2014). While a digital image of, say, a traffic light
could be taken from many different angles, under many different
lighting conditions, etc., traffic lights still have a number of visual
properties that are presumed to be more-or-less invariant across
different conditions and exemplars; if a so-called “traffic light”
were shaped like a pyramid, gelatinous, and translucent, and
contained lights of blue/magenta/orange, most image classifiers
(including human beings) would fail to recognize it as such,
but it could also rightly be argued that those changes make
it no longer a true “traffic light” anyway. In comparison, it is
much more difficult to make such distinctions in patterns of
neuroscience data across human beings; while certain general
phenomena appear to be near-universal across most humans,
such as the N170 ERP to face stimuli (Bentin et al., 1996),
there is still substantial variation across individuals and trials
that can be sufficient to fool many classifiers. And, because it
is usually impractical to determine whether these variations are
due to differences in head shape, recording artifacts, fluctuating
attention, functional brain organization/connectivity, cognitive
strategy, etc., it is much more difficult to establish any kind
of ground truth as to what an ideal response would look like.
Suppose a human participant exhibits noN170 ERP but has intact
face recognition ability, with no discernible artifacts in their data;
how do we reconcile this? In the EEG data, we have the equivalent
of a pyramidal, gelatinous “traffic light” but are confronted with
the awkward task of trying to determine if we can possibly align
it, somehow, with all the other pictures of rectangular solid ones.

Even if deep learning has not yet produced drastic
improvements in classification performance relative to
traditional MVPA techniques for most cognitive neuroscience
applications, it is still worth exploring further; there are a
tremendous number of possible configurations of deep neural
network architectures, and thus far we have only scratched the
surface of what might be possible with them. However, if we do
want to increase performance in the analysis of neuroscience data
with deep learning, it might be wise to begin thinking about ways
of changing how we could reformulate the basic problem. This
paper describes one such possible reformulation (out of probably

1The common parlance in psychology and cognitive neuroscience would be

“trials,” but the machine learning literature usually says “samples” or “examples.”

Given the confusion of using “samples” (since these can also refer to individual

data points of EEG), we will use “trials” to refer to these trial-like chunks of

neuroscience recording data, in which the intent is to classify each trial/example

into one of several categories. One caveat is that our approach relies on combining

two “trials” of EEG data to form each “example” for classification, so while “trials”

and “examples” would be synonymous for most traditional classification schemes,

they are semantically distinct in the context of our PTC approach. Thus, in the

present paper, we use “trials” to denote a short chunk of EEG data to be classified,

and “examples” to denote the units fed into a classifier, which are either individual

“trials” in traditional approaches or pairs of “trials” in PTC.
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many): Instead of classifying a single example at a time, one
could instead attempt to classify pairs of examples as belonging
to either the same class or different classes. We refer to this
general approach as paired trial classification (PTC), described
further in section 2.2.2. This method presents several potential
benefits. First, it allows for a drastic increase in the number of
training examples, as there are O(n2) possible pairs. This makes
it easier to find a neural network model that reliably converges,
which can be a significant issue in datasets with a comparatively
large number of features but comparatively few examples. Also,
given the otherwise low impact of standard data augmentation
techniques in the field (Bashivan et al., 2015), PTC could also
potentially improve the ability of the model to generalize to
new data by reducing the likelihood of the model to memorize
samples from the dataset. Second, it reduces the problem to two
classes, potentially simplifying multi-class problems and thus
presenting a second way of making it easier to achieve robust
classification performance from limited training data. Third, it
is flexible: The basic same/different judgment can be interpreted
either categorically or continuously, as a kind of similarity
metric; it can be combined with a “dictionary” approach (see
below) to achieve traditional multiclass classification; and trained
PTC models can in principle be used with any input data, not
necessarily just the categories it was initially trained with, which
could have interesting theoretical applications in the future.

As alluded to above, when trying to classify a novel example
into one of several categories, PTC could still be used by
employing a “dictionary” approach. That is to say, a new trial
can be compared to known trials from all known classes and
classified as the same class as the exemplar(s) to which it is/are
most similar. Thus, for a single trained network model, this
allows us to classify each example in the test set multiple times
and average the results of those individual decisions into a single
overall classification, which has the potential to reduce variability
in classification performance for individual trials. Novel trials
could also be compared against averaged signals from multiple
trials drawn from the training set. This allows for more stability
in the comparisons, further addressing the issue of noise in EEG
signals. Similar approaches based on “dictionary” comparisons
and/or averaging have been used with traditional MVPA going
back to its neuroimaging roots (Haxby et al., 2001), but PTC
allows those approaches to be combined with the power and
flexibility of deep learning.

Ideas similar to PTC, also with an intent to increase the size of
the dataset and the accuracy of the classifier, have been explored
in other domains. A similar pairing technique has also been
explored, but at the pixel-classification level, in hyperspectral
imaging. Rather than classifying individual pixels, Li et al. (2016)
classified a pixel in combination with each of its neighboring
pixels and used a voting strategy to determine the class of the
original pixel. Another similar approach by Inoue explored data
augmentation through the unweighted averaging of two images
in the training set. These images were not required to be drawn
from the same class but were always given the label of the
first chosen image, thus preventing perfect memorization of the
data. The final fine tuning was performed on unaugmented data.
They demonstrated substantial performance improvements on

the ILSVRC 2012 and CIFAR-10 datasets using GoogLeNet. This
approach differs from our proposed approach in that it performs
averaging rather than concatenation, and does not attempt to
predict the sameness of the two samples (Inoue, 2018). Using a
technique termed “Matched Pair-Learning,” Theiler (2013) paired
two signals with statistical dependence but differing labels (e.g.,
different frames of chemical plume data) and classified the pair
together, but their aim was not to classify whether those signals
had the same or different category, per se. Comparisons of
trials of neuroscience data to each other, or to averaged sets of
trials, have also been relatively commonly applied in “pattern
similarity” analyses within the traditional MVPA domain of
cognitive neuroscience; in essence, our method is an enhanced
version of those pattern similarity approaches, which would
typically use Pearson correlation, Euclidean distance, or other
distance/similarity metrics (for more, see section 2.2.2 below).
However, to our knowledge, this is the first time such an approach
has been tried within the domain of deep learning, or conversely,
the first occasion in which deep learning has been applied in the
domain of pattern-similarityMVPA to achieve a similarity metric
customized to the dataset at hand, and thus one that is “smarter”
than existing metrics based purely on mathematical formulas.

2. MATERIALS AND METHODS

2.1. Data
We used an EEG dataset consisting of the “initial presentation”
period of a cognitive neuroscience study first published by
Johnson et al. (2015); for full details, please see that paper. Briefly,
in the pertinent portion of that study, participants were presented
with a pair of visual stimuli for 1,500 ms: either two written
words, two images of faces, or two images of scenes. Thirty-
one channels of EEG data were recorded at 250 Hz. The signals
were bandpass-filtered via hardware in a 0.01–100 Hz range, and
recorded with 14 bits of precision. See Figure 1 for an illustration
of the stimuli and data.

A total of 37 subjects participated in the study and had
high enough quality data to be used. We used the same initial
pre-processing steps, trial rejection parameters, and participant
exclusion criteria as described originally by Johnson et al. In the
original publication, there were two experiments with N = 21
and N = 16, but the “initial presentation” period did not differ
between experiments, and thus we have combined them into a
singleN = 37 dataset for present purposes. Each subject had∼200
trials after artifact rejection (around 60–70 per image category),
for a total of just under 7,000 trials.

The data were then subjected to additional pre-processing for
the deep-learning-based PTC analyses. All data values (originally
in raw microvolts) were divided by a fixed factor of 20 to bring
their scale approximately into the −1 to 1 range in which neural
networks perform the best. Additionally, time averaging was
applied to reduce the dimensionality of the data by a factor of
10, i.e., data were downsampled into time bins of 40ms apiece,
similar to the bins used for MVPA in the original publication
(Johnson et al., 2015). Thus, the total data dimensionality per trial
was 31 channels× 37 time bins = 1, 147 features.
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FIGURE 1 | Cognitive task and sample EEG data. (A) Participants viewed pairs of one of three categories of images at the beginning of each trial of the cognitive task,

with blank-screen fixation intervals before and after. Other task components followed the presentation of the images, but those elements of the task are not presented

or analyzed here. (B) Single representative trial of EEG data after pre-processing and downsampling. Electrode labels are according to the standard 10–20 and 10–10

systems for EEG electrode placement.

2.2. Classification Methodology
2.2.1. Baseline Models
In order to attain a baseline classification accuracy on the dataset,
several widely used classifiers were examined. These include
both a traditional classification baseline and a deep learning
classification baseline. These models were trained on both single
trials and averaged trials to allow for comparisons between the
PTC methodology and other established techniques.

Traditional classification baselines were set using SVM
and SMLR techniques, which are both frequently applied in
traditional MVPA2. SVM analyses used a linear kernel, which is
also common in neuroscience studies usingMVPA, and which we
have found to outperform radial basis function kernels in some
of our previous analyses of EEG data. SVM hyperparameters
were chosen with grid search over C in the set [0.0001, 0.001,
0.01, 0.1, 1, 10, 100]. Similarly, the lambda hyperparameter in
SMLR was chosen through grid search from the set [0.001, 0.01,
0.1, 1, 10, 100, 1000]. These value ranges were chosen to span
a range commonly seen in practice, in order to ensure that our
comparisons were as fair as possible to the baseline conditions
(i.e., that we did not hamstring the baselines by a poor choice
of hyperparameter).

2The method originally used for this dataset by Johnson et al. (2015) was SMLR,

but in that paper, the authors were analyzing a different portion of the cognitive

task and used a different cross-validation scheme that would not be readily

comparable to our PTC approach or other baseline analyses in this paper, so those

previous findings are not discussed here.

The deep learning model developed for paired-trial
classification (see below) was also used for baseline analyses
as a more conventional three-class neural network classifier
(deep neural network [DNN] baseline model). This was done by
slightly altering the network architecture, namely, by modifying
the input layer to accept a single trial (rather than a pair), and
modifying the output layer to have three output nodes instead
of two, while leaving all hidden layers the same between the
baseline DNN and PTC network architectures. It is certainly
possible, given the effectively infinite number of combinations
of architectures and hyperparameters, that better-performing
DNN models could be found for the baseline analysis and/or
the PTC analysis; however, for this initial demonstration of PTC
we simply chose one relatively straightforward model that we
thought would be fairly representative of the types of DNNs used
to analyze cognitive neuroscience data.

2.2.2. Paired Trial Classification (PTC) Technique
The essence of the PTC approach is that instead of training
a neural network to classify a single trial of data into one
of several classes, the network is instead trained to determine
whether two trials of input data are drawn from the same
class or different classes. This binarization of the problem is
somewhat different to the approach of, say, performingmulticlass
classification with SVMs by creating a number of binary SVMs
and summing their outputs, because with the PTC approach,
the same network can theoretically learn to classify similarities
or differences between pairs of trials drawn from any class, for
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theoretically any number of classes. As such, PTC essentially
gives us a new kind of similarity/distance metric with some
useful characteristics: It can be interpreted either as a categorical
same/different judgment or a continuous similarity/dissimilarity
score, and it is “smarter” than simple formula-basedmetrics, such
as Euclidean distance, cosine similarity, and Pearson correlation,
having been trained to be sensitive to the features of a specific
dataset that matter in differentiating the classes, while ignoring
any nuisance features. To do this, each example fed into the
classifier is comprised of two trials of EEG data (with dimensions
Samples × Channels), stacked together to form a 2 × Samples
× Channels input. Regardless of how many classes or conditions
are present in the original dataset, the output layer always has
two units, one representing a decision that the two trials in
the input example are drawn from the same category, and the
other unit representing a decision that the two trials are drawn
from different categories. This also means that, in theory, a
trained PTC network could be applied or adapted (via transfer
learning) to previously unseen categories, although in this initial
demonstration we do not yet test that possibility.

We explored three variations of PTC analyses:

1. Single-to-single: In our initial analyses, we perform PTC
using pairs of individual (un-averaged) trials. This variation
will be referred to as “single-to-single.” One difficulty in
performing single-to-single PTC is that when individual
trials are relatively noisy or variable, as is often the case in
neuroimaging data and EEG in particular, the problem is
compounded by directly comparing two single recordings.
Thus, performance, in this case, might be expected to be
worse than typical neural network classification. By way of
comparison, although traditional DNNs are trained and tested
on individual trials, the network itself effectively embodies
the features that worked best across the full breadth of the
training set. In that sense, traditional DNNs might be a
closer comparison in some ways to the single-to-average PTC
analysis (see #3 below). To address the noise issue that arises
when comparing two individual trials, we also performed
PTC using two approaches that incorporate some form of
averaging prior to classification, and use trial averages rather
than individual trials as one or both elements of each input to
the model.

2. Average-to-average: In the first averaging-based PTC variation,
each training/validation/test example was composed of two
trial averages that combined signals from 20 trials each,
without overlap. This variation will be referred to as “average-
to-average.” At this point, it is important to note that most
analyses are performed under the assumption that we have a
pre-existing “known” dataset and a novel “unknown” dataset.
As such, we explore the case in which the first signal in the pair
is composed of an average generated from a single “unknown”
subject, and the second signal is generated from an average
across multiple “known” subjects, to form a sort of exemplar
pattern. For further details, see section 2.4.

3. Single-to-average: In this analysis, a single trial was compared
to a 20-trial average. This variation will be referred to
as “single-to-average.” Again, this is performed with the

assumption of “known” and “unknown” datasets. The single
trial is drawn from the “unknown” set, while the averaged
trial is computed across multiple subjects from the “known”
dataset. Again, see below for further details.

2.2.3. Dictionary Approach
The basic same/different PTC classifier can readily be mapped to
multiclass classification with the use of a corpus, or dictionary,
of “known” trials. To classify a given “unknown” sample, it is
compared to sets of “known” trials from each class using PTC.
The likelihood scores for each of the classes are passed through
a softmax function (Bridle, 1990), and the classification decision
for the unknown sample is determined by whichever dictionary
class has the highest average softmaxed likelihood value.

A naïve implementation of dictionary selection was used. One
hundred trials from each of the three classes were chosen at
random from the test and validation set to form the dictionary.
In the approaches that compare against averaged signals, each of
the trials in the dictionary is created by averaging 20 randomly
selected signals from the same class, chosen across subjects.

2.3. Network Architecture
Although in principle any number of architectures could be used
for PTC, a straightforward choice for this initial demonstration
was to use a convolutional network model, as that afforded a
clear way of training a classifier that could learn to compare its
two inputs. Each of the two trials is treated as an input channel,
so convolution can naturally capture their parallel (both channel
and time) nature3. A 3 × 3 2D filter was chosen to act over both
channels and time, respectively, using zero-padding to maintain
signal dimensionality between layers. The results were passed
through a leaky rectified linear unit activation (Leaky ReLU)
function and then a batch normalization layer. Four blocks of
convolution, activation, and batch normalization layers were
used. The number of filters per block was increased successively
from 12 to 48 to capture the hierarchical nature of the feature
representations. Each block was connected not only to the next
block with the output of the batch normalization layer feeding
into the next convolution, but all subsequent blocks with skip
connections using concatenation, as in DenseNet (Huang et al.,
2017). At the end of the densely connected portion, a final 2D
convolution with three filters was applied to reduce the data
dimensionality before feeding it into two fully-connected layers
with 64 and 32 neurons, and then a final classification layer. In
total, the network had 246,909 trainable parameters. While the
total number of parameters is substantially smaller than found
in many deep networks, previous literature has suggested that

3In some of our preliminary explorations of the PTC concept in another dataset,

we tried combining the “trials” end-to-end with various network models, and

also tried training SVMs, SMLR, and multilayer perceptrons to perform the

same/different classification on similarly concatenated pairs of trials. None of these

methods were able to learn to perform the classification above chance, which

suggests that structuring the input to “hint” at the paired nature of the problem

is necessary for an algorithm to reliably learn the same/different comparison

operation. In turn, this means that DNNs, particularly convolutional architectures,

may be uniquely well-suited to the task, as these architectures make it much easier

to take the structure of the input into account.
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FIGURE 2 | PTC neural network architecture. The input is two 31 × 37 EEG signals, stacked together in a 2 × 31 × 37 3D array. Batch normalization is immediately

applied to each signal, and the output of this is both passed through the 12 filter banks in the Convolution2D layer of Block 1 and passed directly to the Batch

Normalization block. Thus, the Batch Normalization layer of Block 1 outputs 12 + 2 = 14 images of size 31 × 37. This process is repeated for a total of four blocks. No

concatenation is performed in the dimensionality reduction block, and the 3 × 31 × 37 feature map is flattened and passed to the final dense layers before

classification. All convolutional and dense layers use the Leaky ReLU activation function unless otherwise specified.

substantially down-scaled neural networks are appropriate for
neuroimaging data, in part due to the tendency of larger networks
to overfit when trained with the limited size of dataset available
in neuroimaging (Bashivan et al., 2015). See Figure 2 for a visual
representation of the PTC network.

As noted above, a similar network was used for the baseline
DNN model that used a more conventional three-category
classification approach. The only differences were that in the
baseline DNN’s network, the first convolutional layer only
accepted a single trial’s data, and the final layer had one output

per class. This version of the network thus had a very similar
245,862 trainable parameters (less than half a percent fewer than
the PTC network), as the vast majority of the parameters are
found in the dense layers, which share the same input and output
shapes between the two models.

2.4. Training, Validation, and Test
Procedures
In all the variations of PTC, subjects were split into three disjoint
groups: training, validation, and test. A leave-one-subject-out
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cross-validation methodology was used, and the remaining
subjects were split with 80% randomly assigned to training, and
the remaining 20% assigned to validation. As per standard, the
training group was used to perform backpropagation updates
on the models; the validation group was used to determine a
stopping criterion for updating the model, and the test group was
used to determine the accuracy of the models.

All models were trained using the Adam optimization
algorithm (Kingma and Ba, 2015) and a batch size of
144. Minibatches were generated dynamically during training.
Samples were drawn randomly from all subjects in the
training group, with an even split across all possible class
pairs and orderings (e.g., Face-Face or Scene-Word). Since,
in a three-class problem, there are six “different” pairings
and three “same” pairings, the “same” pairings were sampled
twice as often to provide equivalent numbers of “same” and
“different” pairings during training. In the average-to-average
analysis, averages were constructed such that no trials were
shared between the two averages; in single-to-average, the
single trial was never one of the trials used to comprise
the average.

Standard techniques were implemented to reduce the
likelihood of overfitting. Dropout was enforced on the dense
layers (Srivastava et al., 2014), with a proportion of 10%. We
initially tried architectures with higher dropout rates, which
would be more standard usage of the dropout algorithm,
but those rates resulted in reduced performance during
training across all analyses and unreliable training convergence
in the single-to-single PTC variation. Early stopping was
employed when validation loss failed to improve for a
period of 30 epochs. The model from the epoch in which
the lowest validation loss was observed was chosen as the
final model.

For single-to-single and single-to-average “same-different”
accuracy, each sample in the test set (i.e., held-out subject)
was compared to a randomly selected set of trials drawn from
the training and validation sets, with 100 signals per class,
as described in section 2.2.3. For the average-to-average PTC
method, 80 averages were generated per class from the test set
(roughly approximating the number of individual trials per class
that a single subject would have) and then compared against a
dictionary built from the training/validation sets as in the other
PTC analyses.

For the baseline (non-PTC) deep learning analyses, a
similar leave-one-subject-out cross-validation scheme was used,
with the same network hyperparameters as the PTC analyses
(optimization algorithm, dropout, early stopping, etc.). Similar
to PTC, the non-left-out subjects were split with 80% randomly
assigned to training, and the remaining 20% assigned to
validation. For all deep-learning-based analyses, ten iterations
of the cross-validation were performed per left-out subject, and
results from all iterations were averaged to yield the final results
we present below.

SVM and SMLR models were also tested using leave-one-
subject-out cross-validation, but without a validation set. That is,
the models were trained on trials from all but one subject, and the
remaining subject’s trials were then used for testing.

TABLE 1 | Baseline accuracy (percent, with chance = 33.33%).

SVM SMLR DNN

Single 63.67 64.90 59.51

Averaged 81.54 82.52 82.54

Bold values indicate highest accuracy in each row.

2.5. Environment
All deep learning analyses (PTC analyses + the DNN baseline
analysis) were performed in Python 3.6 using the Keras toolbox
(Chollet, 2015) with a Theano backend (Theano Development
Team, 2016). Custom in-house Python scripts were used to
implement the specific analysis techniques we used, tabulate
results, and so on. NumPy was used in supporting functions
(Oliphant, 2006; Walt et al., 2011). SciKitLearn was used for the
SVM (Buitinck et al., 2013) and PyMVPA was used for SMLR
(Haxby et al., 2011).

3. RESULTS

3.1. Base Models
The performance of the three baseline classifiers is shown in
Table 1. All values reported are derived by first calculating
mean accuracies for each human participant (averaged across
iterations of the cross-validation algorithm, for all deep learning
models; SVM and SMLR are deterministic and did not require
multiple iterations), and then averaging across participants.
Overall, SMLR (with a lambda parameter of 100) achieved the
highest performance on single trials, with an accuracy of 64.90%
(against chance = 33.33%). SVM (with a C parameter of 0.0001)
achieved the second-best results with an accuracy of 63.67%.
Finally, the DNNmodel achieved an accuracy of 59.51%. SMLR’s
performance was significantly better than SVM’s (p = 0.0064)
and SVM’s was significantly better than the DNN model’s (p <

10−7; all comparisons are paired t-tests).
In the averaged-trials condition, all baseline models

performed similarly. The DNN model performed infinitesimally
better than SMLR, at 82.54 and 82.52%, respectively. SVM
achieved a slightly lower accuracy of 81.54%. However, none
of these values were significantly different from each other
(all p > 0.3).

3.2. PTC
The overall PTC results are shown in Table 2. The same-
different classification had a chance accuracy of 50%, and
the dictionary classification approach had a chance accuracy
of 33.33%. Generally, as more averaging was applied, the
accuracy increased. Same-different accuracy improved from
56.03% (single-to-single) to 71.25% (single-to-average) to 86.15%
(average-to-average) as the averaging was increased. As expected,
all of these values were significantly different from each other
(all p < 10−18).

Similarly, dictionary classification improved with more
averaging, from 49.21 to 61.53 to 83.32%. Again, as expected, all
of these values were significantly different from each other (all
p < 10−16).
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TABLE 2 | PTC accuracy summary (percent).

Same/Different Dictionary

Single-to-Single 56.03 49.21

Single-to-Average 71.25 61.53

Average-to-Average 86.15 83.32

(Chance) 50.00 33.33

The single-to-single PTC dictionary classification performed
worse than all of the single baselines (p < 10−13 against all single-
trial baseline classifiers). Similarly, the single-to-average PTC
dictionary model performed worse than all of the averaged-trial
baselines (all p < 10−11). However, given the differences in the
algorithms, a “fairer” comparison might be between the single-
to-average PTC dictionary model and the single-trial baseline
classifiers, since the trained baseline classifiers implicitly contain
a form of averaged representation of the training data, against
which individual trials are compared during testing. The single-
to-average PTC dictionary still performed significantly worse
than the single-trial SVM and SMLR classifiers (both p ≤ 0.001),
but it did outperform the single-trial DNN classifier with a nearly
identical network architecture (61.53 vs. 59.51%; p < 10−7).

The average-to-average PTC dictionary classification did
perform with a numerically higher accuracy than all of the
averaged-trial baselines (83.32% for PTC vs. next-highest DNN
baseline at 82.54%). However, as with the comparisons among the
individual averaged-trial baseline models, the average-to-average
PTC dictionary classifier was not significantly different from any
of them (all p > 0.14).

The same-different confusion matrices for the three methods
are shown in Table 3. All three models are more likely to
predict that two samples came from a different underlying class
than the same underlying class, with the difference being more
pronounced as more averaging is involved. As a result, accuracy
was higher when the actual trial pair was a “different” pair than
when it was a “same” pair.

Finally, graphical confusion matrices of the individual
stimulus categories are shown for baseline classifiers and PTC
analyses in Figure 3. Broadly speaking, all classifiers showed
the same general pattern, with words being correctly identified
most often, followed by scenes, followed by faces. In all
cases, averaging improved performance, and various individual
classifiers performed better than others, as detailed above;
however, none of the classifiers or manipulations appeared to
show a qualitative difference in the pattern observed in the
confusion matrices, beyond those that tracked with overall
increases/decreases in accuracy. As such, it appears that, broadly
speaking, all classifiers were picking up on approximately
the same general patterns in the data, with no classifiers or
manipulations appearing to show a particular bias for one
category over the others.

4. DISCUSSION

In this paper, we demonstrated a new method of deep-
learning-based classification for neuroscience data, paired trial

classification (PTC). Rather than using a DNN to classify a
trial’s category directly, we instead trained the classifier to
compare pairs of trials to each other. Using a “dictionary”
approach similar to ones employed in traditional MVPA studies
with conventional distance/similarity metrics, we also used PTC
to generate category predictions based on how often a test
trial was judged to be the “same” as other trials drawn from
the three categories of stimuli in our dataset. While it is
difficult to draw direct performance comparisons between PTC
and our baseline measures, given the significant differences in
how the problem was structured and how the results could
be interpreted, overall PTC performed comparably to other
measures, and in some cases perhaps a bit better. Either way, we
believe the novelty and flexibility of PTC make it an interesting
approach and a viable avenue for future explorations into
its potential.

In all cases, PTC performed with accuracy significantly above
chance. While the same-different classification for the single-to-
single paradigmwas onlymarginally better than chance at 56.08%
accuracy, the single-to-average paradigm was substantially better
than chance with an accuracy of 71.32%. This represents the
ability to say with some confidence whether a novel trial is similar
to some exemplar formed from the averaging of known trials.
Furthermore, the average-to-average paradigm is more accurate
at 86.15% accuracy, allowing for a more confident determination
of a group of novel samples known to be drawn from the same
unknown class.

The tendency of the models to predict “different” more often
than “same” is somewhat notable, considering the equal number
of “same” and “different” examples provided during training.
However, this tendency is straightforward enough to explain;
it stands to reason that noise is more likely to make a trial
appear as if it were coming from some different class than for
noise to cause two trials from different classes to appear to be
drawn from the same class. For instance, assume a research
participant stops paying attention for one trial, or flutters their
eyes enough to create a small artifact (but not one big enough
to trigger rejection of the trial using standard preprocessing
techniques). If the PTC algorithm is doing its job well, it is
likely to judge that noise trial as being “different” from the
trial it is paired with, regardless of whether the other trial is
the same category or not. In that case, the PTC algorithm may
not even be making an error when it judges some “same” pairs
as “different”; instead, it might be picking up on unanticipated
differences/noise in the data that are not accounted for by
the comparatively simple assumption that all “face” trials, for
example, should have similar neural activity to each other. This
feature might be exploitable in future work; for example, to
address the well-known issue with many conventional DNN
analyses that deep networks often yield high confidence scores to
noisy or adversarial inputs (Nguyen et al., 2015; Su et al., 2019), as
implicit in their training is the tendency to maximize confidence
scores as much as possible. In contrast, a PTC classifier given
a poor input might correctly give high-confidence “different”
responses to all of the possible categories (including the one
that is nominally the same as the poor trial), which effectively
can be read as a vote of no confidence in the quality of the
input data.
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TABLE 3 | Confusion matrices for PTC analyses (percent).

Single-to-Single Single-to-Average Average-to-Average

Predicted: Same Different Same Different Same Different

Actual

Same 53.71 46.29 60.96 39.04 79.39 20.61

Different 42.74 57.26 23.50 76.50 10.47 89.53

FIGURE 3 | Confusion matrices by individual stimulus categories for all classifiers. Values presented as proportions rather than percentages for readability.

We also observe that the dictionary-based classification
technique allows for the successful mapping back to the
multiclass classification paradigm. The results for the single-to-
average dictionary classification condition were on par with any
of the single trial baselines, and the average-to-average dictionary
classification conditions were on par with the averaged signal
baselines. These results were achieved with a naïve approach to
dictionary selection, so better performance could be seen with the

optimization of the dictionary; exploring potential improvements
to the dictionary portion of the algorithm would be one
promising direction for future work. Notably, the single-to-
single paradigm stands to improve from a less noisy dictionary.
As it stands in this implementation, a sort of “weak learner”
effect is observed between the two applications of the single-
to-single network: A single “same-different” classification was
successful 56.08% of the time, only 6.08% above chance, but
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the three-class classification was successful 49.35% of the time,
a more impressive 16.02% better than chance. Although the
two values are not directly comparable given the differences
in what they represent, they are suggestive that pooling the
individually weaker “same-different” classifications across a
multiclass dictionary can indeed produce robust overall results.
This also raises the possibility that the PTC approach might be
especially well-suited to datasets with higher numbers of classes.
In particular, if some of those classes had too few trials in them
to reliably train a conventional DNN to recognize them, a PTC
network trained with trial pairs from all classes might still have a
chance of picking them out.

Deep learning is useful because it can take advantage of the
multi-dimensional nature of datasets in a way that other methods
cannot (as the simpler linear techniques require vectorized
input); GPU acceleration and parallelization in general are better
supported for deep learning, making it more computationally
efficient for large datasets; and deep networks can be configured
flexibly to address a wider range of problem domains than simple
linear methods. However, deep learning is frequently difficult to
apply successfully in neuroscience. Often, human neuroscience
datasets can fall into a “Goldilocks problem” zone, meaning
that they can have too many trials or features for SVMs or
other conventional MVPA approaches to be performant, but
fewer training examples than are typically expected to enable
DNN-based analyses to converge reliably. In such cases, data
augmentation techniques could be applied to enable the use of
deep learning by increasing the generalizability of the network.
However, direct augmentation techniques pose challenges of
their own. For example, Bashivan et al. (2015) found that
temporal shifting techniques that have been applied successfully
in other fields did not meaningfully improve generalization in
their deep learning analyses of an EEG dataset. PTC offers an
alternative way of increasing the size of the training dataset,
not by augmenting the trial data itself, but rather by pairing
trials combinatorially. However, it does not require altering the
underlying data (except, optionally, by averaging trials to increase
signal-to-noise, as we did here), which could be a useful property
of this technique in specific scenarios, or provide another option
to try when standard data augmentation techniques fail.

The goal of this paper was to introduce the PTC paradigm and
show that it can easily bemapped back tomulticlass classification.
This approach is not limited, however, to cases in which there

are a discrete, known set of classes as in typical classification
applications. PTC could also be used for detecting trials that
differ substantially from those seen in the training dataset, such
as in outlier detection, novel stimulus identification, or artifact
rejection. It could also be used in situations wherein a more
conventional distance/similarity metric might be applied; for
example, to assess neural pattern similarity across exposures
to a set of stimuli, and to use these similarity judgments to
test hypotheses about memory, make predictions about which
stimulus is being seen or imagined at a particular point in time,
or perform clustering analyses.
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Recent advances in deep learning have improved the segmentation accuracy of

subcortical brain structures, which would be useful in neuroimaging studies of many

neurological disorders. However, most existing deep learning based approaches in

neuroimaging do not investigate the specific difficulties that exist in segmenting extremely

small but important brain regions such as the subnuclei of the amygdala. To tackle this

challenging task, we developed a dual-branch dilated residual 3D fully convolutional

network with parallel convolutions to extract more global context and alleviate the

class imbalance issue by maintaining a small receptive field that is just the size of the

regions of interest (ROIs). We also conduct multi-scale feature fusion in both parallel

and series to compensate the potential information loss during convolutions, which

has been shown to be important for small objects. The serial feature fusion enabled

by residual connections is further enhanced by a proposed top-down attention-guided

refinement unit, where the high-resolution low-level spatial details are selectively

integrated to complement the high-level but coarse semantic information, enriching

the final feature representations. As a result, the segmentations resulting from our

method are more accurate both volumetrically and morphologically, compared with other

deep learning based approaches. To the best of our knowledge, this work is the first

deep learning-based approach that targets the subregions of the amygdala. We also

demonstrated the feasibility of using a cycle-consistent generative adversarial network

(CycleGAN) to harmonize multi-site MRI data, and show that our method generalizes well

to challenging traumatic brain injury (TBI) datasets collected from multiple centers. This

appears to be a promising strategy for image segmentation for multiple site studies and

increased morphological variability from significant brain pathology.

Keywords: deep learning, fully convolutional neural network, amygdala, structural MRI, segmentation,

harmonization, generalization
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1. INTRODUCTION

The amygdala is a key regulator of emotional arousal and
is thought to regulate generalization or habituation of fear
responses in normal and abnormal development (Adolphs
et al., 2005; Knight et al., 2005; Öhman, 2005). Animal
models have been used to differentiate subregions of the
amygdala, identifying structural bases of fear generalization
in basal and lateral nuclei distinct from output projections
from centromedial regions (Amaral et al., 1992; LeDoux, 2007;
Hrybouski et al., 2016; Kwapis et al., 2017), and reliable
quantification of these substructures would be extremely useful.
Accurate segmentation of the amygdala and specific subregions
for quantitative analyses may provide better insights into fear
and emotion processing and the role of the amygdala in
traumatic brain injury and neuropsychiatric diseases. However,
as a deep heterogeneous cluster of subregions, surrounded by
vasculature, it remains an extremely difficult region to quantify.
Compared with conventional automated software (Freesurfer,
FSL), hand drawn amygdala boundaries can better capture
cumulative contributions of biological and environmental stress,
including autistic social impairment, physical abuse, institutional
neglect and poverty (Nacewicz et al., 2006; Hanson et al., 2015).
However, manual segmentation is extremely time-consuming
and is prone to biases (Maltbie et al., 2012), highlighting the
need for highly accurate automated segmentation methods.
Currently, there are no reliable segmentation tools for subnuclei
regions of the amygdala. Furthermore, the effects of image and
subject variability from scanner, protocol and brain pathology on
amygdala segmentation have not been previously investigated.

Segmentation methods for the amygdala can largely be
classified into atlas-based and learning-based categories. A high
resolution MRI atlas of the amygdala with defined subregions
was recently described (Tyszka and Pauli, 2016); however, the
utilization of this atlas to individual brain images is limited
by the ability to anatomically spatially align the atlas. A
promising strategy is the multi-atlas based method in which
the segmentation of a target image is estimated by aligning it
with one or more labeled atlases through registration (Babalola
et al., 2009; Leung et al., 2010; Hanson et al., 2012). There
is, however, a considerable computational cost associated with
multi-atlas approaches since all of the atlases need to be
deformably registered to each target image case using non-linear
deformable transformations (Hanson et al., 2012). Additionally,
the segmentation quality in multi-atlas approaches highly
depends on the selection of the atlases and the fusion algorithm
(Rohlfing et al., 2004; Aljabar et al., 2009). Other automatic
population atlas-based segmentation packages are FreeSurfer
and FSL, but overall their segmentation performances remain
not optimal (Morey et al., 2009; Schoemaker et al., 2016)
due to insensitivity to biologically-relevant variance (Hanson
et al., 2015) and failure to capture subtle boundaries of
centromedial nuclei when applied to single subjects (Saygin
et al., 2017). Furthermore, neither Freesufer nor FSL support
the segmentation of the subregions of the amygdala.Therefore,
neither Freesurfer nor FSL performance are evaluated in this
paper. A significant limitation with existing tools and prior work

in this domain is that the effects of variability across scanners and
protocols have not been investigated, nor have the effects of brain
injuries on amygdala segmentation.

Recently, convolutional neural networks (CNN) have brought
tremendous improvements in various computer vision tasks
such as image classification and segmentation (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014; He et al., 2016).
Unlike traditional machine learning, CNN as a learning based
approach can autonomously learn representations of data with
increasing levels of abstraction via multiple convolutional layers
without feature engineering. In CNNs, weights are shared
and locally connected among convolutional layers, which
significantly reduces the number of parameters compared with
fully connected layers, making CNNs especially suitable for
imaging tasks. Naturally, CNNs have been gradually becoming
the tool of choice for medical imaging tasks. In medical image
segmentation, a classification network was previously proposed
using a sliding window scheme to predict the class probability of
the center pixels of over-lapping patches (Ciresan et al., 2011).
Since such a classification makes predictions for a single pixel
at a time, this approach suffers from redundant computations
and does not benefit from correlations across pixels. Long et al.
(2015) first proposed then fully convolutional neural networks
(FCNN) in which the fully connected layers are replaced with 1x1
convolution so that the network consists of convolutional layers
only. This strategy allows dense predictions for multiple pixels
in a single forward pass, and eliminates the limitation posed by
fully connected layers on the size of the input image size. FCNN
therefore serves as an effective general purpose engine for tasks
of semantic image segmentation.

A widely-used FCNN architecture is “encoder-decoder,”
which are popularized by U-Net (Ronneberger et al., 2015),
3D U-Net (Çiçek et al., 2016), V-Net (Milletari et al., 2016),
and SegNet (Badrinarayanan et al., 2017). The encoder part
compresses the input images into lower-resolution feature maps
via downsampling or pooling layers, and the decoder part aims
to recover the full-resolution label map from these feature maps
for pixel-to-pixel semantic classification. These networks have
similar encoders—a VGG-like (Simonyan and Zisserman, 2014)
architecture is typically adopted, while they vary with respect
to their decoder strategies. Multiple up-sampling strategies have
been proposed for decoders, including deconvolution (Noh
et al., 2015), bilinear upsampling and unpooling (Badrinarayanan
et al., 2017). However, such design could pose a few problems
when segmenting structures with small spatial extent. First,
although consecutive strided convolutions or pooling operations
employed in these networks enable a large receptive field, fine
details may be lost and are difficult to remedy via simple
non-learnable upsampling strategies or skip connections. For
example, if a network has a downsample rate of 1/8 (as it
employs three max-pooling layers with 2 × 2 filters with stride
2), an object with less than 8 voxels (such as the amygdala’s
subregions) in each dimension may not be well recovered later.
Second, since down-sampling operations typically lead to great
dimension reduction, the input images of these networks need
to be large enough so as to preserve sufficient dimension after
the compression of the encoder, for being further processed
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by the decoder. But larger image patches are more likely to
be dominated by background voxels compared with smaller
ones, leading to severe class imbalance problem. This makes
the predictions more favorable to the background, which is
particularly of concern for small objects. Although a weighted
cross entropy loss function has been suggested to alleviate this
problem (Ronneberger et al., 2015; Çiçek et al., 2016), choosing
a proper weight map for all the classes is non-trivial. Another
solution could be the Dice loss function (Milletari et al., 2016)
which avoids tuning any extra hyperparameter and weighs false
negatives and false positives equally. Hence, although these
networks have plenty of success in segmentation tasks of large
structures such as brain extraction (Zhao et al., 2018), lung
(Negahdar et al., 2018), and breast segmentation (Dalmış, 2017),
specific strategies for small structures are necessary.

Compared with larger structures, smaller ones like the
amygdala and its subregions provide fewer signals to exploit,
which makes the learning of discriminative features more
challenging. Hu and Ramanan (2017) suggested that modeling
context is particularly helpful for CNNs to recognize small
objects, based on a key observation that humans can only
accurately classify small faces with evidence beyond the object
itself. In general, context can provide knowledge of a structure
with respect to its surroundings and disambiguate objects with
similar local visual appearances. Thus, incorporating context
can critically improve recognition accuracy (Galleguillos and
Belongie, 2010). In medical imaging, many studies have explored
the idea of using input patches with various sizes for modeling
multi-scale contextual information (de Brebisson and Montana,
2015; Moeskops et al., 2016; Ghafoorian et al., 2017; Kamnitsas
et al., 2017). Most of these networks are organized in a multi-
branch manner, where each branch independently processes
patches of a certain type. In other patch-based CNN approaches,
explicit spatial features obtained from a structural probabilistic
atlas are combined with CNN features to provide additional
spatial information (Kushibar et al., 2018). Another line of
efforts focuses on enlarging kernels via dilated convolutions
to integrate larger contextual information (Chen et al., 2018).
Segmenting small structures with high accuracy is therefore
reduced to the problem of finding the optimal trade-off between
capturing sufficiently large context and retaining fine details,
while alleviating the imbalanced class issue.

In light of the limitations of previous works, we present a dual-
branch dilated residual FCNN with two parallel convolutions to
extract both local context for alleviating the class imbalance issue
and more global context. Residual connections (He et al., 2016)
are added to facilitate the gradient flow and more importantly,
feature reuse from earlier layers. In order to enhance such feature
fusion, we additionally develop a top-down attention-guided
(AG) refinement unit resided on residual connections to select
useful low-level details from earlier layers to better complement
the highly semantic feature maps from deep layers, which
we believe can benefit the segmentation of small regions like
the amygdala and subnuclei on structural T1-weighted images.
In general, attention mechanisms can emphasize important
features and suppress the irrelevant ones, mimicking human
visual system, which has been broadly applied to various vision

and natural language processing tasks (Bahdanau et al., 2014).
A popular attention mechanism, “Squeeze & Excitation” (SE)
module (Hu et al., 2018) which recalibrates channels bymodeling
channel interdependencies, has been shown to be effective in
some medical images segmentation tasks (Roy et al., 2018).
Different from SE, we utilize higher-level information as priors
to recalibrate lower-level channels.

This study focused on two critical areas of brain image
segmentation—(1) the parcellation of very small structures like
the subnuclei of the amygdala, and (2) the application of whole
amygdala segmentation across multiple scanners and variable
brain injuries. For the parcellation of amygdala subnuclei,
we evaluated the accuracy of our segmentation method by
comparing it to other automated methods including two deep
learning based and a multi-atlas based method. A preliminary
version of the presented work appeared in Liu et al. (2018).
We further demonstrate the benefits of the dual-branch design
by analyzing the influence of each branch on final performance
and compare the two design choices of our attention-guided
refinement unit to SE module (Hu et al., 2018), showing that
the top-down AG refinement unit is more suitable than SE
in this application, and potentially in segmentation tasks of
other small structures. Finally, we investigated a strategy to
generalize the FCNN amygdala segmentation approach to a
challenging Traumatic Brain Injury (TBI) dataset collected from
multiple sites, despite the variability of contrast and image
sensitivity across MRI scanner hardware (RF coils, in particular)
and software (pulse sequences and protocols) and increased
image heterogeneity associated with pathology, demonstrating its
robustness to real-world practice.

2. MATERIALS AND METHODS

2.1. Dataset
T1-weighted MRI data from 14 subjects (age mean (standard
deviation) 28.9 years (6.5 years); range 18.5–43.4 years), each
imaged in bothmorning and evening sessions on 2 days separated
by 1 week (four total imaging sessions) on a GE MR750 3.0
T MRI scanner with the product 8-channel head coil. All
participants provided written consent or assent as part of a
procedure approved by the Human Subjects Institutional Review
Board of the University of Wisconsin School of Medicine and
Public Health. A whole-brain 3D inversion-recovery prepared
fast gradient-echo T1- weighted sequence (inversion time TI =
600 ms; fast gradient echo readout TR/TE = 9.4/3.1 ms; 256 ×

192 matrix, resampled to 256 × 256, over 240 mm field of view
with 128 slices 1-mm thick) was prescribed as axial oblique slices
angled so that the midpoint and splenium of the corpus callosum
occupied the same plane (Nacewicz et al., 2012).

An iterative pre-processing pipeline used 3DSkullStrip
(AFNI) (Cox, 1996) to output a roughly skull-stripped image,
which was then coregistered to the MNI152 template by affine
transform in FLIRT (FSL) (Jenkinson et al., 2012), and tissue
priors reverse warped to native space for segmentation-based
bias-field correction in FAST (FSL), the dilated bias field was
applied to the original image, which was then more effectively
skull-stripped, contrast-adjusted and squared to exaggerate gray
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matter-CSF differences, re-coregistered to the MNI template for
better alignment of tissue priors and a final bias correction
with FAST. This method was developed to preserve tissue
in the lateral nucleus of the amygdala, which is otherwise
frequently misclassified as CSF and erroneously darkened by bias
corrections. The resultant images from each of the 4 sessions were
coregistered in FLIRT to an individual-subject averaged space (1
mm isotropic) representing an affine transform equidistant to all
4 session images and averaged (Nacewicz et al., 2012), followed by
landmark-based AC-PC alignment with concomitant cropping to
191 × 236 × 171 (Cox, 1996), and rotation to the “pathological
plane” to match post-mortem atlases (Nacewicz et al., 2006).

Both the left and the right amygdala were manually divided
on the 4-session averaged 1 mm isotropic T1-weighted images
into four subnuclear groups on each side—lateral, basal, cortico-
superficial (olfactory) and centromedial subregions—by an
amygdala anatomy expert (BN) based on visible landmarks
largely matching those described by Amaral et al. (1992). Details
of how subregions are defined are provided in Figure 1. We note
that the slight in-plane downsampling to 1mm and the spatial
normalization did not impair the manual labeling. Specifically,
in the coronal plane the lateral nucleus was easily isolated
due to its darker intensity. The combined basal nuclei went
from the thin white matter capsule of the cortical nucleus
medially to the intense, linear lateral border formed by the
fibers passing through the plane along this edge and with careful
effort to include the magnocellular “dogleg” portion and its
white matter capsule; and the dorsomedial boundary of the
basomedial region was formed by a straight line from the most
ventromedial extent of the visible white matter around the
“dogleg” down to the most ventromedial tip of the amygdala
clearly visible above the hippocampal head. The combined
cortico-superficial nuclei included all tissue bordering on the
ambient cistern above the semiannular sulcus ventrally up to the
more lateral of either the rhinal sulcus or lateral extent of the
optic tract, with the lateral boundary defined by the white matter
capsule of the cortical nucleus or the straight line boundary
described above for the basal group. The combined centromedial
group was bounded by white matter dorsally including a thin
boundary between the central nucleus and putamen, extended
ventromedially along the white matter forming the dorsomedial
boundary of the “dogleg” of the basolateral nucleus, then a
straight line extended dorsomedially to the more lateral of
the rhinal sulcus or optic tract. The manual labeling of 10
ROIs per individual on 14 brains with two blinded repeats
(four amygdalae) yielded intra-rater Dice overlap coefficients:
Lateral = 0.89, Basal = 0.82, Centromedial = 0.77, Superficial
= 0.75 and total amygdala using our previously published
technique yielded excellent agreement (dice = 0.94). Manual
tracing is, however, quite tedious and time-intensive, requiring
10–20 person-hours per brain, which limits application to larger
data sets. Overall, the right and the left amygdala jointly
account for about 0.05% of the whole brain volume of a
single subject. Training and evaluation of the segmentation
methods as described below were performed on single session
(non-averaged) data using the segmentation labeling from the
averaged data.

FIGURE 1 | Segmentation of subnuclear groups by landmarks visible on

single subject images. Unlabeled (left) and labeled (right) images at more

posterior (top) and anterior (middle) coronal sections with representative

histology and subdivisions from Mai et al. (3rd ed) (Mai et al., 2015). Tracing

began in the coronal section with the “dogleg” of the basolateral nucleus

(asterisk). The lateral nucleus (teal) was easily identifiable by the lower T1

intensity lateral to a linear border with the basolateral nucleus. The combined

basal nuclei (pink) was defined starting in the plane of the dogleg, with the

dorsal boundary following the thin white matter angling inferomedially along

the central nucleus. The medial boundary of the basal group extends up to but

not including the white matter encircling the cortical nucleus. A key landmark

anterior to the dogleg is a spider-like white matter formation (middle, X)

dividing all subdivisions and discernible in all single-subject images. When the

white matter of the cortical nucleus was not visible, a spot of white matter at

the triple junction with the medial nucleus (arrowhead in top and middle) or the

most medial tip of white matter between basolateral and central nucleus was

connected with the most medial extent of the subventricular/uncal white

matter (dotted line). The cortico-superficial grouping (orange) extends

superiorly to a line from the triple junction in posterior sections or the tip of

white matter above basolateral nucleus on anterior sections to the more

superolateral of the endorhinal sulcus or optic tract. The centromedial group

(blue), includes all darker tissue above these boundaries. All nuclei were then

refined to achieve smooth agreement in sagittal and axial views (bottom).

2.2. Network Backbone
To incorporate larger contexts while alleviating class imbalance,
we present a dual-branch model design (Figure 2), with one
specializing in capturing multi-scale contexts and the other
maintaining a small receptive field which helps the model focus
on the ROIs. For any given feature map U ∈ R

H×W×D,
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kernels of two different sizes are applied in parallel to perform
two transformations � :U → F̂ ∈ R

H′
×W′

×D′

and ψ :U →

F̃ ∈ R
H′

×W′
×D′

, forming two branches. In order to more
efficiently preserve information, dilated convolutions (Yu and
Koltun, 2015) in place of down-sampling layers are adopted
throughout the network, i.e., kernels are up-sampled with zeros
inserted between weights so that the receptive field of the kernels
can be expanded without incurring extra computational costs.
The gap between elements in a kernel isDk−1, whereDk denotes
the dilation rate, with standard convolution as a special case when
Dk is 1. Therefore, the two branches are composed of 33 kernels
with Dk1 ≥ 1 (dilated branch) and Dk2 = 1 (standard branch),
respectively. For example, a 53 kernel for the dilated branch is a
33 kernel with Dk = 2. Batch Normalization (Ioffe and Szegedy,
2015) and ReLU non-linearity (Glorot et al., 2011) are applied in
sequence after convolutions. Information from both branches are
then fused via element-wise summations before being fed into the
next layer (Figure 3, left):

Fl = F̂ldilated + F̃lnormal,

where Fl denotes the fused feature maps (FMs) for each layer
l. The small dilation rates designed for standard branch are to

ensure that it has a small receptive field of size 19×19×19 which
can just enclose the whole amygdala. This allows for a detailed
analysis of the ROIs and alleviates the class imbalance problem,
since the receptive field determines the number of voxels that
can influence model predictions per optimization step. For the
dilated branch, the dilation rates are empirically set to be Dk1 =
{

1, 2, 4, 2, 8, 2, 4, 2, 1
}

, resulting in a receptive field of size 53 ×

53×53, which can capture large contexts. The number of kernels
for each branch is as follows: 30, 30, 40, 40, 40, 40, 50, 50, 50. In
addition to such parallel feature fusion, residual connections
(He et al., 2016) are also integrated into the network mainly
for feature reuse (Chen et al., 2017) in series, which adds the
features from a lower layer to those from a higher layer via skip
connections (Figure 3, right). Both the parallel and serial feature
fusion are shown in Figure 3. They are further enhanced by a
top-down attention mechanism described in section 2.3.

2.3. Top-Down Attention-Guided
Refinement Unit
CNNs are known to have an inherent feature hierarchy, where
layers that are close to the inputs extract high-resolution spatial
details and deeper layers form highly semantic but coarser

FIGURE 2 | Architecture of the proposed model. “RX”s represent residual blocks (the residual connections are omitted here). The rectangles with two kernel sizes

represent parallel convolutions, as illustrated in Figure 3. The attention weights generated using higher-level feature priors, denoted as blue arrows, are multiplied with

the lower-level channels; then, the reweighted lower-level features are used to refine the next layers, as shown by gray arrow. Each layer except for the final

classification layer (orange) is followed by batch normalization and ReLU.

FIGURE 3 | Feature fusion in parallel (Left) and series (Right): kernels of two different sizes are applied in parallel, and the resultant feature maps are fused via

element-wise summation; standard residual connections are adopted for serial feature fusion, where features from earlier layers are incorporated into deeper layers.
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features. A number of deep learning studies have explored to
fuse multi-level features from different layers to enrich the
feature representation (Hariharan et al., 2015; Long et al., 2015;
Ronneberger et al., 2015; Lin et al., 2017; Zhang et al., 2018).
Especially, segmentation of small objects is found to benefit from
such feature reuse from earlier layers where fine-grained low-
level details are abundant (Shrivastava et al., 2016; Lin et al.,
2017). Nevertheless, indiscriminately fusing the different levels
of features may not always be effective due to the semantic
dissimilarity empirically found by Zhang et al. (2018). Motivated
by their observation, we propose a top-down attention-guided
refinement unit based on residual connections to supplement
the typical feed-forward, bottom-up CNN, where the abundant
semantic information from the higher layers can highlight and
select the low-level details from lower layers, as shown in
Figure 4. Given a set of features maps from earlier layers Flow ∈

R
C′
×H×W×D, a set from higher layers Fhigh ∈ R

C′′
×H×W×D, and

the attention coefficients α ∈ R
1×1×1×C′

the refined feature maps
from higher layers can be defined as:

F′high = Fhigh + d(α ⊗ Flow),

FIGURE 4 | Top-down attention-guided refinement unit on residual

connections, where lower-level features are recalibrated by higher-level

information and incorporated into deeper layers. “FMs” denotes as feature

maps. Channel-wise statistics of higher-level information are first extracted by

global average pooling, and the interdependencies among channels are

modeled by a 1× 1× 1 convolution followed by the sigmoid activation. The

reweighted lower-level features are then added to the higher-level features.

where ⊗ denotes element-wise multiplication, F = Fdilated +

Fnormal for all layers,and d(·) represent 1 × 1 × 1 convolutions
for aligning the dimensionality of that of the higher-level feature
maps. α is formulated as the following:

α = [α1,α2, ...,αc],

αc = σ (Z(B(Conv1×1×1(AvgPool(Fhigh))))),

where Z represents the rectified linear unit (ReLU) function,
which provides non-linearity by setting negative values as
zeros and keeping positive ones constant; B denotes the batch
normalization (Ioffe and Szegedy, 2015) , which can accelerate
and stabilize network training by standardizing each training
batch; and σ denotes the sigmoid function for rescaling the
attention coefficients to [0, 1].

2.4. Evaluation in a Multi-Site Data Set With
Brain Pathology
Amygdala segmentation strategies with CNN methods were also
evaluated in a T1-weighted structural imaging study of children
ages 9–18 years with severe traumatic brain injury (TBI) scanned
1–2 years after the injury. Twenty-one children (13F/8M) ages 9–
18 years were scanned with T1w imaging at 13 sites with differing
3T MRI scanner systems, RF coils and pulse sequences. Among
the TBI scans, 9 sites scanned one subject, 3 sites scanned two
subjects and 1 site scanned six subjects. Representative images
are shown in Figure 5. The data collection was approved by the
Institutional Review Boards for each site and parental assent and
informed consent was obtained for all subjects. Similar imaging
protocols were employed across sites (3D T1w MP-RAGE (TI =
900 ms on Siemens and Philips) or BRAVO IR-fSPGR (TI = 450
ms on GE) with 1 mm isotropic spatial resolution (256 mm FOV
with 256 × 256 matrix and 192 sagittal slices at 1 mm thick);
however, there was variability between sites in terms of scanner
manufacturers and models, RF coils, and pulse sequences, which
affected spatial sensitivity, contrast, and image quality. Further,
the severity, type and localization of injuries was extremely
heterogeneous across sites. All these issues pose challenges on
the applicability of CNNs, which typically do not generalize well
to data whose distribution is different from that of the training
data (Gibson et al., 2018a). Prior studies onmulti-site generalized
segmentation either retrains the model directly on multi-site
data (Gibson et al., 2018a) or fine-tunes the domain-specific

FIGURE 5 | Representative images at similar anatomic levels from the source domain (a healthy subject, the leftmost) and target domains (3 TBI patients in the 3

rightmost frames). The slices were selected to highlight the lesion pathology and not the amygdala.
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parameters (Karani et al., 2018) of the model, both requiring a
few labeled target images from the new sites. In this study, we
instead resort to pixel-level image adaptation, aiming to directly
segment the full amygdala volumes from the multi-site images
without the corresponding labels. We did not attempt to evaluate
the segmentation of amygdala subregions for this multi-site study
because manual labeling was deemed impractical for these data
due to insufficient data quality for reliable identification.

As there was considerable site-to-site variability, we
investigated the utility of a cycle-consistent generative adversarial
network approach (CycleGAN) (Zhu et al., 2017) to harmonize
the image contrast with the training data. CycleGANhas not been
applied to multi-site data harmonization before, to the best of our
knowledge. Specifically, the distribution of multi-site target data
is transformed into source-like distribution while the appearance
of the target images are preserved. In this way, a pre-trained
segmentation model can be directly applied to the adapted
target images without prior assumptions on scanner/protocol
deviations. CycleGAN consists of two generators that learn two
mappings, respectively, G1 : S → T and G2 :T → S, and two
discriminatorsD1,D2 that distinguish the generated images from
the real ones for each domain. In particular, we are interested in
the generator G2 that transforms the target images into realistic
source-like images, i.e., G2(x

t) = xt→s. The distribution of the
target and source images are aligned by applying adversarial
losses (Goodfellow et al., 2014) where G tries to confuse D by
producing realistic source-like images. Cycle-consistent losses
(Zhu et al., 2017) computed by l1 distance are also applied to
ensure that the generated target images are similar to the original
ones. The transformed target images eventually obtained from
the CycleGAN will be rendered as if they are drawn from the
source domain, with the contents preserved. The total loss is
defined as:

Ltotal(G1,G2,D1,D2) = Ladv(G1,D2)+ Ladv(G2,D1)

+λLcyc(G1,G2),

where λ is used to modulate the strength of the cycle consistency.

2.5. Implementation Details
The proposed segmentation method was implemented in
PyTorch, using one Titan Xp GPU for training. Categorical cross
entropy was employed as the cost function, optimized via the
Adam solver with an initial learning rate of 0.001, scheduled to

decay as lr = lrinitial ∗
(

1− itern
totaliter

)power
, where power was set to

0.9. Weights in each layer were initially drawn from a zero-based
Gaussian distribution with standard deviation of

√
2/ni, where n

denotes the number of units in a kernel of the layer l (He et al.,
2016). Bias were initialized at zero. Training was performed in
batches of 14 image patches. In each iteration, 11 patches of size
59× 59× 59 were sampled from the whole brain and fed into the
model. During inference, 105×105×105 patches were used. For
comparison, training of the other deep learning based methods,
i.e., HighRes3DNet (Li et al., 2017), DeepMedic (Kamnitsas et al.,
2017) were implemented in Tensorflow (Gibson et al., 2018b)
following their original settings in the respective papers, i.e.,

Dice loss (Milletari et al., 2016) was used in HighRes3DNet
and categorical cross entropy in DeepMedic. An existing multi-
atlas based method (Wang et al., 2014) was also evaluated for
comparison in a leave-one-out fashion: 13 atlases were used
for training and one atlas for evaluation. For all the deep
learning based methods evaluated, a 7-fold cross validation was
performed. In each fold, 10 subjects were used for training, 2
for validation and 2 for testing. The models were trained with
a fixed number of epochs. The model parameters in the epoch
that resulted in best performance (i.e., highest average dice) on
the validation set were used to segment the test set. Performance
of all methods on the test set was reported.

For multi-site MR image harmonization, we trained the
CycleGAN on the coronal view of all the images from all
domains. For the architecture choices, we followed the original
settings: two convolutions with stride of 2, 9 residual blocks, two
fractionally strided convolutions with stride 1

2 are employed as
the generator (Johnson et al., 2016), and 70 × 70 PatchGAN
(Isola et al., 2017) is employed as the discriminator which aims
to detect 70 × 70 image patches as real or fake. In total 3,304
slices from the source data and 5,900 slices from the TBI data are
used for training. Each slice is randomly cropped to 128 × 128
before being fed into the CycleGAN. Data augmentation includes
random rotation with angles of γ · 90◦, where γ ∈ [0, 1, 2, 3],
and scaling with factors 0.8, 1, 1.2. For comparison only, we also
conducted supervised training by training a model using the
labeled TBI data in a 7-fold cross validation scheme, and the
above-mentionedmulti-atlas basedmethod which was trained on
the source data in a leave-one-out cross validation scheme and
then directly applied to the TBI data. Results are summarized and
analyzed in section 3.4.

2.6. Evaluation Metrics
The pair-wise similarity and discrepancy of our automatic
(A) and manual segmentation (M) were evaluated using the
commonly employed Dice Similarity Coefficient (DSC):

DSC =
2|A ∩M|

|A| + |M|
,

whose value ranges from zero to 1, where 1 indicates 100%
with the ground truth, and 0 indicates no overlap. However,
volumetric overlap measures are not sensitive to the contour of
the segmentation output, while the latter is important in many
medical applications such as disease diagnosis and treatment
planning, as is also the case for the amygdala (Shenton et al.,
2002; Tang et al., 2015; Yoon et al., 2016). Thus, we additionally
consider a distance-based metric—the average symmetric surface
distance (ASSD) (Geremia et al., 2011) in our evaluation. ASSD
is defined as the average of distances between border voxels
of our automatic segmentation output and those of manual
segmentation output:

ASSD

=

∑

m∈B(M) mina∈B(A)||m− a|| +
∑

a∈B(A) minm∈B(M)||a−m||

|B(M)| + |B(A)|
,
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where B(·) denotes the set containing all the voxels on the border.
Zero value for this measure indicates a perfect segmentation.

3. RESULTS

In this section, we present qualitative and quantitative results
for our model and conduct ablation studies to demonstrate the
effectiveness of each proposed component. We also compare
the results of the proposed method with several state-of-the-art
methods on the same dataset. Finally, we explore the feasibility
of harmonizing the multi-site TBI data using CycleGAN and
show the generalized capability of our method. Wilcoxon signed
rank tests (two-sided) are used for performance comparison
throughout the analysis.

3.1. Single-Branch vs. Dual-Branch
Here we demonstrate the advantages of the dual-branch design
by investigating the influences of each single branch. Experiments
of using the dilated and standard branch separately are conducted
in the same 7-fold cross validation scheme. Each branch is
equippedwith residual connections as in the original dual-branch
setting. It can be observed in Table 1 that the dilated branch,
which has a significantly larger receptive field, performs better on
larger subregions (lateral, basal), while the standard branchwith a
smaller receptive field is better at segmenting smaller subregions,
especially on the cortico-superficial subregions (p = 0.007).
Additionally, the dilated branch yields significantly lower ASSD
values than the standard branch on all subregions (p<0.05). The
dual-branch network inherits the merits of each single branch

and achieves best overall accuracy in terms of both Dice and
ASSD. Qualitative results of the compared models are shown
in Figure 6.

3.2. Top-Down Attention-Guided
Refinement Unit
We also tested the effectiveness of the proposed top-down
attention guided feature refinement scheme for further boosting
the accuracy. Two variants were explored: “local reweighting”
and “global reweighting,” as illustrated in Figure 7. These were
compare with the SE blocks (Hu et al., 2018) that are also
placed on the residual connections. Table 2 shows that the “local
reweighting” scheme yields best overall Dice, especially on the
cortical-superifical subregions (p < 0.05) which are the most
challenging due to the smallest volume-to-surface ratio. Thus, we
employ a “local reweighting” scheme for the attention module.
Meanwhile, we can observe that the addition of either the “global
reweighting” scheme or the SE blocks results in comparable or
increased model complexity, while the results get slightly worse.
This demonstrates that the improvements are indeed due to
better feature refinement resulting from the locally top-down
attention module, and not simply from the increased capacity of
the model.

3.3. Comparison With Other
State-of-the-Art Methods
In order to demonstrate the advantage of the proposed method,
we compared our method with some other popular publicly
available segmentation methods including two deep learning

TABLE 1 | Dice overlap (columns 2–4) and ASSD (columns 5–7) performance of both single branch models and the dual-branch model.

Subregions Dice (%) ASSD (mm)

Dilated standard Dual Dilated standard Dual

Lateral 80.6 (6.6) 77.9 (7.7) 82.6 (5.0) 0.70 (0.24) 2.66 (1.90) 0.68 (0.31)

Basal 76.6 (6.6) 75.9 (6.1) 77.3 (6.0) 0.70 (0.15) 1.10 (0.68) 0.71 (0.20)

Centromedial 73.7 (7.7) 76.7 (5.2) 75.4 (5.3) 0.61 (0.16) 1.00 (0.66) 0.61 (0.20)

Cortical-Superficial 71.7 (5.7) 72.2 (5.6) 73.1 (5.6) 0.96 (0.44) 1.94 (2.00) 0.81 (0.33)

Mean 75.6 (7.4) 75.7 (6.5) 77.1 (6.4) 0.74 (0.30) 1.67 (1.59) 0.70 (0.27)

Subregions are listed in descending order by their volume-to-surface ratio. Highest are highlighted in bold and the second highest are underlined. The dual-branch model performance

was either highest or second highest for all regions in terms of both Dice overlap or ASSD.

FIGURE 6 | Qualitative segmentation examples show influences of each single branch on the final dual-branch model. The incorporation of larger context (Dilated

branch) enables the final model to better localize the subregions, thus reducing false positives (the scattered misclassified background voxels, as seen on the

Standard Branch result), while standard branch helps refine the appearance details of the final output.
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FIGURE 7 | Two variants of the proposed top-down attention. RX denotes the residual blocks (residual connections are omitted here).

TABLE 2 | Comparison for the Dice score (%) of the two variants and the SE

blocks against the baseline (dual-branch model) and the percentage increase in

model complexity.

Subregions Baseline SE Global Local

Lateral 82.6 (5.0) 81.2 (7.1) 83.4 (5.1) 82.8 (5.2)

Basal 77.3 (6.0) 76.9 (5.7) 77.2 (5.5) 77.6 (5.3)

Centromedial 75.4 (5.3) 74.5 (6.2) 76.3 (5.1) 76.6 (5.6)

Cortical-Superficial 73.1 (5.6) 71.7 (5.1) 72.5 (5.8) 74.7 (5.6)

Mean 77.1 (6.4) 76.1 (6.9) 77.4 (6.7) 78.0 (6.1)

Parameters (%

increase)

0.795M (–) 0.811M

(+2.0%)

0.808M

(+1.6%)

0.808M

(+1.6%)

The largest value in each row is bold faced.

models, DeepMedic and HighRes3DNet, and a multi-atlas based
algorithm. HighRes3DNet is a state-of-the-art method in brain
parcellation for 155 neuroanatomical structures (not including
extremely small brain structures such as the subregions of the
amygdala), and DeepMedic has shown excellent performance in
lesion segmentation. Results (Table 3) show that our method
exhibited superior performance in terms of both Dice and ASSD
in this application. The differences in Dice with DeepMedic on
the lateral (p = 0.04), basal (p = 0.03) and cortical-superficial
(p < 0.005) subregions were significant. In particular, our
method demonstrated substantial improvements for the cortical-
superficial subregions thanks to the top-down attention guided
refinement module. DeepMedic performed better ASSD on the
basal subregions (p < 0.005) and our method were better at the
cortical-superficial subregions (p < 0.03). Compared to multi-
atlas, our method yielded significantly better Dice on the lateral,
basal and cortical-superficial subregions (p < 0.05; p < 0.05;
p < 10−3, respectively). There was no statistically significant
differences on ASSD between our method and the multi-atlas
based method.

3.4. Generalization on Multi-Site TBI
Dataset
Whole-amygdala segmentation performance on the training data
is reported in Table 4, which shows a roughly 90% overlap
between the algorithm and ground truth. We investigated the

generalization of the proposed method on a challenging multi-
site TBI dataset by directly applying the trained whole-amygdala
segmentation model to the TBI data. The results were evaluated
relative to the “gold standard” defined by manual correction of
Freesurfer amygdala segmentations by an expert (GK). Both Dice
overlaps and ASSD were computed. For comparison only, we
also conducted supervised training with TBI labels (corrected
Freesurfer segmentations). As the objective was to evaluate
the utility of CycleGAN for improving deep neural network
(DNN)’s performance when testing on out-of-distribution data,
the performance of competing CNN methods on the multi-
site TBI data was not evaluated for these data. It is clear from
Table 5 that a direct application of our trained model to the
multi-site data demonstrated very poor performance, while after
harmonization by CycleGAN, the trained model’s performance
on target data was significantly improved (p < 10−6). Supervised
training yielded slightly higher performance. The multi-atlas
based method, which is much less affected by the shift in data
distribution, demonstrated similar performance to our method
after harmonization, though the processing time is considerably
longer. It should be noted that the segmentation performance
for all the approaches was substantially lower than for the
segmentation applied to the training data (Table 4). Qualitative
results for one subject are shown in Figure 8.

4. DISCUSSION

In this study, we present a lightweight dual-branch residual
FCNN with enhanced feature refinement to segment the
subregions of the amygdala. Parallel branches with different
dilation rates are used to process objects with different scales as
well as extract more global contexts, and a top-down attention-
guided refinement unit is proposed to guide the selection of
lower level details for better feature refinement. We evaluated
our method on MRI image data acquired from a cohort of
adolescents. The results show that the proposed method achieved
better performance as compared to several existing state-of-
the-art segmentation methods. Meanwhile, our approach takes
several seconds to segment the data of a subject, which is orders
of magnitude faster than the multi-atlas based approach. This
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opens up the potential for real-time use during MRI acquisition,
which would facilitate individualized functional, structural or
spectroscopic imaging of small anatomical structures.

From the results of using each branch separately, we found
that the performance on objects of different scales can be
critically influenced by the receptive fields, and the proper
receptive fields is correlated with the scale of objects. Our dual-
branch design with different receptive fields thus flexibly adapt
to subregions of different scales. Furthermore, although the
standard branch with a small receptive field is prone to spatial
inconsistencies due to local similarities, dilated branch remedies
this effect by incorporating more global contextual information
via dilated convolutions. The significantly lower ASSD values
it yields suggest that dilated branch is especially effective in
reducing such false positives, indicating its strong localization
ability for ROIs and boundaries. This suggests that each branch
provides complementary information toward the solution of the
segmentation problem. Benefiting from both branches, the final
model obtained substantially more accurate segmentation results
both volumetrically and morphologically.

Besides the lightweight dual-branch backbone, we also explore

the idea of multi-scale fusion and enhance it with a top-
down attention-guided refinement unit. An important design

choice for the proposed refinement unit is the strategy to

use more local or global high-level information as the guide.
The results indicate that the local refinement scheme may be

more suitable and it is especially advantageous in small and

challenging subregions (cortical-superficial). This is consistent
with our hypothesis that smaller objects tend to benefit more
from feature reuse. Interestingly, the comparison with SE blocks
suggest that SE blocks inhibit rather than emphasize the ROIs
in this application, as also found in Roy et al. (2018). This
may due to the small size of the features of the ROIs whose
contribution to the whole feature maps are less significant
compared with other features of the same level and are thus
suppressed. We therefore speculate that the top-down design,

which utilizes higher semantic and categorical information as
priors to determine the importance the lower-level features,
may alleviate this problem and thus may be more suitable for
segmentation tasks of small objects.

In comparisons with two other state-of-the-art deep learning
models, our method shows superior performance in terms of
both Dice overlap and ASSD. Notably, all evaluated models
contain comparable parameters and therefore comparable
capacities, while they vary in their topological structures.
HighRes3DNet consists of consecutive 20 dilated residual
convolutional layers with progressively enlarged dilation rates.
It shares many key components with the backbone of our
model such as the dilated residual convolutions, but has them
connected in series only while ours also in parallel. Such serial
connections result in an overly large receptive field (87 ×

87 × 87) which causes severe class imbalance in segmenting
small and compact subregions that cannot seem to be well
resolved by using Dice loss, as indicated in Table 3. This also
demonstrates the benefit of having an another branch that
maintains a small receptive field in our model design. DeepMedic
consists of two independent branches with the second branch
processing a low-resolution version of the inputs. Compared
with HighRes3DNet, the architecture of DeepMedic is flexible
enough to process input segments with smaller spatial sizes,
which can inherently balance the distribution of different classes.
DeepMedic also exploits multi-scale learning scheme, but the
responses of two branches are not fused until the very end of

TABLE 4 | Dice overlap performance on the main training dataset using a

leave-one-out approach (described in section 2.1).

Amygdala L. Amyg R.Amyg Mean

Dice (%) 90.6 (2.1) 90.5 (2.1) 90.6 (1.9)

This trained model is also applied to the harmonized TBI dataset.

TABLE 3 | Mean and standard deviation of the Dice scores and ASSD for the proposed method, two other state-of-the-art deep learning based and a multi-atlas based

segmentation methods evaluated on subregions.

Methods Lateral Basal Centromedial Cortical-Superficial Mean

DICE (%)

Multi-atlas 80.3 (7.0) 75.4 (6.1) 75.2 (6.4) 69.9 (5.7) 75.2 (7.3)

HighRes3DNet 68.1 (11.4) 69.3 (7.0) 25.3 (34.5) 65.8 (6.7) 57.1 (26.1)

DeepMedic 80.5 (7.5) 75.6 (6.5) 75.5 (5.3) 71.6 (4.2) 75.8 (6.7)

Dual (Ours) 82.6 (5.2) 77.3 (6.0) 75.4 (5.3) 73.1 (5.6) 77.1 (6.4)

Dual + Top-down Att (Ours) 82.8 (5.0) 77.6 (5.3) 76.6 (5.7) 74.7 (5.4) 78.0 (6.1)

ASSD (mm)

Multi-atlas 0.60 (0.20) 0.73 (0.16) 0.54 (0.12) 0.75 (0.16) 0.66 (0.18)

HighRes3DNet 2.00 (1.26) 1.20 (0.43) 16.63 (12.20) 1.18 (0.51) 5.25 (8.96)

DeepMedic 1.13 (1.11) 0.52 (0.36) 0.76 (0.67) 1.37 (1.01) 0.94 (0.89)

Dual (Ours) 0.67 (0.31) 0.71 (0.20) 0.61 (0.20) 0.81 (0.33) 0.70 (0.27)

Dual + Top-down Att (Ours) 0.94 (1.30) 0.69 (0.15) 0.67 (0.42) 0.73 (0.22) 0.76 (0.70)

“Dual” denotes the proposed segmentation model without the top-down attention guided feature refinement module. Highest are highlighted in bold and the second highest are

underlined.
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TABLE 5 | Performance before and after harmonization using CycleGAN and supervised training using TBI labeled data, and a multi-atlas method.

Settings No harmonization After harmonization Supervised Multi-atlas

Dice (%) 42.4 (21.8) 75.5 (6.7) 76.0 (9.6) 75.0 (8.4)

ASSD (mm) N/A 1.2 (0.7) 1.9 (1.7) 0.9 (2.9)

FIGURE 8 | Qualitative results of whole-amygdala segmentation in a single TBI scan. Automated segmentation results are shown in orange and yellow, and the

ground truth expert labeled segmentations are shown in green. The overlays show that the segmentation was very poor before CycleGAN harmonization (2nd

column), but much improved after harmonization.

the network. In contrast, our model encourages interactions of
multi-resolution features both in parallel and in series. This
could explain the improved performance of even our dual-branch
model with respect to DeepMedic, though they have the same
model complexity.

Finally, we evaluate the generalizability of our method on a
multi-site TBI dataset by first pre-training the model on the main
dataset and then directly applying it to the TBI data. In order to
address domain shifts, we explore the feasibility of harmonizing
the multi-site data using CycleGAN, which is shown to be
effective and nearly closes the gap to supervised training (i.e.,
training with TBI labels) in this application. Comparing the
Dice overlap performance of the supervised training on the
main dataset and the TBI dataset, the accuracy drop on TBI
data (90% to 76%) may be attributed to high variations due to
heterogeneous scanning methods and anatomical injuries. Thus,
larger labeled datasets are desired for better training for TBI
studies, which however are often not feasible in medical imaging
where expert-defined labels are often rare. Our results show that
after a decent data harmonization by CycleGAN, using a single
small set (N ≈ 14) of high-quality labeled data (even though they
are healthy subjects) can approximate the accuracy of directly
training with a few (N ≈ 21) TBI labeled data. This suggests
that our solution makes it possible to reuse labels from different
domains and thus alleviate the burdens for labeling. Another
important advantage is that knowledge of sources of biases from
scanners/protocols are not required for harmonization using
CycleGAN. A limitation, however, is that CycleGAN only adapts
images at pixel-level while feature spaces should ideally be aligned
as well for better domain adaptation, which we leave for future
works. Another limitation with this study was that only the
whole amygdala segmentations were evaluated because the raw
T1-weighted images were not of sufficient quality for expert
manual labeling of the subregions.

5. CONCLUSION

In this study, we presented a novel dual-branch dilated
residual FCNN with enhanced feature fusion via a top-down
attention-guided refinement unit to segment the subregions
of the amygdala with high accuracy. Each branch with a
different receptive field demonstrated specialized ability of
processing objects of the corresponding scale, thus providing
complementary information. Also, we found that the proposed
attention-guided feature refinement module may be more
suitable than the SE blocks in segmenting small structures due
to the top-down design. The proposed model showed superior
performance compared with two state-of-the-art deep learning
methods. Our method also shows decent generalizability on a
challenging multi-site TBI dataset without needing to be re-
trained, after harmonizing the TBI data using a CycleGAN.
We believe that our findings and the model design could
provide insights especially on generalized segmentation of
small objects, which are relatively under-studied, and the high
efficiency of our technique will potentially benefit real-time use
in clinical practices.
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Deep learning methods have shown their great capability of extracting high-level features
from image and have been used for effective medical imaging classification recently.
However, training samples of medical images are restricted by the amount of patients
as well as medical ethics issues, making it hard to train the neural networks. In this
paper, we propose a novel end-to-end three-dimensional (3D) attention-based residual
neural network (ResNet) architecture to classify different subtypes of subcortical vascular
cognitive impairment (SVCI) with single-shot T2-weighted fluid-attenuated inversion
recovery (FLAIR) sequence. Our aim is to develop a convolutional neural network to
provide a convenient and effective way to assist doctors in the diagnosis and early
treatment of the different subtypes of SVCI. The experiment data in this paper are
collected from 242 patients from the Neurology Department of Renji Hospital, including
78 amnestic mild cognitive impairment (a-MCI), 70 nonamnestic MCI (na-MCI), and 94
no cognitive impairment (NCI). The accuracy of our proposed model has reached 98.6%
on a training set and 97.3% on a validation set. The test accuracy on an untrained testing
set reaches 93.8% with robustness. Our proposed method can provide a convenient
and effective way to assist doctors in the diagnosis and early treatment.

Keywords: subcortical ischemic vascular disease, convolutional neural network, deep learning, magnetic
resonance imaging, cognitive impairment

INTRODUCTION

Vascular cognitive impairment (VCI) is a broad term that includes a group of cognitive disorders
with various degrees of severity, from mild to severe attributable to pathological damage of the
cerebral vascular system (Barbay et al., 2017). Vascular dementia developed from VCI is the
second most common cause of dementia after Alzheimer’s disease (AD) (Barbay et al., 2017).
Recently, VCI, especially its most common form subcortical VCI (SVCI), has been getting increased
attention, for there is increasing evidence that impaired vascular structure and function are
also important in the development of AD (Lucy et al., 2017). SVCI is defined as a clinical
continuum of cognitive impairments due to cerebral small vessel disease (Olivia et al., 2018).
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Lacunar infarct and white matter hyperintensities (WMHs)
(also termed white matter lesions or leukoaraiosis), which
are located subcortically or deeply), are the main type of
lesions. Prominent perivascular spaces, cerebral microbleeds, and
atrophy are the other common signs shown in conventional
MRI sequences that are associated with SVCI (Jee and Lee,
2014). Nowadays, with the development of neuroimaging studies,
we have gradually found that conventional MRI characteristics
cannot fully explain the variable clinical manifestations of SVCI.
For example, although voxel-based morphometry and lesion-
symptom mapping studies have shown extensive brain damages
in SVCI patients, the relationship between these damages
and clinical cognitive impairments is still controversial among
different studies (Marco et al., 2011; Biesbroek et al., 2013, 2017).
The International Society for Vascular Behavior and Cognitive
Disorders suggested that a strategic infarct or hemorrhage,
multiple lacunes, one large infarct or hemorrhage, and extensive
and confluent WMH of vascular origin may be helpful in the
diagnosis of SVCI (Perminder et al., 2014). However, as there is
little validation of these thresholds, the exact clinical relevance
patterns for individual patients remain to be discussed. So by
now, the diagnosis of SVCI still relies on scrupulous clinical
assessment such as detailed medical history enquiry, physical
and neurobiological exams, and neuropsychological evaluation,
which are costly, are time-consuming, are subjectively dependent,
and may even be traumatic. More effective methods to classify
and evaluate the cognitive impairments of SVCI are needed.

Noticeably, a small number of studies have made an
effort to resolve the dilemma by traditional machine learning
(ML) based on neuroimaging data. Using hierarchical fully
convolutional network (H-FCN), Lian et al. (2020) automatically
identified discriminative atrophy local patches and regions in
brain structural MRI (sMRI) and achieve state-of-the-art AD
versus normal control (NC) and progressive mild cognitive
impairment (pMCI) versus stable MCI (sMCI) classification
performance. By combining diffusion tensor imaging (DTI) and
brain morphometry parameters, Stefano et al. (2015) successfully
discriminated healthy controls from patients with vascular
dementia and vascular MCI (VaMCI) by ML techniques. Stefano
et al. (2016) adopted a support vector machine (SVM)-based
ML strategy for discrimination SVCI patients with different
cognitive performances on the basis of predefined feature vectors
extracted from DTI data. The sensitivity, specificity, and accuracy
of the classification model were 72.7–89.5%, 71.4–83.3%, and
77.5–80.0%, respectively. Finally, except for not being sensitive
enough, extracting those features on the basis of such large data
volume of neuroimaging needs human experts, which are often
costly, time-consuming, and burdensome. Deep learning (DL) is
a rapidly developing ML algorithm for directly extracting high-
throughput features from the images without the engagement
of human experts. In particular, quite a lot of studies focus on
the application of DL-based diagnosis assistance system. Duan
et al. (2019) have researched the visual attention analysis of
children with autism spectrum disorder (ASD). Liu et al. (2019)
focused on the AD diagnosis and used deep multi-task multi-
channel learning to achieve state-of-the-art classification results.
Yang et al. (2020b) fused deep spatial and temporal features from

adaptive dynamic functional connectivity (dFC) and achieved
great classification accuracy of 87.7%, which is 5.5% higher than
that of the state-of-the-art methods. Liu et al. (2018) proposed
a deep multi-instance convolutional neural network (CNN) to
automatically learn both local and global representations for MR
images and achieve superior performance over state-of-the-art
approaches. In particular, in MCI classification problems, Yang
et al. (2014, 2020a) have proposed effective sparse functional
connectivity networks and sparse multivariate autoregressive
modeling methods for MCI classification. In our previous study
(Yao et al., 2019), we trained a CNN to classify different cognitive
performances in patients with subcortical ischemic vascular
disease (SIVD) on the basis of T2-weighted fluid-attenuated
inversion recovery (FLAIR) data. For the three-dimensional
(3D)-based model, the accuracy of a training set and a testing
set reached 99.7 and 96.9%, respectively. This previous study
suggests us that DL, especially 3D-CNN, is a powerful and
convenient method for classification of SVCI by single-shot T2-
weighted FLAIR sequence. By focusing on the sparse regression
of blood oxygenation level dependent (BOLD) MRI and arterial
spin labeling (ASL) MRI as well as the brain connectivity
network inferred from the MR image, Li et al. (2019) and
Yang et al. (2019) proposed novel state-of-the-art methods on
MCI classification.

With the successful use of 3D-CNN in classifying different
stages of cognitive impairment in SVCI, we decided to further
our study and refine the model for classifying different subtypes
of VaMCI on the basis of the single-shot FLAIR sequence. VaMCI
is an intermediate and reversible state between normal cognitive
status and vascular dementia. The definition of MCI according
to criteria proposed by a multidisciplinary and international
experts group includes four clinical subtypes: amnestic MCI
(a-MCI; single or multiple domain) and nonamnestic MCI
(na-MCI; single or multiple domain) (Winblad et al., 2004).
Different VaMCI subtypes might subtend different etiologies:
a-MCI (single or multiple domains) was considered to have a
degenerative etiology, and multidomain MCI (either amnestic or
not) was considered to have a vascular etiology (Emilia et al.,
2016). The subtypes of VaMCI are important for clinical care and
targeted treatment and might be associated with prognosis. David
et al. (2015) found that dementia risks were higher for a MCI than
for na-MCI, and for multidomain compared with single-domain
MCI.Liesbeth et al. (2017) found that the relevance of reversion
for progression risk depends on the MCI subtype. The risk of
dementia in participants with MCI who did not revert, especially
in amnestic subtype, was higher than in reverters. Neuroimaging
studies showed some signs in differentiating a-MCI and na-MCI.
Yukako et al. (2019) found that medial temporal lobe atrophy
and lower educational history are quick indicators of amnestic
cognitive impairment after stroke. Another study showed that
medial temporal lobe atrophy was more frequent in multidomain
compared with single domain (Emilia et al., 2016). Hosseini et al.
(2017) compared different subtypes of VCI on the basis of DTI
and FLAIR data. Results showed that higher medial temporal
lobe atrophy and left hippocampal mean diffusivity contributed
to amnestic VCI and that higher ischemic burden contributed to
nonamnestic VCI.
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Considering the importance of VaMCI subtypes for clinical
decision, and the possibility for image classification suggested
by limited neuroimaging studies, we constructed an efficient 3D-
CNN model to achieve accurate classification of VaMCI subtypes.
To our knowledge, no similar studies have been reported.

MATERIALS AND METHODS

Participants
A total of 242 subjects with SIVD were recruited from patients
admitted to the Neurology Department of Renji Hospital from
July 2012 to January 2018. SIVD is defined as subcortical WMH
on T2-weighted images with at least one lacunar infarct, in
accordance with the criteria suggested by Galluzzi (Samantha
et al., 2005). All participants received baseline evaluation,
including complete collection of sociodemographic and clinical
(cognitive, behavioral, neurological, functional, and physical)
data. Patient histories were collected from knowledgeable
informants, usually from their spouses. All patients underwent
laboratory examinations and conventional MRI for routine
investigation (Yao et al., 2019).

The exclusion criteria (Yao et al., 2019) were cerebral
hemorrhages, cortical and/or corticosubcortical non-lacunar
territorial infarcts and watershed infarcts, specific causes of
white matter lesions (e.g., multiple sclerosis, sarcoidosis, and
brain irradiation), neurodegenerative disease (including AD and
Parkinson’s disease), and signs of normal pressure hydrocephalus
or alcoholic encephalopathy. Patients with low education level
(<6 years), severe depression [Hamilton Depression Rating
Scale (HDRS) ≥ 18], other psychiatric comorbidities or severe
cognitive impairment (inability to perform neuropsychological
tests), severe claustrophobia, and contraindications to MRI (e.g.,
pacemaker and metallic foreign bodies) were also excluded.
All the participants had lacunar infarcts, small white matter
hyperintensities, and slight atrophy.

Finally, all SIVD patients recruited were subdivided based
on cognitive status into subcortical vascular disease with no
cognitive impairment (NCI) group (n = 94) and VaMCI group
(n = 148). All the participants were right-handed.

The current study was approved by the Research Ethics
Committee of Renji Hospital, School of Medicine, Shanghai Jiao
Tong University, China. Written informed consent was obtained
from each patient.

Neuropsychological Assessment
Neuropsychological assessments (Yao et al., 2019) were
performed within 2 weeks of the MRI. All subjects did not
suffer a new clinical stroke or TIA between the MRI and
assessment. A comprehensive battery of neuropsychological tests
was designed based on a review of relevant published reports.
These tests are as follows: Trail-Making Tests A and B, Stroop
color–word test, verbal fluency (category) test, auditory verbal
learning test (short and long delayed free recall), Rey–Osterrieth
Complex Figure Test (delayed recall), Boston Naming Test (30
words), Rey–Osterrieth Complex Figure Test (copy), Lawton

and Brody’s Activities of Daily Living (ADL) Scale Test, Barthel
index (BI), HDRS, and the Neuropsychiatric Inventory.

To assess the cognitive status of subjects, the scores for
each measure of normal-aged patients in Shanghai, China,
were used as the normal baseline (norms) (Yao et al.,
2019). Cognitive dysfunction was defined as −1.5 SD in
at least one neuropsychological test. According to the AHA
Statement on Vascular Contributions to Cognitive Impairment
and Dementia (Philip et al., 2011), VaD diagnosis was based
on a decline in cognitive function from a prior baseline
and a deficit in performance in ≥2 cognitive domains that
were of sufficient severity to affect the subject’s activities of
daily living, which were independent of the motor/sensory
sequelae of the vascular event. VaMCI diagnosis was based
on the following criteria: (1) ADL could be normal or mildly
impaired, (2) does not meet criteria for dementia, and (3)
mild quantifiable cognitive impairment within one or more
domains (i.e., attention, executive function, memory, language,
and visuospatial function). Functional ability was assessed using
BI and Lawton and Brody’s ADL scales. However, because
most patients with cognitive impairment due to cerebrovascular
disease have some degree of disability, the study carefully
excluded those with disability due to cognitive damage and
motor sequelae using cognitive impairment history and clinical
judgment. The definition of subtypes of MCI according to criteria
proposed by a multidisciplinary and international experts group
includes a-MCI and na-MCI (Winblad et al., 2004). NCI was
defined as subcortical vascular disease with NCI, which means
their scores in all neuropsychological tests were within the
normal range (<-1.5 SD).

MRI Protocol
MRI was performed with the SignaHDxt 3T MRI scanner (GE
Healthcare, United States). An eight-channel standard head
coil with foam padding was used to restrict head motion.
Besides conventional brain MRI plain scanning, T2-weighted
FLAIR sequences with high resolution were acquired as follows:
TE = 150 ms, TR = 9,075 ms, TI = 2,250 ms, field of
view (FOV) = 256 × 256 mm2, matrix = 128 × 128, slice
thickness = 2 mm, number of slices = 66.

MRI Data Preprocessing Pipeline
In this section, we propose an end-to-end data pipeline for
MR image data processing. The data pipeline contains data
preprocessing and model training. Our raw data are T2-weighted
FLAIR MR image collected from 242 patients including 78
a-MCI, 70 na-MCI, and 94 NCI. We split the total dataset to three
parts including a training set, a validation set, and a testing set
with percentage of 60, 20, and 20%, respectively. Figure 1 shows
our proposed MRI data processing pipeline. First, we process the
raw data using our data preprocessing method and get trainable
data as the input of CNN. Then we feed these processed data
into our proposed 3D deep residual network to extract higher-
level features and carry out the classification procedure. In the
following two sections, we will introduce the pipeline in detail.
processing pipeline.
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FIGURE 1 | MRI data processing pipeline.

Data Preprocessing
Space Conversion
The MRI data are acquired by tomography. It always takes
a long time to complete the acquisition of MR images from
a patient, and the patient will inevitably move during such a
long acquisition procedure. These collected raw tomographic
MRI data may not be mapped one by one when aligned
and cannot be connected between different slices for effective
analysis. Thus, we first process the MRI data into the same
data coordination to map different slice layers into standard
space. In this paper, we use SPM software and MRIcro software
in Matlab toolkit to process these raw MR image data. The
specific steps include format conversion, slice timing, head
movement realignment, image matching, brain segmentation,
spatial standardization, and so forth.

Brain Separation Using FSL-BET
Traditional sMRI data contain the total brain scanning data
including the skull and other non-brain parts, which is
meaningless for convolutional networks to extract features. In
this case, the skull and non-brain parts act as random noise,
and we need to separate them from brain data. In the specific
preprocessing process, we used FSL-BET tool to extract the brain
structure. We set the fractional intensity threshold to 0.3 and the
vertical gradient in fractional intensity threshold to 0.2. The skull
separation processing result diagram is shown in Figure 2.

Brain Region of Interest Segmentation
We transform the DICOM FLAIR image into mat format
in MATLAB with the shape of l × w × d × c equaling

FIGURE 2 | Top view of MR image: the left one is before separation; the right
one after separation.

to 256 × 256 × 66 × 1, where l, w, d, and c represent
the length, width, depth, and color channels of the image,
respectively. Considering that there are still lots of meaningless
zeros surrounding the brain region, we define the nonzero brain
region as our region of interest (ROI) and use contour finding
algorithm to find the maximum ROI part in all slices of samples.
We then cut the brain ROI into the size of 159 × 141 × 66.
By cutting the ROI, we can focus more on the useful brain
region. We can also effectively reduce the number of convolution
network parameters, which can speed up the training process as
well as reduce the risk of overfitting.

Image Smoothing
Noise cannot be completely avoided under any circumstances,
and it is similar for medical images. The main noise sources
of MR images are thermal/electrical noise and random noise.
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The most common preprocessing method is to filter the image.
In this paper, we use smoothing method in SPM software. We
use Gaussian filtered convolution kernel function to convolve
the spatial domain of the MR image, so as to remove the high-
frequency noise part of the image, leaving the corresponding
low-frequency blood oxygen level and other signals in the MR
image. Through image smoothing, differential errors in the
signal caused by the image capacity and structure of different
subjects are eliminated.

Data Augmentation
Because the collection of MR images is cumbersome and involves
medical ethics issues, the total number of samples in our
experiment is 242 and need to be separated into train, validation,
and test datasets during model training. The features learned
by the model may not have extensiveness and may have serious
overfitting problem. In order to solve such problems, this paper
refers to the method of data augmentation, which is commonly
used for natural images, and it adopts specific-augmentation
method for the T2-weighted FLAIR MRI data in this paper. In the
data preprocessing process of DL, traditional data augmentation
methods mainly aim at the samples of two-dimensional (2D)
natural images may have some jitter, noise, and other deviations
during the acquisition process. In order to standardize the image,
they perform geometric transformation such as translation, flip,
rotation, and other augmented transformation. As mentioned
above, patients’ head may have slightly shift or rotation in the
data acquisition process. Thus, in our experiment, image panning
and slight rotation augmentation method are used to augment
samples in the training set.

Convolutional Neural Networks
Medical images are different from traditional natural images
in terms of data dimensions and data representation. With the
continuous improvement of medical image collection methods
and data storage capabilities, the complexity of medical images
at the professional level is also increasing. Previously, medical
images could only be used as an auxiliary tool for the subjective
decision of doctors. Under current situation of increasing density
of medical image data, doctors’ experience and ability to judge
medical images are difficult to keep up with the pace of image
development. However, diagnosis is still based on a traditional
knowledge system nowadays.

These advances in medical image data collection have not
been applied to clinical diagnosis well, and there is redundancy
in medical resources. Thus, it is in great demand to develop
new automated clinical diagnosis methods. Previously, a solution
to this phenomenon was to use ML to perform prediction,
segmentation, diagnosis, and so forth, to realize automated
diagnosis process. However, the learning capabilities and models
of traditional ML methods are often insufficient to handle such a
large number of medical images and high-dimensional data. With
the improvement of DL (Lecun et al., 2015) and CNN (Lawrence
et al., 1997) and the continuous innovation of computer
computing capabilities, a combination of high-performance
computers and DL methods can be used to learn and process

large-scale medical image data extracted from medical image data
and inherent higher-order features of the images.

Network Structure
In natural image processing, CNN generally use 2D kernels to
implement feature extraction because natural images are mostly
2D. However, MR images are continuous between different slices
from the top to bottom. Given that we do not know the exact
lesion area of SVCI disease, we use combination of 3 × 3 × 3
and 7× 7× 7 three-dimensional convolutional kernels instead of
using traditional 2D convolutional kernels to extract 3D features.

Our network uses residual neural network (ResNet)-18 (He
et al., 2016) as backbone, which has the best classification effect
in 2D natural images and change the structure of the convolution
kernel in the model into 3D convolutional kernels so that it can
be used for the classification of 3D MR images.

Considering the high density of MRI data in this experiment,
our network has a larger number of parameters and a smaller
sample size to train this model, which makes it difficult for
convergence during the training process. We are inspired by
the attention mechanism (Vaswani et al., 2017; Jin et al., 2019)
and propose an end-to-end attention-based 3D ResNet model
for classification of different subtypes of SVCI on the basis of
T2-weighted FLAIR MR images.

Attention model in DL simulates the human brain. When
a person is observing a picture, although his or her receptive
field can see the entire area of the image, his or her attention
to the entire image is not balanced. There is a certain weight to
distinguish different regions in human vision, and the effective
area that the eyes focus on is actually a very small part. In
our experiment, high-density MR image will produce more
parameters in neural network. If a model wants to memorize
more information of the input image, it has to increase the
complexity of the network, which will produce more parameters.
This will be a huge burden to our compute capability. Thus,
in this paper, we import attention module into our network to
focus more on the important region to classify different subtypes
of SVCI. In this paper, we use a 3 × 3 × 3 convolution filters
activated by ReLU as a subway after convolution feature maps Fi,c
to produce our attention mask Ai. We then multiply attention
mask Ai to previous feature maps Fi,c, so that we can get the
weighted attention map Mic by the following equation:

Mic = Ai ∗ Fic

The attention mask Ai can be trained and optimized through
model training to focus more on the significant parts. Our
proposed network structure is shown in Figure 3. The network
is composed of convolutional layers, ResNet blocks, attention
blocks, and output classifier. For example, the Conv3D thirty-
two 3 × 3 × 3 strides = 1 layer means 32 convolution filters
with the size of 3 × 3 × 3 and strides equal to 1. Different from
2D convolution filters, these filters can receive data from three
adjacent slices and can extract features between slices. We fed
our preprocessed data with resolution of 159 × 141 × 66 × 1
into the network and go through eight residual blocks. As the
layers go deeper, the numbers of filters will increase from 32 to
256, and the features extracted will be more abstract and complex.
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FIGURE 3 | Network structure.

Correspondingly, the last layers in ResBlock have parameter S
set to 2, which means that we set the strides to 2 × 2 × 2
and downsample the feature maps size by two times. Then
the last output feature maps will be average-pooled and fed
into the classifier.

Experiment Settings
We implement the experiment on two NVIDIA GTX 1080
Ti GPUs. We applied the k-fold cross-validation method in
training. The total dataset are divided into five equal shares; and
for each training process, we use four shares as training and
validation sets and one share as the testing set. The final test
accuracy and other metrics are calculated by the average of five
experiments. The experiment is based on Keras using TensorFlow
as backend. Limited by the computation ability, our batch size
is set to 4. In our network, preprocessed data with the shape
of 159 × 141 × 66 × 1 are fed and are filtered by gradually
increasing filters to extract high-level features. The features are
finally fed into a fully connected (FC) layer activated by softmax
to get the final classification output. We use cross-entropy loss
function and adaptive gradient algorithm (Adagrad) optimizer to
help our model minimize the loss function. Cross-entropy loss
function is shown as follows:

Llog(Y, P) = − log Pr(Y|P)

= −
1
N

N−1∑
i=1

K−1∑
k=0

(yik) log(pik)

where multivariate classification k is the total number of
categories, yik equals to 1 only if the label of the i-th sample
is in category k, the true category label of N samples is an
N × k matrix Y, and the probability of each sample in N samples
predicted by the classifier is an N × k matrix P.

The updated formula of Adagrad is shown below:

θt+1,i = θt,i −
η√

Gt,ii + ε

where g is the gratitude at time θi; in our experiment, we set
η as 0.01. Adagrad can do larger updates for low-frequency
parameters and smaller updates for high-frequency and can solve
the problem that different parameters cannot be updated to
different scales according to the importance of the parameters.

RESULTS

In our experiment, we train the proposed attention-based 3D
ResNet for 50 epochs. Because there are no relative pretrained
models in our classification of different subtypes of SVCI
with FLAIR MR image, we train our model with random
initialization. With proper hyper-parameter tuning, we approach
the best performance on the training set and validation set as
shown in Figure 4.

Because there are no such methods for the classification of
different subtypes of SVCI, our proposed model has significant
clinical value. The accuracy of our proposed model on the testing
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FIGURE 4 | Loss curve and accuracy curve of our model.

set reaches 93.8% with robustness. Thus, our proposed method
can effectively assist doctors in early detailed classification
diagnosis, so as to carry out targeted treatment in time. In
addition to test accuracy, we also consider three other indexes
for comparison. We introduce recall (R), precision (P), and F1
score. Precision is the ratio of true positive samples to predicted
positive samples, and recall is ratio of true positive samples to
actual positive samples. These two indexes can be combined to F1
score as a thorough evaluation of the classification. The formulas
of these three indexes are as shown below:

R =
TP

TP + FP

P =
TP

TP + FN

2
F1
=

1
R
+

1
P

where TP, FP, FN, and TN represent positive samples classified
to positive, negative samples classified to positive, positive
samples classified to negative, and negative samples classified
to negative, respectively. Because our experiment is a three-
category classification problem, we consider one category as
positive samples and the other two as negative samples each time.

The final performance of the model is shown in Table 1:

TABLE 1 | Three other index performance of proposed method under three
subtypes of subcortical vascular cognitive impairment.

Subtypes Recall/% Precision/% F1 score/%

A-MCI 93.2 91.9 92.6

NA-MCI 94.3 94.3 94.3

NCI 93.8 94.7 94.2

DISCUSSION

Using 3D convolutional kernels, we successfully trained an
efficient CNN model that could accurately classify different
subtypes of VaMCI (a-MCI and na-MCI) as well as NCI by
extracting 3D features from raw T2-weighted FLAIR brain scans.
The accuracy of the training set and the testing set reached
98.9 and 97.3% after 50 epochs, respectively. It furthered our
previous work of classifying different cognitive performances in
SIVD, which is also based on single FLAIR sequence (Yao et al.,
2019). These two studies together proved that the method of 3D
CNN combined with high-resolution sMRI was worth applying
in clinical evaluation of small vessel disease in the elderly. FLAIR
sequence was used in our study because it could maximally reflect
the imaging features of SVCI such as lacunar infarct and WMH,
and the result finally verified the validity of the sequence.

Nowadays, neuroimaging examination has become an
indispensable part of clinical evaluation in SVCI, especially
MRI with a variety of advanced sequences such as DTI,
susceptibility-weighted imaging (SWI), functional MRI, and
perfusion-weighted imaging. However, as a result of the
imbalance of patients’ benefits from the expensive and time-
consuming MRI examination, there is still a lack of methods
worthy of promotion for the accurate diagnosis and evaluation
of patients. DL offered us an opportunity to obtain high clinical
diagnostic accuracy with even one single sequence, for it can take
full advantage of spatial contextual information in MRI volumes
to extract more representative high-level feathers. It could greatly
shorten the MRI examination time, reduce the patient’s stress
caused by the long-time examination, avoid the use of a large
number of expensive advanced MRI sequences, and simplify the
complex and time-consuming postprocessing. It is important
to note that in order to get high-quality image information,
we collected high-resolution FLAIR images, which cost 6 min
30 s. Whether thick-layer images as a clinical diagnosis most
often used could achieve similar accuracy needs further research.
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Considering that high-resolution MR imaging data consist
of numerous slices that have a continuous spatial positional
relationship, we applied a 3D-based CNN model rather than a
2D-based network, which has been proved to be more efficient
in our previous study (Yao et al., 2019). Finally, we got a high
accuracy of subclassifying VaMCI into a-MCI and na-MCI.

The subclassification of MCI has clinical significance, because
different MCI subtypes may subtend different etiologies. a-MCI
may indicate a degenerative etiology and has higher dementia
risks than has na-MCI, whereas na-MCI may indicate a vascular
etiology that needs more treatment to improve vascular function
and cerebral perfusion (Liu et al., 2018, 2019; Yang et al.,
2020b). On the basis of single high-resolution FLAIR images,
we proved that 3D-CNN can classify not only different cognitive
impairment stages in SIVD but also subtypes in MCI stage. This
method can greatly improve the efficiency and accuracy of clinical
diagnosis of SVCI and is beneficial to clinical targeted treatment
at the early stage of cognitive impairment.

Although we have achieved an appealing performance with
a high accuracy in this study, there are still several limitations.
First, this is a retrospective study with a relatively small
sample size. Large-scale multicenter and perspective studies are
needed to fully assess the generalization ability of the model.
Second, more detailed clinical groups such as single domain
and multidomain cognitive groups with or without amnesia
based on sufficient sample size can further test this 3D-CNN
model and enrich its clinical application. Third, the clinical or
pathological interpretation of the association between the high-
level features and the cognitive performances remain challenging.
Further studies are needed to establish a rationale to explain
the correlation between deep imaging features and cognitive
performances, which might hint at the underlying pathological
mechanisms of SVCI.

CONCLUSION

In this paper, we proposed an end-to-end attention-based 3D
ResNet model for classification of different subtypes of SVCI
with T2-weighted FLAIR MR images. End to end means doctors
do not need to perform complicated data preprocessing; they
can simply input the single MRI scanning image of patients
to the model and get the output of SVCI classification. Then

they can further get the diagnostic decision results according
to the auxiliary diagnosis results of our proposed methods. Our
proposed method provides a convenient and effective way to
assist doctors in the diagnosis and early treatment.
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Up to 40% of very preterm infants (≤32 weeks’ gestational age) were identified with
a cognitive deficit at 2 years of age. Yet, accurate clinical diagnosis of cognitive
deficit cannot be made until early childhood around 3–5 years of age. Recently,
brain structural connectome that was constructed by advanced diffusion tensor
imaging (DTI) technique has been playing an important role in understanding human
cognitive functions. However, available annotated neuroimaging datasets with clinical
and outcome information are usually limited and expensive to enlarge in the very preterm
infants’ studies. These challenges hinder the development of neonatal prognostic
tools for early prediction of cognitive deficit in very preterm infants. In this study, we
considered the brain structural connectome as a 2D image and applied established
deep convolutional neural networks to learn the spatial and topological information
of the brain connectome. Furthermore, the transfer learning technique was utilized
to mitigate the issue of insufficient training data. As such, we developed a transfer
learning enhanced convolutional neural network (TL-CNN) model for early prediction of
cognitive assessment at 2 years of age in very preterm infants using brain structural
connectome. A total of 110 very preterm infants were enrolled in this work. Brain
structural connectome was constructed using DTI images scanned at term-equivalent
age. Bayley III cognitive assessments were conducted at 2 years of corrected age.
We applied the proposed model to both cognitive deficit classification and continuous
cognitive score prediction tasks. The results demonstrated that TL-CNN achieved
improved performance compared to multiple peer models. Finally, we identified the
brain regions most discriminative to the cognitive deficit. The results suggest that deep
learning models may facilitate early prediction of later neurodevelopmental outcomes in
very preterm infants at term-equivalent age.

Keywords: convolutional neural network, deep learning, cognitive deficit, transfer learning, structural
connectome
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INTRODUCTION

A high prevalence of long-term cognitive deficit is well-
established in very preterm infants (≤32 weeks’ gestational age),
with 35–40% of this population identified with a deficit at
2 years of age (Blencowe et al., 2012; Hamilton et al., 2016). This
neurological deficit may affect the infant throughout life, thereby
resulting in difficulties in academic skills and building social
relationships. Yet, no robust prognostic screening technique is
available following neonatal intensive care stay. Typically, an
accurate diagnosis of cognitive deficit cannot be made until early
childhood around 3–5 years of age. This delayed diagnosis misses
the optimal neuroplasticity period of brain development in the
first 3 years of life and potentially undermines the effectiveness of
early interventions. As such, reproducible approaches that serve
as neonatal prognostic tools are needed to fill the gap in our
knowledge about the early prediction of cognitive deficit in very
preterm infants.

The human brain is a highly interconnected network with
coordinated information transfer among individual brain regions
(Sporns et al., 2005). Advanced non-invasive neuroimaging
MRI techniques have been applied to construct such network
representation of the brain, referred to as the brain connectome
(Bullmore and Sporns, 2009). Theoretically, a brain connectome
is a graph, where vertices represent a set of brain regions of
interest (ROIs) and edges represent brain connectivity between
ROIs. This brain connectome perspective shifted traditional
research that focuses on isolated ROIs toward research on a
systematic mechanism incorporating the whole brain. Brain
connectome data have very high dimensionality and are
intrinsically complex, creating difficulties in designing feature
extraction methods and building analysis models. Deep learning
has shown great promise in deciphering complex and high
dimensional data (e.g., images, signals, and videos) to achieve
superior performance in numerous fields, including computer
vision, speech recognition, and natural language processing
(LeCun et al., 2015). Indeed, numerous studies have applied
deep learning approaches to brain connectome for various
neurological disorders (Wee et al., 2012; Barkhof et al., 2014; He
et al., 2018; Heinsfeld et al., 2018; Li et al., 2018; Sen et al., 2018;
Chen et al., 2019).

Brain connectome plays an important role in understanding
human cognitive functions (Nagy et al., 2004; Park and Friston,
2013; Petersen and Sporns, 2015). Recent research demonstrated
that deep learning models were capable of predicting later
cognitive deficits for neonates using brain structural connectome
that was constructed by diffusion tensor imaging (DTI) data
(Kawahara et al., 2017; Girault et al., 2019). One method
to apply deep learning models to brain connectome data is
to ignore the topology of the connectome and reshape the
adjacency matrix into a vector of features as input (Munsell
et al., 2015; Girault et al., 2019). However, the spatial locality
(i.e., 2D grid regions of an adjacency matrix) and topological
locality information (i.e., rows/columns of an adjacency matrix)
in the brain connectome are not utilized, thereby resulting in
information loss and potentially compromising the performance
of prediction models. Another approach is to apply specialized

topological row and column filters on the adjacency matrix of the
brain structural connectome to learn the topological relationship
between edges (Kawahara et al., 2017). This approach, however,
only emphasizes topological locality and discards the spatial
locality information (e.g., physically nearby brain ROIs and
associated edges) that are intrinsic to any brain ROI parcellation.
Since the brain structural connectome is a modular graph
that contains clusters of vertices and edges, its adjacency
matrix contains hierarchically segregated modules (Park and
Friston, 2013). Those topological filters may extract redundant
information within connectome modules and may not be efficient
for capturing spatial locality. In this work, we consider the
adjacency matrix of brain structural connectome as a 2D image
and propose to apply established deep convolutional neural
networks (CNNs) to learn the spatial and topological information
of the brain connectome.

Although deep CNN models have shown promising results
on image classification, those models usually require large
datasets for model training. In the studies of very preterm
infants, available annotated neuroimaging datasets with clinical
and outcome information are usually limited and expensive to
enlarge, preventing deep CNN to be directly utilized. Transfer
learning (TL) may serve as a potential solution to this challenge.
Briefly, TL reuses a pre-trained model designed for one task as
a starting point for another related task (Bengio, 2012; Samala
et al., 2016, 2018; Shin et al., 2016; Azizi et al., 2017; Kooi et al.,
2017; Zheng et al., 2018; Bizzego et al., 2019). Raina et al. (2007)
proposed a self-taught learning framework that takes unlabeled
images to improve the classification performance of their target
classification task. Cheng et al. (2019) transferred image features
learned from the early stages of Alzheimer’s disease (AD) to
improve the prediction of AD diagnosis. Gao et al. (2019)
reused pre-trained models based on a large-scale natural image
dataset and re-trained a deep learning model for classification of
brain activity heatmaps derived from task-based functional MRI
data. Recently, we applied the TL technique to a deep neural
network (DNN) model for cognitive deficit prediction using
brain functional connectome data (He et al., 2018). The DNN
model was pre-trained using a large number of brain connectome
data in an unsupervised fashion and then fine-tuned with brain
connectome data from very preterm infants.

In this study, we proposed a TL-enhanced deep CNN (TL-
CNN) model for early prediction of cognitive deficit at 2 years
of age in very preterm infants using brain structural connectome
derived from at term DTI data. Specifically, the proposed model
contains two modules, a very deep CNN (which was trained
with supervision using ∼1.2 million images from the ImageNet
database) (Deng et al., 2009) and a “shallow” CNN. With the
fixed weighted pre-trained very deep CNN, we only need to train
and fine-tune the “shallow” CNN using available very preterm
infants’ brain connectome data and associated risks of cognitive
deficit. For individual very preterm infants, we constructed brain
structural connectome using mean fractional anisotropy from
their DTI data collected at term-equivalent age. The proposed
model is able to evaluate at term whether or not a very preterm
infant will have a high risk to develop later cognitive deficits as
well as to predict this infant’s cognitive assessment [standardized
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Bayley Scales of Infant and Toddler Development, Third Edition
(Bayley III) cognitive score] at 2 years of age.

MATERIALS AND METHODS

Subjects
The study includes a cohort of 110 very preterm infants, born
at 31 weeks gestational age or less from four academic and
non-academic centers in Columbus, Ohio, including Nationwide
Children’s Hospital (NCH), Ohio State University Medical
Center, Riverside Hospital, and Mount Carmel St. Ann’s Hospital.
Infants were enrolled between December 2014 and April 2016. All
subjects with any congenital or chromosomal anomalies affecting
the central nervous system were excluded. Infants with cyanotic
congenital heart disease were also excluded. The study was
approved by the Institutional Review Board of NCH. Approval at
the other hospitals was obtained through reciprocity agreements
that were in place with NCH. Written informed consent was
obtained from parents or legal guardians of all infants.

MRI and Cognitive Outcome Acquisition
Very preterm infants in the cohort were scanned on a 3T
scanner (Skyra; Siemens Healthcare) at NCH using a 32-channel
phased-array head coil. The imaging was performed after the
infant was fed and in natural sleep without sedation. Natus
Mini Muffs (Natus Medical Inc., Scan Carlos, CA, United States)
and InstaPuffy Silicone Earplugs (E.A.R Inc., Boulder, CO,
United States) were employed for MRI noise reduction. DTI
was acquired with echo-planar imaging using the following
parameters (b800/b2000): repetition time = 6972/5073 ms; echo
time = 88 ms; field of view = 160 mm × 160 mm; in-plane
resolution = 2 mm × 2 mm; number of slices = 76; slice
thickness = 1 mm; 64 non-colinear diffusion-weighted directions;
for all images, one volume has no diffusion sensitization;
sensitivity encoding factor equates to 2. High-resolution T2-
weighted anatomical images were acquired with rapid spin-echo
sequence: TR/TE = 7.3/3.4 ms, flip angle = 11◦, voxel dimensions
1.0 mm× 1.0 mm× 1.0 mm, scan time = 2:47 min.

All preterm infants received (Bayley-III) test at 2 years
corrected age while blinded to DTI data. The Bayley-III cognitive
scores are on a scale of 40–160, with a mean of 100 and a standard
deviation of 15.

DTI Data Preprocessing
DTI data were preprocessed using FMRIB’s Diffusion Toolbox
(in the FMRIB Software Library, FSL, Oxford, United Kingdom)
following our previously established pipeline (Yuan et al.,
2015). Specifically, head motion and eddy current artifacts were
mitigated by aligning all diffusion images to the b0 image
via an affine transformation. Diffusion tensor reconstruction
and brain fiber tracking were performed in the subject’s native
space using Diffusion Toolkit/TrackVis (Hess et al., 2006; Wang
et al., 2007). Diffusion tensor calculation was based on a
linear least-square fitting algorithm, and brain fiber tracking
was based on a deterministic tracking algorithm (Wang et al.,
2007). The fiber tracking uses an angular threshold of 35◦.

The fiber length threshold was set to 5 mm. The obtained
fractional anisotropy maps were harmonized using a batch-
effect correction algorithm ComBat (Fortin et al., 2017). We
use a neonatal Automated Anatomical Labeling (AAL) brain
atlas proposed by Shi et al. (2011). For each subject, the
high-resolution T2-weighted images were first registered to
the b0 image in the subject’s native space and then to the
neonatal template space to obtain a transformation matrix. Next,
the inverse transformation matrix was used to transform the
parcellated ROIs from the template space back to the subject’s
native space (b0).

Whole-Brain Structural Connectome
Construction
A brain connectome is a graph G = (A, �), where vertices
� represent a set of ROIs, and A is an adjacency matrix of
edges that represent brain connectivity between a pair of ROIs.
Ninety ROIs were defined based on a neonatal automated labeling
atlas (Shi et al., 2011). The weights of structural connectivity
between each pair of ROIs were calculated as the mean FA of all
voxels along the WM tract constructed between the two ROIs,
resulting in a 90 × 90 symmetric adjacency matrix. This was
performed using the UCLA Multimodal Connectivity Package
(Bassett et al., 2011).

Overview of TL-Enhanced Deep CNN
The proposed model contains two modules, a very deep CNN
(which was trained with supervision using ∼1.2 million images
from the ImageNet database) (Deng et al., 2009) and a “shallow”
CNN. In Figure 1, we display a two-stage model training
procedure in the top two blocks and picture a clinical application
in the bottom block, where the proposed model can aid clinicians
in the prediction of cognitive deficit using brain structural
connectome data. The model training procedure contains two
stages: (1) pre-training in the source domain and (2) fine-tuning
in the target domain. Specifically, in stage 1, we first pre-trained
a deep CNN to learn the basic transferrable image representation
(e.g., edges, shapes, etc.) using a large number of color images and
associated image labels (source domain). In stage 2, we reused the
pre-trained model from stage 1 and fine-tuned the model in the
target domain with brain structural connectome and associated
cognition deficit outcomes.

Pre-training in the Source Domain
In the source domain, we trained the proposed model to learn
transferrable image representation (e.g., edges, shape, and blobs)
from diverse objects (e.g., animals, vehicles, human, and natural
environments). We defined the task in the source domain
as an image classification task. Adjacency matrices of brain
connectome are different from those semantic images (dogs,
cats, etc.); however, the low-level imaging features (for example
straight and curved lines that construct images) are universal
to most image analysis tasks. Therefore, the idea behind TL
is to treat the pre-trained model as a feature extractor to
extract low-level imaging features from the adjacency matrix of
a given structural connectome. In this study, we started with
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FIGURE 1 | Schematic diagram of the proposed transfer learning-enhanced deep CNN (TL-CNN) model to predict cognitive deficits at 2 years corrected age using
brain structural connectome data obtained at term in very preterm infants. The top two blocks demonstrate a two-stage model training procedure, and the bottom
block illustrates a potential clinical computer-aided diagnosis application after model training.

the VGG-Nets (Simonyan and Zisserman, 2014) to develop our
deep CNN model. VGG-Nets are a set of very deep CNN that
were initially proposed by Visual Geometry Group in ImageNet
Large Scale Visual Recognition Competition (ILSVRC) 2014.
They have been applied to other image analysis applications
(Choi et al., 2017; Zhen et al., 2017; Wang et al., 2018). We
adopted the architecture of VGG19, one of VGG-Nets models
for our study. Briefly, VGG19 is a very deep CNN that consists
of 19 trainable layers, including 16 convolutional layers and
3 fully connected (FC) layers designed for classifying 1000
object categories. For each convolutional layer, the VGG19
uses small convolutional filters (3 × 3) along with a rectified
linear unit activation function. We obtained a VGG19 model
that was pre-trained using ∼1.2 million color images from
the ImageNet database. We then dissembled the model and
reserved the weights of the convolutional and pooling layers
(Figure 1, blue box).

Fine-Tuning in the Target Domain
The task in the target domain is to predict the cognitive outcome
at 2 years corrected age using brain structural connectome
obtained at term-equivalent age. Since the deep CNN in the
source domain was pre-trained to recognize transferrable image

representation, it would automatically extract image features
from the brain structural connectome. The fine-tuning in the
target domain is essential to discover discriminative features
among generic features and link them to the target task (i.e.,
cognitive development). We connected a “shallow” CNN (i.e.,
2 convolutional layers and 2 FC layers) to the pre-trained fixed
weighted deep CNN from the first stage. Finally, an output layer
was attached for classification or regression tasks (Figure 1,
green box). We used brain structural connectome and follow-up
cognitive outcomes to fine-tune the deep CNN model. Given N
training samples (x1, x2, . . . , xi, . . . , xN−1, xN) from the target
cohort as well as their labels (y1, y2, . . . , yi, . . . , yN−1, yN),
where xi is the i-th input sample (i.e., brain structural
connectome) and yi is the corresponding label, we defined the
cross-entropy loss function as:

J(W, b) = −
1
N

N∑
i=1

yi log
(
p(xi)

)
+
(
1− yi

)
log

(
1− p(xi)

)
where p(xi) is the predicted probability of xi, W is the weight
matrix, and b denotes the bias of the model. In addition to
the dichotomized prediction (i.e., classification), we also trained
our model to perform continuous cognitive score prediction
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(i.e., regression). We applied a linear unit at the end of the
model and optimized a weighted mean absolute error (MAE) loss
function as follows:

L(W, b) =
1
N

N∑
i=1

∣∣(yi − ŷi (W, b)
)∣∣

where ŷi (W, b) is the output of the linear unit of the model,
i.e., the predicted score. Similar to the previous cross-entropy
loss function, b represents the bias, and W is the weight of the
model. The proposed model was optimized using Adam (Kingma
and Ba, 2014), a backpropagation gradient descent algorithm.
Adam computes adaptive learning rates for weight updating
based on the average of recent magnitudes of the gradients,
improving computational efficiency. The initial learning rate is
set to 0.001. We applied 50 epochs to train the TL-CNN model.
The detailed architecture of the TL-CNN model is elaborated in
Supplementary Figure 1.

Alternative Model Comparison
Linear/Logistic Regression Model
In the linear regression model, we applied mean squared
error as the loss function to minimize the residual sum of
error between the true score and the score predicted by
the linear approximation. For the logistic regression (LR)
model, we adopted cross-entropy as the cost function. We
used L2 regularization as the penalty term, and we grid
searched the regularization parameters with empirical values
(10−3, 10−2, . . . , 101).

Support Vector Machine
We tested the support vector machine (SVM) model with three
different kernels: linear, polynomial, and radial basis function
(RBF), where the SVM with linear kernel achieved the best
prediction performance. Specifically, for all SVM models, we
used L2 regularization as the penalty. We grid searched the
regularization parameters with empirical values (10−3, 10−2,. . .,
101) and the soft margin parameter C with empirical values (2−3,
2−2,. . ., 23) to optimize the prediction performance. For the
polynomial and RBF SVM model, we set the scale gamma kernel
coefficient as 1.

Deep Neural Network
The DNN model has an input layer, two FC layers with 256
and 64 neurons, and an output layer. The rectifier linear unit as
activation function was used in each neuron. We attached a batch
normalization layer and a dropout layer after each FC layer. In
the output layer, we used a SoftMax classifier for classification
and a linear classifier for regression. The DNN was trained in
a supervised fashion and tested using the labeled subjects from
the target domain.

TL-DNN
The TL-DNN model has the same structure as the DNN
model. Instead of training from scratch, we pre-trained the TL-
DNN model in an unsupervised fashion using 257 full-termed
neonatal subjects from the source domain. Then, we fine-tuned

the TL-DNN with supervision using the labeled subjects from
the target domain.

Convolutional Neural Network
The CNN model has two convolutional layers, where each has
256 neurons with a 3 × 3 convolutional filter, and two FC layers,
where each layer contains 256 and 64 neurons. A rectified linear
unit was used as an activation function. A batch normalization
and a dropout layer are attached after each FC layer. We applied
a SoftMax classifier for the classification task and linear function
for the regression task. The architecture design of this model
represents a standard “shallow” CNN model without TL strategy.
The CNN model was trained and tested using the subjects from
the target domain.

Data Augmentation
The number of very preterm infants in the study cohort is
relatively small and imbalanced (i.e., only a small portion of the
cohort are at high risk for cognitive deficit). We utilized the
synthetic minority over-sampling technique (SMOTE) (Chawla
et al., 2002) to balance and augment the training set. Specifically,
the training subjects were divided into five bins according to
their scores (<70, 70–80, 80–90, 90–100, and >100). Given a
bin, a sample was randomly chosen. Then, k nearest neighbors
for the selected sample were searched. We set k = 5 in this work.
A synthetic sample xsyn is calculated using the randomly selected
sample and its associated neighbors x1, x2, x3, x4, x5, x6 by: xsyn =
w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6, where w1, w2, w3,
w4, w5, and w6 are random numbers and w1 + w2 + w3 + w4 +

w5 + w6 = 1. Similarly, the label ysyn for xsyn was calculated in the
same way. The synthetic sample was placed in the given bin. This
process is repeated until the number of training subjects reaches
10 times of the original training dataset.

Model Validation
To evaluate our proposed model, we utilized fivefold cross-
validation for both classification and regression tasks. Specifically,
we randomly divided the dataset into five portions. While
one portion was used for testing, the remaining four portions
were used as training data (70% for model training and
30% for model validation). This process was repeated five
times until all portions of the dataset were treated as testing
data. We evaluated the performance of risk prediction using
accuracy, sensitivity, specificity, and the area under the receiver
operating characteristic curve (AUC) across the five iterations.
For cognitive score regression, we used Pearson’s correlation
coefficient, MAE, and standard deviation of absolute error (STD
of AE). The fivefold cross-validation experiment was repeated 50
times to reduce the variability and the 95% confidence interval
was reported. All the experiments are performed on a Windows
10 workstation with Intel Xeon Silver 4116 CPU @ 2.10 GHz,
128 GB RAM, and dual GTX 1080ti GPUs.

Most Discriminative Features Detection
In addition to the prediction of cognitive deficit, we seek to
identify which brain regions contributed most to discriminate
cognitive deficit. We used gradient-weighted class activation
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mapping (Grad-CAM) to highlight discriminative edges in the
brain structural connectome map (Selvaraju et al., 2017). The
Grad-CAM produces a coarse localization map highlighting
predictive regions in the adjacency matrix by using gradient
information of the last convolutional layer of the TL-CNN.

RESULTS

Subjects
After excluding the data with large motion artifacts, we had a total
of 80 very preterm infants out of 110 subjects in the final analysis.
The 80 subjects had a mean (SD) gestational age at birth of 28.0
(2.4) weeks and postmenstrual age at the scan of 40.4 (0.6) weeks.
There are 41 (51.3%) male subjects. The mean (SD) birth weight
of the cohort was 1091.5 (385.3) g. We considered the infants with
Bayley III cognitive scores <90 as a high-risk group (31 subjects)
and with Bayley III cognitive scores ≥90 as a low-risk group
(49 subjects) to develop later moderate/severe cognitive deficits
(Spencer-Smith et al., 2015).

Performance on Risk Stratification of
Cognitive Deficits
We compared the proposed TL-CNN model with LR, linear
SVM, and TL-DNN in the identification of very preterm infants
at high-risk for moderate/severe cognitive deficits (Table 1).
The receiver operating characteristic curves of various machine
learning models are displayed in Figure 2. Our proposed TL-
CNN model achieved the best prediction performance among the
compared models, with 74.5% on the balanced accuracy, 78.7%
on specificity, 70.2% on sensitivity, and 0.75 on AUC. The CNN
model achieved the lowest balanced accuracy of 67.3%, while
DNN had the lowest AUC of 0.59. We also noted that the linear
SVM model had better AUC than both DNN and CNN.

Without the TL strategy, the CNN model achieved better
accuracy and AUC than DNN. A similar trend was observed
on CNN and DNN models with the TL strategy. The TL-DNN
achieved 71.6% on the balanced accuracy, 76.8% on specificity,
66.4% on sensitivity, and 0.72 on AUC. The proposed TL-CNN
model significantly improved the cognitive deficit prediction
over the TL-DNN model by 2.9% in accuracy (p = 0.005) and
3.0% in AUC (p = 0.008). This demonstrated the advantage
of treating brain structural connectome as images instead of
vectorized weights.

Transfer learning-enhanced models (i.e., TL-DNN and TL-
CNN) had significantly better prediction performance than
the models without TL (i.e., DNN and CNN). TL strategy
significantly improved prediction accuracy and AUC of CNN
by 7.2% (p < 0.001) and 11.6% (p < 0.001). Similarly, TL-
DNN increased prediction accuracy and AUC of DNN by 2.9%
(p = 0.002) and 3.5% (p < 0.001). These results illustrated the
effectiveness of the TL approach in deep learning models on the
prediction of cognitive deficit.

Performance on the Prediction of
Cognitive Scores
In the regression task, the proposed TL-CNN model had the
highest Pearson’s correlation coefficient (r = 0.47, p < 0.001)
between the predicted and actual cognitive scores compared to
linear regression (r = 0.29, p < 0.001), support vector regression
(SVR) (r = 0.32, p < 0.001), and TL-DNN (r = 0.37, p < 0.001)
models (Table 2). TL-CNN had the lowest mean STD of AE of 9.5.

Discriminative Brain Structural
Connectome
To reveal which brain regions contributed to the prediction of
cognitive deficits, we identified the predictive brain structural
connections using the Grad-CAM method (Selvaraju et al.,
2017). Table 3 displays the top 15 predictive brain structural
connections. We further demonstrated the identified brain
connections in a circos plot (Figure 3). The top three
discriminative structural connections are located within frontal
lobes, limbic lobes, and the subcortical structure. We also plotted
those discriminative connections on a brain atlas region using
BrainNet Viewer (Xia et al., 2013; Supplementary Figure 2).

DISCUSSION

Early diagnosis and prediction of cognitive deficit for very
preterm infants remain very challenging yet critical for early
intervention. In this study, we proposed a TL-CNN model using
brain structural connectome at term-equivalent age to predict
future cognitive outcomes (i.e., standardized Bayley III cognitive
scores). The TL-CNN model achieved promising performance
in both risk classification and score regression tasks. For risk
prediction of cognitive deficit, TL-CNN achieved a balanced

TABLE 1 | Performance of various machine learning models in utilizing the structural connectome at term-equivalent age to predict cognitive deficits at 2 years corrected
age in very preterm infants.

Models Balanced accuracy (%) Specificity (%) Sensitivity (%) AUC

LR 68.3 (67.5, 72.0) 72.3 (71.2, 73.8) 64.4 (62.4, 66.5) 0.65 (0.63, 0.67)

SVM 70.5 (67.7, 71.7) 76.9 (74.8, 78.9) 64.0 (61.8, 66.1) 0.69 (0.67, 0.71)

DNN 68.7 (65.7, 69.5) 75.0 (72.9, 77.1) 62.5 (60.4, 64.5) 0.59 (0.57, 0.61)

CNN 67.3 (66.2, 70.2) 73.7 (71.7, 75.6) 61.0 (59.1, 62.9) 0.64 (0.62, 0.73)

TL-DNN 71.6 (70.7, 73.1) 76.8 (75.8, 77.9) 66.4 (65.0, 67.7) 0.72 (0.70, 0.74)

TL-CNN 74.5 (73.4, 76.0) 78.7 (77.2, 79.8) 70.2 (68.5, 70.7) 0.75 (0.74, 0.76)

Data in brackets are 95% confidence intervals. LR, logistic regression; SVM, support vector machine; TL-DNN, transfer learning enhanced deep neural network; TL-CNN,
transfer learning enhanced convolutional neural network; AUC, area under the receiver operating characteristic curve.

Frontiers in Neuroscience | www.frontiersin.org 6 September 2020 | Volume 14 | Article 85889

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00858 September 16, 2020 Time: 15:16 # 7

Chen et al. Cognitive Prediction Using TL-CNN

FIGURE 2 | Receiver operating characteristic (ROC) curves of different
prediction models using structural brain connectome at term-equivalent age in
predicting cognitive deficits at 2 years corrected age in very preterm infants.
The proposed TL-CNN model achieved the best area under the ROC curve
among compared machine learning models. SVM, support vector machine;
DNN, deep neural network; CNN, convolutional neural network; TL-DNN,
transfer learning enhanced deep neural network; TL-CNN, transfer
learning-enhanced convolutional neural network.

accuracy of 74.5% and an AUC of 0.75. For regression of
cognitive scores, the TL-CNN model had the best Pearson’s
correlation coefficient among multiple machine learning models.
These results demonstrated the feasibility and advantages of
a deep learning model that may facilitate the early diagnosis
and classification of cognitive deficit for very preterm infants at
term-equivalent age.

The proposed TL-CNN model outperformed several peer
machine learning models by using both spatial and topological
locality information embedded in the adjacency matrix of
the brain structural connectome. For those traditional and
fully connected neuron-based DNN, the brain connectome is
flattened to a vector (He et al., 2018; Chen et al., 2019). This
approach discards important spatial and topological locality
information from the connectome. By treating the brain
structural connectome as 2D images, convolutional filters in
CNN can inherently learn the spatial information. In this
study, we adopted a neonatal AAL brain atlas (Shi et al.,
2011). The regions in this atlas are numbered through 1–90
and spatially nearby regions have adjacent numbers. In the
adjacency matrix of structural connectome, the location of the
brain regions follows the original ordering of 1–90; therefore,
brain regions near each other in the structural connectome
are typically near each other in Euclidean/brain space. In this
way, convolutional filters of CNN are able to learn spatial
connectivity information of those “clustered” nearby regions.
Meanwhile, those 2D grid convolutional filters move in both
row and column directions across the whole adjacency matrix
in a single convolutional layer. After a series of consecutive
layers, the deep CNN model can integrate the topological locality

information gradually. Thus, we believe that applying the deep
CNN model on the adjacency matrix provides unique insight to
learn latent spatial and topological locality embedded in the brain
structural connectome. The significantly improved prediction
performance by the proposed TL-CNN supports the rationale of
our study design.

We applied CNN to learn the spatial and topological
information of the structural connectome. In this study, we
constructed the structural connectome based on a neonatal
AAL brain atlas (Shi et al., 2011). The regions in this atlas
are numbered through 1–90 and spatially nearby regions have
adjacent numbers. Specifically, the neonatal AAL atlas arranged
90 brain regions into the following sections: frontal lobe (region:
1–28, 69–70), occipital lobe (region: 43–54), parietal lobe (region:
61–68), central structures (region: 55–60), and temporal lobe
(region: 37–42, 71–90). Therefore, though not strictly speaking,
brain regions near each other in the structural connectome are
typically near each other in Euclidean/brain space. As CNN’s
convolutional filters move across rows and columns of the
structural connectome adjacency matrix in a moving-windows
manner, the model was able to learn topological connectivity
information. We tested the prediction performance with five
different permuted connectome matrices. The TL-CNN achieved
an accuracy of 68.8% (95% CI, 66.9, 70.7), and an AUC of
0.65 (95% CI, 0.63, 0.67), which was slightly lower than the
performance of using original structure connectome matrix. This
indicates that the order of the ROIs in the structural connectome
matrix has an impact on the outcome prediction performance.

Transfer learning technique is essential for studies of very
preterm infants using deep learning models. The big data
revolution has boosted recent advances in deep learning
techniques. Without large training samples, it is very difficult
to train a complex deep learning model from scratch. Indeed,
the linear SVM demonstrated better performance than deep
learning models without the TL strategy in our study. Deep
learning models trained with a small number of samples tend to
be overfitted. Those relatively simple machine learning models
(e.g., SVM) may achieve better performance. Unfortunately,
the availability of annotated large brain imaging datasets with
clinical and outcome information from very preterm infants is
usually very limited, preventing the application of deep learning
models in this research domain. The CNN model is a complex
network consisting of millions of trainable weights that requires
a large amount of data to update the weights when training
the model. The TL technique addressed this issue by applying
knowledge learned from a large dataset in the source domain
to a new target task with limited data to improve performance
and model robustness. In the present study, we transferred the
knowledge (i.e., optimized weights) from a pre-trained model
to the prediction/regression tasks in the target domain and
then fine-tuned the model using brain structural connectome
to optimize the performance of risk prediction/score regression.
The increased performance supports our hypothesis regarding
the effectiveness of the TL strategy.

The data balance and augmentation technique also improved
the model training. Our dataset was imbalanced with a small
number of subjects having low Bayley III cognitive scores. The
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TABLE 2 | Performance of various machine learning models in utilizing the structural connectome at term-equivalent age to predict Bayley-III cognitive scores at 2 years
corrected age in very preterm infants.

Models r p MAE STD of AE

Linear regression 0.29 (0.27, 0.31) <0.0001 20.1 (17.6, 22.6) 12.0 (10.7, 13.3)

SVR 0.32 (0.31, 0.34) <0.0001 18.2 (15.1, 20.9) 11.4 (9.4, 13.4)

TL-DNN 0.37 (0.35, 0.39) <0.0001 22.5 (20.0, 24.9) 11.2 (9.5, 13.0)

TL-CNN 0.47 (0.45, 0.49) <0.0001 16.2 (13.8, 18.5) 9.5 (7.8, 11.2)

Data in brackets are 95% confidence intervals. r, correlation between true and predicted Bayley-III cognitive scores; p, p-value (false discovery rate corrected) of one-
sample t-test of r; MAE, mean absolute error; STD of AE, standard deviation of absolute error; SVR, support vector regression; TL-DNN, transfer learning enhanced deep
neural network; TL-CNN, transfer learning enhanced convolutional neural network.

TABLE 3 | Top 15 discriminative brain structural connections for prediction of cognitive deficits.

Brain region A Abbreviation Brain region B Abbreviation r

Top discriminative features

Precentral gyrus left PreCG-L Putamen left PUT-L 0.39

Superior occipital gyrus left SOG-L Superior occipital gyrus right SOG-R 0.37

Hippocampus left HIP-L Middle occipital gyrus left MOG-L 0.34

Postcentral gyrus right PoCG-R Putamen right PUT-R 0.33

Hippocampus right HIP-R Postcentral gyrus right PoCG-R 0.33

Hippocampus left HIP-L Superior parietal gyrus left SPG-L 0.33

Orbitofrontal cortex (superior) left ORBsup-L Orbitofrontal cortex (medial) right ORBmed-R 0.29

Putamen left PUT-L Hippocampus left HIP-L 0.28

Postcentral gyrus left PoCG-L Putamen left PUT-L 0.27

Putamen right PUT-R Hippocampus right HIP-R −0.25

Postcentral gyrus left PoCG-L Hippocampus left HIP-L 0.25

Hippocampus right HIP-R Thalamus right THA-R 0.21

Cuneus left CUN-L Precuneus right PCUN-R −0.21

Cuneus left CUN-L Superior occipital gyrus right SOG-R 0.20

Superior frontal gyrus (dorsal) right SFGdor-R Hippocampus right HIP-R 0.19

r, correlation between brain connectome weights and true Bayley-III cognitive scores.

imbalanced dataset may result in a model that is more likely to
predict a high-risk subject into the majority low-risk group. Thus,
we applied the data balance and augmentation technique before
training any model in this work.

Identification of discriminative brain regions not only
improves our understanding of the neurodevelopment of very
preterm infants but also enhances the integrity of trained
deep learning models. We applied the Grad-CAM method
to rank the importance of individual links. Multiple brain
regions such as postcentral gyrus, thalamus, and superior
occipital gyrus were identified by our TL-CNN model to
be predictive to cognitive deficits. These regions were also
found to be predictive in our previous study using functional
connectome on an independent cohort (He et al., 2018). In
addition, postcentral gyrus, thalamus, and superior occipital
gyrus were also reported in prior independent studies (Corbetta,
1998; Ouhaz et al., 2018), indicating their association with
brain cognitive function. These somatosensory regions are
thought to be part of the mirror system, which plays an
important role in imitating, understanding, and learning for
brain cognitive development (Acharya and Shukla, 2012).
Furthermore, the identified most predictive regions have been
associated with emotional regulation and memory (limbic

lobe) (Catani et al., 2013), visual processing (occipital lobe)
(Pöppel et al., 1978), and sensory, visual, and language
information processing (parietal lobe) (Wolpert et al.,
1998). Additionally, subcortical gray matter regions that
play an important role in motion preparation and execution
were also ranked highly by the proposed TL-CNN model
(Chang et al., 2018).

We further performed a correlation analysis between the top
15 discriminative structural connectome connections and the
cognitive outcomes at 2 years corrected age (Table 3). Briefly,
the majority of brain connectome connections have a positive
correlation with the cognitive scores. The increased connectivity
strength of these connections would indicate a lower risk of
cognitive deficits in very preterm infants at 2 years corrected age.
This trend is consistent with our previous study (He and Parikh,
2016). In contrast, two brain connectome connections (Putamen
right–Hippocampus right and Cuneus left–Precuneus right) are
negatively correlated with cognitive scores, indicating that the
increased connectivity strength of these two connections suggests
a higher risk of cognitive deficits in very preterm infants at 2 years
corrected age. Further investigation is required to unveil the
underlying pathological mechanism of these brain connectome
connections on brain cognitive functions.
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FIGURE 3 | Top 15 discriminative brain structural connections identified by TL-CNN, a circos plot. The top three discriminative structural connections are located
within frontal lobes, limbic lobes, and the subcortical structure.

There are several limitations to this study. First, we only
internally validated our data in our cohort of very preterm
infants. External datasets from independent studies or other
research groups are necessary to externally validate the proposed
TL-CNN models. Second, we only used brain structural
connectome data for the outcome prediction. The integration
of brain functional connectome and/or clinical data in our
model is likely to improve prediction performance. Third, we
constructed brain structural connectome based on an AAL brain
atlas without cerebellum regions (Shi et al., 2011). However,
the cerebellum regions have been conventionally recognized
to have an impact on motor function and recently have been
proven to associate with cognitive function (Schmahmann,
2019). The inclusion of the cerebellum regions when we

construct the structural connectome may further enhance the
prediction performance.

CONCLUSION

In summary, this study proposed a deep learning model TL-
CNN for early prediction of cognitive deficit in very preterm
infants at 2 years corrected age using brain structural connectome
derived from DTI obtained at term-equivalent age. The
proposed model achieved improved performance by integrating
multiple technique advances, including the convolution of
CNN on adjacency matrix, TL strategy, and data balance and
augmentation approach. The results suggest that deep learning
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models may facilitate early prediction of later neurodevelopmental
outcomes in very preterm infants at term-equivalent age.
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Deep learning has recently been used for the analysis of neuroimages, such as

structural magnetic resonance imaging (MRI), functional MRI, and positron emission

tomography (PET), and it has achieved significant performance improvements over

traditional machine learning in computer-aided diagnosis of brain disorders. This paper

reviews the applications of deep learningmethods for neuroimaging-based brain disorder

analysis. We first provide a comprehensive overview of deep learning techniques and

popular network architectures by introducing various types of deep neural networks

and recent developments. We then review deep learning methods for computer-aided

analysis of four typical brain disorders, including Alzheimer’s disease, Parkinson’s

disease, Autism spectrum disorder, and Schizophrenia, where the first two diseases are

neurodegenerative disorders and the last two are neurodevelopmental and psychiatric

disorders, respectively. More importantly, we discuss the limitations of existing studies

and present possible future directions.

Keywords: deep learning, neuroimage, Alzheimer’s disease, Parkinson’s disease, autism spectrum disorder,

schizophrenia

1. INTRODUCTION

Medical imaging refers to several different technologies that are used to provide visual
representations of the interior of the human body in order to aid the radiologists and clinicians
to detect, diagnose, or treat diseases early and more efficiently (Brody, 2013). Over the past few
decades, medical imaging has quickly become a dominant and effective tool and represents various
imagingmodalities, including X-ray,mammography, ultrasound, computed tomography,magnetic
resonance imaging (MRI), and positron emission tomography(PET) (Heidenreich et al., 2002).
Each type of these technologies gives various pieces of anatomical and functional information
about the different body organs for diagnosis as well as for research. In clinical practice, the detail
interpretation of medical images needs to be performed by human experts, such as the radiologists
and clinicians. However, for the enormous number of medical images, the interpretations are
time-consuming and easily influenced by the biases and potential fatigue of human experts.
Therefore, from the early 1980s, doctors and researchers have begun to use computer-assisted
diagnosis (CAD) systems to interpret the medical images and to improve their efficiency.

In the CAD systems, machine learning is able to extract informative features that describe the
inherent patterns from data and play a vital role in medical image analysis (Wernick et al., 2010;
Wu et al., 2016; Erickson et al., 2017; Li et al., 2019). However, the structures of the medical images
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are very complex, and the feature selection step is still carried
out by the human experts on the basis of their domain-
specific knowledge. This results in a challenge for non-experts
to utilize machine learning techniques in medical image analysis.
Therefore, the handcrafted feature selection is not suitable for
medical images. Though the sparse learning and dictionary
learning have demonstrated the validity of these techniques for
automatically discovering discriminative features from training
samples, the shallow architectures of these algorithms limit their
representational power (Pandya et al., 2019).

Compared to the traditional machine learning algorithms,
deep learning automatically discovers the informative
representations without the professional knowledge of domain
experts and allows the non-experts to effectively use deep
learning techniques. Therefore, deep learning has rapidly
becomes a methodology of choice for medical image analysis in
recent years (LeCun et al., 2015; Schmidhuber, 2015; Goodfellow
et al., 2016; Lian et al., 2018). Due to enhanced computer power
with the high-tech central processing units (CPU) and graphical
processing units (GPU), the availability of big data, and the
creation of novel algorithms to train deep neural networks, deep
learning has seen unprecedented success in the most artificial
intelligence applications, such as computer vision (Voulodimos
et al., 2018), natural language processing (Sarikaya et al.,
2014), and speech recognition (Bahdanau et al., 2016).
Especially, the improvement and successes of computer
vision simultaneously prompted the use of deep learning
in the medical image analysis (Lee et al., 2017; Shen et al.,
2017).

Currently, deep learning has fueled great strides in
medical image analysis. We can divide the medical image
analysis tasks into several major categories: classification,
detection/localization, registration, and segmentation (Litjens
et al., 2017). The classification is one of the first tasks in which
deep learning giving a major contribution to medical image
analysis. This task aims to classify medical images into two
or more classes. The stacked auto-encoder model was used to
identify Alzheimer’s disease or mild cognitive impairment by
combining medical images and biological features (Suk et al.,
2015). The detection/localization task consists of the localization
and identification of the landmarks or lesion in the full medical
image. For example, deep convolutional neural networks were
used for the detection of lymph nodes in CT images (Roth et al.,
2014). The segmentation task is to partition a medical image into
different meaningful segments, such as different tissue classes,
organs, pathologies, or other biologically relevant structures (Sun
et al., 2019a). The U-net was the most well-known deep learning
architecture, which used convolutional networks for biomedical
image segmentation (Ronneberger et al., 2015). Registration
of medical images is a process that searches for the correct
alignment of images. Wu et al. (2013) utilized convolutional
layers to extract features from input patches in an unsupervised
manner. Then the obtained feature vectors were used to
replace the handcrafted features in the HAMMER registration
algorithm. In addition, the medical image analysis contains other
meaningful tasks, such as content-based image retrieval (Li et al.,
2018c) and image generation and enhancement (Oktay et al.,

2016) in combination with image data and reports (Schlegl et al.,
2015).

There are many papers have comprehensively surveyed the
medical image analysis using deep learning techniques (Lee et al.,
2017; Litjens et al., 2017; Shen et al., 2017). However, these
papers usually reviewed all human tissues, including the brain,
chest, eye, breast, cardiac, abdomen, musculoskeletal, and others.
Almost no papers focus on one specific tissue or disease (Hu
et al., 2018). Brain disorders are among the most severe health
problems facing our society, causing untold human suffering
and enormous economic costs. Many studies successfully
used medical imaging techniques for the early detection,
diagnosis, and treatment of the human brain disorders, such
as neurodegenerative disorders, neurodevelopmental disorders
and psychiatric disorders (Vieira et al., 2017; Durstewitz et al.,
2019). We therefore pay more close attention to human brain
disorders in this survey. About 100 papers are reviewed, most of
them published from 2016 to 2019, on deep learning for brain
disorder analysis.

The structure of this review can roughly be divided into
two parts, the deep learning architectures and the usage of
deep learning in brain disorder analysis and is organized
as follows. In section 2, we briefly introduce some popular
deep learning models. In section 3, we provide a detailed
overview of recent studies using deep learning techniques for
four brain disorders, including Alzheimer’s disease, Parkinson’s
disease, Autism spectrum disorder, and Schizophrenia. Finally,
we analyze the limitations of the deep learning techniques in
medical image analysis and provide some research directions for
further study. For the convenience of readers, the abbreviations
of terminologies used in the following context are listed in the
Supplementary Table 1.

2. DEEP LEARNING

In this section, we introduce the fundamental concept of basic
deep learning models in the literature, which have been wildly
applied to medical image analysis, especially human brain
disorder diagnosis. These models include feed-forward neural
networks, deep generative models (e.g., stacked auto-encoders,
deep belief networks, deep Boltzmann machine, and generative
adversarial networks), convolutional neural networks, graph
convolutional networks, and recurrent neural networks.

2.1. Feed-Forward Neural Networks
In machine learning, artificial neural networks (ANN) aim
to simulate intelligent behavior by mimicking the way that
biological neural networks function. The simplest artificial neural
networks is a single-layer architecture, which is composed of an
input layer and an output layer (Figure 1A). However, despite
the use of non-linear activation functions in output layers, the
single-layer neural network usually obtains poor performance for
complicated data patterns. In order to circumvent the limitation,
the multi-layer perceptron (MLP), also referred to as a feed-
forward neural network (FFNN) (Figure 1B), which includes a
so-call hidden layer between the input layer and the output layer.
Each layer contains multiple units which are fully connected to
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FIGURE 1 | Architectures of the single-layer (A) and multi-layer (B) neural

networks. The blue, green, and orange solid circles represent the input visible,

hidden, and output units, respectively.

units of neighboring layers, but there are no connections between
units in the same layer. Given an input visible vector x, the
composition function of output unit yk can be written as follows:

yk(x; θ) = f (2)
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where the superscript represents a layer index, M is the number
of hidden units, and bj and bk represent the bias of input

and hidden layer, respectively. f (1)(·) and f (2)(·) denote the
non-linear activation function, and the parameter set is θ =

{w
(1)
j ,w

(2)
k
, b

(1)
j , b

(2)
k
}. The back-propagation(BP) is an efficient

algorithm to evaluate a gradient in the FFNN (Rumelhart et al.,
1986). The BP algorithm is to propagate the error values from the
output layer back to the input layer through the network. Once
the gradient vector of all the layers is obtained, the parameters
θ can be updated. Until the loss function is converged or the
predefined number of iterations is reached, the update process
stops and the network gets the model parameters θ .

2.2. Stacked Auto-Encoders
An auto-encoder (AE), also known as an auto-associator, learns
the latent representations of input data (called encode) in an
unsupervised manner and then uses these representations to
reconstruct output data (called decode). Due to the simple
and shallow structure, the power representation of a typical
AE is relatively limited. However, when multiple AEs are
stacked to form a deep network, called stacked auto-encoders
(SAE) (Figure 2), the representation power of an SAE can be
obviously improved (Bengio et al., 2007). Because of the deep
structural characteristic, the SAE is able to learn and discover
more complicated patterns inherent in the input data. The lower
layers can only learn simpler data patterns, while the higher
layers are able to extract more complicated data patterns. In a
word, the different layers of an SAE represent different levels
of data information (Shen et al., 2017). In addition, various AE
variations, denoising auto-encoders (DAE) (Vincent et al., 2008),
sparse auto-encoders (sparse AE) (Poultney et al., 2007), and
variational auto-encoders (VAE) (Kingma and Welling, 2013),
have been proposed and also can be stacked as SAE, such
as the stacked sparse AE (SSAE) (Shin et al., 2013). These

extensions of auto-encoders not only can learn more useful latent
representations but also improve the robustness.

To avoid the drawback of the BP algorithm, which can cause
the gradient falling into a poor local optimum (Larochelle et al.,
2009), the greedy layer-wise approach is considered to training
parameters of an SAE (Hinton and Salakhutdinov, 2006). The
important character of the greedy layer-wise is to pre-train each
layer in turn. In other words, the output of the l-th hidden layers
is used as input data for the (l + 1)-th hidden layer. The process
performs as pre-training, which is conducted in an unsupervised
manner with a standard BP algorithm. The important advantage
of the pre-training is able to increase the size of the training
dataset using unlabeled samples.

2.3. Deep Belief Networks
A Deep Belief Network (DBN) stacks multiple restricted
Bolztman machines (RBMs) for deep architecture
construction (Hinton et al., 2006). A DBN has one visible
layer and multiple hidden layers as shown in Figure 3A. The
lower layers form directed generative models. However, the top
two layers form the distribution of RBM, which is an undirected
generative model. Therefore, given the visible units v and L
hidden layers h(1), h(2), . . . , h(L), the joint distribution of DBN is
defined:

P(v, h(1), . . . , h(L)) = P(v|h(1))
(

L−2
∏

l=1

P(h(l)|h(l+1))
)

P(h(L−1), h(L))

(2)
where P(h(l)|h(l+1)) represents the conditional distribution for
the units of the hidden layer l given the units of the hidden layer
l+ 1, and P(h(L−1), h(L)) corresponds the joint distribution of the
top hidden layers L− 1 and L.

As for training a DBN, there are two steps, including pre-
training and fine-tuning. In the pre-training step, the sDBN is
trained by stacking RBMs layer by layer to find the parameter
space. Each layer is trained as an RBM. Specifically, the l-th
hidden layer is trained as an RBM using the observation data
from output representation of the (l−1)-th hidden layer, and this
repeats, training each layer until the we reach the top layer. After
the pre-training is completed, the fine-tuning is performed to
further optimize the network to search the optimum parameters.
The wake-sleep algorithm and the standard BP algorithm are
good at fine-tuning for generative and discriminative models,
respectively (Hinton et al., 1995). For a practical application
problem, the obtained parameters from the pre-training step
are used to initiate a DNN, and then the deep model can be
fine-tuned by a supervised learning algorithm like BP.

2.4. Deep Boltzmann Machine
A Deep Boltzmann Machine (DBM) is also constructed by
stacking multiple RBMs as shown in Figure 3B (Salakhutdinov
and Larochelle, 2010; Salakhutdinov, 2015). However, unlike the
DBN, all the layers of the DBM form an entirely undirected
model, and each variable within the hidden layers are mutually
independent. Thus, the hidden layer l is conditioned on its two
neighboring layer l− 1 and l+ 1, and its probability distribution
is P(h(l)|h(l−1), h(l+1)). Given the values of the neighboring layers,
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FIGURE 2 | Architectures of a stacked auto-encoder. The blue and red dotted boxes represent the encoding and decoding stage, respectively. The blue solid circles

are the input and output units, which have the same number nodes. The orange solid circles represent the latent representation, and the green solid circles represent

any hidden layers.

FIGURE 3 | Schematic illustration of Deep Belief Networks (A) and Deep

Boltzmann Machine (B). The double-headed arrow represents the undirected

connection between the two neighboring layers, and the single-headed arrow

is the directed connection. The top two layers of the DBN form an undirected

generative model and the remaining layers form directed generative model.

But all layers of the DBM are undirected generative model.

the conditional probabilities over the visible and the L set of
hidden units are given by logistic sigmoid functions:

P(vi|h
1) = σ

(

∑

j

W
(1)
ij h

(1)
j

)

(3)

P(h
(l)
k
|h(l−1), h(l+1)) = σ

(

∑

m

W
(l)
mk

h(l−1)
m +

∑

n

W
(l+1)
kn

h(l+1)
n

)

(4)

P(h
(L)
t |h(L−1)) = σ

(

∑

s

W
(L)
st h(L−1)

s

)

(5)

Note that in the computation of the conditional probability
of the hidden unit h(l), the probability incorporate both the
lower hidden layer h(l−1) and the upper hidden layer h(l+1).
Due to incorporate the more information from the lower and

upper layers, the representational power of a DBM is more
robust in the face of the noisy observed data (Karhunen et al.,
2015). However, the character makes the conditional probability
of DBM P(h(l)|h(l−1), h(l+1)) more complex than those of the
DBN, P(h(l)|h(l+1)).

2.5. Generative Adversarial Networks
Due to their ability to learn deep representations without
extensively annotated training data, Generative Adversarial
Networks (GANs) have gained a lot of attention in computer
vision and natural language processing (Goodfellow et al., 2014).
GANs consist of two competing neural networks, a generator
G and a discriminator D, as shown in Figure 4. The generator
G parameterized by θ takes as input a random noise vector z

from a prior distribution pz(z; θ) and outputs a sample G(z),
which can be regarded as a sample drawn from the generator
data distribution pg . The discriminator D that takes an input
G(z) or x, and outputs the probability D(x) or D(G(z)) to
evaluate that the sample is from the generator G or the real
data distribution. GANs simultaneously train the generator and
discriminator where the generator G tries to generate realistic
data to fool the discriminator, while the discriminator D tries
to distinguish between the real and fake samples. Inspired by
the game theory, the training process is to form a two-player
minimax game with the value function V(G,D) as follow:

min
G

max
D

V(G,D) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz (z)[log(1− D(G(z)))] (6)

where pdata(x) denotes the real data distribution. After training
alternately, if G and D have enough capacity, they will reach
a point at which both cannot improve because pg = pdata.
In other words, the discriminator is unable to distinguish the
difference between a real and a generated sample, i.e.,D(x) = 0.5.
Although vanilla GAN has attracted considerable attention in
various applications, there still remain several challenges related
to training and evaluating GANs, such as model collapse and
saddle points (Creswell et al., 2018). Therefore, many variants of
GAN, such as Wasserstein GAN (WGAN) (Arjovsky et al., 2017)
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FIGURE 4 | Architecture of Generative Adversarial Networks. “R” and “F” represents the real and fake label, respectively.

and Deep Convolutional GAN (DCGAN) (Radford et al., 2015)
have been proposed to overcome these challenges.

2.6. Convolutional Neural Networks
Compared to the SAE, DBN, and DBM, utilizing the inputs
in vector form which inevitably destroys the structural
information in images, the convolutional neural network
(CNN) is designed to better retain and utilize the structural
information among neighboring pixels or voxels and to required
minimal preprocessing by directly taking two-dimensional (2D)
or three-dimensional (3D) images as inputs (LeCun et al., 1998).
Structurally, a CNN is a sequence of layers, and each layer
of the CNN transforms one volume of activations to another
through a differentiable function. Figure 5 shows a typical
CNN architecture (AlextNet model) for a computer vision task,
which consists of three type neural layers: convolutional layers,
pooling layers and fully connected layers (Krizhevsky et al.,
2012). The convolutional layers are interspersed with pooling
layers, eventually leading to the fully connected layers. The
convolutional layer takes the pixels or voxels of a small patch
of the input images, called the local receptive field and then
utilizes various learnable kernels to convolve the receptive field
to generate multiple feature maps. A pooling layer performs
the non-linear downsampling to reduce the spatial dimensions
of the input volume for the next convolutional layer. The fully
connected layer input the 3D or 2D feature map to a 1D feature
vector. The local response normalization is a non-trainable layer
and performs a kind of “lateral inhibition” by normalizing over
local input regions.

The major issue in training deep models is the over-fitting,
which arises from the gap between the limited number of training
samples and a large number of learnable parameters. Therefore,
various techniques are designed to make the models train and
generalize better, such as dropout and batch normalization to just
name a few. A dropout layer randomly drops a fraction of the

units or connections during each training iteration (Srivastava
et al., 2014). It has also been demonstrated that dropout is able to
successfully avoid over-fitting. In addition, batch normalization
is another useful regularization and performs normalization with
the running average of the mean–variance statistics of each
mini-batch. It is shown that using batch normalization not only
drastically speeds up the training time but also improves the
generalization performance (Ioffe and Szegedy, 2015).

2.7. Graph Convolutional Networks
While the CNN has achieved huge success in extracting
latent representations from Euclidean data (e.g., images, text,
and video), there are a rapidly increasing number of various
applications where data are generated from the non-Euclidean
domain and needs to be efficiently analyzed. Researchers
straightforwardly borrow ideas from CNN to design the
architecture of graph convolutional networks (GCN) to handle
complexity graph data (Kipf and Welling, 2016). Figure 6 shows
the process of a simple GCN with graph pooling layers for
a graph classification task. The first step is to transform the
traditional data to graph data, and the graph structure and node
content information are therefore regarded as input. The graph
convolutional layer plays a central role in extracting node hidden
representations from aggregating the feature information from
its neighbors. The graph pooling layers can be interleaved with
the GCN layers and coarsened graphs into sub-graphs in order
to obtained higher graph-level representations for each node on
coarsened sub-graphs. After multiple fully connected layers, the
softmax output layer is used to predict the class labels.

Depending on the types of graph convolutions, the GCN
can be categorized into spectral-based and spatial-based
methods. Spectral-based methods formulated graph convolution
by introducing filters from the perspective of graph single
processing. Spatial-based methods defined graph convolution
directly on the graph, which operates on spatial close neighbors
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FIGURE 5 | Architecture of convolutional neural networks. Note that an implicit rectified linear unit (ReLU) non-linearity is applied after every layer. The natural images

as input data in Krizhevsky et al. (2012) are replaced by brain MR images.

FIGURE 6 | Architecture of graph convolutional networks. To keep the figure simple, the softmax output layer is not shown.

to aggregate feature information. Due to drawbacks to spectral-
based methods from three aspects, efficiency, generality, and
flexibility, spatial-based methods have attracted more attention
recently (Wu et al., 2019).

2.8. Recurrent Neural Networks
A recurrent neural network (RNN) is an extension of an FFNN,
which is able to learn features and long-term dependencies
from sequential and time-series data. The most popular RNN
architecture is the long-short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997), which is composed of a memory cell Ct ,
a forget gate ft , an input gate it , and an output gate ot (Figure 7A).
The memory cell transfers relevant information all the way to
the sequence chain, and these gates control the activation signals
from various sources to decide which information is added to
and removed from the memory cell. Unlike a basic RNN, the
LSTM is able to decide whether to preserve the existing memory
by the above-introduced gates. Theoretically, if the LSTM learns
an important feature from the input sequential data, it can keep
this feature over a long time, thus captures potential long-time
dependencies. One popular LSTM variant is the Gated Recurrent
Unit (GRU) (Figure 7B), whichmerges the forget and input gates
into a single “update gate,” and combines the memory cell state
and hidden state into one state. The update gate decides how

much information to add and throw away, and the reset gate
decides how much previous information to forget. This makes
the GRU is simpler than the standard LSTM (Cho et al., 2014).

2.9. Open Source Deep Learning Library
With the great successes of deep learning techniques in various
applications, some famous research groups and companies have
released their source codes and tools in deep learning. Due to
these open source toolkits, people are able to easily build deep
models for their applications even if they are not acquainted with
deep learning techniques. Supplementary Table 2 lists the most
popular toolkits for deep learning and shows their main features.

3. APPLICATIONS IN BRAIN DISORDER
ANALYSIS WITH MEDICAL IMAGES

The human brain is susceptible to many different disorders that
strike at every stage of life. Developmental disorders usually first
appear in early childhood, such as autism spectrum disorder and
dyslexia. Although psychiatric disorders are typically diagnosed
in teens or early adulthood, their origins may exist much earlier
in life, such as depression and schizophrenia. Then, as people age,
people become increasingly susceptible to Alzheimer’s disease,
Parkinson’s disease, and other dementia diseases. In this section,
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FIGURE 7 | Architectures of long short-term memory (A) and gated recurrent unit (B) In the subfigure (A), the blue, green, and yellow represent the forget gate ft,

input, gate it, and output gate ot, respectively. In the subfigure (B), the blue and yellow represent the reset gate rt and update gate zt, respectively. xt is input vector

and ht is the hidden state. To keep the figure simple, biases are not shown.

we select four typical brain disorders, including Alzheimer’s
disease, Parkinson’s disease, Autism spectrum disorder and
Schizophrenia. Alzheimer’s disease and Parkinson’s disease are
both neurodegenerative disorders. Autism spectrum disorder
and Schizophrenia are neurodevelopmental and psychiatric
disorders, respectively.

3.1. Deep Learning for Alzheimer’s Disease
Analysis
Alzheimer’s disease (AD) is a neurological, irreversible,
progressive brain disorder and is the most common cause
of dementia. Until now, the causes of AD are not yet fully
understood, but accurate diagnosis of AD plays a significant
role in patient care, especially at the early stage. For the study of
AD diagnosis, the best-known public neuroimaging dataset is
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI),
which is a multi-site study that aims to improve clinical trials for
the prevention and treatment of AD. The ADNI study has been
running since 2004 and is now in its third phase (Mueller et al.,
2005). Researchers collect, validate, and utilize data, including
MRI and PET images, genetics, cognitive tests, cerebrospinal
fluid (CSF), and blood biomarkers as predictors of the disease.
Up to now, the ADNI dataset consists of ADNI-1, ADNI-GO,
ADNI-2, and ADNI-3 and contains more than 1,000 patients.
According to the Mini-Mental State Examination (MMSE)
scores, these patients were in three stages of disease: normal
control (NC), mild cognitive impairment (MCI), and AD. The
MCI subject can be divided into two subcategories: converted
MCI (cMCI) and stable MCI (sMCI), based on whether a subject
converted to AD within a period of time (e.g., 24 months). The
ADNI-GO and ADNI-2 provided two different MCI groups:
early mild cognitive impairment (EMCI) and late mild cognitive
impairment (LMCI), determined by a Wechsler Memory Scale
(WMS) neuropsychological test.

Recently, plenty of papers have been published on the deep
learning techniques for AD diagnosis. According to different
architectures, these methods can be roughly divided into

two subcategories: DGM-based and CNN-based methods. The
DGM-based methods contained the DBN, DNM, SAE, and AE
variants. Li et al. (2015) stacked multiple RBMs to construct a
robust deep learning framework, which incorporated the stability
selection and the multi-task learning strategy. Suk et al. (2014)
proposed a series of methods based on deep learning models,
such as the DBM and SAE (Suk et al., 2015, 2016). For example,
the literature (Suk et al., 2015) applied the SAE to learn the
latent representations from sMRI, PET, and CSF, respectively.
Then, a multi-kernel SVM classifier was used to fuse the selected
multi-modal features. Liu et al. (2015) also used SAE to extract
features frommulti-modal data, and a zero-masking strategy was
then applied to fuse these learned features. Shi et al. (2017a)
adopted multi-modality stacked denoising sparse AE (SDAE)
to fuse cross-sectional and longitudinal features estimated from
MR brain images. Lu et al. (2018) developed a multiscale
deep learning network, which took the multiscale patch-wise
metabolism features as input. This study was perhaps also the
first study to utilize such a large number of FDG-PET images
data. Martinez-Murcia et al. (2019) used a deep convolution
AE (DCAE) architecture to extract features, which showed large
correlations with clinical variables, such as age, tau protein
deposits, and especially neuropsychological examinations. Due to
small labeled samples in neuroimaging dataset, Shi et al. (2017b)
proposed a multimode-stacked deep polynomial network (DPN)
to effectively fuse and learn feature representation from a small
multimodel neuroimaging data.

CNN-based methods learned all levels of features from raw
pixels and avoided the manual ROIs annotation procedure and
can be further subdivided into two subcategories: 2D-CNN and
3D-CNN. Gupta et al. (2013) pre-trained a 2D-CNN based on
sMRI data through a sparse AE on random patches of natural
images. The key technique was the use of cross-domain features
to present MRI data. Liu and Shen (2014) used a similar strategy
and pre-trained a pre-trained deep CNN on ImageNet. Sarraf
et al. (2016) first used the fMRI data in deep learning applications.
The 4D rs-fMRI and 3D MRI data were decomposed into 2D

Frontiers in Neuroscience | www.frontiersin.org 7 October 2020 | Volume 14 | Article 779101

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhang et al. Deep Learning for Brain Disorder Analysis

format images in the preprocessing step, and then the CNN-
based architecture received these images in its input layer.
Billones et al. designed a DemNet model based on the 16-layer
VGGNet. The DemNet only selected the coronal image slices
with indices 111–130 in 2D format images under the assumption
that these slices covered the areas, which had the important
features for the classification task (Billones et al., 2016). Liu
et al. (2018b) proposed a novel classification framework that
learned features from a sequence of 2D slices by decomposing
3D PET images. Then hierarchical 2D-CNN was built to capture
the intra-slice features, while GRU was adopted to extract the
inter-slice features.

The 3D brain images need to be decomposed into 2D
slices in the preprocessing step, and this results in 2D-CNN
methods discarding the spatial information. Many 3D-CNN
methods were therefore proposed, and these can directly input
3D brain images. Payan and Montana (2015) pre-trained a 3D-
CNN through a sparse AE on small 3D patches from sMRI
scans. Hosseini-Asl et al. (2016) proposed a deep 3D-CNN,
which was built upon a 3D CAE (Convolutional AE) to capture
anatomical shape variations in sMRI scans. Liu et al. used
multiple deep 3D-CNN on different local image patches to learn
the discriminative features of MRI and PET images. Then, a
set of upper high-level CNN was cascaded to ensemble the
learned local features and discovered the latent multi-modal
features for AD classification (Liu et al., 2018a). Karasawa et al.
(2018) proposed deeper 3D-CNN architecture with 39 layers
based on a residual learning framework (ResNet) to improve
performance. Liu et al. (2018d) designed a landmark-based deep
feature learning framework to learn the patch-level features,
which were an intermediate scale between voxel-level and ROI-
level. The authors firstly used a data-driven manner to identify
discriminative anatomical landmarks from MR images, and they
then proposed a 3D-CNN to learn patch-based features. This
strategy can avoid the high-dimensional problem of voxel-level
and manual definition of ROI-level. Subsequently, Liu et al.
(2018c) developed a deepmulti-instance CNN framework, where
multiple image patches were used as a bag of instances to
represent each specific subject, and then the label of each bag
was given by the whole-image-level class label. To overcome
the missing modality in multi-modal image data, Li et al.
(2014) proposed a simple 3D-CNN to predict the missing PET
images from the sMRI data. Results showed that the predicted
PET data achieved similar classification accuracy to the true
PET data. Additionally, the synthetic PET data and the real
sMRI data obviously outperformed the single sMRI data. Pan
et al. (2018) used Cycle-GAN to learn bi-directional mapping
sMRI and PET to synthesize missing PET scans based on its
corresponding sMRI scans. Then, landmark-based 3D-CNN was
adapted for AD classification on the mixed image data. Tables 1,
2 summarized the statistic information of each paper reviewed
above for AD diagnosis.

As an early stage of AD, MCI had a conversion rate as
high as 10–15% per year in 5 years, but MCI was also the
best time for treatment. Therefore, an effective predictive model
construction for the early diagnosis of MCI had become a hot
topic. Recently, some research based on GCN has been done for

MCI prediction. Yu et al. (2019) and Zhao et al. (2019) both used
the GCN, which combines neuroimaging information and the
demographic relationship for MCI prediction. Song et al. (2019)
implemented a multi-class the GCN classifier for classification
of subjects on the AD spectrum into four classes. Guo et al.
(2019) proposed PETNET model based on the GCN to analyzes
PET signals defined on a group-wise inferred graph structure.
Tables 3, 4 summarized the four papers for MCI prediction.

3.2. Deep Learning for Parkinson’s Disease
Analysis
Parkinson’s disease (PD) is the most common neurodegenerative
disorder after Alzheimer’s disease, and it is provoked by
progressive impairment and deterioration of neurons, caused
by a gradually halt in the production of a chemical messenger
in the brain. Parkinson’s Progression Markers Initiative (PPMI)
is an observational clinical study to verify progression markers
in Parkinson’s disease. The PPMI cohort comprises 400 newly
diagnosed PD cases, 200 healthy, and 70 individuals that, while
clinically diagnosed as PD cases, fail to show evidence of
dopaminergic deficit. This latter group of patients is referred to as
SWEDDs (Scans without Evidence of Dopamine Deficit) (Marek
et al., 2011).

Some efforts based on deep learning have been done to design
algorithms to help PD diagnosis. The Martinez-Murci team has
continuously published a series of papers using deep learning
techniques for PD diagnosis in a SPECT image dataset. Ortiz
et al. (2016) designed a framework to automatically diagnose
PD using deep sparse filtering-based features. Sparse filtering,
based on ℓ2-norm regularization, extracted the suitable features
that can be used as the weight of hidden layers in a three-
layer DNN. Subsequently, this team firstly applied 3D-CNN in
PD diagnosis. These methods achieved up to a 95.5% accuracy
and 96.2% sensitively (Martinez-Murcia et al., 2017). However,
this 3D-CNN architecture with only two convolutional layers
was too shallow and limited the capability to extract more
discriminative features. Martinez-Murcia et al. (2018) therefore
proposed a deep convolutional AE (DCAE) architecture for
feature extraction. The DCAE overcome two common problems:
the need for spatial normalization and the effect of imbalanced
datasets. For a strongly imbalanced (5.69/1) PD dataset, DCAE
achieved more than 93% accuracy. Choi et al. (2017) developed a
deep CNN model (PDNet) consisted of four 3D convolutional
layers. PDNet obtained high classification accuracy compared
to the quantitative results of expert assessment and can further
classify the SWEDD and NC subjects. Esmaeilzadeh et al. (2018)
both utilized the sMRI scans and demographic information
(i.e., age and gender) of patients to train a 3D-CNN model.
The proposed method firstly found that the Superior Parietal
part on the right hemisphere of the brain was critical in PD
diagnosis. Sivaranjini and Sujatha (2019) directly introduced
the AlexNet model, which was trained by the transfer learned
network. Shen et al. (2019b) proposed an improved DBN model
with an overlapping group lasso sparse penalty to learn useful
low-level feature representations. To incorporate multiple brain
neuroimaging modalities, Zhang et al. (2018b) and McDaniel
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TABLE 1 | Overview of papers using deep learning techniques for AD diagnosis.

References Year Database
Subjects

Modality Model

AD cMCI sMCI NC

Suk et al. (2014) 2014 ADNI 93 76 128 101 sMRI + PET DBM

Li et al. (2015) 2015 ADNI 51 43 56 52 sMRI + PET + CSF DBN

Liu et al. (2015) 2015 ADNI 85 67 102 77 sMRI + PET SAE

Suk et al. (2015) 2015 ADNI 51 43 56 52 sMRI + PET + CSF SAE

Suk et al. (2016) 2016
ADNI 51 43 56 52

sMRI + PET + CSF SAE
– 198 167 236 229

Shi et al. (2017a) 2017 ADNI 95 121 123 sMRI + Age SDAE

Shi et al. (2017b) 2017 ADNI 51 43 56 52 sMRI + PET DPN

Lu et al. (2018) 2018 ADNI 226 112 409 304 PET SAE

Martinez-Murcia et al. (2019) 2019 ADNI 99 212 168 rs-fMRI DCAE

Gupta et al. (2013) 2013 ADNI 200 411 232 sMRI 2D-CNN

Liu and Shen (2014) 2014 ADNI 200 411 232 sMRI 2D-CNN

Billones et al. (2016) 2016 ADNI 300 300 300 rs-fMRI 2D-CNN

Sarraf et al. (2016) 2016 ADNI
211 – – 91 sMRI

2D-CNN
52 – – 92 rs-fMRI

Liu et al. (2018b) 2017 ADNI 93 146 100 PET 2D-CNN + RNN

Payan and Montana (2015) 2015 ADNI 755 755 755 sMRI 3D-CNN

Hosseini-Asl et al. (2016) 2016 ADNI 70 70 70 sMRI 3D-CNN

Karasawa et al. (2018) 2018 ADNI 348 450 358 574 sMRI 3D-CNN

Liu et al. (2018a) 2018 ADNI 93 76 128 100 sMRI + PET 3D-CNN

Li et al. (2014) 2014 ADNI 193 167 236 229 sMRI + PET 3D-CNN

Liu et al. (2018c) 2018 ADNI 358 205 465 429 sMRI 3D-CNN

Liu et al. (2018d) 2018 ADNI 358 – – 429 sMRI 3D-CNN

Pan et al. (2018) 2018 ADNI 358 205 465 429 sMRI + PET 3D-CNN + GAN

and Quinn (2019) both used a GCN model and presented
an end-to-end pipeline without extra parameters involved for
view pooling and pairwise matching. Transcranial sonography
(TCS) had recently attracted increasing attention, and Shen et al.
(2019a) proposed an improved DPN algorithm that embedded
the empirical kernel mapping the network pruning strategy and
dropout approach for the purposes of feature representation and
classification for TCS-based PD diagnosis. Table 5 summarized
each paper above reviewed for PD diagnosis.

Up to now, only some papers have applied deep learning for
PD diagnosis based on neuroimaging, and most of them adopt
the 3D-CNN model. The traditional machine learning was still
a popular and important technology for PD diagnosis, such as
sparse feature learning (Lei et al., 2018), unsupervised learning
(Singh and Samavedham, 2015), semi-unsupervised learning
(Adeli et al., 2018), multi-task learning (Emrani et al., 2017), and
classifier design (Shi et al., 2018).

3.3. Deep Learning for Austism Spectrum
Disorder Analysis
Autism spectrum disorder (ASD) is a common
neurodevelopmental disorder, which has affected 62.2 million
ASD cases in the world in 2015. The Autism Imaging Data
Exchange (ABIDE) initiative had aggregated rs-fMRI brain

scans, anatomical and phenotypic datasets, collected from
laboratories around the world. The ABIDE initiative included
two large scale collections: ABIDE I and ABIDE II, which were
released in 2012 and 2016, respectively. The ABIDE I collection
involved 17 international sites and consisted of 1,112 subjects
comprised of 539 from autism patients and 573 from NC. To
further enlarge the number of samples with better-characterized,
the ABIDE II collection involved 19 international sites, and
aggregated 1,114 subjects from 521 individuals with ASD and
593 NC subjects (Di et al., 2014).

Many methods have been proposed on the application of
deep learning for ASD diagnosis. These methods can be divided
into three categories: AE-based methods, convolutional-based
methods, and RNN-based methods. AE-based methods used
various AE variations or stacked multiple AE to reduce data
dimension and discovery highly discriminative representations.
Hazlett et al. implemented the basic SAE, which primarily used
surface area information from brain MRI at 6- and 12-months-
old infants to predict the 24-months diagnosis of autism in
children at high familial risk for autism. The SAE contained three
hidden layers to reduce 315 dimensionmeasurements to only two
features (Hazlett et al., 2017). Two papers both used a stacked
multiple sparse AE (SSAE) to learn low dimensional high-
quality representations of functional connectivity patterns (Guo
et al., 2017; Kong et al., 2019). But the difference was that
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TABLE 2 | The classification performance of papers for AD diagnosis.

References
Accuracy (%)

AD/NC AD/MCI MCI/NC cMCI/sMCI 3-waysa 4-waysb

Suk et al. (2014). 95.35 ± 5.23 – 85.67 ± 5.22 75.92 ± 15.37 – –

Li et al. (2015) 91.4 ± 1.8 70.1 ± 2.3 77.4 ± 1.7 57.4 ± 3.6

Liu et al. (2015) 91.4 ± 5.56 – 82.10 ± 4.91 – – 53.79

Suk et al. (2015) 98.8 ± 0.9 83.7 ± 1.5 90.7 ± 1.2 83.3 ± 2.1 – –

Suk et al. (2016)
95.09 ± 2.28 – 80.11 ± 2.64 74.15 ± 3.35 62.93 53.72

90.27 – 70.86 73.93 57.74 47.83

Shi et al. (2017a) 91.95 ± 1.00 – 83.72 ± 1.16 – – –

Shi et al. (2017b) 97.13 ± 4.44 – 87.24 ± 4.52 76.88 ± 4.38 – 57.0±3.65

Lu et al. (2018) 93.58 ± 5.2 – – 81.55 ± 7.42 – –

Martinez-Murcia et al.

(2019)

84.3 ± 6 – – 71.5 ± 9 – –

Gupta et al. (2013) 94.74 88.10 86.35 – 85.0 –

Liu and Shen (2014) 97.18 ± 1.5 94.51 ± 1.43 93.21 ± 1.02 – 91.72 ± 1.8 –

Billones et al. (2016) 98.33 93.89 91.67 – 91.85 –

Sarraf et al. (2016) 98.84/99.90 – – – – –

Liu et al. (2018b) 91.92 – 78.9 – – –

Payan and Montana

(2015)

95.39 86.84 92.11 – 89.47 –

Hosseini-Asl et al.

(2016)

99.3 ± 1.6 100 94.2 ± 2.0 – 94.8 ± 2.6 –

Karasawa et al. (2018) 94.0 – 90.0 – 87.0 –

Liu et al. (2018a) 93.26 – 73.34 – – –

Li et al. (2014) 92.87 ± 2.07 – 76.21 ± 2.05 72.44 ± 2.41 – –

Liu et al. (2018c) 91.09 – – 76.90 – –

Liu et al. (2018d) 90.56 – – – – –

Pan et al. (2018) 92.50 – – 79.06 – –

a3-ways represents the comparison: AD vs. NC vs. MCI.
b4-ways represents the comparison: AD vs. NC vs. cMCI vs. sMCI.

TABLE 3 | Overview of papers using deep learning techniques for MCI prediction.

References Year Database
Subjects

Modality Model

NC EMCI LMCI AD

Zhao et al. (2019) 2019 ADNI 67 77 40 – rs-fMRI GCN

Yu et al. (2019) 2019 ADNI 44 44 38 – rs-fMRI GCN

Song et al. (2019) 2019 ADNI 12 12 12 12 DTI GCN

Guo et al. (2019) 2019 ADNI 100 96 137 – PET GCN

TABLE 4 | The classification performance of papers for MCI prediction.

References
Accuracy (%)

EMCI/NC LMCI/NC EMCI/LMIC MCI/NC 3-waysa 4-waysb

Zhao et al. (2019) 78.4 84.3 85.6 – – –

Yu et al. (2019) 87.5 89.02 79.27 – – –

Song et al. (2019) – – – – – 89.0 ± 6

Guo et al. (2019) – – – 93.0c 77.0 –

a3-ways represents the comparison: NC vs. EMCI vs. LMCI.
b4-ways represents the comparison: NC vs. EMCI vs. LMCI vs. AD.
cMCI = ECMI + LMCI.
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TABLE 5 | Overview of papers using deep learning techniques for PD diagnosis.

References
Year Database Modality Method Modality Accuracy (%)

PD NC SWEED PD/NC SWEED/NC

Ortiz et al. (2016) 2016 PPMI SPECT DNN – – – 95.0 –

Martinez-Murcia et al. (2017) 2017 PPMI SPECT 3D-CNN 158 111 32 95.5 ± 4.4 82.0 ± 6.8

Choi et al. (2017) 2017
PPMI SPECT

3D-CNN
431 193 77 96.0 76.5

SNUHa SPECT 72 10 – 98.8 –

Esmaeilzadeh et al. (2018) 2018 PPMI sMRI + DIe 3D-CNN 452 204 – 1.0 –

Martinez-Murcia et al. (2018) 2018 PPMI SPECT DCAE 1,110 195 – 93.3 ± 1.6 –

Sivaranjini and Sujatha

(2019)

2019 PPMI SPECT 2D-CNN 100 82 – 88.9 –

Zhang et al. (2018b) 2018 PPMI sMRI + DTI GCNN 596 158 – 95.37 (AUC) –

McDaniel and Quinn (2019) 2019 PPMI sMRI + DTI GCNN 117 30 – 92.14 –

Shen et al. (2019b) 2019
HSHUb PET

DBN
100 200 – 90.0 –

WXHc PET 25 25 – 86.0 –

Shen et al. (2019a) 2019 Multi-sited TCS DPN 76 77 – 86.95 ± 3.15 –

aSNUH, Seoul National University Hospital cohort. bHSH, HuaShan Hospital cohort. cWXH, WuXi 904 Hospital cohort. dShanghai East Hospital of Tongji University and the Second

Affiliated Hospital of Soochow University. eDI, Demographic Information.

Guo et al. input the whole-brain functional connectivity patterns
and Kong et al. only selected the top 3,000 ranked connectivity
features by F-score in descending order. Dekhil et al. (2018) built
an automated autism diagnosis system, which used 34 sparse
AE for 34 spatial activation areas. Each sparse AE extracted the
power spectral densities (PSDs) of time courses in a higher-
level representation and simultaneously reduced the feature
vectors dimensionality. Choi (2017) used VAE to summarize the
functional connectivity networks into two-dimensional features.
One feature was identified using a high discrimination between
ASD and NC, and it was closely associated with ASD-related
brain regions. Heinsfeld et al. (2018) used DAE to reduce
the effect of multi-site heterogeneous data and improve the
generalization. Due to insufficient training samples, Li et al.
(2018a) developed a novel deep neural network framework with
the transfer learning technique for enhancing ASD classification.
This framework was firstly trained an SSAE to learn functional
connectivity patterns from healthy subjects in the existing
databases. The trained SSAE was then transferred to a new
classification with limited target subjects. Saeed et al. designed a
data augmentation strategy to produce synthetic datasets needed
for training the ASD-DiagNet model. This model was composed
of an AE and a single-layer perceptron to improve the quality of
extracted features (Saeed et al., 2019).

Due to collapsed the rs-fMRI scans into a feature vector,
the above methods discarded the spatial structure of the
brain networks. To fully utilize the whole brain spatial fMRI
information, Li et al. (2018b) implemented 3D-CNN to capture
spatial structure information and used sliding windows over time
to measure temporal statistics. This model was able to learn
ASD-related biological markers from the output of the middle
convolution layer. Khosla et al. proposed a 3D-CNN framework
for connectome-based classification. The functional connectivity
of each voxel to various target ROIs was used as input features,
which reserved the spatial relationship between voxels. Then the

ensemble learning strategy was employed to average the different
ROI definitions to reduce the effect of empirical selections, it
and obtained more robust and accurate results (Khosla et al.,
2018). Ktena et al. (2018) implemented a Siamese GCN to learn
a graph-similarity metric, which took the graph structure into
consideration for the similarity between a pair of graphs. This was
the first application of metric learning with graph convolutions
on brain connectivity networks. Parisot et al. (2017) introduced
a spectral GCN for brain analysis in populations combining
imaging and non-imaging information. The populations were
represented as a sparse graph where each vertex corresponded
to an imaging feature vector of a subject, and the edge weights
were associated with phenotypic data, such as age, gender, and
acquisition sites. Like the graph-based label propagation, a GCN
model was used to infer the classes of unlabeled nodes on
the partially labeled graphs. There existed no definitive method
to construct reliable graphs in practice. Thus, Anirudh and
Thiagarajan (2017) proposed a bootstrapped version of GCN to
reduce the sensitivity of models on the initial graph construction
step. The bootstrapped GCN used an ensemble of the weekly
GCN, each of which was trained by a random graph. In addition,
Yao et al. (2019) proposed a multi-scale triplet GCN to avoid the
spatial limitation of a single template. A multi-scale templates for
coarse-to-fine ROI parcellation were applied to construct multi-
scale functional connectivity patterns for each subject. Then a
triple GCN model was developed to learn multi-scale graph
features of brain networks.

Several RNN-based methods were proposed to fully utilize the
temporal information in the rs-fMRI time-series data. Bi et al.
(2018) designed a random NN cluster, which combined multiple
NNs into a model, to improve the classification performance
in the diagnosis of ASD. Compared to five different NNs,
the random Elman cluster obtained the highest accuracy. It
is because that the Elman NN fit handling the dynamic data.
Dvornek et al. (2017) first applied LSTM to ASD classification,
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TABLE 6 | Overview of papers using deep learning techniques for ASD diagnosis.

References Year Database
Subject

Modality Model Accuracy (%)

ASD NC

Guo et al. (2017) 2017 ABIDE I 55 55 rs-fMRI SSAE 86.36

Kong et al. (2019) 2019 ABIDE I 78 104 rs-fMRI SSAE 90.39

Li et al. (2018a) 2018

ABIDE: UMa 48 65

rs-fMRI SSAE

67.2

ABIDE:UCLAb 36 39 62.3

ABIDE: USMc 38 23 70.4

ABIDE: LEUVENd 27 34 68.3

Choi (2017) 2017 ABIDE 465 507 rs-fMRI VAE 0.60 (AUC)

Heinsfeld et al. (2018) 2018 ABIDE 505 530 rs-fMRI DAE 70.0

Hazlett et al. (2017) 2017 NDARe 106 42 rs-fMRI SAE 88.0

Dekhil et al. (2018) 2018 NDAR 123 160 rs-fMRI SSAE 91.0 ± 3.2

Saeed et al. (2019) 2019 ABIDE 505 530 rs-fMRI AE 70.1 ± 3.2

Li et al. (2018b) 2018 – 82 48 rs-fMRI 3D-CNN 89.0 ± 5.0 (F-score)

Khosla et al. (2018) 2018 ABIDE 542 625 rs-fMRI 3D-CNN 73.3

(Parisot et al., 2017) 2017 ABIDE 403 468 rs-fMRI GCN 69.5

Anirudh and Thiagarajan

(2017)

2017 ABIDE 404 468 rs-fMRI GCN 70.8

Yao et al. (2019) 2019 ABIDE 438 544 rs-fMRI GCN 67.3

Ktena et al. (2018) 2018 ABIDE 403 468 rs-fMRI GCN 62.9

Dvornek et al. (2017) 2017 ABIDE 1,100 – rs-fMRI LSTM 68.5 ± 5.5

Bi et al. (2018) 2018 ABIDE 50 42 rs-fMRI RNN 84.7 ± 3.2

aUniversity of Michigan. bUniversity of California, Los Angeles. cUniversity of Utah School of Medicine. dKatholieke Universiteit Leuven. eNational Database of Autism Research.

which directly used the rs-fMRI time-series data, rather than
the pre-calculated measures of brain functional connectively.
The authors thought that the rs-fMRI time-series data contained
more useful information of dynamic brain activity than single
and static functional connectivity measures. For clarity, the
important information of the above-mentioned papers was
summarized in Table 6.

3.4. Deep Learning for Schizophrenia
Analysis
Schizophrenia (SZ) is a prevalent psychiatric disorder and
affects 1% of the population worldwide. Due to the complex
clinical symptoms, the pathological mechanism of schizophrenia
remains unclear and there is no definitive standard in the
diagnosis of SZ. Different from the ADNI for AD diagnosis,
the PPMI for PD diagnosis, and the ABIDE for ASD diagnosis,
there was not a widely used neuroimaging dataset for the SZ
diagnosis. Therefore, some studies have successfully applied
source datasets that were available from the medical research
centers, universities, and hospitals.

Recently, some studies have successfully applied deep
learning algorithms to SZ diagnosis and have seen significant
improvement. These methods were divided into two categories:
unimodality and multi-modality, according to the types of input
data, rather than according to deep learning architectures like AD
or ASD diagnosis.

The unimodality category only used a single type of MRI
and can furthermore be classified into subclasses: sMRI-methods
and fMRI-methods. sMRI-methods discovery latent features

from sMRI dataset, which can provide information on the
tissue structure of the brain, such as gray matter, white matter,
and cerebrospinal fluid. Plis et al. and Pinaya et al. used the
DBN model, which only contained three hidden layers, to
automatically extract feature for SZ identification. The results
achieved a modestly higher predictive performance than the
shallow-architecture SVM approach (Plis et al., 2014; Pinaya
et al., 2016). Different from the DBN model in Pinaya et al.
(2016), Pinaya et al. (2019) trained an SAE to create a normative
model from 1,113 NC subjects, then used this model to estimate
total and regional neuroanatomical deviation in individual
patients with SZ. Ulloa et al. proposed a novel classification
architecture that used synthetic sMRI scans to mitigate the
effects of a limited sample size. To generate synthetic samples,
a data-driven simulator was designed that can capture statistical
properties from observed data using independent component
analysis (ICA) and a random variable sampling method. Then a
10-layer DNN was trained exclusively on continuously generated
synthetic data, and it greatly improves generalization in the
classification of SZ patients and NC (Ulloa et al., 2015).

The fMRI-methods extracted discriminative features from
rs-fMRI brain images with functional connectivity networks.
Kim et al. (2015) learned lower-to-higher features via the
DNN model in which each hidden layer was added L1-
regularization to control the weight sparsity, and they also
achieved 85.8% accuracy. Patel et al. used an SAE model with
four hidden layers to separately train on each brain region.
The input layer directly uses the complete time series of all
active voxels without converting them into region-wise mean
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TABLE 7 | Overview of papers using deep learning techniques for SZ diagnosis.

References Year Database
Subject

Modality Model Accuracy (%)

SZ NC

Plis et al. (2014) 2014 Multi-site1a 198 191 sMRI DBN 91.0 + 14 (F-score)

Ulloa et al. (2015) 2015 Multi-site1 198 191 sMRI DNN 75.0 ± 4 (AUC)

Pinaya et al. (2016) 2016 UNIFESPb 143 83 sMRI DBN 73.55 ± 6.84

Pinaya et al. (2019) 2019 NUSDASTc 30 40 sMRI SAE 70.7

Kim et al. (2015) 2015 NITRCd 50 50 rs-fMRI DNN 85.8

Patel et al. (2016) 2016 COBREe 72 74 rs-fMRI SAE 92.0

Zeng et al. (2018) 2018 Multi-site2f 357 377 rs-fMRI SAE 85.0 ± 1.2

Qureshi et al. (2019) 2019 COBRE 72 74 rs-fMRI 3D-CNN 98.09 ± 1.01

Dakka et al. (2017) 2017 FBIRNg 46 49 rs-fMRI CNN + LSTM 66.4

Yan et al. (2019) 2019 Multi-site3h 558 542 rs-fMRI CNN + GRU 83.2 ± 3.2

Qi and Tejedor (2016) 2016 MLSP2014 69 75 sMRI + fMRI DCCA/DCCAE 94.2/95.0 (AUC)

Srinivasagopalan et al.

(2019)

2019 MLSP2014 69 75 sMRI + fMRI DNN 94.44

Ulloa et al. (2018) 2018 FBIRN 135 169 sMRI + fMRI DNN 85.0 ± 5.0 (AUC)

aJohns Hopkins University; the Maryland Psychiatric Research Center; the Institute of Psychiatry; the Western Psychiatric Institute and Clinic at the University of Pittsburgh.
bthe Universidade Federal de São Paulo.
cNorthwestern University Schizophrenia Data and Software Tool.
dNeuroimaging Informatics Tools and Resources Clearinghouse website.
eCenter for Biomedical Research Excellence.
fXijing Hospital; First Affliated Hospital of Anhui Medical University; Second Xiangya Hospital; COBRE; the University of California, Los Angles and Washington University School of

Medicine.
gThe Function Biomedical Informatics Research Network Data.
hPeking University Sixth Hospital; Beijing Huilongguan Hospital; Xinxiang Hospital; Xinxiang Hospital; Xijing Hospital; Renmin Hospital of Wuhan University; Zhumadian Psychiatric

Hospital.

time series. This therefore ensured that the model retained
more information (Patel et al., 2016). Due to the limited size
of SZ dataset, Zeng et al. collected a large multi-site rs-fMRI
dataset from seven neuroimaging resources. An SAE with an
optimized discriminant item was designed to learn imaging
site-shared functional connectivity features. This model can
achieve accurate SZ classification performance across multiple
independent imaging sites, and the learned features found
that dysfunctional integration of the cortical-striatal-cerebellar
circuit may play an important role in SZ (Zeng et al., 2018).
Qureshi et al. built a 3D-CNN-based deep learning classification
framework, which used the 3D ICA functional network maps
as input. These ICA maps served as highly discriminative
3D imaging features for the discrimination of SZ (Qureshi
et al., 2019). To exploit both spatial and temporal information,
Dakka et al. and Yan et al. proposed a recurrent convolutional
neural network involving CNN followed by LSTM and GRU,
respectively. The CNN extracted spatial features, which then
were fed to the followed RNN model to learn the temporal
dependencies (Dakka et al., 2017; Yan et al., 2019).

Combined multi-modality brain images can improve the
performance of disorder diagnosis. The MLSP2014 (Machine
Learning for Signal Processing) SZ classification challenge
provided 75 NC and 69 SZ, which both contained sMRI and rs-
fMRI brain images. Qi and Tejedor (2016) used deep canonical
correlation analysis (DCCA) and deep canonically correlated
auto-encoders (DCCAE) to fuse multi-modality features. But

in the proposed method, two modalities features directly were
combined as 411 dimensional vector, then fed to the three-
layer DNN model (Srinivasagopalan et al., 2019). To alleviate
the missing modality, the synthetic sMRI and rs-fMRI images
were generated by a generator proposed, and they were then used
to train a multi-modality DNN (Ulloa et al., 2018). For clarity,
the important information of the above-mentioned papers was
summarized inTable 7. From this table, it can be seen the datasets
for SZ diagnosis come from different universities, hospitals, and
medical centers.

4. DISCUSSION AND FUTURE DIRECTION

As can be seen from this survey, consideration research has
been reviewed on the subject of deep learning across four
brain disorder diseases. Furthermore, the number of publications
on medical imaging analysis shows an almost exponential
growth in PubMed. Unfortunately, there is no unified deep
learning framework that could be generally used for every
disease research, even only for human disorder diseases. This is
consistent with the “No Free Lunch” theorem, which states that
there is no one model that works best for every problem. Thus,
different deep learning methods are developed using different
imaging modalities for a disease-specific task.

Although deep learning models have achieved great success
in the field of neuroimaging-based brain disorder analysis, there
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are still some challenges that deserve further investigation. We
summarize these potential challenges as follows and explore
possible solutions.

First, deep learning algorithms highly depend on the
configuration of hyper-parameter, which may dramatically
fluctuate the performance. The hyper-parameter set composed of
two parts: model optimization parameters (e.g., the optimization
method, learning rate, and batch sizes, etc.) and network
structure parameters (e.g., number of hidden layers and units,
dropout rate, activation function, etc.). To obtain the best
configuration, hyper-parameter optimizationmethods, including
manual (e.g., grid search and random search) and automatic
(e.g., Bayesian Optimization), are proposed. However, the
method behind designing the architecture of deep neural
networks still depends on the experienced experts. Recently,
neural architecture search (NAS) automates this design of
network architecture and indeed received new state-of-the-art
performance (Zoph and Le, 2016; He et al., 2019). Additionally,
another interesting technique called Population-Based Training
(PTB), which is inspired by genetic algorithms, bridges and
extends parallel search methods and sequential optimization
methods. PBT is ability to automatic discovery of hyper-
parameter schedules and model selection, which leads to stable
training and better final performance (Jaderberg et al., 2017).
It indicates that the hyper-parameter optimization may further
mine the potential of deep learning in medical analysis.

Second, deep neural networks rely on complicated
architectures to learn feature representations of the training data,
and then makes its predictions for various tasks. These methods
can achieve extremely accurate performances and may even beat
human experts. But it is difficult to trust these predictions based
on features you cannot understand. Thus, the black-box natural
of the deep learning algorithms has restricted the practical
clinical use. Some studies begin to explore the interpretability
of deep learning in medical image analysis, and aim to show
the features that most influence the predictions (Singh et al.,
2020). An attention-based deep learning method is proposed
and deemed as an interpretable tool for medical image analysis,
which inspired by the way human pay attention to different
parts of an image or the disease’s influence on different regions
of neuroimages (Sun et al., 2019b; Huang et al., 2020). The
clinical diagnosis information as a modality is fused into the
model to improve accuracy as well as give more comprehensive
interpretability of outcomes (Hao et al., 2016, 2017; Wang
et al., 2019a). Thus, how to improve the interpretability of deep
learning model is worth further study and attention.

Third, deep learning methods require a large number of
samples to train neural networks, though it is usually difficult to
acquire training samples in many real-world scenarios, especially
for neuroimaging data. The lack of sufficient training data
in neuroimage analysis has been repeatedly mentioned as a
challenge to apply deep learning algorithms. To address this
challenge, a data augmentation strategy has been proposed, and it
is widely used to enlarge the number of training samples (Hussain
et al., 2017; Shorten and Khoshgoftaar, 2019). In addition, the use
of transfer learning (Cheng et al., 2015, 2017) provides another
solution by transferring well-trained networks on big sample

datasets (related to the to-be-analyzed disease) to a small sample
dataset for further training.

Fourth, the missing data problem is unavoidable in
multimodal neuroimaging studies, because subjects may
lack some modalities due to patient dropouts and poor data
quality. Conventional methods typically discard data-missing
subjects, which will significantly reduce the number of training
subjects and degrade the diagnosis performance. Although many
data-imputing methods have been proposed, most of them
focus on imputing missing hand-crafted feature values that
are defined by experts for representing neuroimages, while the
hand-crafted features themselves could be not discriminative
for disease diagnosis and prognosis. Several recent studies (Pan
et al., 2018, 2019) propose that we directly impute missing
neuroimages (e.g., PET) based on another modality neuroimages
(e.g., MRI), while the correspondence between imaging data and
non-imaging data has not been explored. We expect to see more
deep network architectures in the near future to explore the
association between different data modalities for imputing those
missing data.

Fifth, an effective fusion of multimodal data has always
been a challenge in the field. Multimodal data reflects
the morphology, structure, and physiological functions of
normal tissues and organs from different aspects and has
strong complementary characteristics between different models.
Previous studies for multimodal data fusion can be divided
into two categories, data-level fusion (focus on how to
combine data from different modalities) and decision-level
fusion (focus on ensembling classifiers). Deep neural network
architectures allow a third form of multimodal fusion, i.e.,
the intermediate fusion of learned representations, offering
a truly flexible approach to multimodal fusion (Hao et al.,
2020). As deep-learning architectures learn a hierarchical
representation of underlying data across its hidden layers, learned
representations between different modalities can be fused at
various levels of abstraction. Further investigation is desired to
study which layer of deep integration is optimal for problems
at hand.

Furthermore, different imaging modalities usually reflect
different temporal and spatial scales information of the brain. For
example, sMRI data reflect minute-scale time scales information
of the brain, while fMRI data can provide second-scale time
scales information. In the practical diagnosis of brain disorder,
it shows great significance for the implementation of early
diagnosis and medical intervention by correctly introducing
the spatial relationship of the diseased brain regions and
other regions and the time relationship of the development
of the disease progress (Jie et al., 2018; Zhang et al., 2018a).
Although previous studies have begun to study the pathological
mechanisms of brain diseases on a broad temporal and spatial
scales, those methods usually consider either temporal or
spatial characteristics (Wang et al., 2019b,d). It is therefore
desirable to develop a series of deep learning frameworks to
fuse temporal and spatial information for automated diagnosis
of brain disorder.

Finally, the utilization of multi-site data for disease analysis
has recently attracted increased attention (Heinsfeld et al., 2018;
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Wang et al., 2018, 2019c) since a large number of subjects
from multiple imaging sites are beneficial for investigating
the pathological changes of disease-affected brains. Previous
methods often suffer from inter-site heterogeneity caused
by different scanning parameters and subject populations in
different imaging sites by assuming that these multi-site data
are drawn from the same data distribution. Constructing
accurate and robust learning models using heterogeneous multi-
site data is still a challenging task. To alleviate the inter-
site data heterogeneity, it could be a promising way to
simultaneously learn adaptive classifiers and transferable features
across multiple sites.

5. CONCLUSION

In this paper, we reviewed the most recent studies on the subject
of applying the deep learning techniques in neuroimaging-
based brain disorder analysis and focused on four typical
disorders. AD and PD are both neurodegenerative disorders.
ASD and SZ are neurodevelopmental and psychiatric disorders,
respectively. Deep learning models have achieved state-of-
the-art performance across the four brain disorders using
brain images. Finally, we summarize these potential challenges
and discuss possible research directions. With the clearer
pathogenesis of human brain disorders, the further development
of deep learning techniques, and the larger size of open-
source datasets, a human-machine collaboration for medical

diagnosis and treatment will ultimately become a symbiosis in
the future.
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Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding
of human brain development by providing quantitative information of cortical plate (CP)
development in vivo. However, for a reliable quantitative analysis of cortical volume
and sulcal folding, accurate and automated segmentation of the CP is crucial. In this
study, we propose a fully convolutional neural network for the automatic segmentation
of the CP. We developed a novel hybrid loss function to improve the segmentation
accuracy and adopted multi-view (axial, coronal, and sagittal) aggregation with a test-
time augmentation method to reduce errors using three-dimensional (3D) information
and multiple predictions. We evaluated our proposed method using the ten-fold cross-
validation of 52 fetal brain MR images (22.9–31.4 weeks of gestation). The proposed
method obtained Dice coefficients of 0.907 ± 0.027 and 0.906 ± 0.031 as well as
a mean surface distance error of 0.182 ± 0.058 mm and 0.185 ± 0.069 mm for
the left and right, respectively. In addition, the left and right CP volumes, surface
area, and global mean curvature generated by automatic segmentation showed a high
correlation with the values generated by manual segmentation (R2 > 0.941). We also
demonstrated that the proposed hybrid loss function and the combination of multi-view
aggregation and test-time augmentation significantly improved the CP segmentation
accuracy. Our proposed segmentation method will be useful for the automatic and
reliable quantification of the cortical structure in the fetal brain.

Keywords: deep learning, fetal brain, cortical plate, segmentation, hybrid loss, MRI

INTRODUCTION

A fundamental method for understanding brain development and disease is the quantitative
analysis of magnetic resonance imaging (MRI) data, which requires preprocessing steps such
as brain extraction, tissue segmentation (gray matter, white matter, and cerebrospinal fluid),
and specific region-of-interest segmentation. Advances in MRI technology have enabled in vivo
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human fetal MRI studies to examine early brain development
during the prenatal period. Among several quantitative indices
of the human fetal brain, cortical volume and cortical folding
patterns are crucial to the characterization and detection of
abnormal brain development (Scott et al., 2011; Clouchoux et al.,
2012; Im et al., 2013, 2017; Tarui et al., 2018; Ortinau et al.,
2019; Yun et al., 2020a). For a reliable and sensitive analysis of
its volume and surface folding patterns, accurate segmentation
of the cortical plate (CP) is necessary. However, manual or
semi-automatic segmentation has been used in previous studies
which is a highly time-consuming and challenging task with
high inter- and intra-rater variability. In addition, because fetal
brains exhibit dramatic changes in size, cortical shape, cellular
compartments, and image contrast at tissue boundaries, which
vary with gestational age (GA) compared to child or adult brains,
previous methods that were developed for the cortical gray
matter segmentation of mature brains are not applicable to fetal
brain segmentation.

Over the past decade, several algorithms for automatic
CP segmentation from fetal MRI have been proposed. The
expectation-maximization (EM) algorithm and atlas-based
segmentation method have been employed for fetal brain tissue
segmentation (Bach Cuadra et al., 2009; Habas et al., 2010; Serag
et al., 2012; Wright et al., 2014). However, previous studies have
reported results from a narrow GA range in a small number of
subjects, and/or exhibited large errors [4–16 subjects, accuracy
of CP segmentation measured by Dice coefficient = 0.63–0.84
and mean surface distance (MSD) error = 0.70–0.86 mm] (Bach
Cuadra et al., 2009; Habas et al., 2010; Serag et al., 2012; Wright
et al., 2014). The EM algorithm requires the precise estimation
of a mixture of tissue probability using linear and non-linear
registration between target images and a brain atlas. Likewise,
atlas-based segmentation requires precise registration, including
a non-linear approach between the target image and brain
atlas. Fetal CPs have a very thin band-shaped structure, and
the boundary of CPs is ambiguous owing to a low effective
MRI resolution and the partial volume effect, which limits
the accuracy of registration. Therefore, it may be difficult
to accurately extract thin CPs from fetal MRI using the EM
algorithm and atlas-based segmentation.

Recently, deep learning in the field of image segmentation has
shown superior performance compared to traditional methods
such as EM algorithm. Among various deep learning algorithms,
the convolutional neural network (CNN) has been widely used
for brain tissue and region segmentation in postnatal MRI
data (Zhang et al., 2015; Kleesiek et al., 2016; Milletari et al.,
2016; Ghafoorian et al., 2017; Chen et al., 2018; Kushibar
et al., 2018; Wachinger et al., 2018; Alom et al., 2019; Guha
Roy et al., 2019). Fetal CP segmentation methods based on
MRI and ultrasound have been proposed using CNN (Khalili
et al., 2019; Dou et al., 2020; Wyburd et al., 2020). One peer-
reviewed MRI study proposed fetal brain tissue segmentation
using a two-dimensional (2D) semantic CNN model that can
segment seven brain tissues, including the CP (Khalili et al.,
2019). However, the authors trained a CNN using the basic
Dice loss, which maximize the Dice coefficient of segmentation.
The basic Dice loss may not be optimal for relatively small

areas in the multi-label segmentation problem, which may be a
reason for the low accuracy of CP segmentation (Sudre et al.,
2017; Wong et al., 2018). They obtained a CP segmentation
accuracy that was relatively lower than the overall average
Dice coefficient (CP: Dice coefficient = 0.835; Overall: Dice
coefficient = 0.892) with a small number of fetal brain MRIs
for a wide range of GA (12 fetuses from 22.9 to 34.6 weeks).
Moreover, 3D information of the brain structures was not
fully utilized in their methods, since they trained the network
model using only coronal slices. To overcome the limitations
in the previous methods, we propose an enhanced method
for the automatic segmentation of the fetal CP using deep
learning based on a large dataset of fetal brain MRIs. Our
proposed method is focused on CP segmentation as our
aim is to achieve the optimal accuracy of cortical volumes
and surfaces. Numerous segmentation labels may require the
complicated deep learning network and achieve inaccurate
performance of CP segmentation. We propose a novel hybrid
loss function and utilize a multi-view aggregation with test-
time augmentation (MVT) approach to enhance the performance
of CP segmentation. We adopt a focal Dice loss function,
which is an exponential logarithmic Dice loss, to assign a large
gradient to the less accurate labels (Wong et al., 2018). Our
hybrid loss additionally includes a novel boundary Dice loss
to accurately segment the CP boundary areas. In addition,
the multi-view aggregation technique is used to enhance the
segmentation accuracy by applying a 3D information to a 2D
deep learning network. It combines three results from separate
learning networks of 2D slices from three orthogonal planes
(axial, coronal, and sagittal) to generate the final segmentation
(Guha Roy et al., 2019; Jog et al., 2019; Estrada et al., 2020).
The test-time augmentation (TTA) technique can obtain more
robust prediction results using multiple predictions for a single
input by applying the augmentation to test data, which is often
used for the training phase in deep learning networks (Matsunaga
et al., 2017; Jin et al., 2018). In this study, we applied both
multi-view aggregation and TTA methods to obtain multiple
results in each plane and to combine all results generated from
the three planes. The hybrid loss was compared with the basic
Dice loss, and MVT was compared with the results of the
multi-view aggregation, TTA, and single view prediction. We
hypothesized that MVT performs better than multi-view or TTA
because it combines more segmentation results without changing
the network and multi-view training structure. Furthermore,
volume- and surface-based indices were extracted from both
ground truth and automatic segmentation results and then
compared to examine the reliability of brain measurements
calculated from our segmentation.

MATERIALS AND METHODS

Dataset
The use of fetal MRIs was approved by the Institutional Review
Boards at the Boston Children’s Hospital (BCH) and Tufts
Medical Center (TMC). Typically developing (TD) fetal MRIs
were collected from subjects by recruitment, and retrospectively
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from clinical fetal MRIs performed to screen for abnormalities at
BCH but found to be normal. Inclusion criteria for TD fetuses
included no serious maternal medical conditions (nicotine
or drug dependence, morbid obesity, cancer, diabetes, and
gestational diabetes), maternal age between 18 and 45 years,
fetal GA between 22 and 32 weeks GA. Exclusion criteria
included multiple gestation pregnancies, dysmorphic features
on ultrasound (US) examination, brain malformations, or brain
lesions on US, other identified organ anomalies on US, known
chromosomal abnormalities, known congenital infections and
any abnormality on the fetal MRI. A total of 52 TD fetuses
(22.9–31.4 weeks of pregnancy) were identified and used in this
study. Fetal brain MRIs were acquired on a Siemens 3T Skyra
scanner (BCH) or Phillips 1.5 T scanner (TMC) using a T2-
weighted half-Fourier acquisition single-shot turbo spin-echo
(HASTE) sequence with a 1-mm in-plane resolution, field of
view (FOV) = 256 mm, TR = 1.5 s (BCH) or 12.5 s (TMC),
TE = 120 ms (BCH) or 180 ms (TMC), and slice thickness = 2–
4 mm. After localizing the fetal brain, the HASTE scans were
acquired multiple times in different orthogonal orientations (a
total of 3–10 scans) for reliable motion correction and the 3D
reconstruction of fetal brain MRI.

Preprocessing
First, we performed preprocessing on fetal brain MRIs (Im et al.,
2017; Tarui et al., 2018; Yun et al., 2019, 2020b). Using multiple
scans of HASTE, a slice-to-volume registration technique was
adopted to combine 2D slices of fetal brain MRIs to create a
motion-corrected 3D volume (Kuklisova-Murgasova et al., 2012).
We set the resolution of the reconstructed volume to a 0.75-mm
isotropic voxel size. Because the size, position, and orientation
of the reconstructed volumes vary for different fetuses, the
reconstructed volumes were linearly registered to a fetal brain
template using “FLIRT” in FSL and transformed to a standard
coordinate space (Jenkinson et al., 2002; Serag et al., 2012).
Then, the CP volume and whole inner volume of the CP were
semi-automatically segmented into left and right based on the
voxel intensities by two trained raters, and they were manually
modified to obtain the final segmentation by a single person. The
final segmentation from the semi-automatic approach was used
as ground truth.

We performed additional processes on the registered MRI for
better segmentation performance. First, we removed unnecessary
non-brain voxels from the registered volume by multiplying them
by the brain mask of the template. Second, the z-transformation
was applied to normalize the intensity distribution across the
entire MRI scan. Finally, the scanned image was cropped based
on the size of the dilated template brain mask and the size of
the 2D image of each axis plane, unified to a 128 × 128 2D slice
by zero padding.

Network Architecture
The deep learning network architecture is shown in Figure 1. We
configured the contracting (left side) path, expansive (right side)
paths, and skip connections, similar to the U-Net (Ronneberger
et al., 2015). The structure comprises repeated layers of the batch

normalization (BN), exponential linear units (ELU), 3 × 3 zero-
padded convolution, and a 2 × 2 max pooling with stride 2
(Ioffe and Szegedy, 2015; Clevert et al., 2016). Each network
layer is divided into blocks based on the size of the feature map.
Each block represents a structure in which the BN, ELU, and
convolution layers are present in triplicate. The order of the layers
in the block was composed of BN, ELU, and convolution by
referring to the evaluation result of the previous study (He et al.,
2016). Thirty-two feature maps were generated by convolution in
the first block, and the number of feature maps doubled as the size
of the block became smaller, finally generating 512 feature maps.
In the expansive path, we extended the feature map of the lower
feature map size block to the size of the higher size block using
3× 3 transposed convolution. The extended feature map and the
last feature map of a corresponding block on a contracting path
of the same size were concatenated and used as inputs of repeated
convolution. In the last layer, 1× 1 convolution was employed to
compress the desired number of labels from the 32 feature maps
to 5 (including background), and softmax activation was applied
to create a probability value for each label.

We additionally trained a 3D network to compare with the
performance of the multi-view aggregation. The 3D network
structure is basically the same with 2D network, and the 2D
layers are simply changed to 3D layers (e.g., 2D convolution to
3D convolution). However, due to the limitation of the graphic
processing unit (GPU) memory, the number of feature maps
generated by convolution in the first block starts with eight, and
the number of feature maps at the largest is 128.

Loss Function
Dice Loss
The Dice loss function was introduced in a previous medical
image segmentation study (Milletari et al., 2016). The authors
calculated the Dice loss using the Dice coefficient, which is
an index used to evaluate the segmentation performance. For
segmentation of the prostrate, the Dice loss exhibited superior
performance to the re-weighted logistic loss. In this study,
the Dice loss (LDice) was employed according to the following
function:

LDice(g, p) = 1−
1

Nl

(∑
l

2(
∑

i glipli))+ ε∑
i
(
gli + pli

)
+ ε

)

Here, i depicts the pixel location, l represents the label, and
Nl is the total number of labels. pli is the softmax probability
calculated from the deep learning network, and gli is the ground
truth probability at location i and label l. ε is the smoothing term
to prevent division by zero. The Dice coefficient of each label has
a value between 0 and 1. The loss function (1– averaged Dice
coefficient) is used for training.

Hybrid Loss
The Dice loss demonstrated its usefulness in the segmentation
problem of medical images (Milletari et al., 2016; Guha Roy et al.,
2019; Khalili et al., 2019). However, new losses that improve
the Dice loss have recently been introduced (Sudre et al., 2017;
Wong et al., 2018). The Dice loss is unfavorable for relatively
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FIGURE 1 | Illustration of proposed network based on U-Net. Our network uses a 128 × 128 2D slice as the input and predicts the probability of five labels
(background, left and right CP, and left and right inner volume of CP).

small structures, as misclassifying a few pixels can lead to a
large reduction in the coefficient (Wong et al., 2018). Therefore,
we adopted the logarithmic Dice loss (focal loss; Lfocal), which
focuses on less accurate labels (Wong et al., 2018):

Lfocal(g, p) =
1

Nl

(
ln

(∑
l

2(
∑

i glipli))+ ε∑
i
(
gli + pli

)
+ ε

)γ)
Here, γ dictates the non-linearities of the loss function. In this

study, the optimum value of γ was 0.3 (Wong et al., 2018). This
focal loss balances between structures that are easy and difficult
to segment. Furthermore, we developed the boundary Dice loss
to enhance the boundary segmentation accuracy. The Dice loss
is effective at increasing the overall overlap between the ground
truth and predictions; however, it lacks segmentation accuracy
for boundary areas. Thus, to increase the weight of the boundary
area, we calculated its Dice loss and added it to the loss for the
entire area, which is called hybrid loss (Lhyb) in this paper.

Lhyb
(
g, p

)
= Lfocal

(
g, p

)
+ λLfocal

(
g − g	B, p− p	B

)
In the above equation, we use 	 to denote erosion; B is the

erosion kernel (disk shape with diameter of 7), and λ is the weight
for the boundary Dice loss. The boundary was detected through
erosion and subtraction, and the Dice loss was calculated from
the detected area and added to the whole-area Dice loss. The
mixing weight λ was experimentally chosen by evaluating the
Dice coefficient of the validation data for each λ in the range of
0.1–0.5; the best performance was obtained for λ = 0.1.

Aggregation
Multi-View Aggregation
Multi-view aggregation combines the predicted results in each
orthogonal view, yielding a 3D regularization for errors occurring
in 2D plane segmentation (Guha Roy et al., 2019). We trained
a separate CNN for each of the three planes: axial, coronal, and
sagittal. The predictions of each plane network were aggregated
into the final segmentation map. The final segmentation map
using multi-view aggregation (pmv) was computed as follows:

pmv (i) = arg max
l

(
paxi

(
i, l
)
+ pcor

(
i, l
)
+ psag

(
i, l
))

Here, paxi
(
i, l
)
, pcor

(
i, l
)
, and psag

(
i, l
)

are the predicted four-
dimensional probability arrays consisting of 3D of the voxel space
and one dimension of the labels for axial, coronal, and sagittal
planes, respectively. In the i-th voxel, the probabilities across the
planes are summed and then a label with the highest probability
is assigned as the final label. The predicted results for the axial
and coronal planes (paxi and pcor) include 5 labels (background,
left inner volume of CP, right inner volume of CP, left CP, and
right CP), whereas result for sagittal plane (psag) contains only 3
labels (background, inner volume of CP, and CP) because there is
no information on the left and right hemispheres in 2D sagittal
view. Therefore, psag of the inner volume of CP is added to both
probabilities of left and right inner volume of CP from other
planes, and probability of CP is also added to both left and right.
Figure 2A illustrates the multi-view aggregation.

Test-Time Augmentation
Test-time augmentation has been employed recently to improve
the performance of various applications, including segmentation
and classification (Matsunaga et al., 2017; Wang et al., 2019). The
TTA technique was applied in the testing phase to improve the
accuracy by creating various test results and combining these
results. Ensemble of multiple prediction results for a single input
can reduce prediction errors that may occur in a single prediction.
We generated four outputs with artificially augmented inputs:
original, horizontal flip, vertical flip, and horizontal/vertical flip
(Figure 2B). In the case where slices are inverted left to right, the
left and right sides of the output will be inverted from the original
state. Therefore, when the left and right sides are inverted, an
additional label inversion is applied to switch the left and right
labels. For example, the final label map by the axial plane TTA
(pTTA_axi) is computed as follows:

psum_axi = paxi + Th
(
paxi

)
+ Tv (paxi)+ Thv (paxi)

pTTA_axi (i) = arg max
l

(
psumaxi(i, l)

)
Here, Th, Tv, and Thv are the horizontal flip, vertical flip,

and horizontal/vertical flip transformation, respectively. This is
similar to the multi-view aggregation in terms of combining
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FIGURE 2 | Schematic representation of proposed segmentation procedure. (A) Multi-view aggregation combines segmentations from each trained model along
three planes: coronal, sagittal, and axial. (B) TTA prediction synthesizes multiple segmentations by flip augmentation to generate a final segmentation map. (C) To
enhance prediction accuracy, MVT aggregation is a combination of multi-view aggregation and TTA.

multiple results, whereas it differs from synthesizing multiple
results in one view.

MVT Aggregation
MVT aggregation is a combination of 3D information from
multi-view aggregation and ensemble of multiple predictions
from TTA (Figure 2C). We applied TTA on each plane to obtain
multiple results, and aggregated these results from each view to
obtain the final result. In this study, the final label value on the
i-th location [pMVT (i)] is computed as follows:

pMVT (i) = arg max
l

(
psum_axi

(
i, l
)
+ psum_cor

(
i, l
)
+psum_sag

(
i, l
))

Here, psum_axi, psum_cor, and psum_sag are augmented
prediction probability maps obtained from the axial, coronal,
and sagittal planes, respectively. By increasing the number of
prediction results used in the multi-view, more regularization
effects are obtained than in the multi-view aggregation. A total
of 11 (4 axial, 4 coronal, and 3 sagittal) prediction results were
aggregated to generate the final 3D segmentation label map.

Training Strategy
Our model was tested with 52 fetuses using ten-fold cross-
validation. Stratified sampling was used to match the GA
distribution between training folds. 10% of the training samples
selected through stratified sampling was used as a validation set.
The hybrid loss described above was used for training, and deep
learning was optimized using Adam (learning rate = 0.0001)
(Kingma and Ba, 2015). For setting the optimal network weights
in each fold, we monitored the Dice coefficient in the validation
set in every epoch until there is no longer improvement of the

Dice coefficient during the last 100 epochs using early stopping
function. Then the network weights at the highest Dice coefficient
in the validation set were stored as the optimal network. To
increase the training dataset, data augmentation was applied.
The augmentation parameters were vertical, horizontal, and
vertical/horizontal flips. The type of data augmentation applied
to the training phase was applied equally to the TTA prediction.
For MVT aggregation, three networks of three orthogonal planes
were trained. Although the three networks have the same
structure, the number of the last outputs from the network of
sagittal plane is different from those of axial and coronal planes,
because the left and right hemispheres cannot be separated
in sagittal plane.

Evaluation
The automatic segmentation performance was evaluated by
the Dice coefficient used to measure the volume overlap and
the MSD in order to quantify the boundary accuracy between
the ground truth and the prediction segmentation map. The
training of the network was based on 2D slices, whereas
the proposed method evaluation was conducted in final 3D
segmentation result. Furthermore, the CP volume and surface
indices were measured and compared between the ground truth
and automatically segmented volumes. To calculate the surface
index, we adopted surface extraction procedure used in our
previous studies (Im et al., 2017; Tarui et al., 2018; Yun et al., 2019,
2020b). Spatial smoothing was performed in the segmented inner
volume of the CP using a 1.5 mm full width at half-maximum
kernel to minimize noise. Using the smoothed inner volume
of the CP, the hemispheric (left and right) triangular surface
meshes of the inner CP boundary were automatically extracted
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by a function “isosurface” in MATLAB 2019b (MathWorks
Inc., Natick, MA, United States). The surface models were
geometrically smoothed using Freesurfer1 to eliminate noise and
small geometric changes. We calculated the CP volume based on
the automatic segmentation result. Then, the surface area and
global mean curvature (GMC) were calculated from the inner
CP surface. The surface area was computed based on Voronoi
region of each surface mesh vertex (Meyer et al., 2003). Mean
curvature was defined as the angular deviation from each vertex
(Meyer et al., 2003).

Statistical Analysis
We evaluated the effect of the loss and aggregation types on
the automatic segmentation accuracy in four regions (left inner
volume of CP, right inner volume of CP, left CP, and right
CP) using the two-way repeated measure analysis of variance
(ANOVA). Then, employing the post hoc test (Holm–Bonferroni
method) for each effect, we determined which loss function and
aggregation method performed best. The types of loss functions
tested are basic Dice loss and hybrid loss, and the types of
aggregation are MVT, multi-view, TTAaxi, TTAcor , axi, and cor.
The axi and cor denote the results obtained using only the
original slice without any aggregation. There is no comparison
for the sagittal plane since there is no information of the left
and right hemispheres. TTAaxi and TTAcor are obtained by
applying TTA to the axial and coronal planes, respectively. Multi-
view results are obtained from the combination of using only
one result without TTA on the three planes, and MVT results
from the combination of multiple results by applying TTA on
all three planes. The numbers of segmentation aggregations are
11 (MVT), 3 (multi-view), 4 (TTAaxi), 4 (TTAcor), 1 (axi), and
1 (cor). We used paired t-test to compare the performance
between 2D multi-view network and 3D network. For direct
comparison between the two networks, the same basic Dice loss
was used without TTA. Subsequently, the similarities in the CP

1https://surfer.nmr.mgh.harvard.edu

volume, surface area, and GMC between manual and automatic
segmentation were evaluated using linear regression. Finally,
we statistically evaluated whether the segmentation accuracies
are associated with data properties, such as the subject age
and imaging scanner. We evaluated GA-related changes of the
Dice coefficient and MSD using the Pearson correlation analysis.
Segmentation accuracies were statistically compared between
different MR scanners (47 subjects from Siemens 3T at BCH vs.
5 subjects from Philips 1.5T at TMC) using a permutation test
based on random resampling 10,000 times.

RESULTS

Effect of Loss Function
The repeated measure ANOVA test showed no difference
between the Dice loss and hybrid loss in the inner volume
of CP. However, the hybrid loss had a significantly higher
segmentation accuracy (higher Dice coefficient and lower MSD)
in the CP compared with the Dice loss (CP Dice coefficient
[left, right]: p = 0.027, p = 0.024; CP MSD: p = 0.024, p =
0.024). The Dice coefficient and MSD for each loss are shown in
Table 1. Figure 3 shows an example of segmentation to verify the
effect of hybrid loss.

Effect of Aggregation Method
The Dice coefficient and MSD for each aggregation method
are shown in Table 1. In post hoc testing, axi and cor showed
no statistical difference from each other in all four regions;
however, they showed significantly increased accuracy when TTA
was applied (TTAaxi vs. axi and TTAcor vs. cor). There was no
significant difference between TTAaxi and TTAcor . Multi-view
aggregation exhibited a better performance than single plane-
based TTA. Significantly large differences were found in most
regions, except in the MSD of the right CP. Compared with
other aggregation methods, the proposed MVT method yielded
a significantly higher Dice coefficient in all post hoc tests. MVT

TABLE 1 | Statistical comparisons of segmentation performance obtained by different loss functions and aggregation methods.

Loss Aggregation

Hybrid Basic Dice MVT Multi-view TTAaxi TTAcor axi cor

Dice in_L 0.978 ± 0.009 0.978 ± 0.009 0.980 ± 0.008 0.979 ± 0.008a 0.978 ± 0.009a,b 0.977 ± 0.009a,b 0.977 ± 0.009a,b,c 0.976 ± 0.009a,b,c,d

in_R 0.977 ± 0.011 0.977 ± 0.011 0.979 ± 0.011 0.978 ± 0.011a 0.977 ± 0.012a,b 0.977 ± 0.011a,b 0.976 ± 0.011a,b,c,d 0.976 ± 0.011a,b,c,d

CP_L 0.899 ± 0.027 0.885 ± 0.048* 0.907 ± 0.027 0.904 ± 0.027a 0.897 ± 0.027a,b 0.855 ± 0.126a,b 0.894 ± 0.026a,b,c 0.893 ± 0.029a,b,c

CP_R 0.898 ± 0.031 0.884 ± 0.050* 0.906 ± 0.031 0.902 ± 0.030a 0.896 ± 0.032a,b 0.896 ± 0.033a,b 0.892 ± 0.031a,b,c,d 0.851 ± 0.126a,b

MSD in_L 0.293 ± 0.092 0.293 ± 0.095 0.267 ± 0.092 0.277 ± 0.090a 0.294 ± 0.097a,b 0.299 ± 0.099a,b 0.308 ± 0.097a,b,c 0.312 ± 0.096a,b,c,d

in_R 0.300 ± 0.112 0.297 ± 0.110 0.271 ± 0.110 0.282 ± 0.107a 0.299 ± 0.118a,b 0.303 ± 0.116a,b 0.318 ± 0.115a,b,c,d 0.321 ± 0.108a,b,c,d

CP_L 0.199 ± 0.059 0.544 ± 1.064* 0.188 ± 0.060 0.190 ± 0.058 0.199 ± 0.060a,b 1.229 ± 3.178 0.209 ± 0.060a,b,c 0.213 ± 0.064a,b,c

CP_R 0.202 ± 0.070 0.551 ± 1.078* 0.186 ± 0.069 0.204 ± 0.077a 0.203 ± 0.073a 0.205 ± 0.073a 0.215 ± 0.072a,c,d 1.247 ± 3.192

Axi and cor denote one original slice result of axial and coronal planes, respectively. TTAaxi and TTAcor aggregate four axial and four coronal view results, respectively.
Multi-view aggregates three results (one axial, one coronal, and one sagittal). MVT combines 11 segmentation results (four axial, four coronal, and three sagittal) by
applying TTA and multi-view simultaneously.
∗Significantly different from hybrid loss; asignificantly different from MVT; bsignificantly different from multi-view; csignificantly different from TTAaxi ; dsignificantly different
from TTAcor ; all significant results: Holm–Bonferroni corrected p < 0.05.
Data: mean ± standard deviation; in: inner volume of CP; L: left, R: right.
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FIGURE 3 | Example of segmentation results with different loss function. The black arrows indicate the errors of segmentation when using the Dice loss. Since the
loss for boundary was added, the proposed hybrid loss achieves more accurate segmentation results compared to the Dice loss.

also showed a significantly lower MSD than other methods in
all comparisons except for those with multi-view and TTAcor
in the left CP and cor in the right CP. All statistical values
of the comparisons among aggregation methods are shown in
Supplementary Tables 1–3. Figure 4 shows the example of
segmentation to verify the effect of each aggregation method. For
a visual comparison of the segmentation performance according
to the aggregation method, box plots of both evaluation metrics
are shown in Figure 5. Additionally, when compared to the
2D multi-view network, the 3D network obtained a significantly
lower segmentation accuracy in both the Dice coefficient and
MSD (see Table 2).

Volume and Surface Index Comparison
We evaluated similarity between the manual and our automatic
segmentations in terms of the CP volume, area, and GMC of
the inner CP surface. Figure 6 shows the regression results
between the indices obtained from the manual and automatic
segmentations. The coefficient (β) of the linear regression is close
to 1 in all indices, and it is statistically significant (p < 0.0001).
An R2 value of 0.94 or more is obtained for all indices. Therefore,
the proposed method produced a very similar CP volume and
surface indices when compared to manual segmentation.

Effects of Age and Scanner on
Segmentation Performance
We evaluated the performance of the proposed method with
respect to different GA and scanners. In terms of the MSD, for
all regions, there were no significant changes of segmentation
accuracy by GA (inner volume of CP [left, right]: p = 0.113,
p = 0.063; CP: p = 0.089, p = 0.055). The Dice coefficient was
significantly reduced with GA in the inner volume of CP (left:
p = 0.001, right: p = 0.002). However, the correlations between

the Dice coefficient and GA were not statistically significant in
the left and right CP (left: p = 0.055, right: p = 0.073). Figure 7
shows age-related trends of segmentation accuracy.

The accuracies obtained using automatic segmentation did
not vary significantly across all regions between the two scanners
(inner volume of CP Dice coefficient [left, right]: p = 0.402, p =
0.406; CP Dice coefficient: p = 0.218, p = 0.239; inner volume of
CP MSD: p = 0.603, p = 0.628; CP MSD: p = 0.384, p = 0.357).

DISCUSSION

We developed a method to segment the CP of the fetal brain
with high performance by employing the hybrid loss and MVT.
The accuracy of the segmentation results obtained using our
proposed method (Dice coefficient > 0.906, MSD < 0.185 mm)
was superior to those using previous methods (Bach Cuadra
et al., 2009; Habas et al., 2010; Serag et al., 2012; Wright et al.,
2014; Khalili et al., 2019). Furthermore, the strong correlations
of the volume-based index and surface-based indices between
automatic and manual segmentation were found.

Hybrid Loss Function
We proposed a new hybrid loss to improve the segmentation
accuracy at the boundary regions between tissues as well as the
overall segmentation performance. Compared with the basic Dice
loss, the hybrid loss showed significantly higher Dice coefficient
and lower MSD (see Table 1). The proposed loss employed focal
Dice loss in order to increase the overall performance, and focal
boundary Dice loss in order to increase the boundary accuracy.
In the multi-label segmentation problem, the adjustment of the
segmentation weight between target labels in the network loss
function is one of the primary factors affecting the performance
(Sudre et al., 2017). The proposed method adopts a focal
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FIGURE 4 | Example of segmentation results with different aggregation methods. The black arrows indicate the errors of segmentation. The proposed MVT method
effectively eliminated segmentation errors that remained even after using TTA or multi-view aggregation.

FIGURE 5 | Box plots of segmentation accuracy. The proposed method yields a significantly higher Dice coefficient and lower MSD compared with other methods.
The gray line is the connection between the same subjects. Post hoc results are listed in Table 1 and Supplementary Tables 1–3.

structure to adjust the segmentation weight without the need for
a weight calculation process. The focal structure created using
the logarithmic Dice loss assigns a larger gradient to lower-
performance target labels (Wong et al., 2018). As we proposed,
our result showed that the hybrid loss was more accurate than
the basic Dice loss at the boundary area (Figure 3).

Recently, studies that employ boundary-related loss functions
have been conducted (Schmidt and Boykov, 2012; Karimi
and Salcudean, 2020). The Hausdorff distance (HD) loss was
proposed to include the surface distance in the loss function
(Karimi and Salcudean, 2020). However, the calculation process
is complicated, and the weight compensation is difficult as the
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TABLE 2 | Statistical comparisons of segmentation performance between 2D
network with multi-view aggregation and 3D networks.

2D multi-view 3D network Paired t-test

t p

Dice in_L 0.979 ± 0.008 0.974 ± 0.010 8.352 0.0001

in_R 0.978 ± 0.011 0.974 ± 0.011 8.563 0.0001

CP_L 0.904 ± 0.028 0.819 ± 0.223 2.797 0.0073

CP_R 0.901 ± 0.031 0.881 ± 0.033 12.822 0.0001

MSD in_L 0.279 ± 0.092 0.369 ± 0.117 −8.067 0.0001

in_R 0.283 ± 0.108 0.371 ± 0.137 −6.615 0.0001

CP_L 0.190 ± 0.059 1.875 ± 5.565 −2.134 0.0377

CP_R 0.217 ± 0.101 0.255 ± 0.081 −3.091 0.0032

Data, mean ± standard deviation; L, left; R, right.

range of values of the Dice and boundary loss vary. In this study,
we proposed a morphological erosion-based boundary Dice loss
which is simple and similar to the whole-area Dice loss, and
the weight adjustment is straightforward as the range is the
same as the whole-area Dice loss. An additional experiment was
conducted to compare the segmentation performance between
the HD loss (focal Dice loss + HD loss) and the hybrid
loss proposed in this paper. There was no statistical difference
between the two loss functions (paired t-test, CP Dice coefficient
[left, right]: p = 0.686, p = 0.544; CP MSD: p = 0.398, p =
0.243). The proposed method has an advantage because it not
only requires much simpler computation and weight control
compared to the previous study (Karimi and Salcudean, 2020),
but also shows a high segmentation performance.

MVT Aggregation
We propose the MVT aggregation, which combines multi-view
aggregation and TTA. Compared to other aggregation methods,
the proposed method showed significant increases in the Dice
coefficient exhibited in all regions. The MSD significantly
decreased in all regions except for the left CP of multi-view,
the left CP of TTAaxi, and the right CP of cor. Our deep
learning network did not fully utilize the 3D information of
MRI as it was trained based on 2D slices. Therefore, to correct
2D results using 3D information, a multi-view aggregation was
adopted, which synthesizes the results from networks of three
orthogonal planes to generate a final 3D segmentation result.
TTA was applied to improve the accuracy using various predicted
segmentation maps. TTA improves the prediction accuracy by
applying data augmentation to obtain multiple prediction results
and ensemble them. As a result of the evaluation, we found
that higher accuracies were obtained with a larger number of
segmentation results (Table 1 and Supplementary Tables 1–3).
TTA results (TTAaxi and TTAcor) showed higher accuracies than
those of one slice (axi and cor) (Table 1 and Supplementary
Table 1). The results demonstrate that multi-prediction by TTA
can reduce errors that may occur in single prediction (axi and
cor). Notably, multi-view results were more accurate than TTA
(Table 1 and Supplementary Table 2). For the final segmentation
map, multi-view aggregation was corrected using three results

from three planes, and it was more accurate than the TTA
corrected with four results from one plane. This result indicates
that 3D information from multi-view aggregation is more helpful
for precise segmentation than the ensemble of the result using
TTA. Also, multi-view aggregation outperformed the 3D network
(Table 2). Although multi-view aggregation approach is based
on a 2D network, it can reflect 3D information and utilize
more training data, which may result in better segmentation
performance compared to 3D network. MVT proposed in this
study combines four results in the axial plane, four results in
the coronal plane, and three results in the sagittal plane to
finally produce the final segmentation with 11 prediction results.
Therefore, the ensemble of multiple predictions using TTA was
obtained, and at the same time, to generate more accurate
segmentation results, the regularization of 3D information using
multi-view aggregation was incorporated. The comparison of
MVT with other approaches is shown in Table 1 (Supplementary
Table 3). Figure 4 shows that as the level of the synthesis
increases, the segmentation error decreases. It is shown that the
error caused by prediction using only one slice can be corrected
by TTA or multi-view, but more effectively by MVT.

Measurement of Volume- and
Surface-Based Indices Using Automatic
Segmentation
The accurate segmentation of brain regions is a fundamental
step for the further analysis of brain morphometry using
volume- and surface-based indices. The indices obtained from
our segmentation method showed high correlations with the
corresponding indices obtained from ground truth. When the CP
volume is small, accurate results were obtained, whereas when
the volume of the CP increased (>20 cc), the fitting accuracy
decreased. This occurs because as the fetus grows and the brain
size increases, the CP quickly becomes more complex and folded,
increasing the difficulty of automatic segmentation. However, the
actual average prediction errors remained low at values as small as
1.714 cc for the left CP and 2.308 cc for the right CP. Compared
to the CP volume, regression models of surface indices showed
higher correlations in the whole GA range between manual and
automatic segmentation. Thus, our findings demonstrate that the
proposed automatic segmentation method is reliable for further
volume- and surface-based analyses.

Gestational Age and Scanner Effects on
CP Segmentation
We used the Dice coefficient, MSD, and volume- and surface-
based indices to evaluate the segmentation accuracy. Among
them, in the fitting result for the CP volume, the accuracy of
fitting tends to decrease as the volume of the CP increases.
This trend is assumed to be related to the effect of the GA on
the segmentation accuracy. The accuracy of CP segmentation
exhibited a decreasing trend with an increase in GA, which is
likely to result from the increasing complexity of the CP folding.
However, the relationship between the GA and CP segmentation
accuracy was not statistically significant. Upon measuring the
accuracy for fetuses older than GA 30 weeks, the average Dice
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FIGURE 6 | Regression plots of volume, surface area, and surface GMC from ground truth and our automatic segmentation. The fitting result coefficient (β) was very
close to unity in all indices in all regions.

coefficient and MSD were 0.967 and 0.323 mm, respectively, for
the inner volume of CP, and 0.891 and 0.220 mm, respectively, for
the CP. Hence, the proposed method demonstrated a high level
of segmentation performance even in older fetuses. Additionally,
Supplementary Figure 1 shows local segmentation errors with
different GA group. We divided the GA into three groups
(22.9–25.3 [n = 19], 25.3–27.5 [17], 27.5–31.4 [16]), and showed
examples of the segmentation errors for the subjects having the
maximum, median, and minimum CP Dice coefficient in each
GA group.

We performed permutation tests to verify whether there
is any significant difference in the segmentation performance
depending on the scanner. No statistical difference was found
between scanners for all metrics, indicating that our results were
not biased by the scanner effect.

Comparison With Other Methods
We propose a deep learning network for CP segmentation using
MR images obtained from 52 fetuses. The proposed method
obtained a Dice coefficient of 0.907 ± 0.027 and 0.906 ± 0.031,
and an MSD of 0.182 ± 0.058 mm and 0.185 ± 0.069 mm for
the left and right CP, respectively, using hybrid loss and MVT.
Compared with other methods, we used a larger sample of the
fetal dataset and varied the number of labels for segmentation.
Therefore, it is difficult to compare the methods directly. Our
proposed segmentation method was compared directly with a
recent fetal CP segmentation deep learning model and indirectly

with previous methods that used the EM algorithm and atlas-
based segmentation. To the best of our knowledge, only two
MRI studies and one ultrasound study have proposed the
fetal CP segmentation method using deep learning (Khalili
et al., 2019; Dou et al., 2020; Wyburd et al., 2020). Among
them, our method was directly compared to one peer-reviewed
study (Khalili et al., 2019). The authors applied a 2D U-Net
with basic Dice loss to coronal MRI slices obtained from 12
fetuses, and a Dice coefficient of 0.835 and MSD of 0.307 mm
were obtained for the CP volume (Khalili et al., 2019). When
compared with our proposed deep learning model, the structure
of the model was the same, but the loss function used for
training was different and the MVT approach was not used.

FIGURE 7 | Age-related trends of segmentation accuracy of the proposed
method. (A) Dice coefficient. (B) MSD.
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TABLE 3 | Cortical plate (CP) segmentation performance of the proposed method and other methods.

Deep learning (direct) EM (indirect) Atlas-based (indirect)

Proposed Khalili et al., 2019 Bach Cuadra et al., 2009 Habas et al., 2010 Wright et al., 2014 Serag et al., 2012

No. subject (GA range) 52 (22.9–31.4) 52 (22.9–31.4) 4 (29–32) 14 (20.6–22.9) 16 (22.4–36.4) 15 (21.7–38.7)

Dice CP_L 0.907 ± 0.027 0.894 ± 0.030 − − − −

CP_R 0.906 ± 0.031 0.811 ± 0.251 − − − −

CP 0.907 ± 0.029 0.852 ± 0.141 0.625 ± 0.038 0.82 ± 0.02 − 0.84 ± 0.06

MSD CP_L 0.182 ± 0.058 0.212 ± 0.064 − − − −

CP_R 0.185 ± 0.069 2.277 ± 6.388 − − −− −

CP 0.184 ± 0.063 1.245 ± 3.226 0.697 ± 0.079 − 0.864 ± 0.141 −

For direct comparison with the previous deep learning method of (Khalili et al., 2019), we implemented their method and applied it to our dataset. The Dice coefficient
and MSD of EM and atlas-based methods were taken from their published papers for indirect comparison. The proposed method shows a higher Dice coefficient and a
lower MSD when compared to previous studies either directly or indirectly.
Data, mean ± standard deviation; L, left; R, right. Bold values indicate the results of our proposed method that show the best performance.

Therefore, of the results in this paper, the result obtained
using basic Dice loss in the network for coronal slices can be
considered to result from the method of the prior study (CP
Dice coefficient [left, right] = 0.894 ± 0.030, 0.811 ± 0.251;
CP MSD = 0.212 ± 0.064 mm, 2.277 ± 6.388 mm). The
proposed method showed a significantly higher segmentation
accuracy using hybrid loss and MVT compared to the prior
deep learning method (Khalili et al., 2019) (CP Dice coefficient
[left, right]: p < 0.0001, p = 0.009; CP MSD : p < 0.0001,
p = 0.022). The results obtained by the EM algorithm were
as follows: (Bach Cuadra et al., 2009): 4 subjects; 29–32 weeks
GA; Dice coefficient = 0.63 ± 0.04; MSD = 0.70 ± 0.08 mm,
(Habas et al., 2010): 14 subjects; 20.57–22.86 weeks GA; Dice
coefficient = 0.82 ± 0.02, (Wright et al., 2014): 16 subjects;
22.4–36.4 weeks GA; MSD = 0.86 ± 0.14 mm. The atlas-based
segmentation method reported a Dice coefficient of 0.84 ± 0.06
for CP using MRI data from 15 fetuses (21.7–38.7 weeks GA)
(Serag et al., 2012). Detailed results are shown in Table 3. Our
method shows a better performance in terms of both the Dice
coefficient and MSD when directly or indirectly compared to
previous methods. The GA range of fetal subjects included in
our study is narrower compared to some of the previous studies
(Serag et al., 2012; Wright et al., 2014), which may result in higher
accuracy as the older fetal brain MRI scans with complex folding
are more difficult for CP segmentation. However, compared with
the results obtained in our study, those studies utilized very few
fetal MRI scans (≤16) and showed considerable differences in
the Dice coefficient and MSD. Moreover, we found no significant
correlations between the GA and CP segmentation accuracy,
and obtained high accuracies even for fetuses over 30 weeks
GA, as described above. Therefore, the narrow GA range in our
study was not a bias causing the high accuracy. The previous
deep learning study employed the basic Dice loss in multi-
label segmentation, and showed relatively poor performance in
small volume labels (Sudre et al., 2017; Wong et al., 2018).
Although the authors applied several augmentation methods
to increase the amount of training data in deep learning, they
did not include the correction achieved by multiple predictions.
The higher accuracy obtained in our method may be attributed
to the inclusion of a loss function suitable for multi-label

segmentation and correction by multiple predictions using MVT.
The relatively low performance of the EM algorithm and atlas-
based segmentation may be due to the registration quality as the
brain template created by combining multiple images is blurred
compared to individual images. It is not easy to obtain an accurate
registration of the brain template to a target subject image,
even with non-linear transformation. Furthermore, the partial
volume effect of the CP boundary owing to the limited fetal MRI
resolution and motion decreases the accuracy with which the
likelihood probability of the EM algorithm and the registration
accuracy of the atlas-based method can be estimated. The
proposed method used only linear registration to unify the size of
input images. Unlike previous methods, deep learning is free of
registration effects because it does not need to accurately match
any prior information. Furthermore, the inaccuracy that results
from the partial volume effect may also be sufficiently trained by
deep learning to enable a similar segmentation, as is possible with
the ground truth. The proposed deep learning network exhibits
a higher segmentation performance using hybrid loss and MVT
than other methods.

Limitations
Despite the accurate CP segmentation with MVT and hybrid
loss, there are some limitations to the proposed method. First,
because the folding pattern of the fetal brain changes dynamically
and becomes more complex as gestation progresses, a decreasing
trend was observed in the CP segmentation accuracy with age
although it was not statistically significant. Therefore, to improve
the segmentation accuracy, it is necessary to include a larger
number of fetuses above 30 weeks GA. Second, the proposed
model did not include cerebrospinal fluid (CSF). In particular,
the segmentation of deep sulcal CSF is essential for precise
outer CP surface extraction, which enables the further analysis
of cortical measures, such as cortical thickness. However, because
of the limited resolution of fetal brain MRI scans and the partial
volume effect of CSF in narrow deep sulcal regions, the manual
segmentation of CSF in these regions is highly challenging.
Although CSF segmentation was included in previous studies
(Wright et al., 2014; Khalili et al., 2019), it has not been
designed to extract deep sulcal CSF. In future studies, we will

Frontiers in Neuroscience | www.frontiersin.org 11 December 2020 | Volume 14 | Article 591683124

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-591683 November 26, 2020 Time: 22:4 # 12

Hong et al. Fetal Cortical Plate Segmentation

carefully delineate fetal CSF regions and train them to develop an
automatic method for CSF segmentation.

CONCLUSION

The proposed method segments the fetal CP providing highly
accurate measurements of CP volume and the highly accurate
surface reconstruction of the CP. The hybrid loss and MVT
show a significant increase in accuracy compared to the basic
Dice loss and other aggregation methods. Although most of our
comparisons were performed indirectly, the proposed method
showed better fetal CP segmentation performance than other
methods. Likewise, the comparisons of CP volume and surface
indices between prediction and ground truth showed high
similarity. Our results indicate that our proposed automatic
segmentation method is useful for performing an accurate
quantitative cortical structural analysis in the human fetal brain.
The developed automatic segmentation is more reproducible
than manual segmentation as it is not affected by inter- and
intra-rater variability, and it has a short computation time.
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There has been increasing interest in performing psychiatric brain imaging studies
using deep learning. However, most studies in this field disregard three-dimensional
(3D) spatial information and targeted disease discrimination, without considering the
genetic and clinical heterogeneity of psychiatric disorders. The purpose of this study was
to investigate the efficacy of a 3D convolutional autoencoder (3D-CAE) for extracting
features related to psychiatric disorders without diagnostic labels. The network was
trained using a Kyoto University dataset including 82 patients with schizophrenia (SZ)
and 90 healthy subjects (HS) and was evaluated using Center for Biomedical Research
Excellence (COBRE) datasets, including 71 SZ patients and 71 HS. We created 16 3D-
CAE models with different channels and convolutions to explore the effective range of
hyperparameters for psychiatric brain imaging. The number of blocks containing two
convolutional layers and one pooling layer was set, ranging from 1 block to 4 blocks.
The number of channels in the extraction layer varied from 1, 4, 16, and 32 channels.
The proposed 3D-CAEs were successfully reproduced into 3D structural magnetic
resonance imaging (MRI) scans with sufficiently low errors. In addition, the features
extracted using 3D-CAE retained the relation to clinical information. We explored the
appropriate hyperparameter range of 3D-CAE, and it was suggested that a model with
3 blocks may be related to extracting features for predicting the dose of medication and
symptom severity in schizophrenia.

Keywords: deep learning, machine learning, neuroimaging, schizophrenia, structural MRI, convolutional
autoencoder, diagnostic label
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INTRODUCTION

Deep learning (DL) has dramatically improved technology in
speech recognition, image recognition, and many other fields
(LeCun et al., 2015). Medical imaging can benefit greatly from
recent progress in image classification and object detection using
this cutting-edge technology (Esteva et al., 2019). In particular,
as the global burden of psychiatric disorders increases (Olesen
et al., 2012; Whiteford et al., 2013), psychiatric brain imaging
studies using DL are anticipated to bring many benefits to society
(Vieira et al., 2017). There are two major concerns about applying
DL to psychiatric brain imaging: (1) treatment of the high
dimensionality of data, and (2) the heterogeneity of psychiatric
disorders (Feczko et al., 2019).

The dimensionality of raw magnetic resonance imaging (MRI)
data is very high (often running into the millions), and large
computer resources are required to analyze them. To reduce
computational demands, in most neuroimaging studies, several
feature extraction methods have been used. Region of interest
(ROIs), one of the most popular feature extraction methods,
has contributed to detecting various structural and functional
abnormalities in the brains of patients with psychiatric disorders
(Fornito et al., 2012; Fusar-Poli et al., 2012; Linden, 2012;
Ratnanather et al., 2013). ROIs (often dozens or hundreds) are
usually set based on neuroscience knowledge (Tzourio-Mazoyer
et al., 2002). For example, average gray matter volumes or
cortical thicknesses at specific ROIs are extracted as feature,
and then the relationship between the feature and disease
clinical information is analyzed (Desikan et al., 2006; Poldrack,
2007; Nelson et al., 2017). Even in the studies using DL,
ROI-based features are often used as input (Vieira et al.,
2017; Heinsfeld et al., 2018; Pinaya et al., 2019). In addition,
many DL studies avoid using three-dimensional (3D) images
directly, but instead, DL networks are trained using two-
dimensional slices (Sarraf et al., 2017; Vieira et al., 2017;
Aghdam et al., 2019). A limitation of these studies is that
they ignore the 3D spatial information contained within the
original MRI scans.

In recent years, with improvements in computer performance
and refinement of computational techniques, studies have
investigated how to treat 3D MRI scans as inputs to DL.
For example, Wang et al. (2018) successfully discriminated
Alzheimer’s dementia from healthy subjects using 3D MRI data as
input to DL. Similar attempts have been made for discriminating
psychiatric disorders, including schizophrenia (Qureshi et al.,
2019) and developmental disorders (Wang et al., 2019). Although
these studies demonstrated that DL could apply to the analysis
of 3D MRI data, discrimination-based approaches may be
challenging due to the heterogeneity of psychiatric disorders.

Heterogeneity is one of the main challenges that current
psychiatric research faces (Feczko et al., 2019). The current
symptom-based definitions of psychiatric disorders, standardized
in the Diagnostic and Statistical Manual of the American
Psychiatric Association (DSM) (American Psychiatric
Association., 2013) and the International Classification of
Diseases (ICD) (World Health Organization., 1992), have been
highlighted as lacking predictive and clinical validity due to

genetic and clinical heterogeneity (Owen, 2014). For example,
in schizophrenia, a recent study found evidence for significant
overlapping of the relatively common risk variants tagged in
genome-wide association studies (GWAS) between several
psychiatric disorders, and there may also be lower genetic
correlation within disorders (Lee et al., 2014). In addition,
even in patients given the same diagnosis of schizophrenia, the
severity of symptoms, response to medication, and prognosis
often vary widely among patients (van Os and Kapur, 2009;
Owen et al., 2016). Therefore, in psychiatric disorders research,
a simple competition for discrimination accuracy based
on the current disorder categories may be insufficient to
elucidate on pathophysiology, although most current studies
using DL are attempting to discriminate disease in healthy
subjects (Plis et al., 2014; Vieira et al., 2017; Gao et al., 2021;
Quaak et al., 2021).

One possible alternative direction for using DL techniques
in psychiatric neuroimaging studies may be diagnostic label-
free feature extraction. In the current study, we focus on an
autoencoder (AE) as a DL algorithm that allows feature extraction
without labels (Hinton, 2006). AE is supervised learning in a deep
neural network having an output layer with the same data as the
input layer. Since the input is as supervision, no labels are needed,
unlike in general supervised learning.

Indeed, there are some studies that have used AE-based
feature extraction for psychiatric neuroimaging. For example,
Pinaya et al. (2019) extracted features from structural MRI
scans using AE, i.e., without using diagnostic labels. The
authors successfully predicted the age and gender of participants,
and discriminated patients with autism spectrum disorders
(ASD) and schizophrenia from healthy subjects. However, these
studies used ROI-based features such as cortical thickness
and functional connectivity as inputs to the AE. As such,
the use of 3D brain images for inputs to the AE remains
challenging, with a few exceptions. For example, Martinez-
Murcia et al. (2020) extracted features from 3D brain MRI
data of patients with Alzheimer’s dementia using a 3D
convolutional autoencoder (3D-CAE). They demonstrated that
the extracted feature was useful for predicting age and Mini-
Mental State Examination (MMSE) scores. This supports the
efficacy of labeling free features based on 3D-CAE with
MRI. However, particularly when investigating psychiatric
disorders, the appropriate architecture of 3D-CAE has not been
fully investigated.

The purpose of this study was to investigate an efficient
3D-CAE-based feature extraction for the neuroimaging of
psychiatric disorders. More specifically, in the current study,
we used datasets that included patients with schizophrenia,
which has frequently been reported to be heterogeneous in
previous neuroimaging studies (Sugihara et al., 2017). The
key points of our study are: (1) to use 3D MRI data while
preserving spatial information, and (2) diagnostic label-free
feature extraction using 3D-CAE. For this purpose, we explored
appropriate network structures of 3D-CAE by developing
models with different network structures and comparing
the predictive performance of clinical information by these
extracted features.
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MATERIALS AND METHODS

Experimental Overview
Figure 1 illustrates an experimental overview of our study.
We used two datasets, including participants diagnosed with
schizophrenia as well as healthy subjects: a dataset collected
at Kyoto University (Kyoto dataset) and a public dataset, The
Center for Biomedical Research Excellence (COBRE1) dataset.
(1) Gray matter was first extracted from the structural MRI
data as preprocessing. (2) We then trained 3D-CAE to extract
a latent feature representation from structural MRI using the
Kyoto dataset. Sixteen 3D-CAEs with varying network structures
were prepared for investigation of the optimal network depth
and complexity. (3) Subsequently, the COBRE dataset was used
to evaluate the applicability to another dataset. (4) Finally,
we evaluated whether the extracted feature retained clinical
information by linear regression of the clinical information using
the COBRE dataset.

Convolutional Autoencoder Training
An autoencoder is a kind of DL consisting of the encoder
and the decoder. The encoder learns latent representations and

1http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html

reduces the dimension of the input. The decoder learns to
reproduce the input as close as possible to the original using
the latent representations. 3D-CAE extends this architecture by
using convolutional layers that can extract features directly from
3D images (Guo et al., 2017; Nishio et al., 2017; Oh et al.,
2019). The CAE has two main hyper parameters: the number of
convolutional layers and the number of channels, which are the
target of the current study.

The convolutional layers apply a filter to input to create feature
maps that summarize the feature detected in the input. The
feature maps are created for the number of channels. Since the
convolutional layer generates feature maps while capturing the
spatial information of the matrix, convolutional neural networks
are beneficial to learning features of images. As the number of
channels increases, the complexity of a model increases, but the
number of dimensions of latent feature increase and requires a
huge amount of computational power. Also, as the number of
convolutions increases, the effective receptive field increases, thus
allowing global and abstract feature to be extracted. The effective
receptive field is a region of the original image that can potentially
influence the activation of neurons (Le and Borji, 2017; Luo et al.,
2017). If the effective receptive field is small, the feature will
contain only local information of the brain, and if it is large, it
will contain information on the whole brain.

FIGURE 1 | Experimental overview. 1. Preprocessing: The gray matter was extracted from the structural MRI and standardized and smoothed using SPM. 2. CAE
training: A schematic diagram is shown. 3D images of the Kyoto dataset were input, feature was extracted, and the original image was reproduced. 3. Feature
extraction: the model trained using the Kyoto dataset was adopted to the COBRE dataset without updating the weights. 4. Linear regression: Feature are extracted
and flattened. Each extracted feature vectors were an explanatory variable, and demographic and clinical information were objective variables. Regression errors
were evaluated to investigate whether the extracted features retain the information to predict demographic and clinical information. 3D, three-dimensional; CAE,
convolutional autoencoder; COBRE, Center for Biomedical Research Excellence; CPZE, dose of antipsychotic medication; MRI, magnetic resonance imaging; SPM,
Statistical Parametric Mapping.
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In this study, these two hyperparameters were explored
to investigate whether the total dimensions of the extracted
feature and the size of the effective receptive field affected the
relation of the feature to clinical information. As shown
in Figure 2, the set of two convolution/deconvolution
layers, and one pooling/unpooling layer was defined as a
convolution/deconvolution “block.” In this experiment, the
number of blocks was set, ranging from 1 block to 4 blocks. In 4
blocks, the effective receptive field is the whole brain; in 3 blocks,
it is about 30% of the brain (multiple lobes), in 2 blocks, it is
5% of the brain (multiple regions), and in 1 block it is 0.1% of
the brain (1 region). The number of channels in the extraction
layer was varied with 1, 4, 16, and 32 channels, but the number
of channels for other layers were fixed at 32. The number of
channels was considered limited to 32 due to the limitation of
the current experiment’s computational power. As a result, we
created sixteen 3D-CAE models (4 block conditions × 4 channel
conditions) to explore the effective range of hyperparameters for
psychiatric brain imaging.

Other hyperparameters were fixed and common among
models. The encoder was composed of convolution layers (a
kernel size of 3 × 3 × 3 and a stride of 1) with rectified linear
unit (ReLU) activations and average pooling layers (a kernel size
of 2 × 2 × 2 and a stride of 2). The decoder was composed of
convolution layers (a kernel size of 3 × 3 × 3 and a stride of
1) with ReLU activations and unpooling layers (a kernel size of
2 × 2 × 2 and a stride of 2). The loss function, consisting of the
mean absolute error (MAE) between the input images and the

reproduced images, was defined as follows:

Loss =
1
n

∑∣∣Xinput − Xreconstructed
∣∣ (1)

As an optimizer, we used a gradient-based method with
adaptative learning rates called Adam (Kingma and Ba, 2015)
(alpha = 0.0001, beta1 = 0.9, beta2 = 0.999) using mini-batches
with a size of eight samples. The training process was performed
with a maximum of 50,000 training iterations. We conducted
the experiments in Python 3.62 using the Chainer v.5.4.0 library
(Tokui et al., 2015).

We used a reference of training performances of 3D-CAEs,
referred to as the “average brain,” with which the model was
assumed to output the average intensities of the training dataset
regardless of the inputs. The average brain is one of the most
trivial solutions where the network outputs an image without
learning any information about individual differences of the
inputs. The average brain was used as a reference point to indicate
that the model at least reproduced individual differences. The
signal intensities of voxel i of the average brain was determined
as follows:

x
ave i =

∑n
s = 0 xs,i

n
(2)

where s is a sample from the training dataset and n is the
number of samples.

2https://www.python.org/

FIGURE 2 | Our proposed 3D-CAE architecture. One convolution/deconvolution block was defined as repeating two convolution/deconvolution layers and one
pooling/unpooling layer. The number of blocks was set from 1 to 4. The number of channels in the extraction layer was set from 1 to 32. Sixteen patterns of models
with different numbers of blocks and channels were developed. In order to explore the effective number of channels and blocks, the reproduction capability and
relation to clinical information were evaluated. act., activation function; 3D-CAE, three-dimensional convolutional autoencoder; ch., channel; Conv., convolution;
Dcnv, deconvolution; pad., padding; pool, pooling; Relu, Rectified Linear Unit; unpool, unpooling.
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Regression Analysis With Demographic
and Clinical Information
Using trained 3D-CAE, latent feature vector could be extracted,
and then the feature vector was flattened. The number of
dimensions of that feature vector ranged from millions to
hundreds, depending on the model. The relationship between
the extracted feature and the clinical information was examined
using regression analysis, based on the assumption that if
the extracted feature is “informative,” it could help predict
schizophrenia patients’ clinical information. Therefore, we
confirmed this by comparing the prediction performance of
3D-CAE-based features and conventional ROI-based features.
The linear regression analysis was performed with clinical and
demographic information as the objective variables and the
feature vectors as the explanatory variables (see the lower part
of Figure 1). Demographic and clinical information included
age, scores of positive and negative symptoms (PANSS), the
dose of antipsychotic medications [chlorpromazine equivalent
(CPZE)], Wechsler Adult Intelligence Scale (WAIS), duration of
illness, age at onset, and diagnosis. For the regression analysis,
in order to reduce the effects of correlated variables we adopted
ridge regression, one of regularized linear regression methods.
In the regression analysis, we executed a fivefold cross-validation
process whereby the COBRE dataset was randomly divided into
five groups of samples (folds), and then samples from fourfolds
were used for training the regression model, and the other fold
was used for the test of the regression model. The fivefold
cross-validation was repeated ten times. The performance of the
regression model was evaluated using the root mean square error
(RMSE). The diagnosis was evaluated using accuracy.

Differences in the performances of regression models were
evaluated using the two-way (number of channels × number
of blocks) analysis of variance (ANOVA). Subsequently, Tukey’s
multiple comparison test was performed for each group as a
post hoc analysis. The level of significance was set to 0.05.

The 3D-CAE models were also compared with the ROI
method. In the ROI method, using the automated anatomical
labeling (AAL) template (Tzourio-Mazoyer et al., 2002), the GM
was divided into 116 ROIs. The average intensities of each ROI
were used as the ROI-based feature for regression analysis. The
Student’s t-test was performed to compare the proposed 3D-
CAE model with the ROI method. The level of significance
was set to 0.05.

By calculating the gradient of the neural network at the
input T1-weighted image for each subject, it is possible to
visualize which regions of the input have higher weights.
In this study, we attempted to visualize the regions that
contribute to predicting clinical information by calculating the
gradient of a composite function of feature extraction and
clinical information regression functions. The calculation of a
saliency map for input image x, M(x), was defined as follows.

M(x) = ∂R(S(x))/∂x (3)

Where, S() was a feature extraction function based on
the 3D-CAE, and R() was a function predicting clinical
information using linear regression. To refine the visualization,

the gradients’ calculation was repeated by adding Gaussian
noise to the original image, similar to the technique
used in SmoothGrad (Smilkov et al., 2017). The maps
were then averaged by overall samples and divided
by the standard deviation to obtain a t-value, and the
values were finally converted to absolute values to yield a
3D saliency map.

Kyoto Dataset Description
A total of 172 subjects were investigated in this study, including
82 patients with schizophrenia and 90 healthy subjects. Patients
were recruited from hospitals in Kyoto, Japan, and diagnosed
by psychiatrists using the Diagnostic and Statistical Manual of
Mental Disorders, 4th edition (DSM-IV) (American Psychiatric
Association., 1994) criteria for schizophrenia, confirmed with the
patient edition of the Structured Clinical Interview for DSM-
IV Axis I Disorders (SCID) (First et al., 1997). No patients had
any comorbid DSM-IV Axis I disorder. The clinical symptoms
of all patients were estimated using the Positive and Negative
Syndrome Scale (PANSS) (Kay et al., 1987). Healthy subjects were
screened with the non-patient edition of the SCID, confirming
no history of psychiatric disorders. Exclusion criteria for all
individuals included a history of head trauma, neurological
illness, serious medical or surgical illness, or substance abuse.
Note that participants were already diagnosed in order to
expedite the data collection, but the diagnostic labels were not
used to train the networks.

All participants were scanned with a 3.0-Tesla Siemens
Trio scanner (Siemens Healthineers, Erlangen, Germany). The
scanning parameters of the T1-weighted 3D magnetization-
prepared rapid gradient-echo (3D-MPRAGE) sequences were
as follows: echo time (TE) = 4.38 ms; repetition time
(TR) = 2,000 ms; inversion time (TI) = 990 ms; field of
view (FOV) = 225 mm × 240 mm; acquisition matrix
size = 240× 256× 208; resolution = 0.9375× 0.9375× 1.0 mm3.

COBRE Dataset Description
In this study, the COBRE dataset, which is a public dataset,
was acquired as a dataset with different scanning sites and
parameters to the Kyoto University dataset. All the subjects were
diagnosed and screened with the SCID. The clinical symptoms of
all patients were estimated using the PANSS. Exclusion criteria
for individuals included a history of head trauma, neurological
illness, serious medical or surgical illness, or substance abuse. We
included a total of 142 subjects from this database in our study,
including 71 patients with schizophrenia and 71 healthy subjects.

MRI data were acquired using a 3.0-Tesla Siemens Tim
Trio scanner (Siemens Healthineers, Erlangen, Germany).
The scanning parameters of the T1-weighted 3D-MPRAGE
sequences were as follows: TE = 1.64 ms; TR = 2,530 ms;
TI = 900 ms; FOV = 256 mm × 256 mm; acquisition matrix
size = 256× 256× 176; resolution = 1.0× 1.0× 1.0 mm3.

Demographic and clinical characteristics of Kyoto and
COBRE datasets are provided in Supplementary Table 1. There
was no significant difference between the two datasets with the
exception of the sex ratio.
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Division of Train, Validation, and Test
The 3D-CAE was trained using the Kyoto dataset. The dataset
was randomly partitioned into training data, validation data, and
test data (138 subjects, 16 subjects, and 18 subjects, respectively).
Training data, validation data, and test data were used for the
training of the 3D-CAE, the validation of the model during
training, and the final evaluation of generalizability within
the datasets independent of the training and validation data,
respectively. The COBRE dataset (142 subjects) was also used to
evaluate the applicability of the network to another dataset.

The regression analysis was carried out using the COBRE
dataset. The bias between MRI scanning sites might have
affected the distribution of features extracted by 3D-CAE; thus,
affecting the prediction error of the regression. Therefore, to
avoid the scanning site effect, we used a single dataset for
the regression. Then the fivefold cross-validation technique was
applied. Namely, the COBRE dataset samples (142 subjects)
were randomly divided into five subgroups (four groups for
training and one group for validation) and cross-validated
by changing the combinations of groups. This fivefold cross-
validation process was repeated ten times. Note that only patients
with schizophrenia had clinical information available for analysis,
and regressions based on the clinical information were performed
using data from patients with schizophrenia (71 subjects). The
details for the division of data are shown in Table 1.

MRI Preprocessing
The preprocessing was conducted using Statistical Parametric
Mapping (SPM12, Wellcome Department of Cognitive
Neurology, London, United Kingdom3) with the Diffeomorphic
Anatomical Registration Exponentiated Lie Algebra (DARTEL)
registration algorithm (Ashburner, 2007). All of the T1 whole-
brain structural MRI scans were segmented into gray matter
(GM), white matter, and cerebrospinal fluid. Individual GM
images were normalized to the standard Montreal Neurological
Institute (MNI) template with a 1.5 × 1.5 × 1.5 mm3 voxel size
and modulated for GM volumes. All normalized GM images
were smoothed with a Gaussian kernel of 8 mm full width at
half maximum (FWHM). Subsequently, each image was cropped

3https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

TABLE 1 | Division of dataset.

Kyoto COBRE

3D-CAE

(recon. error) Train 3

Validation 3

Test 3 3

Regression

(pred. error) Train 3

Validation 3

The Kyoto dataset was used to develop the 3D-CAE model and was divided into
train, validation and test dataset. The COBRE dataset was prepared for regression.
At regression, fivefold cross-validation was performed.
3D-CAE, three-dimensional convolutional autoencoder; COBRE, Center for
Biomedical Research Excellence.

to remove the background as much as possible. The GM area
was extracted from original images using a binary mask, created
using SPM12. As a result, the size of input images to the 3D-CAE
was 121× 145× 121 voxels.

Subsequently, the range of signal intensities in each image was
normalized with a mean of 0 and a standard deviation of 1. The
standardized value of voxel i in the sample s, x′s,i, was calculated
as follows:

x′s,i =

{
xs,i− µs

σs
(i ∈ GM )

0
(
otherwise

) (4)

where xs, i is the original value of intensity. µs and σs were average
and standard deviation of all voxels contained in the GM area of
sample s, respectively.

RESULTS

Technical Evaluations: Reproduction
Capability Performance
Figure 3A shows a representative example of learning curves
for the 3D-CAE with 16 channels and 3 blocks. Progressive
decreases were shown not only with “train loss” (red line), but
also “validation loss” (orange line) and “test loss” (green line);
this indicated that the 3D-CAE successfully learned without
overfitting. The level of MAEs were well below the level of
the “average brain” (dashed line) (see section “Materials And
Methods” for details). In addition, the curve for “COBRE loss”
(blue line) showed a similar trend. This indicated that the 3D-
CAE could be applied to MRI data from another site with
different scanning parameters. Similar trends of learning curves
were observed for the other fifteen 3D-CAEs with different
hyperparameter settings.

Figure 3B summarized the reproduction performances
(MAEs for the COBRE dataset) of the sixteen 3D-CAE models
with respect to the number of channels and number of blocks.
Regarding the number of blocks, it can be seen that the larger the
number of blocks, the larger the reproduction error. This result
is intuitively understandable, in that models with smaller blocks
are easier to reconstruct because extracted latent features do not
abstract the original image as much (Figure 4). Regarding the
number of channels, although the differences were small, there
was a tendency for the larger number of channels to be associated
with smaller reproduction errors (see Supplementary Table 2
for more details). This result is consistent with the fact that the
models with more channels have more expressive capability.

Clinical Evaluation: Relation to Clinical
Information
The efficacy of the proposed method was evaluated using
linear regressions for predicting demographic and clinical
information related to a psychiatric disorder, i.e., schizophrenia.
Demographic and clinical information, including age, the dose
of antipsychotic medication (CPZE), and scores of positive
and negative symptoms (PANSS), were used as an objective
variable, and all extracted features of 3D-CAE were used as
explanatory variables. Feature using the ROI-based method was
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FIGURE 3 | Learning performance of models. (A) shows the learning loss curve for a 16-channel and 3-block model. The red line shows the training loss, indicating
that the learning has progressed, and the loss has fallen sufficiently. The validation loss and test loss were also decreased, so the model was not overfitting. The blue
line indicates the loss at the other site (COBRE), and the loss degraded as well. It can be seen that the MAE of our proposed models was well below the level of
Ave.brain at which the model was assumed to output the average brain. This suggested that our 3D-CAE models have successfully reproduced the brain images
with individual characteristics. Similar learning curves were found for other models. In (B), the reproduction performance of each of the 16 models were compared.
The relationships between MAE, number of channels, and number of blocks are shown. The horizontal axis indicates the number of blocks, which is color-coded by
the number of channels. As the number of blocks increased, the MAE tended to be larger, and as the number of channels increased, the MAE tended to be slightly
smaller. 3D-CAE, three-dimensional convolutional autoencoder; COBRE, Center for Biomedical Research Excellence; MAE, mean absolute error.

FIGURE 4 | Visualization of extracted feature. The extracted features were mapped for four models with 16 channels. From left to right: the model with one, two,
three, and four blocks. The middle slices of the horizontal slice from 3D feature are shown. In the one-block model, the morphology of the brain can be seen, but
with four blocks, the images are more abstract.

also used for comparison with the conventional method. A linear
regression analysis was used as the simplest method to confirm if
extracted features from 3D-CAEs with different hyperparameters
(numbers of blocks and channels) preserved useful information.
Each of the 16 3D-CAE models were analyzed 10 times, and
the difference in predictive performance of the models was
examined statistically.

Figure 5 illustrates a representative example of the regression
analysis results. Differences in the performance of regression
models (RMSE) with respect to the number of channels with 3
blocks (Figures 5A–D) and respect to the number of blocks with
16 channels (Figures 5E–H) were demonstrated as representative

examples. The results of the comparison with the ROI method
are shown in Table 2. The detailed results are described in
Supplementary Tables 3–5, respectively.

Regarding the prediction of age, there were tendencies
for the RMSEs to be smaller with increases in the number
of channels (Figure 5A) and with decreasing number of
blocks (Figure 5B). Indeed, statistical analysis revealed
that there were significant differences between the models
(channel: p < 0.001; block: p < 0.001). However, even the
model with 32 channels and 1 block, which is considered
one of the most predictive models, is equivalent to the
ROI method (p = 0.346; Table 2), suggesting that for the
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FIGURE 5 | Regression performance plot. The left side (A–D) shows the model differences by number of channels for the four models with 3 blocks as an example.
The right side (E–H) shows the model differences by number of blocks for the four models, with 16 channels as representative examples. Regarding age, as shown
in (A,E), the RMSEs were smaller with increasing number of channels and decreasing number of blocks. Regarding CPZE, as shown in (B,F), the RMSEs were
smaller with increasing number of channels. On the other hand, the RMSEs may be smaller in block 3. Regarding positive symptoms and negative symptoms, as
shown in (C,D), there was no apparent trend in the number of channels. As shown in (G,H), the RMSE may be smaller in block 3. The results of each regression with
the ROI method is also included for reference. It suggests that a model with 3 blocks may be appropriate for extracting schizophrenia-related information.
***p < 0.001, **p < 0.01, *p < 0.05 (two-way analysis of variance followed by Tukey’s multiple comparison test). CPZE, chlorpromazine equivalent; RMSE, root
mean square error; ROI, region of interest.

prediction of age, 3D-CAE-based features were comparable to a
conventional method.

In addition, the superiority of the 1 block condition was
observed in the prediction of VIQ, PIQ and duration of illness
(Supplementary Tables 2–4). However, 3D-CAEs with 1 block
were not superior to the ROI method in predicting those
information (VIQ: p < 0.001; PIQ: p < 0.001; duration of illness:
p = 0.100; Table 2).

Regarding the prediction for CPZE, there was a tendency
for the RMSEs to be smaller with increases in the number

of channels (Figure 5C); on the other hand, the RMSEs were
smallest with the condition of 3 blocks (Figure 5D). Statistical
analysis revealed that there were significant differences between
the models (channel: p < 0.001; block: p < 0.001). Post hoc
analysis revealed that there were significant differences between
1 block and 3 blocks, and 3 blocks and 4 blocks. Moreover, the
lowest level of RMSE of 3D-CAE was significantly lower than
the RMSE from the ROI-based feature (p < 0.001; Table 2),
indicating that for the prediction of CPZE, 3D-CAE based
features outperformed a conventional method.
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TABLE 2 | The results of the t-test.

16 channels and 3 blocks model

3D-CAE
(ch16b3)

ROI P-value

SZ-related CPZE 197.85 (3.76) 214.75 (4.33) < 0.001***

Positive symptoms 4.67 (0.09) 4.72 (0.04) 0.088†

Negative symptoms 4.67 (0.07) 4.69 (0.07) 0.968

Duration of illness 11.87 (0.10) 11.23 (0.16) < 0.001***

Age of onset 7.00 (0.11) 7.47 (0.15) < 0.001***

Diagnosis 0.668 (0.03) 0.634 (0.02) 0.005**

clinical
information

Other Age 10.29 (0.18) 10.03 (0.10) 0.001**

VIQ 14.92 (0.17) 14.72 (0.05) 0.003**

PIQ 14.65 (0.11) 13.83 (0.09) < 0.001***

information

32 channels and 1 block model

3D-CAE
(ch32b1)

ROI P-value

SZ-related CPZE 206.57 (4.61) 214.75 (4.33) 0.001**

Positive symptoms 4.84 (0.16) 4.72 (0.04) 0.037*

Negative symptoms 4.89 (0.10) 4.69 (0.07) < 0.001***

Duration of illness 11.36 (0.17) 11.23 (0.16) 0.100

Age of onset 7.05 (0.13) 7.47 (0.15) < 0.001***

Diagnosis 0.632 (0.03) 0.634 (0.02) 0.868

clinical
information

Other Age 9.97 (0.16) 10.03 (0.10) 0.346

VIQ 15.17 (0.17) 14.72 (0.05) < 0.001***

PIQ 14.56 (0.13) 13.83 (0.09) < 0.001***

information

The differences between 3D-CAE and ROI are presented as mean (standard
deviation) and p-value of RMSE. Regarding the diagnosis, it is presented as
accuracy. The significantly better performances are marked in red. The 3D-CAE
model with 16 channels and 3 blocks was superior to the ROI method in predicting
CPZE, age of onset, and diagnosis. The model also appeared comparable or better
than the ROI method in positive symptoms. The 3D-CAE model with 32 channels
and 1 block was also superior to the ROI method in predicting the CPZE and age
of onset. Meanwhile, that the model was comparable to the ROI method for age
prediction is different from the model with 16 channels and 3 blocks. ***p < 0.001,
**p < 0.01, *p < 0.05, †p < 0.1 (t-test).
3D-CAE, three-dimensional convolutional autoencoder; ROI, region of interest; SZ,
Schizophrenia; CPZE, chlorpromazine equivalent.

Regarding the prediction of positive symptoms, there was
no clear tendency with respect to the number of channels
(Figure 5E). On the other hand, with respect to the number
of blocks, the RMSEs seemed to be the smallest with the
condition of 3 blocks (Figure 5F). Statistical analysis indicated
that there were significant differences between the models
(channel: p < 0.001; block: p < 0.001). Post hoc analysis revealed
that there were significant differences between 1 block and 3

blocks. Similar trends could be observed in the prediction of
negative symptoms (Figures 5G,H), where there were significant
differences between the models (channel: p < 0.001; block:
p < 0.001). In comparison to the conventional method, the 3D-
CAE model with 3 blocks showed a trend toward a smaller
prediction error for positive symptoms than the ROI method
(p = 0.088; Table 2), the mean RMSE (SD) was 4.67 (0.09)
and 4.72 (0.04), respectively, suggesting that the 3D-CAE might
be comparable or better than the ROI method. Regarding
the prediction of negative symptoms, there was no significant
difference between 3D-CAE and the conventional method
(p = 0.968; Table 2).

In addition, the superiority of the 3 blocks condition was
observed in the prediction of age of onset and diagnosis
(Supplementary Tables 2–4). Furthermore, 3D-CAEs with 3
blocks performed better than the ROI method in predicting
those clinical information (age of onset: p < 0.001; diagnosis:
p = 0.005; Table 2).

To summarize the regression analysis results, in terms of
clinical information related to schizophrenia, specifically for
predicting CPZE, positive symptom score, age of onset, and
diagnosis, 3D-CAE with 3 blocks had better prediction than
other numbers of blocks models, regardless of the number
of channels. In addition, 3D-CAE with 3 blocks performed
better than the ROI method in predicting clinical information.
On the other hand, in terms of information not directly
related to schizophrenia, such as age and intelligence, 3D-
CAE with 1 block had better prediction than 3D-CAE with
other numbers of blocks, regardless of the number of channels.
However, 3D-CAE with 1 block did not perform better than
the ROI method in predicting information not directly related
to schizophrenia.

The saliency map was calculated to examine the
correspondence between the features and the brain (Figure 6).
The map showed that the regions contributing to CPZE
prediction using 3D-CAE were the cerebellum, right middle
temporal gyrus, the insula, posterior cingulate cortex, and
precuneus. The regions that contributed to predicting the positive
symptoms were found to the cerebellum, right inferior temporal
gyrus, the insula, anterior and middle cingulate cortex. The other
visualization results are described in Supplementary Figure 1.

DISCUSSION

We have shown that (1) the proposed 3D-CAEs successfully
reproduced 3D MRI data with sufficiently low errors, and (2) the
diagnostic label-free features extracted using 3D-CAE retained
the relation of various clinical information. In addition, we
explored the appropriate hyperparameter range of 3D-CAE, and
our results suggest that a model with 3 blocks-based features
might preserve information related to the medication dose and
the severity of positive symptoms in patients with schizophrenia.

The reproduction errors of 3D-CAE were lower than the
average brain level, indicating that the proposed 3D-CAEs
successfully reproduced 3D brain MRI data with individual
characteristics. In addition, the 3D-CAE trained with the Kyoto
dataset was applicable to the COBRE dataset with different
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FIGURE 6 | The saliency maps. In our developed 3D-CAE model, the saliency maps of the signals contributing to the prediction of each clinical information were
obtained by calculating the gradient of the neural network. 3D-CAE, three-dimensional convolutional autoencoder; PCC, posterior cingulate cortex; MCC, middle
cingulate cortex; ACC, anterior cingulate cortex; Temporal_Mid_R, right middle temporal gyrus; Temporal_Inf_R, right inferior temporal gyrus.

scanners and scanning parameters. Although the current study
was tested using only two datasets, the results suggested that the
proposed method may have applicability to data from multiple
sites and scanners, itself a challenging issue in neuroimaging
studies (Jovicich et al., 2009; Schnack et al., 2010; Fortin et al.,
2018; Dewey et al., 2019; Yamashita et al., 2019).

Regression analyses demonstrated that the 3D-CAE-based
feature was comparable or more effective than the ROI-based
feature in predicting the medication dose and the severity of
positive symptoms in patients with schizophrenia, even though
3D-CAE-based features were extracted without using a diagnostic
label of schizophrenia. Because this approach enabled us to
extract neuroimaging features of individuals without information
on the clinical diagnosis, it can be useful for heterogeneous
population data. Furthermore, using this approach, we were able
to predict clinical variables. These imply that our approach in this
study could be an alternative method to conventional methods
based on categorical diagnostic information. This study showed
that the prediction of CPZE, positive symptoms, and age of
onset might be more improved in 3D-CAE than ROI. These are
clinically meaningful because the model would help clinicians
decide the treatment plan by predicting based on an objective
indicator. In contrast, the current medication dose is mainly
adjusted based on the patient’s self-reported condition.

Regarding the number of channels, 16− to 32-channel models
demonstrated better performance. This is easy to understand
because the more channels the model has, the more expressive
it is (Zhu et al., 2019). However, since increasing number of
channels inevitably results in increasing computational power
needs, estimation of the appropriate number of channels is still
important. Our results suggest that the number of channels may

be sufficient at 16 or 32 for reproducing structural brain MRI
scans. Regarding the number of blocks, our results indicated
that information from a local receptive field (small number of
block) was sufficient for predicting age. However, predicting
schizophrenia-related clinical data required information from
more global receptive fields (larger block numbers, such as
3-block). As the number of blocks increase, the effective
receptive fields expand, and the global feature of the brain
can be extracted (Szegedy et al., 2015; Le and Borji, 2017;
Luo et al., 2017). In our model, the 3 blocks model contained
eight convolutional layers, and effective receptive fields of the
feature unit were about 68 × 68 × 68 voxels, corresponding
to about 30% of the brain. This fact is consistent with the
previous neuroimaging studies showing that the medication
dose and symptoms severity are associated with the volume
of multiple brain regions, including the temporal lobe, frontal
lobe, and various subcortical regions (García-Martí et al., 2008;
Palaniyappan et al., 2013; Van Erp et al., 2016; van Erp
et al., 2018; Bullmore, 2019; Fan et al., 2019). The 3D-CAE-based
feature’s superiority may be related to the detection of local
signal interactions inherent in the convolutional methods; this
contrasts with the ROI-based method, in which signals within
each ROI are averaged and the interactions of local signals
are discarded.

In our model, the saliency map showed that the cerebellum,
temporal lobe, cingulate gyrus, and insular cortex had greater
contributions in predicting the severity of symptoms and dose
of antipsychotic medication. The present study results were
consistent with the results of previous studies showing that
positive symptoms and CPZE correlated with cortical thickness
thinning in the temporal lobe (van Erp et al., 2018), and
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that cerebellar atrophy was associated with positive symptoms
(Cierpka et al., 2017). The insular and cingulate cortices, which
were shown to be significant contributors to clinical variables in
the present study, have been repeatedly reported to be reduced
in the regional brain volume in schizophrenia (Glahn et al.,
2008; Takayanagi et al., 2013; Gupta et al., 2015; Uwatoko et al.,
2015). However, the relationship between these areas and positive
symptoms and CPZE requires further investigation. As a side
note, because the relatively high values of the edge of the brain
may be influenced by the traits of Smoothgrad (Smilkov et al.,
2017) that emphasize the edge, it was difficult to consider them
from a neuroimaging study perspective.

There are some limitations to our study. First, this study
only explored a limited range of hyperparameters. In CAE,
there are several hyperparameters than those explored, such as
activate function, optimizer, and learning rate. However, because
we focused on the total dimension of the extracted features
and the effective receptive field’s size, the numbers of blocks
and channels were explored as the target variables. In addition,
the exploration range of hyperparameters was limited due to
practical reasons including the computational power and costs of
the experiments.

Second, the differences in preprocessing of neuroimaging
data may affect the robustness of the study results. In this
study, we employed the standard preprocessing methods (e.g.,
image resolution, standardization, smoothing), which have been
used in neuroimaging studies, such as voxel-based morphometry
(Ashburner and Friston, 2000). Nevertheless, further studies may
evaluate the effects of the preprocessing methods on results.

Third, the datasets used in this study only included patients
diagnosed with schizophrenia as well as healthy subjects.
Considering the heterogeneity of psychiatric disorders, it
will be necessary to examine the applicability of diagnostic
label-free feature extraction using 3D-CAE to other psychiatric
disorders in the future.

Fourth, regressions were used to predict clinical and
demographic scores, but the 3D-CAE-based feature
outperformed the feature of the ROI does not necessarily
prove that the predictive value generated is clinically useful. In
the present study, the main goal was feature extraction, and
only simple regression was used for prediction. The additional
experiments with the development of a fine-tuned model
and evaluation using longitudinal data of disease process are
needed in the future. These may improve clinical decisions
for assessing patients’ prognosis and estimating an appropriate
medication dose.

In this paper, we presented 3D-CAE-based feature extraction
for brain structural imaging of psychiatric disorders. We found
that 3D-CAE can extract features that retained their relation
to clinical information from 3D MRI data without diagnostic
labels. Our data suggest that 3D-CAE models with effective
hyperparameter settings may extract information related to the
medication dose and the severity of symptoms in patients with
schizophrenia. The feature extraction without using diagnostic
labels based on the current diagnostic criteria is scientifically
significant and may lead to the development of alternative data-
driven diagnostic criteria.

DATA AVAILABILITY STATEMENT

All data generated or analyzed during this study are
included in this published article. The primary data
can be obtained from public databases, including the
Decoded Neurofeedback (DecNef) Project Brain Data
Repository (https://bicr-resource.atr.jp/srpbs1600/) and
the Centers for Biomedical Research Excellence (COBRE;
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html).

ETHICS STATEMENT

All study participants signed an informed consent form. The
study was performed in accordance with the current Ethical
Guidelines for Medical and Health Research Involving Human
Subjects in Japan and was approved by the Committee on Medical
Ethics of Kyoto University and National Center of Neurology
and Psychiatry.

AUTHOR CONTRIBUTIONS

HY, YH, and YY conceived, designed the research, and drafted
the manuscript. HY and YH conducted the deep learning
experiments and analyzed the data. GS, JM, TM, and HT collected
MRI data. GS, JM, TM, HT, MH, and AH provided critical
revisions. All authors contributed to and have approved the
final manuscript.

FUNDING

This work was partially supported by JSPS KAKENHI Grant
Nos. JP17H00740, JP17H04248, JP17H06039, JP18KT0021,
JP18K07597, JP19H04998, JP19K17077, JP20H00001, and
JP20H00625, Grant-in-Aid for Scientific Research on Innovative
Areas from the MEXT Grant No. JP20H05064, Strategic
International Brain Science Research Promotion Program by the
Japan Agency for Medical Research and Development Grant No.
19dm0307008h0002, JST CREST Grant No. JPMJCR16E2 and a
Grant from SENSHIN Medical Research Foundation.

ACKNOWLEDGMENTS

This manuscript has been released as a pre-print at https://www.
biorxiv.org/content/10.1101/2020.08.24.213447v1. We thank all
the authors of the included studies. We also would like to thank
Editage (www.editage.com) for English language editing.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnins.2021.
652987/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 11 July 2021 | Volume 15 | Article 652987137

https://bicr-resource.atr.jp/srpbs1600/
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
https://www.biorxiv.org/content/10.1101/2020.08.24.213447v1
https://www.biorxiv.org/content/10.1101/2020.08.24.213447v1
http://www.editage.com
https://www.frontiersin.org/articles/10.3389/fnins.2021.652987/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.652987/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-652987 July 1, 2021 Time: 16:13 # 12

Yamaguchi et al. Label-Free Feature Extraction With 3D-CAE

REFERENCES
Aghdam, M. A., Sharifi, A., and Pedram, M. M. (2019). Diagnosis of autism

spectrum disorders in young children based on resting-state functional
magnetic resonance imaging data using convolutional neural networks. J. Digit.
Imaging 32, 899–918. doi: 10.1007/s10278-019-00196-1

American Psychiatric Association. (1994). Diagnostic And Statistical Manual
Of Mental Disorders?: DMS-IV. Washington, DC: American Psychiatric
Publishing.

American Psychiatric Association. (2013). Diagnostic And Statistical Manual Of
Mental Disorders (DSM-5). Washington, DC: American Psychiatric Publishing.

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.
Neuroimage 38, 95–113. doi: 10.1016/j.neuroimage.2007.07.007

Ashburner, J., and Friston, K. J. (2000). Voxel-based morphometry – the methods.
Neuroimage 11, 805–821. doi: 10.1006/nimg.2000.0582

Bullmore, E. (2019). Cortical thickness and connectivity in schizophrenia. Am. J.
Psychiatry 176, 505–506. doi: 10.1176/appi.ajp.2019.19050509

Cierpka, M., Wolf, N. D., Kubera, K. M., Schmitgen, M. M., Vasic, N., Frasch,
K., et al. (2017). Cerebellar contributions to persistent auditory verbal
hallucinations in patients with schizophrenia. Cerebellum 16, 964–972. doi:
10.1007/s12311-017-0874-5

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker,
D., et al. (2006). An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage
31, 968–980. doi: 10.1016/j.neuroimage.2006.01.021

Dewey, B. E., Zhao, C., Reinhold, J. C., Carass, A., Fitzgerald, K. C., Sotirchos,
E. S., et al. (2019). DeepHarmony: a deep learning approach to contrast
harmonization across scanner changes. Magn. Reson. Imaging 64, 160–170.
doi: 10.1016/j.mri.2019.05.041

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K.,
et al. (2019). A guide to deep learning in healthcare. Nat. Med. 25, 24–29.
doi: 10.1038/s41591-018-0316-z

Fan, F., Xiang, H., Tan, S., Yang, F., Fan, H., Guo, H., et al. (2019). Subcortical
structures and cognitive dysfunction in first episode schizophrenia. Psychiatry
Res. Neuroimaging 286, 69–75. doi: 10.1016/j.pscychresns.2019.01.003

Feczko, E., Miranda-Dominguez, O., Marr, M., Graham, A. M., Nigg, J. T., and Fair,
D. A. (2019). The Heterogeneity problem: approaches to identify psychiatric
subtypes. Trends Cogn. Sci. 23, 584–601. doi: 10.1016/j.tics.2019.03.009

First, M. B., Spitzer, R. L., Gibbon, M., and Williams, J. B. W. (1997). Structured
Clinical Interview for DSM-IV Axis I Disorders SCID-I. Washington, DC:
American Psychiatric Publishing.

Fornito, A., Zalesky, A., Pantelis, C., and Bullmore, E. T. (2012). Schizophrenia,
neuroimaging and connectomics. Neuroimage 62, 2296–2314. doi: 10.1016/j.
neuroimage.2011.12.090

Fortin, J.-P., Cullen, N., Sheline, Y. I., Taylor, W. D., Aselcioglu, I., Cook, P. A., et al.
(2018). Harmonization of cortical thickness measurements across scanners and
sites. Neuroimage 167, 104–120. doi: 10.1016/j.neuroimage.2017.11.024

Fusar-Poli, P., Howes, O., Bechdolf, A., and Borgwardt, S. (2012). Mapping
vulnerability to bipolar disorder: a systematic review and meta-analysis of
neuroimaging studies. J. Psychiatry Neurosci. 37, 170–184. doi: 10.1503/jpn.
110061

Gao, J., Chen, M., Li, Y., Gao, Y., Li, Y., Cai, S., et al. (2021). Multisite autism
spectrum disorder classification using convolutional neural network classifier
and individual morphological brain networks. Front. Neurosci. 14:629630. doi:
10.3389/fnins.2020.629630

García-Martí, G., Aguilar, E. J., Lull, J. J., Martí-Bonmatí, L., Escartí, M. J., Manjón,
J. V., et al. (2008). Schizophrenia with auditory hallucinations: a voxel-based
morphometry study. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 72–80.
doi: 10.1016/j.pnpbp.2007.07.014

Glahn, D. C., Laird, A. R., Ellison-Wright, I., Thelen, S. M., Robinson, J. L.,
Lancaster, J. L., et al. (2008). Meta-analysis of gray matter anomalies in
schizophrenia: application of anatomic likelihood estimation and network
analysis. Biol. Psychiatry 64, 774–781. doi: 10.1016/j.biopsych.2008.03.031

Guo, X., Liu, X., Zhu, E., and Yin, J. (2017). “Deep clustering with convolutional
autoencoders,” in Neural Information Processing. ICONIP 2017. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), eds D. Liu, S. Xie, Y. Li, D. Zhao, and E. S.
El-Alfy (Cham: Springer), 373–382. doi: 10.1007/978-3-319-70096-0_39

Gupta, C. N., Calhoun, V. D., Rachakonda, S., Chen, J., Patel, V., Liu, J., et al.
(2015). Patterns of gray matter abnormalities in schizophrenia based on an
international mega-analysis. Schizophr. Bull. 41, 1133–1142. doi: 10.1093/
schbul/sbu177

Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A., and Meneguzzi, F.
(2018). Identification of autism spectrum disorder using deep learning and the
ABIDE dataset. Neuroimage Clin. 17, 16–23. doi: 10.1016/j.nicl.2017.08.017

Hinton, G. E. (2006). Reducing the dimensionality of data with neural networks.
Science 313, 504–507. doi: 10.1126/science.1127647

Jovicich, J., Czanner, S., Han, X., Salat, D., van der Kouwe, A., Quinn, B.,
et al. (2009). MRI-derived measurements of human subcortical, ventricular
and intracranial brain volumes: reliability effects of scan sessions, acquisition
sequences, data analyses, scanner upgrade, scanner vendors and field strengths.
Neuroimage 46, 177–192. doi: 10.1016/j.neuroimage.2009.02.010

Kay, S. R., Fiszbein, A., and Opler, L. A. (1987). The positive and negative syndrome
scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276. doi: 10.1093/
schbul/13.2.261

Kingma, D. P., and Ba, J. L. (2015). “Adam: a method for stochastic optimization,”
in Proceedings of the 3rd International Conference on Learning Representations,
ICLR 2015 (Ithaca, NY).

Le, H., and Borji, A. (2017). What are the Receptive, Effective Receptive, and
Projective Fields of Neurons in Convolutional Neural Networks?. Available
onlne at: http://arxiv.org/abs/1705.07049 (accessed May, 2020).

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

Lee, S., Ripke, S., Neale, B. M., Faraone, S., Purcell, S., Rh, P., et al. (2014). Genetic
relationship between five psychiatric disorders estimated from genome-wide
SNPs cross-disorder group of the psychiatric genomics consortium. Nat. Genet.
45, 984–994. doi: 10.1038/ng.2711

Linden, D. E. J. (2012). The challenges and promise of neuroimaging in psychiatry.
Neuron 73, 8–22. doi: 10.1016/j.neuron.2011.12.014

Luo, W., Li, Y., Urtasun, R., and Zemel, R. (2017). Understanding the effective
receptive field in deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 4905–4913. Available at: http://arxiv.org/abs/1701.04128 (accessed
May, 2020).

Martinez-Murcia, F. J., Ortiz, A., Gorriz, J.-M., Ramirez, J., and Castillo-Barnes, D.
(2020). Studying the manifold structure of Alzheimer’s disease: a deep learning
approach using convolutional autoencoders. IEEE J. Biomed. Health Inform. 24,
17–26. doi: 10.1109/JBHI.2019.2914970

Nelson, B. G., Bassett, D. S., Camchong, J., Bullmore, E. T., and Lim, K. O. (2017).
Comparison of large-scale human brain functional and anatomical networks
in schizophrenia. Neuroimage Clin. 15, 439–448. doi: 10.1016/j.nicl.2017.05.
007

Nishio, M., Nagashima, C., Hirabayashi, S., Ohnishi, A., Sasaki, K., Sagawa, T., et al.
(2017). Convolutional auto-encoders for image denoising of ultra-low-dose CT.
Heliyon 3:e00393. doi: 10.1016/j.heliyon.2017.e00393

Oh, K., Kim, W., Shen, G., Piao, Y., Kang, N. I., Oh, I. S., et al. (2019). Classification
of schizophrenia and normal controls using 3D convolutional neural network
and outcome visualization. Schizophr. Res. 212, 186–195. doi: 10.1016/j.schres.
2019.07.034

Olesen, J., Gustavsson, A., Svensson, M., Wittchen, H.-U., and Jönsson, B. (2012).
The economic cost of brain disorders in Europe. Eur. J. Neurol. 19, 155–162.
doi: 10.1111/j.1468-1331.2011.03590.x

Owen, M. J. (2014). New approaches to psychiatric diagnostic classification.
Neuron 84, 564–571. doi: 10.1016/j.neuron.2014.10.028

Owen, M. J., Sawa, A., and Mortensen, P. B. (2016). Schizophrenia. Lancet 388,
86–97. doi: 10.1016/S0140-6736(15)01121-6

Palaniyappan, L., Marques, T. R., Taylor, H., Handley, R., Mondelli, V., Bonaccorso,
S., et al. (2013). Cortical folding defects as markers of poor treatment response
in first-episode psychosis. JAMA Psychiatry 70, 1031–1040. doi: 10.1001/
jamapsychiatry.2013.203

Pinaya, W. H. L., Mechelli, A., and Sato, J. R. (2019). Using deep autoencoders
to identify abnormal brain structural patterns in neuropsychiatric disorders: a
large-scale multi-sample study. Hum. Brain Mapp. 40, 944–954. doi: 10.1002/
hbm.24423

Plis, S. M., Hjelm, D. R., Salakhutdinov, R., Allen, E. A., Bockholt, H. J., Long,
J. D., et al. (2014). Deep learning for neuroimaging: a validation study. Front.
Neurosci. 8:229. doi: 10.3389/fnins.2014.00229

Frontiers in Neuroscience | www.frontiersin.org 12 July 2021 | Volume 15 | Article 652987138

https://doi.org/10.1007/s10278-019-00196-1
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1176/appi.ajp.2019.19050509
https://doi.org/10.1007/s12311-017-0874-5
https://doi.org/10.1007/s12311-017-0874-5
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.mri.2019.05.041
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.1016/j.pscychresns.2019.01.003
https://doi.org/10.1016/j.tics.2019.03.009
https://doi.org/10.1016/j.neuroimage.2011.12.090
https://doi.org/10.1016/j.neuroimage.2011.12.090
https://doi.org/10.1016/j.neuroimage.2017.11.024
https://doi.org/10.1503/jpn.110061
https://doi.org/10.1503/jpn.110061
https://doi.org/10.3389/fnins.2020.629630
https://doi.org/10.3389/fnins.2020.629630
https://doi.org/10.1016/j.pnpbp.2007.07.014
https://doi.org/10.1016/j.biopsych.2008.03.031
https://doi.org/10.1007/978-3-319-70096-0_39
https://doi.org/10.1093/schbul/sbu177
https://doi.org/10.1093/schbul/sbu177
https://doi.org/10.1016/j.nicl.2017.08.017
https://doi.org/10.1126/science.1127647
https://doi.org/10.1016/j.neuroimage.2009.02.010
https://doi.org/10.1093/schbul/13.2.261
https://doi.org/10.1093/schbul/13.2.261
http://arxiv.org/abs/1705.07049
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/ng.2711
https://doi.org/10.1016/j.neuron.2011.12.014
http://arxiv.org/abs/1701.04128
https://doi.org/10.1109/JBHI.2019.2914970
https://doi.org/10.1016/j.nicl.2017.05.007
https://doi.org/10.1016/j.nicl.2017.05.007
https://doi.org/10.1016/j.heliyon.2017.e00393
https://doi.org/10.1016/j.schres.2019.07.034
https://doi.org/10.1016/j.schres.2019.07.034
https://doi.org/10.1111/j.1468-1331.2011.03590.x
https://doi.org/10.1016/j.neuron.2014.10.028
https://doi.org/10.1016/S0140-6736(15)01121-6
https://doi.org/10.1001/jamapsychiatry.2013.203
https://doi.org/10.1001/jamapsychiatry.2013.203
https://doi.org/10.1002/hbm.24423
https://doi.org/10.1002/hbm.24423
https://doi.org/10.3389/fnins.2014.00229
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-652987 July 1, 2021 Time: 16:13 # 13

Yamaguchi et al. Label-Free Feature Extraction With 3D-CAE

Poldrack, R. A. (2007). Region of interest analysis for fMRI. Soc. Cogn. Affect.
Neurosci. 2, 67–70. doi: 10.1093/scan/nsm006

Quaak, M., van de Mortel, L., Mani Thomas, R., and van Wingen, G. (2021).
Deep learning applications for the classification of psychiatric disorders using
neuroimaging data: systematic review and meta-analysis. Neuroimage Clin.
30:102584. doi: 10.1016/j.nicl.2021.102584

Qureshi, M. N. I., Oh, J., and Lee, B. (2019). 3D-CNN based discrimination of
schizophrenia using resting-state fMRI. Artif. Intell. Med. 98, 10–17. doi: 10.
1016/j.artmed.2019.06.003

Ratnanather, J. T., Poynton, C. B., Pisano, D. V., Crocker, B., Postell, E., Cebron, S.,
et al. (2013). Morphometry of superior temporal gyrus and planum temporale
in schizophrenia and psychotic bipolar disorder. Schizophr. Res. 150, 476–483.
doi: 10.1016/j.schres.2013.08.014

Sarraf, S., DeSouza, D. D., Anderson, J., and Tofighi, G. (2017). DeepAD:
Alzheimer’s disease classification via deep convolutional neural networks using
MRI and fMRI. bioRxiv[Preprint] 070441. doi: 10.1101/070441

Schnack, H. G., van Haren, N. E. M., Brouwer, R. M., van Baal, G. C. M., Picchioni,
M., Weisbrod, M., et al. (2010). Mapping reliability in multicenter MRI: voxel-
based morphometry and cortical thickness. Hum. Brain Mapp. 31, 1967–1982.
doi: 10.1002/hbm.20991

Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Wattenberg, M. (2017).
SmoothGrad: Removing Noise by Adding Noise. Available online at: http://arxiv.
org/abs/1706.03825 (accessed June, 2019).

Sugihara, G., Oishi, N., Son, S., Kubota, M., Takahashi, H., and Murai, T.
(2017). Distinct patterns of cerebral cortical thinning in schizophrenia: a
neuroimaging data-driven approach. Schizophr. Bull. 43, 900–906. doi: 10.1093/
schbul/sbw176

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).
“Going deeper with convolutions,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (Washington, DC:
IEEE Computer Society), 1–9. doi: 10.1109/CVPR.2015.7298594

Takayanagi, M., Wentz, J., Takayanagi, Y., Schretlen, D. J., Ceyhan, E., Wang, L.,
et al. (2013). Reduced anterior cingulate gray matter volume and thickness in
subjects with deficit schizophrenia. Schizophr. Res. 150, 484–490. doi: 10.1016/
j.schres.2013.07.036

Tokui, S., Oono, K., Hido, S., and Clayton, J. (2015). “Chainer: a next-generation
open source framework for deep learning,” in Proceedings of Workshop On
Machine Learning Systems (LearningSys) in the 29th Annual Conference On
Neural Information Processing Systems (NIPS), (San Diego, USA: The Neural
Information Processing Systems Foundation), 1–6.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject
brain. Neuroimage 15, 273–289. doi: 10.1006/nimg.2001.0978

Uwatoko, T., Yoshizumi, M., Miyata, J., Ubukata, S., Fujiwara, H., Kawada, R., et al.
(2015). Insular gray matter volume and objective quality of life in schizophrenia.
PLoS One 10:e0142018. doi: 10.1371/journal.pone.0142018

Van Erp, T. G. M., Hibar, D. P., Rasmussen, J. M., Glahn, D. C., Pearlson, G. D.,
Andreassen, O. A., et al. (2016). Subcortical brain volume abnormalities in
2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA
consortium. Mol. Psychiatry 21, 547–553. doi: 10.1038/mp.2015.63

van Erp, T. G. M., Walton, E., Hibar, D. P., Schmaal, L., Jiang, W., Glahn,
D. C., et al. (2018). Cortical brain abnormalities in 4474 individuals with
schizophrenia and 5098 control subjects via the enhancing neuro imaging
genetics through meta analysis (ENIGMA) consortium. Biol. Psychiatry 84,
644–654. doi: 10.1016/j.biopsych.2018.04.023

van Os, J., and Kapur, S. (2009). Schizophrenia. Lancet 374, 635–645. doi: 10.1016/
S0140-6736(09)60995-8

Vieira, S., Pinaya, W. H. L., and Mechelli, A. (2017). Using deep learning
to investigate the neuroimaging correlates of psychiatric and neurological
disorders: methods and applications. Neurosci. Biobehav. Rev. 74, 58–75. doi:
10.1016/j.neubiorev.2017.01.002

Wang, S. H., Phillips, P., Sui, Y., Liu, B., Yang, M., and Cheng, H. (2018).
Classification of Alzheimer’s disease based on eight-layer convolutional neural
network with leaky rectified linear unit and max pooling. J. Med. Syst. 42:85.
doi: 10.1007/s10916-018-0932-7

Wang, Z., Sun, Y., Shen, Q., and Cao, L. (2019). Dilated 3D convolutional neural
networks for brain MRI data classification. IEEE Access 7, 134388–134398.
doi: 10.1109/ACCESS.2019.2941912

Whiteford, H. A., Degenhardt, L., Rehm, J., Baxter, A. J., Ferrari, A. J., Erskine,
H. E., et al. (2013). Global burden of disease attributable to mental and
substance use disorders: findings from the global burden of disease study 2010.
Lancet 382, 1575–1586. doi: 10.1016/S0140-6736(13)61611-6

World Health Organization. (1992). International Statistical Classification Of
Diseases And Related Health Problems. Geneva: World Health Organization.

Yamashita, A., Yahata, N., Itahashi, T., Lisi, G., Yamada, T., Ichikawa, N., et al.
(2019). Harmonization of resting-state functional MRI data across multiple
imaging sites via the separation of site differences into sampling bias and
measurement bias. PLoS Biol 17:e3000042. doi: 10.1371/journal.pbio.3000042

Zhu, H., An, Z., Yang, C., Hu, X., Xu, K., and Xu, Y. (2019). Rethinking the
Number of Channels for the Convolutional Neural Network. Available online at:
http://arxiv.org/abs/1909.01861 (accessed May, 2020).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Yamaguchi, Hashimoto, Sugihara, Miyata, Murai, Takahashi,
Honda, Hishimoto and Yamashita. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 July 2021 | Volume 15 | Article 652987139

https://doi.org/10.1093/scan/nsm006
https://doi.org/10.1016/j.nicl.2021.102584
https://doi.org/10.1016/j.artmed.2019.06.003
https://doi.org/10.1016/j.artmed.2019.06.003
https://doi.org/10.1016/j.schres.2013.08.014
https://doi.org/10.1101/070441
https://doi.org/10.1002/hbm.20991
http://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1706.03825
https://doi.org/10.1093/schbul/sbw176
https://doi.org/10.1093/schbul/sbw176
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1016/j.schres.2013.07.036
https://doi.org/10.1016/j.schres.2013.07.036
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1371/journal.pone.0142018
https://doi.org/10.1038/mp.2015.63
https://doi.org/10.1016/j.biopsych.2018.04.023
https://doi.org/10.1016/S0140-6736(09)60995-8
https://doi.org/10.1016/S0140-6736(09)60995-8
https://doi.org/10.1016/j.neubiorev.2017.01.002
https://doi.org/10.1016/j.neubiorev.2017.01.002
https://doi.org/10.1007/s10916-018-0932-7
https://doi.org/10.1109/ACCESS.2019.2941912
https://doi.org/10.1016/S0140-6736(13)61611-6
https://doi.org/10.1371/journal.pbio.3000042
http://arxiv.org/abs/1909.01861
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-889808 April 19, 2022 Time: 14:44 # 1

ORIGINAL RESEARCH
published: 26 April 2022

doi: 10.3389/fnins.2022.889808

Edited by:
Yogesh Rathi,

Harvard Medical School,
United States

Reviewed by:
Fan Zhang,

Harvard Medical School,
United States
Guoping Xu,

Wuhan Institute of Technology, China

*Correspondence:
Tom Finck

tom.finck@tum.de

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 04 March 2022
Accepted: 04 April 2022
Published: 26 April 2022

Citation:
Finck T, Li H, Schlaeger S,

Grundl L, Sollmann N, Bender B,
Bürkle E, Zimmer C, Kirschke J,

Menze B, Mühlau M and Wiestler B
(2022) Uncertainty-Aware

and Lesion-Specific Image Synthesis
in Multiple Sclerosis Magnetic

Resonance Imaging: A Multicentric
Validation Study.

Front. Neurosci. 16:889808.
doi: 10.3389/fnins.2022.889808

Uncertainty-Aware and
Lesion-Specific Image Synthesis in
Multiple Sclerosis Magnetic
Resonance Imaging: A Multicentric
Validation Study
Tom Finck1*†, Hongwei Li2†, Sarah Schlaeger1, Lioba Grundl1, Nico Sollmann1,3,
Benjamin Bender4, Eva Bürkle4, Claus Zimmer1, Jan Kirschke1, Björn Menze2,
Mark Mühlau5,6 and Benedikt Wiestler1,2

1 Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical
University of Munich, Munich, Germany, 2 Image-Based Biomedical Modeling, Technical University of Munich, Munich,
Germany, 3 Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany, 4 Department of
Diagnostic and Interventional Neuroradiology, Universitätsklinikum Tübingen, Tübingen, Germany, 5 TUM-Neuroimaging
Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany, 6 Department of Neurology, School
of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany

Generative adversarial networks (GANs) can synthesize high-contrast MRI from lower-
contrast input. Targeted translation of parenchymal lesions in multiple sclerosis (MS),
as well as visualization of model confidence further augment their utility, provided
that the GAN generalizes reliably across different scanners. We here investigate the
generalizability of a refined GAN for synthesizing high-contrast double inversion recovery
(DIR) images and propose the use of uncertainty maps to further enhance its clinical
utility and trustworthiness. A GAN was trained to synthesize DIR from input fluid-
attenuated inversion recovery (FLAIR) and T1w of 50 MS patients (training data).
In another 50 patients (test data), two blinded readers (R1 and R2) independently
quantified lesions in synthetic DIR (synthDIR), acquired DIR (trueDIR) and FLAIR. Of
the 50 test patients, 20 were acquired on the same scanner as training data (internal
data), while 30 were scanned at different scanners with heterogeneous field strengths
and protocols (external data). Lesion-to-Background ratios (LBR) for MS-lesions vs.
normal appearing white matter, as well as image quality parameters were calculated.
Uncertainty maps were generated to visualize model confidence. Significantly more
MS-specific lesions were found in synthDIR compared to FLAIR (R1: 26.7 ± 2.6 vs.
22.5 ± 2.2 p < 0.0001; R2: 22.8 ± 2.2 vs. 19.9 ± 2.0, p = 0.0005). While trueDIR
remained superior to synthDIR in R1 [28.6 ± 2.9 vs. 26.7 ± 2.6 (p = 0.0021)], both
sequences showed comparable lesion conspicuity in R2 [23.3 ± 2.4 vs. 22.8 ± 2.2
(p = 0.98)]. Importantly, improvements in lesion counts were similar in internal and
external data. Measurements of LBR confirmed that lesion-focused GAN training
significantly improved lesion conspicuity. The use of uncertainty maps furthermore
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helped discriminate between MS lesions and artifacts. In conclusion, this multicentric
study confirms the external validity of a lesion-focused Deep-Learning tool aimed at
MS imaging. When implemented, uncertainty maps are promising to increase the
trustworthiness of synthetic MRI.

Keywords: magnetic resonance imaging, neuroradiology, multiple sclerosis, deep learning – artificial neural
network (DL-ANN), double inversion recovery (DIR), synthetic MRI, artificial intelligence (AI)

INTRODUCTION

Magnetic resonance imaging (MRI) plays a central role
in the management of patients with multiple sclerosis
(MS), a neuroinflammatory disease with rising incidence
that remains the most common cause of non-traumatic
disability in the young (GBD 2016 Multiple Sclerosis
Collaborators, 2019). MRI techniques have been developed
to detect specific aspects of MS pathophysiology; double
inversion recovery (DIR) imaging is exemplary of a
sequence that improves lesion detection, in particular
within the juxtacortical region. Through numerous studies,
the superiority of DIR compared to established MRI
sequences such as T2w or fluid-attenuated inversion
recovery (FLAIR) sequences in depicting inflammatory
white matter lesions has been validated (Geurts et al.,
2005; Wattjes et al., 2007). Lengthy acquisition times and
high technical requirements have, however, hindered the
widespread use of DIR.

Recently, it has been shown that synthesizing DIR images
with generative adversarial networks (GANs), a deep learning
(DL) architecture with great potential for image synthesis, is
feasible and improves lesion detection compared to FLAIR
and T2w sequences (Finck et al., 2020; Bouman et al.,
2021). Nonetheless, and in particular as MS lesions typically
are small, GANs are at risk to synthesize images of high
morphologic similarity to the target image, while failing
to translate the clinically important MS lesions. Domain
knowledge, i.e., the ability of a GAN to learn about the
pathology-specific anomalies it should map, might open the
door for further customization and improvements in this
regard. Various classification tasks, from the categorization
of breast lesions to the detection of malignant thyroid
nodules have thus already been improved by complementing a
network’s training stage with domain knowledge (Feng et al.,
2020; Avola et al., 2021). The underlying study is to our
knowledge the first to investigate this knowledge-driven GAN
approach in MS imaging.

The value of machine learning (ML) tools generally hinges
on their ability to remain accurate when deployed to data

Abbreviations: MRI, magnetic resonance imaging; MS, multiple sclerosis; DIR,
double inversion recovery; FLAIR, fluid-attenuated inversion recovery; GAN,
generative adversarial network; DL, deep learning; ML, machine learning; AI,
artificial intelligence; synthDIR, synthetic double inversion recovery; trueDIR,
physically acquired double inversion recovery; SSIM, structural similarity index
measure; LST, lesion segmentation tool; JC, juxtacortical; PV, periventricular;
IT, infratentorial; SC, subcortical; LBR, lesion-to-background ratios; LFL, lesion-
focused loss; NAWM, normal appearing white matter; PSNR, peak signal-to-noise
ratio; ICC, intraclass correlation coefficient.

that is of different structure from the training data, making
multicentric validation a mandatory prerequisite. Also, building
trust in artificial intelligence (AI) is oftentimes hindered because
the decision-making process is concealed to the user who
can only accept or discard a binary output (Asan et al.,
2020). Hence, providing visibility into how an ML system
makes predictions has become a major concern, especially
in the medical domain (Quinn et al., 2022). This can be
achieved either by providing insights into the “black-box”
problem of DL systems that are inherently uninterpretable
by the human operator or by designing networks that are
inherently interpretable but generally less potent (i.e., linear
regression, decision-trees). Neural networks are a hallmark
of the “black-box” problem as decisions are made through
nonlinear associations between input and output, thus remaining
opaque to the human reader. Improved interpretability can
be achieved by decreasing the complexity of such networks
(i.e., reducing the amount of neural connections), at the
potential cost of performance loss, or through uncertainty
measurements of the decision-making process (Le et al., 2020).
By providing uncertainty maps that quantify the decision-
making confidence of a GAN, the acceptance of synthetic
MRI by the medical community might be improved while
also offering clearer insights into potential causes for a
system’s malfunctioning. Uncertainty maps can be estimated
by analysis of the variance across iterations during image
synthesis, which has of late become an area of increasing
interest (Gal and Ghahramani, 2015; Watson et al., 2019).
Visualization of model confidence in GAN-mediated synthesis
of MRI has been done before in tasks such as artificial
motion-artifact inclusion or age prediction in fetal MRI (Shaw
et al., 2020; Shi et al., 2020). In contrast to these works,
we aim to quantify model confidence in translating areas
of pathology that only constitute a small fraction of the
generated data volume.

This study presents a refined GAN framework with
an architecture that includes a task-specific training
objective for MS lesion translation. We hypothesize
that this GAN-based approach can provide synthetic,
high-contrast DIR images from routinely acquired
input FLAIR and T1w data, thereby removing the
need for time-intensive acquisition of DIR. A special
focus of this study is to evaluate this task-specific
network for external validity in a multicenter dataset
with scanners from different vendors and different
acquisition details. To further provide an insight into
the decision-making process of the GAN and guide
the reviewing clinician toward potential artifacts, we
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calculated uncertainty maps that reflect the variance in
image-to-image translation.

MATERIALS AND METHODS

Patients
The study design was approved by the local IRBs and informed
consent was obtained from all patients at their respective centers
prior to scan acquisition.

Training Data
Data for model training were retrospectively retrieved from
50 patients with diagnosed MS and included T1w (2:28 min),
FLAIR (3:55 min), and DIR (6:31 min). All scans originated
from the same scanner (Ingenia 3.0T, Philips Healthcare, Best,
Netherlands). Sequence parameters were identical in all patients
for T1w (TR of 9.0 ms, TE of 4.0 ms, flip angle of 8◦, acquired in
the sagittal plane with an isotropic voxel size of 1 mm3), FLAIR
(TR of 4,800 ms, TE of 331 ms, TI of 1,650 ms, flip angle of
90◦, acquired in the sagittal plane with an isotropic voxel size of
1 mm3), and DIR (TR of 5,500 ms, TE of 355.9 ms, TI of 2,550 ms
and 2,990 ms, flip angle of 90◦, acquired in the sagittal plane with
an isotropic voxel size of 1.1 mm3).

Testing Data
Sixty MRI scans from 50 consecutive patients (20:20:10 for
centers 1:2:3, respectively) with diagnosed MS were included. For
centers 1 and 2, 1 scan/patient was sampled, while baseline and
follow-up exams for 10 patients from center 3 were considered.
MRI data included T1w, FLAIR, and DIR and were acquired
on both, 3.0T and 1.5T scanners. In detail, testing data from
center 1 was acquired on the same hardware and using the same
protocol as the training data (Ingenia 3.0T, Philips Healthcare,
Best, Netherlands), testing data from center 2 originated from
a different 3.0T scanner from the same manufacturer (Achieva
3.0T, Philips Healthcare, Best, Netherlands), and testing data
from center 3 was acquired on 1.5T and 3.0T scanners from a
different manufacturer (Skyra 3.0T, Avanto_fit 1.5T, and Aera
1.5T, Siemens Healthineers, Erlangen, Germany).

Sequence parameters for T1w, FLAIR, and DIR sequences
were chosen according to the site-specific parameters optimized
for routine clinical imaging and not modified during the retrieval
period (Supplementary Table 1). Dichotomization of data from
centers 1–3 was made to acknowledge the fact that data structure
from (1) corresponded to the training data (prospectively
referred to as “internal data”), while the data structure from (2)
and (3) was unknown to the network (prospectively referred
to as “external data”). Table 1 illustrates how the data was
categorized for evaluation.

Double Inversion Recovery Image
Synthesis
Network Architecture
Our GAN extends the existing “pix2pix” method (Isola et al.,
2017) and is trained to synthesize a target image y (resembling

TABLE 1 | Data from center 1 was acquired on the same hardware as training
data and thus considered to be of known structure (= internal data).

Data class (number of image sets) Classes for study evaluation

Training data (n = 50)

Test data from (1) (n = 20) Internal data (Known data structure)

Test data from (2) (n = 20) External data (Unknown data structure)

Test data from (3) (n = 20) External data (Unknown data structure)

In analogy, data from centers 2 and 3 were acquired on different hardware and
considered to be of unknown structure (= external data).

the true target image Y) given a set of input images X and
a lesion segmentation mask S. In this setting, two networks
compete with each other: The generator G is based on a U-Net
architecture and synthesizes the target DIR images (synthDIR)
from two input images (T1w and FLAIR), while the discriminator
D tries to determine if a given DIR image is synthetic (synthDIR)
or physically acquired (trueDIR). The network architecture and
training process of the GAN are given in Figure 1. Importantly,
the input of T1 and FLAIR images are fed to U-Net to generate
DIR images while the lesion mask is only used to compute
additional lesion-specific loss during the training stage (see
below). Thus the lesion segmentation mask S is not required
during inference.

Loss Functions
The discriminator gives the judgment about how realistic the
local structures are (called “Patch GAN”), and is patch-based
and driven by a least-square error (L2) loss function (Mao et al.,
2019). The generator is trained on a composite loss function
based on (a) the reconstruction error between the synthesized
image and the target image using SSIM and (b) the output
of the discriminator when judging if a given image is either
ground truth or synthetic. In addition to an SSIM, a peculiarity
of our model is that an additional loss focusing on the successful
translation of MS lesions was developed. In order to focus the
model on MS lesions (which only make up a minority of voxels
in an image), an additional L1 loss term is calculated between
the true and synthetic DIR images after multiplying both images
with the lesion segmentation mask S, thus only considering the
translation of MS lesions for this part of the loss. The image
reconstruction loss for the generator G, the loss function for the
discriminator D, and the total loss function were formulated as
follows, respectively:

Lrecons = 1− SSIM (Y, G (X))+ λ1 ∗ ||(Y − G(X))� S1||

(1)

L D = EX {||1− D(X)||2} (2)

Ltotal = λ2 ∗ Lrecons + LD (3)

Here, λ1 and λ2 are hyper-parameters and set to 1 and 10,
respectively, which balances the two loss components.

Optimization
The input and output images were co-registered, skull-stripped,
linearly transformed into the MNI152 space, and resampled
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FIGURE 1 | Architecture, training process, and inference of the image synthesis task. The image Generator G uses the combination of FLAIR and T1w as input to
generate synthDIR. The additional supervision from the lesion maps in the training stage drives an enhanced translation of MS-specific lesions (lesion attention). The
feedback on the similarity between synthDIR and trueDIR is given by the Discriminator D and a structure similarity loss function and it updates the network weights
until the loss function to discern both image pairs is minimal. During the inference stage, the trained generator G can generate the synthDIR and an uncertainty map
showing the confidence of the output relating to each voxel. Uncertainty maps are calculated from the voxel-wise variances in signal intensities, as explained in the
section “Materials and Methods”.

to 1 mm isotropic resolution. As excellent correlation between
automated and manual segmentation performance has been
shown before, lesion segmentation maps were created using
the Lesion Segmentation Tool (LST) (Schmidt et al., 2012). By
including domain knowledge (in the form of lesion segmentation
on FLAIR images) into the image translation during training,
we enforced the model to pay attention to the lesion area by
minimizing the difference between ground-truth images and
synthetic images. In practice, such segmentation maps can be
also provided by manual segmentation or other automated
lesion segmentation tools (Schmidt et al., 2012; Li et al., 2018).
Exemplary cases of all investigated sequences are shown in
Figure 2. Training was carried out with a batch size of 1
for a total of 150 epochs, using the Adam optimizer with a
learning rate of 0.001. During training, random intensity (gamma
correction and gaussian blurring) and spatial (shifting and
flipping) augmentations were performed. The best-performing
model was selected using an internal validation set consisting of
10% of the training images.

The generated model is publicly available at https://figshare.
com/articles/software/synthDIR/16607831.

Expert Readings
A dataset of 180 scans, comprising 60 sets each for FLAIR,
synthDIR, and trueDIR, was investigated for lesion counts
by two neuroradiologists (R1 with 5 years of experience in
neuroradiological imaging, R2 with 3 years of experience
in neuroradiological imaging) in a random order. Readers
were blinded to scanner types and sequence labels. The
number of juxtacortical (JC), periventricular (PV), infratentorial
(IT), and subcortical (SC) lesions, in accordance with the
2017 McDonald criteria, were counted (Thompson et al.,
2018). JC, PV, and IT lesions were considered to be MS-
specific (Thompson et al., 2018). Albeit known to constitute

different pathophysiological entities, we did not differentiate
between cortical and juxtacortical lesions as this approach best
reflects current guidelines (Bo et al., 2003; Thompson et al.,
2018).

Quantitative Lesion Analysis and
Uncertainty Maps
To quantitatively assess lesion translation, we calculated lesion-
to-background ratios (LBR). Therefore, lesions on FLAIR
and T1w images were segmented using LST, and tissue
segmentation of T1w images was performed using ANTs
Atropos (Avants et al., 2011). For comparison of LBR, GAN
iterations with and without the above-stated lesion-specific loss
function were computed.

From the segmentation maps, the lesion-to-background ratio
was calculated as:

LBR =
MeanSignallesion
MeanSignalNAWM

(4)

Here, NAWM refers to “normal appearing white matter,”
i.e., non-lesioned white matter. From lesion segmentation maps
and corresponding annotations in the NAWM, the mean signal
intensity was extracted from DIR, FLAIR, and synthDIR images.

To estimate the GAN’s uncertainty in generating
synthDIR images, we performed variational inference
during the test time by using dropout sampling. We
added a dropout layer (dropout rate of 0.3) to the second-
last layer of the U-Net and calculated 100 synthDIR
images per input (Gal and Ghahramani, 2015). From
these 100 iterations, we calculated the variance of voxel-
wise intensities, resulting in the uncertainty map for
visual inspection.
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FIGURE 2 | Exemplary images of FLAIR, trueDIR, and synthDIR for all centers and scanners.

Statistical Analysis
Lesion counts were compared with a Wilcoxon signed-
rank test to account for non-Gaussian distribution and
paired data. LBR was compared with a paired t-test.
Similarity of synthDIR and trueDIR was furthermore
quantitatively assessed by the SSIM (Wang et al., 2004).
For pixelwise comparisons, peak signal-to-noise ratio
(PSNR) was calculated. Interrater agreement was assessed
with the intraclass correlation coefficient (ICC; use of
single measurements for absolute agreement in a two-way
random model) and the related 95% confidence interval
(95% CI). Statistical computations were performed with SPSS
software (SPSS Statistics for Windows, version 25.0; IBM,
Armonk, NY, United States). A p-value < 0.05 was considered
statistically significant.

RESULTS

Interrater Agreement
Consistency between both readers was excellent with ICCs for all
specific (JC + PV + IT) lesions ranging from 0.91 (95% CI: 0.85;
0.94) in FLAIR to 0.90 (95% CI: 0.84; 0.94) in synthDIR and 0.89
(95% CI: 0.83; 0.94) in trueDIR.

Lesion Counts
The study endpoint to improve depiction of MS specific
lesions in synthDIR compared to FLAIR was met by both
readers [26.7 ± 2.6 vs. 22.5 ± 2.2 (p < 0.0001) in R1

and 22.8 ± 2.2 vs. 19.9 ± 2.0 (p = 0.0005) in R2].
TrueDIR outperformed FLAIR in counts of MS-specific lesions
[28.6 ± 2.9 vs. 22.5 ± 2.2 (p < 0.0001) in R1 and
23.3 ± 2.4 vs. 19.9 ± 2.0 (p < 0.0001) in R2]. While
trueDIR remained superior to synthDIR in the depiction
of MS-specific lesions in R1 [28.6 ± 2.9 vs. 26.7 ± 2.6
(p = 0.0021)], both image sets were of comparable diagnostic
value in R2 [23.3 ± 2.4 vs. 22.8 ± 2.2 (p = 0.98)]. Table 2
provides details on total and region-specific lesion counts for
the study cohort.

Analysis of lesion counts as a function of scanner types
revealed comparable effects independent of the structure of input
data (internal or external). Hence, significant improvements in
lesion counts were noted in synthDIR vs. FLAIR for both readers
in external data [27.1 ± 3.4 vs. 22.6 ± 2.8 (p < 0.0001) in R1;
25.1 ± 2.9 vs. 21.5 ± 2.6 (p = 0.0007) in R2] and for R1 in
internal data [26.6 ± 4.3 vs. 22.2 ± 3.6 (p = 0.0029) in R1;
18.1 ± 2.6 vs. 16.6 ± 2.6 (p = 0.27) in R2]. In external data, a
slight improvement in lesion conspicuity was noted in trueDIR
vs. synthDIR for R1 [28.9 ± 3.7 vs. 27.1 ± 3.4 (p = 0.011)] but
not for R2 [25.6± 3.3 vs. 25.1± 2.9 (p = 0.90)]. Table 3 provides
lesion counts as a function of data source.

To increase the clinical reliability of synthDIR images, voxel-
wise uncertainty maps from 100 forward runs using test-time
dropout for Bayesian approximation were evaluated. For the
majority of lesions, a high model confidence was observed,
i.e., lesions were not highlighted in the uncertainty maps. On
the other hand, artificial hyperintensities in synthetic images
were readily identified by the high model uncertainty on
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TABLE 2 | Lesion counts for all locations and both readers.

All specific P PV lesions P JC lesions P IT lesions P SC lesions P

Reader 1

FLAIR vs. synthDIR 22.5 ± 2.2
vs.

26.7 ± 2.6

< 0.0001 12.0 ± 1.2
vs.

13.9 ± 1.4

< 0.0001 8.7 ± 1.2
vs.

10.8 ± 1.5

< 0.0001 1.9 ± 0.4
vs.

2.2 ± 0.4

0.043 10.6 ± 1.3
vs.

10.4 ± 1.2

0.82

FLAIR vs. trueDIR 22.5 ± 2.2
vs.

28.6 ± 2.9

< 0.0001 12.0 ± 1.2
vs.

13.9 ± 1.4

< 0.0001 8.7 ± 1.2
vs.

12.3 ± 1.7

< 0.0001 1.9 ± 0.4
vs.

2.4 ± 0.4

0.0002 10.6 ± 1.3
vs.

10.9 ± 1.4

0.36

SynthDIR vs. trueDIR 26.7 ± 2.6
vs.

28.6 ± 2.9

0.0021 13.9 ± 1.4
vs.

13.9 ± 1.4

0.91 10.8 ± 1.5
vs.

12.3 ± 1.7

< 0.0001 2.2 ± 0.4
vs.

2.4 ± 0.4

0.33 10.4 ± 1.2
vs.

10.9 ± 1.4

0.66

Reader 2

FLAIR vs. synthDIR 19.9 ± 2.0
vs.

22.8 ± 2.2

0.0005 10.5 ± 1.0
vs.

12.4 ± 1.1

0.0004 7.8 ± 1.2
vs.

8.5 ± 1.3

0.18 1.5 ± 0.3
vs.

1.9 ± 0.3

0.024 13.5 ± 1.9
vs.

10.5 ± 1.5

< 0.0001

FLAIR vs. trueDIR 19.9 ± 2.0
vs.

23.3 ± 2.4

< 0.0001 10.5 ± 1.0
vs.

12.2 ± 1.2

0.0014 7.8 ± 1.2
vs.

9.7 ± 1.5

0.0028 1.5 ± 0.3
vs.

1.5 ± 0.3

0.99 13.5 ± 1.9
vs.

10.5 ± 1.6

< 0.0001

SynthDIR vs. trueDIR 22.8 ± 2.2
vs.

23.3 ± 2.4

0.98 12.4 ± 1.1
vs.

12.2 ± 1.2

0.26 8.5 ± 1.3
vs.

9.7 ± 1.5

0.068 1.9 ± 0.3
vs.

1.5 ± 0.3

0.03 10.5 ± 1.5
vs.

10.5 ± 1.6

0.70

PV, periventricular; JC, juxtacortical; IT, infratentorial; SC, subcortical; FLAIR, fluid-attenuated inversion recovery; trueDIR, real double inversion recovery; synthDIR,
synthetic double inversion recovery.

TABLE 3 | Counts of MS-specific lesions for FLAIR, trueDIR, and synthDIR as a function of data source.

All P Internal data P External data P

Reader 1

FLAIR vs. synthDIR 22.5 ± 2.2 vs. 26.7 ± 2.6 < 0.0001 22.2 ± 3.6 vs. 26.6 ± 4.3 0.0029 22.6 ± 2.8 vs. 27.1 ± 3.4 < 0.0001

FLAIR vs. trueDIR 22.5 ± 2.2 vs. 28.6 ± 2.9 < 0.0001 22.2 ± 3.6 vs. 27.9 ± 4.6 0.0001 22.6 ± 2.8 vs. 28.9 ± 3.7 < 0.0001

SynthDIR vs. trueDIR 26.7 ± 2.6 vs. 28.6 ± 2.9 0.0021 26.6 ± 4.3 vs. 27.9 ± 4.6 0.086 27.1 ± 3.4 vs. 28.9 ± 3.7 0.011

Reader 2

FLAIR vs. synthDIR 19.9 ± 2.0 vs. 22.8 ± 2.2 0.0005 16.6 ± 2.6 vs. 18.1 ± 2.6 0.27 21.5 ± 2.6 vs. 25.1 ± 2.9 0.0007

FLAIR vs. trueDIR 19.9 ± 2.0 vs. 23.3 ± 2.4 < 0.0001 16.6 ± 2.6 vs. 18.6 ± 2.7 0.027 21.5 ± 2.6 vs. 25.6 ± 3.3 0.0001

SynthDIR vs. trueDIR 22.8 ± 2.2 vs. 23.3 ± 2.4 0.98 18.1 ± 2.6 vs. 18.6 ± 2.7 0.87 25.1 ± 2.9 vs. 25.6 ± 3.3 0.90

FLAIR, fluid-attenuated inversion recovery; trueDIR, real double inversion recovery; synthDIR, synthetic double inversion recovery.

these maps. Figure 3 provides examples on how uncertainty
maps allow to discern true-positive lesions from false-positive
hyperintensities in synthDIR.

Quantitative Image Analysis
Similarity between trueDIR and synthDIR was highest in internal
data, as shown by an SSIM of 0.967 ± 0.012, closely followed
by external data (3) and (2) with still excellent SSIM-values of
0.950 ± 0.012 and 0.941 ± 0.010, respectively. For synthDIR,
PSNR was highest in internal data at 29.2± 1.6 dB and decreased
to 25.6 ± 1.1 dB in external data (3). Table 4 provides detailed
values for quantitative image metrics.

Effects of Lesion-Focused Loss Function
To assess the benefit of the lesion-specific loss function during
image synthesis, LBR were compared between FLAIR, trueDIR,
synthDIR, as well as synthDIR generated by a network iteration
without the lesion-specific loss. Both versions of synthDIR,
irrespective if additional loss was included or not, exceeded input
FLAIR in LBR (data given in Table 4).

Of note, LBR was significantly lower in synthDIR generated by
the version without lesion-focused loss compared to the version
of synthDIR benefiting from lesion-focused loss (2.69 ± 0.66 vs.
2.80 ± 0.67, p < 0.001). While synthDIR achieved a comparable
LBR to trueDIR (2.80 ± 0.67 vs. 2.86 ± 0.65, p = 0.41), this
effect faded if synthDIR was generated without lesion-focused
loss (2.69± 0.66 vs. 2.86± 0.65, p= 0.032) (as shown in Figure 4).

DISCUSSION

Medical imaging has benefited greatly from DL advances that
gave birth to a panoply of systems aimed at tasks ranging
from disease detection to image synthesis and artifact reduction
(Emami et al., 2018; Rajpurkar et al., 2018; Liang et al., 2019).
We here validated a GAN that has been fine-tuned to the
translation of MS-specific white matter lesions while aiming
to remain generalizable to external data. We further explored
the concept of uncertainty maps to illustrate how trustworthy
the network is in image-to-image translation. Such maps can
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TABLE 4 | Image-wise (SSIM) and voxel-wise (PSNR) comparative metrics for synthDIR and trueDIR.

SSIM (trueDIR –
synthDIR)

PSNR (dB) (trueDIR –
synthDIR)

LBR FLAIR LBR trueDIR LBR synthDIR LBR synthDIR w/o
LFL

All 0.954 ± 0.016 27.2 ± 2.2 1.52 ± 0.49 2.86 ± 0.65 2.80 ± 0.67 2.69 ± 0.66

Internal data 0.967 ± 0.012 29.2 ± 1.64 1.45 ± 0.06 2.80 ± 0.33 2.86 ± 0.34 2.68 ± 0.30

External data (2) 0.941 ± 0.010 25.8 ± 1.12 1.65 ± 0.12 3.01 ± 0.41 3.35 ± 0.50 3.31 ± 0.45

External data (3) 0.950 ± 0.012 25.6 ± 1.08 1.46 ± 0.86 2.78 ± 1.00 2.19 ± 0.56 2.07 ± 0.50

LBR are given for FLAIR, trueDIR, synthDIR, as well as for synthDIR generated by a GAN iteration without the lesion-focused loss function (synthDIR w/o LFL). Results are
given for internal data, as well as external data (2) and (3). SSIM, structural similarity index measure; PSNR, peak signal-to-noise ratio; LBR, lesion-to-background ratio;
LFL, lesion-focused loss; trueDIR, real double inversion recovery; synthDIR, synthetic double inversion recovery.

FIGURE 3 | Uncertainty maps provide relevant information regarding the validity of voxel-to-voxel translation; increases in uncertainty are scaled from blue to green.
Circled in red (Patients 1–4) are hyperintensities in synthDIR without correlation in trueDIR and easily recognized as areas of high variance in the corresponding
uncertainty maps, allowing for their identification as artifacts from the synthesis task. On the other hand, true-positive lesions are readily identified as regions with
either no (patient 1 – green circle in synthDIR) or low (patient 4 – green circle in synthDIR) values of uncertainty. Hence, interpretation of synthDIR and
decision-making on the veracity of lesions is facilitated through uncertainty maps.

provide important support to decide on the veracity of findings
in synthetic images and help the radiologist to detect artifacts
resulting from the synthesis task.

Comparison of the network’s performance in internal and
external data showed that significantly more MS-specific
lesions could be found in synthDIR compared to the FLAIR
sequence that was used as input, irrespective of the data

origin. Approximately 20% more MS-specific lesions were thus
depictable in synthDIR, a magnitude of difference that is of
obvious clinical interest, especially in patients with low lesion
counts. While other surrogates of MS activity have been explored,
depiction of new inflammatory plaques is still considered the
hallmark of disease monitoring in MS (Filippi et al., 2001;
Chard et al., 2003; Wattjes et al., 2015). Also, lesion load has
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FIGURE 4 | Lesion-to-background ratios for FLAIR, trueDIR, and synthDIR.
Additionally, LBR was calculated for synthDIR generated by a GAN-iteration
without the lesion-focused loss (synthDIR no LFL). Of note, LBR was
significantly higher in synthDIR compared to synthDIR without LFL, confirming
the hypothesis that domain knowledge can be improved through LFL. While
there was no significant difference in LBR between synthDIR and trueDIR
(p = 0.41), LBR of synthDIR without LFL remained inferior to the LBR of
trueDIR (p = 0.032). LBR, lesion-to-background ratio; LFL, lesion-focused
loss.

been shown to directly correlate with future disability and, if
properly detected and reliably quantified, might therefore prompt
escalation of disease-modifying therapy (Calabrese et al., 2010;
Popescu et al., 2011).

Domain knowledge, i.e., the ability to learn about pathology-
specific image findings, is promising to further augment the
clinical utility of DL tools (Yuan et al., 2019). The improved
lesion translation that our GAN achieved by including a lesion-
focused loss function hints at the potential of domain knowledge
to further customize synthetic imaging. To highlight this, we
showed that LBR in synthDIR was non-inferior to LBR in
trueDIR only if the GAN was complemented by a lesion-
focused loss.

The ability of synthDIR to outperform FLAIR, a sequence still
considered gold-standard in MS imaging, has been shown for
a multi-modal input (T1w, T2w, and FLAIR) in a monocentric
setting (Finck et al., 2020; Bouman et al., 2021). In doing so,
relevant reductions in scan times are feasible as the physical
acquisition of 3D and isotropic DIR may take up to 7 min
(Eichinger et al., 2019). While other methods, such as sparse
sampling, have previously achieved scan time reductions for DIR,

a GAN-based approach might be advantageous as it works on
existing data and thus does not need to be prospectively deployed
(Eichinger et al., 2019). This offers the potential advantage to
augment the diagnostic value of existing studies and, hence, to
render longitudinal follow-up exams more conclusive.

Albeit accurate in their output, neural networks generally
fail to provide insight into the decision-making process, the
so-called “black-box problem.” Rendering this process more
transparent is crucial for the acceptance of said networks and
can, in theory, be achieved by providing methods to interpret
the “black-box,” or by designing models that are inherently more
transparent in their functioning (Rudin, 2019; Arun et al., 2020).
In GANs specifically, one potential bias in trying to match
the (lesion) distribution in the target domain (trueDIR) is that
features (lesions) with no correlation in source data might be
erroneously mapped, a phenomenon commonly referred to as
“hallucination.” To verify lesion veracity we therefore introduced
the concept of uncertainty maps that highlight the voxel-wise
aleatoric variance taking place during image translation. Hence,
the ability to compare hyperintensities in synthDIR to their
respective uncertainty mappings can reduce the risk of false-
positive findings, i.e., misinterpretation of constructed lesions in
the synthetic image data. Figure 3 illustrates how MS lesions can
thus be separated from artifacts according to their voxel-wise
intensity variance. As erroneous mappings remain an intrinsic
limitation of GANs, their future deployment might benefit greatly
from the calculation of uncertainty maps that are displayed in
parallel to synthetic images.

A limitation of this approach is that having to reference
synthDIR, along with the uncertainty maps adds complexity
to the longitudinal interpretation of clinical MRI. Furthermore,
comparison of synthDIR and trueDIR via autosegmentation
techniques might have provided more objective lesion counts
in this study. However, as our GAN was designed to provide
synthetic data for clinical use, we opted for manual lesion
counts as this best reflects the clinical reality. Future iterations
of synthDIR might furthermore mitigate the wide disparities
in lesion counts that we noticed especially in SC lesions.
Also, prospective investigations should explore the feasibility
to generate a GAN targeted to create synthDIR while using
even fewer, potentially only one input modality. At last, we
tested for generalizability by including three centers with
differing hardware. Future investigations would benefit from the
inclusion of more centers and readers, as our results demonstrate
equivalence of synthDIR to trueDIR for only one of the two
neuroradiologists.

CONCLUSION

Our findings confirm the use-case and external validity of a
DL tool targeted at improving MRI in patients with MS. Our
study demonstrates both, the utility of lesion-focused learning
to improve domain adaption, as well as the potential benefit of
uncertainty maps to help gain trust in GANs and make informed
medical decisions. Presumably, wider deployment of these tools
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could prove beneficial in MS where treatment decisions are
heavily relying on MRI findings.
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