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Editorial on the Research Topic

Data-drivenmodeling and optimization in fluid dynamics: From physics-

based to machine learning approaches

Data-driven modeling has made a dramatic impact in computational science and

engineering and, in particular, in computational fluid dynamics (CFD). One of the earliest

uses of data in CFD is the proper orthogonal decomposition (POD), which was

introduced by Lumley and his collaborators more than half a century ago. POD is

based on a simple yet powerful idea: In the classical Galerkin framework (used in standard

numerical methods, e.g., finite element or spectral methods), replace the general purpose

basis functions with data-driven basis functions. This very simple idea has made a

profound impact in CFD, reducing the computational cost of standard numerical

methods by orders of magnitude and enabling challenging numerical simulations in

shape optimization, flow control, and uncertainty quantification. Since Lumley’s

pioneering work, the field of data-driven modeling has witnessed a tremendous

development. Probably the most exciting research area in this field is the use of

machine learning. Over the last decade, the focus in data-driven modeling has shifted

from physics-based strategies to machine learning approaches, in which instead of merely

changing different components of classical methods (e.g., changing the basis in POD), one

completely overhauls the entire framework (e.g., instead of using a Galerkin framework,

one leverages machine learning algorithms to determine all the model operators).

At this point, one natural question is which strategy should be used in CFD? Should

one use physics-based or machine learning models? We believe that, as is often the case

when discussing numerical methods, the truth is somewhere in the middle. That is, we

believe that data-driven models that combine the physical and mathematical insight with

machine learning strategies can revolutionize CFD and break new barriers in shape

optimization, flow control, and uncertainty quantification. This Research Topic, which
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consists of 10 articles written by leaders in the field, surveys

recent developments in data-driven modeling in CFD, covering a

spectrum of modeling strategies, from physics-based to machine

learning modeling.

Kaneko and Fischer put forth an augmented-basis method

(ABM) to stabilize reduced order models (ROMs) of turbulent

incompressible flows. The new strategy augments the classical

POD basis functions with divergence-free projections of a subset

of the nonlinear interaction terms that constitute a significant

fraction of the time-derivative of the solution. The numerical

investigation shows that the ABM outperforms the standard

ROM and the Leray regularized ROM. Huang et al. propose a

component-based domain-decomposition framework for the

modeling of large-scale systems that cannot be directly

accessed using the high-fidelity simulations (e.g., rocket

engines or wind farms). The new framework decomposes the

full system into different components, each of which can flexibly

adopt different modeling strategies (e.g., reduced order modeling

or full order modeling), balancing physical complexity with

accuracy requirements. The authors investigate the new

framework in the numerical simulation of complex flows

involving combustion dynamics. Tsai and Fischer propose a

time-averaged error indicator for regularized ROMs of two-

dimensional unsteady natural convection in a high-aspect

ratio slot parameterized with the Prandtl number, Rayleigh

number, and slot angle with respect to the gravity. The

authors show that the Leray-regularized ROMs provide a

robust strategy for this class of flows. Chan et al. show that,

for variable density flows with under-resolved features, there are

differences in robustness between entropy stable schemes which

incorporate the entropy projection and those which do not.

These differences in robustness are observed to depend on the

density contrast and persist across a range of polynomial degrees,

mesh resolutions, and types of discretization. Chacón Rebollo

et al. propose a new low-rank tensorized decomposition (LRTD)

to approximate the solution of parametric non-symmetric elliptic

problems. Furthermore, they prove that the truncated LRTD

expansion strongly converges to the parametric solution. Finally,

the numerical investigation for convection-diffusion problems

supports the theoretical developments and illustrates the

computational efficiency of the new algorithm.

Schmekel et al. use data from a direct numerical simulation

(DNS) of a turbulent channel flow to train a convolutional neural

network (CNN) and predict the number and volume of the

coherent structures in the channel over time. The numerical

investigation shows that the proposed CNN accurately predicts

the temporal evolution of the coherent structures and displays

very good agreement with the reference data. Jacobsen and

Duraisamy utilize variational autoencoders (VAEs) for

nonlinear dimension reduction to disentangle the low-

dimensional latent variables and identify independent physical

parameters that generated the data. A disentangled

decomposition is interpretable and can be transferred to, e.g.,

design optimization and probabilistic reduced order modeling.

To characterize the training process of the VAEs and to study

disentanglement, the authors use a porous media flow modeled

by the two-dimensional steady-state Darcy equations. Popov and

Sandu propose a significant improvement of the multifidelity

ensemble Kalman filter (MFEnKF), which combines a full order

physical model and a hierarchy of reduced order surrogate

models to increase the computational efficiency of data

assimilation. In this new strategy, the linear framework is

generalized to leverage nonlinear projection and interpolation

operators implemented using autoencoders. The new approach,

named NL-MFEnKF, enables the use of a much more general

class of surrogate models than MFEnKF. Heaney et al. combine

nonintrusive reduced order modeling (NIROM) and domain

decomposition to enable ROMs to make predictions for unseen

scenarios. The authors successfully test the new strategy in the

numerical simulation of chaotic time-dependent flow of air past

buildings. Heiland et al. propose the use of CNNs and POD to

construct very low-dimensional linear parameter varying (LPV)

approximations to the incompressible Navier-Stokes equations

(NSE). These LPV approximations could be leveraged in

challenging NSE control applications. The authors illustrate

their theoretical developments in the numerical simulation of

a two-dimensional flow around a cylinder.

The 10 articles in this Research Topic survey recent

developments in data-driven modeling in CFD, with a

particular emphasis on turbulent flows. This is an exciting

research area, with many open problems and grand challenges

waiting to be addressed.
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Predicting Coherent Turbulent
Structures via Deep Learning
D. Schmekel 1, F. Alcántara-Ávila 1, S. Hoyas2 and R. Vinuesa1*

1FLOW, Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden, 2Instituto de Matemática Pura y
Aplicada, Universitat Politècnica de València, València, Spain

Turbulent flow is widespread in many applications, such as airplane wings or turbine
blades. Such flow is highly chaotic and impossible to predict far into the future. Some
regions exhibit a coherent physical behavior in turbulent flow, satisfying specific properties;
these regions are denoted as coherent structures. This work considers structures
connected with the Reynolds stresses, which are essential quantities for modeling and
understanding turbulent flows. Deep-learning techniques have recently had promising
results for modeling turbulence, and here we investigate their capabilities for modeling
coherent structures. We use data from a direct numerical simulation (DNS) of a turbulent
channel flow to train a convolutional neural network (CNN) and predict the number and
volume of the coherent structures in the channel over time. Overall, the performance of the
CNNmodel is very good, with a satisfactory agreement between the predicted geometrical
properties of the structures and those of the reference DNS data.

Keywords: turbulence, coherent turbulent structures, machine learning, convolutional neural networks, deep
learning

INTRODUCTION

Fluid flow is vital for a large variety of applications such as aircraft, heat pumps, lubrication, etc. [1].
Typically, for many applications, the flow is in a turbulent regime [1]. Such flow is characterized by
being chaotic and highly non-linear, with large mixing amounts. Consequently, turbulent flow is a
challenge to modellers [2]. It has been estimated that turbulence is responsible for up to 5% of the
total CO2 generated by humanity every year [3]. Even small gains in understanding turbulence can be
very impactful. Fluid flow, including turbulent flow, is described by the Navier–Stokes equations,
which are generally impossible to solve analytically. They can be solved numerically, but this has
traditionally been prohibitively computationally expensive—only elementary geometries have been
simulated [4,5]. In recent years, it has become possible to perform high-fidelity simulations of
complex geometries [6–9].

One of the earlier studies on the structure of turbulence was carried out by Kline et al. [10]. Kline
et al. also investigated the statistical properties of turbulence and found that most of the turbulence
production takes place near the walls (at least at low Reynolds numbers). They observed specific
regions in the flow, called coherent turbulent structures, which we will denote as structures. One
essential type of coherent structure is strongly related to Reynolds stresses [11]. Typically, these
Reynolds-stress structures may occupy around 4% of the volume but can be responsible for around
30% of the Reynolds stresses. The structures are also important for the transfer of several properties
such as mass, heat, and momentum [12]. Many models created for studying turbulence are built
upon these structures [13]. Traditionally, the focus of structures has been on hairpins, U-shaped
structures formed near walls going to the outer region[14]. Hairpins were the basic building block in
several models [15–17], which formed hairpin clusters [14]. Objections to these models have arisen
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since they have had problems at higher Reynolds numbers [18].
Instead, momentum-transfer models have been created, focusing
on strong Reynolds-stress and momentum-transfer events. Some
data supports these types of models for modeling momentum
transfer in the logarithmic layer [13].

In this study we will use deep neural networks (DNNs), which
are black-box methods [19,20] and are universal function
approximators. They can approximate any sufficiently smooth
function arbitrarily well. In the DNN framework, it is assumed
that the phenomena under study can be described by some
predetermined parameterizable function f(x; Θ), where Θ are
the parameters. The values of Θ that best approximate the data
are obtained by means of algorithms such as stochastic gradient
descent and the back-propagation [21]. DNNs have been used
successfully for modelling the temporal dynamics of turbulence
[22,23], for non-intrusive sensing [24,25], for identifying patterns
in complex flows [26] and for modelling the Reynolds stresses
[27]. Two overviews of the current applications of DNNs in fluid
mechanics can be found in [2,28]. Here we investigate the
possibilities to predict the temporal evolution of coherent
turbulent structures with machine-learning techniques. To this
end, we create a DNN-based mode and assess the quality of its
predictions, in terms of the number of structures, the total volume
of the structures, and the volume of the largest structure. The goal
is to develop a model capable of estimating plausible future
scenarios of the flow, focusing on the characteristics of the
turbulent structures. We also expect this model to exhibit
appropriate generalization properties [29].

The article is structured as follows: in §2 we discuss the data
collection and the network design; in §3 we present our results;
and finally conclusions and discussions are presented in §4.

METHODS

Numerical Setup
We study wall-bounded turbulent structures in a turbulent
channel flow, consisting of two infinitely large planes parallel
to the x (streamwise) and z (spanwise) directions. The distance
between the planes is 2h. Figure 1 shows an illustration of

problem. A pressure gradient in the streamwise direction
drives the flow, which has a friction Reynolds number Reτ =
125. The friction Reynolds number, defined as Reτ = uτh/], is the
main control parameter in wall bounded turbulence. Here uτ �����
τw/ρ

√
is the friction velocity, ] is the kinematic viscosity, ρ is the

density, and τw is the friction at the wall.
This simulation has been performed in a computational box of

sizes Lx = 2πh, Ly = 2h and Lz = πh. This box is large enough to
accurately describe the statistics of the flow [30,31]. The
streamwise, wall-normal, and spanwise velocity components are
U, V and W or, using index notation, Ui. Statistically-averaged
quantities in time, x and z are denoted by an overbar, �U, whereas
fluctuating quantities are denoted by lowercase letters: U � �U + u.
Primes are reserved for intensities: u′ � uu1/2. The domain is
periodic in x and z. The walls are at rest, and a pressure
gradient drives the flow at the prescribed Reynolds number.
This turbulent flow can be described by means of the mass
balance and momentum equations:

zjUj � 0, (1)
ztUi + UjzjUi � −ziP + 1

Reτ
zjjUi, (2)

where repeated subscripts indicate sumation over 1, 2, 3 and
the pressure term includes the density. These equations have
been solved using the LISO code [4], similar to the one
described by Lluesma-Rodríguez et al. [32]. This code has
successfully been employed to run some of the largest
simulations of wall-bounded turbulent flows [4,33–37].
Briefly, the code uses the same strategy as that described by
Kim et al. [38], but using a seven-point compact-finite-
difference scheme in the y direction with fourth-order
consistency and extended spectral-like resolution [39]. The
temporal discretization is a third-order semi-implicit
Runge–Kutta scheme [40]. The wall-normal grid spacing is
adjusted to keep the resolution to Δy = 1.5η, i.e., approximately
constant in terms of the local isotropic Kolmogorov scale
η � (]3/ϵ)1/4. Note that ϵ is the isotropic dissipation of
turbulent kinetic energy. In wall units, Δy+ varies from
0.3 at the wall, up to Δy+ ≃ 12 at the centerline.

As a consequence of the self-sustaining mechanism, coherent
structures in the form of counter-rotating rolls are triggered by
pairs of ejections and sweeps extending beyond the buffer layer in
a well-organised process called bursting. The ejections carry low
streamwise velocity upwards from the wall (u < 0, v > 0), while the
sweeps carry high streamwise velocity downwards to the wall (u >
0, v < 0). Based on a Reynolds stress quadrant classification,
ejections and sweeps are Q2 and Q4 events, respectively. Lozano-
Duran et al. [13] and Jiménez [18] reported the relation between
counter-rotating rolls, streamwise streaks and Q2-Q4 pairs in
turbulent Poiseuille flow by observing averaged flow fields
conditioned to the presence of a wall-attached Q2-Q4 pair. A
wall-attached event is an intense Reynolds stress structure (i.e.
uv-structure) that approaches a wall below y+ < 20. The reasoning
for this definition is explained later. For a time-resolved view of
the bursting process in turbulent Poiseuille channel at Reτ ≈
4,200, the interested reader is referred to [30]. Gandía Barberá

FIGURE 1 | Reyhnolds-stress structures at the bottom half of the
channel. The structures are coloured by wall-normal distance. The flowmoves
from the left to the right of the figure.
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et al. [41] performed this process again for Couette flows in
presence of stratification.

In order to study the underlying physics of the flow, the
coherent structures responsible for the transport of momentum
are analysed. Jiménez [18] discussed that the intensity of a given
parameter is considered as an indicator of coherence, among
other characteristics. However, the selection of a threshold is only
feasible if the parameter is intermittent enough to separate
between high- and low-intensity regions. After analysing the
intermittency of different parameters, it is found that
quadratic parameters, specially the Reynolds stress, are more
appropriate to describe intense coherent structures.

We are interested in using a DNN to predict how these
structures evolve. Running the code we obtain a three-
dimensional (3D) instantaneous flow fields (snapshots)
sequence. Since the flow in the channel is statistically
symmetric, we will only use the lower half of the channel for
faster calculations. The final snapshots have 96 × 76 × 96 grid
points, in x, y and z respectively.

In order to identify the points that are part of structures in the
velocity field we use the technique described in Lozano-Durán
and Jiménez [30]. Essentially, a point p is said to be part of a
structure if the following holds:

|u x, y, z( )v x, y, z( )|>Hu′ y( )v′ y( ), (3)
where H is the percolation index with a value of 1.75 [30,41]. We
obtain binary 3D fields where a point in the field takes the value of 1
if and only if the point is part of a structure. A total of 1,000 fields
were used for training and testing the DNN models, which are
discussed next.

Deep-Learning Models
DNNs are parameterizable functions. These networks consist of
artificial neurons, which are components originally inspired by

brain neurons. A neuron is a function of the form f (wtxi + b),
where w, b are parameters, named weight and bias, respectively.
Note that f is the activation function, an almost everywhere
differentiable function, and xi is the input vector. We can
create an artificial neural network by using multiple neurons
and connecting them in different ways, typically in layers. For
example, a typical setup is to have a vector of neurons. Its output
is used as input to the neuron in the next layer.

FIGURE 2 | Schematic representation showing how the output is calculated in a two-layer artificial neural network where rectified linear unit (ReLU) is the activation
function.

FIGURE 3 | Representation of a residual block, where two layers are
skipped.
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f w21 f w11xi1 + b11( ) + w22f w1,2xi2 + b12( ) + b2(( ). (4)
This is an example of two layers, where the first layer is fed into

the second one. Figure 2 shows an illustration of a simple neural
network. Since we analyze 3D fields, we use a convolutional
neural network (CNN) [42]. This network is a type of DNN
specifically designed to work with images. He et al. [43] further
demonstrated that it is possible to improve the performance of
CNNs by using skip connections. A skip-connection is a shortcut,
allowing the input to skip layers, as shown in Figure 3 and the
following equation:

f wt
2 xi + f wt

1xi + b1( ) + b2(( ). (5)
Recurrent neural networks (RNN) [44] are DNNs designed for

modeling time series. They use their own previous output hi−1 in
combination with the input xi to calculate the next output:

RNN xi, hi−1( ) � hi. (6)
Ideally the network learns to encode useful information in the

output allowing the network to “remember” the past and predict
better. We will be investigating the potential of using a long-
short-term-memory (LSTM) netowrk [15], since they have
exhibited very good performance [15]. One notable drawback
with LSTMs is the fact that they are not designed for image
analysis. Their memory requirements scales quadratically with
input size, thus requiring to downsample the input. Therefore, we
will investigate two networks, one including an LSTM and one
without it, as discussed below. There are several possible choices
for the activation function. In this work we use the rectified linear
unit (ReLU) everywhere but the last layer, which has the form:

ReLU xi( ) � max xi, 0( ). (7)

This activation function has been shown empirically to exhibit
excellent performance in computer-vision problems [45]. We use
the sigmoid activation function for the last layer to ensure that the
output is in the range [0,1]. We will also use batch normalization
[46], in particular the batch norm, which has been empirically
proven to decrease training time and improve performance [47].
We use the first 800 fields as a training set and the remaining as a
validation set. Our training and validation data is split into
sequences of 16 fields each. The network accepts a sequence,
and for each image in the sequence, predicts the following field in
the time-series. All the hyper-parameters are tuned empirically,
and Figure 4 shows the final architecture.

We train our networks by minimizing the binary cross-
entropy (BCE) between the predicted and the reference fields.
To minimize training and inference discrepancy we will use the
algorithm developed by Bengio et al. [48] during training. Thus,
for a given sample of real fields, xi1, xi2, xi3, . . . , xim, the network
will use the following algorithm:

Algorithm 1 :

FIGURE 4 | Schematic representation of the CNN architecture employed in this study.
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Weanneal p at the speed of the inverse-sigmoid function parameter
k = 30 during the training. At the start, the network will mostly make
predictions based on actual data, while at the end, it will use its
predictions. Several metrics are used for the evaluation of the network.
We assessed the loss of the network during training to confirm that the
network converges as expected. We are also interested in studying
metrics such as the number of predicted structures in the field. Since
the network is not outputting binary images but fields where every
value is in the range [0, 1], we will apply rounding to the output. In this
work, we use the algorithm described by Aguilar-Fuertes et al. [14] to
identify structures and the volume of the minimum enclosing boxes.

RESULTS

This study shows that the CNN-LSTM configuration, shown in
Figure 5, exhibits poorer results. It only managed to learn the

zero mapping, i.e. CNN-LSTM(x) = 0 ∀x. We hypothesize that
this is caused by the field becoming too granular when
downsampling so significantly. Thus, we will focus on the
CNN architecture. Let us start by discussing the training
process of the CNN configuration. In Figure 6 we show the
training and validation losses, which decrease as expected. We
observe that our validation loss starts above the training loss at
around 50 steps but converges to a very similar value at around
200 steps. This significant loss difference is due to us testing in
inference mode. The figure shows that the training loss becomes
noisier at around 150 steps. This result is expected because as we
predict farther into the future, we use more predicted samples
rather than the ground truth, thus leading to the accumulation of

FIGURE 5 | Schematic representation of the CNN-LSTM architecture employed in this study.

FIGURE 6 | Training and validation binary-cross-entropy (BCE) losses
for the CNN architecture as a function of the training epoch.

FIGURE 7 | Predicted and reference number of structures as a function
of the time step for the inner region, i.e. y ≤ 0.2. We observe that the number of
structures is not constant over time.
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errors. Interestingly, the training and validation losses reach the
same value of 0.04 towards the end of the prediction horizon.
Note that, although this could be indicative of under-fitting, using
more complex models (i.e. deeper networks with more channels)
did not produce any improvements in the results. We note that
this is a highly chaotic problem, where instantaneous predictions
are highly challenging, although the dynamic behavior of the flow
can be predicted with excellent accuracy [23].

Next, we will assess the number (and the volume) of the
coherent turbulent structures identified in the reference
simulation and the predicted fields. Figures 7, 8 show the
number of identified structures in the inner (y ≤ 0.2) and wake
(y > 0.2) regions, respectively. The CNN architecture can

accurately predict the evolution of the number of structures in
time, with a small underestimation in the inner region and a
slightly larger underestimation in the wake region. A plausible
explanation for this result is that the network is conservative in its
predictions. Consider the following scenario, where a point has a
10% chance of being part of a structure. The best possible guess
would be a field of zeroes for a whole field, although it is doubtful
that every point is zero. Similarly, the best prediction the network
can make is likely zero for some points. In fact, these are the points
near the edges of the structures that are the most challenging to
predict. Thus we would expect the difference between predicted
and real fields to grow proportionally to the number of structures.
The data supports this explanation since the error is noticeably
smaller when the number of structures is ≈ 150 compared to ≈ 250.

After predicting the number of structures in the turbulent fields,
we analyze the volume of those objects. We show the evolution of
the total volume of the structures in the inner and wake regions in
Figures 9, 10, respectively. It can be observed that the employed
CNN architecture exhibits excellent accuracy in the volume
predictions. In the inner region, the only significant discrepancy
we observe is at around step 400, while in the wake region, a
discrepancy is observed around step 600. These deviations can be
explained by the process to calculate the volume of the structures,
which relies on the volume of the bounding box [13]. Note that a
wrongly predicted zero value (i.e., no structure in that grid point)
may have a significant effect if it disconnects a large structure. In
this case, we will consider the volumes of two smaller boxes instead
of the much larger volume of the complete bounding box.
Interestingly, we do not see any network instance predicting a
much larger volume than that of the real data. We expect the
network to be slightly conservative for the same reasons outlined
above, leading to underestimating the predicted volumes. In
practice, the network only has to accurately predict the largest
structures to obtain a correct prediction of the total volume.
Furthermore, most of the time, these largest structures are not

FIGURE 8 | Predicted and reference number of structures as a function
of the time step for the wake region, i.e. y > 0.2.We observe that the number of
structures is not constant over time.

FIGURE 9 | Predicted and reference volume (scaled with h3) of all the
structures in the inner region (y ≤ 0.2) as a function of the time step. Note that
the network rarely overestimates this volume.

FIGURE 10 | Predicted and reference volume (scaled with h3) of all the
structures in the wake region (y > 0.2) as a function of the time step. Note that
the network rarely overestimates this volume.

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8888326

Schmekel et al. Turbulent Structures via Deep Learning

11

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


particularly sensitive to individual points. Thus, predicting the total
volume is not a very challenging task.

Finally, in Figure 11we show the predicted and reference volumes
of the largest structure in the domain as a function of the time step.
Firstly, this figure shows that the largest structure is often responsible
for over 50% of the total volume of all the structures in the domain.
Interestingly, the CNN architecture exhibits very accurate results also
when predicting the volume of the largest scales. Around time step
400, it can be observed that the volume difference between the
predicted and real data is about one. The total volume difference
supports our hypothesis that the (limited) discrepancies are
associated with the calculation of the bounding-box volume.
Furthermore, the sharp increase in maximum volume observed at
around time step 750 is due to the merger of two different structures.
All these results indicate that the CNN architecture can very
accurately predict the geometrical properties of the structures,
including the total number of objects and their volumes.

DISCUSSION AND CONCLUSION

In this work, we have designed a DNN capable of predicting the
temporal evolution of the coherent structures in a turbulent channel
flow. The employed CNN exhibits excellent agreement with the
reference data, and some observed deviations are due to the method
to calculate volumes based on bounding boxes. This also leads to
scenarios where larger structures are responsible for a
disproportionally large part of the total volume than their actual
volume. Adding a single point to an edge of the structure is equivalent
to adding a plane using this volume metric. Despite the mentioned
caveats, this metric has been used to facilitate comparisons with other
studies focused on coherent structures in turbulent channels. We also
observe that the network predictions are conservative, with a general
underprediction of the number of structures and their volume. This is

associated with the rounding of the predictions: most points have a
higher probability of being zero than one, and then the network will
likely predict zero. This is not necessarily an issue, but future work
will be focused on investigating the focal binary loss [50], to obtain a
more even distribution. Note that our network shows signs of
underfitting since the training and validation losses have
approximately the same value. This was also the case in more
complex networks investigated in this work. Overall, the
performance of the CNN model is outstanding, with a satisfactory
agreement between the predicted geometrical properties of the
structures and those of the reference DNS data. In particular,
throughout the whole time interval under study, our model leads
to less than 2% error in the volume predictions and less than 0.5% in
the predictions of number of structures.

When it comes to deep-learning models, including temporal
information, we note the potential for further improving the
predictions. This is because these models enable exploiting the
spatial features in the data (as the CNN does) and the temporal
correlations among snapshots, where multiple fields can be used
as an input. In this work, we have also investigated adding a long-
short-term-memory (LSTM) network [49] to handle the
temporal information, although the significantly increased
memory requirements of the new architecture limited its
accuracy. Future work will aim at assessing more complicated
architectures involving better downsampling, as in the U-net
confgiration [50], or more efficient temporal networks such as
temporal CNNs [51] or transformers [52].
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The control of general nonlinear systems is a challenging task in particular for large-scale

models as they occur in the semi-discretization of partial differential equations (PDEs) of,

say, fluid flow. In order to employ powerful methods from linear numerical algebra and

linear control theory, one may embed the nonlinear system in the class of linear parameter

varying (LPV) systems. In this work, we show how convolutional neural networks can

be used to design LPV approximations of incompressible Navier-Stokes equations. In

view of a possibly low-dimensional approximation of the parametrization, we discuss the

use of deep neural networks (DNNs) in a semi-discrete PDE context and compare their

performance to an approach based on proper orthogonal decomposition (POD). For a

streamlined training of DNNs directed to the PDEs in a Finite Element (FEM) framework,

we also discuss algorithmical details of implementing the proper norms in general loss

functions.

Keywords: model reduction and model simplification, Navier-Stokes equation, data driven learning, linear

parameter varying (LPV), convolutional neural network

AMS subject classifications: 65M22, 76D05.

NOVELTY STATEMENT

- Conceptual: Due to the quadratic nature of the Navier-Stokes equations, any encoder-decoder
with a linear decoding part provides an affine LPV approximation of the state-space equations.
We propose the use of convolutional neural networks (CNNs).

- Algorithmical: An efficient realization of the correct FEM norms within the training of a neural
network. As a result, we provide basic routines that combine the Finite Element package FEniCS
and theMachine Learning toolbox PyTorch.

- Numerically: A very low-dimensional, that is 3-dimensional, performant LPV approximation of
a flow around a cylinder in the vortex shedding regime.

1. INTRODUCTION

The computer-aided controller design for a nonlinear control system

υ̇ = f (υ)+ Bu

with an input u and an input operator B typically resorts to system insights (like in backstepping
[1], feedback linearization [2, Ch. 5.3], or sliding mode control [3]), or the repeated computation
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for subobtimal control laws like in model predictive control
(MPC) [4]. The holistic but general approach via the Hamilton-
Jacobi-Bellmann (HJB) equations is only feasible for very
moderate system sizes or calls for model order reduction; see e.g.,
Breiten et al. [5] for a relevant discussion and an application in
fluid flow control.

For general large-scale systems, MPC schemes seem to
be a good choice since modern hardware and optimization
algorithms can well mitigate the computational complexity while
the continuous update of the prediction realizes a feedback
loop as it is needed to react on inevitable perturbations in
simulations and measurements. Nonetheless, stability guarantees
for MPC schemes are difficult to establish a priori and the
solving of nonlinear optimization problems at runtime limits
their performance in particular for large-scale systems.

In view of these two limiting factors, alternatives are
presented by methods that base on extended linearizations or
state-dependent coefficients (SDC) (see e.g., Banks et al. [6])
schemes that are particular realizations of the representation of
a nonlinear model as a linear parameter varying (LPV) system.

In an exact SDC representation, the flow f of the model is
factorized as

f (υ) = N(υ) v

with a suitable A : R
n → R

n,n which exists under mild
conditions. The SDC is a special case of an LPV representation

f (υ) = Ñ(ρ(υ)) v

with ρ : R
n → R

r and N : R
r → R

n,n suitably chosen and,
possibly, r < n.

While these representations are exact reformulations of the
model, a low-dimensional (r ≪ n) and affine-linear parameter
dependency might only exist as an approximation

f (υ) ≈ [N0 +

r
∑

i=1

ρi(υ)Ni] v.

If an approximation can be afforded, many numerical approaches
for the derivation of low-dimensional LPV representations apply.
In fact, any model order reduction scheme that encodes the state
in a reduced coordinate ρ = µ(υ) ∈ R

k and lifts it back to
υ̃ = λ(ρ) can turn an SDC representation into a low-dimensional
LPV approximation via

f (υ) = N(υ) v ≈ N(ṽ) v = N(λ(ρ)) υ = : Ñ(ρ) v.

Even more, if the state-dependent coefficient matrix N is affine-
linear in its argument and if the lifting λ is affine-linear, then the
resulting LPV approximation is affine-linear. We will make use
of this observation when discussing the Navier-Stokes equations
and when designing the low-dimensional encodings.

An immediate advantage in view of large-scale systems is
that for these pointwise linear problems, linear methods for
controller design apply. Generally, an a-priori proof that a
controller will stabilize the system is by no means easier in an

LPV context. Nonetheless, conditions that can be checked or
monitored numerically have been developed; see e.g., Benner and
Heiland [7] for a result on SDC systems or [8] for a result for
(affine) LPV systems.

This paper investigates the use of convolutional neural
networks in combination with bases obtained from a POD to
design such approximative LPV systems with affine parameter
dependency:

υ̇ = [A0 +

r
∑

i=1

ρi(υ)Ai] υ + Bu. (1)

We focus on Navier-Stokes equations but the methodology
applies to any system with states that are distributed in a spatial
domain like spatially discretized approximations to PDE models.

The motivation for this study is the potential use of low-
dimensional LPV representations in controller design. For
example, for affine-linearly parametrizable coefficients as in
Equation (1), one can derive series expansions (see e.g., Beeler
et al. [9]) of the solution to the associated parameter-dependent
Riccati equations and exploit them for efficient controller design;
cp. [10]. Furthermore, if the image of ρ for the given system
can be confined to a polygon, then one can provide a globally
stabilizing controller (see e.g., Apkarian et al. [11]) through
the scheduling of a set of linear controllers. Both approaches,
however, hinge on a small dimension of ρ(υ) since the series
expansion has to be considered in all parameter directions and
since the scheduling requires the solution of a coupled system of
r linear matrix inequalities of the size of the system dimension.

In view of these considerations, this work provides a particular
solution to the following general problem:

Problem 1. Given a nonlinear system υ̇ = f (υ)+ Bu,

(a) how to encode a current state υ(t) ∈ R
n in a low dimensional

parameter ρ(t) ∈ R
r and

(b) how to provide embeddings ρ → Ñ(ρ) = N0+
∑r

i=1 ρiNi ∈

R
n,n so that

f (υ) ≈ Ñ(ρ(υ)) v.

Existing general solutions for this task are known to result in
larger dimensions of the parametrization ρ; see Koelewijn and
Tóth [12] for relevant references and a neural network based
approach toward a reduced order of ρ.

In any case, the existing strategies were designed for ODE
models of moderate size rather than the treatment of high-
dimensional nonlinear models that are associated with PDEs.

Therefore, we propose the use of model reduction techniques
to derive LPV approximations with low parameter dimensions
independently of the system size. Similar efforts can be spotted
in earlier works (see e.g., Hashemi and Werner [13] where
the Burgers’ equation was considered) though with a different
strategy: the model reduction techniques were used for reducing
the overall system so that the natural SDC representation could
be interpreted as a low-dimensional LPV approximation.

In what we propose, however, the system dimensions are not
touched in order to ensure accuracy and feature-completeness,
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but only parts of the nonlinear functions are replaced by de–
and encoded variables to provide the low-dimensional LPV
representation. Certainly, if controllers are to be designed, a state-
space reduction might be necessary but can then be directed
to the purpose of the controller model rather than the actual
state equations.

In a regime that is dominated by convection, the encoding
of a state of a Navier-Stokes equation in a very-low dimensional
coordinate system cannot be simply done by a linear projection.
This has been observed in numerical studies of flow problems
and specifically analyzed for equations with wave like patterns
[14, 15].

Successful low-dimensional parametrizations for convective
phenomena have been established using a nonlinear
preprocessing like the detection and explicit treatment of
wave patterns; see e.g., Reiss et al. [16] for a method of adaptive
shifting of POD modes along with wave fronts and [17] for
a recent update that resorts to neural networks. A more
generic approach was used in Sarna and Benner [18], where a
superposition of the phase space of hyperbolic and parabolic
parts was introduced and successfully exploited for efficient
reduction of parabolic parts. A purely neural network based
appraoch that explicitly addresses wave patterns has been
discussed in Deo and Jaiman [19].

Recently, the use of neural networks for finding low-
dimensional coordinates has been proposed, e.g., as an alternative
to established POD techniques [20–23] or as an enhancement to
them [24].

Considering fluid flow or Burgers’ equations, it has been
observed that neural networks can significantly outperform POD
approaches at very-low dimensions in terms of approximation
quality; see e.g., Lee and Carlberg [20, Figure 3] or Kim et al. [21,
Figure 2]. However, the effort for setting up the surrogate model
(cp. [24, Table 3] or [20, Section 8]) as well as the evaluation at
runtime can be inferior to a plain POD approach; compare, e.g.,
the reported speed-ups in Kim et al. [21, Table 1].

We note that we can easily tolerate these performance
limitations, as the major motivation of our work is to establish
a model approximation of a particular structure.

In summary of the preceding considerations, we state that
the presented investigations are motivated by and directed to
support the following working hypotheses:

Working Hypothesis 1.

1. Neural networks can efficiently encode the state of a PDE and
thus provide very low dimensional parametrizations.

2. For the synthesis of a controller model for a nonlinear
PDE, the use of high-dimensional data and demanding
computations is appropriate.

2. PRELIMINARIES

We briefly introduce the PDE model of interest, the
concept of convolutional neural networks, and state
relevant observations.

2.1. Navier-Stokes Equations
The incompressible Navier-Stokes equations

∂

∂t
υ + (v · ∇)υ −

1

Re
1υ +∇p = f (2a)

∇ · υ = 0 (2b)

is a set of partial differential equations that is widely used to
model incompressible fluid flows in a domain � ⊂ R

d, d = 2, 3,
on a time interval [0,T] ⊂ R in terms of the evolution of
the velocity field v : [0,T] × � → R

d and the pressure field
p : [0,T] × � → R. Here, Re is the so-called Reynolds number
that parametrizes the flow setup and f contains forces that act on
the flow like gravity or, in a flow control setup, external inputs.

As we will detail below (in Section 4.1) after a spatial
discretization and by means of divergence-free coordinates, the
flow model reads

υ̇ + N(υ)υ + A0v = f (3)

and is readily expressed as a so-called state-dependent coefficient
system

υ̇ + N0(υ)υ = f , (4)

with

N0(υ) = A0 + N(υ). (5)

Remark 1. The decomposition N0(υ) = A0 + N(υ) is by
no means unique. In particular, a similarly natural factorization
N1(υ) v : = A0v+ N(υ)υ exists and any combination

Ns(υ) = sN1(υ)+ (1− s)N0(υ)

for a scalar s can be considered, too. Such a blending of the
coefficients can be used to improve the model performance as we
did in our numerical examples; cp. Remark 5.

In what follows, we will consider LPV systems that generalize
state-dependent coefficient (SDC) systems by encoding the state
in a parameter variable ρ. We will refer to ρ(υ) as the code of v
and also distinguish an associated encoder

µ : R
n → R

r , with µ(υ) = ρ(υ).

It will be convenient to refer to a decoder as

µ−1
: R

r → R
n, with µ−1(ρ) = ṽ,

by the vague requirement that υ̃ = µ−1(ρ(υ)) ≈ v for all v of
interest although an inverse to µ may not exist and although the
inference of µ and µ−1 may be unrelated in practice.

Given an encoder µ and a decoder µ−1, an LPV
approximation to the state-dependent coefficient (Equation
5) is readily given as

N0(υ) ≈ A0 + Ñ(ρ) : = A0 + N(µ−1(ρ)).
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Remark 2. A particular property of quadratic systems and, thus,
of the Navier-Stokes equations is that the natural choices of
the state-dependent coefficient N(υ) are linear, i.e., N(λ1υ1 +

λ2υ2) = λ1N(υ1) + λ2N(υ2). Accordingly, if the decoder µ−1

is affine-linear, i.e.,

µ−1(ρ) = ṽ(ρ) = ṽ0 +

r
∑

i=1

ρiυ̃i,

for a shift ṽ0 and a some vectors {υ̃1, . . . , υ̃r}, then the induced
LPV representation is affine-linear as

A0 + N(µ−1(ρ)) = A0 + N(ṽ0 +

r
∑

i=1

ρiυ̃i) = A0 + N(ṽ0)

+

r
∑

i=1

ρiN(υ̃i) = :A0 + Ñ0 +

r
∑

i=1

ρiÑi.

Remark 3. If the decoder µ−1 or the SDC relation v → A(υ)
is nonlinear, then an additional approximation step is needed for
an affine-linear LPV representation; see Koelewijn and Tóth [12].

2.2. Convolutional Neural Networks
Generally, a neural network of NL layers can be expressed as a
recursively defined map

x(ℓ) = σ (W(ℓ)x(ℓ−1) + b(ℓ)), ℓ = 1, . . . ,NL

that maps the input variable x(0) onto the output variable x(NL).
It is defined in terms of the layer widths nℓ, the weights meaning
the coefficients of the matrix W(ℓ) ∈ R

nℓ ,nℓ−1 and the bias term
b(ℓ) ∈ R

nℓ , and the activation function σ : R → R that is applied
componentwise to the vectors x(ℓ) ∈ R

nℓ .
The term of training a neural network refers to determining

the weights by an optimization toward an optimality criterion
(the loss function) evaluated at given sample points.

In convolutional neural networks, the linear map W(ℓ) in
each a layer is defined by a number of convolution kernels that
convolve the current state. Typically, a linear contraction follows
that merges neighboring states. The advantages of convolutional
layers for PDE data is manifold.

• In each layer, the learnable parameters are given by the
parameters of the convolution kernels so that the amount
of parameters is independent of the possibly large state
dimensions

• The convolution acts upon neighboring states which can
respect and, notably, detect coherent spatial structures as they
may be inherent in states of PDEs.

• The contraction operation reduces the number of variables in
each channel in every layer so that a CNN can be designed to
provide low-dimensional encodings.

An immediate obstacle that stands against the use of CNNs
for PDEs is the need of tensorized grids, whereas a simulation
of complex phenomena typically requires a locally refined
and unstructured grid. We overcome this issue by simply

interpolating the state values from the FEM grid to a tensorized
grid.

For an introduction to the techniques of CNNs, we refer to
O’Shea and Nash [25]. An application for spatially distributed
data as in our case is well explained in Lee and Carlberg [20].

3. IMPLEMENTATION SETUPS

The provision of a low-dimensional affine-linear LPV
approximation

N(υ) υ ≈ [N0 +

r
∑

i=1

ρi(υ)Ni] υ

for the Navier-Stokes equations amounts to learning or
computing

• an encoder µ : υ 7→ ρ and
• an embedding or lifting λ : ρ 7→ [N0 +

∑r
i=1 ρi(υ)Nk].

Note that λ can be defined without a decoder µ−1. On the other
hand, for the Navier-Stokes case, if an affine-linear decoder is
given, then λ : ρ 7→ N(µ−1(ρ)) readily provides an affine-linear
parametrization; cp. Remark 2.

3.1. POD Parametrization
As a benchmark and for later use as a basis for the decoding,
we consider the LPV representation that is induced by a POD
reduction. Here, one uses a projection basis

Ṽp =
[

υ̃1 υ̃2 . . . υ̃r
]

(6)

that consists of the r leading singular vectors of a matrix of
snapshots like

V =
[

υ1 υ2 . . . vk
]

. (7)

The POD reduction itself bases on the property that the
projection VpV

T
p minimizes the average projection error over the

given data set (Equation 7), meaning that

1

k

k
∑

j=1

‖vj − ṼpṼ
T
p vj‖M

is minimal over all r-dimensional linear projections of the data
set, where the subscript M stands for a weight in the norm
induced, e.g., by the symmetric positive (mass) matrix of an
underlying an FEM scheme; cp. [26].

Accordingly, with

υ̃ ≈ ṼrṼ
T
r v = : Ṽrρ,

the POD basis Vr defines a r-dimensional encoding via µ : υ 7→

ṼT
r v, a decoding via µ−1

: ρ 7→ Vrρ, and an embedding λ for the
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FIGURE 1 | Snapshot of the domain and the magnitude of the fully developed velocity field at Re = 40.

FIGURE 2 | Close up view of the computational domain with the FEM mesh (right) and the data representation on the tensorized mesh (left).

LPV approximation via

N(υ) v ≈ N(ṼrṼ
T
p v) v = N(Ṽrρ) v = [

r
∑

i=1

ρiN(υ̃i)]

v = :[

r
∑

i=1

ρiÑi] v.

Remark 4. As it is common practice, for a better approximation
quality and for consistency reasons, the data for the POD and,
thus, also the POD bases, are shifted by a vector vs. which will be
chosen to be the initial value in the simulations. Accordingly, the
correct reconstruction reads υ̃(t) = ṼWρ(t)+ υs, which simply
adds a constant and a few linear terms to the approximation or
the corresponding loss functions.
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3.2. Encoding of POD Coordinates
In this setup, we investigate whether a CNN can replace the POD
encoding of the state

υ → (CNN) → ρ ∈ R
r

and also provide an enhanced decoding to POD coordinates via
a full linear mapW

ρ → (W) → ρ̃ ∈ R
r̃ , r̃ > r,

and the embedding via the p-dimensional POD basis υ̃ : = Ṽr̃ρ̃.
In this approach, the CNN and the matrixW ∈ R

r̃,r is learned
as neural network

υ → (CNN) → ρ → (W) → ρ̃ ∈ R
r̃

with the loss function

l(v, ρ) : = ‖v− Ṽr̃Wρ̃‖M .

If r < r̃, and the resulting embedding outperforms the standard
r̃-dimensional POD reduction, then this approach provides a
countable improvement in terms of dimensionality.

Moreover, the loss functions can be changed in order to
direct the learning to best approximate the resulting convective
behavior as described in the following subsection.

3.3. Convection-Informed Encoding of POD
Coordinates
With the same approach but with

l(v, ρ) : = ‖N(υ)υ − N(Ṽr̃Wρ)υ‖M−1 .

as the loss function, the training of the decoder can be directed
toward the actual goal—the low-dimensional parametrization of
the convection part. Note the M−1 norm, that is the discrete
version of the norm of N(υ) as a functional on the state space
L2(�).

4. IMPLEMENTATION ISSUES

In this section, we discuss implementation issues as the arise
in the numerical treatment of incompressible Navier-Stokes
equations by finite elements and the inclusion of FEM-norms in
learning algorithms.

4.1. Semi-discretization, Divergence-Free
Coordinates, and Boundary Conditions
A spatial discretization (see e.g., Behr et al. [27]) of the
incompressible Navier-Stokes equations (2) leads to a system of
type

Mv̇+ N(υ)υ + A0v− JTp = f ,

Jv = g,

where M is a positive definite (mass) matrix, where N(υ) is the
matrix that realizes the convection for a state υ(t), where A0

TABLE 1 | Table of parameters for the CAE-model.

Parameter Description Value in simulation

cs Code size {3, 5, 8}

k Dimension of the POD basis for the

decoding

15

#layers Number of convolutional layers 4

#channels Number of channels in each layer

(including the input layer)

(2)-4-8-10-12

kernel size The size of the convolution kernels in each

layer

5 x 5

stride The stride in both spatial directionsa 2

activation The the nonlinear activation function torch.ELU

aThe factor by which the data is condensed after each convolution.

encodes the diffusion part, where JT and J stand for the discrete
gradient and divergence operator, and where the vectors f and g
accommodate possible inhomogenities and boundary conditions.

In order to eliminate the inhomogeneity and possibly nonzero
boundary conditions, one may shift the state by some vector vs.
that fulfills the boundary conditions and the algebraic constraint,
i.e., Jυs = g, so that the shifted system for υd(t) = υ(t)−υs reads

Mυ̇d + N(υd)υd + Ā0υd − JTp = f̄

Jυd = 0,

where

Ā0υd : = A0υd + N(υs)υd + N(υd)υs

and f̄ : = f − A0υs − N(υs)υs.

Finally, with the reasonable assumption that JTM−1J
is invertible, we find that with the projector 5 = I −

M−1JT(JM−1JT)J it holds that υd = 5υd and that the solution
υd is completely defined through the projected system (see e.g.,
Heiland [28, Thm. 8.6])

Mυd + 5TN(υd)υd + 5TĀ0υd = 5T f̄ .

The practical implications are as follows: in a simulation, one
needs to consider all data shifted by a constant vector vs. that
fulfills the boundary conditions so that the snapshots υi can
be assumed to comply with zero Dirichlet conditions. Then a
reduced parametrization will target the shifted space with zero
boundary conditions and can be lifted to the physical space by
adding vs. again.

Generally, the projection 5 needs not be computed explicitly
as it will be implicitly realized during the time integration; [29].
However, if only the velocity is of interest, the model could
be trained to best approximate 5TN(υ)υ which resides on a
submanifold of dimension (nv−rank5). If however, the pressure
is of interest too, the LPV approximation should be trained
toward a good representation of

N(υ)υ = 5TN(υ)υ + (I − 5T)N(υ)υ

as the part (I − 5T) defines how the convection enters the
pressure approximation.
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FIGURE 3 | Schematic illustration of the data sizes in each layer of the CAE-3 network that was used in the numerical example: Four convolutional layers, one

reshape of the data to the vector (flat data), a full linear layer that reduces the data to ρ and a linear layer without activation for the decoding to ρ̃.

4.2. Interpolation to Tensor Grids
Asmentioned above, in order to employ standard CNNs, the data
on an FEMmesh has to be interpolated to a tensorized mesh. For
that and for a generic 2D flow setup we proceed as follows.

Let � ⊂ R
2 be the computational domain and let (ξ1, ξ2) ∈ �

denote the spatial coordinates. Let

V : = {φ1,φ2, . . . ,φnv} ∈ L2(�;R2)
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FIGURE 4 | Drag and lift trajectories (top) over time and their phase portrait (bottom picture) for an LPV approximation of the incompressible flow around a 2D cylinder

using a parameter dimension of cs= 3.

be the ansatz space of the finite element discretization.
Then every solution snapshot υi has the function
representation via

υi(ξ1, ξ2) =

nv
∑

j=1

[υi]jφj(ξ1, ξ2) ⊂ R
2

where [υi]j is the j-th component of the vector of coefficients υi.
Accordingly, it can be interpolated onto a tensorization

T = {(xj, yk) : j = 1, . . . , nx, k = 1, . . . , ny}

of two 1D grids

{x1 < x2 < · · · < xny} and {y1 < y2 < · · · < yny}

into a 2× nx × ny tensor vi as

[vi]ℓjk =

{

[υi(xj, yk)]ℓ, if (xj, yk) ∈ �

0, elsewhere
.

We denote this interpolation operator with the operator
P : Rnv → R

2×nx×ny . The application of P to the data points υi is
the first operation in the processing of the υi’s in a CNN.

4.3. Realization of the FEM Norms in the
Loss Functions
For the implementation of the learning based on FEM data, we
need to includeM orM−1 in the loss functions without breaking
the automated computation of sensitivities1. For the realization
of the M norm, we can resort to sparse factorizations M = FFT

and use the equivalence of ‖v‖M = ‖FTv‖2. In this way, the M-
norm can realized in standardML packages that have the 2-norm
implemented as themean square error loss function and that also
support sparse matrix multiplication.

For the realization of M−1, where no sparse factorization can
be provided, we compute a M−1 optimal (cp. [26, Lem. 2.5])
snapshot basis L ∈ R

nv ,kc for N(υi)υi, i = 1, . . . , k of dimension
kc. With that we can best approximate

‖N(υi)υi‖M−1 ≈ ‖LLTF−1N(υi)υi‖2 = ‖LTF−1N(υi)υi‖2

1A particularly powerful feature of DNN architectures that comes with the explicit

formulation of DNNs in terms of fundamental functions is that the gradients of the

current realization with respect to the parameters can be computed by algorithmic

differentiations in a straight-forward way. All packages for neural networks make

use of this functionality during the training of the network. Once, new functional

dependencies are introduced, e.g., in the loss function, one has to take care that this

so called back propagation of gradients is maintained.
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FIGURE 5 | Drag and lift trajectories (top) over time and their phase portrait (bottom picture) for an LPV approximation of the incompressible flow around a 2D cylinder

using a parameter dimension of cs= 5. In the phase portrait plot, parts of CAE-5 were truncated.

where F is a factor of M = FFT and where we have used that
L is orthogonal so that it does not affect the 2-norm. In this
way, the M−1 norm of N(υi)υi can be well approximated with
the standard mean-squared error and a premultiplication by the
dense matrix LTF−1 ∈ R

kc ,nv .

5. NUMERICAL EXAMPLE

We consider the well-known benchmark example of a 2D
flow around a cylinder in a channel. In nondimensionalized
coordinates the channel covers the rectangle [0, 5] × [0, 1] with
the cylinder of radius R = 0.05 centered at ( 23 , 0.5). The
regime is parametrized by the Reynolds number Re that is
computed using the velocity of the inflow parabola averaged
over the inflow boundary and the radius and set to Re = 40
in the presented simulations. As the starting value for t = 0,
we impose the associated steady-state Stokes solution. With this
initialization the flow immediately starts the transition into the
characteristic periodic vertex-shedding regime which seems to be
well developed at around t = 8. A snapshot of the domain and
the developed flow at t = 8 is presented in Figure 1.

We will use data from the initial phase from t = 0 till t = 8
to generate low-dimensional LPV models. The performance of

the reduced-order models will be directed toward how well the
periodic regime is captured on a time frame till t = 50.

For the spatial discretization, we use P2 − P1 Taylor-Hood
finite elements on a nonuniform grid that results in 42764
degrees of freedom in the velocity approximation. For the
time integration we use the implicit one-step Crank-Nicolson
scheme for the linear part and the explicit 2-step Adams-
Bashforth scheme for the nonlinear part which combines into
a 2nd order approximation. The finite element discretization
was realized in the FEM toolbox FEniCS [30], the time
integration and the connection to PyTorch (which was used
for the setup, training and evalution of the (C)NNs) was
handled via the SciPy interface dolfin-navier-scipy
[31].

The solution is monitored via the induced forces onto the
cylinder periphery that we compute by testing the (numerically
computed) residual of the FEM solution (υ(t), p(t)) against (a
numerical realization of) the function φ that takes on the value
(1, 1) at the cylinder boundary and (0, 0) elsewhere:

F(t) =

∫

�

[(υ(t) · ∇)υ(t)−
1

Re
1υ(t)+∇p(t)− f (t)]φ dξ , (8)
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FIGURE 6 | Drag and lift trajectories (top) over time and their phase portrait (bottom picture) for an LPV approximation of the incompressible flow around a 2D cylinder

using a parameter dimension of cs= 8.

where � is the computational domain; see Babuǎka and Miller
[32]. Since the flow passes the channel in ξ1 direction, the first
component of F(t) represents the current drag and the second
component represents the lift force.

Once the semi-discrete model is defined, the overall
procedure of setting up and evaluating a low-dimensional
LPV surrogate model can be summarized in four
major steps:

1. Data Aquisition and Preparation. This step generates the

data used for computing the PODbasis and for the CAEmodel

training. For that, a simulation on the base of the original

model is performed and solution snapshots at dedicated time

instances are stored. In view of being used for the training of

the CAE model, among others, the data is interpolated to a

tensor grid.
2. Training of the Encoder and Decoder. By means of the

snapshot data, a POD basis is computed. Also, the interpolated
data are used to optimize the parameters of the CAE encoder
and decoder.

3. Setup of the LPV Approximation. The CAE and the
POD encoder and decoders that approximate a current
velocity υ(t) by υ̃(t) = W̃ρ(t) for some basis W̃ and

the code ρ(t) is used to approximate the actual nonlinear
N(υ(t)) υ(t) term in the model by a low-dimensional LPV
approximation Ñ(ρ(t)) υ(t).

4. Simulation with the LPV Model. Finally, simulations of the
original model with the nonlinearity replaced by the LPV
approximation are performed and evaluated.

All these steps are explained in detail in the following
subchapters.

5.1. Data Acquisition and Preparation
The data [V] for the training of the CNN and the computation
of POD bases Ṽ and W̃ of the states υi and of the convection
fieldN(υi)υi is collected from the simulation on the time interval
[0, te] at ndp equally spaced data points.

For the use for training of the CNN, the states data υi is
interpolated to the tensor grid by means of the interpolation
operator P : Rnv → R

2×nx×ny to give the data set

[V] = [v1, v2, . . . vndp] = [Pυ1,Pυ2, . . .Pυndp] (9)

Additionally, we recorded themaximal andminimal values of the
data in [V] and linearly scaled all interpolations to the range of

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 April 2022 | Volume 8 | Article 87914024

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Heiland et al. CNNs for LPV NSE Approximations

FIGURE 7 | Summarized results for the case of Re = 60. Drag and lift trajectories over time and their phase portraits for an LPV approximation of the incompressible

flow around a 2D cylinder using a variable parameter dimension cs in the POD and CAE approximation and in comparison to the full order model (FOM).
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[−1, 1]. The scaled and partially doubled data, we will denote by
[V+].

Note that the interpolation to the tensor grid is not
lossless in particular in the considered case where the
dimension of the tensorized data is 2 x 63 x 127
= 16,002 is much smaller than the data on the full
FEM grid, where the tensor grid is not adapted to the
problem whatsoever, and where geometrical features of
the domain are not represented in the tensorized data;
cp. Figure 2.

At first, as preliminary tests showed, the trained neural
network performed poorly on the first data points, e.g., the initial
phase of the simulation. To shift the focus of the training toward
the initial phase, we doubled a defined amount of the data points
as follows: for a given percentage p, a subgrid of the snapshot
time instances was computed that contained p percent of the
data points exponentially distributed of the time range of the
data. Hereby, the time differences between the data points were
smallest at the beginning and grew exponentially toward the end
of the time range. The selected data was appended to the data
set. In this way, no additional information was added but due to
the unequal distribution of the doubled data points, the iterative
training of the CNN will focus more on the initial phase. As done
in the presented numerical study, this doubling of data can be
repeated with varying percentages.

5.2. Convolutional Neural Network Setup
and Training
We define the CNN for the encoding via a number Ncl of
convolutional layers followed by a fully connected linear layer
with activation that maps the output of the repeated convolutions
onto a vector of size cs—the code size. This encoding part will be
denoted by CAE and we will write

ρ(t) = CAE(Pυ(t))

to express that a velocity state υ(t) has been encoded to ρ(t) of
dimension cs via the neural network. Note the inclusion of the
interpolation P to the tensor grid.

For the decoding, we use a truly linear layer of input
dimension cs and output dimension k, so that with a POD basis
Ṽ of dimension k the reconstruction reads

υ̃(t) = ṼWρ(t)+ υs, (10)

where W is the k × cs-matrix that realizes the linear layer that
maps ρ 7→ ρ̃ and where vs. is the shift vector that was used to
center the POD data; cp. Remark 4.

The parameters of the architecture of the CAE-model used
in the presented numerical results are given in Table 1. See also
Figure 3 for an illustration.

The parameters of CAE as well as the coefficients of W are
then trained to fit the data of [V+] with respect to the loss
function

∥

∥N(υi)υi−N
(

ṼWCAE(Pυi)
)

υi)
∥

∥

2

M−1+
∥

∥υi−VWCAE(Pυi)
∥

∥

2

M
.

(11)

For that, the data [V+] is randomly split into batches of size Bs,
the mean value of Equation (11) over a batch is computed, and
the parameters of CAE andW updated according to a stochastic
gradient method. This procedure is repeated over the same data
in a number of epochs.

5.3. Numerical Realization of the LPV
Approximation
With the decoder matrix W, the POD basis Ṽ , and the
CAE model for variable code sizes cs at hand, we approximate
the actual nonlinearity N(υ)υ by the linear-affine LPV
approximation

N(υ)υ ≈
1

2

[

N(ṼWρ)υ + N(υ)ṼWρ
]

(12)

of dimension cs where ρ = CAE(υ).
For comparison, we considered the plain POD LPV

approximation

N(υ)υ ≈
1

2

[

N(Ṽcsρ)υ + N(υ)Ṽcsρ
]

(13)

with the POD basis Ṽcs of dimension cs and the POD
coordinates ρ = ṼT

csv.

Remark 5. The blending

sN(·)ṽ(ρ)+ (1− s)N(ṽ(ρ))(·)

of the two natural LPV representations was found to be beneficial
since N(·)ρ tended to damp out the fluctuations whereas
N(ρ)(·) triggered the unsteady behavior very well but led to
blowups regardless whether the CAE or the POD approximation
was considered. This observation can be explained by known
stabilizing effect of linearizations of the first type (cp., e.g.,
the convergence analysis of iterative linearization schemes in
Karakashian [33]) whereas in a linearization like N(·)ρ the ρ

undergoes a differentiation which can explain the tendency for
a blow-up.

Certainly, the value of s can be another parameter in the
optimization of the approximation. For simplicity, we simply
fixed it to s = 1

2 .

5.4. Numerical Simulation
For a variable code size cs that eventually defines the
dimension of the affine-linear LPV approximation, we checked
the performance of the CAE-cs-model and compared it to a
POD approximation of the same dimension.

Since the cylinder wake is a chaotic system, in the sense
that, e.g., the transition to the periodic regime is severely
influenced by perturbations, a direct comparison of trajectories
is uninformative. Therefore, we plotted the resulting curves
of drag and lift for the full order simulation FOM and the
approximations on top of each other to get a qualitative
expression of the approximation. An informative comparison,
however, can be derived from the analysis how well the
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TABLE 2 | Table of parameters for the CAE-model optimization.

Description Value in simulation

Number of data points 2000

Percentage of duplicated datapointsa 15&10

Optimization algorithm torch.optim.Adam

Learning rateb 0.0075

Size of batches for the trainingc 25

Number of epochsd 25

aWe duplicated some data points to have a better focus on the initial phase of the

simulation. Here, 15&10 means that we added 15% percent of the data and another

10% of the initial data on top of it; cp. Section 5.1.
bThe optimization algorithm has many other parameters that can be altered. We used the

default values except for the learning rate.
cHow many data points are evaluated until the optimization algorithm updates the

parameters.
dHow often the optimization iterates over the full data set.

approximations capture the limit cycle of the periodic regime. For
that, we plot the phase portrait of drag vs. lift.

For the smallest investigated code size cs=3 (cp. Figure 4)
we found that the CAE-3 approximation departed from the
FOM-simulation in the initial phase but captured the limit
cycle well with but a small distortion of the symmetry and an
overestimation of the drag by about 2%. ThePOD-3-simulation,
i.e., the LPV approximation by a POD basis of dimension 3, did
not reach a clear limit cycle within the comparatively long time
horizon and did not well reproduce the nominal values of drag
and lift either.

For an increased code size cs=5, the POD approximation
qualitatively and quantitatively (cp. Figure 5) improved
to approximately the same level as CAE-3. The
CAE approximation for this code size did not perform
well at all.

For cs=8, the POD approximation improved only marginally
whereas the CAE-model approximation reached a limit cycle
again though with a huge distortion of the symmetry and a
significant overestimation of drag and lift (cp. Figure 6).

Since, theoretically, the CAE-8 and CAE-5 model contain
the CAE-3 model, their failure in the approximation basically
means a failure of the optimization of the model parameters
during the training. The manifold ways of adapting the
parameters of the network architecture as well as those of the
optimization procedure offers many ways of improving.

Even more, the interpolation to the uniform tensor grid
(cp. Figure 2) means a significant loss of information so that
slight improvements here, e.g., through a local refinement that
preserves the tensor structure, will likely improve the approach.

Nonetheless, the good performance of CAE-3 fully supports
our initial working hypotheses that a convolutional neural
network can provide a very low-dimensional encoding targeted
to an efficient affine LPV approximation of the incompressible
Navier-Stokes equations. In this case, it took a parameter
space of dimension cs=3 to well approximate the nonlinear
incompressible Navier-Stokes equations of dimension 42764
just in the velocity part.

Finally, for a rough orientation about the computational costs,
we provide the computational times as they can be read off the log
files (i.e., only a single wall clock measurement). All experiments
have been conducted on a computing cluster but without GPU
support and restricted to two computing kernels. The training of
the individual CAE models took about 30 min, the simulation
of the full order model over the full time frame from t = 0 to
t = 50 took about 80 min. The same simulation but with the
POD reduced LPV model took about 130 min, whereas the CAE
model took 420 min. The computational overhead of the POD
model is mainly due to the blending that requires the evalution of
the nonlinearity twice as often. This also holds true for the CAE
model but accounts only for a part of the overtime.

Certainly, these timings can be improved significantly.
However, the focus of the presented work was on reducing the
model in terms of its structure by replacing the nonlinear term
by a low-dimensional LPV formulation.

To evaluate the robustness of the presented method, we
conduct the same experiments at Re = 60, i.e., in a regime that is
evenmore convection-dominated and that is expected to bemore
difficult to approximat by a linear projection method. The results
are displayed in Figure 7 and are well inline with those reported
for Re = 40 before. The CAE-3-model outperformed all POD-
configurations, once a satisfactory setup of hyperparameters was
found. In fact, for the training of the CAE-model for Re = 60 we
added another batch p=20 percent of data focussed on the initial
phase (cp. Table 2) while for the simulation we set s = 1

3 (cp.
Remark 5). Both updates to the Re = 40 case are natural as in
this regime, the initial phase is shorter and the simulation is less
stable. Interestingly, the POD-models gave a solid performance
at small cs, but deteriorated for larger sizes of the POD basis.
An explanation for this behavior might lie in the sensitivity of the
problem and in numerical errors in the POD vector computation.
We also note that adding stability to the system by an even
smaller s was of no help as it damped the periodic behavior (with
a result similar to the POD-3 approximation in Figure 7).

6. CONCLUSION AND OUTLOOK

In the presented work, we have provided a proof of concept on
how CNNs in combination with POD can be used to generate
very low-dimensional LPV approximations to nonlinear systems.
For the considered Navier-Stokes equations and, generally, for
any quadratic system, the LPV approximation is affine-linear
if only the decoding from the coded variable ρ to the state
reconstruction ṽ is a linear map.

The myriad of parameters that can be tuned in the design
of DNNs and their training have not been investigated in depth
(once a satisfying working setup has been found). Accordingly,
there is a huge potential for improvements since the well
working CAE-3 example is certainly no global optimum and
the larger code sizes could, theoretically, be tuned for better
approximations. A systematic investigation of the parameters is
left to future research efforts.

Another future research direction is the direct identification of
the parametrization matrices Ni, i = 0, . . . , r, for an affine-linear
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LPV-representation

N(υ) ≈ Ñ(ρ(υ)) = Ñ0 +

r
∑

i=1

ρi(υ)Ñi

without resorting to POD coordinates. It was mentioned in
Koelewijn and Tóth [12], that a neural network without the
nonlinear activation that approximates ρ(υ) → N(ρ(υ)) is
such an affine-linear map with coefficients Ñi defined through
the weighting matrices of the neural net. Accordingly, the
same architectures and optimization algorithms can be used
to design the parametrization from scratch. However, in the
large-scale setting, it is not feasible to learn (and even just to
store) these coefficients. A general approach to that would be
sparsity enforcing methods in the learning of the weights. Amore
specific approach could consider transposed convolutional layers
that reverses the convolutions and contractions but without the

nonlinear activations. Certainly, the concatenated operations of
the transposed convolutions and the reversal of the interpolation
from the FEM to the tensor grid can be represented as one sparse
operator. This is subject to further investigations.
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In this study, we obtained low-rank approximations for the solution of parametric non-
symmetric elliptic partial differential equations. We proved the existence of optimal
approximation subspaces that minimize the error between the solution and an
approximation on this subspace, with respect to the mean parametric quadratic norm
associated with any preset norm in the space of solutions. Using a low-rank tensorized
decomposition, we built an expansion of approximating solutions with summands on
finite-dimensional optimal subspaces and proved the strong convergence of the truncated
expansion. For rank-one approximations, similar to the PGD expansion, we proved the
linear convergence of the power iteration method to compute the modes of the series for
data small enough. We presented some numerical results in good agreement with this
theoretical analysis.

Keywords: low-rank tensor approximations, non-symmetric problems, PGD mode computation, alternate least
squares, power iteration algorithm

1 INTRODUCTION

This study deals with the low-rank tensorized decomposition (LRTD) of parametric non-symmetric
linear elliptic problems. The basic objective in model reduction is to approximate large-scale
parametric systems by low-dimension systems, which are able to accurately reproduce the
behavior of the original systems. This allows tackling in affordable computing times, control,
optimization, and uncertainty quantification problems related to the systems modeled, among other
problems requiring multiple computations of the system response.

The PGD method, introduced by Ladévèze in the framework of the LATIN method (LArge Time
INcrement method [22]) and extended to multidimensional problems by Ammar et al [2], has
experienced an impressive development with extensive applications in engineering problems. This
method is an a priori model reduction technique that provides a separate approximation of the
solution of parametric PDEs. A compilation of advances in the PGD method may be found in [11].

Among the literature studying the convergence and numerical properties of the PGD, we can
highlight [1], where the convergence of the PGD for linear systems of finite dimension is proved. In
[8], the convergence of the PGD algorithm applied to the Laplace problem is proven, in a tensorized
framework. The study [9] proves the convergence of the PGD for an optimization problem, where
the functional framework is strongly convex and has a Lipschitz gradient in bounded sets. In [17], the
authors prove the convergence of an algorithm similar to a PGD for the resolution of an optimization
problem for a convex functional defined on a reflective Banach space. In [16], the authors prove the
convergence of the PGD for multidimensional elliptic PDEs. The convergence is achieved because of
the generalization of Eckart and Young’s theorem.
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The present study is motivated by [5], where the authors
present and analyze a generalization of the previous study [16]
when operator A depends on a parameter. The least-squares
LRTD is introduced to solve parametric symmetric elliptic
equations. The modes of the expansion are characterized in
terms of optimal subspaces of a finite dimension that
minimize the residual in the mean quadratic norm generated
by the parametric elliptic operator. As a by-product, this study
proves the strong convergence in the natural mean quadratic
norm of the PGD expansion.

A review of low-rank approximation methods (including
PGD) may be found in the studies [18, 19]. In particular,
minimal residual formulations with a freely chosen norm for
Petrov–Galerkin approximations are presented. In addition,
the study [10] gives an overview of numerical methods based
on the greedy iterative approach for non-symmetric linear
problems.

In [3, 4], a numerical analysis of the computation of modes for
the PGD to parametric symmetric elliptic problems is reported.
The nonlinear coupled system satisfied by the PGD modes is
solved by the power iteration (PI) algorithm, with normalization.
This method is proved to be linearly convergent, and several
numerical tests in good agreement with the theoretical
expectations are presented.

Actually, for symmetric problems, the PI algorithm to solve
the PGD modes turns out to be the adaptation of the alternating
least-squares (ALS) method thoroughly used to compute
tensorized low-order approximations of high-order tensors.
The ALS method was used in the late 20th century within the
principal components analysis (see [6, 7, 20, 21]) and extended in
[27] to the LRTD approximation of high-order tensors. Its
convergence properties were subsequently analyzed by several
authors; local and global convergence proofs within several
approximation frameworks are given in [14, 25, 26]. Several
generalizations were reported; as mentioned, without intending
to be exhaustive, in the studies [12–15, 23].

The convergence proofs within the studies [14, 25, 26] cannot
be applied to our context as we are dealing with least-squares with
respect to the parametric norm intrinsic to the elliptic operator,
even for symmetric problems. Comparatively, the difference is
similar to that between proving the convergence of POD or PGD
approximations to elliptic PDEs. The POD spaces are optimal
with respect to a user-given fixed norm, while the PGD spaces are
optimal with respect to the intrinsic norm associated to the
elliptic operator (see [5]). This use of the intrinsic parametric
norm does not make it necessary the previous knowledge of the
tensor object to be approximated (in our study, the parametric
solution of the targeted PDE), as is needed in standard ALS
algorithms.

In the present study, we propose an LRTD to approximate
the solution of parametric non-symmetric elliptic problems
based upon symmetrization of the problem (Section 2). Each
mode of the series is characterized in terms of optimal
subspaces of finite dimension that minimize the error
between the parametric solution and its approximation on
this subspace, but now with respect to a preset mean quadratic
norm as the mean quadratic norm associated to the operator

in the non-symmetric case is not well-defined (Section 3). We
prove that the truncated LRTD expansion strongly converges
to the parametric solution in the mean quadratic norm
(Section 4).

The minimization problems to compute the rank-one optimal
modes are solved by a PI algorithm (Section 5). We prove that
this method is locally linearly convergent and identifies an
optimal symmetrization that provides the best convergence
rates of the PI algorithm, with respect to any preset mean
quadratic norm (Section 6).

We finally report some numerical tests for 1D
convection–diffusion problems that confirm the theoretical
results on the convergence of the LRTD expansion and the
convergence of the PI algorithm. Moreover, the computing
times required by the optimal symmetrization are compared
advantageously to those required by the PGD expansion
(Section 7).

2 PARAMETRIC NON-SYMMETRIC
ELLIPTIC PROBLEMS

Let us consider the mathematical formulation for parametric
elliptic problems introduced in [5] that we shall extend to non-
symmetric problems.

Let (Γ,B, μ) be a measure space, where we assume that the
measure μ is σ-finite. Let H be a separable Hilbert space
endowed with the scalar product (·, ·) and associated norm
‖ ·‖, denote by H′ the dual space of H and by 〈·, ·〉 the duality
pairing between H′ and H. We will consider the Lebesgue
space L2μ(Γ) and the Bochner space L2μ(Γ;H) and its dual space
L2μ(Γ;H′), denoting 〈·, ·〉 as the duality between L2μ(Γ;H) and
L2μ(Γ;H′). We are interested in solving the parametric family
of variational problems:

Find u: Γ → H such that
a u γ( ), v; γ( ) � 〈f γ( ), v〉, ∀ v ∈ H, μ − a.e. γ ∈ Γ,{ (1)

where a(·, ·; γ): H × H → R is a parameter-dependent, possibly
non-symmetric, bilinear form and f(γ) ∈ H′ is a parameter-
dependent continuous linear form.

It is assumed that a (·, ·; γ) is uniformly continuous and
uniformly coercive on H μ-a. e. γ ∈ Γ and there exist positive
constants α and β independent of γ such that,

a w, v; γ( )≤ β ‖w‖ ‖v‖, ∀w, v ∈ H, μ − a.e. γ ∈ Γ, (2)
α ‖w‖2 ≤ a w,w; γ( ), ∀w ∈ H, μ − a.e. γ ∈ Γ. (3)

By the Lax–Milgram theorem, problem (1) admits a unique
solution μ-a. e. γ ∈ Γ. To treat the measurability of u with
respect to γ, let us consider the problem:

Let f be a function that belongs to L2μ(Γ;H′) such that f(γ) =
f(γ) μ-a. e. γ ∈ Γ,

Find u ∈ L2
μ(Γ;H) such that

�a u, v( ) � 〈f , v〉, ∀ v ∈ L2
μ(Γ;H),{ (4)

where �a: L2μ(Γ;H) × L2μ(Γ;H) → R is defined by
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�a w, v( ) � ∫
Γ
a w γ( ), v(γ); γ( ) dμ γ( ). (5)

By the Lax–Milgram theorem, owing to (2) and (3), problem
(4) admits a unique solution. Problems (1) and (4) are equivalent
in the sense that (see [5])

u γ( ) � u γ( ), μ − a.e. γ ∈ Γ.

We shall consider a symmetrized reformulation of the
formulation (4). Let us consider a family of inner products in
H, {(·, ·)γ}γ∈Γ which generate the norms ‖ ·‖γ uniformly equivalent
to the ‖ ·‖ norm and there exist αH > 0 and βH > 0 such that,

αH ‖v‖≤ ‖v‖γ ≤ βH ‖v‖ for all γ ∈ Γ, (6)
considering the associated scalar product in L2μ(Γ;H) and
∫Γ(·,·)γ dμ(γ). As �a is continuous and coercive on L2μ(Γ;H), there
exists a unique isomorphism in L2μ(Γ;H) that we denoteA, such that

∫
Γ

Aw( ) γ( ), v γ( )( )γ dμ γ( ) � �a w, v( ), ∀w, v ∈ L2
μ(Γ;H). (7)

Let us define a new bilinear form
�b: L2μ(Γ;H) × L2μ(Γ;H) → R by

�b w, v( ) ≔ �a w,Av( ). (8)
It is to be noted that �b is symmetric, as it can be written as

�b w, v( ) � ∫
Γ

Aw( ) γ( ), Av( ) γ( )( )γ dμ γ( ). (9)

Thus, as a consequence of (2) and (3), the form �b defines a scalar
product in L2μ(Γ;H) and generates a norm equivalent to the usual
norm is this space.

Now, problem (4) is equivalent to

Find u ∈ L2
μ(Γ;H) such that

�b u, v( ) � 〈f ,Av〉, ∀ v ∈ L2
μ(Γ;H).{ . (10)

We shall use this formulation to build optimal
approximations of problem (1) on subspaces of finite-
dimension, when the form �a(·, ·) is not symmetric. For a
given integer k ≥ 1, we denote by Sk the Grassmannian
variety of H formed by its subspaces of dimension smaller
than or equal to k and consider the problem:

min
Z∈Sk

�b u − uZ, u − uZ( ), (11)

where u is the solution of problem (4) and uZ is its approximation
given by the Galerkin approximation of problem (10) in L2μ(Γ;Z):

Find uZ ∈ L2
μ(Γ;Z) such that

�b uZ, v( ) � 〈f ,Av〉, ∀ v ∈ L2
μ(Γ;Z).{ (12)

Then, for any k ∈ N, an optimal subspace of dimension smaller
than or equal to k is the best subspace of the family Sk that
minimizes the error between the solution u and its Galerkin
approximation uZ on this subspace, with respect to the mean
quadratic norm generated by �b. Theorem 4.1 of [5] proves the
following result:

Theorem 2.1 For any k ≥ 1, problem (11) admits at least one
solution.

3 TARGETED-NORM OPTIMAL
SUBSPACES

It is assumed that we give a family of inner products
{(·, ·)H,γ}γ∈Γ on H, which generate norms ‖ ·‖H,γ uniformly
equivalent to the reference norm in H. Eventually, we may set
(·,·)H,γ = (·, ·). Our purpose is to determine the inner products
(·,·)γ (introduced in Section 2 and which we will call (·,·)γ,+) in
such a way that the corresponding bilinear form �b defined by
(8) actually is

�b w, v( ) � ∫
Γ
w γ( ), v γ( )( )H,γ dμ γ( ).

In this way, the optimal subspaces are the solution of the problem

min
Z∈Sk

∫
Γ
‖u γ( ) − uZ γ( )‖2H,γ dμ γ( ). (13)

Let us consider the operators Aγ,+: H↦H and the bilinear forms
(·,·)γ,+ on H × H defined by

a w, Aγ,+v; γ( ) � w, v( )H,γ, ∀w, v ∈ H, (14)
w, v( )γ,+ � A−1

γ,+w,A
−1
γ,+v( )

H,γ
, ∀w, v ∈ H. (15)

It is to be noted that Aγ,+ is an isomorphism onH and consequently
(·,·)γ,+ is an inner product on H. Due to (2) and (3), the norms
generated by these inner products are uniformly equivalent to the
reference norm in H. Moreover, by (14) and (15),

Aγ,+w, v( )
γ,+

� w,A−1
γ,+v( )

H,γ
� a w, v; γ( ). (16)

Let us consider now the inner product in L2μ(Γ;H) given by
∫Γ(·,·)γ,+ and the isomorphism A+: L2μ(Γ;H) ↦ L2μ(Γ;H)
defined by

∫
Γ

A+w( ) γ( ), v γ( )( )γ,+ dμ γ( ) � �a w, v( ), ∀w, v ∈ L2
μ(Γ;H).

(17)
Then, it holds.
Lemma 1 Let Aγ : H → H be the continuous linear operators

defined by

Aγw, v( )
γ
� a w, v; γ( ), ∀w, v ∈ H, μ − a.e. γ ∈ Γ. (18)

Then, it holds

Aw( ) γ( ) � Aγw γ( ), ∀w ∈ H, μ − a.e. γ ∈ Γ. (19)
This result follows from a standard argument using the

separability of space H that we omit for brevity. Then, by Lemma
1, we have

A+w( ) γ( ) � Aγ,+w γ( ), ∀w ∈ L2
μ(Γ;H), μ − a.e. γ ∈ Γ. (20)

Let us denote by �b+ the bilinear form on L2μ(Γ;H) given by
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�b+ w, v( ) � �a w,A+v( ), ∀w, v ∈ L2
μ(Γ;H). (21)

Then, by (20) and (14),

�b+ w, v( ) � ∫
Γ
a w γ( ), Aγ,+v γ( ); γ( ) dμ γ( )

� ∫
Γ
w γ( ), v γ( )( )H,γ dμ γ( ). (22)

As a consequence, the optimal subspaces obtained by the least-
squares problem (11) when �b � �b+ satisfy (13).

Remark 1When the forms a (·, ·; γ) are symmetric, if we choose

w, v( )H,γ � a w, v; γ( ), ∀w, v ∈ H, μ − a.e. γ ∈ Γ, (23)
then Aγ,+ defined by (14) is the identity operator in H. From (21),
it follows that �b+ � �a. We, thus, recover the intrinsic norm in the
symmetric case to determine the optimal subspaces.

4 A DEFLATION ALGORITHM TO
APPROXIMATE THE SOLUTION

Following the PGD procedure, we approximate the solution
of problem (1) by a tensorized expansion with summands of
rank ≤ k, obtained by deflation. For all N ≥ 1, we approximate

u ≃ uN ≔ ∑
N

i�1
si, with si ∈ L2

μ(Γ;H), (24)

computed by the following algorithm:
Initialization: let be u0 = 0.
Iteration: assuming ui−1, known for any i ≥ 1, set ei−1≔u − ui−1.

Then,

ui � ui−1 + si, where si � ei−1( )W (25)
with (ei−1)W the approximation of ei−1 given by the problem (12) on
an optimal approximation subspaceW solution of the problem (11),

W ≔ argmin
Z∈Sk

�b ei−1 − ei−1( )Z, ei−1 − ei−1( )Z( ). (26)

It is to be noted that this algorithm does not need to know the
solution u of problem (4) since ei−1 is defined in terms of the
current residual f i � f −Aui−1 by

ei−1 ∈ L2
μ(Γ;H) such that

�a ei−1, v( ) � 〈f , v〉 − �a ui−1, v( ) ≔〈f i, v〉 ∀v ∈ L2
μ(Γ;H){

The convergence of the uN to u is stated in Theorem 5.3 of [5]
as the form �b is an inner product in L2μ(Γ;H), with the
generated norm equivalent to the standard one.

Theorem 4.1 The truncated series uN determined by the
deflation algorithm (24)–(26) satisfying

lim
N→∞

�b u − uN, u − uN( ) � 0.

Consequently, uN strongly converges in L2μ(Γ;H) to the solution
u of problem (4).

5 RANK-ONE APPROXIMATIONS

An interesting case from the application point of view arises when
we consider rank-one approximations. Indeed, when k = 1, the
solution of (12) uZ can be obtained as

uZ(γ) � φ γ( )w, μ − a.e. γ ∈ Γ, for someφ ∈ L2
μ(Γ), w ∈ H.

Then, the problem (11) can be written as (see [5], Sect. 6)

min
v∈H, ψ∈L2μ Γ( )

J v,ψ( ), (27)

where

J v,ψ( ) � �b u − ψ ⊗ v,u − ψ ⊗ v( ). (28)
Any solution of problem (27) has to verify the following

conditions:
Proposition 1 If (w,φ) ∈ H × L2μ(Γ) is a solution of problem

(27), then it is also a solution of the following coupled nonlinear
problem:

�a φ ⊗ w,φ ⊗ Aγv( ) � 〈f ,φ ⊗ Aγv〉 ∀ v ∈ H, (29)
�a φ ⊗ w,ψ ⊗ Aγw( ) � 〈f ,ψ ⊗ Aγw〉 ∀ψ ∈ L2

μ(Γ). (30)
We omit the proof of this result for brevity; let us just mention

that conditions (29) and (30) are the first-order optimality
conditions of the problem (27) that take place as the
functional J: H × L2μ(Γ) → R and is Gateaux-differentiable. It
is to be noted that the PGD method corresponds to replacing Aγ

by the identity operator in (29)–(30). From Theorem 2.1 and
Proposition 1, there exists at least a solution to problem (27) and
then to problem (29)–(30). However, as functional J is not
convex, there is no warranty that it admits a unique
minimum. Then, a solution to problem (29)–(30) could not be
a solution to the problem (27).

Relations (29)–(30) suggest an alternative way to compute the
modes in the PGD expansion to solve (1). Indeed, we propose a
LRTD expansion for u given by

u ≃ uN ≔ ∑
N

i�1
φi ⊗wi, (31)

where the modes (wi,φi) ∈ H × L2μ(Γ) are recursively computed
as a solution of the problem (f i ≔ f −Aui−1) :

�a φi ⊗ wi,φi ⊗ Aγv( ) � 〈f i,φi ⊗ Aγv〉 ∀ v ∈ H,

�a φi ⊗ wi,ψ ⊗ Aγwi( ) � 〈f i,ψ ⊗ Aγwi〉 ∀ψ ∈ L2
μ(Γ).

⎧⎨
⎩ (32)

If this problem is solved in such a way that its solution is also a
solution of

min
v∈H, ψ∈L2μ Γ( )

Ji v,ψ( ),
with Ji v,ψ( ) � �b u − ui−1 − ψ ⊗ v, u − ui−1 − ψ ⊗ v( ),

(33)

then expansion (31) will be optimal in the sense of the expansion
(24), where each mode of the series is computed in an optimal
finite-dimensional subspace that minimizes the error.
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6 COMPUTATION OF LOW-RANK
TENSORIZED DECOMPOSITION MODES

In this section, we analyze the solution of the nonlinear problem (32)
by the power iteration (PI) method. As the operator Aγ appears in
the test functions, a specific treatment is needed, in particular, to
compute targeted-norm subspaces.We also introduce a simplified PI
algorithm that does not need to compute Aγ. Here, we report both.

We focus on solving the model problem (29)–(30), which we
assume to admit a nonzero solution. For simplicity, the notation fwill
stand either for the r. h. s. of the problem (4) or for any residual fi.

It is to be observed that (30) is equivalent to

∫
Γ
φ γ( ) a w, Aγw; γ( )ψ γ( ) dμ γ( ) �

∫
Γ
〈f γ( ), Aγw〉ψ γ( ) dμ γ( ), ∀ψ ∈ L2

μ(Γ),
and then

φ γ( ) � φ w, γ( ) ≔ 〈f γ( ), Aγw〉
a w, Aγw; γ( ) μ − a.e. γ ∈ Γ. (34)

Thus, problem (29)–(30) consists in

Findw ∈ H such that

∫
Γ
φ w, γ( )2 a w, Aγv; γ( ) dμ γ( ) �

∫
Γ
φ w, γ( ) 〈f γ( ), Aγv〉 dμ γ( ), ∀ v ∈ H.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(35)

with φ(w, ·) ∈ L2μ(Γ) defined by (34). For simplicity, we shall
denote by φ(w) the function φ(w, ·).

Let us define the operator T : H → H that transforms w ∈ H
into T(w) ∈ H solution to the problem

∫
Γ
φ w, γ( )2a T w( ), Aγv; γ( ) dμ γ( ) �

∫
Γ
φ w, γ( )〈f γ( ), Aγv〉 dμ γ( ), ∀ v ∈ H.

(36)

T is well-defined from (2) and (3), and a solution of (35) is a fixed
point of this operator. Moreover, as Aγ is linear,

φ λw( ) � λ−1 φ w( ) and then T λw( ) � λT w( ), ∀λ ∈ R.

Thus, if (w, φ) is a solution to (29)–(30), then (λ w, λ−1φ) is also a
solution to this problem. So, we propose to find a solution to
problem (35) with unit norm. For that, we apply the following PI
algorithm with normalization:

Initialization:Given any nonzerow0 ∈H such that φ0 = φ(w0) is
not zero in L2μ(Γ).

Iteration: Knowing wn ∈ H, the following is computed :

i) ~wn+1 � T wn( ) ∈ H

ii) wn+1 � ~wn+1

‖ ~wn+1‖ ∈ H

iii) φn+1 � φ wn+1( ) ∈ L2
μ(Γ).

(37)

The next result states that this iterative procedure is well-
defined.

Lemma 2 It is assumed that for some nonzero w ∈ H, it holds
that φ(w) ∈ L2μ(Γ) is not zero. Then ~w � T(w) is not zero in H
and φ( ~w) is not zero in L2μ(Γ).

Proof First, by reduction to the absurd, it is assumed that T(w)
= 0. From (36), we have

∫
Γ
φ w, γ( ) 〈f γ( ), Aγv〉dμ γ( ) � 0, ∀ v ∈ H.

In particular, for v = w and taking into account (34), we deduce
that

∫
Γ

|〈f γ( ), Aγw〉|2
a w,Aγw; γ( ) dμ γ( ) � 0.

Then,

〈f γ( ), Aγw〉 � 0, μ − a.e. γ ∈ Γ,

and thus, φ(w) = 0 is in contradiction with the initial
hypothesis. This proves that T(w) is not zero. Second,
arguing again by reduction to the absurd, it is assumed
that φ( ~w) � 0. From (34), we have

〈f γ( ), Aγ ~w〉 � 0, μ − a.e. γ ∈ Γ.

Then, setting v � ~w in (36) and using (19), we obtain

�b φ w( ) ⊗ ~w,φ w( ) ⊗ ~w( ) � ∫
Γ
a φ w, γ( ) ~w,φ w, γ( )Aγ ~w( ) dμ γ( )

� 0.

As �b is a scalar product in L2μ(Γ;H), this implies that

‖φ w( ) ⊗ ~w‖L2μ(Γ;H) � ‖φ w( )‖L2μ(Γ) ‖ ~w‖ � 0.

We have already proven that ~w ≠ 0. So, φ(w) has to be equal to
zero, in contradiction with the initial hypothesis. Thus, our
assumption is false and φ( ~w) is not zero.

This result proves that if w0 and φ0 are not zero, then the
algorithm (37) is well-defined.

6.1 Computation of Power Iteration
Algorithm for Targeted-Norm Optimal
Subspaces
From a practical point of view, in general, the algorithm (37) is
computationally expensive. Indeed, in practice, H is a space of
large finite-dimension and the integral in Γ is approximated by
some quadrature rule with nodes {γi}Mi�1. The method requires the
computation of Aγiv for all the elements v on a basis of H and all
the γi.

It is to be noted that when targeted subspaces are searched for,
in the way considered in Section 3, the expression of algorithm
(37) simplifies. Indeed, as a (w, Aγ,+v; γ) = (w,v)H,γ, then

φ w, γ( ) � 〈f γ( ), Aγ,+w〉
‖w‖2H,γ

μ − a.e. γ ∈ Γ. (38)

In addition, the problem (36) that defines the operator T
simplifies to problem:
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∫
Γ
φ w, γ( )2 T w( ), v( )H,γ dμ γ( ) �

∫
Γ
φ w, γ( )〈f γ( ), Aγ,+v〉 dμ γ( ), ∀ v ∈ H.

(39)

We shall refer to the method (38)–(39) as the TN (targeted-
norm) method.

6.2 A Simplified Power Iteration Algorithm
An approximate, but less expensive, method is derived from the
observation that Aγ is an isomorphism in H. If we approximate
the first equation in (32) by

�a φi ⊗ wi,φi ⊗ Aγ0v( ) � 〈f i,φi ⊗ Aγ0v〉 ∀ v ∈ H,

for some γ0 ∈ Γ, then this equation is equivalent to

�a φi ⊗ wi,φi ⊗ v( ) � 〈f i,φi ⊗ v〉 ∀ v ∈ H. (40)
We then consider the following adaptation of the PI method (37)
to compute an approximation of the solution of the optimality
conditions (32):

Iteration: Known wn ∈ H, the following is computed:

i) ~wn+1 � T̂ wn( ) ∈ H

ii) wn+1 � ~wn+1

‖ ~wn+1‖ ∈ H

iii) φn+1 � φ wn+1( ) ∈ L2
μ(Γ).

(41)

where T̂(w) is computed by

∫
Γ
φ w, γ( )2 a T̂ w( ), v; γ( )dμ γ( ) � ∫

Γ
φ w, γ( ) 〈f γ( ), v〉 dμ γ( ), ∀ v ∈ H, ,

(42)
where φ(w, γ) is defined by (34). We shall refer to method
(41)–(42) as the STN (simplified targeted-norm) method. The
difference between the STNmethod and the standard PGD one is
only the definition of the function φ that in this case is given by

φ γ( ) ≔ 〈f γ( ), w〉
a w, w; γ( ) μ − a.e. γ ∈ Γ.

6.3 Convergence of the Power Iteration
Algorithms
In this section, we analyze the convergence of the PI algorithms (37)
and (41) (Theorem 6.1). We prove that the method with optimal
convergence rate corresponds to the operator Aγ,+ introduced in
Section 3, choosing all the inner products ‖ ·‖H,γ equal to the
reference inner product ‖ ·‖.

As in [5], we shall assume that the iterates φn remain in the
exterior of some ball of positive radius, say ε > 0, of L2μ(Γ), that is,

‖φn‖L2μ Γ( ) ≥ ε, n � 0, 1, 2, / . (43)
This is a working hypothesis that makes sense whenever the mode that
we intend to compute is not zero, considering that thewn is normalized.

From the definition of Aγ and (6), it holds

~α ‖v‖≤ ‖Aγv‖γ ≤ ~β ‖v‖ for all γ ∈ Γ,
with ~α � α

βH
, ~β � β

αH
, (44)

where α and β are given by (2) and (3), respectively, and αH and
βH are defined in (6).

Let us define the function:

δ r, s( ) � 2 λ k2 1 + 2 − r

1 − r
k2( ) 1 + 2 − r

1 − r
λ k2 s( ) s2,

where k �
~β

~α
, and λ �

k2 formethod (37)
β

α
formethod (41)

⎧⎪⎪⎨
⎪⎪⎩

It holds.
Theorem 6.1 It is assumed that (43) holds, and

Δ � δ r, �s( )< 1, for some r ∈ 0, 1( ) with �s � ‖u‖L2μ(Γ;H)
ε

. (45)

Then, there exists a unique solution with norm 1 w of problem
(35); the sequence {wn}n≥ 1 computed by either method (37) or
method (41) is contained in the ball BH(w, r) if w

0 ∈ BH(w, r), and

‖w − wn+1‖ ≤ Δ ‖w − wn‖, ∀ n≥ 0. (46)
As a consequence, the sequence {wn}n≥ 1 that is defined by either

method (37) or method (41) is strongly convergent to w with linear
rate and the following error estimate holds:

‖w − wn‖ ≤ Δn ‖w − w0‖, ∀ n≥ 1, wheneverw0 ∈ BH w, r( ).
(47)

Proof. Let us consider at first the method (37). Let x ∈ BH(w, r)
such that ‖φ(x)‖L2μ(Γ) ≥ ε. Denote ~x � T(x) which by the
definition of operator T in (36) is the solution to the problem

∫
Γ
φ x, γ( )2 a ~x, Aγv; γ( ) dμ γ( ) �

∫
Γ
φ x, γ( ) 〈f γ( ), Aγv〉 dμ γ( ), ∀ v ∈ H.

(48)

We aim to estimate ‖w − ~x
‖~x‖‖. To do that, from problems (35) and

(48), we obtain

∫
Γ
φ w, γ( )2 a w − ~x, Aγv; γ( ) dμ γ( )

� −∫
Γ
φ w, γ( )2 − φ x, γ( )2( ) a ~x, Aγv; γ( ) dμ γ( )

+ ∫
Γ
φ w, γ( ) − φ x, γ( )( ) 〈f γ( ), Aγv〉 dμ γ( ), ∀ v ∈ H.

(49)
It holds

a y, Aγz; γ( ) � Aγy, Aγz( )
γ
≤ ~β

2 ‖y‖ ‖z‖, ∀y, z ∈ H, (50)

using (44). Thus,

〈f γ( ), Aγv〉 � a u γ( ), Aγv; γ( )≤ ~β
2 ‖u γ( )‖ ‖v‖, ∀ v ∈ H. (51)
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Moreover,

a y, Aγy; γ( ) � Aγy, Aγy( )
γ
≥ ~α2 ‖y‖2 ∀y ∈ H. (52)

Setting v � w − ~x in (62) and using (50)-(52), we have

~α2 ‖φ w( )‖2L2μ Γ( ) ‖w − ~x‖2 ≤
~β
2 ‖φ2 w( ) − φ2 x( )‖L1μ Γ( ) ‖~x‖ + ‖φ w( ) − φ x( )‖L2μ(Γ) ‖u‖L2μ(Γ;H)( ) ‖w − ~x‖.

(53)
To bound the second term in the r. h s. of (53), from (34), it holds

φ w, γ( ) − φ x, γ( ) � a u γ( ), Aγ w − x( ); γ( )
a w, Aγw; γ( )

+ a x, Aγ x − w( ); γ( ) + a x − w,Aγw; γ( )
a w, Aγw; γ( ) a x, Aγx; γ( ) a u γ( ), Aγx; γ( ).

Then, using (50) and (52),

|φ w, γ( ) − φ x, γ( )| ≤ k2 1 + k2
1
‖x‖ + 1( )( ) ‖u γ( )‖ ‖w − x‖

≤ k2 1 + 2 − r

1 − r
k2( ) ‖u γ( )‖ ‖w − x‖,

(54)
where k � ~β

~α
. In the last estimate, we have used that as x ∈ BH(w, r),

‖w‖ − r ≤ ‖x‖ and then 1
‖x‖ ≤ 1

1−r. Therefore,

‖φ w( ) − φ x( )‖L2μ(Γ) ≤ ϕ1 r( ) ‖u‖L2μ(Γ;H) ‖w − x‖, (55)
where

ϕ1 r( ) � k2 1 + 2 − r

1 − r
k2( ).

It is to be noted that from (34),

|φ z, γ( )| � a u γ( ), Aγz; γ( )
a z, Aγz; γ( )

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣≤ k
2 ‖u γ( )‖

‖z‖ , ∀z ∈ H. (56)

Then, from (54) and (56)

|φ w, γ( )2 − φ x, γ( )2| ≤ |φ w, γ( ) − φ x, γ( )| |φ w, γ( ) + φ x, γ( )|

≤ k2 ϕ1 r( ) 1 + 1
‖x‖( ) ‖u γ( )‖2 ‖w − x‖.

Hence,

‖φ w( )2 − φ x( )2‖L1μ(Γ) ≤ ϕ2 r( ) ‖u‖2L2μ(Γ;H) ‖w − x‖, (57)
where

ϕ2 r( ) � k2 ϕ1 r( ) 2 − r

1 − r
.

Combining (53) with (55) and (57), we deduce

‖w − ~x‖ ≤ ‖u‖L2μ(Γ;H)
‖φ w( )‖L2μ Γ( )

⎛⎝ ⎞⎠
2

k2 ϕ1 r( ) + ϕ2 r( ) ‖~x‖( ) ‖w − x‖.

(58)

Setting v � ~x in (48) and using (52) and (51), we obtain

~α2 ‖φ x( )‖2L2μ Γ( ) ‖~x‖2 ≤ ~β
2 ‖φ x( )‖L2μ Γ( ) ‖u‖L2μ(Γ;H) ‖~x‖.

Thus,

‖~x‖≤ k2
‖u‖L2μ(Γ;H)
‖φ x( )‖L2μ Γ( )

≤ k2
‖u‖L2μ(Γ;H)

ε
� k2 �s. (59)

It holds ‖ w
‖w‖ − ~x

‖~x‖‖≤ 2 ‖w − ~x‖. Then, using (58) and (59), we
deduce

w

‖w‖ −
~x

‖~x‖
�������

�������≤ 2 k2 �s2 ϕ1 r( ) + ϕ2 r( ) k2 �s( ) ‖w − x‖.
That is,

w − ~x

‖~x‖
�������

������� ≤ Δ ‖w − x‖, withΔ given by (45). (60)

Estimate (46) follows from this last inequality for x = wn, assuming
that wn ∈ BH(w, r). Assuming w0 ∈ BH(w, r) this recursively proves
that all the wn are in BH(w, r). Furthermore, suppose that there exists
another solution to (35)with normone in the ballBH(w, r),w*. In this
case, estimating (60) for x = w* implies

‖w − w*‖≤Δ ‖w − w*‖
because ~x � T(w*) � w*. Thenw =w*, and there is uniqueness of
solution with norm one in the ball BH(w, r). Finally, (47) follows
from (46) by recurrence.

Let us now consider method (41). In this case ~x � T̂(x), by
(42), is the solution of the problem

∫
Γ
φ x, γ( )2 a ~x, v; γ( ) dμ γ( ) �
∫

Γ
φ x, γ( ) 〈f γ( ), v〉 dμ γ( ), ∀ v ∈ H. (61)

To estimate ‖w − ~x
‖~x‖‖, from problems (35) and (61), we obtain

∫
Γ
φ w, γ( )2 a w − ~x, v; γ( ) dμ γ( ) �

−∫
Γ
φ w, γ( )2 − φ x, γ( )2( ) a ~x, v; γ( ) dμ γ( )

+∫
Γ
φ w, γ( ) − φ x, γ( )( ) 〈f γ( ), v〉dμ γ( ), ∀ v ∈ H.

(62)
As 〈f(γ), v〉 = a (u(γ), v; γ) ≤ β ‖u(γ)‖ ‖v‖, ∀ v ∈ H, setting
v � w − ~x, we have

TABLE 1 | Convergence rates of the PI algorithm for the first TN modes.

n Mode i = 1 Mode i = 2 Mode i = 3

‖wn
1 −wn

1 − 1‖ rn1 ‖wz
2n −wn−1

2 ‖ rn2 ‖wn
3 −wn−1

3 ‖ rn3

1 7,4844E-01 — 4,6117E-01 — 3,8004E-02 —

2 9,6123E-02 7,78 8,3125E-02 5,54 5,9211E-02 0,641
3 4,1109E-03 23,38 8,3769E-03 9,92 6,8704E-03 8,61
4 1,7378E-04 23,65 7,9166E-04 10,58 7,5651E-04 9,08
5 7,3741E-06 23,56 7,4417E-05 10,63 8,2797E-04 9,13
6 3,1308E-07 23,55 6,9923E-06 10,64 9,0557E-06 9,14
7 — — 6,5699E-07 10,64 9,9037E-07 9,14
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α ‖φ w( )‖2L2μ Γ( ) ‖w − ~x‖2 ≤∫
Γ
φ w, γ( )2 a w − ~x, w − ~x; γ( ) dμ γ( )≤

β ‖φ2 w( ) − φ2 x( )‖L1μ Γ( ) ‖~x‖ + ‖φ w( ) − φ x( )‖L2μ(Γ) ‖u‖L2μ(Γ;H)( ) ‖w − ~x‖.
(63)

The functions φ(w) and φ(x) have the same expressions for
methods (37) and (41).

Moreover, setting v � ~x in (61)

α ‖φ w( )‖2L2μ Γ( ) ‖~x‖2 ≤∫
Γ
φ w, γ( )2 a ~x, ~x; γ( ) dμ γ( )

� ∫
Γ
φ w, γ( ) 〈f γ( ), ~x〉 dμ γ( )

� ∫
Γ
a u γ( ), φ w, γ( ) ~x( ); γ( ) dμ γ( )

≤ β ‖u‖L2μ(Γ;H) ‖φ w( )‖L2μ Γ( ) ‖~x‖.

(64)

Hence, ‖~x‖≤ β
α �s. Then, similarly to (58), we obtain

‖w − ~x‖ ≤
β

α
�s2 ϕ1 r( ) + ϕ2 r( ) ‖~x‖( ) ‖w − x‖

≤
β

α
�s2 ϕ1 r( ) + ϕ2 r( ) β

α
�s( ) ‖w − x‖.

(65)

As ‖w − ~x
‖~x‖‖≤ 2‖w − ~x‖, the conclusion follows as for

method (37).

Remark 2 The optimal convergence rate Δ corresponds to k = 1
and λ = 1, that is, ~α � ~β and α = β. As α and β are predetermined,
the optimal convergence rate can only be obtained with method
(37). When the inner products (·,·)γ = (·,·)γ,+ and thus the operator
Aγ = Aγ,+, introduced in Section 3 are used to construct the
optimal targeted subspaces, it satisfies, by (15),

‖Aγ,+v‖2γ,+ � ‖v‖2H,γ, ∀ v ∈ H.

Then, from (44), choosing all the inner products ‖ ·‖H,γ equal to the
reference inner product ‖ ·‖, we obtain ~α � ~β � 1. Therefore, the
convergence rate is optimal for method (37) with this choice. It can

TABLE 2 | Convergence rates of the PI algorithm for the first STN modes.

n Mode i = 1 Mode i = 2 Mode i = 3

‖wn
1 −wn−1

1 ‖ rn1 ‖wn
2 −wn−1

2 ‖ rn2 ‖wn
3 −wn−1

3 ‖ rn3

1 8,0749E-1 — 5,0427E-1 — 3,9947E-1 —

2 1,4643E-1 5,51 1,7004E-1 2,96 1,1811E-1 3,38
3 9.8900E-3 14,08 4,0532E-2 4,19 8,9310E-2 1,32
4 6,0098E-4 16,45 8,8019E-3 4,60 4,1810E-2 2,13
5 3,6271E-5 16,56 1,8704E-3 4,70 1,8745E-2 2,23
6 2,1882E-6 16,57 3,9656E-4 4,72 8,2109E-3 2,28
7 1,3201E-7 16,57 8,3595E-5 4,73 3,5573E-3 2,30
8 7,9636E-9 16,57 1,7660E-5 4,73 1,5337E-3 2,31
9 — — — — 6,5980E-4 2,32

FIGURE 1 | Solutions of problem (66) by the LRTD (called FLSTD within the figure) expansion computed with the TN method. Left γ = 2.7375 Right γ = 49.7624.

FIGURE 2 | Convergence history of the PGD, TN, and STN series for
Test 2.

TABLE 3 | Numerical behavior of the PGD, STN, and TN methods for Test 2.

Methods Errors L2
μ(Γ,L2(Ω)) Errors L2

μ(Γ,H1
0(Ω))

PGD ‖u − u94‖ = 9.69e − 7 ‖u − u94‖ = 3.30e − 7
STN ‖u − u24‖ = 8.21e − 7 ‖u − u24‖ = 3.83e − 7
TN ‖u − u12‖ = 6.31e − 7 ‖u − u12‖ = 3.52e − 7
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be interpreted as preconditioning of the problem to solve, similar to
classical preconditioning to accelerate convergence in solving linear
systems (For example, see [24]).

Remark 3 If we intend to compute amode of order i≥ 2, Theorem
6.1 and Remark 2 also hold, replacing f by the residual f i � f −Aui−1
and u by the error u − ui−1, where ui−1 is defined by (31).

7 NUMERICAL TESTS

In this section, we discuss the numerical results obtained with
the methods TN (38)–(39) and STN (41)–(42) to solve some
non-symmetric second-order PDEs. Our purpose, on the one
hand, is to confirm the theoretical results stated in Theorem
4.1 and Theorem 6.1, and on the other hand, to compare the
practical performances of these methods with the
standard PGD.

We consider a parametric 1D advection–diffusion problem
with fixed constant advection velocity β,

γ β u′ − u″ � γf in Ω � 0, 10( )
u 0( ) � 1, u′ 10( ) � 0

{ (66)

We assume that β = 1, and then γ is the Péclet number. The source
term is f = 1/500. We have set Γ = [2.5, 50]; then, there is a large
asymmetry of the advection–diffusion operator.

Once the nonhomogenous boundary condition at x = 0
is lifted, problem (66) is formulated under the general
framework (1) when the space H and the bilinear form a (·, ·)
are given by H = {v ∈ H1(Ω) |v (0) = 0 }, and

a u, v; γ( ) � γ βu′, v( ) + u′, v′( ). (67)
We endow space H with the H1

0(Ω) norm (that we still denote
‖ ·‖), which is equivalent to the H1(Ω) norm on H.

In practice, we replace the continuous problem (1) by an
approximated one on a finite element space Hh formed by
piecewise affine elements. In addition, the integrals on Γ are
approximated by a quadrature formula constructed on a
subdivision of Γ into M subintervals,

∫
Γ
ψ γ( ) dμ γ( ) ≃ IM ψ( ) � ∑

M

i�1
ωi ψ γi( ).

This is equivalent to approximating the Lebesgue measure μ
by a discrete measure μΔ located at the nodes of the discrete
set ΓΔ = {γi, i = 1, . . . , M} with weights ωi, i = 1, . . . , M.
Consequently, all the theoretical results obtained in the
previous sections apply, by replacing the L2μ(Γ, H) space by
L2μΔ(ΓΔ, Hh). It is to be noted that

‖v‖2L2μΔ ΓΔ ,Hh( ) � IM ‖v‖2( ). (68)

In our computations, we have used the midpoint quadrature
formula with M = 100 equally spaced subintervals of Γ to
construct IM and constructed Hh with 300 subintervals of Ω of
the same length.

Test 1:
This first experiment is intended to check the theoretical

results on the convergence rate of the PI algorithm, stated in
Theorem 6.1, for the TN and STN methods: we consider optimal
targeted subspaces, in the sense of the standard H1

0(Ω) norm.
That is, using

w, v( )H,γ � w, v( )H1
0 Ω( ) � w′, v′( ), ∀w, v ∈ H1 Ω( )

to define the mappings Aγ,+ by (14) and the form �b* by (22).
For each mode wi of the LRTD expansion (31), we have

estimated the numerical convergence rate of the PI algorithm by

rn+1i � ‖wn
i − wn−1

i ‖
‖wn+1

i − wn
i ‖
. (69)

Tables 1 and 2 show the norm of the difference between two
consecutive approximations and the ratios rni . We display the
results for the first three modes.

We observe that the PI method converges with a nearly
constant rate for each mode, in agreement with
Theorem 6.1. The convergence rate is larger for the TN
method, also as expected from this theorem. It is also noted
that the convergence rates are smaller for higher-
order modes.

In Figure 1, we present the comparison between the solution
obtained by finite elements for γ = 2.7375 and γ = 49.7625 and the
truncated series sum for the TN, the results for the STN are
similar.

Test 2:
In this test, we compare the convergence rates of PGD, TN,

and STN methods to obtain the LRTD expansion (31) for the
problem (66).

Figure 2 displays the errors of the truncated series with
respect to the number of modes, in norm L2μ(Γ, H1

0(Ω)). A
spectral convergence may be observed for the three
expansions. We observe that the convergence of the TN
expansion, in terms of the number of modes needed to
achieve an error level, is much faster than the convergence
of the STN expansion, while this one is faster than the PGD
one. This is clarified if we consider the number of modes
required to achieve an error smaller than a given level. We

FIGURE 3 | Comparison of CPU times to compute the TN, STN, and
PGD expansions.
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display these numbers for an error level of 10–6 in Table 3,
where much more modes are needed by the PGD expansion.
The TN and STN methods, thus, appear to be well-adapted to
fit the asymmetry of the operator.

Finally, we compare the CPU times required by the three
methods. By construction, it is clear that to compute every
single iteration of the PI method, the TN method is much
more expensive since it involves the calculation of the Aγ,*

operator for each finite element base function. However, due
to the fast convergence of the associated LRTD expansion, it is
less expensive than PGD to compute the expansion. Figure 3
displays the CPU times for the TN, STN, and PGD methods as
a function of the number of subintervals M considered in the
partition of Γ. The STN method is more expensive than the
PGD method; this arises due to the small convergence rate of
the PI algorithm with the STN method. However, the TN
method is less expensive than the PGD one, requiring
approximately half the CPU time.

8 CONCLUSION

In this study, we have proposed a new low-rank tensorized
decomposition (LRTD) to approximate the solution of
parametric non-symmetric elliptic problems, based on
symmetrization of the problem.

Each mode of the series is characterized as a solution to a
calculus of variation problem that yields an optimal finite-
dimensional subspace, in the sense that it minimizes the error
between the parametric solution and its approximation on this
subspace, with respect to a preset mean quadratic norm. We have
proven that the truncated expansion given by the deflation
algorithm strongly converges to the parametric solution in the
mean quadratic norm.

The minimization problems to compute the rank-one optimal
modes are solved by the power iteration algorithm. We have
proven that this method is locally linearly convergent when the
initial data are close enough to an optimal mode. We also have
identified an optimal symmetrization that provides the best

convergence rates of the PI algorithm, with respect to the
preset mean quadratic norm.

Furthermore, we have presented some numerical tests for 1D
convection–diffusion problems that confirm the theoretical
results on the convergence of the LRTD expansion and the
convergence of the PI algorithm. Moreover, the computing
times required by the optimal symmetrization compare
advantageously to those required by the PGD expansion.

In this study, we have focused on rank-one tensorized
decompositions. In our forthcoming research, we intend to
extend the analysis to ranks k ≥ 2. This requires solving
minimization problems on a Grassmann variety to compute
the LRTD modes. We will also work on the solution of higher-
dimensional non-symmetric elliptic problems by the method
introduced in order to reduce the computation times as these
increase with the dimension of the approximation spaces.
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Data assimilation is a Bayesian inference process that obtains an enhanced

understanding of a physical system of interest by fusing information from an inexact

physics-based model, and from noisy sparse observations of reality. The multifidelity

ensemble Kalman filter (MFEnKF) recently developed by the authors combines a full-order

physical model and a hierarchy of reduced order surrogatemodels in order to increase the

computational efficiency of data assimilation. The standardMFEnKF uses linear couplings

between models, and is statistically optimal in case of Gaussian probability densities.

This work extends the MFEnKF into to make use of a broader class of surrogate model

such as those based on machine learning methods such as autoencoders non-linear

couplings in between the model hierarchies. We identify the right-invertibility property

for autoencoders as being a key predictor of success in the forecasting power of

autoencoder-based reduced order models. We propose a methodology that allows us to

construct reduced order surrogatemodels that aremore accurate than the ones obtained

via conventional linear methods. Numerical experiments with the canonical Lorenz’96

model illustrate that nonlinear surrogates perform better than linear projection-based

ones in the context of multifidelity ensemble Kalman filtering. We additionality show a

large-scale proof-of-concept result with the quasi-geostrophic equations, showing the

competitiveness of the method with a traditional reduced order model-based MFEnKF.

Keywords: Bayesian inference, control variates, data assimilation, multifidelity ensemble Kalman filter, reduced

order modeling, machine learning, surrogate models frontiers

1. INTRODUCTION

Data assimilation [1, 2] is a Bayesian inference process that fuses information obtained from an
inexact physics-based model, and from noisy sparse observations of reality, in order to enhance our
understanding of a physical process of interest. The reliance on physics-based models distinguishes
data assimilation from traditional machine learning methodologies, which aim to learn the
quantities of interest through purely data-based approaches. From the perspective of machine
learning, data assimilation is a learning problem where the quantity of interest is constrained
by prior physical assumptions, as captured by the model, and nudged toward the optimum
solution by small amounts of data from imperfect observations. Therefore, data assimilation
can be considered a form of physics-constrained machine learning [3, 4]. This work improves
data assimilation methodologies by combining a mathematically rigorous data assimilation
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approach and a data rigorous machine learning algorithm
through powerful techniques in multilevel inference [5, 6].

The ensemble Kalman filter [7–9] (EnKF) is a family of
computational methods that tackle the data assimilation problem
using Gaussian assumptions, and a Monte Carlo approach where
the underlying probability densities are represented by ensemble
of model state realizations. The ensemble size, i.e., the number of
physics-based model runs, is typically the main factor that limits
the efficiency of EnKF. For increasing the quality of the results
when ensembles are small, heuristics correction methods such
as covariance shrinkage [10–12] and localization [13–15] have
been developed. As some form of heuristic correction is required
for operation implementations of the ensemble Kalman filter,
reducing the need for such heuristic corrections in operational
implementations is an important and active area of research.

The dominant cost in operational implementations of EnKF
is the large number of expensive high fidelity physics-based
model runs, which we refer to as “full order models” (FOMs).
A natural approach to increase efficiency is to endow the data
assimilation algorithms with the ability to use inexpensive, but
less accurate, model runs [16, 17], which we refer to as “reduced
order models” (ROMs). ROMs are constructed to capture the
most important aspects of the dynamics of the FOM, at a
fraction of the computational cost; typically they use a much
smaller number of variables than the corresponding FOM. The
idea of leveraging model hierarchies in numerical algorithms
for uncertainty quantification [18] and inference [19–22] is fast
gaining traction in both the data assimilation and machine
learning communities. Here we focus on two particular types of
ROMs: a proper orthogonal decomposition (POD) based ROM,
corresponding to a linear projection of the FOM dynamics onto
a small linear subspace [23], and a ROM based on autoencoders
[24], corresponding to a non-linear projection of the dynamics
onto a small dimensional manifold.

The multifidelity ensemble Kalman filter (MFEnKF)
developed by the authors [25, 26] combines the ensemble
Kalman filter with the idea of surrogate modeling. The MFEnKF
optimally combines the information obtained from both the full-
order and reduced order surrogate model runs with information
begotten from the observations. By posing the data assimilation
problem in terms of a mathematically rigorous variance
reduction technique—the linear control variate framework—
MFEnKF is able to provide robust guarantees about the accuracy
of the inference results.

While numerical weather prediction is the dominant driver of
innovation in data assimilation literature [27], other applications
can benefit from our multifidelity approach such as mechanical
engineering [28–30] and air quality modeling [31–33].

The novel elements of this work are: (i) identifying a useful
property of autoencoders, namely right invertibility, that
aides in the construction of reduced order models, and (ii)
deriving a theory for an extension to the MFEnKF through
non-linear interpolation and projection techniques; we call
the resulting approach nonlinear MFEnKF (NL-MFEnKF).
The right-invertibility property ensures the consistency of the
reduced state representation through successive applications
of the projection and interpolation operators. Our proposed

NL-MFEnKF technique shows an advantage on certain regimes
of a difficult-to-reduce problem, the Lorenz’96 equations,
and shows promise on a large-scale fluids problem, the
quasi-geostrophic equations.

This paper is organized as follows. Section 2 discusses the
data assimilation problem, provides background on control
variates, the EnKF, and the MFEnKF, as well as ROMs and
autoencoders. Section 3 introduces NL-MFEnKF, the non-linear
extension to the MFEnKF. Section 4 presents the Lorenz’96
and quasi-geostrophic models and their corresponding POD-
ROMs. Section 5 introduces the physics-informed autoencoder
and practical methods of how to train them and pick optimal
hyperparameters. Section 6 provides the results of numerical
experiments. Concluding remarks are made in Section 7.

2. BACKGROUND

Sequential data assimilation propagates imperfect knowledge
about some physical quantity of interest through an imperfect
model of a time-evolving physical system, typically with chaotic
dynamics [34].Without an additional influx of information about
reality, our knowledge about the systems rapidly degrades, in
the sense of representing the real system less and less accurately.
Data assimilation uses noisy external information to enhance our
knowledge about the system at hand.

Formally, consider a physical system of interest whose true
state at time ti is X

t
i . The time evolution of the physical system

is approximated by the dynamical model

Xi =Mti−1 ,ti (Xi−1)+4i, (1)

where Xi is a random variable whose distribution describes our
knowledge of the state of a physical process at time index i, and
4i is a random variable describing the modeling error. In this
paper we assume a perfect model (4i ≡ 0), as the discussion of
model error in multifidelity methods is significantly outside the
scope of this paper.

Additional independent information about the system is
obtained through imperfect physical measurements of the
observable aspects Yi of the truth Xt

i , i.e., through noisy
observations

Yi = H(Xt
i )+ ηi, ηi ∼ N(0,6ηi ,ηi ), (2)

where the “observation operator” H maps the model space onto
the observation space (i.e., selects the observable aspects of
the state).

Our aim is to combine the two sources of information in a
Bayesian framework:

π(Xi | Yi) ∝ π(Yi | Xi)π(Xi), (3)

where the density π(Xi) represents all our prior knowledge,
π(Yi | Xi) represents the likelihood of the observations given said
knowledge, and π(Xi | Yi) represents our posterior knowledge.

In the remainder of the paper we use the following notation.
Let W and V be random variables. The exact mean of W is
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denoted by µW , and the exact covariance between W and V
by 6W,V . EW denotes an ensemble of samples of W, and µ̃W

and ˜6W,V are the empirical ensemble mean of W and empirical
ensemble covariance ofW and V , respectively.

2.1. Linear Control Variates
Bayesian inference requires that all available information is
used in order to obtain correct results [35]. Variance reduction
techniques [36] are methods that provide estimates of some
quantity of interest with lower variability. From a Bayesian
perspective they represent a reintroduction of information
that was previously ignored. The linear control variate (LCV)
approach [37] is a variance reduction method that aims to
incorporate the new information in an optimal linear sense.

LCV works with two vector spaces, a principal space X and
a control space U, and several random variables, as follows.
The principal variate X is a X-valued random variable, and the
control variatêU is a highly correlatedU-valued random variable.
The ancillary variate U is a U-valued random variable, which
is uncorrelated with the preceding two variables, but shares the
same mean as ̂U, meaning µU = µ̂U . The linear control variate
framework builds a new X-valued random variable Z, called the
total variate:

Z = X − S(̂U − U), (4)

where the linear “gain” operator S is used to minimize the
variance in Z by utilizing the information about the distributions
of the constituent variates X, ̂U and U.

In this workX andU are finite dimensional vector spaces. The
dimension of X is taken to be n. The dimension of U we denote
by r when it is the reduced order model state space. When U is
the observation space, its dimension is denoted bym.

The following lemma is a slight generalization of [[37],
Appendix].

LEMMA 1 (Optimal gain). The optimal gain S that minimizes the
trace of the covariance of Z (4) is:

S = 6X,̂U(6̂U,̂U +6U,U)
−1. (5)

PROOF: Observe that,

d tr(6Z,Z)

dS
= 2S(6

̂U,̂U +6U,U)− 26X,̂U ,

d2 tr(6Z,Z)

dS2
= 2(6

̂U,̂U +6U,U)⊗ I > 0,

(6)

meaning that the problem of finding the optimal gain is convex,
and the minimum is unique and is defined by setting the first
order optimality condition to zero,

2S(6
̂U,̂U +6U,U)− 26X,̂U = 0, (7)

to which the solution is given by (5) as required.

We first discuss the case where the principal and control
variates are related by linear projection and interpolation
operators,

̂U = 2X, X ≈ ˜X = 8̂U, (8)

where 2 is the projection operator, 8 is the interpolation
operator, and˜X is the reconstruction of X.

We reproduce below the useful result [25, Theorem 3.1].

THEOREM 1. Under the assumptions that ̂U and U have equal
covariances, and that the principal variate residual is uncorrelated
with the control variate, the optimal gain of (4) is half the
interpolation operator:

6
̂U,̂U = 6U,U and 6(X−8̂U),̂U = 0 ⇒ S =

1

2
8. (9)

Under the assumptions of Theorem 1 the control variate
structure (4) is:

Z = X −
1

2
8 (̂U − U). (10)

REMARK 1. Note that Theorem 1 does not require that any
random variables are Gaussian. The above linear operator S
remains optimal even for non-Gaussian random variables.

2.2. Linear Control Variates With Non-linear
Transformations
While working with linear transformations is elegant, most
practical applications require reducing the variance of a non-
linear transformation of a random variable. We now generalize
the control variate framework to address this case.

Following [36], assume that our transformed principal variate
is of the form h(X), where h is some arbitrary smooth non-linear
operator:

h :X→ h(X), (11)

We also assume that the transformed control variate and the
transformed ancillary variate are of the form g(̂U) and g(U),
respectively, where g is also some arbitrary smooth non-linear
operator:

g :U→ g(U), (12)

We define the total variate Zh in the spaceH such that h(X) ⊂ H

by:

Zh = h(X)− S
(

g(̂U)− g(U)
)

, (13)

with the optimal linear gain given by Lemma 1:

S = 6h(X),g(̂U)

(

6g(̂U),g(̂U) +6g(U),g(U)

)−1
. (14)

THEOREM 2. If ̂U and U independently and identically
distributed, and share the same mean and covariance, the control
variate structure (13) holds, and the optimal linear gain is:

S =
1

2
6h(X),g(̂U)6

−1
g(̂U),g(̂U)

. (15)

PROOF: As ̂U and U are independently and identically
distributed, they share the same mean and covariance under
non-linear transformation,

µg(̂U) = µg(U), and 6g(̂U),g(̂U) = 6g(U),g(U). (16)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 June 2022 | Volume 8 | Article 90468743

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Popov and Sandu MFEnKF Using Autoencoders

In this case g(̂U)− g(U) is unbiased (mean zero), and the control
variate framework (14) can be applied. Thus, the optimal gain is
given by (15) as required.

We now consider the case where the transformations of the
principal variate and control variates represent approximately the
same information,

h(X) ≈ g(̂U), (17)

and exist in the same spaceH.
We now provide a slight generalization of Theorem 1 under

non-linear transformation assumptions.

THEOREM 3. If the assumption of Theorem 2 hold, and the
transformed principal variate residual is uncorrelated with the
transformed control variate,

6(h(X)−g(̂U)),g(̂U)
assumed
= 0, (18)

then the optimal gain is

S =
1

2
I, (19)

where I is the identity operator.

PROOF: By simple manipulation of (15), we obtain:

S =
1

2
6h(X),g(̂U)6

−1
g(̂U),g(̂U)

,

=
1

2
6(h(X)−g(̂U)+g(̂U)),g(̂U)6

−1
g(̂U),g(̂U)

,

=
1

2
6(h(X)−g(̂U)),g(̂U)6

−1
g(̂U),g(̂U)

+
1

2
6g(̂U),g(̂U)6

−1
g(̂U),g(̂U)

,

=
1

2
I.

2.3. The Ensemble Kalman Filter
The EnKF is a statistical approximation to the optimal
control variate structure (4), where the underlying probability
density functions are represented by empirical measures using
ensembles, i.e., a finite number of realizations of the random
variables. The linear control variate framework allows to combine
multiple ensembles into one that better represents the desired
quantity of interest.

Let EXb
i
∈ R

n×NX be an ensemble of NX realizations

of the n-dimensional principal variate, which represents our
prior uncertainty in the model state at time index i from (1).
Likewise, let E

Hi(X
b
i )
= Hi(EXb

i
) ∈ R

m×NX be an ensemble

of NX realizations of the m-dimensional control observation
state variate, which represents the same model realizations cast
into observation space. Let EYi ∈ R

m×NX be an ensemble of
NX “perturbed observations,” which is a statistical correction
required in the ensemble Kalman filter [9].

REMARK 2 (EnKF Perturbed Observations). Each ensemble
member of the perturbed observations is sampled from a Gaussian
distribution with mean the measured value, and the known
observation covariance from (2):

[EYi ]:,e ∼ N(µYi ,6ηi ,ηi ). (20)

The prior ensemble at time step i is obtained by propagating the
posterior ensemble at time i− 1 through the model equations,

EXb
i
=Mti−1 ,ti

(

EXa
i−1

)

, (21)

where the slight abuse of notation indicates an independent
model propagation of each ensemble member. Application of the
Kalman filter formula constructs an ensemble EXa

i
describing the

posterior uncertainty:

EXa
i
= EXb

i
−˜Ki

(

E
Hi(X

b
i )
− EYi

)

, (22)

where the statistical Kalman gain is an ensemble-based
approximation to the exact gain in Lemma 1:

˜Ki = ˜6Xb
i ,Hi(X

b
i )

(

˜6
Hi(X

b
i ),Hi(X

b
i )
+6ηi ,ηi

)−1
. (23)

REMARK 3 (Inflation). Inflation is a probabilistic correction
necessary to account for the Kalman gain being correlated to the
ensemble [38]. In inflation the ensemble anomalies (deviations
from the statistical mean) are multiplied by a constant α > 1,
thereby increasing the covariance of the distribution described by
the ensemble:

EXb
i+1
← µ̃Xb

i+1
+ α

(

EXb
i+1
− µ̃Xb

i+1

)

. (24)

2.4. The Multifidelity Ensemble Kalman
Filter
In this section, we present the standard Multifidelity Ensemble
Kalman Filter (MFEnKF) with linear assumptions on the
model, projection, and observation operators, and Gaussian
assumptions on all probability distributions.

The MFEnKF [25] merges the information from a hierarchy
of models and the corresponding observations into a coherent
representation of the uncertain model state. To propagate this
representation forward in time during the forecast phase, it is
necessary that the models are decoupled, but implicitly preserve
some underlying structure of the error information.Wemake use
of the linear control variate structure to combine this information
in an optimal manner.

Without loss of generality we discuss here a bi-fidelity
approach, where one full-order model is coupled to a lower-
fidelity reduced-order model. A telescopic extension to multiple
fidelities is provided at the end of the section. Instead of having
access to onemodelM, assume that we have access to a hierarchy
of models. In the bi-fidelity case, the principal space model
(FOM) is denoted by M

X and the control space model (ROM)
is denoted byMU .

We now consider the total variate

Zb
i = Xb

i −
1

2
8 (̂Ub

i − Ub
i ), (25)

that describes the prior total information from a model that
evolves in principal space (Xb

i ) and a model that evolves in

ancillary space (̂Ub
i and Ub

i ).
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Assume that our prior total variate is represented by the
three ensembles EXb

i
∈ R

n×NX consisting of NX realizations of

the n-dimensional principal model state variate, E
̂Ub
i
∈ R

r×NX

consisting of NX realizations of the r-dimensional control model
state variate, and EUb

i
∈ R

r×NU consisting of NU realizations

of the r-dimensional ancillary model state variate. Each of
these ensembles has a corresponding ensemble ofm-dimensional
control observation space realizations.

MFEnKF performs sequential data assimilation using the
above constituent ensembles, without having to explicitly
calculate the ensemble of the total variates. TheMFEnKF forecast
step propagates the three ensembles form the previous step:

EXb
i
=M

X
ti−1 ,ti

(EXa
i−1

),

E
̂Ub
i
=M

U
ti−1 ,ti

(E
̂Ua
i−1

),

EUb
i
=M

U
ti−1 ,ti

(EUa
i−1

).

(26)

Two observation operators H
X
i and H

U
i cast the principal

model and control model spaces, respectively, into the control
observation space. In this paper we assume that he principal
model space observation operator is the canonical observation
operator (2):

H
X
i (Xi) : = Hi(Xi), (27)

and that the control model space observation operator is
the canonical observation operator (2) applied to the linear
interpolated reconstruction (42) of a variable in control model
space:

H
U
i (Ui) : = Hi(8Ui). (28)

Additionally, we define an (approximate) observation operator
for the total model variate :

H
Z
i (Zi) : = H

X
i (Xi)−

1

2

(

H
U
i (̂Ui)−H

U
i (Ui)

)

, (29)

which, under the linearity assumptions onH
X
i of Theorem 3 and

the underlying Gaussian assumptions on ̂Ui and Ui of Theorem
2, begets that HZ

i = H
X
i . Even without the linearity assumption

the definition (29) is operationally useful.
The MFEnKF analysis updates each constituent ensemble as

follows:

EXa
i
= EXb

i
−˜Ki

(

E
H

X
i (X

b
i )
− EYX

i

)

,

E
̂Ua
i
= E

̂Ub
i
−2˜Ki

(

(E
H

U
i (̂U

b
i )
− EYX

i

)

,

EUa
i
= EUb

i
−2˜Ki

(

(E
H

U
i (U

b
i )
− EYU

i

)

,

(30)

with the heuristic correction to the means

µ̃Xa
i
← µ̃Zai

, µ̃
̂Ua
i
← 2µ̃Zai

, µ̃Ua
i
← 2µ̃Zai

, (31)

applied in order to fulfill the unbiasedness requirement of the
control variate structure:

µ̃Zai
= µ̃Zbi

−˜Ki

(

µ̃
H

X
i (Z

b
i )
− µYi

)

. (32)

The Kalman gain and the covariances are defined by the semi–
linearization:

˜Ki = ˜6
Zbi ,H

Z
i (Z

b
i )

(

˜6
H

Z
i (Z

b
i ),H

Z
i (Z

b
i )
+6ηi ,ηi

)−1

(33)

˜6
Zbi ,H

Z
i (Z

b
i )
= ˜6

Xb
i ,H

X
i (X

b
i )
+

1

4
˜6
8̂Ub

i ,H
U
i (̂U

b
i )
+

1

4
˜6
8Ub

i ,H
U
i (U

b
i )

−
1

2
˜6

Xb
i ,H

U
i (̂U

b
i )
−

1

2
˜6
8̂Ub

i ,H
X
i (X

b
i )
,

(34)

˜6
H

Z
i (Z

b
i ),H

Z
i (Z

b
i )
= ˜6

H
X
i (X

b
i ),Hi(X

b
i )
+

1

4
˜6
H

U
i (̂U

b
i ),H

U
i (̂U

b
i )
+

1

4
˜6
H

U
i (U

b
i ),H

U
i (U

b
i )

−
1

2
˜6
H

X
i (X

b
i ),H

U
i (̂U

b
i )
−

1

2
˜6
H

U
i (̂U

b
i ),H

X
i (X

b
i )
.

(35)

In order to ensure that the control variate ̂U remains highly
correlated to the principal variate X, at the end of each analysis
step we replace the analysis control variate ensemble with the
corresponding projection of the principal variate ensemble:

E
̂Ua
i
← 2EXa

i
. (36)

Some important properties of MFEnKF are:

• MFEnKF makes use of surrogate models to reduce the
uncertainty in the full state.
• MFEnKF does not explicitly construct the total variates,

and instead performs the assimilation on the constituent
ensembles.
• Under Gaussian and linear assumptions, the sample mean of

the MFEnKF is an unbiased estimate of the truth.

REMARK 4 (MFEnKF Perturbed observations). There is no
unique way to perform perturbed observations (remark 2) in the
MFEnKF. We will present one way in this paper. As Theorem
2 requires both the control and ancillary variates to share the
same covariance, we utilize here the ‘control space uncertainty
consistency’ approach. The perturbed observations ensembles in
(30) is defined by:

[EYX
i
]:,e ∼ N(µYi ,6ηi ,ηi ), (37)

[EYU
i
]:,e ∼ N(µYi , s6ηi ,ηi ), (38)

where the scaling factor is s = 1. See [25, Section 4.2] for a more
detailed discussion about perturbed observations.

REMARK 5 (MFEnKF Inflation). Similarly to the EnKF (see
Remark 3), the MFEnKF also requires inflation in order to account
for the statistical Kalman gain being correlated to its constituent
ensembles. For a bi-fidelity MFEnKF, two inflation factors are
required: αX which acts on the anomalies of the principal and
control variates (as they must remain highly correlated) and αU
which acts on the ensemble anomalies of the ancillary variate:

EXb
i+1
← µ̃Xb

i+1
+ αX

(

EXb
i+1
− µ̃Xb

i+1

)

,

E
̂Ub
i+1
← µ̃

̂Ub
i+1
+ αX

(

E
̂Ub
i+1
− µ̃

̂Ub
i+1

)

,

EUb
i+1
← µ̃Ub

i+1
+ αU

(

EUb
i+1
− µ̃Ub

i+1

)

.

(39)
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REMARK 6 (Deterministic EnKF flavors). Many deterministic
flavors of the EnKF [2] are extendable to the MFEnKF. The
DEnKF [39] in particular is trivially extendanble to the non-
linear multifidelity approach identified in this work. It has been the
authors’ experience, however that the perturbed observation flavor
of the EnKF is more robust in the multifidelity setting. The authors’
suspect that this is the case precisely because of its stochastic nature,
leading it to better account for model error-based inaccuracies in
the surrogate models. Accounting for this type of model error is
outside the scope of this work.

REMARK 7 (Cost of the MFEnKF). It is known from [25] that,
given a full order model with cost CX with NX ensemble members
and a reduced order model with cost CU and NU ensemble
members, then the MFEnKF is more effective than a normal EnKF
with N ensemble members whenever,

CU ≤
CX(N − NX)

NX + NU
, (40)

meaning that the optimal cost of the reduced order model is highly
dependent on the desired full order ensemble size.

2.5. Autoencoders
We now generalize from the linear interpolation and projection
assumed previously (8), and consider a class of non-linear
projection and interpolation operators.

An autoencoder [24] is an artificial neural network consisting
of two smooth components, an encoder θ and a decoder φ, such
that given a variable X in the principal space, the variable

̂U = θ(X), (41)

resides in the control space of the encoder. Conversely the
reconstruction,

X ≈ ˜X = φ(̂U), (42)

is an approximation to X in the principal space, and which
in some optimal sense approximately recovers the information
embedded in X. While the relative dimension n of the principal
space is relatively high, the arbitrary structure of an artificial
neural networks allows the autoencoder to learn the optimal
r-dimensional (small) representation of the data.

2.6. Non-linear Projection-Based Reduced
Order Models
The important information of many dynamical systems can
be expressed with significantly fewer dimensions than the
discretization dimension n [40]. For many infinite dimensional
equations it is possible to construct a finite-dimensional inertial
manifold that represents the dynamics of the system (including
the global attractor). The Hausdorff dimension of the global
attractor of some dynamical system is a useful lower bound
for the minimal representation of the dynamics, though a
representation of just the attractor is likely not sufficient to
fully capture all the “useful” aspects of the data. For data-
based reduced order models an important aspect is the intrinsic

dimension [41] of the data. The authors are not aware of any
formal statements relating the dimension of an inertial manifold
and the intrinsic dimension of some finite discretization of the
dynamics. We assume that reduced dimension r is sufficient to
represent either the dynamics or the data, or both, and allows to
build a “useful” surrogate model.

We will now discuss the construction of reduced order
models for problems posed as ordinary differential equations.
The following derivations are similar to those found in [42], but
assume vector spaces and no re-centering.

Just like in the control variate framework in Section 2.1, the
full order model resides in the principal space X ⊂ R

n and the
reduced order model is defined in the space U ⊂ R

r , which is
related to X through the smooth non-linear projection (41).

Given an initial value problem in X:

dX

dt
= f (X), X(t0) = X0, t ∈ [t0, tf ], (43)

and the projection operator (41), the induced reduced order
model initial value problem in U is defined by simple
differentiation of U = θ(X), by dynamics in the space U,

dU

dt
= θ ′(X)f (X), X(t0) = X0, t ∈ [t0, tf ]. (44)

As is common, the full order trajectory is not available during
integration, as there is no bijection from X to U, thus an
approximation using the interpolation operator (42) that fully
resides in U is used instead:

dU

dt
= θ ′(φ(U))f (φ(U)), U(t0) = θ(X0), t ∈ [t0, tf ]. (45)

Note that this is not the only way to obtain a reduced order
model by using arbitrary projection and interpolation operators.
It is however the simplest extension of the POD-based ROM
framework.

REMARK 8 (Linear ROM). Common methods for finding
projection and interpolation operators make a linear assumption
(methods such as POD), thus, in the linear case (8) the reduced
order model (45) takes the form

dU

dt
= 2f (8U), U(t0) = 2X0, t ∈ [t0, tf ]. (46)

3. NON-LINEAR PROJECTION-BASED
MFENKF

We extend MFEnKF to work with non-linear projection and
interpolation operators. The new algorithm is named NL-
MFEnKF. Since existing theoretical extensions of the linear
control variate framework to the non-linear case [43] are not
completely satisfactory, violating the assumption of an unbiased
estimate of the total variate, we resort to several heuristic
assumptions to construct this algorithm. Heuristic approaches
that work well in practice are widely used in data assimilation
literature [2].
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The main idea is to replace the optimal control variate
structure for linear projection and interpolation operators (10)
with one that works with their non-linear counterparts (13):

Zb
i = Xb

i −
1

2

(

φ(̂Ub
i )− φ(U

b
i )

)

. (47)

We assume that ̂U and U are independently and identically
distributed, such that they obey the assumptions made in
Theorem 2 and in Theorem 3 for the optimal gain.

Similar to MFEnKF (28), the control model space observation
operator is the application of the canonical observation operator
(2) to the reconstruction

H
U
i (Ui) : = Hi(φ(Ui)), (48)

with the other observation operators Equations (27, 29) defined
as in the MFEnKF.

REMARK 9. It is of independent interest to explore control model
space observation operators that are not of the form (48). For
example, if the interpolation operator φ is created through an
autoencoder, the control model space observation operator H

U

could similarly be a different decoder of the same latent space.

The MFEnKF equations (30) are replaced by their non-linear
counterparts in a manner similar to what is done with non-linear
observation operators,

EXa
i
= EXb

i
−˜Ki

(

E
H

X
i (X

b
i )
− EYX

i

)

,

E
̂Ua
i
= E

̂Ub
i
−˜K

θ
i

(

E
H

U
i (̂U

b
i )
− EYX

i

)

,

EUa
i
= EUb

i
−˜K

θ
i

(

E
H

U
i (U

b
i )
− EYU

i

)

,

(49)

where, as opposed to (30), there are now two Kalman gains,
defined by:

˜K i = ˜6
Zbi ,H

Z
i (Z

b
i )

(

˜6
H

Z
i (Z

b
i ),H

Z
i (Z

b
i )
+6ηi ,ηi

)−1
, (50)

˜K
θ
i =

˜6
θ(Zbi ),H

Z
i (Z

b
i )

(

˜6
H

Z
i (Z

b
i ),H

Z
i (Z

b
i )
+6ηi ,ηi

)−1
. (51)

Here we take a heuristic approach and use semi-linear
approximations of the covariances, similar to (34) and (35). The
perturbed observations are defined like in MFEnKF (Remark 4).

Figure 1 provides a visual diagram of both the forecast and
analysis steps of the NL-MFEnKF algorithm.

REMARK 10 (Localization for the NL-MFEnKF). In operational
data assimilation workflows, localization [2] is an important

heuristic for the viability of the family of ensemble Kalman
filter algorithms. While it is trivial to apply many B-localization
techniques to the full-space Kalman gain (50), it is not readily

apparent how one may attempt to do so for the reduced-space
Kalman gain (51). Convolutional autoencoders [24] might provide
an avenue for such a method, as they attempt to preserve some

of the underlying spatial structure of the full space in the reduced

space. An alternative is the use of R-localization, though, in the
authors’ view, there is a non-trivial amount of work to be done in
order to formulate such a method.

3.1. NL-MFEnKF Heuristic Corrections
For linear operators the projection of the mean is the mean
of the projection. This is however not true for general non-
linear operators. Thus, in order to correct the means like in the
MFEnKF (31), additional assumptions have to be made.

The empirical mean of the total analysis variate (47) [similar
to (32)] is

µ̃Zai
= µ̃Xa

i
−

1

2

(

µ̃φ(̂Ua
i )
− µ̃φ(Ua

i )

)

. (52)

We use it to find the optimal mean adjustments in reduced space.
Specifically, we set the mean of the analysis principal variate to be
the mean of the analysis total variate (52),

µ̃Xa
i
← µ̃Zai

, (53)

enforce the recorrelation of the principal and control variates (36)
via

E
̂Ua
i
← θ(EXa

i
), (54)

and define the control variate mean adjustment as a consequence
of the above as,

µ̃
̂Ua
i
← µ̃θ(Xa

i )
. (55)

Unlike the linear control variate framework of the MFEnKF
(25), the non-linear framework of the NL-MFEnKF (47) does
not induce a unique way to impose unbiasedness on the
control-space variates. There are multiple possible non-linear
formulations to the MFEnKF, and multiple possible heuristic
corrections of the mean the ancillary variate. Here we discuss
three approaches based on:

1. control space unbiased mean adjustment,
2. principal space unbiased mean adjustment, and
3. Kalman approximate mean adjustment,

each stemming from a different assumption on the relationship
between the ancillary variate and the other variates.

3.1.1. Control Space Unbiased Mean Adjustment
The assumption that the control variate ̂Ua

i and the ancillary
variate Ua

i are unbiased in the control space implies that they
share the samemean. The mean adjustment of ̂Ua in (55) directly
defines the mean adjustment of the ancillary variate:

µ̃Ua
i
← µ̃

̂Ua
i
. (56)

The authors will choose this method of correction in the
numerical experiments for both its properties and ease
of implementation.

3.1.2. Principal Space Unbiased Mean Adjustment
If instead we assume that the control variate φ(̂Ui) and the
ancillary variate φ(Ui) are unbiased in the principal space
(meaning that they have the same mean), then the mean of the
total variate Zi (47) equals the mean of the principal variate Xi, a
desirable property.
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FIGURE 1 | A visual diagram of the NL-MFEnKF algorithm. The random variables are represented by an ensemble of realizations, and the directional acyclic graph

provides an explicit (infinite) causal graph.

Finding a mean adjustment for Ua
i in the control space such

that the unbiasedness is satisfied in the principal space is a
non-trivial problem. Explicitly, we seek a vector ν such that:

µ̃φ(̂Ua
i )
= µ̃φ(Ua

i −µ̃Ua
i
+ν), (57)

resulting in the correction,

EUa
i
← EUa

i
− µ̃Ua

i
+ ν. (58)

The solution to (57) requires the solution of an expensive
nonlinear equation. Note that (57) is equivalent to (56) under the
assumptions of Theorem 2, in the limit of large ensemble size.

3.1.3. Kalman Approximate Mean Adjustment
Instead of assuming that the control and ancillary variates are
unbiased, we can consider directly the mean of the control-space
total variate:

µ̃θ(Zai ) = µ̃θ(X
a
i )
−

1

2

(

µ̃
̂Ua
i
− µ̃Ua

i

)

, (59)

defined with the mean values in NL-MFEnKF formulas (49). The
following adjustment to the mean of the ancillary variate:

µ̃Ua
i
← µ̃θ(Zai ), (60)

is not unbiased with respect to the control variate in any space,
but provides a heuristic approximation of the total variate mean
in control space, and does not affect the principal variate mean.

3.2. Telescopic Extension
As in [[25], Section 4.5] one can telescopically extend the bi-
fidelity NL-MFEnKF algorithm to a hierarchy of L + 1 models
of different fidelities. Assume that the nonlinear operator φℓ
interpolates from the space of fidelity ℓ to the space of fidelity
ℓ − 1, where φ1 interpolates to the principal space. A telescopic
extension of (47) is

Z = X −

L
∑

ℓ=1

2−ℓ
(

φ(̂Uℓ)− φ(Uℓ)
)

, (61)

where the projection operator at each fidelity is defined as,

φℓ = φ1 ◦ · · · ◦ φℓ, (62)

projecting from the space of fidelity ℓ to the principal space. The
telescopic extension of the NL-MFEnKF is not analyzed further
in this work.

4. DYNAMICAL MODELS AND THE
CORRESPONDING POD-ROMS

For numerical experiments we use two dynamical systems: the
Lorenz’96 model [44] and the Quasi-Geostrophic equations
(QGE) [45–48].

For each of these models we construct two surrogates that
approximate their dynamics. The first type of surrogate is a
principal orthogonal decomposition-based quadratic reduced
order model (POD-ROM), which is the classical approach to
building the ROM. The second surrogate is an autoencoder
neural network-based reduced order model (NN-ROM).
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We will use the Lorenz’96 equations to test the methodology
and derive useful intuition about the hyperparameters. For the
POD-ROM and NN-ROMs for the Lorenz’96 equations we
construct reduced order models (ROMs) for reduced dimension
sizes of r = 7, 14, 21, 28, and 35.

We will use the Quasi-geostrophic equations to illustrate that
our methodology can be applied in an operational setting. For
both the POD-ROM and NN-ROMs we will build ROMs of a
single reduced dimension size, r = 25.

The Lorenz’96, QGE, and corresponding the POD-ROM
models are implemented in the ODE-test-problems suite [49, 50].

4.1. Lorenz’96
The Lorenz’96 model [44] can be conjured from the PDE [1, 51],

dy

dt
= −yyx − y+ F, (63)

where the forcing parameter is set to F = 8. In the semi-discrete
version y ∈ R

n, and the nonlinear term is approximated by a
numerically unstable finite difference approximation,

[

yyx
]

k
=

(

̂I y
)

k
·
(

̂Dy
)

k
=

(

[y]k−1
)

·
(

[y]k−2 − [y]k+1
)

, (64)

where ̂I is a (linear) shift operator, and the linear operator ̂D
is a first order approximation to the first spatial derivative. The
canonical n = 40 variable discretization with cyclic boundary
conditions is used. The classical fourth order Runge-Kutta
method is used to discretize the time dimension.

For the given discrete formulation of the Lorenz’96 system,
14 represents the number of non-negative Lyapunov exponents,
28 represents the rounded-up Kaplan-Yorke dimension of 27.1,
and 35 represents an approximation of the intrinsic dimension
of the system [calculated by the method provided by [52]]. To
the authors’ knowledge, the inertial manifold of the system, if
it exists, is not known. The relatively high ratio between the
intrinsic dimension of the system and the spatial dimension
of the system makes constructing a reduced order model
particularly challenging.

4.1.1. Data for Constructing Reduced-Order Models
The data to construct the reduced order models is taken to be
10, 000 state snapshots from a representative model run. The
snapshots are spaced 36 time units apart, equivalent to 6 months
in model time. The first 5, 000 snapshots provide the training
data, and the next 5, 000 are taken as testing data in order to test
the extrapolation power of the surrogate models.

4.1.2. Proper Orthogonal Decomposition ROM for

Lorenz’96
Using the method of snapshots [53], we construct optimal linear
operators, 8T = 2 ∈ R

r×n, such that the projection captures
the dominant orthogonal modes of the system dynamics. The
reduced order model approximation with linear projection and
interpolation operators (46) is quadratic [similar to [54, 55]]

du

dt
= a+ Bu+ uTCu, (65)

where the corresponding vector a, matrix B, and 3-tensor C are
defined by:

a = F21n, (66a)

B = −28, (66b)

[C]jkℓ = −
(

̂I8:,j

)T (

̂D8:,k

)

8:,ℓ. (66c)

4.2. Quasi-Geostrophic Equations
We will utilize the quasi-geostrophic equations (QGE) [45–48]
as a proof-of-concept to showcase the proposed methodology
in a more realistic setting. We follow the formulation used
in [25, 55, 56],

ωt + J(ψ ,ω)− Ro−1ψx = Re−11ω + Ro−1F,

J(ψ ,ω) ≡ ψyωx − ψxωy, ω = −1ψ ,
(67)

where ω represents the vorticity, ψ is the corresponding
streamfunction, Ro is the Rossby number, Re is the Reynolds
number, and J represents the quadratic Jacobian term.

4.2.1. Data for Constructing Reduced-Order Models
For the QGE, we collect 10, 000 state snapshot points spaced
30 days apart, equivalent to about 0.327 time units in our
discretization. As we wish to simulate a realistic online scenario,
all data will be used for surrogate model training. The validation
of the surrogates will be done through their practical use in the
MFEnKF and NL-MFEnKF assimilation frameworks.

4.2.2. Proper Orthogonal Decomposition ROM for

QGE
By again utilizing the method of snapshots on the vorticity,
we obtain the optimal linear operators 8ω ∈ R

n×r 2ω ∈

R
r×n (orthogonal in some inner product space) that capture

the dominant linear dynamics in the vorticity space. The linear
operators corresponding to the streamfunction are then obtained
by solving the Poisson equation

2ω = −12ψ , (68)

with 8ψ being defined in a similar fashion, from which a
quadratic ROM (65) is constructed as in [25]. In [25], it was
shown that a reduced dimension of r = 25 is considered medium
accuracy for the QGE, therefore this is the choice that we will use
in numerical experiments.

5. THEORY-GUIDED
AUTOENCODER-BASED ROMS

We now discuss building the neural network-based reduced
order model (NN-ROM). Given the principal space variable X,
consider an encoder θ that computes its projection U onto
the control space (41), and a decoder φ that computes the
reconstruction˜X (42).

Canonical autoencoders simply aim to minimize the
reconstruction error:

X ≈ ˜X, (69)
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which attempts to capture the dominant modes of the intrinsic
manifold of the data. We identify a property of other reduced
order modeling techniques which aims to preserve the physical
consistency of the dynamics.

Recall the approximate dynamics in the reduced space (45)
which provides an approximation to the reduced dynamics (44):

dU

dt
= θ ′(X) f (X) ≈ θ ′(˜X) f (˜X) = θ ′(φ(U)) f (φ(U)). (70)

We derive a condition that creates a between the two tendencies
in the right hand side of (70).

THEOREM 4. Assume the encoding of the reconstruction is the
encoding of the full representation,

θ(˜X) = θ(X), (71)

which we call the right-inverse property. Then the
approximation (70) is bounded by,

∥

∥θ ′(˜X)
∥

∥

∥

∥φ′(U) θ ′(X) f (X)− f (φ(U))
∥

∥ . (72)

PROOF: We have U = θ(X), ˜X = φ(U) = φ(θ(X)). By the
right-inverse-property (71),

U = θ(φ(θ(X))).

Differentiating with respect to time,

dU

dt
= θ ′(˜X)φ′(U) θ ′(X) f (X),

and approximating with (45) similar to in (70),

θ ′(˜X)φ′(U) θ ′(X) f (X) ≈ θ ′(˜X) f (φ(U)), (73)

then the term θ ′(˜X) now appears on both sides of the equation,
and the error can be expressed as,

∥

∥θ ′(˜X)
[

φ′(U) θ ′(X) f (X)− f (φ(U))
]∥

∥ ≤
∥

∥θ ′(˜X)
∥

∥

∥

∥φ′(U) θ ′(X) f (X)− f (φ(U))
∥

∥ ,

(74)

as required.

REMARK 11. The condition (72) is exact is difficult to enforce,
as it would require the evaluation of the function f many times,
which may be an intractable endeavor for large models. It is of
independent interest to attempt and enforce this condition, or
provide error bounds for certain flavors of models.

For POD (Section 4.1.2), the right-inverse property (71) is
automatically preserved by construction and the linearity of the
methods, as

28 = Ir , (75)

by the orthogonality of2 and8. Therefore,

282X = 2X, ∀X ∈ R
n. (76)

For non-linear operators, the authors have not explicitly
seen this property preserved, however, as the MFEnKF requires
sequential applications of projections and interpolations, the
authors believe that for the use-case outlined in this paper, the
property is especially important.

It is of interest that the right invertibility property is implied
by the mere fact that we are looking at preserving non-linear
dynamics with the auto-encoder, but is otherwise agnostic to the
type of physical system that we are attempting to reduce.

REMARK 12. Note that unlike the POD-ROM whose linear
structure induces a purely r-dimensional initial value problem, the
NN-ROM (45) still involves n-dimensional function evaluations.
In a practical method it would be necessary to reduce the internal
dimension of the ROM, however that is significantly outside the
scope of this paper.

5.1. Theory-Guided Autoencoder-Based
ROM for Lorenz’96
We seek to construct a neural network M

NN that is a surrogate
ROM for the FOM M

X . We impose that the induced dynamics
(45) makes accurate predictions, by not only capturing the
intrinsic manifold of the data, but also attempting to capture the
inertial manifold of the system. Explicitly, we wish to ensure that
the surrogate approximation error in full space,

M
X(X) ≈ φ(MNN(θ(X))) (77)

is minimized. We explicitly test the error in full space and not
the reduced space, as the full space error is more relevant to the
practitioner and for practical application of our methodology.

In this sense (45) would represent an approximation of
the dynamics along a submanifold of the inertial manifold. In
practice we compute (77) over a short trajectory in the full space
started from a certain initial value, and a short trajectory in the
latent space started form the projected initial value.

We will however not explicitly enforce (77) in the cost
function, as that may be intractable for larger systems. We will
instead only enforce the right-inverse property (71) by posing it
as a weak constraint of the system.

Combining the canonical autoencoder reconstruction error
term (69), and the right-inverse property (71), we arrive at the
following loss function for each snapshot:

ℓj(Xj) =
1

n

∥

∥Xj − φ(θ(Xj))
∥

∥

2

2
+
λ

r

∥

∥θ(Xj)− θ(φ(θ(Xj)))
∥

∥

2

2
,

(78)
where the hyper-parameter λ represents the inverse relative
weight of the mismatch of the right inverse property.

The full loss function, combining the cost functions for all T
training snapshots:

L(X) =

T
∑

j=1

ℓj(Xj), (79)

can be minimized through typical stochastic
optimization methods.
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FIGURE 2 | Results for an autoencoder-based ROM of dimension r = 28 approximating the Lorenz’96 FOM. The figure illustrates the mean error for the three error

types that we observe: reconstruction error (80), the right invertibility error (81), and the propagation error (82), on both the training and testing data sets.

For testing we will look at two errors from the cost function,
the reconstruction error,

1

T

T
∑

j=1

1

n

∥

∥Xj − φ(θ(Xj))
∥

∥

2

2
, (80)

which corresponds to the error in (69), and the right-invertibility
error,

1

T

T
∑

j=1

1

r

∥

∥θ(Xj)− θ(φ(θ(Xj)))
∥

∥

2

2
(81)

corresponds to the error in (71).
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Aside from the two errors above, for testing, we additionally
observe the propagation error,

1
T

∑T
j=1

1
n

∥

∥

∥
M

X
tJ ,(tJ+K1t)

(XJ)− φ(M
NN
tJ ,(tJ+K1t)

(θ(XJ)))
∥

∥

∥

2

2
,

J = {1, 2, . . . ,T},
(82)

which attempts to quantify the mismatch in (77) computed along
K steps.

Similar to the POD model, we construct r-dimensional NN-
based surrogate ROMs. To this end, we use one hidden layer
networks with the element-wise tanh activation function for the
encoder (41) and decoder (42):

θ(X) = Wθ
2 tanh(Wθ

1X + bθ1)+ bθ2 ,

Wθ
1 ∈ R

h×n,Wθ
2 ∈ R

r×h, bθ1 ∈ R
h, bθ2 ∈ R

r ,

(83)

φ(U) = W
φ
2 tanh(W

φ
1 U + b

φ
1 )+ b

φ
2 ,

W
φ
1 ∈ R

h×r ,W
φ
2 ∈ R

n×h, b
φ
1 ∈ R

h, b
φ
2 ∈ R

n,

(84)

where h is the hidden layer dimension, equal for both the encoder
and decoder.

The corresponding linearization of the encoder is:

θ ′(X) =Wθ
2 diag

[

1− tanh(Wθ
1X + bθ1)

◦2
]

Wθ
1 , (85)

where (·)◦2 represents element-wise exponentiation, is required
for the reduced order dynamics (45).

There are two hyper-parameters of interest, the hidden layer
dimension, h, and the right-inverse weak-constraint parameter λ.

We consider the following hidden layer dimensions, h =
50, 100, 150, 200, 250, and 300. Additionally we consider the
following values for right-inverse weak-constraint weights λ =
0, 1, 102, 104. We fix the propagation error parameter to K =
4, which corresponds to 24 h in model time, and observe all
three errors (80), (81), and (82) on both the training and testing
data sets.

We employ the ADAM [57] optimization procedure to train
the NN and to produce the various ROMs. Gradients of the loss
function are computed through automatic differentiation.

Figure 2 shows results from a representative set of models
corresponding to different choices of the λ hyperparameter and
the ROM dimension r = 28. As can be seen, the value of λ =
104 is too strict of a parameter, thus the cost function ignores
all errors other than the right-invertibility constraint, while all
other values of λ are produce viable models. The inclusion of the
right-invertibility constraint not only improves the propagation
error, but also makes the produced models less dependent on the
hidden layer dimension h on the test data reconstruction.

We consider the “best” model to be the one that which
minimizes the propagation error (82) over the two parameters for
each ROM dimension size. Table 1 shows the optimal parameter
choices corresponding to each ROM dimension. The “best”
models are chosen for the numerical experiments. Aside from
the case r = 7, the optimal right-inverse constraint parameter
is λ = 102.

TABLE 1 | A table of the optimal autoencoder parameters for the Lorenz ’96

NN-ROM for different ROM dimensions r.

r h λ

7 50 0

14 50 102

21 100 102

28 200 102

35 200 102

Here h is the hidden layer dimension, and λ the right-invertibility constraint weight

parameter.

5.2. Theory-Guided Autoencoder-Based
ROM for QGE
For a more realistic test case, we construct an autoencoder-based
ROM for the QGE. The hyperparameters are chosen based on
the information obtained using the Lorenz’96 model, rather than
through exhaustive (and computationally-intensive) testing.

As in (83), we construct the encoder and decoder using

θ(X) = Wθ
2 σ (W

θ
1X + bθ1)+ bθ2 ,

Wθ
1 ∈ R

h×n,Wθ
2 ∈ R

r×h, bθ1 ∈ R
h, bθ2 ∈ R

r ,

(86)

φ(U) = C
(

W
φ
2 σ (W

φ
1 U + b

φ
1 )+ b

φ
2

)

,

W
φ
1 ∈ R

h×r ,W
φ
2 ∈ R

n×h, b
φ
1 ∈ R

h, b
φ
2 ∈ R

n,

(87)

where σ is an approximation to the Gaussian error linear
unit [58],

σ (z) =
z

1+ e−1.702z
, (88)

with all operations computed element-wise, and h is the hidden
dimension size. The extra constant term C in (87) is a 2D-
convolution corresponding to the stencil,

1

16





3
3 4 3
3



 (89)

that aims to ensure that the resulting reconstruction does not
have sharp discontinuities.

The choice of the activation function in (88) corresponds to
a more realistic choice in state-of-the-art neural networks, and
helps with choosing a smaller hidden dimension size.

Similar to Section 4.2.2, we make the choice that the reduced
dimension size is r = 25. Informed by the Lorenz’96 NN-ROM,
we take the hidden layer dimension h = 125, a medium value in
between h = 100 and h = 150. We again use the hyperparameter
value λ = 102.

6. NUMERICAL EXPERIMENTS

The numerical experiments with the Lorenz’96 model compare
the following four methodologies:

1. Standard EnKF with the Lorenz’96 full order model;
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2. MFEnKF with the POD surrogate model, an approach named
MFEnKF(POD);

3. NL-MFEnKF with the autoencoder surrogate model, named
NL-MFEnKF(NN); and

4. MFEnKF with the autoencoder surrogate model, named
MFEnKF(NN).

Since MFEnKF does not support non-linear projections and
interpolations, in MFEnKF(NN) the ensembles are interpolated
into the principal space, and assimilated under the assumption
that2 = 8 = I.

For sequential data assimilation experiments we observe all
40 variables of the Lorenz’96 system, with an observation error
covariance of 6ηi ,ηi = I. Observations are performed every
0.05 time units corresponding to 6 h in model time. We run 20
independent realizations (independent ensemble initializations)
for 1, 100 time steps, but discard the first 100 steps for spinup.

The numerical experiments with the Quasi-geostrophic
equations focus only on sequential data assimilation. We
compare the following methodologies:

1. Standard EnKF with the QGE full order model;
2. MFEnKF with the POD surrogate model, an approach named

MFEnKF(POD); and
3. NL-MFEnKF with the autoencoder surrogate model, named

NL-MFEnKF(NN).

We observe 150 equally spaced variables directly, with an
observation error covariance of 6ηi ,ηi = I. Observations are
performed every 0.0109 time units corresponding to 1 day in
model time. We run 5 independent realizations (independent
ensemble initializations) for 350 time steps, but discard the first
50 steps for spinup.

In order to measure the accuracy of some quantity of interest
with respect to the truth, we utilize the spatio-temporal root
mean square error (RMSE):

RMSE(X,Xt) =

√

√

√

√

1

Nn

N
∑

i=1

n
∑

k=1

(

[Xi]k −
[

Xt
i

]

k

)2
, (90)

throughout the rest of this section. Note here that the number of
steps in a given experiment N is not necessarily the number of
snapshot data point T.

6.1. Accuracy of ROM Models for Lorenz’96
Our first experiment is concerned with the preservation of energy
by different ROMs, and seeks to compare the accuracy of NN-
ROM against that of POD-ROM. For the Lorenz’96 model, we
use the following equation [59] to model the spatio-temporal
kinetic energy,

KE =

T
∑

i=1

n
∑

k=1

(

[yi]k
)2
, (91)

where T is the number of temporal snapshots of either the
training or testing data. Table 2 shows the relative kinetic
energies of the POD-ROM and the NN-ROM reconstructed
solutions (42) (the energies of the reconstructed ROM solutions

TABLE 2 | Relative kinetic energies preserved by the reconstructions of the

POD-ROM and the NN-ROM solutions of the Lorenz’96 system on both the

training and testing data.

r
POD-ROM NN-ROM

Training Testing Training Testing

7 0.52552 0.52351 0.67115 0.67358

14 0.70200 0.69696 0.78783 0.78590

21 0.82222 0.81983 0.91187 0.91292

28 0.90161 0.90051 0.96760 0.96913

35 0.96251 0.96142 0.99095 0.98845

Various reduced-order model dimensions r are considered.

are divided by the kinetic energy of the full order solution) for
both the training and testing data.

The results lead to several observations. First, the NN-ROM
always preserves more energy than the POD-ROM. We have
achieved our goal to build an NN-ROM that is more accurate
than the POD-ROM. Second, the NN-ROMs with dimensions
r = 21 and r = 28 preserve as much energy as the POD-ROMs
with dimension r = 28 and r = 35, respectively. Intuitively
this tells us that they should be just as accurate. Third, all the
models preserve almost as much energy on the training as on the
testing data, meaning that the models are representative over all
possible trajectories.

6.2. Impact of ROM Dimension for
Lorenz’96
The second set of experiments seeks to learn how the
ROM dimension affects the analysis accuracy for the various
multifidelity data assimilation algorithms.

We take the principal ensemble size to be NX = 32, and the
surrogate ensemble sizes equal to NU = r − 3, in order to always
work in the undersampled regime. All multifidelity algorithms
(Sections 3, 2.4) are run with inflation factors αX = 1.05 and
αU = 1.01. The traditional EnKF using the full ordermodel is run
with an ensemble size ofN = NX and an inflation factor α = 1.06
to ensure stability. The inflation factors were chosen by careful
hand-tuning to give a fair shot to all algorithms and models.

The results are shown in Figure 3. For the “interesting”
dimensions r = 28, and r = 35, the NL-MFEnKF(NN)
performs significantly better than the MFEnKF(POD). For a
severely underrepresented ROM dimension of r = 7, r = 14, and
r = 21 the MFEnKF(POD) outperforms the NL-MFEnKF(NN).
The authors believe that this is due to the fact that a non-linear
ROM size of less that r = 28 dimensions (the rounded-up
Kaplan-Yorke dimension) is not sufficient to represent the full
order dynamics without looking at additional constraints.

Of note is that, excluding the case of r = 35, the
MFEnKF(NN) based on the standard MFEnKF method in the
principal space is the least accurate among all algorithms,
indicating that the non-linear method presented in this paper is
truly needed for models involving non-linear model reduction.

We note that for r = 35, the suspected intrinsic dimension of
the data, the NL-MFEnKF(NN) outperforms the EnKF, both in
terms of RMSE and variability within runs. This is additionally
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FIGURE 3 | Lorenz’96 analysis RMSE vs. ROM dimension (r) for three multifidelity data assimilation algorithms and the classical EnKF. Ensemble sizes are NX = 32

and NU = r − 3. Error bars show two standard deviations. The inflation factor for the surrogate ROMs is fixed at αU = 1.01, the inflation of α = 1.07 is used for the

EnKF, and αX = 1.05 is used for all other algorithms.

strengthened by the results of the MFEnKF(NN) assimilated in
the principal space, as it implies that there is little-to-no loss of
information in the projection into the control space.

We believe that these are very promising results, as they
imply that simply capturing the Kaplan-Yorke dimension and
properly accounting for the non-linearity of the system could
potentially bring in surrogates defined by non-linear operators
to data assimilation research.

6.3. Ensemble Size and Inflation for
Lorenz’96
Our second to last set of experiments focuses on the particular
ROM dimension r = 28, as we believe that it is representative
of an operationally viable dimension reduction, covering the
dimensionality of the global attractor, and experimentally it is
the sweet spot where the NL-MFEnKF(NN) beats all others
except EnKF.

For each of the four algorithms we vary the principal ensemble
sizeNX = N, and the principal inflation factor αX = α. As before,
we set the control ensemble size to NU = r − 3 = 25 and the
control-space inflation factor to αU = 1.01.

Figure 4 shows the spatio-temporal RMSE for various choices
of ensemble sizes and inflation factors. The results show
compelling evidence that NL-MFEnKF(NN) is competitive when
compared to MFEnKF(POD); the two methods have similar
stability properties for a wide range of principal ensemble sizeNX

and principal inflation αX , but NL-MFEnKF(NN) yields smaller
analysis errors for almost all scenarios for which the twomethods
are stable.

For a few points with low values of principal inflation αX ,
the NL-MFEnKF(NN) is not as stable as the MFEnKF(POD).
This could be due to either an instability in the NN-ROM

itself, in the NL-MFEnKF itself, or in the projection and
interpolation operators.

An interesting observation is that the MFEnKF(NN), which
is assimilated naively in the principal space, becomes less stable
for larger ensemble sizes NX . One possible explanation for this
is that the ensemble mean estimates become more accurate, thus
the bias between the ancillary and control variates is amplified in
(4), and more error is introduced from the surrogate model. This
is in contrast to most other ensemble based methods, including
all others in this paper, whose error is lowered by increasing
ensemble size.

6.4. Ensemble Size and Inflation for QGE
Our last set of experiments focuses on the quasi-geostrophic
equations.We use the POD-ROMdeveloped in Section 4.2.2, and
the NN-ROM discussed in Section 5.2.

As before, for each of the three algorithms we vary the
principal ensemble size NX = N and principal inflation αX = α.
In order to better visualize the results, we fix the control ensemble
size to NU = 12, and the control inflation factor to αU = 1.05.

Figure 5 shows the spatio-temporal RMSE for various choices
of ensemble sizes and inflation factors. The results provide
evidence for the validity of the NL-MFEnKF approach for large-
scale data assimilation problems.

For similar values of inflation and ensemble size, the MFEnKF
with a POD surrogate is comparable to the NL-MFEnKF
with an autoencoder-based surrogate. Both multilevel filters
significantly outperform the standard EnKF. The authors believe
that these results show convincingly that the NL-MFEnKF
formulation is valid for surrogates based on non-linear projection
and interpolation.
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FIGURE 4 | Lorenz’96 analysis RMSE for four data assimilation algorithms and various values of the principal ensemble size NX and inflation factor αX . The surrogate

ROM size is fixed to r = 28 with ensemble size of NU = 25 and inflation of αU = 1.01. The (top left) represents the MFEnKF with a POD-ROM surrogate, the (top

right) represents the NL-MFEnKF with a NN-ROM, the (bottom left) represents the MFEnKF with a NN-ROM surrogate assimilated in the principal space, and the

(bottom right) represents the classical EnKF.

7. CONCLUSIONS

The multifidelity ensemble Kalman filter (MFEnKF)
uses a linear control variate framework to increase the
computational efficiency of data assimilation; the state
of the FOM is the principal variate, and a hierarchy of
linear projection ROMs provide the control variates. In this
work, the linear control variate framework is generalized
to incorporate control variates built using non-linear
projection and interpolation operators implemented using
autoencoders. The approach, named NL-MFEnKF, enables
the use of a much more general class of surrogate models
than MFEnKF.

We identify the right-invertibility property of autoencoders
as an important feature to support the construction of non-
linear reduced order models. This property has previously not
been preserved by autoencoders. We propose a methodology for
building ROMs based on autoencoders that weakly preserves this
property, and show that enforcing this property enhances the
prediction accuracy over the standard approach.

We use these elements to construct NL-MFEnKF that extends
the multifidelity ensemble Kalman filter framework to work
with nonlinear surrogate models. The results obtained in this
paper indicate that reduced order models based on non-linear
projections that fully capture the intrinsic dimension of the data
provide excellent surrogates for use in multifidelity sequential
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FIGURE 5 | QGE analysis RMSE for four data assimilation algorithms and various values of the principal ensemble size NX and inflation factor αX . The surrogate ROM

size is fixed to r = 25 with ensemble size of NU = 12 and inflation of αU = 1.05. The (top left) represents the MFEnKF with a POD-ROM surrogate, the (top right)

represents the NL-MFEnKF with a NN-ROM, and the (bottom) represents the classical EnKF.

data assimilation. Moreover, nonlinear generalizations of the
control variate framework result in small approximation errors,
and thus the assimilation can be carried out efficiently in the
space of a nonlinear reduced model.

Our Numerical experiments with both small scale (Lorenz
’96) and medium scale (QGE) models show that the non-
linear multifidelity approach has clear advantages over the linear
multifilidety approach when the reduced order models are
defined by non-linear couplings, and over the standard EnKF for
similar high-fidelity ensemble sizes.

From the point of view of machine learning, the major
limitations are the constructions of projection and interpolation
operators, that do not account for the spatial features of the

models, and the model propagation, which does not attempt
to utilize state-of-the-art methods such as recurrent neural
network models.

From the point of view of data assimilation, there are
three limiting factors for the applicability of our method to
operational workflows. The first is the use of the perturbed
observations ensemble Kalman filter, the second is the
absence of localization in our framework, and the third
is the absence of model error both for the full-order and
surrogate models.

One potential avenue of future research would be into
adaptive inflation techniques for multifidelity data assimilation
algorithms similar in vein to [60].
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Future work addressing all the problems and research
avenues above would lead to the successful application of
the NL-MFENKF to operational problems such as numerical
weather prediction.
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The ability to extract generative parameters from high-dimensional fields of data in an
unsupervised manner is a highly desirable yet unrealized goal in computational physics.
This work explores the use of variational autoencoders for non-linear dimension reduction
with the specific aim of disentangling the low-dimensional latent variables to identify
independent physical parameters that generated the data. A disentangled decomposition
is interpretable, and can be transferred to a variety of tasks including generative modeling,
design optimization, and probabilistic reduced order modelling. A major emphasis of this
work is to characterize disentanglement using VAEs while minimally modifying the classic
VAE loss function (i.e., the Evidence Lower Bound) to maintain high reconstruction
accuracy. The loss landscape is characterized by over-regularized local minima which
surround desirable solutions. We illustrate comparisons between disentangled and
entangled representations by juxtaposing learned latent distributions and the true
generative factors in a model porous flow problem. Hierarchical priors are shown to
facilitate the learning of disentangled representations. The regularization loss is unaffected
by latent rotation when training with rotationally-invariant priors, and thus learning non-
rotationally-invariant priors aids in capturing the properties of generative factors, improving
disentanglement. Finally, it is shown that semi-supervised learning - accomplished by
labeling a small number of samples (O (1%))–results in accurate disentangled latent
representations that can be consistently learned.

Keywords: generative modeling, unsupervised learning, variational autoencoders, scientific machine learning,
disentangling

1 INTRODUCTION

Unsupervised representation learning is a popular area of research because of the need for low-
dimensional representations in unlabeled data. Low-dimensional latent representations of high-
dimensional data have many applications ranging from facial image generation [1] and music
generation [2] to autonomous controls [3] among many others. Generative adversarial networks
(GANs) [4], variational autoencoders (VAEs) [5] and their variants [6–9], among other methods,
aim to approximate an underlying distribution p(y) of high-dimensional data through a two-step
process. Compressed representations z are sampled from a low-dimensional–yet
unknown–distribution p(z). In the case of VAEs, which is the focus of this work, an encoding
distribution p(z|y) and a decoding distribution are learned simultaneously bymaximizing a bound on
the likelihood of the data (i.e., the evidence lower bound (ELBO) [5]). Thus, a mapping from the
high-dimensional space to a low-dimensional space and the corresponding inverse mapping is
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learned simultaneously, allowing approximations of both p(y)
and p(z). Learning the lower-dimensional representation, or
latent space, can facilitate computationally-efficient data
generation and extract only the information necessary to
reconstruct the data [10]. Modifications to the ELBO objective
have been suggested in the literature, primarily with improved
disentanglement in mind. The β-VAE [6] was introduced to
improve disentanglement by adjusting the weight of
regularization loss. FactorVAE [8] introduces a total
correlation term (TC) to encourage learning a factorized latent
representation. InfoVAE [9] augments the ELBO with a term to
promote maximization of the mutual information between the
data and the learned representation. Many other developments
based on the VAE objective have been introduced in the
literature. VAEs have been implemented in many applications
including inverse problems [11], extracting physical parameters
from spatio-temporal data [12], and constructing probabilistic
reduced order models [13, 14], among others.

To illustrate the idea of disentanglement and its implications,
consider a dataset consisting of images of teapots [15]. Each
image is generated from 3 parameters indicating the color of the
teapot (RGB) and 2 parameters corresponding to the angle the
teapot is viewed from. Thus, even though the RGB image may be
very high dimensional, the intrinsic dimensionality is just 5.
Representation learning can be used to extract a low-
dimensional latent model containing useful and meaningful
representations of the high-dimensional images. Learned latent
representations need not be disentangled to be useful in some
sense, but disentanglement enhances interpretability of the
representation. Disentanglement references a structure of the
latent distribution in which changes in each parameter in the
learned representation correspond directly to changes in a single
yet different generative parameter. Humans tend to naturally and
easily identify independent factors of variation, and thus a
disentangled representation often corresponds to one which
would be naturally identified by a human. A representation
which is more naturally explained by a human observer is
therefore one characterized by greater interpretability. In an
unsupervised setting, one cannot guarantee that a disentangled
representation can be learned.

The requirement for disentanglement depends on the task at
hand, but a disentangled representation may be used in many
tasks containing different objectives. Indeed, [10] state that “the
most robust approach to feature learning is to disentangle as
many factors as possible, discarding as little information about
the data as is practical.” In the teapot example, changes in one of
the learned latent dimensions may correspond to changes in the
color red and one of the viewing angles, which would indicate an
entangled representation. Another example, more relevant to our
work, is that of fluid flow over an airfoil. Learning a disentangled
representation of the flow conditions along with the shape
parameters using VAEs can allow rapid prediction of the flow
field with enhanced interpretability of the latent representation,
facilitating efficient computation of the task at hand. The
disentangled representation can be transferred to a variety of
tasks easily such as design optimization, developing reduced
order models in the latent space or parameter inference from

flow fields. It is the ability of disentangled representations to
transfer across tasks with ease and interpretability which makes
them so useful. In many practical physics problems, full
knowledge regarding the underlying generative parameters of
high-dimensional data may not exist, thus making it challenging
to ascertain the quality of disentanglement.

Disentanglement using VAEs was first addressed in the
literature [6]; [8] by modifying the strength of regularization
in the ELBO loss, with the penalty of sub-optimal compression
and reconstruction. FactorVAEs [6] encourage a factorized
representation, which can be useful for disentanglement in the
case of independent generative parameters, but undesirable when
parameters are correlated. [16] suggest that the ability of the VAE
to learn disentangled representations is not inherent to the
framework itself, but an “accidental” byproduct of the typically
assumed factorized form of the encoder. The prior distribution is
of particular importance as the standard normal prior often
assumed allows for rotation of the latent space with no effect
on the ELBO loss. Disentangled representations are still often
learned due to a factorized form of the encoding distribution with
sufficiently large weight on regularization. Additional
interpretations and insight into the disentanglement ability of
VAEs are found in [17].

Our work on unsupervised representation learning is
motivated from a computational-physics perspective. We focus
on the application of VAEs for use with data generated by partial
differential equations (PDEs). The central questions we seek to
answer in this work are: 1) can we reliably disentangle parameters
from data obtained from PDEs governing physical problems
using VAEs, and 2) what are the characteristics of
disentangled representations? Learning disentangled
representations can be useful in many capacities: developing
probabilistic reduced order models, design optimization,
parameter extraction, and data interpolation, among others.
Many of the applications of such representations, and the
ability to transfer between them, rely heavily on the
disentanglement of the latent space. Differences in
disentangled and entangled representations are identified, and
conclusions are drawn regarding the inconsistencies in learning
such representations. Our goals are not to compare the available
methods to promote disentanglement, as in [18], but rather to
illustrate the use of VAEs without modifying the ELBO and to
understand the phenomenon of disentanglement itself in this
capacity. The use of hierarchical priors is shown to greatly
improve the prospect of learning a disentangled representation
in some cases without altering the standard VAE loss through the
learning of non-rotationally-invariant priors. Along the way, we
provide intuition on the objective of VAEs through connections
to rate-distortion theory, illustrate some of the challenges of
implementing and training VAEs, and provide potential
methods to overcome some of these issues such as “vanishing
KL” [19].

The outline of this paper is as follows: In Section 2, we
introduce the VAE, connect it to rate-distortion (RD) theory,
discuss disentanglement, and derive a bound on the classic VAE
loss (the ELBO) using hierarchical priors (HP). In Section 3, we
introduce a sample application of Darcy flow as the main
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illustrative example of this work. In Section 4, we present
challenges in training VAEs and include possible solutions,
and investigate the ELBO loss landscape. We illustrate
disentanglement of parameters on the Darcy flow problem,
and provide insight into the phenomenon of disentanglement
in Section 5. The use of a small amount of labeled data (semi-
supervised learning) is considered in Section 6. In Section 7,
conclusions and insights are drawn on the results of our work,
and future directions are discussed.

The numerical experiments in this paper can be recreated
using our code provided in https://github.com/christian-
jacobsen/Disentangling-Physical-Fields.

2 VARIATIONAL AUTOENCODER
FORMULATION

In many applications of representation learning, it is generally
desirable that the latent representation be maximally
compressed. In other words, the low dimensional
representation contains only the information required to
reconstruct the original data, discarding irrelevant
information. The VAE framework used extensively in this
work is a method of data compression with many ties to
information theory [20]. In applications with little to no
knowledge regarding the nature of obtained data, the latent
factors extracted using VAEs can act as a set of features
describing the generative parameters underlying the data. A
direct correlation between the generative parameters and the
compressed representation, or a disentangled representation,
is sought such that the representation can be applied to a
multitude of downstream tasks. Some example tasks include
performing predictions on new generative parameters,
interpreting the data in the case of unknown generative
parameters, and computationally efficient design
optimization.

Data snapshots obtained from some physical system or a
model of that system is represented here by random variable
Y: Ω → Y whereΩ is a sample space and Y is a measurable space
(Y � Rm will be assumed for the remainder of this work). Each
realization of Y is generated from a function of Θ such that
Θ: Ω → Rs is a random variable representing generative
parameters with distribution p(θ). With no prior knowledge of
Θ, the random variable Z: Ω → Rn represents the latent
parameters to be inferred from the data. A probabilistic
relationship between Θ and Y is sought in an unsupervised
manner using only samples from p(y).

The VAE framework infers a latent-variable model by
replacing the posterior p (z|y) with a parameterized
approximating posterior qϕ(z|y) [5], known as the encoding
distribution. A parameterized decoding distribution pψ(y|z) is
also constructed to predict data samples given samples from the
latent space. Only the encoding distribution and the decoding
distribution are learned in the VAE framework, but the
aggregated posterior qϕ(z) (to the best of our knowledge, first
referred to in this way by [21]), is of particular importance in

disentanglement. It is defined as the marginal latent distribution
induced by the encoder

qϕ z( ) ≜ ∫
Y
p y( )qϕ z|y( )dy, (1)

where the true data distribution is denoted by p(y). The induced
data distribution is the marginal output distribution induced by
the decoder

pψ y( ) ≜ ∫
Rn
p z( )pψ y|z( )dz. (2)

It is noted that the true data distribution is typically unknown;
only samples of data {y(i)}Ni�1 are available. The empirical data
distribution is thus denoted p̂(y), and any expectation with
respect to the empirical distribution is simply computed as an
empirical average Ep̂(y)[f(y)] ≜ 1

N∑N
i�1f(y(i)).

Learning the latent model is accomplished by simultaneously
learning the encoding and decoding distributions through
maximizing the evidence lower bound (ELBO), which is a
lower bound on the log-likelihood [22]. To derive the ELBO
loss, we begin by expanding the relative entropy between the data
distribution and the induced data distribution

DKL p y( )||pψ y( )[ ] � EY~p y( ) logp y( )[ ] − EY~p y( ) logpψ y( )[ ]

where the first term on the right hand side is the negative
differential entropy − H(Y). Noting that relative entropy
DKL—also often called the Kullback–Leibler divergence, which
is a measure of the distance between two probability
distributions—is always greater than or equal to zero and
introducing Bayes’ rule as

pψ y( ) � pψ y|z( )p z( )pϕ z|y( )
p z|y( )pϕ z|y( ) ,

we arrive at the following inequality

H Y( ) + EY~p y( ) DKL pϕ z|y( )||p z|y( )[ ][ ]≤Ep y( ) Eqϕ z|y( ) logpψ y|z( )[ ][ ]
− Ep y( )DKL qϕ z|y( )||p z( )[ ].

Thus,

Ep y( ) log p y( )( )[ ]≥Ep y( ) Eqϕ z|y( ) logpψ y|z( )[ ][ ]
− Ep y( )DKL qϕ z|y( )||p z( )[ ], (3)

where p(z) is a prior distribution. The prior is specified by the user
in the classic VAE framework. The right-hand side in Eq. 3 is the
well-known ELBO. Maximizing this lower bound on the log-
likelihood of the data is done by minimizing the negative ELBO.
The optimization is performed by learning the encoder and
decoder parameterized as neural networks. The negative ELBO
is defined as

−ELBO � Ep y( )DKL qϕ z|y( )||p z( )[ ]
+ Ep y( ) Eqϕ z|y( ) −logpψ y|z( )[ ][ ], (4)
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and we assume LVAE ≈ − ELBO, where the difference results in
the expectation being evaluated over the empirical data
distribution in LVAE. The VAE loss function is defined as

LVAE � Ep̂ y( )DKL qϕ z|y( )||p z( )[ ]
+ Ep̂ y( ) Eqϕ z|y( ) −logpψ y|z( )[ ][ ], (5)

where the first term on the right-hand side is the regularization
lossLREG and drives the encoding distribution closer (in the sense
of minimizing KL divergence) to the prior distribution. The
second term on the right-hand side is the reconstruction error
LREC and encourages accurate reconstruction of the data.

Selecting the prior distribution as well as the parametric form of
the encoding and decoding distribution can allow closed form
solutions to compute LVAE. The prior distribution is often
conveniently chosen as a standard normal distribution
p(z) � N (z; 0, In×n). The encoding and decoding
distributions are also often chosen as factorized normal
distributions qϕ(z|y) � N (z; μϕ(y), diag(σϕ(y))) and
pψ(y|z) � N (y; μψ(z), diag(σψ(y))), where the mean and log-
variance of each distribution are functions parameterized by neural
networks. Selecting the parameterized form of these distributions
facilitates the reparameterization trick [5], allowing backpropagation
through sampling operations during training. This selection of the
prior, encoding, and decoding distributions allows a closed form
solution to compute LVAE.

2.1 Disentanglement
Disentanglement is realized when variations in a single latent
dimension correspond to variations in a single generative
parameter. This allows the latent space to be interpretable by
the user and improves transferability of representations between
tasks. Disentanglement may not be required for some tasks which
may not require knowledge on each parameter individually or
perhaps only a subset of the generative parameters. Nevertheless,
a disentangled representation can be leveraged across many tasks.
[10] note that a disentangled representation captures each of the
relevant features of the data, but downstream applications may
only require a subset of these factors. We therefore hypothesize
that disentangled representations lead to a more comprehensive
range of downstream applications over non disentangled
representations.

Many metrics of disentanglement exist in the literature [18],
few of which take into account the generative parameter data.
Often knowledge on the generative parameters is lacking, and
these metrics can be used to evaluate disentanglement in that case
(although there is no consensus on which metric is appropriate).
In controlled experiments, however, knowledge on generative
parameters is available, and correlation between the latent space
and the generative parameter space can be directly determined.
To evaluate disentanglement in a computationally efficient
manner, we propose a disentanglement score

SD � 1
n
∑
i

max
j

|cov zi, θj( )|
∑j|cov zi, θj( )| , (6)

where zi indicates the ith component of the latent vector ∀i ∈ {1,
. . . , n} and θj indicates the jth component of the generative
parameter vector ∀j ∈ {1, . . . , s}. Noting that

max
j

|cov zi, θj( )|
∑j|cov zi, θj( )| ∈ 1/s, 1[ ],

it is clear that SD ∈ [1/s, 1]. It is noted that this score is not used
during the training process. This score is created from the
intuition that each latent parameter should be correlated to
only a single generative parameter. One might note some
issues with this disentanglement score. For instance, if
multiple latent dimensions are correlated to the same
generative parameter dimension, the score will be inaccurate.
Similarly, if the latent dimension is greater than the generative
parameter dimension, some latent dimensions may contain no
information about the data and be uncorrelated to all dimensions,
inaccurately reducing the score. For the cases presented here (we
will use the score only when n = s), Eq. 6 suffices as a reasonable
measure of disentanglement. This score is used as an efficient
means of scoring disentanglement when efficiency is important,
but we propose another score based on comparisons between
disentangled and entangled representations.

We observed empirically that disentanglement is highly
correlated to a match in shape between the generative
parameter distribution p(θ) and the aggregated posterior qϕ(z)
(Section 5). A match in the scaled-and-translated shapes results
in good disentanglement but an aggregated posterior which does
not match the shape of the generative parameter distribution or
contains incorrect correlations (“rotated”) relative to the
generative parameter distribution does not. Using this
knowledge, another disentanglement metric is postulated to
compare these shapes by leveraging the KL Divergence (Eq. 7)
where ◦ denotes the Hadamard product. The disentanglement
score is given by

SKL � min
a,b

DKL p θ( )||qϕ a◦ z − b( )( )[ ]. (7)

This metric compares the shapes of the two distributions by
finding the minimum KL divergence between the generative
parameter distribution and a scaled and translated version of
the aggregated posterior. When qϕ(a◦(z − b)) is close to p(θ) for
some vectors a, b ∈ Rn, disentanglement is observed.

It is noted in [16] that rotation of the latent space certainly has
a large effect on disentanglement, which is precisely what we
observe (Section 5). Additionally, the ELBO loss is unaffected by
rotations of the latent space when using rotationally-invariant
priors such as standard normal (Appendix A).

2.1.1 β-VAE
The β-VAE objective gives greater weighting to the regularization
loss,

Lβ−VAE � βEp̂ y( )DKL qϕ z|y( )||p z( )[ ]
+ Ep̂ y( ) Eqϕ z|y( ) −logpψ y|z( )[ ][ ] .
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This encourages greater regularization, often leading to improved
disentanglement over the standard VAE loss [6]. It is worth
noting that when β = 1, with a perfect encoder and decoder, the
VAE loss reduces to the Bayes rule [23]; [24]. More details on the
β-VAE are provided in Section 2.2.

2.2 Connections to Rate-Distortion Theory
Rate-distortion theory [25, 26, 27] aids in a deeper understanding in the
trade off and balance between the regularization and reconstruction
losses. The general rate distortion problem is formulated beforemaking
these connections. Consider two random variables: data Y: Ω → Rm

and a compressed representation of the data Z: Ω → Rn. An encoder
p(z|y) is sought such that the compressed representation contains a
minimal amount of information about the data subject to a bounded
error in reconstructing the data. Amodel ~y(z) is used to reconstruct Y
from samples ofZ, and a distortionmetricd(y, ~y) is used as ameasure
of error in the reconstruction of Y with respect to the original data.

A rate-distortion problem thus takes the general form

R D( ) � min
p z|y( ) I Y;Z( ) s.t. EY,Z d y, ~y z( )( )[ ]≤D, (8)

where D ∈ R is an upper bound on the distortion. Solutions to
Eq. 8 consist of an encoder p(z|y) which extracts as little
information as possible from Y while maintaining a bounded
distortion on the reconstruction of Y from Z through the model
~y(z). Mutual information is minimized to obtain a maximally
compressed representation of the data. Learning unnecessary
information leads to “memorization” of some aspects of the
data rather than extracting only the information relevant to
the task at hand.This optimization problem formulated as the
rate-distortion Lagrangian is

minJ β( ) � min
p z|y( ) I Y;Z( ) + βEY,Zdy, ~y z( ) −D. (9)

Given an encoder and decoder, solutions to the rate-distortion
problem lie on a convex curve referred to as the rate-distortion
curve [20]. Points above this curve correspond to realizable yet
sub-optimal solutions. Points below the RD curve correspond to
solutions which are not realizable; no possible compression exists
with distortion below the RD curve. As the RD curve is convex,
optimal solutions found by varying β lie along the curve.
Increasing β increases the tolerable distortion, decreasing the
mutual information between the compressed representation and
data, providing a more compressed representation. Conversely,
decreasing β requires a more accurate reconstruction of the data,
increasing the mutual information between compressed
representation and data.

The β-VAE loss is tied to a rate-distortion problem.
Rearranging the VAE regularization loss (LREG), we obtain

LREG � Ep̂ y( )DKL qϕ z|y( )||p z( )[ ] � Iϕ Y;Z( )
which is equal to the mutual information between Y and Z
according to the data and encoding distributions. Minimizing
the β-VAE loss gives the optimization problem

min
ϕ,ψ

Lβ−VAE � min
ϕ,ψ

Iϕ Y;Z( ) + βEp̂ y( )pψ z|y( ) −logpϕ y|z( )[ ].

This optimization problem is similar to a rate-distortion problem
with d(y, ~y) � −logpϕ(y|z) and the mutual information Iϕ(Y; Z)
just an approximation to the true mutual information I(Y; Z).
Depending on β, solutions can be found at any location along the
RD curve with each containing differing properties. RD curve for
VAEs is simply an analogy: LREG is considered the rate R and
LREC is considered the distortion D.

With increased β, the β-VAE minimizes the mutual information
between the data and the latent parameters, limiting reconstruction
accuracy. In [16], disentanglement is illustrated to be caused
inadvertently through the assumed factored form of the encoding
distribution even though rotations of the latent space have no effect
on the ELBO. However, their proof relies on training in the
“polarized” regime characterized by loss of information or
“posterior collapse” [28]. Training in this regime often requires
increasing the weight of the regularization loss, necessarily
decreasing reconstruction performance in the process. In our
work, we illustrate disentanglement through training VAEs with
the ELBO loss (β = 1), keeping reconstruction accuracy high. [16]
presents good insights into disentanglement.

2.3 Hierarchical Priors
Often the prior (in the case of classic VAEs, specified by the user)
and generative parameter distributions (data dependent) may not
be highly correlated. Hierarchical priors [7] (HP) can be
implemented within the VAE network such that the prior is
learned as a function of additional random variables, potentially
leading to more expressive priors and aggregated posteriors.
Hierarchical random variables ξi are introduced such that
“sub-priors” can be assumed on each ξi (typically standard
normal). In the case of a single hierarchical random variable

p z( ) � ∫
Ξ
p z|ξ( )p ξ( )dξ � ∫

Ξ

p ξ|z( )
p ξ|z( )p z|ξ( )p ξ( )dξ

� EΞ~p ξ|z( )
p z|ξ( )p ξ( )
p ξ|z( )[ ].

The conditional distributions p(ξ|z) and p(z|ξ) are the prior
encoder and prior decoder, respectively. These distributions can
be approximated by parameterizing them with neural networks.
The parameterized distributions are noted as qγ(ξ|z) and pπ(z|ξ)
where γ are the trainable parameters of the approximating prior
encoder and π are the trainable parameters of the prior decoder.
Thus, the VAE prior can be approximated through the prior
encoding and decoding distributions

p z( ) ≈ EΞ~qγ ξ|z( )
pπ z|ξ( )p ξ( )

qγ ξ|z( )[ ]. (10)

Rearranging the VAE regularization loss

LREG � ∫
Y,Z

p̂ y( )qϕ z|y( )log qϕ z|y( )
p z( ) dydz

� EY,Z~p̂ y( )qϕ z|y( ) logqϕ z|y( )[ ]
− ∫

Y,Z
p̂ y( )qϕ z|y( )logp z( )dydz, (11)
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and substituting the approximating hierarchical prior Eq. 10 into
Eq. 11, the final term on the right-hand side becomes

−∫
Y,Z

p̂ y( )qϕ z|y( )logp z( )dydz � −∫
Y,Z

p̂ y( )qϕ z|y( )log

EΞ~qγ ξ|z( )
pπ z|ξ( )p ξ( )

qγ ξ|z( )[ ][ ]dydz.
The logarithm function is strictly concave; therefore, by Jensen’s
inequality the right-hand side is upper bounded by

−∫
Y,Z

p̂ y( )qϕ z|y( )log EΞ~qγ ξ|z( )
pπ z|ξ( )p ξ( )

qγ ξ|z( )[ ][ ]dydz

≤ − ∫
Y,Z

p̂ y( )qϕ z|y( )EΞ~qγ ξ|z( ) log
pπ z|ξ( )p ξ( )

qγ ξ|z( )[ ]dydz.

This bound is rearranged to the form

EY,Z~p̂ y( )qϕ z|y( )DKL qγ ξ|z( )||p ξ( )[ ]
− EY,Z~p̂ y( )qϕ z|y( ) Eqγ ξ|z( ) logpπ z|ξ( )[ ][ ]. (12)

Equation 12 takes the same form as the overall VAE loss, but
applied to the prior network itself. Thus, the hierarchical prior
can be thought of as a system of sub-VAEs within the main VAE.
In summary, the VAE loss is upper bounded by

LVAE ≤EY,Z~p̂ y( )qϕ z|y( ) logqϕ z|y( )[ ]
+ EY,Z~p̂ y( )qϕ z|y( ) DKL qγ ξ|z( )||p ξ( )[ ][ (13)
−EY,Z~p̂ y( )qϕ z|y( ) Eqγ ξ|z( ) logpπ z|ξ( )[ ][ ] (14)

−EY,Z~p̂ y( )qϕ z|y( ) logpψ y|z( )[ ]]. (15)

Implementing hierarchical priors can aid in learning non-
rotationally-invariant priors, frequently inducing a learned
disentangled representation, as shown below.

3 APPLICATION TO DARCY FLOW

To characterize the training process of the VAEs and to study
disentanglement, we employ an application of flow through porous
media. A two-dimensional steady-state Darcy flow problem in c spatial
dimensions (our experiments employ c = 2) is governed by [29].

u x( ) � −K x( )∇p x( ), x ∈ X
∇ · u x( ) � f x( ), x ∈ X

u x( ) · n̂ x( ) � 0, x ∈ zX
∫

X
p x( )dx � 0.

(16)

Darcy’s law is an empirical law describing flow through porous
media in which the permeability field is a function of the spatial
coordinate K(x): Rc → R. The pressure p(x): Rc → R and
velocity u(x): Rc → Rc are found given the source term
f(x): Rc → R, permeability, and boundary conditions. The
integral constraint is given to ensure a unique solution.

A no-flux boundary condition is specified, and the source term
models an injection well in one corner of the domain and a
production well in the other

f x( ) �
r, |xi − 1

2
w|≤ 1

2
w, i � 1, 2

−r, |xi − 1 + 1
2
w|≤ 1

2
w, i � 1, 2

0, otherwise

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

, (17)

where w � 1
8 and r = 10. The computational domain considered is

the unit square X � [0, 1]2.

3.1 Karhunen-Loeve Expansion Dataset
The dataset investigated uses a log-permeability field modeled by
a Gaussian random field with covariance function k

K x( ) � exp G x( )( ), G ·( ) ~ N �μ, k ·, ·( )( ). (18)
Generating the data first requires sampling from the permeability
field (Eq. 18). We take the covariance function as

k x, x′( ) � exp −||x − x′||2/l( ) (19)
in our experiments, as in [29]. After sampling the permeability
field, solving Eq. 16 for the pressure and velocity fields
produces data samples. We discretize the spatial domain on
a 65 × 65 grid and use a second-order finite difference scheme
to solve the system.

The intrinsic dimensionality of the data will be the total
number of nodes in system (4,225 for our system) [29]. For
dimensionality reduction, the intrinsic dimensionality s of the
data is specified by leveraging the Karhunen-Loeve Expansion
(KLE), retaining only the first s terms in

G x( ) � �μ +∑
s

i�1

��
λi

√
θiϕi x( ), (20)

where λi and ϕi(x) are eigenvalues and eigenfunctions of the
covariance function (Eq. 19) sorted by decreasing λi, and each θi
are sampled according to some distribution p(θ), denoted the
generative parameter distribution.

Each dataset contains some intrinsic dimensionality s, and
we denote each dataset using the permeability field (Eq. 18) as
KLEs. For example, a dataset with s = 100 is referred to as
KLE100. Samples from datasets of various intrinsic dimension
are illustrated in Figure 1. Variations on the KLE2 dataset are
employed for our explorations in this work. The differences
explored are related to varying the generative parameter
distribution p(θ) in each set.

Each snapshot y(i) from a single dataset {y(i)}Ni�1 contains the
pressure p(x) and velocity fields u(x) at each node in the
computational domain. These are used as a 3-channel input to
the VAE; the permeability field and KLE expansion coefficients
(generative parameters) are saved and used only for evaluation
purposes.
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4 TRAINING SETUP AND LOSS
LANDSCAPE

The process of training a VAE involves a number of challenges.
For example, convergence of the optimizer to local minima can
greatly hinder reconstruction accuracy and failure to converge
altogether remains a possibility. A recurrent issue with VAE
training in our experiments is that of over-regularization. Over-
regularized solutions are characterized by disproportionately
small regularization loss (LREG ≪ 1). More information on this
issue is detailed in Section 4.2.

To mitigate some of the issues inherent to training VAEs, we
employ a training method tailored to avoid over-regularization.
All experiments are performed using the Adam optimizer in
Pytorch. We use Lβ−VAE to train the models. The β value is varied
with epochs, but at the end of training the model is converged
with β = 1. The model is trained initially with β0 ≪ 1, typically
around β0 = 10–7, for some number of epochs r0 (depending on
learning rates) until reconstruction accuracy is well below that of
an over-regularized solution (Section 3 illustrates this necessity).
When β0 is too small, the regularization loss can become too
large, preventing convergence altogether. Training is continued
by implementing a β scheduler [7] to slowly increase the weight of
the regularization loss. The learning rate is then decreased to lr1 =
c (lr0) after some number of epochs r1 to enhance reconstruction
accuracy. This training method—in particular the heavily

weighted reconstruction phase and the β scheduler—result in
much more stable training which avoids the local minima
characterized by over-regularization and improves convergence
consistency. Similar methods have been employed to avoid this
issue. In particular, [30] refers to this issue as “KL vanishing” and
uses a cyclical β schedule to avoid the issue. However, this can
take far more training epochs and cycle iterations to converge
than the method employed here.

4.1 Architecture
The primary architecture for the VAE is adapted from [29] and a
more detailed description including architecture optimization is
given in the included Supplementary Material. This architecture
consists of a series of encoding blocks to form the encoder, and a
series of decoding blocks to form the decoder. Each encoding/
decoding block consists of a dense block followed by and
encoding/decoding layer. Contrary to the name, dense blocks
do not contain any dense layers, but rather a series of skip
connections and convolutional layers. Encoding and decoding
layers consist of convolutions. The architecture is called
DenseVAE and is used for all VAEs trained in this work. The
latent and output distributions are assumed to be Gaussian. We
use the dense block based architecture to parameterize the
encoder mean and log-variance separately, as well as the
decoder mean. The decoding distribution log-variance is
learned but constant as introducing a learned output log-

FIGURE 1 | Samples from datasets (top left) KLE2 (top right) KLE10 (bottom left) KLE100 (bottom right) KLE1000.
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variance did not aid in reconstruction or improving
disentanglement properties in our experiments but increased
training time.

4.2 Over-Regularization
Over-regularization has been identified as a challenge in the
training of VAEs [30]. This phenomenon is characterized by
the latent space containing no information about the data;
i.e., the regularization loss becomes zero. The output of the
decoder becomes identical accross all inputs. Thus, the output
of the decoder is a constant distribution which does not depend on
the latent representation. The constant distribution it learns
becomes a normal distribution with mean and variance of the
data. With zero regularization loss, the learned decoding
distribution becomes pψ(y|z) � N (y; μ̂y, diag(σ̂2y)) ∀ z where
μ̂y � 1

N∑N
i�1y(i) and σ̂2y � 1

N∑N
i�1(y(i) − μ̂y)2. This is proven to

minimize LVAE in Theorem 1. The solution is not shown to be
unique, but our experiments indicate that this is the over-
regularized solution found during training. As Theorem 1
illustrates validity for any encoder q(z|y), this is the most robust
solution for the VAE to converge to when over-regularization
occurs. The decoder learns to predict as accurately as possible given
nearly zero mutual information between the latent and data
random variables. As the encoder and decoder are trained
simultaneously, predicting a constant output regardless of z
prevents the necessity of the decoder to adjust as the encoder
changes. An empirical comparison between good reconstruction
and over-regularization is shown in Figure 2.

Theorem 1 requires that the output variance is constant.
Parameterizing the output variance with an additional network
may aid in avoiding over-regularization.

THEOREM 1. : Given data {y(i)}Ni�1 and the VAE framework
defined in Section 2, and assuming a decoding distribution of the
form p(y|z) � N (y; μ(z), diag(σ2)), if LREG � 0, then
arg minμ(z),σ2 LVAE � {μ̂y, σ̂2y}, where μ̂y � 1

N∑N
i�1y(i) and σ̂2y �

1
N∑N

i�1(y(i) − μ̂y)2.
Proof: For any q (z|y) s.t. LREG � 0:

LVAE � LREC � Ep̂ y( )q z|y( ) −log p y|z( )( )[ ]

� Eq z|y( )
1
N

∑
N

i�1
∑
m

j�1

1
2
log 2π( ) + log σj( ) + 1

2σ2j
y i( )
j − μj z( )( )2⎡⎢⎢⎣ ⎤⎥⎥⎦.

To minimizeLVAE, take derivatives
zLVAE
zμj(z) and

zLVAE
zσj

(assuming

derivative and expectation can be interchanged), where j ∈ {1, . . .
, m}:

zLVAE

zμj z( ) � Eq z|y( ) − 1
N

∑
N

i�1

1
σ2
j

y i( )
j − μj z( )( )⎡⎣ ⎤⎦ � 0.

Thus, Eq(z|y)[∑N
i�1y

(i)
j − μj(z)] � 0 and

Eq z|y( ) μj z( )[ ] � 1
N

∑
N

i�1
y i( )
j . (21)

Eq. 21 holds ∀z, j if

μj z( ) � μ̂j �
1
N

∑
N

i�1
y i( )
j . (22)

Taking the derivative w.r.t. variance, we have
zLVAE
zσj

� Eq(z|y)[ 1N∑N
i�1

1
σj
− 1

σ3j
(y(i) − μj(z))2] � 0, and

rearranging, we have

FIGURE 2 | (upper) Good reconstruction. (lower) Over-regularization.
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σ2
j �

1
N

∑
N

i�1
y i( )
j − μj z( )( )2 ∀ z, j. (23)

Substituting Eq. 21 into Eq. 23 results in:

σ̂2j �
1
N

∑
N

i�1
y i( )
j − μ̂j( )2 ∀ z, j. (24)

With Eqs 21, 24 valid for all z and j, we can combine them into
vector form and note that Eq. 25 minimizes LVAE as required.

μ̂y �
μ̂1
..
.

μ̂m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, σ̂2

y �
σ̂21
..
.

σ̂2m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (25)

There exists a region in the trainable parameter loss
landscape characterized by over-regularized local minimum
solutions which partially surrounds the “desirable” solutions
characterized by better reconstruction accuracy and latent
properties. This local minima region is often avoided by
employing the training method discussed previously, but
random initialization of network parameters and changes in
hyperparameters between training can render it difficult to
avoid convergence to this region.

We illustrate the problem of over-regularization by
training VAEs using the architecture described in Section
4.1 on the KLE2 Darcy flow dataset with p(θ) being standard
normal.

A VAE is trained with 512 training samples (each sample is
65 × 65 × 3), converging to a desirable solution with low
reconstruction error and nearly perfect disentanglement. The
parameters of this trained network are denoted PT. After the VAE
is trained and a “desirable” solution obtained, 10 additional VAEs
with identical setup to the desirable solution are initialized
randomly using the Xavier uniform weight initialization on all
layers. Each of the 10 initializations contain parameters Pi. A line
in the parameter space is constructed between the converged
“desirable” solution and the initialized solutions as a function
of α:

P α( ) � 1 − α( )Pi + αPT. (26)
Losses are recorded along each of the 10 interpolated lines and

plotted in Figure 3. Between the random initializations and
“desirable” converged solutions there exists a region of local
minima in the loss landscape, and these local minima are
characterized by over-regularization. Losses illustrated are
computed as an expectation over all training data and a
Monte Carlo estimate of the reconstruction loss with 10 latent
samples to limit errors due to randomness.

We include an illustration of the avoidance of the avoidance of
these over-regularized local minima using our training method in
the Supplementary Material.

Of interest is that this over-regularized local minima region
does not fully surround the “desirable” region. Instead of
interpolating in parameter space between random
initializations and a converged solution, lines emanating away
from the converged solution along 1,000 random directions in
parameter space are created and the loss plotted along each.
Figure 3 illustrates that indeed no local minima are found around
the converged solution. We note that there are around 800,000
training parameters in this case, so 1,000 random directions may
not completely encapsulate the loss landscape around this
solution.

The Xavier uniform weight initialization scheme, and most
other initialization schemes, limit the norm of the parameters in
parameter space to near the origin. The local minima region exists
only between the converged solution region and points in
parameter space near the origin. In this case, there may be
alternative initialization schemes which can greatly aid in the
convergence of VAEs. This has been observed in [31] where the
initialization scheme proposed greatly accelerates the speed of
convergence and accuracy of reconstruction.

Over-regularized local minima follow a similar path during
training as desirable solutions. A region of attraction exists in the
loss landscape, and falling too close to this region will result in an
over-regularized solution, illustrated in Figure 4. One VAE which
obtains a desirable solution shares a similar initial path with an
over-regularized solution. Plotted are the VAE losses computed

FIGURE 3 | (left) Loss along interpolated lines between 10 random weight initializations and a desirable converged solution. (right) Loss along 100 (of 1,000)
random lines emanating from a desirable solution of the DenseVAE architecture. The parameter α indicates the distance along each random direction in parameter space
and does not necessarily correspond to the same parameter α in the left figure. Note that the loss is limited to 1,000 for illustration purposes.
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during training, not the training losses. The over-regularized
solution breaks from the desired path too early, indicating a
necessity for a longer reconstruction-heavy phase.

Training many VAEs with various β values facilitates a
visualization of over-regularization in the RD plane. Each
point in Figure 4 shows the loss values of converged VAEs
trained with different values of β. The over-regularized region of
attraction prevents convergence to desirable solutions for many
values of β. Interpolating in parameter space between each of
these points (corresponding to a VAE with its own converged
parameters) using the base VAE loss (β = 1), no other points on
the RD curve are local minima of the VAE loss. In Figure 4, we
observe that during training, the desirable solution reaches the
RD curve but continues toward the final solution.

4.3 Properties of Desirable Solutions
Avoiding over-regularization aids in convergence to solutions
characterized by low reconstruction error. Among solutions with
similar final loss values, inconsistencies remain in latent
properties. Two identical VAEs initialized separately often
converge to similar loss values, but one may exhibit
disentanglement while the other does not. This phenomenon
is also explored in [18] and [16]. Two VAEs are trained with
identical architectures, hyperparameters, and training method;

they differ only in the random initialization of network
parameters P. We denote the optimal network parameters
found from one initialization as P1 and optimal network
parameters found from a separate initialization P2. The losses
for each converged solution are quite similar
(LVAE1 ≈ − 9.50, LVAE2 ≈ − 9.42); however, disentanglement
properties of each are dramatically different. We interpolate
between these two solutions in parameter space (Eq. 26) and
record losses and disentanglement scores along the line
(Figure 5). The first network contains a nearly perfectly
disentangled latent representation while the second network
does not produce a disentangled representation. It is evident
that multiple local minima exist in parameter space which
converge to similar values in the loss landscape, but contain
very different latent correlations. Local minima exist throughout
the loss landscape, and with each initialization, a different local
minimummay be found. Many such differing solutions are found
throughout our experiments. This phenomenon is partially due to
invariance of the ELBO to rotations of the latent space when using
rotationally invariant priors. Disentanglement is heavily
dependent on a factorized representation of the latent
representation. With rotations not affecting the training loss,
learning a disentangled representation seems to be somewhat
random in this case.

FIGURE 4 | RD plane illustrating training convergence of both desirable and over-regularized solutions to the RD curve (β = 1). (right) Scale adjusted. (lower) RD
plane with points corresponding (from left to right) to β = [100, 10, 5, 2, 1, 0.1, 0.01, 0.001]. Many values of β between 5 and 100 fall into the over-regularized solution.
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This phenomenon exhibits the difficulties in disentangling
generative parameters in an unsupervised manner; without prior
knowledge of the factors of variation, conclusions cannot be
drawn regarding disentanglement by observing loss values
alone. In controlled experiments, knowledge of the underlying
factors of variation is available, but when only data is available,
full knowledge of such factors is often not. It is encouraging that
the VAE does have the power to disentangle generative
parameters in an unsupervised setting, but the nature of
disentanglement must first be understood better to create
identifying criterion.

5 CHARACTERIZING DISENTANGLEMENT

In this section, we explore the relationship between
disentanglement, the aggregated posterior (qϕ(z)), and the
generative parameter distribution (p(θ)) by incrementally
increasing the complexity of p(θ). Disentanglement is first
illustrated to be achievable but difficult using the classic VAE
assumptions and loss due to a lack of enforcement of the rotation
of the latent space caused by rotationally-invariant priors.
Hierarchical priors are shown to aid greatly in disentangling
the latent space by learning non-rotationally-invariant priors
which enforce a particular rotation of the latent space through
the regularization loss.

5.1 Standard Normal Generative
Distributions
The intrinsic dimensionality of the data is set to p= 2with a generative
parameter distribution p(θ) � N (θ; 0, I2×2), the standard normal
distribution. Limiting p to 2 aids greatly in the visualization of the
latent space and understanding of the ideas investigated. The standard
latent prior is identical to the generative parameter in this case,
creating a relatively simple problem for the VAE.

Using the architecture described in Section 4.1, the
relationship between regularization, reconstruction, and
disentanglement and the number of training samples is
illustrated in the included Supplementary Material. A similar

study is performed in [18] with a greater sample size.
Reconstruction losses continue to fall with the number of
training data, indicating improved reconstruction of the data
with increased number of samples; however, the regularization
loss increases slightly with the number of training data. With too
few samples, reconstruction performance is very poor and over-
regularization (near zero regularization loss) seems unavoidable.
Clear and consistent correlations exist among the loss values and
number of training data, but disentanglement properties vary
greatly among converged VAEs (Section 4.3). The compressed
representations range from nearly perfect disentanglement to
nearly completely entangled.

Although disentanglement properties are inconsistent between
experiments, desirable properties of disentanglement are often
observed. Training is performed using the maximum amount of
available data (512 snapshots), and analysis included for 512 testing
samples on the KLE2 dataset (regardless of p(θ)). Regularization loss
is large during the reconstruction phase in which β0 = 10–7, and the
y-axis is truncated for clarity. A comparison between a test data
sample and the reconstructed mean using the trained VAE is
depicted in Figure 6, showing little error between the mean μψ(z)
of the decoding distribution and the input data sample. With small
reconstruction error, a disentangled latent representation is learned.
Figure 6 also illustrates the aggregated posterior matching the prior
distribution in shape. This is unsurprising with a generative
parameter and prior distribution match and an expressive
network architecture. Finally, Figure 7 shows the correlation
between the generative parameters of the training and testing
data against the latent distribution as a qualitative measure of
disentanglement. Each latent dimension is tightly correlated to a
single but different generative parameter. Figure 7 also illustrates the
uncertainty in the latent parameters, effectively qϕ(z|θ). The latent
representation is fully disentangled; each latent parameter contains
only information about a single generative factor.

5.2 Non Standard Gaussian Generative
Distributions
The generative parameter distribution and the prior are identical
(independent standard normal) in the previous example. Most

FIGURE 5 | (left) Loss variation along a line in parameter space between two converged solutions containing identical hyperparameters and training method but
different network parameter initializations. (right) Disentanglement score along the same line.
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often, however, knowledge of the generative parameters is not
possessed. The specified prior in this case is unlikely to match the
generative parameter distribution. The next example illustrates
the application of a VAE in which the generative parameter
distribution and prior do not match. Another KLE2 dataset is
generated with a non standard Gaussian generative parameter
distribution. The generative parameter distribution is Gaussian,
but scaled and translated relative to the previous example p(θ) �
N (θ; [1; 1], [0.5, 0; 0, 0.5]).

Training a standard VAE on this dataset results in high
reconstruction accuracy, but undesirable disentanglement after
many trials. With the use of an additional hierarchical prior
network, good disentanglement can be achieved even with a
mismatch in the prior and generative parameter distributions.
The sub-prior (see Section 2.3) is the standard normal
distribution, but the hierarchical network learns a non-
standard normal prior. Still, the learned prior and generative
parameter distributions do not match. Figures 8, 9 illustrate
comparisons in results obtain from the VAE with and without the
hierarchical prior network. When using hierarchical priors, the
learned prior and aggregated posterior match reasonably well but
do not match the generative parameter distribution. However,
this does not matter as long as the latent representation is not
rotated relative to the generative parameter distribution, as
illustrated in the next example. Low reconstruction error and

disentanglement are observed using hierarchical priors, but
disentanglement was never observed using the standard VAE
after many experiments. This may be because β is not large
enough to enforce a regularization loss large enough to produced
an aggregated posterior aligned with the axes of the generative
parameter distribution. Therefore, the rotation of the learned
latent representation will be random and disentanglement is
unlikely to be observed, even in two dimensions. The
hierarchical network consistently enforces a factorized
aggregated posterior, which is essential for disentanglement
when generative parameters are independent. One potential
cause of this is the learning of non-rotationally-invariant
priors, such as a factorized Gaussian with independent scaling
in each dimension. The ELBO loss in this case is affected by
rotations of the latent space, aligning the latent representations to
the axes of the generative parameters.

A latent rotation can be introduced such that the
reconstruction loss is unaffected, but regularization loss
changes with rotation. Introducing a rotation matrix A
with angle of rotation ω to rotate the latent
distribution, the encoding distribution becomes
qϕ(z|y) � N (z;Aμϕ(y), Adiag(σϕ(y))AT). Reversing this
rotation when computing the decoding distribution
(i.e., pψ(y|z) � N (y; μϕ(ATz), diag(σψ(ATz)))) preserves the
reconstruction loss. However, the regularization loss can be

FIGURE 6 | (left) Data sample from unseen testing dataset. (center) Reconstructed data sample from trained VAE. (right) Error in the reconstruction mean. (lower)
Comparison of aggregated posterior (pϕ(z)) and prior (p(z)) distributions.
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plotted as a function of the rotation angle (included in the
Supplementary Material). When a rotationally-invariant prior
is used to train the VAE, regularization loss is unaffected by latent
rotation. However, when the prior is non-rotationally-invariant,
the regularization loss is affected by latent rotation. Thus, rotation
of the latent space is enforced by the prior during training.

Although the hierarchical prior adds some trainable
parameters to the overall architecture, the increase is only
0.048%. This is negligible, and it is assumed that this is not
the root cause of improved disentanglement. Rather, it is the
ability of the additional hierarchical network to consistently

express a factorized aggregated posterior and learn non-
rotationally-invariant priors which improves disentanglement.
More insights are offered in the next example and Section 7.

5.3 Multimodal Generative Distributions
In this setup, disentanglement not only depends on a factorized
qϕ(z), but the correlations in p(θ) must be preserved as well,
i.e., rotations matter. The previous example illustrates a case in
which the standard VAE fails in disentanglement but succeeds
with the addition of hierarchical priors due to improved
enforcement of a factorized qϕ(z) through learning non-

FIGURE 7 | (upper) Correlations between dimensions of generative parameters andmean of latent parameters. Also shown are the empirical marginal distributions
of each parameter. (lower) Correlations between generative parameters and latent parameters with uncertainty for test data only.
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rotationally-invariant priors. The generative parameter
distribution is radially symmetric, thus visualization of
rotations in qϕ(z) relative to p(θ) is difficult. To illustrate the
benefits of using hierarchical priors for disentanglement, the final
example uses data generated from a more complex generative
parameter distribution with four lines of symmetry for better
visualization. The generative parameter distribution is
multimodal (a Gaussian mixture) and is more difficult to
capture than a Gaussian distribution, but allows for better
rotational visualization:

p θ( ) � 1
4
N θ; −1;−1[ ], 0.25, 0; 0, 0.25[ ]( )

+ 1
4
N θ; 1; 1[ ], 0.25, 0; 0, 0.25[ ]( )

+ 1
4
N θ; −1; 1[ ], 0.25, 0; 0, 0.25[ ]( )

+ 1
4
N θ; 1;−1[ ], 0.25, 0; 0, 0.25[ ]( ).

Training VAEs without hierarchical priors results in over-
regularization more often than with the implementation of
HP. Out of 50 trials, 10% trained without HP were unable to
avoid over-regularization while all trials with HP successfully
avoided over-regularization. More epochs are required in the
reconstruction only phase (with and without HP) to avoid
over-regularization than in previous examples.
Disentanglement was never observed without the use of
hierarchical priors. This again is due to rotation of the
latent space relative to the generative parameter
distribution due to rotationally invariant priors. To
illustrate this concept, Figure 10 illustrates the effects of
rotation of the latent space on disentanglement. Clearly,
rotation dramatically impacts disentanglement, and the

standard normal prior does not enforce any particular
rotation of the latent space.

Implementing hierarchical priors, consistent observation of
not only better reconstruction (avoiding over-regularization) but
also reasonable disentanglement of the latent space in roughly
half of all trained VAEs (out of 50) exemplifies the improved
ability of hierarchical priors to produce a disentangled latent
representation. Reconstruction of test samples is more accurate
when implementing the hierarchical prior network, as illustrated
in Figure 11. We hypothesize that disentanglement is observed in
roughly half of our experiments due to local minima in the
regularization loss corresponding to 45° rotations of the latent
space, illustrated in the Supplementary Material. The learned
priors using HP are often non-rotationally-invariant and aligned
with the axes. However, the posterior is often rotated 45-degrees
relative to this distribution, creating a non-factorized and
therefore non-disentangled representation.

Comparing p(θ), p(z), and qϕ(z) with and without HP
(Figure 12), stark differences are noticeable. Without the HP
network, the aggregated posterior often captures the
multimodality of the generative parameter distribution, but it
is rotated relative to p(θ), creating a non-factorized qϕ(z).
Training the VAE with hierarchical priors, the learned prior
becomes non-rotationally invariant. The rotation of the
aggregated posterior is therefore controlled by the orientation
of the prior through the regularization loss, but mimics the shape
of the generative parameter distribution. It is clear that the prior
plays a significant role in terms of disentanglement: it controls the
rotational orientation of the aggregated posterior.

A qualitative measure of disentanglement is compared in
Figure 12. Without HP, the latent parameters are entangled;
they are each weakly correlated to both of the generative
parameters. Adding HP to the VAE results in disentanglement

FIGURE 8 | (top) Reconstruction accuracy of a test sample on trained VAE without hierarchical network, (bottom) with hierarchical network.
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in nearly half of our trials. When disentanglement does occur,
each latent factor contains information on mostly a single but
different generative factor. Through the course of our
experiments, a relationship between disentanglement and the
degree to which the aggregated posterior matches the generative
parameter distribution is recognized. When disentanglement
does not occur with the use of HP, the aggregated posterior is
rotated relative to p(θ), or non-factorized (it has always been
observed at around a 45-degree rotation). Only when qϕ(z) can be
translated and scaled to better match p(θ), maintaining the
correlations, does disentanglement occur. Thus, a quantitative
measure of disentanglement (Eq. 7) is created from this idea. The

KL divergence is estimated through sampling using the k-nearest
neighbors (k-NN) approach (version ϵ1) found in [19]. The
optimization is performed using the gradient-free Nelder-
Mead optimization algorithm [32].

In low-dimensional problems, humans are adept at
determining disentanglement from qualitative
measurements of disentanglement such as Figure 12. It
is, however, more difficult to obtain quantitative
measurements of these properties. Figure 13 shows the
relationship between Eq. 7 and a qualitative measurement
of disentanglement. Lower values of SKL indicate better
disentanglement. This measure of disentanglement and

FIGURE 9 | (upper left) Aggregated poster, prior, and generative parameter distribution comparison on VAE without hierarchical network, (upper right) with
hierarchical network. (lower left) Qualitative disentanglement in VAE trained without hierarchical network, (lower right) with hierarchical network.
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the intuition behind it is discussed further in the conclusions
section.

6 SEMI-SUPERVISED TRAINING

Difficulties with consistently disentangling generative
parameters have been illustrated up to this point with an
unsupervised VAE framework. In some cases, however,
generative parameters may be known for some number of
samples, suggesting the possibility of a semi-supervised
approach. These labeled samples can be leveraged to further

improve the consistency of learning a disentangled
representation. Consider data consisting of two partitions:
labeled data {y(i), θ(i)}li�1 and unlabeled data {y(i)}u+li�l+1. A
one-to-one mapping between the generative parameters θ
and the learned latent representation z is sought when
disentanglement is desired. Thus, enforcing the latent
representation to match the generative parameters for
labeled data in a semi-supervised approach should aid in
achieving our desired objective more consistently.

We begin the intuition behind a semi-supervised loss function
by illustrating its connection to the standard ELBO VAE loss.
One method of deriving the ELBO loss is to first expand the

FIGURE 10 | (top) aggregated posterior comparison showing rotation of the latent space, (bottom) worse disentanglement when latent space is rotated.
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relative entropy between the data distribution and the induced
data distribution to obtain

DKL p y( )||pψ y( )[ ] � −H Y( ) + Ep y( ) DKL qϕ z|y( )||p z( )[ ][ ]
−Ep y( ) DKL qϕ z|y( )||p z|y( )[ ][ ]
−Ep y( )qϕ z|y( ) logpψ y|z( )[ ]

where − H(Y) is constant and the “true” encoder p(z|y) is
unknown. Therefore, the term

Ep y( ) DKL qϕ z|y( )||p z|y( )[ ][ ]
is usually ignored and we arrive at the ELBO, which upper bounds
the left hand side. However, a relationship between z and y is
known for labeled samples. This relationship can be used to
assign p (z(i)|y(i)) on the labeled partition. For unlabeled data, the
standard ELBO loss is still used for training and the semi-
supervised loss to be minimized becomes

LVAE−SS ϕ,ψ( ) � Ep y( ) DKL qϕ z|y( )||p z( )[ ][ ]
−Epl y( ) DKL qϕ z|y( )||p z|y( )[ ][ ]
−Ep y( )qϕ z|y( ) logpψ y|z( )[ ]

(27)

where pl(y) is the distribution of inputs with corresponding labels,
p(y) is the distribution of all inputs (labeled and unlabeled), and
Epl(y)[DKL[qϕ(z|y)||p(z|y)]] is denoted LSS.

Note that the term Ep(y)[DKL[qϕ(z|y)||p(z)] −
DKL[qϕ(z|y)||p(z|y)]] is minimized by qϕ(z|y) = p(z|y) at I
(Z; Y), the mutual information between the generative
parameters and high dimensional data. In unsupervised VAEs,
the regularization term Ep(y)[DKL[qϕ(z|y)||p(y)]] is minimized

when qϕ(z|y) = p(y). As observed in previous sections,
disentanglement is observed when the aggregated posterior is
“close” to the generative parameter distribution. With the semi-
supervised loss being minimized when they are equivalent, the
learned latent representations should be more easily and
consistently disentangled.

However, empirically it is found that this loss is very sensitive
to changes in network parameters and unreasonably small
learning rates are required for stability. Additionally, there is
no obvious way to determine the variance of p (z(i)|y(i)) for each
sample, only the mean is easily identifiable. We therefore propose
to train with LSS � Epl(y)[−logqϕ(z|y)] instead such that the loss
function becomes

LVAE−SS ϕ,ψ( ) � Ep y( ) DKL qϕ z|y( )||p z( )[ ][ ]
− Epl y( ) logqϕ z|y( )[ ]
− Ep y( )qϕ z|y( ) logpψ y|z( )[ ]. (28)

Training with this loss achieves the desired outcome of
consistently learning disentangled representations while being
simple and efficient to implement.

Incorporating some labeled samples into training the VAE, a
disentangled latent representation can be consistently learned.
Figure 14 illustrates the relationship between increasing the
number of labeled samples and the disentanglement score of
the learned latent representation. In each case, there are 512
unlabeled samples. Each trial varies in the number of labeled
samples, and VAEs trained with the same number of labeled
samples are trained with a different set of labeled samples. Ten
VAEs are trained at each point, and the range illustrated

FIGURE 11 | (top) Reconstruction accuracy of a test sample using VAE trained on multimodal generative parameter distribution without hierarchical network,
(bottom) with hierarchical network.
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represents the maximum and minimum disentanglement score
across the 10 trials.

The training losses do not seem to be effected by the number of
labeled samples, only the disentanglement score is effected. With
a low number of labeled samples, the semi-supervised VAE trains
very similarly to the unsupervised VAE. That is, disentanglement
is observed rather randomly, and the learned latent
representation varies dramatically between trials. Labeling
around 1% of the samples begins to result in consistently good
disentanglement. Labeling between 3% and 8% results in learning

disentangled latent representations which are nearly identical
between trials. It follows from these results that disentangled
representations can be consistently learned when training with
Eq. 28 when using a sufficient number of labeled samples
(assuming a sufficiently expressive architecture).

Using a semi-supervised method also improves the ability of
the VAE to predict data in regions of lower density. In Figure 15,
we observe that the aggregated posterior matches the generative
parameter distribution much better than the unsupervised case
with just over 1% of the samples labeled. Additionally, regions of

FIGURE 12 | (upper left) Aggregated posterior, prior, and generative parameter distribution comparison using VAE trained on multimodal generative parameter
distribution without hierarchical network, (upper right) with hierarchical network. (lower left) Qualitative disentanglement using VAE trained on multimodal generative
parameter distribution without hierarchical network, (lower right) with hierarchical network.
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low density in the generative parameter distribution are better
represented in the semi-supervised case over the unsupervised
case; in other words, multimodality is better preserved (compare
to Figure 12).

7 CONCLUDING REMARKS AND
PERSPECTIVES

Learning representations such that each latent dimension
corresponds to a single physical generative factor of variation
is useful in many applications, particularly when learned in an
unsupervised manner. Learning such disentangled
representations using VAEs is dependent on many factors
including network architecture, assumed form of distributions,
prior selection, hyperparameters, and random seeding. The goal

of our work is to develop 1) a consistent unsupervised framework
to learn disentangled representations of data obtained through
physical experiments or PDE simulations, and 2) to
comprehensively characterize the underlying training process,
and to recommend strategies to avoid sub-optimal
representations.

Accurate reconstruction is desirable from a variety of
perspectives, including being necessary for consistent
disentanglement. Given two samples near one another in data
space, and an accurate decoder, those two samples will be
encourage to be near one another in latent space. This is a
result of the sampling operation when computing the
reconstruction loss. The reconstruction loss is minimized if
samples near one another in latent space correspond to
samples near one another in data space. Thus, finding an
architecture suitable for accurate prediction from latent

FIGURE 13 | A quantitative measure of disentanglement compared to a qualitative measure. As SKL increases, the latent space becomes more entangled.

FIGURE 14 | (left) Disentanglement score mean increases with ratio of labeled to unlabeled samples when training with a semi-supervised loss. Disentanglement
also becomes more consistently observed. (right) Training losses are unaffected by the number of labeled samples.
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representations is of great importance to learn disentangled
representations. In our experiments, different architectures
were implemented before arriving at and refining the dense
architecture (Section 4.1), which was found to accurately
reconstruct the data from latent codes. Even with a suitable
architecture, however, significant obstacles need to be
overcome to arrive at a consistent framework for achieving
disentangled representations. Over-regularization can often be
difficult to avoid, especially when the variation among data
samples is minor. This again emphasizes the necessity to
accurately reconstruct the data first before attempting to learn
meaningful representations. We have illustrated methods of
avoiding over-regularization when training VAEs, but
rotationally invariant priors can still create additional
difficulties in the ability to disentangle parameters. We
illustrated in Section 5 that the standard normal prior
typically assumed (which is rotationally-invariant) does not
enforce any particular rotation of the latent space, often
leading to entangled representations. Rotation of the latent
space matters greatly, and without rotational enforcement on
the encoder, disentanglement is rarely, or rather randomly,
achieved when training with the ELBO loss. We have also
shown that the implementation of hierarchical priors allows
one to learn non-rotationally-invariant priors such that the
regularization loss enforces a rotational constraint on the
encoding distribution. However, the regularization loss can
contain local minima as the latent space rotates, enforcing a
non-factorized and thus incorrectly rotated aggregated posterior.
This indicates the need for better prior selection, especially in
higher latent dimensions when rotations create more complex
effects.

Matching the aggregated posterior to the generative parameter
distribution can also be enforce by including labeled samples
during training. Including some number of labeled samples in the

dataset and training with a semi-supervised loss, the aggregated
posterior consistently matches the shape and orientation of the
generative parameter distribution, effectively learning a
disentangled representation. The multimodality of the data
distribution is also better represented when using labeled data,
indicating that the VAE can better predict data in regions of low
density over the unsupervised version.

In reference to Section 5, the total correlation (TC)
DKL[qϕ(z)‖∏n

i�1qϕ(zi)] appears to be a useful and simpler
measurement of disentanglement. When the generative
parameters are completely independent
(i.e., p(θ) � ∏p

i�1p(θi)) and disentanglement occurs when a
factorized qϕ(z) is learned (aligning the latent space axes with
the generative parameter axes). This is the objective of the
FactorVAE framework [8], which can successfully encourage a
factorized qϕ(z) through the introduction of TC into the loss
function, modifying to ELBO. However, considering a case in
which the generative parameters are correlated, a factorized qϕ(z)
is not necessarily desirable. It is in anticipation of a more
correlated p(θ) that we use Eq. 7 as a measure of
disentanglement. Additionally, in our work we do not modify
the standard VAE objective to produce more accurate
reconstruction of the data.

Complete disentanglement has not been observed when
generative parameters are correlated in our experiments, but
after many trials the same conclusions have been drawn as
the uncorrelated case: for disentanglement to occur, the
aggregated posterior must contain the same “shape” as the
generative parameter distribution - this includes
correlations up to permutations of the axes. The
Supplementary Material further illustrates these ideas.
Future work will include disentangling correlated
generative parameters, which may be facilitated through
learning correlated priors using HP.

FIGURE 15 | (left) Aggregated posterior matches the generative parameter distribution with semi-supervised training. (right) Multi-modality is well preserved.

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 89091020

Jacobsen and Duraisamy Disentangling Generative Factors

78

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


In addition to disentangling correlated generative parameters,
our broader aim is to extend our work to more complex problems
to create a general framework for consistent unsupervised or
semi-supervised representation learning. Through our
observations here regarding non-rotationally invariant priors
along with insights gained from [16], we hypothesize that such
a framework will be largely focused on both prior selection and
the structural form of the encoding and decoding distributions.
Additionally, in a completely unsupervised setting, one must find
an encoder and decoder which disentangle the generative
parameters, but the dimension of the generative parameters
may be unknown. The dimension of the latent space is always
user-specified; if the dimension of the latent space is too small or
too large, how does this effect the learned representation? Can
one successfully and consistently disentangle generative
parameters in higher dimensions? These are some of the open
questions to be addressed in the future.

The issue of over-regularization often greatly hinders our
ability to train VAEs (Section 4.2). Different initialization
strategies may be investigated to increase training performance
and avoid the issue altogether. It has been shown that principled
selection of activation functions, architecture, and initialization
can greatly improve not only the efficiency of training, but also
facilitate greater performance in terms of reconstruction [31].

The greater scope of this work is to develop an unsupervised
and interpretable representation learning framework to generate
probabilistic reduced order models for physical problems and use
learned representations for efficient design optimization.
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APPENDIX A: ROTATIONALLY-INVARIANT
DISTRIBUTIONS

A matrix R ∈ Rn×n is a rotation matrix if for all z ∈ Rn, ‖Rz‖2
= ‖z‖2.

A probability distribution p(z) is said to be rotationally-invariant
if p(z) = p (Rz) for all z ∈ Rn and for all rotation matrices R ∈ Rn×n.

The ELBO loss is unaffected by rotations of the latent space
when training with a rotationally-invariant prior. This is shown
in detail in [16].
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High order entropy stable schemes provide improved robustness for computational
simulations of fluid flows. However, additional stabilization and positivity preserving
limiting can still be required for variable-density flows with under-resolved features. We
demonstrate numerically that entropy stable Discontinuous Galerkin (DG) methods which
incorporate an “entropy projection” are less likely to require additional limiting to retain
positivity for certain types of flows. We conclude by investigating potential explanations for
this observed improvement in robustness.

Keywords: computational fluid dynamics, high order, discontinuous Galerkin (DG), summation-by-parts (SBP),
entropy stability, robustness

1 INTRODUCTION

Discontinuous Galerkin (DG) schemes have received interest within computational fluid dynamics
(CFD) due to their high order accuracy and ability to handle unstructured curved meshes. In
particular, there has been interest in DG methods for simulations of under-resolved flows [1–5].
Among such schemes, “entropy stable”DGmethods based on a “flux differencing” formulation have
received interest due to their robustness with respect to shocks and turbulence [6–9].

Entropy conservative and entropy stable flux differencing schemes were originally formulated for
finite difference methods in [10, 11]. They were extended to tensor product grids using discontinuous
spectral collocation schemes (also known as discontinuous Galerkin spectral element methods, or
DGSEM) [12, 13]. Entropy stable collocation schemes were extended to simplicial meshes in [14, 15]
using multi-dimensional summation-by-parts (SBP) operators [16]. Non-collocation entropy stable
schemes have also been developed. These schemes began with staggered grid schemes on tensor
product grids in [17], which were later extended to simplicial elements in [18]. “Modal” entropy
stable DG formulations [19–21] have been utilized to construct a variety of new entropy stable
schemes, including Gauss DG methods [22, 23] and reduced order models [24]. We note that under
appropriate choices of quadrature, these “modal” formulations reduce to collocation-type entropy
stable schemes. Entropy stable schemes have since been extended to an even wider array of
discretizations, such as line DG methods, discontinuous Galerkin difference methods, and C0

continuous discretizations [25–27].
The main difference between non-collocation and collocation-type entropy stable schemes is the

use of transformations between conservative variables and entropy variables together with projection
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or prolongation operators to facilitate a discrete proof of entropy
stability. This is referred to as the “entropy projection” in [19, 25]
and as the interpolation or prolongation of entropy variables in
[17, 27]. This approach is also equivalent to the mixed
formulation of [28]. We will refer to this transformation as
the “entropy projection” for the remainder of the paper.

The motivation for introducing the entropy projection has
been to enable the use of more accurate quadrature rules or novel
basis functions. This has been at the cost of additional complexity
and issues related to the sensitivity of the entropy variables for
near-vacuum states [19, 27]. To the best of the authors’
knowledge, no inherent advantages in using the entropy
projection have been observed in the literature. This paper
focuses on the following observation: high order entropy stable
schemes based on the entropy projection appear to be more
robust than entropy stable collocation schemes for two and three
dimensional simulations of under-resolved variable-density fluid
flows with small-scale features.

The structure of the paper is as follows: Section 2 reviews
mathematical formulations of entropy stable schemes which
involve the entropy projection. Section 3 documents the
observed difference in robustness for a variety of problems in
two and three dimensions, and provides analysis and numerical
experiments which support that the primary difference between
unstable and stable schemes is the entropy projection. Section 4
conjectures potential explanations for why the entropy projection
might improve robustness. We conclude with Section 5, which
explores potential applications towards under-resolved flow
simulations.

2 FORMULATION OF HIGH ORDER
ENTROPY STABLE DISCONTINUOUS
GALERKIN SCHEMES
In this section, we provide a brief description of high order
entropy stable schemes in 1D. More detailed derivations, multi-
dimensional formulations, and extensions to curved grids can be
found in [14, 15, 19, 21, 22, 24].

The notation in this paper is motivated by notation in [15,
29]. Unless otherwise specified, vector and matrix quantities
are denoted using lower and upper case bold font,
respectively. Spatially discrete quantities are denoted using
a bold sans serif font. Finally, the output of continuous
functions evaluated over discrete vectors is interpreted as a
discrete vector.

For example, if x denotes a vector of point locations,
i.e., (x)i � xi, then u(x) is interpreted as the vector

u x( )( )i � u xi( ).
Similarly, if u � u(x), then f(u) corresponds to the vector

f u( )( )i � f u xi( )( ).
Vector-valued functions are treated similarly. For example,

given a vector-valued function f : Rn → Rn and a vector of
coordinates x, we adopt the convention that (f (x))i � f (xi).

2.1 Conservation Laws With Entropy
In this section, we review the construction of entropy
conservative and entropy stable schemes for a one-
dimensional system of nonlinear conservation laws

zu
zt

+ zf u( )
zx

� s u( ),

where s(u) is a source term. We assume the domain is exactly
represented by a uniform mesh consisting of non-overlapping
intervals Dk, and that the solution u(x) is approximated by degree
N polynomials over each element. We also introduce entropy
conservative numerical fluxes fS(uL, uR) [30], which are bivariate
functions of “left” and “right” states uL, uR. In addition to being
symmetric and consistent, entropy conservative numerical fluxes
satisfy an “entropy conservation” property

vL − vR( )Tf S uL, uR( ) � ψ uL( ) − ψ uR( ). (1)
here, vL, vR are entropy variables evaluated at the left and right
states, and ψ(u) denotes the “entropy potential”. Examples of
expressions for entropy variables and entropy potentials can be
found in [14].

2.2 Collocation Formulations
Degree N entropy stable collocation schemes are typically built
from Legendre-Gauss-Lobatto (LGL) quadrature rules with (N +
1) points. Let x,w denote vectors of quadrature points and
weights on the reference interval [−1, 1]. Let ℓi(x) denote
Lagrange polynomials at LGL nodes, and let u denote the
vector of solution nodal values u(xi). Define the matrices

M � diag(w), Qij � ∫
1

−1

zℓj
zx

ℓidx,

B � −1
1

⎡⎣ ⎤⎦, Vf � 1 . . . 0

0 . . . 1
⎡⎣ ⎤⎦.

here Vf is a face interpolation or extraction matrix which maps
from volume nodes to face nodes. Flux derivatives are discretized
using a “flux differencing” approach involving summation-by-
parts (SBP) operators and entropy conservative fluxes [30]. An
entropy stable collocation formulation can now be defined on an
element Dk as follows:

hM
du
dt

+ Q −QT( )◦F( )1 + VT
fBf

p � s u( ), Fij � f S ui,uj( ),
(2)

where h is the size of the element Dk and ◦ denotes the matrix
Hadamard product [10–12].1 Here, fp is a vector which
contains numerical fluxes at the left and right endpoints of the
interval

1Since the entries of F are vector-valued, the Hadamard product (Q −QT)◦F
should be understood as each scalar entry of (Q −QT) multiplying each vector-
valued entry of F.
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fp � f p u+
1 ,u1( )

f p uN+1,u+
N+1( )[ ],

where u+
1 ,u

+
N+1 denote exterior nodal values on neighboring

elements. If f p is an entropy conservative flux, then the
resulting numerical method is semi-discretely entropy
conservative. If f p is an entropy stable flux (for example, Lax-
Friedrichs flux, HLLC, and certain matrix penalizations [14, 31])
then the resulting scheme also dissipates entropy.

2.3 “Modal” Formulations
DegreeN entropy stable “modal”DG schemes generalize collocation
schemes to arbitrary choices of quadrature. In one dimension, this
allow for the use of higher accuracy volume quadratures. In higher
dimensions, modal formulations also enable more general choices of
surface quadrature. These schemes introduce an additional “entropy
projection” step to facilitate the semi-discrete proof of entropy
stability or conservation.

We now assume the solution is represented using some
arbitrary basis over each element, such that u(x) � ∑jujϕj(x).
Let x, w now denote a general quadrature rule with positive
quadrature weights. We define quadrature-based interpolation
matrices Vq,Vf, the mass matrix M, and the modal
differentiation matrix Q̂

Vq( )
ij
� ϕj xi( ), Vf( )

1j
� ϕj −1( ), Vf( )

2j
� ϕj 1( ),

M � VT
qdiag(w)Vq, Q̂ij � ∫

1

−1

zϕj

zx
ϕidx.

We introduce the quadrature-based projection matrix
Pq � M−1VT

qdiag(w). Using Pq and Q̂, we can construct
quadrature-based differentiation and extrapolation matricesQ, E

Q � PT
q Q̂Pq, E � VfPq.

To accommodate general quadrature rules which may not
include boundary points, we introduce hybridized SBP operators
Qh on the reference interval [−1, 1]

Qh � 1
2

Q − Q( )T ETB
−BE B

[ ].

The use of such operators simplifies the implementation for
general quadrature rules and nodal sets which do not include
boundary nodes [19, 32]. Next, we define Vh as the interpolation
matrix to both volume and surface quadrature points

Vh � Vq

Vf
[ ].

We also introduce the L2 projection of the entropy variables
and the “entropy projected” conservative variables ~u

v � Pqv Vqu( ), ~u � u Vhv( ),
which are defined by evaluating the mapping from conservative
to entropy variables u(v) using the projected entropy variables.
Here, v(u) denotes the mapping from conservative to entropy

variables. Note that the projected entropy variables v is a vector
corresponding tomodal coefficients, while ~u corresponds to point
values at volume and face quadrature points.

An entropy stable modal DG discretization over a single
element Dk is then

hM
du
dt

+ VT
h Qh −QT

h( )◦F( )1 + VT
fBf

p � s u( ), (3)

Fij � f S ~ui, ~uj( ), fp � f p ~u+
1 , ~u1( )

f p ~uN+1, ~u
+
N+1( )[ ].

Note that the right hand side formulation is evaluated not
using the conservative variables u, but the “entropy projected”
conservative variables ~u.

While we have presented entropy stable DG schemes using a
general “modal” DG framework, the formulation reduces to
existing methods under appropriate choices of quadrature and
basis. For example, specifying LGL quadrature on a tensor
product element recovers entropy stable spectral collocation
schemes [22]. SBP discretizations without an underlying basis
on simplices [14–16] can also be recovered for appropriate
quadrature rules by redefining the interpolation and projection
matrices Vq,Pq [33].

3 NUMERICAL COMPARISONS OF
COLLOCATION AND ENTROPY
PROJECTION SCHEMES
In this section, we will demonstrate numerically that a significant
difference in robustness is observed between collocation and
entropy projection-based discretizations of the Euler and ideal
MHD equations. For the Euler equations, we study the Kelvin-
Helmholtz, Rayleigh-Taylor, and Richtmeyer-Meshkov
instabilities, and for the MHD equations we study a
magnetized Kelvin-Helmholtz instability. All of these examples
exhibit small-scale turbulent-like features. Moreover, we observe
a difference in robustness between entropy stable collocation and
entropy projection-based methods independently of the
polynomial degrees, mesh resolutions, and type of mesh (e.g.,
quadrilateral or triangular). We focus on the following entropy
stable DG methods:

• On quadrilateral meshes:
(1) DGSEM: collocation scheme based on the tensor

product of one-dimensional (N + 1) point LGL
quadrature,

(2) Gauss DG: a “collocation” scheme based on the tensor
product of one-dimensional (N + 1) point Gauss
quadrature. The entropy projection is used to
evaluate interface fluxes [22],

• On triangular meshes:
(1) SBP: a collocation scheme based on multi-dimensional

summation-by-parts finite difference operators [14, 16],
(2) Modal: a modal formulation utilizing quadrature rules

which exactly integrate entries of the volume and face
mass matrices [19].
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Remark 1. It is known that the Kelvin-Helmholtz, Rayleigh-
Taylor, and Richtmeyer-Meshkov instabilities are notoriously
sensitive to initial conditions and discretization parameters,
and that numerical schemes may not converge to a unique
solution [34, 35]. Instead, this paper focuses on these
problems as stress tests of robustness.

Unless specified otherwise, all numerical experiments
utilize a Lax-Friedrichs interface flux with Davis wavespeed
estimate [36]. We also experimented with HLL and HLLC
surface fluxes, but did not notice a significant difference. We
also note that instead of discontinuous initial conditions, we
utilize smoothed approximations for each problem
considered here.

All experiments are also performed on uniform meshes. For
triangular meshes, this mesh is constructed by bisecting each
element of a uniform quadrilateral mesh along the diagonal.
Unless specified otherwise, all results are produced using the Julia
[37] simulation framework Trixi.jl [38, 39]. For most
experiments, we utilize an optimized adaptive 4th order 9-
stage Runge-Kutta method [40] implemented in
OrdinaryDiffEq.jl [41]. The absolute and relative tolerances are
set to 10–7 unless specified otherwise. Scripts generating main
results are included in a companion repository for
reproducibility [42].

We note that the robustness, efficiency, and high order
accuracy of both entropy stable DGSEM and entropy stable
Gauss DG schemes have been verified in previous works [7–9,
22, 23], and will not be addressed in detail in this paper. However,
the difference in robustness between the two methods has not
been previously observed in the literature, and will be the focus of
this work.

3.1 Euler Equations of Gas Dynamics
We consider first the two and three-dimensional problems for the
Euler equations of gas dynamics. The conservative variables for
the three-dimensional Euler equations are density, momentum,
and total energy, u � (ρ, ρv, E), where the vector v � (u, v, w)
contains the velocities in x, y and z, respectively. The flux reads

f u( ) �

ρv

ρvvT + Ip

v
1
2
ρ‖v‖2 + γp

γ − 1
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where I is the 3 × 3 identity matrix, γ is the heat capacity ratio, and
p � (γ − 1)(E − ρ‖v‖2/2) is the gas pressure. For two-
dimensional problems, we neglect the third component of the
velocity, w, and I becomes the 2 × 2 identity matrix.

All the following experiments use the entropy conservative
and kinetic energy preserving flux of Ranocha [43, 44]; however,
similar results were observed when experimenting with the
entropy conservative flux of Chandrashekar [45].

3.1.1 Two Dimensional Kelvin-Helmholtz Instability
We perform additional experiments analyzing the robustness of
entropy stable DGSEM and Gauss DG for the Kelvin-Helmholtz

instability. The domain is [−1, 1]2 with initial condition
from [46]:

ρ � 1
2
+ 3
4
B, p � 1,

u � 1
2

B − 1( ), v � 1
10

sin 2πx( ),
(4)

where B(x, y) is a smoothed approximation to a discontinuous
step function

B x, y( ) � tanh 15y + 7.5( ) − tanh 15y − 7.5( ). (5)
Each solver is run until final time Tfinal = 15. As can be

observed in Figure 1, the solution differs significantly between the
N = 3 and N = 7 simulations. This is likely a consequence of the
well-known sensitivity of the Kelvin-Helmholtz instability to
small perturbations and numerical resolutions [34, 35]. End
times for each simulation can be found in Table 1.

3.1.2 Two Dimensional Rayleigh-Taylor Instability
The two-dimensional Rayleigh-Taylor instability generates small-
scale flow features through buoyancy or gravity effects [47, 48]. The
setup involves a heavy and light fluid suspended above one another
separated by a curved interface, and buoyancy or gravity results in
displacement of the lighter fluid into the heavier one. This
displacement causes velocity shear and the formation of
additional Kelvin-Helmholtz instabilities along the interface. The
domain is [0, 1/4] × [0, 1].

Let da,b(x) � a + 1
2 (1 + tanh(sx))(b − a) denote a smoothed

approximation (with slope s) to a discontinuous function with
values a for x < 0 and b for x > 0. The initial condition is given by

ρ � d2,1 y − 1
2

( ), p � 2y + 1 y< 1/2
y + 3/2 y≥ 1/2{ ,

u � 0 v � − c

40
cos 8kπx( )sin πy( )6,

where c � ����
γp/ρ

√
is the speed of sound. Here, we borrow from

[49] and multiply the y-velocity perturbation by sin(πy)6 so that
u, v satisfy wall boundary conditions. We also add gravity source
terms to the y-momentum and energy equations:

s x, t( ) � 0 0 gρ gρv[ ],
where s = 15. Note that the sign of gravity is such that the light
fluid flows up into the heavy fluid. Reflective wall boundary
conditions are imposed at all boundaries using mirror states,
which results in an entropy stable scheme under the Lax-
Friedrichs flux [14, 50]. Figure 2 shows snapshots of the
density for a degree N = 3 entropy stable Gauss DG scheme
on a mesh of 32 × 128 elements at various times. End times for
each simulation can be found in Table 2.

3.1.3 Two Dimensional Richtmeyer-Meshkov
Instability
The Richtmeyer-Meshkov instability generates small-scale flow
features by passing a shock over a stratified fluid [47, 51]. The
domain for this setup is [0, 40/3] × [0, 40], and the initial density
and pressure are given by
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ρ � d1,14
y − 18 + 2 cos

6πx
L

( )( )( ) + d3.22,0 y − 4
∣∣∣∣ ∣∣∣∣ − 2( ),

p � d4.9,1 y − 4
∣∣∣∣ ∣∣∣∣ − 2( ),

where we again set the slope s = 15. The initial velocities are both
set to zero, i.e., u, v = 0. We approximate the discontinuous initial
condition using smoothed Heaviside functions with a slope of s =
2 due to the size of the domain. Reflective wall boundary
conditions are imposed everywhere. Figure 3 shows
pseudocolor plots of the density using a degree N = 3 entropy

stable Gauss DG on a uniform mesh of 32 × 96 quadrilateral
elements. End times for each simulation can be found in Table 3.

3.1.4 Three-Dimensional Kelvin-Helmholtz Instability
For completeness, we also verify that a difference in robustness is
observed for instability-type problems in three dimensions. Due to the
high computational cost of entropy stable DGmethods on tetrahedral
meshes, we restrict ourselves to hexahedral meshes for the following
experiments. We adapt the Kelvin-Helmholtz instability to three
dimensions using the following initial condition:

FIGURE 1 | Snapshots of density for the Kelvin-Helmholtz instability using an entropy stable Gauss DG scheme on uniform quadrilateral meshes.

FIGURE 2 | Density for a Rayleigh-Taylor instability for a degree N = 3 entropy stable Gauss DG scheme on a mesh of 32 × 128 elements.
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ρ � 1
2
+ 3
4
B p � 1

u � 1
2

B − 1( ) v � 1
10

sin 2πx( )sin 2πz( ) w � 1
10

sin 2πx( )sin 2πz( ),

where B is defined as in Eq. 5.Table 3 shows the results, which are
similar to previous results for the two-dimensional test problems.
We note for this example, both the relative and absolute adaptive
time-step tolerances were set to 10–8 instead of 10–7. This was
necessary to avoid crashes for the entropy projection method at
degrees N = 6 and N = 7 on the finer Ncells = 32 mesh.

3.2 Ideal GLM-MHD Equations
Next, we consider the ideal GLM-MHD equations. These
equations use generalized Lagrange multiplier (GLM)
technique to evolve towards a solution that bounds the
magnetic field divergence. When the magnetic field divergence
is non-zero, the GLM-MHD system requires the use of non-
conservative terms to achieve entropy stability and to ensure
Galilean invariance in the divergence cleaning technique.

The non-conservative GLM-MHD system without source
terms reads

zu
zt

+ ∇ · f u( ) +  � 0, (6)

where the state variables are density, momentum, total energy,
magnetic field, and the so-called divergence-correcting field,
u � (ρ, ρv, E,B,ψ), and the vectors v � (u, v, w) and B �
(B1, B2, B3) contain the velocities and magnetic field in x, y
and z, respectively. The flux reads

f u( ) �

ρv

ρvvT + I p + 1
2
‖B‖2( ) − BBT

v
1
2
ρ‖v‖2 + γp

γ − 1
+ ‖B‖2( ) + B chψ − v · B( )( )

vBT − BvT + Ichψ

chB

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where I is again the 3 × 3 identity matrix, γ is the heat capacity
ratio, ch is the hyperbolic divergence-cleaning speed, and p �
(γ − 1)(E − (ρ‖v‖2 − ‖B‖2 − ψ2)/2) is the gas pressure. Finally,
the non-conservative term reads

 � ∇ · B( ) 0,B, v · B, v, 0( ) + 0, 0,ψ v · ∇ψ( ), 0, v · ∇ψ( ). (7)
To construct a two-dimensional version of the GLM-MHD

system, we replace I by a rectangular 3 × 2 identity matrix and
neglect the flux in z. However, we keep the third component of
the velocity and magnetic field because plasma systems admit
three-dimensional electromagnetic interactions in two-
dimensional problems. For details about the GLM-MHD
system, we refer the reader to [52].

The non-conservative GLM-MHD system (Eq. 6) can be
discretized using the collocation (Eq. 2) and modal (Eq. 3)
formulations by replacing the volume term F and the surface
term fp [53]. In the collocation formulation the new terms read

FIGURE 3 | Density for the Richtmeyer-Meshkov instability using a degree N = 3 entropy stable Gauss DGwith 32 × 96 elements. The domain is [0, 40/3] × [0, 40].

TABLE 1 | End time for simulations of the 3D Kelvin-Helmholtz instability on
hexahedral meshes. “Collocation” refers to a nodal DGSEM discretization,
while “entropy projection” refers to a method based on Gauss nodes.

Degree 1 2 3 4 5 6 7

Solver

3D KHI, Ncells = 16
Collocation 10 2.73 2.111 1.978 2.059 1.797 1.893
Entropy projection 10 10 10 10 10 10 10
3D KHI, Ncells = 32
Collocation 4.049 2.451 2.061 1.721 2.071 1.973 1.952
Entropy projection 10 10 10 10 10 10 10

Times colored blue correspond to simulations which did not crash and ran to completion,
while times colored red denote simulations which did crash.
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Fij � f S ui, uj( ) +Φ◇ ui, uj( ),

fp � f p u+
1 , u1( ) +Φ◇ u+

1 , u1( )
f p uN+1, u+

N+1( ) +Φ◇ uN+1, u+
N+1( )[ ]. (8)

and in the modal formulation they read

Fij � f S ~ui, ~uj( ) +Φ◇ ~ui, ~uj( ),

fp � f p ~u+
1 , ~u1( ) +Φ◇ ~u+

1 , ~u1( )
f p ~uN+1, ~u+

N+1( ) +Φ◇ ~uN+1, ~u+
N+1( )[ ]. (9)

In addition to the symmetric two-point flux fS, we use a
non-symmetric two-point term Φ◇ to account for the non-
conservative term in the equation. The following experiment
uses the non-conservative term presented by Rueda-Ramírez
et al. [53] and the entropy conservative flux of Hindenlang and
Gassner [54], which is a natural extension of the entropy
conservative, kinetic energy preserving, and pressure
equilibrium preserving Euler flux of Ranocha [43, 44] to the
GLM-MHD system.

3.2.1 Two Dimensional Magnetized Kelvin-Helmholtz
Instability
To test the robustness of entropy projection schemes for the
GLM-MHD system, we propose a modification of the Euler two-
dimensional Kelvin-Helmholtz instability of Section 3.1.1. The
domain is [−1, 1]2 with the initial condition:

ρ � 1
2
+ 3
4
B, p � 1, ψ � 0,

u � 1
2

B − 1( ), v � 1
10

sin 2πx( ), w � 0,

B1 � 0, B2 � 0.125, B3 � 0,

(10)

where B(x, y) is as defined in Eq. 5. Each solver is run until final
time Tfinal = 15.

For this example, we set ch as the maximum wave speed in the
domain for the initial condition (Eq. 10) and keep it constant
throughout the simulation. This standard way of selecting ch has
been shown to control the divergence error efficiently without
affecting the time-step size [52, 55]. We observed that smaller
values of ch affect the robustness of the schemes for this problem,
and higher values of ch increase the stiffness of the problem which
can also lead to a crash if the tolerance for the adaptive time-
stepping method is set too loosely.

Figure 4 shows pseudocolor plots of the density at T = 10 for
the magnetized Kelvin-Helmholtz instability problem obtained
with the entropy stable Gauss DG using polynomial degreesN = 3

FIGURE 4 | Snapshots of density for the magnetized Kelvin-Helmholtz instability using an entropy stable Gauss DG scheme on uniform quadrilateral meshes.

TABLE 2 | End time for simulations of the Kelvin-Helmholtz instability on
quadrilateral and triangular meshes. On quadrilateral meshes, “collocation”
refers to a nodal DGSEM discretization, while “entropy projection” refers to a
method based on Gauss nodes. On triangular meshes, “collocation” refers to
nodal SBP discretization, while “entropy projection” refers to a modal entropy
stable DG method.

Degree 1 2 3 4 5 6 7

Solver

KHI, quadrilateral mesh, Ncells = 16
Collocation 15 4.807 3.769 4.433 3.737 3.369 3.642
Entropy projection 15 15 15 15 15 15 15
KHI, quadrilateral mesh, Ncells = 32
Collocation 15 4.116 3.652 4.266 3.54 3.663 3.556
Entropy projection 15 15 15 15 15 15 15
KHI, triangular mesh, Ncells = 16
Collocation 15 3.984 3.441 2.993 2.943 3.128
Entropy projection 15 15 15 15 15 15
KHI, triangular mesh, Ncells = 32
Collocation 3.919 3.452 3.191 2.958 3.063 3.269
Entropy projection 15 15 15 15 15 15

Times colored blue correspond to simulations which did not crash and ran to completion,
while times colored red denote simulations which did crash.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 8980287

Chan et al. On Entropy Projection and Robustness

88

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


andN = 7 on uniformmeshes of 64 × 64 and 32 × 32 quadrilateral
elements, respectively. A comparison with Figure 1 shows that
the addition of a vertical magnetic field extends the flow features
in the y direction and suppresses many of the vortical structures at
T = 10. MHD turbulence eventually develops in the domain after
T = 10, which leads to later crash times for this example. End
times for each simulation can be found in Table 3.

3.3 Overview of Results
Tables 1,2,4,5 show what time the solver ran until for each solver
on both quadrilateral and triangular meshes. We observe the
pattern that, for degree N > 1, entropy stable methods which
utilize the entropy projection appear be more robust than
collocation-type schemes. Moreover, this pattern appears to
hold independently of the polynomial degree and mesh size.

3.4 Dependence of Robustness on Atwood
number
While the numerical results in the previous section indicate a
difference between different entropy stable schemes, they do not
provide insight into why and when this difference in robustness
manifests. The goal of this section is to establish a relationship
between robustness, the Atwood number (a measure of the
density contrast), and the use of the “entropy projection” in
an entropy stable scheme. We restrict our focus to the Kelvin-
Helmholtz instability for this section.

The results presented so far are somewhat unexpected, as the
robustness of high order entropy stable DG schemes has been
documented for a variety of flows where shocks and turbulent
features are present [7–9, 13]. In this section, we conjecture that
the documented differences in robustness are due to the presence
of both small-scale under-resolved features and significant
variations in the density. For example, entropy stable DGSEM
methods are known to be very robust for the Taylor-Green

vortex, where the density is near-constant throughout the
duration of the simulation.

We examine the connection between density contrast and
robustness by parametrizing the initial condition by the Atwood
number. Given a stratified fluid with two densities ρ1, ρ2, the
Atwood number is defined as

A � ρ2 − ρ1
ρ1 + ρ2

∈ 0, 1[ ),

where it is assumed that ρ2 ≥ ρ1. For a constant-density flow, A =
0, while A → 1 indicates a flow with very large density contrasts.
We investigate the behavior of different entropy stable methods
for a version of the Kelvin-Helmholtz instability parametrized by
the Atwood number A:

ρ1 � 1 ρ2 � ρ1
1 + A

1 − A
ρ � ρ1 + B ρ2 − ρ1( ) p � 1

u � B − 1
2

v � 1
10

sin 2πx( )

Figure 5 shows the crash times for the Kelvin-Helmholtz
instability using various entropy stable solvers at polynomial
degrees 3 and 7. For quadrilateral meshes, we utilize entropy
stable DGSEM solvers and entropy stable Gauss DG solvers. For
triangular meshes, we utilize entropy stable multi-dimensional
SBP solvers and entropy stable modal DG solvers. The DGSEM
and SBP solvers are collocation-type schemes, while Gauss and
modal DG solvers introduce the entropy projection.

For degree 3 quadrilateral solvers, we utilize a 32 × 32 mesh,
while for degree 7 quadrilateral solvers, we utilize a 16 × 16 mesh.
The mesh resolution is halved for polynomial degree 7
simulations so that the total number of degrees of freedom is
kept constant. For triangular solvers, we again use 32 × 32 and 16
× 16 uniform meshes, but we compare polynomial degrees 3 and
6, as SBP quadrature rules are available only up to degree 6 in

TABLE 3 | End time for simulations of the Rayleigh-Taylor instability on
quadrilateral and triangular meshes. On quadrilateral meshes, “collocation”
refers to a nodal DGSEM discretization, while “entropy projection” refers to a
method based on Gauss nodes. On triangular meshes, “collocation” refers to
nodal SBP discretization, while “entropy projection” refers to a modal entropy
stable DG method.

Degree 1 2 3 4 5 6 7

Solver

RTI, quadrilateral mesh, Ncells = 16
Collocation 3.674 3.44 3.332 3.257 3.106 3.034 3.044
Entropy projection 15 15 15 15 15 15 15
RTI, quadrilateral mesh, Ncells = 32
Collocation 3.996 3.144 3.44 3.155 3.031 2.972 2.976
Entropy projection 15 15 15 15 15 15 15
RTI, triangular mesh, Ncells = 16
Collocation 4.297 2.87 3.238 3.229 2.927 2.881
Entropy projection 15 15 15 15 15 15
RTI, triangular mesh, Ncells = 32
Collocation 3.6 2.896 3.197 3.227 3.032 2.778
Entropy projection 15 15 15 15 15 15

Times colored blue correspond to simulations which did not crash and ran to completion,
while times colored red denote simulations which did crash.

TABLE 4 | End time for simulations of the Richtmeyer-Meshkov instability on
quadrilateral and triangular meshes. On quadrilateral meshes, “collocation”
refers to a nodal DGSEM discretization, while “entropy projection” refers to a
method based on Gauss nodes. On triangular meshes, “collocation” refers to
nodal SBP discretization, while “entropy projection” refers to a modal entropy
stable DG method.

Degree 1 2 3 4 5 6 7

Solver

RMI, quadrilateral mesh, Ncells = 16
Collocation 30 30 27.96 24.94 8.851 8.853 8.85
Entropy projection 30 30 30 30 30 30 30
RMI, quadrilateral mesh, Ncells = 32
Collocation 30 25.52 23.34 8.759 7.808 7.014 7.01
Entropy projection 30 30 30 30 30 30 30
RMI, triangular mesh, Ncells = 16
Collocation 30 22.8 21.52 15.13 8.841 7.239
Entropy projection 30 30 30 30 30 30
RMI, triangular mesh, Ncells = 32
Collocation 30 23.84 23.63 8.752 7.582 3.946
Entropy projection 30 30 30 30 30 30

Times colored blue correspond to simulations which did not crash and ran to completion,
while times colored red denote simulations which did crash.
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Trixi.jl. We run up to time Tfinal = 10 for A ∈ [0.1, 0.9] and report
the times each simulation ran until. For degree N = 3, we observe
that schemes which involve the entropy projection runs until the
final time Tfinal = 10. Collocation-type schemes run to completion

for low Atwood numbers, but crash earlier and earlier as the
Atwood number increases. At degreeN = 7, we observe that while
both collocation solvers and entropy projection solvers crash at
higher Atwood numbers, entropy projection solvers begin

TABLE 5 | End time for simulations of the magnetized Kelvin-Helmholtz instability on quadrilateral and triangular meshes. On quadrilateral meshes, “collocation” refers to a
nodal DGSEMdiscretization, while “entropy projection” refers to amethod based onGauss nodes. On triangular meshes, “collocation” refers to nodal SBP discretization,
while “entropy projection” refers to a modal entropy stable DG method.

Degree 1 2 3 4 5 6 7

Solver

MHD KHI, quadrilateral mesh, Ncells = 16
Collocation 15 15 11.503 10.988 10.315 10.230 10.270
Entropy projection 15 15 15 15 15 15 15
MHD KHI, quadrilateral mesh, Ncells = 32
Collocation 15 11.639 11.048 11.111 11.483 10.169 10.919
Entropy projection 15 15 15 15 15 15 15
MHD KHI, triangular mesh, Ncells = 16
Collocation 12.846 13.797 10.626 10.212 10.990 9.973
Entropy projection 15 15 15 15 15 15
MHD KHI, triangular mesh, Ncells = 32
Collocation 14.875 11.121 9.748 10.081 10.307 10.219
Entropy projection 15 15 15 15 15 15

Times colored blue correspond to simulations which did not crash and ran to completion, while times colored red denote simulations which did crash.

FIGURE 5 | Final times a solver an until as a function of Atwood number for the Kelvin-Helmholtz instability for DGSEM and various entropy stable solvers. End times
less than final time Tfinal = 10 indicate a crash.
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crashing at higher Atwood numbers. For example, on
quadrilateral meshes, DGSEM crashes around Atwood number
0.3, while Gauss solvers crash around Atwood number 0.7. We
note that crash times for entropy projection schemes also tend to
depend on the adaptive time-stepping tolerance. For example, for
N = 3 and a 322 mesh, Gauss collocation runs stably to Tfinal = 10
if the absolute and relative tolerances are reduced to 10–9. The
same is not true of entropy stable collocation-type schemes.

To provide another point of comparison, we ran simulations
using an entropy stable DGSEM solver with sub-cell finite volume
shock capturing [56] with Zhang-Shu positivity-preserving
limiting for the density and pressure [57, 58], which we refer
to as DGSEM-SC-PP for shock capturing and positivity
preservation.2 The entropy stable sub-cell finite volume-based
shock capturing scheme utilizes a blending coefficient parameter
α ≤ αmax [56]. For these experiments, we set αmax = 0.005, which
implies that the low order finite volume solution constitutes at
most 0.5% of the final blended solution. Despite the fact that this
shock capturing is very weak, the resulting solver greatly
improves robustness and enables long simulation times: for
N = 3 and a 32 × 32 mesh, DGSEM-SC-PP runs stably to
time Tfinal = 10 for Atwood numbers up to 0.99. However, we
have also observed that the minimum value of αmax necessary to
avoid solver failure depends on the mesh resolution. For example,
for N = 3 and a 64 × 64 mesh, we observe that DGSEM-SC-PP
with αmax = 0.005 crashes around t = 6.4871.

Remark 2. We note that DGSEM with αmax = 0.005 shock
capturing but no positivity preservation is not robust for the
Kelvin-Helmholtz instability. For the initial condition (Eq. 4),
N = 3, and a 64 × 64 mesh, DGSEM with shock capturing crashes
around time t = 4.8891. For N = 7 and a 32 × 32 mesh, DGSEM
with shock capturing crashes around time t = 5.0569. In contrast,
DGSEM with only positivity preservation results in the
simulation stalling due to a very small time-step.

4 THE ROLE OF THE ENTROPY
PROJECTION
4.1 Is Robustness Due Only to the Entropy
Projection?
While the numerical results up to this point indicate that there is a
significant difference in robustness for different entropy stable
schemes, it is not yet clear that the increased robustness is due to
the entropy projection. For example, the numerical experiments
in Section 3 compare entropy stable Gauss DG schemes to
DGSEM on tensor product meshes and entropy stable
“modal” DG methods to SBP schemes on triangular meshes.
In both cases, a collocation scheme is compared to a scheme with
higher accuracy numerical integration. Thus, it is not

immediately clear whether the difference in robustness is due
to the entropy projection or other factors such as the quadrature
accuracy. We investigate whether the quadrature accuracy has a
significant effect on stability by testing two additional variants of
entropy stable DGSEM schemes on quadrilateral meshes. These
schemes are purposefully constructed to be “bad”methods (in the
sense that they introduce additional work without improving the
expected accuracy), and are intended only to introduce the
entropy projection. Both have quadrature accuracy similar to
or lower than entropy stable DGSEM methods.

The first scheme utilizes LGL points for volume quadrature,
but utilizes (N + 1) point Clenshaw-Curtis quadrature at the faces.
This scheme can be directly derived from a modal formulation
and (despite the lower polynomial exactness of Clenshaw-Curtis
quadrature) can be shown to be entropy stable on affine
quadrilateral meshes using the analysis in [21]. In order to
retain entropy stability, the solution must be evaluated using
the entropy projection at face nodes. We argue that the use of
Clenshaw-Curtis quadrature does not result in a significant
increase in quadrature accuracy over LGL quadrature: while
Clenshaw-Curtis quadrature has been shown to be similar to
Gauss quadrature for integration of analytic functions [61], for
lower numbers of points we observe that the accuracy is
comparable to LGL quadrature. Moreover, it was argued in
[62] that increasing quadrature accuracy only for surface
integrals or only for volume integrals does not provide
sufficient anti-aliasing. We refer to this method as “DGSEM
with face-based entropy projection” in Figure 6.

Remark 3. We note that one can also build an entropy stable
scheme from a combination of LGL volume points and Gauss face
points. While this method possesses much of the simplicity and
advantageous features of entropy stable DGSEM methods while
also displaying improved robustness, this method results in a
suboptimal rate of convergence by one degree [21].

The second scheme we test is similar to the staggered scheme
of [17]. However, while the original scheme of Parsani et al.
combines degree N Gauss points with degree (N + 1) LGL points,
we combine degree N Gauss points with degree N LGL points.
This is a “useless” staggering in that it does not increase the
accuracy of integration compared with DGSEM, and is intended
only to introduce the entropy projection into the formulation.3

We refer to this method as “DGSEM with volume-based entropy
projection” in Figure 6.

Figure 6 shows snapshots of the density for the Kelvin-
Helmholtz instability for a degree N = 3 mesh of 64 × 64
elements for each method. While the plots for the Gauss DG
and DGSEM with face-based entropy projection have qualitative
similarities, we observe that DGSEM with volume-based entropy

2For DGSEM-SC-PP, we utilize a 4-stage 3rd order adaptive strong stability
preserving (SSP) Runge-Kutta time-stepping method [59, 60] with stepsize
controller and efficient implementation of [40], which is necessary to ensure
fully discrete positivity.

3This scheme can also be derived by beginning with an entropy stable DGSEM
scheme and replacing the diagonal LGLmass matrix with the fully integrated dense
mass matrix computed using Gauss quadrature. The resulting scheme can be made
entropy stable by evaluating the spatial formulation using the entropy projection.
More specifically, the appropriate entropy projection for this setting interpolates
the entropy variables at Gauss nodes, then interpolates to LGL nodes.
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projection results in a noisier solution. This may be due to
inconsistency in terms of accuracy between the two
quadrature rules used (e.g., (N + 1) point LGL and Gauss
quadratures). However, all three entropy projection schemes
remain stable, and we have verified that they are able to run
until T = 25 without crashing.

We also compute crash times for each method for the Kelvin-
Helmholtz instability with Atwood numbers A ∈ [0.1, 0.9]. These
crash times are also compared to crash times of an entropy stable
DGSEM method. These computations are performed on both a
degree N = 3 mesh of 32 × 32 elements, as well as a degree N = 7
mesh of 16 × 16 elements. Figure 7 plots the crash times for each
method. We observe that all schemes which involve the entropy
projection run stably for a wider range of Atwood numbers than
entropy stable DGSEM, and that this effect becomes even more
pronounced for degree N = 7. However, for both the N = 3 and
N = 7 experiments, the entropy stable Gauss schemes are stable
for the widest ranges of Atwood numbers.

These results indicate that incorporating the entropy
projection does have a significant effect on the robustness of
an entropy stable method, but that the entropy projection is not
the only factor which impacts robustness. However, a detailed
analysis of factors such as quadrature accuracy is out of the scope
of this current work.

4.2 Why Is There a Difference in Robustness
for Different Entropy Stable Methods?
While the results from previous sections suggest that the entropy
projection plays a role in the robustness of an entropy stable
scheme, it is not clear why it plays a role. While we do not have a
thorough theoretical understanding of the entropy projection,
initial experiments indicate that entropy projection schemes
behave most differently from collocation schemes when the
solution is either under-resolved or have near-zero density or
pressure.

FIGURE 6 | Degree N = 3 and 64 × 64 grid Kelvin-Helmholtz simulations at T = 5. All methods run until T = 25, while DGSEM crashes at T ≈ 3.5.

FIGURE 7 | Final times a solver an until as a function of Atwood number for the Kelvin-Helmholtz instability for DGSEM and different variants of entropy stable
solvers based on the entropy projection. End times less than final time Tfinal = 10 indicate a crash.
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We illustrate the aforementioned behavior of the entropy
projection using the one-dimensional compressible Euler
equations. The conservative variables for the Euler equations
are density, momentum, and total energy (ρ, ρu, E). Let s(u) =
log(p/ργ) denote the specific entropy. The entropy variables for
the convex entropy S(u) = −ρs(u)/(γ − 1) are given by

v u( ) � γ − s

γ − 1
− ρu2

2p
,
ρu

p
,−ρ

p
( ).

Recall that the main steps of the entropy projection are as
follows:

(1) Evaluate the entropy variables using degree N
polynomial approximations of the conservat ive
variables

(2) Compute the quadrature-based L2 projection of the entropy
variables to degree N polynomials

(3) Re-evaluate the conservative variables in terms of the
projected entropy variables.

These re-evaluated conservative variables are then used to
compute contributions from an entropy stable DG formulation.

It was demonstrated numerically in [19] that the entropy
projection is high order accurate for sufficiently regular solutions.
However, the behavior of the entropy projection was not explored
for under-resolved or near-vacuum solution states. We illustrate
this behavior using the following solution state:

ρ � 1 + e2 sin 1+kπx( ), u � 1
10

cos 1 + kπx( ),
p � pmin + 1

2
1 − cos kπx − 1

4
( )( ),

(11)

where pmin > 0 is the minimum pressure, and k is a parameter
which controls the frequency of oscillation. As k increases, the
solution states in Eq. 11 become more and more difficult to
resolve, and as pmin→ 0, the solution approaches vacuum and the
entropy approaches non-convexity.

Figure 8 illustrates the effect of increasing k and decreasing
pmin on the entropy projected conservative variables for a degree
N = 2 approximation on a coarse mesh of eight elements. As k

FIGURE 8 | Illustration of the effect of larger k (under-resolution) and smaller pmin (near-vacuum state) on the entropy projection. A degree N = 2 approximation and
mesh of 8 elements were used.

FIGURE 9 | Evolution of entropy over time for the Kelvin-Helmholtz instability.
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increases and the solution becomes under-resolved, the entropy
projection develops large jumps at the interface. Similarly, as pmin

decreases from 1 to 1/10, the entropy projection develops large
jumps at the interface. We note that for both increased k and
decreased pmin, spikes do not appear in the interior of the element.

This indicates that the error in the entropy projection is
influenced by both the numerical resolution and how close the
entropy is to becoming non-convex. We denote the continuous
entropy projection by ~u � u(ΠNv(uh)). Then, by the mean value
theorem, we can bound the difference between the conservative
and entropy-projected variables

uh − ~u‖ ‖L∞ � uh − u ΠNv uh( )( )‖ ‖L∞ ≤ zu
zv

�������
�������L∞ v uh( ) − ΠNv uh( )‖ ‖L∞,

where zu
zv is evaluated at some intermediate state between uh and ~u.

The latter term in the bound ‖v(uh) − ΠNv(uh)‖ is small when
the entropy variables are well-resolved, which we expect to be true
when the solution is well-resolved and the mapping between
conservative and entropy variables is well-conditioned.
Conversely, high frequency components of the solution are
often amplified when v(u) is highly nonlinear or the solution
is under-resolved (this is the motivation behind filtering for
stabilization [63–65]), and we expect ‖v(uh) − ΠNv(uh)‖ to be
large for such settings. The former term ‖zuzv‖ is large when the
mapping between conservative and entropy variables is nearly
singular, which occurs when the entropy is nearly non-convex
(for example, near-vacuum states).

4.2.1 What Role Does Entropy Dissipation Play?
The previous section illustrates that entropy projection schemes
are likely to differ from collocation schemes most when the
solution is under-resolved or has near-zero density or
pressure. Moreover, since the entropy projected variables in
Figure 8 display spikes at the interfaces, it seems possible that
the entropy projection would change the manner in which
entropy dissipative interface dissipation terms are triggered. To
test this hypothesis, we compute the evolution of entropy over

time for the Kelvin-Helmholtz instability using both entropy
stable Gauss DG and DGSEM-SC-PP, which is an entropy stable
DGSEM with a shock capturing technique that consists in
blending a sub-cell finite volume scheme with the DGSEM in
an element-wise manner [56] and Zhang-Shu’s positivity
preserving limiter [57, 58]. The blending of the finite volume
scheme is capped at 0.5% in order to avoid unnecessary numerical
dissipation. We also compare entropy evolution for a scheme that
blends a sub-cell finite volume scheme with the DGSEM in a
subcell-wise manner [66], which we refer to as DGSEM-subcell.
The blending factors are chosen for each node (or subcell) to

enforce lower bounds on density and pressure based on the low

order solution, ρ ≥ 0.1 ρFV, p ≥ 0.1 pFV. For this choice of lower

bound, we observe high order accuracy for a two-dimensional
sinusoidal entropy wave [67]. While this scheme is not provably
entropy stable, it was demonstrated numerically in [66] that the
use of subcell blending factors requires significantly lower levels
of limiting compared with an element-wise limiting factor.

Figure 9 shows the evolution of the integrated entropy over
the entire domain (which we have shifted to be positive) for the
Kelvin-Helmholtz instability. Since periodic boundary conditions
are used, the integrated entropy for the semi-discrete formulation
can be proven to decrease over time. We observe that all four
methods display similar entropy dissipation behavior until time
t ≈ 1.2, after which DGSEM shows less entropy dissipation than
either Gauss or DGSEM-SC-PP. However, while DGSEM-SC-PP
initially dissipates more entropy than Gauss DG, the entropy
dissipation for Gauss DG increases and overtakes that of
DGSEM-SC-PP around time t ≈ 4. Since entropy dissipation
in both Gauss DG and DGSEM-SC-PP schemes is triggered by
under-resolved flows (either through a modal indicator or
through jump penalization terms) and since the Kelvin-
Helmholtz instability generates increasingly small scales at
larger times, this suggests that entropy dissipation for Gauss
DG may be activated more strongly but at smaller scales than
DGSEM-SC-PP. In contrast, Gauss DG dissipates more global
entropy than DGSEM-subcell, though DGSEM-subcell
eventually catches up to Gauss DG for N = 3.

Our initial hypothesis was that the entropy projection in Gauss
DG schemes results in larger interface jumps, which would trigger
more entropy dissipation through jump penalization terms.
However, this does not appear to be consistent with numerical
results for entropy conservative schemes. To test these schemes,
we focus on the three-dimensional Taylor-Green vortex. We note
that the observed loss of robustness stands in stark contrast to the
observed robustness of high order entropy stable and split-form
DGSEM for the Taylor-Green vortex [8, 13, 22]. This can be
explained by the fact that the density remains near-constant over
time for the Taylor-Green vortex; for a Kelvin-Helmholtz initial
condition with a constant density, DGSEM runs stably up to final
time T = 25 for each of the previous numerical settings. Thus,
while the Taylor-Green vortex generates small-scale flow features,
it is a more benign test case when evaluating the robustness of
high order entropy stable DG schemes.

However, when using a purely entropy conservative scheme
(which can be constructed by utilizing entropy conservative

TABLE 6 | End time for entropy conservative simulations of the Taylor-Green
vortex on hexahedral meshes.

Degree 1 2 3 4 5 6 7

Solver

Ncells = 23

DGSEM 20 20 20 20 16.4 7.704 7.482
Gauss 20 20 20 20 20 20 20
CGSEM 20 20 20 20 20 20 20
Ncells = 43

DGSEM 20 20 20 20 10.31 5.792 5.46
Gauss 20 20 20 20 20 20 20
CGSEM 20 20 20 20 20 20 20
Ncells = 83

DGSEM 20 20 20 20 6.035 5.29 5.02
Gauss 20 20 20 20 20 20 20
CGSEM 20 20 20 20 20 20 17.5

Times colored blue correspond to simulations which did not crash and ran to completion,
while times colored red denote simulations which did crash.
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interface fluxes), DGSEMmethods can display non-robust behavior
for the Taylor-Green vortex. We run the Taylor-Green vortex to
final time Tfinal = 20 using a variety of entropy conservative schemes:
DGSEM, Gauss DG, as well as an entropy stable C0 continuous
Galerkin spectral element method (CGSEM) and a periodic finite

difference method. We note that, because an entropy conservative
scheme can be constructed given any summation-by-parts or skew-
symmetric operator [12, 14, 26], we are able to implement an
entropy conservative C0 continuous spectral element method and
periodic finite difference method by constructing global difference

FIGURE 10 | Density and pressure for the Kelvin-Helmholtz instability at Tfinal = 25 on a N = 3 mesh of 642 elements.

FIGURE 11 | Density and pressure for the Kelvin-Helmholtz instability at Tfinal = 25 on a N = 7 mesh of 322 elements.
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operators from the tensor product of one-dimensional
operators. These one-dimensional operators are provided
by the Julia library SummationByPartsOperators.jl [68].

Table 6 shows the end simulation time for each solver. We
observe that again, despite the absence of any entropy
dissipation, the Gauss DG solver is more robust than the
DGSEM solver. The continuous spectral element solver
CGSEM is also significantly more robust than the DGSEM
solver, though it does lose robustness at higher orders and
finer grid resolutions. We also ran periodic finite difference
operators for grids with 4, 6, 8, 10, 12 nodes in each
dimension with orders of accuracy 2, 4, 6, 8, 10. We
observe that the periodic finite difference operator is as
robust as the Gauss DG solver: for every grid resolution
and order specified, the finite difference solver ran up to
the final time Tfinal = 20.

These experiments indicate that robustness for schemes
involving the entropy projection is not solely due to the
entropy dissipative terms. These experiments also show that
robustness is improved for CGSEM and periodic finite
difference solvers, neither of which contains interface terms.
Since these results are on relatively coarse resolutions and
utilize an entropy conservative scheme (when most practical
schemes are entropy stable), further numerical experiments are
necessary to carefully analyze the effect that different
discretizations have on robustness.

5 APPLICATIONS TOWARD
UNDER-RESOLVED SIMULATIONS

We conclude the paper with a discussion on a comparison
between three schemes which include dissipative terms
(entropy stable Gauss DG, entropy stable DGSEM-SC-PP,
and DGSEM-subcell) for an under-resolved simulation. We
run the Kelvin-Helmholtz instability using the initial
condition (Eq. 4), but modify the y-velocity perturbation to
break symmetry of the resulting flow

v � 1
10

sin 2πx( ) 1 + 1
100

sin πx( )sin πy( )( ).

We run the simulation up to final time Tfinal = 25. We use both a
degreeN= 3mesh of 64 × 64 elements and a degreeN= 7mesh of 32
× 32 elements, each of which contains the same number of degrees of
freedom. Due to the sensitivity of the Kelvin-Helmholtz instability
problem and the long time window of the simulation, the results for
each scheme are qualitatively very different.

Figures 10, 11 show snapshots of density and pressure for the
entropy stable DGSEM-SC-PP and Gauss DG schemes. We observe
that in both cases, the flow scales present in the DGSEM-SC-PP
scheme are noticeably larger than those observed in theGauss scheme.
This is notable because the DGSEM-SC-PP scheme applies a very
small amount of shock capturing: dissipation is added by blending the
high order scheme with a low order finite volume scheme, and the
amount of the blended low order solution is capped at 0.5%.However,
even a small amount of dissipation produces a noticeable change on
small-scale features in the resulting flow.We also observe the presence
of shocklets or compression waves in the pressure, which mirror
observations made in [69].4

For N = 3, the scales observed in DGSEM-subcell scheme are
noticeably smaller than those ofDGSEM-SC-PP but similar to those of
the Gauss DG scheme. ForN = 7, the scales observed in the DGSEM-
subcell scheme are again smaller than those of DGSEM-SC-PP, but
appear to be slightly larger than those of the Gauss DG scheme. To
avoid qualitative speculation, we compare these flows by computing
the angle-averaged power spectra of the velocity weighted by

�
ρ

√
at

final time Tfinal = 25 [70, 71]. We follow [3, 7] and generate a grid of
uniformly spaced points by evaluating the degree N polynomial
solution at (N + 1) equally spaced points along each dimension in
the interior of each element of a uniform Cartesian mesh. The power
spectra can then be computed from a fast Fourier transform of the
resulting data. Figure 12 shows the power spectra, which appear

FIGURE 12 | Weighted power spectra for DGSEM-Subcell, entropy stable DGSEM-SC-PP, and entropy stable Gauss DG schemes.

4We note that these “shocklets” are not strictly shock waves, as the flow is not
supersonic.
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consistent with a k−7/3 rate of decay from two-dimensional turbulence
theory [71]. Moreover, we observe that the entropy stable Gauss DG
scheme retainsmore energetic information than bothDGSEM-SC-PP
and DGSEM-subcell, though a spurious spike in the energy for Gauss
DG schemes is observed near the higher wavenumbers for N = 3.

6 CONCLUSION

This paper shows that for variable density flows which generate small-
scale features, there are differences in robustness between entropy
stable schemes which incorporate the entropy projection and those
which do not. These differences in robustness are observed to depend
on the Atwood number (measuring the density contrast) and persist
across a range of polynomial degrees, mesh resolutions, and types of
discretization.However, themechanisms behind improved robustness
for entropy projection schemes are currently unknown.

We note that any conclusions drawn concerning the robustness of
DGSEM and Gauss DG should be restricted to the instability-type
problems studied here. These results do not imply that Gauss is
uniformly more robust than DGSEM. Moreover, Gauss schemes are
more computationally expensive than DGSEM schemes and result in
smaller maximum stable timesteps [22, 72–74], so the appropriate
scheme will depend on the use case.
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We present a data-driven or non-intrusive reduced-order model (NIROM) which is capable
of making predictions for a significantly larger domain than the one used to generate the
snapshots or training data. This development relies on the combination of a novel way of
sampling the training data (which frees the NIROM from its dependency on the original
problem domain) and a domain decomposition approach (which partitions unseen
geometries in a manner consistent with the sub-sampling approach). The method
extends current capabilities of reduced-order models to generalise, i.e., to make
predictions for unseen scenarios. The method is applied to a 2D test case which
simulates the chaotic time-dependent flow of air past buildings at a moderate
Reynolds number using a computational fluid dynamics (CFD) code. The procedure for
3D problems is similar, however, a 2D test case is considered sufficient here, as a proof-of-
concept. The reduced-order model consists of a sampling technique to obtain the
snapshots; a convolutional autoencoder for dimensionality reduction; an adversarial
network for prediction; all set within a domain decomposition framework. The
autoencoder is chosen for dimensionality reduction as it has been demonstrated in the
literature that these networks can compress information more efficiently than traditional
(linear) approaches based on singular value decomposition. In order to keep the
predictions realistic, properties of adversarial networks are exploited. To demonstrate
its ability to generalise, once trained, the method is applied to a larger domain which has a
different arrangement of buildings. Statistical properties of the flows from the reduced-
order model are compared with those from the CFD model in order to establish how
realistic the predictions are.
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1 INTRODUCTION

Computational fluid dynamics codes can solve many complex
problems thanks to advances in computing power and numerical
methods. However, in order to obtain high-fidelity or high-
resolution solutions, days or weeks of computational time may
be required. Reduced-order modelling [1] is a popular technique,
introduced to reduce the computational cost of producing high-
resolution solutions albeit at the expense of generating these
models in the first place, which can be substantial. Projection-
based reduced-order models [2] have been widely used in
computational science and consist of a dimensionality
reduction stage (which identifies a suitable low-dimensional
subspace) and a projection stage [in which the discretised
high-fidelity model (HFM) is projected onto the low-
dimensional subspace]. The reduced-order model (ROM) is
then used to make predictions at a fraction of the cost of the
HFM. Also known by the broader term of data-driven ROMs,
non-intrusive reduced-order models (NIROMs) were then
proposed, which replace the projection of the discretised HFM
by interpolating between snapshots. Although classical
interpolation methods can be used, machine learning (ML)
techniques have become a popular choice for this task over
the last 10 years. As well as being important for the learning
the evolution of the solution, ML methods have also had an
impact on dimensionality reduction, with many journal papers in
the last 5 years reporting the use of autoencoders to identify the
low-dimensional subspace for the ROM, see Heaney et al. [3].
One issue for neural networks is their ability to generalise, that is,
to perform well for unseen data, and this is therefore also an issue
for ML-based NIROMs [4]. For example, considering flow past
buildings (the test case used here), if the shape, location or
orientation of the buildings varies, and several configurations
had been used to generate time-dependent snapshots, current
methods used naïvely would struggle to interpolate successfully
between different configurations of buildings in order to model
unseen layouts. In this paper we supplement a NIROM method
with a sub-sampling technique and a domain decomposition

framework, both of which increase the ability of the ROM to
generalise and solve problems based on unseen scenarios. We
demonstrate that the method can make predictions for different
configurations of buildings as well as for different-sized domains.

1.1 Related Work
The sub-sampling approach employed here was partially
explored in Heaney et al. [3], in which, for dimensionality
reduction, grids were randomly located within a pipe and
solution fields were interpolated onto these grids, thereby
generating data to train autoencoders. When generating data
for the network to be used for prediction or inference, no
randomly located subdomains were created and the solution
fields were interpolated onto a small number of regularly-
spaced subdomains. Being multiphase flow in a long, thin
pipe, the solutions were dominated by advection in one
direction, so a simpler approach could be used for that
application. The method described here is general and can be
applied to 2D and 3D flows, or indeed, 2D and 3D problems in
computational physics in general.

For identifying a low-dimensional space in which to represent
the snapshots, methods based on singular value decomposition
(SVD) have been widely used. Proper Orthogonal Decomposition
(POD) is one such SVD-based method and has been applied
successfully to many fields such as reactor physics [5], urban
flows [6] and fluid-structure interaction [7]. However, since 2018
there has been an explosion of interest in using autoencoders for
dimensionality reduction, see references 26, 28–44, 48–52 in [3]
and others in [8]. Due to the nonlinear activation functions, these
networks find a nonlinear map between the high- and low-
dimensional spaces, whereas with SVD-based methods, the
mapping is linear. As a result, in some cases, autoencoders can
find a more compact or a more accurate description of the
reduced space. We choose a convolutional autoencoder as
these networks have performed well in a number of studies for
advection-dominated flows [9,10].

For learning the evolution of the snapshots in the low-
dimensional space, classical methods were used initially

FIGURE 1 | Left: the star-shaped grid; centre: random placement of central subdomain of the grid (for obtaining data to train CAEs); right: random placement of the
star-shaped grid (for obtaining data to train the predictive adversarial network).
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[11–13] which have been largely supplanted by neural networks,
for example, Multi-layer Perceptron (MLP) [14], Long-Short
Term Memory (LSTM) networks [15,16] and Gaussian
Process Regression [17]. However, these networks can suffer
from inaccuracies when predicting in time which can lead to
the model diverging if the range of values of the reduced variables
exceeds that seen during training [18–22]. To address this, we use
an adversarial network. As the name suggests, adversarial
networks use an adversarial training strategy which originates
from generative adversarial networks (GANs) [23]. This type of
neural network attempts to learn a distribution to which the
training data belongs. Related networks are the adversarial
autoencoder (AAE) [24] and Variational Autoencoders
(VAEs). All three types of network set out to obtain better
generalisation than other networks by attempting to obtain a
smooth latent space with no gaps. Results in Makhzani et al. [24]
show that the AAE performs better than the VAE on the MNIST
digits. Imposing a prior distribution upon the variables of the
latent space ensures that any set of latent variables, when passed
through the decoder, should have a realistic output [24].
Currently, there exists only a small number of papers that use
GANs, AAEs, VAEs, or combinations of these networks, for
producing surrogate predictions of CFD modelling. Cheng et al.
[25] combine a VAE and GAN to model the collapse of a water
dam and Silva et al. [26] use a GAN to predict the spread of a virus
within a small, idealised town originally modelled by an
epidemiological model. Following Heaney et al. [3], we modify
an adversarial autoencoder to make predictions in time. An
alternative approach can be found in the work of Sanchez-
Gonzalez et al. [27], who use graph-based networks and
message passing to learn the system dynamics. Their networks
can generalise well, being able to make predictions for different
configurations (of ramps or barriers), although within the same
domain.

Reduced-order modelling has long been combined with domain
decomposition techniques. For example, for projection-based ROMs,
Baiges et al. [28] restricts every PODbasis function to one subdomain

of the partitioned domain. A similar method was used for non-
intrusive ROMs [29], and was later adapted to partition the domain
by reducing, as much as possible, the variation of the Reynolds
stresses at the boundary between subdomains [30]. In this paper, the
domain decomposition is associated with the prediction or online
stage, when the domain of interest is decomposed into subdomains
(that are the same size as those used in the sub-sampling procedure).
The sub-sampling and domain decomposition approachwe use bears
some resemblance to the method reported in Yang andGrooms [31],
which decomposes a domain into patches in order to facilitate the
training of a neural network. However, our motivation for using
domain decomposition is to make predictions for unseen scenarios
and for domains that are significantly larger than (or in some way
different from) those used in the training process.

Other approaches have been taken to build ROMs, such as
dynamic mode decomposition (DMD) [32] and sparse
identification of nonlinear dynamics (SINDy) [33]. DMD
identifies both spatial and temporal modes and is often used as a
diagnosis tool [34], however, examples do exist of DMD having been
used to make predictions [35–37]. As with other SVD-based

FIGURE 2 | The predictive adversarial network. The generator is represented by G; the blue line represents the adversarial layer (and is the output of G); the network
H maps the values in the adversarial layer to the output; the input to the discriminator D is either a (genuine) sample from the prior distribution (here N (μ, σ)) or a (fake)
sample from the output of the generator.

FIGURE 3 | Left: reduced variables associated with the five subdomains
(N, E,W, S, and C) of the star-shaped grid at future (k) and current (k − 1) time
levels, which, along with the reduced variables of the buildings (βg,C), form the
input to the neural network; right: the reduced variables of the central grid
at the future time level which form the output of the neural network.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9103813

Heaney et al. Generalisation Capabilities of Reduced-Order Models

102

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


methods, DMD can struggle to capture symmetries and invariants in
the flow fields [4], which is one reason why we opt for a combination
of autoencoder (for dimensionality reduction) and adversarial
network (for prediction). SINDy aims to find a sparse
representation of a dynamical system relying on the assumption
that, for many physical systems, only a small number of terms
dominate the dynamical behaviour and has been applied to a
number of fluid dynamics problems, including flow past a
cylinder [8,38]. It can be difficult to compress accurately to a
small number of variables, and SINDy was not used here, because
we did not want to be restricted to using a small number of reduced
variables.

Although much investigation has been carried out into
parametrised NIROMs, challenges do remain. Hasegawa et al.
[39] create a ROM consisting of an autoencoder and a LSTM
which can predict the flow past a bluff body. The profile of the
bluff body is controlled by 8 coefficients and a truncated
trigonometric basis. Hesthaven and Ubbiali [14] address both
geometrical and physical parametrisations with a NIROM based
on POD and MLP. They solve a lid-driven cavity problem for a
parallelogram-shaped domain which is defined by three parameters:
two edge lengths (both in the range [1,2]) and one angle [in the range
(30°, 150°)]. In both cases, the ROMs were able to predict well for
unseen scenarios. However, we wish to extend significantly the range
of unseen scenarios for which ROM is capable of making predictions.
For instance, our test case of flow past buildings consists of about
150 differently-sized buildings. To apply methods similar to those
developed by Hasegawa et al. [39] or Hesthaven and Ubbiali [14]
would be impractical in this case, due to the number of buildings.
Furthermore, not only do we wish to be able to solve for unseen
building configurations involving many buildings, we also want to be
able to solve for larger domains than used when generating the
training data.

In this paper we combine a sub-sampling technique with a
domain decomposition method in order to make predictions for
unseen scenrios. The sub-sampling technique essentially frees the
ROM from its dependency on the domain of the original problem
and enables it to make predictions for arbitrary domains. This
method focuses on capturing high-resolution detail around many
different buildings, rather than capturing the flow around one
particular configuration of buildings. The domain decomposition
method is used to partition an unseen domain into subdomains that
relate to the snapshots obtained in the sub-sampling process. A
convolutional autoencoder is used to compress the data and a
predictive adversarial network is trained to predict the reduced
variables representing the air flow around a group of buildings in
a subdomain. In the unseen domain, the subdomains are regularly
arranged, and predictions for the solutions in each subdoamin are
generated. An iteration-by-subdomain approach [40] is used to
achieve convergence of the global solution. The contribution of
this work is twofold: a method is proposed that constructs a
ROM using one configuration (of buildings) which is able to
predict for an unseen configuration; and the unseen configuration
can be associated with a larger domain than that of the original
configuration. This article presents results for flow past buildings, and
makes predictions on a domain that has over twice the area of the
original configuration and a different arrangement of buildings.

In the remainder of this article, Section 2 outlines the
methodology, Section 3 presents the results, and Section 4
draws conclusions and outlines future work.

2 METHODOLOGY

The generation of NIROMs or data-driven reduced-order
models typically consists of three stages: (1) solving the

FIGURE 4 | Greyscale regions indicate the area where we seek a solution. The coloured regions show the magnitude of the velocity of the imposed boundary
conditions. Left: Using the latest solutions of the four neighbouring subdomains (indicated in orange), and the previous solution in the central subdomain (shown in green)
and the buildings fields in the central subdomain, a prediction is made for the central subdomain. Right: move to the next set of five subdomains and predict for the next
central subdomain.
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HFM to produce the snapshots; (2) applying dimensionality
reduction to the snapshots to obtain a low-dimensional space
(Subsection 2.2); and (3) learning how the system evolves in
low-dimensional space (Subsection 2.3). The method
outlined in this paper has these stages, however, also makes
use of a sub-sampling technique (Subsection 2.1) and domain
decomposition in order to enable the reduced-order model to
make predictions for unseen scenarios (Subsection 2.4). This
frees the NIROM from its dependency on the original problem
domain and paves the way for the model to make predictions

for unseen scenarios including different building geometries
and locations, and different sizes of domain. We use a
convolutional autoencoder (CAE) for dimensionality
reduction and a predictive adversarial network for
prediction or inference as it is known in machine learning
terminology.

Throughout this section we refer to the test case used here, air
flow around buildings modelled in two dimensions (2D) using
adapted, unstructured meshes [41]. There are two solution fields
of importance for the reduced-order model: the velocity field and

FIGURE 5 | Plots to demonstrate the quality of the autoencoders. The (unseen) solutions associated with one subdomain are compressed and reconstructed. Left
column: results from the HFM; central column: reconstruction from the CAE; right column: pointwise difference. Top row: x − component of velocity; middle row: y −
component of velocity; bottom row: buildings field.
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a field which indicates where there is a building, referred to as the
‘buildings field’.

2.1 Sub-sampling to Obtain Snapshots
To obtain the snapshots used for training the neural networks,
a star-shaped structured grid (see Figure 1A), is randomly
located and orientated within the domain (see Figure 1C),
although some care is taken so that the grid is not too near the
boundary of the domain. Each grid consists of five
subdomains, four of which are neighbours of a central
subdomain. For the CAE, the velocity and buildings fields
are interpolated onto the grid at one randomly selected time
level, although only data from the central subdomain is used
(see Figure 1B). This is repeated for a total number of Ng

grids, resulting in Ng snapshots. Both sets of snapshots are
separated into training, validation and test datasets. For the
predictive network that we refer to as PAN (Predictive
Adversarial Network), the velocity field is interpolated onto

the grid at two successive randomly selected time levels. The
buildings field is also interpolated onto the grid at one of
these time levels (the buildings field is constant through
time). This is repeated for a total number of Ng grids. So,
instead of using the entire solution fields as snapshots, only
the part of the solution field that has been interpolated onto
the grid is used as a snapshot. To capture the behaviour of the
flows, many grids are used to generate many snapshots from
which the neural networks can learn about the flow

TABLE 2 | Left: architecture of the CAE for the velocity field. (The architecture of
the CAE for the buildings field is similar, but with an input of (50,50,1) and a
central dense layer of 30 neurons.) Right: architecture of the PAN.

CAE PAN

Input (50,50,2) input 280
Conv (50,50,32) Dense 256
MaxPool (25,25,32) Dropout 256
Conv (25,25,16) BatchNorm 256
MaxPool (13,13,16) Reshape (2,2,64)
Conv (13,13,8) Conv (Adversarial) (2,2,16)
MaxPool (7,7,8) UpSample (4,4,16)
flatten 392 Conv (4,4,32)
Dense 50 UpSample (8,8,32)
Dense 392 Conv (8,8,64)
reshape (7,7,8) UpSample (16,16,64)
Conv (7,7,8) BatchNorm (16,16,64)
UpSample (14,14,8) Conv (16,16,128)
Crop (13,13,8) UpSample (32,32,128)
Conv (13,13,16) BatchNorm (32,32,128)
Upsample (26,26,16) Flatten 131072
Crop (25,25,16) Dense 50
Conv (25,25,32) Discriminator
UpSample (50,50,32) Dense 64
Conv (50,50,2) Dense 100

Dense 500
Dense 1

TABLE 1 | Hyperparameter values used in the neural networks. Associated with
the optimiser, β1 and β2 are the exponential decay rate for the first moment
estimates and the exponential decay rate for the exponentially weighted infinity
norm respectively.

Velocity CAE Buildings CAE PAN

number of epochs 9,000 5,000 5,000
Optimiser Adam Adam Adam
learning rate 5 × 10−4 5 × 10−4 5 × 10−4

β1 0.9 0.9 0.98
β2 0.999 0.999 0.999
activation functions
main network elu elu elu
final layer sigmoid sigmoid sigmoid
Discriminator n/a n/a relu
batch size 32 32 128
latent variables 50 30 n/a

FIGURE 6 | The velocity magnitude at the 350th time level from the HFM (left) and the predictive adversarial network (right).
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characteristics without being tied to a particular
arrangement of buildings. This use of sub-sampling allows
the neural networks to learn about fine-scale features such as
eddies in the vicinity of buildings independently, to some
extent, of the entire domain.

2.2 Dimensionality Reduction
Having been shown to compress data well for advection-
dominated flows, we choose the convolutional autoencoder to
reduce the dimension of the problem and find the low-
dimensional subspace in which the HFM will be approximated.
The CAE has been widely applied to reduced-order models in
recent years andmore details about this type of network along with
schematic diagrams can be found in Gonzalez and Balajewicz [42],
Xu and Duraisamy [43], Wu et al. [44], Nikolopoulos et al. [45]. In
a nutshell, the CAE is a type of feed-forward neural network with
convolutional layers that attempts to learn the identity map [46].
When used for compression, the CAE has a central ‘bottleneck’
layer which has fewer neurons than the input and output layers.
The values of the neurons in this central layer are known as latent
variables or reduced variables. The outer layers of the network
consist of convolutional layers (which detect patterns or features in
the flow fields) and pooling layers (which reduce the dimensions of
the data), and at the centre of the network are fully connected
layers. The autoencoder can be split into an encoder, which maps
the input to the latent variables (compressing the data) and a
decoder which maps the latent variables to the output
(reconstructing the data). If fenc

u and fdec
u represent the encoder

and decoder of the velocity field respectively, then the output of the
autoencoder can be written as follows

urecon
g,C � fdec

u fenc
u ug,C( )( ), (1)

where ug,C represents the velocity field that has been interpolated
onto the central subdomain of structured grid g and is the input to
the autoencoder, and urecong,C represents the reconstruction and is
the output of the autoencoder. Once trained, the reduced
variables associated with a particular subdomain can be
written as

αk
g,s � fenc

u uk
g,s( ) where s ∈ N,E,W, S, C{ }. (2)

FIGURE 7 | The velocity magnitude at the 400th time level from the HFM (left) and the predictive adversarial network (right).

FIGURE 8 | Here we plot all the nodes within the 6 by 6 domain. The
nodes within the building appear as blue and those outside of the building as
red. We also show four points within the domain, in black, where we plot the
histograms, or probability density functions, of the x − and y −

components of velocity.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9103817

Heaney et al. Generalisation Capabilities of Reduced-Order Models

106

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 9 | Here we show histograms for the 6 by 6 test case at points 1, 2, 3 and 4 (see Table 3) in rows from top to bottom respectively. The first column of
graphs show the x − component of velocity and the second the y − component. We compare in these graphs the histograms (or probability density functions) of the
velocity components of the HFM in blue, and NIROM in orange.
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A second CAE was trained to compress the buildings field, using
data fromNg snapshots. The reduced variables associated with the
buildings field can be written as

βg,s � fenc
b bg,s( ) where s ∈ N,E,W, S, C{ }. (3)

where bg,C is the buildings field of subdomain s of grid g.
Figure 1B shows three such subdomains, randomly located
and orientated within the domain, and superposed on the
velocity field of the test case at a particular time. Although we
could have used data from all the subdomains to train the
autoencoders, we found this not to be necessary and only used
data from the central subdomains. We do, however, obtain the
reduced variables for any subdomain (N, E, W, S or C) with the
trained encoder.

2.3 Prediction in Time
In this work, we follow [3] by modifying the adversarial
autoencoder so that it can predict in time, and refer to it as
a “Predictive Adversarial Network” (PAN). The adversarial
autoencoder [24] uses an adversarial strategy to force the
autoencoder’s latent space to follow a prior distribution
(Pprior) whilst the output aims to replicate the input as
closely as possible. Thus, in addition to the encoder-decoder
networks of a standard autoencoder, the adversarial
autoencoder has a discriminator (the adversarial network)
which is connected to the central layer of the encoder-
decoder. The discriminator is trained to distinguish between
samples from the prior distribution (true samples) and
samples from latent space (fake samples). The modifications
made to the adversarial autoencoder include: the inputs and
outputs no longer have the same dimension (as is required for
autoencoders that learn the identity map); the width of the
layers does not fall below the width of the output layer
(preventing additional compression to that already
performed in the dimensionality reduction stage); and the
loss function no longer minimises the difference between its
input and output, rather the output and the desired output. A
schematic diagram of the PAN can be seen in Figure 2, where
G represents the generator, H maps from the adversarial layer
(in blue) to the output of the network, and connected to the
adversarial layer is the discriminator D. The prior distribution
chosen here is the normal distribution (or Gaussian
distribution) with a mean of zero and a variance of one.
This choice of distribution for the latent variables (z) does
not affect the distribution that the output of the network can
have. The loss function for the predictive adversarial network
is given by

min
G,H

E ‖αk
g,C − ~αk

g,C‖2( )+
min
G

max
D

Ez~Pprior logD z( )[ ] + Eα~Pdata
log 1 −D G α( )( )( )[ ]( ), (4)

where ~αkg,C are the reduced variables predicted by the network
(H◦G) for the central subdomain of grid g at time level k, z ~
Pprior is a sample from the desired distribution and α ~ Pdata is a
sample of the reduced variables that have passed through the

generator. The first term represents the error in the prediction of
the reduced variables, and the second and third terms are the
regularisation terms arising from the adversarial training which
attempt to bring the posterior distribution of a hidden layer close
to the prior distribution. During training, there are therefore
three separate steps per mini-batch. First, the weights of G andH
are updated as a result of minimising the error in the output of
network; second, the weights of the discriminator network are
updated so it can better tell apart the genuine samples from the
generated samples; finally, weights of the generator are updated
so it can better deceive the discriminator network.

For the prediction network, data from all five subdomains
is used for training and inference, as shown in Figure 3. The
star-shaped grid is used, as, when predicting in time, it is
beneficial to have information from neighbouring regions.
The input to the network consists of the reduced variables
associated with the four neighbouring subdomains at the
future time level (tk) (see Figure 3(left)); the reduced
variables associated with the central grid at the current
time (tk−1) (see Figure 3(left)); and the reduced variables
associated with the central subdomain that describe the
buildings. The output of the network is the reduced
variables associated with the central subdomain at the
future time level (see Figure 3(right)). If the predictive
adversarial network is represented by f, this can be written as

αk
g,C � f αk

g,N, α
k
g,E, α

k
g,W, α

k
g,S, α

k−1
g,C , βg,C( ). (5)

2.4 Prediction for Unseen Scenarios
In order to increase the generalisation properties of the
reduced-order model, in addition to using a sub-sampling
technique to obtain the snapshots (as described in Section 2.1,
we pose each new scenario within a domain decomposition
framework.

2.4.1 Combining Subdomains to Model an Unseen
Scenario
Having trained neural networks to be able to predict flows
within a subdomain given the flows in neighbouring
subdomains and the layout of the buildings, a new (and
therefore unseen) domain can be constructed from a non-
overlapping union of these subdomains. Initial conditions for
both the velocity and buildings fields are required, which are

TABLE 3 | The coordinates of the points at which the probability distributions are
generated for both the 6 by 6 case and the 9 by 9 case.

Point x-coordinate y-coordinate

6 by 6 test case 1 1.2 1.7
2 1.175 1.55
3 3.4 2.4
4 3.85 2.45

9 by 9 test case 1 2.45 5.45
2 2.6 2.6
3 5.4 5.4
4 6.15 3.15
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then encoded by the convolutional autoencoders. This
provides a starting point from which to evolve the reduced
variables in time. At a given time level, a prediction is made
for the subdomains one-by-one (see Figure 4), with the
variables being updated as and when the solutions are
available in the manner of Gauss-Seidel iteration. An
iteration-by-subdomain approach is used until convergence
of the global solution is reached at that time level, and the

process continues to find the solution at the next time level. In
this manner, the solution of the NIROM is marched forward
in time from an initial condition. Figure 4 is a schematic
diagram that shows how domain decomposition can be used
to form an array of subdomains, and how the PAN is used with
iteration-by-subdomain to solve for the global solution. This
approach for prediction of flows for an unseen arrangement of
buildings is summarised in Algorithm 1.

FIGURE 10 | Velocity magnitude across the 9 by 9 domain at time level 250. Top left: HFM, and top right: prediction by the ROM. Bottom left and right: velocity
vectors over a 3 by 3 region [1,4]×[4,7] of the 9 by 9 domain, for HFM and NIROM respectively.
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Algorithm 1. An algorithm for finding the solution for the
reduced variables in a subdomain and sweeping over all the
subdomains to obtain a converged solution over the whole
domain. The algorithm marches forward in time from the
initial condition to time level Ntime.

3 RESULTS

The methods described previously are now tested on flow past
buildings modelled in 2D. Assuming an incompressible viscous
fluid, the conservation of mass and the Navier-Stokes equations
can be written as

∇ · v � 0, (6)
ρ

zv
zt

+ v · ∇v( ) � −∇p + ∇ · μ ∇v + ∇Tv( )( ) − σv, (7)

where t represents time, v represents velocity, p represents
pressure, μ is the dynamic viscosity, ρ is the density and σ is
an absorption term that is zero outside the buildings and 106

inside the buildings. The boundary conditions that we use in
conjunction with Equations 6 and 7 are defined as follows. At the
inlet we specify the normal velocity component which we set to
unity. The tangential components at the inlet boundary on the left
of the domains (see, for example, Figure 6) are set to zero. We
also set a zero normal velocity boundary condition to the top and
bottom boundaries of this domain along with a zero shear stress
condition. At the outlet we set the normal and shear stress
components to zero which effectively sets the pressure to near
zero at the outlet. Equations 6 and 7 together with the boundary
conditions are discretised using a finite element representation
for velocity and a control volume representation of pressure [47]
combined in a P1DG-P1CV element [48,49]. An unstructured
mesh is used which adapts through time, and an adaptive time
step is also used. For more details of how the governing equations
are discretised and solved, see Obeysekara et al. [48].

For ease of setting up this test case, we represent the areas
occupied by buildings as a sink in the velocity field (through
an absorption coefficient which acts on the velocity field,

which can be seen in the term involving σv in Eq. 7). By using
adaptive meshes (adapting to σ and the velocity field), we
obtain a sharp boundary between the buildings and the
outside air flow, although this would be sharper if the
building had been modelled explicitly. In any case, we
believe that the CFD results are a good enough
representation of flow past buildings to be used in this
proof-of-concept paper.

The numerical solutions were found for two domains, one
measuring 6 by 6 and the other measuring 9 by 9. These domains
were populated with randomly located and orientated buildings.
The lengths of both edges of each building were chosen randomly
from the interval [0.1, 0.4] and a minimum gap of 0.075 was
enforced between the buildings. A gap between the domain
boundaries and the buildings was maintained. In practice the
number of buildings for the 6 by 6 and 9 by 9 case is about 150 and
340 respectively.

A Reynolds number of 300 was used in both the simulations,
and was based on the unity inlet velocity and minimum building
edge length. The actual time step size was controlled by the
Courant number, chosen to be 0.5, and the solutions were saved
every 0.008 time units, giving the NIROM a time step size of
0.008. For a regular array of 17 square cylinders, Shams-ul Islam
et al. [50] observed chaotic flows for Reynolds numbers greater
than 125. In our case, we believe that Re = 300 is more than
sufficient for the flow to be chaotic and therefore to present an
interesting modelling challenge.

FIGURE 11 | Here we plot all the nodes within the 9 by 9 domain. The
nodes within the building appear as blue and those outside of the building as
red. We also show four points within the domain, in black, where we plot the
histograms, or probability density functions, of the x − and y −

components of velocity.
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FIGURE 12 | Here we show histograms for the 9 by 9 test case at points 1, 2, 3 and 4 (see Table 3) in rows from top to bottom respectively. The first column of
graphs show the x − component of velocity and the second the y − component. We compare in these graphs the histograms (or probability density functions) of the
velocity components of the HFM (not seen in training), blue, and the prediction from NIROM in orange.
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3.1 Dimensionality Reduction
The solutions from the 6 by 6 test case were interpolated onto
central subdomains of size 0.5 by 0.5 for every time level. 95,000
snapshots were created in total for the velocity CAE (by selecting
95,000 randomly located and orientated grids, at a randomly
selected time levels): 76,000 snapshots were used for training data
and the remaining 19,000 snapshots were used as validation data.
For the buildings field, a similar procedure was used to generate
95,000 snapshots. However, as the buildings do not change in
time, there was no random sampling in time. After optimisation
of both networks simultaneously, the chosen hyperparameter
values are shown in Table 1 and the architectures can be found in
Table 2. Figure 5 shows the velocity and buildings fields from the
HFM (unseen example) and the reconstruction from the
autoencoders for one subdomain. The velocity components are
very well reconstructed and the buildings field is captured well.
The pointwise error of the latter is confined to an extremely small
region around the edge of the buildings.

3.2 Prediction for the 6 by 6 Test Case
The solutions from the 6 by 6 test case were interpolated onto the
star-shaped grids (see Figure 1), within which, each subdomain is
of size 0.5 by 0.5 (one 12th of the domain size and thus 144
subdomains fit into the 6 by 6 domain). To form an input-output
pair for training, two successive time levels were chosen at
random (from time levels 50 to 349) and the velocity fields
associated with both time levels were interpolated onto the
grid in order to have all the variables required by the PAN,
see Eq. 5. The buildings field was interpolated onto the central
subdomain of the grid. 75,000 snapshots were created in total for
the PAN: 50,000 input-output pairs were used for training data
and the remaining 25,000 input-output pairs were used as
validation data. Hyperparameter optimisation was performed,
revealing the optimal values for the PAN which are shown in
Table 1, and the architectures in Table 2.

Once trained, themethod is tested by predicting in time. An initial
condition is used, based on the HFM results at time level 50, and the
method described in Algorithm 1 and the accompanying text is used
to march forward from time level 50 up to time level 400. Figures 6
and 7 show the prediction of the adversarial network for two
particular time levels beyond the training dataset but for the same
buildings configuration as the training dataset. The ROM captures
the velocity magnitudes well. It has managed to capture the areas
where there are high velocities, in comparison to the HFM, although
its resolution is reduced. Impressively, it is also able to capture many
of the eddy structures that result from the interaction of the fluid with
the buildings. Again we assume the truth is the HFM simulation
when comparing the two images. This NIROM simulation would be
expected, eventually, to deviate from the HFM as it is a chaotic flow
and small velocity deviations will build up, potentially changing the
flow structures significantly.

In Figure 8 we plot all the nodes within the domain, with the
nodes inside buildings appearing as blue and those outside the
buildings as red. Thus we can see the position of the buildings
and the density of the mesh at this instance in time, which
corresponds to the results shown in Figure 6. We also show four
points within the domain, in black, where wewill plot the histograms,

or probability density functions, of the x − and y − components of
velocity, taken over time level 50 to time level 400. These histograms
are shown in Figure 9 and the coordinates of the points are given in
Table 3.We see a qualitative agreement in terms of the statistics of the
fluctuations and the range of velocities between the HFM and the
NIROM. The narrower the histograms, the smaller the magnitude of
the fluctuations in the velocity components. Thus, generally speaking
the NIROM tends to fluctuate less than theHFM, probably because it
has a little less resolution than the HFM. It also (again because of
reduced resolution) has less frequently occurring large values of the
velocity. However, given the complexity of the flows, the NIROM
does remarkably well, even though there are some histograms that do
not compare quite so well, such as the x − component of the velocity
at point 4.

3.3 Prediction for the Unseen 9 by 9 Test
Case
Now an unseen configuration of buildings is used and the domain is
increased from 6 by 6 to 9 by 9. The HFM is solved in order to have
boundary conditions for the ROM. In the future, alternative methods
to generate boundary conditions will be explored, including methods
based on using the training data from the HFM [3], but also methods
based on generative networks, which will ensure that the ROM is
independent of the HFM in this regard. The initial condition for the
NIROM is taken from time level 50 of the HFM. The domain is now
split into 324 subdomains (of size 0.5 by 0.5). The predictive
adversarial network is used to generate a solution for each
internal subdomain (i.e., each subdomain that does not share an
edge with the boundary). All internal subdomains are swept through
until the global solution converges. Time-marching is applied to solve
from the initial condition at time level 50 to time level 250, as outlined
in Algorithm 1. Within each time step, the number of iterations
needed for convergence is approximately 20, about 4 more than for
the previous 6 by 6 problem. Convergence is assumed when the
difference between latent variables associated with compressed
velocity (outputs of the PAN in each of the 324 subdomains) is
less than e− 4 given that themagnitude of the latent variables isO(1)
as z ~ N (0, 1). Predictions from the NIROM of the velocity
magnitude at time level 250 can be seen in Figure 10. The
regions of high speed (shown in red) are picked up by the ROM
and promising agreement is obtained between the HFM and ROM.
The two lower plots in Figure 10 show the velocity magnitude and
velocity vectors for the HFM (left) and the NIROM (right) over
[1,4]×[4,7]. The NIROM captures the flow path and some of the
larger eddies, but does miss some of the smaller ones. The magnitude
of the NIROM’s velocities is generally slightly less than those of the
HFM. The detail in the velocity vectors suggest chaotic flow. One
would not expect the CFD and the NIROM to produce exactly the
same results, because of the chaotic nature of these flows. Finally, in
Figure 11 we plot all the nodes within the 9 by 9 domain, with the
nodes inside buildings appearing as blue and those outside the
buildings as red. We also show four points within the domain, in
black, where we will plot the histograms, or probability density
functions, of the x − and y − components of velocity taken over
time level 50 to time level 250. These histograms are shown in
Figure 12 and the coordinates of the points are given in Table 3.
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Again, we see a qualitative agreement in terms of the statistics of the
fluctuations and the range of velocities between the HFM and the
NIROM. As for the 6 by 6 domain, generally speaking the NIROM
tends to fluctuate less than the HFM, probably because it has a little
less resolution than the HFM. However, given the complexity of the
flows and the fact that this is an unseen domain with an unseen
configuration of buildings, the NIROM does extremely well.

4 CONCLUSIONS AND FURTHER WORK

Here we have presented a data-driven or Machine Learning (ML)
based non-intrusive reduced-order model (NIROM) which is
capable of making predictions for a significantly larger domain
than the one used to generate the snapshots or training data. This
is a unique development and one which we hope paves the way to
develop ML-based NIROMs that can make good predictions for
unseen scenarios. Ultimately these methods could complement
Computational Fluid Dynamics (CFD) codes when solving flow
fields in urban environments as well as other CFD applications.
This development relies on the combination of a novel way of
sampling the training data [which can free the reduced-order
model from the restriction of the domain of the high-fidelity
model (HFM)] and a domain decomposition approach (which
decomposes unseen geometries in a manner consistent with the
sub-sampling approach).

The main conclusions are that: (1) one can predict (with the
NIROM) the chaotic transientflowswithin the 2Dproblems, although
sometimes the resolution is reduced in comparison to the CFD
simulations; (2) the adversarial layer of the prediction algorithm is
important in order to form stable solutions that remain within the
distribution of the training data; (3) a convolutional autoencoder is
able to compress the velocity and buildings fields to a high degree of
accuracy; and (4) the approach was applied to make predictions for a
domain of over twice the area and over twice the number of buildings
as in the HFM used to generate the training data.

Future work will involve: (1) extending the problem domains
to 3D and using more realistic building profiles; (2) generating
boundary conditions with a generative network rather than using
the CFD code, resulting in a method fully independent of the

high-fidelity model; (3) using the residuals of the differential
equations within the training procedure (Physics-Informed
methods, for example, see [51]) and forcing the equation
residuals to zero within the prediction step by using a method
similar to the Residual DEIM approach [52].
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Component-Based Reduced Order
Modeling of Large-Scale Complex
Systems
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Large-scale engineering systems, such as propulsive engines, ship structures, and wind
farms, feature complex, multi-scale interactions between multiple physical phenomena.
Characterizing the operation and performance of such systems requires detailed
computational models. Even with advances in modern computational capabilities,
however, high-fidelity (e.g., large eddy) simulations of such a system remain out of
reach. In this work, we develop a reduced-order modeling framework to enable
accurate predictions of large-scale systems. We target engineering systems which are
difficult to simulate at a high-enough level of fidelity, but are decomposable into different
components. These components can be modeled using a combination of strategies, such
as reduced-order models (ROM) or reduced-fidelity full-order models (RF-FOM).
Component-based training strategies are developed to construct ROMs for each
individual component. These ROMs are then integrated to represent the full system.
Notably, this approach only requires high-fidelity simulations of a much smaller
computational domain. System-level responses are mimicked via external boundary
forcing during training. Model reduction is accomplished using model-form preserving
least-squares projections with variable transformation (MP-LSVT) (Huang et al., Journal of
Computational Physics, 2022, 448: 110742). Predictive capabilities are greatly enhanced
by developing adaptive bases which are locally linear in time. The trained ROMs are then
coupled and integrated into the framework to model the full large-scale system. We apply
the methodology to extremely complex flow physics involving combustion dynamics. With
the use of the adaptive basis, the framework is demonstrated to accurately predict local
pressure oscillations, time-averaged and RMS fields of target state variables, even with
geometric changes.

Keywords: reduced order modeling, domain decomposition, model reduction, turbulent reacting flows, adaptive
basis

1 INTRODUCTION

Rapid advancements in computing technologies are enabling high-fidelity simulations of complex,
multi-scale physics (e.g., turbulence [1] and combustion [2,3]) observed in real engineering systems.
These simulations provide insight into the underlying physics, which cannot be quantitatively
accessed through experiments. This insight is useful in improving the performance of engineering
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systems and reducing failures. However, the high computational
costs of high-fidelity simulations prohibit their integration into
design and analysis of full-scale systems, which require repeated
simulations to explore parameter spaces. One popular approach
to address such challenges is through model order reduction
(MOR), a common approach being projection-based reduced-
order models (ROM) [4–6], which have demonstrated success in
many applications such as flow control [7–9], aeroelasticity
[10,11], hypersonics [12], and combustion [13,14]. Typically,
the construction of ROMs involves three stages: 1) an offline
training stage that performs high-fidelity simulations of the target
systems for multiple parameters; 2) offline construction of reduced
basis and projections on low-dimensional manifolds; and 3) online
execution of ROMs by projecting the governing equations on the
low-dimensional manifold. Despite the many successful examples of
MOR, their direct applications in many practical large-scale
engineering systems remain infeasible because the systems are so
complex that high-fidelity simulations are completely inaccessible.
Using an example from rocket combustion, a coarse-mesh (“low”-
fidelity) large eddy simulation (LES) of a small-scale rocket engine
[15] requires O(107) CPU-hours, which even makes a single fine-
mesh (high-fidelity) LES of this type of problems inaccessible,
(estimated to require >O(109) CPU-hours), let alone the high-
fidelity LES of a large-scale rocket engine [16], a computation that
would require > 10 times the resources of the small-scale problem.

To address this specific challenge of the lack of full-order model
(FOM) data for large-scale systems, researchers have formulated
domain-decomposition methods [17,18], or component-based
methods [19] to develop a network of ROMs to model the target
system. In addition to ROM applications, such ideas have been
commonly used for computational fluid dynamics [20,21], port-
hamiltonian system [22–24] etc. For consistency, we refer to this
family of approaches as component-based reduced-order modeling
(CBROM)methods in the current paper. CBROMmethods leverage
the fact that many large-scale engineering systems can be
decomposed into components of identical features and the offline
training of the ROMs can be performed based on each individual
component for multiple parameters, which significantly reduces the
cost of the offline training. The trained component-based ROMs can
then be used for the identical components and coupled together to
model different configurations of the large-scale systems.

To date, the majority of the success of CBROMmethods has been
in problems governed by linear PDEs. Willcox et al. [25]
demonstrated the feasibility of constructing low-order models of
blade row unsteady aerodynamics in a compressor. Maday and
Ronquist [26] formulated a reduced basis element method and
applied it to a thermal fin problem. Iapichino et al. [27] proposed
a reduced basis hybrid method to solve the steady Stokes problem
with applications to cardiovascular networks. Adopting the static-
condensation reduced-basis-element method [19,28,29], Kapteyn
et al. [30] demonstrated the development of a digital twin for a
12-ft wingspan unmanned aerial vehicle via a library of component-
based ROMs. More recently, McBane and Choi [31] leveraged the
static-condensation reduced-basis-element method and
demonstrated a 1000× speedup with relative error < 1% for
lattice-type structure design using component-wise reduced-order
modeling.

In addition, some applications of component-based ROMs on
nonlinear PDEs can also be found in the literature. One group of
studies incorporate the FOM tomodel a subset of components in the
target system while applying ROMs to the other components. Lucia
et al. [32] demonstrated a combination of ROMs and FOM by
domain-decomposition for modeling two-dimensional high-speed
flows with moving shock waves, by applying the FOM for the shock-
containing domain and ROMs for the other domains. Buffoni et al.
[33] demonstrated similar ideas by partitioning the computational
domain into two subdomains (one modeled using FOM while the
other by ROM), and presented different approaches to couple ROM
with FOM. Baiges et al. [34] demonstrated the improvement in
predicting flow configurations that are not present in the training
snapshots by integrating the FOM into the component-based
modeling framework. Ahmed et al. [35] presented a hybrid
analysis and modeling approach combining a physics-based FOM
and a data-driven non-intrusive ROM towards predictive digital twin
technologies. Another group of investigations aim at incorporating
only ROMs rather than hybrid FOMs/ROMs in the component-
based modeling framework. Hoang et al. [36] proposed the domain-
decomposition least-squares Petrov-Galerkin (DD-LSPG) model-
reduction method for parameterized systems of nonlinear
algebraic equations. Xiao et al. [37–39] developed a domain-
decomposition non-intrusive reduced-order model (DDNIROM)
for turbulent flows. The current authors demonstrated the
integration of component-based ROMs with a FOM in a quasi-
1D Euler problem [40,41].

In the present work, we develop a component-based modeling
framework that can flexibly adopt either reduced-order models
(ROM) or full-order models (FOM) for different components of
the target system based on the corresponding requirements of
modeling accuracy and efficiency with the goal of enabling:

(1) Accurate simulations of large-scale systems, which cannot be
directly accessed using high-fidelity simulations;

(2) Parametric studies of the large-scale system targeting many-
query applications.

It is notable that in the current work, we choose rocket engine as
the target system. This application involves compressible, reacting,
chaotic flows and thus introduces complex challenges for reduced
order modeling. We establish a component-based training strategy
for ROM development, which only requires the high-fidelity
simulations of the individual components, rather than the entire
system. The trained ROMs are then coupled together (either with
each other or with FOM) via a direct flux matching method for
information transfer between components. The ROM formulation
leverages model reduction techniques using model-form preserving
least-squares projections with variable transformation (MP-LSVT)
with physical realizability enforced on both temperature and species
mass fractions [14] to achieve both global and local stabilization.
Furthermore, the MP-LSVT ROM is incorporated with basis
adaptation to achieve significant enhancement in modeling
accuracy. Since our interests are focused on engineering systems
involving combustion, we use extremely challenging turbulent
reacting flow examples, relevant to rocket applications, to motivate
and evaluate our framework. But it should be highlighted that our
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component-based modeling framework is applicable to many other,
unrelated disciplines, featuring systems that can be decomposed into
different components.

The remainder of the paper is organized as follows. Section 2
presents the full-order model (FOM) and time discretization.
Section 3 reviews the procedure for model reduction via MP-
LSVT formulation. Section 4 discusses basis-adaptation
algorithms for ROM enhancement. Section 5 presents the
domain-decomposition framework, including both the
component-based ROM training strategy and integration
method in full system. Section 6 presents numerical results
based on single- and multi-injector model rocket combustor
configurations with detailed assessment on the accuracy of the
framework. In Section 7, we provide concluding remarks and
perspectives.

2 FULL-ORDER MODEL

We define the physical domain Ω with boundary zΩ, and then
represent the governing equations of the full-order model (FOM)
for Ω as a generic dynamical system

dq qp( )
dt

� f qp, t( ) in Ω,
with u qp( ) � uBC on zΩ,

and qp t � 0( ) � qp
0,

(1)

where t ∈ [0, T] is the solution time, which spans the time interval
from 0 to T, qp: [0, T] → RN is the vector of solution (or state)
variables, uBC: [0, T] → RNb is the vector of states to be enforced
at the boundary zΩ (i.e., boundary conditions), qp

0 ∈ RN is the
vector of states to be specified as the initial conditions at t = 0,
q: RN → RN, f : RN × [0, T] → RN, and u: RN → RNb are
(typically highly non-linear) functions of qp. N is the total
number of degrees of freedom in the system (e.g., for finite
volume/element method, N = Nelem × Nvar, where Nelem is the
total number of elements andNvar is the number of state variables
in each element). Nb is the total number of degrees of freedom
associated with the boundary zΩ and Nb = Nelem,BC × Nvar, where
Nelem,BC is the number of elements adjacent to the boundary zΩ.
For a FOM based on conservation laws, the function, q,
represents the conservative state. The function, f, represents
surface fluxes, source terms, and body forces arising from the
spatial discretization of the governing equations. u represents the
boundary condition state, and uBC denotes the values of the state
to be satisfied at the boundary.

Different time-discretization methods can be introduced to
solve Eq. 1 (e.g., linear multi-step, or Runge–Kutta methods
[42]). For all the numerical examples presented in the current
paper, we use linear multi-step methods for both FOM and ROM
calculations and refer the reader to [14] for details. An l-step
version of linear multi-step methods can be expressed as

r qp
n( ) ≜ q qp

n( ) +∑
l

j�1
αjq qp

n−j( ) − Δtβ0f qp
n, tn( ) −Δt∑

l

j�1
βjf qp

n−j, tn−j( ) � 0 n≥ l( ),

with u qp
n( ) � uBC

n on zΩ.
(2)

where Δt ∈ R+ is the physical time step for the numerical
solution, and the coefficients αj, βj ∈ R are determined based
on l. If β0 = 0, the method is explicit; otherwise, the method is
implicit. r: RN → RN is defined as the FOM equation residual.
The state variables, qp

n, are solved for at each time step so that
r(qpn) � 0.

3 MODEL-FORM PRESERVING MODEL
REDUCTION FOR TRANSFORMED
SOLUTION VARIABLES
For problems involving multiscale phenomena with strong
convection and non-linear effects, it is well-recognized that
ROM robustness can be a major issue. To address this
challenge, we pursue the model-form preserving least-
squares with variable transformation (MP-LSVT)
formulation to construct the reduced-order model (ROM).
This methodology is described below—we refer the reader to
ref [14] for further details.

3.1 Construction of Proper Orthogonal
Decomposition Bases for Solution Variables
The state qp in Eq. 1 can be expressed in a trial space
Vp ≜ Range(Vp), where Vp ∈ RN×np is the trial basis matrix.
Define qp′(t) ≜ qp(t) − qp,ref , where qp,ref is a reference state.
Possible reference states include the initial FOM solution,
qp,ref = qp(t = t0), or the time-averaged FOM solution,
qp,ref � 1

t1−t0 ∫
t1
t0
qp(t) dt. We then seek a representation

~qp: [0, T] → Vp such that

H ~qp − qp,ref( ) � Vpqr (3)
where qr: [0, T] → Rnp is the reduced state with np
representing the number of trial basis modes. In this work,
Vp is computed via the proper orthogonal decomposition
(POD) [4] from the singular value decomposition (SVD),
which is a solution to

min
Vp∈RN×np

‖Q − VpVp
TQ‖F s.t. Vp( )TVp � I, (4)

where Q is a data matrix in which each column is a snapshot of
the solution qp′ at different time instances. A scaling matrix
H ∈ RN×N must be applied to qp′ such that the variables
corresponding to different physical quantities in the data
matrix Q have similar orders of magnitude. Otherwise, Q may
be biased by physical quantities of higher magnitudes (e.g., total
energy). In this work, we normalize all quantities by their L2-
norm, as proposed by Lumley and Poje [4].

H � diag H1, . . . ,Hi, . . . ,HNelem( ), (5)
whereHi � diag(ϕ−11,norm, . . . , ϕ−1Nvar,norm

). Here, ϕv, norm represents
the vth state variable and

ϕv,norm � 1
t1 − t0

∫
t1

t0

1
Ω∫Ω

ϕ′2v x, t( ) dx dt. (6)
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3.2 Least-Squares With Variable
Transformation
Leveraging the least-squares Petrov-Galerkin (LSPG) projection
formulation proposed by Carlberg et al. [43], we develop a model-
form preserving least-squares formulation for the FOM in Eq. 1.
Our objective is to minimize the fully-discrete FOM equation
residual r, defined in Eq. 2, on the physical domainΩwith respect
to the reduced state, qr

qn
r ≜ arg min

qr∈R
np

Pr ~qp( )
					

					
2

2
,

with u ~qp
n( ) � uBC

n on zΩ
and ~qp

0 � qp,ref +H−1Vp Vp( )Tqp0
(7)

where the approximate solution variables, ~qp � qp,ref +H−1Vpqr.
The equation residual, r, is scaled by P using the L2-norm, similar
to the scaling matrix H in Eq. 5

P � diag P1, . . . ,Pi, . . . ,PNelem( ), (8)
where Pi � diag(φ−1

1,norm, . . . ,φ
−1
Nvar,norm

). Here, φv, norm represents
the vth evaluated quantity of q(qp)

φv,norm � 1
t1 − t0

∫
t1

t0

1
Ω∫Ω

φ′2
v x, t( ) dx dt, (9)

such that each equation in r has similar contributions to the
minimization problem in Eq. 7. It is worth pointing out that the
treatment of boundary conditions in the MP-LSVT ROM is fully
consistent with the FOM in Eq. 2, which guarantees that the
boundary conditions are satisfied in the ROM and serves as an
important building block in FOM/ROM coupling in the
component-based domain-decomposition framework in
Section 5.

Following Eq. 7, a reduced non-linear system of dimension np
can then be obtained and viewed as the result of a Petrov-
Galerkin projection

Wp
n( )T Pr ~qp

n( ) � 0,

with u ~qp
n( ) � uBC

n on zΩ
and ~qp

0 � qp,ref +H−1Vp Vp( )Tqp
0

(10)

where Wp is the test basis

Wp
n � zPr ~qp

n( )
zqn

r

� P ~Γ
n − Δtβ0~J

n~Γ
n( )H−1Vp, (11)

with ~J
n � [zf/zq]nqp�~qp and ~Γ

n � [zq/zqp]nqp�~qp .

4 REDUCED-ORDER MODELS
ENHANCEMENT VIA BASIS ADAPTATION

While the MP-LSVT method improves the robustness and
accuracy of the ROM, predictive capabilities (e.g., future-state
prediction) are still restricted by the use of linear static basis,
which has been shown to be inadequate for predictions in
problems with slow Kolmogorov N-width decay [14,44].
Several remedies have been proposed to address this challenge

through, for example, localized linear bases [45,46], nonlinear
bases [47,48], and online basis adaptation [49–51] etc. In the
current work, we focus on online basis-adaption methods, which
aim to update the trial basis Vp during the online ROM
calculation (Eq. 10) such that

Vn
p ≜ arg min

Vn
p∈R

N×np

Pr ~qp
n( )

					
					
2

2
, (12)

where r is the fully-discrete FOM equation residual defined in
Eqs. 2, ~qp

n � qp,ref +H−1Vn
pq

n
r , and ~qp

n−j � qp,ref +H−1Vn−j
p qn−jr

while qnr and qn−jr are solutions to Eq. 10. This minimization
problem can be solved exactly via the update

Vn
p � Vn−1

p + δVp, (13)
where the basis at time-step n − 1 is adapted to n, through an
increment, δVp ∈ RN×np , given by

δVp � q̂p
n − ~qp

n( ) qnr( )T
‖qn

r‖22
, (14)

where q̂p
n ∈ RN represents the full-state information, which can

be evaluated based on the FOM equation residual as follows

q q̂p
n( ) +∑

l

j�1
αjq ~qp

n−j( )− Δtβ0f ~qp
n, tn( ) − Δt∑

l

j�1
βjf ~qp

n−j, tn−j( ) � 0,

or q q̂p
n( ) +∑

l

j�1
αjq ~qp

n−j( )− Δtβ0f q̂p
n, tn( ) − Δt∑

l

j�1
βjf ~qp

n−j.tn−j( ) � 0.

(15)
here, we adopt an alternate formulation compared to [50] by
updating the basis based on the full-state information evaluated at
the current time step, n, q̂p

n, instead of collecting at multiple time
steps, which is similar to the work done by Zimmermann et al.
[51]. We refer to this formulation as the one-step adaptive-basis
approach. The rate of basis adaptation is empirically determined
for the target applications and in the current work, we choose to
adapt the basis at each time step.

To achieve gains in computational efficiency for the
projection-based ROMs introduced in Section 3, hyper-
reduction is required to obtain an approximation of the
non-linear function (e.g., f in Eq. 1) based on a small
number of sampled elements—for example, it can be
achieved by the discrete empirical interpolation method
(DEIM) [52], or its least-squares regression analogue, gappy
POD Everson and Sirovich [53]. In addition, the full-state
information evaluation (Eq. 15) in basis adaptation can be
computationally expensive and also requires hyper-reduction
for efficiency gain so that the evaluation is only needed at a
small number of sampled elements. This can be achieved by
incorporating the recently developed adaptive sampling
techniques [50], which update the selection of sampled
elements based on the basis adaptation. However, the
current work mainly focuses on the development and
demonstration of the component-based ROM framework.
Therefore for conciseness, we are not including ROM
hyper-reduction in the current paper since in principle, its
presence or absence will not impact the validity of the
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framework. We will incorporate the hyper-reduced ROMs in
the framework in future work.

5 COMPONENT-BASED DOMAIN-
DECOMPOSITION FRAMEWORK

In this section, we introduce the component-based domain-
decomposition framework for modeling large-scale engineering
systems. Because our research has been primarily motivated by
applications to propulsion systems for aerospace applications, we
use a multi-injector model rocket combustor to assist in the
description of the framework formulation. Figure 1 presents a
representative geometry composed of seven injector elements
through each of which fuel and oxidizer in separate channel feed a
downstream combustion chamber. The physical domain has been
separated into eight components with seven for the injector
elements (Ωk, etc.) and one for the downstream combustor
and nozzle (Ω8). A set of similar configurations are also
included in our numerical examples in Section 6.2. Even
though the configuration in Figure 1 represents a complicated
engineering system, most of the components share identical
geometric features, an attribute that is common in many
engineering systems (e.g., compressors, gas turbine engines,
and wind farms, etc.). The interior components Ωk, where

k = 2, . . . , 6, are identical to each other geometrically, the
two outer components Ω1 and Ω7 mirror each other in
geometrical configuration (i.e., symmetric about the center
axis), while Ω8 does not resemble any other components.
Therefore, the representation of the multi-injector rocket
combustor in Figure 1 can be simplified as the combination
of three representative components: I (�ΩI)—an interior injector
element (e.g., Ω3); II (�ΩII)—an outer injector element (e.g., Ω7);
and III—the downstream combustor and nozzle (Ω8), which
enables the applications of the component-based domain-
decomposition framework without accessing the expensive
high-fidelity FOM of the full system. Furthermore, we denote
the representative components that can be repetitively used in the
full system (e.g., �ΩI and �ΩII) as reference components. Based on a
priori knowledge of the dynamics in the system [54,55], different
modeling strategies can be adopted for different components (or
subdomains) Ωk, each of which is bounded by the physical
boundaries, zΩk (e.g., inlets, outlets, walls surrounding Ωk,
represented by the solid lines in Figure 1), and interface
boundaries (dashed lines in Figure 1) shared between
components (e.g., k and m), zΩkm ≜Ωk ∪ Ωm.

First, we introduce a general description of the domain-
decomposition formulation

Bkr �qp,k
n( ) � 0,

with uk �qp,k
n( ) � uBC,k

n on zΩk,

and vkm �qp,k
n( ) � vkm �qp,m

n( ) on zΩkm,

(16)

where k denotes the numbering of the sub-components in the
formulation, Bk ∈ RnB,k×Nk denotes a matrix that enables the
component to adopt either FOM or ROM for the
corresponding kth subdomain (Ωk), and Nk is the total
number of degrees of freedom in Ωk and Nk = Nelem,k × Nvar,
where Nelem,k is the total number of elements in Ωk. For FOM,
nB,k =Nk, and Bk = I, similar to Eq. 2, and for ROM, nB,k = np, and
Bk � (Wp,k

n)TPk, consistent with Eq. 10. uk: R
Nk → RNb,k

represents the physical boundary condition state to be satisfied
as uBC,k on zΩk, where Nb,k is the total number of degrees of
freedom associated with the boundary zΩk, andNb,k =Nelem,BC,k ×
Nvar, with Nelem,BC,k as the number of elements adjacent to the
boundary zΩk. In addition, a (non-linear) function,
vkm: RNk → RNInterf,k , is introduced to match the interface
condition between subdomains Ωk and Ωm, where NInterf,k is
the total number of degrees of freedom associated with the
boundary zΩk, and NInterf,k = Nelem,Interf,k × Nvar, with
Nelem,Interf,k as the number of elements adjacent to the interface
boundary zΩkm. Additional details are provided in Section 5.2.

Given the complexity and scale of the physics, small-scale local
components with identical features (e.g., the interior and outer
injector elements,Ω3 andΩ7, in Figure 1, the nozzle element in a
gas turbine, the rotor blade in a compressor, or the wind turbine
in a wind farm) often require high-fidelity modeling to achieve
satisfying accuracy in many-query engineering applications.
Therefore, ROMs can be an ideal candidate from the
viewpoint of satisfying efficiency and accuracy requirements.
On the other hand, large-scale system-level components (e.g.,
the downstream combustor and nozzle, Ω8, in Figure 1) are

FIGURE 1 | An example of a multi-injector model rocket combustor with
seven identical injector elements and the downstream combustor and
nozzle [54].
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usually governed by physics that is less demanding in numerical
resolution. This makes the reduced-fidelity full-order model (RF-
FOM) a good candidate for modeling of the large-scale system-
level components—for example, coarse-mesh LES, nonlinear
Euler model, unsteady Reynolds Averaged Navier Stokes models.

5.1 Component-Based Reduced-Order
Model Training
To enable modeling of the full system (e.g., Figure 1), the FOM of
which is not directly accessible, we develop a component-based
ROM training method in the current section, that requires high-
fidelity FOM simulations for only the reference components
identified in the system. The method aims to generate a rich
training dataset that contains representative dynamics of the
components when integrated in the full system of various
configurations (e.g., different numbers of injector elements),
thus enabling the generation of predictive component-based
ROMs, which is analogous to the localized ROM strategy
developed for finite element method with representative work
by Henning and Peterseim [56]; Eftang and Patera [28]; and
Smetana and Patera [29]. To achieve this, we introduce unsteady
perturbations at interface boundaries in the FOM simulations of
the reference components, following Eq. 1, to fabricate the effects
of system-level responses, as demonstrated in Figure 2. Most
importantly, by enriching the functions used for the boundary
perturbations, the dynamics of different full-system
configurations can be embedded within the ROMs of the
individual components. For example, the effects of system-
level acoustics can be accounted for by imposing different
pressure perturbations at the boundary

p t( ) � pref 1 +∑
nf

i�1
Ai sin 2πfit( )⎡⎣ ⎤⎦. (17)

where fi is the frequency included in the boundary perturbations
with Ai denoting the associated amplitude, reflecting the
anticipated full-system responses, and nf is the total number of
frequencies, an indicator of the richness of the excited dynamics.

Alternatively, velocity oscillations can be enforced at the
boundaries following similar function in Eq. 17 to mimic the
effects of large-scale flow dynamics in the full system.

It is important to ensure that the imposed boundary
conditions (dashed lines in Figure 2) do not imprint the
dimensions of the individual component upon the combustion
dynamics. All internal domains are subject to acoustic resonance
at scales determined by their geometry, but the dimensions in the
individual component are not representative of those of the full
system and so must not appear in the training dataset.
Accordingly, it is critical that the boundary conditions on the
reference component be chosen such that its geometry does not
impact the FOM solutions of the dynamics upon which the ROM
is based. An effective way to accomplish this is by applying non-
reflective boundary conditions through pertinent Riemann
invariants. We adopt the formulation that proved to be
effective for multi-dimensional reacting flow simulations [57].
It should be mentioned that the ROM training method in
Figure 2 requires a level of prior knowledge of the essential
physics in the full-system (e.g., acoustics) to ensure that pertinent
physics are included in the ROM training. For example, in rocket
combustor design such as Figure 1, system-level acoustic
frequencies can be estimated a priori based on the full-system
configuration. Correspondingly, a multi-frequency perturbation
can be imposed at the boundary conditions for ROM training, the
frequency band of which covers the target full-system acoustic
frequencies and therefore excites the essential dynamics
anticipated within the component when integrated in the full-
system. A similar idea has been demonstrated in simple 1D
problems by the current authors Huang et al. [40]; Xu et al.
[41]. To account for complex dynamics at the component
interfaces, instead of directly imposing the perturbations at the
interfaces, auxiliary domains can be introduced for the ROM
training, which is discussed and demonstrated in Section 6.

5.2 Integration in Full System Simulations
Once the component-based models are constructed following the
strategies in Section 5.1, the effective integration of these models
in the domain-decomposition framework is another determining
factor for the success of the framework. In this section, we use the
example in Figure 1 to illustrate the integration of the
component-based models. Following the method in Section
5.1, ROMs are trained on the reference components, the
trained ROMs can be used repetitively to model identical
components in the full system to enable geometric variations
(Figure 3A with (̂·) indicating that the left element mirrors the
right one) based on the premise that the injector elements in the
full system share identical geometries as the reference
components used for ROM training. As discussed above, the
RF-FOM can be adopted to efficiently model the geometrically
flexible components (e.g., the downstream combustor and
nozzle) that vary with the full system configurations, given the
less demanding requirements on modeling accuracy.
Alternatively, ROMs could also be developed for the
geometrically flexible components although ROM
developments for geometric variations remains an open area
of research.

FIGURE 2 | Schematic of the component-based ROM training method
based on (A) reference components I and (B) II.
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To achieve accurate predictions of the system-level response
governed by the component interactions, it is important to ensure
that the essential information is transferred between components.We
adopt a direct flux matching method via ghost cell assignment to
couple the components at the interface with no overlap

vkm �qp,k
n , �qp,m

n( ) � vkm �qp,m
n , �qp,k

n( ) on zΩkm, (18)

a schematic of which is shown in Figure 3B, describing the
coupling between domainΩk andΩm through the interface zΩkm.
The two adjacent mesh cells of zΩkm are indicated by the shaded
areas. When performing calculations based on Eq. 16 at time step
n at a cell with solution variables �qp,k near zΩkm in Ωk, solution
variables at the adjacent (or ghost) cell, denoted as �qp,m, are
assigned by the corresponding neighboring domain Ωm. The
combination of �qp,k and �qp,m is then used to calculate the
interface condition state, denoted as vkm(�qp,kn, �qp,mn), and vice
versa, thus guaranteeing the interface condition state is matched
as posed in Eq. 16—i.e., vkm(�qp,kn) � vkm(�qp,mn). Specifically, we
set the interface condition state function vkm to be the numerical
fluxes (both inviscid and viscous) to better suit the finite volume
scheme of the numerical solver used for the current work [58].
We remark that the interface method remains the same regardless
of whether the domain is represented by FOM or ROM.

The major benefit of the direct-flux-matching interfacing
method is that it inherently accounts for changes in flow

characteristics at the interface and therefore important
phenomena such as reverse flows are naturally supported.
More importantly it makes the training of the component-
based ROMs relatively independent of their coupling with
other components in the framework, which allows more
flexibility in the ROM training strategy. For example, auxiliary
domains (e.g., adjacent injector elements) can be introduced in
the component-based ROM training stage in Figure 2 to better
emulate interactions between injector elements in the training
dataset. These aspects are demonstrated in the numerical results
in Section 6.

6 NUMERICAL RESULTS

To assess the capabilities of component-based domain-
decomposition modeling framework in predicting multi-scale
multi-physics problems (e.g., reacting flows), two model rocket
combustors are considered. The first configuration is a two-
dimensional representation of a generic laboratory-scale single
injector configuration [59]. This case is used to a) assess the
component-based ROM training strategy and the interfacing
method between components in the framework, and b) to
explore the feasibility of using the framework to predict
dynamics on different full-system geometries. The second
configuration is a two-dimensional representation of a

FIGURE 3 | Illustration of the component-based domain-decomposition framework. (A) Schematic of the component-based domain-decomposition framework.
(B) Interfacing method for coupling different components.
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multi-injector model rocket combustor [60], and is used to
evaluate the capabilities of the framework to model different
geometric configurations of the full system as demonstrated in
Figure 3.

The computational infrastructure used for the full- and
reduced-order models solves conservation equations for mass,
momentum, energy and species transport [58,61] in a fully
coupled manner, which has been used to model a variety of

FIGURE 4 | Overview of 2D-planar single-injector model rocket combustor including (A) computational configuration and FOM-FOM results with (B) pressure
signals measured at x = 0 in (A,C) representative snapshots of the temperature fields, and (D) representative snapshots of the axial velocity fields.
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complex, practical reacting flow problems. More details of the
FOM equations can be found in Appendix B of [14]. The FOM
employs a cell-centered second-order accurate finite volume
method for spatial discretization and uses the direct flux
matching method as described in Section 5.2 for parallel
computation. The Roe scheme [62] is used to evaluate the
inviscid fluxes and a Green-Gauss gradient reconstruction
procedure [63] is used to compute the face gradients and
viscous fluxes. A gradient limiter by Barth and Jespersen [64]
is used to preserve monotonicity for flow fields with strong
gradients. A ghost cell formulation is used for treatment of
boundary conditions. Time integration for all FOM
simulations uses the implicit second-order accurate backwards
differentiation formula with dual time-stepping.

6.1 Single-Injector Model Rocket
Combustor
First, we explore and demonstrate the component-based domain-
decomposition framework on a 2D-planar representation of a
generic laboratory-scale rocket combustor designed to study
combustion dynamics [59]. The configuration is shown in
Figure 4A and consists of a shear coaxial injector with an outer
passage, T1, that introduces fuel near the downstream end of the
coaxial inner passage, T2, which in turn feeds oxidizer to the
combustion chamber with a choked nozzle downstream, resulting
in combustion-driven acoustics to be sustained. Operating
conditions in this single-injector combustor are maintained with
an adiabatic flame temperature of approximately 2,700 K and a
mean chamber pressure of 0.95MPa. The T1 stream contains
gaseous methane (100% CH4) at 300 K. The T2 stream is 42%

gaseous O2 by mass and 58% gaseous H2O by mass at 660 K. The T1
and T2 streams are maintained at constant mass flow rates, 0.46 kg/s
and 5.40 kg/s, respectively. Combustion is represented by the
flamelet progress variable (FPV) model [65] with GRI-1.2 [66]
chemical kinetics, which consists of 32 species and 177 chemical
reactions. The chemical species are treated as thermally perfect gases.
Note that although 32 chemical species are modeled, the FPVmodel
only solves transport equations for three scalar quantities: the mean
mixture fraction (Zmean), themixture fraction variance (Z″2), and the
reaction progress variable (Cmean) [65]. Individual chemical species
mass fractions are looked up from pre-computed flamelet
manifolds [67].

As shown in Figure 4A, the single-injector configuration
consists of two components, the upstream injector element
(ΩA) and the downstream combustor and nozzle (ΩB). Three
different lengths of the combustor (Lc) are investigated for this
configuration by maintaining the upstream component (ΩA)
while varying the length of the downstream component (ΩB),
i.e., LB. This change in length leads to different dynamic behaviors
as shown in Figures 4B–D when both ΩA and ΩB adopt FOM as
their modeling strategy, denoted as FOM-FOM, the solutions
from which are taken as the truth to evaluate the component-
based ROM framework. It can be readily seen from Figure 4B
that by just varying the combustor length (Lc), different pressure
oscillations can be sustained. The longer combustor lengths tend
to drive higher pressure oscillation amplitudes (> 30% peak-to-
peak) while the shorter lengthmaintains lower amplitude, < 15%,
(Figure 4B left). This features different frequencies as shown in
the power spectral densities (PSD) in Figure 4B right. In
addition, the combustion dynamics changes with Lc as seen
in Figures 4C,D, which allows reverse flow at the component
interface zΩAB under high-amplitude pressure oscillations.
Thus, this single-injector combustor is an appropriate
testbed for the component-based domain-decomposition
framework proposed in Section 5, which adopts a ROM for
the upstream component (ΩA), and a RF-FOM for the
downstream component (ΩB).

6.1.1 Injector Element Reduced-Order Models
Training
As mentioned in Section 5.1, the ROM training strategy is crucial
to the success of the component-based framework. For the
investigations on the single-injector configuration (Figure 4),
two types of strategies are considered to train ROM for the
upstream component (ΩA): 1) system-based (only for
framework verification), and 2) component-based methods as
shown in Figure 5.

• The system-based approach (Figure 5A) simulates the
complete geometry of interest (e.g., Lc = 0.42 m in
Figure 4), trains the ROM based on the extracted
snapshot solutions corresponding to the upstream
injector-element component (�ΩA), and only serves to
verify the feasibility of the component-based ROM
framework.

• The component-based approach (Figure 5B), as the
primary focus of the current work, simulates only the

FIGURE 5 | ROM training strategies for the single-injector combustor,
including (A) system-based and (B) component-basedmethods and (C) POD
residual energy distribution comparisons the two training methods.

Frontiers in Physics | www.frontiersin.org August 2022 | Volume 10 | Article 9000649

Huang et al. Component-based ROM of Large-Scale Systems

124

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


injector-element for ROM training and produces essential
dynamics by forcing the downstream boundary conditions.
Further, component-based training is necessary for systems
whose full-scale characteristics are beyond the current
available computing capabilities. Instead of imposing the
forcing directly at the downstream end of the injector
element (i.e., the dashed line in Figure 5B), an auxiliary
domain with exponentially stretched mesh in the axial
direction is added downstream for the component-based
ROM training approach. The addition of the auxiliary
domain is necessary to represent large-scale motions

(e.g., vortex shedding) that are undamped in the
downstream domain whereas small scale motions (e.g.,
chemical reaction) that would interfere with long-
wavelength forcing are damped before the downstream
boundary is reached. It inherently incorporates complex
dynamics (e.g., reverse flow) at the component interface
zΩAB (e.g., similar to what has been observed in Figures
4B,C in the training snapshots for ROM, which cannot be
accounted if boundary conditions are directly applied. In
addition, it reduces the influence of the training geometry
(i.e., injector element + auxiliary domain) on the dynamics

FIGURE 6 | Comparisons of (A) pressure signals measured at x = 0 in (B) pressure, (C) temperature, and (D) axial velocity time-averaged (left) and root-mean-
square (right) fields with different models (component-based ROM vs. system-based ROM vs. FOM) used for the upstream injector element (ΩA) for the single-injector
combustor.
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in the training dataset for ROM, especially on the
longitudinal acoustics.

In either of the above approaches, the trained ROM is coupled
with different downstream components to model the full system.
The component-based approach provides flexibility in generating
dynamics and substantial savings in computational cost for ROM
training since it eliminates the need for computation of a
complete configuration in Figure 4.

We consider Lc = 0.42m in Figure 4 as the target full system,
which exhibits a self-excited high-amplitude pressure oscillations at
1150Hz as shown in Figure 4A. Both system-based and component-
based methods are used to generate training snapshots for ROM
development. To generate the essential dynamics during component-
based training (Figure 5B), the Riemann invariant corresponding to
backward characteristics (qu−c) is perturbed at the downstream
boundary using the following forcing function:

qu−c � qu−c,ref 1 + A sin 2πft( )[ ], (19)
whereA = 0.1, f = 1150Hz to generate similar pressure oscillations
observed in the full system, and qu−c,ref represents the reference
value of the Riemann variable of backward characteristics that
maintains the nominal pressure. The training snapshots
containing two acoustic cycles of information (i.e., Tp = 2/f)
are used to generate the POD trial basis as described in Section
3.1, the characteristics of which are investigated to understand
how well the POD trial basis represents the training dataset. The
representation is evaluated using the POD residual energy:

PODResidual Energy np( ), % � 1 − ∑np
i�1~σ

2
i

∑np,total
i�1 ~σ2i

( ) × 100, (20)

where ~σ i is the ith singular value of the SVD used to compute the
trial basis Vp. Again, np is the number of vectors retained in the
POD trial basis, and np,total (= 1740) is the total number of
snapshots in the dataset. The residual energy as a function of np,
as shown in Figure 5C for both system-based and component-
based training methods, reveals the information excluded by the
POD representation for a given number of modes. Overall, the two
ROM training methods show very similar POD residual energy
decay. The results show that, to recover approximately 99% of the
total energy, 70 and 68 modes are needed for system-based and
component-based methods, respectively, while approximately
150 modes are required to reach 99.9% for both methods. This
slow energy decay is indicative of the significant complexity of the
system dynamics. Many fundamental projection-based ROM
methodologies are tested on relatively simple problems requiring
only ~ 10 trial basis modes to achieve 99.9% POD energy [68–70].
ROMs for more practical engineering systems, however, generally
require ~ 100 trial basis modes [43,71,72].

6.1.2 Performance
Next, we couple the trained injector-element ROMs from Section
6.1.1 with the downstream combustor and nozzle (ΩB in
Figure 4) via the interfacing method described in Section 5.2
to model the full configuration of Lc = 0.42 m. Two acoustic cycles
(1.74 ms) of snapshots (1,740 in total) are used to train the ROMs,

which are constructed with the number of POD modes capturing
99% of the total energy. To consistently evaluate the modeling
capabilities of the resulting framework based on the FOM-FOM
results (i.e., the true solutions) in Figure 4, we adopt a FOM,
instead of RF-FOM, for the downstream component (ΩB). The
coupled ROM-FOM framework is then used to predict 20 ms of
dynamics and compared against the FOM-FOM results.

First, we evaluate the performance based on the local pressure
signals measured at x = 0 in Figure 4, which has been often used
as an important quantity of interest (QoI) to assess the accuracy
of modeling tools in predicting combustion instability [58]. The
predicted pressure signals, both time traces (left and middle) and
PSDs (right), are compared in Figure 6A with different models
used for the used for the upstream injector element (ΩA) for the
single-injector combustor. Furthermore, the peak-to-peak
pressure oscillation amplitude (pptp′ based on the root-mean-
square (RMS) in Eq. 21) and the dominant acoustic frequency (fa)
are calculated based on the pressure time trace and PSD,
respectively and compared against the FOM-FOM results for
quantitative assessment, as summarized in Table 1. Overall, the
ROM-FOM framework (either with system-based or component-
based ROM) is able to predict the pressure amplitude and
frequency with reasonable accuracy (< 10%). As shown in
Figure 4, within the training period, the system-based ROM-
FOM replicates the FOM-FOM results closely, as expected. On
the other hand, the component-based ROM-FOM also represents
the pressure oscillations reasonably well even though the essential
downstream component is excluded in ROM training. Moreover,
the comparisons in Figure 6A confirm that the component-based
ROM training strategy is feasible by emulating feedback
responses from the downstream component with boundary
forcing to train ROM, as illustrated in Figure 5. More
importantly, both approaches enable long-time predictions
(e.g., 1.74 ms training vs. 20 ms prediction), which is not
commonly reported in the literature for ROM applications
relevant to compressible fluid flow problems.

Second, we assess the predictive capabilities of the ROM-FOM
framework based on two other QoIs, time-averaged and root-
mean-square (RMS) fields of the state variables, which serve as
crucial determining factors in many engineering applications

Φaverage � 1
nt

∑
nt

n�1
Φn, ΦRMS �

������������������
1
nt

∑
nt

n�1
Φn −Φaverage( )2

√
, (21)

where nt is the total number of snapshots included to calculate the
QoI, andΦn represents the state variable of interest, e.g., pressure
(P), temperature (T), and axial (or streamwise) velocity (U), at
time step n. In addition, the errors of the ROM-FOM framework
in predicting Φaverage and ΦRMS are further quantified as follows

ϵΦ � Φ −Φref‖ ‖2
Φref‖ ‖2 , (22)

where Φ represents the QoIs (i.e., either the time-averaged or
RMS field) for the error measurement, and Φref represents the
QoIs calculated from the FOM-FOM framework. The errors,
calculated based on Eq. 22, are summarized in Table 2. Though
the ROM-FOM framework is able to provide reasonably accurate
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predictions of the time-averaged fields (< 3% errors for P, and
< 8% for T and U) with both system-based, and component-
based ROM used for ΩA, significant errors (> 9% for P, > 20%
forU, and > 40% for T) are observed in predicting the RMS fields,
which are directly related to the unsteady dynamics. Specifically,
while the predictions of pressure RMS fields are acceptably
accurate, the ROM-FOM framework exhibits difficulties in
representing the RMS fields of state variables featuring strong
advection (i.e., T and U), which can be largely attributed to the
chaotic nature of the dynamics as seen in Figures 4B,C. The
pressure field exhibits organized dynamics due to strong self-
excited oscillations in the full system, which allows the ROM-
FOM to provide reasonable predictions as the trial basis
generated during the training stage is able to efficiently
represent such organized dynamics. However, in turbulent
reacting flows (characterized by transport of strong
temperature gradients), chaotic and non-stationary features
present a major challenge. The basis is unable to represent the
unsteady features of T and U in the upstream component ΩA,
therefore producing significant errors when coupled with the
FOM for the downstream component ΩB in the resulting
framework. This is not a flaw in the ROM formulation or the
domain-decomposition framework, but rather a limitation of
using a linear and static basis set to construct the ROM for
the upstream component in the framework, which has also been
discussed by the current authors in [14].

Such challenges and the limitation of using a linear and static
basis set are further revealed by comparing the time-averaged and
RMS fields between the FOM-FOM and ROM-FOM framework
in Figures 6B–D, which shows significanly under-predicted
magnitudes of the RMS fields by the ROM-FOM framework.
More importantly, distinguishable mismatches between solutions
in ΩA and ΩB are observed at the component interface zΩAB in
ROM-FOM results, featuring abrupt changes in numerical values
in the regions adjacent to the interface (e.g., Paverage, Uaverage,
URMS of system-based ROM-FOM and PRMS of component-based
ROM-FOM), which is absent in FOM-FOM results. The
mismatches can be mainly attributed to the inconsistent

orders of modeling accuracy between ROM in ΩA, restricted
by the POD basis, and FOM in ΩB, restricted by the mesh
resolution. The use of a static linear basis for ROM in ΩA

limits its predictive capabilities. It is pointed out that the
interface mismatches are not unique to ROM/FOM coupling,
but more general issues for finite-element [73] and finite-volume
[74] methods, especially with non-matching grids
(i.e., inconsistent orders of modeling accuracy)—for example,
the coupling of low- and high-order CFD solvers (FOMs) may
require—for example—an overset-mesh approach [21,75].
Though such methods can be effective in coupling of low- and
high-order FOMs, it is not clear whether such methods can be
applied directly to ROM and FOM coupling since ROM evolves
on a reduced dimensional trajectory determined by the basis,
while the FOM (either with low- or high-order numerical
methods) solves the dynamical system on the full state space
trajectory.

6.1.3 Performance Enhancement via Adaptive-Basis
Reduced-Order Models
To address the above challenges, we seek to improve the ROM
modeling accuracy via the one-step adaptive-basis approach
introduced in Section 4. During the offline stage, 10 snapshots
from the component-based ROM training demonstrated in
Figure 5B are used to generate the initial POD basis V0

p
5 POD modes, containing > 99.9% of the total energy, are
chosen to develop the ROM for the upstream injector element
(ΩA). Then the POD basis is adapted at each time step based on
the algorithm in Eq. 13, which is then used to construct an
updated ROM. It is noted that even though significant reduction
in the offline training cost is enabled by the adaptive-basis
approach, the additional costs required to evaluate the full-
state information in Eq. 15, can lead to an increase of the
online-stage computational cost. On-line cost savings can be
accomplished using hyper-reduction [52,53,76,77], which is
not considered for the current work and will be included for
future investigations. In the current work, we denote the ROM
enhanced with basis adaptation as adaptive-basis ROM while in

TABLE 1 | Comparisons of the dominant acoustic frequency (fa) and the peak-to-peak pressure amplitudes (pptp′ ) with different models (component-based ROM vs.
system-based ROM vs. FOM) used for the upstream injector element for the single-injector combustor, corresponding to the results in Figure 6A.

Model for ΩA fa, Hz Error in fa, % pptp9, kPa Error in pptp9, %

FOM 1,150 — 125.08 —

System-based ROM 1,050 8.70 116.25 7.06
Component-based ROM 1,100 4.35 112.93 9.71

TABLE 2 | Comparisons of the errors in predicting time-averaged and RMS fields of pressure (P), temperature(T), and axial velocity (U) corresponding to Figures 6B-Dwith
different models (component-based ROM vs. system-based ROM) used for the upstream injector element for the single-injector combustor.

QoI Model for ΩA P T U

Time-averaged Fields System-based ROM 1.28 × 10−2 5.93 × 10−2 6.06 × 10−2

Component-based ROM 2.63 × 10−2 5.58 × 10−2 7.72 × 10−2

RMS Fields System-based ROM 1.6 × 10−1 4.03 × 10−1 2.32 × 10−1

Component-based ROM 9.80 × 10−2 4.63 × 10−1 2.50 × 10−1
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FIGURE 7 |Comparisons of (A–C) pressure signals measured at x = 0 in Figure 4, time-averaged (left) and root-mean-square (right) (D) pressure, (E) temperature,
and (F) axial velocity fields for Lc = 0.42 m, and time-averaged (left) and root-mean-square (right) temperature fields for Lc = (G) 0.35 and (H) 0.28 m with component-
based adaptive-basis ROM and FOM used for the upstream injector element (ΩA) for the single-injector combustor.
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contrast, we denote the ROM of Section 6.1.1 as the static-basis
ROM. The adaptive-basis ROM is coupled with different
downstream components (ΩB) to model the full configuration
with three different combustion lengths (Lc = 0.42, 0.35, and
0.28 m as shown in Figure 4), denoted as adaptive-basis
framework.

Following similar evaluation procedures as in Section 6.1.2,
local pressure signals measured at x = 0 are first compared with
the FOM-FOM results in Figures 7A–C for different combustor
lengths. The peak-to-peak pressure oscillation amplitude (pptp′ )
and the dominant acoustic frequency (fa and fb) are calculated
based on the pressure time trace and PSD, respectively and
compared against the FOM-FOM results for quantitative
assessment, as summarized in Table 3. It can be readily seen
that, compared to the static-basis results in Figure 6, the
predictions of the pressure signals for Lc = 0.42 m are
improved with adaptive-basis, especially in predicting pptp′
(< 2% with adaptive-basis ROM versus > 7% with static-basis
ROM). In addition, incorporating basis adaptation in the ROM
enables more accurate predictions of the high-frequency pressure
responses comparing the pressure PSD in Figure 7A (right) to
Figure 6A (right). More importantly, the framework can also be
extended to model other full-system configurations by coupling
the upstream adaptive-basis ROM with different downstream
components as illustrated in Figure 4. As exhibited in Figures
7B,C, the adaptive-basis framework is able to predict the pressure
characteristics changes due to variations in full-system geometric
configurations reasonably well, which shows < 7% errors in f <
12% errors in pptp′ , as summarized in Table 3. Though the
characteristics of the pressure field appear to be similar
between the single-injector combustors with Lc = 0.42 and

0.35 m, the pressure signals with Lc = 0.28 m exhibit
significantly different behaviors, featuring approximately 50%
reduction in pptp′ and an additional low-frequency acoustic
mode (fb in Figure 7C) appearing in the PSD analysis, in
addition to the dominant acoustic mode (fa). Such
distinguishable changes in QoIs (e.g., pressure characteristics)
are well-captured using the adaptive-basis framework, which can
provide important guidelines for engineering system design (e.g.
to design a rocket combustor with reduced pressure oscillations).

Next, we extend the evaluations of adaptive-basis framework
to the predictions of time-averaged and RMS fields defined in
Eq. 21, the errors of which are calculated using Eq. 22 and
summarized in Table 4. Significant improvement (e.g.,
approximately O(10) error reduction) in predicting the time-
averaged and RMS fields of P, U, and T can be readily seen
comparing Table 4 (rows corresponding to Lc = 0.42 m) and
Table 2. The time-averaged and RMS fields predicted using
adaptive-basis framework are investigated further in Figures
7D–F, which shows excellent agreement with the FOM-FOM
results with the magnitudes of the RMS fields predicted correctly
and no distinguishable interface mismatches observed in
Figures 6B–D.

Moreover, the adaptive-basis framework is demonstrated to be
capable of predicting the time-averaged and RMS fields for
different combustor lengths reasonably accurately as reflected
in Table 4. Specifically, the time-averaged and RMS fields of
temperature (T) are selected to further demonstrate the modeling
capabilities of the adaptive-basis framework as shown in Figures
7G,H because the temperature dynamics is characterized by
chaotic non-stationary and advection-dominated features as
shown in Figure 4, which prove to be most challenging to
represent with static-basis framework as shown in Figure 6.
Overall, the adaptive-basis framework is able to represent the
changes in the time-averaged and RMS temperature fields with
variations in the combustor lengths.

6.2 Multi-Injector Model Rocket Combustor
Next, we proceed to demonstrate the component-based domain-
decomposition framework on the multi-injector model rocket
combustor configuration shown in Figure 8A, based on a
laboratory rocket model engine [60], originally designed to
study combustion instability of transverse acoustics. In
Figure 8A, we take the five-injector configuration as an
example for illustration and also consider the configurations

TABLE 3 | Comparisons of the dominant acoustic frequency (f) and the peak-to-peak pressure amplitudes (pptp′ )with different models (Adaptive-basis ROM vs. FOM) used
for the upstream injector element for the single-injector combustor with different combustor lengths (Lc), corresponding to the results in Figures 7A-C.

Lc, m Model for
ΩA

f, Hz Error in
f, %

pptp9, kPa Error in
pptp9, %

0.42 FOM fa: 1,150 — 125.08 —

Adaptive-basis ROM fa: 1,200 4.35 123 1.67

0.35 FOM fa: 1,350 — 128.28 —

Adaptive-basis ROM fa: 1,300 3.70 114.95 10.39

0.35 FOM fb: 500, fa: 1,500 — 67.87 —

Adaptive-basis ROM fb: 450, fa: 1,400 fb: 4.35, fa: 6.70 59.49 12.34

TABLE 4 | Comparisons of the errors in predicting time-averaged and RMS fields
of pressure (P), temperature(T), and axial velocity (U) using the framework
corresponding to Figures 7D-H with adaptive-basis ROMs for the single-injector
combustor with different combustor lengths (Lc).

QoI Lc, m P T U

Time-averaged Fields 0.42 4.23 × 10−3 1.95 × 10−2 2.10 × 10−2

0.35 6.70 × 10−3 1.94 × 10−2 2.17 × 10−2

0.28 2.20 × 10−3 2.50 × 10−2 1.68 × 10−2

RMS Fields 0.42 7.87 × 10−2 9.70 × 10−2 6.44 × 10−2

0.35 6.50 × 10−2 1.084.38 × 10−2 8.49 × 10−2

0.28 1.08 × 10−1 1.07 × 10−1 8.30 × 10−2
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with three and seven injectors to demonstrate the capabilities of
the framework in the following sections. As seen in Figure 8A,
this configuration consists of five shear coaxial injectors, each of
which is similar to the single-injector geometry in Figure 4, and is
featured with an outer passage, T1, that introduces fuel near the
downstream end of the coaxial inner passage, T2, that feeds
oxidizer to the combustion chamber. The operating conditions
in all the multi-injector combustor configurations are maintained
with an adiabatic flame temperature of approximately 2,700 K
and amean chamber pressure of 1.3 MPa. The T1 stream contains
gaseous methane (100% CH4) at 300 K. The T2 stream is 42%
gaseous O2 by mass and 58% gaseous H2O by mass at 660 K. Both
the T1 and T2 streams are fed with constant mass flow rates,
0.67 kg/s and 19.75 kg/s, respectively. A non-reflective boundary
condition is imposed at the downstream end of the computational
domain with the goal of suppressing longitudinal acoustics in the
streamwise direction, which promotes the generation of
transverse acoustic waves in the spanwise direction. Similar to
the single-injector configuration in Section 6.1, combustion is
represented by the flamelet progress variable (FPV) model with
GRI-1.2 chemical kinetics.

As shown in Figure 8A, the five-injector model rocket
combustor can be represented by two reference components,
the interior injector element (e.g., Ω3) and the wall injector
element (e.g., Ω5). Therefore, the multi-injector configuration
can be modeled using two ROMs trained based on the reference
components, denoted as an all-ROM framework, as illustrated in
Section 5. With the ROM/FOM coupled framework
demonstrated using the single-injector configuration, we use
the multi-injector configuration to evaluate and demonstrate
the ROM/ROM coupled framework.

When the FOM is adopted to model all five components,
denoted as all-FOM framework, the resulting representative
snapshots of the flow fields are shown in Figure 8B, which
exhibits two major features that have not been observed in the
single-injector case in Section 6.1: 1) stronger interactions
between components, featured with large-scale vortex shedding

approaching the downstream end of the domain; and 2) more
complex dynamics at the component interfaces (i.e., zΩ12, zΩ23,
zΩ34, and zΩ45), featured with both positive and negative
spanwise velocity.

6.2.1 Injector-Element Reduced-Order Models
Training and Framework Integration
In this section, we discuss the ROM training strategies based on the
two different components (the interior and wall injector elements)
identified above and how to integrate the two trained ROMs into
the framework to model the multi-injector model rocket
combustor. We focus on the component-based methods for
ROM training as illustrated in Figures 9A,B corresponding to
the interior and wall injector element respectively. To incorporate
the strong interactions between injector elements observed in
Figure 8B, two adjacent injector elements are included for
interior injector-element ROM training (Figure 9A) while one
additional adjacent injector element is added for wall injector-
element ROM training (Figure 9B), which cannot be easily
accounted by imposing boundary conditions directly as
conceptualized in Figure 2 considering the complexity of the
dynamics at the component interfaces. In addition, similar to
the single-injector configuration, auxiliary domains with
exponentially stretched mesh elements in the spanwise direction
are added next to the additional injector elements in ROM training
(two for interior injector-element and one for wall injector-
element). This incorporates the complex dynamics at the
component interfaces, especially for the abrupt changes in
the directions of the flow characteristics (e.g., existence of both
positive and negative spanwise velocity) observed in
Figure 8B. Non-reflective boundary conditions are
imposed at the downstream end for both the interior and
wall injector element ROM training to be consistent with the
target multi-injector configuration (Figure 8A). Forcing is
imposed via non-reflective boundary conditions at the side
boundaries with backward characteristics qu−c perturbed
using the same function in Eq. 19 to generate the essential

FIGURE 8 | (A) Computational configuration and (B) representative temperature and spanwise-velocity field of 2D-planar multi-injector model rocket combustor.
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dynamics anticipated in the full system. Here, we choose to
impose the forcing with A = 0 to mimic a broad-and response,
which presumably contains rich responses in the frequency
domain. The solution snapshots are extracted corresponding
to the regions bounded by dashed lines in Figures 8A,B,
which are then used to construct the interior injector-element
ROM and the wall injector-element ROM, respectively. The
resulting ROMs are coupled through the direct flux matching
method at the component interfaces adopted to model all the
interior injector elements (Ω2, Ω3, and Ω4 in Figure 8A) and
�ΩII for all the wall injector elements (Ω1 and Ω5 in
Figure 8A), resulting in the all-ROM framework as shown
in Figure 9C.

Since the two wall injector elements are geometrically identical
(i.e., reflective symmetry) to each other, �ΩII is mirrored about the
center axis to generate a reflective counterpart when adopted to
model Ω1, reflected as �̂ΩII. Comparisons of the training domains
in Figures 9A,B with the full five-element configuration in
Figure 9C, suggest that the training costs in Figures 9A,B are
similar to that of the full five-element configuration. The
advantage of this approach is that the training costs is fixed
for any number of elements (e.g., three, seven, nine or more) and

for larger systems, substantial cost savings can be realized. The
current work serves as a first step toward modeling practical
rocket engines which typically consist of hundreds of injector
elements.

6.2.2 Performance
Based on the investigations using the single-injector
configuration in Section 6.1, we apply the adaptive-basis
method, introduced in Section 4, to develop the two
component-based ROMs, �ΩI and �ΩII. Similar to the single-
injector case, 10 snapshots are collected from the offline ROM
training stage for each component in Figures 9A,B to generate
the initial two sets of trial basis V0

p. 5 POD modes covering
> 99.9% of the total energy are selected to construct adaptive-
basis ROMs via MP-LSVT formulation, respectively. The trial
basis Vk

p is adapted at each time step k based on the formulation
in Eq. 13 and following the schematics in Figure 9C, the
adaptive-basis ROMs are then coupled to model 3 multi-
injector configurations with three, five, and seven injector
elements.

Next, we proceed to evaluate the performance of the all-
adaptive-basis-ROM framework based on the results from the

FIGURE 9 | Component-based ROM training strategies for (A) the interior injector element and (B) the wall injector element and (C) the integration of the injector-
element ROMs for the 2D-planar multi-injector model rocket combustor.
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FIGURE 10 | Comparisons of pressure PSDs (A–C)measured at (x, y) = (0, 0) in Figure 8with different models (all-adaptive-basis-ROM (Red) framework vs. FOM
(Black), (D) time-averaged, (E) RMS, and (F) unsteady temperature fields with different models (all-adaptive-basis-ROM framework vs. FOM) used in the framework for
the three-injector (top), five-injector (middle), and seven-injector (bottom) configurations for the 2D-planar multi-injector model rocket combustor.
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FOM, which is taken as the ground truth solution. Figures
10A–C compares the local PSD predicted using the FOM and
with the all-adaptive-basis-ROM framework, which are measured
at the corner of the left wall, i.e., (x, y) = (0, 0) in Figure 8A for all
3 multi-injector configurations. Different from the single-injector
cases in Section 6.1, the true pressure signals from the all-FOM
results in the multi-injector configurations do not exhibit
distinguishable coherent oscillating patterns as in Figure 4.
This aspect can be expected to be more challenging to be
predicted by the ROM.

The predictions using the all-adaptive-basis-ROM framework
show good agreement with the all-FOM framework results,
especially in capturing the changes in PSD distributions due
to the configuration variations with the number of injector
elements increased from three to seven. For example, the wide-
band frequency peak between 2,500 and 3,000 Hz in the three-
injector combustor and the peak near 2,500 Hz for the seven-
injector configuration are both well predicted by the all-
adaptive-basis-ROM framework. More importantly, the
broad-band PSD distributions (i.e., no identifiable frequency
peaks) in the five-injector configuration are also accurately
captured.

Having successfully demonstrated the ability of the adaptive
ROM to capture changes in pressure oscillations arising from
configuration variations, we next look at their ability to
predict time-averaged and RMS fields of target state variables
(P, U, and T) is assessed. The accuracy of the framework is
evaluated based on the errors defined in Eq. 22, summarized in
Table 5. It can be readily seen that the all-adaptive-basis-ROM
framework is able to accurately predict the time-averaged fields
of selected state variables with errors below 4% while even for
the generally more challenging RMS fields, the prediction errors
are shown to be below 18%, given the complexity and chaotic
features of the dynamics present in the multi-injector problems,
indicated by the broad-band frequency distributions in Figures
10A–C. Specifically, the time-averaged, RMS, and
representative unsteady fields of temperature (T) are selected
to demonstrate the predictive capabilities of the all-adaptive-
basis-ROM framework as shown in Figures 10D,E for the three
different multi-injector configurations, which exhibits good
agreement between all-adaptive-basis-ROM and all-FOM
framework results. But it still need to be pointed out that the
all-adaptive-basis-ROM framework predicts elongated high-
temperature zones between injector elements compared to
the all-FOM framework results, indicating that the current
methodology may require further improvement.

7 CONCLUSION

A component-based domain-decomposition framework is
established for the modeling of large-scale systems that cannot
be directly accessed using the high-fidelity simulations (e.g., a
rocket engine, a wind farm, and a compressor). This approach
decomposes the full system into different components, each of
which can flexibly adopt different modeling strategies (e.g., ROM
or FOM), balancing physical complexity with accuracy
requirements. Under the premise that most of the components
share identical features and can be represented by a few reference
components, a component-based reduced-order model (ROM)
training strategy is proposed and demonstrated, which requires
only the high-fidelity simulations of the individual components.
System-level feedback and responses in the training dataset is
emulated by imposing boundary forcing. This leads to a
significant saving in computational cost during ROM training.
The model-form preserving least-squares with variable
transformation (MP-LSVT) ROM formulation is pursued with
enhancement through basis adaptation to construct the
component-based ROMs. The trained ROMs can be adopted
to model components with identical geometric features and
coupled with either a reduced-fidelity full-order model (RF-
FOM) or ROMs via a direct flux matching method to enable
both accurate and efficient simulations of large-scale systems with
different geometric configurations.

Detailed evaluations of the framework were first performed
based on a planar single-injector model rocket configuration with
varying combustor lengths, each of which exhibit different
dynamic behaviors. The framework separates the single-
injector configuration into two components, the upstream
injector element and the downstream combustor + nozzle, the
former of which adopts MP-LSVT ROM for modeling, while the
latter adopts a FOM. Two methods, (system-based and
component-based) are used to train the injector-element
ROM. It was demonstrated that the upstream-component
ROMs from both training methods, when coupled with the
downstream-component FOM, can produce reasonably
accurate predictions of the pressure oscillations while the
component-based method requires much less computational
cost. However, the ROM/FOM framework encounters
difficulties in representing the time-averaged and root-mean-
square (RMS) fields of the target state variables while
distinguishable solution mismatches are observed at the
component interface. To address this limitation, basis
adaptation is incorporated in the MP-LSVT formulation to

TABLE 5 | Comparisons of the errors in predicting time-averaged and RMS fields of pressure (P), temperature(T), and axial velocity (U) corresponding to Figures 10D-E
using the all-adaptive-basis-ROM framework for the multi-injector combustor.

QoI Number of Injectors P T U

Time-averaged Fields 3 4.02 × 10−3 3.57 × 10−2 3.50 × 10−2

5 4.07 × 10−3 3.66 × 10−2 3.69 × 10−2

7 5.37 × 10−3 3.25 × 10−2 3.89 × 10−2

RMS Fields 3 1.42 × 10−1 5.36 × 10−2 8.16 × 10−2

5 1.81 × 10−1 6.13 × 10−2 9.48 × 10−2

7 1.45 × 10−1 5.63 × 10−2 9.32 × 10−2
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enhance ROM capabilities, which significantly improves the
predictive accuracy of the framework and more importantly, is
capable of representing changes in dynamic behaviors due to the
variations in combustor length.

The framework was then extended to a 2D-planar multi-
injector model rocket configuration with different number of
injector elements, which can be represented by two reference
injector-element components. High-fidelity training simulations
are then conducted on the two reference components to develop
the component-based ROMs via MP-LSVT formulation with
basis adaptation. The framework is demonstrated to be
capable of predicting all the quantities-of-interest (QoIs)
accurately, including local pressure oscillations, time-averaged
and RMS fields of target state variables for the multi-injector
configuration with different number of injector elements.

Though preliminary and demonstrated for only 2D problems,
the component-based domain-decomposition framework with
adaptive-basis ROMs is directly applicable to 3D problems and
mostly importantly serves as a stepping stone towards modeling
practical large-scale engineering systems (e.g., a RD-170 rocket
engine [16]). Before this framework can be adopted by engineers
in many-query applications (such as design and uncertainty
quantification) of the full system, two major aspects need to
be considered: 1) efficiency—hyper-reduction has to be
considered to enable more efficient ROM calculations as
mentioned in Section 4; and 2), scalability—the ROMs must
be amenable for execution on memory-restricted computers such
as desktop workstations or embedded systems—i.e., they need to
be load-balanced and scalable in terms of computational
resources available.

Discussions are provided by the current authors [14] on
constructing scalable, load-balanced, and hyper-reduced static-
basis ROMs while all these aspects remain to be further
investigated for adaptive-basis ROM development. To address
the remaining gaps, good avenue for future work can be on
incorporating adaptive sparse samplingmethods (e.g., [50]) in the
adaptive-basis ROM to achieve computational efficiency

enhancement, while exploring dynamic methods to achieve
scalability when the sampling elements are getting adapted. In
addition, the component-based framework is designed to be
generally compatible with different types of ROM methods
and hence instead of the intrusive ROM used in the current
work, non-intrusive ROM methods [44,78] may also be
considered for the future work.
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Parametric
model-order-reduction
development for unsteady
convection

Ping-Hsuan Tsai1* and Paul Fischer1,2*
1Department of Computer Science, University of Illinois, Urbana-Champaign, Champaign, IL,
United States, 2Department of Mechanical Science and Engineering, University of Illinois, Urbana-
Champaign, Champaign, IL, United States

A time-averaged error indicator with POD-hGreedy is developed to drive

parametric model order reduction (pMOR) for 2D unsteady natural

convection in a high-aspect ratio slot parameterized with the Prandtl

number, Rayleigh number, and slot angle with respect to the gravity. The

error indicator is extended to accommodate the energy equation and Leray

regularization. Despite being two-dimensional and laminar, the target flow

regime presents several challenges: 1) there is a bifurcation in the angle

parameter space; 2) the solution can be multivalued, even at steady state;

and 3) the solution exhibits spatio-temporal chaos at several points in the

parameter space. The authors explore several reduced-order models (ROMs)

and demonstrate that Leray-regularized Galerkin ROMs provide a robust

solution approach for this class of flows. They further demonstrate that

error-indicated pMOR can efficiently predict several QOIs, such as mean

flow, mean Nusselt number and mean turbulent kinetic energy, even in the

presence of a bifurcation. Finally, they show that spatio-temporal chaos can

lead to lack of reproducibility in both the full-order model and the reduced-

order model and that the variance in the full-order model provides a lower

bound on the pMOR error in these cases.

KEYWORDS

reduced basis method, model-order reduction (MOR), spatio-temporal chaos, a
posteriori error estimate, proper orthogonal decomposition (POD), stabilization,
leray regularization, incompressible Navier-Stokes equations

1 Introduction

Fluid-thermal analysis via direct numerical (DNS), large-eddy (LES), and even

unsteady Reynolds-averaged Navier-Stokes (uRANS) have became tractable in

geometries of ever increasing complexity due to advances in high-performance

computing and modern algorithms over the past several decades. Despite these

advances, when it comes to routine analysis and design of thermal hydraulic systems,

which requires running hundreds of cases, the cost remains prohibitive. To overcome this
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issue, a rapid turn-around tool for engineering query is required;

parametric model order reduction (pMOR) is one of the

promising approaches.

The main idea of pMOR is to reduce the computational

burden by employing reduced-order models (ROMs) built on

data from full-order models (FOMs) such as DNS, LES, or

RANS-based simulations. A fundamental requirement in this

case is to determine how well these approaches can reproduce the

flow dynamics with same input parameters as the originating

FOM, which is known as the reproduction problem. For turbulent

flows, FOM can require N � 107 − 1011 degrees-of-freedom,

while ROMs could potentially represent the flow dynamics

which govern the behavior of quantities of interest (QOIs)

with only N ≈ 101–102 basis functions. Most often, the basis is

obtained from a proper orthogonal decomposition (POD) of the

FOM flow snapshots (i.e., the velocity and temperature fields).

The basis is then used in conjunction with the governing partial

differential equation to form a low-dimensional dynamical

system that, ideally, captures the principal features of the

underlying flows [1–8].

As noted in [9], a successful pMOR for unsteady flows must

be able to address 1) the reproduction problem and 2) the

parametric problem. In the reproduction problem, the ROM

and FOM are evaluated at the same pj* ∈ Panchor and the

ability of the ROM to recover the QOIs at pj* is examined. In

the parametric problem, ROMs are built from a small number of

FOMs that are generated over a set of anchor points in the

parameter space, Panchor � {p1*, . . . , pm* }, and the ability of

ROMs to predict the QOIs at p ∉ Panchor is examined. An

error indicator to assess the ROM’s fidelity at any given

p ∈ Ptrain is usually required to efficiently construct Panchor.

Error-indicated pMOR has the potential to be an important

engineering analysis tool [10, 11].

In this work we explore the pMOR process for a surprisingly

challenging 2D natural convection problem that serves as a

surrogate for more difficult 3D buoyancy-driven flows

encountered in a variety of mechanical and nuclear

engineering applications. The geometry is the tilted slot

configuration of Figure 1 and the governing equations are

the unsteady Boussinesq equations. The problem is

characterized by four parameters, the Rayleigh number, Ra,

the Prandtl number, Pr, the slot angle with respect to gravity, θg,

and the aspect-ratio, Γ. However, for small aspect ratios, Γ ≤ 8,

we find the flow is rather simple. Hence in this work, we focus

on the more challenging case of Γ = 40 with (Pr, Ra, θg) as the

parameter space.

FIGURE 1
(A) Problem configuration. (B) FOMmean (or steady) temperature for 19 uniformly-spaced θg ∈ [0°, 180°] at Ra = 104 and Pr = 7.2. (C) FOMmean
temperature for 6 uniformly-spaced Ra ∈ [2 × 105, 7 × 105] at θg = 90° and Pr = 7.2.

Frontiers in Physics frontiersin.org02

Tsai and Fischer 10.3389/fphy.2022.903169

138

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.903169


Figure 1A illustrates the problem configuration. The aspect

ratio is defined as Γ = L/H, where H is the width of the slot and L

is the height of the slot. We takeH = 1 and L = 40 throughout the

study. With θg = 0° the flow corresponds to standard Rayleigh-

Bénard convection, 90° corresponds to vertical slot convection,

and θg = 180° leads to a pure conduction solution with the cold

side on the bottom of the horizontal slot. The Rayleigh and

Prandtl numbers are

Ra � ρβΔTH3g

]α
, Pr � ]

α
, (1)

where ρ is the fluid density, β is the thermal expansion

coefficient, ΔT = 2 is the wall-to-wall temperature difference, H

is the gap width, g is the gravitational acceleration, ] is the

kinematic viscosity, and α is the thermal diffusivity. Figure 1B

illustrates representative mean (or steady) temperature fields

for 19 uniformly-spaced θg ∈ [0°, 180°] at Ra = 104 and Pr = 7.2.

Figure 1C shows the mean temperature field for 6 uniformly-

spaced Ra ∈ [2 × 105, 7 × 105] at θg = 90° and Pr = 7.2. The

configuration has many interesting applications. For example, it

represents energy-efficient double-glazed windows, in which

the sealed air gap between the two panes acts as an added layer

of insulation. Finding the optimum angle θg that enhances the

heat transfer is an important question. Convection in a tilted

fluid layer is also of meteorological and oceanographic interest.

More information on the impact of θg and Γ on heat transport

and flow organization for this configuration can be found

in [12].

There has been significant work on pMOR development for

the steady Boussinesq equations, including rigorous error

estimation [10, 11, 13–15]. For pMOR, the steady problem is

easier than the unsteady problem for several reasons: 1) rigorous

error estimates are usually achievable, 2) there is often a well

defined attractor, and 3) no temporal instability needs to be

considered. Once the problem becomes unsteady many open

research issues remain. To our knowledge, there are few pMOR

works addressing the unsteady parameterized Boussinesq

equations. In [16], the authors develop rigorous a posteriori

error bounds applied to a 2D Rayleigh-Bénard problem

parameterized with Gr and θg. However, due to exponential

instability in time, the rigor is not for very high Gr and large final

times. In [17], the authors overcame the high Gr issue by

considering a space-time formulation which enabled effective

long-time certification of a reduced basis approximation of

noncoercive PDEs. However, the approach is limited due to

large offline computational effort since only one snapshot is

generated from one FOM solve due to the formulation. For

example, to cover the parameter space, 125 FOMs are solved

during the offline in their case.

Fick et al. [9] developed a POD-hGreedy pMOR to study

challenging incompressible flow using a time-averaged error

indicator. The authors showed that the error indicator is

highly-correlated with the error in mean flow prediction and

can be efficiently computed through an offline/online strategy.

We view the methodology as having high potential for routine

analysis and design of turbulent flows that are characteristic of

thermal hydraulic systems. Hence, we explore that approach here

by extending the time-averaged error indicator to accommodate

the energy equation. In previous work [18] on ROM stabilization

and turbulent thermal transport problems, we investigated the

performance of pMOR with constrained stabilization [9], and

Leray regularization [19]. Here, we extend the error indicator to

support Leray regularization. For each approach, we assess the

performance through the mean flow and QOIs including, mean

Nusselt number (Nu), standard deviation in Nu, mean

temperature fluctuation and mean turbulent kinetic energy

(TKE)1.

Even though our 2D model problem generates only

laminar flows, pMOR is quite challenging in this

application for several reasons: 1) there is bifurcation in θg
parameter space; 2) the solution can be multivalued, even at

steady state; and 3) the solution exhibits spatio-temporal

chaos at several points in the parameter space. As our

initial efforts happened to be focused in one of the spatio-

temporal chaos regimes, we decided to map out a larger space

to identify where pMOR could succeed, where it would have

difficulty, and where it a priori could not succeed. Table 1

reflects a broad range of flow regimes identified inside the

high-aspect ratio slot from hundreds of FOM simulations

conducted at multiple Ra, θg with Pr = 0.07, 0.71, 7.2. We

categorize the flow into six types: 1) motionless, 2) steady, 3)

periodic, 4) quasi-periodic, 5) chaotic and 6) spatio-temporal

chaotic. We identify the flow regimes by examining the

(mean) solution field and the energy and Nu histories.

Such analysis can readily distinguish the motionless, steady

and periodic flow cases. Even though the energy and Nu

analysis seem to be a reliable way to distinguish the quasi-

periodic and chaotic flow, it is only a heuristic—a more

rigorous analysis is through computing the power

spectrum of Nu or energy [20]. Tools such as Lyapunov

exponent and fractal dimension are probably the most

widely used diagnostic for chaotic systems [21, 22]. The

first five types of low have consistent mean flow in

differing time windows, each averaged over 500 convective

time units (CTUs). We define a flow to be spatio-temporal

chaotic [23] if its mean solution is not consistent in at least

three different time windows. This type of flow has strong

irregularities in both space and time and has been observed in

Rayleigh Bénard convection and in other complex dynamical

systems [24]. To characterize spatio-temporal chaos, one

1 Technically, since these flows are not turbulent the TKE should be
referred to as velocity variance. Because the is more widely used and
the mathematical formulation is the same in either case, we prefer to
use the more widely recognized appellation, TKE.
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could also consider Lyapunov exponents at each grid point. A

detail analysis of spatio-temporal chaos is beyond the scope

of this paper. A comprehensive review on this topic can be

found in [25].

In the present work, we start with solution reproduction

problem, which represents the first step towards the

development of a ROM for the parametric problem. We

study the reproduction capability of the FOM, ROM and

ROM with stabilization for the six types of flow reported in

Table 1. We report only the cases of chaotic and spatio-

temporal chaotic flow. Notice that it has been reported that

ROM can often capture the first five types of flow accurately,

in some cases, with the need of stabilization methods.

However, for the spatio-temporal chaotic flow, to our

knowledge, it has not been studied. We believe this is the

first work investigate ROM’s reproducibility of spatio-

temporal chaotic flow.

The pMOR development is broken into several

parametric problems. We start with a problem at Ra = 103

and Pr = 7.2 in which the solution is steady for all θg but

nonetheless exhibits a bifurcation at θg = 20°2. We find either

h- or p-Greedy with the error indicator based on the dual

norm of the residual is able to drive pMOR successfully3. We

next consider two sets of parametric problems: 1) problem

parameterized with θg at higher Ra. 2) Problem

parameterized with Ra. In the first set, similar to the

steady case, a bifurcation is observed and the solution

space is a blend of steady and unsteady solutions. In the

second set, no bifurcation is observed and the solutions are all

unsteady.

By proceeding in this manner, we are able to isolate

several difficulties and eventually come up with an

important observation for the pMOR: Accurate prediction

(< 10%) with pMOR is achievable if the solution in the

parametric space is either only chaotic or the spatio-

temporal chaos is not significant, regardless a bifurcation

exists or not. Once the spatio-temporal chaos becomes

significant, the performance of the pMOR deteriorates and

the maximum errors of the mean flow and QOIs are

dominated by the flow chaos.

The paper is organized as follows. In Section 2, we

introduce the model problem and governing equations. In

Section 2.1, we introduce the Galerkin formulation for the

FOM. The ROM, as well as Leray regularization is introduced

in 2.2. In Section 3, we consider the solution reproduction

problem and assess the numerical performance. The

parametric problem is discussed starting from Section 4.

We first introduce POD-hGreedy algorithms in Section 4.1

with some remarks on applying POD-pGreedy to this model

problem at the end of the section. We then introduce the

time-averaged error indicator with thermal extension in

Section 4.2. A straight-forward integration with Leray

regularization is also shown in the same section. In

Sections 4.3 and 4.4, we present the pMOR results with θg
variation and Ra variation. In Section 5, we discuss the spatio-

temporal chaos and multiple states issues found in this model

problem. Finally, we conclude the paper in Section 6.

TABLE 1 Distribution of six flow types with Ra and θg at Pr = 0.07, 0.71, 7.2.

flow ∖Pr Pr = 0.07 Pr = 0.71 Pr = 7.2

motionless Ra < 1.1 × 103, θg = 0° Ra < 8.75 × 102, θg = 0° Ra < 9 × 102, θg = 0°

steady Ra = 103, θg = 90° Ra = 103, θg ∈ [0°, 180°] Ra = 103, θg ∈ [0°, 180°]
Ra = 104, θg ∈ [0°, 40°] ∪ [170°, 180°] Ra = 104, θg ∈ [0°, 30°] ∪ [70°, 80°] ∪ [120°, 180°] Ra = 104, θg ∈ [0°, 180°]\{30°}

Ra = 1.5 × 104, θg = 90° Ra ∈ [2 × 104, 105], θg = 90°

Ra = 8 × 104, θg ∈ [80°, 180°]
Ra = 3 × 105, θg ∈ [130°, 180°]

periodic Ra ∈ [5 × 103, 7 × 103], θg = 90° Ra = 104, 1.75 × 104, θg = 90° N∖A

quasi-periodic Ra = 104, θg ∈ [50°, 110°] Ra ∈ [1.8 × 104, 2 × 104], θg = 90° N∖A
Ra = 8 × 103, 9 × 103, 2 × 104, θg = 90°

chaotic Ra = 104, θg ∈ [120°, 160°] N∖A Ra = 8 × 104, θg ∈ [40°, 70°]
Ra ∈ [6 × 104, 1.5 × 105], θg = 90° Ra = 3 × 105, θg ∈ [50°, 120°]

Ra ∈ [2 × 105, 8 × 105], θg = 90°

spatio-temporal chaotic Ra ∈ [3 × 104, 5 × 104], θg = 90° Ra = 104, θg ∈ [40°, 60°] ∪ [100°, 110°] Ra = 104, θg = 30°

Ra = 1.25 × 104, θg = 90° Ra = 8 × 104, θg ∈ [0°, 30°]
Ra ∈ [2.05 × 104, 3 × 105], θg = 90° Ra = 3 × 105, θg ∈ [0°, 40°]

Ra ∈ [2 × 105, 8 × 105], θg = 0°, 10°

2 The ROM coefficients in the steady problems are typically found
through a Newton minimization over the POD approximation space
[10, 11].

3 The pMOR greedy strategy uses the maximal indicated error among
the parametric training set to select the next anchor point. p-Greedy
combines basis functions from FOMs at different anchor points to form
an enriched approximation space; h-greedy builds an independent
ROM for each anchor point Ngoc Cuong et al. [10].
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2 A parametrized natural convection
problem

We start with the Boussinesq equations for buoyancy-driven

flow [26],

zu
zt

+ u · ∇( )u + ∇p � ]∇2u + Tg θg( ), ∇ · u � 0, (2)
zT

zt
+ u · ∇( )T � α∇2T, (3)

where u is the velocity, p is the pressure, T is the

temperature and g(θg) is the unit vector represents the

direction of the buoyancy force and it is defined by

g(θg) � cos(θg )̂ı + sin(θg )̂J, with θg the angle of the slot

with respect to the gravity. The velocity boundary

conditions are no-slip (u = 0). The temperature boundary

conditions are no-flux (insulated) on the top and bottom,

heated (T = 1) on the left wall, and cooled (T = −1) on the right

wall. The initial conditions are u = 0 and T = 0.

In our non-dimensional setting, we set ] = (Pr/Ra)1/2 and α =

(Pr Ra)−1/2. The Rayleigh number, Ra = ρβgH3ΔT/(]α), represents
the ratio of buoyancy force to thermal and momentum diffusive

force The Prandtl number Pr = ]/α, reflects the relative

importance of momentum diffusivity compared to thermal

diffusivity. With this nondimensionalization the characteristic

velocity is Uc �
�������
βgHΔT

√
, the characteristic length is the slot

width H, and the reference time is tr = H/Uc. The temperature is

made dimensionless by subtracting the temperature on the right

wall and scaling with ΔT = 2. We note that Uc is sometimes

referred to as the “free-fall” velocity, indicating that one might

expect ‖u‖ ≈ 1, with only a weak dependence on Ra. While that

expectation is realized for θg = 0, we in fact see much larger

velocities (‖u‖ ≈ 40) for θg = 90° because the domain height L =

40H in that case.

For unsteady problems, the QOIs are the mean flow, mean

Nu, standard deviation in Nu, mean TKE and mean temperature

fluctuation. The symbol 〈·〉 is used to indicate a time-averaged

quantity. The mean velocity and temperature field are defined as:

〈u〉 � 1
J − J0

∑
J

j�J0+1
u tj( ), 〈T〉 � 1

J − J0
∑
J

j�J0+1
T tj( ), (4)

with tj = jΔt and Δt being the time step. The selection of J0 is

based on when the solution reaches it statistically steady state.

The mean quantities are then averaged over 500 CTUs, with the

time scale defined above. The instantaneous Nusselt number is

defined as

Nu t( ) � q′′w
k ΔT( )/H, (5)

with q′′w � −∫
zΩh

k∇T · n̂ dS being the integrated heat flux on

the heated wall, zΩh. The mean Nu and the its standard deviation

are then defined as

〈Nu〉: � 1
J − J0

∑
J

j�J0+1
Nu tj( ),

Std(Nu): �
�����������������������
1

J − J0
∑
J

j�J0+1
Nu tj( ) − 〈Nu〉( )

√√
. (6)

The mean TKE and mean temperature fluctuation are

defined as

〈TKE〉 � 1
2 J − J0( ) ∑

J

j�J0+1
‖u tj( ) − 〈u〉‖2L2 ,

〈Tfluc〉 � 1
J − J0

∑
J

j�J0+1
‖T tj( ) − 〈T〉‖2L2 . (7)

For steady problems, the QOIs are simply the steady

solutions to Eqs. 2 and 3 and the corresponding Nu using Eq. 5.

2.1 Galerkin formulation for the full-order
model

The FOM is constructed through the spectral element

method (SEM) and the Pq–Pq−2 velocity-pressure coupling

[27], where the velocity is represented as a tensor-product

Lagrange polynomial of degree q in the reference element

Ω̂ ≔ [−1, 1]2 while the pressure is of degree q − 2. The

solution in Ω = ⋃eΩe consists of local representations of u, p,

and T that are mapped from Ω̂ toΩe for each element, e = 1, . . . ,

E. In the current FOMs for the slot problem we use E = 516

elements (an array of 6 × 86 in the H × L directions), of order q =

9, for a total ofN ≈ 42000 grid points. The FOM simulations are

performed using the open-source code Nek5000 [28].

For any u(x, t), we have a corresponding vector of basis

coefficients u � [u1 . . . uN ]T such that

u x, t( ) � ∑
N

j�1
uj t( )ϕj x( ) ∈ XN

0 ⊂ {H}10, (8)

with ϕj(x) the underlying spectral element basis functions

spanning the FOM approximation space, XN
0 . Because the SEM

is nodal-based, each uj(t) represents the two velocity components

at grid point xj in the spectral element mesh at time t. Similarly,

the temperature is given by

T x, t( ) � ∑
�N

j�1
Tj t( )ϕj x( ) ∈ XN

0 ⊂ H1
0. (9)

Here,H1 is the set of square-integrable functions onΩwhose

gradient is also square-integrable and XN ⊂ H1 is the finite

dimensional SEM approximation space spanned by {ϕj(x)}. H1
0

is the set of functions in H1 that vanish wherever Dirichlet

conditions associated with Eq. 3 are applied on the domain

boundary zΩ andH1
b is the set of functions inH1 that satisfy the

prescribed Dirichlet conditions for temperature. Bold-face
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indicates that the space is spanned by vector-valued functions

having d components (d = 2 or 3) and, in the case of XN
0 ⊂ {H}10,

that the functions vanish where Dirichlet conditions are applied

for Eq. 2. The pressure p is in YN ⊂ L2(Ω), which is the space of

piecewise continuous functions onΩ such that ∫Ωp2 dx <∞. For

convenience, we denote �ZN � (XN , YN , XN ) as the collection of

the relevant finite-dimensional spaces and will add a subscript

0 or bwhere required to explicitly indicate the imposed boundary

conditions.

Both the FOM and ROM are cast within the same Galerkin

framework. To begin, we introduce several inner products for

elements in the FOM space, �ZN . For any pair of scalar fields

(p, q) ∈ L2(Ω) and d-dimensional vector fields, v(x) = [v1(x) . . .

vd(x)], u(x) = [u1(x) . . . ud(x)] whose components are also in

L2, let

q, p( ): � ∫
Ω

q p dx, v, u( ): � ∫
Ω

v1u1 +/ + vdud( ) dx.

(10)
Further, for S, T ∈ XN and v, u ∈ XN , let

a S, T( ): � ∇S,∇T( ), a v, u( ): � ∇v,∇u( ), (11)
c S, u, T( ): � S,u · ∇T( ), c v, u,w( ): � v,u · ∇w( ). (12)

For the FOM, we consider the (semi-discrete) weak form of

Eqs. 2 and 3 [29], Find (�u, p, �T) ∈ �ZN
b such that, for

all (v, q, S) ∈ �ZN
0 ,

v,
z�u
zt

( ) + ] a v, �u( ) − ∇ · v, p( ) � −c v, �u, �u( ) + v, g θg( )�T( ),
(13)

− q,∇ · �u( ) � 0, (14)

S,
z�T

zt
( ) + α a S, �T( ) � −c S, �u, �T( ). (15)

Here, we have introduced �u � u + u0(x) and �T � T +
T0(x) as functions that have been augmented by

(potentially trivial) lifting functions, u0 and T0, which are

functions of space only. If these functions satisfy the (time-

independent) boundary conditions, then one can account

for inhomogeneous boundary conditions by moving them to

the right-hand side. In the case of the ROM, the lifting

functions can also provide an initial approximation to the

solution. In the sequel, our principal unknowns will be u

and T.

Following [30], we consider a semi-implicit scheme BDFk/

EXTk to discretize Eqs. 13–15 in time; kth-order backward

differencing (BDFk) is used for the time-derivative term, kth-

order extrapolation (EXTk) is used for the advection and

buoyancy terms and implicit treatment on the dissipation

terms. As discussed in [30], k = 3 is used to ensure the

imaginary eigenvalues associated with skew-symmetric

advection operator are within the stability region of the

BDFk/EXTk time-stepper. Denoting the solution at time tn =

Δt · n as (�un, pn, �T
n), the full discretization of the FOM reads Find

(un, pn, Tn) ∈ �ZN
0 such that, for all (v, q, S) ∈ �ZN

0 ,

β0
Δt v,un( ) + ] a v,un( ) − ∇ · v, pn( ) � v, fn( ), (16)

− q,∇ · un( ) � q,∇ · u0( ), (17)
β0
Δt S, Tn( ) + α a S, Tn( ) � S, Qn( ). (18)

Equations 16–18 represent a linear unsteady Stokes plus

unsteady heat equation to be solved at each time-step tn. The

inhomogeneous terms comprise the BDF, advection, buoyancy

and lifting terms

v, fn( ): � −∑
k

s�1

βs
Δt v,un−s( ) + αs c v, �un−s , �un−s( ) − v, g θg( )�Tn−s( )( )[ ] − ] a v, u0( ),

(19)

S, Qn( ): � −∑
k

s�1

βs
Δt S, Tn−s( ) + αs c S, �un−s, �Tn−s( )[ ] − α a S, T0( ).

(20)
Here, the βss and αss are the respective sth-order BDF and

extrapolation coefficients for the BDFs/EXTs time-stepper [30].

Note that the right-hand side of Eq. 17 will be zero if u0 is

divergence free or at least satisfies the weak divergence-free

condition Eq. 14.

Under the assumption that ∇ ·u0 = 0, the compact matrix

form [27, 31, 32] for Eqs. 16–20 is

H −DT

−D 0
[ ] u n

p n( ) � f̂ �un, �T
n
; θg( )

0
( ), (21)

Hα T
n � Q̂ �un, �T

n( ). (22)

Here, u n, p n, and T n are the vectors of spectral element basis

coefficients. The corresponding block matrices are

H � H]

H]
[ ], D � D1 D2[ ], (23)

with H] � β0
ΔtM + ]A and Hα � β0

ΔtM + αA, with matrices M

and A defined below. The velocity data vectors are

f̂ (�un, �Tn
; θg) � [f̂

1
f̂

2
]T, with

f̂
m
: � −∑

k

s�1

βs
ΔtMu n−s

m + αs C �u n−s( )�u n−s
m − gmM�T n−s( )[ ]

− ]Aum,0,

m � 1, 2. (24)

where g1 = cos(θg) and g2 = sin(θg) represent the parametric

forcing. The thermal load in Eq. 22 is

Q̂ �un, �T
n( ): � −∑

k

s�1

βs
ΔtM

�T n−s + αsC �u n−s( )�T n−s[ ] − αAT 0.

(25)
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Entries of the respective stiffness, mass, convection, and

gradient matrices are

Aij � ∫
Ω

∇ϕi∇ϕj dx, (26)

Mij � ∫
Ω

ϕiϕj dx, (27)

Cij w( ) � ∫
Ω

ϕi · w · ∇( )ϕj dx, (28)

Dm,ij � ∫
Ω

ψi

zϕj

zxm
dx, m � 1, 2. (29)

Note that {ϕi(x)} forms the spectral element velocity/

temperature basis while {ψi(x)} constitutes the pressure basis.

2.2 Galerkin formulation for the reduced-
order model

Within the Galerkin framework of the preceding section it is

relatively straightforward to develop a ROM. One defines a set of

functions ζj(x) ∈ XN ⊂ XN , θj(x) ∈ XN ⊂ XN such that the

coarse-space (ROM) solution, is expressed as

�uc x( ) � ∑
N

j�0
ζj x( )uc,j, �Tc x( ) � ∑

N

j�0
θj x( )Tc,j. (30)

For the ROM, we insert the expansions Eq. 30 into Eqs. 13–15

and require equality for all (v, S) in ZN
0 . In order to set the

boundary conditions, we have augmented the trial

(approximation) spaces XN and XN with the lifting function

ζ0: = u0 and θ0: = T0. The corresponding test spaces, XN
0 : �

{ζj}Nj�1 and XN
0 : � {θj}Nj�1, satisfying homogeneous boundary

conditions, as is standard for Galerkin formulation. The coarse

space ZN
0 ≔ (XN

0 , X
N
0 ) is typically based on a linear combination

of full spectral element solutions of Eqs. 21 and 22, such as

snapshots at certain time-points, tn, or solutions at various

parametric values. Under these conditions and with a carefully

chosen u0,X
N is a set of velocity-space functions that are (weakly)

divergence-free and the pressure terms drop out of Eqs. 13 and

14. We also note that ζj and θj are modal, not nodal, basis

functions. In this work, we consider proper orthogonal

decomposition (POD) to construct the reduced-basis. The N-

dimensional POD-space is the space that minimizes the averaged

distance between the snapshot set and the N-dimensional

subspace of the snapshots set in the H1 semi-norm. Further

details of the POD basis selection are provided in [18] and

references therein.

The matrix form for the ROM is readily derived by

constructing a pair of rectangular basis matrices, B and B,

having entries

Bij � ζj xi( ), Bij � θj xi( ), (31)

where the xis are the spectral element nodal points. The

coarse-system matrices are Hc,] = BTHB and Hc,α = BTHαB and

the governing system for the ROM becomes

Hc,] û c
n � BT f̂ �un

c , �T
n
c ; θg( ), Hc,α T̂

n

c � BT Q̂ �un
c , �T

n
c( ). (32)

We refer Eq. 32 as Galerkin ROM (G-ROM) throughout the

paper. The ROM coefficient vectors, û c
n � [unc,1 . . . unc,N]T,

T̂
n
c � [Tn

c,1 . . .T
n
c,N]T, are determined by solving the 2 N × N

linear systems. Note that the coefficients for the lifting functions

are prescribed: uc,0 = Tc,0 = 1. The initial coefficients for the ROM

are obtained by projecting the initial condition onto the coarse

space ZN
0 with the H1 semi-norm,

û c
0 � BTAu 0, T̂

0

c � BTAT 0, (33)

which follows from the fact that the columns of B and B are,

respectively, A- and A-orthonormal, where A = block-

diagonal(A). To recover the spectral element representation,

we simply prolong the N-length vectors û c
n and T̂

n

c with the

set of basis functions and add it with the lifting functions u0
and T0

�u n
c � Bû c

n + u 0, �T
n
c � BT̂

n

c + T 0. (34)

The functional representations, �unc(x) and �T
n
c(x), are then

obtained from Eqs. 8 and 9.

Next we consider the Galerkin ROM with Leray

regularization using a spatial filter, following ideas presented

in [19]. The approach simply requires regularizing the

advecting field in the Navier-Stokes equations and energy

equation through a low-pass filter function F

(i.e., �u filtered � F(�u )). As noted in [33, 34], a small amount

of regularization is sufficient to make gains in proving existence

and uniqueness of the solution to the Navier-Stokes equations.

Thus, Leray regularization is of interest both from a numerical

(and physical) stabilization viewpoint and from a theoretical

perspective.

The formulation of G-ROM with Leray regularization is

shown in Eq. 35 and the only difference comparing to

G-ROM Eq. 32 are the velocity data and thermal load.

Hc,] û c
n � BT f̂ filtered �un

c , �T
n
c ; θg( ), Hc,α T̂ c

n

� BT Q̂
filtered

�un
c , �T

n
c( ), (35)

where f̂ filtered(�un, �Tn
; θg) � [f̂

1
f̂

2
]T
filtered

. We use the

subscript filtered to denote the advecting field in the velocity

data and thermal load are being filtered,

f̂
filtered,m

: � −∑
k

s�1

βs
ΔtMu n−s

m + αs C �u n−s
filtered( )�u n−s

m − gmM�T n−s( )[ ]

− ]Aum,0,

m � 1, 2. (36)
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and

Q̂
filtered

�un, �T
n( ): � −∑

k

s�1

βs
ΔtM

�T n−s + αsC �u n−s
filtered( )�T n−s[ ]

− αAT 0. (37)

In this work, we will be focusing on a PDE- (or differential-)

based filter, which is characterized by a filter width, δ [35].

Following [19, 36], such filters are developed in a POD

context as follows: Find �uc,filter ∈ XN such that

I − δ2∇2( )�un
c,filter, ζj( ) � �uc, ζj( ), ∀ j � 1, . . . , N. (38)

Besides the differential filter, one could also consider a

more economic spatial filter, namely, a POD-projection

(Proj) filter as discussed in [19]. In this case, one simply

truncates the higher POD mode contributions when

constructing �unc,filtered, just as one would do in a Fourier

reconstruction [18].

Besides G-ROM and LDF-ROM, we also consider the

constrained-evolution stabilization introduced in [9]. The idea

behind this approach is to use information from the snapshot set

to establish a priori limits on the ROM coefficients û c by

replacing Eq. 32 with a constrained minimization problem. At

each time-step, the coefficients satisfy

û
n

c � arg min
û c∈RN

1
2
‖Hc,]û c − BT f̂ �un

c , �T
n
c ; θg( )‖2H−1 ,

s.t. mj ≤ un
j ≤Mj. (39)

where the constraintsmj andMj on the basis coefficients unc,j,

j = 1, . . . , N are derived from the observation snapshot set. A

constrained minimization problem for the thermal ROM

coefficients, T̂ c, is derived similarly. We denote Eq. 39 as

C-ROM. Further implementation details can be found in [9, 18].

3 The solution reproduction problem

In this section, we consider the solution reproduction

problems for Ra = 2 × 105, 7 × 105 at Pr = 7.2 and θg = 90°,

where the solutions are chaotic. We assess the performance of

G-ROM, C-ROM and LDF-ROM introduced in Section 2.1

through the accuracy of the mean field and the QOIs. The

mean field is computed by averaging the POD coefficients and

reconstructing with the rectangular basis matrices B and B. The

QOIs are themean Nu and Std(Nu), which are estimated through

Eq. 6, and the mean TKE and mean temperature fluctuation,

estimated through Eq. 7. The quantities are averaged over

500 CTUs.

Although of limited practical interest, the solution

reproduction problem is an important step towards the

development of a MOR procedure for the parametric

problem. The reproduction results for spatio-temporal chaotic

flow are presented and discussed in Section 5.1.

3.1 Numerical results

Results for Ra = 2 × 105 are shown in Figures 2A–D. The

performances of G-ROM, C-ROM and LDF-ROM are indicated

by blue, orange, green solid line. In LDF-ROM, the radius of the

differential filter is δ = 0.015625. Figure 2A shows the behavior of

the relative H1 error in the mean flow prediction versus N. We

observe less than 1% error in C-ROM with small N. The error in

G-ROM and LDF-ROM decreases as N increases and eventually

reaches 1% with N = 100. Similar trends for the mean Nu,

Std(Nu) and mean temperature fluctuation are observed in

Figures 2B–D. The FOM data is denoted as black solid line.

For mean Nu prediction, we observe around 0.1% error in

C-ROM for almost all N. The error in G-ROM and LDF-

ROM decreases as N increases and LDF-ROM has error

around 0.01% with N = 100. For Std(Nu) and mean

temperature fluctuation prediction, we observe convergence in

both QOIs with G-ROM and LDF-ROM. For C-ROM, the

predictions are in good agreement with the FOM data for all

values of N.Behaviors of the same quantities for Ra = 7 × 105 are

shown in Figures 2E–H. In LDF-ROM, the radius of the

differential filter is δ = 0.03125. We still observe convergence

in the mean flow and QOIs but it is much slower because the flow

is more chaotic. The error in the mean flow is around 10% in

G-ROM and the prediction in QOIs are over-estimated and less

accurate than for the other methods. With LDF-ROM, the

predictions are slightly better. C-ROM is still the most

effective and has 5% error in mean flow prediction. Although

the prediction in mean Nu is only as good as the LDF-ROM, the

Std(Nu) and mean temperature fluctuation are bounded from

above for all values of N and converge to the correct value as N

increases.

Note that the differential filter radius δ selected for the two

Ra yields the best accuracy in mean flow among the five

differential filter radius δ = 0.25, 0.125, 0.0625, 0.03125,

0.015625. Besides, we find δ = 0.015625 yield the best

results at smaller Ra and as Ra increases, results with δ =

0.03125 becomes better and are comparable with δ =

0.015625 at Ra = 7 × 105. The tendency is reasonable since

the flow is more chaotic as Ra increases, therefore one should

expect a larger δ to stabilize the flow.

From the results, we observe the mean flow and QOIs

converge with N for all ROMs. With higher Ra, convergence

in those quantities is much slower and a larger N is required to

reach to the same accuracy as in the lower Ra case. Note that,

because of the O(N3) online costs, requiring a large value of N for

convergence might require off-line resources for timely

simulation, which would greatly diminish the intrinsic

advantage of the ROM/pMOR framework. This potentiality

highlights the importance of stabilization methods. Indeed, we

find that C-ROM is able to predict the mean flow and QOIs with

a better accuracy with smaller N. On the other hand, although

LDF-ROM is not as effective as C-ROM, and only slightly better
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than G-ROM, it will play a key role in the pMOR presented in

Section 4, especially in the parametric problem with θg variation.

4 The parametric problem

We turn now to study the performance of pMOR for the slot

problem with G-ROM, C-ROM, and LDF-ROM. Two sets of

parameterization are considered. With Pr = 7.2 fixed, we seek to

estimate the solution and QOIs of Eqs. 13 and 15 for: 1) θg ∈ P �
[0°, 180°] at multiple Ra, and 2) Ra ∈ P � [2 × 105, 7 × 105]
with θg = 90°. Throughout, we take the lifting functions to be the

zero velocity field and the heat conduction solution.

For efficient selection of the pMOR anchor points we

consider the POD-hGreedy algorithm proposed in [9] which

combines POD in time with Greedy in parameter. The term

Greedy refers to the optimization strategy of basing anchor point

selection on the training point that exhibits the largest value in

the error estimate. Error-indicated selection of the anchor points

reduces the number of FOM solves and is thus critical for the

feasibility of pMOR. Here, the error indicator corresponds to the

dual norm of the residual associated with the time-averaged

momentum and energy equations.

The section is organized as follows. In Section 4.1 we present

the POD-hGreedy algorithm. In Section 4.2, we extend the time-

averaged error indicator introduced in [9] to accommodate the

energy equation and Leray regularization. Finally, in Sections 4.3

and 4.4, we present the numerical results.

4.1 Proper orthogonal decomposition-
hGreedy algorithm

In this section, we present the POD-hGreedy algorithm for

the construction of the reduced spaces {XN
0,ℓ , X

N
0,ℓ}Lℓ�1, and the

partition {I ℓ}Lℓ�1 of P, based on the results of L full-order

simulations associated with the parameters p1*, . . . , pL* . The

algorithm is similar to the one in [9] but with extensions for

thermal fields.

To begin, we introduce the discretized parameter space

Ptrain � {pi}ntraini�1 , p1 ≤ . . . ≤pntrain , the integers L which fix the

maximum number of offline solves, the integer ncand < L, which is

the number of ROM evaluations performed online for a given

value of the parameters, and an error indicator Δ. The error

indicator takes as input sequences {�unc }Jn�0 and {�Tn
c }Jn�0 and the

value of the parameter, p*, and returns an estimate of the error in

the prediction of the mean flow. We formally present the

indicator in Section 4.2.

Algorithm 1 presents the computational procedure for both

offline and online stage. The offline procedure starts with an

anchor point that could either be selected randomly from the

training space Ptrain or be user specified. At each iteration ℓ, a

FIGURE 2
Performance comparison between G-ROM, C-ROM and LDF-ROM for the solution reproduction problem at θg = 90° and Pr = 7.2. (A–D)
Behavior of the relativeH1 error in mean flow prediction, predicted mean Nu, Std(Nu), and mean temperature fluctuation as a function of number of
modes, N at Ra = 2 × 105 (δ = 0.015625 in LDF-ROM). (E–H) Performance for the same quantities at Ra = 7 × 105 (δ = 0.03125 in LDF-ROM).
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FOM simulation at the anchor point p
ℓ
* is conducted and returns

a set of snapshots. The snapshot set is then processed through

POD and returns the first N orthonormalized POD modes. The

value of N is determined by reproduction problem at the anchor

point. The ROM and the error indicator, Δℓ, are then built with

the reduced spaces XN
0,ℓ and XN

0,ℓ . The coefficients and the error

estimates are then computed for each p ∈ Ptrain and the next

anchor point is identified as the parameter that has the maximum

value in the current (including previous) error estimate. The

procedure starts again with the new selected anchor point. If the

error indicator is sufficiently small over all points in Ptrain or the

procedure reaches the maximum number of FOM solves L, the

offline stage terminates.

Given the ROM/anchor point data (XN
0,ℓ , X

N
0,ℓ , pℓ

*) for ℓ =
1, . . . , L, and error indicator, Δ, the hGreedy online stage

starts with finding the ncand candidate anchor points nearest

to the test parameter p. The ROMs associated to the candidate

anchor points are then used to compute the coefficients and error

estimate at p. The coefficients are then returned based on the ROM

that has smallest error estimate. The POD-hGreedy approach is

analogous to h-refinement in the finite element method in that the

POD bases are not shared between anchor points. Convergence is

therefore expected to be linear in the distance from the nearest

anchor point.

Algorithm 1. POD-hGreedy algorithm for the construction of

{XN
0,ℓ , X

N
0,ℓ , I ℓ}l.

Another strategy is the POD-pGreedy algorithm, following

the definitions of [37], as first proposed in [38] and analyzed in

[39]. The algorithm combines data from different parameters to

generate a single reduced basis set that covers the entire

parameter space P. The procedure is similar to Algorithm 1

but with few differences:

1) The reduced bases are shared between anchor points. POD is still

used to construct the new basis but the collected snapshot set is

projected onto the orthogonal complement of the existing basis.

2) In the online/training stage, only one ROM is used instead of

a set of ROMs and there is no need to check for the nearest

anchor points.

3) The anchor point is selected based on the single error estimate

Δ in current iteration, rather than the individual estimates for

each ROM.

Although it has a better convergence rate than POD-

hGreedy, POD-pGreedy can easily fail for unsteady problems.

Combining modes at different anchor points, especially ones

whose solution exhibits different physics, can easily lead to

instability and deteriorate the performance, as noted in [9].

Moreover, stabilizations that work for POD-hGreedy can fail

in the POD-pGreedy approach. For example, in C-ROM, it is not

clear how to construct the constraints for the combined basis. A

naive approach is to apply POD to all the snapshots at anchor

points. However, this approach is inefficient and can be limited

by the computer storage requirements during the offline phase.

Leray regularization with the projection filter (i.e., trivially

truncated basis set for the advector) is also limited since the

combined basis is no longer ordered in a Fourier-like, energy-

decaying, sequence. To address this, one could apply POD to all

the snapshots that have been collected but this approach is again

limited by the storage and therefore not practical. An alternative

is to consider DF filter, denoted as LDF-ROM here. Once the

radius δ is specified, it will filter right amount of energy in each

basis.

4.2 A time-averaged error indicator

In this section, we extend the time-averaged error indicator

proposed in [9] to accommodate the energy equation and Leray

regularization. The error indicator is based on the dual norm of

the discrete time-averaged residual. Given the ROM solution

sequence {�unc }Jn�J0+1 and {�Tn
c }Jn�J0+1 and the parameters of interest

p � (], θg, α), the discrete time-averaged residual for velocity

and temperature are defined as: 4

〈Ru〉 �un
c{ }Jn�J0 , v; ], θg( ): � 1

J − J0
∑
J

n�J0+1
ru �un

c , v; ], θg( ), ∀ v ∈ Vdiv ,

(40)

〈RT〉 �T
n
c{ }Jn�J0 , S; α( ): � 1

J − J0
∑
J

n�J0+1
rT �T

n
c , S; α( ), ∀ S ∈ XN

0 ,

(41)

4 In [16], the velocity and temperature residuals are coupled because the
velocity-temperature solutions are obtained through a coupled
Newton’s method. Here, we do not couple the residuals because
we solve Eqs. 21 and 22 separately.
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where ru(�unc , v; ], θg) ∈ Vdiv′ (dual space of Vdiv) and

rT(�Tn
c , S; α) ∈ XN

0 ′ (dual space of XN
0 ) are the residual

associated with Eq. 32 at time tn and defined as

ru �un
c , v; ], θg( ) � ∑

3

s�1
αs v, g θg( )�Tn−s

c( ) − c v, �un−s
c , �un−s

c( )[ ]

−∑
3

s�0

βs
Δt v, un−s

c( ) − ]a v, �un
c( ),

(42)

rT �T
n
c , S; α( ) � −∑

3

s�1
αsc S, �un−s

c , �T
n−s
c( ) −∑

3

s�0

βs
Δt S, Tn−s

c( )

− α S, �T
n
c( ). (43)

Note for simplicity, we assume only BDF3/EXT3 is used for time

discretization in Eqs. 42 and 43. Besides, the residual is defined over

{V}div: � {v|v ∈ XN
0 ,∇ · v � 0} andXN

0 , rather thanXN
0 ⊂ H1

0 and

XN
0 , because wemeasure our reduced-basis error relative to the FOM.

We define the time-averaged error indicator,

Δ: ⊗J
n�J0X

N × XN × P → R+, as follows:

Δ �un
c{ }Jn�J0 , �T

n
c{ }Jn�J0 ;p( ): �

��������������������������������������������
‖〈Ru〉 �un

c{ }Jn�J0 , ·; ], θg( )‖2Vdiv′ + ‖〈RT〉 �T
n
c{ }Jn�J0 , ·; α( )‖2XN

0 ′

√
. (44)

The residuals Eqs. 42 and 43 canbe further expressed in thematrix-

vector form since the spaces {V}div and XN
0 are finite dimensional,

ru �un
c , v; ], θg( ) � v Tr n

u

� v T f̂ �un
c , �T

n
c ; θg( ) − v THBû c

nn, ∀ v ∈ R2N ,

(45)
rT �T

n
c , S; α( ) � S Tr n

T � S TQ̂ �un
c , �T

n
c( ) − S THαBT̂ c

n
, ∀ S ∈ RN .

(46)
The matrix-vector version of the discrete time-averaged

residual Eqs. 40 and 41 is then expressed as

〈Ru〉 �un
c{ }Jn�J0 , v; ], θg( ) � v TR u

� v T 1
J − J0

∑
J

n�J0+1
f̂ �un

c , �T
n
c ; θg( ) −HBû c

n⎛⎝ ⎞⎠, (47)

〈RT〉 �T
n
c{ }Jn�J0 , S; α( ) � S TR T

� S T 1
J − J0

∑
J

n�J0+1
Q̂ �un

c , �T
n
c( ) −HαBT̂ c

n⎛⎝ ⎞⎠,

(48)
∀ v ∈ R2N and ∀ S ∈ RN . The norm of the residual is closely

related to the error and it is tempting to use ‖R u‖2 and ‖R T‖2 to
estimate the error. However, this is not correct since

〈Ru〉({�unc }Jn�J0 , ·; ], θg): Vdiv → R and

〈RT〉({�Tn
c }Jn�J0 , ·; α): XN

0 → R are bounded linear functionals

whose size is appropriately measured through the dual norm:

‖〈Ru〉 �un
c{ }Jn�J0 , ·; ], θg( )‖{V}div′ � supv∈Vdiv

〈Ru〉 �un
c{ }Jn�J0 , v; ], θg( )
‖v‖Vdiv

,

(49)

‖〈RT〉 �T
n
c{ }Jn�J0 , ·; α( )‖XN

0
� supS∈XN

0 ′
〈RT〉 �T

n
c{ }Jn�J0 , S; α( )

‖S‖XN
0

. (50)

Thanks to the Riesz representation theorem, there exist a

unique 〈R̂u〉 ∈ Vdiv and 〈R̂T〉 ∈ XN
0 such that

〈R̂u〉, v( )
Vdiv

� 〈Ru〉 �un
c{ }Jn�J0 , v; ], θg( ), ∀ v ∈ Vdiv , (51)

〈R̂T〉, S( )
XN
0

� 〈RT〉 �T
n
c{ }Jn�J0 , S; α( ), ∀ S ∈ XN

0 . (52)

It thus follows that

‖〈Ru〉 �un
c{ }Jn�J0 , ·; ], θg( )‖Vdiv′ � ‖〈R̂u〉‖Vdiv

, (53)
‖〈RT〉 �T

n
c{ }Jn�J0 , ·; α( )‖XN

0 ′ � ‖〈R̂T〉‖XN
0
. (54)

Equations 51 and 52 allows one to compute the Riesz
representers 〈R̂u〉 and 〈R̂T〉 and Eqs. 53 and 54 allows one to
evaluate the dual norm of the residual through Riesz
representation without computing the supremum.

In practice, determination of the Riesz representers, 〈R̂u〉
and 〈R̂T〉, is relatively straightforward because the coarse

(i.e., ROM) and truth (FOM) representations live in finite-

dimensional spaces, meaning that there is a direct linear-

algebra problem to be solved for the Riesz representers.

Expanding Eqs. 51 and 52, we have the corresponding linear

algebra statement,

A −DT

−D 0
[ ] 〈R̂ u〉

p
( ) � R u

0
( ), (55)

A 〈R̂ T〉 � R T. (56)

Here, A corresponds to H introduced in Eq. 23 with β0 = 0

and ] = 1. We remark that the essential difference between the

velocity and temperature representers is that the former

satisfies the divergence-free constraint by virtue of the 2 × 2

block system in Eq. 55. Evaluation of the error indicator Δ
entails solving Eqs. 55 and 56, computing the correspondingH1

norms of the outputs, and ultimately using these results in

Eq. 44.

While use of the direct approach requires access to the FOM

machinery in order to generate an error indicator, we note that such

access is readily available during the pMOR training/construction

phase. The advantage of this approach is that the number of Stokes/

Poisson solves scales as the number of points in the training space,

which is typically less than N2. The other is through the offline/

online computational decomposition which takes the advantage of

the affine decomposition and expands the residual. By expanding

the residuals 〈Ru〉 and 〈RT〉, 2(N + 1)2 + 6(N + 1) linear functionals

are derived, where 2(N + 1)2 is due to the convection term in the

Navier-Stokes and energy equations. Applying the Riesz

representation theorem to each linear functional, we end up

solving 2(N + 1)2 + 6(N + 1) Riesz representers, where (N + 1)2

+ 4(N + 1) of them are solved through Stokes problems and (N + 1)2

+ 2(N + 1) of them are solved through Poisson problems. Note that
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the Riesz representers must be stored in order to accomplish the

decomposition and each is a vector of size N since it lives in the

FOM space. For example, if N = 60, one would have to store at least

7,200 vectors of size N which can be prohibitive, even for large

multicore workstations. Even if there is no storage limitation, the

offline cost is quite high when N is large as it scales quadratically.

Once it is done, the online cost isO(N2J +N4), whereO(N2J) is
to solve Eq. 32 andO(N4) is required to compute the error estimate.

Further details of the decomposition are provided in [9].

4.2.1 Time-averaged error indicator with Leray
regularization

The integration of the time-averaged error indicator Δ with Leray

regularization is rather straightforward. Recall the difference between

G-ROMEq. 32 andLDF-ROMEq. 35 is simply the advectingfield being

filtered. Hence, the residuals ru(�unc , v; ], θg) and rT(�Tn
c , S; α) for all

n = J0 + 1, . . . , J are simply modified with the filtered advecting field,

ru �un
c , v; ], θg( ) � ∑

3

s�1
αs v, g θg( )�Tn−s

c( ) − c v, �un−s
c,filtered, �u

n−s
c( )[ ]

−∑
3

s�0

βs
Δt v,un−s

c( ) − ]a v, �un
c( ),

(57)

rT �T
n
c , S; α( ) � −∑

3

s�1
αsc S, �un−s

c,filtered, �T
n−s
c( ) −∑

3

s�0

βs
Δt S, Tn−s

c( )

− αa S, �T
n
c( ), (58)

for all v ∈ Vdiv and S ∈ XN
0 . The corresponding time-

averaged error indicator Δ is then defined based on the

modified residuals Eqs. 57 and 58.

4.3 Parametric model order reduction
results: θg variation

In this section, we consider the parametric problem
parameterized with θg at Pr = 7.2. The problem has three
characteristics: bifurcation, spatio-temporal chaos over a
certain range of θg, and a solution manifold that is a blend of
steady and unsteady solutions. To identify the major pMOR
challenges for this case, three values of Ra are considered:

1) Ra = 1 × 104 where the FOM is steady except at θg = 30°.

2) Ra = 8 × 104 where the FOM is unsteady for θg ∈ [0°, 70°] and

steady for θg ∈ [80°, 180°].

3) Ra = 3 × 105 where the FOM is unsteady for θg ∈ [0°, 120°] and
steady for θg ∈ [130°, 180°].

In each case, the ROM is constructed through Algorithm 1.

In order to assess performance, we generate FOM data for θg = 0°,

10°, . . ., 180° (ntrain = 19 datapoints). The FOM solution is

obtained by solving Eqs. 2 and 3. For parameters where the

problem is steady, the solution and the Nu are collected after the

solution difference between ten time steps is less than 10–6. For

unsteady problems, the mean flow, mean Nu, Std(Nu), mean

TKE and mean temperature fluctuation are averaged over

500 CTUs after the solution has reached a statistically steady

state.

Although not shown here, we remark that at Ra = 1 × 103, the

problem is steady with a bifurcation at θg = 20°. In this case, either

h- or p-Greedy with residual dual-norm base error indicator

accurately estimates the solution and QOIs over the parameter

space θg ∈ [0°, 180°].

4.3.1 Ra = 1 × 104

To examine the feasibility of the pMOR (Algorithm 1) in the

unsteady case, we begin with Ra = 1 × 104, in which only one

unsteady solution is introduced at θg = 30°.

Figure 3E shows the steady (or mean) velocity magnitude for

19 uniformly-space training points θg = 0°, 10°, . . ., 180°. The

corresponding temperature distributions are in Figure 1B. At θg =

180°, we observe no flow and the temperature is simply the

conduction solution. As θg decreases, we observe slot convection

and then about θg = 40° there is a bifurcation to the wavy flow and

rolls in the velocity. Moreover, we observe spatial-temporal chaos

at θg = 30°. Figures 3A–D show the results of the application of

Algorithm 1 for the construction of the G-ROM, C-ROM and

LDF-ROM for the pMOR. The algorithm starts with θg,1* � 0°

and is performed with L = 8 iterations.

Figure 3A demonstrates the selection process of anchor

points (denoted by red circles) for the G-ROM case. We

briefly walk through the process: At the first iteration, the

error estimate Δ1(θg) for θg ∈ Ptrain is computed (blue dashed

line). With the largest error estimate, θg = 90° is then identified as

the second anchor point. The third anchor point is then selected

from θg ∈ Ptrain which maximizes the error estimate Δ1,2(θg): =

min{Δ1(θg), Δ2(θg)} over Ptrain. (We reiterate that minimizing

over the individual error estimates is a property of the h-Greedy

process—there is not a single unifying error estimate as is the case

for p-Greedy.) The process continues until the error estimate

reaches the desired tolerance or the number of offline solves

reaches its maximum. The black solid line denotes the minimum

of all error estimates computed up to current iteration. In this

case, it represents min{Δ1(θg), . . ., Δ8(θg)}. Note that the error

estimate at θg = 180° in each model Δℓ(θg = 180°) is small due to

the choice of lift function.

From Figure 3A, we observe the error estimate is small at

anchor points where the problem is steady. On the other hand,

although the error estimate Δ3(θg) (greed line) is small at θpg,3 �
30° compared to other points in Ptrain, it is not as small as the

estimate at other anchor points. Because of the unsteadiness, it

can’t reach the same magnitude as in the steady cases.

Following this procedure for the other cases, we present

models results for the G-ROM, C-ROM and LDF-ROM cases,

denoted respectively blue, orange, green solid lines in Figures

3B–D. The behavior of the relative H1 error in the predicted
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solution is shown in Figure 3B. The corresponding Galerkin

projection is denoted as the black dashed line. We found that

G-ROM and LDF-ROM have a similar performance: the error

in the solution is nearly identical to the Galerkin projection

for cases where the problem is steady, including those that are

not in the Panchor. The maximum error is at θg = 30° where the

problem is unsteady. Both methods have around 15% error in

the mean flow. Note that at θg = 30°, the number of modes N is

carefully selected since the ROM diverges after certain N due

to the spatio-temporal chaos (15% error with N = 70, 17%

error with N = 80 and 23% error with N = 90). On the other

hand, the mean solution prediction made by C-ROM has 73%

in maximum error and in order for C-ROM to reach same

accuracy as in G-ROM and LDF-ROM, two more iterations

are required. Already, with this modest Ra = 1 × 104, we find

C-ROM is less efficient than G-ROM and LDF-ROM. The

pMOR behavior for mean Nu and mean TKE are shown along

with the FOM results in Figures 3C,D. Again, G-ROM and

LDF-ROM are able to make accurate predictions while

C-ROM has maximum 22% error in mean Nu and in

particular is unable to capture the peak in mean TKE at

θg = 30°.

Before closing this section, we highlight some observations

with respect to the solution manifolds.

1) The solutions at θg ∈ [0°, 30°] are Rayleigh-Bénard with

differing numbers of rolls, analogous to orthogonal sine

and cosine functions at different wave numbers. Therefore,

there is little hope in reproducing the solution except at

selected anchor points. QOI’s such as mean Nu, however,

are less sensitive to precise mean flow fields and are therefore

more tractable.

2) At θg = 170° and θg = 180° the thermal metrics are not too

different despite the O(1) difference in velocity solutions.

The first issue is resolved by the error indicator picking θg ∈
[0°, 30°] as anchor points. The second issue can be a source of

error as Ra increases. With θg = 160° as an anchor point and the

solution at θg = 180° as the lift function, the error at θg = 170° is 9%

for Ra = 1 × 104, 16% for Ra = 8 × 104, and 19% for Ra = 3 × 105.

4.3.2 Ra = 8 × 104

Figure 4 shows pMOR results analogous to Figure 3 for

the case Ra = 8 × 104. Here, we consider only the G-ROM and

FIGURE 3
POD-hGreedy performance comparison betweenG-ROM, C-ROM and LDF ROM for the parametric problem parameterized with θg at Ra = 1 ×
104 and Pr = 7.2. (A) Behavior of the error indicator Δ defined in Eq. 44 for eight iterations with G-ROM. (B–D) Behavior of the relative H1 error in
predicted solution, mean Nu and mean TKE with θg based on eight anchor points. (N = 1 for all θg ∈ Panchor except N = 70 at θpg,3 � 30°.). (E)Mean (or
steady) velocity magnitude for 19 uniformly-spaced θg ∈ [0°, 180°]. (The corresponding temperature solutions are in Figure 1B).
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LDF-ROM. The algorithm starts with θpg,1 � 0° and terminates

at L = 6 iterations. Figures 4E,F show the FOM mean (or

steady) temperature and velocity solution at the training

points. (In an actual pMOR, these FOMs would of course

not be computed a priori.) With this Ra, the bifurcation

occurs at θg = 40°. Moreover, we observe spatio-temporal

chaos for θg ∈ [0°, 30°] with the lower values being more

chaotic.

The anchor-point selection process with LDF-ROM is

demonstrated in Figure 4A. Starting with θpg,1 � 0° the peak

error in first iteration is at 110°, which is chosen to be θpg,2, and so

on. Again, we find the error indicator is small at anchor points

where the problem is steady and that it is larger where it is

unsteady (θg ∈ [0°, 60°]). Nonetheless, the error indicator is still

able to identify where solution changes rapidly and select most of

the anchor points in the region [0°, 40°].

The behaviors of the relative H1 error in the predicted solution

with θg using G-ROMand LDF-ROMare shown in Figure 4B. For θg
∈ [80°, 180°], where the solution is steady, we find the estimation is

almost identical to the Galerkin projection in both models. On

the other hand, for θg ∈ [0°, 70°], where the solution is unsteady,

we find the error at anchor points θg = 0°, θg = 10° is large due to

the spatio-temporal chaos. The maximum error is around 19%

at θg = 10° with LDF-ROM while 69% at θg = 40° with G-ROM.

Although the maximum error in G-ROM can be reduced by

further iterations of the algorithm, the error will eventually be

dominated by the high reproduction error arising from spatio-

temporal chaos at θg = 0° and 10°.

The behavior for mean Nu and mean TKE are shown in

Figures 4C,D for G-ROM and LDF-ROM. Despite large errors in

the mean flow prediction at θg = 0°, 10°, the LDF-ROM is able to

predict mean Nu with a maximum error around 5% whereas

FIGURE 4
POD-hGreedy performance comparison between G-ROM and LDF ROM for the parametric problem parameterized with θg at Ra = 8 × 104 and
Pr = 7.2. (A) Behavior of the error indicator Δ defined in Eq. 44 for six iterations with LDF-ROM. (B–D) Behavior of the relative H1 error in predicted
solution, mean Nu, andmean TKE with θg based on six anchor points. (N = 100 at θg = 0°, 20°,N = 80 at θg = 10°, 30°, 40°,N = 1 at θg = 110°, 140°, 160°).
(E,F) Mean (or steady) temperature and velocity solution for 19 uniformly spaced θg ∈ [0°, 180°].
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G-ROM has maximum error around 28%. In addition, LDF-

ROM is able to more accurately predict mean TKE than G-ROM.

4.3.3 Ra = 3 × 105

For (Pr,Ra) = (7.2, 3 × 105) the flow is quite chaotic (similar to

what is found for Pr = 0.71 at lower Ra). Figures 5E,F show the

mean (or steady) temperature and velocity solution at θg = 0°, 10°,

. . ., 180° (19 datapoints). This time, the bifurcation occurs at θg =

60°. We use this elevated Rayleigh-number case to explore the

behavior of the h-Greedy pMOR convergence by considering

application of the algorithm to two different training sets, P1 �
[60°, 70°, . . . , 180°] and P2 � [0°, 10°, . . . , 180°]. The set P1

excludes the spatio-temporal chaotic regime while P2 spans the

full range of flow phenomena.

The anchor point selection process for P1 with LDF-ROM is

demonstrated in Figure 5A, starting with θpg,1 � 60° and

proceeding for L = 5 iterations. Again, we observe that the

error estimate at the anchor points, θpg,1 � 60°, θpg,3 � 80° and

θpg,5 � 120° are larger than other anchor points because of

unsteadiness. The behavior of the relative H1 error in

predicted solution is shown in Figure 5B. For θg ∈ [130°,

180°], where the solution is steady, the ROM estimates at the

anchor points are almost identical to the Galerkin projection. For

θg ∈ [60°, 120°], where the solution is unsteady, the errors at the

anchor points (θg = 60°, 80°, 110°, 120°) are less than 10%.

However, because of the irregular solution manifold, there is a

20% maximum error at θg = 170°, despite the ROM being based

on the nearby θg = 160° anchor point.

FIGURE 5
POD-hGreedy performance comparison between G-ROM and LDF ROM for the parametric problem parameterized with θg ∈ [60°, 180°] at Ra =
3 × 105 and Pr = 7.2. (A) Behavior of the error indicator Δ defined in Eq. 44 for five iterations with LDF-ROM. (B–D) Behavior of the relativeH1 error in
predicted solution, meanNu andmean TKEwith θg based on five anchor points. (N= 80 at θg= 60°, 80°, 110°,N= 50 at θg= 120° andN= 1 at θg= 130°,
140°, 160°). (E,F) Mean (or steady) temperature and velocity solution for 19 uniformly spaced θg ∈ [0°, 180°].
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The behavior of the mean Nu and mean TKE are shown in

Figures 5C,D. The maximum error in the predicted mean Nu is

around 5% with LDF-ROM and 8% with G-ROM. The mean

TKE estimation is also reasonable but is underestimated at

θg = 70°.

Next we examine the same problem configuration but with

the full parameter space P2. The problem now includes spatio-

temporal chaos for θg ∈ [0°, 40°] with the lower values being more

chaotic. Figure 6 show the results of the application of Algorithm

1 for the construction of the LDF-ROM for the parametric

problem with P2. The algorithm starts with θg,1* � 0° and is

performed with L = 6 iterations. The anchor point selection

process is demonstrated in Figure 6A. We observe the same issue

as in the previous cases, where unsteadiness leads to larger error

estimates than with the steady regimes.

The relative H1 error in predicted solution is shown in

Figure 6B. Again we find the estimation is almost identical to

the Galerkin projection for θg ∈ [130°, 180°] where the solution is

steady. For θg ∈ [0°, 120°] where the solution is unsteady, the

errors at anchor points θg = 20°, 40°, 90°, 120° are less than 10%

but 35% at θg = 0°, which corresponds to “simple” Rayleigh-

Bénard convection. Note that 35% is the error after carefully

chosen N and spatial radius δ in Leray filtering. The

corresponding mean Nu and mean TKE behavior are shown

in Figures 6C,D. Themaximum error in the predicted meanNu is

around 12%. For mean TKE, the estimation for θg ∈ [60°, 180°] is

acceptable, while it is overestimated for θg ∈ [0°, 50°].

We are also aware that in some applications, the Std(Nu)

could be considered as QOI. However, comparing to the mean

Nu and mean TKE, we find Std(Nu) is in general a more

challenging QOI. Figure 7 shows the predicted Std(Nu) in the

three Ra cases. We observe accurate prediction in Ra = 1 × 104

case. However, unlike the mean TKE, the Std(Nu) soon becomes

intractable with Ra = 8 × 104 even with Leray regularization and

is even worse in Ra = 3 × 105.

4.4 Parametric model order reduction
results: Ra variation

In this section, we consider the slot problem at θg = 90° and

Pr = 7.2 with the parametric space defined by

Ra ∈ P � [2 × 105, 7 × 105]. Unlike the problem with θg
variation, all solutions are unsteady and there is no

parametric bifurcation. In order to assess performance, we

generate FOM data, including mean flow, mean Nu, Std(Nu),

mean TKE and mean temperature fluctuation, for Ra = 2 × 105,

2.5 × 105, . . . , 7 × 105 (ntrain = 11 datapoints). The quantities are

averaged over 500 CTUs once the solution reaches the

statistically steady state.

Figure 8 shows the results of the application of Algorithm 1

for the pMOR using G-ROM, C-ROM and LDF-ROM. The solid

line denotes the performance of the reduced model which

minimizes the error indicator, and thus is selected by the

Greedy procedure (cf. Algorithm 1, ncand = 2). Anchor points

are denoted as red circle while FOM data is denoted as black solid

line. The algorithm starts with Rap1 � 2 × 105 and is performed

with L = 5 iterations. The number of POD basis N with anchor

points are listed in the figure caption.

Figure 8A shows the behavior of the relative H1 error in

mean flow prediction with Ra. First, we observe the errors at the

anchor points are less than 10% with C-ROM and LDF-ROM

while G-ROM has 10% error at Rap2 � 7 × 105. The maximum

error is roughly 11% in G-ROM, 10% in LDF-ROM and 8% in

C-ROM. Comparing with the Galerkin projection error (denoted

by the black dashed line), the pMOR accuracy is seen to be quite

satisfactory throughout P.
Figure 8B shows the behavior of the predicted mean Nu with

Ra. At the anchor points, we observe good agreement between

ROMs and FOM and that stabilization does improve its accuracy.

The maximum relative error is roughly 8% in G-ROM, 6.5% in

C-ROM and 5% in LDF-ROM. Figures 8C,D show the behavior

FIGURE 6
POD-hGreedy performance comparison between G-ROM and LDF ROM for the parametric problem parameterized with θg ∈ [60°, 180°] at Ra =
3 × 105 and Pr = 7.2. (A) Behavior of the error indicator Δ defined in Eq. 44 for five iterations with LDF-ROM. (B–D) Behavior of the relativeH1 error in
predicted solution, mean Nu andmean TKE with θg based on five anchor points. (N = 80 at θg = 10°, 20°, 40°, 60°, 90°, 100°,N = 70 at θg = 0°,N = 50 at
θg = 120° and N = 1 at θg = 160°.)
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of the predicted Std(Nu) and mean temperature fluctuation. In

both QOIs, we find C-ROM outperforms the other two models.

At Ra = 7 × 105, LDF-ROM is only slightly better than G-ROM.

This parametric space is in general more tractable than those

involving variation in θg. This outcome might be anticipated by

observing the mean temperature fields shown in Figure 1C,

which suggests that the solution manifold with respect to Ra

is quite smooth. This is also reflected in the QOIs, for example,

the mean Nu, Std(Nu) and mean temperature fluctuation behave

almost linearly as Ra increases.

5 Discussion

In this section, we investigate some of the flow behaviors

exhibited by the FOM to better understand how they influence

the relative performance of the ROMs. We note that we cannot,

in general, expect a ROM to be able to predict FOM behavior if

the flow itself is not predictable. Thus, variability in the FOM

provides an anticipated lower bound on ROM performance for

the reproduction problem.

5.1 Spatio-temporal chaos

As pointed out in the introduction, we classify a flow to be

spatio-temporal chaotic by examining its consistency in mean

flow over various time windows. (We use this simple metric

here for convenience—we have also examined the flow fields

and the time traces of multiple QOIs.) Here, we explore how

lack of consistency influences four QOIs, mean Nu, Std(Nu),

mean temperature fluctuation, and mean TKE, at three

successive time windows, W1, W2 and W3. These quantities

are used to indicate the variability in the FOM. As with the

FIGURE 7
Behavior of the predicted Std(Nu) with θg. (A): G-ROM, C-ROM and LDF-ROM estimation at Ra = 1 × 104 with eight anchor points. (B): G-ROM
and LDF-ROM estimation at Ra = 8 × 104 with six anchor points. (C): G-ROM and LDF-ROM estimation at Ra = 3 × 105 with six anchor points.

FIGURE 8
POD-hGreedy performance comparison between G-ROM, C-ROM and LDF ROM for the parametric problem parameterized with Ra at
θg = 90° and Pr = 7.2. (A–D) Behavior of the relative H1 error in predicted mean flow, predicted mean Nu, Std(Nu) and mean temperature
fluctuation based on five anchor points. (N = 80, Rap1 � 2 × 105, Rap2 � 7 × 105, Rap3 � 2.5 × 105, Rap4 � 3.5 × 105, Rap5 � 5 × 105 for C-ROM and
LDF-ROM and Rap5 � 4.5 × 105 for G-ROM).
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preceding cases, we consider averaging times of 500 CTUs for

each of the three windows. The starting time forW1 differs with

given parameters as some cases take a longer time to reach a

statistically steady state. For example, for Pr = 0.71 at Ra = 1.8 ×

104 and θg = 90°, the flow is chaotic until 6,000 CTUs and then

becomes periodic.

Figures 9A–D show the behavior of the four QOIs with Ra at

three Pr for θg = 90°. Pr = 0.07 is denoted as green line, Pr = 0.71 is

denoted as orange line, while Pr = 7.2 is denoted as blue line.

Window W1 is denoted by a solid line, W2 by a dashed line, and

W3 by a dotted line.

From Figures 9A–D we can see the following:

1) For Pr = 0.07 the QOIs are fairly consistent except for Ra ∈
[3 × 104, 5 × 104].

2) For Pr = 0.71, we find large variability in Std(Nu), mean

temperature fluctuation and mean TKE for Ra > 2 × 104.

3) Pr = 7.2 exhibits the least variability.

For Ra where we find that the QOI variability is high, we have

also examined the mean flow at multiple time windows and

found that those are also inconsistent. In all cases, the mean Nu is

quite repeatable.

Figures 9E–H show the behavior of the same QOIs as a

function of θg. For Pr = 7.2, we consider three different values of

Ra. We find for most of the θg, the variability is small except for

small θg where we also report spatio-temporal chaotic flow. For

Pr = 0.07, we find the QOIs has small variability with

Ra = 1 × 104. However, for Pr = 0.71, we find large

variability, especially in the mean TKE. Not only it has spatio-

temporal chaotic flow (for example θg = 100°), but also the

solution manifold is not smooth. By varying θg = 80° to θg =

100°, the solution changes from steady to periodic then spatio-

temporal chaotic.

From Figures 9E–H we observe the following:

1) For Pr = 0.07, Std(Nu) exhibits up to 50% variability (e.g., at

θg = 70°) while 〈Tfluc〉 and 〈TKE〉 have orders-of-magnitude

relative variability at θg = 0°.

2) For Pr = 0.71, 〈Tfluc〉 and 〈TKE〉 exhibit significant

variability for θg ∈ [60°, 110°].

3) For Pr = 7.2, the most notable variation is at θg = 30° for

Std(Nu), 〈Tfluc〉, and 〈TKE〉 at Ra = 104. Remarkably, the

higher Rayleigh number cases do not exhibit as much

variance.

As in Figures 9A–D, the mean Nu is seen to be a repeatable

QOI. It is worth noting the real challenge and sensitivity of this

class of problems is illustrated in Figure 9H. Here, we observe for

the (Pr, Ra) = (0.71, 104) case that the flow alternates from steady

FIGURE 9
Parametric variability in the FOM: green–Pr = 0.07, orange–Pr = 0.71, and blue–Pr = 7.2. Each plot reveals absence/presence of chaotic effects
by presenting statistics taken over three timewindows,W1, W2, andW3. (A–D): Ra-dependence ofmeanNu, Std(Nu), mean temperature fluctuation,
and mean TKE computed over time windows W1, W2 and W3. (E–H): θg-dependence at fixed Ra.
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to unsteady at multiple points along the one-dimensional θg
parameter space as indicated by several distinct zeros in the

TKE.In Figure 10, we further explore the influence of spatio-

temporal chaos by examining the mean-flow distributions and

ROM performance for (Pr, Ra) = (7.2, 3.5 × 104) at θg = 0° and

θg = 20°. Figures 10A–C show the behavior of the H1 error and

mean Nu predictions as a function of N, along with the mean-

velocity magnitude distributions over seven time windows for

θg = 0°. Figures 10D–F show the same quantities but with θg = 20°

and only three time windows. In Figure 10C, we observe that for

θg = 0° the number of rolls in the mean velocity field changes

across different time windows. Similar changes are observed, to a

lesser extent, at θg = 20°. Hence, both solutions are categorized as

spatio-temporal chaotic flow, but the θg = 0° case is more

significant. Comparing the mean flow error and mean Nu, we

observe that the ROM convergence for the reproduction problem

is slower (or nonexistent) at θg = 0°, while the convergence

behavior is more favorable at θg = 20°.

We have also computed the relative error between FOM

mean flows across seven time windows for the two values of θg.

The maximum relative H1 error is 34% for θg = 0° and 10% for

θg = 20°. These FOM discrepancies can be considered as a bound

on the predictive capabilities of the ROM. Indeed, the values of 34

and 10% are consistent with the lower bounds realized in

Figures 10A,D.

In Figure 11, we examine the influence of Prandtl number

by comparing results for Pr = 0.71 and 7.2 at (Ra, θg)= (3 ×

105, 90°). Figures 11A–D show the convergence behavior for

theH1 error and mean Nu as well as mean temperature and x-

velocity fields at three time windows for Pr = 0.71, while

Figures 11E–H show the same quantities for Pr = 7.2. From

the mean fields, we observe that the number of rolls and its

position changes with time window at Pr = 0.71, while

minimal variance is observed at Pr = 7.2. Hence the

solution at Pr = 0.71 is considered to be spatio-temporal

chaotic while only chaotic at Pr = 7.2. Comparing the

behavior of the relative H1 error in the mean flow and

mean Nu, we observe convergence issues in the ROM at

Pr = 0.71, while the same metrics converge at Pr = 7.2. We

further compute the relative variance between two FOM

mean flows across seven time windows for the two

considered θg. The maximum relative H1 error is 14% for

FIGURE 10
ROM performance comparison between problem having significant (θg = 0°) and less significant (θg = 20°) spatio-temporal chaotic flow at Pr =
7.2 and Ra = 3 × 105. (A–C) Behavior of the relative H1 error and mean Nu as a functions of N and magnitude of the mean velocity at multiple time
windows W1, . . . , W7 at θg = 0°. (D–F) performance for the same quantities at θg = 20°.
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Pr = 0.71 and only 1% for Pr = 7.2. This again explains why

the approximation errors are different between the two cases.

Considering these variance levels as a lower bound for the

ROM, we can view 20% error in C-ROM as acceptable. On the

other hand, the approximation error for Pr = 7.2 is able to

reach below 10%.

In summary, the results of this section show that convergence

issues and variations in the QOIs in the ROM can have high a

correlation with the flow being spatio-temporal chaotic. From

Table 1 and Figure 9, we see that Pr = 0.71 has a more

complicated solution manifold found with the other two

Prandtl numbers and also exhibits spatio-temporal chaos at a

relatively small Rayleigh number, Ra = 104.

5.2 Multiple steady-state solutions

In this section, we report the existence of multiple steady-

state solutions observed for the case (θg, Ra)=(0°, 10
4). The

variations are characterized by different numbers of

recirculation rolls, which are induced by using different initial

conditions. Figure 12 shows steady temperature solutions

generated by starting with steady solutions, χn from other

values of θg = n°, save for the χ90 case, which corresponds to a

single snapshot of the unsteady flow/temperature field at θg = 90°.

Multiple steady states are also observed for this Prandtl number

at θg = 10° and 20° and have been reported by other authors as

well [12, 14, 40].

For solution reproduction, the multiplicity of the

solutions is not an issue as long as the ROM uses the same

initial condition as the FOM. However, for parametric

problem, these multiple states could easily lead to an

incorrect (or at least, unexpected or unverifiable)

conclusion. For example, if the ROM anchor at θg = 10° is

used to approximate the solution at θg = 0°. With the initial

condition at θg = 10°, the approximate solution will be the

third temperature solution shown in Figure 12. However, if

one collects the FOM data at θg with zero initial condition,

one will consider the first temperature solution as the truth

solution. As we could consider those roll solutions as sine and

FIGURE 11
ROM performance comparison between Pr = 0.71 and Pr = 7.2 at Ra = 3 × 105 and θg = 90°. (A–D) Behavior of the relativeH1 error andmean Nu
as a functions ofN, temperature andmean x-velocity at three timewindows,W1, W2 andW3 at Pr = 0.71. (E–H): Performance for the same quantities
at Pr = 7.2.
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cosine functions, the first and third solution are nearly

orthogonal; their difference is O(1) and one would thus

conclude that the pMOR had failed when it in fact had

generated a valid solution.

5.3 Discussion summary

We have noted in Table 1 the broad range of flow regimes

encountered for the tilted slot problem and in this section

have illuminated a correlation between the flow states and

predictive power of the MOR/pMOR framework. The cases

with spatio-temporal chaos are generally the most

challenging for model-order reduction and the pMOR

errors are found to be (approximately) bounded from

below by the variance observed in successive FOM

simulations performed at the same parametric point. The

development of the pMOR thus needs to be performed

with care.

Two parameterizations were considered: 1) θg-variation,

where a bifurcation exists and solution space is a blend of

unsteady and steady solutions, and 2) Ra-variation, where no

bifurcation exists and one finds only unsteady solutions. In

the θg-variation problem, accurate prediction in mean flow

and other QOIs by the pMOR was demonstrated in the Ra = 1

× 104 and Ra = 8 × 104 cases. In high Ra cases, acceptable

prediction of Nu is achieved with LDF-ROM but a small

mean-flow error is not realizable because of spatio-temporal

chaos.

The results also indicate that the LDF-ROM is a better

candidate for parametric problems with bifurcation than

C-ROM. This observation is new, yet consistent with the

results of [9], where the authors show that C-ROM is effective

for parametric problems that do not have a bifurcation. For

the parametric problem parameterized with Ra, without

spatio-temporal chaos, we find that pMOR with any of the

three methods, G-ROM, C-ROM, or LDF-ROM, is able to

predict the mean flow quite well. In this case, C-ROM is the

most accurate in mean flow prediction and other targeted

QOIs. This result is not surprising given that the solution

manifold does not have a bifurcation. Lastly, we remark that

Std(Nu) is generally the most challenging QOI of those

explored here.

From the results, we are able to make an important

observation. For parametric problems where pMOR is

successful (e.g., errors < 10%), the solution is either only

chaotic (e.g., Ra variation with θg = 90°) or the solution does

not have significant spatio-temporal chaos (e.g., θg variation

with Ra = 1 × 104, 8 × 104). Once the spatio-temporal chaos

becomes significant, the predictive power of pMOR deteriorates

and the maximum errors are dominated by variance in the truth

solution.

Although not shown here, we have also applied POD-

pGreedy to this problem. In the parametric problem

parameterized with θg, it works only in the steady case

Ra = 1 × 103. Once the unsteady solution emerges, for

example at Ra = 1 × 104, combining modes associated with

different values of θg leads to an unstable ROM even with the

Leray regularization. Although no rigorous proof is given, we

hypothesize that the issue is due to the bifurcation in solution

behavior. This point was also suggested in [9], which

empirically showed that combining modes associated with

qualitatively different behaviors might lead to poor

prediction. By contrast, when the current problem is

parameterized with Ra we find that POD-pGreedy is more

efficient than the h-refinement approach.

6 Conclusion

In this paper an error-indicated pMOR is applied to a 2D

unsteady natural convection in a tilted high-aspect ratio slot.

FIGURE 12
Different steady temperature solutions at θg = 0°, Ra = 1 × 104 and Pr = 0.71. The solutions were computed from different initial conditions, χn,
corresponding to FOM solutions at θg = n°. For n = 2, 10, 20, and 180 the solution is steady, whereas χ90 is simply a snapshot from the θg = 90° case.
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We first considered the solution reproduction problem (non-

predictive case) to demonstrate the convergence of the ROMs

and the effectiveness of the stabilization methods. We next

addressed the parametric problem (predictive case) to validate

the error indicator and, more broadly, the stabilized POD-

hGreedy procedures. Principal contributions include, 1)

extension of the error indicator proposed in [9] to

buoyancy-driven flows; 2) demonstration that Leray-

regularized Galerkin ROMs provide a robust solution

approach for this class of flows; 3) identification of spatio-

temporal chaos as a source of irreproducibility in both the

FOM and the ROM and that the variance in the FOM provides

a lower bound on the pMOR error in these cases; 4)

observation that accurate prediction (< 10%) with pMOR

is achievable if the solution in the parametric space is

either only chaotic or the spatio-temporal chaos is not

significant, regardless of whether a bifurcation exists or not.

Once the spatio-temporal chaos becomes significant, the

performance of the pMOR deteriorates and the maximum

errors of the mean flow and QOIs are dominated by the flow

chaos.

We also highlight a number of challenges that are particularly

relevant for buoyancy-driven flows and which should be taken

into consideration in the design of pMOR strategies for 3D

buoyancy driven turbulent flow. First, one needs to be aware

of potential convergence issues for the mean flow and other QOI

predictions when the FOM exhibits large-scale spatio-temporal

chaos. Second, it is difficult to combine modes associated with

different flow regimes, especially for the pGreedy case. Third,

even relatively simple (e.g., steady) flows can exhibit multiple

states at a given parameter. And fourth, there are large offline

costs both in terms of computational time and required storage

for error indicator and O(N4) costs for online-only error

indicators5.

We outline potential next steps in pMOR development for

this class of problems.

1) Extension to higher dimensional parameter space. In this

work, we considered only one-dimensional parameter

space since the pMOR behavior needed to be carefully

diagnosed; however higher dimensional parameter

spaces are more interesting for engineering

applications.

2) hp-Greedy with a bifurcation detection technique. Although

we find LDF-ROM is more efficient than C-ROM for

parametric problems that have a bifurcation, the h-

refinement strategy considered in this paper might

require an infeasible number of offline simulations as the

dimension of the parameter space increases. To tackle

complex parametrizations, more advanced sampling

strategies that combine h- and p-refinement [37],

potentially with bifurcation detection, could be

beneficial [42].
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The authors introduce an augmented-basis method (ABM) to stabilize reduced-

order models (ROMs) of turbulent incompressible flows. The method begins

with standard basis functions derived from proper orthogonal decomposition

(POD) of snapshot sets taken from a full-order model. These are then

augmented with divergence-free projections of a subset of the nonlinear

interaction terms that constitute a significant fraction of the time-derivative

of the solution. The augmenting bases, which are rich in localized high

wavenumber content, are better able to dissipate turbulent kinetic energy

than the standard POD bases. Several examples illustrate that the ABM

significantly out-performs L2-, H1- and Leray-stabilized POD ROM

approaches. The ABM yields accuracy that is comparable to constraint-

based stabilization approaches yet is suitable for parametric model-order

reduction in which one uses the ROM to evaluate quantities of interests at

parameter values that differ from those used to generate the full-order model

snapshots. Several numerical experiments point to the importance of localized

high wavenumber content in the generation of stable, accurate, and efficient

ROMs for turbulent flows.

KEYWORDS

POD, ROM, pMOR, stabilization, turbulence

1 Introduction

Parametric model-order reduction (pMOR) is a promising approach to leveraging

high-performance computing (HPC) for design and analysis in fluid-thermal engineering

applications. The governing equations in this context are the time-dependent

incompressible Navier-Stokes equations (NSE) and the thermal transport equation.

ztu + u · ∇u � −∇p + ]∇2u + f , ∇ · u � 0, (1)
ztT + u · ∇T � α∇2T. (2)
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Where ] and α parameterize the PDEs and the forcing function f
can be the Boussinesq approximation term, for example.1 The

equations are assumed to hold in a suitable domain Ω with

appropriate initial and boundary conditions. The Galerkin

statement is.

Find (ztu, p, ztT) ∈ Y ≔ [H1
0 ⊗ L2 ⊗ H1

0] s.t. ∀(v, q, S) ∈ Y.

v, ztu( ) + v, u · ∇u( ) � ∇ · v, p( ) − ] ∇v,∇u( ) + v, f( ),
q,∇ · u( ) � 0, (3)

S, ztT( ) + S, u · ∇T( ) � −α ∇S,∇T( ). (4)
Here, L2 is the space of square-integrable functions on Ω; H1 is

the space of functions in L2 whose gradient is also in L2; andH1
0 is

the space of functions in H1 that vanish on subsets of the

boundary, zΩD ⊂ zΩ, where homogeneous Dirichlet

conditions are imposed. H1
0 is the vector counterpart to H1

0.

To obtain a fully-accurate quantity of interest (QOI) such as

friction factor, Nusselt number, or Strouhal number, one

formally needs to obtain a full-order model (FOM) solution

to the governing equations at discrete points in the parameter

space of interest (e.g., spanned by a range of ] and α, of interest).

Typically, the FOM constitutes a high-fidelity spectral- or finite-

element solution to the governing equations, which can be

expensive to solve, particularly for high Reynolds number

cases that are typical of engineering applications. pMOR seeks

to develop a sequence of reduced-order models (ROMs) that

capture the behavior of the FOM and allow for parameter

variation. For unsteady flows, the pMOR problem can be

broken down into two subproblems: reproduction, wherein the

ROM captures essential time-transient behavior of the FOM

using the same parameter (anchor) point for each, and

parametric variation, wherein the ROM is run at a different

parametric point in order to predict the system behavior away

from the anchor points at which the FOM simulation was

conducted.

In this work, we focus primarily on the reproduction problem

for challenging unsteady flows. We do, however, also consider

pMOR, which we illustrate with an example from [1]. The

thermal-fluids problem is the axisymmetric Rayleigh-Bénard

configuration depicted in Figure 1A, which was studied by

Tuckerman and Barkley [2,3]. The problem is parameterized

by ϵ � Ra−Rac
Rac

, where Rac = 1734 is the critical Rayleigh number.

The 2D axisymmetric domain has an aspect ratio of Γ = 5, shown

in Figure 1A. For ϵ > 1.3843, traveling waves move towards the

centerline axis with a period that depends on ϵ. We perform

FOM calculations at two anchor points, ϵ = 1.6 and ϵ = 2.6, from

which we collect snapshots (full flow/temperature fields). We

apply proper orthogonal decomposition (POD) to the snapshot

sets from each of the FOMs and use 20 PODmodes from each to

form a reduced-order subspace ZN comprising N = 40 basis

functions. These modes are used in the weak- (Galerkin-)

formulation of the governing equations, where the solution is

restricted to ZN ⊂ Y. The low-dimensional ROM is able to capture

short- and long-time behavior as shown in the Nusselt number

reproduction traces in Figure 1B. Moreover, as shown in

Figure 1C, the pMOR is able to accurately predict the period

of the traveling wave solutions both inside and outside the ϵ range
spanned by the anchor points. Note that as ϵ → 1.3843, the

period goes to infinity and FOM simulations near this limit

become intractable. The ROM, however, is able to predict this

critical value of ϵ to within a few percent.

While pMOR is a promising approach for engineering

analysis and design, it is well known that even the

reproduction problem is challenging for the classical POD-

Galerkin approach at high Reynolds numbers after the flow

transitions to turbulence. One common issue with this class of

problems is that the ROM solution approaches an unphysical

attractor. This behavior is attributed to a lack of dissipation, given

that the truncated POD space lacks high-wavenumber modes

that are capable of dissipating energy. One can induce additional

dissipation by including more modes but the cost is high. The

convective tensor reduction requires storage of N3 entries for the

advection operator with a corresponding work of 2N3 operations

per timestep. While N = 100, with a cost of a two million

operations per step and a million words in memory, may be

tolerable, N = 400 with a cost of 128 million operations and

64 million words quickly makes pMOR less viable for running on

a workstation, which is typically the target for this type of

analysis tool.

Existing techniques for addressing the computational cost

include the discrete empirical interpolation method (DEIM) [4],

which effectively interpolates the convective term, and tensor

decomposition, which aims to approximate the convective tensor

by a low-rank tensor. We will show in our concluding examples

that these methods will not, on their own, address the unphysical

ROM dynamics. Stabilization of the ROM is critical and is the

primary topic of this work. Several stabilization strategies are

described in Section 2. The major contribution of this work is the

development of a novel augmented-basis method (ABM), in

which we add important modes to the standard POD bases.

In many cases, the ABM increases both the stability and accuracy

of the ROMs at a cost equivalent to standard POD approaches

having the same total number of modes.

2 Background

The POD-Galerkin technique in fluid flow emerged from

work to identify dominant flow features by [5] Model-reduction

using POD modes as basis functions was introduced afterwards,

1 These equations are effectively in nondimensional form, which for
forced conditions implies that ] = Re−1, the inverse Reynolds number,
and α = Pe−1, the inverse Peclet number. For buoyancy-driven flows
these parameters typically scale with Rayleigh number (Ra) and Prandtl
number (Pr), with the precise definition dependent on the chosen
scaling.
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with a comprehensive analysis appearing in a later

monograph by [5].

More complex PDEs with non-affine parameter

dependencies were addressed by [6] using decomposition of

the nonlinearity based on the empirical interpolation method

(EIM). In this approach, successive interpolation modes are

chosen to eliminate the error between the targeted term in

FOM and the ROM at “magic points” designated as points in

Ω where the error of the current interpolant (i.e., the

approximant of the next mode) is maximal. This method was

further extended by [4] with a POD decomposition of the

nonlinear term and the choice of points restricted to discrete

points produced by the spatial discretization of the PDE, called

discrete empirical interpolation method (DEIM). While these

methods enable application of pMOR to nonlinear problems the

issue of insufficient dissipation and feasible stabilization for the

NSE persists.

Due to its approach of treating nonlinear terms, DEIM has

the potential to address the high-cost issue of including more

modes. DEIM replaces the third-order convective tensor with a

collocation-like decomposition at the discrete magic points,

which yields a reduction of computational complexity from

O(N3) to O(N2). Accounting for the constants, evaluation of

advection using DEIM with N = 200 modes would be equivalent

to using the full tensor withN = 65. For the same cost, DEIM thus

permits the use of a richer approximation space.

To certify that the error in the ROMs that are produced is

smaller than the acceptable tolerance, error indicators have been

developed based on the residual of the ROM solutions in the full-

order model (FOM) space. Error indicators for coercive elliptic

PDEs are described by [7]. An a posteriori error indicator for

time-dependent NSE is described by [8] which is described as the

dual-norm of the residual of the time-averaged momentum

equation. This error indicator is evaluated by accumulation of

residual contributions from each term in the momentum

equation at each time-step. This metric provides an error

estimate for time-dependent ROM solutions, while not a strict

bound on the error, allows an efficient selection of anchor point

selection for pMOR. We do not consider these further here, but

they are an important component for efficient pMOR and are

discussed in a companion paper [9].

For addressing the issue of stability, several modifications to

the original POD Galerkin approach have been proposed [10].

proposed a modification of the POD mode generation in which

theH1 inner-product is used to produce the Gramian, rather than

L2 inner-product, to emphasize the importance of gradients in

the FOM snapshots [11]. introduced Leray regularization in the

context of ROM in which the advecting field is smoothed

(conveniently, by truncation of the modes in the case of

POD-ROM). This regularization enhances the stability

property of the dynamical behavior; however, the optimal

choice of regularization (e.g., number of modes to truncate or

shape of transfer function) is not known a priori.

An alternative stabilization approach, introduced by [8], is

to replace the discrete ODE system by a constrained

minimization problem at each timestep. During the

evolution of the system, the basis coefficients are bound by

the minimum and maximum coefficient values observed in the

snapshot projection onto the truncated POD space. (If the

constraints are inactive, one recovers the standard Galerkin-

based trajectory.) With this approach, the ROM tends to stay

close to the dynamics of the FOM. A challenge, however, is

that this approach requires ad hoc modification of the bounds

for parametric values where the FOM snapshots are

unavailable. Applications of several of these stabilization

techniques may be found in [1].

FIGURE 1
ROM application to axisymmetric Rayleigh–Bénard.
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Methods that address the stability issue by constructing basis

functions that satisfy the energy-balance that closely match the POD

basis is introduced by [12]. In this work, existing work on stabilizing

linear time-invariant (LTI) systems by [13], which seeks optimal

combinations of snapshots to produce dynamically stable ROMs, is

combined with work by [14], in which the kinetic energy behavior is

stabilized by introducing an empirical turbulence closure term in the

ROM. In this combined method by Balajewicz, in a preprocessing

step, an a priori nonlinear constrained optimization problem is

solved that minimizes the difference between the energy captured by

the new modes and the energy captured by the POD modes for a

given N subject to constraints: the columns of the transformation

matrix are orthonormal and the empirical kinetic energy-balance is

satisfied. The result is a set of transformed POD modes that are

augmented directly with dissipation modes (also taken as linear

combinations of the snapshots). The author demonstrated that this

approach offers significant improvement over the standard POD-

Galerkin approach for a 2D lid-driven cavity problem and a 2D

mixing layer. Also discovered was the fact that by ensuring the

kinetic energy-balance is dissipative to an arbitrary degree, the ROM

solution becomes stabilized. Thus, by encapsulating the method by

this ROM training stage, the amount of appropriate dissipation to be

prescribed in the constrained optimization step can be found to

produce a stable ROM with mean TKE behavior close to that of

the FOM.

Another basis augmentation approach, introduced by

[15,16], uses a combination of L2 POD modes and H1 POD

modes that are subsets of the originating snapshot set. The idea is

to have a small number of L2 POD modes capture the dominant

energy-carrying features of the flow while the H1 POD modes

(containing small-scale features) provide the necessary

dissipation that is not realized by the L2 POD modes alone.

The authors successfully applied this augmented basis to 3D

turbulent flow in injectors.

In the next section, we introduce a novel augmented basis

method, that is designed to address accuracy and stability of

ROMs for turbulent flow. Rather than drawing upon the

snapshot set, the augmenting vectors are derived from the

nonlinear interaction terms that directly influence the time-

derivative of the NSE. This augmented basis set does not

require extensive training (i.e., ROM-parameter optimization)

and can be used within a standard Galerkin-ROM setting.

3 Augmented basis method

To motivate the ABM, we consider the Leray-projected form

of the NSE, in which the velocity field evolution is described as:

ztu � P −u · ∇u + ]∇2u[ ]. (5)

Here, the pressure has been formally eliminated and its effects are

represented by an abstract operator, P, sometimes called the

Leray projector, which will project the operand onto a space of

divergence-free fields. While the Leray projector is a projection

using the H1 inner-product, we will use the L2 inner-product for

our definition. For the discretized system, particularly with the

PNPN−2 spectral element discretization, this operator is well-

defined [17].

For the spectral element method (SEM), we look to find the

solution in a finite-dimensional space,XN , comprising piecewise

Nth-order tensor-product polynomial bases mapped from a

reference unit cube to each of E spectral elements, for a total

ofN ≈ EN3 degrees-of-freedom per field (in 3D). Finally, in the

POD-Galerkin approach, we restrict our attention to solutions

ZN ⊂ XN , where the basis is generally formed from a proper

orthogonal decomposition of a sequence of SEM solution

snapshots, using the method introduced by [18].

The method of snapshots forms a basis from a linear

combination of FOM solution fields (each involving O(N )
spectral element basis coefficients). One forms the Gramian

matrix, whose first N eigenvectors (ranked by eigenvalues

from largest to smallest) are used to determine the linear

combination of the snapshots that forms the N-dimensional

basis for the ROM approximation space, ZN. Because the

snapshots are (weakly) divergence-free, so are all elements of

ZN, which means that pressure drops out of the ordinary

differential equation that governs the ROM. In this work, the

velocity POD modes are denoted as ζi, and the thermal POD

modes are denoted as θi. For both of these collections of modes,

the i = 0 modes correspond to a lifting function that satisfies the

boundary conditions and is always associated with a coefficient

value of u0 = 1 and T0 = 1. The choice of the lifting function may

be a solution to the Stokes problem, the Poisson equation, or the

time-averaged solution. For the examples in Section 4, the lifting

function is based on time-averaged FOM solutions. For the POD-

ROM, the hierarchy of the spaces of interest is ZN ⊂ XN ⊂ Y.

For this work, we consider a FOM discretization that is well-

resolved such that the projection error from Y toXN is minimal.

We next show how the ZN space derived by the classical POD-

Galerkin method can be augmented such that the time-evolution

of the solution in the extended space better approximates the

time-evolution of the solution in XN .

Assuming that the solution to Eq. 5 exists near t*, we can

describe the local temporal behavior through a Taylor-series

expansion involving a linear combination of all time-derivatives.

u x, tp + ϵ( ) � u x, tp( ) + ϵ ztu x, tp( ) + . . . (6)
� u x, tp( )︸���︷︷���︸

Snapshot

+ϵP −u · ∇u + ]∇2u{ } + . . . (7)

Therefore, in addition to capturing the dominant modes of the

snapshots, we propose to augment the POD basis set ZN with

modes that can accurately represent the order ϵ terms on the

right-hand side of (7) in order to construct u (x, t* + ϵ). The
consequence of not representing the O(ϵ) term is deviation in the
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trajectory of the physical solution and the projected (Galerkin)

solution.

Consider a solution u that lives in ZN, meaning u � ∑N
i�0ui ζ i.

Using (5), we can describe the time-derivative of the solution as

ztu � P −u · ∇u + ]∇2u[ ]

� − ∑
N

i,j�0
uiuj P ζ i · ∇ζ j[ ] +∑

N

i�0
ui ]P ∇2ζ i[ ] (8)

Thus, we can accurately describe the time-derivative with (N +

1)2 terms for the nonlinear term and (N + 1) terms for the viscous

operator.

We consider an example with Fourier basis to highlight this

issue. When we have a band-limited solution state with the

highest wavenumber k, the convection term would produce a

solution at the next timestep of highest wavenumber 2k, which

does not live in the original space. Thus, the wavenumber 2k

behavior is never observed in the evolution of the projected

Galerkin system. With an augmentation of the basis with the

high-wavenumber modes, we will face the same issue through

lack of 4k mode representation. This issue is of course recursive.

We are helped, however, by the fact that the higher wavenumber

modes have higher rates of dissipation. Continuation of this

process will therefore eventually yield only marginal returns in

improved solution fidelity. We shall see, however, that addition

of just a few modes can have a significant impact on the overall

ROM performance.

Because of nonlinear advection, the solution will evolve

outside the N-dimensional span of ZN. We note that as the

basis includes more fine-scale components, the convective

contribution becomes small relative to the diffusive

contribution; thus, the solution becomes closed as the

minimal grid-size approaches 0, as is the case in FOM solvers

(i.e., the exact solution is band-limited). In the POD-ROM,

however, the basis is typically far from completing the

relevant approximation space and the addition of the modes

P[ζ i · ∇ζj] and P[∇2ζ i] can provide an important first-order

correction to ZN.

For advection dominated problems, we can focus on the

nonlinear contributions,

ztu ≈ P u · ∇u[ ] � ∑
N

j,k�0
ujukP ζk · ∇ζj[ ] (9)

Whenever we evolve the solution in the space Y, where the

current solution lies in the truncated POD space ZN, we see that

the time derivative be reasonably represented with an additional

(N + 1)2 basis functions of the form ϕl�j+k(N+1) � P[ζk · ∇ζj].
Obviously, this process is not closed, since more basis functions

are required in the next timestep. Worse still, even starting with u
∈ ZN, the required number of additional basis functions will be

O(N2) if we include all terms in (9), which comes with an O(N6)

computational cost that is untenable, even for a small number of

POD modes, N. We therefore seek to augment the original POD

basis with subsets of these evolution basis that are most relevant

to the dynamics.

The first subset captures the interaction between the lifting

function, ζ0, and all other modes. This choice ensures that both

FIGURE 2
Velocity magnitude plot of a flow past a cylinder snapshot (Re = 100)
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the Taylor dispersion induced by the lifting function and the

transport of the mean momentum by the POD modes are

accurately captured. This choice is also rationalized by the

fact that the lifting function is ever-present in the solution

so its convective interaction is important in accurate

reproduction of the time-evolution by the ROM. Thus, we

add the modes P[ζ0 · ∇ζj + ζj · ∇ζ0]. Note that the two

interactive terms can be combined because it is linear in

each POD basis, ζj, meaning we only add N + 1 modes,

which is still an O(N) augmentation.

Next, we extract the diagonal entries, P[ζj · ∇ζj]. This choice
is justified by the fact that for each mode, ζj, the mode that is the

most correlated with it is itself (i.e., when othermodes might have

a phase-shift, or different temporal frequencies associated with it,

the auto-correlation dominates other interactions). So we

consider addition of these N modes with the total additional

modes being 2N + 1.

For a thermal system with an advection-diffusion equation to

describe its state, we can follow the same procedure as above for

the lifting function interaction in the form of ζ0 ·∇θj; however, the
auto-interaction modes are not obvious. For this work, we will

choose ζj ·∇θj, but there is no one-to-one correspondence

between the dominant thermal modes and dominant velocity

modes. One may come up with a more coherent substitute, but

this choice remains an open question.

We note that ABM modes are not orthogonal in general, but

are made orthogonal prior to running the ROM via

eigendecomposition of the ROM mass matrix for numerical

stability purposes. Disregarding round-off errors, the basis

representation for a specific solution and test space do not

affect the time-evolution of the solution for the standard

POD-Galerkin ROM.

In summary, the ABM starts with N standard PODmodes in

ZN and adds 2N + 1 modes corresponding to advection by the

lifting function, P[ζ0 · ∇ζj + ζj · ∇ζ0] and auto-advection,

P[ζj · ∇ζj + ζj · ∇ζj], resulting in a total of N̂ � 3N + 1 basis

functions, which are used in a standard Galerkin formulation.

We will use N̂ for the comparison against other (classic or

stabilized) methods so that we have a fair cost comparison.

The standard POD Galerkin ROM and ABM differ only in

the choice of the underlying basis set.

4 Applications

We have demonstrated the effectiveness of the proposed

augmentation method on several examples, including flow in a

2D Lid-Driven cavity (Re = 30, 000), 2D flow past baffles (Re =

800), 3D lid-driven cavity flow (Re = 10,000), flow over a

hemisphere (Re = 2, 000), and turbulent pipe flow with forced

FIGURE 3
POD-ROM coefficient envelopes for flow past a cylinder (N = 10, t ∈ [2,700, 3,700], Re = 100)
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convection for Re = 4,000 −10,000. For brevity, we here consider

only the latter two. We will also use the 2D flow past a cylinder

problem to demonstrate long-time stable ROM solutions by use

of ABM. In the following, we denote the FOM solution with

(~u, ~T) and the various ROM solutions with (u, T). Time averages

are defined as 〈 · 〉 � 1
τ ∫

τ

t0+τ · dt with integration times, τ,

prescribed on a case-by-base basis. There are plots that

compare different ROM strategies: Standard POD Galerkin

(L2-Glk), energy-based POD basis (H1
0-Glk), Leray-filtered (L2-

Lry), ABMwith lifting function interaction (L2-Aug0), ABMwith

auto-interaction (L2-AugD), and ABM with both interactions

(L2-AugC).

4.1 2D flow over a circular cylinder

Before we compare the stabilization properties of ABM to

other methods, we first investigate the long-time stability

properties of ABM on the flow past a cylinder problem.

Although this is a canonical problem that is used to

demonstrate the model-order reduction capabilities of the

POD-Galerkin approach, there are commonly observed

instability issues for a large domain. This phenomenon is

documented in [19–22]. To establish that ABM addresses this

long-time stability issue observed in ROMs of low Reynolds

number cylinder flows, we first take 200 snapshots of a flow past a

cylinder problem over 200 CTUs. The domain and boundary

conditions are of that specified in [20]. Figure 2 shows a velocity

magnitude plot of a snapshot used to produce the ROMs.

Figure 3 show reproduction of the 10 mode results in [20]

with a difference in the ordering and signs of the POD modes

stemming from the difference in snapshot count, snapshot

timing, and possibly integration time for the mean flow which

is used as the lifting function. For this problem, even if we

increase the number of POD modes to N = 20, the growth of the

instability is delayed, but is still present in the long-time solution

as shown in Figure 4. Application of ABM to 10 originating POD

modes resulting in a N̂ � 21 ROM produced a long-time result

(over 20,000 CTUs) that is free from the type of instability

observed in the N = 20 POD-ROM. The envelopes of the

coefficient trajectories of this ABM-ROM are shown in

Figure 5 on top of the POD-ROM result.

With this example, we have demonstrated that ABM

successfully address long-time stability issue observed in the

low-dimensional models constructed by the POD-Galerkin

methodology for the cylinder problem. In the next examples,

we will show successful application of ABM to 3D turbulence

problems.

FIGURE 4
POD-ROM coefficient envelopes for flow past a cylinder (N = 20, t ∈ [0, 104], Re = 100)
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4.2 3D flow over a hemisphere

Figure 6 shows a snapshot of flow past a wall-mounted

hemisphere of height D/2 at ReD = DU/] = 2000. A Blasius

profile with boundary-layer thickness δ99 = 0.6D is prescribed at

the inlet, which 3.2D units upstream of the hemisphere center.

Periodic boundary conditions are prescribed at ± 3.2D units in

the spanwise direction and a stress-free condition is applied on

the top surface, 3.2D units above the wall. Under these

conditions, the flow exhibits periodic shedding of hairpin

vortices, evidenced by the velocity distribution and λ2
contours [23] in the hemisphere wake. The FOM, based on a

spectral element mesh withN ≈ 2 million gridpoints was run for

100 convective time units (1 CTU =D/U) and 1,000 snapshots we

collected to form the ROM POD bases.

The mean-velocity error as a function of N̂ is shown in

Figure 7 (left) for the five different ROMS. POD Galerkin with L2

(L2–Glk) and H1
0 (H1

0–Glk) Gramians, Leray-regularized

Galerkin (L2–Lry), Constrained-Galerkin (L2–Cst), and ABM

with combined lifting- and diagonal-interactions (L2–AugC).

The unstable L2 and H1
0 Galerkin results have several drop-

outs for conditions that did not converge for this relatively high-

Reynolds number application. Given enough basis functions,

however, all cases converge, with the L2–Cst being the best

performer for N̂< 120. Both L2–Cst and L2–AugC yield mean-

field errors < .01 for the majority of the cases, with L2–Cst

generally being the best performer. Similar conclusions hold

for the turbulence kinetic energy (TKE), the measure of

kinetic energy contained in the fluctuations about the mean

velocity field, shown in the right panel of 7. We reiterate that,

while the constrained optimization solver performs well in the

reproduction problem, it is not readily extended to pMOR

because the parametric variation of the constraint limits is not

known a priori.

4.3 Forced convection in turbulent
pipe flow

The next example is that of forced convection in turbulent

pipe flow with Reynolds number Re = 4,000, 5300, and 10,000

(based on pipe diameter), and Prandtl number Pr = 1. All the

cases use the same spectral element distribution with differing

polynomial orders. The mesh consists of 12.5 million grid points

FIGURE 5
ABM-ROM coefficient envelopes for flow past a cylinder (t ∈ [0, 2 × 104], Re = 100)
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for Re = 4,000 and 5300, and 24.5 million points for Re = 10,000.

The periodic domain length is L = 4D, which is generally

inadequate for a full DNS of turbulence but deemed sufficient

for the numerical tests in this study. For Re = 4,000, 5300, and

10,000, the respective FOM Nusselt numbers are Nu = 16.38,

21.42, and 36.14, which is in good agreement with the Dittus-

Boelter relationship, Nu = 0.023 Re4/5 Pr2/5. For all cases, the FOM

is run until the solution is relaxed to a statistically steady state

prior to gathering statistics or snapshot data. For each case,

1,000 snapshots are collected over 50 CTUs to form the Gramian,

from which the POD basis is generated. Figure 8 shows typical

snapshots of velocity magnitude and temperature that reveal the

variation in range of scales for the different cases.

The governing equations for the FOM are the incompressible

Navier–Stokes equations and the thermal advection-diffusion

equation. Because of the constant-flow rate and periodic restriction

FIGURE 6
FOM velocity magnitude snapshot of flow over hemisphere (Re = 2,000) with overlaid λ2 contour.

FIGURE 7
Flow over hemisphere (Re = 2,000): Mean and TKE error comparison, curve broken by blowup solution.
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FIGURE 8
FOM velocity (top) and temperature (bottom) snapshots of 3D pipe flow at Re = 4,000, 5300, and 10,000.

FIGURE 9
Pipe flow mean velocity error (top) and TKE results (bottom), for Re = 4,000, 5300, and 10,000 (FOM: τ = 50, ROM: τ = 500), curve broken by
blowup solution.
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FIGURE 10
Pipe flow mean temperature error (top) and thermal variance results (bottom), for Re = 4,000, 5300, and 10,000 (FOM: τ = 50, ROM: τ = 500),
curve broken by blowup solution.

FIGURE 11
Pipe flow error in Nusselt number for Re = 4,000, 5300, and 10,000.
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on the solutions, we provide a brief discussion of modifications to the

standard equations for the FOM and their effect on the ROM

formulation. We start with the Navier–Stokes equations:

zu
zt

+ u · ∇u � −∇p + ]∇2u + f u( ), ∇ · u � 0 (10)

Here, f(u) is a uniform forcing vector field function in the

streamwise direction, ẑ, that enforces a time-constant flow-

rate. In the time-discrete problem, the forcing term effectively

adds an impulse-response streamwise velocity field with

boundary layer thickness proportional to
���
]Δt

√
. This impulse

response is scaled appropriately at each time step to ensure that

the mean velocity at each timestep conforms to the prescribed

flow-rate. In the case of the ROM, the lifting function has the

prescribed flow-rate and the remaining POD basis functions have

zero flow-rate, meaning that the test-space ZN only contains

members with zero flow-rate. In the weak-form, the ROM

forcing term therefore becomes

v, f( ) � ∫
Ω
v · f dV � fz ∫

Ω
vz dV( ) � 0. (11)

Thus, the forcing term in the ROM formulation is zero.

The boundary conditions for the thermal problem are

prescribed unit thermal flux on the walls. Therefore, we add a

constant-slope ramp function γz such that the lifted temperature

T, can be periodic in the domain. The equation becomes

zT

zt
+ u · ∇ T + γz( ) � α∇2T (12)

To ensure that thermal energy is conserved in the domain we set

γ � P
Q � 4, where P is the circumference of the pipe and Q is the

volumetric flow-rate.

The results for the ROMs are presented in Figures 9–11, which

show the error and variance for the velocity and temperature as well

as the Nusselt number behavior as a function of the total number of

modes. The mean Nusselt number definition is based on the time-

averaged streamwise velocity and temperature,

Nu � 1

α Ts − Tb( ), Ts � ∫
zΩ
〈T〉dS, Tb �

∫Ω〈T〉〈uz〉dV
∫Ω〈uz〉dV

. (13)

The legends are ordered in the following manner: L2 basis, H1
0

basis, L2 basis with Leray regularization, L2 basis with constrained

optimization, L2 basis augmented with 0th-mode interaction, L2

basis augmented with auto-correlation (diagonal), and L2 basis

augmented with combined 0th-mode and auto-correlation

modes.

A common observation for Figures 9–11 is nominal

convergence for the Re = 4,000 case for the L2, H1
0, and Leray

FIGURE 12
Magnitude of POD and ABM modes for a regularized lid-driven cavity problem.
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regularization methods, albeit to relatively large asymptotic

values. As the Reynolds number increases, more modes are

required for the L2 and H1
0 formulations to converge, with the

required number of modes apparently exceeding N̂ � 200 for

Re = 10,000. Clearly, Leray outperforms standard L2 andH1
0, but

is inferior to L2–Cst and L2–AugC, with the latter two having

mean velocity error of just a few percent at Re = 10,000 (Figure 9,

top right). The thermal behavior is similar, save that the mean-

field error (Figure 10, top) is above 10% with the exception of

L2–AugC for Re = 10,000. Remarkably, this same case exhibits

too little thermal variance, as seen in the lower right frame of

Figure 10 (We explore this anomalous behavior in the next

section.) On the other hand, the error in Nu for L2–AugC at

Re = 10,000 is uniformly less than 1% (Figure 11).

We close this section with a remark about DEIM as a possible

alternative to ABM. Although DEIM allows for larger number of

modes in the ROM for a given cost, its accuracy will not surpass

that of the underlying ROM formulation on which it is based. So,

for a classic L2– orH1–based formulation, DEIM will not yield an

acceptable reconstruction result even at N = 200, whereas the

constrained and ABM formulations realize convergence at much

lower values of N̂ and much lower costs.

5 Discussion

The ABM has been remarkably successful in advancing our

ability to apply ROMs to high-Reynolds number flows. Several

observations point to the stabilization properties of the ABM,

rather than its approximation quality, as the principal driver for

its success. Inspection of the modes for several cases indicate that

the augmenting modes in the ABM have high wavenumber

FIGURE 13
Temporal behavior of basis coefficients for standard POD (Glk), Leray-filtered (Lry), Constrained (Cst), and ABM-ROM solutions of turbulent pipe
flow at Re = 5300 over (convective) time intervals t ∈ [0, 10] [0.100], and [0.500].
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content that is localized in Ω to regions of active flow dynamics.

An example is illustrated in Figure 12, which shows the first

14 L2–AugC modes for the case of a lid-driven cavity at Re = 30,

000. For j = 0, . . . , 4, the first five POD modes, ζj ∈ ZN, are in the

top row; the first five 0-modes, P u0 · ∇uj + uj · ∇u0{ }, are in the

center row; and the first five diagonal-modes, P uj · ∇uj{ }, are in
the lower row (The 0–0 mode is of course not used twice when

forming the augmented basis.) We see that the auto-interaction

modes in particular feature high wavenumber content in regions

ofΩwhere the PODmodes have significant amplitude. Although

it is not shown here, the augmented bases develop high

wavenumber content at a much faster rate (i.e., lower mode

number) than their high mode-number POD counterparts,

which explains why it takes so long for the standard POD

Galerkin method to stabilize in the Re = 4,000, 5300, and

10,000 pipe flow cases of the preceding section. In this sense,

the augmenting modes are more wavelet-like than Fourier-like

and therefore quite efficient in providing a localized dissipation

mechanism for quadratic interactions. Using these bases thus

makes some sacrifice on approximation properties (because we

use fewer PODmodes, which are optimal in generating low-rank

approximations to the snapshot space in the same spirit as low-

rank SVD-based matrix decompositions) in favor of better

stabilization. Despite this trade-off, the ABM generally yields a

much better overall approximation of the dynamics than even its

stabilized POD counterparts, as is evident in the turbulent pipe

flow case.While not shown in this work, ABM-ROM constructed

from pipe-flow at Re = 5300 snapshots were stable even with

parametric variation (in Reynolds number), but accuracy in the

Nusselt number prediction decreased as the Reynolds number

FIGURE 14
Convergence for mean velocity (left) and TKE (right) for turbulent pipe flow at Re = 5300 as a function of the number of modes for the POD-
ROM (top) and ABM-ROM (bottom). The dimension of the snapshot space, K, is indicated in the legend.
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moved away from 5300. How to address this phenomenon will be

studied in subsequent works in the future.

This stabilization hypothesis is supported by the graphs of

Figure 13, which shows the amplitudes of the basis coefficients

for POD and ABM Galerkin ROM solutions to pipe flow at Re =

5300 as a function of time and mode number. The coefficient

evolutions are shown over three time windows [0, 10] [0, 100],

and [0, 500], which reveal the growth and saturation of the

amplitudes. We see that for the ABM (in the lowest row), the

coefficients are all smaller than unity, save for the ζ0 coefficient,

which is unity (All modes have unit 2-norm, so the coefficients

represent the true amplitude of each scaled mode.) The ABM

results also show that most of the energy is in the POD bases,

corresponding roughly to the lower third of the mode indices. By

contrast, the coefficients for the standard POD Galerkin modes

(top row) quickly saturate to amplitudes in excess of 100, and all

modes are excited. As is well known from under-resolved Navier-

Stokes simulations, there is an energy pile up—manifest as high

amplitude modal coefficients—when the representation lacks

high wavenumber bases capable of dissipating energy. The

Leray-regularized coefficients (second row) exhibit a behavior

similar to the standard Galerkin approach, save that the

coefficients are much more controlled, which peak amplitudes

much closer to unity. The constrained approach (third row) also

exhibits chaotic coefficient behavior but at much more controlled

amplitudes than either the standard or Leray cases. Remarkably,

the evolution on the t = [0, 100] window indicates that the ABM

coefficient behavior is nearly time periodic.

Another study to investigate the role of dissipation is

illustrated in Figure 14. We focus initially on the upper left

graph, which shows the mean-flow error for the standard POD-

ROM case as a function of the number of modes N̂ � N. The

modes are drawn from a set of POD bases functions based on K

snapshots, where K = 125, 250, 500, or 1,000. Whenever N = K it

is clear that ZN is equivalent to the snapshot space, which implies

that the modes contain all the high frequency content present in

the snapshots of a turbulent flow solution.We see that these cases

have a lower error than cases where the number of modes is a

relatively small fraction of the number of snapshots. The same

trends are indicated in the TKE plots for the POD-ROM in the

upper right graph. By contrast, the ABM-ROM needs very few

total modes to yield a better estimate of the mean flow (lower left)

and the best TKE predictions are obtained when the snapshot set

is large (e.g., K ≥ 500 in the lower right graph). If we have too few

modes in the snapshot space, along with the nonlinear

augmentation modes, the ABM-ROM appears to be overly

dissipative. Therefore, we suspect that using more snapshots

to produce a more accurate POD series may ensure an accurate

ROM reproduction for high Reynolds number pipe flow cases.

The effectiveness of the ABM approach in a pMOR context is

demonstrated by considering the pipe flow problem with two sets

of snapshots at Re = 5300 and Re = 10,000. Combining

1,000 snapshots from each anchor point, we obtain 30 POD

modes and 61 ABMmodes using the average of the mean velocity

solutions at the anchor points as the lifting function. Running

this ROM for Re ∈ {4,000, 5000, . . . , 10,000} resulted in a

parameteric behavior that is consistent with the physical flow: as

Reynolds number is increased, the boundary layer thickness

decreases according to the law of the wall and the turbulence

fluctuation adjacent to the wall region increases. Figure 15 depict

the mean axial flow profile. This profile was produced by an

additional spatial averaging in the axial and azimuthal directions.

More detailed analysis will be conducted in the future, but this

preliminary example pMOR application provides evidence that

ABM-ROM is a promising approach for pMOR of turbulent

flows.

6 Conclusion

We introduced a novel stabilization method, ABM, for

ROM-based simulations of incompressible turbulent flows that

augments the standard POD basis with approximate temporal

derivatives. For a space of POD basis functions, ZN = {ζi}, i = 0, . . .

, N, we include and additional 2N + 1 functions that are the Leray

(divergence-free) projections of the nonlinear interactions with

the lifting mode, {ζ0 ·∇ζi + ζi ·∇ζ0}, and nonlinear auto-

interactions, {ζi ·∇ζi}. With these basis functions, the ROM

proceeds in the standard Galerkin fashion and is seen to

dramatically outperform standard L2-and H1
0-POD Galerkin

ROM approaches as well as Leray-stabilized methods

introduced by [1,11]. The ABM performs comparably to the

constraint-based stabilization approach of [8], but the latter is

restricted to the ROM reproduction problem (i.e., running at the

FIGURE 15
Time- and space-averaged axial velocity profiles for ABM-
ROM pMOR.
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same parameter points as the originating FOM) because, in a

pMOR setting, the correct basis-coefficient limits are not known

at training points other than the anchor points.

We showed that the auxiliary modes of the ABM have high

wavenumber content that is localized to regions in Ω where flow

gradients are large and thus provide efficient dissipation

mechanisms that are lacking in standard POD bases. We

further demonstrated that, for standard POD methods, having

a more complete POD space (i.e., incorporating N ≈ K modes

from a relatively small snapshot space of rank K) yields lower

errors than having N′ > N POD modes from a larger snapshot

space of rank K′ > N′. The reasoning is the same—the more

complete space includes high wavenumber content in the ROM

basis set that provides dissipation and hence stability. Analysis of

the ROM coefficient time-traces for turbulent pipe flow at Re =

5300, illustrated that the amplitudes of all the modes for non-

stabilized POD-ROM are orders of magnitude larger than their

stabilized counterparts. While Leray-based stabilizationmitigates

this behavior, it still yields coefficient amplitudes that are roughly

a factor of ten greater than observed in either the constrained or

ABM-based formulations.

The ABM was also shown to be effective for predicting

thermal QOIs such as Nusselt numbers. It was, however, a bit

overly dissipative at Re = 10, 000. The study of the interplay

between N and K indicates that this dissipation can be controlled

with these two parameters and one might therefore use these

parameters to gain insight to the root cause of the over-

dissipation. Future work will include application of the ABM

to higher Reynolds number flows and to more complex domains.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Materials, further

inquiries can be directed to the corresponding author.

Author contributions

Research was performed by KK under advisement and

direction of PF. The two authors both contributed to the

production of the manuscript.

Funding

This work from NEUP with number DE NE0008780 for

Turbulent Heat-Transfer ROM research was used. This research

is supported by the DOE Office of Nuclear Energy under the

Nuclear Energy University Program (Proj. No. DE_NE0008780).

The research used resources at the Oak Ridge Leadership

Computing Facility at Oak Ridge National Laboratory, which

is supported by the Office of Science of the U.S. Department of

Energy under Contract DE-AC05-00OR22725 and at the

Argonne Leadership Computing Facility, under Contract DE-

AC02-06CH11357.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Kaneko K, Tsai P-H, Fischer P. Towards model order reduction for fluid-
thermal analysis. Nucl Eng Des (2020) 370:110866. doi:10.1016/j.nucengdes.2020.
110866

2. Tuckerman L, Barkley D. Global bifurcation to traveling waves in
axisymmetric convection. Phys Rev Lett (1988) 61:408–11. doi:10.1103/
physrevlett.61.408

3. Barkley D, Tuckerman L. Traveling waves in axisymmetric convection: The role
of sidewall conductivity (1989).

4. Chaturantabut S, Sorensen DC. Nonlinear model reduction via discrete
empirical interpolation. SIAM J Scientific Comput (2010) 32:2737–64. 10.1137/
090766498.(Accessed March 26, 2022)

5. Holmes P, Lumley JL, Berkooz G. Turbulence, coherent structure, dynamical systems
and symmetry. Cambridge University Press (1996). doi:10.1017/CBO9780511622700

6. Barrault M, Maday Y, Nguyen N, Patera A. An ‘empirical interpolation’
method: Application to efficient reduced-basis discretization of partial
differential equations. C R Math (2004) 339:667–72. doi:10.1016/j.crma.
2004.08.006

7. Veroy K, Rovas DV, Patera A. A posteriori Error estimation for reduced-basis
approximation of parametrized elliptic coercive partial differential equations:
“Convex inverse” bound conditioners. convex inverse” bound conditioners (2002)
8:1007–28. doi:10.1051/cocv:2002041

8. Fick LH,MadayY, Patera AT, Taddei T. A stabilized PODmodel for turbulentflows
over a range of Reynolds numbers: Optimal parameter sampling and constrained
projection. J Comput Phys (2018) 371:214–43. doi:10.1016/j.jcp.2018.05.027

9. Tsai P-H, Fischer P. Parametric model-order-reduction development for
unsteady convection. Front Phys (2022).

10. Iollo A, Lanteri S, Desideri JA. Stability properties of POD-galerkin
approximations for the compressible Navier-Stokes equations. Theor Comput
Fluid Dyn (2000) 13:377–96. doi:10.1007/s001620050119

11. Wells D, Wang Z, Xie X, Iliescu T. An evolve-then-filter regularized reduced
order model for convection-dominated flows. Int J Numer Methods Fluids (2017)
84:598–615. doi:10.1002/fld.4363

12. Balajewicz M. A new approach to model order reduction of the Navier-Stokes
equations. Durham, NC: Duke University (2012). Ph.D. thesis.

Frontiers in Physics frontiersin.org16

Kaneko and Fischer 10.3389/fphy.2022.905392

175

https://doi.org/10.1016/j.nucengdes.2020.110866
https://doi.org/10.1016/j.nucengdes.2020.110866
https://doi.org/10.1103/physrevlett.61.408
https://doi.org/10.1103/physrevlett.61.408
https://epubs.siam.org/doi/abs/10.1137/090766498?journalCode=sjoce3
https://epubs.siam.org/doi/abs/10.1137/090766498?journalCode=sjoce3
https://doi.org/10.1017/CBO9780511622700
https://doi.org/10.1016/j.crma.2004.08.006
https://doi.org/10.1016/j.crma.2004.08.006
https://doi.org/10.1051/cocv:2002041
https://doi.org/10.1016/j.jcp.2018.05.027
https://doi.org/10.1007/s001620050119
https://doi.org/10.1002/fld.4363
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.905392


13. Amsallem D, Farhat C. Stabilization of projection-based reduced-
order models. Int J Numer Methods Eng (2012) 91:358–77. doi:10.1002/
nme.4274

14. Cazemier W, Verstappen RWCP, Veldman AEP. Proper orthogonal
decomposition and low-dimensional models for driven cavity flows. Phys Fluids
(1998) 10:1685–99. doi:10.1063/1.869686

15. Akkari N, Mercier R, Lartigue G, Moureau V (2017). Stable POD-Galerkin
Reduced Order Models for unsteady turbulent incompressible flows. In 55th AIAA
Aerospace Sciences Meeting (Grapevine, United States)

16. Akkari N, Casenave F, Moureau V. Time stable reduced order modeling by an
enhanced reduced order basis of the turbulent and incompressible 3d
Navier–Stokes equations. Math Comput Appl (2019) 24:45. doi:10.3390/
mca24020045

17. Fischer P. An overlapping schwarz method for spectral element solution of the
incompressible Navier–Stokes equations. J Comput Phys (1997) 133:84–101. doi:10.
1006/jcph.1997.5651

18. Sirovich L. Turbulence and the dynamics of coherent structures. I. Coherent
structures. Q Appl Math (1987) 45:561–71. doi:10.1090/qam/910462

19. Noack BR, Afanasiev K, Morzyński M, Tadmor G, Thiele F. A hierarchy of
low-dimensional models for the transient and post-transient cylinder wake. J Fluid
Mech (2003) 497:S0022112003006694–363. doi:10.1017/s0022112003006694

20. Sirisup S, Karniadakis GE. A spectral viscosity method for correcting the long-term
behavior of podmodels. J Comput Phys (2004) 194:92–116. doi:10.1016/j.jcp.2003.08.021

21. Akhtar I, Nayfeh AH, Ribbens CJ. On the stability and extension of reduced-
order galerkin models in incompressible flows. Theor Comput Fluid Dyn (2009) 23:
213–37. doi:10.1007/s00162-009-0112-y

22. Hay A, Borggaard J, Akhtar I, Pelletier D. Reduced-order models for
parameter dependent geometries based on shape sensitivity analysis. J Comput
Phys (2010) 229:1327–52. doi:10.1016/j.jcp.2009.10.033

23. Jeong J, Hussain F. On the identification of a vortex. J Fluid Mech (1995) 285:
69–94. doi:10.1017/s0022112095000462

Frontiers in Physics frontiersin.org17

Kaneko and Fischer 10.3389/fphy.2022.905392

176

https://doi.org/10.1002/nme.4274
https://doi.org/10.1002/nme.4274
https://doi.org/10.1063/1.869686
https://doi.org/10.3390/mca24020045
https://doi.org/10.3390/mca24020045
https://doi.org/10.1006/jcph.1997.5651
https://doi.org/10.1006/jcph.1997.5651
https://doi.org/10.1090/qam/910462
https://doi.org/10.1017/s0022112003006694
https://doi.org/10.1016/j.jcp.2003.08.021
https://doi.org/10.1007/s00162-009-0112-y
https://doi.org/10.1016/j.jcp.2009.10.033
https://doi.org/10.1017/s0022112095000462
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.905392


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Investigates complex questions in physics to 

understand the nature of the physical world

Addresses the biggest questions in physics, 

from macro to micro, and from theoretical to 

experimental and applied physics.

Discover the latest 
Research Topics

See more 

Frontiers in
Physics

https://www.frontiersin.org/journals/physics/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Data-driven modeling and optimization in fluid dynamics: From physics-based to machine learning approaches

	Table of contents

	Editorial: Data-driven modeling and optimization in fluid dynamics: From physics-based to machine learning approaches
	Author contributions
	Conflict of interest
	Publisher’s note

	Predicting Coherent Turbulent Structures via Deep Learning
	Introduction
	Methods
	Numerical Setup
	Deep-Learning Models

	Results
	Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Convolutional Neural Networks for Very Low-Dimensional LPV Approximations of Incompressible Navier-Stokes Equations
	Novelty statement
	1. Introduction
	2. Preliminaries
	2.1. Navier-Stokes Equations
	2.2. Convolutional Neural Networks

	3. Implementation Setups
	3.1. POD Parametrization
	3.2. Encoding of POD Coordinates
	3.3. Convection-Informed Encoding of POD Coordinates

	4. Implementation Issues
	4.1. Semi-discretization, Divergence-Free Coordinates, and Boundary Conditions
	4.2. Interpolation to Tensor Grids
	4.3. Realization of the FEM Norms in the Loss Functions

	5. Numerical Example
	5.1. Data Acquisition and Preparation
	5.2. Convolutional Neural Network Setup and Training
	5.3. Numerical Realization of the LPV Approximation
	5.4. Numerical Simulation

	6. Conclusion and Outlook
	Data Availability Statement
	Author Contributions
	References

	Low-Rank Approximations for Parametric Non-Symmetric Elliptic Problems
	1 Introduction
	2 Parametric Non-Symmetric Elliptic Problems
	3 Targeted-Norm Optimal Subspaces
	4 A Deflation Algorithm to Approximate the Solution
	5 Rank-One Approximations
	6 Computation of Low-Rank Tensorized Decomposition Modes
	6.1 Computation of Power Iteration Algorithm for Targeted-Norm Optimal Subspaces
	6.2 A Simplified Power Iteration Algorithm
	6.3 Convergence of the Power Iteration Algorithms

	7 Numerical Tests
	8 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Multifidelity Ensemble Kalman Filtering Using Surrogate Models Defined by Theory-Guided Autoencoders
	1. Introduction
	2. Background
	2.1. Linear Control Variates
	2.2. Linear Control Variates With Non-linear Transformations
	2.3. The Ensemble Kalman Filter
	2.4. The Multifidelity Ensemble Kalman Filter
	2.5. Autoencoders
	2.6. Non-linear Projection-Based Reduced Order Models

	3. Non-linear Projection-Based MFEnKF
	3.1. NL-MFEnKF Heuristic Corrections
	3.1.1. Control Space Unbiased Mean Adjustment
	3.1.2. Principal Space Unbiased Mean Adjustment
	3.1.3. Kalman Approximate Mean Adjustment

	3.2. Telescopic Extension

	4. Dynamical Models and the Corresponding POD-ROMs
	4.1. Lorenz'96
	4.1.1. Data for Constructing Reduced-Order Models
	4.1.2. Proper Orthogonal Decomposition ROM for Lorenz'96

	4.2. Quasi-Geostrophic Equations
	4.2.1. Data for Constructing Reduced-Order Models
	4.2.2. Proper Orthogonal Decomposition ROM for QGE


	5. Theory-Guided Autoencoder-Based ROMs
	5.1. Theory-Guided Autoencoder-Based ROM for Lorenz'96
	5.2. Theory-Guided Autoencoder-Based ROM for QGE

	6. Numerical Experiments
	6.1. Accuracy of ROM Models for Lorenz'96
	6.2. Impact of ROM Dimension for Lorenz'96
	6.3. Ensemble Size and Inflation for Lorenz'96
	6.4. Ensemble Size and Inflation for QGE

	7. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Disentangling Generative Factors of Physical Fields Using Variational Autoencoders
	1 Introduction
	2 Variational Autoencoder Formulation
	2.1 Disentanglement
	2.1.1 β-VAE

	2.2 Connections to Rate-Distortion Theory
	2.3 Hierarchical Priors

	3 Application to Darcy Flow
	3.1 Karhunen-Loeve Expansion Dataset

	4 Training Setup and Loss Landscape
	4.1 Architecture
	4.2 Over-Regularization
	4.3 Properties of Desirable Solutions

	5 Characterizing Disentanglement
	5.1 Standard Normal Generative Distributions
	5.2 Non Standard Gaussian Generative Distributions
	5.3 Multimodal Generative Distributions

	6 Semi-supervised Training
	7 Concluding Remarks and Perspectives
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References
	Appendix A: Rotationally-Invariant Distributions

	On the Entropy Projection and the Robustness of High Order Entropy Stable Discontinuous Galerkin Schemes for Under-Resolved Flows

	1 Introduction
	2 Formulation of High Order Entropy Stable Discontinuous Galerkin Schemes
	2.1 Conservation Laws With Entropy
	2.2 Collocation Formulations
	2.3 “Modal” Formulations

	3 Numerical Comparisons of Collocation and Entropy Projection Schemes
	3.1 Euler Equations of Gas Dynamics
	3.1.1 Two Dimensional Kelvin-Helmholtz Instability
	3.1.2 Two Dimensional Rayleigh-Taylor Instability
	3.1.3 Two Dimensional Richtmeyer-Meshkov Instability
	3.1.4 Three-Dimensional Kelvin-Helmholtz Instability

	3.2 Ideal GLM-MHD Equations
	3.2.1 Two Dimensional Magnetized Kelvin-Helmholtz Instability

	3.3 Overview of Results
	3.4 Dependence of Robustness on Atwood number

	4 The Role of the Entropy Projection
	4.1 Is Robustness Due Only to the Entropy Projection?
	4.2 Why Is There a Difference in Robustness for Different Entropy Stable Methods?
	4.2.1 What Role Does Entropy Dissipation Play?


	5 Applications Toward Under-Resolved Simulations
	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Extending the Capabilities of Data-Driven Reduced-Order Models to Make Predictions for Unseen Scenarios: Applied to Flow Around
Buildings

	1 Introduction
	1.1 Related Work

	2 Methodology
	2.1 Sub-sampling to Obtain Snapshots
	2.2 Dimensionality Reduction
	2.3 Prediction in Time
	2.4 Prediction for Unseen Scenarios
	2.4.1 Combining Subdomains to Model an Unseen Scenario


	3 Results
	3.1 Dimensionality Reduction
	3.2 Prediction for the 6 by 6 Test Case
	3.3 Prediction for the Unseen 9 by 9 Test Case

	4 Conclusions and Further Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Component-Based Reduced Order Modeling of Large-Scale Complex Systems
	1 Introduction
	2 Full-Order Model
	3 Model-Form Preserving Model Reduction for Transformed Solution Variables
	3.1 Construction of Proper Orthogonal Decomposition Bases for Solution Variables
	3.2 Least-Squares With Variable Transformation

	4 Reduced-Order Models Enhancement via Basis Adaptation
	5 Component-Based Domain-Decomposition Framework
	5.1 Component-Based Reduced-Order Model Training
	5.2 Integration in Full System Simulations

	6 Numerical Results
	6.1 Single-Injector Model Rocket Combustor
	6.1.1 Injector Element Reduced-Order Models Training
	6.1.2 Performance
	6.1.3 Performance Enhancement via Adaptive-Basis Reduced-Order Models

	6.2 Multi-Injector Model Rocket Combustor
	6.2.1 Injector-Element Reduced-Order Models Training and Framework Integration
	6.2.2 Performance


	7 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Parametric model-order-reduction development for unsteady convection
	1 Introduction
	2 A parametrized natural convection problem
	2.1 Galerkin formulation for the full-order model
	2.2 Galerkin formulation for the reduced-order model

	3 The solution reproduction problem
	3.1 Numerical results

	4 The parametric problem
	4.1 Proper orthogonal decomposition-hGreedy algorithm
	4.2 A time-averaged error indicator
	4.2.1 Time-averaged error indicator with Leray regularization

	4.3 Parametric model order reduction results: θg variation
	4.3.1 Ra = 1 × 104
	4.3.2 Ra = 8 × 104
	4.3.3 Ra = 3 × 105

	4.4 Parametric model order reduction results: Ra variation

	5 Discussion
	5.1 Spatio-temporal chaos
	5.2 Multiple steady-state solutions
	5.3 Discussion summary

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Augmented reduced order models for turbulence
	1 Introduction
	2 Background
	3 Augmented basis method
	4 Applications
	4.1 2D flow over a circular cylinder
	4.2 3D flow over a hemisphere
	4.3 Forced convection in turbulent pipe flow

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Back cover



