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Editorial on the Research Topic

Insights in applied neuroimaging: 2021

The annual “Insights in” Research Topic series in Frontiers in Neurology aims

to collect studies that represent current challenges and discoveries, recent advances,

and future perspectives in the respective field, i.e., in Applied Neuroimaging for this

Research Topic. Contributions are considered to mirror the state of the art and to

address major accomplishments that have been achieved. In the field of neuroimaging

applications, both technical novelties, especially with respect to both data acquisition

protocols includingmultimodal combinations and data analysis with innovation in novel

(unbiased) algorithms and data integration, exploring the contribution of neuroimaging

to complex clinical challenges. This Research Topic aims to specifically support the

aim of the section to report clinical and neuroscientific research with all imaging

modalities, providing a forum for the promising and rapidly advancing field of

neuroimaging applications to the advanced structural and functional mapping of the

nervous system (1).

In the Research Topic „Insights in Applied Neuroimaging 2021”, the multifaceted

advances of current neuroimaging applications are represented in the publications

according to this outline. Kenda et al. address the challenge of the prognostication

of neurological outcome after cardiac arrest by CT and to this end, assessed the gray

white matter ratio in the head CTs of 95 cardiac arrest patients both by human

raters and by a recently published computer algorithm. They observed a very good

interrater agreement between human raters with different levels of expertise and the

computer algorithm, however, with considerable interrater variability in individual

patients. The authors conclude that the results emphasize the need for strategies

to standardize quantitative head CT analysis and for multimodal prognostication in

general. In a study in 247 healthy subjects targeting to set up a reference data set,

Sun Z., et al. used automatic vessel segmentation, centerline tracking, and phase

mapping on MR angiography to investigate age and gender effects on brain-supplying

neck arteries regarding tortuosity and flow changes. By this approach, quantifiable

age-related morphological and hemodynamic alterations in the investigated arteries

could be demonstrated, including the differences between female and male patients. Also

in healthy subjects, Boban et al. studied physiological brain aging by a correlation analysis

of four white matter diffusivity measures in diffusion tensor imaging (DTI) data with
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chronological age and education levels. All DTI metrics

showed significant correlations with the advancing age of the

participants, however, this involved largely different regional

patterns and the authors concluded that different patterns of

degradation during aging are true for different brain fiber

tracts and that not one single of the currently available

theories can globally explain age-related changes in the brain.

In another study taking advantage of a fully automated MRI

analysis technology, i.e., AccuBrainTM for segmentation and

quantitative volumetry, Sun W., et al. investigated 242 patients

with cerebral small vessel disease and observed that the disease

was associated with widespread cerebral atrophy including the

lobes and that the volumes of periventricular white matter

hyperintensities and medial temporal atrophy were independent

predictors of cognitive decline. Ioachim et al. investigated the

clinical challenge of chronic pain associated with fibromyalgia

by task-based functional MRI with a pain-related paradigm;

they observed differences in pain processing between people

with fibromyalgia and healthy controls and that this altered

pain processing may be linked to changes in both descending

pain regulation and autonomic regulation, even while the

participants are only anticipating the pain, thus advancing the

understanding of fibromyalgia. By use of resting state functional

MRI (rsfMRI) within a multiparametric protocol at ultra-high

field of 7T, Morrison et al. analyzed the dorsal attention,

salience, and frontoparietal networks in young patients after

cranial radiation therapy for a brain tumor. Compared

to controls, patients exhibited widespread hyperconnectivity,

similar modularity, and significantly increased efficiency and

network variability, correlated with memory performance,

suggesting that these rsfMRI metrics might be promising

imaging-based markers for monitoring the cognitive side effects

of radiation therapy. An MRI-based study on brain changes

associated with COVID-19 neurological manifestations was

contributed by Napolitano et al., who investigated cerebral

microbleeds by susceptibility-weighted imaging (including a

semi-automatic processing procedure) in 63 patients during the

first wave in Italy. Cerebral microbleeds were a frequent finding

in hospitalized patients with COVID-19 and neurological

manifestations, with a specific pattern of distribution (i.e.,

prominent callosal and juxtacortical involvement) and seemed

to be related to pro-inflammatory status. In a technical report

by a multi-national study group, Bouget et al. investigated

standardized and automatic methods (i.e., Raidionics and

Raidionics-Slicer within the AGU-Net architecture) for tumor

detection and assessment of tumor characteristics in MRI in the

most occurring brain tumor types (glioblastomas, lower grade

gliomas, meningiomas, metastases) in up to 4,000 patients‘ data.

The detailed performance assessment enabled the identification

of the most relevant metrics from a large panel, and for clinical

practice, tumor segmentation could be performed in less than

a minute. The generation of a standardized clinical report took

less than 15min— nota bene, all trained models have been made

publicly available (open-access) together with the source code

for the software solutions and validation metrics computation.

In the perspective article by Juengling et al., an international

group of authors reviewed the current state of the art in the

application of simultaneous PET/MRI to motor neuron disease

(like amyotrophic lateral sclerosis) and how this combination of

advanced neuroimaging modalities can guide in characterizing

this neurodegenerative disease in vivo by the complementary

information on disease pathology. Yeo et al. address the

relationship between white matter hyperintensities in MRI and

right-to-left shunt in migraine patients by a systematic review

and meta-analysis (of 8 observational studies comprising 1,125

patients), and they reported that in migraine, the right-to-left

shunt was significantly associated with the presence of white

matter hyperintensities. Finally, in a case report (comparative

case study) by Golden et al., two patients with fibrous dysplasia

and similar craniofacial lesion burden were investigated by
18F-sodium fluoride PET/CT and multiparametric MRI, and

the detailed phenotypic characterization incorporating the

advanced imaging approach guided the understanding of the

variable experiences with pain in craniofacial fibrous dysplasia.

These contributions demonstrate both technical and clinical

“insights” on the application of advanced neuroimaging,

comprising, on the one hand, various technical approaches

with computed tomography, and multiparametric MRI

including structural imaging (atrophy assessment, white

matter alterations/lesions, tumor lesion, and susceptibility

imaging), microstructural diffusion-based imaging, and

functional imaging (both task-based and resting-state intrinsic

connectivity-based), and multimodality approaches (PET/MRI

and PET/CT). On the other hand, studies in healthy (N = 2)

and diseased brains (N = 9) are included, the latter covering a

very broad pathological spectrum from vascular diseases and

neurodegeneration, COVID-19, and pain disorders to multi-

organ orphan diseases. Finally, single-center cohort studies

and multi-site collaborations of researchers are represented,

together with meta-analysis data. Although heterogeneous

in their approaches, the contributions to this Research

Topic all target the integration of research on clinical and

neuroscientific grounds with all modalities of neuroimaging and

advanced postprocessing.

Author contributions

The author confirms being the sole contributor of this work

and has approved it for publication.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Frontiers inNeurology 02 frontiersin.org

6

https://doi.org/10.3389/fneur.2022.1048674
https://doi.org/10.3389/fneur.2022.858171
https://doi.org/10.3389/fneur.2022.862976
https://doi.org/10.3389/fneur.2022.921984
https://doi.org/10.3389/fneur.2022.884449
https://doi.org/10.3389/fneur.2022.932219
https://doi.org/10.3389/fneur.2022.890425
https://doi.org/10.3389/fneur.2022.972336
https://doi.org/10.3389/fneur.2022.855157
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Kassubek 10.3389/fneur.2022.1048674

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

1. Kassubek J. The application of neuroimaging to healthy and diseased brains: present and future. Front Neurol. (2017) 8:61. doi: 10.3389/fneur.2017.00061

Frontiers inNeurology 03 frontiersin.org

7

https://doi.org/10.3389/fneur.2022.1048674
https://doi.org/10.3389/fneur.2017.00061
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


CASE REPORT
published: 16 March 2022

doi: 10.3389/fneur.2022.855157

Frontiers in Neurology | www.frontiersin.org 1 March 2022 | Volume 13 | Article 855157

Edited by:

Jan Kassubek,

University of Ulm, Germany

Reviewed by:

Anne-Marie Heegaard,

University of Copenhagen, Denmark

Alessandro Vittori,

Bambino Gesù Children’s Hospital

(IRCCS), Italy

*Correspondence:

Jaymin Upadhyay

jaymin.upadhyay@

childrens.harvard.edu

Specialty section:

This article was submitted to

Applied Neuroimaging,

a section of the journal

Frontiers in Neurology

Received: 14 January 2022

Accepted: 08 February 2022

Published: 16 March 2022

Citation:

Golden E, Zhang F, Selen DJ, Ebb D,

Romo L, Drubach LA, Shah N,

O’Donnell LJ, Lemme JD, Myers R,

Cay M, Kronenberg HM, Westin C-F,

Boyce AM, Kaban LB and Upadhyay J

(2022) Case Report: The Imperfect

Association Between Craniofacial

Lesion Burden and Pain in Fibrous

Dysplasia. Front. Neurol. 13:855157.

doi: 10.3389/fneur.2022.855157

Case Report: The Imperfect
Association Between Craniofacial
Lesion Burden and Pain in Fibrous
Dysplasia
Emma Golden 1, Fan Zhang 2, Daryl J. Selen 3,4, David Ebb 5, Laura Romo 6,

Laura A. Drubach 7, Nehal Shah 2, Lauren J. O’Donnell 2, Jordan D. Lemme 1,

Rachel Myers 1, Mariesa Cay 1, Henry M. Kronenberg 3,4, Carl-Fredrik Westin 2,

Alison M. Boyce 8, Leonard B. Kaban 9 and Jaymin Upadhyay 1,10*

1Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School,

Boston, MA, United States, 2Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School,

Boston, MA, United States, 3 Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA,

United States, 4Harvard Medical School, Boston, MA, United States, 5Department of Pediatric Hematology Oncology,

Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States, 6Head and Neck Imaging,

Department of Radiology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States, 7Department of

Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States, 8Metabolic Bone Disorders

Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States,
9Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine,
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Patients with fibrous dysplasia (FD) often present with craniofacial lesions that affect

the trigeminal nerve system. Debilitating pain, headache, and migraine are frequently

experienced by FD patients with poor prognosis, while some individuals with similar

bone lesions are asymptomatic. The clinical and biological factors that contribute to

the etiopathogenesis of pain in craniofacial FD are largely unknown. We present two

adult females with comparable craniofacial FD lesion size and location, as measured

by 18F-sodium fluoride positron emission tomography/computed tomography (PET/CT),

yet their respective pain phenotypes differed significantly. Over 4 weeks, the average pain

reported by Patient A was 0.4/0–10 scale. Patient B reported average pain of 7.8/0–10

scale distributed across the entire skull and left facial region. Patient B did not experience

pain relief from analgesics or more aggressive treatments (denosumab). In both patients,

evaluation of trigeminal nerve divisions (V1, V2, and V3) with CT and magnetic resonance

imaging (MRI) revealed nerve compression and displacement with more involvement of

the left trigeminal branches relative to the right. First-time employment of diffusion MRI

and tractography suggested reduced apparent fiber density within the cisternal segment

of the trigeminal nerve, particularly for Patient B and in the left hemisphere. These

cases highlight heterogeneous clinical presentation and neurobiological properties in

craniofacial FD and also, the disconnect between peripheral pathology and pain severity.

We hypothesize that a detailed phenotypic characterization of patients that incorporates

an advanced imaging approach probing the trigeminal system may provide enhanced

insights into the variable experiences with pain in craniofacial FD.

Keywords: fibrous dysplasia, craniofacial lesions, trigeminal nerve system, pain, headache, migraine
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Golden et al. Pain in Craniofacial Fibrous Dysplasia

INTRODUCTION

Fibrous dysplasia (FD, OMIM 174800) is a rare bone disease
arising from an R201 missense mutation of the GNAS gene
(1–3). FD may be complicated by co-existing pigmented skin
lesions, precocious puberty, and other endocrinopathies resulting
in the diagnosis of McCune Albright Syndrome (MAS) (4).
Pain remains a complex, inadequately understood and poorly
managed feature of FD (5–7). Craniofacial skeletal lesions in
FD are the probable and inciting cause of atypical facial pain,
headaches, or migraines (8–10). However, the severity or type
of pain reported by patients with FD is highly variable. Further
complicating the understanding of pain in FD or its treatment is
the weak correlation between patient-reported pain intensity and
skeletal disease burden (11). This dissociation points to the need
to uncover both clinical and active biological mechanisms that
cause pain in individual patients with FD.

In the current comparative case report, two adult (22 years
of age) female patients with similar craniofacial FD lesion
burden, but who presented with contrasting pain experiences
are described. However, the patients contrasted tremendously in
terms of their respective experiences with pain. Over a period
of many years, Patient A reported little to no pain, while
Patient B has had an unfortunately long history of suffering
from craniofacial pain in the trigeminal distribution, headaches,
and migraines. A multidisciplinary approach was taken to
investigate potential factors associated with the divergent pain
profiles specific to Patients A and B. Our strategy involved
phenotyping pain and related symptoms (i.e., altered mood)
using several clinical instruments. In parallel, molecular imaging
techniques were employed to define craniofacial lesion burden
and FD’s impact on trigeminal nerves and branches. Examination
and comparison between the two FD patient datasets indicate
the importance of the need for a closer psychological and
neurological assessment of pain in FD.

CLINICAL OVERVIEW

This study was approved by the Boston Children’s Hospital
(BCH) and the Massachusetts General Brigham, Institutional
Review Boards. Patient A and Patient B provided informed
consent and underwent study evaluation in January 2021 and
February 2021, respectively.

Patient A, Craniofacial FD Without Pain
Patient A is a 22-year-old woman with polyostotic FD of the left
zygomaticomaxillary complex (maxilla, zygoma and sphenoid
bones) and parasymphyseal regions of the mandible. Her disease
was first identified at age 11 when she presented with a painless
swelling of the left maxilla during a routine dental examination.
Panoramic radiograph at that time demonstrated a radio-opaque
lesion, particularly of the left zygomaticomaxillary complex and
filling the left maxillary sinus. She was subsequently referred to
oral and maxillofacial surgery (OMS) at Massachusetts General
Hospital (MGH) where a computed tomographic (CT) scan of
the facial bones revealed marked expansion of the left maxilla,
zygoma, and sphenoid bones with a ground glass appearance,

consistent with a diagnosis of FD. This was confirmed by
histologic evaluation of a biopsy specimen in August 2010.

Following this initial consultation in OMS, further evaluations
were undertaken by Ophthalmology, Endocrinology, Pediatric
Orthopedic Surgery, and Neuro-ophthalmology to document
the presence of additional osseous pathology and/or functional
deficits. A Tc-99m-methylene diphosphonate technetium single-
photon emission computerized tomography (SPECT) scan in
August 2010 revealed no other foci of FD. Skin examination
demonstrated a small hyperpigmented lesion over the lower
back measuring 1 × 2 cm. Serial endocrine evaluations have
demonstrated no evidence of precocious puberty or other
endocrinopathies that might be present in MAS. Despite
narrowing of the optic canal and displacement of her left globe
by growth of the bone lesions in the left sphenoid wing, zygoma,
and maxilla, her visual acuity has remained normal during serial
examinations, with no evidence of visual field defects or optic
nerve pathology.

During 11 years of follow-up, the patient has undergone
multiple contour resections of the left facial skeleton to manage
progressive expansile changes in the left maxilla, zygoma,
and sphenoid bones with associated exophthalmos. The first
procedure was performed in August 2012, at 13.5 years of
age, when she presented with expansile changes in the left
zygomaticomaxillary complex, proptosis and intermittent mild
tenderness over the corresponding left side of the face. Since
the initial operation, she has not had pain or tenderness despite
intermittent growth of the FD warranting 3 additional contour
resections: June 2012, December 2015, and May 2018. During
the 3-year period since 2018, the disease has been quiescent with
only slow, minor growth. Based on this history, finishing college
and entering the workforce, she had, what is hoped will be, a final
contour resection of the zygomaticomaxillary lesion in June 2021.

Patient B, Craniofacial FD With Pain
Patient B was first diagnosed with polyostotic craniofacial FD
in November 2019 at age 21. She initially presented at that
time with worsening of her chronic headaches, vision changes,
amnesia, and gait imbalance. She reported fatigue for the prior
month, worsening headaches for 2–3 weeks, blurry vision for 2–3
days, and a week of forgetfulness that culminated in her getting
lost while driving, prompting presentation to an emergency
department (ED). In retrospect, she had noticed severe headaches
for the past 5 years and had a history of four concussions from
2014 to 2017 frommotor vehicle accidents and playing soccer. At
the outside hospital, she had a cranial CT that revealed a sclerotic
left skull lesion involving the left sphenoid wing, anterior clivus,
left pterygoid plate, and left temporal bone, so she was transferred
to the MGH ED for further evaluation. Imaging was repeated at
MGH and CT revealed ground glass marrow expansion of the
sphenoid bone and left temporal bone consistent with FD with
narrowing of the skull base foramina, fissures, and middle cranial
fossa. Endocrinology was consulted while the patient was in the
ED due to new diagnosis of FD, as well as concern for pituitary
compression and need for a hormonal evaluation.

During her initial evaluation in the ED, her calcium,
phosphate, magnesium, parathyroid hormone, albumin, and
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FIGURE 1 | Clinical pain levels. (A) Self-reported daily pain levels over 4 weeks confirms the presence of little to no pain for Patients A (average pain: 0.4/0–10 scale)

and moderate to severe pain for Patient B (average pain: 7.8/0–10 scale). (B) A body map further defined an absence of pain in Patient A. (C) Patient B described

pain primarily on the left side of her face and over the majority of the skull.

25-OH vitamin D labs were normal. On exam, she had no
café-au-lait skin lesions or history of precocious puberty or
hyperfunctioning endocrinopathies, so the clinical suspicion
for MAS was low. Additional endocrine evaluation revealed
normal thyroid function, no evidence of adrenal insufficiency,
and otherwise normal gonadal and insulin-like growth factor-I
hormonal axes. OMS and Neuro-ophthalmology recommended
no surgical treatment due to normal visual exam and auditory
testing. For her daily severe, debilitating headaches, the patient
was further evaluated by Neurology, and her headaches
were attributed to the FD of the skull, with an additional
component of intractable migraine without aura. Patient B was
also diagnosed with trigeminal neuralgia. For headaches, she
achieved no symptomatic relief with magnesium, riboflavin,
sumatriptan, topiramate, or ibuprofen. She was treated with On
abotulinumtoxinA injections for migraines in August 2020, July
2021, and November 2021, and she did experience temporary
symptomatic relief for a few weeks after each treatment.

Due to her desire for pregnancy within a few years after
diagnosis, treatment with denosumab was recommended instead
of bisphosphonates due to concerns of long-lasting retention of
bisphosphonates in the bones and possible future fetal exposure
(12). Denosumab, a monoclonal antibody to RANK ligand that
directly inhibits osteoclastogenesis, was used off-label to attempt
to reduce pain associated with FD as well as lesion expansion (13–
18). She received two 120mg doses of denosumab in total spaced
by 6 months in 2020 but did not notice any improvement in her
pain. This was in contrast to prior reports noting fast analgesic
action following treatment induction with denosumab. Notably,
there has not been expansion of her FD lesions in the year since
her last dose of denosumab. The patient was further discussed
with Neurosurgery and Radiation Oncology who thought that
neither debulking nor radiation to the areas of FD were easy
or safe options due to the risk of significant complications. She
continues to receive Botox injections for headache and migraine
relief, but otherwise has not achieved symptomatic control of her
headaches or migraines.

CLINICAL PAIN

Patient A not only reported a minimal amount of clinical
pain, but also showed low levels of psychological symptoms or
distress (Supplementary Table 1). Self-reported daily pain levels
monitored over 4 weeks confirmed the absence or minimal
amount of pain for Patient A (Figure 1). In contrast, Patient
B harbored severe pain, consistent with her experience of
daily headaches with superimposed migraines in addition to
intermittent trigeminal neuralgia. High levels of craniofacial
and headache-type pain were present at the time of imaging
evaluation (Supplementary Table 1) as well as over the course
of 4 weeks (Figure 1). In conjunction with experiencing severe
pain, Patient B presented with a clinically relevant level of pain
catastrophizing–a maladaptive cognitive and emotional response
to pain (19, 20). The presence of pain catastrophizing was in
line with the occurrence psychological stress with mild levels of
depressive symptoms. Patients A and B reported similar levels of
sleep quality.

CRANIOFACIAL LESION BURDEN AND
SEVERITY

Whole-body 18F-sodium fluoride positron emission
tomography/computed tomography [18F-NaF PET/CT; Injected
dose = 4.0 millicurie (mCi) of 18F-NaF] was performed at
BCH and on a Siemens Biograph Vision system (Siemens,
Erlangen, Germany). In Patient A, whole-body 18F-NaF PET/CT
showed intense radiotracer uptake corresponding to ground
glass and expansile appearance of the left inferolateral frontal
bone involving the ipsilateral zygoma and zygomatic arch
(Figure 2). Uptake of 18F-NaF was evident in the sphenoid bone
(involving both clinoid processes) and clivus extending across
midline, as well as the left pterygoid plates and the left maxilla
extending to the midline alveolar ridge and surrounding the
left-sided maxillary incisors, bicuspids, and molars. There was a
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FIGURE 2 | Craniofacial FD burden and severity. (A) Patient A: 18F-NaF PET/CT showed intense radiotracer uptake in the left frontal bone and zygomatic arch, left

maxilla, left sphenoid bone, and livus. There was also involvement of the anterior mandible. (B) Patient B: 18F-NaF PET/CT showed intense uptake involving the base

of the skull, clivus, sella and left sphenoid bone. The patient also had scattered areas of increased uptake in the left temporal bone with SUVmax = 13. All 18F-NaF

PET/CT data were read by a board-certified nuclear medicine physician (Dr. Drubach).

separate but discrete area of intense radiotracer uptake along the
parasymphyseal mandible along the anterior aspect. Scattered
areas of lytic-appearing bone were noted in the maxilla and left
sphenoid wing.

Whole-body 18F-NaF PET/CT (Injected dose = 4.0 mCi of
18F-NaF) performed in Patient B showed overlapping craniofacial
FD burden relative to Patient A. Several regions of increased 18F-
NaF uptake in the skull were consistent with FD involvement in
Patient B (Figure 2). There was intense uptake in the midline of
the base of the skull involving the clivus and sella, left sphenoid
bone, and most medial regions of the right sphenoid bone.
There were a few scattered areas of increased uptake in the left
temporal bone. The areas of increased uptake were associated
with expanded ground glass appearance of the bone on CT. 18F-
NaF uptake outside of the craniofacial regions was not observed
for either Patients A or B.

THE IMPACT OF CRANIOFACIAL FD ON
TRIGEMINAL NERVES

Non-contrast magnetic resonance imaging (MRI) was performed
on a 3T Siemens Prisma with a 64-channel head coil (Siemens,
Erlangen) at McLean Hospital. For both Patients A and B,
involvement of the sphenoid bone by FD resulted in a mass effect
as well as narrowing and displacement of the left superior fissure,
which transmits the first (V1) division of the left trigeminal

nerve (CNV), the left foramen rotundum (FR) transmitting
the second (V2) division of CNV, and the left foramen ovale
(FO) transmitting the third (V3) division of CNV (Figure 3).
In addition, there was narrowing of the left superior orbital
fissure (SOF). Overall and for both patients, the narrowing and
displacement was more prominent for left hemisphere cranial
structures relative to the right. Patient A additionally showed
structural alterations of the left inferior orbital fissure and the left
infraorbital canal, both of which transmit the infra-orbital nerve,
a branch of V2. More proximally, FR and FO were narrowed and
superolaterally displaced on the left compared to the right.

Using a combination of diffusion MRI and tractography,

the apparent axonal fiber density of the cisternal segment of
CNV (brainstem to trigeminal ganglion) was investigated with

previously described procedures (21, 22) (Figure 4). Although

the caliber and symmetry of CNV on T2-SPACE MRI and STIR
MRI appeared normal for Patients A and B, both individuals

appeared to have a of loss apparent fiber density in the left CNV
relative to the right. However, Patient B appeared to differentiate

from Patient A based on a comparatively lower level of bilateral

fiber density (defined as the number of streamlines/voxel).
The latter novel finding suggests modulation of trigeminal
system function and structure, and possibly involvement of
central pain processing pathways in FD. Further investigation
may demonstrate the utility of diffusion MRI to more directly
document nerve pathology in patients with craniofacial FD.
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FIGURE 3 | Impact of FD on the trigeminal nerve system. Craniofacial FD lesions caused a highly similar impact on conduits carrying trigeminal nerves in both Patients

A and B. Displacement and narrowing of the V1 (A), V2 (B), and V3 (C) divisions of the trigeminal nerves was evident on CT for both FD patients with generally a

greater impact on left hemisphere structures relative to the right. The top (Patient A) and bottom (Patient B) rows show coronal or axial cross-sections from CT. (A)

Constriction of the superior orbital fissure (red arrow) and inferior orbital fissure (yellow arrow; Patient A only). (B) Narrowing and displacement of the left foramen

rotundum (red arrows). (C) Narrowing and displacement of the left foramen ovale (red arrows). (C) All data were read by a board-certified neuroradiologist (Dr. Romo).

FIGURE 4 | Apparent fiber loss in the CNV (cisternal segment). Patient A (A) and Patient B (B) each demonstrated a lower level of apparent fiber density in left

hemisphere CNV at the cisternal level as determined by diffusion MRI and tractography. Fiber streamlines projecting between the brainstem and trigeminal ganglion

are shown colored by fractional anisotropy (FA). Coronal cross-sections of T2-SPACE MRI show normal caliber and symmetry of CNV for both patients. However, heat

maps derived from diffusion tractography indicate a lower magnitude of streamlines per voxel (apparent fiber density) for the left hemisphere CNV, particularly for

Patient B. Heat maps for the right hemisphere CNV indicate a lower level of streamlines per voxel in Patient B compared to Patient A. DTI data were collected using

Human Connectome Project protocols (29). 3D-T2-SPACE, 3D-T2 Sampling Perfection with Application-Optimized Contrasts by Using Flip Angle Evolution; FA,

Fractional Anisotropy; STIR MRI, Short Tau Inversion Recovery Magnetic Resonance Imaging; DWI, Diffusion Weighted Imaging.
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DISCUSSION

The two cases described in the current report point to the
remarkable spectrum of pain phenotypes present in FD. On one

hand, the heterogeneous nature of FD likely contributes to the
variability of both the pain severity reported across patients,
as well as the responses to palliative treatments that aim to

manage FD lesions or mitigate pain (e.g., reconstructive surgery,
On abotulinumtoxinA injections, bisphosphonate, denosumab,
and analgesics) (13–17, 23–26). Yet Patients A and B possessed
a number of similarities from demographic (i.e., age and

gender) and biological (i.e., anatomical distribution plus severity
of craniofacial lesions and non-MAS status) perspectives.
Considering the many parallels between the two FD patients,
the extreme differences regarding pain is perplexing, but also

highlights the challenge in identifying how best clinically to
approach pain treatment in FD. Moreover, adding to the
complexity in providing effective pain treatment to patients

with FD is the high probability of many unknown clinical and
biological drivers of pain active in individual patients or possibly,
FD subtypes.

Patients A and B did in fact differentiate in multiple
domains, which may suggest why Patient B currently experiences
craniofacial pain and migraines headaches. Diagnosis of FD
for Patients A and B occurred at ages 11 and 21, respectively.
Thus, the implementation of surgical care and other treatments
in Patient A much earlier in the course of disease as well
as (neuro-) development may have provided the foundation
necessary to limit, for example, maladaptive neurological process
associated with peripheral or central pain sensitization. It is
noted, however, that many patients with FD/MAS have an
even earlier diagnosis and receive treatment shortly after yet
still suffer from pain, headaches or migraine. Patient B not
only had a much later FD diagnosis, but also experienced
multiple concussions, which collectively may have contributed
to or worsened her chronic craniofacial pain and migraine
phenotype (27, 28). Further insights into why Patient B has
not experienced pain relief despite the use of multiple modes
of therapy may be garnered by considering her feelings of
helplessness or constant rumination of pain as defined by the
pain catastrophizing scale. An additional possibility is that long-
term suffering from almost constant headaches and migraines
may have caused her to catastrophize about pain and become
psychologically distressed. Importantly, such a robust emotional
state may solidify the presence of pain and drive some patients
with FD to become resistant to various analgesic treatment
strategies. Finally, Patients A and B also differed according to
how their respective craniofacial lesions structurally impacted
trigeminal nerves and branches. In both patients, CT and MRI
demonstrated narrowing and displacement of V1, V2, and V3; an
effect that appeared more notable on left hemisphere craniofacial
structures compared to the right. Diffusion tractography revealed
abnormalities in the cisternal segment of the trigeminal nerve,
where the loss of apparent fiber density was more notable for
Patient B.

Based on the current comparative case study, we project
that in a sub-population of patients with craniofacial FD, a

combination of neurological abnormalities, particularly those
more proximal to the central nervous system, together with the
psychological aspects of pain facilitate a complex and difficult
to treat pain state. Whether and how peripheral and central
features drive pain in FD should be the focus of future prospective
studies, which may result in identification of biomarkers in
FD/MAS that can predict pain trajectories, prognosis, or
treatment response.
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Background and Purpose: The vascular tortuosity (VT) of the internal carotid artery

(ICA), and vertebral artery (VA) can impact blood flow and neuronal function. However, few

studies involved quantitative investigation of VT based on magnetic resonance imaging

(MRI). The main purpose of our study was to evaluate the age and gender effects on

ICA and VA regarding the tortuosity and flow changes by applying automatic vessel

segmentation, centerline tracking, and phase mapping on MR angiography.

Methods: A total of 247 subjects (86 males and 161 females) without neurological

diseases participated in this study. All subjects obtained T1-weighted MRI, 3D

time-of-flight MR angiography, and 2D phase-contrast (PC) MRI scans. To generate

quantitative tortuosity metrics from TOF images, the vessel segmentation and centerline

tracking were implemented based on Otsu thresholding and fast marching algorithms,

respectively. Blood flow and velocity were measured using PC MRI. Among the 247

subjects, 144 subjects (≤60 years, 49 males/95 females) were categorized as the young

group; 103 subjects (>60 years, 37males/66 females) were categorized as the old group.

Results: Independent t-test showed that older subjects had higher tortuosity

metrics, whereas lower blood flow and velocity than young subjects (p < 0.0025,

Bonferroni-corrected). Cerebral blood flow calculated using the sum flux of four target

arteries normalized by the brain mass also showed significantly lower values in older

subjects (p < 0.001). The age was observed to be positively correlated with the

VT metrics. Compared to the males, the females demonstrated higher geometric

indices within VAs as well as faster age-related vascular profile changes. After adjusting

age and gender as covariates, maximum blood velocity is negatively correlated with

geometric measurements. No association was observed between blood flux and

geometric measures.

Conclusions: Vascular auto-segmentation, centerline tracking, and phase mapping

provide promising quantitative assessments of tortuosity and its effects on blood flow.

The neck arteries demonstrate quantifiable and significant age-relatedmorphological and
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hemodynamic alterations. Moreover, females showed more distinct vascular changes

with age. Our work is built upon a comprehensive quantitative investigation of a large

cohort of populations covering adult lifespan usingMRI, the results can serve as reference

ranges of each decade in the general population.

Keywords: aging, carotid artery, vascular tortuosity, blood flow, magnetic resonance angiography

INTRODUCTION

The internal carotid artery (ICA) and vertebral artery (VA)
are main feeding arteries of the brain and play critical
roles in supplying energy and maintaining normal neuronal
function. It has been widely reported in the literatures that
extracranial arteries are prone to demonstrate geometric and
morphological variants with normal aging (1–3). Due to the
long courses of extracranial arteries in the neck region, the age-
related morphological variations represent distinctly as abnormal
twisting, turns, and loops found in the elderly in contrast to the
normal anatomical turns. These vascular morphological changes
can limit the blood flow, which may lead to stroke and other
ischemic events, such as the transit ischemic attack and vertigo
(4–8). Thus, it is clinically important to assess vascular tortuosity
(VT) for a better understanding how VT can affect the blood
flow. Non-invasive clinical imaging techniques, particularly
ultrasound and MRI, stand at the epicenter of VT and flow
assessment in the elderly population. Compared to ultrasound,
MRI is operator-independent with higher fidelity, larger field
of view (FOV), and greater capacity of deep vessel detection
(e.g., VA). While these age-related tortuosity changes raise the
awareness of their etiology, pathophysiological mechanisms, and
clinical monitoring, few published studies have quantified the VT
and its correlation with blood flow using MRI.

The aging and the mechanical injury of vessel wall were
proposed as the two important pathological processes of
VT. With aging, degenerative changes of extracellular matrix
and endothelium result in arterial wall remodeling, stiffness,
and tortuosity (9). The mechanical factors also increase the
incidence of VT secondary to the repetitive cardiac pulsatile
flow effects accumulated over the lifespan in the elderly.
Responding to constantly imposed forces of blood flow, the
vessels become tortuous associated with elastin degradation
and proinflammatory signaling activation (10, 11), Conversely,
VT impedes flow effects and affect vascular wall shear stress
(WSS) associated with platelets activation and thrombosis (12).
These have been observed clinically with decreased cerebral
blood flow (CBF) in the elderly with more tortuosity vessels
(13, 14). Ultrasound studies have shown that blood velocities in
ICAs were stable up to the age of 40–45 years and decreased
afterward associated with increased tortuosity appearances (15,
16). However, the clear associations between tortuosity and flow
changes in normal aging have not been established.

Time-of-flight (TOF) and phase-contrast (PC) imaging are
two MR angiographic (MRA) techniques commonly used in
the routine clinical settings for vascular characteristic inspection
(17–20). The present study aims to comprehensively quantify

the age-related VT of ICAs, and VAs and their blood flow by
applying automated vessel segmentation, centerline tracking, and
phase mapping on MRA. The methods developed in this study
can potentially be implemented in clinical scans for grading the
vessel integrity of major brain feeding arteries by referring to
quantitative metrics of vascular characteristics.

MATERIALS AND METHODS

Study Population
After the institutional review board’s approval, 251 subjects were
initially recruited, and four of them were excluded due to the
abnormal arteries on TOF–MRA or missing unilateral VA, which
is a type of variant anatomy. Finally, 247 individuals (86 males
and 161 females) were enrolled with age ranging from 20 to
88 years in this retrospective study. Among the 247 subjects,
144 participants younger than and including 60 years old were
classified as the young group; 103 participants older than 60
years old were classified as the old group. The participants
of our study were subset of the Dallas Lifespan Brain Study
(DLBS) designed to understand the preservation and decline
of cognitive function. All participants underwent screening and
had no contraindications to MRI scan (pacemaker, implanted
metallic objects, and claustrophobia) and were generally of good
health, without serious medical conditions such as neurological
disease, brain injury, shaking, or medications affecting cognitive
functions (7). All participants were right-handed native English
speaker with Mini-Mental State Exam (MMSE) score of 26 or
greater. Among the 247 participants, 232 had blood pressure (BP)
(i.e., systolic and diastolic) that was measured 5 times around the
time of MRI scan. The mean systolic and diastolic BP of the five
measurements was then used for the further analyses related to
tortuosity (21). Among them, 33 participants with a diagnosis
of hypertension were taking antihypertensive medications, most
of which were angiotensin covering enzyme inhibitors, beta-
blockers, and angiotensin II receptor antagonists (7).

The MR Imaging Acquisition
The MR imaging was performed using a 3T MRI system with an
8-channel head coil. Also, T1-weighted magnetization-prepared-
rapid-acquisition-of-gradient-echo (MPRAGE), 3D-TOF, and
2D non-gated PC–MRI scans were acquired for each subject.
The MPRAGE sequence used the following imaging parameters:
Repetition time (TR)/echo time (TE)/flip angle (FA)= 8.1 ms/3.7
ms/12◦, voxel size = 1mm × 1mm × 1mm. For the purpose of
the vessel segmentation and PC–MRI positioning, the TOF was
acquired with the following parameters: TR/TE/FA= 23 ms/3.45
ms/18◦, voxel size = 1.0mm × 1.0mm × 1.5mm, number
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FIGURE 1 | Image postprocessing workflow. (A) The TOF magnetic resonance angiography (MRA) including raw axial images, coronal and sagittal MIP images are

acquired for the purpose of vessel segmentation and PC-MRI positioning. The PC-MRI scan plane is positioned around the level of cervical vertebrate C3 (red dash

line), where above the carotid bifurcations. (B) The ROI enclosing target arteries and surrounding tissues are selected for the purpose of vessel segmentation and

tortuosity measurement. Arteries can be detected based on the mean and standard deviation of the object region. (C) Corresponding phase image (left) and

magnitude image (right) from the feeding arteries positioned at the level around C3 [red dash line in (A)].

of slices = 47, a 60-mm saturation band positioned above the
imaging slab, scan time= 1min 26 s. The top of the angiographic
imaging slab was positioned at the level of the bottom of pons,
with the bottom FOV margin at the level around cervical spine
C4, covering the cervical segment of ICA. Based on the coronal
maximum intensity projection (MIP) images from TOF, the
non-gated PC–MRI scan covering the four feeding arteries was
conducted around the level of cervical spine C3 above the carotid
bifurcations with following parameters: TR/TE/FA = 20 ms/7
ms/15◦, voxel size = 0.45mm × 0.45mm × 5mm, velocity
encoding (VENC)= 80 cm/s, scan duration= 30 s.

Segmentation, Centerline Tracking and
Quantitative Tortuosity Measurements of
Neck Vessels
We segmented and tracked the centerline of the vessels from 3D-
TOF angiogram using the in-house code run on MATLAB 2020a
(MATLAB and statistics Toolbox Release 2020a, MathWorks,
Inc. Natick, MA). Figure 1 shows the image postprocessing
workflow. A preliminary ROI enclosing the targeting arteries was
drawn. The artery region T(x) consisting pixels xwas determined
using the following equation:

T(x) = I(x)− µ − j · σ ,

where I(x) is the intensity of the object region (�) consisting
of both the arteries and the surrounding tissues; µ and σ are
the mean and standard deviation intensities of �, respectively.
Since the signal intensities of the arteries are inhomogeneous,
we need to start with a high value of j and decrease it gradually
until an optimal value was reached. The optimal value of j,
which varied between subjects, should be high enough to exclude
surrounding tissue meanwhile low enough to include the arteries
(22). Although j was determined subject-by-subject basis, we
found an empirical search range of 6–4 in descending order was
applicable for most cases. After the artery pixels were determined
for each slice, they were connected if their faces or edges touched
so as to get the 3D segmentation of arteries.

Based on the arterial surface derived from 3D segmentation,
the arterial centerline was acquired using multi-stencils fast
marching algorithm, which calculates the shortest distance from
a source point to all other pixels in an image volume by solving
the Eikonal equation along stencils that cover neighboring points
entirely (23). The centers of these level curves formed the
skeleton representing the artery. The coordinates of the extracted
arterial skeleton can be acquired to quantitatively assess the VT.
We proposed to use tortuosity index (TI), bending length (BL),
and inflection count metric (ICM) as quantitative VT indices
(Figure 2). The TI is the ratio between the actual length (AL) and
the direct length (DL). The BL is the maximum perpendicular
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FIGURE 2 | Segmentation and the centerline of the vessel were acquired. The measurements included TI, BL, and ICM. (A) Left ICA vessel segmentation of a young

subject (≤ 60 years old). (B) The TI is the ratio between AL and DL. (C) The BL is the distance between the foremost points on the vessel path and the start-end

points link. (D) The ICM is the product of turning points number (red dots) and TI. Corresponding vessel segmentation and measurements of an old subject (>60

years old) are shown in parts (E–H).

distance between the AL and the DL, reflecting the extent of
curving. The ICM is the product of turning points number (N)
and TI, which takes turning frequency into consideration. Here,
N was determined by visually checking the centerline skeleton.

Postprocessing of PC-MRI
Each PC–MRI scan generated a phase image and a magnitude
image. The data processing of PC–MRI followed previously
reported method (24). Briefly, the region of interests (ROIs) were
manually drawn on themagnitude images by circling the targeted
artery (bilateral ICAs and VAs) based on the brightness of the
voxels (25). A signal intensity threshold set to be 5 times the
background noise was then applied to the magnitude image to
get vessel mask. The mask was then applied to the phase image
to calculate blood flux and maximum blood velocity (MaxV).
The unit volume CBF (in ml/min/100 g) was calculated as the
sum of blood flux of the four arteries normalized to the brain’s
parenchyma mass obtained from T1WI.

Evaluation of Accuracy and Reproducibility
We used maximal intensity projection (MIP) images (both
coronal and sagittal planes) generated from TOF–MR angiogram
as a reference to evaluate the accuracy of arterial vessel
segmentation. After overlaying the acquired centerline on the
arterial segment, it would be easy to identify false branches

and tell the tracking accuracy. All the segmented arteries and
centerline images were visually inspected and the arteries with
incomplete processing or aborted algorithms were excluded.

In addition, a scan–rescan study was performed to evaluate
the reproducibility of 3D-TOF vessel tortuosity measurements.
Seven young, healthy subjects (4 males, 3 females, 26.4 ± 3.7
years) underwent two MRI sessions with a 5-min break in
between. During each session, 3D-TOF angiogram and PC-MRI
scan were acquired. Inter-session coefficient of variation (CoV)
of tortuosity measurements was calculated as follows:

CoVintersession =

|measument1 − measurement2|
√

2 ·Mean(measurement1,measurement2)

where measurement1 and measurement2 represent the TI, BL, or
ICM from two scan and rescan sessions, respectively. These two
separate scans are supposed to consist of repositioning error, and
TOF–MRA noise.

Statistical Analysis
Two-tailed t-test was applied to identify VT and flow differences
between young and old groups. Since 20 analyses on the
same dependent variable were being performed, Bonferroni-
corrected alpha (αcorrected = 0.0025) was calculated to control
the Type I error and a value of p ≤ 0.0025 was considered

Frontiers in Neurology | www.frontiersin.org 4 April 2022 | Volume 13 | Article 85880518

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Sun et al. Imaging Age-Related Vascular Tortuosity

TABLE 1 | The ICA VT and flow measurements of each age decade.

Age group 20–30 31–40 41–50 51–60 61–70 71–80 >80

(n = 42) (n = 32) (n = 36) (n = 34) (n = 46) (n = 32) (n = 25)

Demographic data

Age 24.31 ± 2.97 34.88 ± 2.73 45.58 ± 3.02 54.91 ± 3.03 66.24 ± 3.16 73.4 ± 2.60 83.67 ± 2.46

Gender 14 M/ 28 F 10 M/ 22 F 15 M/ 21 F 10 M/ 24 F 17 M/ 29 F 10 M/ 22 F 10 M/ 15 F

Hypertension 0 1 2 4 11 9 7

BP 111/75 111/77 119/80 127/83 136/84 139/84 141/81

The VT measurements

TI LICA 1.70 ± 0.37 1.72 ± 0.30 1.83 ± 0.43 2.09 ± 0.70 2.36 ± 0.69 2.59 ± 0.76 2.87 ± 1.04

RICA 1.74 ± 0.43 1.89 ± 0.53 1.92 ± 0.53 2.22 ± 0.61 2.64 ± 0.98 2.57 ± 0.61 3.00 ± 0.79

BL LICA 19.84 ± 7.37 21.77 ± 6.71 22.69 ± 7.01 28.44 ± 10.4 31.44 ± 10.45 36.26 ± 12.97 39.24 ± 13.48

RICA 19.49± 7.44 24.54 ± 8.05 24.30 ± 6.37 31.1 ± 10.45 34.56 ± 12.93 35.05 ± 8.51 43.05 ± 10.6

ICM LICA 2.37 ± 1.22 2.38 ± 1.01 3.18 ± 2.22 4.53 ± 2.69 5.25 ± 2.49 5.70 ± 2.74 6.22 ± 3.78

RICA 2.73± 2.12 3.17± 1.87 3.51 ± 2.56 4.8 ± 2.79 6.02 ± 3.98 6.14 ± 3.03 6.68 ± 4.11

Flow measurements

Blood flux LICA 286.37 ± 59.09 269.90 ± 46.10 246.26 ± 51.93 245.42 ± 56.47 222.71 ± 56.12 196.01 ± 62.71 191.82 ± 54.8

RICA 275.43 ± 56.67 265.6 ± 49.56 258.88 ± 51.98 222.88 ± 56.54 213.47 ± 59.95 200.86 ± 52.16 199.06 ± 45.4

MaxV LICA 36.17 ± 8.20 34.69 ± 9.33 34.7 ± 8.31 31.26 ± 8.4 25.93 ± 8.05 25.54 ± 6.88 22.07 ± 6.0

RICA 36.61 ± 8.18 36.18 ± 8.04 37.22 ± 8.81 32.21 ± 9.42 26.81 ± 9.1 26.18 ± 5.86 25.19 ± 6.58

BP, blood pressure presenting as systolic/diastolic with 15 subjects’ measurements missing. LICA, left internal carotid artery; RICA, right carotid artery; TI, tortuosity index; BL, bending

length (mm); ICM, inflection count metric; Blood flux in ml/min; MaxV, maximum blood velocity, in cm/s.

statistically significant for multiple comparisons and correlation
studies. The Pearson correlation coefficients (r) were calculated
to reveal the relationship between age and each vascular
feature respectively. The multivariate linear regression was also
performed using age as independent variable, VT and flow
measurements as dependent variables, and BP (mean systolic and
diastolic) measurements as covariates. Since the previous study
showed hypertension might be associated with arteriosclerotic
and vessel wall changes, we included these analyses to remove
the hypertension effects from aging. To determine whether
there is a statistically significant difference of VT and flow
measurements between hypertension and normotension, 33
age/gender-matched non-hypertensive subjects (age: 67.91 ±

11.85; 24 females/9 males) were chosen to compare with the 33
hypertensive subjects (age: 69.53 ± 12.4; 24 females/9 males)
using Student’s t-test. We further split the cohort into females
and males. Two-tailed t-test was applied to identify VT and flow
differences between male and female groups. Univariate linear
regression analyses were performed to investigate relationship
and coefficients between age and vascular features for different
genders. The association between tortuosity and blood flow
was calculated using multivariate linear regression, treating age,
gender, and each VT measurement as regressors. GraphPad
Prism 8 was used for the statistical analysis.

RESULTS

Demographic Characteristics
The descriptive statistics associated with blood pressure, and
vascular profiles of ICA across the seven age decade groups are
reported in Table 1. A detailed information of females and males

in each decade group are reported in Supplementary Tables 1

and 2, respectively. Among 247 subjects (aged 53.23 ± 19.62
years, 86 males/161 females), we identified 144 younger subjects
with age less than and including 60 years (aged 39.20± 12.11, 49
males/95 females) and 103 older subjects with age more than 60
years (aged 72.86 ± 7.5, 37 males/66 females). The mean systolic
(137.8 ± 16.5mm Hg) and diastolic (83.2 ± 9.6mm Hg) BP of
participants in old group was significantly higher than that of
young subjects (116.7 ± 13.6 and 78.7 ± 9.6, respectively) (p <

0.001). Chi-square analysis did not reveal a statistically significant
difference in gender for each age group.

Group Comparison of VT and Blood Flow
As shown in Figure 3, VTs were widely observed in the
older subject group. Quantitatively, ICAs of older subjects
demonstrated significantly higher TI (left = 2.56 ± 0.83, right
= 2.70 ± 0.84), BL (left = 34.78 ± 12.3, right = 36.92 ± 11.7),
and ICM (left = 5.65 ± 2.92, right = 6.28 ± 3.76) than younger
subjects’ TI (left = 1.83 ± 0.49, right = 1.93 ± 0.55), BL (left =
22.96± 8.6, right= 24.49± 9.11), and ICM values (left= 3.09±
2.08, right = 3.52 ± 2.46) (p < 0.001 for all; details can be found
in Table 1); significantly higher ICM of left vertebral artery (LVA)
(p < 0.001) and BL of right vertebral artery (RVA) (p < 0.001)
could be observed in older subjects. The TI, BL values of LVA
and TI, ICM of RVA did not show significant difference. The old
subjects demonstrated significantly lower blood flux, and MaxV
for all arteries compared to young subjects. Compared to global-
wise reports, unit mass CBF was significantly lower in old (49.15
± 10.56 ml/min/100 g) as compared to young participants (55.77
± 9.89ml/min/100 g) (p< 0.001). A detailed descriptive statistics
and p-values can be found in Table 2.
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FIGURE 3 | Illustrations of vessel segmentation for each decade over the adult lifespan. (A) Coronal TOF images (radiological view) of subjects from each decade

demonstrate arteries become more tortuous with aging. (B) Left and right ICA segmentation results of subjects of age from 20 to 80 years.

TABLE 2 | Comparison of VT and flow measurements between young (n = 144) and old (n = 103) groups.

LICA RICA

Young Old p Young Old p

The VT measurements

TI 1.83 ± 0.49 2.56 ± 0.83 <0.001 1.93 ± 0.55 2.70 ± 0.84 <0.001

BL 22.96 ± 8.6 34.78 ± 12.33 <0.001 24.49 ± 9.11 36.92 ± 11.7 <0.001

ICM 3.09 ± 2.08 5.65 ± 2.92 <0.001 3.52 ± 2.46 6.28 ± 3.76 <0.001

Flow measurements

Blood flux 263.01 ± 56.3 206.08 ± 59.1 <0.001 256.70 ± 56.7 206.05 ± 54.0 <0.001

MaxV 34.31 ± 8.6 24.91 ± 7.4 <0.001 35.63 ± 8.7 26.22 ± 7.6 <0.001

LVA RVA

The VT measurements

TI 1.24 ± 0.2 1.32 ± 0.26 0.01* 1.3 ± 0.4 1.36 ± 0.27 0.18*

BL 4.77 ± 2.52 5.83 ± 2.94 0.003* 5.07 ± 2.79 6.44 ± 3.18 <0.001

ICM 1.54 ± 0.76 2.14 ± 1.27 <0.001 1.78 ± 1.75 2.28 ± 1.29 0.01*

Flow measurements

Blood flux 102.54 ± 43.3 84.38 ± 38.0 <0.001 86.83 ± 39.7 68.34 ± 32.8 <0.001

MaxV 22.99 ± 6.7 17.67 ± 5.3 <0.001 20.09 ± 6.0 15.75 ± 4.8 <0.001

LICA, left internal carotid artery; RICA, right carotid artery; LVA, left vertebral artery; RVA, right vertebral artery; TI, tortuosity index; BL, bending length (mm); ICM, inflection count metric;

Blood flux is in ml/min; MaxV, maximum blood velocity, is in cm/s. Adjusted p ≤ 0.0025 is the threshold for significance.

*There is no significant difference (p > 0.0025).

Age Effects on VT and Flow Measurements
According to the Pearson correlation results, TI (r of left: 0.52
and right: 0.52), BL (r of left: 0.55 and right: 0.61), and ICM
(r of left: 0.52 and right: 0.43) were positively correlated with
age for bilateral ICAs (p < 0.001). The ICM of bilateral VAs
(r of left: 0.29 and right: 0.19, p < 0.001 and p = 0.002,
respectively) and BL of RVA (r = 0.2, p = 0.002) were positively
correlated with age. Significantly, the negative correlations were
identified between the flow measurements and age for all arteries
(p < 0.001). A detailed r and p-values were summarized in
Table 3. Separate multivariate linear regression was performed
and showed statistical significance for tortuosity measurements
of bilateral ICAs, as well as ICM of bilateral VAs in relation with
age after adjusting mean systolic and diastolic BP as covariates (p

< 0.0025 for all measurements). Similarly, the multivariate linear
regression result showed significant associations for blood flux
and maximum velocity of all four arteries (p < 0.001) in relation
with age.

Hypertension Effects on VT and Flow
Measurements
Student’s t-test did not show statistically significant difference in
VT and flow measurements for all vessels between hypertensive
subjects and age- and gender-matched non-hypertensive subjects
(p > 0.05 for all measurements). The multivariate linear
regression showed systolic and diastolic BP measured before
MRI did not significantly associated with VT and blood flow
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TABLE 3 | Age in relation to the VT and blood flow measurements.

LICA RICA LVA RVA

r p r p r p r p

The VT measurements

TI 0.52 <0.001 0.52 <0.001 0.13 0.04* 0.07 0.26*

BL 0.55 <0.001 0.61 <0.001 0.15 0.02* 0.20 0.002

ICM 0.52 <0.001 0.43 <0.001 0.29 <0.001 0.19 0.002

Flow measurements

Blood flux −0.52 <0.001 −0.48 <0.001 −0.27 <0.001 −0.29 <0.001

MaxV −0.52 <0.001 −0.49 <0.001 −0.44 <0.001 −0.41 <0.001

r: Pearson correlation coefficient; Adjusted p ≤ 0.0025 is the threshold for significance.

*There is no significant difference (p > 0.0025).

TABLE 4 | Comparison of VT and flow measurements between males (n = 86) and females (n = 161) regardless of age.

LICA RICA

Male Female p Male Female p

The VT measurements

TI 2.08 ± 0.73 2.16 ± 0.76 0.46* 2.13 ± 0.76 2.31 ± 0.79 0.08*

BL 28.5 ± 12.12 27.57 ± 11.71 0.56* 29.67 ± 11.5 29.68 ± 12.2 0.99*

ICM 3.68 ± 2.87 4.41 ± 2.68 0.05* 3.99 ± 3.32 5.03 ± 3.35 0.02*

Flow measurements

Blood flux 230.06 ± 60.3 244.18 ± 65.1 0.02* 223.55 ± 58.3 242 ± 61.6 0.02*

MaxV 28.62 ± 7.9 31.33 ± 9.95 0.02* 29.8 ± 8.39 32.72 ± 9.89 0.02*

LVA RVA

The VT measurements

TI 1.22 ± 0.21 1.30 ± 0.24 0.006* 1.23 ± 0.25 1.37 ± 0.39 <0.001

BL 4.34 ± 2.28 5.67 ± 2.87 <0.001 4.43 ± 2.40 6.30 ± 3.13 <0.001

ICM 1.50 ± 0.64 1.94 ± 1.18 <0.001 1.44 ± 0.68 2.28 ± 1.84 <0.001

Flow measurements

Blood flux 89.33 ± 40.1 97.98 ± 42.9 0.11* 70.99 ± 33.8 83.46 ± 39.5 0.01*

MaxV 19.11 ± 7.0 21.66 ± 5.72 0.002 16.69 ± 5.99 19.13 ± 4.57 0.001

Adjusted p ≤ 0.0025 is the threshold for significance.

*There is no significant difference (p > 0.0025).

measurements (p> 0.05 for all measurements) after adjusting for
age as a covariate.

Gender Effects on VT and Flow
Measurements
To further investigate the gender effects, we then compared VT
and flow measurements between males (age: 53.62 ± 20.07) and
females (age: 53.04 ± 19.45) regardless of age. The VT and the
flow of bilateral ICAs did not show any significant difference
(p > 0.0025) between males and females. However, within the
VA system, females showed significantly higher values of RVA TI
(right= 1.37± 0.39), BL (left= 5.67± 2.87, right= 6.30± 3.13),
and ICM (left = 1.94 ± 1.18, right = 2.28 ± 1.84) than those of
males (TI: right= 1.22± 0.21; BL: left= 4.34± 2.28, right= 4.43
± 2.28; ICM: left = 1.50 ± 0.64, right: 1.44 ± 0.68) (p < 0.001).

Among flow measurements, males had lower MaxV for bilateral
VAs (p < 0.0025). A detailed descriptive statistics and p-values
can be found in Table 4.

We then applied linear regression model on four vessels to
reveal the relationship between age and vascular characteristics
in females and males separately. A detailed r2 and coefficients
were summarized in Table 5. Females had higher absolute values
of coefficients, reflecting faster changing patterns associated with
age, excluding blood flux of ICAs. We then chose LICA as
the representative vessel to show the different changing trends
of vascular profiles in relation to the age for different genders
(Figure 4). Although t-test did not reveal significant gender
difference for bilateral ICAs tortuosity, the general trend still
could be observed that females have relatively higher values at
elder stage than males.
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TABLE 5 | The r2 and coefficients of univariate linear regression analysis between age and vascular characteristics for males (n = 86) and females (n = 161).

LICA RICA

Male Female Male Female

r2 coeff p r2 Coeff p r2 coeff p r2 coeff p

TI 0.15 0.014 <0.001 0.35 0.023 <1e−4 0.27 0.019 <1e−4 0.28 0.022 <1e−4

BL 0.17 0.24 <0.01 0.40 0.38 <1e−4 0.33 0.33 <1e−4 0.40 0.40 <1e−4

ICM 0.11 0.05 0.002 0.40 0.09 <1e−4 0.19 0.06 <1e−4 0.20 0.08 <1e−4

Blood flux 0.34 −1.75 <1e−4 0.25 −1.66 <1e−4 0.27 −1.51 <1e−4 0.22 −1.47 <1e−4

MaxV 0.21 −0.18 <1e−4 0.30 −0.28 <1e−4 0.14 −0.15 <0.001 0.30 −0.28 <1e−4

LVA RVA

TI 6e−3 8e−4 0.47* 0.03 2e−3 0.04* 4e−3 8e−4 0.55* 7e−3 2e−3 0.31*

BL 0.02 0.017 0.17* 0.02 0.02 0.05* 0.04 0.02 0.07* 0.05 0.04 0.005*

ICM 0.13 0.01 <0.001 0.10 0.02 <1e−4 0.05 7e−3 0.03* 0.05 0.02 0.005*

Blood flux 0.08 −0.58 <0.001 0.07 −0.60 <0.001 0.05 −0.39 0.03* 0.11 −0.65 <1e−4

MaxV 0.14 −0.10 <0.001 0.23 −0.17 <1e−4 0.13 −0.10 <0.001 0.20 −0.14 <1e−4

r2: r squared; coeff: coefficients of linear regression; Adjusted p ≤ 0.0025 is the threshold for significance.

*There is no significant difference (p > 0.0025).

FIGURE 4 | Univariate linear regression plot of left ICA (LICA) as a representative vessel to show the coefficient difference between males (blue) and females (red). (A)

The TI of LICA has a positive correlation with age (coeff = 0.018, P < 0.001, black dash line), and the linear correlation coefficients for males and females are 0.014

and 0.023, respectively. (B) Bending length (BL) of LICA is negatively correlated with age (coeff = 0.30, p < 0.001, black dash line), and the linear correlation

coefficients for males and females are 0.246 and 0.379, respectively. (C) The ICM of LICA has significantly positive correlation with age (coeff = 0.072, p < 0.001,

black dash line). The coefficients for males and females are 0.048 and 0.087. (D) The MaxV of LICA is negatively correlated with age (coeff = −0.247, p < 0.001,

black dash line), and coefficients for males and females are −0.182 and −0.282.
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TABLE 6 | The VT measurements in relation to the MaxV within ICAs.

Tortuosity measurements Coeff (95% CI) Adjusted r2 p

TI

LICA −3.20 (−4.72 to −1.68) 0.32 <0.001

RICA −3.60 (−5.09 to −2.11) 0.31 <0.001

BL

LICA −0.21 (−0.31 to −0.11) 0.32 <0.001

RICA −0.16 (−0.27 to −0.05) 0.27 <0.001

ICM

LICA −0.69 (−1.18 to −0.35) 0.31 <0.001

RICA −0.60 (−0.94 to −0.26) 0.28 <0.001

Coeff, coefficients of linear regression; Adjusted p ≤ 0.0025 is the threshold

for significance.

*There is no significant difference (p > 0.0025).

Association Between VT and Flow
Multivariate linear regression was performed to predict flow
properties using age, gender and each tortuosity measurement as
independent predictors. The VT had no significant contribution
to the blood flow predictions (p > 0.05). Significant regression
equations were found for MaxV within bilateral ICAs (p <

0.001). We then calculated the correlation coefficients between
tortuosity and flow measurements. All tortuosity measurements
of ICAs showed significantly negative correlation results. A
detailed coefficients with 95% CI, adjusted r2, and p-values are
summarized in Table 6.

Accuracy and Reproducibility Evaluation
Regarding the accuracy evaluation in the large dataset of 247
subjects, the algorithm successfully extracted vascular skeleton
for 204 subjects of all four arteries, with a subject-based
successful rate of 82.6%. Artery-wise, the algorithm successfully
provided the vascular skeleton for 941 arteries out of a total
of 988 (i.e., 247 × 4) arteries with a success rate of 95.2%.
Further investigation showed that we can get satisfied arterial
segmentation if appropriate threshold was chosen using multi-
level algorithms. However, in cases that the centerline tracking
algorithm was failed are likely due to the following reasons:
(1) The artery has complicated geometry such as coiling where
two segments overlapped with each other; (2) the target vessel
(i.e., ICA) was very close to the external carotid artery (ECA)
and the algorithm falsely identified the ECA as part of ICA.
The aforementioned failed vascular tracking can be improved
by increasing the signal threshold so that the signals from
unwanted vessels can be excluded and the overlapping between
two segments or two vessels can be eliminated.

Among these seven subjects with test–retest scans, the
algorithm successfully provided the vascular skeleton for all
arteries with no failure. The mean and standard error of inter-
session CoV for TI, BL, and ICM measurements were 3.0% ±

0.76%, 7.70%± 2.27%, and 3.0%± 0.76%, respectively, across all
28 arteries.

The details of the reproducibility of PC–MRI blood flow
quantification have been reported by Liu and Peng et al. (25–27).

It has been reported that the inter-session CoV for the blood flux
across all 28 arteries was 5.25± 2.93% and the inter-session CoV
for the unit CBF was reported as 7.41± 2.99%.

DISCUSSION

We applied MRA techniques to neck major brain feeding arteries
to reveal the VT and flow changes in a large cohort across
the adult lifespan. Older subjects demonstrated higher values
of tortuosity measurements. Tortuosity of bilateral VAs are less
evident than ICAs, which might be due to the anatomical
restriction from the transverse foramina of the cervical spine.
Age-related higher VT measurements correlate with lower blood
flux and velocity in extracranial arteries, suggesting tortuosity
changes in the elderly may limit the efficient blood supply and
influence neuronal functions, particularly when neural activity
is increased with high energy demand. Further, the results in
this study provide quantitative VTmeasurements in each decade,
which can be used as reference values for future clinical studies
of patients.

Previous studies suggested that the hypertension was
associated with damage of arterial walls, which potentially lead
to vessel morphological alterations (6, 28). In this study, we
did not find the significant effect of hypertension on VT or
flow measurements in our cohort. This discrepancy might be
attributable to the following factors. First, the pathophysiological
effects of hypertension are dependent on the size of vessels where
the resistance and BP will be higher for small vessels with narrow
lumen (29). The vessels that, when relaxed, measured lesser
than 400µm in lumen diameter are the major site of vascular
resistance, which included a network of small arteries (lumen ≈

100 to 400µm) and arterioles (<100µm). The ICAs and VAs,
however, are large arteries with relatively low resistance, and this
may be why the tortuosity measurements were less affected by
the hypertension. Second, the participants in this normal lifespan
study are all healthy subjects from DLBS cohort without history
of neurological disorders, such as stroke, transient ischemic
attack (TIA), cognitive disorders or MMSE lower than 26. Those
pathological conditions potentially complicated the interactions
between blood pressure, blood flow, and vasculature topology.
Third, the number of hypertensive subjects is relatively small,
only 13% had diagnosed hypertension whose symptoms were
controlled by taking antihypertensive medication; some of them
had normal BP at the time of MRI. They are expected to be
part of the normal aging process. Last, the mechanisms of vessel
wall remodeling from elevated pulse wave velocity associated
with hypertension may be different from that of normal aging.
Hypertensive-related changes in large elastic arteries, i.e., ICA,
represent as thickening of the vascular wall and increased intima-
media thickness (IMT) instead of elastin fracture and collagen
deposition seen in normal aging (9, 30). Finally, few studies
applied quantitative VT assessment method as used in this
study; and most of the previous studies revealed the effects of
hypertension purely based on categorical data. However, more
studies with larger and chronic hypertensive population are
necessary to better understand how hypertension affects the
vascular topology.

Frontiers in Neurology | www.frontiersin.org 9 April 2022 | Volume 13 | Article 85880523

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Sun et al. Imaging Age-Related Vascular Tortuosity

Gender is another important factor affecting vascular
properties. It has been suggested that females are prone to have
VT, stiffer large arteries and higher pulse pressure (31–33). While
our study did not observe significant difference between females
and males in bilateral ICAs, more evident age-related changing
patterns can be observed in females. Underlying mechanisms
may include variations in sex steroid levels and less stable
intervertebral joints in females (34). After menopause, females
are prone to stiffer and more tortuous large arteries, resulting
from declining female sex steroids secretion associated with
decreased elastin/collagen ratios (35). Consequently, the arterial
wall remodeling can alter the profile of blood flow.

We hypothesized that vessel morphological changes (e.g.,
twists and turns) may cause a reduction of arterial pressure
and flow velocity in the vessel. Therefore, we analyzed the
relationship betweenVT changes characterized on TOF-MRI and
blood flow characterized on PC-MRI. Tortuosity measurements
were negatively correlated with blood velocity after adjusting
age and gender as covariance, whereas, no association was
observed between VT and blood flow. It suggested that
age contributes the most to the flow reduction instead of
tortuous change based on the multiple regression model. We
speculated it was sufficient for the vascular elasticity to regulate
the vascular resistance induced by VT aiming to maintain
sufficient blood flow under resting conditions (36), whereas this
regulatory capacity decreases with aging. The reduced blood
velocity is attributable to an elevated resistance and reduced
pulse pressure induced by VT. The alteration of flow velocity
consequently affects WSS, an indicator of atherogenesis and
cognitive function impairment (37, 38), which is determined
by the velocity gradient from the vessel wall toward the vessel
center. The WSS reduction induced by VT increases the risk
of plaque formation mediated by inflammatory factors (39).
Several in vitro numerical simulation studies have validated
that VT results in pressure and flow drops in the distal vessel
segments regardless of the bending angles (40, 41). These
consequences could further lead to intracranial hypoperfusion
and ischemic status.

Extracranial VT changes were investigated extensively with
different imaging modalities and our findings are in agreement
with most reports, which are largely based on qualitative visual
inspection (8, 42–44). There is still an unmet clinical need
for quantitative assessment of major brain feeding arteries
using clinical imaging. Unlike the most geometric data derived
from 2D planar analysis (45–47), our study established an
automatic algorithm for 3D vessel segmentation, centerline
tracking and VT quantification. While there are several
advanced segmentation algorithms developed for complicated
vasculature, we applied simplicity multilevel threshold-based
segmentation by taking advantage of its fast process and
high accuracy (26). Averaged processing time of segmentation,
centerline tracking combined with VT computation for a
single vessel is within 2min. In this study, we characterized
VT objectively using three rational indices, which addressed
the urgency to overcome subjective visual assessment and
establish a quantitative tortuosity measurement scheme in
clinical settings.

Since our work is built upon a comprehensive quantitative
investigation of a large cohort of healthy populations using MRI,
the results can potentially serve as normal reference values of
each decade in healthy aging. While many studies have been
conducted using ultrasound, the accuracy might be limited
due to ultrasound’s inability and inefficiency to detect thin
vessels deep in the tissue or partially hidden behind the bone
structures, such as VAs. Meanwhile, the operative-dependent
variabilities including the angle of insonation and anatomic
location might be introduced. The advantages of MRI over
ultrasound include larger coverage, deep vessel detection, and
smaller measurement variability (48). Owing to the clinical
accessibility and fast acquisition (<5min), it is practical to
perform TOF and PC-MRI as routine scans for quick evaluation
of neck vessels regarding intracranial health. The fast and
user-interaction algorithm developed in this study makes it
feasible to be implemented in MRI scan workstation in the
future and provide real-time quantitative measurements of
vascular tortuosity.

Some potential limitations of our study should be
acknowledged. First, we do not have clinical data regarding
some cardiovascular risk factors such as family history of
vascular disease, smoking, alcohol use, and hyperlipidemia.
Although these risk factors may also be associated with the
vessel tortuosity measurements, it is worth noting that the
participants in this DLBS study were healthier and more
educated than the general population by pre-study screening.
Therefore, they were considered as “best-case-scenario” model
representing the normal aging effect in the general population
with less unwanted noise that potentially confound the biological
process (7). Second, in this cohort, there were more female
than male participants with the gender ratio almost 2:1,
which is primarily due to the reason that females are more
willing to participate for this study. However, the detailed
tortuosity measurements based on gender were provided in
Supplementary Material, and we did not find any gender
distribution differences between young and old groups. Third,
the vessel diameter or the vessel size was not measured in
this study primarily due to the lack of robustness of the
techniques used in this study. Last, the tortuosity evaluation
for intracranial arteries was not included in this study although
morphological variations can present in both intracranial and
extracranial arterial segments. This is because the age-related
changes of extracranial carotid and vertebral arteries are more
common and distinguished due to their eminent anatomical
course (no branches) and long length in the neck region. The
intracranial segments are often obscured by their complicated
route and branches with variable spatial relation with cranial
nerve and cavernous sinus (49, 50), which are difficult to
be reliably segmented with the methods of this study. The
assessment of age-related intracranial VT should be assessed in
future studies with specific techniques that are more robust to
intracranial segments.

In summary, the levels of age-related VT changes can be
quantitatively assessed with the developed vessel segmentation
and centerline tracking methods based on fast and non-invasive
MRA clinical imaging. Increased tortuosity and decreased
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blood flow measurements were observed with aging. The
blood flow velocity showed an inverse relationship with the
tortuosity measurements. The quantitative evaluation of changes
of these extracranial major feeding arteries can provide potential
indicators of neurological disorders, which would both increase
our general understanding of aging and improve clinical
treatment and prevention through quantitative analysis of
tortuosity levels.
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Chronic pain associated with fibromyalgia (FM) affects a large portion of the population

but the underlying mechanisms leading to this altered pain are still poorly understood.

Evidence suggests that FM involves altered neural processes in the central nervous

system and neuroimaging methods such as functional magnetic resonance imaging

(fMRI) are used to reveal these underlying alterations. While many fMRI studies of FM have

been conducted in the brain, recent evidence shows that the changes in pain processing

in FM may be linked to autonomic and homeostatic dysregulation, thus requiring further

investigation in the brainstem and spinal cord. Functional magnetic resonance imaging

data from 15 women with FM and 15 healthy controls were obtained in the cervical

spinal cord and brainstem at 3 tesla using previously established methods. In order to

investigate differences in pain processing in these groups, participants underwent trials in

which they anticipated and received a predictable painful stimulus, randomly interleaved

with trials with no stimulus. Differences in functional connectivity between the groups

were investigated by means of structural equation modeling. The results demonstrate

significant differences in brainstem/spinal cord network connectivity between the FM and

control groups which also correlated with individual differences in pain responses. The

regions involved in these differences in connectivity included the LC, hypothalamus, PAG,

and PBN, which are known to be associated with autonomic homeostatic regulation,

including fight or flight responses. This study extends our understanding of altered neural

processes associated with FM and the important link between sensory and autonomic

regulation systems in this disorder.

Keywords: fMRI, brainstem, spinal cord, pain, human, chronic, fibromyalgia

INTRODUCTION

Fibromyalgia (FM) is a chronic pain condition that is characterized by both hyperalgesia
(heightened pain sensitivity) and allodynia (disproportionate pain or sensitivity from sensory
stimuli that would not normally be painful) (1–3). Most evidence to date suggests that the abnormal
pain responses in FM may be the result of central sensitization (4–11), which has prompted
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functional magnetic resonance imaging (fMRI) studies of the
central nervous system. However, the majority of these studies
focus on the brain (8, 12–20) and a large proportion used model-
driven analyses, which we have recently shown may provide
an incomplete picture when investigating pain processing with
fMRI (21, 22). Importantly, additional studies examining the
brainstem and spinal cord, which include regions that are known
to play key roles in descending painmodulation (23), can advance
knowledge of pain processing in FM.

Most prior MRI studies of FM in the brainstem and spinal
cord included structural studies (24, 25) and studies of resting-
state function which did not involve a painful stimulus (26).
However, functional studies that involved noxious stimuli have
also been carried out, and have provided crucial evidence
of altered pain processing. The results have demonstrated
differences in BOLD signal changes associated with temporal
summation of pain and descending modulation in women with
fibromyalgia compared to healthy controls (7, 11). These studies,
however, modeled the time course of neuronal activation only
during and after noxious stimulation.

Our recent study has demonstrated that pain modulation
in the brainstem and spinal cord includes both a reactive
component and a continuous component of pain modulation
related to cognitive and emotional influences on pain, which
are present before, during, and after a painful stimulus (27).
Brainstem and spinal cord network connectivity variations have
been described both before and during stimulation in healthy
volunteers, and they appear to be related to pain expectation
or pain relief in (28, 29). Some of these effects related to pain
expectationsmay also be linked in part to autonomic homeostatic
regulation in a subset of brainstem regions (28, 30). Previous
evidence shows that functional differences in FM exist in brain
regions linked to motivational-affective components of pain
processing (12–15). Therefore it is possible that similar important
differences in pain modulation may also exist in brainstem
and spinal cord regions. Some behavioral studies have linked
changes in autonomic regulation to changes in pain sensitivity
in FM (31–33), but this has not been investigated with functional
neuroimaging studies.

The objective of the present study was to advance our
understanding of the neural processes underlying heighted pain
sensitivity in FM, by means of fMRI in the brainstem and
spinal cord, to investigate function during both the anticipation
and experience of pain. We used structural equation modeling
to investigate a network of brainstem and spinal cord regions
associated with descending pain modulation (23), motivational-
affective components of pain (28, 29) and autonomic homeostatic
regulation (34). We hypothesized that during the anticipation
and experience of pain, the connectivity in spinal cord
and brainstem networks was altered in FM compared to
healthy controls.

METHODS

All study methods were reviewed and approved by our
institutional research ethics board, and participants provided

fully informed written consent before participating. The study
protocol conformed to the ethical guidelines of the 2013
Declaration of Helsinki.

Participant Recruitment
Participants with and without FM were recruited through online
advertisements as well as physical flyers posted in the general
community and in chronic pain support groups. Participation
involved two fMRI sessions as part of a larger study, one imaging
the brain and the other imaging the brainstem and spinal
cord, although not all participants completed both sessions. The
current study of the brainstem and spinal cord involved 15
women with FM (mean age 46 ±13 years) who fulfilled the 1990
and 2016 FM criteria, and 15 healthy women (mean age 39 ±10
years). All participants were free of any contraindications for MR
imaging (e.g., metallic implants, claustrophobia, pregnancy, etc.),
were not taking any centrally-acting medications. They were
allowed to continue on other medications if they were taking
them for at least 3 months prior to the study. The participants
were not asked to stop medication they were already taking,
as reports suggest that conventional treatments do not alleviate
fibromyalgia pain, and stopping medications may pose a risk to
a participant’s health. Participants taking centrally-acting pain
medication, however, were still excluded from the study.

Questionnaires
In addition to the imaging data, participants completed a
series of questionnaires related to demographic information,
mental health, pain symptoms, and autonomic functioning.
All participants completed the 2016 Fibromyalgia Survey
Questionnaire (FSQ) (35) to assess whether they met the
most recent classification criteria for FM, as some participants
had been diagnosed over a decade previously by their
physicians. Some studies have also found discrepancies between
physician diagnoses of FM and classification based on the
most recent diagnostic criteria (36). Participants also completed
the State-Trait Anxiety Inventory (STAI) (37), and Beck
Depression Inventory (BDI) (38), because FM has been
associated with high anxiety and depression (1). The Social
Desirability Scale (SDS) (39) and the Pain Catastrophizing
Scale (PCS) (40) were also included to assess whether
individual reports of pain ratings were associated with the
desire to perform well for the study or the tendency to
catastrophize painful sensations. The Composite Autonomic
Symptom Score 31 (COMPASS-31) (41) was used to assess
autonomic health. This questionnaire includes subscales for 6
domains of autonomic symptom severity, namely orthostatic
intolerance, vasomotor, secretomotor, gastrointestinal, bladder,
and pupillomotor symptoms. To assess pain and pain symptoms,
we also included the Revised Fibromyalgia Impact Questionnaire
(FIQR) (42) and the Short-Form McGill Pain Questionnaire-
2 (SF-MPQ-2) (43). Participants in the HC group were still
given the FIQR but the word “fibromyalgia” was omitted
(questions referred to how pain impacted their lives) as these
participants did not have any experience of fibromyalgia.
The SF-MPQ-2 included four subscales of pain quality,
namely affective descriptors, continuous, intermittent, and
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predominantly neuropathic pain. These questionnaire scores
were used to compute group means for the FM and HC
participants, which were then compared using t-tests. Group
means for each subscale (in inventories that included subscales)
were also computed and tested. Significant differences in average
scores were inferred at a threshold of p < 0.05.

Participant Training
All participants completed a 1-h sham training session before
their imaging session. This time was used to familiarize the
participant with the study paradigm, complete the algometry
testing portion of the study, ease any anxiety about the imaging
session by practicing in a sham MRI, and introduce them to
the pain stimulus used in the study. This training session was
the first time the participants were exposed to the numerical
pain rating scale used in the study and the heat stimulus used.
All sessions were carried out by two examiners to facilitate the
training, one male and one female researcher. First, participants
underwent tender point test according to the 1,190 ACR FM
criteria (35, 44, 45). For simplicity and participant comfort, only
12 points above the waist were examined for pain (bilateral
occiput, bilateral epicondyle, bilateral low cervical, bilateral
supraspinatus, bilateral trapezius, and bilateral second rib)
alongside a control point on the forehead (44, 45). For each
point, a researcher applied pressure in even increments of 1
kg/s (to a maximum of 4 kg) with an algometer (FPK 10 pain
test algometer, Wagner Instruments, Greenwich, Connecticut).
Participants were instructed to say “stop” as soon as the sensation
became painful, and the pressure needed to reach this point was
recorded. If a participant did not report pain for a point even after
the maximum pressure was reached, “no pain” was recorded.
Each point was probed only once, and all pressure-point exams
were conducted by the same researcher (male) for consistency
in application.

Next, participants were introduced to the numerical pain
intensity scale (NPS) they would use to rate their pain (46), as
well as the stimulus used during the study. This scale ranges from
0 to 100 in increments of 10, with descriptors at each increment
(0 = no sensation, 10 = warm, 20 = a barely painful sensation,
30 = very weak pain, 40 = weak pain, 50 = moderate pain, 60
= slightly strong pain, 70 = strong pain, 80 = very strong pain,
90= nearly intolerable pain, 100= intolerable pain). Participants
were told they would not be experiencing temperatures that could
cause harm to their skin, and that the study did not aim to induce
pain above a rating of moderately severe (70) on the NPS.

This study used a MRI-compatible Robotic Contact-Heat
Thermal Heat Stimulator (RTS-2) to deliver the noxious
stimulus. A heat stimulus was chosen in order to compare these
results to recent pain research in the spinal cord (7, 28, 47–
49), as well as the fact that fibromyalgia has been associated
with higher heat pain sensitivity (1). The RTS-2’s plexiglass
casing houses a heated aluminum thermode which can be
advanced to exit the casing and touch the skin of a participant
or retracted into the casing. The movement and temperature
of the thermode are precisely controlled by custom written
software inMATLAB (Mathworks Inc., Natick,MA). Participants
were instructed to place their right hand on the casing so the

thermode would make contact with the thenar eminence of their
right hand. This placement was chosen because that area of the
skin corresponds to the C6 dermatome and would allow these
results to be compared to previous spinal cord studies of pain
(27, 28, 48, 49). A number of calibration tests were performed
to allow the participant to become familiar with the stimulus
and determine the temperature needed to elicit moderate pain
in each participant. Each test consisted of 10 heat contacts, 1.5
second duration, with onsets every 3 seconds over the span of 30 s
with the thermode temperatures ranging between 40 and 52 ◦C
(the temperature was constant during each test). This stimulation
paradigm can cause wind-up, and the time interval between the
contacts produces a robust BOLD response without receptor
adaptation. We chose this paradigm because FM is believed to
involve central sensitization, which is exacerbated by a wind-up
paradigm. Prior studies using a thermal stimulus have shown that
participants with FM have altered responses to this paradigm
compared to pain-free participants (7, 8, 10). In addition, the
choice of a thermal stimulus allows for the calibration of pain
intensity for each participant’s level of sensitivity and can be easily
applied in an MRI environment.

Each participant received the same stimulus intensities in
the same order, consisting of trials of 46, 50, 44, and 48◦C
respectively. During each test, participants verbally rated each of
the 10 contacts out loud using the NPS. They were encouraged to
rate in increments of 5 but were not corrected if they used other
numbers. The temperatures used never exceeded 52◦C to prevent
tissue damage. Participants were kept blinded to this objective
as well as to the temperatures used during the tests to avoid any
response bias. They were informed that if the sensation was ever
intolerable they could remove their hand from the device at any
time during the study. This served both to relieve their anxiety as
well as avoid causing high levels of subjective pain.

The training session concluded with a practice run of the
experimental protocol in the sham MRI scanner. To prevent
motion artifacts, participants cannot verbalize their ratings
during the imaging, therefore they were instructed to rate each
contact mentally and remember the ratings they gave for the
first and last contact. The sham tests also allowed participants to
practice laying as still and relaxed as possible to avoid movement
during imaging, and they were reassured that the NPS would
be displayed, requiring no memorization of the scale. The sham
MRI provides an environment similar to the MRI to allow
participants to familiarize themselves with how imaging will feel
and ease anxiety. Participants lay supine on a mobile bed and
were provided with a mirror over their eyes to view a rear-
projection screen and listen to recorded sounds from MRI scans
that were played for them on a speaker. The practice scan for
this study used the same stimulation paradigm as the subsequent
imaging session, allowing participants to practice mentally rating
their pain and recalling the first and last ratings.

FMRI Paradigm
This study employed a “threat vs. safety” paradigm to allow
us to examine periods of anticipation of pain, periods of
painful stimulation, and periods of rest. The imaging session
consisted of 10 fMRI runs of 4.5min each, separated into five
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“Pain” runs in which participants experienced the noxious heat
stimulus, interleaved in a randomized order with five ‘No-
Pain’ runs in which participants did not feel the stimulus.
While the majority of participants completed this session, some
participants only underwent four “Pain” runs due to time
constraints or participants being unable to comfortably lie still
for the amount of time needed to complete all five runs. During
each run, at the 1-minute mark, they were informed via a
rear-projection screen whether they would feel the stimulus or
not that run. If it was a “Pain” run, participants were told
at the 2-min mark that the stimulation would begin. During
stimulation, they experienced 10 heat contacts over a span of 30
seconds at the calibrated temperature. During the stimulation,
the NPS was displayed and participants were instructed to
mentally rate each contact on the scale. After the stimulation,
imaging continued for another 2min before ending. After each
“Pain” run, participants were asked over an intercom to give
their ratings for the first and last contact, and were told
that another run would begin soon. Imaging was conducted
over the same amount of time in the No Pain condition, but
participants were told they would not receive the stimulus.
This paradigm has been previously employed in several pain
studies (22, 27, 28, 49).

FMRI Data Acquisition
This study included data from a larger research program that
included both brainstem/spinal cord and brain imaging sessions.
Only the brainstem/spinal cord imaging data are discussed here.
Functional MRI scans were carried out on a Siemens 3 tesla MRI
system (Siemens Magnetom, Erlangen, Germany). During the
data collection phase of this study, the MR system underwent an
upgrade from a SiemensMagnetom Trio to a SiemensMagnetom
Prisma. Efforts were made to keep scan quality equivalent pre-
and post-upgrade, and checks were performed with data from
the FM and HC groups before and after the upgrade as well as
additional volunteer data to compare the quality of the data and
the signal to noise ratio in each. No significant differences were
found in scan quality or signal-to-noise ratio before and after
the upgrade.

Localizer images were acquired in three planes to provide a
reference for the subsequent slice positions. Functional images
were acquired using a half-Fourier single-shot fast spin-echo
(HASTE) sequence with BOLD contrast, spanning the full
brainstem and cervical spinal cord (first thoracic vertebra to
above the thalamus). This method has been shown to provide
optimal image quality and BOLD sensitivity in the brainstem and
spinal cord (48). The 3D volume was imaged in 9 contiguous
sagittal slices, 2mm wide, with a 28 × 21 cm field-of-view and a
1.5 × 1.5mm in-plane resolution. Imaging parameters included
an echo time (TE) of 76ms and a repetition time (TR) of
6.75 s/volume for optimal T2-weighted BOLD sensitivity. Each
imaging run consisted of 40 volumes (equivalent to a 4.5min
run). In total, 10 runs were acquired for each participant, 5 Pain
and 5 No Pain, therefore each condition consisted of 200 volumes
per individual.

FMRI Data Preprocessing and Analysis
Data Preprocessing
Preprocessing was carried out using custom-written software
(48), “spinalfmri9” (https://www.queensu.ca/academia/
stromanlab/home/fmri-analysis-software) in MATLAB
(MathWorks, Natick, MA, USA). Image data were first
converted from DICOM to NIfTI format, after which they were
co-registered to correct for bulk body motion using the non-
rigid 3D registration tool in the MIRT package (Medical Image
Registration Toolbox) (50, 51). Images were then resized to 1
mm3 voxels and spatially normalized to a pre-defined anatomical
template, as described previously (27, 47). Physiological noise
estimates were obtained from the recording of the peripheral
pulse (synchronized to each fMRI time series), estimates of
global noise were obtained from regions of white matter, and
motion parameters obtained from the co-registration procedures
were used as models of bulk movement. These noise models were
fit to the data using a general linear model (GLM) and subtracted
from the data. This method has been shown to be highly effective
for removing physiological noise in this region (52).

Data Analysis
The threat/safety paradigm enables comparisons of periods with
and without the anticipation, and experience, of the noxious heat
stimulus. For this study we focused the analysis on two time
periods; the second minute of the baseline period preceding the
noxious stimulus, and the stimulation period. Two epochs were
analyzed, consisting of 45 s blocks. The first epoch is centered
around the 1min 30 s mark and is termed the “Expectation”
period. This is the time after participants were told to expect
pain, but before they had experienced any stimulus. The second
epoch is centered around the 2min 15 sec mark and is termed
the “Stimulation” period, and is the time when participants were
experiencing a painful stimulus. This also allowed us to compare
these results to our previous studies (28, 30).

Analyses consisted of characterizations of BOLD responses,
and connectivity analyses. As it is not practical to apply these
analyses on a voxel-by-voxel basis, we selected 10 regions of
interest (ROIs) in the brainstem and spinal cord which were
identified using a previously-established anatomical region map
(7, 47, 53). These regions and their expected locations were
compiled from several anatomical atlases and published articles
(54–58). The regions included the thalamus, hypothalamus
(Hyp), periaqueductal gray matter (PAG), parabrachial nucleus
(PBN), locus coeruleus (LC), nucleus tractus solitarius (NTS),
nucleus raphe magnus (NRM), nucleus gigantocellularis (NGc),
dorsal reticular nucleus of the medulla (DRt), and the pontine
reticular formation (PRF). As the noxious stimulus was applied
to the palm of the right hand, which corresponds to the C6
dermatome, we also included the right dorsal quadrant of the 6th

cervical spinal cord segment (C6RD). However, because entire
anatomical regions are not expected to be uniformly involved
with pain responses (28, 30, 34, 59, 60), regions were divided
into sub-regions based on fMRI time-course properties. Each
ROI was divided into 5 clusters of voxels (i.e., sub-regions)
by means of k-means clustering. This method provides greater
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FIGURE 1 | Anatomical model of the regions and connections used for the

structural equation modeling (SEM) analysis.

spatial precision by dividing the voxels into clusters based on
their functional characteristics.

Structural Equation Modeling
Cluster-to-cluster correlations may not always be sufficient to
explain complex coordination between regions (28, 30, 59). As in
previous studies (27, 28, 30, 49, 59), we used structural equation
modeling to examine coordinated networks. These methods have
been validated for use in the brainstem and spinal cord (61),
and in previous studies they have been used to identify and
characterize robust networks in the brain, brainstem and spinal
cord (30, 59), as well as characterize connectivity networks
during pain processing (60) and the expectation of pain (28).
SEM requires a pre-defined model of anatomical regions and
connections between these regions.We have chosen a previously-
described model based on known pain related neuroanatomy
(23, 62–64) (Figure 1), which includes the brainstem regions
described above, the C6RD quadrant of the spinal cord, as well as
information about the anatomical directionality of connections.

Connectivity analyses (SEM) were carried out separately for
the Expectation and Stimulation periods by means of a general
linear model (GLM) fitting method which was used to calculate
the linear weighting factors (β) which describe the relative
contribution of each “source” input to a “target” region. These
β values reflect the connectivity strength between regions, and
are calculated as follows: if a region A receives inputs from
two other regions, B and C, and the BOLD signal time series
in these responses are SA, SB, and SC respectively, then SA =

βABSB + βACSC + eA where eA is the residual signal variation
that is not explained by the fit. Within the model are several
network components that consist of a target region (e.g., SA)
and the multiple source regions providing input to that target
region (e.g., SB and SC). The weighting factors (beta, β) were
calculated separately for each network component, and networks

were investigated for every combination of clusters of each region
in order to identify the clusters that resulted in the best fits
to the data measured. The beta value for each connection is
therefore calculated several times with different combinations of
“source” and “target” clusters. The amount of variance in each
target region that can be explained by the fit was calculated
and expressed as an R2 value, and the significance of the fit
was estimated by converting R values to a Z-score by means
of a Fisher’s Z-transform. This fitting was repeated with one
source region at a time omitted from the network, and an F-
test was used to identify terms that did not uniquely account for
a significant component of the variance in each target region.
Any terms that did not account for a significant component of
the target region variance were not included in the results. A
threshold of F(1,∞) > 3.845 was used to determine significance
(corresponding with p < 0.05).

Analyses and Comparisons of Connectivity Networks
Connectivity networks were compared between and within the
FM and HC groups, for each time period, by means of analyses of
covariance (ANCOVA). The ANCOVA included the Group (FM
vs. HC) as a discrete variable, and the participants’ normalized
pain scores, as a continuous variable. Normalized pain scores
were calculated for each individual by taking the ratio of their
average pain rating during the “Pain” runs to the average
temperature applied to the hand (i.e., pain rating/temperature).
A higher ratio reflects higher pain sensitivity. The results
thus demonstrate significant group differences, significant
dependences on pain ratings, and interactions between the
group and pain ratings. Significance was inferred at a multiple-
comparison corrected probability threshold of p < 0.05, using a
Bonferroni family-wise error-rate correction to account for the
number of independent connections tested. ANCOVA analyses
were applied separately using data in the “Expectation” and
“Stimulation” periods.

RESULTS

Participant Characteristics
Questionnaire scores were compared between study groups (FM
vs. HC) by means of Student’s T-tests, and are summarized
in Tables 1, 2. Fibromyalgia participants were observed to
have a significantly higher normalized pain scores than
healthy controls, t(28) = −3.303, p = 0.003. They also
scored significantly higher on measures of depression (BDI),
measures of pain catastrophizing (total and sub-scores of
rumination, magnification, and helplessness), measures of pain
symptomatology (total FIQR and function, impact and symptom
subscales), measures of autonomic function (total COMPASS
and all subscales), and pain inventory scores (total MPQ and
continuous, intermittent, neuropathic, and affective subscales).
No demographic information such as age, smoking habits, or
drinking, was significantly different between the groups.

To examine the relationship between traits such as pain
catastrophizing, anxiety, depression, autonomic function,
and pain symptomatology and experience, Spearman’s rank
correlations of all scale and subscale scores with normalized pain
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TABLE 1 | Demographic information for the healthy control (HC) and fibromyalgia

(FM) groups. Where applicable the mean score is given, followed by the standard

deviation in parentheses. The normalized pain score was calculated by dividing

each individual’s average pain rating by the average stimulus temperature needed

to elicit that rating. A higher number indicates higher pain sensitivity. The

participant groups had significantly different scores on all four measures.

Demographic information HC (SD) FM (SD)

Age 39.2 (10.3) 46.7 (13.5)

BMI 27.6 (3.8) 25.8 (5.1)

Normalized pain score 0.72 (0.2) 1.01 (0.2)

Initial pain score 2.3 (5.62) 33.9 (23.7)

scores was also conducted (Table 3). This was done separately for
FM and HC participants. In the FM group, age was significantly
correlated with pain scores, with older participants having higher
pain scores, rho(13) = 0.567, p = 0.02. No other correlations
were found to be significant.

Network Comparisons
SEM analyses identified extensive networks in the brainstem
and spinal cord for both participant groups, in the Expectation
and Stimulation periods. Table 4 summarizes the significant
connectivity values in both groups during both periods of
interest. While expecting pain, SEM results from both groups
included significant connectivity from the LC to the PBN and
from the PAG to the LC. Significant network connectivity was
also observed from the LC and the PAG to the NGC in the
HC group, while significant hypothalamus to LC and PAG to
PBN connectivity was observed in the FM group. During the
stimulation period, both groups had significant PAG to LC
network connectivity. The connectivity network observed in
the healthy control group also included connections from the
LC to the PBN and thalamus, from the hypothalamus to the NTS,
from the thalamus to the PAG, and from the NTS to the LC.
In contrast, the network connectivity observed in the FM group
during the painful stimulation also included connections from
the PAG to the PBN and DRt, and from the hypothalamus to
the NRM.

The results of ANCOVA analyses to compare connectivity
values between groups, and in relation to pain scores, are listed
in Table 5. The results show significant main effects of the study
group and pain scores as well as significant interaction effects
in both the Expectation and Stimulation time periods. During
the Expectation time period, there were significant main effects
of the study group in connections from the hypothalamus to
the NRM and NGc, from the PAG to the NGc, and from the
spinal cord to the thalamus. During the Stimulation period, these
effects were observed in connections from the LC to the NRM,
from the PAG to the LC, NGc, and hypothalamus, from the
spinal cord to the NGc and PAG, and from the PBN to the
NGc. Connectivity between regions also varied significantly with
normalized pain scores in both time periods. In the Expectation
period, this connectivity was localized within brainstem regions
(from the hypothalamus to the LC, and from the PAG to the LC,
and NGc). In the Stimulation period, these effects were relatively

TABLE 2 | Significant differences in group means (FM vs. HC) of questionnaire

scores. Group means, standard error, t value, and p value are given for each

comparison. All comparisons listed show significant differences between the

groups. Other differences that were tested but were not significant were state-trait

anxiety and social desirability. Acronyms, in order given in the table, represent

questionnaire scores for depression (BDI), pain catastrophizing (PC) including total

questionnaire scores and subscales, fibromyalgia impact (FIQR) including total

scores and subscales, autonomic symptoms (COMPASS) including total scores

and subscales for various symptom categories, normalized pain score (calculated

as the ratio of the average pain rating given to the average temperature of the

stimulus), and pain symptoms (MPQ) including total scores and subscale scores.

The initial pain rating refers to the rating participants gave for their overall bodily

pain before starting the study, using the same 100 point scale they were trained to

use during the sham MRI session.

Questionnaire HC (SE) FM (SE) t p

BDI 7.13 (2.45) 16.26 (2.77) −2.462 0.02

PC total 6.71 (1.7) 21.28 (3.29) −3.930 0.001

PC rumination 3.57 (0.91) 7.64 (1.25) −2.629 0.014

PC magnification 1.0 (0.31) 4.21 (0.68) −4.286 0.001

PC helplessness 2.14 (0.67) 9.42 (1.71) −3.963 0.001

FIQR total 10.31 (3.18) 50.26 (3.66) −8.223 0.001

FIQR function with

FM

1.11 (0.67) 11.22 (1.53) −6.040 0.000

FIQR impact of FM 1.26 (0.78) 10.0 (1.02) −6.756 0.000

FIQR symptoms of

FM

7.93 (1.92) 29.03 (1.63) −8.370 0.000

COMPASS total 12.96 (2.36) 39.53 (4.31) −5.395 0.000

COMPASS

orthostatic

intolerance

5.6 (1.78) 14.94 (2.74) −2.855 0.008

COMPASS

vasomotor

0.0 (0.0) 1.93 (0.37) −5.263 0.000

COMPASS

secretomotor

1.28 (0.54) 7.02 (0.94) −5.246 0.000

COMPASS

gastrointestinal

4.7 (0.80) 10.58 (1.21) −4.047 0.000

COMPASS

bladder

0.44 (0.23) 2.44 (0.77) −2.461 0.02

COMPASS

pupillomotor

0.94 (0.24) 2.56 (0.26) −4.554 0.000

Normalized pain

score

0.71 (0.59) 1.01 (0.06) −3.303 0.003

Initial pain 2.33 (5.62) 33.92 (23.77) −4.848 0.000

MPQ total 12.8 (3.66) 87.13 (12.1) −5.88 0.00

MPQ continuous 5.5 (1.36) 28.93 (3.26) −6.614 0.00

MPQ intermittent 2.0 (1.18) 21.67 (4.32) −4.383 0.000

MPQ neuropathic 3.4 (1.9) 22.80 (3.81) −4.551 0.000

MPQ affective

descriptors

1.9 (1.17) 13.73 (2.16) −4.796 0.000

Shaded cells represent overall questionnaire scores, while unshaded cells represent

subscales of the questionnaires.

similar in terms of brainstem-to-brainstem connectivity, but also
included additional connections from the PBN and spinal cord
to the NGc, and from the hypothalamus and LC to the NRM.
Interaction effects were more pronounced in the Expectation
time period, and involved connectivity from the spinal cord to
the thalamus, from the PAG and LC to the NGc, from the PAG
and hypothalamus to the NRM, and from the NTS to the LC.
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TABLE 3 | Pearson’s correlations of group questionnaire scores (FM or HC) with

individual normalized pain score (calculated as mean pain intensity/mean stimulus

temperature for each individual).

Healthy

controls

Fibromyalgia

Questionnaires Normalized

pain score

(rho)

Normalized

pain score

(rho)

Age −0.084 0.567

BMI −0.038 −0.347

Anxiety (STAI) 0.028 −0.426

Depression (BDI) −0.020 −0.347

PC total −0.063 0.425

PC rumination −0.128 0.172

PC magnification −0.034 0.426

PC helplessness −0.025 0.513

FIQR total −0.260 0.195

FIQR function with FM −0.110 0.220

FIQR impact of FM −0.110 0.074

FIQR symptoms of FM −0.246 0.081

COMPASS total −0.055 0.093

COMPASS orthostatic

intolerance

−0.122 −0.128

COMPASS vasomotor NA 0.078

COMPASS

secretomotor

0.170 0.072

COMPASS

gastrointestinal

−0.027 0.318

COMPASS bladder −0.485 0.314

COMPASS

pupillomotor

−0.154 0.245

MPQ total −0.280 0.257

MPQ continuous 0.055 0.272

MPQ intermittent −0.270 0.094

MPQ neuropathic −0.311 0.277

MPQ affective

descriptors

−0.216 0.183

Spearman’s rank rho values are given for each comparison, with any values significant at

p <0.05 given in bold font. Acronyms, in order given in the table, represent questionnaire

scores for depression (BDI), pain catastrophizing (PC) including total questionnaire

scores and subscales, fibromyalgia impact (FIQR) including total scores and subscales,

autonomic symptoms (COMPASS) including total scores and subscales for various

symptom categories, normalized pain score (calculated as the ratio of the average pain

rating given to the average temperature of the stimulus), and pain symptoms (MPQ)

including total scores and subscale scores. Shaded cells represent overall questionnaire

scores, while unshaded cells represent subscales of the questionnaires. Note that the

COMPASS Vasomotor cell in the healthy control group has no rho value. This is because

all healthy controls scored zero points on this COMPASS subscale (no impairment) and a

correlation could therefore not be computed with one variable being a constant.

In contrast, interaction effects in the Stimulation period involved
only brainstem to brainstem connectivity, namely from the PAG
to the PBN and hypothalamus, and from the PBN to the NGc.

DISCUSSION

The results of this study demonstrate important differences in
pain processing between people with FM and a healthy control

TABLE 4 | Summary of significant spinal cord/brainstem connectivity in the

healthy control (first column) and fibromyalgia (second column) groups, analyzed

with SEM. The upper section of the table summarizes connectivity during the

Expectation period, and the lower section summarizes the Stimulation period.

Healthy controls Fibromyalgia

Region

Source→Target

β ± SE Region Source→Target β ± SE

Expecting pain Expecting pain

LC → PBN 0.13 ± 0.03 LC → PBN 0.13 ± 0.02

LC → PBN 0.17 ± 0.04 LC → PBN 0.10 ± 0.02

PAG→ LC 0.42 ± 0.03 PAG → LC 0.39 ± 0.05

LC → NGC 0.27 ± 0.05 Hypothalamus → LC 0.32 ± 0.05

PAG → NGC 0.22 ± 0.05 PAG → PBN 0.18 ± 0.04

Experiencing pain Experiencing pain

PAG→ LC 0.29 ± 0.07 PAG → LC 0.39 ± 0.04

LC → PBN 0.18 ± 0.04 PAG → PBN 0.25 ± 0.05

LC → Thalamus 0.09 ± 0.02 PAG → PBN 0.19 ± 0.05

Hypothalamus →

NTS

0.27 ± 0.06 Hypothalamus → NRM 0.44 ± 0.09

Thalamus → PAG 0.42 ± 0.09 PAG → DRt 0.30 ± 0.09

NTS→ LC 0.28 ± 0.06 PAG → PBN 0.25 ± 0.04

For each connection, the β value and standard error calculated with SEM are given. All

connections listed have statistically significant β values. Repeated connections between

the same regions indicate that different clusters within the regions had significant

connectivity. Abbreviations: dorsal reticular nucleus (DRt), locus coeruleus (LC), nucleus

raphe magnus (NRM), nucleus gigantocellularis (NGc), nucleus tractus solitarius (NTS),

periaqueductal gray (PAG), parabrachial nucleus (PBN), and the right dorsal region of the

6th cervical cord segment (C6RD).

group. The differences exist across participant characteristics,
pain behavioral responses, and coordinated brainstem/spinal
cord function identified by means of fMRI, and they demonstrate
that altered pain processing in FM may be linked to changes
in both descending pain regulation and autonomic regulation.
This study is also the first to show that these differences in
FM are present before a noxious stimulus is applied, while the
participants are anticipating the pain.

Our SEM analyses confirm that extensive brainstem and
spinal cord network connectivity exists during the expectation
and experience of pain in both control participants and women
with fibromyalgia (Table 4). Both groups showed extensive
connectivity between the LC, PAG, and PBN brainstem regions
both while expecting and experiencing pain. The PAG is a key
brainstem region associated with descending modulation of pain
(23), while the LC and PBN have functions associated with
pain modulation, motivational affective aspects of pain, as well
as autonomic homeostatic regulation (28, 60, 65). Connectivity
between these regions has been previously identified in other
studies both during the expectation and experience of pain in
healthy controls (28, 49). Importantly, these regions were also
part of key elements identified as part of the brainstem networks
associated with the expectation of pain specifically (28).

Comparisons between the groups (ANCOVA) also revealed
significant differences in pain processing between fibromyalgia
participants and healthy control women, both before and
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TABLE 5 | ANCOVA results for both the Expectation and Stimulation epochs,

comparing main effects of group (FM vs. HC), main effects of normalized pain

scores, and group x pain score interaction effects.

Expecting pain Experiencing pain

Region Source→ Target Region Source→ Target

Main effect of Group

(FM vs. HC)

Main effect of Group (FM

vs. HC)

PAG → NGC LC → NRM

C6RD → Thalamus C6RD → PAG

Hypothalamus → NGC PAG → LC

Hypothalamus → NRM PBN → NGC

C6RD → NGC

PAG → Hypothalamus

PAG → NGC

Main effect of Pain Score Main effect of Pain Score

PAG → NGC PAG → LC

Hypothalamus → LC PBN → NGC

PAG → LC Hypothalamus → NRM

LC → NRM

C6RD → NGC

PAG → NGC

Interaction effect

(Group x Pain Score)

Interaction effect (Group x

Pain Score)

C6RD→ Thalamus PAG → PBN

PAG → NGC PBN → NGC

LC → NGC PAG → Hypothalamus

PAG → NRM

Hypothalamus → NRM

PAG→ NGC

NTS → LC

The table summarizes all statistically significant effects.

during painful stimulation (Table 5). Figure 2 shows details of
relationships between connectivity strengths and pain scores
for selected connections with significant main effects of group,
normalized pain scores, and interaction effects. The selected
connections include an example of a main effect of the Group
(FM vs. HC) in the PAG to the NGc connection, in the
Expectation period. The connectivity values varied with pain
scores in both groups, but had consistently higher values in FM.
These results support previous evidence that FM may involve
altered descending regulation (11), and show that this is the
case even when differences in individual pain scores are taken
into account.

Furthermore, we were able to demonstrate that such
differences in brainstem and spinal cord connectivity exist
between fibromyalgia and healthy control participants both
before and during the painful stimulation (Table 5). In the
Expectation period, group differences in connectivity involved
mainly signaling from the hypothalamus to brainstem areas
such as the NGc and NRM, and feedback signaling from the

spinal cord to the thalamus. This may indicate that a component
of fibromyalgia pain is altered pain modulation during the
anticipation of pain. As we demonstrated in our previous study,
pain modulation includes a continuous component which is
present before a painful stimulus is applied and may contribute
to readying spinal cord areas to receive incoming nociceptive
signals (49). If this process is altered in fibromyalgia, it may
explain why these participants often have disproportionate pain
responses to similar stimuli as given to healthy controls, or
why they require stimuli of lower intensity to elicit similar pain
responses to healthy controls (including in the current study)
(7, 8, 11–20).

In contrast, differences in the Stimulation period involve
more extensive brainstem to brainstem signaling as well as
some feedback signaling from the spinal cord to brainstem
areas such as the PAG and NGc. These results support
our expectations that descending pain regulation is altered
in fibromyalgia during noxious stimulation, as the primary
differences in connectivity involve the PAG-RVM-spinal cord
descending pain modulation pathway (23). However, there are
additional connectivity differences involving areas such as the
LC, the hypothalamus and the PBN, whose function is associated
in part with arousal and autonomic regulation (34). The areas
involved in these differences may therefore indicate that this
altered descending regulation may have a contribution from
altered autonomic signaling. While FM pain has been associated
with autonomic dysfunction in previous behavioral studies (31–
33), this is the first study to show evidence of this link that is
supported by fMRI data.

The ANCOVA analysis also showed a significant main
effect of normalized pain scores in both the Expectation and
Stimulation time periods, indicating that pain scores are linked
to connectivity strengths in these networks regardless of which
participant group the participants were in (Figure 2). During the
Expectation period these differences were exclusively signaling to
and from brainstem areas including the PAG and LC, and did
not involve any significant connectivity to/from the spinal cord.
In a previous study, we demonstrated that several components
of these brainstem and spinal cord networks may be specific
to expecting pain (28), and many of these components are
seen here in this brainstem-to-brainstem signaling as varying
with individual pain scores. These connections were also part
of significant group x pain score interaction effects, where the
observed connectivity strengths depended on a combination of
the participants’ normalized pain scores as well as which group
they belonged to. These results indicate that the activity changes
in these regions and the differences in pain scores in fibromyalgia
are closely linked.

One review of chronic pain studies suggests a link between
certain types of emotional regulation and altered pain responses
(66). The authors showed that maladaptive emotional regulation
in response to acute pain may contribute to depressed mood
and enhanced pain catastrophizing (but not anxiousness), and
in turn mediate altered pain responses. Our results align with
this idea as we found that women with fibromyalgia had
higher BDI and PCS scores than the controls but not STAI
scores (Table 2), even though both anxiety and depression are
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FIGURE 2 | Connection details for 4 example connections obtained from ANCOVA results for both the Expectation and Stimulation periods, comparing main effects

of group (FM vs. HC), main effects of normalized pain score, and group x pain score interaction effects. Source regions are denoted with (s) while target regions are

denoted with (t). Red points represent individual participants with fibromyalgia while blue points represent the healthy controls. For each figure, the x axis shows the

individual average pain intensity ratings for the stimulus while the y axis shows the individual connectivity strengths (calculated and represented as a β value).

known to be comorbid with the condition (1, 67–69). A recent
study also showed that people with fibromyalgia have more
difficulty regulating emotions, and this predicted heightened pain
responses depending on their coping strategies (70). Some brain
fMRI studies in pain-free people identified that connectivity
changes between the PAG and some cortical areas were associated
with a participant’s tendency to disengage their attention from
the pain and obtain pain relief through distraction (71, 72). Our
fibromyalgia group had significantly higher pain catastrophizing
scores than the healthy control group, a measure which takes into
account in part how people think about and attend to their pain
(40). It is possible that a similar process is occurring here with
connectivity between the PAG and other brainstem areas.

While we have no direct measures of emotional regulation

and coping strategies in the current study, we do have
evidence that the altered pain experienced by the fibromyalgia

participants is likely due to alterations in a convergence of

autonomic regulation and pain modulation systems. Women
with fibromyalgia also scored higher on the COMPASS-31
questionnaire which measures symptoms of autonomic system
dysfunction. These symptoms may be related to the increased
pain sensitivity that is a characteristic of fibromyalgia (1, 2,
73–75), as previous studies have also noted that HPA axis
dysregulation may be a part of chronic pain symptomatology and
manifestation (33, 76–79). As our results show that connectivity

between the PAG and other brainstem areas varies with a
participant’s pain score, it is possible that this link may be driving
some of the differences in pain processing we observed in the
fibromyalgia group (who, on average, have higher normalized
pain scores than the healthy controls). Motivational-affective
components of pain processing and autonomic control are closely
interlinked and have been shown to contribute to altered pain
responses in the brain (12–15). Based on this and the evidence
that maladaptive emotional regulation (an affective component
of pain processing) can lead to altered pain in fibromyalgia
(66, 70), it is possible that our results show the underlying
neural basis of these effects at the level of the brainstem and
spinal cord.

Limitations
This article uses SEM as a hypothesis-driven and data-driven
analytical approach to fMRI pain data. Structural equation
modeling requires a pre-defined anatomical model and can
therefore not give information on other regions present in
the spinal cord and brainstem that were not included in
the original network. Our network was chosen to include
regions known to be associated with pain and pain modulation,
homeostatic regulation, and arousal. While we are confident in
the results presented, we cannot guarantee that other effects
are not present in other regions which may influence the
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connectivity changes in the given network. There were also
unintended differences in the age of participants although
efforts were made to age-match participants wherever possible.
Lastly, it must be noted that FM is a heterogenous condition
with a spectrum of possible symptoms and presentations.
Our results are an important step for exploring overall pain
processing differences between FM and healthy controls, but
more studies are needed to expand on this and explore how
these results generalize to different FM populations with different
symptom presentations.

Conclusions
These results are an important step in advancing our
understanding of fibromyalgia. Women with fibromyalgia
have altered descending pain modulation compared to healthy
controls. Furthermore, these differences can exist without a
noxious stimulus, as network connectivity in the brainstem
and spinal cord is altered during both the expectation and
the experience of pain. Importantly, many of these changes
in network connectivity in FM were related at least in part to
individual normalized pain scores. While many brainstem areas
carry out several different functions, the areas involved in these
connectivity differences seem to indicate that altered pain in
fibromyalgia may be the result of changes in a convergence of
systems involved with pain regulation, arousal, and autonomic
homeostatic regulation. The latter is especially interesting,
as links of fibromyalgia pain with changes in autonomic
system function have been demonstrated previously by some
important behavioral research, which can now be in part
supported with novel findings from brainstem and spinal
cord fMRI data. Our evidence supports the conclusion that
fibromyalgia may involve changes in how autonomic regulation
is integrated with descending pain regulation in the brainstem
and spinal cord.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from
the corresponding author upon reasonable request.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Queen’s University Research Ethics Board. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

GI: participant recruitment, data collection, data analysis, data
interpretation, first manuscript preparation, and manuscript
review. HW and JP: participant recruitment, data collection, data
analysis, data interpretation, and manuscript review. RS and CP:
data interpretation and manuscript review and editing. PS: study
design, data collection, data analysis, data interpretation, and
manuscript review and editing. All authors contributed to the
article and approved the submitted version.

FUNDING

This research was funded by the National Sciences and
Engineering Research Council (NSERC), RGPIN/06221-2015.
This work was also supported by Spectrum Therapeutics
through MITACS.

ACKNOWLEDGMENTS

We would like to thank Don Brien and Janet Mirtle-Stroman for
their help with data collection.

REFERENCES

1. Plesner KB, Vaegter HB. Symptoms of fibromyalgia according to the

2016 revised fibromyalgia criteria in chronic pain patients referred to

multidisciplinary pain rehabilitation: influence on clinical and experimental

pain sensitivity. J Pain. (2018) 19:777–86. doi: 10.1016/j.jpain.2018.02.009

2. Fitzcharles MA, Ste-Marie PvA, Goldenbers DL, Pereira JX, Abbey S,

Choiniere M, et al. Narional Fibromyalgia Guidline Advisory, Panel.

2012 Canadian Guidelines for the diagnosis and management of

fibromyalgia syndrome: executive summary. Pain Res Manag. (2013)

18:119–26. doi: 10.1155/2013/918216

3. Staud R, Godfrey MM, Robinson ME. Fibromyalgia patients are not only

hypersensitive to painful stimuli but also to acoustic stimuli. J Pain. (2021)

22:914–25. doi: 10.1016/j.jpain.2021.02.009

4. Bazzichi L, Giacomelli C, Consensi A, Giorgi V, Batticciotto A, Di Franco M,

et al. One year in review 2020: fibromyalgia. Clin Exp Rheumatol. (2020) 38

(Suppl 123):3–8.

5. Cagnie B, Coppieters I, Denecker S, Six J, Danneels L, Meeus

M. Central sensitization in fibromyalgia? A systematic review on

structural and functional brain. MRI Semin Arthritis Rheum. (2014)

44:68–75. doi: 10.1016/j.semarthrit.2014.01.001

6. Boomershine CS. Fibromyalgia: the prototypical central

sensitivity syndrome. Curr Rheumatol Rev. (2015) 11:131–

45. doi: 10.2174/1573397111666150619095007

7. Bosma RL, Mojarad EA, Leung L, Pukall C, Staud R, Stroman

PW, et al. of spinal and supra-spinal correlates of temporal pain

summation in fibromyalgia patients. Hum Brain Mapp. (2016)

37:1349–60. doi: 10.1002/hbm.23106

8. Staud R, Craggs G, Perlstein WM, Robinson ME, Price DD. Brain activity

associated with slow temporal summation of C-fiber evoked pain in

fibromyalgia patients and healthy controls. Eur J Pain. (2008) 12:1078–

89. doi: 10.1016/j.ejpain.2008.02.002

9. Staud R, Robinson ME, Price DD. Temporal summation of second

pain and its maintenance are useful for characterizing widespread

central sensitization of fibromyalgia patients. J Pain. (2007) 8:893–

901. doi: 10.1016/j.jpain.2007.06.006

10. Staud R, Vierck CJ, Cannon RL, Mauderli AP, Price DD.

Abnormal sensitization and temporal summation of second pain

(wind-up) in patients with fibromyalgia syndrome. Pain. (2001)

91:165–75. doi: 10.1016/S0304-3959(00)00432-2

11. Staud R, Boissoneault J, Lai S, Mejia MS, Ramanlal R, Godfrey MM,

et al. Spinal cord neural activity of fibromyalgia patients and healthy

controls during temporal summation of pain: an fMRI study. J Neurophysiol.

(2021). doi: 10.1152/jn.00276.2021

12. Jensen KB, Loitoile R, Kosek E, Petzke F, Carville S, Fransson P, et

al. Patients with fibromyalgia display less functional connectivity in the

brain’s pain inhibitory network. Mol Pain. (2012) 8:32. doi: 10.1186/1744-80

69-8-32

Frontiers in Neurology | www.frontiersin.org 10 May 2022 | Volume 13 | Article 86297636

https://doi.org/10.1016/j.jpain.2018.02.009
https://doi.org/10.1155/2013/918216
https://doi.org/10.1016/j.jpain.2021.02.009
https://doi.org/10.1016/j.semarthrit.2014.01.001
https://doi.org/10.2174/1573397111666150619095007
https://doi.org/10.1002/hbm.23106
https://doi.org/10.1016/j.ejpain.2008.02.002
https://doi.org/10.1016/j.jpain.2007.06.006
https://doi.org/10.1016/S0304-3959(00)00432-2
https://doi.org/10.1152/jn.00276.2021
https://doi.org/10.1186/1744-8069-8-32
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ioachim et al. Altered Pain in Fibromyalgia Patients

13. Jensen KB, Loitoile R, Kosek E, Petzke F, Carville S, Fransson P, et al.

Overlapping structural and functional brain changes in patients with long-

term exposure to fibromyalgia pain. Arthritis Rheum. (2013) 65:3293–

303. doi: 10.1002/art.38170

14. Kim J, Loggia ML, Cahalan CM, Harris RE, Beissner DPN F, Garcia RG, et

al. The somatosensory link in fibromyalgia: functional connectivity of the

primary somatosensory cortex is altered by sustained pain and is associated

with clinical/autonomic dysfunction. Arthritis Rheumatol. (2015) 67:1395–

405. doi: 10.1002/art.39043

15. Pujol J, Lopez-Sola M, Ortiz H, Vilanova JC, Harrison BJ,

Yucel M, et al. Mapping brain response to pain in fibromyalgia

patients using temporal analysis of FMRI. PLoS ONE. (2009)

4:e5224. doi: 10.1371/journal.pone.0005224

16. Cook DB, Lange G, Ciccone DS, LiuWC, Steffener J, Natelson BH. Functional

imaging of pain in patients with primary fibromyalgia. J Rheumatol.

(2004) 31:364–78.

17. Gracely RH, Petzke F, Wolf JM, Clauw DJ. Functional magnetic resonance

imaging evidence of augmented pain processing in fibromyalgia. Arthritis

Rheum. (2002) 46:1333–43. doi: 10.1002/art.10225

18. Kim SH, Chang Y, Kim JH, Song HJ, Seo J, Kim SH, et al. Insular cortex is a

trait marker for pain processing in fibromyalgia syndrome–blood oxygenation

level-dependent functional magnetic resonance imaging study in Korea. Clin

Exp Rheumatol. (2011) 29(6 Suppl 69):S19–27.

19. Loggia ML, Berna C, Kim J, Cahalan CM, Gollub RL, Wasan AD,

et al. Disrupted brain circuitry for pain-related reward/punishment in

fibromyalgia. Arthritis Rheumatol. (2014) 66:203–12. doi: 10.1002/art.38191

20. Lopez-Sola M, Woo CW, Pujol J, Deus J, Harrison BJ,

Monfort J, et al. Towards a neurophysiological signature for

fibromyalgia. Pain. (2017) 158:34–47. doi: 10.1097/j.pain.00000000000

00707

21. Stroman PW, Warren HJM, Ioachim G, Powers JM, McNeil K.

A comparison of the effectiveness of functional MRI analysis

methods for pain research: The new normal. PLoS ONE. (2020)

15:e0243723. doi: 10.1371/journal.pone.0243723

22. Warren HJM, Ioachim G, Powers JM, Stroman PW. How fMRI Analysis

Using Structural Equation Modeling Techniques Can Improve Our

Understanding of Pain Processing in Fibromyalgia. J Pain Res. (2021) 14:381–

98. doi: 10.2147/JPR.S290795

23. Millan MJ. Descending control of pain. Prog Neurobiol. (2002) 66:355–

474. doi: 10.1016/S0301-0082(02)00009-6

24. Sundermann B, Dehghan Nayyeri M, Pfleiderer B, Stahlberg K, Junke L, Baie

L, et al. Subtle changes of gray matter volume in fibromyalgia reflect chronic

musculoskeletal pain rather than disease-specific effects. Eur J Neurosci.

(2019) 50:3958–67. doi: 10.1111/ejn.14558

25. McCrae CS, O’Shea AM, Boissoneault J, Vatthauer KE, Robinson ME, Staud

R, et al. Fibromyalgia patients have reduced hippocampal volume compared

with healthy controls. J Pain Res. (2015) 8:47–52. doi: 10.2147/JPR.S71959

26. Martucci KT, Weber KA. 2nd, Mackey SC. Altered cervical spinal cord

resting-state activity in fibromyalgia. Arthritis Rheumatol. (2019) 71:441–

50. doi: 10.1002/art.40746

27. Stroman PW, Bosma RL, Cotoi AI, Leung RH, Kornelsen J,

Lawrence-Dewar JM, et al. Continuous Descending Modulation of

the Spinal Cord Revealed by Functional MRI. PLoS One. (2016)

11:e0167317. doi: 10.1371/journal.pone.0167317

28. Ioachim G, Powers JM, Warren HJM, Stroman PW. Coordinated Human

Brainstem and Spinal Cord Networks during the Expectation of Pain

Have Elements Unique from Resting-State Effects. Brain Sci. (2020)

10:568. doi: 10.3390/brainsci10090568

29. Stroman PW, Powers JM, Ioachim G, Warren HJM, McNeil K. Investigation

of the neural basis of expectation-based analgesia in the human brainstem and

spinal cord by means of functional magnetic resonance imaging. Neurobiol

Pain. (2021) 10:100068. doi: 10.1016/j.ynpai.2021.100068

30. Ioachim G, Powers JM, Stroman PW. Comparing coordinated networks

across the brainstem and spinal cord in the resting state and altered cognitive

state. Brain Connect. (2019) 9:415–24. doi: 10.1089/brain.2018.0659

31. Kulshreshtha P, Gupta R, Yadav RK, Bijlani RL, Deepak KK. A comprehensive

study of autonomic dysfunction in the fibromyalgia patients. Clin Auton Res.

(2012) 22:117–22. doi: 10.1007/s10286-011-0150-6

32. Schmidt-Wilcke T, Diers M. New Insights into the Pathophysiology

and Treatment of Fibromyalgia. Biomedicines. (2017)

5:22. doi: 10.3390/biomedicines5020022

33. Casale R, Sarzi-Puttini P, Botto R, Alciati A, Batticciotto A, Marotto D, et al.

Fibromyalgia and the concept of resilience. Clin Exp Rheumatol. (2019) 37

(Suppl 116):105–13.

34. Craig AD. How do you feel? Interoception: the sense of the physiological

condition of the body. Nat Rev Neurosci. (2002) 3:655–66. doi: 10.1038/nrn894

35. Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Hauser W, Katz RL, et

al. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin

Arthritis Rheum. (2016) 46:319–29. doi: 10.1016/j.semarthrit.2016.08.012

36. Wolfe F, Walitt B, Perrot S, Rasker JJ, Hauser W. Fibromyalgia diagnosis

and biased assessment: Sex, prevalence and bias. PLoS ONE. (2018)

13:e0203755. doi: 10.1371/journal.pone.0203755

37. Spielberger CD. State-trait anxiety inventory. Corsini Encyclopedia Psychol.

(2010). doi: 10.1002/9780470479216.corpsy0943

38. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An

inventory for measuring depression. Arch Gen Psychiatry. (1961)

4:561–71. doi: 10.1001/archpsyc.1961.01710120031004

39. Crowne DP, Marlowe D. A new scale of social desirability independent of

psychopathology. J Consult Psychol. (1960) 24:349–54. doi: 10.1037/h0047358

40. Sullivan MJL, Bishop SR, Pivik J. The pain catastrophizing

scale: development and validation. Psychol Assess. (1995) 7:524–

32. doi: 10.1037/1040-3590.7.4.524

41. Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W, COMPASS.

31: a refined and abbreviated Composite Autonomic Symptom Score.

Mayo Clin Proc. (2012) 87:1196–201. doi: 10.1016/j.mayocp.2012.

10.013

42. Bennett RM, Friend R, Jones KD, Ward R, Han BK, Ross RL. The Revised

Fibromyalgia Impact Questionnaire (FIQR): validation and psychometric

properties. Arthritis Res Ther. (2009) 11:R120. doi: 10.1186/ar2830

43. Dworkin RH, Turk DC, Revicki DA, Harding G, Coyne KS, Peirce-Sandner

S, et al. Development and initial validation of an expanded and revised

version of the Short-form McGill Pain Questionnaire (SF-MPQ-2). Pain.

(2009) 144:35–42. doi: 10.1016/j.pain.2009.02.007

44. Wolfe F, Hauser W. Fibromyalgia diagnosis and diagnostic criteria. Ann Med.

(2011) 43:495–502. doi: 10.3109/07853890.2011.595734

45. Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Katz RS, Mease P, et

al. The American College of Rheumatology preliminary diagnostic criteria

for fibromyalgia and measurement of symptom severity. Arthritis Care Res

(Hoboken). (2010) 62:600–10. doi: 10.1002/acr.20140

46. Vierck CJ Jr, Cannon RL, Fry G, Maixner W, Whitsel BL. Characteristics

of temporal summation of second pain sensations elicited by brief contact

of glabrous skin by a preheated thermode. J Neurophysiol. (1997) 78:992–

1002. doi: 10.1152/jn.1997.78.2.992

47. Bosma RL, AmeliMojarad E, Leung L, Pukall C, Staud R, Stroman PW.Neural

correlates of temporal summation of second pain in the human brainstem

and spinal cord. Hum Brain Mapp. (2015) 36:5038–50. doi: 10.1002/hbm.

22993

48. Powers JM, Ioachim G, Stroman PW. Ten Key Insights into the Use of Spinal

Cord fMRI. Brain Sci. (2018) 8:173. doi: 10.3390/brainsci8090173

49. Stroman PW, Ioachim G, Powers JM, Staud R, Pukall C. Pain

processing in the human brainstem and spinal cord before, during,

and after the application of noxious heat stimuli. Pain. (2018)

159:2012–20. doi: 10.1097/j.pain.0000000000001302

50. Myronenko A, Song XB. Intensity-based image registration by

minimizing residual complexity. IEEE Trans Med Imaging. (2010)

29:1882–91. doi: 10.1109/TMI.2010.2053043

51. Myronenko A, Song XB. Image Registration by Minimization of Residual

Complexity. In: Cvpr: 2009 Ieee Conference on Computer Vision and Pattern

Recognition (Miami, FL). (2009):49–56.

52. Harita S, Stroman PW. Confirmation of resting-state BOLD fluctuations in

the human brainstem and spinal cord after identification and removal of

physiological noise.Magn Reson Med. (2017). doi: 10.1002/mrm.26606

53. Khan HS, Stroman PW. Inter-individual differences in pain

processing investigated by functional magnetic resonance imaging

of the brainstem and spinal cord. Neuroscience. (2015) 307:231–

41. doi: 10.1016/j.neuroscience.2015.08.059

Frontiers in Neurology | www.frontiersin.org 11 May 2022 | Volume 13 | Article 86297637

https://doi.org/10.1002/art.38170
https://doi.org/10.1002/art.39043
https://doi.org/10.1371/journal.pone.0005224
https://doi.org/10.1002/art.10225
https://doi.org/10.1002/art.38191
https://doi.org/10.1097/j.pain.0000000000000707
https://doi.org/10.1371/journal.pone.0243723
https://doi.org/10.2147/JPR.S290795
https://doi.org/10.1016/S0301-0082(02)00009-6
https://doi.org/10.1111/ejn.14558
https://doi.org/10.2147/JPR.S71959
https://doi.org/10.1002/art.40746
https://doi.org/10.1371/journal.pone.0167317
https://doi.org/10.3390/brainsci10090568
https://doi.org/10.1016/j.ynpai.2021.100068
https://doi.org/10.1089/brain.2018.0659
https://doi.org/10.1007/s10286-011-0150-6
https://doi.org/10.3390/biomedicines5020022
https://doi.org/10.1038/nrn894
https://doi.org/10.1016/j.semarthrit.2016.08.012
https://doi.org/10.1371/journal.pone.0203755
https://doi.org/10.1002/9780470479216.corpsy0943
https://doi.org/10.1001/archpsyc.1961.01710120031004
https://doi.org/10.1037/h0047358
https://doi.org/10.1037/1040-3590.7.4.524
https://doi.org/10.1016/j.mayocp.2012.10.013
https://doi.org/10.1186/ar2830
https://doi.org/10.1016/j.pain.2009.02.007
https://doi.org/10.3109/07853890.2011.595734
https://doi.org/10.1002/acr.20140
https://doi.org/10.1152/jn.1997.78.2.992
https://doi.org/10.1002/hbm.22993
https://doi.org/10.3390/brainsci8090173
https://doi.org/10.1097/j.pain.0000000000001302
https://doi.org/10.1109/TMI.2010.2053043
https://doi.org/10.1002/mrm.26606
https://doi.org/10.1016/j.neuroscience.2015.08.059
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ioachim et al. Altered Pain in Fibromyalgia Patients

54. Talairach J, Tournoux P. Co-Planar Stereotaxic Atlas of the Human Brain. New

York: Thieme Medical Publishers, Inc (1988).

55. Williams PL, Bannister LH, Berry MM, Colins P, Dyson M, Dussek JE, et al.

Gray’s Anatomy: The Anatomical Basis of Medicine and Surgery. New York:

Churchill-Livingstone (1995). pp. 975–1011.

56. Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias S, Haacke EM.

Internal architechture of the brain stem with key axial sections: duvernoy’s

atlas of the human brain stem and cerebellum. New York: Springer-

Verlag/Wien (2009). pp. 79-82.

57. Lang J, Bartran CT. Fila radicularia of the ventral and dorsal radices of the

human spinal cord. Gegenbaurs Morphol Jahrb. (1982) 128:417–62.

58. Lang, J. Clinical anatomy of the cervical spine. New York: Thieme medical

publishers. (1993). p. 192.

59. Harita S, Ioachim G, Powers J, Stroman PW. Investigation of Resting-State

BOLD Networks in the Human Brainstem and Spinal Cord. Neuroscience.

(2019) 404:71–81. doi: 10.1016/j.neuroscience.2019.02.009

60. Stroman PW, Ioachim G, Powers JM, Staud R, Pukall C. Pain

processing in the human brainstem and spinal cord before, during

and after the application of noxious heat stimuli. Pain. (2018)

159:2012–20. doi: 10.1080/24740527.2019.1591821

61. Stroman PW. Validation of structural equation modeling

methods for functional MRI data acquired in the human

brainstem and spinal cord. Crit Rev Biomed Eng. (2016)

44:227–41. doi: 10.1615/CritRevBiomedEng.2017020438

62. Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus

coeruleus: its roles in the regulation of arousal and autonomic function

part II: physiological and pharmacological manipulations and pathological

alterations of locus coeruleus activity in humans. Curr Neuropharmacol.

(2008) 6:254–85. doi: 10.2174/157015908785777193

63. Llorca-Torralba, Borges G, Neto F, Mico JA, Berrocoso E. Noradrenergic

Locus Coeruleus pathways in pain modulation. Neuroscience. (2016) 338:93–

113. doi: 10.1016/j.neuroscience.2016.05.057

64. Schwarz LA, Luo L. Organization of the locus coeruleus-norepinephrine

system. Curr Biol. (2015) 25:R1051–6. doi: 10.1016/j.cub.2015.09.039

65. Craig AD. Interoception: the sense of the physiological condition of the body.

Curr Opin Neurobiol. (2003) 13:500–5. doi: 10.1016/S0959-4388(03)00090-4

66. Koechlin H, Coakley R, Schechter N, Werner C, Kossowsky J. The role

of emotion regulation in chronic pain: A systematic literature review. J

Psychosom Res. (2018) 107:38–45. doi: 10.1016/j.jpsychores.2018.02.002

67. Arnold LM, Choy E, Clauw DJ, Goldenberg DL, Harris RE, Helfenstein

M. Jr, et al. Fibromyalgia and chronic pain syndromes: a white paper

detailing current challenges in the field. Clin J Pain. (2016) 32:737–

46. doi: 10.1097/AJP.0000000000000354

68. Fitzcharles MA, Perrot S, Hauser W. Comorbid fibromyalgia: a qualitative

review of prevalence and importance. Eur J Pain. (2018) 22:1565–

76. doi: 10.1002/ejp.1252

69. Lichtenstein A, Tiosano S, Amital H. The complexities of

fibromyalgia and its comorbidities. Curr Opin Rheumatol. (2018)

30:94–100. doi: 10.1097/BOR.0000000000000464

70. Trucharte A, Leon L, Castillo-Parra G, Magan I, Freites D, Redondo

M. Emotional regulation processes: influence on pain and disability in

fibromyalgia patients. Clin Exp Rheumatol. (2020) 38 (Suppl 123):40–6.

71. Sprenger C, Eippert F, Finsterbusch J, Bingel U, Rose M, Buchel C.

Attention modulates spinal cord responses to pain. Curr Biol. (2012) 22:1019–

22. doi: 10.1016/j.cub.2012.04.006

72. Kucyi A, Salomons TV, Davis KD. Mind wandering away from pain

dynamically engages antinociceptive and default mode brain networks. Proc

Natl Acad Sci U S A. (2013) 110:18692–7. doi: 10.1073/pnas.1312902110

73. Hohenschurz-Schmidt DJ, Calcagnini G, Dipasquale O, Jackson JB, Medina

S, O’Daly O, et al. Linking pain sensation to the autonomic nervous

system: the role of the anterior cingulate and periaqueductal gray resting-

state networks. Front Neurosci. (2020) 14:147. doi: 10.3389/fnins.2020.

00147

74. Kyle BN, McNeil DW. Autonomic arousal and experimentally induced

pain: a critical review of the literature. Pain Res Manag. (2014) 19:159–

67. doi: 10.1155/2014/536859

75. Terkelsen AJ, Andersen OK, Molgaard H, Hansen J, Jensen

TS. Mental stress inhibits pain perception and heart rate

variability but not a nociceptive withdrawal reflex. Acta Physiol

Scand. (2004) 180:405–14. doi: 10.1111/j.1365-201X.2004.

01263.x

76. Timmers I, Kaas AL, Quaedflieg C, Biggs EE, Smeets T, de Jong JR. Fear of

pain and cortisol reactivity predict the strength of stress-induced hypoalgesia.

Eur J Pain. (2018) 22:1291–303. doi: 10.1002/ejp.1217

77. Eller-Smith OC, Nicol AL, Christianson JA. Potential Mechanisms

Underlying Centralized Pain and Emerging Therapeutic Interventions.

Front Cell Neurosci. (2018) 12:35. doi: 10.3389/fncel.2018.0

0035

78. Russo R, Cristiano C, Avagliano C, De Caro C, La Rana G,

Raso GM, et al. Gut-brain axis: role of lipids in the regulation

of inflammation, pain and CNS diseases. Curr Med Chem. (2018)

25:3930–52. doi: 10.2174/0929867324666170216113756

79. Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis,

neuroendocrine factors and stress. J Psychosom Res. (2002)

53:865–71. doi: 10.1016/S0022-3999(02)00429-4

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Ioachim, Warren, Powers, Staud, Pukall and Stroman. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neurology | www.frontiersin.org 12 May 2022 | Volume 13 | Article 86297638

https://doi.org/10.1016/j.neuroscience.2019.02.009
https://doi.org/10.1080/24740527.2019.1591821
https://doi.org/10.1615/CritRevBiomedEng.2017020438
https://doi.org/10.2174/157015908785777193
https://doi.org/10.1016/j.neuroscience.2016.05.057
https://doi.org/10.1016/j.cub.2015.09.039
https://doi.org/10.1016/S0959-4388(03)00090-4
https://doi.org/10.1016/j.jpsychores.2018.02.002
https://doi.org/10.1097/AJP.0000000000000354
https://doi.org/10.1002/ejp.1252
https://doi.org/10.1097/BOR.0000000000000464
https://doi.org/10.1016/j.cub.2012.04.006
https://doi.org/10.1073/pnas.1312902110
https://doi.org/10.3389/fnins.2020.00147
https://doi.org/10.1155/2014/536859
https://doi.org/10.1111/j.1365-201X.2004.01263.x
https://doi.org/10.1002/ejp.1217
https://doi.org/10.3389/fncel.2018.00035
https://doi.org/10.2174/0929867324666170216113756
https://doi.org/10.1016/S0022-3999(02)00429-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


ORIGINAL RESEARCH
published: 18 May 2022

doi: 10.3389/fneur.2022.858171

Frontiers in Neurology | www.frontiersin.org 1 May 2022 | Volume 13 | Article 858171

Edited by:

Mario Mascalchi,

University of Florence, Italy

Reviewed by:

Edith Hofer,

Medical University of Graz, Austria

Francesco Arba,

Careggi University Hospital, Italy

Cristiano Capurso,

University of Foggia, Italy

*Correspondence:

Yun Xu

xuyun20042001@aliyun.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Applied Neuroimaging,

a section of the journal

Frontiers in Neurology

Received: 21 January 2022

Accepted: 14 April 2022

Published: 18 May 2022

Citation:

Sun W, Huang L, Cheng Y, Qin R,

Xu H, Shao P, Ma J, Yao Z, Shi L and

Xu Y (2022) Medial Temporal Atrophy

Contributes to Cognitive Impairment in

Cerebral Small Vessel Disease.

Front. Neurol. 13:858171.

doi: 10.3389/fneur.2022.858171

Medial Temporal Atrophy Contributes
to Cognitive Impairment in Cerebral
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Background: The role of brain atrophy in cognitive decline related to cerebral small

vessel disease (CSVD) remains unclear. This study used AccuBrainTM to identify major

CSVD-related brain changes and verified the relationship between brain atrophy and

different cognition domains in CSVD patients.

Methods: All enrolled 242 CSVD patients and 76 healthy participants underwent

magnetic resonance imaging examinations and detailed neuropsychological scale

assessments were collected at the same time. The AccuBrainTM technology was applied

to fully automated image segmentation, measurement, and calculation of the acquired

imaging results to obtain the volumes of different brain partitions and the volume of WMH

for quantitative analysis. Correlation analyses were used to estimate the relationship

between MRI features and different cognitive domains. Multifactor linear regression

models were performed to analyze independent predictors of MTA and cognitive decline.

Results: CSVD patients exhibited multiple gray matter nucleus volume decreases in the

basal ganglia regions and brain lobes, including the temporal lobe (P= 0.019), especially

in the medial temporal lobe (p < 0.001), parietal lobe (p = 0.013), and cingulate lobe

(p = 0.036) compare to HC. The volume of PWMH was an independent predictor of

MTA for CSVD patients. Bothmedial temporal atrophy (MTA) and PWMHwere associated

with cognition impairment in CSVD-CI patients. MTA mediated the effect of PWMH on

executive function in CSVD-CI patients.

Conclusions: Our results showed that MTA was related to cognition impairment in

CSVD patients, which might become a potential imaging marker for CSVD-CI.

Keywords: brain atrophy, medial temporal atrophy, cerebral small vessel disease, white matter hyperintensities,

cognitive impairment

INTRODUCTION

Cerebral small vessel disease (CSVD) is one of the main causes of vascular cognitive impairment
and vascular dementia (VD). The neuroimaging features of CSVD include small subcortical
infarcts, lacunes, white matter hyperintensities (WMHs), enlarged perivascular spaces, cerebral
microbleeds (CMBs), and brain atrophy (1).
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Brain atrophy, especially hippocampal atrophy and medial
temporal lobe atrophy (MTA), has been proven to be closely
related to Alzheimer’s disease (AD) while increasing evidence
has shown that it has also been associated with cognitive
performance in cerebrovascular diseases alone or in combination
with other factors (2–4). The mechanisms of the relationship
between brain atrophy and vascular dementia are still unknown,
evidence showed that individuals with cognitive dysfunction
develop microstructure damage and BBB breakdown in the
hippocampus irrespective of Alzheimer’s biomarker changes,
suggesting that neurovascular dysfunction may represent a factor
contributing to cognitive decline, independent of the classic
pathophysiological hallmarks of AD (5). Previous studies have
reported that the strongest predictor of cognitive performance
in patients with CSVD was the volume of WMH (6, 7)
which may have a direct effect on cognition by disrupting
brain networks sub-serving cognitive processes. Vascular risk
factors are strongly associated with WMH, suggesting that the
etiology of WMH is more likely related to vascular diseases (8).
However, WMH contributes to cognitive decline and neuronal
loss not only in VD but also in AD (9, 10). Although the
relationship between WMH with cognitive functioning and
AD has been described consistently, the mechanisms of this
relationship are poorly understood. Therefore, it is important
to examine CSVD markers in addition to AD markers in older
adults presenting with CSVD. Additionally, the progression of
WMH, especially periventricular WMH (PWMH), has a crucial
impact on brain atrophy (11). The intermediary role of brain
atrophy in cognition decline has been proposed but needs to be
further confirmed.

Computer-generated magnetic resonance imaging (MRI)
segmentation has been available for different types of CSVD
changes. AccuBrainTM is a multi-atlas-based anatomical
segmentation tool that has good accuracy in the segmentation of
subcortical structures and has been used for the quantification
of brain volumetry and volumetric structural covariance. It has
been validated for AD to have a better performance among
the existing automatic brain segmentation tools (12). This
study aimed to use AccuBrainTM to identify major CSVD-
related brain imaging features and verify the relationship
between brain atrophy and different cognition domain in
CSVD patients.

METHODS

Participants
Two hundred and forty two CSVD patients and 76 healthy
individuals among the outpatients and inpatients in the
Department of Neurology between January 2017 and January
2019 were consecutively recruited. Ethical approval was provided
by the ethics committee of Nanjing Drum Tower Hospital and
written informed consent was received from all participants.
Based on the established research criteria, CSVD in this study was
defined as lesions of moderate-to-severe WMH (Fazekas score
of 2 or higher) and/or lacunar infarction (LI) on neuroimaging,
with or without perivascular spaces, microbleeds, and brain
atrophy (1, 13, 14). WMHs are hyperintense on T2-weighted

or FLAIR sequences, appearing as isointense or hypointense on
T1-weighted sequences, depending on the sequence parameters
and severity of the pathological changes, LI is a small subcortical
infarct with a diameter ranging from 3 to 15mm on axial
sections (1).

The inclusion criteria were as follows: (a) age of 45–84 years;
(b) CSVD diagnosis; and (c) agreement to sign an informed
consent form. The exclusion criteria were as follows: (a) cerebral
infarctions >20mm in diameter; (b) leukoencephalopathy of
non-vascular origin (e.g., multiple sclerosis, immunological
demyelination, and metabolic, toxic, or infectious diseases);
(c) intracranial or extracranial large artery stenosis of >50%;
(d) intracranial hemorrhage; (e) other diseases interfering with
neuropsychological tests, such as AD, Parkinson’s disease, or
severe psychiatric disorders; (f) inability or refusal to undergo
cerebral MRI, and (g) left-handedness. All control participants
underwent a brain MRI scan and had no territorial infarctions or
other structural brain lesions on brain MRI.

MRI Protocol and Image Processing
All participants were studied using MRI following a standard
protocol. Scans were obtained using a 3T Philips Intera
scanner (Achieva 3.0 T TX, Philips Medical Systems, the
Netherlands) at the Imaging Department of Drum Tower
Hospital. The protocol included the following sequences:
Three-dimensional, high-resolution T1 weighted turbo gradient
echo sequence was performed with the following parameters:
repetition time (TR) = 9.8ms, echo time (TE) = 4.6ms,
flip angle (FA) = 8◦, slices = 192, the field of view
(FOV) = 250 × 250 mm2, acquisition matrix = 256 × 256,
thickness = 1.0mm. The fluid-attenuated inversion recovery
(FLAIR) images were performed with TR/TE/inversion time
(TI) at 4,500/333/1,600ms, slices = 200, voxel size = 0.95
× 0.95 × 0.95 mm3, acquisition matrix = 270 × 260.
In addition, axial T2-weighted, diffusion-weighted imaging
(DWI) sequence, and susceptibility-weighted imaging (SWI)
were collected to detect acute or subacute infarctions, and
cerebral microbleeds. At baseline, participants underwent
brain MRI and clinical assessments, including a standard
neurological examination, functional status evaluation, and a
neuropsychological examination.

The number of LIs (on T1-weighted and FLAIR images)
and CMBs (on susceptibility-weighted imaging) was counted
by two expert neurologists separately. Volumetry of anatomical
regions was obtained from T1-weightedMRI scans automatically
segmented using AccuBrainTM. The WMH volume segmentation
and quantification were based on additional T2-FLAIR MRI
images, which were standardized by dividing the volume of
different brain regions and WMH volume by the intracranial
volume (ICV) for each participant (brain volume/ICV × 100%)
Figure 1. MTA is defined as the ratio of the ipsilateral lateral
subventricular horn to hippocampal volume.

Neuropsychological Evaluation
All participants completed neuropsychological measures on the
same day as the MRI scan, and overall cognitive function scores
were assessed using the Mini-Mental State Examination (MMSE)
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FIGURE 1 | Automated segmentation and quantitative using AccuBrainTM. (A) Volume segmentation and quantification of anatomical regions based on T1-weighted

MRI scans. (B) WMH volume segmentation and quantification were based on FLAIR images. WMH, white matter hyperintensities.

and Montreal Cognitive Assessment (MoCA). CSVD patients
were classified into CSVD-non-CI (CSVD patients without
cognitive impairment) and CSVD-CI (CSVD patients with
cognitive impairment) groups according to different educational
levels, which were presented in our published paper (15). For
the evaluation of cognitive subdomains, information processing
speed scores were assessed using Stroop Color and Word Tests
B (Stroop-B) and Trail Making Test-A (TMT-A). Executive
function was obtained via Stroop-C and TMT-B. Contextual
memory scores were assessed using the visual reproduction-long-
delayed recall portion of theWechsler Memory Scale (WMS-VR-
DR), and the auditory verbal learning test-delayed recall (AVLT-
DR) assessment was available. Language scores were obtained
through category verbal fluency (CVF) and Boston Naming Test
(BNT) assessments. Visuospatial function scores were obtained
using the clock drawing test (CDT) and visual reproduction-copy
(VR-C) assessments. All raw data were transformed into standard
scores (z-score), which were averaged to assess general cognitive
function and other cognitive domains.

Statistical Analyses
Continuous variables with normal distribution were presented
as mean ± standard deviation (SD), variables with non-
normal distribution are presented as median (interquartile
ranges), and categorical as frequencies (percentages). One-
way ANOVA was applied for the comparison of normally
distributed data, Kruskal–Wallis test was used for the
comparisons of non-normal distributed data, and χ2 test
was applied for the ranked data. A post hoc analysis was
performed to investigate group differences between any two
groups, additionally correcting for multiple comparisons with
Bonferroni correction.

Spearman correlation analyses were applied in the CSVD
group to assess the relationships between MTA and all other

variables of interest, including age, sex, years of education,
history of hypertension, history of LI/TIA, LI count, and
CMB count, the volume of WMH, PWMH, DWMH. Stepwise
multiple linear regression models with MTA as dependent
variable and significant factors in the correlation analysis as
independent variables controlling for age, sex, years of education,
hypertension, and history of TIA were built to determine the
relationship between MTA and other conventional MRI markers
of CSVD patients. Partial correlation analyses controlling for
age, sex, years of education, history of hypertension, and history
of LI/TIA were performed in the CSVD-CI group to assess
the relationships between cognitive decline and other MRI
variables, including LI count, CMB count, WMH volumes,
PWMH volumes, DWMH volumes, MTA and regional brain
volume. To build predictive models of cognitive functions, a
stepwise multiple linear regression analysis was performed in
the CSVD-CI patients. The cognitive domain function was taken
as the dependent variable, and the significant factors in the
correlation analysis were taken as the independent variables.

The PROCESS module (V2.16.3) written by Andrew F. Hayes
(www.afhayes.com) was used for the intermediate analysis to
explore whether MTA is involved in the relationship between
PWMH volume and cognition controlling. First, we tested the
direct effects of the primary predictor (PWMH volume) on
the mediator (MTA) and the direct relationship between the
mediator (MTA) and the outcome (cognitive functioning). Next,
we tested the indirect mediating effect on the relationship
between PWMH volume and cognitive functioning operating
statistically throughMTA.We considered PWMHvolume,MTA,
and cognitive functioning (global and each of the cognitive
domains) as predictors, mediators, and outcomes, respectively.
We computed bias corrected 95% confidence intervals for the
size of the mediating effects with bootstrapping (k = 5,000
samples). All data were analyzed using SPSS 23.0 statistical
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TABLE 1 | Demographic, clinical, volume, and neuropsychological data.

Item HC

(n = 76)

CSVD F/χ2/H p Post hoc analyses

CSVD-nonCI

(n = 107)

CSVD-CI

(n = 135)

Total

(n = 318)

HC vs.

CSVD-non-CI

HC vs.

CSVD-CI

CSVD-non-CI

vs. CSVD-CI

Demographics

Age, years 63 (58, 67.5) 65 (59, 72) 65 (60, 73) 65 (59, 71) 6.36 0.042* 0.230 0.037* 1.000

Male, n (%) 39 (51.3) 59 (55.1) 75 (55.6) 173 (54.4) 0.39 0.824 - - -

Education, years 12 (9, 15) 12 (9, 16) 9 (9, 12) 12 (9, 15) 7.07 0.029* 1.000 0.240 0.034*

Clinical characteristics

Hypertension, n (%) 39 (52.3) 75 (70.1) 92 (68.1) 206 (64.8) 8.03 0.018* 0.013* 0.018* 0.781

Diabetes mellitus, n (%) 15 (19.7) 28 (26.2) 33 (24.4) 76 (23.9) 1.05 0.592 - - -

Hyperlipidemia, n (%) 13 (17.1) 23 (21.5) 28 (20.7) 64 (20.1) 0.59 0.745 - - -

Coronary heart disease, n (%) 6 (7.9) 7 (6.5) 6 (4.4) 19 (6.0) 1.12 0.570 - - -

History of LI/TIA, n (%) 10 (13.2) 27 (25.2) 49 (36.3) 87 (2.4) 13.21 0.001* 0.042* <0.001* 0.098*

History of smoking, n (%) 12 (15.8%) 24 (22.4%) 36 (26.7%) 72 (22.6) 3.29 0.193 - - -

History of drinking, n (%) 9 (11.8%) 22 (20.6%) 26 (19.3%) 57 (17.9) 2.58 0.275 - - -

LI count, n 0 (0, 0) 1 (0, 2) 1 (0, 3) 0 (0, 2) 56.50 <0.001* <0.001* <0.001* 1.000

CMB count, n 0 (0, 0) 0 (0–2) 0.5 (0, 2) 0 (0, 2) 36.51 <0.001* <0.001* <0.001* 0.284

Volume data

ICV (mL) 1425.85 ± 116.40 1435.29 ± 124.84 1425.55 ± 129.62 1428.90 ± 124.66 0.21 0.810 - - -

Brain parenchyma (mL) 1065.90 ± 88.57 1064.17 ± 95.20 1045.69 ± 102.11 1056.74 ± 96.88 1.54 0.217 - - -

Hippocampus (mL) 6.87 ± 0.65 6.94 ± 0.72 6.72 ± 0.79 6.84 ± 0.74 2.77 0.064 - - -

Amygdala (mL) 3.62 ± 0.39 3.70 ± 0.45 3.63 (3.35, 3.87) 3.64 (3.35, 3.89) 1.69 0.430 - - -

Thalamus-Proper (mL) 12.12 ± 1.01 11.98 ± 1.09 11.72 ± 1.14 11.91 ± 1.10 3.87 0.022* 0.998 0.025* 0.210

Caudate (mL) 6.55 ± 0.72 6.93 ± 0.82 6.96 (6.41, 7.60) 6.81 (6.29, 7.43) 16.27 <0.001* 0.004* <0.001* 1.000

Putamen (mL) 10.61 ± 1.01 10.84 ± 0.99 10.80 ± 1.29 10.77 ± 1.13 1.01 0.364 - - -

Pallidum (mL) 3.06 ± 0.35 3.04 (2.74, 3.23) 2.97 ± 0.34 2.99 ± 0.35 2.24 0.327 - - -

Hypothalamus (mL) 0.64 (0.60, 0.71) 0.66 ± 0.07 0.65 ± 0.07 0.65 ± 0.07 0.84 0.660 - - -

MTA 0.35 ± 0.06 0.38 (0.33, 0.48) 0.43 (0.35, 0.54) 0.3 (0.33, 0.48) 38.89 <0.001* 0.001* <0.001* 0.014*

White matter (mL) 486.07 ± 47.70 485.41 ± 52.58 480.30 ± 53.38 483.40 ± 5,172 0.42 0.655 - - -

WMH (mL) 1.57 ± 0.64 3.87 (1.74, 7.62) 4.9 (2.65, 11.86) 3.15 (1.60, 6.62) 88.45 <0.001* <0.001* <0.001* 0.046*

PWMH (mL) 1.18 ± 0.61 2.97 (1.41, 6.3) 4.33 (2.10, 10.82) 2.51 (1.18, 5.96) 91.28 <0.001* <0.001* <0.001* 0.025*

DWMH (mL) 0.35 (0.18, 0.55) 0.49 (0.25, 0.96) 0.53 (2.63, 1.05) 0.44 (0.25, 0.86) 17.13 <0.001* 0.004* <0.001* 1.000

Gray matter (mL) 579.82 ± 46.57 578.75 ± 48.61 565.39 ± 54.02 573.34 ±50.83 2.91 0.056 - - -

Frontal lobe (mL) 151.10 ± 13.48 150.47 ± 15.08 147.36 ± 15.83 149.30 ± 15.09 1.99 0.138 - - -

Occipital lobe (mL) 63.43 ± 6.77 62.38 ± 6.90 61.09 ± 8.16 62.08 ± 7.47 2.54 0.080 - - -

Temporal lobe (mL) 97.31 ± 9.05 98.07±10.71 94.53 ± 10.43 96.39 ± 10.3 3.99 0.019* 1.000 0.178 0.023*

Parietal lobe (mL) 82.13 ± 7.69 81.85 ± 7.28 79.30 ± 8.64 80.83 ± 8.06 4.37 0.013* 1.000 0.042* 0.042*

Cingulate lobe 23.77 ± 2.39 23.80 ± 2.56 23.03 ± 2.64 23.47 ± 2.57 3.37 0.036* 0.939 0.046* 0.022*

Insular (mL) 12.39 ± 1.28 12.34 ± 1.44 12.12 ± 1.48 12.26 ± 1.42 1.10 0.335 - - -

(Continued)
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software (Chicago, IL, USA). A P-value of <0.05 was considered
statistically significant.

RESULTS

Demographic, Clinical, and
Neuropsychological Characteristics
The demographic and clinical data of the HC and CSVD groups
are presented in Table 1. There was no significant difference
in gender or prevalence of diabetes mellitus, dyslipidemia,
history of coronary heart disease, smoking, and drinking. The
CSVD group showed a significantly increased age (p = 0.042),
history of hypertension (p = 0.018), and LI/TIA (p =0.001).
One hundred and seven CSVD patients were without cognitive
impairment (CSVD-non-CI) and 135 with cognitive impairment
(CSVD-CI). WMH, PWMH, DWMH volumes, LI count, and
CMB count in CSVD-non-CI and CSVD-CI were significantly
higher than those in HCs. The CSVD-CI subgroup showed
poorer performances on general cognitive function, episodic
memory, language, information processing, executive function,
and visuospatial function than other subgroups. Compared to
CSVD-non-CI group, patients in CSVD-CI group were less
educated (p = 0.034). No significant differences in the cognitive
tests were shown between the CSVD-non-CI group and the
HC group.

Group Comparisons of Brain Regional
Volumetry Quantified Using AccuBrainTM

The group comparisons of brain volumetric differences
quantified using AccuBrainTM are also summarized in Table 1.
The volume of the thalamus-proper, caudate, temporal lobe,
parietal lobe, cingulate lobe, and MTA were statistically
significant among groups. As the post-hoc analysis showed,
compared with the CSVD-non-CI group, the CSVD-CI had
severer atrophy in the temporal lobe (p = 0.023), parietal lobe
(P = 0.042), and cingulate lobe (p = 0.022). Notably, MTA
exhibited significant differences between HC vs. CSVD-non-CI
(p= 0.001), HC vs. CSVD-CI (p < 0.001), and CSVD-non-CI vs.
CSVD-CI (p= 0.014).

Association Between MTA and
Conventional MRI Markers of CSVD
Patients
In CSVD patients, Spearman correlation analyses showed MTA
were significantly correlated to age (r = 0.524, p < 0.001), WMH
volume (r = 0.436, p = p<0.001), PWMH volume (r = 0.472,
p < 0.001), LI count (r = 0.138, p = 0.035), and CMB count
(r = 0.230, p < 0.001). No significant correlation was found
between MTA and DWMH volume (r = 0.046, p = 0.475).
Age, sex, education and hypertension and history of TIA, LI
count, and CMB count, PWMH volume was further included
in the stepwise multiple linear regression models with MTA as
dependent variable. Multiple linear regression analysis revealed
that the volume of PWMHwas an independent predictor ofMTA
for CSVD patients (β = 0.478, 95%CI: 0.377–0.581).
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FIGURE 2 | Correlations between PWMH and cognitive function in CSVD-CI patients. Partial correlation was conducted by controlling for age, gender, years of

education, history of hypertension, and history of LI/TIA in CSVD-CI group. (A) Increased PWMH volume was associated with worse general cognitive function. (B)

Larger PWMH volume showed significant impairment in the language domain. (C) Information processing speed was negatively associated with increased PWMH

volume. (D) PWMH volume had a negative correlation with executive function. (E) PWMH volume correlated negatively with episodic memory. (F) No significant

correlation was observed between PWMH volume and visuospatial function. PWMH, periventricular white matter hyperintensities; CSVD-CI, cerebral small vessel

disease patients with cognitive impairment; TIA, transient ischemic attack; LI, lacunar infarction.

Associations Between Brain Atrophy and
Cognition in CSVD-CI Patients
For 135 CSVD-CI patients, partial correlation analyses revealed
that volume of WMH and PWMH, MTA, CMB count, volume
of the temporal lobe, parietal lobe, and cingulate lobe were
significantly associated with impairment in various cognitive
domains controlling for age, sex, years of education, history of
hypertension, and history of LI/TIA.

WHM volume was negatively correlation with general
cognitive function (r=−0.224, p= 0.011), language (r=−0.266,
p = 0.004), information processing speed (r = −0.353,
p < 0.001), executive function (r = −0.310, p < 0.001), and
memory (r = −0.191, p = 0.046). No significant correlations
between DWMH and cognition were observed. The correlations
between PWMH volume and cognitive function are presented
in Figure 2, correlations between MTA and cognitive function
are presented in Figure 3. In summary, PWMH and MTA
extensively affected various cognitive domains in CSVD-CI
patients. Particularly, PWMH volume was associated with
impairment in all cognitive domains except visual space.
MTA had a more prominent effect on executive function and
information processing speed, andmemory than on language and
visuospatial function.

We found the CMB count was significantly related to
language (r = −0.188, p = 0.046), information processing speed

(r = −0.224, p = 0.011), executive function (r = −0.201,
p = 0.023) but not general cognitive function (r = 0.071,
p = 0.429), memory (r = −0.047, p = 0.629) and visuospatial
function (r = −0.070, p = 0.478). No significant correlations

existed between LI count and cognition. Both temporal lobe

volume and parietal lobe volume was positively correlated with
information processing speed (r = 0.233, p = 0.008; r = 0.192,

p = 0.028) and executive function (r = 0.258, p = 0.003;
r = 0.252, p = 0.004). Positive association was also observed
between cingulate lobe volume and information processing speed
(r = 0.175, p= 0.046).

In multiple linear regression analysis, general and each
cognitive domain was set as dependent variables separately, the
volume of PWMH, temporal lobe, parietal lobe, and cingulate
lobe, CMB count, and MTA as independent variables, with
age, sex, years of education, history of hypertension, history of
stroke/TIA as covariant. MTA was significantly associated with
worse overall performance in all cognitive domains (Table 2).
The volume of PWMH was an independent predictor of decline
in executive function. Years of education predicted overall
cognitive function, language, memory, executive function, and
visuospatial function but not information processing speed.
Gender differences were the predictors of overall cognitive
and language function. Age was a risk factor for visuospatial
deficits. Additionally, cingulate atrophy was predictive of overall
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FIGURE 3 | Correlations between MTA and cognitive function in CSVD-CI patients. Partial correlation was conducted by controlling for age, gender, years of

education, history of hypertension, and history of LI/TIA in CSVD-CI group. (A) MTA correlated negatively with general cognitive function. (B) No significant correlation

was observed between MTA and the language domain. (C) MTA had a negative correlation with information processing speed. (D) MTA had a negative correlation

with executive function. (E) MTA correlated negatively with episodic memory. (F) No significant correlation was observed between MTA and visuospatial function. MTA,

medial temporal atrophy, the ratio of the ipsilateral lateral subventricular horn to hippocampal volume; CSVD-CI, cerebral small vessel disease patients with cognitive

impairment; TIA, transient ischemic attack; LI, lacunar infarction.

cognitive decline; however, no correlation was found with other
cognitive domains.

Direct and mediated effects of periventricular WMH on
executive function are presented in Figure 4. The PWMH had
a direct effect on the impairment of executive function (direct
effect: −0.019, 95%CI: −0.036∼-0.002); a larger PWMH volume
was associated with lower executive function performance and
more serious MTA. In mediation analyses, the associations of
PWMH with executive functioning were significantly mediated
by MTA (indirect effect:−0.010, 95%:−0.0428 to−0.0039).

DISCUSSION

In our study, segmentation and detection of the volumes of brain
regions revealed that CVSD showed cerebral atrophy not only in
the basal ganglia region but also in the lobes. We further analyzed
the factors associated with cognitive decline, and our results
revealed that the volume of PWMH and MTA were independent
predictors of cognitive decline in CSVD. Previous studies have
suggested that WMH is the most common cause of vascular
cognitive impairment, from mild cognitive impairment to VD
(16), and significantly affects executive function and processing
speed (17). Moreover, different areas of WMH distribution
contribute to each cognitive domain; the periventricular WMH
is more correlated with patients’ executive function decline than

DWMH, and WMH in the parietal temporal lobe is more
correlated with memory decline (18).

Notably, compared with the HC group, the CSVD group
showed more WHM volume, both in PWMH and DWMH
volumes, while in CSVD subgroup, no significant difference
was detected between CSVD-CI and CSVD-non-CI in DWMH
volumes. Furthermore, the following correlation analysis also
failed to find the association between different cognitive domains
and DWMH volumes. PWMH and DWMH were reported to
be associated with different histopathological, and aetiological
features. From the aspect of histopathologic correlates, peri-
WMH mostly reflects non-ischemic damages whereas DWMH
is associated with ischemic tissue damages (19). Previous studies
found that the elderly with PWMH, rather than DWMH, is
associated with impaired cognitive function, especially executive
function. A possible explanation was that PWMH lesions
interfere with long connections, leading to worse performance
in mostly cognitive domains whereas DWMH damage is
responsible for short connections that are less associated with
cognitive performance but may play an important role in motor
dysfunction (20).

Our most important findings are that MTA is an independent
risk factor for cognitive decline in CSVD and that the effect
of PWMH on cognitive decline is either directly or indirectly
mediated by MTA. MTA and hippocampal atrophy have been
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TABLE 2 | Multiple linear regression analysis for cognitive function in CSVD-CI

group (n = 135).

β 95%CI p

General cognitive function

MTA −0.558 −0.672 to −0.401 <0.001

Education 0.428 0.290 to 0.555 <0.001

Gender −0.252 −0.387 to −0.104 0.001

Cingulate lobe −0.163 −0.309 to −0.014 0.032

Episodic memory

MTA −0.335 −0.512 to −0.159 <0.001

Education 0.184 0.006 to 0.297 0.041

Language

MTA −0.325 −0.417 to −0.135 <0.001

Education 0.282 0.100 to 0.390 0.001

Gender −0.196 −0.288 to −0.023 0.020

Information processing speed (inverse)

MTA 0.448 0.339 to 0.702 <0.001

Executive function (inverse)

MTA 0.350 0.180 to 0.582 <0.001

Education −0.221 −0.413 to −0.079 0.004

PWMH volume 0.207 0.025 to 0.426 0.025

Visuospatial function

Education 0.210 0.032 to 0.383 0.021

MTA −0.347 −0.660 to −0.196 <0.001

Age 0.263 0.071 to 0.449 0.007

CSVD, cerebral small vessel disease; CSVD-CI, CSVD patients with cognitive impairment;

MTA, medial temporal atrophy, the ratio of the ipsilateral lateral subventricular horn

to hippocampal volume; PWMH, periventricular white matter hyperintensities; β,

standardized coefficients.

implicated in age-related cognitive decline and as important
imaging markers of AD (21). While it has been also reported that
MTA correlates with VD, Arba et al. assessed the relationship
between cognition and imaging features in patients with stroke
or TIA over a 1-year period and found that moderate to
severe MTA was present in 44% of the patients, confirming
that VD features are independently associated with MTA (22).
In the case of patients with cerebral autosomal dominant
arteriopathy with subcortical infarcts and leukoencephalopathy,
hippocampal atrophy is significantly associated with dementia
(23), and animal models of long-term hypoperfusion have
shown that neurodegenerative changes are not a prerequisite for
hippocampal atrophy (24). All these findings suggest that MTA
is not only an important alteration in neurodegenerative disease
but also an important pathway for the development of vascular
cognitive dysfunction.

Although the specific mechanisms of cognitive decline in VD
remain unclear, MTA and WMH are common morphological
features of AD and CSVD. Our study found strong direct effects
and indirect effects of WMH on cognition through MTA in
CSVD-CI patients, suggesting that some of the consistently
observed associations of WMH with cognition are at least
partially attributable to their effect on brain atrophy. This
finding has implications for understanding whyWMH are strong

FIGURE 4 | Graphical illustration of the direct and indirect effects of PWMH

volume and MTA on cognitive functioning. Each path of the connection,

standard coefficient (a, b, c, c’), and p-value were shown. Mediation analysis

revealed that the association between PWMH and executive function was

mediated by MTA (Indirect effect: −0.01, 95% CI: −0.0428 to −0.0039).

PWMH, periventricular white matter hyperintensities; MTA, medial temporal

atrophy, the ratio of the ipsilateral lateral subventricular horn to hippocampal

volume.

predictors of cognitive decline and AD. Indeed, previous work
has shown that in individuals with higher levels of WMH, the
coupling of structural and functional connections is disrupted,
with subsequent effects on executive function and memory (25).
The observed indirect effects of WMH on cognition through
cortical thinning may reflect axonal damage associated with
CSVD (26), which promotes neurodegenerative changes in the
cerebral cortex that in turn drives cognitive loss. This processmay
be dependent on hyper-phosphorylated tau, suggesting a direct
causal link between CSVD and AD pathology (27).

Our study features a combination of big data applications
and neuroimaging studies and the quantitative analysis of
brain atrophy by applying AccuBrainTM technology, which
is an application of machine/deep learning strategy for
cerebrovascular disease risk assessment. Further development of
the technology will have a greater potential in research related
to imaging for CSVD. However, this study had some limitations.
First, this is a cross-sectional study, the conclusions will be
more convincing if they can be replicated in future longitudinal
studies, especially in the exploration of the regional brain atrophy
progression with the development of CSVD. Second, due to
the small sample size, statistical power might be insufficient.
the results need to be further validated with a larger sample.
Third, the study had a single assessment method and did not
incorporate other functional brain imaging tools, for example,
magnetic resonance-based diffusion tensor imaging (DTI) is not
involved in this study, which is a powerful non-invasive imaging
technique and a very advanced quantitative measurement that
can be used to trace white matter microstructures and abnormal
white matter connectivity in vivo. Last but not the least, we
mainly focused on superficial imaging characteristics, the volume
of WHM, and brain region, other factors like white matter
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microstructural, enlarged perivascular spaces on cognition were
not analyzed, the potential pathogenesis needs to be further
explored in subsequent studies.

In conclusion, brain atrophy in patients with CSVD was
mainly characterized by alterations of multiple gray matter nuclei
in the basal ganglia regions, including the thalamus and caudate
nucleus. Atrophy of the lobes was concentrated in the temporal
lobes, especially in the medial temporal lobe. The PWMH was
an independent predictor of MTA that independently influences
cognitive decline in patients with CSVD. The effect of PWMH on
executive function was mediated by MTA.
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It is increasingly acknowledged that Coronavirus Disease 2019 (COVID-19) can have

neurological manifestations, and cerebral microbleeds (CMBs) have been observed in

this setting. The aim of this study was to characterize CMBs patterns on susceptibility-

weighted imaging (SWI) in hospitalized patients with COVID-19 with neurological

manifestations. CMBs volume was quantified and correlated with clinical and laboratory

parameters. The study included patients who were hospitalized due to COVID-19,

exhibited neurological manifestations, and underwent a brain MRI between March and

May 2020. Neurological, clinical, and biochemical variables were reported. The MRI was

acquired using a 3T scanner, with a standardized protocol including SWI. Patients were

divided based on radiological evidence of CMBs or their absence. The CMBs burden was

also assessed with a semi-automatic SWI processing procedure specifically developed

for the purpose of this study. Odds ratios (OR) for CMBs were calculated using age, sex,

clinical, and laboratory data by logistic regression analysis. Of the 1,760 patients with

COVID-19 admitted to the ASST Papa Giovanni XXIII Hospital between 1 March and

31 May 2020, 116 exhibited neurological symptoms requiring neuroimaging evaluation.

Of these, 63 patients underwent brain MRI and were therefore included in the study.

A total of 14 patients had radiological evidence of CMBs (CMBs+ group). CMBs+

patients had a higher prevalence of CSF inflammation (p = 0.020), a higher white blood

cell count (p = 0.020), and lower lymphocytes (p = 0.010); the D-dimer (p = 0.026),

LDH (p = 0.004), procalcitonin (p = 0.002), and CRP concentration (p < 0.001) were

higher than in the CMBs- group. In multivariable logistic regression analysis, CRP (OR

= 1.16, p = 0.011) indicated an association with CMBs. Estimated CMBs volume was

higher in females than in males and decreased with age (Rho = −0.38; p = 0.18); it
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was positively associated with CRP (Rho = 0.36; p = 0.22), and negatively associated

with lymphocytes (Rho = −0.52; p = 0.07). CMBs are a frequent imaging finding in

hospitalized patients with COVID-19 with neurological manifestations and seem to be

related to pro-inflammatory status.

Keywords: susceptibility-weighted imaging (SWI), neuro-COVID, inflammation, MRI, cerebral microbleeds (CMBs)

INTRODUCTION

In December 2019, the new severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) caused an outbreak of severe
pneumonia and coronavirus-related diseases (COVID-19) in
China, which rapidly spread globally. Italy and the Lombardy
region, in particular, were severely affected (1).

Although the predominant symptoms are respiratory,
associated neurological manifestations—such as stroke,
headache, altered mental status, epileptic seizures, movement
disorders, and hyposmia/ageusia—have increasingly been
acknowledged, with a rising number of studies detecting
central nervous system abnormalities in patients affected by
COVID-19 (2–4).

Concurrently, microhemorrhages (cerebral microbleeds,
CMBs) have been observed radiologically in the brain. Whether
these reported alterations are coincidental occurrences,
non-specific implications of a systemic disorder, common
complications of a severe infectious disease, or a direct
consequence of the viral infection, remains open. It is fully
acknowledged that SARS-CoV-2 can enter and damage
endothelial cells in the lungs, heart, and kidneys by binding
angiotensin-converting enzyme 2 (ACE2) and activating
inflammatory and thrombotic pathways. A similar cascade could
be involved in cerebral damage observed in COVID-19 patients
(5–7). In particular, slow blood flow in cerebral microvessels
allows the viral spike protein to interact with ACE2 receptors
in capillaries in the endothelium. A damaged endothelial lining
would favor viral access to the brain, where the virus can
damage neuronal cells expressing ACE2, even in the absence of
substantial inflammation. The endothelial ruptures in cerebral
capillaries may lead to cerebral hemorrhage (5). CMBs appear
on susceptibility-weighted imaging (SWI) as parenchymal
punctate hypointensities, potentially unrelated to ischemia and
macro hemorrhage (8) and this can be observed in a variety of
conditions, especially in patients with acute respiratory distress
syndrome (9) or widespread intravascular coagulation (10).
CMBs can be observed in the subcortical white matter (WM)
and splenium of the corpus callosum (CC) in critically ill patients
who have experienced prolonged respiratory failure and periods
of hypoxemia (11–13).

In this context, the aim of the study was to characterize CMBs
patterns on SWI and investigate possible associations between
the incidence of CMBs and potential risk factors, neurological
symptoms and clinical and laboratory data from patients
hospitalized due to COVID-19 with neurological manifestations.
In addition, CMBs volume was quantified and correlated with
clinical and laboratory parameters.

MATERIALS AND METHODS

Study Design and Patient Selection
Patients who were hospitalized due to COVID-19, who exhibited
neurological manifestations and underwent a brainMRI between
March and May 2020 were eligible for inclusion. Patients
included in the study were divided into groups based on
radiological evidence of CMBs (CMBs+ group) or the absence
of CMBs (CMBs-). The local ethics committee approved the
collection and scientific use of the patients’ data as part of a larger
observational study protocol (reg 2020-144). Informed consent
was obtained from patients or provided by their next of kin or
legal guardians.

COVID-19 Diagnosis
The COVID-19 diagnosis was confirmed using an algorithm
based on local guidelines that included: (1) real-time reverse-
transcriptase polymerase-chain-reaction (RT-PCR) on at least 1
nasopharyngeal swab; or (2) RT-PCR on bronchoalveolar lavage
in case of high clinical suspicion of SARS-CoV-2 infection in spite
of negative test results from at least two nasopharyngeal swabs
performed at least 24 h apart; or (3) in the case of negative RT-
PCR for SARS-COV-2, typical clinical presentation during the
epidemic phase (fever, dry cough, and dyspnea) with radiological
evidence of interstitial pneumonia.

Clinical and Laboratory Data
Clinical and laboratory data were extracted from patients’
electronic medical records in the Hospital Information System.
Clinical data included demographic information, past medical
history, presenting symptoms and neurological symptoms,
and the need for ventilatory support. The laboratory data
considered were levels of white blood cells, lymphocytes,
hemoglobin (Hb), platelet maximum and minimum counts,
C-reactive protein (PCR), procalcitonin, creatinine, lactate
dehydrogenase (LDH), prothrombin time (PT), activated partial
thromboplastin time (aPTT), D-dimer, fibrinogen and, when
available, cerebrospinal fluid (CSF) analysis. Inflammatory CSF
was defined as pleocytosis and elevated protein concentration.
Only data from laboratory tests performed within 3 days of the
brain MRI were considered.

MRI Acquisition and Visual Assessment
All brain MRI scans were acquired at the ASST Papa Giovanni
XXIII hospital in Bergamo, Italy, using a General Electric 3 Tesla
MRI scanner (Discovery MR 750w GEM).
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FIGURE 1 | Diagram summarizing the cerebral microbleeds (CMBs) segmentation algorithm developed and used in the study. The algorithm uses the

susceptibility-weighted imaging (SWI) sequence along with the Filtered Phase sequence and a brain mask, as input, followed by a Minimum Intensity Projection (MinIP)

generated from the SWI scans. A Fast Radial Symmetry Transform (FRST) technique is used to detect regions of interest based on local radial symmetry. Likewise, a

deep learning (YOLO) detection algorithm is used to identify CMBs bounding boxes on SWI scans. The resulting binary masks are combined with the output of intensity

thresholding and geometric feature extraction techniques to provide possible CMBs segmentations. Different intensity thresholding approaches are used according to

the different input images and pathways. Specifically, a global approach is used for the flat gray Filtered Phase images; adaptive thresholding is used on the MinIP

images to deal with the presence of different brightness regions picking the locally darkest particles, associated with the lesions; and the Conditional Adaptive

Thresholding method is applied to the SWI scans to compute local thresholds inside the previously defined brain mask. A centroid criterion is additionally applied to

consecutive slices to avoid the segmentation of the vessels’ orthogonal sections resembling dot-shaped and spheric CMBs. An optional step based on global

thresholding and inter-hemispherical fissure masking of the Filtered Phase stack makes it possible to segment tubular-shaped CMBs in addition to the round lesions.

The resulting segmentations results are finally combined via the OR operator, and the outcome can be manually refined to fix possible segmentation inaccuracies.

The brain MRI acquisition protocol included pre-contrast
coronal T2-weighted, pre-contrast axial T1-weighted and post-
contrast 3D T1-weighted, pre- and post-contrast sagittal
FLAIR, diffusion-weighted and tensor imaging, susceptibility-
weighted imaging (SWI) and perfusion imaging. SWI acquisition
was performed axially, with the following parameters: TR

= 38ms, TE = 26ms, matrix size = 512 × 512, slice
thickness= 1.3 mm.

All anonymized MRI scans were evaluated independently
by two experienced neuroradiologists (SG, MC) while two
more junior colleagues who were blinded to the clinical
data (AB, AN) reviewed the abnormalities to classify the
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findings. When their assessments diverged the cases were
reviewed by a third person, and decisions were based on
consensus in all cases. SWI scans were reviewed to assess
and quantify microbleeds. CMBs were described in terms
of number and location, and the involvement of specific
brain areas, such as the corpus callosum (CC), internal
capsules (IC), and cerebellar peduncles was considered. CC
microbleeds were further classified as involving all of the
segments or only the splenium. The shape of CMBs could be
defined as dot-like or linear, the latter resembling a vascular
structure. Superficial siderosis was also noted. In the presence
of CMBs on SWI, the FLAIR and DWI sequences were
analyzed to detect white matter abnormalities or restricted
diffusion lesions. Leukoencephalopathy was defined as diffuse
confluent white matter FLAIR hyperintensities, more than
expected for age-related microangiopathy on the basis of visual
qualitative assessment.

MRI Processing and CMBs Quantification
The CMBs burden was assessed on SWI scans using an in-
house semi-automatic processing procedure (Figure 1), using:
ImageJ/Fiji, version 1.53c (https://imagej.nih.gov/ij), Python,
version 3.7 (http://www.python.org) and MATLAB, version
R2019a (Natick, MA, USA).

A brain mask was first created using SWI scans with an
intensity-based region-growing approach, and the Minimum
Intensity Projection (MinIP) was generated to differentiate
between CMBs and circular vessel sections.

Secondly, a pre-trained YOLO deep learning model was
used to detect and mask CMBs bounding boxes. Taking CMBs
morphology into account and based on previous findings (14),
the actual segmentation procedure relied on the Fast Radial
Symmetry Transform (FRST) technique (15).

FRST was combined with an intensity-based adaptive
thresholding approach, so-called “Conditional Adaptive
Thresholding” (16), which made it possible to compute pixel-
specific thresholds inside the brain mask. An optional step based
on thresholding of the Filtered Phase stack made it possible to
identify and also include linear-shaped lesions.

The resulting segmentation could be manually edited using
3D Slicer software to fix possible inaccuracies in concordance
with a neuroradiologist (AN) and CMBs quantification was
finally performed by multiplying the total segmented area by the
space between slices and the number of slices.

Statistical Analysis
Comparisons between CMBs+ and CMBs- patients were
performed using the Mann–Whitney or Fisher tests as
appropriate. Odds ratios (OR) for CMBs were identified in
age, sex, clinical and laboratory data using logistic regression
analysis. Univariate analyses were performed first; all variables
with nearly significant contributions (p < 0.1) at univariate
analysis were included in the multivariate analysis, alongside
age and sex. The model was subsequently reduced using an AIC
stepwise model selection technique. In patients with CMBs,
the distribution of CMBs total volume by each binary variable
(sex, intensive care, CSF findings, comorbidities, and clinical

FIGURE 2 | Flow chart of the study participants.

symptoms) was displayed using boxplots. The correlation
between CMBs total volume and age, time to MRI, duration
of hospitalization or invasive mechanical ventilation and each
clinical and laboratory variable was assessed using Spearman
correlation. Statistical significance was set at p < 0.05. All
statistical analyses were performed using R software (R Core
Team, Vienna, Austria), version 4.0.5.

RESULTS

Out of 1,760 patients hospitalized due to COVID-19, 116
exhibited neurological symptoms and required brain imaging.
Fifty-three of them underwent a brain CT scan, while
the remaining 63 underwent a brain MRI scan and were
therefore eligible for the study. Of these patients, 14 had
radiological evidence of CMBs (CMBs+ group), while 49 did
not (CMBs- group). Figure 2 is a flow chart that describes the
study participants.

CMBs Subgroups Characterization and
Risk Factors
Socio-demographic features and clinical and laboratory data for
the two subgroups are summarized in Table 1.

Both CMBs+ and CMBs- patients were predominantly male,
and there were no significant differences between the two
groups regarding age. Leukoencephalopathy was reported in
three CMBs+ and in none of the patients with no CMBs (21
vs. 0%; p = 0.009). CMBs+ were hospitalized for longer than—
patients with no CMBs- (median of 41 vs. 20 days; p = 0.028)
and also required more frequent invasive mechanical ventilation
(64 vs. 24%; p = 0.009). CMBs+ underwent MRI significantly
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TABLE 1 | Demographic and clinical characteristics of 63 patients hospitalized due to COVID-19 and exhibiting neurological symptoms.

Total

(N = 63)

CMBs+

(n = 14)

CMBs-

(n = 49)

p-value

Sex (M) 39 (62%) 10 (71%) 29 (59%) 0.538

Age (years) 64 (56–73) 62 (56–73) 64 (56–72) 0.741

Comorbidities

Dyslipidemia 4 (6%) 1 (7%) 3 (6%) 1.000

Heart disease 18 (29%) 5 (36%) 13 (27%) 0.517

Diabetes 12 (19%) 0 (0%) 12 (24%) 0.053

Hypertension 27 (43%) 7 (50%) 20 (41%) 0.557

COPD 5 (8%) 1 (7%) 4 (8%) 1.000

Cancer 4 (6%) 2 (14%) 2 (4%) 0.211

Past CVA or TIA 5 (8%) 3 (21%) 2 (4%) 0.068

Clinical presentation

Dyspnea 27 (43%) 8 (57%) 19 (39%) 0.239

Head trauma 4 (6%) 1 (7%) 3 (6%) 1.000

Cough 22 (35%) 6 (43%) 16 (33%) 0.534

Fever 34 (54%) 10 (71%) 24 (49%) 0.224

Confusion 24 (38%) 8 (57%) 16 (33%) 0.124

Visual impairment 3 (5%) 0 (0%) 3 (6%) 1.000

Headache 8 (13%) 0 (0%) 8 (16%) 0.182

Stroke 9 (14%) 1 (7%) 8 (16%) 0.669

Ataxia 3 (5%) 0 (0%) 3 (6%) 1.000

Seizure 10 (16%) 2 (14%) 8 (16%) 1.000

Anosmia or ageusia 2 (3%) 1 (7%) 1 (2%) 0.398

Neuropathy 5 (8%) 1 (7%) 4 (8%) 1.000

Focal deficit 18 (29%) 1(7%) 17 (35%) 0.051

Coma 7 (11%) 2 (14%) 5 (10%) 0.646

Laboratory tests

Inflammatory CSF 9 (14%) 5 (36%) 4 (8%) 0.020

White blood cells (103/ µl) no. with data 60 13 47

Median [IQR] 11.1 (8.3–15.8) 14.7 (12.7–19.4) 10.4 (7.8–14.8) 0.020

Lymphocytes (103/µl) no. with data 59 13 46

Median [IQR] 0.7 (0.5–1.1) 0.5 (0.3–0.7) 0.8 (0.6–1.3) 0.010

Hemoglobin (g/dl) no. with data 60 13 47

Median [IQR] 10.6 (8.1–13.1) 8.1 (7.7–10.0) 11.4 (8.8–13.5) 0.013

Platelet (min) (103/µl) no. with data 58 13 45

Median [IQR] 174 (124–239) 136 (110–174) 188 (144–244) 0.086

Platelet (max) (103/µl) no. with data 60 13 47

Median [IQR] 332 (278–451) 329 (300–427) 334 (274–452) 0.907

C-reactive protein (mg/dL) no. with data 59 13 46

Median [IQR] 12.0 (3.7–26.6) 27.1 (18.3–36.5) 7.8 (3.2–17.9) <0.001

Procalcitonin (ng/ml) no. with data 32 8 24

Median [IQR] 0.85 (0.19–1.33) 1.7 (1.28–12.20) 0.5 (0.10–1.04) 0.002

Creatinine (mg/dL) no. with data 55 13 42

Median [IQR] 1.0 (0.8–1.4) 1.2 (0.8–1.8) 0.9 (0.8–1.2) 0.146

LDH (IU/l) no. with data 56 13 43

Median [IQR] 404 (250–601) 583 (468–715) 384 (234–540) 0.004

PT (s) no. with data 56 13 43

Median [IQR] 1.1 (1.0–1.3) 1.1 (1.0–1.3) 1.1 (1.0–1.3) 0.806

aPTT (s) no. with data 58 13 45

(Continued)
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TABLE 1 | Continued

Total

(N = 63)

CMBs+

(n = 14)

CMBs-

(n = 49)

p-value

Median [IQR] 1.1 (1.0–1.3) 1.1 (1.0–1.3) 1.0 (1.0–1.3) 0.540

D-dimer (ng/ml) no. with data 52 12 40

Median [IQR] 1,590 (578–4,345) 5,135 (1,023–8,910) 1,211 (520–3,565) 0.026

Fibrinogen (mg/dL) no. with data 43 11 32

Median [IQR] 730 (485–960) 704 (496–932) 762 (489–952) 0.900

Invasive mechanical ventilation 21 (33%) 9 (64%) 12 (24%) 0.009

/ duration 16 (9–26) 19 (12–26) 15 (9–24) 0.749

Chest X-ray COVID-19 positivity 29/40 (73%) 9/14(64%) 20/26 (77%) 0.469

Chest CT COVID-19 positivity 41/55 (75%) 9/13 (69%) 32/42 (76%) 0.719

Pulmonary embolism 3/18 (17%) 1/5 (20%) 2/13 (15%) 1.000

Hospitalizations (days) no. with data 60 14 46

Median [IQR] 23 (11–42) 41 (24–54) 20 (9–35) 0.028

Time to MRI (days) no. with data 61 14 47

Median [IQR] 7 (3–22) 31 (14–55) 6 (3–13) 0.002

FAZEKAS

- 0 39 (62%) 6 (43%) 33 (67%) 0.205

- 1 16 (25%) 6 (43%) 10 (20%)

- 2 6 (10%) 2 (14%) 4 (8%)

- 3 2 (3%) 0 (0%) 2 (4%)

Leukoencephalopathy 3 (5%) 3 (21%) 0 (0%) 0.009

Exitus (Death) 4/61 (7%) 1/14 (7%) 3/47 (6%) 1

Patients were divided into groups based on the presence or absence of cerebral microbleeds on MRI scans (CMBs+ and CMBs-, respectively).

Data are reported asmedian (IQR; continuous/numerical variables) or number (%; binary/categorical variables). p-values are computed using theMann-Whitney test (continuous variables)

or Fisher’s exact test (binary or categorical variables).

aPTT, activated partial thromboplastin time; COPD, Chronic obstructive pulmonary disease; CRP, C-reactive protein; CSF, cerebrospinal fluid; CT, computed tomography; CVA,

cerebrovascular accident; LDH, lactate dehydrogenase; MRI, magnetic resonance imaging; PT, prothrombin time; TIA, transient ischemic attack.

Bold means statistically significant.

later than CMBs- patients (31 vs. 6 days after admission; p =

0.002). The two groups also exhibited significant differences in
laboratory parameters: CMBs+ patients had a higher prevalence
of CSF inflammation (36 vs. 8%; p = 0.020), higher white
blood cell concentration (14.7 vs. 10.4 103/µl; p = 0.020), and
a lower lymphocyte concentration than CMBs- patients (0.5 vs.
0.8 103/µl; p= 0.010).

In the CMBs+ group, hemoglobin was significantly lower (8.1
vs. 11.4 103/µl; p = 0.013), while the D-dimer (5,135 vs. 1,211;
p = 0.026), LDH (583 vs. 384; p = 0.004), procalcitonin (1.7 vs.
0.5; p = 0.002), and CRP concentration (27.1 vs. 7.8; p < 0.001)
were significantly higher than in the CMBs- group. On the other
hand, the two groups were not significantly different in terms of
symptoms at presentation and comorbidities (Table 1).

Invasive mechanical ventilation, duration of hospitalization,
the time between admission and MRI acquisition, inflammatory
CSF, lymphocytes, Hb, CRP, and LDH were found to be
significant OR for the radiological evidence of CMBs in
the univariate logistic regression analysis (Table 2). Among
those parameters, the main risk factors included in the
reduced multivariate model were age, sex, past CVA or TIA,
focal deficit, positive CSF, LDH, and CRP. The only OR
that remained significant in multivariate analysis was CRP

concentration [OR = 1.16 (95% CI, 1.05–1.34), p = 0.011]
(Table 2).

CMBs Qualitative Assessment
The distribution of CMBs is shown in Table 3 and some
examples are shown in Figure 3. CMBs presented as punctuated
in all patients; in four patients linear hypointensities were
also detected in association with dot-like hypointensities.
CMBs mainly involved the juxtacortical white matter and
corpus callosum, particularly the splenium. Supratentorial and
infratentorial involvement, both in the subcortical and deep
WM, was labeled as diffuse. CMBs were observed in all the
segments of the CC in 9 (64%) patients, whereas two patients
had CMBs involving only the splenium. The infratentorial
location was involved in 7/14 patients (50%) with lesions seen
in the pons and cerebellar peduncles. The gray matter was
mostly spared.

CMBs were associated with leukoencephalopathy in three
patients, without evidence of WM cytotoxic edema on the
DWI sequence; in three cases, small foci of restricted diffusion
indicating small ischemic lesions in the “border zone” areas were
detectable; in eight cases, microbleeds were the sole imaging
pathological finding. No major bleeding was found in CMBs+

Frontiers in Neurology | www.frontiersin.org 6 May 2022 | Volume 13 | Article 88444954

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Napolitano et al. Cerebral Microbleeds in Neuro COVID-19

TABLE 2 | Demographic, clinical, and laboratory risk factors for cerebral microbleeds MRI finding in 63 patients hospitalized due to COVID-19 and exhibiting neurological

symptoms.

Univariable Multivariable

OR (95% CI) p-value OR (95% CI) p-value

Sex (M) 1.72 (0.50–7.00) 0.409 7.01 (0.76–139) 0.1261

Age (per year) 1.00 (0.93–1.05) 0.807 1.09 (0.96–1.30) 0.260

Comorbidities

Dyslipidemia 1.18 (0.06–10.10) 0.890

Heart disease 1.54 (0.41–5.36) 0.504

Diabetes -

Hypertension 1.45 (0.43–4.87) 0.541

COPD 0.86 (0.04–6.51) 0.901

Cancer 3.92 (0.43–35.50) 0.194

Past CVA or TIA 6.41 (0.96–53.30) 0.056 52.2 (1.63–7,158) 0.050

Clinical presentation

Dyspnea 2.11 (0.64–7.32) 0.226

Head trauma 1.18 (0.06–10.10) 0.890

Cough 1.55 (0.44–5.22) 0.482

Fever 2.60 (0.76–10.50) 0.145

Confusion 2.75 (0.82–9.68) 0.103

Visual impairment -

Headache -

Stroke 0.39 (0.02–2.45) 0.401

Ataxia -

Seizure 0.85 (0.19–4.00) 0.854

Anosmia or ageusia 3.69 (0.14– 97.70) 0.367

Neuropathy 0.87 (0.04–6.51) 0.901

Focal deficit 0.145 (0.01–0.82) 0.074 0.13 (0.01–1.43) 0.144

Coma 1.47 (0.19–7.80) 0.670

Laboratory tests

Inflammatory CSF 6.25 (1.40–30.00) 0.016 26.7 (0.97–2,547) 0.081

White blood cells (103/µl) 1.06 (0.99–1.13) 0.080

Lymphocytes (103/µl) 0.05 (0.00– 0.39) 0.017

Hemoglobin (g/dl) 0.70 (0.50–0.93) 0.020

Platelet (min) (103/ µl) 0.99 (0.98–1.00) 0.145

Platelet (max) (103/ µl) 0.99 (0.99–1.00) 0.712

C-reactive protein (mg/dl) 1.11 (1.05–1.19) 0.001 1.16 (1.05–1.34) 0.011

Procalcitonin (ng/ml) 1.03 (1.00–1.10) 0.245

Creatinine (mg/dl) 1.31 (0.90–2.05) 0.160

LDH (IU/l) 1.00 (1.00–1.01) 0.018 1.00 (1.00–1.01) 0.200

PT (s) 1.04 (0.33–2.48) 0.936

aPTT (s) 1.10 (0.51–1.95) 0.751

D-dimer (ng/ml) 1.00 (0.99–1.00) 0.389

Fibrinogen (mg/dl) 0.99 (0.99–1.00) 0.466

Invasive mechanical ventilation 5.55 (1.61– 21.30) 0.008

/ duration 1.00 (0.95–1.05) 0.941

Chest X-ray COVID-19 positivity 0.54 (0.13–2.30) 0.396

Chest CT COVID-19 positivity 0.70 (0.18–3.03) 0.616

Pulmonary embolism 1.38 (0.05–18.9) 0.814

Hospitalizations (days) 1.03 (1.00–1.05) 0.037

Time to MRI (days) 1.04 (1.01–1.06) 0.005

(Continued)
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TABLE 2 | Continued

Univariable Multivariable

OR (95% CI) p-value OR (95% CI) p-value

FAZEKAS

- 1 3.30 (0.86–12.9) 0.080

- 2 2.75 (0.33–17.9) 0.299

Exitus (Death) 1.13 (0.05–9.69) 0.920

Odds ratios, 95% CI, and p-values were first computed for each variable using univariate logistic regression models (left). All variables with significant contributions in univariate analysis

were included in the multivariate analysis alongside age and gender, and main risk factors (right) were finally identified by reducing the multivariate model using an AIC stepwise model

selection technique. The number of missing data for each variable included in the univariate analysis is reported in Table 1. Only patients with no missing data (n = 56) were included

in the multivariate analysis.

aPTT, activated partial thromboplastin time; COPD, Chronic obstructive pulmonary disease; CRP, C-reactive protein; CSF, cerebrospinal fluid; CT, computed tomography; CVA,

cerebrovascular accident; LDH, lactate dehydrogenase; MRI, magnetic resonance imaging; PT, prothrombin time; TIA, transient ischemic attack.

Bold means statistically significant.

TABLE 3 | Distribution of CMBs and leukoencephalopathy.

N. of Patients (%)

Distribution of leukoencephalopathy, n = 3

Diffuse 3 (100%)

Distribution of cerebral microbleeds, n = 14

Diffuse 8 (57%)

Lobar 11 (79%)

Pons/cerebellum 7 (50%)

Corpus callosum including splenium 9 (64%)

Splenium only 2 (14%)

Subcortical white matter 12 (86%)

Deep white matter 7 (50%)

patients. All patients with CMBs presented a negative CT
concomitant evaluation, no focal or extensive hyperdense lesions
were found.

CMBs Quantitative Assessment
The procedure designed in-house identified and quantified
CMBs total volume on the SWI scans (Figure 3).

Estimated CMBs volume was higher in females than in males
and decreased with age (Rho=−0.38; p= 0.18); it was positively
associated with CRP (Rho = 0.36; p = 0.22), and negatively
associated with lymphocytes (Rho = −0.52; p = 0.07) and
fibrinogen concentration (Rho=−0.68; p= 0.025; Figure 4).

DISCUSSION

Cerebral microbleeds are an emerging and singular imaging
finding in patients with COVID-19 (17–19). CMBs may
be secondary to endothelial dysfunction, causing the
focal extravasation of red blood cells into the brain. The
pathophysiological basis of this in COVID-19 remains a matter
of debate, and several hypotheses have been proposed. In the

setting of severe COVID-19 infection, hypoxemia-induced
brain changes have been postulated as the cause of both
leukoencephalopathy and CMBs (20).

We observed a specific pattern of distribution of CMBs in
COVID-19, characterized by prominent callosal and juxtacortical
involvement, as reported in the literature. This pattern, only
detected by blood-sensitive MRI sequences, has been described
extensively in critical illness associated-CMBs, a rare condition
reported in patients with acute respiratory failure that requires
mechanical ventilation, and sometimes ECMO (21, 22). Severe
hypoxemia is common in such conditions and could account for
CMBs formation but may not be the only cause. In our study, the
CMBs-positive group had a higher rate of invasive mechanical
ventilation (IMV) compared to patients without this imaging
finding. As described by other groups (20, 23, 24), patients with
CMBs had critical COVID-19 (i.e., need for IMV in the ICU
setting and longer hospitalization).

It is well-documented that SARS-CoV-2 can cause damage
to endothelial cells in several organs, such as the lungs, heart,
and kidneys, activating inflammatory and thrombotic pathways
(6). Endothelial cell infection or monocyte activation, the
upregulation of tissue factors, and the release of microparticles,
which activate the thrombotic pathway, might occur in SARS-
CoV-2, like in other viruses (25, 26).

This phenomenon may explain the high number of acute
coronary syndromes or acute myocardial dysfunction without
clear culprits, such as lesions observed through angiography,
which were considered to be related to myocarditis (27) or
acute extensive pulmonary failure with no evidence of acute
pulmonary emboli that had dilated peripheral vessels, with 100%
of the patients exhibiting perfusion defects in a dual-energy
CT (28).

In our study the presence of CMBs was associated with a
CSF inflammatory profile; reduced concentrations of Hb and
lymphocytes; higher levels of white blood cells, procalcitonin,
and LDH and CRP, which correlated positively with CMBS
total volume. In the adjusted regression multivariable analysis,
the association with CRP levels is confirmed, thus suggesting
that inflammation plays a predominant role. The RECOVERY
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FIGURE 3 | Cerebral microbleeds (CMBs) segmentation on susceptibility-weighted imaging (SWI) in representative patients hospitalized due to COVID-19, with

neurological symptoms. (A) 68-year old man with typical dot-shaped and spherical CMBs; (B) 48-year old woman with the less common ovoid and tubular-shaped

lesions in addition to the conventional appearance; (C) 55-year old man with CMBs also located in the corpus callosum. Two SWI slices per patient are shown, along

with pertinent CMBs segmentation results.

trial has also provided solid evidence of the importance of
inflammation in body due to COVID-19 (29).

It is probable that the inflammatory response plays the
most important role in inducing damage to the blood-brain
barrier (BBB). In a large autopsy cohort study performed in the
Netherlands (30), like in other smaller pathology studies, the
authors report increased blood-brain barrier (BBB) permeability
and rupture and blood red cell extravasation.

The burden of CMBs, as well as their presence, may be
important. In our study, the estimated volume of CMBs seems
to correlate with the inflammatory status and severity of
the disease, as represented by lymphopenia (31). It remains
unknown whether this pattern of brain involvement has a
similar pathophysiology as neurological symptoms of the long-
COVID syndrome.

The limitations of this retrospective single-center study
include the limited number of COVID-19 patients with a brain
MRI, especially those with radiological evidence of CMBs,
and the design of the study, so that caution is required in
interpreting the results. Because of the state of the epidemic
(32) many steps were limited by the astonishing number of
patients treated for COVID-19 pneumonia. Only a fraction

of patients were hospitalized, and it is likely that some
neurological manifestations were underrecognized in these
patients. Lastly, gold standard procedures like brain autopsy were
not available.

Furthermore, to our knowledge, this is one of the largest
single-center cohorts of consecutive patients with COVID-
19 with neurological manifestations. The study period
corresponds to the first wave in Italy, one of the first in the
world, so no previous exposure to the virus or vaccination
could reduce the effect of the disease. MRI studies were
performed with a standardized acquisition protocol, which
made comparisons more reliable. Finally, this customized
semi-automatic segmentation procedure made it possible
to quantify CMBs total volume. The implemented solution
combined state-of-the-art methods previously used to detect
CMBs on SWI scans (14, 33, 34) with the deep learning detection
approach (35–37), and an optimized thresholding method, with
the techniques supporting each other and providing accurate
CMBs segmentation and volume quantification. Since CMBs
have been reported in a variety of clinical conditions (38), our
CMBs segmentation technique could also be useful in other
settings, apart from COVID-19 (e.g., amyloid angiopathy).
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FIGURE 4 | Associations between cerebral microbleeds (CMBs) total volume and descriptive and laboratory parameters in 14 COVID-19 patients with neurological

disorders and microhemorrhages detected on susceptibility-weighted images (SWI). (A) Distribution of CMBs total volume on SWI by patient sex. p-value was

assessed by Wilcoxon test. (B–D) Linear regression of CMBs total volume on age (B), CRP (C), and lymphocytes concentration values (C). R denotes the Spearman

correlation coefficient with the pertinent p-value. CMBs, cerebral microbleeds; CRP, C-reactive protein.

In conclusion, patients with COVID-19 may develop a wide
range of neurological symptoms, which can be associated with
severe and fatal complications. Neuroimaging and MRI, in
particular, can reveal brain changes in such patients. CMBs are
a frequent imaging finding in critical patients with COVID and
seem to be related to pro-inflammatory status. Future larger
longitudinal studies are needed to confirm the current findings.
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The current concept of brain aging proposes three gradient patterns of changes in

white matter that occur during healthy brain aging: antero-posterior, supero-inferior, and

the myelodegeneration-retrogenesis (or the “last-in-first-out”) concept. The aim of this

study was to correlate white matter diffusivity measures (fractional anisotropy-FA, mean

diffusivity-MD, radial diffusivity-RD, and axial diffusivity-AD) in healthy volunteers with

chronological age and education level, in order to potentially incorporate the findings with

proposed patterns of physiological brain aging. The study was performed on 75 healthy

participants of both sexes, with an average age of 37.32 ± 11.91 years underwent brain

magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI). DTI was performed

using tract-based spatial statistics (TBSS), with the analysis of four parameters: FA, MD,

RD, and AD. Skeletonized measures were averaged in 29 regions of interest in white

matter. Correlations between age and DTI measures and between education-level and

DTI measures were performed using Pearson’s correlation test. To correct for multiple

comparisons, we applied a Bonferroni correction to the p-values. Significance was set

at p ≤ 0.001. A significant negative correlation of FA with age was observed in posterior

thalamic radiation (PTR) (p < 0.001). A significant positive correlation between age and

MD was observed in sagittal stratum (SS) (p < 0.001), between age and RD in PTR, SS,

and retrolenticular internal capsule (p < 0.001), and between age and AD in the body of

the corpus callosum (p< 0.001). There were no significant correlations of DTI parameters

with educational level. According to our study, RD showed the richest correlations with

age, out of all DTI metrics. FA, MD, and RD showed significant changes in the diffusivity

of projection fibers, while AD presented diffusivity changes in the commissural fibers. The

observed heterogeneity in diffusivity changes across the brain cannot be explained by a

single aging gradient pattern, since it seems that different patterns of degradation are true

for different fiber tracts that no currently available theory can globally explain age-related

changes in the brain. Additional factors, such as the effect of somatosensory decline,

should be included as one of the important covariables to the existing patterns.
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INTRODUCTION

Healthy brain aging occurs as a result of numerous
interconnected structural, chemical, and functional brain
changes, and, in turn, can lead to a decline in cognitive function.
Brain aging is associated with a decline in concentration,
attention, and other executive functions, as well as global
cognitive information processing (1). Optimal cognitive
functioning, which is vital for independent living, productivity,
and overall quality of life, relies on coordinated processes in
different brain regions. Disturbances in communication (i.e.,
disconnections) between these regions during healthy aging may
result in cognitive decline (2).

Over the years, many novel techniques of magnetic resonance
imaging (MRI) were introduced in order to clarify the
neuropathological process that lies behind neurological and
psychiatric disorders. One of the most revolutionary techniques
is diffusion-weighted imaging (DWI) which provides tissue
contrast based on the magnitude of diffusion differences between
water molecules (3). Diffusion of the water molecules represents
the random motion of the molecules (Brownian motion), and it
is restricted or facilitated depending on the ongoing pathological
process (4). The more advanced technique, derived from DWI
is called diffusion-tensor imaging (DTI) that analyzes the three-
dimensional shape of diffusion, named diffusion tensor. The
diffusion tensor is actually a 3D structure defined by three
principal diffusivities (eigenvalues, λ1, λ2, and λ3) that are
associated with three principal directions (eigenvectors) (5). This
technique requires more robust post-processing but can provide
valuable information about themicrostructure of the brain tissue.

The concept of cortical disconnections has been confirmed in
healthy brain aging (without the manifest neurological disorder),
using this technique in previous studies (6–8). Given that
DTI is a non-invasive imaging method, it represents a useful
tool to probe brain network integrity and functionality (9).
DTI fractional anisotropy (FA), mean diffusivity (MD), radial
diffusivity (RD), and axial diffusivity (AD) measures can give
insight into diffusivity changes in the brain which can be driven
both by physiological brain aging and pathological processes
(degeneration, inflammation, neoplastic and other diseases).
Most published DTI studies on the aging brain have relied on
the FA, which has been shown to decrease throughout the white
matter of the brain during the aging process (10–12). Age-related
increases in MD and RD have also been consistently observed
(13). However, findings regarding AD have been inconsistent,
with both increases and decreases observed in different settings
(10, 13). The studies comprehensively exploring all four DTI
metrics mainly explored pathological processes in the brain
(neurodegenerative and genetic disorders) (14, 15). There are
several methods for the evaluation of DTI data, with tract-based
spatial statistics (TBSS) being one of the most popular and also
used in this study. The main idea of the TBSS approach is to
project volumetric data onto a white matter skeleton, in order
to gain statistical power and skip some steps regarding data
processing (16).

There are three proposed gradient patterns of white
matter changes during healthy brain aging. The first is the

antero-posterior pattern, with more extensive changes in the
anterior/frontal parts of the brain preceding the posterior
lobes (17). The second pattern is the supero-inferior, with
extensive changes present in the cranial aspects of the brain
parenchyma (18). The third pattern is myelodegeneration-
retrogenesis or, the “last-in-first-out” hypothesis, which proposes
that the degeneration of myelin observed during the aging
process occurs in the opposite direction of myelin development
and maturation (19, 20).

The aim of this study was to correlate white matter DTI
anisotropy and diffusivity measures (FA, MD, RD, and AD) using
TBSS in healthy volunteers, with chronological age and formal
education level (expressed in years of education). The second
aim was to determine whether the gradient pattern of white
matter associations was consistent with any proposed patterns of
physiological brain aging.

MATERIALS AND METHODS

Study Population
Of a total of 81 healthy volunteers who were enrolled in the study
based on the initially performed power sample analysis (α = 0.05
(p-value), β = 0.2 (correspondent to the ower of 80%), and r

> 0.30, the required sample was 79), 75 participants, average
age 37.32 ± 11.91 years (range: 22–62 years; 53 male and 22
female participants) were included into analyses after undergoing
whole brain magnetic resonance imaging (MRI) from July 2011
to April 2017 at the University of Novi Sad. Six data sets were
excluded from the initial sample of 81 subjects due to technically
inadequate quality. All the patients were cognitively screened
using Mini-Mental State Examination (MMSE) (21).

Inclusion criteria were over 18 years of age, MMSE score
over 24 (thus excluding persons eligible for the evaluation of
dementia), and right-handed. MMSE is a 30-point screening test
for the global cognitive assessment, used for quick exclusion of
subjects with signs of cognitive impairment. Right-handedness
was based on the self-report of the preferred hand and on the
results of the Waterloo Handedness Questionnaire (WHQ) (22).
Criteria for the exclusion from the study were acute and chronic
neurologic and psychiatric disorders, presence of diffuse or focal
white matter lesions in the brain (tumors, infarctions, metastases,
vascular malformations, white matter hyperintensities), post-
operative state, head trauma history, patients with palsy or deep
paresis of the dominant hand, visual and hearing disorders,
MMSE score ≤24, history of drug and alcohol abuse according
to Drug Abuse Screening Test and Michigan Alcohol Screening
Test (MAST) (23), and contraindications for MRI scanning.

Neuroimaging
All participants underwent an MRI of the brain on a 3T
clinical scanner (Siemens Trio Tim, Erlangen, Germany), using
an 8-channel head array. Conventional MRI of the brain
consisted of T1W sagittal spin echo [time of repetition (TR)/time
of echo (TE) 440 ms/3.8ms, slice thickness 5mm, duration
2:00min], T2W transversal turbo spin echo (TR/TE 5150
ms/105ms, slice thickness 5mm, duration 2:57min), Fluid
Attenuation Inversion Recovery (FLAIR) transversal (TR/TE
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8,000 ms/101ms, slice thickness 5mm, duration 3:30min),
diffusion-weighted imaging (DWI) (TR/TE 4100 ms/91ms, slice
thickness 5mm, duration 2:07min), T2W coronal turbo spin
echo (TR/TE 7150 ms/111ms, slice thickness 5mm, duration
2:17min), and 3D T1W MPRAGE sagittal tomograms (TR/TE
1530 ms/2.97ms, slice thickness 1mm, duration 5:12 min).

Conventional MRI was necessary for obtaining anatomic
information and detection of potential focal or diffuse
brain lesions.

Diffusion tensor imaging was performed using MDDWI
sequence (multidirectional diffusion weighted imaging) with two
diffusion shells (b-values of 1,000 s/mm2 and 1,500 s/mm2) from
64 diffusion-weighted directions each and two non-diffusion
weighted volumes (at b0). The data were acquired at 2mm
isotropic resolution; the fold over direction was A-P with a P
shift. Field-of-viewwas 230. DWI images were denoised using the
LPCA filter and corrected for motion by linearly aligning all DWI
volumes to the b 0 image. T1-weighted images were denoised
using the non-local means filter and underwent N3 intensity
inhomogeneity normalization, and brain extraction. Data sets
that did not fulfill the quality control criteria were excluded
from the analyses (three due to extreme EPI distortion and
three due to skeleton misregistration). T1 images were linearly
aligned to diffusion images, and diffusion images were then non-
linearly warped to their respective T1-weighted scans to correct
for echo-planar imaging (EPI) induced susceptibility artifacts.

Diffusion gradient directions were rotated to accommodate
linear registrations. DTI fractional anisotropy (FA), mean
diffusivity (MD), radial diffusivity (RD), and axial diffusivity
(AD) scalar maps were generated from corrected images (24).

Diffusion tensor imaging analysis was performed using the
tract-based spatial statistics (TBSS) technique from the FSL
software package (24) and publicly available ENIGMA-DTI
protocols (http://enigma.usc.edu/protocols/dti-protocols/) (25).
Each subject’s FA map was warped to the ENIGMA-DTI FA
template with ANTs (26) and the transformations were applied
to all respective DTI maps. DTI measures were then projected
onto the template skeleton. Skeletonized measures were averaged
in a total of 29 regions of interest (ROIs) from the John Hopkins
University White Matter Atlas (27) (Table 1).

Statistical Analysis
Statistical analysis was performed using the software package
SPSS ver. 23.0 (IBM, Chicago, USA). Methods of descriptive
and comparative statistics were used (mean, median, standard
deviation, minimum, maximum, frequencies, and percentage,
depending on the type of the variable). After confirmation
of normal distribution, correlations between age and DTI
measures and between education-level and DTI measures were
performed using Pearson’s correlation test. Additionally, a partial
correlation was performed between age and diffusivity changes in
observed DTI parameters, with education as a control variable.
Permutation tests for Pearson’s correlations were performed
for age and localization, education and localization, and for
partial correlation, using education as a control variable. Gender
differences were also explored using the t-test.

TABLE 1 | List of analyzed locations (ROIs) according to the John Hopkins White

Matter Atlas.

Location Abbreviation

Anterior corona radiate ACR

Anterior limb of internal capsule AIC

Body of the corpus callosum BCC

Corpus callosum CC

Cingulate gyrus CGC

Parahippocampal cingulate fibers CGH

Corticospinal tract CST

External capsule EC

Fornix FX

Fornix-stria terminalis FXST

Genu of the corpus callosum GCC

Inferior fronto-occipital fasciculus IFO

Posterior corona radiata PCR

Posterior thalamic radiation PTR

Posterior limb of the internal capsule PLIC

Retrolenticular limb of internal capsule RLIC

Sagittal stratum SS

Splenium of the corpus callosum SCC

Superior fronto-occipital fasciculus SFO

Superior longitudinal fasciculus SLF

Uncinate fasciculus UNC

To correct for multiple comparisons, we applied a Bonferroni
correction to the p-values. Significance was set at p ≤ 0.001 (21
ROIs× 2 tests+ 4= 46, 0.05/42= 0.00108).

RESULTS

A total of 75 participants were included in the study, 53 men
(70.7%) and 22 women (29.3%). No significant gender-related
differences in white matter diffusivity metrics were observed. The
average age of the participants was 37.32± 11.91 years (range 22–
62). The average education level was 13.87± 2.38 years of formal
education. MMSE scoring was 28.87 ± 1.14 points, no person
scored lower than 26.

Table 2 summarizes the changes in FA on the observed
localization in the brain, in correlation with the chronological age
and educational level of the participants. A significant negative
correlation was observed in PTR (on the left p < 0.001 and on
the right p = 0.001) (Figure 1). All correlations were negative.
No significant correlations of FA with the level of education or
the MMSE score were detected. Table 2A shows the results of the
partial correlation summarized.

Table 3 shows the correlations between MD and age and
between MD and educational level of the participants are
presented for the analyzed locations. A significant positive
correlation was confirmed only in SS on the left side (p =

0.001) (Figure 2). There were no significant correlations of this
parameter with the level of formal education or the MMSE score.
InTable 3A, the results of the partial correlation are summarized.
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TABLE 2 | Results of Pearson’s correlation of FA with age and education level of

the study participants in the observed locations (r-correlation coefficient).

Location Age Education level

r p r p

ACR-L −0.258 0.026 0.024 0.841

ACR-R −0.244 0.035 0.050 0.669

ALIC-L 0.023 0.843 −0.157 0.179

ALIC-R 0.060 0.608 −0.129 0.269

BCC 0.116 0.324 −0.197 0.090

CC 0.040 0.736 −0.215 0.064

CGC-L −0.038 0.749 −0.046 0.693

CGC-R 0.079 0.499 −0.054 0.644

CGH-L −0.114 0.329 0.055 0.642

CGH-R −0.128 0.272 0.160 0.171

CR-L −0.294 0.010 −0.001 0.992

CR-R −0.293 0.011 −0.012 0.922

CST-L −0.002 0.986 0.014 0.908

CST-R −0.004 0.971 0.091 0.437

EC-L −0.102 0.382 0.038 0.747

EC-R −0.102 0.386 0.074 0.530

FX −0.235 0.043 0.185 0.112

FXST-L –0.049 0.679 0.100 0.395

FXST-R −0.111 0.345 0.153 0.190

GCC −0.159 0.172 −0.119 0.311

IC-L −0.197 0.091 −0.087 0.458

IC-R −0.131 0.264 −0.080 0.496

IFO-L 0.002 0.989 −0.188 0.107

IFO-R 0.002 0.989 −0.057 0.624

PCR-L −0.226 0.052 −0.144 0.217

PCR-R −0.229 0.048 −0.233 0.044

PLIC-L −0.113 0.335 −0.145 0.216

PLIC-R −0.121 0.301 −0.162 0.165

PTR-L −0.457 <0.001 −0.056 0.634

PTR-R −0.366 0.001 0.020 0.864

RLIC-L −0.351 0.002 0.082 0.482

RLIC-R −0.247 0.033 0.100 0.394

SCC 0.108 0.358 −0.230 0.047

SCR-L −0.244 0.035 0.031 0.792

SCR-R −0.248 0.032 0.018 0.875

SFO-L 0.001 0.992 −0.085 0.466

SFO-R −0.098 0.401 0.098 0.401

SLF-L −0.189 0.105 −0.022 0.853

SLF-R −0.155 0.183 −0.034 0.770

SS-L −0.341 0.003 0.121 0.300

SS-R −0.340 0.003 0.161 0.167

UNC-L −0.297 0.010 −0.280 0.015

UNC-R −0.100 0.392 −0.318 0.005

Significant results are presented in bold case.

Significant positive correlations were detected between RD
and age in PTR (on the left p < 0.001 and on the right
p = 0.001, Figure 3A), SS (on the left p < 0.001, and on
the right p < 0.001, Figure 3B), and in RLIC (on the left

TABLE 2A | The results of partial correlation of FA with age, using education level

as a control variable.

Location Age

R p

ACR-L −0.257 0.027

ACR-R −0.240 0.040

ALIC-L 0.001 0.992

ALIC-R 0.043 0.717

BCC 0.091 0.443

CC 0.010 0.935

CGC-L −0.045 0.706

CGC-R 0.072 0.539

CGH-L −0.108 0.360

CGH-R −0.109 0.357

CR-L −0.297 0.010

CR-R −0.298 0.010

CST-L <0.001 0.999

CST-R 0.009 0.942

EC-L −0.098 0.406

EC-R −0.092 0.434

FX −0.215 0.066

FXST-L −0.035 0.766

FXST-R −0.091 0.440

GCC −0.179 0.127

IC-L −0.212 0.070

IC-R −0.144 0.222

IFO-L −0.025 0.829

IFO-R −0.006 0.957

PCR-L −0.251 0.031

PCR-R −0.272 0.019

PLIC-L −0.136 0.249

PLIC-R −0.147 0.211

PTR-L −0.470 <0.001

PTR-R −0.366 0.001

RLIC-L −0.344 0.003

RLIC-R −0.236 0.043

SCC 0.078 0.509

SCR-L −0.242 0.037

SCR-R −0.248 0.033

SFO-L –0.011 0.926

SFO-R −0.086 0.467

SLF-L −0.194 0.098

SLF-R −0.162 0.168

SS-L −0.329 0.004

SS-R −0.325 0.005

UNC-L 0.271 0.020

UNC-R 0.059 0.616

Significant results are presented in bold case.

p = 0.001). There were no significant correlations of this
parameter with the level of formal education or the MMSE
score (Table 4). In Table 4A, the results of the partial correlation
are summarized.
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TABLE 3 | Results of Pearson’s correlation of MD with age and education level of

the study participants in the observed locations (r-correlation coefficient).

Location Age Education level

r p r p

ACR-L 0.214 0.066 −0.104 0.375

ACR-R 0.145 0.215 −0.109 0.353

ALIC-L 0.104 0.376 0.090 0.442

ALIC-R 0.018 0.881 0.009 0.941

BCC 0.232 0.046 0.020 0.862

CC 0.243 0.036 0.092 0.435

CGC-L 0.193 0.098 0.030 0.798

CGC-R 0.166 0.154 −0.111 0.343

CGH-L 0.229 0.048 −0.053 0.654

CGH-R 0.197 0.091 −0.092 0.430

CR-L 0.278 0.016 −0.086 0.462

CR-R 0.228 0.049 −0.058 0.619

CST-L 0.207 0.075 −0.067 0.570

CST-R 0.212 0.068 0.058 0.622

EC-L 0.304 0.008 −0.008 0.946

EC-R 0.304 0.008 0.034 0.775

FX 0.228 0.049 −0.049 0.677

FXST-L 0.014 0.904 0.119 0.310

FXST-R 0.119 0.308 0.061 0.605

GCC 0.247 0.032 −0.061 0.606

IC-L 0.171 0.141 0.184 0.113

IC-R 0.146 0.211 0.122 0.296

IFO-L 0.130 0.267 0.004 0.974

IFO-R 0.134 0.252 −0.116 0.321

PCR-L 0.320 0.005 0.055 0.640

PCR-R 0.238 0.040 0.113 0.335

PLIC-L 0.130 0.265 0.209 0.072

PLIC-R 0.095 0.420 0.215 0.064

PTR-L 0.309 0.007 0.152 0.193

PTR-R 0.266 0.021 0.176 0.132

RLIC-L 0.234 0.044 0.170 0.144

RLIC-R 0.248 0.032 0.067 0.567

SCC 0.156 0.180 0.313 0.006

SCR-L 0.279 0.015 −0.117 0.318

SCR-R 0.277 0.016 −0.085 0.468

SFO-L 0.296 0.010 −0.090 0.444

SFO-R 0.153 0.189 −0.141 0.229

SLF-L 0.256 0.027 −0.042 0.719

SLF-R 0.273 0.018 0.010 0.933

SS-L 0.372 0.001 0.016 0.893

SS-R 0.338 0.003 −0.056 0.633

UNC-L 0.068 0.562 0.078 0.507

UNC-R 0.214 0.065 0.239 0.039

Significant results are presented in bold case.

Significant positive correlations between AD and age were
detected in BCC (p= 0.001, Figure 4). There were no significant
correlations between AD and educational level (Table 5).

FIGURE 1 | The trend of FA decrease with advancing age in the posterior

thalamic radiation on the left.

FIGURE 2 | The trend of MD increase with advancing age in the sagittal

stratum on the left side.

However, with education level used as a control variable,
the significance of the diffusivity decrease with age in the BCC
was lost (Table 5A). There were no significant correlations with
MMSE scores.

The results of permutation tests are provided in
Supplementary Material.

DISCUSSION

The main goal of the study was to correlate white matter DTI
anisotropy and diffusivity measures (FA, MD, RD, and AD) in
healthy volunteers with chronological age and formal education
level. Additionally, we aimed to determine whether the gradient
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TABLE 3A | The results of partial correlation of MD with age, using education level

as a control variable.

Location Age

R p

ACR-L 0.202 0.084

ACR-R 0.132 0.263

ALIC-L 0.118 0.316

ALIC-R 0.019 0.873

BCC 0.237 0.042

CC 0.259 0.026

CGC-L 0.199 0.089

CGC-R 0.153 0.193

CGH-L 0.224 0.055

CGH-R 0.186 0.112

CR-L 0.270 0.020

CR-R 0.223 0.056

CST-L 0.200 0.088

CST-R 0.223 0.057

EC-L 0.306 0.008

EC-R 0.312 0.007

FX 0.223 0.056

FXST-L 0.031 0.791

FXST-R 0.129 0.273

GCC 0.242 0.038

IC-L 0.203 0.083

IC-R 0.166 0.157

IFO-L 0.132 0.264

IFO-R 0.120 0.310

PCR-L 0.331 0.004

PCR-R 0.258 0.027

PLIC-L 0.165 0.160

PLIC-R 0.129 0.274

PTR-L 0.337 0.003

PTR-R 0.298 0.010

RLIC-L 0.264 0.023

RLIC-R 0.261 0.025

SCC 0.213 0.069

SCR-L 0.267 0.021

SCR-R 0.268 0.021

SFO-L 0.288 0.013

SFO-R 0.136 0.247

SLF-L 0.253 0.030

SLF-R 0.278 0.017

SS-L 0.378 0.001

SS-R 0.334 0.004

UNC-L 0.080 0.499

UNC-R 0.258 0.026

Significant results are presented in bold case.

pattern of these associations was consistent with any of the
proposed physiological brain aging patterns.

In our study, FA values showed significant reduction with
advancing age in the PTR, which is the dorsal part of

thalamocortical radiations connecting the thalamus with cortical
centers. It consists of fibers that start from the caudal thalamic
nuclei (pulvinar and lateral geniculate) via the retrolenticular
part of the IC toward the parietal and occipital cortices. The
function of this tract is primarily somatosensory (comprises
parts of visual, gustatory, and auditory tracts) (28, 29). The
relationship between the decline in perceptive and cognitive
abilities is well-established in the process of aging; however,
growing evidence suggests that there is a direct association
between sensory deprivation-decreased processing of sensory
information- and cognitive decline (30). The decrease in FA
was observed in women with anorexia nervosa (31), patients
with a high risk of psychosis converting to manifest psychosis
(32), methamphetamine addicts (33), and children with cerebral
palsy (34). An interesting recent study showed the relationship
between cigarette smoking and changes in FA and MD in the
PTR (35), supporting the necessity to include the daily habits as
a sine-qua-non in future DTI studies (eg., nicotine and alcohol
consumption, substance abuse, and pharmaceuticals).

A significant increase inMDwith advancing age was observed
in the SS on the left side. This tract is positioned in the deep
lateral aspect of the cerebral hemisphere and organized into three
layers: superficial (consisting of inferior longitudinal fasciculus
and inferior part of SLF), middle (fronto- occipital fasciculus),
and deep (fibers of optic radiation) (36). It is included in the
information transport from parietal, occipital, cingulate, and
temporal gyri to the subcortical nuclei (thalamus and pontine
nuclei). In the past studies, the increase in MD was detected in
patients with essential tremors and has been suggested as one of
the differentials from Parkinson’s disease in these patients (37). It
was also observed in the mild traumatic injury of the brain (38),
children with ADHD (associated with aberrant myelination) (39)
but was also observed in healthy cigarette smokers (40).

A significant increase in RD with advanced age was detected
in the PTR, SS, and RLIC. RLIC is positioned dorsally to
the corticospinal and corticopontineus tracts but represents a
functionally separate entity because it carries parts of optic
radiation, proximal part of PTR, and occipito-tectal and occipito-
pontine fibers. Since the increase in this parameter was observed
in the PTR and RLIC, it is clear that, along with the close
anatomic relationship, there is also a functional connection
between these two structures, mainly in the somatosensory
information transmission. SS is also functionally associated with
the latter two tracts. Disturbances in the diffusivity of RLIC have
been priorly observed in depression (41), bipolar disorder (36),
methadone addiction (42), and traumatic injury of the brain
associated with sports (43).

A significant increase in AD with advancing age was detected
in BCC. The corpus callosum is the biggest commissural tract
that connects corresponding regions of cerebral hemispheres.
Different parts of CC are included in the transmission of various
information, with premotor and supplementary motor fibers of
the cortex located in the body 409. Madden et al. did not show
differences in AD with advanced age (44). However, Fan et al.
presented differences in FA between young (20–28 years) and
elderly adults (60–75 years) primarily in the anterior portion
of CC (within interhemispheric fibers), that were positively
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FIGURE 3 | The trend of RD increase with advancing age in the sagittal stratum (A) and posterior thalamic radiation (B).

correlated with performance on the visuospatial tasks—AD was
not explored in that particular study (45). Evidence supporting
the “last-in-first-out” theory was also presented in the study
of Davis et al. presenting greater age-related differences in
RD than in AD in the CC and UNC, thus supporting the
theory of myelodegeneration and retrogenesis (46). In our
study, however, AD was more sensitive to the changes in these
regions, thus indicating that these theoretical interpretations of
the white matter diffusivity changes are in fact a simplification
of the aging process. That is why we highlight the need for
a deeper understanding of the age-related effect on the white
matter integrity.

It is interesting to note that FA, MD, and RD were associated
with the diffusivity changes in projection tracts (that connect
cortical structures with the brainstem, cerebellum, and spinal
medulla). On the contrary, the AD was associated with diffusivity
changes in commissural tracts, connecting two hemispheres. In a
recent longitudinal study, that followed healthy participants aged
50–84 years (at the moment of the first scan, the average age of
women was 63.85 years and men was 67.31 years) during the
follow-up period of 7 years, showed the most prominent changes
in the FA and RD in commissural and projection tracts (47).
It is possible that the changes in these two parameters are first
observed in projection tracts, as shown in our study, and later
during chronological aging, are followed by diffusivity changes in
the commissural tracts as well.

Little is known about the oligodendrocyte dynamics and
myelin sheath remodeling in the mature brain. However,
recent studies confirmed that sensory enrichment could induce
experience-dependent myelination and robustly increase the
integration of oligodendrocytes (48). Reversely, the results of
our study, with age-related changes detected mainly in the

somatosensory tracts may imply that somatosensory deprivation
during healthy aging negatively affects myelin sheaths (in the
sense of myelin degradation and/ or disintegration) and results
in DTI metrics changes. This effect of somatosensory deprivation
on white matter integrity during the brain aging, should,
in our opinion, be included in the current theories of the
white matter degradation during aging process, along with the
myelodegeneration-retrogenesis and gradients of degenerations
(antero- posterior and supero-inferior).

It is interesting to see the overlap in the DTI metrics changes
observed in specific tracts, which could potentially clear the
etiology of age-related changes. We tried to group the differences
in DTI metrics in the following patterns, as shown in Table 6.
In our study, the observed patterns of age-related diffusivity
changes were the FA-RD (detected in PTR) and the MD-RD
pattern (detected in SS), speaking in favor of myleodegeneration
over axonal damage in the named tracts (Figure 5 showing brain
maps). In RLIC, we found the diffusivity changes reflected as RD
increased, also speaking in favor of myelodegeneration. Given the
absence of manifest cognitive impairment and the strict exclusion
criteria that we proposed for randomizing the subjects, in our
opinion, patterns found in our study sample were expected. In the
cohort of healthy, fully functional, and cognitively unchallenged
subjects, age-related myelin degeneration and loss seem to be
the leading mechanism of white matter diffusivity changes. One
recent study also tried to group the findings in DTImetrics across
the brain white matter tracts. The FA–RD pattern was observed
only in the posterior thalamic radiation in our study sample,
while in the study of Molloy et al., it was the most observed
pattern, detected in more than 30% of the brain tracts (10).
The FA–RD–AD pattern in this study was observed in almost
30% of the brain (10). Other patterns were more uncommon.

Frontiers in Neurology | www.frontiersin.org 7 June 2022 | Volume 13 | Article 87090967

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Boban et al. Age-Related Diffusivity Changes in Healthy Brain

TABLE 4 | Results of Pearson’s correlation of RD with age and education level of

the study participants in the observed locations (r-correlation coefficient).

Location Age Education level

r p r p

ACR-L 0.270 0.019 −0.067 0.568

ACR-R 0.242 0.036 −0.078 0.507

ALIC-L 0.079 0.498 0.148 0.206

ALIC-R 0.000 0.997 0.079 0.503

BCC 0.037 0.752 0.143 0.223

CC 0.090 0.443 0.186 0.109

CGC-L 0.116 0.320 0.034 0.772

CGC-R 0.116 0.320 −0.070 0.550

CGH-L 0.232 0.045 −0.080 0.497

CGH-R 0.228 0.049 −0.144 0.218

CR-L 0.347 0.002 −0.044 0.708

CR-R 0.331 0.004 −0.017 0.887

CST-L 0.138 0.236 −0.055 0.636

CST-R 0.167 0.153 –0.038 0.744

EC-L 0.287 0.013 −0.026 0.827

EC-R 0.257 0.026 −0.007 0.952

FX 0.234 0.044 −0.072 0.538

FXST-L 0.071 0.545 0.010 0.935

FXST-R 0.159 0.172 −0.060 0.612

GCC 0.214 0.065 0.063 0.592

IC-L 0.238 0.040 0.163 0.163

IC-R 0.179 0.125 0.115 0.327

IFO-L 0.038 0.744 0.070 0.553

IFO-R 0.071 0.546 −0.031 0.790

PCR-L 0.357 0.002 0.114 0.328

PCR-R 0.309 0.007 0.179 0.125

PLIC-L 0.140 0.232 0.206 0.076

PLIC-R 0.126 0.282 0.220 0.058

PTR-L 0.440 <0.001 0.108 0.357

PTR-R 0.369 0.001 0.075 0.521

RLIC-L 0.377 0.001 0.043 0.716

RLIC-R 0.303 0.008 −0.019 0.870

SCC 0.017 0.888 0.296 0.010

SCR-L 0.334 0.003 −0.075 0.521

SCR-R 0.334 0.003 −0.043 0.711

SFO-L 0.311 0.007 −0.102 0.383

SFO-R 0.184 0.114 −0.090 0.440

SLF-L 0.263 0.023 −0.026 0.825

SLF-R 0.246 0.033 0.028 0.812

SS-L 0.396 <0.001 −0.061 0.606

SS-R 0.392 <0.001 −0.121 0.299

UNC-L −0.148 0.205 0.225 0.052

UNC-R 0.043 0.716 0.339 0.003

Significant results are presented in bold case.

Burzynska et al. confirmed that FA was significantly correlated
with age in more than half of the brain white matter (13).
Molloy et al. showed that the highest percentage of voxels

TABLE 4A | The results of partial correlation of RD with age, using education level

as a control variable.

Location Age

R p

ACR-L 0.254 0.021

ACR-R 0.241 0.035

ALIC-L 0.075 0.480

ALIC-R 0.001 0.956

BCC 0.035 0.777

CC 0.090 0.445

CGC-L 0.114 0.318

CGC-R 0.112 0.316

CGH-L 0.244 0.051

CGH-R 0.226 0.048

CR-L 0.345 0.054

CR-R 0.331 0.053

CST-L 0.141 0.235

CST-R 0.160 0.158

EC-L 0.257 0.018

EC-R 0.250 0.020

FX 0.234 0.042

FXST-L 0.068 0.532

FXST-R 0.159 0.172

GCC 0.202 0.075

IC-L 0.238 0.054

IC-R 0.179 0.125

IFO-L 0.038 0.744

IFO-R 0.071 0.546

PCR-L 0.357 0.201

PCR-R 0.309 0.207

PLIC-L 0.287 0.232

PLIC-R 0.185 0.282

PTR-L 0.323 0.033

PTR-R 0.356 0.042

RLIC-L 0.343 0.028

RLIC-R 0.373 0.064

SCC 0.017 0.880

SCR-L 0.289 0.052

SCR-R 0.300 0.060

SFO-L 0.222 0.075

SFO-R 0.184 0.114

SLF-L 0.263 0.023

SLF-R 0.246 0.033

SS-L 0.311 0.020

SS-R 0.325 0.042

UNC-L 0.140 0.211

UNC-R 0.043 0.716

Significant results are presented in bold case.

significantly correlated with age were found in the forceps minor
(part of CC) (10). The FA–MD–RD pattern is related to chronic
white matter degeneration, mainly dependent on the myelin loss
during the aging process. The changes in AD, however, have
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FIGURE 4 | The trend of AD increase in the body of the corpus callosum.

been linked to axonal damage (in combination with FA changes
representing acute axonal swelling and fragmentation) (13). FA
alone changes have been suggested to reflect mildmicrostructural
changes with the loss of fiber structure without great tissue
loss. Additional MD changes, following FA changes, reflect the
presence of tissue loss and atrophy (46). The changes in RD
(combined with FA and, sometimes AD) were related to gliosis
and subsequent increase in extracellular tissue (48). Several
studies confirmed that greater changes in RD (compared to AD)
were found across the brain, similar to our results, suggesting
that the leading mechanism of white matter degradation is to
be associated with myelin degeneration (10, 13, 17, 46). The
findings in AD were inconsistent in our study, similar to other
studies from the available literature, showing both positive and
negative correlations with age (10, 13, 46). The explanation for
this finding in our study might be that our cohort had more
prevalent chronic axonal damage (related to the increase in AD)
or that these changes can be related to the incoherence in the
regions of crossing fibers (which is, in our opinion, a more
probable explanation).

Finally, no significant gender differences related to white
matter diffusivity metrics were detected (Figure 6). However,
this finding might be associated with the small sample with
uneven distribution of men and women (males significantly
outnumbering females).

Heterogeneity in findings in diffusivity changes across the
brain, in our opinion, cannot be explained by one single gradient
of physiological brain aging. It seems that different patterns of
degradation are true for different fiber tracts in the brain and
that no currently available theory can globally explain age-related
changes in the brain. Furthermore, the effect of somatosensory
decline should be included as one of the important covariables in
the existing patterns.

In addition, a recent study by Behler et al. showed that
diffusion properties of most white matter tracts in a healthy
aging brain followed a triphasic pattern (in a simplified manner,

TABLE 5 | Results of Pearson’s correlation of AD with age and education level of

the study participants in the observed locations (r-correlation coefficient).

Location Age Education level

r p r p

ACR-L –0.013 0.911 −0.102 0.386

ACR-R −0.097 0.407 −0.089 0.447

ALIC-L 0.084 0.475 −0.009 0.936

ALIC-R 0.028 0.814 −0.075 0.523

BCC 0.376 0.001 −0.162 0.166

CC 0.316 0.006 −0.088 0.451

CGC-L 0.152 0.192 0.004 0.974

CGC-R 0.104 0.374 −0.080 0.497

CGH-L 0.143 0.220 0.000 0.997

CGH-R 0.103 0.378 −0.006 0.957

CR-L 0.034 0.775 −0.108 0.356

CR-R −0.038 0.747 −0.087 0.457

CST-L 0.177 0.130 −0.046 0.692

CST-R 0.176 0.132 0.130 0.265

EC-L 0.219 0.059 0.024 0.841

EC-R 0.253 0.029 0.096 0.410

FX 0.166 0.155 0.036 0.757

FXST-L −0.053 0.652 0.184 0.114

FXST-R 0.028 0.813 0.155 0.186

GCC 0.144 0.216 −0.203 0.080

IC-L 0.039 0.743 0.144 0.217

IC-R 0.039 0.743 0.077 0.514

IFO-L 0.208 0.073 −0.092 0.434

IFO-R 0.142 0.225 −0.166 0.155

PCR-L 0.106 0.367 −0.052 0.657

PCR-R 0.021 0.859 −0.037 0.751

PLIC-L 0.082 0.484 0.152 0.193

PLIC-R 0.008 0.945 0.103 0.381

PTR-L −0.203 0.081 0.088 0.451

PTR-R −0.096 0.412 0.171 0.143

RLIC-L −0.077 0.509 0.226 0.052

RLIC-R 0.061 0.601 0.143 0.222

SCC 0.238 0.040 0.155 0.184

SCR-L 0.038 0.748 −0.103 0.380

SCR-R 0.015 0.898 −0.078 0.507

SFO-L 0.133 0.254 −0.030 0.799

SFO-R 0.020 0.868 −0.123 0.293

SLF-L 0.075 0.524 −0.042 0.721

SLF-R 0.144 0.217 −0.026 0.825

SS-L 0.114 0.329 0.139 0.235

SS-R 0.074 0.528 0.071 0.544

UNC-L 0.340 0.003 −0.179 0.124

UNC-R 0.287 0.013 −0.052 0.659

Significant results are presented in bold case.

FA showed a gradual increase during early adulthood followed
by a stable state during middle age, and gradual decline in
senium; RD, MD, and AD showed a decline during the early
adulthood, followed by the stable state in middle age and increase

Frontiers in Neurology | www.frontiersin.org 9 June 2022 | Volume 13 | Article 87090969

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Boban et al. Age-Related Diffusivity Changes in Healthy Brain

TABLE 5A | The results of partial correlation of AD with age, using education level

as a control variable.

Location Age

R p

ACR-L −0.028 0.814

ACR-R −0.111 0.346

ALIC-L 0.083 0.480

ALIC-R 0.017 0.884

BCC 0.362 0.002

CC 0.308 0.008

CGC-L 0.154 0.189

CGC-R 0.094 0.424

CGH-L 0.145 0.219

CGH-R 0.103 0.381

CR-L 0.019 0.875

CR-R −0.051 0.667

CST-L 0.172 0.143

CST-R 0.198 0.092

EC-L 0.225 0.054

EC-R 0.270 0.020

FX 0.173 0.141

FXST-L −0.028 0.814

FXST-R 0.051 0.669

GCC 0.120 0.310

IC-L 0.060 0.610

IC-R 0.050 0.673

IFO-L 0.198 0.091

IFO-R 0.121 0.303

PCR-L 0.100 0.399

PCR-R 0.016 0.893

PLIC-L 0.106 0.370

PLIC-R 0.023 0.847

PTR-L −0.193 0.099

PTR-R −0.074 0.531

RLIC-L −0.047 0.688

RLIC-R 0.083 0.482

SCC 0.265 0.022

SCR-L 0.024 0.841

SCR-R 0.004 0.972

SFO-L 0.131 0.268

SFO-R 0.002 0.984

SLF-L 0.070 0.556

SLF-R 0.142 0.227

SS-L 0.136 0.247

SS-R 0.085 0.471

UNC-L 0.323 0.005

UNC-R 0.283 0.015

Significant results are presented in bold case.

in senium), so that non-linear age correction should be applied
to most of the tracts. Cerebellar tracts (superior and middle
cerebellar pedunculi) showed basically no change over time (i.e.,
age correction is not applicable); optic radiation and anterior

TABLE 6 | Patterns of significant findings in selected ROIs.

Location FA MD RD AD

Posterior thalamic radiation

Sagittal stratum

Retrolenticular internal capsule

Body of the corpus callosum

The arrows represent significant decrease or increase, depending on the direction they

are pointing to downward-decrease, upward-increase.

limb of the internal capsule showed linear regression with age,
meaning that non-linear age correction is not necessary (49).

Study Limitations
There are some limitations to the study performed. Even though
the number of participants was justified by the power analysis,
it is possible that some correlations would have shown to be
significant if the study sample were larger, and this might be
resolved in a future study. However, it is important to highlight
that the exclusion criterion for our study sample was the presence
of white matter lesions including white matter hyperintensities
(WMH) which represents a pertinent factor for the assessment of
the changes in the white matter related to aging.

The second limitation of the study was the lack of a detailed
neurocognitive assessment of our participants (only a screening
cognitive test was performed as a part of the exclusion criteria).
MMSE scoring test represents a screening test, of high clinical
importance, but is not sensitive enough for the cases of early
cognitive impairment, thus, in our opinion, suitable for the
exclusion of cognitively challenged persons, but not suitable for
detailed correlations. Some of the tracts we analyzed are known
to be associated with affect and personality features, which means
that additional assessment of depression and anxiety would
be recommendable.

An additional limitation is a cross-sectional evaluation
and the lack of longitudinal design, since the changes in
diffusivity measurements may follow certain trajectories during
chronological aging in an individual.

It is necessary to point out that the maturation of the fibers
does not follow the identical dynamics in all observed tracts.
Some of the tracts (IFO, AIC, PLIC, SCC, BCC, GCC, UNC, SFO,
IFO, SLF) reach the full maturity (maximal FA and minimal MD
values) between 20 and 40 years of age (50). In one part of our
study sample, these tracts potentially did not develop their full
maturity, given that the average age of the sample was around
37 years.

The final (small) limitation of the study is the lack of
information on prematurity, which could also influence the
changes in tract diffusivity (CC in the first place) (51).

Even though there were no significant comorbidities noted
in the study sample, it will be reasonable to include additional
information on metabolic function (blood glucose level,
lipidemia, parameters of liver function, arterial tension, etc.) and
lifestyle in the future studies (52, 53).
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FIGURE 5 | Brain maps showing localization with significant age-related diffusivity changes (FA showed a significant decrease in posterior thalamic radiation, MD

showed a significant increase in left sagittal stratum, RD showed a significant increase in posterior thalamic radiation, and AD showed significant changes in the body

of corpus callosum).

It is also worth mentioning that advanced techniques for
evaluation of DWI data could provide more detailed information
than the DTI option (54) and added to the potential of
longitudinal studies in revealing the gradients of changes in
the DTI metrics are two main recommendations for the
future studies.

CONCLUSION

All four DTI metrics showed significant correlations with the
advancing age of healthy participants (FA in posterior thalamic
radiation, MD in left sagittal stratum, RD in the posterior
thalamic radiation, sagittal stratum, and retrolenticular limb
of internal capsule, and AD in body of the corpus callosum).
According to our study, RD showed the richest correlations with
age, out of all DTI metrics. FA, MD, and RD showed significant
changes in the diffusivity of projection fibers, while AD presented
diffusivity changes in the commissural fibers.

It is important to realize that all four DTI metrics are
necessary for the assessment of healthy brain aging effect on

white matter integrity, given that routinely analyzed parameters
(FA and MD) do not allow complete insight into diffusivity
changes. Since the changes in the white matter integrity
that we observed during healthy aging also overlap with
changes observed in several pathological conditions—psychiatric
disorders, traumatic lesions, and dementia/MCI—caution is
necessary when interpreting these differences in a healthy
individual. In such cases, a longitudinal follow-up is necessary to
track the trajectories of degenerative changes associated with the
aging brain.

Finally, the observed heterogeneity in diffusivity changes
across the brain, in our opinion, cannot be explained by
a single aging pattern (antero-posterior, supero-inferior, or
myelodegeneration- retrogenesis). It seems that different patterns
of degradation are true for different fiber tracts in the
brain and that no currently available theory can globally
explain age-related changes in the brain. Some additional
factors, such as the effect of somatosensory decline, should
be included as one of the important covariables in the
existing patterns.
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FIGURE 6 | Box plots showing gender differences in observed locations (1-male, 2- female).
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For patients suffering from brain tumor, prognosis estimation and treatment decisions are

made by a multidisciplinary team based on a set of preoperative MR scans. Currently,

the lack of standardized and automatic methods for tumor detection and generation of

clinical reports, incorporating a wide range of tumor characteristics, represents a major

hurdle. In this study, we investigate the most occurring brain tumor types: glioblastomas,

lower grade gliomas, meningiomas, and metastases, through four cohorts of up to

4,000 patients. Tumor segmentationmodels were trained using the AGU-Net architecture

with different preprocessing steps and protocols. Segmentation performances were

assessed in-depth using a wide-range of voxel and patient-wise metrics covering
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volume, distance, and probabilistic aspects. Finally, two software solutions have been

developed, enabling an easy use of the trained models and standardized generation

of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were

quite homogeneous across the four different brain tumor types, with an average true

positive Dice ranging between 80 and 90%, patient-wise recall between 88 and 98%,

and patient-wise precision around 95%. In conjunction to Dice, the identified most

relevant other metrics were the relative absolute volume difference, the variation of

information, and the Hausdorff, Mahalanobis, and object average symmetric surface

distances. With our Raidionics software, running on a desktop computer with CPU

support, tumor segmentation can be performed in 16–54 s depending on the dimensions

of the MRI volume. For the generation of a standardized clinical report, including the

tumor segmentation and features computation, 5–15 min are necessary. All trained

models have been made open-access together with the source code for both software

solutions and validation metrics computation. In the future, a method to convert results

from a set of metrics into a final single score would be highly desirable for easier

ranking across trained models. In addition, an automatic classification of the brain tumor

type would be necessary to replace manual user input. Finally, the inclusion of post-

operative segmentation in both software solutions will be key for generating complete

post-operative standardized clinical reports.

Keywords: metastasis, meningioma, glioma, RADS, MRI, deep learning, 3D segmentation, open-source software

1. INTRODUCTION

Prognosis in patients with brain tumors is heterogeneous with
survival rates varying from weeks to several years depending

on the tumor grade and type, and for which most patients will
experience progressive neurological and cognitive deficit (1).

Brain tumors can be classified as either primary or secondary.
In the former, tumors originate from the brain itself or its

supporting tissues whereas in the latter cancer cells have
spread from tumors located elsewhere in the body to reach
the brain (i.e., brain metastasis). According to the World
Health Organization classification of tumors (2), primary brain
tumors are graded by histopathological and genetic analyses and
can be regrouped in 100 different subtypes with frequent to
relatively rare occurrences. Among the most frequent subtypes,
tumors arising from the brain’s supportive cell population (i.e.,
glial tissue) are referred to as gliomas. The more aggressive
entities are labeled as high-grade gliomas (HGGs) and are
graded between 3 and 4, while the less aggressive entities are
referred to as diffuse lower grade gliomas (LGGs) and are
graded between 2 and 3. Tumors arising from the meninges,
which form the external membranous covering the brain, are
referred to as meningiomas. Aside from the aforementioned
large categories, other and less frequent tumor types exist
(e.g., in the pituitary, sellar, or pineal regions). Each tumor
category has distinct biology, prognosis, and treatment (3,
4). The most common primary malignant brain tumor type
in adults is high-grade glioma which remains among the
most difficult cancers to treat with a limited 5-year overall
survival (5).

For patients affected by brain tumors, prognosis estimation
and treatment decisions are made by a multidisciplinary team
(including neurosurgeons, oncologists, and radiologists), and
based on a set of preoperative MR scans. High accuracy in
the preoperative diagnostics phase is of utmost importance
for patient outcomes. Judgments concerning the complexity or
radicality of surgery, or the risks of postoperative complications
hinge on data gleaned from MR scans. Additionally, tumor-
specific characteristics such as volume and location, or cortical
structures profile can to a large degree be collected (6).
Retrospectively, such measurements can be gathered from the
analysis of surgical cohorts, multicenter trials, or registries
in order to devise patient outcome prediction models (7–9).
Reliable measurements and reporting of tumor characteristics
are, therefore, instrumental in patient care. Standard reporting
and data systems (RADSs) have been established for several solid
tumors such as prostate cancer (10) and lung cancer (11). Very
few attempts have been made for brain cancer in general (12)
or high-grade gliomas (13). The main goal of RADSs is to
provide rules for imaging techniques, terminology of reports,
definitions of tumor features, and treatment response to reduce
practice variation and obtain reproducible tumor classification. A
broad implementation can facilitate collaborations and stimulate
evaluation for the development and improvement of RADSs.

Currently, the lack of standardized and automatic methods
for tumor detection in brain MR scan represents a major hurdle
toward the generation of clinical reports incorporating a wide
range of tumor characteristics. Manual tumor delineation or
assessment by radiologists is time-consuming and subject to intra
and inter-rater variations that are difficult to characterize (14)
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and, therefore, rarely done in clinical practice. As a result,
informative tumor features (e.g., location or volume) are often
estimated from the images solely based on crude measuring
techniques (e.g., eyeballing) (15).

1.1. Related Study
From the fast-growing development in the field of deep learning,
convolutional neural networks have demonstrated impressive
performance in various segmentation tasks and benchmark
challenges, with the added-value of being fully automatic
and deterministic (16). Regarding brain tumor segmentation,
performances have specifically been assessed on the Brain Tumor
Segmentation Challenge (BraTS) dataset (17, 18). Occurring
every year since 2012, the challenge focuses on gliomas (i.e.,
HGGs and LGGs) and has reached a notable cohort size with
a total of 2,040 patients included in the 2021 edition, and
multiple MR sequences included for each patient (i.e., T1c,
T1w, T2, FLAIR). Segmentation performance has been assessed
using the Dice similarity coefficient and the 95th percentile
Hausdorff distance (HD95) as metrics (19). The current state-
of-the-art is an extension of the nnU-Net architecture (20) with
an asymmetrical number of filters between the encoding and
decoding paths, the substitution of all batch normalization layers
by group normalization, and the addition of axial attention (21).
An average Dice score of 85% together with a 17.70 mm
HD95 were obtained for the enhancing tumor segmentation
task in high-grade gliomas. The segmentation of other brain
tumor types has been sparsely investigated in the literature in
comparison, possibly due to a lack of open-access annotated
data, as illustrated by recent reviews or studies investigating
brain tumor segmentation in general (22, 23). Grovik et al.
used a multicentric and multi-sequence dataset of 165 metastatic
patients to train a segmentation model with the DeepLabV3
architecture (24, 25). The best segmentation results were around
79% Dice score with 3.6 false positive detections per patient on
average. Other prior studies have focused on using variations of
the DeepMedic architecture (26), using contrast-enhanced T1-
weighted MRI volumes as input, to train their segmentation
models (27, 28). Datasets were of a similar magnitude with
around 200 patients. However, in both cases the test sets were
limited to up to 20 patients, making it difficult to assess the
generalization ability of the trained models in the absence of
cross-validation studies. Obtained average Dice scores over the
contrast-enhancing tumor were approximating 75%, with almost
8 false positive detections per patient. From a recent review on the
use of machine learning applied to different meningioma-related
tasks using MRI scans (29), more than 30 previous studies have
investigated automatic diagnosis or grading but only a handful
focused on the segmentation task. In addition, the datasets’
magnitude used for segmentation purposes has been consistently
smaller than for the other tasks, with barely up to 126 patients
in the reported studies. Laukamp et al. reported the best Dice
scores using well-known 3D neural network architectures such
as DeepMedic and BioMedIA, though at the expense of heavy
preprocessing techniques the likes of atlas registration (30, 31).
In a previous study, we achieved equally promising performance
using an attention-based U-Net architecture, reaching an average

Dice score of up to 88% on contrast-enhanced T1-weighted MRI
volumes (32). In addition, the cross-validation studies performed
over up to 600 patients with a wide range of tumor sizes, coming
from the hospital and the outpatient clinic, exhibited a proper
ability to generalize from the trained models.

To summarize, with the exception of the BraTS challenge,
there is a dearth of high-quality MRI datasets for brain tumor
segmentation. Furthermore, open-access pretrained models and
inference codes are scarce and can be cumbersome to operate,
hence hindering the generation of private datasets for brain
tumor segmentation tasks. On the other hand, open-source
tools are being developed to assist in image labeling and the
generation of AI models for clinical evaluation, such as MONAI
Label (33) or Biomedisa (34). Yet, they do not integrate nor
provide access to the latest and highest performing brain tumor
segmentation models from the literature, or provide only semi-
automatic methods hence requiring manual inputs from the user.
From a validation standpoint, the focus has been on reporting
Dice scores and often Hausdorff distances, while many other
meaningful and possibly more relevant metrics exist and could
be investigated to better highlight the strengths and weaknesses
of the different segmentation methods (35, 36).

The literature on RADSs for brain tumors is equally
scarce with only few attempts for preoperative glioblastoma
surgery (13) or post-treatment investigation (37). In the former,
automatic segmentation and computation of relevant tumor
features were provided, and an excellent agreement has been
shown between characteristics computed over the manual and
automatic segmentation. In the latter, the interpretation of the
post-treatment MR scans was provided using a structured set
of rules but deprived of any automatic tumor segmentation or
image analysis support.

1.2. Contributions
While research is exceedingly ahead for glioma segmentation
under the aegis of the BraTS challenge community, the
segmentation of meningiomas and metastases is trailing behind.
In addition, validation studies in the literature have too often
been dominated by Dice score reporting and a broader inspection
is essential to ensure clinical relevance. Finally, the outcome
of this research is often not readily available, especially for the
intended end-users who are clinicians without programming
experience. As such, the contributions of our study are: (i) the
training of robust segmentation models for glioblastomas, lower
grade gliomas, meningiomas, and metastases assessed using a
panel of more than 20 different metrics to better highlight
performance, (ii) the development of two software solutions
enabling easy and fully automatic use of the trained models and
tumor features computation: Raidionics and Raidionics-Slicer,
and (iii) open-access models and source code for the software and
validation metrics computation.

2. DATA

For this study, four different datasets have been assembled,
one for each main tumor type considered: glioblastoma, lower
grade glioma, meningioma, and metastasis. The tumor type
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TABLE 1 | Overview of the datasets gathered for the four brain tumor types

considered.

Tumor Sequence # patients # sources Volume Volume

type type average (ml) range (ml)

Glioblastoma T1c 2134 15 34.37± 28.83 [0.01, 243.39]

LGG FLAIR 659 4 51.71± 78.60 [0.14, 478.83]

Meningioma T1c 719 2 19.40± 28.62 [0.07, 209.38]

Metastasis T1c 396 2 17.53± 17.97 [0.01, 114.77]

Only one MRI sequence is available for each patient, and T1c corresponds to Gd-

enhanced T1-weighted MR scans.

was assessed at the time of surgery, when applicable, following
the currently applicable guidelines (i.e., either (38) or (39)).
Tumors were manually segmented in 3D by trained raters
using as support either a region growing algorithm (40)
or a grow cut algorithm (41, 42), and subsequent manual
editing. Trained raters were supervised by neuroradiologists and
neurosurgeons. On contrast-enhanced T1-weighted scans, the
tumor was defined as gadolinium-enhancing tissue including
non-enhancing enclosed necrosis or cysts. On FLAIR scans, the
tumor was defined as the hyperintense region. The four datasets
are introduced in-depth in the subsequent sections. An overall
summary of the data available is reported in Table 1, and some
visual examples are provided in Figure 1.

2.1. Glioblastomas
The glioblastoma dataset is made of a total of 2,134 Gd-
enhanced T1-weighted MRI volumes originating from 14
different hospitals, and one public challenge.

The first 1,841 patients have been collected from 14 different
hospitals worldwide: 38 patients from the Northwest Clinics,
Alkmaar, Netherlands (ALK); 97 patients from the Amsterdam
University Medical Centers, location VU medical center,
Netherlands (AMS); 86 patients from the University Medical
Center Groningen, Netherlands (GRO); 103 patients from the
Medical Center Haaglanden, the Hague, Netherlands (HAG);
75 patients from the Humanitas Research Hospital, Milano,
Italy (MIL); 74 patients from the Hôpital Lariboisière, Paris,
France (PAR); 134 patients from the University of California
San Francisco Medical Center, U.S. (SFR); 49 patients from the
Medical Center Slotervaart, Amsterdam, Netherlands (SLO); 153
patients from the St Elisabeth Hospital, Tilburg, Netherlands
(TIL); 171 patients from the University Medical Center Utrecht,
Netherlands (UTR); 83 patients from the Medical University
Vienna, Austria (VIE); 72 patients from the Isala hospital, Zwolle,
Netherlands (ZWO); 456 patients from the St. Olavs Hospital,
TrondheimUniversity Hospital, Norway (STO); and 249 patients
from the Sahlgrenska University Hospital, Gothenburg, Sweden.
An in-depth description of most cohorts can be found in a
recent study (13). The remaining 293 patients correspond to
the training set of the BraTS challenge (edition 2020) but
have already undergone preprocessing transformations such
as skull-stripping.

Overall, MRI volume dimensions are covering
[159; 896] × [86; 896] × [17; 512] voxels, and the voxel
size ranges [0.26; 1.25] × [0.26; 2.00] × [0.47; 7.50]mm3. An
average MRI volume is [303 × 323 × 193] pixels with a spacing
of [0.86× 0.84× 1.24] mm3.

2.2. Lower Grade Gliomas
The lower grade glioma dataset is made of a total of 659 FLAIR
MRI volumes, with mostly grade 2 diffuse gliomas, coming from
four different hospitals: 330 patients from the Brigham and
Women’s Hospital, Boston, USA; 165 patients from the St. Olavs
Hospital, Trondheim University Hospital, Norway; 154 patients
from the Sahlgrenska University Hospital, Gothenburg, Sweden;
and 10 from the University Hospital of North Norway, Norway.

Overall, MRI volume dimensions are covering
[192; 576] × [240; 640] × [16; 400] voxels, and the voxel
size ranges [0.34; 1.17] × [0.34; 1.17] × [0.50; 8.0] mm3. An
average MRI volume is [349× 363× 85] pixels with a spacing of
[0.72× 0.72× 4.21] mm3.

2.3. Meningiomas
The meningioma dataset is made of 719 Gd-enhanced T1-
weighted MRI volumes, mostly built around a dataset previously
introduced (43), showcasing patients either followed at the
outpatient clinic or recommended for surgery at the St. Olavs
Hospital, Trondheim University Hospital, Norway.

Overall, MRI volume dimensions are covering
[192; 512] × [224; 512] × [11; 290] voxels, and the voxel
size ranges [0.41; 1.05] × [0.41; 1.05] × [0.60; 7.00] mm3. An
average MRI volume is [343 × 350 × 147] pixels with a spacing
of [0.78× 0.78× 1.67] mm3.

2.4. Metastases
The metastasis dataset is made of a total of 396 Gd-enhanced T1-
weighted MRI volumes, collected from two different hospitals:
329 patients from the St. Olavs Hospital, Trondheim University
Hospital, Norway; and 67 patients fromOsloUniversity Hospital,
Oslo, Norway.

Overall, MRI volume dimensions are covering
[128; 560] × [114; 560] × [19; 561] voxels, and the voxel
size ranges [0.43; 1.33] × [0.43; 1.80] × [0.45; 7.0]mm3. An
average MRI volume is [301 × 370 × 289] pixels with a spacing
of [0.85× 0.76× 1.08]mm3.

3. METHODS

First, the process for automatic brain tumor segmentation
including data preprocessing, neural network architecture, and
training design is introduced in Section 3.1. Second, the tumor
characteristics extraction process, using the generated tumor
segmentation as input, is summarized in Section 3.2. Finally,
a description of the two developed software solutions for
performing segmentation and standardized reporting is given in
Section 3.3.
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FIGURE 1 | Examples of brain tumors from the raw MRI volumes collected in this study. Each row illustrates a tumor type: glioblastoma, lower grade glioma,

meningioma, and metastasis (from top to bottom). The manual annotation contours are overlaid in red.
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TABLE 2 | Summary of the model training strategy followed for each tumor type.

Tumor type Preprocessing Strategy Protocol

Glioblastoma (ii) skull-stripping (i) from-scratch (i) leave-one-out

LGG (i) tight clipping (i) from-scratch (ii) 5-fold

Meningioma (i) tight clipping (i) from-scratch (ii) 5-fold

Metastasis (ii) skull-stripping (ii) transfer-learning (ii) 5-fold

3.1. Tumor Segmentation
The architecture selected to train segmentation models for each
brain tumor type is AGU-Net, which has shown to perform
well on glioblastoma and meningioma segmentation (32, 44).
In the following, the different training blocks are presented
with some inner variations specified by roman numbers inside
brackets. A global overview is provided in Table 2 summarizing
used variants.

Architecture: Single-stage approach leveraging multi-scale
input and deep supervision to preserve details, coupled with
a single attention module. The loss function used was the
class-averaged Dice loss, excluding the background. The final
architecture was as described in the original article with 5 levels
and [16, 32, 128, 256, 256] as convolution blocks.

Preprocessing: The following preprocessing steps
were used:

1. resampling to an isotropic spacing of 1mm3 using spline
interpolation of order 1 from NiBabel 1.

2. (i) tight clipping around the patient’s head, excluding the
void background, or (ii) skull-stripping using a custom brain
segmentation model.

3. volume resizing to 128 × 128 × 144 voxels using spline
interpolation of order 1.

4. intensity normalization to the range [0, 1].

Training strategy: Models were trained using the Adam
optimizer over a batch size of 32 samples with accumulated
gradients (actual batch size 2), stopped after 30 consecutive
epochs without validation loss improvement, following either: (i)
training from scratch with 1e−3 initial learning rate, or transfer
learning with an initial learning rate of 1e−4 fine-tuning over the
best glioblastoma model.

For the data augmentation strategy, the following transforms
were applied to each input sample with a probability of 50%:
horizontal and vertical flipping, random rotation in the range
[−20◦, 20◦], and translation up to 10% of the axis dimension.

Training protocol: Given the magnitude difference within
our four datasets, two different protocols were considered: (i) a
three-way split at the hospital level whereby MRI volumes from
one hospital constituted the validation fold; MRI volumes from a
second hospital constituted the test fold; and the remaining MRI
volumes constituted the training fold. As such, each hospital was
used in turn as the test set in order to properly assess the ability of
the differentmodels to generalize. Or (ii) a 5-fold cross-validation
with a random two-way split over MRI volumes whereby four

1https://github.com/nipy/nibabel

folds are used in turn as a training set and the remaining one as a
validation set, without the existence of a proper separate test set.

3.2. Preoperative Clinical Reporting
For the generation of standardized preoperative clinical
reports in a reproducible fashion, the computation of tumor
characteristics was performed after alignment to a standard
reference space. As described in-depth in our previous study (13),
the reference space was constituted by the symmetric Montreal
Neurological Institute ICBM2009a atlas (MNI) (45). The atlas
space did not possess any brain average as FLAIR sequence, the
T1 atlas file was used for all tumor types.

For each tumor type, the collection of features includes
volume, laterality, multifocality, cortical structure location
profile, and subcortical structure location profile. Specifically
tailored for glioblastomas, resectability features are, therefore, not
available for the other brain tumor types.

3.3. Proposed Software
In order to make our models and tumor features easily available
to the community, we have developed two software solutions.
The first one is a stand-alone software called Raidionics, and the
second one is a plugin to 3D Slicer given its predominant and
widespread use in the field (46). Both solutions provide access
to a similar back-end including inference and processing code.
However, the GUI and intended user interactions differ. The
trained models are stored in a separate online location and are
downloaded on the user’s computer at runtime. Models can be
improved over time and a change will be automatically detected,
resulting in the replacement of outdated models to the user’s
machine. Raidionics can be seen as an improved solution to our
initial GSI-RADS software, covering not only glioblastomas but
all major brain tumor types, offering the option to compute a
similar standardized report, and providing a refined graphical
user interface enabling the user to visually assess the results.

3.3.1. Stand-Alone Solution: Raidionics
The software proposes two modes: (i) single-use where only one
patient is to be processed and results can be visually assessed
in the 2D viewer, and (ii) batch-mode whereby a collection
of patients can be processed sequentially without any viewing
possibility. In each mode, the option is left to the user to
solely perform tumor segmentation or to compute the whole set
of tumor characteristics and generate the standardized report.
For each patient, the software expects an MRI scan as input
(i.e., Gd-enhanced T1-weighted or FLAIR sequence) and the
tumor type must be manually selected. Additionally, a pre-
existing tumor segmentation mask can be provided to bypass the
automatic segmentation, if collecting the tumor characteristics is
the main interest and manual annotations have been performed
beforehand. The total set of processed files saved on disk includes
the standardized reports, brain and tumor segmentationmasks in
both patient and MNI space, cortical and subcortical structures
masks in both patient and MNI space, and the registration files
to navigate from patient to MNI space. To complement the
reporting and give the possibility for follow-up statistical studies,
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the complete set of computed features is also provided in comma
separated value format (i.e., .csv).

The software has been developed in Python 3.6.9, using
PySide2 v5.15.2 for the graphical user interface, and only uses
the Central Processing Unit (CPU) for the various computations.
The software has been tested and is compatible with Windows
(≥ 10), macOS (≥ Catalina 10.15), and Ubuntu Linux (≥ 18.04).
An illustration of the software is provided in Figure 2. Cross-
platform installers and source code are freely available at https://
github.com/dbouget/Raidionics.

3.3.2. 3D Slicer Plugin: Raidionics-Slicer
The 3D Slicer plugin has been developed using the DeepInfer
plugin as baseline (47) and is mostly intended for tumor
segmentation purposes. Through a slider, the possibility is
provided to manually alter the probability threshold cutoff in
order to refine the proposed binary mask. Further manual
editing can be performed thereafter using the existing 3D
Slicer functionalities. The back-end processing code has been
bundled into a Docker image for convenience, and therefore,
administrator rights are required for the end-user to perform the
installation locally. The same inputs, behavior, and outputs can
be expected as for the stand-alone software.

The GitHub repository for the 3D Slicer plugin can be
found at https://github.com/dbouget/Raidionics-Slicer, and an
illustration is provided in Figure 3.

4. VALIDATION STUDIES

In the validation studies, only the automatic segmentation
performances are assessed. The clinical validity and relevance of
the extracted tumor features have been addressed thoroughly in
a previous study (13). To better grasp the different aspects of
the segmentation performance, a wider set of metrics is studied
as described in Section 4.1. For the voxel-wise segmentation
task, only two classes are considered as the whole tumor extent
(including contrast-enhancing regions, cysts, and necrosis) is the
target: non-tumor tissue or tumor tissue. In that sense, a positive
voxel is a voxel exhibiting tumor tissue, whereas a negative voxel
is a voxel exhibiting background or normal tissue.

4.1. Metrics
Following a review of metrics for evaluating 3D medical
image segmentation (36), a broad spectrum of 25 metrics
was selected, computed either voxel-wise or instance-wise,

FIGURE 2 | Illustration of the Raidionics software after generating the standardized report for a patient suffering from glioblastoma. The left side presents the tumor

characteristics belonging to the report, whereas the right side offers a simplistic view.
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FIGURE 3 | Illustration of the Raidionics-Slicer plugin after generating the standardized report for a patient suffering from glioblastoma.

and grouped according to the following categories: overlap-
based, volume-based, information theory-based, probabilistic,
and spatial distance-based.

4.1.1. Voxel-Wise:
For quantifying semantic segmentation performance, we
have selected the following metrics computed directly and
indiscriminately over all voxels of a given patient MRI volume:

1. Overlap-based: (i) True Positive Rate (TPR), also called recall
or sensitivity, is the probability that an actual positive voxel
will test positive; (ii) True Negative Rate (TNR), also called
specificity, is the probability that an actual negative voxel will
test negative; (iii) False Positive Rate (FPR), is the probability
that a false alarm will be raised (i.e., a negative voxel will test
positive); (iv) False Negative Rate (FNR), also called missed
rate, is the probability that a true positive voxel will test
negative; (v) Positive Predictive Value (PPV), also referred to
as precision, is the ratio of truly positive voxels over all voxels
which tested positive; (vi) Dice score (Dice), also called the
overlap index and gauging the similarity of two samples, is
the most commonly used metric in validating medical volume
segmentation (48); (vii) Dice True Positive score (Dice-TP)
is similar to the Dice score but is only computed over the
true positive predictions (i.e., when the model found the
tumor); (viii) Intersection Over Union (IoU), also called the
Jaccard index, measures the volume similarity as the size
of the intersection divided by the size of the union of two
samples (49); (ix) Global Consistency Error (GCE), defined as
the error measure averaged over all voxels (50).

2. Volume-based: (i) Volumetric Similarity (VS), as the absolute
volume difference divided by the sum of the compared
volumes (51); (ii) Relative Absolute Volume Difference

(RAVD), as the relative absolute volume difference between
the joint binary objects in the two images. This is a percentage
value in the range [−1.0,∞) for which a 0 denotes an
ideal score.

3. Information theory-based: (i) Normalized Mutual
Information (MI), normalization of the mutual information
score to scale the results between 0 (no mutual information)
and 1 (perfect correlation) (52); (ii) Variation Of Information
(VOI), measuring the amount of information lost or gained
when changing from one variable to the other, in this case, to
compare clustering partitions (53).

4. Probabilistic: (i) Cohen’s Kappa Score (CKS), measuring the
agreement between two samples (54). The metric ranges
between −1.0 and 1.0 whereby the maximum value means
complete agreement, and zero or lower means chance
agreement; (ii) Area Under the Curve (AUC), first presented
as the measure of accuracy in the diagnostic radiology (55),
further adjusted for the validation of machine learning
algorithms; (iii) Volume Correlation (VC), as the linear
correlation in binary object volume, measured through
the Pearson product-moment correlation coefficient where
the coefficient ranges [−1., 1.]; (iv) Matthews Correlation
Coefficient (MCC), as a measure of the quality of binary
and multiclass classifications, taking into account true and
false positives and negatives and generally regarded as a
balanced measure (56). The metric ranges between −1.0
and 1.0 whereby 1.0 represents a perfect prediction, 0.0 an
average random prediction, and −1.0 an inverse prediction;
(v) Probabilistic Distance (PBD), as a measure of the distance
between fuzzy segmentation (57).

5. Spatial-distance-based: (i) 95th percentile Hausdorff distance
(HD95), measuring the boundary delineation quality (i.e.,
contours). The 95% version is used to make measurements
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more robust to small outliers (58); (ii) the Mahalanobis
distance (MHD), measuring the correlation of all points and
calculated according to the variant described for the validation
of image segmentation (59); (iii) Average Symmetric Surface
Distance (ASSD), as the average symmetric surface distance
between the binary objects in two images.

4.1.2. Instance-Wise:
For quantifying instance detection performance, we chose the
following metrics, reported in a patient-wise fashion (PW) or
an object-wise fashion (OW). In the latter, and in case of
multifocal tumors, each focus is considered as a separate tumor.
The detection threshold has been set to 0.1% Dice to determine
whether an automatic segmentation is eligible to be considered as
a true detection or a false positive.

1. Overlap-based: (i) Recall, as the ratio in % of tumors properly
identified; (ii) Precision, as the ratio in % of tumors incorrectly
detected; (iii) F1-score (F1), measuring information retrieval
as a trade-off between the recall and precision (60); (iv)
False Positives Per Patient (FPPP), as the average number of
incorrect detections per patient.

2. Probabilistic: (i) Adjusted Rand Index (ARI), as a similarity
measure between two clusters by considering all pairs of
samples and counting pairs that are assigned in the same
or different clusters between the model prediction and the
ground truth (61). The metric ranges from −1.0 to 1.0,
whereby random segmentation has an ARI close to 0.0 and
1.0, stands for a perfect match.

3. Spatial-distance-based: (i) Object Average Symmetric Surface
Distance (OASSD), as the average symmetric surface distance
(ASSD) between the binary objects in two volumes.

4.2. Measurements
Pooled estimates, computed from each fold’s results, are reported
for each measurement (62). Overall, measurements are reported
as mean and SD (indicated by±) in the tables.

Voxel-wise: For semantic segmentation performance, the
Dice score is computed between the ground truth volume and
a binary representation of the probability map generated by a
trained model. The binary representation is computed for ten
different equally-spaced probability thresholds (PT) in the range
[0, 1].

Instance-wise: For instance detection performance, a
connected components approach coupled with a pairing strategy
was employed to associate ground truth and detected tumor
parts. A minimum size threshold of 50 voxels was set and objects
below that limit were discarded. A detection was deemed true
positive for any Dice score strictly higher than 0%.

4.3. Experiments
To validate the traied models, the following set of experiments
was conducted:

1. Overall performance study: k-fold cross-validation studies
for the different tumor types for assessing segmentation
performance. For easy interpretation, only Dice scores
together with patient-wise and object-wise recall, precision,
and F1-score values are reported.

2. Metrics analysis: in-depth performance comparison using
the additional metrics, and confusion matrix computation
between the metrics to identify redundancy in their use.

3. Representative models selection: identification of one final
segmentation model for each tumor type, which will be made
available for use in our software solutions.

4. Speed study: computation of the pure inference speed and
the total elapsed time required to generate predictions for
a new patient, obtained with CPU support and reported in
seconds. The operations required to prepare the data to be
sent through the network, initialize the environment, load the
trained model, and reconstruct the probability map in the
referential space of the original volume are accounted for. The
experiment was repeated ten consecutive times over the same
MRI volume for each model, using a representative sample of
each dataset in terms of dimension and spacing.

5. RESULTS

5.1. Implementation Details
Results were obtained using a computer with the following
specifications: Intel Core Processor (Broadwell, no TSX, IBRS)
CPU with 16 cores, 64GB of RAM, Tesla V100S (32GB)
dedicated GPU and a regular hard-drive. Training and inference
processes were implemented in Python 3.6 using TensorFlow
v1.13.1, and the data augmentation was performed using the
Imgaug Python library (63). The metrics were for the most
part computed manually using the equations described in
the Supplementary Material, or alternatively using the sklearn
v0.24.2 (64) and medpy v0.4.0 (65) Python libraries. The source
code used for computing the metrics and performing the
validation studies is made publicly available at https://github.
com/dbouget/validation_metrics_computation.

5.2. Overall Performance Study
An overall summary of brain tumor segmentation performance
for all four tumor subtypes is presented in Table 3. Meningiomas
and lower grade gliomas appear more difficult to segment given
average Dice scores of 75%, compared to average Dice scores
of 85% for glioblastomas and metastases. A similar trend, yet
with a slightly smaller gap, can be noted for the Dice-TP scores
ranging between 81 and 90% with a standard deviation of
approximately 15%, indicating the quality and relative stability
of the trained models. From a patient-wise perspective, those
results demonstrate the difficulty of achieving good recall while
keeping the precision steadily above 95%. Even though a direct
comparison to the literature is impossible since different datasets
have been used, obtained performance is on-par if not better than
previously reported performances where Dice scores have been
ranging from 75 to 85%.

Regarding the lower grade glioma tumor subtype, the diffuse
nature of the tumors and less pronounced gradients over image
intensities are possible explanations for the lower segmentation
performance. For the meningioma category, the reason for the
lower Dice-score and recall values can be attributed to the
larger number of small tumors (< 2ml) compared to other
subtypes. In addition, outliers have been identified in this dataset
whereby a small extent of the tumors were either partly enhanced
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TABLE 3 | Segmentation performance summary for each tumor type.

Voxel-wise Patient-wise Object-wise

Tumor type Dice Dice-TP F1-score Recall Precision F1-score Recall Precision

Glioblastoma 85.69± 16.97 87.36± 12.17 97.40± 01.01 98.08± 01.29 96.76± 01.43 89.61± 04.11 85.78± 07.95 94.19± 02.71

LGG 75.39± 25.95 81.24± 16.01 93.60± 01.74 92.86± 03.19 94.42± 01.07 81.58± 02.25 75.58± 02.41 88.70± 03.16

Meningioma 75.00± 30.52 84.81± 15.07 90.67± 01.42 88.46± 02.12 93.25± 04.76 83.85± 03.60 80.93± 04.34 87.77± 08.30

Metastasis 87.73± 18.94 90.02± 12.80 97.54± 00.76 97.46± 01.38 97.63± 00.77 88.71± 01.34 82.80± 02.38 95.60± 01.45

because of calcification, or non-enhancing due to intraosseous
growth. For all tumor types, Dice-score distributions are reported
against tumor volumes in Figure 4 for 10 equally-sized bins.
For meningiomas, four bins are necessary to group tumors with
a volume of up to 4ml while only one bin is necessary for
the glioblastomas, indicating a volume distribution imbalance
between the two types. The diamond-shaped points outside the
boxes represent cases where the segmentation model did not
perform well (cf. Supplementary Figures S1–S4).

While tumor volumes and outlier MR scans are reasons for
the discrepancy in Dice and recall values across the board,
precision is rather unaffected and more stable. The nature
of the convolutional neural network architecture and training
strategy used can explain those results. By leveraging volumes
covering the full brain, global relationships can be learned by
the trained model hence reducing the confusion between tumor
regions and other contrast-enhancing structures such as blood
vessels. Given GPU memory limitation, the preprocessed MR
scans have undergone significant downsampling, and as such
small tumors are reduced to very few voxels, impacting mainly
recall performance.

Finally, an average decrease of∼ 10% can be noticed between
patient-wise and object-wise detection metrics, whereby satellite
tumors are on average an order of magnitude smaller than
the main tumor, and are hence more prone to be omitted or
poorly segmented by our models. Segmentation performance is
illustrated in Figure 5. Each row corresponds to one tumor type
and each column depicts a different patient.

5.3. Metrics Analysis
Side-by-side voxel-wise performances regarding the overlap-
based metrics are reported in Tables 4, 5. Unsurprisingly, given
the good precision performance and the absence of patients
without a tumor, both TNR and its opposite FPR scores are
almost perfect for all tumor types. Similarly, the TPR and its
opposite FNR metrics are scoring similarly to Dice. Within each
tumor category, the overlap-basedmetrics are following the same
trend whereby a higher average Dice score would correlate with
a higher score for any other metrics and vice versa (e.g., IoU).
An exception can be made regarding the behavior of the GCE
metric, scoring on average higher for glioblastomas than for
meningiomas and as such not following the same pattern as
Dice. Upon careful visual inspection, the GCE metric seems
to be extremely sensitive to outliers, either coming from the
image quality or manual ground truth correctness (cf. top row

in Supplementary Figures S1–S4). Given the non-normalized
state of the GCE metric, and its absence of any upper bound,
an extremely poor agreement between manual ground truth and
automatic segmentation will result in score orders of magnitude
higher than its average expression over a given dataset. Regarding
the two volume-based metrics, featured rightmost in the second
table, an antagonistic pattern toward Dice can be observed. The
VS metric has the same cross-type trend as Dice with similar
yet slightly greater scores. On the other hand, while the RAVD
metric scores best over the metastasis group similar to Dice, its
worst average value is obtained for the glioblastoma group, hence
potentially exhibiting the same frailty toward outliers as for the
GCE metric.

Next off, voxel-wise performance for information theory-
based and probabilistic metrics are regrouped in Table 6. The
MI and VOI metrics, both based on information theory, are
exhibiting an inverse behavior in line with observations about
the relationship between Dice and GCE metrics. The normalized
mutual information metric ranges from 0.668 to 0.829 for
Dice scores between 75 and 87%, showcasing stability but also
correlation. On the contrary, the VOImetric expresses a behavior
concurrent to GCE whereby the worst performance is obtained
for the lower grade gliomas and then glioblastomas categories,
while it performs best over metastases where Dice also scores
the highest. Alike the aforementioned metric groups exhibiting
inner discrepancies, three of the five probabilistic metrics follow
a similar trend scoring high alongside Dice, with an average
gap of 0.1 corresponding to a ∼ 10% Dice score difference.
Meanwhile, the PBD metric has a behavior of its own scoring
order of magnitude worse for the meningioma category than
for the three other subtypes. The metric is not normalized and
an extremely poor agreement between the manual ground truth
and automatic segmentation would result in an extremely large
score, similar to the GCE metric, hence reporting the median
score, in addition, might be of interest (cf. second row in
Supplementary Figures S1–S4).

Finally, the voxel-wise distance-based metrics are reported
in Table 7. Similar cross-type trends can also be noted whereby
the best HD95 of 4.97 mm is obtained for the glioblastoma
category and the worst HD95 of 10 mm formeningiomas, heavily
correlated to Dice performance. Our average HD95 results
appear lower than previously reported results in the literature,
however, a strong statement can hardly be made as the tumors
featured can vary highly in terms of volume and number of
satellites which might reflect greatly on metrics’ average scores.
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FIGURE 4 | Volume-wise (equally binned) Dice performance as boxplots for each of the four tumor types.

The other two spatial distance-based metrics display similar
behavior to HD95, whereby tumor types can be ranked as follows
based on best to worse performance: glioblastoma, metastasis,
lower grade glioma, and meningioma.

Regarding instance-wise metrics, grouped inTable 8, the close
OASSD average values between glioblastomas and meningiomas
represent the most surprising outcome given the 5% difference
in F1-score. Unsurprisingly, the lower grade glioma category
achieves the highest average OASSD with 2.6 mm together
with the lowest F1-score. As one might expect, the amount
of FPPP correlates greatly with the average precision values
obtained. Ultimately, the ARI metric generates scores extremely
similar to voxel-wise Dice and correlates highly with the F1-
score whereby the glioblastoma and metastasis categories obtain
almost 0.1 more than for the meningioma and lower grade
glioma subtypes.

For completeness, the correlation between the different
metrics computed in this study has been assessed, and the results
over the glioblastoma category are shown in Table 9 (cf. other
correlation matrices in Supplementary Tables S2, S4, S6, S8).
Somemetrics have been excluded given inherent correlation from

their computation, such as FPR and FNR being the opposite
of TNR and TPR. Similarly, metrics having computation in
a voxel-wise, patient-wise, or instance-wise fashion were not
considered in the matrix (i.e., recall, precision, and F1-score).
Overall, the conclusions identified by analyzing the raw average
results are further confirmed whereby a majority of voxel-wise
metrics correlate with one another and thus do not bring any
additional information to Dice. However, relevant insight can
be obtained from the RAVD and GCE/VOI metrics given their
low correlation to Dice and their higher sensitivity toward
outliers, enabling to quantify the ability to generalize the model
or potentially the quality of the data and manual ground truth
(cf. third row in Supplementary Figures S1–S4). The correlation
between HD95 and MHD appears also quite low for spatial
distance-based metrics, indicating potential usefulness. Finally,
in the instance-wise category, the OASSD is a stand-alone metric
offering to properly assess model performance over the detection
of satellite tumors. To conclude, a final pool of metrics to
consider for benchmarking purposes and capturing all aspects
of the segmentation performances are Dice, RAVD, VOI, HD95,
MHD, and OASSD. Given the task, reporting patient-wise and
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FIGURE 5 | Examples of segmentation performances. One row illustrates one tumor type: glioblastoma, lower grade glioma, meningioma, metastasis (from top to

bottom), and each column depicts a different patient. The manual delineation is shown in red, the automatic segmentation in blue, and the patient-wise Dice score in

white.

instance-wise recall, precision, and F1-score is always of interest
because of an innate comprehension of their meaning, easy to
interpret for clinicians or other end-users.

5.4. Representative Models Selection
Only one model can be provided in the software solutions
for each tumor type, and the best model selection was

done empirically according to the following criterion: the
size of the validation or test set, average Dice score, and
patient-wise F1-score performances. The exhaustive list of
chosen models is the following: the model trained for fold
0 was selected for the glioblastomas, the model trained for
fold 3 was selected for the lower grade gliomas, for the
meningiomas the model trained for fold 2 was selected,
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TABLE 4 | Voxel-wise overlap-based metrics performance summary for each tumor type.

Tumor type TPR TNR FPR FNR PPV

Glioblastoma 87.88± 17.64 99.96± 00.06 00.04± 00.06 12.12± 17.64 87.35± 13.29

LGG 77.91± 27.89 99.90± 00.16 00.09± 00.16 22.08± 27.89 82.16± 17.01

Meningioma 77.44± 32.48 99.97± 00.04 00.02± 00.04 22.56± 32.48 84.77± 15.69

Metastasis 88.45± 20.82 99.98± 00.03 00.01± 00.03 11.54± 20.82 89.43± 16.78

TABLE 5 | Voxel-wise performance summary for each tumor type for overlap-based and volume-based metrics.

Overlap-based Volume-based

Tumor type Dice Dice-TP IoU GCE (1e4) VS RAVD

Glioblastoma 85.69± 16.97 87.36± 12.17 77.59± 17.99 12.34± 12.57 90.43± 16.94 13.98± 171.2

LGG 75.39± 25.95 81.24± 16.01 65.72± 25.32 34.15± 46.34 82.20± 26.44 07.88± 60.14

Meningioma 75.00± 30.52 84.81± 15.07 67.13± 29.39 09.04± 17.53 80.21± 31.08 07.87± 61.31

Metastasis 87.73± 18.94 90.02± 12.80 81.56± 20.42 04.55± 07.62 91.37± 18.61 02.11± 55.35

TABLE 6 | Voxel-wise performance summary for each tumor type for information theory-based and probabilistic metrics.

Information theory-based Probabilistic

Tumor type MI VOI CKS AUC VC MCC PBD

Glioblastoma 0.787± 0.168 0.011± 0.009 0.856± 0.169 0.939± 0.088 0.978± 0.089 0.875± 0.122 0.840± 24.02

LGG 0.668± 0.246 0.026± 0.030 0.753± 0.259 0.889± 0.139 0.961± 0.119 0.812± 0.167 0.573± 04.82

Meningioma 0.691± 0.291 0.008± 0.013 0.749± 0.305 0.887± 0.162 0.954± 0.149 0.841± 0.171 5.358± 103.4

Metastasis 0.829± 0.191 0.004± 0.006 0.877± 0.189 0.942± 0.104 0.978± 0.100 0.901± 0.127 0.152± 0.623

TABLE 7 | Voxel-wise performance summary for each tumor type for spatial

distance-based metrics.

Tumor type HD95 MHD ASSD

Glioblastoma 04.97± 09.06 00.41± 03.69 01.46± 03.22

LGG 08.37± 13.31 00.53± 03.27 02.19± 05.06

Meningioma 10.11± 21.82 00.72± 03.57 02.77± 07.91

Metastasis 07.54± 20.61 00.54± 04.56 01.73± 05.89

and finally for the metastases the model trained for fold 2
was selected.

5.5. Speed Study
A comparison in processing speed regarding pure tumor
segmentation and complete generation of standardized reports
is provided in Table 10 when using the Raidionics software with
CPU support. The high-end computer is the computer used
for training the models, whereas the mid-end computer is a
Windows laptop with an Intel Core Processor (i7@1.9GHz), and
16GB of RAM.

For the smallest MRI volumes on average, 17 s are needed
to perform tumor segmentation whereas 4.5 min are required
to generate the complete standardized report with the high-end
computer. Unsurprisingly, the larger the MRI volume the more
time required to perform the different processing operations

(cf. Supplementary Section S3). For the largest MRI volumes
overall, 54 s are needed to perform tumor segmentation whereas
15.1 min are required to generate the complete standardized
report. When using the mid-end laptop, overall runtime is
increased by 1.5 times for the different MRI volume sizes. On
average, 9 min are necessary to generate the standardized report
for MRI volumes of reasonable quality.

6. DISCUSSION

In this study, we have investigated the segmentation of a range

of common main brain tumor types in 3D preoperative MR

scans using a variant of the Attention U-Net architecture.
We have conducted experiments to assess the performances of
each trained model using close to 30 metrics and developed
two software solutions for end-users to freely benefit from
our segmentation models and standardized clinical reports.
The main contributions are the high performances of the
models, on-par with performances reported in the literature
for the glioblastomas, with illustrated robustness and ability to
generalize due to the multiple and widespread data sources.
In addition, the two proposed open-access and open-source
software solutions include our best models, together with a
RADS for computing tumor characteristics. This is the first open
RADS solution that supports all major brain tumor types. The
software is user-friendly, requiring only a few clicks and no
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TABLE 8 | Instance-wise performance for each tumor type.

Tumor type F1-score Recall Precision FPPP ARI OASSD

Glioblastoma 89.61± 04.11 85.78± 07.95 94.19± 02.71 0.078± 0.037 0.856± 0.169 01.45± 02.82

LGG 81.58± 02.25 75.57± 02.40 88.67± 03.16 0.129± 0.041 0.751± 0.259 02.60± 06.10

Meningioma 83.85± 03.60 80.93± 04.34 87.77± 08.30 0.151± 0.128 0.749± 0.305 01.62± 04.09

Metastasis 88.71± 01.34 82.79± 02.38 95.60± 01.45 0.061± 0.020 0.877± 0.189 0.672± 0.869

TABLE 9 | Metrics correlation matrix for glioblastoma segmentation.

Overlap Volume Information theory Probabilistic Spatial distance Instance-wise

Dice TPR TNR PPV IoU GCE VS RAVD MI VOI CKS AUC VC MCC PBD HD95 MHD ASSD ARI OASSD

Dice 1.0 0.7 0.29 0.62 0.98 -0.22 0.94 -0.35 0.99 -0.23 1.0 0.71 0.78 1.0 -0.34 -0.55 -0.43 -0.71 1.0 -0.3

TPR 0.7 1.0 -0.17 -0.07 0.71 -0.08 0.62 0.1 0.7 -0.08 0.7 1.0 0.51 0.71 -0.26 -0.38 -0.34 -0.47 0.7 -0.2

TNR 0.29 -0.17 1.0 0.58 0.28 -0.76 0.29 -0.36 0.33 -0.76 0.29 -0.17 0.23 0.29 -0.04 -0.16 -0.04 -0.27 0.29 -0.22

PPV 0.62 -0.07 0.58 1.0 0.64 -0.24 0.55 -0.49 0.64 -0.25 0.62 -0.07 0.47 0.63 -0.16 -0.38 -0.21 -0.47 0.62 -0.22

IoU 0.98 0.71 0.28 0.64 1.0 -0.24 0.9 -0.29 0.99 -0.24 0.98 0.71 0.71 0.99 -0.28 -0.55 -0.37 -0.7 0.98 -0.31

GCE -0.22 -0.08 -0.76 -0.24 -0.24 1.0 -0.19 0.13 -0.3 1.0 -0.23 -0.09 -0.14 -0.23 0.02 0.18 0.03 0.29 -0.23 0.28

VS 0.94 0.62 0.29 0.55 0.9 -0.19 1.0 -0.37 0.9 -0.2 0.94 0.62 0.76 0.92 -0.36 -0.48 -0.43 -0.65 0.94 -0.26

RAVD -0.35 0.1 -0.36 -0.49 -0.29 0.13 -0.37 1.0 -0.31 0.15 -0.35 0.1 -0.39 -0.34 0.18 0.19 0.14 0.28 -0.35 0.15

MI 0.99 0.7 0.33 0.64 0.99 -0.3 0.9 -0.31 1.0 -0.31 0.99 0.7 0.74 0.99 -0.31 -0.56 -0.4 -0.71 0.99 -0.32

VOI -0.23 -0.08 -0.76 -0.25 -0.24 1.0 -0.2 0.15 -0.31 1.0 -0.23 -0.08 -0.15 -0.24 0.03 0.18 0.03 0.3 -0.24 0.28

CKS 1.0 0.7 0.29 0.62 0.98 -0.23 0.94 -0.35 0.99 -0.23 1.0 0.71 0.78 1.0 -0.34 -0.55 -0.43 -0.71 1.0 -0.3

AUC 0.71 1.0 -0.17 -0.07 0.71 -0.09 0.62 0.1 0.7 -0.08 0.71 1.0 0.51 0.71 -0.27 -0.38 -0.34 -0.47 0.71 -0.2

VC 0.78 0.51 0.23 0.47 0.71 -0.14 0.76 -0.39 0.74 -0.15 0.78 0.51 1.0 0.78 -0.49 -0.51 -0.58 -0.71 0.78 -0.22

MCC 1.0 0.71 0.29 0.63 0.99 -0.23 0.92 -0.34 0.99 -0.24 1.0 0.71 0.78 1.0 -0.36 -0.55 -0.44 -0.71 1.0 -0.31

PBD -0.34 -0.26 -0.04 -0.16 -0.28 0.02 -0.36 0.18 -0.31 0.03 -0.34 -0.27 -0.49 -0.36 1.0 0.16 0.97 0.29 -0.34 0.05

HD95 -0.55 -0.38 -0.16 -0.38 -0.55 0.18 -0.48 0.19 -0.56 0.18 -0.55 -0.38 -0.51 -0.55 0.16 1.0 0.25 0.89 -0.55 0.14

MHD -0.43 -0.34 -0.04 -0.21 -0.37 0.03 -0.43 0.14 -0.4 0.03 -0.43 -0.34 -0.58 -0.44 0.97 0.25 1.0 0.4 -0.43 0.06

ASSD -0.71 -0.47 -0.27 -0.47 -0.7 0.29 -0.65 0.28 -0.71 0.3 -0.71 -0.47 -0.71 -0.71 0.29 0.89 0.4 1.0 -0.71 0.2

ARI 1.0 0.7 0.29 0.62 0.98 -0.23 0.94 -0.35 0.99 -0.24 1.0 0.71 0.78 1.0 -0.34 -0.55 -0.43 -0.71 1.0 -0.3

OASSD -0.3 -0.2 -0.22 -0.22 -0.31 0.28 -0.26 0.15 -0.32 0.28 -0.3 -0.2 -0.22 -0.31 0.05 0.14 0.06 0.2 -0.3 1.0

The color intensity of each cell represents the strength of the correlation, where blue denotes direct correlation and red denotes inverse correlation.

TABLE 10 | Segmentation (Segm.) and standardized reporting (SR) execution speeds for each tumor subtype, using our Raidionics software.

High-end computer (Desktop) Mid-end computer (Laptop)

Dimensions (voxels) Segm. (s) SR (m) Segm. (s) SR (m)

LGG 394× 394× 80 16.69± 0.426 04.50± 0.09 28.69± 0.577 07.32± 0.07

Meningioma 256× 256× 170 17.21± 0.425 05.48± 0.12 31.41± 0.862 09.09± 0.32

Glioblastoma 320× 320× 220 21.99± 0.177 05.89± 0.03 33.65± 1.429 09.06± 0.24

Metastasis 560× 560× 561 59.06± 1.454 15.35± 0.41 98.54± 2.171 24.06± 0.93

programming to use, making it easily accessible for clinicians.
The overall limitations are those already known for deep learning
approaches whereby a higher amount of patients or data sources
would improve the ability to generalize, boost segmentation
performances, and increase the immunity toward rare tumor
expressions. The employed architecture also struggles with
smaller tumors given the large downsampling to feed the entire

3D MR scan in the network, hence the need for a better design
combining local and global features either through multiple steps
or ensembling.

The architecture and training strategy used in this study
were identical to our previously published work considering
that the intent was not to directly make advances on the
segmentation task. Nevertheless, the stability and robustness
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to train efficient models had been documented, alongside
performance comparison to another well-known architecture
[e.g., nnU-Net (20)], thus not precluding its use to train models
for other brain tumor types. Aside from evident outliers in the
datasets, where either tumors with partial or missing contrast
uptake or suboptimal manual annotations were identified, the
major pitfall of using the AGU-Net architecture lies in its struggle
to segment equally satisfactorily small tumor pieces with a
volume below 2ml. Overall, the glioblastoma model is expected
to be the most robust and able to generalize since patient data
from 15 different sources were used. For other models trained
on data from much fewer hospitals, with an expected limited
variability in MR scan quality, their robustness is likely to be
inferior. While larger datasets are often correlated with improved
segmentation performance, the metastasis model is the best
performing with the lowest amount of patients included. The
relative easiness of the task from a clear demarcation of the
tumor from surrounding normal tissue in contrast-enhanced T1-
weighted volumes, and the potentially low variance in tumor
characteristics with patient data coming from two hospitals only,
can explain the results. Additionally, the metastasis model has
been trained by transfer-learning using as input the second
best performing glioblastoma model where the most data was
used, which may have been the compelling factor. Lower-grade
gliomas represent the most difficult type to manually segment
since tumors are diffuse and infiltrating with an average volume
in FLAIR sequences a lot higher than in T1 sequences for the
other tumor types, and as such overall worse performances
were expected.

The in-depth assessment of a larger pool of metrics allowed
us to identify redundancy and uniqueness and proved that the
Dice score is overall quite robust and indicative of expected
performance. However, the sole use of the Dice score cannot
cover all aspects of model performance, and spatial distance-
based metrics (e.g., HD95 and MHD) are suggested to be used
in conjunction as providing values uncorrelated to Dice. In
addition, some metrics were identified to be more sensitive to
outliers and are as such powerful to either assess the ability to
generalize a model across data acquired on different scanners
from multiple sources or quickly identify potential issues in a
large body of data. Finally, and depending on the nature of
the patients included in one’s study and the number of satellite
tumors, specific object-wise metrics are imperative to use (e.g.,
OASSD). Only a combination of various metrics computed
either voxel-wise, patient-wise, or instance-wise can give the full
picture of a model’s performance. Unfortunately, interpreting
and comparing sets of metrics can prove challenging, and
as such further investigations regarding their merging into a
unique informative and coherent score are fundamental [e.g.,
Roza (66)]. Furthermore, an inadequacy lies in the nature of
the different metrics whereby some can be computed across
all segmentations generated by a trained model, whereas others
are exclusively eligible on true positive cases, i.e., when the
model has correctly segmented to some extent of the tumor.
For models generating perfect patient-wise recall, all metrics
will be eligible for every segmentation. However, in this field

of research and as of today, no trained model can fulfill
this requirement due to the substantially large inter-patient
variability. Ideally, the identification of relevant metrics, bringing
unique information for interpreting the results, should not be
confined to the validation studies. More metrics should be
considered to be a part of the loss function computation during
the training of neural network architectures. Attempts have been
made toward using the Hausdorff distance as a loss function,
but a direct minimization is challenging from an optimization
viewpoint. For example, approximation of Hausdorff distance
based on distance transforms, on morphological operations, or
with circular and spherical kernels showed potential for medical
image segmentation (67). In general, a careful mix between losses
(e.g., Dice, cross-entropy, and HD95) is challenging to achieve
and adaptive strategies might be required to avoid reaching a
local minimum where overall segmentation performance may
suffer (68).

As a current trend in the community, inference code and
trained segmentation models are often at best available on
GitHub repositories. As a consequence, only engineers, or
people with some extent of knowledge in machine learning
and programming, can benefit from such research advances.
Besides, the research focus is heavily angled toward gliomas,
due to the BraTS challenge influence, whereby segmentation
models are expected to yield superior performance than for
meningiomas and metastases. By developing and giving free
and unrestricted access to our two proposed software solutions,
we hope to facilitate more research on all brain tumor types.
Willing research institutes have the opportunity to generate
private annotated datasets at a faster pace than through fully
manual labor by exploiting our trained models. Having made
all source code available on GitHub, as customarily done, we
made the effort to further make stand-alone solutions with easy-
to-use GUIs. Hopefully, clinicians and other non-programming
end-users should feel more comfortable manipulating such
tools, available across the three major operating systems
and necessitating only a computer with average hardware
specifications. For the generation of standardized clinical reports,
the computation of tumor characteristics relies heavily on
the quality of the automatic segmentation, occasional mishaps
are expected as models are not perfect and can omit the
tumor. Therefore, manual inputs will be required sporadically
to correct the tumor segmentation. Over time, new and better
models will be generated and made available seamlessly into
the two software through regular updates. For the time being,
support for AGU-Net models only is provided due to its
lighter codebase compared to nnU-Net, for similar overall
performances. From a software bundling and deployment
perspective, integrating a heavier inference framework and
mixing backend engines (i.e., TensorFlow and Torch) will make
it more challenging to create stable executables for Raidionics
on Mac, Windows, and Ubuntu. Support for other architectures
will be considered if new models clearly outperform the current
models.

In the future, an approach incorporating a set of metrics
and converting them into one final score would be highly
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desirable (e.g., Roza). Not only would it help to automatically
select the best model from a k-fold validation study from
one unique score, but a proper assessment and ranking across
multiple methods would be enabled. With all preoperative brain
tumor types available for segmentation and reporting in our
software, a key missing component is the automatic tumor type
classification to supplementmanual user input. Concurrently, the
variety and amount of tumor characteristics to compute should
be extended, considering more type-specific features similar to
the resection index for glioblastomas. Alternatively, bringing a
similar focus on post-operative segmentation of residual tumors
is of great interest to both assess the quality of the surgery
and refine the estimated patient outcome. The generation of a
complete post-operative standardized clinical report would also
be permitted with new features such as the extent of resection.
Otherwise, intensifying the gathering of patient data from more
widespread hospital centers and a larger array of MRI scanners
is always of importance. The inclusion of more than one MR
sequence per patient as segmentation input has the potential to
boost overall performance, but at the same time might reduce
models’ potency as not always routinely available across all
centers worldwide.

7. CONCLUSION

Efficient and robust segmentation models have been trained on
pre-operative MR scans for the four main brain tumor types:
glioblastoma, lower grade glioma, meningioma, and metastasis.
In-depth performance assessment allowed to identify the most
relevant metrics from a large panel, computed either voxel-wise,
patient-wise, or instance-wise. Trained models and standardized
reporting have been made publicly available and packaged into a
stand-alone software and a 3D Slicer plugin to enable effortless
widespread use.
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characterizing motor neuron
disease—A clinico-radiological
and neuroscientific perspective

Freimut D. Juengling1,2,3*, Frank Wuest1, Sanjay Kalra2,4,

Federica Agosta5, Ralf Schirrmacher1,6, Alexander Thiel7,
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McGill University, Montreal, QC, Canada, 8Department of Nuclear Medicine, University of Ulm
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of Ulm Medical Center, Ulm, Germany, 10Department of Neurology, Ulm University Medical Center,
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Neuroimaging assessment of motor neuron disease has turned into a

cornerstone of its clinical workup. Amyotrophic lateral sclerosis (ALS),

as a paradigmatic motor neuron disease, has been extensively studied

by advanced neuroimaging methods, including molecular imaging by

MRI and PET, furthering finer and more specific details of the cascade

of ALS neurodegeneration and symptoms, facilitated by multicentric

studies implementing novel methodologies. With an increase in multimodal

neuroimaging data on ALS and an exponential improvement in neuroimaging

technology, the need for harmonization of protocols and integration of

their respective findings into a consistent model becomes mandatory.

Integration of multimodal data into a model of a continuing cascade of

functional loss also calls for the best attempt to correlate the di�erent

molecular imaging measurements as performed at the shortest inter-modality

time intervals possible. As outlined in this perspective article, simultaneous

PET/MRI, nowadays available at many neuroimaging research sites, o�ers

the perspective of a one-stop shop for reproducible imaging biomarkers on

neuronal damage and has the potential to become the new gold standard

for characterizing motor neuron disease from the clinico-radiological and

neuroscientific perspectives.

KEYWORDS

ALS, motor neuron disease, PET/MRI, DTI, fMRI, SV2A, TrkB/BDNF

Frontiers inNeurology 01 frontiersin.org

93

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.890425
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.890425&domain=pdf&date_stamp=2022-08-17
mailto:fjuengli@ualberta.ca
https://doi.org/10.3389/fneur.2022.890425
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2022.890425/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Juengling et al. 10.3389/fneur.2022.890425

Introduction

Based on current guidelines, clinical workup of amyotrophic

lateral sclerosis (ALS) will include neuroimaging to rule out

structural lesions and neurologic conditions that sometimes

account for early clinical features seen in patients suspected

of having primary motor neuron disease (1). The clinical

management of this highly invalidating condition, however,

clearly necessitates, as early as possible, accurate diagnostic

and prognostic information on the associated motor neuron

degeneration to direct appropriate clinical handling of the

individual patient. Neuroimaging has proven to provide reliable

in vivo biomarkers to better define the various clinical

entities within ALS and to provide additional complementary

information to the standard clinical workup (2).

Current situation of neuroimaging
for motor neuron disease

Instrumentation and image
processing—MRI

RecentMRI applications for motor neuron disease including

ALS have focused both on quantitative and qualitative analysis

of structural changes in T1-weighted images as assessed by

automatic analysis approaches and, in a body of more recent

studies, on the analysis of microstructural alterations within

the brain and spinal cord by the application of varieties of

diffusion-weighted MRI sequences.

Additionally, substantial efforts have been made utilizing

PET to generate newer and more biologically based

classifications of ALS and its subtypes (3–5). PET, as a

non-invasive in vivo imaging technique, provides quantitative

data at the molecular level, with novel radiotracers targeting

neurons, microglia and astrocytes metabolism, receptor and

protein density, as well as oxidative stress.

Advances in computational analyses of multimodal

imaging datasets, including deep learning-based applications

of artificial intelligence (AI), are just opening the door for a

more comprehensive understanding of the pathophysiological

cascade of neurodegeneration in motor neuron disease. Here,

hypothesis-guided approaches including neuropathological

concepts and network-based analyses will be center stage and

will eventually find their way into clinical practice.

Crucial information will also be derived from neuroimaging

fingerprinting of genetically defined ALS phenotypes like the

association with C9orf72 hexanucleotide repeat expansions,

especially in longitudinal investigations of presymptomatic

mutation carriers. Neuroimaging offers the possibility to stratify

ALS patients according to their intrinsic progression rate, based

on cross-sectional and longitudinal studies, thus helping to

optimize disease management, enhancing the design of drug

trials, and guiding the use of novel individualized treatments

when these become available (6, 7).

Further advances in the clinical application of neuroimaging

in motor neuron disease will have to rely extensively on

a new stage of neuroscientific cooperation, building on

existing collaborations between researchers and infrastructures

specialized in ALS and facilitating multicenter joint projects that

enable grand-scale projects, such as those, for example, led by

the Neuroimaging Society in Amyotrophic Lateral Sclerosis (8)

or the Canadian ALS Neuroimaging Consortium (CALSNIC)

(9). While multicentric studies are most welcome to increase

the number of observations in subgroups and different disease

stages, the accordingly increasing amount of data collected is

paralleled by the need for harmonization of protocols, being the

foundation for deducting evidence out of data, and integration

of their respective findings into a consistent model of a possible

continuing cascade of functional loss.

Integration of multimodal data into a consistent model

aiming to correlate the different anatomical, functional, and

molecular imaging measurements also calls for the best attempt

to perform all measurements to correlate at the shortest

intermodality time intervals possible, which is most important

in a rapidly progressing disease. But even in the case of a

primarily slowly progressing disease, pathological processes can

be expected to be accentuated at times, as typically is the case for

inflammatory cascades. Any attempt to draw conclusions from

observations even a few days apart may thus be jeopardized by

the underlying pathological process itself.

The advent of simultaneous PET/MRI, which industries

had quickly turned from prototype research instruments into

reliable, integrated commercial scanners, has proven to provide

a stable, reproducible, and calibrated hybrid modality that

not only by design acquires data simultaneously, but also

adds value by its potential of dynamically mutually informing

their reconstruction algorithms with either modality data.

With PET/MRI available at many neuroimaging research sites,

the perspective of a one-stop shop for reproducible imaging

biomarkers on neuronal damage gains importance, and the call

for harmonization of protocols becomes feasible, as the stringent

design of hybrid PET/MRI eases the implementation of research

protocols and research MR sequences at the existent sites.

The two available PET/MRI scanner models built by the

industry providers GE Medical and Siemens Healthineers

make use of their respective provider’s 3T MRI platform and

state-of-the-art PET technology, enabling rapid adaption of

advances in image acquisition and reconstruction to their

clinical platforms. Improved MR sequences, e.g., providing

diffusion imaging at a resolution of 1 × 1 × 1 mm3,

necessary to characterize microstructural abnormalities (10),

can thus be easily adopted and distributed throughout the

neuroimaging research sites. Harmonization of MR protocols

across different vendors also has proven feasible for the specific

needs to characterize microstructural changes in corticospinal,
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corticorubral, corticostriatal, and hippocampal tracts at different

stages of disease progression in ALS (8). The same holds true

for protocols for resting state fMRI (11) and MR spectroscopy

(MRS) (12).

While PET measurements, in principle, allow for absolute

quantitation measures, such as regional cerebral blood

volume, regional cerebral glucose metabolism, or regional

receptor occupancy, the evaluation of multicentric data makes

procedures for harmonization of data acquisition and processing

mandatory (13–16), which is simplified for PET/MRI, where,

by design, variability of the underlying technology is limited.

Given that technical prerequisites have been met, quantitative

measures of different systems relevant to motor neuron disease

can be non-invasively acquired and PET/MRI proves useful for

individual assessment of the stage of disease (Figure 1).

Molecular imaging of
disease-inherent pathological
alterations—PET

Glucose metabolism and regional
inflammatory changes

While many of the more recent radiotracers are still

experimental, measures of regional glucose metabolism using
18F-FDG-PET have reached clinical utility in ALS, as evaluated

by a panel of experts in the field of nuclear medicine and

neurology. By an analysis of the most relevant 18F-FDG-PET

investigations by the Population, Intervention, Comparison,

Outcome (PICO) model, the provided incremental value as

compared with the information resulting from the clinical tests

routinely performed had been assessed, concluding that 18F-

FDG-PET offers good evidence to support ALS diagnosis (17).

This analysis, however, was based on stand-alone 18F-FDG-

PET investigations, which did not take into account same-time

structural or functional MRI measures. The metabolic patterns

identified in ALS consisted of significant hypometabolism

in prefrontal, frontal, precentral, and postcentral regions,

bilaterally, associated with significant hypermetabolism in

posterior occipital and middle temporal cortices, cerebellum,

midbrain, and corticospinal tracts, findings which are atypical

in functional studies investigating neurodegenerative diseases.

Clinically relevant is that the extent of metabolic brain changes

in frontal lobes is correlated with cognitive dysfunction (18),

thus distinguishing patients with cognitive impairment and

possible overlap with frontotemporal dementia from those with

pure motor disease (19). The pattern of glucose metabolism

also was found to discriminate ALS patients from patients

with Parkinson’s plus syndromes (20), and, if using machine

learning-based techniques, such as support-vector machine

discriminant analysis, FDG PET also has proven to be useful

for automatically classifying patients with amyotrophic lateral

sclerosis vs. controls (21).

More recent studies have found an inverse correlation

between precentral and postcentral metabolic activity and

clinical stages (22), as well as an inverse correlation between

prefrontal and limbic metabolism and apathy (23). When

coregistered MRI for partial volume correction was used, FDG

PET was able to identify metabolic changes in presymptomatic

carriers of the C9orf72 repeat expansion (24). Also, precentral

metabolism distinguished patients with the SOD1 mutations

(SOD-1 ALS) from sporadic ALS (sALS). Specifically, right

precentral and paracentral metabolism was relatively increased

in patients with SOD-1 ALS as compared to sALS (25).

It was hypothesized that a relative increase of 18F-FDG-

related signal in ALS patients in pyramidal cells in the

motor cortex and in their projections to the spinal cord

is secondary to a widespread microglial activation and

astrocytosis reactive to the reduced neuronal density, with

the proliferation of astrocytes being the main determinant of

glucose uptake from the intraparenchymal capillaries (26). To

better delineate the spatial pattern of metabolic changes in

the brain stem and cervical spinal cord, an innovative study

capitalized on the potential of integrated PET/MRI to improve

result accuracy in small anatomic structures by separately

analyzing glucose metabolic patterns in the midbrain/pons,

medulla oblongata and cervical spinal cord of ALS and

frontotemporal dementia (FTD) patients as compared to normal

controls (27). They found a significant and intercorrelating

increment in glucose metabolism in the midbrain/pons and

medulla oblongata in ALS/FTD patients (spinal-ALS and FTD-

motor neuron disease subgroups), interpreted to relate to

neuroinflammation, namely activated microglia. While they did

not report relevant associations between clinical and metabolic

features, medulla oblongata hypermetabolism was associated

with shortened survival of ALS patients. In the context of

their study, the simultaneously available MRI was instrumental

for the identification of corticospinal tract hyperintensities to

differentiate ALS from clinically overlapping FTD patients of

the motor neuron subgroup, and for the detection of the

brain stem and cervical spinal cord hypermetabolism in favor

of regional neuro-inflammation linked to activated microglia.

Confirmatory studies, directly measuring microglial activation

using radioligands targeting TSPO (18 kDa translocator

protein), have been performed either using the first-generation

TSPO ligand 11C-PK-11195 (28, 29) or one of the second-

generation ligands 18F-FEPPA (30), 18F-DPA714 (31), or 11C-

PBR28, the latter of which has proven to allow for microglia

imaging of fiber tracts (32). Technical issues that have not been

addressed by a “PET-only” approach for those investigations

include the need for partial volume correction, as the measured

signal would depend on the regional volume of the anatomical

structure of interest. Partial volume correction, however, is

extensively dependent on coincident, morphological imaging,
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FIGURE 1

Examples of integration of multimodal PET and MR approaches for individual assessment of motor neuron disease/ALS.

where the quality of coregistration of sequentially acquired

datasets is a major determinant of bias. It can therefore be

expected that using combined information out of a single

coordinate system of acquisition, TSPO-PET/MRI will represent

an even more useful biomarker in cross-sectionally and

longitudinally evaluating the spread of inflammatory lesions.

Novel markers for neuroinflammation

Purinergic P2X7 ionotropic receptor

More recently, novel markers for neuroinflammation

targeting the purinergic P2X7 ionotropic receptor (P2X7R)

have been successfully introduced into human PET-imaging

[(33) brain kinetic modeling and quantification of brain P2X7

receptors in patients with Parkinson’s disease and healthy

volunteers] (34). As P2X7R is expressed in astrocytes, microglia,

and oligodendrocytes, where they mediate inflammasome

signaling (35). A couple of preclinical and clinical studies suggest

the implication of P2X7Rs in ALS pathogenesis (36–38). As a

whole group of P2X7-Receptor antagonists is currently under

development, posing a possible new therapeutic approach for

ALS (39). A quantitative assessment of P2X7R as an initial

and longitudinal biomarker, along with morphological and

functional MR measures will be a basic necessity in according

clinical studies, naturally favoring PET/MRI as an imaging

modality of choice.

C-X-C motif chemokine receptor antagonists

Another promising candidate target suitable as a biomarker

for neuroinflammation is the cyclooxygenase-enzyme-2 (COX-

2), the possible involvement of which in ALS is indicated

by preclinical data (36) and clearly needs systematic in vivo

studies that will be enabled by the very recent development of

appropriate radiopharmaceutical targets (40–42). If a significant

involvement of COX-2 could be documented at any stage

of disease, this could open the rationale for stage-dependent

antioxidative treatment (43, 44), and would again need to be

reflected in MRI-based functional measures.

More experimental measures for neuroinflammation are

based on findings indicating the implication of C-X-C motif

chemokine receptor (CXCR)-4 and CXCR-3, which critically
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contribute to the disease process in systemic inflammation

(45–47), opening another door to possible future therapeutic

principles targeting the respective C-X-C motif chemokine

receptor (48, 49). As a couple of specific radiopharmaceutical

targets have been developed for preclinical and clinical use (40–

42, 50), the selection of an appropriate tracer as a biomarker in

motor neuron disease would depend on binding characteristics,

kinetic analysis, and correlation with functional measures

derived from MRI. Again, interpretation of novel preclinical

and clinical neuropharmacological imaging data will crucially

depend on its supportive correlation with coincident imaging

findings using a different modality.

Neurotrophins

Tyrosine kinase receptor antagonists

There is growing evidence for neurotrophins being involved

in neurodegenerative diseases including ALS (40–42, 50,

51). While neurotrophins have not yet proven a significant

therapeutic potential in clinical trials, partly because of the

difficulties of protein delivery and pharmacokinetics in the

nervous system, the binding target of neurotrophins includes

a family of tyrosine kinase (TrK) receptors. Within this

class of receptors, synthetic antibodies have recently been

linked to PET-radioligands targeting the TrK-B receptor, which

have passed the preclinical and clinical assessments (52–54).

Quantitative characterization of TrK-B alterations in ALS is

currently underway by the same research group, accounting

for the volumetric changes inherent in the disease by applying

PET/MRI in the first place, complemented by magnetic

resonance spectroscopy data. The recent development of TrkB

agonistic antibodies and BDNF-targeted gene therapies (55,

56) could prove useful, and changes in TrK-B alterations as

measured by PET/MRI during targeted therapy could potentially

qualify as an imaging endpoint in clinical trials in motor neuron

disease (52–54, 57).

Markers of neuronal integrity

GABA-A—Benzodiazepine receptor complex

The selective PET ligands 11C-Flumazenil and 2′-18F-

Fluoroflumazenil, binding to the GABA-A—receptor, widely

expressed on pyramidal neurons, have been suggested to be used

as a surrogate in vivomarker of neuronal density (58–62). First,

applications in neurodegenerative disease have shown a regional

neuronal loss in the motor and premotor cortex as well as in

extramotor areas in ALS (63, 64), which were also associated

with specific cognitive deficits (65, 66). The specificity of GABA-

A receptor antagonists to characterize neuronal loss without

a possible confound by GABAergic dysfunction has however

been questioned, and quantitation methods applied have been

scrutinized (67). It has been demonstrated that PET imaging

and quantitation using Flumazenil-based radioligands highly

depend on the availability of concurrent high-resolution MRI

(68), which would ideally be conceptualized by PET/MRI.

Antagonists to synaptic vesicle protein 2A

The synaptic vesicle protein 2A (SV2A), a 12-

transmembrane domain glycoprotein, is ubiquitously expressed

in normal synaptic vesicles throughout the brain, with a

particularly high regional expression in the thalamus and

basal ganglia (69), only sparing the trigeminal and facial nerve

nuclei (70, 71). SV2A has thus been claimed as a potential

biomarker for synaptic vesicle density. While it is critical

to Ca2+-dependent exocytosis (72), its exact physiological

role still is subject to further research, and deficiencies in the

expression of SV2A have been described in a growing number

of neurodegenerative disorders, including frontotemporal

dementia (FTD), Parkinson’s Disease (PD), Alzheimer’s disease

(AD), corticobasal degeneration (73–77), as well as further

neurological conditions, such as epilepsy (78–80), where it has

been identified as the binding site for the antiepileptic drug

levetiracetam (81).

In analyses of rat brain homogenates, the number of

expressed SV2a proteins per vesicle was found to be highly

reproducible at 2–5 copies per vesicle (82, 83). It has been

suggested that SV2A plays a central role in exocytosis mediated

by Ca2+ (71). The deficiency of SV2A in SV2A knockout

mice resulted in presynaptic Ca2+ accumulation, destabilizing

synaptic circuits, and inducing seizures (84). It has also been

suggested that SV2A is modulating endocytosis to the SV of

the SV protein synaptotagmin-1 (SYT1), and by this mechanism

is involved in the homeostasis of the readily releasable pool of

SVs (85).

SV2A has thus attracted attention as a target binding site

for PET-tracers, and subsequently, with the SV2A antagonist

levetiracetam serving as a blueprint, a number of suitable ligands

have been developed and translated into human studies (86,

87). The binding of the PET ligand 11C-UCB-J to SV2A has

been demonstrated to quantitatively correlate and co-localize

with synaptophysin (SYN), a key protein located in the pre-

or postsynaptic neurons, using a combined in vivo–in vitro

validation, furthering evidence for SV2A targeting PET tracers

to serve as synaptic density marker, which allows for the

quantification of synaptic density in vivo (88).

Recently, a second-generation SV2A antagonist 18F-

SynVesT-1 (SDM-8) (89) has been introduced with superior

SV2A binding affinity, improved imaging properties, enhanced

metabolic stability, and an easier path for radiochemical

synthesis (90, 91). For SV2A-markers to prove useful for

longitudinal studies of neuronal density in progressive

neurodegenerative diseases, such as ALS, confounding effects

due to atrophy have to be accounted for, and simultaneous

PET/MRI delivers the most accurate, concurrent quantitative

anatomic information to perform partial volume correction
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reflecting the state of morphologic changes at the exact same

time point of PET data acquisition.

Further understanding of ALS pathophysiology will be

achieved by the study of multimodal MRI and PET data through

network-based analyses with hypothesis-guided approaches,

including neuropathological concepts, although advanced

neuroimaging still awaits translation into clinical settings.

Proteinopathy—PET surrogate markers

ALS and the ALS-FTLD spectrum disease are characterized

as TDP-43 proteinopathy, where TAR DNA-Binding Protein

43 kDa (TDP-43) links both familial and sporadic forms of

ALS. Cytoplasmatic aggregates of TDP-43 are a hallmark of the

disease on a cellular level, and protein mislocalization is often

regarded as a key mechanism underlying ALS. Up to now, there

is no direct PET imaging ligand successfully targeting TDP-43,

and out of the notion that multiple pathological proteins may

be present in neurodegenerative disease, several groups have

investigated the utility of established tau-directed PET tracers

to characterize ALS (76, 77, 92–94). As diffusion tensor MR

imaging (DTI) has been previously established to identify TDP-

43 associated alterations (95), combined PET/MRI will be the

modality of choice to further elucidate the role of tau PET

imaging in ALS.

Imaging of disease-inherent pathological
alterations—MRI

Neuroimaging with MRI has an essential role in the

clinical diagnostic processes for ALS in the exclusion of other

etiologies of the clinical presentation (96). In addition, MRI

approaches with advanced postprocessing have been established

as biological markers of the disease with reliable measures for

monitoring disease progression and have greatly improved our

understanding of its in vivo pathoanatomy (6). Here, diffusion-

weighted imaging techniques including diffusion tensor imaging

(DTI) had been a focus of research in many studies to investigate

microstructural white matter tract alterations in MND (97, 98).

Di�usion tensor imaging

By using the DTI, diffusivity in human brain white matter

can be non-invasively mapped to first quantify its regional

directional dependence, and second, to obtain a reconstruction

of fiber tracts by fiber tracking techniques (99). DTI has

been established as a robust non-invasive technical tool to

investigate the WM neuronal tracts in vivo to define anatomical

signatures of the different phenotypes of MND and to track in

vivo the progressive spread of pathological protein aggregates

(100). As the neuropathological basis of the ALS-associated

propagation patterns in the brain, four neuropathological stages

have been defined for ALS, based upon the distribution patterns

of phosphorylated 43 kDa TARDNA-binding protein (101, 102):

the sequential protein pathology is spreading initially from

the motor neocortex toward the spinal cord and brainstem,

followed by spreading to frontal, parietal, and, ultimately,

anteromedial temporal lobes. This corticoefferent spreading

model has been transferred to DTI-based concepts by a tract

of interest (TOI)-based mapping, and DTI seems to be a valid

surrogate marker to assess the spreading of TDP-43 pathology in

vivo within the corresponding neuronal WM tracts (103–105).

TOI-based mapping as a hypothesis-driven approach images

the neuropathologically proposed sequential progression of ALS

in the respective cerebral tract systems, i.e., the CST (as a

correlate of ALS-stage 1), the corticorubral and corticopontine

tracts (corresponding to ALS stage 2), the corticostriatal pathway

(as a correlate of ALS stage 3), and the proximal portion of

the perforant path (corresponding to ALS stage 4) (106). This

tract-based in vivo-staging concept was applied to further ALS

variants like primary lateral sclerosis (PLS) (104), lower motor

neuron disease/progressive muscular atrophy (107), progressive

bulbar palsy (108), and flail limb syndrome (109). In all of

these restricted phenotypical ALS variants, an ALS-like in vivo

alteration pattern of corticoefferent fibers according to the

ALS disease propagation model could be shown. DTI-based

methods, thus, seem to be a valuable tool for guiding the

pathoanatomy definition of MND subtypes, in accordance with

current proposals for clinical diagnosis, i.e., the Gold Coast

Criteria (110). These results encourage future neuroimaging

studies across the phenotypical ALS spectrum to contribute

to our understanding of potential modifiers of the clinical

presentations in ALS (109).

To this end, it is important to acquire longitudinal imaging

data given that longitudinal MRI studies have the potential

to provide crucial insights into the natural trajectory of ALS-

associated neurodegenerative processes, although it has to be

considered that standardized design is required to enable

meaningful data interpretation (111). Longitudinal MRI studies

in ALS have already been applied to subject groups of

heterogeneous sample size (112–116), and reported fractional

anisotropy (FA) reduction in the CST as the common core

finding. Other DTI measures beyond FA add information on

the ALS-associated pathoanatomy, such as a segmental radial

diffusivity profile developed by Schuster and colleagues (111).

Neurite orientation dispersion and density imaging (NODDI),

a multicompartment model of diffusion MRI, demonstrated

axonal loss within the CST together with dendritic alterations

within the precentral gyrus, suggesting microstructural cortical

dendritic changes occur together with CST axonal damage (117).

Protocol standardization and multisite MRI data

Advanced imaging protocols with more sophisticated

techniques to analyze ever-increasing datasets to guide in

the understanding of the anatomical and temporal factors of
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the biological processes of ALS benefit from collaborations

across the entire ALS research community (118). Multicenter

approaches like the Neuroimaging Society in Amyotrophic

Lateral Sclerosis (NiSALS) with up-to-date, ultimately

harmonized neuroimaging protocols aim to obtain high subject

numbers and therefore to increase the reliability of results

(8, 119, 120). Given that multicenter imaging studies have

the limitation of scanner and protocol variability, there were

successful approaches to merge data recorded at different sites

and/or with different DTI protocols (8, 121, 122).

The Canadian ALS Neuroimaging Consortium (CALSNIC)

was established in part to address the challenges associated

with protocol variability when pooling multisite data. CALSNIC

is a multicenter imaging biomarker validation platform that

established from its inception harmonized clinical and imaging

protocols across multiple MR platforms. Operating at research

sites in Canada and the USA, the platform has conducted two

prospective longitudinal studies (CALSNIC1 and CALSNIC2),

each including multimodal MRI, neurocognitive assessments,

and speech recordings (9). To date, there have been 250

patients with ALS/MND and 200 healthy controls enrolled,

with CALSNIC2 ongoing. A recent study of longitudinal

DTI-based microstructural alterations in ALS from CALSNIC

determined a time interval of about 110 days is the minimum

follow-up time to detect longitudinal microstructural alterations

(123). Other longitudinal observations within this time frame

reported by this consortium include gray and white matter

atrophy with deformation-based morphometry (124), altered

motor and prefrontal cortex neurochemistry using magnetic

resonance spectroscopy (125), and regional texture changes

in T1-weighted images (126). Collaborative and multicenter

projects like this will be useful in ascertaining the reliability of

imaging biomarkers under development (127).

MR findings with respect to genetic phenotype

The field of genetic ALS continues to develop rapidly

with multiple disease gene discoveries per year (128), with the

autosomal dominant inheritance of a hexanucleotide expansion

in the first intron of the C9orf72 gene being the most common

cause of familial ALS in people of Northern European ancestry,

also as a major contributor to frontotemporal pathology in

ALS. DTI studies in patients with C9orf72 expansion in cross-

sectional and longitudinal design demonstrated alterations in

motor tracts (129–131); in addition, further white matter areas

were found to be affected, e.g., in the frontal white matter

(132) and segmentally in the corpus callosum (133). In addition,

the in vivo histopathological staging approach was also applied

to C9orf72-associated ALS and demonstrated a corticoefferent

involvement pattern according to the staging scheme—a pattern

that was not observed in Super Oxide Dismutase 1-associated

ALS (134). In the last decade, the pre-symptomatic phase of the

disease has gained increasing interest, addressing people with

family history and genetic risk for ALS without manifestations of

the disease (135). Neuroimaging studies in presymptomatic ALS

offer opportunities to characterize early genotype-associated

signatures and propagation patterns and factors (7). Current

initiatives have, thus, integrated natural history and biomarker

data on presymptomatic ALS for the design and implementation

of pre-symptomatic ALS trials (136). Specifically, in C9orf72

mutation carriers, DTI studies reported regional reductions of

white matter integrity (131, 137), as an indicator of general

developmental tardiness. At the spinal level, C9orf72-positive

subjects older than 40 years were shown to exhibit considerable

WM atrophy at C2–C7 vertebral levels in conjunction with

progressive pyramidal tract FA reductions (138).

Resting-state functional MRI

Brain regions that are co-activated under resting conditions

delineate the so-called “resting-state” (RS) functional networks.

The assessment of connectivity alterations between RS

networks has provided important insights into brain

functional reorganization in several neurodegenerative

diseases, including ALS, in which motor and—when present—

cognitive impairment may undermine the use of task-based

fMRI (139–141).

Several studies showed decreased functional connectivity

of the sensorimotor network in ALS patients (142), whereas

others found increased connectivity (143), or complex regional

patterns of decreased and increased functional connectivity

(144, 145). Altered functional connectivity has also been

shown in brain networks related to cognition and behavior

(especially the default mode and frontoparietal networks) (146,

147), consistent with the multisystem involvement of ALS

pathology. It has been suggested that an increase in brain

functional connectivity might prevail in earlier stages of the

disease as a compensatory mechanism, with a subsequent

decrease as pathological burden accumulates. Consistent with

this hypothesis, increased functional connectivity was found

to be higher in patients with less severe microstructural

damage to the CST (148), and associated with a lower rate

of disease progression, shorter disease duration (145), and

preserved motor function (148). Decreased RS functional

connectivity in the sensorimotor and thalamic networks,

paralleling progression of structural alterations and clinical

decline, was observed over a 2-year period in ALS patients (149).

The co-occurrent progressive increase of functional connectivity

in extra-motor networks, such as the left fronto-parietal and

the temporal RS networks (147, 149), is also consistent with

a “disconnection” hypothesis due to the loss of compensation.

However, some studies also showed increased functional

connectivity within the regions of structural disruption in

ALS correlating with faster disease progression (142), and
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greater clinical and executive cognitive impairment (143, 146).

Therefore, a more direct pathogenic involvement of increased

functional connectivity related to the loss of local inhibitory

circuitry within the primary motor and frontal cortex is

also possible.

Graph analysis and connectomics

The human brain is a highly integrated neural network

consisting of several cortical and subcortical regions that

are structurally and functionally interconnected, forming

co-operating sub-networks. Graph theoretical models have

conceptualized such complex organization as the brain

“connectome”, consisting of anatomic regions defined

as “nodes”, which are linked by “edges” (i.e., structural

or functional connections). In ALS, graph analysis and

connectomics might represent a powerful approach to detect

upper motor neuron degeneration, extramotor brain changes,

and network reorganization associated with the disease.

Two independent studies applied network-based statistics

to DT MRI of patients with ALS, both demonstrating the

presence of an impaired sub-network including bilateral

primary motor regions, supplementary motor areas, basal

ganglia, and associative parietal areas (150, 151). Patients

with a C9orf72 mutation showed a more widespread white

matter involvement (152). In a longitudinal study, the sub-

network of impaired connectivity expanded over time, involving

frontal, temporal, and parietal regions (150), consistent with

the proposed model of TDP-43 pathological spreading. In

line with such hypothesis, a study evaluated brain structural

connectivity in a consistent set of healthy controls, showing

that regions involved in subsequent stages of ALS pathology

are highly interconnected by WM tracts, which may serve as

anatomical “infrastructures” facilitating TDP-43 spread (153).

More recently, a computational model was applied to the MRI

scan of ALS patients to simulate this progressive network

degeneration (154). Computer-simulated aggregation levels

mimic true disease patterns in ALS patients. Simulated patterns

of involvement across cortical areas show significant overlap

with the patterns of empirically impaired brain regions on

later scans, in accordance with established pathological staging

systems (152).

Few studies applied network-based analyses to the

assessment of functional alterations in ALS patients using

resting-state functional MRI (rs-fMRI), demonstrating complex

connectivity alterations encompassing frontal, temporal,

and occipital regions (155, 156). A recent study assessed the

functional and structural connectivity patterns across the

ALS-FTD spectrum, investigating whether and where MRI

connectivity alterations of ALS patients with any degree of

cognitive impairment (i.e., ALS-ci/bi and ALS-FTD) resembled

more the pattern of connectome damage of ALS or bvFTD (157).

As compared with controls, ALS-ci/bi patients demonstrated an

“ALS-like” pattern of structural damage, diverging from ALS

without cognitive impairment with similar motor impairment

for the presence of enhanced functional connectivity within

sensorimotor areas and decreased functional connectivity

within the “bvFTD-like” pattern. On the other hand, ALS-

FTD patients resembled both structurally and functionally the

bvFTD-like pattern of connectome damage with, in addition, the

structural ALS-like damage in the motor areas. A maladaptive

role of functional rearrangements in ALS-ci/bi concomitantly

with similar structural alterations compared to ALS without

cognitive impairment supports the hypothesis that ALS-ci/bi

might be considered as a phenotypic variant of ALS, rather than

a consequence of disease worsening.

In a multicenter study (158), compared with healthy

controls, patients with ALS and patients with PLS showed

altered structural global network properties, as well as local

topologic alterations and decreased structural connectivity

in sensorimotor, basal ganglia, frontal, and parietal areas.

Patients with PMA showed, instead, preserved global structure.

Increased local functional connectivity was observed in patients

with ALS in the precentral, middle, and superior frontal areas,

and in patients with PLS in the sensorimotor, basal ganglia,

and temporal networks. In patients with ALS and patients

with PLS, structural connectivity alterations correlated with

motor impairment, whereas functional connectivity disruption

was closely related to executive dysfunction and behavioral

disturbances (158).

Magnetic resonance spectroscopy

In addition to evaluating structural, microstructural,

and functional changes, magnetic resonance spectroscopy

(MRS) permits the probing of neurochemical correlates

of neurodegeneration in ALS (12). Numerous studies using

varying techniques (single voxel or multivoxel) have consistently

revealed reduced N-acetylaspartate (NAA, a chemical marker

of neuronal integrity) in motor and extra-motor regions

in ALS. Other metabolites of interest include myo-inositol

(mIns, a glial marker), and the excitatory and inhibitory

neurotransmitter system involving glutamate, glutamine, and

GABA (159). Technological advances in MR hardware and

spectral acquisition and editing methods have increased the

ability to more readily resolve such metabolites. For example,

this includes ultra-high field studies at 7 tesla for glutamate,

glutamine, and GABA (160, 161) and MEGA-PRESS for

GABA (162, 163) detection. Combined PET-MR imaging with

MRS provides the opportunity to explore complementary

pathological or pathophysiological mechanisms simultaneously

from the molecular and neurochemical perspectives. In a

PET-MR study in ALS that included MRS motor cortex

inflammation, measured using the TSPO tracer [11C]-PBR28,

and gliosis, measured using the myo-inositol signal, were found

to be directly correlated in the motor cortex (164).
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Machine learning classifiers

One of the overarching aims in advanced neuroimaging

biomarker development in neurodegenerative disorders like

ALS is the observer-independent classification of imaging data

for individual patient’s stratification for later use in multicenter

therapeutic trials; to this end, there is a rapidly growing interest

in Machine Learning (ML) models, classifiers, and predictive

modeling in ALS (165). The choice of the ML model in ALS

neuroimaging needs to be carefully tailored to a proposed

application based on the characteristics of the available data and

the profile of the candidate model, as proposed by Grollemund

et al. (166). A recent systematic review on MRI feature selection

for ML-based neuroimaging classifiers in ALS suggested the

integration of DTI, volumetric, and texture data (167), but

potential future applications might include a multiparametric

MRI combination of more approaches such as intrinsic

functional connectivity MRI. Connectome-based analyses of

multiparametric MRI have already demonstrated their potential

as a tool for patient stratification and as a prognostic biomarker

in ALS to predict disease progression (154). PET/MRI is able

to provide a multiparametric protocol, where a multimodal

composite score may combine the aforementioned PET and

MR techniques to address specific questions [e.g., (168)]—for a

review see (169).

Summary

Neuroimaging fingerprinting of genetically defined

ALS phenotypes will be important, especially longitudinal

investigations of presymptomatic mutation carriers.

Neuroimaging offers the possibility to undertake cross-

sectional and longitudinal studies to stratify ALS patients

according to their intrinsic progression rate, thus helping to

optimize disease management, enhancing the design of drug

trials, and guiding the use of individualized treatments when

these become available. Recent research has contributed to the

change in perception of neuroimaging in motor neuron disease,

which traditionally had been primarily an academic tool with

limited direct relevance to individualized patient care, but, with

the advances in computational imaging, has emerged as a viable

clinical tool with true biomarker potential (170).

MRI and PET provide methodologically different and

partially complementary information on disease pathology.

There are multiple aspects where applied neuroimaging and

biomarker imaging strategies in neurodegenerative disease are

influenced by and directly benefit from simultaneous PET/MRI:

• Concurrent acquisition and analysis augment the precision

of partial volume correction for PET data by minimizing

the main confounds introduced by small misregistration

and data resampling inaccuracies of post-hoc coregistration

of PET and segmented MRI acquired at different time

points and in different scanner coordinate systems (171,

172).

• Novel regularized PET image reconstruction techniques

based on anatomical priors derived from concurrent MRI

significantly improve PET image quality (173–175).

• Novel readout and quantitation techniques including

radiomics and machine learning/artificial intelligence

informed algorithms benefit directly from inherently

coregistered data and the high degree of standardization

possible in PET/MRI, likely to result in improved

performance of AI applications (176–180).

• Data consistency of simultaneous PET/MRI improves data

pooling of different varieties of radioligands of the same

functional target, assisting in moving toward multicenter

therapeutic trials.

• Simultaneous PET/MRI and the inherent temporal

synchronicity of findings will be instrumental in the

development of tailored imaging probes or assessing the

effects of drug challenges in treatments (181–184).

• PET/MRI enables to the design of more complex

prospective trials using multiple tracers to characterize a

disease, capitalizing on an intelligent spread of complex

MR protocols over consecutive PET/MRI sessions using

different tracers to max out the gain of information by each

session and still ensure patient compliance (185).

Future developments may include a possible combination

of rapid multi-tracer PET in a single PET/MRI session, making

use of the high spatial information provided by MRI to

improve signal separation in multi-tracer and multi-isotope

studies, where typically staggered injection of ultra-short lived

radionuclides combined with longer half-lived ones is practiced,

and where spatial registration between different stages is

crucial (186). Other future applications might include the

combination of simultaneous PET/MRI with hyperpolarized

MR imaging (187), to add even more layers of complementary

metabolic information.

To summarize, the roles of MRI and PET as straight-forward

diagnostic tools in ALS and further neurodegenerative disorders

are emerging; the concepts to use them as a biological marker

or as a read-out in clinical trials are existing and have to be

probed for their clinical relevance. Combined PET/MRI has the

potential as a future gold standard for characterizing motor-

neuron disease and offers an important contribution to the

standardization of imaging across multiple centers.
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Evaluating the relationship
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white matter hyperintensities in
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review and meta-analysis
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Bryan T. S. Sim2, Beverly L. X. Chan2, Nicholas L. Syn2,

Yinghao Lim3, Amanda C. Y. Chan4, Vijay K. Sharma2,

Jonathan J. Y. Ong4, Leonard L. L. Yeo2, Ching-Hui Sia2* and

Benjamin Y. Q. Tan2

1Department of Medicine, National University Health System, Singapore, Singapore, 2Yong Loo Lin

School of Medicine, National University of Singapore, Singapore, Singapore, 3Department of

Cardiology, National University Heart Centre, Singapore, Singapore, 4Division of Neurology,

Department of Medicine, National University Health System, Singapore, Singapore

Introduction:White matter hyperintensities (WMHs) have been observed with

greater frequency in patients with migraine and are thought to be associated

with impaired cognition and function. The relationship between WMHs and

right-to-left shunt (RLS) in migraine patients is unknown. We performed a

systematic review to determine if there is an association between RLS and

WMHs in patients with migraine.

Methods: A systematic search of the literature was performed in PubMed and

Embase using a suitable keyword search strategy from inception up to 16th

June 2021. All studies that included patients with migraine and studied RLS

and WMHs were included.

Results: A total of 8 non-randomized observational studies comprising 1125

patients with migraine were included; 576 had an RLS, compared to 549

patients with no RLS. The mean age of the study populations ranged from 28.4

to 43 years, while the average duration from migraine diagnosis ranged from

5.1 to 19 years. The proportion of female to male patients was consistently

higher in all studies (60.0–94.4%). Amongst migraine patients with RLS, 338

patients (58.7%) had WMHs. In contrast, 256 (46.6%) of migraine patients

without RLS had WMHs. RLS was significantly associated with the presence

of WMHs in migraine patients (OR: 1.56, 95% CI: 1.05–2.34, p = 0.03).

Conclusion: In migraine patients, RLS was significantly associated with the

presence of WMHs. Longitudinal studies are warranted to establish RLS as a

risk factor for WMHs in patients with migraine, and to establish the significance

of these changes.

KEYWORDS

migraine, migraine with aura, white matter, patent foramen ovale, ultrasonography,

doppler, transcranial, arteriovenous malformations
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Introduction

White matter hyperintensities (WMHs) have been observed

with greater frequency in patients with migraine. A recent

review showed that in a patient population of <50 years old

without risk factors, WMH prevalence of up to 70% was noted

in patients with migraine with a 3.9-fold increase in the odds

of WMH being present compared with controls. This effect

was less obvious in population-based studies that included

patients up to 74 years old or only included patients older

than 55 years old, leading the reviewers to conclude that the

effect of migraine on developing WMH may be overwhelmed

by other risk factors in middle age (1). An earlier study that

used a 1.5T magnetic resonance (MR) scanner reported a 39%

prevalence (2); later studies with higher resolution MR imaging

with 3T showed a prevalence closer to 70% in patients with

migraine without traditional cardiovascular risk factors (3, 4).

Two longitudinal studies also showed more rapid progression

of deep WMHs in female patients with migraine compared to

controls (5, 6). WMHs are inversely associated with mobility,

cognition and function (7). In a recent study, baseline WMHs

were found to be associated with poorer functional status

and cognition as measured by mini-mental state examination

(MMSE), while progression of WMHs was associated with

a decrease in executive function score (8). Other types of

migraines have also been evaluated for relationships withWMH;

of interest, 1 population study was found which sporadic

hemiplegic migraines (SMH) to patients with migraine and

found no significant difference in the overall rate of WMH (9).

This study did not review any association with vascular risk

factors or RLS.

There is recent interest in the relationship betweenmigraine,

aura status and RLS (1, 10, 11). One hypothesis is that vasoactive

substances bypass the pulmonary circulation to directly enter

the systemic circulation in patients with RLS, inducing migraine

attacks and the aura symptoms (12). While some studies

reported an association of RLS with migraine with aura (2),

other studies showed no difference in the prevalence of RLS

between migraine subtypes (10, 11). Of the types of RLS, a

patent foramen ovale (PFO) is the most common and is present

in >25% of the healthy population (13), while other subtypes

such as pulmonary arteriovenous malformations are rarer and

associated with specific hereditary conditions (14). Accordingly,

various clinical trials have sought to demonstrate a reduction

in migraine frequency post-RLS closure. The MIST trial showed

no significant difference between patients who had PFO closure

vs. patients who had a sham procedure done (15). It is worth

Abbreviations: WMH, white matter hyperintensities; RLS, right-to-left

shunt; MR, magnetic resonance; PFO, patent foramen ovale; PRISMA,

Preferred Reporting Items of Systematic Reviews and Meta-Analysis; TEE,

transesophageal echocardiography.

noting that the primary outcome studied was complete cessation

of migraines and might not have been able to detect subtle

improvements. Subsequent trials performed include the PRIMA

and PREMIUM trials (16, 17); PRIMA failed to show a reduction

in its primary endpoint (reduction in days with migraine)

while PREMIUM showed a statistically significant reduction in

headache days (secondary endpoint) but again failed to show

a reduction in its primary outcome (responder rate with 50%

reduction in migraine attacks).

Given the uncertain relationship between RLS and WMHs

in patients with migraine, we performed a systematic review

and meta-analysis of the literature to describe the prevalence of

WMHs in migraine patients with or without RLS.

Methods

Search strategy

We conducted the systematic review in accordance with

the Preferred Reporting Items of Systematic Reviews and

Meta-Analysis (PRISMA) guidelines. A literature search was

performed on PubMed and Embase for articles published from

inception up to 16th June 2021. The search strategy consisted

of combinations of the following search terms relating to

migraines, (e.g. “migraine,” “migraine with aura,” “MWOA,”

“migraine without aura”) white matter lesions (e.g. “white

matter lesions,” “WML,” “WMH,” “white matter hyperintensit∗,”

“leukoenceplaopa∗,” “leukoaraiosis,” “silent brain infarct∗,”

“SBI,” “ischemic brain lesions”) and RLS (e.g “patent foramen

ovale,” “PFO,” “pulmonary arteriovenous malformations,” “RLS,”

“RILES” and “right to left shunt”). The references from included

studies were searched to detect studies missed by the electronic

search. The search was performed by two independent reviewers

(JY and CG), with any disagreements regarding study relevance

resolved by a senior author (BT).

Eligibility criteria

The study population included patients diagnosed with

migraine. We included all studies that reported the prevalence

of WMHs and evaluated the presence of RLS in patients

with migraine. Identification and confirmation of WMHs

using MR imaging was required. The presence of RLS was

defined as any abnormal communication between right and

left cardiac chambers including patent foramen ovale, atrial

septal defects and pulmonary arteriovenous malformation.

Seven of the studies employed contrast-enhanced transcranial

Doppler (TCD) at rest and with Valsalva, while one study

used echocardiographic data (precise modality not stated).

All the studies except for one (not reported) employed a

1.5T MRI scanner for diagnosis of WMHs. Only studies
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published in the English language and included the full text

(not conference proceedings) were included. All the studies

that were included relied on the International Headache Society

criteria for classification of migraines (18). We excluded studies

that were reviews, case reports, case series, studies that studied

pediatric populations, studies that did not diagnose WMHs on

MRI, and studies that did not report RLS. The specific inclusion

and exclusion criteria are detailed in Table 1.

Data extraction

Quantitative data collected was extracted from the

included studies by two authors (JY and BS). Absolute

numbers were included along with the percentages as

appropriate. Where available, the data included study

design, study population, duration of disease, type of

migraine/WMHs and patient demographics (age and

gender). We also included descriptions of how RLS or

WMHs were diagnosed. Where data were reported in an

incomplete fashion, we contacted the authors to obtain the

relevant data.

Risk of bias assessment

The quality and risk of bias of included studies

were assessed using the GRADE Assessment Tool and

the Newcastle Ottawa Scale respectively. The GRADE

Assessment tool assesses quality of evidence in terms of

study limitations, inconsistency, indirectness, imprecision

and publication bias. The Newcastle Ottawa scale evaluates

quality of evidence based on selection of study groups

(4/5 points), comparability of groups (2 points), and

ascertainment of exposure and outcomes (3 points). These

were graded with the consensus of 3 researchers (YKT, CG

& BT).

Statistical analysis

We performed a random-effects meta-analysis on the odds

ratio of outcome identified (prevalence of WMHs), comparing

patients with migraine with and without RLS. Further analysis

with pooled effect size estimates was performed on two studies

which reported adjusted odds ratios. Numerical data points were

presented with the absolute number or means as appropriate.

Categorical variables were stated as percentages. Heterogeneity

was assessed with the I2 statistic. All data analysis was conducted

using the Cochrane Collaboration’s Review Manager (RevMan

5.4) Software Package. A p < 0.05 was taken as the criterion for

statistical significance.

Results

Study assessment and grading

A total of 4,926 studies were identified on initial search,

of which 8 were finally selected (19–26) for analysis. The

study selection process is illustrated in the PRISMA flowchart

(Figure 1).

Study characteristics

Among the 8 studies included for analysis, there were 5

cross-sectional studies, 2 case-control studies and 1 prospective

cohort study. All studies included patients with migraine,

but with different migraine subtypes. Three studies included

only migraine with aura (22, 23, 25), one study included

only migraine without aura (26), three studies included both

migraine with and without aura (19, 20, 24), and one study did

not specify the subtype of migraine (21).

A total of 1125 patients with migraine were included across

all studies, with the number of patients in each study varying

from 40 to 334. The mean age of the study populations ranged

from 28.4 to 43 years, while the average duration from migraine

onset ranged from 5.1 to 19 years. The proportion of female

to male patients was consistently higher in all studies (60.0%

to 94.4%). All studies diagnosed WMHs on MR imaging with

at least 2 independent neurologists or neuroradiologists, except

one study which did not specify. Characteristics of all the

included studies are reported in Table 2. Of the 1125 patients,

576 (58.7%) of patients had a RLS. Three of the studies reported

the specific type of RLS (Table 3) while the others left the

type unspecified.

Prevalence of white matter
hyperintensities

With regards to prevalence of WMHs, a total of 1,125

patients across all 8 studies were assessed. Amongst migraine

patients with RLS, 338 patients (58.7%) had WMHs. In

comparison, 256 (46.6%) of migraine patients without RLS had

WMHs. RLS was associated with a higher prevalence of WMHs

in patients with migraine (OR: 1.56, 95% CI: 1.05–2.34), with

low-moderate heterogeneity (I2 = 48%) as shown in Figure 2.

To mitigate the effect of known confounders such as age,

hypertension, smoking and sex, studies which reported adjusted

odds ratios were analyzed for a pooled effect size estimate. As

illustrated in Figure 3, the pooled effect size estimate for RLS

showed that there was a significantly larger number of patients

with WMHs in migraine patients with RLS, compared to those

without RLS (OR: 3.84, 95% CI: 2.05–7.19).
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TABLE 1 PECOS (Population Exposure Comparison Outcomes Study Design) table.

PECOS Inclusion criteria Exclusion criteria

Population Patients with migraine Stroke/pediatric population

WMH not diagnosed on MRI

No mention of RLS

Exposure Presence of RLS (patent foramen ovale, pulmonary

arteriovenous malformation, atrial septal defect)

Comparison Patients with migraine without any RLS

Outcome Prevalence of WMH

Study design Articles in English

Published up to 16th June 2021

Database: PubMed and Embase

Articles not available in English

Conference abstracts or poster presentations for which full

text unavailable

Studies that were not observational cohort studies

WMH, white matter hyperintensities; MRI, magnetic resonance imaging; RLS, right-to-left shunt.

FIGURE 1

PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only.
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TABLE 2 Characteristics of included studies.

References Study

design

Patients Age (mean

otherwise

stated)

Females (%) Duration of

disease

Migraine

type

WML

diagnosed

by

MRI magnet

strength

Type of WMH

reported

Analysis

Del Sette et al.

(23)

Cross-

sectional

study

80 37.2 Not reported 16.14 Migraine with

aura

2

neuroradiologists

1.5T Not specified Mann–Whitney U-test

Kruskal–Wallis ANOVA test

Spearman rank order test

Rao et al. (24) Case-control

study

100 40 60 (60.0) 19 Both with and

without aura

2

neuroradiologist

Not specified Not specified Pearson χ
2 tests

Adami et al. (22) Cross-

sectional

study

185 36 143 (77.3) Not reported Migraine with

aura

1 neuroradiologist

and

2 neurologists

1-1.5T PV-WML, D-WML Pearsonχ
2 Fisher exact, unpaired

t, and Mann–Whitney U-tests

Spearman rank correlation tests

Logistic regression analysis

Park et al. (19) Cross-

sectional

242 28.4 183 (71.5) 5.1 Both with and

without aura

2 neurologists 1.5T D-WML Pearson χ
2 tests

Unpaired Student’s T-tests

Bootstrapping methods

Multiple binary regression tests

Dinia et al. (25) Prospective

study

41 41.8 33 (80.5) 16.9 Migraine with

aura

2

neuroradiologists

1.5T Not specified Mann-Whitney U-test

Fisher’s exact test

Pearson’s correlation test

Uçar et al. (26) Case-control

study

40 36.2 37 (90.0) WMH group: 8

Control group: 4

Migraine

without aura

Not reported 1.5T Not specified Pearson χ
2 test

Fisher’s exact tests

Student t-test

Mann–Whitney U-test

Spearman correlation analysis

Iwasaki et al.

(20)

Cross-

sectional

study

107 39.0 (median) 101 (94.4) 18.0 (median) Both with and

without aura

2 neurologists 1.5T Not specified Pearson χ
2 tests

Mann–Whitney U test

Logistic regression

Jiang et al. (21) Cross-

sectional

study

334 43.0 241 (72.2) 11.69 Not specified 2 neurologists 1.5T D-WML and

PV-WML

Pearson’s χ
2 test

Unpaired t-tests

Binary logistic regression models

(odds ratio [OR], 95% confidence

interval [CI]) for MRI outcomes

WMH, white matter hyperintensities; PV-WML, periventricular white matter lesions; D-WML, deep white matter lesions.
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TABLE 3 RLS reported in included studies.

References Total patients Presence of

RLS

Number of RLS

(percentage)

Method of diagnosis Type of RLS

reported

Del Sette et al.

(23)

80 36 45% Contrast-enhanced transcranial Doppler at

rest and with Valsalva, counting

micro-bubbles in MCA

Not specified

Rao et al. (24) 100 41 41.0% Transcranial doppler Patent foramen ovale

Adami et al.

(22)

185 114 61.6% Contrast-enhanced transcranial Doppler at

rest and with Valsalva, counting

micro-bubbles in MCA

Not specified

Park et al. (19) 242 89 36.8% Contrast-enhanced multifrequency

-transcranial Doppler at rest and with

Valsalva, counting micro-embolic signals

(MES) with RLS defined as ≥ 11 MESs.

Not specified

Dinia et al. (25) 41 13 31.7% Contrasted transcranial doppler Not specified

Uçar et al. (26) 40 2 5% Echocardiographic data Atrial septal defect,

inter-atrial septum

Iwasaki et al.

(20)

107 57 53.2% Contrast-enhanced transcranial Doppler at

rest and with Valsalva, counting

high-intensity transient signals

Patent foramen ovale,

pulmonary

arteriovenous

malformations

Jiang et al. (21) 334 224 67% Contrast-enhanced transcranial Doppler at

rest and with Valsalva, counting

micro-bubbles in MCA

Not specified

RLS, right-to-left shunts; MCA, middle cerebral artery.

FIGURE 2

Forest plot of the association of RLS with prevalence of WMH (odds ratio).

Quality assessment

Using the GRADE tool, the quality of evidence was assessed

to be high for prevalence of WMHs (Supplementary Table 1).

Following assessment with the Newcastle-Ottawa scale, the

cross-sectional studies achieved 9–10 out of a maximum

10 points on the Newcastle-Ottawa scale, while the lone

cohort study achieved 9 out of a maximum of 9 points

on the Newcastle-Ottawa Scale. This signifies the high

quality and low risk of bias for selection for these studies.

However, the case control studies achieved 7–8 points out

of a maximum 9 points on the Newcastle-Ottawa scale,

suggesting a moderate risk of bias for selection (Supplementary

Tables 2–4).
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FIGURE 3

Forest plot of the association of RLS with prevalence of WMH (adjusted odds ratio).

Discussion

This study aimed to provide a comprehensive systematic

review and meta-analysis of the available literature regarding

prevalence of WMHs, and the mediating effect of RLS in

patients with migraine. It demonstrates that there is a significant

difference in the prevalence of WMHs in migraine patients with

and without RLS.

RLS had previously been postulated as a possible mechanism

of WMHs in patients with migraine (1). However, conflicting

results have been reported. Five of the included studies suggested

that RLS had no effect on the load or presence of WMHs

in patients with migraine, while 3 studies did in fact show a

statistically significant effect on the presence of WMHs (19–

26). Our meta-analysis demonstrated a statistically significant

difference with an odds ratio of 1.56 [95% CI, 1.05–2.34, p =

0.03], bolstering the case for RLS as a possible mechanism of

WMHs in migraine patients. This effect was demonstrated as

well with a pooled effect size estimate for the studies which

reported an odds ratio adjusting for known confounders such

as age, sex, smoking or hypertension.

Previous studies have noted an increase of up to 3.9 times

in the odds of WMHs in patients with migraine compared to

controls with a particularly strong effect in younger populations

aged<50 with no vascular risk factors, possibly because vascular

risk factors tend to overwhelm the relative contribution of

migraine for the development of WMHs in older patients (10).

Owing to the manner in which data was reported, we were

unable to adjust for the effect of age in our study beyond the

studies which reported an adjusted odds ratio.

Of interest, other studies have sought to show headache

improvement in patients with migraine who undergo PFO

closure (27, 28). It is postulated that incomplete transit

of venous blood through the lung filter allows vasoactive

substances to circumvent the filter and thus precipitate migraine

attacks (29). Typically, headache improvement is assessed by

clinical scoring systems such as the MIDAS questionnaire.

Considering our study’s findings, it may be worthwhile including

outcomes related to WMH prevalence in PFO closure trials. A

meta-analysis showed that there were significant associations

between WMHs and incident stroke, incident dementia, global

cognitive decline as well as mortality (30). WMHs may well be

considered a suitable surrogate measure for these other clinical

outcomes of stroke and cognitive decline. It may be appropriate

to assess the effectiveness of PFO closure as a treatment in

reducing incident stroke or cognitive impairment.

Strengths and limitations

This study reveals a potentially interesting relationship

between WMHs and RLS in the context of patients with

migraine. WMHs have been associated with stroke, dementia

andmortality (30). Our findings support an association with RLS

and to our knowledge is the first systematic review to aggregate

existing studies regarding RLS in patients with migraine and

WMH burden. This effect held with a pooled effect size estimate.

While we found a significant association between RLS and

WMH in migraine patients, the effect size was moderate and

causality cannot be interpreted due to the retrospective nature of

the studies that were included in this systematic review. Further

longitudinal studies are necessary to establish causality between

RLS and WMH in this patient cohort.

One important limitation was that the type of RLS was

not always reported in the included studies. Only 3 studies

(20, 24, 26) specified the type of RLS. Another limitation was that

not all studies reported if the WMHs were in the periventricular

or deep regions, nor were they classified in a standardized

manner. Only 2 studies presented the data for both deep

and periventricular regions, whilst 1 study reported on deep

WMHs, with the remaining studies leaving the type of WMHs

unspecified. Previous studies have suggested that periventricular

WMHs were associated with impaired cognitive function, but

less so if they were in the deep locations (31). Future studies that

differentiate between the location ofWMHs found in association

with presence of RLS may prove to be more illuminating with

regards to the clinical implications of our findings.
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A further limitation worth considering is that the

quantitative data reported was not granular enough to be

stratified according to variables such as age or gender. This

was partially mitigated by applying an analysis of the pooled

effect size estimate where published in the studies reviewed. It

should also be noted that not all studies consistently reported

on the number, volume, confluence, accrual over time and

gadolinium enhancement of the white matter hyperintensity

lesions. As such, differential diagnoses like demyelinating

disorders including multiple sclerosis may have been neglected

in this meta-analysis.

Finally, an important limitation lies in the way that RLS was

diagnosed. All the studies detected RLS via TCD, except for Uçar

2017 as opposed to the gold standard of diagnosis which remains

transesophageal echocardiography (TEE). Studies comparing

TCD vs. TEE found a higher sensitivity for TEE (31–33); it is

notable that most of the advantage for TEE came from minimal

shunts which may not be clinically relevant. More recent studies

have suggested that TCD may have comparable sensitivity of

94–100% (34, 35) and remains valuable as a complementary,

non-invasive option for screening, while TEE remains the best

modality for delineating anatomy and detection of other cardiac

abnormalities such as atrial septal defects (36).

Conclusion

In migraine patients, RLS was significantly associated with

the presence of WMHs. Longitudinal studies are warranted

to establish RLS as a risk factor for WMHs in patients with

migraine, and to establish the significance of these changes.
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Background: Cognitive impairment and cerebral microbleeds (CMBs) are

long-term side-e�ects of cranial radiation therapy (RT). Previously we showed

that memory function is disrupted in young patients and that the rate of

cognitive decline correlates with CMB development. However, vascular injury

alone cannot explain RT-induced cognitive decline. Here we use resting-state

functional MRI (rsfMRI) to further investigate the complex mechanisms

underlying memory impairment after RT.

Methods: Nineteen young patients previously treated with or without focal

or whole-brain RT for a brain tumor underwent cognitive testing followed

by 7T rsfMRI and susceptibility-weighted imaging for CMB detection. Global

brain modularity and e�ciency, and rsfMRI signal variability within the dorsal

attention, salience, and frontoparietal networks were computed. We evaluated

whether MR metrics could distinguish age- and sex-matched controls

(N = 19) from patients and di�erentiate patients based on RT exposure and

aggressiveness. We also related MR metrics with memory performance, CMB

burden, and risk factors for cognitive decline after RT.

Results: Compared to controls, patients exhibited widespread

hyperconnectivity, similar modularity, and significantly increased e�ciency

(p < 0.001) and network variability (p < 0.001). The most abnormal

values were detected in patients treated with high dose whole-brain

RT, having supratentorial tumors, and who did not undergo RT but had

hydrocephalus. MR metrics and memory performance were correlated

(R = 0.34–0.53), though MR metrics were more strongly related to risk factors

for cognitive worsening and CMB burdenwith evidence of functional recovery.
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Conclusions: MR metrics describing brain connectivity and variability

represent promising candidate imaging biomarkers for monitoring of

long-term cognitive side-e�ects after RT.

KEYWORDS

fMRI, brain connectivity, 7T MRI, radiation therapy, brain tumors, memory, vascular

injury

Introduction

The long-term effects of brain tumor therapies on

neurocognitive function and the development of young patients

are well known. In the years following radiation therapy (RT),

a key contributor to these side-effects, gradual declines in

intelligence quotient have been observed (1–3) with notable

impairments in memory and executive function (4–6). Several

groups have reported more severe impairments in patients

treated with RT at younger ages, higher doses, larger irradiated

volumes, and for specific tumor subtypes, based on whether

they received proton vs. photon RT (1, 2, 4, 5, 7). The

mechanisms underlying neurocognitive decline after RT are not

fully understood but are thought to be related to RT-induced

white matter necrosis, functional changes in neural networks

(8), as well as vascular brain injuries that can be observed on

magnetic resonance imaging (MRI) as early as 1-year following

RT (4, 6, 9).

Previously we leveraged the enhanced spatial resolution and

susceptibility contrast benefits of 7 Tesla (7T) susceptibility-

weighted imaging (SWI) to investigate the relationship between

RT-induced vascular injury and cognitive performance. Vascular

injury, in the form of arterial thinning and tiny hemosiderin

brain deposits called cerebral microbleeds (CMBs), worsened

over time at the same rate with which verbal memory

performance was declining (4, 10). Cross-sectional studies at

lower field strengths have also linked RT-induced CMBs to

cognition (6), which is not surprising as similar pathology

has been shown to be related to the cognitive impairments

experienced by dementia patients and even healthy aging

adults (11, 12). The finding that irradiated patients without

detectable white matter necrosis experience long-term cognitive

deficits further emphasizes this link between vascular injury

and cognition (8), however, vascular injury alone cannot

explain other examples of neurocognitive decline such as in

non-irradiated patients, suggesting a functional abnormality.

While increased alterations in functional connectivity derived

from functional MRI (fMRI) have indeed been associated

with poorer neurocognitive performance before and after

brain tumor therapy (13), there remains little functional

data to explain long-term cognitive outcomes, especially

after RT.

Resting-state functionalMRI (rsfMRI) is a powerful research

tool in clinical neuroscience that can detect network alterations

by way of indirectly measuring spontaneous fluctuations in

brain activity during rest (14). Within millimeter partitions

of the brain, the time-varying amplitude of blood-oxygen

metabolism in response to neural activity is recorded, and the

spatiotemporal synchronicity of the rsfMRI “blood-oxygenation

level dependent” (BOLD) signal between brain areas is typically

evaluated to measure connection strength and define brain

networks. Prior studies have used rsfMRI to demonstrate, for

example, that adult survivors of childhood posterior fossa

tumors have hyperconnected frontal brain areas relative to

controls (15–17). Similarly, task-based fMRI studies involving

neurocognitive testing during image acquisition, have revealed

long-term functional differences in brain tumor patients as a

result of treatment (17) and exposure to cognitive rehabilitative

interventions (16, 18). The ability of fMRI to probe cognition

(19–21) and predict neurocognitive outcomes in diverse patient

groups (22–25) via the detection of network alterations, makes

it especially useful for investigating the complex mechanisms

underlying RT-induced neurocognitive decline. In this study,

we acquired rsfMRI and SWI at 7T in a cohort of 19 patients

previously treated for a brain tumor in order to relate measures

of functional brain network organization and activity tomemory

performance and vascular injury alongside known clinical risk

factors for cognitive decline after RT. Here 7T MRI was

used strategically to achieve increased image spatial resolution,

enhanced tissue susceptibility and BOLD signal contrast, and

ultimately gains in statistical power (26, 27). We also performed

a small reproducibility study to investigate the stability of

our functional imaging metrics with different preprocessing

and analysis parameters, given their known influence on

fMRI reliability.

Methods

Participants

With institutional review board approval and parental or

patient written informed consent, 19 patients (mean age 18

years, range 12–25 years; 47% female) previously treated for

a brain tumor underwent 7T rsfMRI, SWI and T1-weighted
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TABLE 1 Patient demographics.

Patient Sex Race Cancer Type Tumorlocation RT Age (years) RT dose, max (Gy) Surgery Chemo Other Dx

RT 1st MRI

1 M Hispanic Medu p. fossa wb 3 22 37, 53.5 gtr× 4 Vincristine –

2 F White Medu p. fossa wb 18 22 36, 55.8 biopsy Cisplatin, cyclophosphamide,

vincristine

–

3 M White Medu p. fossa wb 14 22 23.5, 54 gtr Carboplatin, CCNU, cytoxan,

VP-16, vincristine

–

4 M White Medu p. fossa wb 6 25 36, 55 gtr Carboplatin, CCNU,

vincristine

Hypertension

5 M White Medu p. fossa wb 7 22 23.4, 55.8 gtr CCNU, cisplatin, vincristine –

6 M White Medu p. fossa wb 12 14 36, 54 str Carboplatin, vincristine –

7 F White Medu p. fossa wb 9 14 23.4, 54 gtr Carboplatin, CCNU, cisplatin,

cyclophosphamide, cytoxan,

vincristine

–

8 M Asian Germ Ventricle wv 9 19 24, 45 ETV, biopsy Carboplatin, VP-16 Diabetes, hydro

cephalus

9 M White Germ Ventricle wv 22 22 18, 30 str Carboplatin, etopside,

ifosfamide

Diabetes

10 F White Germ Ventricle wv 9 22 24, 40.5 biopsy Carboplatin, VP-16 Diabetes

11 F Other Germ Ventricle wv 12 14 18, 30 biopsy Carboplatin, VP-16 Diabetes

12 F Asian Germ Ventricle wv 24 25 18, 33 biopsy Carboplatin, VP-16 –

13* M White PPT p. fossa wb 9 12 23.4, 54.9 gtr, ETV Cisplatin, cyclophosphamide Hydro cephalus,

stroke

14 M White gAnglio Occipital focal 15 17 59.4, 59.4 gtr Vemurafenib –

15 M Black Astro Parietal focal 22 22 59.4, 59.4 gtr – –

16 F White OLIGO Temporal – – 15 – gtr Everolimus –

17 F White JPA p. fossa – – 18 – gtr – –

18 F White JPA p. fossa – – 13 – gtr – Hydro cephalus

19 F Hispanic JPA p. fossa – – 14 – ETV, biopsy – Hydro cephalus

medu, medulloblastoma; germ, germinoma; PPT, pineal parenchymal; ganglio, anaplastic ganglioglioma; astro, pleomorphic xanthoastrocytoma; oligo, oligodendroglioma; JPA, juvenile pilocytic astrocytoma; p.fossa, posterior fossa; wb, whole brain; wv,

whole ventricular; n/a, data affected by motion; gtr, gross total resection; str, sub-total resection; ETV, endoscopic third ventriculostomy.
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imaging [see Table 1 for demographics and our prior work

(4) for further details on the cohort and recruitment criteria].

Compared to 1.5 or 3T MRI, 7T imaging is associated with

heightened risk of claustrophobia and more pronounced patient

bioeffects such as dizziness due to the increased field strength,

nonetheless the technique remains safe and was well-tolerated

by the present cohort. Recruited patients were either non-

irradiated or received RT at least 1 month prior to the MRI.

Of the 19 patients, eight were treated with whole-brain RT

(WBRT) for a medulloblastoma in the posterior fossa, except

for one patient who had a pineal parenchymal tumor in the

same location. Five patients were treated with whole-ventricular

focal RT (WVRT) for a ventricular germinoma; two others were

treated with supratentorial focal RT for gliomas located in the

occipital and parietal lobe. The remaining four control patients

were treated with surgery but not RT for lower-grade gliomas

primarily in the posterior fossa. On average, the WBRT group

(mean age 19.1 years, range 14–25) was treated 9.8 years prior

(range 3.1–19.9); the focal group (including WVRT; mean age

20.1 years, range 14–25) 4.3 years prior (0.1–13); and non-

irradiated controls (mean age 15 years, range 13–18) 3.7 years

prior (range 0.8–8 years). While several patients had a history

of hydrocephalus, a common side-effect of brain tumors linked

to cognitive dysfunction (28), only two patients (#13 and #19

in Table 1) showed evidence of ventricle enlargement on MRI.

A random selection of 19 age- and sex-matched healthy control

data (approx. mean age 19 years, range 11–25; 47% female) from

two publicly available 3T rsfMRI datasets (29, 30) were also

evaluated in this study for comparison with the patient data (full

datasets can be accessed via openneuro.org using data accession

numbers ds000221 and ds000256).

Neurocognitive testing

Prior to the MRI exam, a battery of seven computerized

cognitive tests (Cogstate, Inc.; Newhaven, CT) were

administered (4). In a previous analysis of this cohort we

found the verbal memory test involving recall of items on a

shopping list (International Shopping List; ISL) to be most

useful for distinguishing patients who were treated with vs.

without RT (4). We therefore focused the present work on the

ISL test and corresponding brain networks involved in episodic

memory (31, 32). The total number of correct items recalled was

converted into an age normalized z-score based on mean test

scores of healthy controls from Cogstate’s database.

Imaging protocols

Imaging was performed on a 7T General Electric (GE)

Healthcare scanner equipped with a 2-channel transmit and

32-channel receive head coil. Resting-state fMRI scans were

acquired using an interleaved, gradient-echo sequence with 125

time points [repetition time (TR) = 4 s, minimum echo time

(TE), flip angle = 90, 1.8mm isotropic resolution, 23 cm field-

of-view (FOV)]. TRs for the public fMRI acquired at clinical

field-strengths were 1.4 s (29) and 2.5 s (30). SWI and T1-

weighted images were also acquired; key MR parameters for

these sequences are included in Morrison et al. (4), with a more

in-depth description of the simultaneous MRA-SWI sequence

and reconstruction methods provided in Bian et al. (33).

Data analysis

We investigated aspects of brain network organization and

activity from the rsfMRI data by computing: (1) theoretical

graph metrics representing brain network modularity and

efficiency and (2) measures of BOLD variability thought to

represent the brain’s cognitive flexibility, namely its ability to

efficiently process and respond to unexpected external stimuli

(34). These metrics were chosen as modularity has previously

been shown to predict the efficacy of cognitive rehabilitative

interventions in young adults (35), while efficiency appears

to mediate risk for vascular injury and the development of

cognitive impairments (36) and is linked to cognitive flexibility

in pediatric brain tumor survivors (37).

fMRI preprocessing

Preprocessing was performed using the default pipeline

in CONN (38). Steps included motion estimation and

realignment correction, slice-timing correction, outlier

detection, segmentation of the brain tissue, registration of the

data to an atlas space (Montreal Neurological Institute (MNI)

brain atlas), and spatial smoothing with an 8mm Gaussian

kernel (Figures 1A,B). Bandpass filtering (0.01–0.25Hz) and

linear regression thereafter removed the effects of confounding

covariates including outliers based on>2mm translation (Nmax

= 30), motion parameters (N = 12), and noise components

in regions dominated by the white matter (N = 15) and

cerebrospinal fluid (N = 5). The same denoising parameters

were used for all subjects but adjusted such that each subject’s

whole brain connectivity values were normally distributed after

denoising while maintaining minimum 30 degrees of freedom.

Network modularity and e�ciency

Graph metric analysis was performed using CONN (38)

and the Brain Connectivity Toolbox (BTC) (39). For each

subject, an adjacency matrix representing nondirected, whole

brain functional connectivity was generated by correlating the

mean BOLD signal across pairs of brain regions derived from

132 atlas parcellations (Figure 1C). In this way, the nodes of the

graph represent the brain parcels, while the edges correspond
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FIGURE 1

Functional connectivity matrix generation. Following fMRI data preprocessing (A) and warping of the brain atlas regions-of-interest (ROIs) to

subject space (B), connectivity matrices were generated via Pearson correlations between all pairs of brain ROIs (C).

to connections. A threshold of r > 0.5 was applied to the

subject-level matrices such that only positive, moderate-to-

strong connections were used to compute global modularity and

efficiency. Modularity is a measure of the degree to which the

network is divided into smaller, nonoverlapping subgroups such

that within-group edges are maximized while between-group

edges are minimized, and was computed as

N
∑

i=1

(

eii − a2i

)

(1)

where N is total number of subgroups, ei is the proportion of

edges connecting any two nodes within subgroup i, and aiis the

proportion of edges connecting an individual node in subgroup

i to any other nodes including nodes in other subgroups (40).

Global efficiency is an inverse measure of the average shortest

path length (or smallest number of edges) between all pairs of

nodes, and was computed as

6
(

di (:)
)

(

n2 − n
) (2)

where di is the inverse shortest distance between nodes, and n is

the total number of nodes (41).

Network variability

BOLD variability was computed as the standard deviation

of time series data corresponding to three networks of

interest, isolated via independent component analysis (ICA)

decomposition in CONN (40 components with 64 component

subject-level dimensionality reduction). These networks

included the salience, frontoparietal, and dorsal attention

networks that are commonly engaged during working memory

processes based on a meta-analysis search in neurosynth.org

of 1,091 imaging studies. The networks were identified using a

spatial matching template and if left and right network activity

appeared as two separate components, both components were

used in the analysis. To verify that our cohort of patients

had altered functional connectivity involving nodes of these

networks, we performed an atlas- and voxel- based t-test

comparing connectivity maps for patient vs. control using

seed-based correlations to generate the maps for each network.

Here the mask of the entire atlas-defined network was used
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as the seed. Since ICA decomposition can return different

solutions based on the choice of preprocessing and analysis

parameters, we also performed a small reproducibility study

using data from the present cohort and a separate cohort

of adult patients with Parkinson’s disease imaged at 3T to

evaluate the effects of bandpass filtering (0.008–0.09Hz vs.

0.008–0.06Hz vs. 0.016–0.09Hz), spatial smoothing (none

vs. 4 vs. 8mm) and number of ICA components (20 vs.

40, where 20 is the minimum to extract a complete set of

resting-state networks) on the variability of the dorsal attention

network (DAN).

Statistical analysis

We used Wilcoxon rank sum tests to determine whether

MR metrics could distinguish healthy controls from patients

and amongst patient subgroups: no RT, focal RT (including

supratentorial focal and whole ventricular focal RT), and

WBRT (including low and high dose whole brain RT). Pearson

correlation coefficients were estimated for relationships between

age-normalized MRmetrics and ISL performance scores, as well

as total CMB burden. We used linear regression to test whether

known risk factors for RT-induced neurocognitive impairment,

such as age during RT and time since RT, were related to

ISL performance scores and MR metrics to further evaluate

the potential of modularity, efficiency, and BOLD variability as

markers of cognition.

Results

Reliability of network variability metric

The results of our reproducibility study are shown in

Figure 2. Upon increasing the number of ICA components

from 20 to 40, the DAN was reduced into left and

right hemisphere subnetworks (Figure 2A). Network variability

computed from the DAN time courses corresponding to 20-

vs. 40-component ICA were significantly correlated (Figure 2B).

The left hemisphere subnetwork was more strongly correlated

with the overall DAN variability than the right subnetwork

(L-DAN40 vs. DAN20: R = 0.79, p < 0.0001; R-DAN40

vs. DAN20: R = 0.56, p < 0.0001), while healthy control

data appeared to be more tightly correlated than patient

data. Though not significant, the use of a narrower and

lower frequency bandwidth i.e., 0.008–0.06Hz yielded lower

variability than the use of a wider bandwidth, i.e., 0.008–0.09Hz

(Figure 2C). Unsmoothed data also produced lower variability

values on average, a finding that was significant when compared

to standard 4mm and 8mm kernel smoothing (Figure 2C).

Nonetheless, the overall effect size was small relative to the range

of values typically measured across healthy controls and patients

(see Figure 2B). Taken together, these results reiterate that

the BOLD variability metric derived from ICA-based network

FIGURE 2

Network variability is a reproducible and stable MR metric. Upon

increasing the number of ICA components, the dorsal attention

network (DAN) was reduced to left and right hemisphere

sub-networks (A), with corresponding variability metrics

remaining significantly correlated (B) and relatively stable across

di�erent data filtering bandwidths and spatial smoothing kernels

(C).

time series data is reproducible and stable across different

preprocessing and ICA parameters.

Distinguishing types of RT exposure and
aggressiveness with rsfMRI metrics

Figure 3A shows brain networks of interest averaged

across patients and controls, from which network variability

was computed. Based on a 40-component ICA, a total of

four networks were identified including the left and right

hemisphere DAN, salience network (SN), and frontoparietal

network (FPN). Individual subject networks constructed via

backprojection spatially reflected the total group average;

tumor sites did not overlap with the networks. Comparison

of network connectivity for patients vs. controls using seed-

based correlations confirmed altered patient connectivity,

including hyperconnectivity in medial frontal nodes of the

Frontiers inNeurology 06 frontiersin.org

121

https://doi.org/10.3389/fneur.2022.921984
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Morrison et al. 10.3389/fneur.2022.921984

FIGURE 3

ICA-derived brain networks for all subjects and seed-based analysis confirming altered networks connectivity in patients. For each patient,

BOLD variability was computed as the standard deviation of network-specific timeseries data (A). Seed-based analysis confirmed that patients

had significantly altered connectivity (relative to controls) involving nodes of the networks of interest (B). In (B), orange corresponds to brain

areas that are hyperconnected to respective network nodes in patients (relative to controls), while purple represents hypoconnected areas.

FIGURE 4

MR metrics can distinguish healthy controls and patient subgroups. Scaled and Fisher transformed functional connectivity (FC) matrices reveal

notable group di�erences in global connectivity (A). MR metrics derived from FC matrices and ICA brain networks show significant group trends

related to group exposure to radiation therapy (RT) and/or the degree of RT treatment aggressiveness (B, C). HC, healthy controls; no RT,

non-irradiated patients; WVRT, whole-ventricular focal RT; Focal, focal RT to the supratentorial brain; WBRT, whole-brain RT.

SN and FPN, and parietal nodes of the FPN and DAN

(Figure 3B). Reduced connectivity was also observed between

lateral frontal areas involved in memory and language,

and the DAN and FPN. Qualitative evaluation of group-

averaged functional connectivity matrices, from which global

efficiency and modularity were computed, revealed noticeable

global connectivity differences (Figure 4A). Compared to

the healthy controls (n = 19), all patients had more

widespread hyperconnectivity. Upon separating patients into

finer group (Supplementary Figure 1), those treated with focal

RT to the supratentorial brain (n = 2) exhibited extensive

hyperconnectivity, followed by those treated with high-dose
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WBRT (n = 4), no RT (n = 4), low-dose WBRT (n = 4), and

WVRT (n= 5).

All imaging metrics except network modularity showed

significant group differences (Figures 4B,C). We expected to

observe trends in imagingmetrics across the groups according to

whether RT was received, followed by treatment aggressiveness

based on the approximate volume, location, and dose of RT.

In this way and to maintain sufficiently sized groups, we first

ranked the groups as follows: healthy controls < no RT <

focal/WVRT RT < WBRT. In a supplementary analysis we

investigated finer groupings: healthy controls< no RT<WVRT

< supratentorial focal < low-dose WBRT < high-dose WBRT.

As seen in Figures 4B,C, global efficiency and local SN and DAN

variability best reflected this expected trend where group-level

RT exposure and increasing treatment aggressiveness appeared

to be associated with higher global efficiency (p < 0.001)

and SN and DAN variability (all p < 0.001). While healthy

controls nearly consistently yielded significantly lower values

than patients, high values were unexpectedly recorded for non-

irradiated patients, often exceeding that of the focal RT patients.

Similar plots in Supplementary Figure 1 with patients separated

into finer groups, showed the same trends plus a consistent effect

of dose whereby high-dose WBRT was associated with higher

MR metrics.

rsMRI metrics and memory performance

Correlation tests between patients’ age-normalized MR

metrics and the ISL test scores, representative of memory

performance, revealed a significant positive correlative

relationship between global modularity and efficiency and

ISL scores (modularity: R = 0.53, p < 0.02; efficiency: R

= 0.49, p < 0.05; Figure 5B). Network variability metrics

similarly showed near significant, positive correlative trends

with ISL scores except for R-DAN variability (Figure 5A).

Division of the MR metrics by age at the time of imaging to

produce age-normalized values, limits direct interpretation of

trend lines in Figure 5 where performance decline appears

to be associated with lower MR values. Nonetheless,

age-normalization here was necessary as ISL test scores

are normalized to age-appropriate healthy control data,

and furthermore functional connectivity and network

variability metrics have shown age-related changes across

the lifespan (20).

Relationship between CMB burden and
rsfMRI metrics and memory performance

In our prior work (4), CMB burden defined as the

total number of CMBs detected on a patient’s SWI images

(Figure 6A), showed only longitudinal correlations with

neurocognitive performance and here our results reiterate that

cross-sectional ISL test scores do not show any clear trend

with CMB burden (Figure 6B, yellow bars). Our approach

of regrouping patients by their CMB burden based on the

distribution of the data allowed for the inclusion of patients

with no CMBs and revealed an interesting trend for L-DAN

variability andmodularity. Notably, L-DAN variability appeared

to follow a parabolic trend where patients with low (0–2 CMBs)

and very high CMB burden (>91 CMBs) averaged low

variability, while patients with moderate CMB counts (4–47)

averaged high variability (Figure 6C, top row). The opposite was

observed for modularity where high modularity was detected

in patients with very low and very high CMB counts, while

low modularity was found in patients with moderate CMB

counts (Figure 6D, top row). Plotting of the individual patient

data points for those who had at least 1 CMB (Figures 6C,D,

bottom rows) showed that the results are largely dependent on

imaging values from the few subjects with >100 CMBs. These

parabolic-like trends for L-DAN variability and modularity can

also be mildly appreciated in Figures 4B,C, despite grouping

patients based on RT exposure and aggressiveness as opposed to

CMB burden.

Association of risk factors for cognitive
decline after RT with rsfMRI metrics and
memory performance

Younger age during RT and increased time elapsed since

RT are known risk factors for neurocognitive decline and

CMB development after radiation exposure (1, 3, 4, 9).

Multiple regression analysis revealed significant associations

between age-normalized imaging metrics and risk factors for

neurocognitive decline, with global efficiency yielding the

strongest association followed by SN variability; ISL test scores

were not significantly associated with the risk factors (Table 2).

Although these results are illustrated in Figure 7 as three-

dimensional scatter plots, normalization of the MR metrics by

age at the time of imaging again limits the direct interpretation

of these trends.

Discussion

This cross-sectional imaging study investigated how rsfMRI

measures of brain connectivity and network variability differ

among patients with varying exposure to RT and degree of

treatment aggressiveness compared to age- and sex-matched

healthy controls. The strength of functional brain connections

as well as variability within certain networks was related to: (1)

neurocognitive measures of memory performance, (2) vascular

injury in the form of CMBs, and (3) known risk factors for

neurocognitive decline after RT, demonstrating that functional
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FIGURE 5

Age-normalized MR metrics and ISL test scores are correlated. Age-normalized network variability (A) and functional connectivity (B) metrics

show a positive correlative trend with the age-normalized International Shopping List (ISL) test scores, representative of neurocognitive memory

performance. As shown in B, only modularity and e�ciency are significantly correlated with ISL. SN, salience network; FPN, frontoparietal

network; L-DAN, left hemisphere dorsal attention network; R-DAN, right hemisphere DAN.

FIGURE 6

MR metrics change parabolically with increasing CMB burden. Degree of cerebral microbleed (CMB) burden detected on SWI (A) reveals

parabolic-like changes in left hemisphere dorsal attention network (L-DAN) variability and modularity (B) with increasing CMB burden (based on

within-group averages). Isolated plots for L-DAN variability and modularity are shown respectively in the top row of (C, D); the bottom rows

show the individual patient data points for CMB counts ranging 1–50 (magnified) and 1–205 (full range). In (B), modularity values have been

reduced by a factor of 5 for visualization purposes. Two of the 19 patients had poor SWI data quality and therefore CMB burden could not be

evaluated. SN, salience network; FPN, frontoparietal network; L-DAN, left hemisphere dorsal attention network; R-DAN, right hemisphere DAN;

Mod, modularity; E�, e�ciency; ISL, International Shopping List test score.
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TABLE 2 Multivariate analysis of risks factors for neurocognitive decline after RT.

Neurocognitive outcome metrica Age during RT Time since RT

Incidence rate ratio [95%

confidence interval]

p-Value Incidence rate ratio [95%

confidence interval]

p-Value

Neurocognitive performance:

International shopping list −0.06 [−0.20, 0.08] NS −0.11 [−0.23, 0.02] NS

Network variability:

Salience −0.001 [−0.0015,−0.0009] <0.0001 −0.001 [−0.0014,−0.0008] <0.0001

Frontoparietal −0.0008 <0.002 −0.0008 <0.002

L-dorsal attention −0.001 [−0.0015,−0.0007] <0.0001 −0.001 [−0.0014,−0.0006] <0.002

R-dorsal attention −0.0015 [−0.0022,−0.0008] <0.002 −0.0013 [−0.0020,−0.0007] <0.002

Functional connectivity:

Modularity −0.0055 [−0.0087,−0.0023] <0.005 −0.0057 [−0.0087,−0.0023] <0.002

Efficiency −0.0017 [−0.0019,−0.0014] <0.0001 −0.0016 [−0.0018,−0.0014] <0.0001

aImaging metrics represent surrogate measures of neurocognitive status and are normalized by age at the time of imaging.

FIGURE 7

Age-normalized MR metrics are strongly associated with risk factors for cognitive decline after RT. Neurocognitive memory performance

measured via the international shopping list (ISL) task is less associated with known risk factors for neurocognitive decline after RT (A) than MR

metrics (B) representing surrogate markers of neurocognitive status.

MR metrics could be useful surrogate markers of cognition in

brain tumor patients for reliable evaluation of the long-term

treatment side-effects.

Reliability of the BOLD signal in patients with brain

tumors has previously been shown to vary with disease

aggressiveness (42). Since BOLD variability has not yet to

our knowledge been investigated as a potential biomarker of

brain tumor features or treatment side-effects, the first aim

of this study was to demonstrate its reproducibility. Overall,

we found that BOLD variability metrics were relatively stable

across fMRI preprocessing and ICA postprocessing parameters,

though unsmoothed data yielded several outliers. Spatial

smoothing is generally considered an essential preprocessing

step to improve data signal-to-noise ratio, with previous

studies having shown stable functional connectivity as a

function of resolution after smoothing (43). However, other

studies have argued that spatial smoothing should be avoided

in network analyses (44). While the results cannot inform

the optimal approach, they do show that BOLD variability

is more reproducible among different smoothing kernels,

and that unsmoothed data significantly reduces the relative

group average.
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By nature of the ICA decomposition method, fMRI

data-driven outputs (spatial brain maps and associated time

courses) vary with each iteration (45). The desired number

of components typically chosen in line with the experimental

hypothesis can also significantly alter the solution, yielding

brain maps of (sub)-networks of different granularity [as

shown in Figure 2A and thoroughly explored by Wang and Li

(46)]. Our finding that 20 and 40 component ICA produces

BOLD variability metrics that are considerably correlated in

patients, provides impetus for proceeding to use these metrics

for biomarker discovery, and demonstrates that while ICA

solutions can appear spatially distinct with increased number

of components, the time courses can look relatively similar.

Compared to the patient data, the control subject data were

even more tightly correlated despite being derived from two

different public datasets, providing further evidence that the

BOLD variability metric is also robust against scanner and

acquisition parameters.

Independent component analysis with 40 components

(twice the minimum to extract a complete set of resting-state

networks) was used to resolve more fine-grained representations

of the network that may better characterize the underlying

neurophysiological complexity of working memory processes.

Seed-based analysis detected significant differences in SN,

FPN, and DAN connectivity between patients and controls,

providing further rationale for their inclusion as networks of

interest to compute BOLD variability. Specifically, the finding of

frontal lobe hyperconnectivity in patients agrees with previous

reports of survivors of childhood tumors exhibiting frontal

hyperconnectivity in the FPN and SN relative to controls, (15)

as well as increased frontal engagement during workingmemory

tasks (47). In young patients this is not surprising as frontal

regions have been shown to develop post-adolescence and thus

remain highly susceptible to plasticity (48).

On average, with the exception of global brain modularity,

patients exhibited higher functional connectivity metrics than

age- and sex-matched controls, providing further evidence of

functional alterations in patients associated with treatment

related side-effects despite the likely influence of previous

structural changes due to lesion growth. Increased BOLD

variability has previously been detected linearly across the

lifespan and associated with age-related reductions in cognitive

performance (49–51). In adults with Alzheimer’s disease,

Scarapicchia and colleagues also found that during rest whole-

brain BOLD variability was increased in patients relative to

controls and furthermore related to lower memory scores (52).

Functional imaging studies of network efficiency have similarly

shown enhanced efficiency in patients relative to controls

(53). Given that both these metrics capture information about

cognitive flexibility, their elevation in patients with increasing

RT exposure and aggressiveness in this study could reflect

underlying compensatory neural mechanisms directly related

to the severity of their experienced brain injury. It is also

important to note that while structural network efficiency

reflecting impaired white matter architecture is often decreased

in patients (36, 37), fMRI metrics are uniquely advantageous in

that they can capture polysynaptic activity and early neuroplastic

changes that might not be reflected structurally. Although brain

modularity was not as sensitive to patient vs. control differences,

controls on average exhibited slightly higher modularity which

aligns with prior evidence of young individuals with higher

baseline modularity performing better over iterative cognitive

training sessions (35).

Qualitative evaluation of the group averaged functional

connectivity matrices and the inclusion of age- and sex-

matched controls in addition to non-irradiated controls was

especially critical to realizing group trends in the data involving

RT exposure and aggressiveness. Interestingly, no RT visually

exhibited more hyperconnectivity than patients treated with

more aggressive high and low dose WBRT regimens for a

posterior fossa tumor, respectively. This highlights concerns

that non-irradiated patients may not always be suitable controls

for evaluating the impact of RT on brain connectivity, and

that structural changes due to supratentorial lesion growth or

hydrocephalus (detected in 50% of nonirradiated patients) (54)

may have a greater impact on functional connectivity than RT

effects. Patients treated with focal WVRT had the most normal

appearing connectivity profiles, which could be explained by

the location and relatively small size of their pre-treatment

lesions, as well as the fact that some of the patients were treated

as young adults which has previously been associated with a

better prognosis (4). Quantitatively, some of the rsfMRI metrics

mimicked these visual trends, but we also observed instances

in which patients treated with focal RT had more favorable

functional connectivity metrics than the WBRT group. While

individual patient variations likely influenced differences in the

group trends observed across connectivity metrics, the effect

of dose within the WBRT group was one trend that remained

consistent, providing strong evidence that higher whole-brain

doses lead to more functional brain alterations.

Positive correlations observed between the ISL test scores

and rsfMRI metrics reaffirm that functional imaging can indeed

probe cognition in pediatric brain tumor patients. From the

results in Figure 6 relating ISL scores and functional connectivity

metrics with CMB burden, we can appreciate the added value

of rsfMRI metrics which allowed for meaningful trends in the

data to be extracted that otherwise could not be explained by

memory task performance alone. Parabolic trends in modularity

and DAN variability suggest that there may be a process of

functional neural recovery unfolding over the course of years,

simultaneous to the development of CMBs over time (4, 6, 9).

In this way, one might reconsider the relative influence that

vascular injury vs. microstructural and network-level functional

changes have on the cognitive abilities of these patients. While

severe vascular brain injury can independently lead to functional

reorganization, there is evidence for example of re-emergence
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of modular brain networks in stroke patients that are driven by

changes in brain connectivity (55). Given this knowledge, it is

not surprising that patients in this study with upward of 100

CMBs (who are also at high risk for stroke), approached normal

modularity values. Biologically, modular networks have been

proven more functionally efficient than non-modular networks

(56), therefore, it also makes sense that we see a re-emergence

of cognitive flexibility in the DAN as it relates to the brain’s

ability to efficiently process and respond to unexpected external

stimuli (34).

Further emphasizing the utility of rsfMRI for the evaluation

of cognitive side-effects after RT was the finding that risk factors

(i.e., time since RT, age during RT) weremore strongly associated

with rsfMRI metrics than ISL test scores. Although cognitive

testing batteries represent the gold standard for detecting

cognitive impairments, their cross-sectional reproducibility in

young patients is limited (57). Individual performance on a

given task can fluctuate with testing fatigue during the exam

and even the time of day (58). While rsfMRI metrics have

their own limitations with respect to reproducibility (59), our

results demonstrate that despite sources of variation influencing

reliability, consistent and clinically meaningful trends in the data

can still be elucidated using standard preprocessing methods.

There are several limitations to this study, with the

most notable ones being the limited cohort size and patient

heterogeneity with respect to age, tumor location and pathology,

the presence of hydrocephalus, treatment strategy, and time

since treatment. We used 7T MRI to enhance statistical

power, and to minimize within-group variations and allow for

meaningful results to be derived from the limited cohort, we

grouped patients based on the similarity of their treatment

strategy and naturally the alikeness of their tumor type and

location. Nonetheless, factors such as hydrocephalus, although

only mildly present in few patients across the groups, may

have confounded the results given known independent effects

of hydrocephalus on white matter structure and cognition

(54). Especially in the non-irradiated control groups where

two out of four patients presented with hydrocephalus, we

expect that this side-effect significantly influenced the observed

connectivity patterns.

Much of these limitations are largely due to unforeseen

challenges with recruiting patients for a 7T research scan in

addition to their clinical scan, as well as a delay in acquiring

rsfMRI data as part of the study protocol. Specifically, challenges

in recruiting patients who received WBRT for a posterior

fossa tumor >1 year prior resulted in a widening of our

inclusion criteria leading to the recruitment of two patients

treated <1 year before 7T imaging. Consequently, some of

the observed memory impairment and functional alterations in

these patients may be caused by acute as opposed to late RT

effects, which differ in pathophysiology. Otherwise, a delay in

acquiring functional data for this study led to our inability to

collect sufficient longitudinal rsfMRI data which, based on our

prior work (4), may provide better insight into the relationship

between risk factors, cognitive decline, and vascular injury.

One final limitation worth noting was our inability to access

age-appropriate control data acquired at 7T, thus requiring

utilization of public 3T data. Variations in image signal-to-noise

ratio (SNR) caused by the differing field strengths may have

contributed to the distinction of patient and control metrics;

nonetheless, given extensive prior evidence of abnormal brain

activity in patients with neurological conditions, the underlying

biological effects are still thought to be largely influencing the

results. Our control dataset arising from two different studies,

scanners, and sequence parameters further demonstrate that

the imaging metrics are robust against differences in scanning

methods that may affect SNR.

Overall, despite these limitations, the results of this work

demonstrate that cross-sectional measures of functional brain

connectivity and variability derived from rsfMRI may provide

surrogate markers of cognition for monitoring the long-term

effects of RT, including the complex relationship between

vascular injury, network connectivity, and cognition. While

we did not investigate the impact of underlying structural

connectivity changes and presence of white matter pathologies

on patient outcomes in this study, it is the subject of our

ongoing work.

Conclusion

Collectively, the results demonstrate that rsfMRI metrics

describing global brain modularity, efficiency, and local

network variability hold promise for monitoring the long-term

cognitive side-effects of RT in young patients being treated

for a brain tumor. These neuroimaging metrics correlated

with memory performance and were also able to effectively

differentiate patients based on exposure to and aggressiveness

of RT. Compared to memory performance, these functional

connectivity metrics were more strongly associated with risk

factors for cognitive decline and severity of RT-induced

vascular injury.
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SUPPLEMENTARY FIGURE 1 |

MR metrics can distinguish healthy controls and patient subgroups.

Scaled and Fisher transformed functional connectivity (FC) matrices

reveal notable group di�erences in global connectivity (A). MR metrics

derived from FC matrices and ICA brain networks show significant group

trends related to group exposure to radiation therapy (RT) and/or the

degree of RT treatment aggressiveness (B, C). HC, healthy controls; no

RT, non-irradiated patients; WVRT, whole-ventricular focal RT; Focal,

focal RT to the supratentorial brain; WBRT, whole-brain RT.
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Background:Head computed tomography (CT) is used to predict neurological

outcome after cardiac arrest (CA). The current reference standard includes

quantitative image analysis by a neuroradiologist to determine the Gray-

White-Matter Ratio (GWR) which is calculated via the manual measurement of

radiodensity in di�erent brain regions. Recently, automated analysis methods

have been introduced. There is limited data on the Inter-rater agreement of

both methods.

Methods: Three blinded human raters (neuroradiologist, neurologist, student)

with di�erent levels of clinical experience retrospectively assessed the Gray-

White-Matter Ratio (GWR) in head CTs of 95 CA patients. GWR was also

quantified by a recently published computer algorithm that uses coregistration

with standardized brain spaces to identify regions of interest (ROIs). We

calculated intraclass correlation (ICC) for inter-rater agreement between

human and computer raters as well as area under the curve (AUC) and

sensitivity/specificity for poor outcome prognostication.

Results: Inter-rater agreement on GWR was very good (ICC 0.82–0.84)

between all three human raters across di�erent levels of expertise and between

the computer algorithm and neuroradiologist (ICC 0.83; 95% CI 0.78–0.88).

Despite high overall agreement, we observed considerable, clinically relevant

deviations of GWR measurements (up to 0.24) in individual patients. In our

cohort, at a GWR threshold of 1.10, this did not lead to any false poor

neurological outcome prediction.

Conclusion: Human and computer raters demonstrated high overall

agreement in GWR determination in head CTs after CA. The clinically
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relevant deviations of GWR measurement in individual patients underscore

the necessity of additional qualitative evaluation and integration of head

CT findings into a multimodal approach to prognostication of neurological

outcome after CA.

KEYWORDS

cardiac arrest (CA), neuroprognostication, computed tomography, automated image

analysis, resuscitation, inter-rater agreement, brain imaging

Introduction

Hypoxic-ischemic encephalopathy (HIE) remains a major

cause of death and disability following cardiac arrest (1).

Many CA survivors remain with disabling neurological

symptoms ranging from cognitive and movement disorders

to severe impairments of consciousness (2). Reliable

neurological outcome prediction after CA is a challenging

task. When deciding on continuation or withdrawal of

life sustaining therapies, an accurate prognosis is crucial.

Currently, a combination of several prognostic investigations

is recommended: repeated neurological examination,

electroencephalography (EEG), somatosensory evoked

potentials (SSEP), serum neuron-specific enolase (NSE) and

brain imaging (3).

Despite efforts for standardization, there is heterogeneity in

prognostic performance between raters and centers for most

of the tests used. Inter-rater agreement on EEG interpretation

is fair to substantial (4) and good on SSEP interpretation for

the prediction of poor outcome in comatose patients early after

CA (5).

Head CTs are obtained early after CA to rule out intracranial

causes for the arrest and later after CA (typically within 3–

5 days) to assess the degree of HIE. The current reference

standard for assessing head CT imaging is interpretation by a

neuroradiologist (“qualitative analysis”). Typical characteristics

of HIE include global brain edema frequently visible as sulcal

effacement, loss of discrimination between gray and white

matter, pseudo-subarachnoid hemorrhage or hypodense cortex

and gray matter basal ganglia structures (“reversal sign”) (6).

International guidelines recommend using imaging findings of

“diffuse and extensive anoxic injury” for prediction of poor

neurological outcome without providing a clear definition of

this finding (3, 7, 8). Studies on the inter-rater reliability of

qualitative assessment of head CT have consequently found poor

to moderate agreement on the presence and/or severity of HIE

between different raters, sites, and specialties (9, 10).

Quantitative analysis could aid in reducing Inter-rater

variability. Determination of the gray-white matter ratio (GWR)

by manual placement of small regions of interest (ROI) in

different gray and white matter target regions has been evaluated

in many mostly retrospective, single center studies (11, 12).

Protocols for GWR determination are not fully standardized

and differ relevantly between centers (13). Our group recently

developed and successfully tested an algorithm for automated

GWR assessment that uses linear and non-linear co-registration

with MRI-based standard atlases to determine ROIs (14).

Limited data is available on the Inter-rater agreement in

GWR determination, especially with respect to different levels

of expertise. Moreover, there are no studies that investigate the

agreement between conventional human raters and automated

assessment by a computer algorithm.

Therefore, this study aims at the following:

1. To assess inter-rater agreement of GWR assessment

between 3 human raters with different levels of expertise.

2. To assess the agreement between human raters and

automated computer GWR assessment.

3. To identify potential sources of Inter-rater variability.

4. To evaluate the impact of Inter-rater variability on

prognostic performance.

Methods

Patients

The study was approved by the local ethics committee.

We retrospectively included 353 patients from a previously

published cohort of our CA database from the circulatory

arrest center of a large academic hospital (15). One hundred

eleven patients received native head CTs within the first 7

days after CA. Three patients had technically compromised

data files and could not be reanalyzed. Thirteen patients with

additional cerebral pathologies such as older ischemic lesions,

hemorrhage or severe motion artifacts in imaging were excluded

(Supplementary Figure 1). Patients were treated with targeted

temperature management (TTM, 33◦C for 24 h) according to

the guidelines (16). Clinicians were blinded to the results of

quantitative CT analysis but had access to the radiologic report.

Neurological outcome was assessed by the treating physicians

at hospital discharge using the cerebral performance category
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(CPC) scale and dichotomized in “good” (CPC 1–3) and “poor”

outcome (CPC 4–5) for statistical analysis (17).

GWR determination

All raters were blinded to clinical information except for

the overall context of CA and blinded to each other’s results.

Images were rated by a board-certified neuroradiologist with

13 years of clinical expertise, a resident neurologist with 3

years of experience in post-cardiac arrest care and a final year

medical student who underwent a short, 3-h training session to

assess GWR beforehand but had no clinical experience in the

field. Using Horos (Version 3.1.2, The Horos Project, https://

horosproject.org), each rater was asked to bilaterally place 10

mm2 ROIs into the putamen and posterior limb of the internal

capsule (PLIC).

For automated analysis, we used a previously published

algorithm, modified to use circular ROIs instead of atlas maps

(14). In summary, CTs are first co-registered in a linear and

non-linear mode to a standardized CT template in an MRI-

based standard space using the FNIRT and FLIRT functions

from FSL (Version 5.0.9, Analysis Group, FMRIB, Oxford,

United Kingdom) (18). The reverse transformation fields are

then used to automatically place predefined standardized 10

mm2 circular ROIs into the center of target regions in the

individual CT spaces. Mean hounsfield units (HU) in the ROIs

were measured and GWR was calculated as HU Putamen
HU PLIC .

Statistical analyses

For statistical analysis, we used RStudio (Version 1.4.1653,

RStudio, Boston, MA) with the pROC-package (19) for receiver

operating characteristics (ROC), the ggpubr-package for data

visualization and the psych-package (20) for ICC calculation.

Intraclass correlation (ICC) (ICC 3, two-way mixed, single

measure model) was conducted to measure overall and pairwise

Inter-rater agreement on the radiodensity (HU) and GWR

between the reference standard neuroradiologist and the other

three raters. We also calculated ICC (ICC3k, Two-way mixed,

average measure) between a mean of three human raters and

the computer.

Intraclass correlation values < 0.2 were considered as poor

agreement, between 0.21 and 0.4 as fair agreement, between 0.41

and 0.6 asmoderate agreement, 0.61 and 0.80 as good agreement,

and values > 0.80 as very good agreement (21). For comparison

between the raters, we used the Wilcoxon test for the rating

results and the DeLong’s test for the AUCs. “Severe HIE”, was

assumed if GWR was <1.10 (22). Statistical significance was

defined as p<0.05. Confidence intervals (CIs) for neurological

outcome prediction were calculated with 95% CIs using the

Wilson score method.

TABLE 1 Baseline data of 95 CA patients.

Parameter Overall

n 95

Age (years) 61 [48–73]

Sex

Male 63 (66.3%)

Out-of-hospital Cardiac Arrest 79 (83.2%)

Shockable Rhythm 29 (30.5%)

Primary cause of arrest

Cardiac 47 (49.5%)

Respiratory 35 (37.2%)

Other 13 (13.6%)

Time to ROSC (min) 16 [12–24]

Total Adrenalin Dose (mg) 2 [1–5]

APACHE Score 30 [23–35]

Length of ICU stay (days) 9 [4–23]

Time on Ventilator (hours) 204 [108–512]

CT acquisition (hours after CA) 4 [1–19.5]

Neurological Outcome at ICU Discharge

CPC 1 23 (24.2%)

CPC 2 14 (14.7%)

CPC 3 2 (2.1%)

CPC 4 9 (9.5%)

CPC 5 47 (49.5%)

Median [IQR] for continuous and numbers (%) for categorical data.

Results

Patients

Ninety five patients with native head CTs were eligible

for analysis. In the predominantly male (66.3%) study cohort

(Table 1), the majority had an OHCA (83.2%) and a non-

shockable rhythm (69.5%). Half of the patients had a primary

cardiac cause of arrest, the other half either a respiratory (35%)

or other cause (intoxication, metabolic, and unknown). Median

length of ICU stay was 9 days [IQR 4–23]. At ICU discharge, 56

(59%) patients had a poor neurological outcome (CPC 4–5), 9

of which in unresponsive wakefulness syndrome (UWS; CPC 4),

the other 47 dead (CPC 5). CTs were acquired at a median of 4 h

(IQR, 1–19.5) after cardiac arrest.

Inter-rater agreement in GWR
determination

Figure 1 illustrates ROI placement in 3 patients with

different extent of post hypoxic brain damage. For the

measurement of putamen radiodensity, ICC for agreement with

the study neuroradiologist (reference standard) was very good
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FIGURE 1

ROI Placement during GWR assessment in Putamen and Posterior Limb of the internal Capsule (PLIC) in CTs of three patients after cardiac arrest

(A–C). All four raters (Neuroradiologist in red, Neurologist in blue, Student in yellow, and Computer in cyan) and GWRs displayed.

for all three raters (student 0.83, neurologist 0.92, computer

0.92). The agreement for PLIC was lower, although still at good

levels (student 0.66, neurologist 0.71, computer 0.72; Figure 2).

The student had the lowest correlation with the neuroradiologist

in both regions (Putamen ICC 0.84, CI 0.78–0.88; PLIC 0.66

0.56–0.75) with differences ranging up to a maximum of 4.4

HU for PLIC. Moreover, the computers’ agreement with the

average of all human raters was very good (ICC Putamen 0.96,

CI 0.95–0.97; PLIC 0.98, CI 0.84–0.92; Figure 3).

The raters’ overall agreement with the study

neuroradiologist on the GWR was very good (overall

ICC 0.83; CIs 0.78–0.87), with 95%-CIs ranging into good

agreement (Figure 2). Furthermore, the agreement between

the computer and the average of all three human raters

was very good (0.93; CI 0.91–0.96, Figure 3). However,

when comparing individual GWR values between computer

and neuroradiologist (ICC 0.84; CI 0.78–0.88), differences

ranged from a minimum of 0.003 to a maximum of

0.24 with disagreement across the pre-defined cut-off for

severe HIE (GWR < 1.10) in eight poor neurological

outcome patients (Figure 4, CT image examples in

Supplementary material). Similarly, the neurologist disagreed

in six poor neurological outcome cases and the student nine

cases with the neuroradiologist (Supplementary Figure 2).

No disagreement with the neuroradiologist across the cutoff

was observed in any good neurological outcome patient for

any rater.

Prognostic variability

Median GWRs were significantly lower in patients with poor

neurological outcome than in patients with good neurological

outcome, regardless of the rater (Supplementary Table 1).

Predictive performance for poor neurological outcome

prediction by GWR, quantified by the area under the ROC

curve (AUC) was equally good for neuroradiologist and

computer (AUC 0.80; CI 0.71–0.89) and lower for the

neurologist (0.74; CI 0.65–0.84) and student (0.78; CI 0.69–0.87)

(Figure 5). The differences in AUC between all raters were

not statistically significant. Sensitivity at GWR < 1.10, a 100%

specificity cutoff for all raters ranged between 18% for the

computer and was highest at 29% for the neuroradiologist

(Supplementary Table 2).

Discussion

Our main findings are:

1. The Inter-rater agreement on the Gray-WhiteMatter Ratio

measured in head CTs after CA was very good between 3

human raters across different levels of expertise.

2. The Inter-rater agreement on GWR measured in head

CTs was very good between human raters and a

computer algorithm.
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FIGURE 2

Intraclass correlation (ICC) (95% CI) for the pairwise agreement of three di�erent raters with the study neuroradiologist in GWR and ROI

assessment (Putamen and PLIC) in Hounsfield Units (HU) in CTs after cardiac arrest.

FIGURE 3

Intraclass correlation (ICC) (95%-CI) for the combined agreement of three human raters (mean of student, neurologist and neuroradiologist)

with the computer algorithm in GWR and ROI assessment (Putamen and PLIC) in Hounsfield Units (HU) in CTs after cardiac arrest.

3. Inter-rater agreement was lower for ROIs placed in the

posterior limb of the internal capsule than for those placed

in the putamen.

4. Despite high overall agreement, considerable deviations

in GWR between raters were observed in individual

patients. In our cohort, at a GWR threshold of

1.10, this did not lead to any false poor neurological

outcome predictions.

In this study investigating the Inter-rater variability of

quantitative head CT assessment in patients after cardiac arrest,

Inter-rater agreement was considerably better than in studies
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FIGURE 4

Pairwise GWR values for n = 95 patients rated by computer and neuroradiologist. Blue pairs representing patients with good outcome (CPC

1–3), red pairs poor outcome (CPC 4–5). Triangles for manual rater (neuroradiologist), dots for computer. Blue dotted line at GWR-cuto� = 1.10.

investigating descriptive, qualitative assessment (9, 10). Previous

evidence on the subject had been inconclusive with one study

reporting moderate agreement between three human raters

and another study reporting good agreement between four

human raters (23, 24). We provide the first data for the Inter-

rater agreement between human raters and an atlas-based

computer algorithm.

We observed the highest variability in theHUmeasurements

of the PLIC-ROI, which mainly accounted for the variability

of GWR values. ROI-placement in the Putamen was more

consistent. This is illustrated in our visual examples and might

be due to a less evident visual delineation of internal capsule

in contrast to a clear structural border of the basal ganglia

(Figure 1). Another reason could be the increasing difficulty

with visually identifying anatomical regions when gray-white

matter differentiation is lost due to brain edema (Figure 1A).We

also provide evidence that this effect could partly be solved by

automated delineation: we observed the highest agreement for

the PLIC-ROI between the computer and the neuroradiologist.

Considerable GWR deviations or disagreements across the

cutoff for HIE occurred both in CTs with extensive as well as

subtle pathological changes (Supplementary Figures 3, 4). Three

main sources for variability can be observed in these images:

First, raters seem to have a preference as to where to place

ROIs within the target structures. Future studies with manual

placement should therefore standardize ROI placement i.e., by

defining the position within the anatomical region and the

ROIs relation to other adjacent landmarks. Second, due to small

structural focal hypo- or hyperdensitites (e.g., vessels and small

lacunar defects) HU values can also vary if ROIs are placed

correctly within the anatomic region. We therefore suggest

that raters consider the HU value during ROI placement to

be in an area representative of the regions radiodensity. Both

problems can be solved if instead of circular ROIs, the whole

anatomical region is delineated and its radiodensity averaged,

an approach that has been successfully used in automated CT

quantification by our group an others (14, 25, 26). Third, there

are cases where ROIs are misplaced by the rater. Therefore, the

results of manual and/or automated ROI placements should be

visually re-inspected after qualitative and quantitative analysis

are completed to identify cases of misplacement.

Although overall agreement on the GWR values as measure

of the degree of edema was very good, we observed considerable

variability in individual patients in both neurological outcome

groups, the extent of which has not been previously reported.

In some cases, this also affected whether a patient was above

or below our predefined cut-off for “severe HIE” (GWR

< 1.10). In our cohort this exclusively occurred in poor

neurological outcome patients, no good neurological outcome

patient was misclassified as below the cut-off. Thus, it influenced
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FIGURE 5

Receiver operating characteristics (ROC) for poor outcome prediction after CA using GWR rated by (A) 3 di�erent human raters (B)

Neuroradiologist vs. Computer. Sensitivity and Specificity in %.

the sensitivity while retaining the high specificity for poor

neurological outcome prediction. It is still possible, however,

that the degree of variability observed in some patients of our

study might occur in good neurological outcome patients in

another cohort. We therefore advise caution for solely relying

on the GWR values as prognostic information derived from CT

after CA, especially when the values are close to the cut-off.

We suggest that CT interpretation should be based on an SOP

that integrates both qualitative and quantitative analysis before

concluding on the absence or presence of HIE. This information

should then always be put into the context of the results of other

diagnostic modalities (EEG, SEP, and serum biomarkers).

Despite a tendency toward more consistent ROI placement

in experienced human raters, we observed no significant

difference in overall prognostic performance between all 4 raters,

even though a clinically unexperienced graduate student who

was pre-trained for the task was included. The results contrast

with the considerable Inter-rater variability of experienced

clinicians in qualitative assessment (9) and underscores that

CT quantification reduces Inter-rater variability. We therefore

recommend a protocol-based training for physicians doing

GWR-assessment in future studies and in the clinical routine.

Using a standardized automated method could eliminate the

problem of Inter-rater variability overall by assisting the

rating physician through visually delineating structures or

recommending ROIs.

In this study, GWR performed similar in poor neurological

outcome prediction as compared to previous studies by our

group and others (13, 14, 22). We account the lower sensitivity

of 18–28% in this study to the design that did not stratify

between early CTs obtained within 24 h and late CTs performed

later than 24 h after CA. The majority of CTs included in our

study were early CTs. In our cohort, GWR < 1.10 was a safe

and reliable cutoff for poor neurological outcome prediction at

100% specificity, regardless of the rater. Using a higher cutoff

in our cohort improved sensitivity considerably for some raters

without trade-offs in specificity, for instance up to 48% for the

neuroradiologist or 42% for the computer (Figure 5) but would

have further increased the risk of misclassification of patients

when applying to another cohort (Supplementary Figure 2).

Limitations

There are potential additional sources of rater-independent

variability such as the type of CT scanner, acquisition parameters

or post-processing software (27). We did not examine intra-

rater agreement as additional source of variability. Because

of the low number of raters, the three human raters’

performance is not representative of that of their group

(neuroradiologist, neurologist, and student). CT images were

used as part of a multimodal approach to decide on continuation

or withdrawal of life-sustaining therapy (WLST). Thus, we

cannot exclude self-fulfilling prophecy (28). Prognostication

was always based on careful consideration of multimodal

diagnostics and a considerable observation period. Because
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neurological outcome was assessed at hospital discharge, we

cannot exclude later improvement in patients assigned to the

poor neurological outcome group. We therefore assigned CPC

3 (severe neurological deficit) to the good neurological outcome

group to prevent overly pessimistic prognosis. As this was a

single-center study, the subject should be further studied on

larger, prospective cohorts in different clinical settings.

Conclusion

Inter-rater agreement on quantitative head CT analysis after

CA was very good in between human raters with different

levels of expertise and a computer algorithm. As we observed

considerable Inter-rater variability in a few individual patients,

we advise caution for solely relying onGWR values as prognostic

information derived from CT after CA. The results underscore

the need for strategies to further standardize quantitative head

CT analysis and for multimodal prognostication in general.

Inter-rater variability should be investigated and considered in

all future studies of CT quantification.
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