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Editorial on the Research Topic

Translational brain-computer interfaces: From research labs to themarket

and back

Neurotechnologies combine neuroscience and engineering to build systems for

studying, repairing, and augmenting human performance. These include brain-computer

interfaces (BCIs)—typically used as assistive devices for communication and rehabilitation

for disabled people and, more recently, as human enhancement devices—neural

prosthetics, optogenetics, digital medicine, continuous remote monitoring, drugs, and other

pharmaceutical interventions.

This Research Topic provides a collection of nine novel contributions on recent

bidirectional interactions between academic labs and industry partners to showcase

translational work in BCIs for clinical, business-to-business, and consumer markets that

push neurotechnologies outside of the lab.

In the context of neuromarketing, Zeng et al. showed that whether users like or dislike

a pair of sport shoes could be understood by looking at their electroencephalography

(EEG) activity. Amongst all feature extraction methods explored, they found that differential

entropy features extracted from signals recorded from the occipital region provided the

highest classification accuracy in detecting shoes that the user liked. The importance of

the occipital cortex in visual processing and emotion arousal is well-known in neuroscience

literature (Lang et al., 1998). An auditory taskmay instead have involved the temporal region

more heavily than the occipital one. The authors demonstrated that the frontal region also

played an important role in boosting classification accuracy, as the decision-making process

of the user occurs in this area (Volz et al., 2006). This study makes a first step toward using

passive BCI systems as tools for gathering user feedback on consumer products, without

specifically asking to rate them through traditional reviews. Future studies need to explore if

similar results could be obtained using consumer EEG devices with dry electrodes, instead

of research grade wet EEG systems as used in the study.
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The process of porting BCIs from research labs to the market

encompasses the development of easy to use, reliable, and cost

effective sensors that could replace the usually bulky, expensive,

and difficult to setup research-grade EEG systems. An attempt

to respond to this need has been made by Sciaraffa et al., who

have designed and tested a BCI system composed of water-based

electrodes and a lightweight headset. They found this system to

provide comparable results to BCIs based on research-grade EEG

systems and gel-based electrodes across a variety of passive tasks

and environments, including multitasking, psychomotor vigilance

task, and car driving simulation. The usage of water electrodes

increased ease of use without lowering performance, and the

lightweight headset made the BCI comfortable enough for many

real-life applications. Another great challenge in BCI translation

is reducing the training time, i.e., the calibration session, enabling

users to benefit from the BCI as soon as possible. A key technique

in this domain is transfer learning, namely reusing some of the

information gathered from a previous training session to train

a new model for a different task or user. Bleuzé et al. exploited

Riemannian geometry to develop a new transfer learning method

for BCIs that identifies who is the most similar subject to the user at

hand in the previous training session, and uses these parameters

for the new model. They extensively tested this approach on

18 BCI databases, finding a significant improvement on BCI

performance over standard training-test pipelines, including those

using Riemannian geometry.

A typical BCI application out of the labs is their use in

entertainment. A study in this Research Topic explored the

interaction between brain and heart through the heart-evoked

potential in gamers and non-gamers playing a video game

(Khoshnoud et al.). They found that flow—the state of complete

absorption in an activity—can be tracked through EEG sensors and

does not differ between gamers and non-gamers, as long as the user

is able to set the level of difficulty of the video game. Another study

tracked the process of musical transposing (i.e., converting notes

across musical keys) in musicians and found it significantly differs

from math calculations, although both tasks involve the usage of

working memory (Lu et al.). Another novel study explored the

usage of BCIs for story generation through increases of frontal

alpha asymmetry (Krogmeier et al.). Although only 37% of the

participants were able to successfully modulate their brain activity

during story creation, this novel paradigm further reveals the

importance of understanding BCI literacy and what factors make

users able to control a novel BCI successfully.

As BCIs were born as human-computer interaction

technologies, another great area of impact of BCIs out of the

lab is helping patients with serious neurological disorders regain

their independence. A pilot study by Riccio et al. explored the

use of BCIs in patients with multiple sclerosis, as a possible

integration with other assistive devices designed for these patients.

The majority of the patients were able to control an assistive

device software with their brain activity, paving the way to the

integration of BCIs into the daily life of multiple sclerosis patients.

While Riccio et al. used an established paradigm of BCI based

on the detection of event-related potentials (the P300 speller),

Klee et al. explored the usage of occipitoparietal alpha activity

in a speller based on rapid serial visual presentation (RSVP).

This novel paradigm for communication performed better than

random, but well-below more established paradigms for spellers.

Future investigations should test the possibility of combining these

paradigms into a hybrid approach, which may lead to superior

performance than other paradigms. Combining different types of

assistive devices seem to be the next frontier for BCIs, as presented

by Eagleman and Perrotta in their perspective on the future of

sensory substitution, addition and expansion via haptic devices,

which indeed represent very promising technologies for human

rehabilitation and augmentation.

Author contributions

DV drafted the manuscript. All authors provided feedback and

contributed to the Research Topic. All authors contributed to the

article and approved the submitted version.

Acknowledgments

We hope this Research Topic provides the reader with updates

on recent advances in translational BCIs. We would like to thank

all authors who contributed, and the reviewers who provided

invaluable and timely feedback to the authors.

Conflict of interest

DV is an employee at Google LLC. AT is employed by

eemagine GmbH.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Lang, P. J., Bradley, M. M., Fitzsimmons, J. R., Cuthbert, B. N., Scott, J. D., Moulder,
B., et al. (1998). Emotional arousal and activation of the visual cortex: an fMRI analysis.
Psychophysiology 35, 199–210.

Volz, K. G., Schubotz, R. I., and von Cramon, D. Y. (2006). Decision-
making and the frontal lobes. Curr. Opin. Neurol. 19, 401–406.
doi: 10.1097/01.wco.0000236621.83872.71

Frontiers inHumanNeuroscience 02 frontiersin.org5

https://doi.org/10.3389/fnhum.2023.1152466
https://doi.org/10.3389/fnhum.2022.901387
https://doi.org/10.3389/fnhum.2022.1049985
https://doi.org/10.3389/fnhum.2022.819834
https://doi.org/10.3389/fnhum.2022.866256
https://doi.org/10.3389/fnhum.2022.883467
https://doi.org/10.3389/fnhum.2022.868419
https://doi.org/10.3389/fnhum.2022.868419
https://doi.org/10.3389/fnhum.2022.882557
https://doi.org/10.3389/fnhum.2022.1055546
https://doi.org/10.1097/01.wco.0000236621.83872.71
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


fnhum-15-793952 December 30, 2021 Time: 16:23 # 1

ORIGINAL RESEARCH
published: 06 January 2022

doi: 10.3389/fnhum.2021.793952

Edited by:
Vilfredo De Pascalis,

Sapienza University of Rome, Italy

Reviewed by:
Ameersing Luximon,

EMEDS, Hong Kong SAR, China
Joseph Ciorciari,

Swinburne University of Technology,
Australia

*Correspondence:
Hui Zhou

zhouhui@njust.edu.cn

Specialty section:
This article was submitted to

Cognitive Neuroscience,
a section of the journal

Frontiers in Human Neuroscience

Received: 12 October 2021
Accepted: 26 November 2021

Published: 06 January 2022

Citation:
Zeng L, Lin M, Xiao K, Wang J
and Zhou H (2022) Like/Dislike

Prediction for Sport Shoes With
Electroencephalography: An

Application of Neuromarketing.
Front. Hum. Neurosci. 15:793952.
doi: 10.3389/fnhum.2021.793952
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Neuromarketing is an emerging research field for prospective businesses on consumer’s
preference. Consumer’s preference prediction based on electroencephalography (EEG)
can reliably predict likes or dislikes of a product. However, the current EEG prediction
and classification accuracy have yet to reach ideal level. In addition, it is still unclear
how different brain region information and different features such as power spectral
density, brain asymmetry, differential entropy, and Hjorth parameters affect the prediction
accuracy. Our study shows that by taking footwear products as an example, the
recognition accuracy of product likes or dislikes reaches 94.22%. Compared with other
brain regions, the features of the frontal and occipital brain region obtained a higher
prediction accuracy, but the fusion of the features of the whole brain region could
improve the prediction accuracy of likes or dislikes even further. Future work would
be done to correlate the EEG-based like or dislike prediction results with product sales
and self-reports.

Keywords: neuromarketing, electroencephalography, machine learning, brain asymmetry, preference prediction

INTRODUCTION

Neuromarketing is an emerging interdisciplinary research area that aims to understand biology of
consumer’s behavior by integrating neuroscience with marketing, which can decipher consumers’
unrevealed preferences, motivations, and decisions by measuring their physiological and neural
signals (Ariely and Berns, 2010; Morin, 2011; Aldayel et al., 2020; Bazzani et al., 2020). It is
estimated that neuromarketing has market potential of 400 billion dollars (Khurana et al., 2021).
Conventional marketing provides only relative analysis of consumer’s response, which relies on
conducting surveys, interviews, running focus groups, and field trials for collecting consumer’s
feedback. These analysis approaches suffer limitations due to high cost, time requirement, and
untrustworthy information. Besides, conventional approaches have significant inherent weaknesses
arising from consumers not always forthcoming about their feelings and preferences. All of
these drawbacks would lead to biased or inaccurate conclusions (Khushaba et al., 2012; Boksem
and Smidts, 2015). Compared with conventional marketing research techniques, neuromarketing
empowers researchers to capture consumers’ intricate neural processes to a range of marketing
stimuli with moment-to-moment neural data, allowing to forecast consumer’s decision-making,
like–dislike, and purchase decisions with greatly improved accuracy (Venkatraman et al., 2012;
Barnett and Cerf, 2017; Bell et al., 2018; Goto et al., 2019).
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In neuromarketing, neural signal recording techniques
are commonly used to directly measure consumer’s brain
responses to the marketing stimuli (Ariely and Berns,
2010; Sánchez-Fernández et al., 2021). Popular noninvasive
neuroscientific techniques to analyze and understand
consumer’s behavior include brain imaging technologies such
as electroencephalography (EEG), magneto-encephalography
(MEG), functional magnetic resonance imaging (fMRI),
functional near-infrared spectroscopy (fNIRS), and various
physiological parameters (e.g., heart rate and respiratory rate)
(Khurana et al., 2021; Qing et al., 2021). For neuromarketing,
EEG has several benefits that other physiological signals lack,
such as high temporal resolution for detecting brain activity
changes at low cost, equipment portability. Because it can be
easily employed in real-time marketing environments, it is
desirable to use EEG to capture electrical brain activity and assess
marketing stimuli to build preference prediction system in the
neuromarketing research (Aldayel et al., 2020).

For companies and advertisers, it is of great significance to
successfully predict consumer’s preference of specific products.
They can reduce inventory, increase profits, grow customer
loyalty, and satisfaction and improve branding by competently
avoiding the production of unpopular or undesirable products.
Consumer’s preferences of footwear products were proficiently
predicted using EEG data as compared to self-report-based
predictions (Baldo et al., 2015). Yılmaz et al. (2014) researched
consumers’ likes and dislikes of footwear products using EEG
signals and revealed the particularly different channels and
frequencies of likes and dislikes. In neuromarketing, power
spectral density (PSD) is one of the most common feature
extraction method (Khushaba et al., 2012; Yılmaz et al., 2014).
Some studies theorize that the PSD of EEG signals can be
used to identify the likes and dislikes of products (Golnar-
Nik et al., 2019). Additionally, some studies presume that
features and parameters of frontal brain asymmetry, such as
approach-withdrawal (AW) index, effort index, choice index,
valence, can expertly identify product preference of consumers
(Cartocci et al., 2017; Ramsøy et al., 2018; Aldayel et al., 2020,
2021). Differential entropy (DE) and Hjorth parameters are
commonly used EEG features in emotion recognition (Chen
et al., 2019; Joshi and Ghongade, 2022). However, as far as
we know, the use of these features in neuromarketing has
seldom been reported.

It is often challenging for neuromarketing researchers
to choose the appropriate characteristics from these many
EEG characteristics to accurately predict product likes or
dislikes (Bell et al., 2018). Therefore, it is necessary to
carry out the research to compare the classification accuracy
of these features, so that further studies in the field of
neuromarketing can be done to apply to more product like
and dislike cases.

The purpose of this study is to design a product like or
dislike prediction system based on EEG using commonly worn
sport shoes as product example, so that comparison of the
characteristics of consumer’s preference of commonly used EEG
in published literature can be made and also to compare
the classification accuracy of these features. This can help

neuromarketing scholars to design a classification and prediction
system based on EEG. The contributions of this research are as
follows:

(1) Developing a consumer’s like or dislike prediction system
based on EEG to achieve high classification accuracy by
taking sport shoes as an example.

(2) Study the influence of different EEG characteristic
parameters such as different brain locations, PSD features,
brain asymmetry features, Hjorth features, and DE features
and compare their classification accuracies.

Based on the abovementioned criteria, our study looks to
implement method and provide test results of the EEG-based
shoe like or dislike prediction system in the following chapters.
To attain our goal, EEG-based preference detection experiments
were conducted. During the experiment, electrical brain activity
of 15 subjects aged between 22 and 39 was recorded. Subjects were
presented with pictures of 25 different sport shoes one by one and
were asked to decide whether they liked or not by pressing 1 on
keyboard for like and 2 on keyboard for dislike. In session II, the
details of participants, trial design, experimental equipment, and
machine learning classifier framework are explained. In session
III, the PSD, brain asymmetry, Hjorth parameter, and DE were
extracted as features. Machine learning classifiers SVM and KNN
are used, and finally, the system is evaluated by measuring the
accuracies of the classifier.

MATERIALS AND METHODS

Subjects
Fifteen healthy subjects (nine men and six women, 22–39 years
old, all right-handed) who were students of Nanjing University
of Science and Technology participated in the experiment. All
participants reported normal hearing and the absence of any
neurological disorders. They were informed about the purpose
and experimental procedure of the study. Both genders were
participated in the experiment to explore possible influence
of gender in results. The recruitment of subjects and the
experimental protocols were approved by the Ethics Committee
for Human Research, Nanjing Brain Hospital Affiliated to
Nanjing Medical University.

Experiment Protocol
A computerized task has been designed to investigate the ability
of EEG power to distinguish between consumer’s preferences
among subjects. Participants were asked to make a decision
for liking or disliking of specific product. According to 2020
online shopping report of China, the most favorable commodities
among online consumers are daily necessities, clothing and shoes.
Therefore, for this study, pictures of 25 different sport shoes
under the Chinese Li-Ning brand were selected in the experiment
as shown in Figure 1.

The experimental paradigm is implemented using E-Prime
software. Figure 2 displays the entire process of experimental
protocol. The main part of the experiment is divided into 25
runs (iterations/epochs). Each run lasts for 11 s, and it includes
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FIGURE 1 | Images of 25 different sport shoes used in the experiment.

prompting to focus attention for 2 s, observing image of specific
shoe for 8 s, and resting for 1 s. Each round will randomly
present a shoe image without repetition, and the subjects were
asked to look at the product image. In the displayed 8 s, subjects
make a decision on whether they like the shoe or not and record

FIGURE 2 | The experimental protocol. The duration of each run was 11 s, a
fixation cross was shown for 2 s, and then, a picture of specific shoe
appeared for 8 s, followed by a rest of 1 s.

their decision through the keyboard by pressing “1” for like and
“2” for dislike.

Data Acquisition and Data Preprocessing
During the experiment, a 32-channel EEG acquisition device,
BrainAmp Amplifier (Brain Product, Gilching, Germany) and
active Ag/AgCl electrodes (actiCAP, Brain Product, Germany),
was used to collect the EEG signals of the subjects. For each
run (epoch), the EEG data are recorded from 22 silver chloride
electrodes placed on subject’s head in the international 10–20
system. The specific placement locations are as follows: FP1, FPz,
FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, TP9, TP10, P7, P3,
Pz, P4, P8, O1, O2, with FPz as the ground electrode and Fz as
the reference electrode. The conductive paste is used to make the
contact impedance between the electrode and the scalp less than
5 k�, the sampling rate is set to 500 Hz, and the bandpass filter
was set at 0.03–70 Hz.

To accurately collect effective EEG data, the participants
were asked to ensure adequate sleep before the experiment,
stimulants such as cigarettes, alcohol, coffee, and strenuous
exercise should be avoided prior to testing, and hair should be
cleaned. The environment was kept quiet during the experiment.
The participants sat in a comfortable chair, looked at the screen

Frontiers in Human Neuroscience | www.frontiersin.org 3 January 2022 | Volume 15 | Article 7939528

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-793952 December 30, 2021 Time: 16:23 # 4

Zeng et al. Like/Dislike Prediction for Shoes

squarely, kept their mind and body in relaxed state, maintained
their posture, and reduced the number of eye blinks.

Brain analyzer is used to preprocess raw EEG data recorded
in the experiment, including re-referencing, filtering, removing
artifacts, segmenting, and reducing the sampling rate. First,
we re-referenced the data. The current electrode caps usually
use Fz as the reference electrode, but in the analysis of EEG
data, the reference electrode needs to be replaced according to
the experimental requirements. The reference electrodes used
in this analysis are bilateral mastoid TP9 and TP10. Then,
we filtered the data. The raw EEG signals were bandpass
filtered using a 4th-order Butterworth filter set at 0.5–40 Hz
to filter out high-frequency noise. We need to carry out the
necessary artifact removal operation for EEG signal. As the
artifact signals caused by the device or the subject’s actions will
cause errors in subsequent data processing and experimental
results, this article uses independent component analysis (ICA) to
correct physiological artifacts such as electrooculogram (EOG).
Then, we need to segment the data into likes and dislikes.
According to the markers formed on the EEG data of the
subjects’ choice reaction to the product during the experiment,
the data of the state of like and dislike are extracted separately.
Finally, the data are sampled down. To reduce the amount of
data and increase the calculation speed, the sampling rate is
reduced to 256 Hz.

Feature Extraction
To select appropriate features, different feature extraction
technologies are used and compared for predicting like and
dislike of a shoe product. The EEG features of PSD, brain
asymmetry, DE, and Hjorth parameter were chosen in this study.
In neuromarketing, PSD is one of the most common feature
extraction methods (Khushaba et al., 2012; Yılmaz et al., 2014;
Golnar-Nik et al., 2019). The brain asymmetry-based preference
indices such as approach-withdrawal (AW) index, valence, choice
index, and effort index are also used as features to predict
consumer’s preference (Aldayel et al., 2020, 2021). Besides, EEG
features such as DE and Hjorth parameters have generally been
used in some EEG-based applications (Chen et al., 2019; Joshi and
Ghongade, 2022). However, as far as we know, the use of these
features in neuromarketing has seldom been reported.

Power Spectral Density
The PSD is an indicator of power in a certain signal in terms of
frequency. The Welch method is used to estimate the PSD of the
EEG signal, and the PSD of the time series is calculated as below
(Welch, 1967):

ŜXX
(
k
)
=

1
N

∑N

n=1
|Xn(k)|2 (1)

where Xn
(
k
)

is the Fourier transform of the time
series × corresponding to the nth segment and the kth
frequency point after windowing. In this study, the relative
power in the four frequency bands of δ (0.5–4 Hz), θ (4–8 Hz), α
(8–13 Hz), and β (13–30 Hz) is calculated based on the PSD of
each channel data.

Brain Asymmetry
The AW index of frontal alpha asymmetry estimates desire and
motivation as alpha’s higher activation in the left frontal cortex.
We can measure the AW scores using electrodes F4 and F3 to
find the difference between the right and left PSD divided by their
amounts according to Eq. 2 (Touchette and Lee, 2017).

AW index =
α(F4)− α(F3)
α(F4)+ α(F3)

(2)

The effort index measures effort and cognitive processing as
higher theta activation in the prefrontal cortex. We used the
following equation to calculate the effort index (Aldayel et al.,
2021).

Effort index =
θ(F4)− θ(F3)
θ(F4)+ θ(F3)

(3)

The choice index is defined in Eq. 4. The choice index can be
calculated for each band individually using electrodes pairs of left
and right counterparts for each lobe according to Eq. 4 (Moon,
2013; Ramsøy et al., 2018).

Choice index =
log(Electrodeleft)− log(Electroderight)
log(Electrodeleft)+ log(Electroderight)

(4)

The valence measures positive emotion as left frontal
activation in alpha and beta bands. In this study, we computed
the values of valence using Eq. 5 (Al-Nafjan et al., 2017).

Valence=
α(F4)
β(F4)

−
α(F3)
β(F3)

(5)

Differential Entropy
Differential entropy is defined in Eq. 6,where p(x) represents the
probability density function of continuous information (Shi et al.,
2013).

DE = −
∫ b

a
p (x) log

(
p (x)

)
dx (6)

For EEG signal with a specific length that approximately follows
a Gaussian distribution, its DE is expressed as follows:

DE = −
∫ b
a

1√
2πσ 2

i
e
−
(x−µ)2

2σ2
i log

(
1√

2πσ 2
i
e
−
(x−µ)2

2σ2
i

)
dx

=
1
2 log

(
2πeσ 2

i
) (7)

Hjorth Parameters
Hjorth introduced the Hjorth parameters to describe the EEG
signal in the time domain, including the following three
characteristics, which are activity, mobility, and complexity
(Hjorth, 1970):

Activity measures the degree of deviation of the signal
amplitude:

Activity =
1
N

∑N

n=1
(s(n)− µs)

2 (8)

Mobility measures the changes in slope:

Mobility =

√
var

(
s′(n)

)
var (s(n))

(9)
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Complexity measures how many standard slopes are there on an
amplitude:

Complexity =
Mobility

(
s
′

(n)
)

Mobility (s (n))
(10)

where µs represents the average value of the signal, s
′

(n)
represents the first derivative of the signal, and var(·)
represents the variance.

Classification and Statistical Analysis
This study implements k-nearest neighbor (KNN) and support
vector machine (SVM) classifiers to distinguish the EEG
characteristics of consumer’s preference between likes and
dislikes based on KNN with Euclidean distance [KNN(E)],
KNN with cosine distance [KNN(C)], SVM with radial basis
kernel [SVM(R)], and SVM with polynomial kernel [SVM(P)]
since these are commonly used machine learning methods.
During the experiment, the EEG signals are collected when
the subjects watch pictures different sport shoes. The 10-
fold crossvalidation was performed, and all subjects’ data were
collected and randomly split into training set (90%) and test
set (10%). At the same time, the data of two data sets are
preprocessed and extracted. Among the features extracted were
PSD, brain asymmetry, DE, and Hjorth parameters. Then, the
parameters of the classifier model are trained by the feature data
and labels in the training set, and then, the performance of the

trained model is evaluated by the feature data and labels in the
test set, as shown in Figure 3.

The classification accuracy was defined as:

Accuracy =
(
Ncorrect

Ntotal

)
× 100% (11)

where Ntotal and Ncorrect are defined as the total number of
samples to be classified and the number of correct samples. The
final classification accuracy was the average of 10 repetitions.

For statistical analysis of difference in power of EEG between
like and dislike decision, two-sample t-tests are performed by
calculating the power of different frequency bands. The p-value
(≤0.05) from two-sample t-tests represent the significant contrast
between liked and disliked decisions.

RESULTS

Most Liked or Disliked Sport Shoes
Figure 4 displays the most liked and disliked shoes among the
following subject groups: male subjects only, female subjects only,
and all subjects. Figure 4A displays most liked shoes among male
subjects. The shoe farthest on the left is liked by seven male
subjects, and the other three are equally liked by six male subjects.
Almost all male subjects disliked the shoe styles in Figure 4B. The
two shoe styles in Figure 4C were equally liked by five female
subjects, respectively, and all of the female subjects disliked the 8

FIGURE 3 | Flow chart of the proposed electroencephalography (EEG)-based consumer’s preference prediction model.
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FIGURE 4 | Most liked and disliked shoes among different subject types (men, women, and all). Panel (A) are the most liked shoes among male subjects, panel (B)
are the most disliked shoes among male subjects, panel (C) shows most liked shoes among female subjects, panel (D) shows most disliked shoes among female
subjects, panel (E) are overall most liked shoes among all subjects, and panel (F) are overall most disliked shoes among all subjects.

shoe styles in Figure 4D. Finally, we obtained the two shoes which
all subjects (men and women combined) like and dislike the most.
In Figure 4E, the shoes that were liked by 12 and 11 subjects are
shown from left to right. In Figure 4F, the two most disliked shoes
are shown, each of which was liked by only one subject.

Power Spectral Density Analysis
The PSD of 0.5–40 Hz was calculated for 2,250 samples (25
runs × 15 subjects × 6 segments of 8-s data) of all subjects.
The results were averaged according to the label. Figure 5 shows
the PSD result where the upper and lower parts represent the
like and dislike.

Figure 6 represents the significant power difference between
like and dislike choices made by subjects. In the delta frequency
band, significant EEG power difference between like and dislike
can be observed in the right frontal, left temporal, right temporal,
and right occipital regions. For the theta frequency band, the
significant power difference is concentrated in temporal, parietal,
central, and frontal in asymmetry manner. Significant power
difference in the alpha frequency band is concentrated in the
frontal (symmetry) and parietal areas. In addition, the significant
power difference in the beta frequency band is found in the
frontal, temporal, central, parietal, and occipital regions. These
findings are similar to other studies (Golnar-Nik et al., 2019).

Classification Result
Figure 7 shows the classification results of four different
classifiers based on four different feature sets. It can be observed
from the classification accuracy that the two classifiers KNN(C)
and KNN(E) give better performance than the two classifiers
SVM(P) and SVM(R) based on PSD features, choice-based
symmetry features, Hjorth parameter features, and the DE
features. KNN(C) classifier gives the best results where the
accuracy is 88.85% for PSD features, 82.04% for choice-based

asymmetry features, 86.17% for Hjorth features, and 94.22% for
DE features. Note that 16 channels were used for choice-based
asymmetry features.

Figure 8 shows the classification results of different brain
lobes based on different feature sets, and the experimental results
shown below are based on the KNN(C) classifier. The results
showed that the difference in like and dislike of shoe products
was most apparent in the DE features of the occipital locations
(87.16%). However, fusion of all brain region areas increases
classification accuracy of all four feature sets.

Figure 9 shows the classification results of different frequency
bands based on different feature sets, and the experimental results
shown below are based on the KNN(C) classifier. Compared
with other frequency bands, the results show that alpha bands
of signals are slightly more conducive to the distinction between
consumer’s likes and dislikes. Besides, the features of other
frequency bands can also be used to achieve like and dislike
classification. The fusion of all frequency bands resulted in
improved classification accuracies of like and dislike prediction.

Figure 10 shows comparison of the classification accuracies of
features of different EEG indices based on the KNN(C) classifier.
It is observable that all four EEG asymmetry-based features (AW
index, effort index, choice index, and valence) provide similar
classification accuracy when the same channels were used (F4 and
F3). However, 16 channel choice index-based features give higher
accuracy than 2 channel choice features and rest of the EEG
index-based features. Nevertheless, features of PSD (88.85%),
Hjorth (86.17%), and DE (94.22%) provide highest classification
accuracy and noticeably greater than the rest.

DISCUSSION

In this research, an EEG-based consumer’s preference prediction
system is proposed to predict whether consumers’ like or dislike
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FIGURE 5 | Average power spectral density (PSD) vs. frequency values of all channels. Upper panel displays liked case and lower panel shows disliked cases.

FIGURE 6 | The brain topography of the p-value distribution for EEG power difference between like and dislike decision in different frequency bands.

particular product. EEG data were recorded from 15 recruited
subjects whereas they watched pictures of 25 different designs
of sport shoes and made decisions about their likes and dislikes
of shoes that were shown. The EEG-based consumer’s like or
dislike prediction system demonstrated in this work achieved a
classification accuracy of 94.22% using DE features.

Our research weighs up the effects of the characteristics
of different brain regions on classification accuracy. It can be
observed from the p-value distribution of EEG power that the
frontal and occipital regions play important part in consumer’s
like and dislike decision-making process. Furthermore, the
features extracted from those two regions also may have higher
classification accuracy than the other brain regions.

Electroencephalography-based preference indices such as AW
index, effort index, choice index, and valence are often used to
measure the response of subjects to market stimuli. However,
the classification accuracy obtained from the features extracted
from these indices is seldom reported. Our research finds that

classification accuracy of these indices is similar to accuracy
of choice index being slightly higher. Increasing the number
of channels sees increase in classification accuracy among
all EEG features, as evidenced by the difference between 2
channel and 16 channel choice index features. Our research
implemented a method that demonstrated extracted DE features
which were able to obtain greatly higher classification accuracy
(>90%) for both KNN(C) and KNN(E) classifiers. Besides,
combining features of all frequency bands see improvements in
classification accuracy.

However, there are some limitations in this study. First,
only product images were used as marketing stimuli, and
other factors such as brand, ratings, and price were not
considered in the experiment. Second, there were only 15
subjects of college students recruited in the experiment for
consumer’s preference prediction of sport shoes. Increasing
the number of subjects of different ages, incomes, and social
status would help to investigate the influence of different
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FIGURE 7 | Classification accuracy of four classifiers based on different feature sets.

FIGURE 8 | Classification accuracy of different brain lobes based on different feature sets.
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FIGURE 9 | Classification accuracy of different frequency bands based on different feature sets.

FIGURE 10 | Classification accuracy of different EEG features.

factors (brand and ratings, etc.) on consumer’s preferences
(Golnar-Nik et al., 2019). Furthermore, the like or dislike
prediction accuracy was not correlated with sales of product

or self-reports in the study. By comparing with conventional
marketing research methods such as sales or self-reports, the
results of preference prediction based on EEG could be made
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more reliable. More subjects would be recruited in the future
to investigate the influence of some factors, such as brand
and price, on the prediction results of consumer’s preferences,
while conducting correlation analysis with product sales and
self-reports, etc.

CONCLUSION

This manuscript proposes a consumer’s preference prediction
system based on EEG by taking sport shoes as an example. The
results show that the classification accuracy of 94.22% is achieved
based on the DE features. The method proposed in this study
can be used for product preference prediction. Furthermore,
the number of EEG channels and recording location can be
optimized to make the system easy-to-use and time-effective. In
the future, the product like or dislike prediction results would be
correlated with product sales and self-reports to make the results
of EEG-based preference prediction more reliable.
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This study evaluated the feasibility of using occipitoparietal alpha activity to drive
target/non-target classification in a brain-computer interface (BCI) for communication.
EEG data were collected from 12 participants who completed BCI Rapid Serial Visual
Presentation (RSVP) calibrations at two different presentation rates: 1 and 4 Hz.
Attention-related changes in posterior alpha activity were compared to two event-related
potentials (ERPs): N200 and P300. Machine learning approaches evaluated target/non-
target classification accuracy using alpha activity. Results indicated significant alpha
attenuation following target letters at both 1 and 4 Hz presentation rates, though this
effect was significantly reduced in the 4 Hz condition. Target-related alpha attenuation
was not correlated with coincident N200 or P300 target effects. Classification using
posterior alpha activity was above chance and benefitted from individualized tuning
procedures. These findings suggest that target-related posterior alpha attenuation is
detectable in a BCI RSVP calibration and that this signal could be leveraged in machine
learning algorithms used for RSVP or comparable attention-based BCI paradigms.

Keywords: electroencephalography (EEG), posterior alpha, attention, brain-computer interface (BCI), event-
related potential (ERP), N200, P300, signal classification

INTRODUCTION

The development and application of brain-computer interface (BCI) technology has steadily
increased over the past quarter-century (Wolpaw and Wolpaw, 2012; Rashid et al., 2020). Broadly,
BCIs leverage neurophysiological signals to help users perform tasks related to movement or
communication. BCI technology offers benefits to clinical populations for whom extant assistive
technologies are insufficient, including individuals with locked-in syndrome (Wolpaw, 2013;
Akcakaya et al., 2014). The scope, design, and neurophysiological mechanisms of BCI systems
are quite varied, though BCI designs are popularly divided into two broad categories: (1) invasive
systems that record data from intra-cranial electrodes, and (2) non-invasive systems that use scalp
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electroencephalography (EEG). Non-invasive BCI systems are
more popular because they are more affordable, accessible, and
do not require surgery (Akcakaya et al., 2014; Rashid et al., 2020).

Recently, software tooling in Python has been made openly
available to help facilitate BCI research and development. The
open-source repository BciPy (Memmott et al., 2021) includes
a common BCI paradigm for communication referred to as
Rapid Serial Visual Presentation (RSVP; Huang et al., 2011;
Orhan et al., 2012, 2013; Acqualagna and Blankertz, 2013; Lees
et al., 2018). The RSVP task presents users with a sequence of
images, such as letter characters, to assess target- and non-target-
related brain responses derived from scalp EEG, including the
event-related potentials (ERPs) N200 and P300, which indicate
stimulus discrimination and attentional processing, respectively
(Patel and Azzam, 2005). RSVP may be a particularly useful
paradigm in cases where users are restricted by limited eye
movement or visual attention (Fried-Oken et al., 2020), since
RSVP only requires a user to fixate a single stimulus presented
at the center of their gaze (Acqualagna and Blankertz, 2013;
Akcakaya et al., 2014).

A brain-related oscillatory signature referred to as the
alpha rhythm encompasses posterior-dominant activity in the
range of approximately 8–13 Hz, though the exact bounds of
alpha are often debated (Bazanova and Vernon, 2014). Alpha
activity is understood to result from some thalamo-cortical
synchronization occurring over many centimeters, rather than
any localized cortical area (Lopes da Silva et al., 1980; Lopes
da Silva, 2013). Of interest to the current work, changes in
alpha activity have been experimentally linked to various cortical
activations. Examples of these patterns include attenuation of
central alpha or mu rhythm over regions secondary to actual or
imagined contralateral limb movement (Pfurtscheller et al., 2006;
Meirovitch et al., 2015), or attenuation of posterior alpha with eye
opening or cognitive processing of visual stimuli (Klimesch, 1999;
Pfurtscheller and Lopes da Silva, 1999). Additionally, changes in
the distribution of posterior alpha are known to track shifts in
covert spatial attention (Foster et al., 2017).

Prior research has explored the relationship between
attention-related changes in alpha and ERPs. Some evidence has
suggested that alpha desynchronization and target-related P300
may index and predict similar attentional processes (Yordanova
et al., 2001; Grent-’T-Jong et al., 2011), or that evoked potentials
have the potential to interfere when measuring attention-related
changes in alpha activity (van Gerven et al., 2009). However, it
is known that visual attention can modulate alpha amplitude in
the absence of ERP signals (Klimesch, 1999), and source analysis
has associated these signals with different cortical structures
(Peng et al., 2012).

A few studies have demonstrated the feasibility of using
posterior alpha to track spatial attention in order to make
letter selections in BCIs for communication (Kelly et al., 2005;
van Gerven et al., 2009; van Gerven and Jensen, 2009; Treder
et al., 2011). Evidence suggests that posterior alpha remains a
viable signal for classification over repeated sessions (Horschig
et al., 2015), and that patterns of alpha lateralization can
be altered through neurofeedback training (Okazaki et al.,
2015). In addition to spatial attention, posterior alpha might

also be used to track a user’s mental state during BCI tasks
(Myrden and Chau, 2017). However, despite being widely studied
and relatively easy to measure, vision-modulated posterior alpha
is neither a popular nor a common component of many BCI
spellers (Rezeika et al., 2018; Rashid et al., 2020). To our
knowledge, no previous work has attempted to use attention-
related changes in posterior alpha to make letter selections
in the context of a centrally fixated BCI spelling paradigm
such as RSVP.

Given the evidence that visual attention modulates posterior
alpha activity, and the conspicuous absence of posterior alpha
as a driving neural signal in non-invasive BCI spelling systems,
we conducted an exploratory study to examine the feasibility of
using this signal in the context of the BciPy RSVP paradigm.
A novel contribution of the current study is that no prior BCI-
related work has examined posterior alpha changes outside of
lateralized displays. Our primary aims were to determine whether
target-related changes in posterior alpha activity are detectable
in the RSVP task and, if so, whether these changes are sensitive
to the presentation rate of letter stimuli. We hypothesized: (1)
that event-related alpha activity would decrease following the
presentation of target letter stimuli relative to non-target stimuli;
and (2) that target-related posterior alpha attenuation would be
smaller at an increased rate of presentation due to temporal
overlap of target processing with subsequent non-targets. As
secondary aims, we sought to assess whether target-related
posterior alpha effects correlated with coincident target effects
of N200 and P300 ERPs, and whether we could train machine
learning algorithms to classify target and non-target responses
using posterior alpha signals alone.

MATERIALS AND METHODS

EEG data were recorded from a convenience sample of generally
healthy adults recruited at Oregon Health and Science University
(OHSU) in Portland, OR. Research activities were registered
with and approved by the OHSU Institutional Review Board
(IRB). Data were collected over the course of a single 90-
min session, after which participants were compensated $25 for
completing the study.

Participants
Demographic information is presented in Table 1. Twelve
generally healthy adults enrolled in the study and provided
written informed consent before participating in study activities,
in accordance with the Declaration of Helsinki. All individuals
recruited for the study were fluent in English. No participants
reported use of alcohol or other mind-altering substances within
12 h of their test session. Exclusion criteria included use of EEG-
altering medications such as neuroleptics or benzodiazepines
(as reviewed by a physician), or an inability to perceive RSVP
task stimuli and achieve at least 80% accuracy on a RSVP
practice task. No one who enrolled was ineligible to participate
based on these criteria. All participants were confirmed to have
normal or corrected-to-normal vision and a minimum near-field
Snellen visual acuity of 20/30 in at least one eye. All participants
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TABLE 1 | Demographics.

Participants (n = 12)

Age: mean years ± SD (range) 33.75 ± 6.40 (28–46)

Sex

Female 6

Male 6

Race

White 12

Ethnicity

Hispanic/Latino 1

Not-Hispanic/Latino 11

A summary of participants enrolled in the study. Our sample contained a balanced
number of female and male participants, but was homogeneous with regard to race
and ethnicity.

achieved perfect scores on the practice RSVP task after only
a single attempt.

Procedure
After providing written informed consent at the start of the
study visit, participants self-reported demographic information
followed by a brief health questionnaire and near-field visual
acuity test. Upon completion of the screening questions,
participants were introduced to a practice version of the
RSVP calibration (see section “Rapid Serial Visual Presentation
Practice”) before donning the EEG cap. Participants then
completed two instances of RSVP calibration (see section “Rapid
Serial Visual Presentation Calibration”). Individuals were asked
to indicate how sleepy they felt immediately before, between, and
after the two calibrations using the Stanford Sleepiness Scale (SSS;
Herscovitch and Broughton, 1981; MacLean et al., 1992), since
research has demonstrated that alpha activity fluctuates during
periods of drowsiness (Cantero et al., 2002).

Screening
Self-Report Questionnaires
For screening purposes, individuals were asked to self-report
current health conditions, medications, and provide details about
their sleep habits. Specifically, participants were asked to indicate
whether they had problems sleeping too much or too little, or if
they had seen a physician for a sleep-related disorder.

Rapid Serial Visual Presentation Practice
To confirm participants’ ability to perceive the RSVP stimuli (see
section “Rapid Serial Visual Presentation Calibration”), lab staff
administered a practice version of the RSVP calibration created
in PsychoPy3 Experiment Builder, version 3.0.0b11 (Peirce, 2007,
2009). Unlike the test version of RSVP calibration, the practice
task presented only 10 trials of pseudo-random letter sequences,
each of which had a 50% chance to contain the target letter.
Stimuli in the letter sequences appeared at a rate of 4 Hz in order
to emulate the more difficult experimental condition. Participants
were asked after each 10-letter sequence to state whether the
target had been present.

Rapid Serial Visual Presentation
Calibration
Overview
Participants completed two instances of the BciPy RSVP
calibration (Orhan et al., 2011, 2012, 2013; Oken et al.,
2014; Memmott et al., 2021). Each calibration consisted of
100 trials of 10-letter sequences and lasted approximately 10–
25 min, depending on the presentation rate of letter stimuli. As
demonstrated in Figure 1, each trial began with a target letter
prompt presented for 1 s, followed immediately by the onset of a
red fixation cross for 500 ms, and then a steady-stream sequence
of 10 letter stimuli presented either at a rate of 1 or 4 Hz (1.0
s or 250 ms per stimulus, respectively). There were no blank-
screen intervals within each sequence; a blank black screen was
presented for 750 ms between sequences.

Participants were instructed to sit still, try to blink only
between sequences, and watch for the target letter in each
sequence, as indicated by the most recent target prompt. When
the target appeared, participants were told to react mentally
without movement or blinking. In cases where an individual
was unable to resist blinking during the sequence (e.g., due to
fatigue or irritation), there was a standing instruction to prioritize
blinking during a non-target presentation in order to avoid
missing the target. Along these lines, participants were allowed
to pause the task by pushing the spacebar if they needed to rest.

Each participant completed RSVP calibrations with stimuli
presented at rates of 1 Hz and 4 Hz; these rates were consistent
within each 100-trial instance of the task. Condition order was
balanced randomly across the 12 participant sessions in order to
minimize systematic fatigue effects associated with repetition of
the RSVP task (Oken et al., 2018). The logic behind our use of 1
and 4 Hz presentation rates was twofold: (1) to present stimuli at
speeds where early visual and attentional processing of sequential
stimuli would both overlap (i.e., 4 Hz; 250 ms per letter stimulus)
and not overlap (i.e., 1 Hz; 1 s per letter stimulus); and (2) to
minimize contamination of alpha-band activity by harmonics
related to steady-state visual-evoked potential (SSVEP) artifact.
Onset of the N200/P300 complex is expected 200–300 ms
post-stimulus onset (Patel and Azzam, 2005), while target-
induced posterior alpha desynchronization effects have been
demonstrated approximately 300–800 ms following stimulus
onset in a visual oddball paradigm (Peng et al., 2012). Past work
with this RSVP paradigm has typically used a presentation rate
of 5 Hz (e.g., Oken et al., 2018). However, as shown in Figure 2,
the 2nd and 3rd harmonics of the SSVEP are sometimes apparent
following spectral decomposition. To avoid contamination from
a 10 Hz harmonic in the middle of the alpha band, the “typical”
RSVP presentation rate of 5 Hz was lowered to 4 Hz.

Stimuli
RSVP stimuli were rendered on a 17.3-inch ASUS Vivobook Pro
N705F laptop (1,920 × 1,080 resolution) with a refresh rate of
60 Hz. Participants viewed the display from a seated position in
a dimly lit room with consistent lighting. Viewing distance was
approximately 70 cm, though head position was not constrained.
Fixation crosses were drawn in solid red. Letter stimuli were
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FIGURE 1 | RSVP calibration. Each instance of the RSVP calibration consisted of 100 ten-letter sequences, as illustrated. A target letter was presented on-screen
for 1 s, followed by a red fixation cross for 500 ms, and then a random letter sequence containing the target. The 10-letter sequences were presented at a rate of
either 1 or 4 Hz for the entirety of the task. A blank inter-stimulus interval of 750 ms separated the final letter of each sequence and the target prompt of the
subsequent trial.

drawn in sans-serif Arial font and rendered solid white against
an unchanging solid black background. Letter stimuli included
28 possible characters: capitalized forms of all 26 letters of the
English alphabet, plus the characters “_” and “<,” which represent
“space” and “backspace” in this RSVP paradigm, respectively.

At a viewing distance of 70 cm, the red fixation cross
subtended 2.5◦ visual angle with a stroke width of 0.4◦. All
letter stimuli had a stroke width of approximately 0.5◦. Due
to morphological differences in the 28 letter stimuli, character
height ranged between 0.5◦ (i.e., “_”) and 3.8◦ (e.g., “T”).
Similarly, letter width ranged between 0.5◦ (i.e., “I”) and
4.8◦ (i.e., “W”).

Electrophysiological Recordings
EEG data were recorded from a DSI VR-300 headset (Wearable
Sensing; San Diego, CA, United States). This adjustable dry-
electrode system utilized a linked-ear reference with a ground
at A1. The sampling frequency was 300 Hz, with an A/D
resolution of 16 bits. Electrodes were placed according to a
custom montage of standard 10/20 sites: FCz, F7, Pz, P4, PO7,
PO8, and Oz. These sites are optimized to capture P300 evoked
potentials (Krusienski et al., 2008), with the alteration that site
P3 was replaced by F7 as an additional anterior site in order
to capture eye-related activity (e.g., blinking). Signal quality was
assessed in Wearable Sensing’s DSI-Streamer software (v.1.08.44)
prior to completion of the experimental tasks. Electrodes were
adjusted to satisfy manufacturer-determined default operating
thresholds pertaining to clipping, noise (very low < 0.07 µVrms;
very high > 100 µVrms), impedance (<2.0 M�), impedance
signal-to-noise (<3.0 M�), and DC offset (50% of maximum).
All experimental EEG data were recorded using the BciPy
acquisition client.

Electrophysiological Processing
With the exception of the secondary BCI classification
comparisons (see section “Brain-Computer Interface
Classifiers”), all time-frequency and ERP analyses were
performed offline in BrainVision Analyzer: Professional
Edition, version 2.1.0.327 (BrainVision LLC; Morrisville, NC,
United States). Due to a priori uncertainty regarding the exact
distribution of the attention effect across the scalp during RSVP
calibration, EEG measures were analyzed twice in parallel:
both as a “pooled” (i.e., averaged) signal across occipitoparietal
sites Pz, Oz, PO7, and PO8, and also at site Pz in isolation

(i.e., “Pz-only”). Pz is typically where experimenters can expect
to observe the highest-amplitude target-related P300 (Polich,
2007), and was therefore selected as a representative sub-site.
Data were filtered 1–45 Hz (48 dB/octave) along with a 60 Hz
notch filter using a Butterworth zero-phase infinite impulse
response (IIR) filter. These filtered data were then downsampled
from 300 to 150 Hz.

Time-Frequency Analyses
EEG data in the time-frequency analysis were segmented into 2.5
s epochs centered relative to stimulus onset, such that each of
the 100 target and 900 non-target epochs in a given calibration
ranged from −1,250 ms to +1,250 ms relative to stimulus
onset. This window was chosen in order to capture activity
±1 s relative to stimulus onset, with ample buffer length of
250 ms at either end of the window to avoid edge-related artifact
due to the wavelet analysis. Within each calibration recording,
epochs were separated by condition and converted to time-
frequency scaleograms using a continuous wavelet transform
(CWT) with a complex-valued Morlet mother wavelet (Morlet
parameter c = 5). Scaleograms were generated from wavelets with
scaled frequencies ranging from 4 to 16 Hz in 48 logarithmic
steps, normalized according to uniform scale power (unit energy
normalization; all scaled frequency layers of the wavelet function
possessed an energy value of 1). Complex voltage output was
converted to real-valued voltage (µV). The mean and standard
deviation of a 500 ms baseline window ranging from −600
to −100 ms before stimulus onset were used to Z-transform
all output samples within the test epochs. Unless otherwise
specified, “alpha activity” in this analysis refers to the average of
the Z-scored real voltage values within the designated response
window of 300–800 ms post-stimulus onset, which was selected
to capture the onset and duration of the target effect as seen
in previous research with visual oddball paradigms (Peng et al.,
2012; Vázquez-Marrufo et al., 2019). In other words, “negative”
activity values indicate event-related decreases in alpha activity
relative to the baseline window (−600 to −100 ms). See
BrainVision Analyzer User Manual (Software Version 2.1.0) for
further information regarding operations (Brain Products, 2014).

Our analyses examined alpha activity following target and
non-target letter stimuli, as well as the alpha attenuation effect,
which we defined as the difference between target and non-
target alpha responses within each RSVP calibration. Statistical
tests were performed on alpha activity estimates taken from
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FIGURE 2 | RSVP FFT output. (A) Mean FFT magnitude (normalized amplitude; pooled occipitoparietal sites), averaged across all 1,000 stimulus epochs in the 1 Hz
condition and across all participants. A peak is visible at 10 Hz, within the range of alpha activity. (B) Similar FFT data, generated from the 4 Hz condition. Again, a
peak is visible at 10 Hz, bookended by sharper peaks reflective of the 2nd (8 Hz) and 3rd (12 Hz) harmonics of the SSVEP, which results from high-contrast flickering
(4 Hz) in the letter stream.

the single wavelet layer with scaled central frequency closest
to each participant’s individual alpha frequency (IAF) within
a calibration, rounded to the nearest 0.5 Hz. Identifying
spectral prominences prior to time-frequency investigations
is a recommended technique to avoid misleading analyses
of arbitrary noise (Pfurtscheller and Lopes da Silva, 1999;
Corcoran et al., 2018). IAF estimates were determined from
mean fast Fourier transformation (FFT) output from the pooled
occipitoparietal signals; this FFT output was averaged across all
available 2.5 s epochs within each individual instance of RSVP
calibration (Figure 2). Real-valued voltage output was generated
using a 20% Hanning window, periodic variance correction, and
amplitude normalization relative to a frequency bandwidth of 4–
20 Hz. Semi-automatic peak detection identified the frequency in
the range of 7.5–12.5 Hz with the highest magnitude. Estimates
were then reviewed visually and adjusted in the event of peak
capture by either noise or SSVEP artifact in the 4 Hz presentation
condition. Clear alpha peaks were absent in two of the 1 Hz
calibrations and three of the 4 Hz calibrations. In these cases
where no discernable peaks were present, the peak estimate was
set manually to 10 Hz. The underlying rationale of this approach
was that a wavelet layer with scaled central frequency of 10 Hz
and spectral bandwidth of approximately 4 Hz is well-positioned
to capture most of the signal within the alpha band (8–12 Hz).
Peak values determined in this manner ranged from 9 to 11.5 Hz
across participants; all participants demonstrated similar IAF
estimates between the 1 and 4 Hz presentation conditions, with
the exception of three individuals who showed marginal increases

in peak alpha of 0.5 Hz (two instances) and 1.0 Hz (one instance)
in the 4 Hz condition.

Event-Related Potential Analyses
To accommodate ERP analyses, the original data were segmented
into 1 s epochs ranging from −200 to +800 ms, relative to
stimulus onset. These epochs were baseline corrected (−200
to 0 ms), separated by stimulus-type, and averaged within-
condition before the use of semi-automatic peak detection to
label N200 (200–350 ms) and P300 (300–450 ms) potentials in
the target condition. N200 and P300 responses within both the
target and non-target classes were estimated as mean voltage
(µV) ± 4 sampled points (∼53 ms) around the labeled peak
latencies derived from the target samples. Our analyses measured
N200 and P300 signed voltages following target and non-target
letter stimuli, as well as the target effect, which we defined as
the difference between target and non-target voltage responses
within each condition.

Artifact Rejection
To approximate the processing tools included by default in BciPy,
which currently does not include tooling for artifact handling
outside of filtering, our primary offline analyses of EEG and ERP
data did not implement rigorous artifact rejection procedures.
However, to ensure that our results were not influenced by poor
data quality and that electrooculographic (EOG) activity had
no effect on our alpha measurements, we re-ran key analyses
using data that included artifact rejection to remove eye blinks,
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extraneous electromyography (EMG), and other non-descript
noise such as electrode popping due to movement and poor
electrode contact. All time-frequency and ERP epochs were
flagged for review and semi-automatic rejection according to
the following rules: voltage gradients > 50 µV/ms; voltage
differences > 125 µV within a window of 50 ms; absolute voltage
values > 75 µV; and activity < 0.5 µV sustained for ≥ 100 ms in
duration. Data marked in this manner were reviewed visually and
contaminated epochs were discarded prior to separating epochs
by stimulus class (i.e., target vs. non-target).

Artifact rejection results are discussed under “Results” section
“Artifact Rejection.” Individual participants kept at least 70% of
target time-frequency epochs in the 1 Hz condition and 65% of
targets at 4 Hz, with the exceptions that one participant only
maintained 59 target segments in the 1 Hz condition, and another
kept only 46 target segments in the 4 Hz condition. Across ERP
epochs, individual participants kept ≥85% of target segments at
1 Hz and ≥78% of targets at 4 Hz.

Brain-Computer Interface Classifiers
The Python code underlying our BCI classifier analyses is
accessible online (Zenodo, 2022).

Brain-Computer Interface Classifiers: Alpha Data
For the purpose of training classifiers using alpha-band features,
we performed analogous time-frequency preprocessing of the
raw EEG data using the PyWavelets Python package (Lee et al.,
2019). Due to differences in software, the wavelet parameters
used here differed slightly from those outlined above in section
“Time-Frequency Analyses”: we used a Morlet mother wavelet
with bandwidth of 1.5 Hz and a central frequency of 1.0 Hz; scaled
wavelets were not normalized. Data were Z-scored according
to the same 500 ms baseline (−600 to −100 ms) and response
(+300 to +800 ms) windows, and we selected one frequency
to investigate for each participant (see IAF in “Materials
and Methods” section “Time-Frequency Analyses”). Unlike the
primary analysis, however, alpha activity was preserved as time-
series data and was not averaged within the response window.
We also experimented with optimizing the locations of these
500 ms baseline and response windows to improve classification.
We varied the baseline window start between −1,050 and
−600 ms, and varied the response window start between +150
and +550 ms, selecting the best starting positions according
to the balanced test accuracy of a Logistic Regression classifier.
Classifier analyses were conducted using data from all four of the
occipitoparietal channels.

We evaluated several classifiers on this time-series
representation of the alpha data, including Logistic Regression
with L2 regularization and a support vector classifier. We also
tried classifying these data in a channelwise covariance matrix
representation, using a logistic regression classifier on a tangent
space projection (Barachant et al., 2012, 2013). The experimental
setup results in a fixed class ratio of 9 non-targets for every target;
thus, all models were trained using class-balanced objectives
and evaluated using balanced accuracy, which is the average
of positive (target) and negative (non-target) class accuracy:
accbal = (acctarget + accnon−target)/2. Note that a model that

makes uniform random guesses will achieve a balanced accuracy
of approximately 0.5 (i.e., at chance levels), while a perfect model
will achieve an accuracy of 1.0.

Brain-Computer Interface Classifiers: Event-Related
Potential Data
To compare alpha classification performance to the default
classification mechanism used in BciPy, we used principal
component analysis, followed by regularized discriminant
analysis and kernel density estimation (RDA/KDE) to classify
filtered EEG time-series data inclusive of the N200 and P300
ERPs. This approach has been detailed in previous work
(Oken et al., 2018; Memmott et al., 2021) and was used to
generate balanced accuracy estimates similar to those of the
alpha classifiers outlined in section “Brain-Computer Interface
Classifiers: Alpha Data.” Unlike the ERP analyses in “Materials
and Methods” section “Event-Related Potential Analyses,” ERP
time-series data were filtered 2–45 Hz and segmented into 500 ms
epochs ranging 0 to +500 ms relative to stimulus onset in order
to match the default settings of BciPy.

Statistical Analyses
Statistical tests were conducted in IBM SPSS Statistics, Version
27 (IBM Corporation; Armonk, NY, United States). Shapiro-
Wilk tests were used to assess the normality of our measures;
box plots were reviewed to identify relevant outliers. Roughly
one-third of the primary across-participant alpha and ERP
measures were not normally distributed, trending (p < 0.10)
toward non-normality, or contained at least one outlier. Because
these measures were inconsistently normally distributed, we
opted to forego parametric means comparisons and instead
conducted across-participant median comparisons using non-
parametric two-tailed related-samples Wilcoxon signed rank
tests. Shapiro-Wilk tests also revealed that most of the within-
participant alpha measures were not normally distributed,
so independent-samples Mann-Whitney U-tests were used to
evaluate target vs. non-target alpha activity differences within
individual RSVP calibrations. These data were inspected visually
to confirm general similarity of shape. Spearman’s rank-order
correlations were used to examine the relationships between
alpha attenuation effects and ERP target effects. Similarly, artifact
rejection and tuned parameter analyses used non-parametric tests
to accommodate non-normal data and outliers.

RESULTS

Self-reported sleepiness levels demonstrated a significant median
increase between the start (Mdn = 3.0) and mid-point (Mdn = 3.5)
of the experiment, Z = −2.111, p = 0.035. However, there
were no significant median differences in sleepiness levels before
RSVP, after RSVP, or sleepiness changes after-minus-before RSVP
according to condition, either 1 or 4 Hz presentations (all p
values ≥ 0.165). None of the self-reported SSS sleepiness metrics
correlated with any of the alpha attenuation effects [all absolute
rs(10) values ≤ 0.511; all p values ≥ 0.09].
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Time-Frequency Analyses
Time-frequency scaleograms displayed in Figure 3 show
representative wavelet output 4–16 Hz during the RSVP
calibrations. As clarified previously in section “Artifact
Rejection,” these primary analyses included all 1,000 available
epochs (both target and non-target) from all 100 trials in
each RSVP calibration. Artifact rejection comparisons and the
corresponding redundant analyses are discussed separately below
in “Results” section “Artifact Rejection.”

Alpha Effects: Across-Participants
Figure 4 offers a summary of Z-scored alpha activity waveforms
across participants (± standard error of the mean; SEM)
according to electrode source, presentation rate, and stimulus
class. Measuring the pooled occipitoparietal signal in the 1 Hz
condition, target-related median alpha activity (Mdn = −0.164)
was significantly lower than for non-target letters (Mdn = 0.285),
Z = −2.667, p = 0.008. Similarly, in the 4 Hz condition, median
alpha activity was lower following targets (Mdn = −0.022)
compared to non-targets (Mdn = 0.172), but this difference did
not reach statistical significance, Z = −1.883, p = 0.060. The size
of the target-vs.-non-target attenuation effect was significantly
larger at 1 Hz presentation rates (Mdn = −0.632) compared to
4 Hz presentation rates (Mdn =−0.227), Z =−2.353, p = 0.019.

Using data from Pz-only, we observed effects similar to those
in the pooled signal. In the 1 Hz condition, median alpha
activity for targets (Mdn = −0.103) was significantly lower than
median alpha related to non-targets (Mdn = 0.373), Z = −3.059,
p = 0.002. At 4 Hz presentations, median target-related alpha
activity (Mdn = 0.098) was again lower than that of the non-target
stimuli (Mdn = 0.196), though unlike data from the pooled signal,
this difference was significant at Pz-only, Z = −1.961, p = 0.050.
The median alpha attenuation effect at Pz-only was larger in
the 1 Hz condition (Mdn = −0.527) compared to the 4 Hz
condition (Mdn =−0.103), Z =−2.510, p = 0.012. There were no
meaningful differences between median alpha attenuation in the
pooled signal and at Pz-only, either at 1 or at 4 Hz presentations
(both comparisons: Z =−0.784, p = 0.433).

Alpha Effects: Within-Participants
While between-participant effects are of interest, the use of
alpha signals within BCI systems ultimately requires significant
within-participant effects. Independent-samples Mann-Whitney
U comparisons revealed significant median differences between
target and non-target alpha Z-scores within individual RSVP
calibrations. Significant attenuation of alpha activity following
target letter stimuli was discernable in at least one of the
signal sources (i.e., either the pooled signal or Pz-only) in 9/12
participants in the 1 Hz condition, and 6/12 participants in the
4 Hz condition (see Figure 5 for a summary of within-participant
alpha attenuation effects). The attenuation effect was equally
detectable between the pooled occipitoparietal signal and Pz-
only during 1 Hz presentations, such that 7 participants showed
significant median differences between target and non-target
alpha activity in both signal sources, while 1 participant evinced
the attenuation effect only in the pooled signal and another just
at Pz-only. This pattern was comparable in the 4 Hz condition,

where 3 participants demonstrated the effect in both signals, 2
showed changes only in the pooled signal, and 1 just at Pz-only.

Event-Related Potential Analyses
Many of the expected ERP target effects were observed across
pooled occipitoparietal sites (Figure 6). N200 and P300 measures
were all increased following target stimuli compared to non-
target stimuli, both at 1 and 4 Hz presentation rates (all p
values ≤ 0.012). The size of the N200 target effect was smaller
in the 1 Hz condition (Mdn = −1.629) compared to the 4 Hz
condition (Mdn = −3.842), Z = −2.746, p = 0.006, while the
corresponding P300 target effect was inversely greater in the
1 Hz condition (Mdn = 3.262) than in the 4 Hz condition
(Mdn = 1.508), Z = −2.435, p = 0.015. These ERP target effects
remained unchanged when measured at Pz-only, with increased
N200 and P300 measures for targets compared to non-targets
(all p values ≤ 0.003). The median N200 target effect was larger
during 4 Hz presentations (Mdn = −3.512) compared to 1 Hz
presentations (Mdn = −2.648), Z = −2.746, p = 0.006, and the
median P300 target effect was again larger at 1 Hz (Mdn = 5.513)
compared to the 4 Hz condition (Mdn = 3.501), Z = −2.118,
p = 0.034. N200 target effects were not discernably different
between the pooled signals and Pz-only in either presentation
condition (both p-values ≥ 0.433). P300 target effects were larger
at Pz-only than in the pooled signal in both the 1 and 4 Hz
conditions (both p values = 0.002).

Correlation of Across-Participant Alpha
Attenuation and Event-Related Potential
Target Effects
Alpha attenuation and ERP target effects are depicted side-
by-side as difference waveforms in Figure 7. Across pooled
occipitoparietal sites in the 1 Hz condition, alpha attenuation
effects did not correlate with N200 [rs(10) = −0.133, p = 0.681]
or P300 target effects [rs(10) = −0.105, p = 0.746]. Pooled
signal alpha attenuation effects in the 4 Hz condition did
not meaningfully predict N200 [rs(10) = −0.329, p = 0.297]
or P300 target effects [rs(10) = −0.007, p = 0.983]. This
disconnect between alpha and ERP target effects in the pooled
occipitoparietal signal was also evident in the Pz-only signal.
As before, in the 1 Hz condition there were no significant
correlations between alpha attenuation and ERP target effects
for N200 [rs(10) = 0.084, p = 0.795] or P300 [rs(10) = 0.035,
p = 0.914]. At 4 Hz, the Pz-only signal did not yield any significant
correlations between alpha attenuation and target effects for
either N200 [rs(10) = −0.042, p = 0.897] or P300 [rs(10) = 0.000,
p = 1.000].

Artifact Rejection
Related-sample Wilcoxon signed ranks tests indicated that none
of the between-participant alpha measures were statistically
different before and after artifact rejection, as outlined in
“Materials and Methods” section “Artifact Rejection” (all p
values > 0.05). The results of our alpha comparisons remained
unchanged, with a single exception that the difference between
median target and non-target alpha activity at Pz-only was no
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FIGURE 3 | Scaleograms. Spectra 4–16 Hz, relative to stimulus onset (t = 0). Plots are derived from pooled posterior sites, averaged across all participants, and
separated by condition (presentation rate; stimulus class). Boxes represent the alpha band (8–12 Hz) and the measured effect window. The final column illustrates
the alpha attenuation effect, or the difference in activity between target and non-target letter responses. SSVEP signatures are visible across conditions, both as
conspicuous bursts in the range of 5–9 Hz (the 1 Hz presentation condition), and as more spectrally-diffuse vertical stripes (the 4 Hz presentation condition). A clear
increase in theta activity is also visible approximately 200–300 ms following target stimuli. Color scaling is consistent between targets/non-targets within presentation
rate conditions. However, due to gross differences in alpha activity between the 1 Hz and 4 Hz conditions (see Figure 4, which includes static scaling of axes across
conditions), scaling was adjusted to better highlight the time-course of the attenuation effect.

longer statistically different at 4 Hz presentations (p = 0.308).
Spearman’s rank-order correlations indicated no significant
correlations between alpha attenuation and ERP target effects
in either the pooled [all absolute rs(10) values ≤ 0.476; all
p values ≥ 0.118] or Pz-only signals [all absolute rs(10)
values ≤ 0.238; all p values ≥ 0.457].

Within-participants, artifact rejection did not result in visible
changes to the shape of alpha activity distributions; the majority
of measures remained non-normal, including at least one
class (i.e., target or non-target) within each electrode source
per individual RSVP calibration. Artifact rejection resulted in
changes to the alpha attenuation effect primarily in the 4 Hz
condition, where 3 previously significant effects dissipated and 1
moved from significant (p < 0.05) to trending (p < 0.10). In the
1 Hz condition as well, 1 previously significant effect shifted to
trending while another dissipated entirely.

Implementation and Classification
Regularized Discriminant Analysis and Kernel Density
Estimation
Mean balanced test accuracies from the ERP RDA/KDE model
ranged 0.595–0.836 across participants in the 1 Hz condition and

0.614–0.874 in the 4 Hz condition. A paired-samples Wilcoxon
test indicated a significant median increase in test accuracies
between the 1 Hz condition (Mdn = 0.676) and the 4 Hz condition
(Mdn = 0.707), Z =−2.433, p = 0.015. Within the 1 Hz condition,
there was a significant Spearman’s correlation between mean
balanced test accuracies of the RDA/KDE model and N200
target effects [rs(10) = −0.776, p = 0.003]. The same RDA/KDE
estimates related to P300 target effects [rs(10) = 0.531, p = 0.075],
but only weakly. 1 Hz condition RDA/KDE accuracies were not
correlated with alpha attenuation [rs(10) = 0.287, p = 0.366].
At 4 Hz presentations, mean balanced test accuracies from the
RDA/KDE model were associated with N200 [rs(10) = −0.790,
p = 0.002] and P300 target effects [rs(10) = 0.608, p = 0.036],
though RDA/KDE accuracies were again unrelated to alpha
attenuation effects [rs(10) = 0.077, p = 0.812].

Alpha Classifiers
A comparative bar chart of the various alpha and ERP classifier
methods is shown in Figure 8. Default parameters yielded
mean balanced test accuracies for individual participants that
ranged 0.470–0.764 across models in the 1 Hz condition and
0.463–0.729 in the 4 Hz condition. Tuned parameters resulted
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FIGURE 4 | Grand average alpha activity. Waveforms illustrate continuous alpha activity (Z-score) averaged across all participants (±SEM), relative to stimulus onset
(t = 0). Plots are separated by condition (presentation rate; stimulus class) and electrode source (pooled occipitoparietal sites; Pz-only). Highlighted regions of the
waveforms are indicative of baseline and the measured effect windows.

in mean balanced test accuracies ranging 0.508–0.772 across
models in the 1 Hz condition and 0.472–0.732 in the 4 Hz
condition. Across participants at both 1 and 4 Hz presentations,
both with default and tuned parameters, all alpha modeling
underperformed relative to accuracy estimates from the ERP
RDA/KDE model (Wilcoxon: all p values ≤ 0.008). Alpha
attenuation effects were significantly correlated with all default
classifier mean test accuracy estimates at 1 Hz (p values ≤ 0.039),
with the expected exception that there was no meaningful
correlation between alpha attenuation and the Uniform Random
model. In contrast, alpha attenuation in the 4 Hz condition was
largely unrelated to accuracy estimates from the default classifiers
(p values ≥ 0.249), except for a weak correlation between
alpha and Logistic Regression model estimates [rs(10) = −0.515,
p = 0.087].

All alpha models using default window parameters in the 1 Hz
condition yielded mean test accuracies with a statistically higher
median than chance (Uniform Random model, Mdn = 0.509;
all p values ≤ 0.005). However, these relationships were much
weaker during 4 Hz presentations, such that none of the
three alpha classifiers were statistically distinguishable from the
Uniform Random model (Mdn = 0.481; p values ≥ 0.06).
Using individually tuned baseline and effect window latencies,
all alpha models performed above chance (Mdn = 0.514) in
the 1 Hz condition (all p values ≤ 0.005). In the 4 Hz
condition however, Tangent Space (Mdn = 0.523) accuracies
fell to the level of the Uniform Random model (Mdn = 0.501;
p = 0.126), though the Logistic Regression (Mdn = 0.542)
and Support Vector (Mdn = 0.533) models performed above

chance (p values ≤ 0.050). Expectedly, tuned classifier mean
test accuracies demonstrated higher median values for Logistic
Regression models in both the 1 Hz (p = 0.045) and 4 Hz
conditions (p = 0.005), relative to their default-parameter
counterparts. Parameter tuning had no significant effect on the
accuracy estimates of the Uniform Random, Support Vector, or
Tangent Space models.

Supplementary Analyses
Using tuned time-frequency analysis parameters, we reprocessed
and reanalyzed the alpha data in BrainVision Analyzer in order
to describe changes due to altered baseline and effect windows.
Because tuning was performed using all four occipitoparietal
channels, the supplementary across-participant analysis only
utilized the pooled signal. Alpha activity distributions were
normally distributed across participants. However, to remain
consistent with our other analyses, median comparisons were
again run using related-samples Wilcoxon signed-ranks tests.
Median target (Mdn = −0.179) alpha activity was lower than
median non-target activity (Mdn = 0.284) at 1 Hz presentations,
and the same was true for targets (Mdn = 0.001) and non-
targets (Mdn = 0.187) in the 4 Hz condition (both comparisons:
Z = −2.589, p = 0.010). Alpha attenuation effects measured after
parameter tuning did not correlate with any of the ERP target
effects [all absolute rs(10) values ≤ 0.336; all p values ≥ 0.286].

Much like the within-participant alpha distributions discussed
in sections “Alpha Effects: Within-Participants” and “Artifact
Rejection,” distributions generated from individually tuned
parameters remained non-normal in shape. Three previously
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FIGURE 5 | Intra-individual alpha attenuation effects. Median target and non-target alpha activity Z-scores from individual RSVP calibrations. Data are sorted
according to presentation rate and electrode source. Lines connect corresponding non-target and target estimates from within-individual recordings. Significant
within-participant non-target/target median differences (p < 0.05; Mann-Whitney U-tests) are denoted by solid lines; non-significant differences (p > 0.05) are drawn
as dashed lines. Plots show clear variability in the attenuation effect across individual participants and presentation conditions. Alpha attenuation effects appear to be
greater at Pz for select individuals, but also more variable across participants.

significant alpha attenuation effects weakened to a trending
state (p < 0.10), while another 3 were no longer significant
following tuning procedures. However, two previously not-
significant effects shifted to a trending state (note: one of these
was in the opposite direction), while another became significant.
Interestingly, the one effect that moved from not-significant to
significant following tuning was observed in an individual with
one of the weaker alpha attention effects, as measured in the
primary analysis. Overall, following tuning procedures in the
1 Hz condition, 7/12 individuals demonstrated alpha attenuation
in at least one signal source (6 at both pooled and Pz-only signals;
1 only in the pooled signal), with an additional 3 trending (2 in
the pooled signal; 1 at Pz-only). One-half (6/12) of participants
demonstrated alpha attenuation in at least one tuned signal
source during the 4 Hz condition (1 in both sources; 3 only in
the pooled signal; 2 at Pz-only).

DISCUSSION

The primary objectives of this exploratory study were (1) to
detect target-related posterior alpha attenuation in a BCI RSVP
paradigm, and (2) to discern whether that attenuation effect
varied according to the presentation rate of the stimuli in

that task. Secondarily, this study attempted to describe the
relationship between changes in alpha and coincident ERP
signals, and explore a subset of classification approaches to
distinguish target and non-target alpha responses.

Summary of Findings
As hypothesized, we observed significant event-related
attenuation of posterior alpha activity across participants
for target letter stimuli relative to non-targets. This alpha
attenuation effect was observed in both 1 and 4 Hz presentation
conditions, though as expected, target-related attenuation was
significantly greater in the 1 Hz condition. Within-participant
findings were similar, such that more individuals demonstrated
target-related posterior alpha attenuation in the 1 Hz condition
than in the 4 Hz condition. Significant target effects were
observed for both N200 and P300 ERPs, but were unrelated to
alpha attenuation. Classifier models trained to target/non-target
classification of alpha activity performed above chance, but
underperformed markedly relative to RDA/KDE estimates
generated from ERP time-series data. Alpha attenuation effects
were observed using Z-transforms based on pre-defined baseline
and response windows. Individualized parameter tuning of these
temporal windows resulted in improved performance of one of
the alpha classifiers.
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FIGURE 6 | Grand average ERP waveforms. Grand average ERP waveforms averaged across all participants (±SEM), relative to stimulus onset (t = 0). Plots are
separated by condition (presentation rate; stimulus class) and electrode source (pooled occipitoparietal sites; Pz-only). Highlighted temporal regions illustrate default
window settings of peak detection for the N200 and P300 potentials.

The Disconnect Between Alpha Activity
and Event-Related Potentials
In review, there is evidence that (1) posterior alpha and ERPs such
as the P300 can capture similar attentional processes (Yordanova
et al., 2001; Grent-’T-Jong et al., 2011), but also, that (2) alpha
activity and attentional ERPs are not necessarily identical neural
indices of attention (Klimesch, 1999; Peng et al., 2012). In
agreement with these previous findings, the non-overlapping
nature of alpha, N200, and P300 activity was apparent in the
current study. Specifically, target-related fluctuations in alpha
activity did not correspond to similar target-related changes in
N200 or P300 signals across individuals.

Individual Differences
Although posterior alpha attenuation was visible across-
participants, within-participant analyses revealed clear individual
differences in both the presence and size of the alpha
attenuation effect. Individual differences in alpha activity are
well-documented, including differences in IAF (Corcoran et al.,
2018), as well as the amount and distribution of alpha activity
(Bazanova and Vernon, 2014). With these differences in mind,
it seems fair to question the absolute utility of posterior alpha
for BCI target classification across all individuals. As shown in
Figure 5, some participants demonstrated almost no attention-
related differences in alpha activity, while a handful displayed
consistent and pronounced effects. To be sure, this inter-
individual variability is not a new difficulty in the field of
BCI. User-centered design has long been an important topic
(Akcakaya et al., 2014; Moghadamfalahi et al., 2015), and
even some of the few lateralized posterior alpha designs have

documented individual differences among users (Horschig et al.,
2015). A viable approach to an alpha-compatible BCI likely
includes identification of alpha “responders,” or individuals who
demonstrate target-related changes in alpha activity, prior to
including alpha activity as a classifiable signal in any machine
learning model. To this point, a study from van Gerven and
Jensen (2009) characterized different patterns of classification
performance in participants sorted according to their “good” or
“bad” alpha responses. Prior work has also demonstrated the
benefits of personalizing channel selection to measure posterior
alpha for BCI control (van Gerven et al., 2009).

Electroencephalography Ensemble
Methods
With high-dimensional data such as EEG, one alternative to
classification using a single model is to instead use ensemble
learning to combine multiple EEG classification approaches
(Sun et al., 2007). Unlike multi-modal approaches that integrate
different input modalities (e.g., EEG, EOG, EMG) to improve
BCI function (Li et al., 2016), ensemble learning can deploy
multiple analytic models for a single input. To this end, the
current RSVP speller might be altered to consider an ensemble
that simultaneously includes both ERP information and posterior
alpha activity. Indeed, recent research has combined event-
related frequency band information with ERP information for
ensemble classification in a motor imagery task (Luo et al.,
2020). A past investigation has also proposed that posterior
alpha may be simultaneously useful as a marker of both
attentional engagement and abrupt changes in mental state,
including frustration (Myrden and Chau, 2017). Given the
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FIGURE 7 | Difference waveforms. Grand average difference waveforms illustrate target minus non-target signals. Alpha attenuation (column 1) and ERP target
effects (column 2) are separated according to signal source and presentation rate condition. Highlighted temporal windows correspond to baselines and measured
attenuation (alpha), and default peak detection settings (ERPs). There is a clear reduction in alpha attenuation in the 4 Hz condition, while N200 and P300 target
effects remain relatively similar in magnitude between presentation rates.

comparatively low performance of the alpha classifiers in this
study, it seems prudent to explore integration of alpha and
ERPs to improve classification of user intent in RSVP and other
comparable paradigms.

LIMITATIONS AND FUTURE DIRECTIONS

Generalizability of this study is hindered by a small sample
size (n = 12). Participants were generally healthy adults, so it
remains to be seen whether our results extend to individuals

FIGURE 8 | Classifier comparisons. Bars illustrate the mean balanced test
accuracies (±SEM) of multiple classifiers in the 1 and 4 Hz presentation
conditions. With the exception of RDA/KDE, which quantifies performance of
the ERP time-series classification, all other classifiers examine time-series
alpha activity. The Uniform Random model was used as a control classifier
with an expected classification accuracy of 0.50.

with locked-in syndrome or other clinical populations. The
use of pooled occipital sites for alpha and ERP analyses
was relatively coarse, and future research would benefit from
use of a recording apparatus of higher spatial resolution in
order to evaluate topographic features of alpha attenuation in
the context of RSVP. Artifact rejection methods resulted in
only marginal changes to the data, possibly due to changes
in statistical power after removing trials, since the across-
participant measures did not change significantly following
these rejections. Regardless, we recommend using these artifact
rejection procedures consistently in future investigations. While
overlapping processing of sequential visual stimuli is an inherent
consequence of the RSVP design, the overlap was clearly
detrimental to our measures of alpha activity in the 4 Hz
condition. Additional work may benefit from attempts at noise
reduction. A possible solution for this phenomenon would be
to jitter stimulus duration to attenuate the SSVEP signal and
associated harmonics. Lastly, though care was taken to match the
preprocessing steps in both BrainVision and Python, there are
minor differences inherent in the use of two different software
packages. Future research would benefit from the use of a single,
integrated toolbox.

CONCLUSION

Event-related changes in posterior alpha activity are sensitive
to visual attention during a common BCI speller paradigm,
RSVP. Machine learning classifiers were able to discern target
and non-target alpha responses at levels above chance, though
these approaches were well below the current standards of
more accepted ERP classifiers. However, the patterns of alpha
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attenuation observed in this study were not redundant when
compared to ERPs, even though these signals capture similar
aspects of visual attention. These findings also offer data
on posterior alpha in a paradigm that differs from previous
investigations which rely on covert spatial attention. For these
reasons, posterior alpha activity is a viable candidate signal for
inclusion in future BCI designs, most expectedly in ensemble
with other EEG control measures.
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The flow state – an experience of complete absorption in an activity – is linked with less
self-referential processing and increased arousal. We used the heart-evoked potential
(HEP), an index representing brain–heart interaction, as well as indices of peripheral
physiology to assess the state of flow in individuals playing a video game. 22 gamers
and 21 non-gamers played the video game Thumper for 25 min while their brain and
cardiorespiratory signals were simultaneously recorded. The more participants were
absorbed in the game, the less they thought about time and the faster time passed
subjectively. On the cortical level, the fronto-central HEP amplitude was significantly
lower while playing the game compared to resting states before and after the game,
reflecting less self-referential processing while playing. This HEP effect corresponded
with lower activity during gameplay in brain regions contributing to interoceptive
processing. The HEP amplitude predicted the level of absorption in the game. While
the HEP amplitude was overall lower during the gaming session than during the resting
states, within the gaming session the amplitude of HEP was positively associated with
absorption. Since higher absorption was related to higher performance in the game, the
higher HEP in more absorbed individuals reflects more efficient brain–heart interaction,
which is necessary for efficient game play. On the physiological level, a higher level
of flow was associated with increased overall sympathetic activity and less inhibited
parasympathetic activity toward the end of the game. These results are building blocks
for future neurophysiological assessments of flow.

Keywords: experience of flow, heart-evoked potential, brain–heart interaction, self-referential processing,
arousal, time perception

INTRODUCTION

Csikszentmihalyi (1975) described the state of flow as an optimal experience that occurs when an
individual is immersed in an activity and feels enjoyment. The main antecedents of this experiential
state are clear goals, immediate feedback, and an optimal balance between the individual’s skills
and the level of challenge posed by the activity (the skill-challenge balance; Csikszentmihalyi and
Csikszentmihalyi, 1992; Engeser and Rheinberg, 2008; Keller and Blomann, 2008; Fong et al.,
2015). According to the flow-channel model (Csikszentmihalyi, 1975, 1990; Figure 1), whenever
the challenge level of the activity outweighs the performer’s skill level, the person will become
frustrated or anxious. In contrast, when the level of challenge is lower than the individual’s skill
level, they will feel bored. The flow experience has been associated with successful performance
and feelings of competence (Engeser and Rheinberg, 2008; Jin, 2012; Rutrecht et al., 2021),
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FIGURE 1 | The flow-channel model (Csikszentmihalyi, 1975).

since frustration and boredom lead to diminished concentration
and, consequently, poor performance (Perone et al., 2019). Flow
is often linked with the experience of losing the sense of time
and of the self (Csikszentmihalyi and Csikszentmihalyi, 1992;
Wittmann, 2015, 2018; Rutrecht et al., 2021).

The underlying physiological and neural mechanisms of the
flow state are beginning to be studied extensively. Researchers
have attempted to map specific neurophysiological indicators of
this mental state by employing a skill-challenge balance. So far,
the results have been heterogeneous and inconclusive in terms
of identifying a unified mechanism underlying this state (for
more details see our review, Khoshnoud et al., 2020). In the
present study, we focused on two important mechanisms of the
experience of flow, namely heightened arousal as manifested in
elevated cardiovascular (de Manzano et al., 2010; Chanel et al.,
2011; Keller et al., 2011; Tian et al., 2017; De Sampaio Barros et al.,
2018) and loss of self-related processing typically associated with
decreased activity in the default-mode network (DMN, Ulrich
et al., 2014, 2016, 2018; De Sampaio Barros et al., 2018).

Video games are promising tools for systematically inducing
flow under controlled laboratory conditions. They offer clear
goals, immediate feedback, and challenging tasks with the
possibility of modulating the level of difficulty for achieving
the desired skill-challenge balance (Salen and Zimmerman,
2003; Alvarez Igarzábal, 2019). For this reason, we chose to
investigate arousal and self-related processing during flow states
with the commercially available video game Thumper, which
our previous research had shown to be highly flow inducing
(Rutrecht et al., 2021). We tested experienced gamers and non-
gamers who played the game for 25 min and recorded their
electroencephalography (EEG) and cardiorespiratory signals.
Gamers were recruited because their experience with video
games would in principle allow them to more easily familiarize
themselves with the game and enter a flow state. The non-gamer
sample constituted the control group to allow us to compare
how individuals lacking gaming skills would experience the play
sessions – i.e., if they would enter a state of flow or not. This study
was conducted in the context of the VIRTUALTIMES project
with the goal of developing a therapeutic game that could reduce
the symptoms of patients with psychiatric disorders through
the induction of flow states. Recent conceptualizations suggest

that inducing the experience of flow with video games could
help reduce pathologically increased self-rumination (Kühn et al.,
2018), which is associated with time distortions in many patient
groups with psychopathologies, such as depression, attention
deficit hyperactivity disorder, and addiction (Wittmann et al.,
2007; Khoshnoud et al., 2018; Vogel et al., 2018). The game
resulting from the VIRTUALTIMES project should effectively
induce flow states regardless of the gaming experience of the
player. We included the non-gamer sample for this reason
as well, since potential differences between groups (or a lack
thereof) would inform the design of the game. Continuous play,
which is the more natural way of playing video games – by
progressing and encountering increasingly difficult challenges –
was preferred over difficulty modulation, in which the level of
challenge is adapted to the player’s performance. Employing
such form of difficulty modulation to achieve the skill-challenge
balance can facilitate flow induction, but does not necessarily lead
to a state of flow.

Flow, Selflessness, and Brain–Heart
Interaction
Reduced self-awareness is one of the main characteristics of the
flow experience (Csikszentmihalyi, 1975, 1990). The high levels
of concentration and focused attention demanded by the task
at hand restrict resource allocation for task-irrelevant demands,
like body- and self-awareness. Several studies reported less self-
referential processing during the flow experience by showing
deactivation of the DMN, specifically the medial prefrontal cortex
(MPFC) (Sadlo, 2016; Ulrich et al., 2016, 2014, 2018; De Sampaio
Barros et al., 2018; Ju and Wallraven, 2019). DMN activity is
associated with relaxation, mind-wandering, and self-referential
thinking, and it diminishes during task-focused and goal-directed
actions (Raichle et al., 2001; Goldberg et al., 2006). Increased
activation of the insular cortex has also been reported during flow
states (Ulrich et al., 2016; Huskey et al., 2018; Ju and Wallraven,
2019). The insular cortex is the primary visceral area (Craig,
2009). Recent neuroscientific research has shown that cortical
processing of signals from internal visceral organs, like the heart
and the gut, are important for cognition (Park et al., 2014;
Critchley and Garfinkel, 2018), self-consciousness (Damasio and
Carvalho, 2013; Tallon-Baudry et al., 2018; Park and Blanke,
2019), and subjective time (Craig, 2009; Wittmann, 2013; Teghil
et al., 2020). According to Tallon-Baudry et al. (2018), the gut
and the heart are similar to ticking clocks that constantly send
intrinsically generated information up to the central nervous
system. By monitoring this bodily information, the brain creates
a neural reference frame for developing a first-person perspective.

To evaluate self-related processing during moments of flow,
we investigated the brain–heart interaction by exploring possible
associations between the heart-evoked potential (HEP) – an
index representing the neural processing of cardiac afferents –
and the flow experience while playing the game. HEPs are
cortical electrophysiological responses in the brain that are
time-locked to the R-peaks of the simultaneously measured
electrocardiography (ECG) signal (Montoya et al., 1993;
Schandry and Montoya, 1996). The precise pathways underlying
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the HEP are unknown. In addition to cardiac and blood vessel
receptors, it has been argued that cardiac afferents are projected
to the cortex through tactile and proprioceptive receptors
(Azzalini et al., 2019; Park and Blanke, 2019). Research has
shown that self-relatedness (Babo-Rebelo et al., 2016, 2019;
Park et al., 2016; Sel et al., 2017), focus of attention (Petzschner
et al., 2019), emotional feelings (Fukushima et al., 2011; Shao
et al., 2011), and arousal (Luft and Bhattacharya, 2015) modulate
the HEP amplitude.

Despite the established relationship between selfhood and
the HEP amplitude, the findings regarding the direction of
this association are mixed; i.e., there are positive and negative
correlations between the HEP amplitude and self-relatedness.
Employing a full-body illusion paradigm, Park et al. (2016)
identified a relationship between the HEP amplitude over fronto-
central scalp sensors and experimentally modulated changes
in self-identification. The negative HEP amplitude was more
pronounced during the condition with lower self-identification
rating compared to the condition with higher self-identification.
A study conducted by Babo-Rebelo et al. (2016) revealed a
direct link between self-relatedness of spontaneous thoughts and
the HEP amplitude. The HEP amplitude was evaluated in two
conditions: one where participants were the subject (first-person
perspective) of presented thoughts (“I” as in “I like him”) and
another where they were the object of the thoughts (“Me” as in
“He likes me”). The amplitude of the HEP in the mid-posterior
regions of the brain co-varied negatively with the engagement of
“I”, showing higher amplitudes for lower ratings on the “I” scale.
The HEP amplitude also differed between “high” and “low” trials
on the “Me” scale over medial frontal sensors with higher HEP
amplitudes for the trials with higher score of the “Me” scale.

In the present work, we investigated the link between flow and
the HEP amplitude as an index reflecting self-related processing.
This was the first time that the HEP was studied in the context
of flow, as far as we know. Considering the connection between
the HEP amplitude and the self (Park et al., 2016; Babo-Rebelo
et al., 2019, 2016), as well as the existing overlap between the
cortical sources of the HEP and the DMN (Park and Blanke,
2019), one can expect to see a decrease in neural responses
to the heartbeats and a lower HEP amplitude while playing
a video game compared to the resting state. This means that
self-referential processing is lower while gaming than while
resting (Hypothesis1). The aforementioned associations between
selfhood and the amplitude of the HEP may refer to a distinct
HEP during gameplay as a result of experiencing flow and a loss
of self-awareness. Considering the mixed nature of the direction
of the reported associations, we expected a relationship between
flow and the HEP amplitude without making any assumptions
regarding its direction (Hypothesis 2).

Flow and Arousal
The feeling of enjoyment along with high levels of concentration
on a given task suggests that flow states are modulated through
arousal levels, which are related to the activation of the autonomic
nervous system (ANS). The two branches of the ANS, the
sympathetic nervous system (SNS, responsible for “fight-or-
flight” responses) and the parasympathetic nervous system

(PNS, responsible for “rest-and-digest” responses) operate as
excitatory and inhibitory physiological mechanisms, respectively
(Cacioppo et al., 2007). Numerous indicators of sympathetic
and parasympathetic activity have been studied in flow
research, including cardiovascular, electrodermal, and respiratory
measures. Aggregating the existing empirical results, both linear
and non-linear associations between the activity of the autonomic
nervous system and flow have been reported (Khoshnoud et al.,
2020). The most established theory links the experience of flow
to high levels of the SNS activity (Kivikangas, 2006; de Manzano
et al., 2010). The reported positive association between the
electrodermal activity (EDA) as a robust indicator of sympathetic
arousal (Critchley and Nagai, 2013) and flow (Nacke and Lindley,
2010; Léger et al., 2014; Ulrich et al., 2016, 2014) confirms this
theory. Increased flow while playing a video game was reported
to be related to an increased heart rate (de Manzano et al., 2010;
Bian et al., 2016), a faster respiration rate (Bian et al., 2016; Tian
et al., 2017), high levels of salivary cortisol (Keller et al., 2011), and
lower heart-rate variability (HRV) measures, specifically lower
high-frequency (HF) HRV (Chanel et al., 2011; Keller et al., 2011;
Harmat et al., 2015; Harris et al., 2016; De Sampaio Barros et al.,
2018; Kozhevnikov et al., 2018). HF-HRV reflects the variance in
the 0.15–0.4 Hz frequency range of the heart rate and is a reliable
indicator of parasympathetic activity (Laborde et al., 2017; Shaffer
and Ginsberg, 2017).

In two studies, the reported heightened sympathetic activity
during flow was associated with the modulated parasympathetic
activity manifested by deeper respiration (de Manzano et al.,
2010; Harmat et al., 2015; Tian et al., 2017). According
to Porges’ (1995, 2021) polyvagal theory, parasympathetic
influences are essential for an individual’s successful adaptation to
changing environmental demands. Several studies have suggested
a connection between parasympathetic activity and cognitive
performance, working memory, and attention (Hansen et al.,
2003; Frewen et al., 2013; Mahinrad et al., 2016; Tsakiris and
De Preester, 2018). The so-called parasympathetic modulation of
sympathetic activity may describe flow as a state of heightened
arousal accompanied by a feeling of pleasure and, at the same
time, seemingly paradoxical relaxation, which is suggested to
act as a physiological coping mechanism for high demands of
attention in moments of flow (de Manzano et al., 2010; Ullén
et al., 2010).

In light of the above-mentioned findings, we expected to see
a positive association between sympathetic activity and the self-
reported flow measures. Given the reported connection between
parasympathetic activity and attention, relatively increased
parasympathetic activity should help cope with the changing
attentional demands of the task. We assumed that more
flow would be associated with increased sympathetic and
parasympathetic activity (Hypothesis 3).

MATERIALS AND METHODS

Participants
Participants were 43 healthy subjects (Gamers: n = 22; 19 males,
3 females; Non-Gamers: n = 21; 18 males, 3 females) with
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an average age of 24.90 ± 3.98 years (Gamers: 25.59 ± 4.56,
Non-Gamers: 24.19 ± 3.23). The age difference between the
two groups was not significant (t(41) = –1.15, p = 0.254). All
participants were recruited via online platforms (Student Services
University Freiburg), flyers, word-of-mouth dissemination, and
through advertisements on social media and gaming forums.
As an inclusion criterion for being a gamer, individuals had
to: (a) consider themselves a gamer, (b) have more than
five years of experience playing videogames regularly, and (c)
have played videogames in the past six months for at least
5 h a week. On average, gamers had 15.36 ± 4.97 years of
experience and non-gamers, 6.28 ± 7.3 years with an average
of 15.97 ± 8.89 and 0.48 ± 0.54 h of playing games in a week,
respectively. Gaming experience in years of playing (t(41) = –
4.77, p < 0.001) and average hours of gameplay in a week
(t(40) = –7.96, p < 0.001) were significantly higher in gamers
than in non-gamers. No significant difference was identified for
the educational level between the two groups (U = 263, p = 0.4).
This study was approved by the local Ethics Committee of the
Institute for Frontier Areas of Psychology and Mental Health
(IGPP_2019_01).

Questionnaires
The state of flow was measured with the 10-item Flow Short
Scale (FSS, Rheinberg and Vollmeyer, 2003) with seven-point
Likert scales ranging from 1 (not at all) to 7 (very much)
which are linked to two subscales: absorption and fluency.
Absorption is measured by four items (e.g., “I am totally
absorbed in what I am doing” or “I don’t notice time
passing”), while the remaining six items index the fluency
of performance (e.g., “My thoughts/activities run fluidly and
smoothly” or “The right thoughts/movements occur of their
own accord”). Considering the flow-channel model (Figure 1),
the absorption subscale can be considered a stronger indicator
of flow, while fluency can also occur in situations in which
external demands are lower than individual skills (Peifer et al.,
2014). Besides the overall flow score comprising all items (FSS
mean score), we also looked at the absorption and fluency
subscales’ mean values separately in their relationships with the
other behavioral and physiological measures. The Cronbach’s
alpha values found in our dataset for the FSS mean score,
the absorption, and the fluency subscales are 0.847, 0.768, and
0.787, respectively.

We used the Subjective Time, Self, and Space (STSS)
questionnaire (Jokic et al., 2018) to assess the effects of the gaming
session on time and bodily perception. This questionnaire
consists of an item to evaluate bodily awareness (“How
intensively did you experience your body most of the time?”)
with a non-verbal pictorial scale with the answer category ranging
from 1 to 7. Three items assess the experience of time: (1)
“Intuitively, without thinking about it, the gameplay session
lasted ____ minutes and ____ seconds” (estimated duration); (2)
“How often did you think about time?” (thinking about time);
and (3) “How fast did time pass?” (speed of time passage). The
latter two time questions were answered with a vertical streak on a
visual analog scale (a 10-centimeter-long horizontal line) ranging
from “not at all” to “a lot” on question two and from “very slowly”

to “very fast” on question three. The Self-Assessment Manikin
(SAM) scale (Bradley and Lang, 1994) was used to measure
valence (SAM-valence) and arousal (SAM-arousal) changes with
non-verbal, pictorial scales after vs. before the gaming session.
We used the 5-point version of the scales.

Experimental Design
The study took place on 3 consecutive days. The first two days
were training sessions for participants to learn how to play the
chosen game and on the third day the participants’ EEG and
cardiorespiratory signals were recorded simultaneously while
they played the game. The video game we used was Thumper,
an action/rhythm game developed by the studio Drool and
released in 2016. We acquired and launched the game through
the platform Steam. In this game, the player controls a silver
beetle that moves forward automatically on a track within an
abstract landscape. The player watches from behind the beetle,
so that s/he can react to different elements that are placed on
the track. The track also presents the player with obstacles like
sharp curves or spikes that can damage the beetle if they are not
averted in time. Players can listen to the rhythm induced by the
soundtrack to help with the timing of these actions. The goal of
this game is to achieve the highest score possible in each level and
level section by hitting as many lights as possible and avoiding
collisions with obstacles.

The first session lasted 90 min in which participants were
asked to read the information sheet, sign the consent form,
and answer questions regarding their well-being. After that the
experimenter explained the gameplay basics to the participants
and let them play for about 60 min, starting from the first level of
the game. In the second training session, participants played the
game for another 60 min, starting from the level they had reached
in the previous session, unless they preferred to start at a lower
level. In the final recording session, participants could choose the
level at which they felt comfortable to start. We recommended
that they neither pick a level that was too challenging nor one
that was too easy for them. This was done to increase the chances
that they would enter a flow state during the gameplay session.
Gamers and non-gamers therefore played at different game levels
according to their skills, since higher levels are more challenging
than lower ones.

In the final session, participants were asked to sit in a
comfortable chair watching a screen positioned 70 cm in front
of them in an electrically shielded room. They were requested
to fill out the SAM questionnaire after all the electrodes had
been placed. The recording session had three stages: a pre-
game resting-state period of 5 min with eyes open, followed
by 25 min of gameplay, and then another 5 min with a post-
game, resting-state recording. Participants were asked to play
Thumper continuously for 25 min, since there seems to be
an adaptation period while playing after which participants
tend to lose track of time (Tobin et al., 2010; Bisson et al.,
2012). Yun et al. (2017) reported that 87.5% of the participants
in their study required at least 25 min to get into the
flow state. After the post-game session, participants filled out
the SAM questionnaire once again, as well as the post-task
questionnaires STSS, and FSS. After the task, they watched their

Frontiers in Human Neuroscience | www.frontiersin.org 4 April 2022 | Volume 16 | Article 81983434

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-819834 April 23, 2022 Time: 14:38 # 5

Khoshnoud et al. Brain–Heart Interaction and Flow

own recorded gameplay and answered questions regarding their
subjective experience.

Signal Recordings
Continuous EEG signals were recorded using a 32-channel
electrocap (ActiCHamp, BrainVision) with active electrodes
positioned according to the extended 10–10 international system.
All electrodes were referenced to the Fz electrode, with the
ground electrode placed on the forehead. Electrode impedances
were kept below 10 k�. EEG signals were digitized with a 1000 Hz
sampling rate and band-pass filtered within the 0.01–120 Hz
range. One electrocardiogram (ECG) signal was acquired using
three Ag/AgCl electrodes, which were positioned according to
the Lead II Einthoven configuration: two electrodes placed on
the right clavicle and the left hip/abdomen (active electrodes),
and one electrode placed on the left clavicle (ground electrode).
A respiratory signal was acquired using the Brain Vision
respiration belt attached to the participant’s chest or abdomen,
depending on the subject’s breathing mode. All peripheral
signals were co-registered with the EEG via the auxiliary inputs
of the amplifier.

Data Processing
Electroencephalography Analysis
The recorded EEG signals were processed with the Matlab
software using custom-written scripts and the EEGLAB toolbox
functions. The raw EEG signals were first down-sampled to
250 Hz and filtered with a band pass filter of 1.5–70 Hz. After
this initial filtering step, line noise and other large non-stationary
artifacts were identified and cleaned using the artifact subspace
reconstruction (ASR) approach (Chang et al., 2020). The cleaned
signals were re-referenced to a common average reference.
To identify other non-brain related EEG contamination (e.g.,
eye-blinks, muscle, heart, and channel noise), we used the
adaptive mixture independent component analysis (AMICA;
Palmer et al., 2006, 2011, 2008) to decompose the EEG signal into
its independent components (ICs). AMICA has shown superior
performance among the blind-source separation algorithms for
EEG decomposition (Delorme et al., 2012). After decomposing
the signals into ICs, their equivalent current dipoles were also
computed using the three-shell, boundary-element-method head
model based on the MNI brain template using the DIPFIT
plugin of the EEGLAB toolbox1. The identified ICs were then
automatically classified and labeled using a machine-learning
approach, which has been trained to classify the ICs based
on several characteristics, such as spectral properties and brain
topography (Pion-Tonachini et al., 2019). The brain-related ICs,
which were labeled with the probability higher than 0.5 and had
a dipole residual variance less than 0.2, were selected for further
analysis. This procedure cleans the signal from eye-blinks, muscle
noise, heart artifact, and other contamination and preserves pure
brain-related activity. To calculate the average alpha frequency
band (8 – 12 Hz) power, we used the Welch’s power-spectral
density estimation method (using the hamming window with the
size of 2000 samples and 10% overlap between windows).

1http://sccn.ucsd.edu/wiki/A08:_DIPFIT

Electrocardiography Analysis
The raw ECG signals were imported to the Kubios Heart Rate
Analysis Software (Kubios, Inc., University of Western Finland,
Finland) to calculate inter-beat intervals (IBIs) of successive
heartbeats and associated heart-rate variability measures.
Recordings were first screened manually for ectopic and missing
beats, after which the appropriate artifact-removal threshold
available in Kubios was applied. The average IBI was calculated
for each condition and each subject. Power-spectrum analysis
was performed using the Fast Fourier Transformation (FFT)
method provided by the software, and then the log power
of the low-frequency HRV (LF-HRV; 0.04–0.15 Hz) and the
high-frequency HRV (HF-HRV; 0.15–0.4 Hz) were computed.
Since the HF-HRV is influenced by breathing rates below 9 or
above 24 cycles per minute (Malik et al., 1996; Laborde et al.,
2017), we used the obtained respiration rate from the respiratory
signal to control for respiratory rates in these ranges. Participants
whose breathing rates exceeded these limits were excluded from
the frequency-domain HRV analysis.

Respiration Analysis
The recorded respiratory signals were first down sampled to
25 Hz and lowpass filtered using an infinite-impulse-response
(IIR) lowpass filter with the order of 8 and passband frequency
of 2 Hz. Since the respiratory signals were contaminated with
large artifacts due to movements, the signal amplitudes outside
the chosen threshold (mean ± 2 × S.D.) were replaced with
the interpolated values. Then the local maxima were identified
and the average respiration rate (RR-mean) and the standard
deviation of the respiration rate (RR-STD) were calculated.

Heartbeat-Evoked Potentials
For the HEP analysis, cardiac R peaks of the ECG signal were
detected offline and used as triggers for the EEG segmentation
of the pre-processed EEG signals. The R-peak detection was
performed by decomposing the ECG signals using discrete
wavelet transform analysis with the “sym4” wavelets. The “sym4”
wavelet resembles the QRS complex of ECG signals, which makes
it a good choice for the QRS detection. Wavelet decomposition
was performed for five levels, and then the signal approximation
was built from the wavelet coefficients of levels 4 and 5. The exact
location of R peaks was identified using the squared absolute
values of the signal approximation and a peak-finding algorithm.
EEG epochs were then extracted time-locked from 200 ms before
to 600 ms after the detected R-peaks. Baseline correction was
performed from –200 to –100 ms time-locked to the R peak
for each epoch. The HEP signals were then averaged for each
electrode, each condition, and each subject.

Source Localization
Cortical source reconstruction and surface visualization were
implemented by the BrainStorm toolbox (version January 04,
2021; Tadel et al., 2011) on the Matlab software. After co-
registration of the EEG sensors and the template anatomy (MNI
brain template, ICBM152) for each participant, the forward
model was calculated using the boundary element method from
the open-source software OpenMEEG (Gramfort et al., 2010) on
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the cortical surface of the template brain. Cortical currents for
each subject and each condition were estimated by a distributed
model consisting of 15,002 current dipoles using the weighted
minimum-norm, current-estimation method with the dynamical
statistical parametric mapping (dSPM) providing z-score cortical
currents. The orientation of dipoles was considered constraint
and normal to the cortex. The cortical currents were then spatially
smoothed (7 mm) and averaged over 400 to 500 ms after the
R-peak (in which a significant difference between the pre-game
and the game was found). The anatomical description is based on
the Desikan–Killiany (Desikan et al., 2006) and the Brodmann
parcellations available in the BrainStorm toolbox.

Statistical Analysis
(1) For between-subject behavioral comparisons, we computed
the independent t-test and, in non-normal distributions, the
Mann-Whitney U-test. (2) Peripheral measure comparisons were
performed using repeated-measure ANOVAs with condition
(pre-game, game, and post-game) as a within-subject factor,
group (gamers vs. non-gamers) as a between-subject factor,
and each measure as a dependent variable. Degrees of freedom
in repeated-measure ANOVAs were corrected according to
the Greenhouse-Geisser method for violation of the sphericity
assumption when appropriate. (3) Correlations were analyzed
with Pearson’s correlation coefficients (r) affording parametric
assumptions, such as a normal distribution. Whenever we found
a significant effect using the Shapiro-Wilk test for non-normality
in one of the two variables, we reported the Spearman correlation
coefficient (ρ). Analysis significance levels were set to p < 0.05
for each correlation. The false-discovery rate (FDR) method, a
multiple-comparisons-correction procedure by Benjamini and
Hochberg (1995) was used to control for multiple tests for each
of the correlation tables.

(4) Differences in the HEPs between conditions and
the corresponding cortical sources were tested using two
statistical methods. One was the cluster-based permutation
t-test implemented in the Fieldtrip toolbox, which is available
in the BrainStorm toolbox. With this procedure, individual
samples with a t value higher than threshold (p < 0.05, two
tailed), are clustered in connected sets based on temporal and
spatial adjacency. For each cluster, cluster-level statistics are
assigned by taking the sum of the t values within a cluster,
and then the maximum of the cluster-level statistics is selected
for the evaluation of the null hypothesis. After shuffling the
condition labels 10,000 times, the two-tailed Monte-Carlo p value
corresponds to the proportion of elements in the distribution
of shuffled, maximal cluster-level statistics that exceeds the
observed maximum or minimum original cluster-level test
statistics. As this method uses maximal cluster-level test statistics,
it intrinsically controls for multiple comparisons in time and
space (Park et al., 2014). Without a priori selection of a time
window and region of interest, getting a significant result from
this method does not establish significance of effect for latency
or location (Sassenhagen and Draschkow, 2019). To test the
differences of the HEP amplitude in the sensory domain for
which we did not have an a priori assumption of a time window
and scalp locations, we used a non-parametric permutation test

with an FDR correction for multiple comparisons. After finding
the time window in which the HEP amplitude was significantly
different between conditions, the cortical-source differences were
tested with the cluster-based permutation t test and then the
non-parametric permutation test.

RESULTS

Subjective and Behavioral Results
Gamers vs. Non-gamers
By taking into account the outcomes of the two prior training
sessions, gamers started playing at significantly higher levels of
the game (t(41) = –4.342, p < 0.001) and achieved significantly
higher levels (t(41) = –4.030, p < 0.001) than non-gamers. No
significant differences were observed in performance between the
two groups in terms of total final score (t(41) = –1.449, p = 0.155)
and total final error (t(41) = 0.315, p = 0.754), which accumulated
during playing on the different levels of the game. As shown
in Supplementary Table 1 in the Supplementary Data, playing
Thumper elicited comparably high levels of flow (FSS mean score)
in both groups with the value of 4.86 ± 1.03 in non-gamers and
5.34 ± 0.77 in gamers (7 is the maximum value). There were no
significant differences between the two groups in self-reported
flow (t(41) = –1.741, p = 0.089) or for the subscales of absorption
(t(41) = –1.819, p = 0.076) and fluency (t(41) = –1.324, p = 0.193).
The estimated duration of the play session, how often participants
thought about time, and the passage of time were not significantly
different between the two groups. Neither emotional and arousal
change nor bodily awareness change before and after playing
Thumper were significantly different between groups. That is,
due to the fact that non-gamers and gamers played on their
respective lower and higher performance levels, there were no
group differences in related subjective experience of the game.

Correlations With Total Flow, Absorption, and Fluency
Scores
The correlation coefficients among the total flow/
absorption/fluency and other subjective measures considering all
participants are shown in Table 1. Since gamers and non-gamers
did not differ significantly in subjective variables, the correlation
coefficients and related p values for the separate groups are
presented in the Supplementary Data in Supplementary
Table 2. As shown in Table 1, the more flow participants
experienced, the less they thought about time (r =–0.481,
p = 0.001; FDR corrected), and the higher their total game scores
was (r = 0.466, p = 0.002, FDR corrected). The more absorbed
participants were in the game, the less they thought about time
(ρ = –0.530, p < 0.001, FDR corrected), and the faster time
passed for them (ρ = 0.423, p = 0.005, FDR corrected).

The last two correlations were driven mainly by the gamers.
A positive association was also identified between the absorption
score and measures of performance. More absorption in the game
led to a higher final gaming score (ρ = 0.452, p = 0.002, FDR
corrected) and lower total errors (ρ = –0.377, p = 0.013). Only two
correlations appear to be significant on a 1% alpha level for FSS-
Fluency. The more fluency participants felt, the less they thought
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TABLE 1 | Correlation coefficients and related p-Values between the total flow, absorption, and fluency subscales of flow and related variables for all subjects.

Measures & related variables Total flow (FSS mean score) Absorption (FSS-Absorption) Fluency (FSS-Fluency)

All r (p) All r (p) All r (p)

Thinking about time (STSS) –0.481rho (0.001FDR) –0.530rho (< 0.001)FDR –0.394rho (0.009)

Speed of time passage (STSS) 0.271 (0.079) 0.423rho (0.005)FDR 0.123 (0.433)

Estimated duration of play session (STSS) 0.101rho (0.519) 0.069rho (0.661) –0.075rho (0.635)

Total final score in the game 0.466 (0.002FDR) 0.452rho (0.002)FDR 0.390 (0.010)

Total final error in the game –0.343 (0.024) –0.377rho (0.013) –0.232 (0.135)

Bodily awareness (STSS) –0.160rho (0.307) –0.167rho (0.285) –0.149rho (0.342)

Arousal change (SAM-arousal)1 –0.032rho (0.839) 0.122rho (0.437) –0.141rho (0.368)

Valence change (SAM-valence)1 0.112rho (0.474) 0.213rho (0.170) 0.019rho (0.904)

rho Spearman correlation results.
1Difference between after and before the game session; after-before; significant correlations on the 5% level are marked in bold; FDR = Significant after false-discovery-rate
(FDR) adjustment.

about time (ρ = –0.394, p = 0.009; not significant after FDR), and
the higher their final game score was (r = 0.390, p = 0.010; not
significant after FDR).

The Heart-Evoked Potential Measure
Since HEP modulations have been reported in widely distributed
scalp electrodes (frontal, central, and parietal sites), as well as
a range of latencies between 200 and 600 ms after the R-peak
(Pollatos and Schandry, 2004; Babo-Rebelo et al., 2016; Park et al.,
2016; Petzschner et al., 2019), we performed a whole brain, whole
time-window analysis of the HEPs for the three conditions (pre-
game, game, and post-game) using non-parametric permutation
tests with 1000 randomizations. Across all subjects, the HEPs
significantly differed in the game condition compared to the
pre-game and the post-game conditions (considering α < 0.05
with FDR correction) over the fronto-central sensors (Fz, FC1,
FC2, Cz) in the time window of 400–500 ms after the R-peak
(Figure 2A). The grand average fronto-central HEP waveform
is shown for the three experimental conditions in Figure 2B.
A post hoc analysis revealed that the average HEP amplitude
in the time window of 400–500 ms after the R-peak was
significantly lower (considering α < 0.05 with FDR correction)
over the fronto-central sensors for the game condition compared
to the pre-game (p < 0.001) and the post-game (p < 0.001)
conditions (Figures 2B,C). The lower HEP amplitude during the
gameplay represents a lower neural response to the heartbeats
while playing, which corresponds with our first hypothesis. No
significant difference was found for the HEP waveform between
the pre-game and the post-game conditions.

The same suppression of the fronto-central HEP amplitude
during playing the game was observed within each group.
The topographical maps of the average HEP amplitude over
the 400 to 500 ms time window after the R-peak for each
condition, as well as the corresponding statistical p values
(derived from non-parametric permutation tests with 1000
randomizations), are separately presented for each group in the
Supplementary Figure 1a of the Supplementary Data. As shown
in Supplementary Figure 1b, during the game condition the
mean HEP amplitude over the 400–500 ms time window in
the gamers was slightly higher compared to the non-gamers,

which was not statistically significant (t(41) = –1.637, p = 0.109).
To test whether the observed difference in the HEP amplitude
was truly time-locked to the heartbeats, the same statistical
analysis was conducted repeatedly (100 times), but this time using
surrogate R-peaks, which had the same inter-beat interval and
variability as the original R-peaks, but were shifted randomly in
time. A surrogate analysis performed separately for each group
showed no such significant difference as originally found for
the real R-peaks, confirming the fact that the differential HEP
during the gameplay compared to the resting state is truly locked
to the heartbeats.

To test possible associations between the HEP amplitude and
flow measures, the mean amplitude of the HEP while playing
the game was calculated within the time-window in which a
significant difference was detected. No significant association
between the HEP amplitude and the level of flow (FSS mean
score) was identified across all subjects (r = 0.253, p = 0.102).
The higher the HEP amplitude, the stronger the absorption in the
game (ρ = 0.377, p = 0.013). This association (Figure 2D) which
was not significant within each group (Supplementary Table 4)
associated higher absorption in the game with higher cortical
processing of cardiac afferents.

Neural Sources of the Observed Differential
Heart-Evoked Potential for the Game and the
Pre-game Conditions
We reconstructed neural sources of the HEP signals for the
pregame and the game conditions to identify the cortical regions
contributing to the HEP effect observed over the fronto-central
scalp electrodes. After identifying the time window for which a
significant difference between these two conditions was found
in sensor space, a cluster-based permutation test can be applied
on the reconstructed cortical currents averaged over that time
window. The difference in cortical currents between the pre-game
and the game conditions was significant over two large regions,
one pronounced over the left supplementary motor area (SMA;
BA 6) and left primary motor cortex (BA 4) extending to the left
primary somatosensory cortex (BA1, 2,3) and the left posterior
cingulate cortex (PCC; cluster size = 1928 vertices, Monte Carlo
p = 0.002).
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FIGURE 2 | (A) Topographical map of the scalp sensors where the distinct heart-evoked potential (HEP) between the game and the pre-/post-game conditions was
observed. The red-colored region including FC1, FC2, Fz, and Cz sensors indicates the location of the electrodes contributing to this significant difference, (B) the
grand average HEP across fronto-central sensors for the three conditions. The shaded area shows the time window in which we observed a significant difference.
(C) Mean amplitude and the standard deviation of the HEP over the 400–500 ms time window in which the significant difference was observed for the three
conditions, (D) Flow-absorption score as a function of the HEP amplitude.

The other cluster included the right primary somatosensory
cortex and the right primary motor cortex (BA4) along with
the right PPC (cluster size = 1478 vertices, Monte Carlo
p = 0.002). We also performed a non-parametric permutation
test with FDR correction considering α < 0.01 to identify
the most significant regions. As presented in Figure 3A, the
HEP neural sources differed significantly between the pre-
game and the game condition over the left supplementary and
primary motor cortices, the left primary somatosensory cortex
extended to the left PCC (Figure 3A). Small regions in the
right primary motor cortex, the right primary somatosensory
cortex, and the right posterior cingulate were also differently

activated between the pre-game and the post-game conditions.
The superposition of the statistically different regions with
the difference in the absolute values of the cortical currents
between the pre-game and the game conditions showed that
the activity in the above-mentioned regions during 400 to
500 ms after the R peak was significantly higher in the
pre-game condition as compared to the game condition (a
video clip demonstrating this source activity difference between
the pre-game and the game condition can be found in
Supplementary Materials).

The time course of the reconstructed neural currents from the
primary somatosensory region (Figure 3B) demonstrated lower
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FIGURE 3 | (A) Neural sources of the differential HEP for the pre-game and the game conditions. Different activation patterns were identified in the left primary
somatosensory and the left supplementary and primary motor cortices extended to the left posterior cingulate cortex (t pertains to permutation test results
considering α < 0.01 with FDR correction) stemming from higher activation during the pre-game condition, (B) Reconstructed time course of the HEP in the left
primary somatosensory cortex grand averaged across all subjects in absolute values of dipole currents for the pre-game and the game conditions. The shaded area
shows the time window in which significantly more activation was observed during the pre-game condition.

FIGURE 4 | Neural sources of the differential HEP observed for the pre-game and the game conditions for the gamers (left) and the non-games (right). (t pertains to
permutation test results considering α < 0.05 with the FDR correction).

neural activity locked to the heartbeats in this brain region while
playing the game compared to the pre-game condition. We then
explored neural sources of the differential HEP observed for the
pre-game and the game conditions separately for each group
(Figure 4). The permutation test results with an FDR correction
considering α < 0.05 showed that in the gamer group only
the supplementary motor cortex (the significant region peaked
at MNI coordinates –25, –14, 60 with peak t = 5.81) was less
activated during the game condition compared to the pre-game
condition. In non-gamers, though, the left supplementary and
primary motor cortex, the left primary somatosensory cortex, the
left and right posterior and anterior cingulate cortices, and the

left frontopolar prefrontal cortex (BA10; the significant region
peaked at MNI coordinates –31, 52, 25 with peak t = 8.67)
were less activated during the game condition than during the
pre-game condition.

Dissimilar neural sources of the observed differential HEP for
the gamers and non-gamers may reflect differences in resource
allocation to the cortical processing of the heartbeats between
these two groups while playing the game vs. the resting state.
Similar to the sensor space, the neural sources of the HEP
between gamers and non-gamers did not statistically differ in
either the pre-game or in the game condition. We also looked
at possible correlations between the average neural currents of
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the identified sources around 400–500 ms after the R-peak in the
game condition and subjective flow measures. No associations
were identified across the subjects.

The Function Between the Heart-Evoked Potential
Amplitude and Enhanced Automaticity
Difference in resource allocation to the cortical processing of
the cardiac information between two groups while playing the
game vs. the resting state raised this question whether the
observed relation between the HEP amplitude and absorption
was related to the enhanced automaticity experienced during
flow state. To address this, we extracted the parietal alpha and
explored possible correlations between this measure and the HEP
amplitude. According to a previous study (Gevins et al., 1997),
higher automaticity leads to higher parietal deactivation (higher
parietal alpha). The amplitude of the HEP showed a tendency
to associate positively with the parietal alpha power (r = 0.314,
p = 0.04); the higher the HEP amplitude, the higher the parietal
alpha power. This finding may suggest that the higher absorption
in the game resulted in an increased response to the heartbeats
(higher HEP amplitude) through enhanced automaticity.

The Function Between the Heart-Evoked Potential
Amplitude and Cardiovascular Activity
To explore whether the HEP amplitude is associated with the
change in cardiovascular parameters, we searched for possible
correlations between the average HEP over the 400–500 ms time
window at the fronto-central scalp electrodes and the IBI, the
HF- and LF-HRV while playing the game. No associations were
identified between the HEP amplitude in this time window and
the mentioned cardiac measures during the entire gameplay
session. The HEP amplitude was positively associated with the
LF- and the HF-HRV power difference between the last and
the first 5 min of gameplay (r = 0.443, p = 0.005; r = 0.354,
p = 0.029, respectively), i.e., the higher the parasympathetic
activity recorded during the last 5 min as compared to the first
5 min, the larger the HEP amplitude was.

Peripheral Measures
All physiological measures were extracted and analyzed for the
three experimental conditions of the pre-game (5 min), the
game (25 min), and the post-game (5 min). The mean value
of the neurophysiological measures for the three experimental
conditions and for each group along with the statistical results are
presented in the Supplementary Table 3. To examine the pattern
of cardiorespiratory activity more precisely during the whole 25-
min gameplay, we segmented the recorded physiological signals
of the game condition into non-overlapping, 5-min intervals and
analyzed the differences between corresponding cardiovascular
and respiratory measures for the first and the last intervals.
Here we reported the findings regarding all participants. For
some differences between gamers and non-gamers we refer to the
Supplementary Data (Supplementary Table 4).

Respiratory Activity
We analyzed two parameters from the respiration signals: the
mean respiration rate (RR-mean), the standard deviation of the

respiration rate (RR-STD). The Greenhouse-Geisser correction
revealed a significant main effect of condition (pre-game, game,
post-game) for the RR-mean (F(1.25, 51.28) = 36.70; p < 0.001,
η2 = 0.203) and RR-STD (F(1.55, 63.64) = 42.602; p < 0.001,
η2 = 0.314). Post hoc tests showed that the mean and variance
of the respiration rate were significantly higher during the
game compared to the pre-game (p < 0.001) and the post-
game (p < 0.001) conditions. The main group effect (gamers,
non-gamers), as well as the interaction between condition and
group, was not significant for any of these parameters (see
Supplementary Table 4).

There was no association between the RR-mean and flow
measures during the whole gameplay session. The respiration-
rate difference between the last 5 min and the first 5 min of
gameplay was negatively correlated with absorption across all
subjects (ρ = –0.424, p = 0.005). A slower respiration rate at the
end of the gameplay session compared to the beginning (lower
sympathetic and higher parasympathetic activity) is related to
greater absorption in the game. The variation in the respiration
rate (RR-STD) during the whole 25-min game interval was
significantly correlated with the total flow (r = 0.418, p = 0.005),
and the absorption sub-scale of flow (ρ = 0.505, p < 0.001).
These two correlations which were driven mainly by the gamers
(Supplementary Table 4) highlighted that the more variation in
the respiration rate was associated with more flow and a stronger
absorption in the game. The difference in the RR-STD value
between the last and the first 5 min of gameplay showed no
significant correlations with flow measures.

Cardiac Activity
The inter-beat interval (IBI) of the ECG signals differed
significantly between conditions (F(2, 82) = 8.295; p < 0.001,
η2 = 0.01). Post hoc testing revealed a smaller IBI (higher heart
rate) during gameplay compared to the pre-game (p = 0.005)
and the post-game (p < 0.001) conditions across all subjects. As
shown in Supplementary Figure 2a in the Supplementary Data,
the IBI was overall significantly longer for the non-gamers than
for the gamers (F(1, 41) = 4.68; p = 0.03, η2 = 0.096) reflecting
lower sympathetic activity in non-gamers. The interaction of
condition and group was not significant. The data of five
participants whose breathing rates were beyond 9–24 cycles per
minute (below 9 and above 24 cycles) were excluded from the
frequency-domain analysis of the HRV. We found a significant
main-condition effect for both the LF-HRV (F(2, 72) = 6.21;
p = 0.003, η2 = 0.032) and the HF-HRV (F(2, 72) = 16.31;
p < 0.001, η2 = 0.060) measures. Post hoc testing showed that both
measures were lower during the game compared to the pre-game
(p = 0.047, p < 0.001, respectively) and the post-game (p = 0.003,
p < 0.001, respectively) conditions. No main effect of group or
interaction effect was found for these measures.

Figure 5A illustrates that the average IBI continuously
declined while playing the game from the first interval up to the
third 5-min interval, followed by a plateau for the following 5-
min interval, and with a slight increase during the final 5-min
interval. During the entire 25 min of gameplay, the shorter the
IBI (i.e., the faster heart rate), the higher the total flow score
(r = –0.325, p = 0.033). This effect, which was mainly driven
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by the non-gamers (Supplementary Table 4), showed that flow
was associated with higher sympathetic activity during the whole
gameplay period.

Correlations between IBI and absorption/fluency were not
significant. The IBI difference between the last and the first 5 min
of gameplay was significantly correlated with flow (r = 0.435,
p = 0.003), absorption (ρ = 0.432, p = 0.004), and fluency
(r = 0.354, p = 0.020). This relationship, which is mostly driven
by non-gamers (Supplementary Table 4), emphasizes that a
higher IBI and consequently slower heart rate (lower sympathetic
activity) during the last 5 min of playing compared to the
first 5 min is positively associated with higher levels of flow
(Figure 5B), absorption (Figure 5C), and fluency.

The LF and HF-HRV measures were significantly decreased
during gameplay compared to the pre-game and the post-
game resting states (see Supplementary Figure 2b). During
gameplay, there were no significant associations between LF-
HRV and HF-HRV during the game and the total flow experience,
absorption, fluency. The HF-HRV power difference between the
last and the first 5-min interval of gameplay (Supplementary
Figure 2a) showed a positive correlation with the FSS-absorption
score (ρ = 0.365, p = 0.024). Higher HF-HRV power (higher
parasympathetic activity) during the last 5 min compared to the
first 5 min of gameplay is associated with higher absorption in
the game. No significant correlations were found for the HF-
HRV difference and flow or fluency scores. A similar trend
for an association was found for the LF-HRV power values
showing higher LF-HRV power during the last 5-min interval of
gameplay compared to the first, which was associated with higher
absorption in the game (ρ = 0.353, p = 0.029). These findings
show that, although playing the game results in a reduction in
parasympathetic activity (lower LF- and HF-HRV), the increase
in parasympathetic activity (or, more precisely, less inhibition of
parasympathetic activity) at the end of the game leads to higher
levels of absorption.

DISCUSSION

In the present study, we investigated the experience of flow,
absorption, and subjective time in gamers and non-gamers while
playing the video game Thumper. We concentrated on two
important aspects of the flow experience, namely the loss of self-
referential processing and increased arousal. We used the HEP
amplitude as an index of cortical processing of cardiac afferents
to evaluate self-referential processing during flow. Associations
between the activity of the autonomous nervous system and
flow were assessed by evaluating cardiorespiratory measures,
including the mean and standard deviation of the respiration rate,
the mean IBI, and the average LF- and HF-HRV power.

Our behavioral findings showed that playing Thumper elicited
comparable levels of flow in both groups with no significant
differences in terms of total flow, absorption, or fluency scores.
Also, the measures of subjective time did not differ between
the groups. We interpret these findings in the way that playing
the video game Thumper on a level chosen by the participant
according to their skill facilitated flow induction. In this way,

non-gamers tended to play at relatively lower levels whereas
gamers chose relatively higher levels, which made it possible for
each group to achieve flow.

The experience of flow was related to the subjective experience
of time. The higher the participants’ flow score and the higher
the degrees of absorption and fluency they experienced during
the game, the less they thought about time. Higher absorption
scores were also positively associated with a faster passage of time.
These results coincide with those of previous studies that found
an association between the experience of flow and subjective
time (Keller and Bless, 2008; Rutrecht et al., 2021). Experienced
flow, absorption, and fluency were positively correlated with
performance, as reflected in the attained final score. This positive
association was also reported by several other studies assessing
flow (Engeser and Rheinberg, 2008; Jin, 2012; Yun et al., 2017;
Rutrecht et al., 2021) and aligns well with the notion of peak
performance resulting from the flow experience (Landhäußer
and Keller, 2012; Khoshnoud et al., 2020). Task engagement
has been related to performance (Matthews et al., 2010). Flow
as a positively toned state of high task engagement, signals a
cognitive-adaptive process (Matthews et al., 2010) that leads to
more effective mobilization of attentional resources to the task
(De Sampaio Barros et al., 2018).

Flow Is Linked to a More Active
Brain–Heart Interaction
The HEP amplitude significantly decreased 400–500 ms after the
R-peak over the fronto-central scalp electrodes while participants
played the game as compared to the pre-game and the post-game
conditions. The same HEP difference was observed separately
for gamers and non-gamers in the same time range. The use of
surrogate R-peaks confirmed that the observed differential HEP
during the gameplay session compared to the resting states was
actually locked to the heartbeats. This HEP amplitude difference
can be considered free from artifactual components because
confounding noises, such as cardiac field artifacts, were identified
and removed in the preprocessing step using the AMICA. The
differential HEP was observed during the time period (400 ms
after the R-peak) which is known to be less affected by the cardiac
field artifact (Park and Blanke, 2019). The location and latency of
the observed differential HEP coincide with previous literature
reporting differential HEP between 250 and 500 ms after the
R-peak over the fronto-central scalp sensors in modulated self-
related processing (Park et al., 2016; Sel et al., 2017; Babo-
Rebelo et al., 2019, 2016), and in mental disorders associated
with atypical states of self-consciousness, such as depression
(Schulz et al., 2015). This lower cortical response to the cardiac
afferent while playing may reflect lower self-awareness during
gameplay compared to the resting state, in which the sense
of self is comparably higher, a typical experience in waiting
situations (Jokic et al., 2018). The fact that the fronto-central
HEP amplitude was significantly higher during the resting states
before and after the game as compared to the game condition
reflects higher self-referential processing while waiting. As we
have empirically shown, a real waiting period of several minutes
is related to stronger negative self-awareness (i.e., boredom) and
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FIGURE 5 | (A) The average IBI and its standard deviation during the pre-game, 5-min intervals while playing the game (1, 2, 3, 4, 5), and the post-game conditions,
(B) association between the difference in the IBI during the last and the first 5 min of gameplay and the FSS mean score, (C) association between the difference in
the IBI during the last and the first 5 min of the gameplay and the FSS-absorption score.

a slower felt passage of time (Witowska et al., 2020; Alvarez
Igarzábal et al., 2021). A waiting period without distraction can
be defined as a state with higher levels of self-awareness. The
higher HEP amplitude during resting states suggests that bodily
signals (such as from the heart) are more readily available during
waiting time. This finding corresponds also with a previous study
by Wei et al. (2016) that reported a lower fronto-central HEP
amplitude during an exteroceptive state (eyes-open resting state)
compared to an interoceptive state (eyes-closed resting state).
In this regard, playing the game as an intense exteroceptive
state led to the lower HEP amplitude compared to the resting
states (pre- and post-game), which can be considered relatively
more interoceptive.

During the gameplay session, we found a positive correlation
between the HEP amplitude and the level of absorption.
Individuals who were more absorbed while playing the
game exhibited higher HEP amplitudes. Higher levels on the
absorption subscale of the flow questionnaire by definition are
a strong indicator of flow (Csikszentmihalyi, 1975; Peifer et al.,
2014). As formulated by Csikszentmihalyi (1975, p. 39), during
flow “your concentration is very complete. Your mind isn’t
wandering, you are not thinking of something else; you are
totally involved in what you are doing.” Therefore the positive
correlation between the absorption subscale of FSS and the
HEP amplitude shows a positive association between flow and
the HEP. This could be interpreted in the way that flow-
absorption during the game necessitated more information from
the body, leading to a stronger connection between the brain
and the heart. HEP amplitudes around 400–500ms after the
ECG R-peak have been mostly investigated and interpreted as
correlates of the successive cognitive elaboration of interoceptive
information (Baranauskas et al., 2017). In the context of
interoceptive predictive coding concepts (Seth et al., 2012;
Critchley and Garfinkel, 2018), the brain has been shown to
use the interoceptive signals (cardiac information) to successfully
predict upcoming exteroceptive events (Park et al., 2014; Pfeiffer
and De Lucia, 2017; Banellis and Cruse, 2020). Thumper is a
dynamic rhythm game that demands high levels of concentration

while performing challenging sensorimotor tasks. It is reasonable
therefore to assume that precise prediction of sensory stimuli and
adequate reactions to them are dependent on information from
body states and vice versa, especially since navigating in Thumper
necessitates the continuous anticipation of upcoming objects the
player has to synchronize with. Therefore, we suggest that the
stronger HEP response in more absorbed individuals stems from
a more efficient brain-body interaction. This interpretation is
substantiated by our findings that more absorbed participants
had a higher total final score and a lower total final error in the
game (Table 1).

Alpha oscillations has been reported to be important for
the efficiency of brain–heart interaction (Luft and Bhattacharya,
2015). Our result showed that higher HEP amplitude is
associated with higher parietal alpha power (more deactivation
of the parietal cortex). Higher automaticity achieved with
increased practice on the task has been linked to higher
parietal alpha oscillations (Gevins et al., 1997). We argue that
enhanced automaticity during flow may also contribute to the
observed function between the HEP amplitude and absorption.
The enhanced automaticity during moments of flow through
increased reliance on implicit information-processing resources
(Dietrich, 2004) may facilitate brain–heart interaction during
flow by making more frontal and parietal resources available
for the processing of cardiac afferents. It has been reported that
enhanced automaticity during flow helps individuals maintain a
sustained level of attention so that the increased task demands
and challenges can be carried out without a further increase in
felt attentional effort (Harris et al., 2017; Yelamanchili, 2018;
Khoshnoud et al., 2020).

The Heart-Evoked Potential Effect Generated in
Regions Associated With Interoceptive Processing
We demonstrated that the HEP effect was generated in regions
associated with the processing of internal bodily signals across
all participants. The identified neural sources contributing to
the observed differential fronto-central HEP between the game
and the pre-game conditions covered the left SMA and the left
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primary motor cortex, extending to the primary somatosensory
cortex and the PCC. The activity in these regions was significantly
lower during gameplay compared to the pre-game resting state.
Since the primary somatosensory cortex and the PCC are two
important regions known for the processing of interoceptive
signals (Kern et al., 2013; Park and Blanke, 2019), the lower HEP
amplitude observed during gameplay corresponds with the lower
cortical source currents in regions known for the processing of
cardiac signals.

The HEP effect was localized differently in the brain for
gamers and non-gamers. While for gamers only the SMA was less
activated during the game compared to the pre-game condition,
for non-gamers an extended area including the left SMA, the
left primary motor cortex, the left primary somatosensory cortex,
the left and right PCC and anterior cingulate cortex (ACC), and
the left frontopolar prefrontal cortex were less activated during
gameplay compared to the pre-game condition. An explanation
for this huge difference between gamers and non-gamers in
size and location of the identified neural sources contributing
to the observed HEP effect may be related to the enhanced
skill and automaticity of gamers during the gameplay. For
gamers, playing Thumper was not such a demanding challenge
due to their experience, therefore the HEP source difference
before and during the game was relatively smaller. For the non-
gamers Thumper posed a higher challenge, as they lacked the
experience and skills of gamers. Consequently, a larger difference
in neural sources was detected between the resting state before
the game and the game condition in non-gamers. Dietrich (2004)
proposed that higher automaticity during moments of flow
can be achieved by increased reliance on implicit information
processing (which is supported primarily by the basal ganglia)
instead of explicit information processing (which is supported
by the frontal and parietal lobes) in the brain. Considering this,
the higher automaticity in gamers achieved through the use of
more implicit information processing may have allowed them
to allocate comparable resources to the cortical processing of
the heartbeats during gameplay to the resting state before the
game. Non-gamers exhibited less automaticity during the game
because of their lack of skills and relied more on the explicit
information-processing system (which is based on frontal and
parietal resources). This may result in fewer available frontal
and parietal resources for the processing of cardiac information
while playing the game. Thus, the extended brain regions in
frontal and parietal cortex were less activated during gameplay
compared to the pre-game condition in these participants in
response to the heartbeats.

Contribution of Parasympathetic Activity to the
Observed Heart-Evoked Potential Effect
Several studies have shown a link between emotional and arousal
processes and the HEP amplitude (Fukushima et al., 2011; Shao
et al., 2011; Schulz et al., 2013; Luft and Bhattacharya, 2015),
but have not always observed a difference in cardiac parameters
between experimental conditions in which HEP differences
were found (Fukushima et al., 2011; Park and Blanke, 2019).
Considering the whole gameplay session, we did not observe

any associations between the cardiorespiratory measures and the
HEP amplitude. The HEP amplitude was positively correlated
with the difference in parasympathetic activity (higher LF and
HF-HRV) between the last 5 and the first 5 min of gameplay.
This observed positive association shows that the brain–heart
interaction is associated with the activation of the vagus nerve at
the end of the game compared to the beginning. It has been stated
that the vagus nerve is activated during self-transcendent positive
emotions (Kitson et al., 2020).

Flow Is Associated With Increased
Sympathetic and Less Inhibition of
Parasympathetic Activity
The total flow and absorption levels were positively correlated
with variations in the respiration rates (RR-STD), revealing
greater variations during the game, higher flow, and stronger
absorption in the game. Respiration has been shown to contribute
to the short-term modulation of the sympathetic nervous system
(Narkiewicz et al., 2006) with a faster respiration rate associated
with higher sympathetic activity (Wientjes, 1992; de Manzano
et al., 2010). A more varied respiration rate while playing
the video game shows greater short-term modulations of the
sympathetic nervous system, which may help the respiration
system to co-vary with the demands of the game and thereby
facilitate the experience of flow and absorption. Total flow was
also positively correlated with the average IBI values during
the entire game session. The higher the total flow participants
reported, the faster their heart rate. These findings align well with
the reported positive association between increased sympathetic
activity and flow in previous studies (Kivikangas, 2006; de
Manzano et al., 2010; Bian et al., 2016). The lower mean-RR
(slower respiration rate) and the longer IBI (slower heart rate)
during the last 5 min compared to the first were associated with
higher absorption in the game. The IBI difference between the
last and the first 5-min intervals was also positively correlated
with the total flow and fluency levels. These results indicate
that higher parasympathetic activity during the last 5 min of
gameplay compared to the first 5 min led to the higher flow and
absorption levels.

In contrast to studies reporting a relationship between
flow and HRV measures (Chanel et al., 2011; Keller et al.,
2011; Harmat et al., 2015; Harris et al., 2016; De Sampaio
Barros et al., 2018; Kozhevnikov et al., 2018), no significant
associations were identified between LF-HRV/HF-HRV and flow
measures during the 25 min of gameplay. Parasympathetic
activity (including LF and HF-HRV) decreased during gameplay
with no significant difference between gamers and non-gamers.
This general inhibition of parasympathetic activity reflects
increased mental effort while playing as compared to the pre-
and post-game resting states. The higher LF-HRV and HF-
HRV during the last 5 min of gameplay compared to the first
5 min were positively correlated with the level of absorption
in the game among all participants. The reduced inhibition of
parasympathetic activity at the end of the game led to higher
absorption.
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Combining these findings and considering the whole
gameplay session, we suggest that flow is associated with
increased sympathetic activity manifested by more variable
respiration and a faster heart rate. Participants who had
less inhibition of parasympathetic activity at the end of
the gameplay session compared to the beginning were
better able to actually control the heightened sympathetic
activity and consequently reported higher flow, absorption,
and fluency. According to Porges’ (2001) polyvagal theory,
parasympathetic influences are essential for an individual’s
successful adaptation to changing environmental demands.
Studies have related parasympathetic activity (specifically
HRV) to working- memory performance, mental workload,
and attention (Veltman and Gaillard, 1998; Hansen et al.,
2003). Hansen et al. (2003) reported that a higher resting state
parasympathetic activity (higher HF-HRV) is associated with
better performance in a working-memory task and continuous
performance test. Both increased sympathetic activity and
decreased parasympathetic activity have been associated with
lower performance (Forte et al., 2019) in a systematic review.
Considering the identified positive association between flow
and sympathetic activity in this study, relatively less inhibition
of parasympathetic activity at the end of the gameplay session
compared to the beginning may indicate a higher ability to
respond flexibly to the changing demands of the game. Our
findings align well with the reported link between the co-
activation of sympathetic and parasympathetic activity and
the flow experience (de Manzano et al., 2010; Harmat et al.,
2015; Tian et al., 2017). The co-activation in our results was
demonstrated by increased overall sympathetic activity and
decreased inhibition of parasympathetic activity during the last
5 min of gameplay.

All in all, our findings indicate that game-induced flow
modulates subjective time perception in terms of less thinking
about time and the feeling of a faster passage of time. We
showed that the monitoring of cardiac afferent information
being processed by the brain can serve as an objective measure
to assess the level of absorption in the game. The positive
association identified between the fronto-central HEP amplitude
and absorption during the game can be interpreted by a better
brain–heart interaction that led to a better performance, i.e.,
a higher final score and a lower total error. Our findings
also provide evidence for the relationship between the co-
activation of the sympathetic and parasympathetic nervous
systems and the flow experience. As an applied perspective
of our work, the HEP amplitude could function as a neural
marker of flow-absorption in patients with depression and
anxiety who have lost their ability to lose track of the
self and time. It is known that individuals with Major
Depressive Disorder have deficits in emotional self-regulation
and also report a drastically slowed down subjective passage
of time (Vogel et al., 2018). Further inquiries are needed to
assess whether states of flow elicited by games like Thumper
ameliorate symptoms of depression by accelerating the subjective
flow of time. In one earlier study by Kühn et al. (2018),
depressed individuals played the video game Boson X, which

has similar characteristics to Thumper, for 6 weeks and this
reduced rumination and enhanced cognitive abilities. The
HEP amplitude thereby could function as neural marker for
increased states of flow-absorption during tasks individuals with
depression are undertaking. It could reflect improvements of
their psychological state.
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Musical transposing is highly demanding of working memory, as it involves mentally
converting notes from one musical key (i.e., pitch scale) to another key for singing or
instrumental performance. Because musical transposing involves mental adjustment of
notes up or down by a specific amount, it may share cognitive elements with arithmetical
operations of addition and subtraction. We compared brain activity during high and
low working memory load conditions of musical transposing versus math calculations
in classically trained musicians. Magnetoencephalography (MEG) was sensitive to
differences of task and working memory load. Frontal-occipital connections were highly
active during transposing, but not during math calculations. Right motor and premotor
regions were highly active in the more difficult condition of the transposing task. Multiple
frontal lobe regions were highly active across tasks, including the left medial frontal
area during both transposing and calculation tasks but the right medial frontal area only
during calculations. In the more difficult calculation condition, right temporal regions
were highly active. In coherence analyses and neural synchrony analyses, several
similarities were seen across calculation tasks; however, latency analyses were sensitive
to differences in task complexity across the calculation tasks due to the high temporal
resolution of MEG. MEG can be used to examine musical cognition and the neural
consequences of music training. Further systematic study of brain activity during high
versus low memory load conditions of music and other cognitive tasks is needed
to illuminate the neural bases of enhanced working memory ability in musicians as
compared to non-musicians.

Keywords: working memory, musical transposing, calculation, music training, magnetoencephalography (MEG)

INTRODUCTION

Working memory is enhanced in musicians as compared to non-musicians (George and Coch,
2011), but neuroimaging studies of musicians have yielded little information about their brain
activity during cognitive tasks with high versus low working memory load conditions. Similarly,
there is insufficient detail about high versus low working memory demands of specific music
tasks in the general debate about potential cognitive effects of music training (Nutley et al., 2014;
Swaminathan et al., 2017).
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Working memory is highly taxed in some music tasks; in
others, the working memory demand is very low. If music
training includes only low demands on working memory, then
working memory is not likely to improve from the training,
nor would it be expected to influence working memory function
that supports a different cognitive behavior, such as math or
reading. One music task that is demanding of working memory
is musical transposing, which involves mentally converting notes
from one musical key (i.e., pitch scale) to another key for singing
or instrumental performance. Working memory demands are
high during musical transposing because the target musical
key must be stored temporarily while notes are manipulated.
No studies of the cognitive effects of musical training have
included transposing in the music training program, though
this would be one means to assess whether music training
involving high working memory load would improve working
memory capacity.

Ongoing research into the cognitive and neural effects of
training in music includes studies of experts and non-experts,
and the longitudinal effects of exposure and training in children
(Schön et al., 2002; Stewart et al., 2003). Music and math
are separate cognitive domains, and separable from language
(Ivanova et al., 2020), although there is some evidence they
may share domain-general structural processing mechanisms
with language (Van de Cavey and Hartsuiker, 2016; Nakai
and Okanoya, 2018). There is evidence for a relationship
between musical achievement and math achievement, usually
associative (Holochwost et al., 2017) rather than causal (Hille and
Schupp, 2015; Wallick, 1998). Recently, Bergee and Weingarten
(2021) controlled for background variables that may influence
achievement in music, math, and reading in children, and
found that musical achievement did relate to math and reading
achievement. However, following a meta-analytic review of
studies of music training, Sala and Gobet (2020) concluded that
music training has no impact on non-music cognitive skills and
academic achievement. In studies of the effects of music training,
greater specificity is needed in descriptions of the cognitive
components that are highly active during the music training
tasks, and whether the training tasks involve cognitive abilities
from domains other than music.

Math, for example, is linked to the musical transposing task
in that changing from one musical key to another is based on
mental calculations that can involve addition or subtraction skills.
A varying potential for unidirectional or bidirectional influence
of learning in music and math tasks will depend on the cognitive
components needed to accomplish each task, and the type and
degree of overlap between these cognitive components across
tasks. Transposing is one example of a music task in which the
influences of music and math during training of transposing may
be bidirectional.

In previous reports, we have shown that
magnetoencephalography (MEG) is sensitive to differences
in working memory load (Lu et al., 2019, 2021). By comparing
brain activity in musical transposing of musical notation versus
sight-reading (in which notes are played as written), we observed
that the additional mental conversion required for transposing
was linked to slowed activation of the ventral (fusiform gyrus)

occipito-temporal stream of visual-spatial encoding, and to
increased frontal lobe activation (Lu et al., 2021).

Further studies are needed to compare aspects of music,
language and mathematical cognition, and brain activity that
supports them in musicians and non-musicians. For example,
studies using visual music and math tasks are needed to
determine the relative roles of domain-general skills in working
memory and spatial attention (Sligte et al., 2009) compared to
domain-specific cognitive abilities in music or math.

Because musical transposing involves mental calculations
for modifying musical keys, it may share cognitive elements
with arithmetical operations of addition and subtraction. It is
therefore of interest to compare the brain activity underlying
simple arithmetic to that underlying the mental conversion of
transposing in which notes are adjusted up or down by a specific
amount. Further, imposing a requirement that participants hold
a cue in working memory to perform the arithmetic and
transposing tasks adds another level of similarity across the
tasks and a way for working memory load to be manipulated
up or down. By studying similarities and differences across the
arithmetic and transposing tasks of higher and lower working
memory load, we obtain clues as to how these cognitive tasks
are related and how training in one (e.g., music training) could
possibly affect the other (e.g., performance in math).

In the current paper, we report brain activity in trained
musicians during math calculation tasks compared to musical
transposing using MEG. We also examine the effects of working
memory load across music and calculation tasks.

MATERIALS AND METHODS

Participants
Twenty-one participants at Taipei Veterans General Hospital,
Taipei, Taiwan who were able to read the Western musical
notation system completed the study voluntarily with normal
vision, hearing, motor and cognitive abilities. All of the data
from one participant had to be discarded due to sleeping,
and individual transposing and calculation task data from two
participants had to be discarded due to noise; thus, data on
all tasks were analyzed for 19 participants. All participants
were female classically trained musicians (age range = 19–28;
x = 23.71) with at least 10 years of musical instrumental training
(range = 10–22 years; x = 16.71), including reading of standard
musical notation. Potential participants were not included if
their major instrument was a transposing instrument (i.e., an
instrument that produces a higher or lower pitch than is shown in
music notation written for it). For example, if a musicians’ major
instrument is clarinet in B flat, they would always automatically
lower two interval pitches while they read the score in G
clef. Thus, long-term intensive experience in transposing in
these individuals has the potential to alter patterns of brain
activity during transposing as compared to other musicians. For
the musicians who were included in this study, a transposing
instrument was not the major instrument and, based on typical
music training in Taiwan in which students are trained to read
transposing scores from approximately the 3rd to the 12th
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grade, the average amount of experience in transposing for the
participants included in this study was approximately 10 years.

All participants completed the Edinburgh Handedness
Inventory (Oldfield, 1971), and laterality quotients indicated
strong right-handed preference for all but one participant, who
was ambidextrous. They also passed the Mini-Mental State
Examination (MMSE; Folstein et al., 1975), which screened
for cognitive impairment, and the digit span task (WAIS-III;
Wechsler, 1997), which measured working memory storage
capacity. All participants were within normal range. None
had a history of neurological or psychiatric diseases, or
developmental learning difficulties. Each participant provided
a written informed consent prior the experiment. The study
was approved by the Taipei Veterans General Hospital Human
Research Review Board, Taipei.

Experimental Design and Stimuli
A two-factor within-participant design was used: 2within (stimuli:
Musical notation versus Digits) × 2within (task: Easier – one
note or one single-digit versus Difficult-five notes or five-single
digits), with location, amplitude, and latency of activation as
dependent variables. Brain activation was observed during the
four experimental tasks below. We previously discussed the
results of the transposing tasks in comparison to musical sight-
reading (Lu et al., 2021).

One Single-Digit Calculation (1D)
A written cue indicated a plus (+) or minus (−) single digit from
1 to 5 presented for 1,000 ms randomly (+ 1, + 2, + 3, + 4, + 5,
−1, −2, −3, −4, −5). After a 1,000 ms blank screen, each
stimulus (n = 60) was presented randomly for 1,500 ms plus
1,000 ms ISI. Each stimulus was a single digit from 0 to 9.
During each presentation, the participant was to silently add to or
subtract from the target stimulus based on the plus or minus cue
and then silently name the correct answer, with no overt action
(e.g., the cue+ 4 followed by the target 8 would be silently named
as 12). This task lasted 4 min 30 s.

Five Single-Digit Calculation (5D)
This task was identical to the one single-digit calculation task
except that a sequence of five digits was presented for 3,500 ms
(Figure 1). During each presentation, the participant was to
silently add to or subtract from the target stimulus based on the
plus or minus cue and then silently name the correct answer, with
no overt action (e.g., the cue + 4 followed by the target 6 4 2 8 5
would be silently named, sequentially, as 10, 8, 6, 12, 9). This task
lasted 6 min 30 s.

One-Note Transposing With Treble Clef (1T)
A written cue of one of five transposing instruments was
presented for 1,000 ms pseudo randomly (Clarinet in A, in Eb

or in Bb, French horn in F, and Trumpet in Bb). After 1,000 ms
blank screen, each stimulus (n = 60) was presented randomly
for 1,500 ms plus 1,000 ms ISI. During each presentation, the
participant was to silently transpose from the written note to the
target key and then silently name the new note, with no overt
action. This task lasted 4 min 30 s.

Five-Note Transposing With Treble Clef (5T)
This task was identical to the 1T task except that a sequence
of five notes was presented for 3,500 ms (Figure 1). During
each presentation, the participant was to silently transpose
each written note to the target key and then silently name
the new notes sequentially, with no overt action. This task
lasted 6 min 30 s.

Procedure
Stimuli were presented electronically using E-Prime Professional
2.0 software (Psychology Software Tools, Pittsburgh, PA). To
document participant accuracy in the tasks, behavioral practice
data were collected using overt naming before each participant
entered the MEG scanner; over 60 trials of each task, the average
pre-test single accuracy was 99% for 1D, 95% for 5D, 87% for
1T, and 80% for 5T. Silent naming was required inside the
scanner due to decreased signal noise (due to mouth movement)
in silent naming compared to overt naming. Participant brain
waves were monitored during tasks in the scanner to ensure
participant alertness.

Inside the scanner, oral and written instructions were given
immediately prior to each task, with 2-min breaks between tasks.
The 1T task was given before the 5T task followed by the 1D
and 5D tasks. Including screening, practice and experimental
tasks, the procedure lasted approximately 90 min (Figure 1).
Immediately following the MEG scan, each participant was asked
a general open-ended question as to how they completed the
transposing and math tasks.

Data Acquisition and Preprocessing
A 306-channel MEG system (Vectorview, Elekta-Neuromag,
Helsinki, Finland) was used; this helmet-shaped device covers the
entire adult head except for the face. Participants were monitored
continuously by intercom and camera. During data collection,
participants were asked to avoid eye and body movements. MEG
data were recorded with a high pass filter of 0.1 Hz, low pass filter
of 100 Hz, and sampling rate of 508.63 Hz.

MEG signals measured the magnetic fields produced by
currents fed into four head position indicator coils at known
scalp locations, two high behind the earlobes and two wide apart
high on the forehead. Coil locations were chosen in relation to
three anatomical landmarks, including left preauricular point,
right preauricular point, and nasion, which were determined
with three-dimensional digitization. The individual sensors were
magnetometers. Head shape was digitized for coregistration to
the standard female brain template of T1-weighted MRI. The
MRI scan was performed on a GE 1.5-T, 1-m-bore whole body
magnet. MRI scan parameters were coronal T1 images, 124
slices, and 256 × 256 matrix including the entire skin surface
of the head. A model of cortical brain surface was created
from this standard MRI and performed in MEG-TOOLS (Moran
et al., 2005). The MRI was segmented and brain surface was
represented by a cortical model of approximately 4,000 dipoles
each having x, y, and z orientation at each site. Sites were
distributed to represent the same volume of cortical gray matter.
This model was then morphed to fit the digitized head shape
collected during MEG acquisition.
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FIGURE 1 | Sample stimuli, duration and procedure across the four experimental tasks: (A) the one single-digit calculation task (1D); (B) the five single-digit
calculation task (5D); (C) the one-note transposing task (1T); and (D) the five-note transposing task (5T). All stimuli for 1T and 5T were presented on treble clef and all
cues (transposing instruments) were presented using word form.

Using an independent component analysis (ICA), noise
artifacts due to heart and body movement were eliminated in
post-processing. Any other artifacts in the data were removed
if needed using singular valued decomposition. Regarding
movement artifact, runs would have been repeated if the coil
on head positions exceeded 0.5 cm, although this did not occur
during data acquisition. Data were filtered 3–85 Hz with notch at
60 Hz. The locations of events on trigger and response channels
were used to select 1.5-s epochs of MEG data to examine average
evoked responses during the four experimental tasks.

MR-FOCUSS
Event-related cortical activation was studied by averaging all 60
trials of the participant’s measured evoked MEG field responses
during each task. Data were analyzed using MR-FOCUSS
(current distribution technique; Moran et al., 2005) to localize
and quantify cortical activation within the brain. The latency
(in ms), location and average amplitude of response (nAm/time
point) were extracted from MR-FOCUSS imaging results. MR-
FOCUSS cortical mapping was applied to the interval 0–
1,500 ms after stimulus onset in each experimental task. Selection
of significant cortical activation was determined by visually
inspecting imaged MEG solutions overlaid on the anatomical
MRI and setting the display threshold to 30% (color coded
blue) of the maximum cortical source amplitude (color coded
red), and by selecting the high peaks of activity relative to the
background brain noise.

Coherence Source Imaging
Synchronization of neuronal activity was quantified by
calculating coherence between cortical sites from MEG imaged
brain activation (Elisevich et al., 2011; Bowyer, 2016). A model of

the cortical brain surface was created from an age- appropriate
standard MRI of a female brain, as described above. To calculate
coherence, the MEG data were first divided into 40 (1T or 1D
tasks) or 52 (5T or 5D tasks) segments each containing 7.5-s
segments of data, and cortical activity in each segment was
imaged on the MRI using the MR-FOCUSS imaging technique.
Using the time sequence of imaged activity, coherence between
active cortical model sites was calculated for each data segment
and then averaged for the completed study. In addition, for each
cortical model site, connectivity was quantified by a histogram
of the number of sites to which the site had the same level of
coherence. Statistical analysis of cortical coherence levels (0 to
1) were used to quantify differences in network connectivity
between groups. Changes in coherence and connectivity between
brain regions implicated as having deviant electrophysiological
activity in different tasks within the participants’ brains were
quantified and included in further statistical analysis.

A region-of-interest (ROI) tool implemented in MEG
Tools was used to identify 54 regions in the brain (27 in
each hemisphere). MEG Tools uses a non-linear volumetric
transformation of the participant’s brain to transform MEG
coordinates to standard Talairach or MNI coordinates. This
enables the ROI tool to access an atlas of Brodmann’s area
identifiers and an atlas of cortical structures.

Neural Synchrony
T-test was used to assess task difference in average coherence
values for each pair of brain regions (N = 1431) (Lajiness-
O’Neill et al., 2014). A p value was produced for each region
pair. Because of the large number of tests being performed
simultaneously, using a significance level of alphas = 0.1 without
adjusting for multiple testing would lead to a large number of
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false positive results; therefore, false discovery (FDR) was used to
adjust for multiple testing. Bonferroni adjustments for multiple
comparisons aim to control the family wise error rate. From each
t-test, a t-score was computed according to the method of Efron
to summarize the difference in coherence values between tasks.

RESULTS

Latency and Amplitude
Cortical mapping using MR-FOCUSS analysis displayed multiple
areas of neuronal activity, including visual cortex, fusiform
gyrus, superior temporal gyrus (STG), angular gyrus (AG),
supramarginal gyrus (SMG; Wernicke’s area included activation
of the STG, AG, and SMG), the superior parietal gyrus, and
frontal lobe regions. Simultaneous activation of both visual
and frontal gyri was also measured. Selected images from an
individual participant are shown as examples in Figures 2, 3.
Note the latencies for this individual fall within the midrange of
the average across all subjects (showing simultaneous frontal and
occipital activation occurring earlier for the 5D task than for the
5T task). The temporal resolution of peak activation in these areas
during the four tasks is summarized in Table 1.

To better understand the three main effects [ROI (region of
interest), task, memory load and their interaction effects], a three-
factor repeated-measure analysis was conducted 5within (ROI:
visual versus fusiform versus Wernicke’s area versus superior
parietal versus visual + frontal areas) × 2within (task: calculation
versus transposing) × 2within (memory loading: one versus
five) with peak latency of activity (visual, fusiform, superior
parietal, Wernicke’s area, and visual + frontal) as dependent

variables. Using general liner model – repeated measure revealed
significant main effects of ROI [F(4,68) = 360.24, p < 0.001],
task [F(1,17) = 51.00, p < 0.001], and loading [F(1,17) = 6.45,
p = 0.021]. There is an interaction effect between ROI and
task [F(4,68) = 67.84, p < 0.001]. Main effects of ROI showed
no significant difference in early latency of activity across the
four tasks (including visual, fusiform, and superior parietal).
However, the four tasks showed significantly different latency
at Wernicke’s area [F(372) = 3.64, p = 0.017] and at the stage
of simultaneous visual and frontal activation [F(3,72) = 56.35,
p < 0.001]. Post hoc comparisons of 1D versus 1T showed a
significant difference at Wernicke’s area [t (18) = 3.47, p = 0.003]
such that 1T (199 ± 68 ms) was faster than 1D (274 ± 99 ms);
for the 1T versus 5T comparison [t (17) = −3.38, p = 0.004],
1T (202 ± 69 ms) was faster than 5T (272 ± 61 ms). At the
stage of simultaneous visual and frontal activation), a significant
difference was indicated for the 1D versus 1T comparison [t
(18) = −10.12, p < 0.001] such that 1D (548 ± 103 ms) was
faster that 1T (968 ± 176 ms), for the 1D versus 5D comparison
[t (18) =−3.05, p = 0.007] such that 1D (548± 103 ms) was faster
than 5D (666± 113 ms), and for the 5D versus 5T comparison [t
(17) = −8.62, p < 0.001] such that 5D (668 ± 117 ms) was faster
than 5T (1028± 125 ms).

Coherence Source Imaging
We analyzed the entire dataset for each task to find the top
five highest coherence regions active for all of the participants
combined (Table 2). During 1D, 5D, and 1T tasks, the highest
coherent region was left parahippocampus; in 5T, the highest
coherent region was right precentral motor cortex. Interestingly,
the transposing tasks and calculation tasks all engaged the left

FIGURE 2 | Sample results of the MEG recordings (MR-FOCUSS analyses) for an individual participant showing simultaneous frontal and occipital activation at
1,244 ms latency in five-note transposing (5T).
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FIGURE 3 | Sample results of the MEG recordings (MR-FOCUSS analyses) showing simultaneous frontal and occipital activation at 513 ms latency in five single-digit
calculation (5D) for the same participant shown in Figure 2.

TABLE 1 | Temporal resolution of magnetoencephalography (MEG) signals arising from the peak brain activation during each task

Visual cortex Fusiform gyrus Superior parietal gyrus Wernicke’s areaa Frontal and visual cortexb

One single-digit calculation (1D) 84 ± 14 ms 244 ± 131 ms 241 ± 107 ms 274 ± 99 ms 548 ± 103 ms

One-note transposing (1T) 83 ± 20 ms 237 ± 144 ms 216 ± 72 ms 199 ± 68 ms 968 ± 176 ms

Five single-digit calculation (5D) 91 ± 14 ms 236 ± 142 ms 257 ± 91 ms 282 ± 111 ms 666 ± 113 ms

Five-note transposing (5T) 84 ± 16 ms 241 ± 129 ms 270 ± 122 ms 271 ± 60 ms 1019 ± 127 ms

aBilateral superior temporal gyrus (STG), angular gyrus (AG), and supramarginal gyrus (SMG).
bFrontal and visual regions activated simultaneously.
ms, milliseconds.

TABLE 2 | Spatial resolution of magnetoencephalography (MEG) signals arising from the top five highest coherent regions during each task.

The highest region 2nd 3rd 4th 5th

One single-digit calculation (1D) Left parahippocampus Right medial frontal Left medial frontal Left inferior frontal Right superior frontal

One-note transposing (1T) Left parahippocampus Left superior parietal Right superior frontal Right medial orbitofrontal Left medial frontal

Five single-digit calculation (5D) Left parahippocampus Right medial frontal Left medial frontal Right middle temporal Right fusiform

Five-note transposing (5T) Right precentral (BA4) Right superior occipital Right inferior frontal Right precentral (BA6) Left medial frontal

medial frontal area. Also, the calculation tasks had the same
top three highest coherent regions: Left parahippocampus, right
medial frontal, and then left medial frontal.

Neural Synchrony Analysis
To identify neuronal networks most strongly activated during
each task, 1,431 pathway connections were evaluated for their
coherence value in each task, and then a bootstrap method
was used to identify differences (p < 0.05) between tasks. This
provides information on which networks (i.e., two locations) are
significantly involved for each task compared to the other task.

In comparing the 5D networks versus the 5T networks,
significant differences were found in 13 out of 1,431 pathways.

In particular, inter-hemispheric network activity differences were
identified between limbic system and other regions. The p values
of less than 0.05 identified using this procedure are listed in
Table 3.

Of the 13 pathways that were found to have significant
differences between the 5D networks versus the 5T networks, the
most likely (i.e., most common) was the occipital-limbic system
pathway. This is shown in Figure 4, as compared to the less
likely pathways.

In comparing the 1D networks versus the 1T networks,
significant differences were found in 3 out of 1,431 pathways.
In particular, inter-hemispheric network activity differences were
identified between occipital and frontal regions.
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TABLE 3 | Differences in network activation: Five single-digit calculation (5D) versus five-note transposing (5T).

Path Mean.5D Mean.5T t p.value

L.cingulate_gyrus.L.inferior_frontal_gyrus 0.027 0.021 2.109 0.042

R.cingulate_gyrus.R.gyrus_rectus 0.03 0.02 2.057 0.047

L.inferior_occipital_gyrus.R.parahippocampal_gyrus 0.053 0.073 −2.586 0.014

L.inferior_occipital_gyrus.R.insular_cortex 0.028 0.04 −2.265 0.03

R.parahippocampal_gyrus.R.supramarginal_gyrus 0.037 0.049 −2.192 0.035

L.inferior_occipital_gyrus.R.angular_gyrus 0.163 0.197 −2.18 0.036

L.inferior_occipital_gyrus.R.superior_temporal_gyrus 0.135 0.167 −2.131 0.04

R.insular_cortex.R.lingual_gyrus 0.014 0.02 −2.128 0.04

L.lateral_orbitofrontal_gyrus.R.insular_cortex 0.022 0.03 −2.098 0.043

L.inferior_occipital_gyrus.R.supramarginal_gyrus 0.155 0.187 −2.084 0.044

R.angular_gyrus.R.parahippocampal_gyrus 0.038 0.05 −2.084 0.044

L.lingual_gyrus.R.insular_cortex 0.015 0.021 −2.039 0.049

L.middle_temporal_gyrus.R.insular_cortex 0.024 0.031 −2.027 0.05

The limbic system including insula, putamen, parahippocampal gyrus, caudate, hippocampus.

FIGURE 4 | Number of differences in neural connections: Comparison between five single-digit calculation (5D) versus five-note transposing (5T).

Of the 3 pathways that were found to have significant
differences between the 1D networks versus the 1T networks,
the most likely (i.e., most common) was the frontal-occipital
pathway, especially in right inferior frontal gyrus. The negative
t values showed that the 1T networks are more active than 1D
networks between the occipital and frontal regions (Table 4).

The 1D networks versus the 5D networks were compared.
Significant differences were found in none of 1,431 pathways.

In neural synchrony analysis, 2 of the 1,431 pathways
differed significantly between the 5T versus 1T. Strong network
differences between these transposing tasks were observed in
connections from left superior occipital gyrus to left frontal
regions (Table 5). As indicated by the positive t values, the 5T
task involved these pathways significantly more than 1T.

We also observed the following intra- and inter-hemispheric
differences in coherence across tasks of calculation versus

transposing of high and low working memory load (5D versus
5T, 1D versus 1T; Figure 5). Of the pathways found to have
significant differences between the two tasks of high working
memory load (5D versus 5T), the most likely pathways were
inter-hemispheric.

After the MEG session, each participant responded to an
informal query about their strategy in the experimental tasks. The
participants reported that they responded one-by-one to the five
digits or notes presented in each 5D and 5T stimulus; further
information about individual strategy was not obtained.

DISCUSSION

MEG is sensitive to differences in brain activation in musical
transposing versus digit calculation, as shown in this study, and
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TABLE 4 | Differences in network activation: One single-digit calculation (1D)
versus one note transposing (1T).

Path Mean.1D Mean.1T T p.value

L.inferior_occipital_gyrus.
R.inferior_frontal_gyrus

0.185 0.22 −2.244 0.031

L.superior_occipital_gyrus.
R.inferior_frontal_gyrus

0.133 0.163 −2.074 0.045

L.middle_occipital_gyrus.
R.inferior_frontal_gyrus

0.178 0.21 −2.062 0.046

TABLE 5 | Differences in network activation: Five-note transposing (5T) versus
one-note transposing (1T).

Path Mean.5T Mean.1T T p.value

L.inferior_frontal_gyrus.
L.superior_occipital_gyrus

0.147 0.121 2.877 0.007

L.precentral_gyrus.
L.superior_occipital_gyrus

0.17 0.147 2.025 0.05

can be used to examine the neural correlates of musical and
mathematical cognition and the consequences of music training.
The patterns of brain activation observed here are influenced by
working memory load and task type.

Transposing differed from calculation in frontal-occipital
activation. The simultaneous frontal and occipital activation
occurred significantly more slowly during transposing compared
to calculation (1T slower than 1D; 5T slower than 5D).
Neural synchrony analyses revealed more frontal-occipital neural
connections active in 5T than 5D, and in 1T than in 1D. Frontal-
occipital interactions support visual perception (Ruff et al., 2006)
and visual working memory (Barton and Brewer, 2013). In the
current study, the notes to be transposed are perceived among

multiple elements that indicate clef, staff, and key signature,
whereas in calculation the viewed digits form a simpler display. In
transposing, high demands on visual working memory and visual
perception may have required greater support from visual cortex
and its interactions with frontal lobe systems.

The 5T task involved left occipital-frontal network pathways
significantly more than the 1T, and the top four most active
regions in 5T were in frontal or occipital areas. Greater
visual complexity of the visual pre-cue cannot account for
increased frontal-occipital activation in the transposing tasks
versus calculation, because previously we identified high activity
in frontal-occipital areas in both high and low memory load
conditions of musical sight-reading wherein there is no pre-cue
(Lu et al., 2021). Musical sight-reading stimuli were similar in
complexity to transposing stimuli; as in the 5T task, the high-
and low-load sight-reading tasks resulted in high activity in
frontal lobe areas and right superior occipital gyrus. In contrast,
occipital cortex and frontal-occipital connections were not highly
activated in the calculation task.

Interestingly, among the top three most highly active areas
in 5T were right primary motor cortex (BA4) and right
premotor cortex and supplementary motor area (BA6), possibly
reflecting motor planning or programming of hand movement
(consciously or unconsciously) when musical notation was
viewed. Right precentral cortex was also found to be highly
active in both high- and low-load sight-reading (Lu et al.,
2021). High activity in the motor cortex was not evident during
calculation, suggesting the digit stimuli did not result in initiation
of motor programming.

In both the coherence analyses (in top three most highly
active regions) and the neural synchrony analyses, the calculation
tasks were found to have similar patterns of brain activation.
However, in latency analysis there was a significantly slower

FIGURE 5 | Number of differences in neural connections: Intra-right hemisphere, intra-left hemisphere and inter-hemispheric cortical differences in tasks of high
working memory load (5D versus 5T), low working memory load (1D versus 1T), and digits only (5D versus 1D).
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peak of simultaneous frontal and occipital activation in 5D
compared to 1D. This likely reflects increased working memory
demands in 5D compared to 1D, detected by the high temporal
resolution of MEG.

Parahippocampal gyrus, part of medial temporal lobe and the
limbic system, was the most highly active brain area for the
calculation tasks and 1T. This area is involved in visuospatial
processing and other cognitive functions such as memory
(Aminoff et al., 2013). In neural synchrony comparisons, the
5D task involved the occipital-limbic pathway significantly more
than did 5T. Limbic activity was not as prominent in the 5T task,
which had high activations in other regions such as right motor
and premotor cortex.

Multiple distributed processes and brain regions have been
described as contributing to working memory; for example,
mental representations encoding visual feature information
in temporal-occipital cortex (ventral visual pathway), spatial
information in frontal-parietal cortex (dorsal visual pathway),
and information such as behavioral significance in frontal cortex
(Eriksson et al., 2015; Ren et al., 2019). The right medial temporal
lobe provides important support for memory (Jeneson and
Squire, 2012), and the fusiform gyrus is involved in higher visual
perception and memory (Weiner et al., 2017). In the current
study, when the calculation task involved more numbers to be
added or subtracted the participants relied more on right medial
temporal lobe and right fusiform gyrus, both highly active in
5D but not in 1D. Previously, we (Lu et al., 2021) attributed
slowed fusiform activation in transposing compared to musical
sight-reading to the additional mental conversion required for
transposing; this may require more ventral stream than dorsal
stream processing. Interestingly, in the current study with all
four tasks more highly demanding of working memory than the
musical sight-reading task, there is no significant difference in
time course of fusiform activation.

Superior parietal cortex is important for spatial encoding
(Stewart, 2005), and was highly active in the left hemisphere
during 1T in the current study. As part of a dorsal “where” stream
of spatial encoding, this region is involved in encoding stimulus
location, whereas a ventral “what” stream that includes the
fusiform appears to encode features for stimulus identification
(Mishkin and Ungerleider, 1982; Goodale and Milner, 1992).
Reading music may involve interaction between the dorsal and
ventral streams (Mongelli et al., 2017). Previously, we (Lu et al.,
2019) identified bilateral activation of superior parietal cortex
during silent reading of English letters and musical notes. In the
current study this region likely played a role across tasks but was
not prominently activated in 5T, 5D and 1D.

The left medial frontal area was highly active during all
four experimental tasks; interestingly, right medial frontal area
was highly active during calculation tasks but not during
transposing tasks. Functions of frontal lobe regions may overlap
in supporting working memory (Duncan and Owen, 2000);
within this distribution of function the right medial frontal
area may have some relative specialization for supporting
calculation. Differences in working memory demands across
tasks have influenced efforts to define frontal lobe specialization
in mathematical tasks; for example, Hayashi and colleagues

(Hayashi et al., 2000) observed activation of right frontal areas
during subtraction but not multiplication, which they attributed
to greater working memory demands in their subtraction task.
In the current study, the task design was the same for the
transposing and calculation tasks; nevertheless, differences in
visual display and the nature of mental conversion needed to
solve each item may have placed more demands on working
memory in transposing compared to math calculations.

Along with left and right medial frontal areas, several
other frontal lobe regions were highly active in the current
experimental tasks. The right inferior frontal lobe has been
described as important for supporting mathematical subtraction
(Kong et al., 2005). These results, along with high activity of the
right inferior frontal area in the 5T task, occipital connections
to right inferior frontal cortex in the 1T task (shown in neural
synchrony analysis), and high activity in left inferior frontal
area in the 1D task suggest that these inferior frontal areas
should be examined further in comparisons of neural activity
in music versus math. The specific roles of the right superior
frontal gyrus (highly active in both 1D and 1T), and the right
medial orbitofrontal area (highly active in 1T) in working
memory also need further study as they relate to musical
and mathematical cognition. Given that activation patterns of
frontal lobe and frontal-posterior networks can be influenced
by specific modifications to task design within domain (e.g.,
differential effects of a pre-cue versus a post-cue; Ruff et al.,
2007), more research is needed to define how task adjustments
within and across music and math tasks may affect similarities
and differences in corresponding neural activity.

Neural responses elicited during the calculation tasks in the
current study are affected by the high working memory demands
of the tasks. Using an arithmetic equation verification task
in which working memory demands were limited, Rosenberg-
Lee and colleagues (Rosenberg-Lee et al., 2011) assessed neural
responses in tasks of addition, subtraction, multiplication and
division. Among the brain regions they identified as involved
in these tasks, the posterior parietal cortex (PPC) was shown
to be critically involved in representing cognitive processes of
retrieval, calculation and inversion differentially involved in these
tasks. Others have identified the PPC as important in supporting
mathematical functions (Dehaene and Cohen, 1997). In the
current study, MEG was sensitive to differences in high and low
working memory load across tasks, as described above. However,
all of the tasks were demanding of working memory and did
result in high activity in brain regions supporting working
memory and, overall, relatively lower activation of brain regions
supporting other cognitive elements of the tasks.

In the present investigation, though participants were required
to silently name the solutions to each transposing or math
problem (e.g., “B” or “7” for the 1T and 1D tasks, and sequentially
during the 5T and 5D tasks), left hemisphere activation was not
dominant during these tasks. This is in contrast to the results of
laterality index analyses in our previous study (Lu et al., 2019)
in which silent naming of English letters and silent reading of
notes in musical sight-reading both resulted in left hemisphere-
dominant activation. We (Lu et al., 2019) hypothesized that
those results reflected left hemisphere phonological activation
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to support silent naming based on prior findings that MEG
neural activity supporting silent naming is lateralized to the left
hemisphere in right-handed individuals (Bowyer et al., 2004).
In the current study, results from the three analysis methods
used do not show that brain activation is more lateralized to the
left hemisphere for the transposing or calculation tasks. This is
another example of how high task demands on working memory
here may have eclipsed other cognitive elements of the tasks that
can be observed using MEG when the working memory task
demands are lower.

Expert musicians, and students being trained in musical
transposing, may employ one or more strategies to accomplish
transposing during ongoing performance. We previously
described potential differences in musical transposing strategies
that may include reliance on auditory imagery, visual-spatial
imagery, or both (Lu et al., 2021). The activation of motor
cortex during the 5T task in the current study may reflect
a motor strategy in transposing. It remains unclear whether
this motor activation reflects motor intention or occurred
unconsciously in these highly trained musicians presented with
musical notation. Further research is warranted into individual
transposing strategies used by musicians, and by students
during their development of transposing skills. The possibility of
strategic motor involvement in transposing could be examined
for potential differences in motor activation in response to
notes presented in the treble clef (associated with right hand
movement in piano) versus bass clef (associated with left hand
movement in piano).

Current research into whether music training can affect
math achievement includes hypotheses about the effects of
music training on domain-general processes such as working
memory (Eriksson et al., 2015). These effects have been examined
in relation to subtypes of working memory; for example,
Roden and colleagues (Roden et al., 2012) found that music
training resulted in no improvement in visual memory, but that
verbal memory improved. Simmons and colleagues (Simmons
et al., 2012) described that subcomponents of working memory
have different relationships with different mathematical skills.
Continued research into cognitive elements involved in easier
and harder iterations of music and math tasks (and cognitive
elements shared across tasks) will influence efforts to specify
the neural correlates of these cognitive subcomponents. MEG
tasks with lower working memory load may allow observation
of neural activity supporting specific cognitive elements that
are not seen when working memory load is high; however, an
advantage of using tasks with high memory load is that they
may be closer to conditions in the real world. In real world
performance of music or math, working memory demands will
vary with the task but will be generally high. For example,
during real world musical performance, the broader influences
of context and attentional demands along with the musician’s
work to interpret meaning and emotion all contribute to
task complexity. With increasing expertise in music or math,
information processing load will be reduced in some aspects,
such as greater ability to use context to anticipate continuations
in music (Waters et al., 1997). Along with ongoing advances in
technology and data analysis methods, systematic adjustments of

cognitive task demands on working memory and other cognitive
subcomponents will be needed to capture how the brain supports
music and math functions in experts and non-experts, and the
cognitive effects of training.

CONCLUSION

MEG was sensitive to differences in working memory load
during musical transposing and calculation tasks in a group
of classically trained musicians. Frontal-occipital connections
were highly active during the transposing tasks, but not during
the math calculation tasks. Right temporal regions were highly
active in the more difficult condition of the calculation task.
Multiple frontal lobe regions were highly active across tasks;
notably, the left medial frontal area was highly active in all four
tasks, but the right medial frontal area was highly active only
during calculations. Right motor and premotor regions were
highly active in the more difficult condition of the transposing
task but not during calculations. Coherence analyses and neural
synchrony analyses yielded several similarities in brain activation
across the calculation tasks, but latency analyses were sensitive to
differences in task complexity across the two tasks due to the high
temporal resolution of MEG. As was done in the current study,
future studies should compare brain activity in cognitive tasks
involving higher versus lower working memory load. Systematic
manipulations to task demands on working memory and other
cognitive elements of music and math tasks will be necessary to
specify the brain regions supporting elements of these tasks in
experts and non-experts. MEG is sensitive to these effects and
can be used to examine the neural correlates of musical and
mathematical cognition and the consequences of music training.
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Brain-computer interface (BCI) can provide people with motor disabilities with an
alternative channel to access assistive technology (AT) software for communication
and environmental interaction. Multiple sclerosis (MS) is a chronic disease of the
central nervous system that mostly starts in young adulthood and often leads to a
long-term disability, possibly exacerbated by the presence of fatigue. Patients with
MS have been rarely considered as potential BCI end-users. In this pilot study, we
evaluated the usability of a hybrid BCI (h-BCI) system that enables both a P300-based
BCI and conventional input devices (i.e., muscular dependent) to access mainstream
applications through the widely used AT software for communication “Grid 3.” The
evaluation was performed according to the principles of the user-centered design (UCD)
with the aim of providing patients with MS with an alternative control channel (i.e., BCI),
potentially less sensitive to fatigue. A total of 13 patients with MS were enrolled. In
session I, participants were presented with a widely validated P300-based BCI (P3-
speller); in session II, they had to operate Grid 3 to access three mainstream applications
with (1) an AT conventional input device and (2) the h-BCI. Eight patients completed the
protocol. Five out of eight patients with MS were successfully able to access the Grid
3 via the BCI, with a mean online accuracy of 83.3% (± 14.6). Effectiveness (online
accuracy), satisfaction, and workload were comparable between the conventional AT
inputs and the BCI channel in controlling the Grid 3. As expected, the efficiency (time
for correct selection) resulted to be significantly lower for the BCI with respect to the AT
conventional channels (Z = 0.2, p < 0.05). Although cautious due to the limited sample
size, these preliminary findings indicated that the BCI control channel did not have a
detrimental effect with respect to conventional AT channels on the ability to operate an
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AT software (Grid 3). Therefore, we inferred that the usability of the two access modalities
was comparable. The integration of BCI with commercial AT input devices to access a
widely used AT software represents an important step toward the introduction of BCIs
into the AT centers’ daily practice.

Keywords: assistive technologies, brain-computer interface, multiple sclerosis, P300, Grid 3, end-users, user-
centered design, usability

INTRODUCTION

Multiple sclerosis (MS) is an autoimmune disease characterized
by clinical neurological relapses and progressive loss of motor and
sensory function that affects approximately 2.8 million people
worldwide (MSIF, 2020). The course of MS is highly variable, but
the relapsing and/or progressive course of the disease leads to a
long-term sensorimotor disability (Oh et al., 2018). The level of
disability can be even magnified by the presence of a characteristic
symptom occurring in MS, such as fatigue (Tur, 2016). Fatigue
is indeed one of the most common symptoms and is present in
almost 80% of the patients with MS (Rottoli et al., 2017), and
it can be severe in up to 60% of patients (Hadjimichael et al.,
2008). The impact on quality of life (QoL) of such MS long-term
consequences is considerably high, especially if one considers the
relatively young age of the population affected by MS (Compston
and Coles, 2008). Motor disability and fatigue in MS may result
in substantial impairment in communication and in the access to
digital technologies, thus leading to overall social isolation.

Assistive technology (AT) indicates any product that enables
people of all ages with activity limitations in their daily life,
education, work, or leisure (Andrich et al., 2013). ATs include
various input devices (e.g., mouse emulators, eye-trackers,
adapted joysticks, and speech recognition) and specific software
(e.g., Grid 3, Smartbox Assistive Technology, 2021) to create
customized solutions to overcome disability. ATs are selected and
customized based on users’ needs and their motor, sensory, and
cognitive impairment (disabilities) and are validated according
to the user-centered design (UCD; ISO, 2019) that is defined as
an iterative process that involves end-users in all the stages of
technology design, development, and testing.

ATs in general can support communication and
environmental interaction in people with disabilities due to MS;
however, since all conventional AT input devices are muscular
dependent, their usability may result to be compromised by the
presence of muscular fatigue in these patients (Tur, 2016).

The brain-computer interface (BCI) technology has been
demonstrated to provide severely (motor) disabled people with
an alternative channel to enhance/restore communication and
environmental control that is independent from the physiological
peripheral pathways (i.e., nerves and muscles) (Nijboer et al.,
2008; Sellers et al., 2010; McCane et al., 2014; Riccio et al.,
2015; Schettini et al., 2015; Guy et al., 2018; Wolpaw et al.,
2018; Medina-Juliá et al., 2020). Most of the current studies
on the feasibility and usability of non-invasive BCIs systems
for communication have relied on evoked potentials (EPs) and
event-related potentials (ERPs) (e.g., N200; Treder and Blankertz,
2010) as control features (Powers et al., 2015; Allison et al., 2020).

More recently, the so-called hybrid BCIs (h-BCIs) have been
proposed that utilize more than one physiological signal and/or
external signals to increase, for instance, the accuracy and/or the
information transfer rate (Choi et al., 2017). The role of these
h-BCIs appears particularly relevant in the domain of AT as they
can be conceived as an additional input to provide multimodal
access (BCI and conventional AT input devices) to AT software
for communication and environmental control functionalities
(Millán et al., 2010; Riccio et al., 2011, 2015, 2016; Zickler
et al., 2011; Thompson et al., 2014; Schettini et al., 2015). The
incorporation of the BCI as an input channel to commercial
AT software becomes also essential to improve BCI modularity
(Liberati et al., 2015) and eventually to better adapt it to users’
sensory, cognitive, and motor profiles (Schreuder et al., 2013).

Till present, patients with MS have been rarely
considered as potential end-users of BCIs to support
communication/interaction. Martinez-Cagigal et al. (2016)
evaluated a P300-based BCI to access a web browser to eventually
support communication in patients with MS.

In this study, we evaluated the usability of a newly
implemented AT system that adds a P300-based BCI technology
to commercial AT input devices (h-BCI system) to eventually
access a range of computer applications through a commercial
comprehensive AT software for communication and interaction,
the Grid 3 platform (Smartbox Assistive Technology, 2021), with
the aim to exploit the BCI as an additional input to ATs to
address the issues of fatigue limiting the everyday use of ATs
in MS end-users with different degrees of disability. The h-BCI
system was evaluated according to the UCD metrics and,
therefore, in terms of effectiveness, efficiency, and satisfaction.

As such, the proposed hybrid combination of a P300-based
BCI with different conventional input devices can eventually
enable patients with MS to switch between a muscular–based
channel (e.g., joystick control, mouse control, and head tracker
control) and a P300-based BCI channel, according to the level of
fatigue they experience or their preference. The integration of this
h-BCI system with the Grid 3 platform can guarantee universal
access to every kind of mainstream application running on a PC
(i.e., browsing the Internet and WhatsApp).

MATERIALS AND METHODS

Participants and Routine Clinical
Assessment
A total of 13 participants with MS, according to revised
McDonald criteria (Thompson et al., 2018), were enrolled in
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the study (patients with MS; mean age ± SD = 51.6 ± 12.9;
two women; mean time since diagnosis: 253.4 months, range:
70–399 months).

The inclusion criteria were (1) ≥18 years, (2) diagnosis of
MS, and (3) functional limitation in at least one aspect of
interpersonal communication or environmental interaction.

The exclusion criteria were (1) global cognitive decline, (2)
concomitant aphasia or comprehension deficits, (3) visual field
deficits, (4) severe concomitant medical conditions (e.g., fever
and infections), and (5) periods of disease exacerbation.

All participants (or their legal guardians when necessary)
gave their written informed consent for participation in the
study. The study was approved by the Local Ethical Committee
(CE/PROG.707) of Fondazione Santa Lucia, IRCCS.

Patients with MS were recruited from those admitted to the
AT service of Fondazione Santa Lucia, IRCCS (Rome, Italy),
because of their limitations in at least one aspect related to
communication and/or environmental interaction. According to
the clinical standard care, they underwent a neuropsychological
assessment (see Table 1) and were administered with the Fatigue
Severity Scale (FSS; Krupp et al., 1989) to assess the severity of
fatigue symptoms (scores range: 1–7; low fatigue-high fatigue;
mean ± SD = 47.1 ± 10.6) and the Expanded Disability Status
Scale (EDSS; Kurtzke, 1983) to quantify the level of physical
and cognitive disability in MS (scores range: 1–10; normal
neurological exam-death; mean ± SD = 7.1 ± 2.8). When
enrolled in the study, all patients were already using an AT
device/solution based on their needs [see Individually Prioritized
Problem Assessment (IPPA) and AT in Table 1]. All patients with
MS were naïve to BCI protocol.

Hybrid Brain-Computer Interface System
We implemented an h-BCI system prototype based on the
communication between the AT software Grid 3 (Smartbox
Assistive Technology, 2021) and the BCI software BCI2000
(Schalk et al., 2004). The system combines the P300 ERP
with conventional input devices (e.g., head tracker and mouse)
as input channels, thus resulting in a hybrid control of the
system (Grid 3).

Grid 3 is a highly versatile AT software used to create
customized interfaces, providing aided access to PC applications,
and allowing to combine different input devices (e.g., head
tracker and switch). It is one of the most used commercial
AT software for communication in AT services. Grid 3 accepts
inputs from conventional keyboards and allows to associate a
maximum of eight keys to specific and customizable actions to
control applications (e.g., F1 can act as “back to home page,” F2
as “jump to keyboard grid,” and F3 as “turn up the volume”).
Taking advantage of this feature, we modified the BCI2000 source
code (Schalk et al., 2004) so that selections made with the
P300-speller application generated a keypress event and activated
specific commands associated with the key by means of Grid 3.
By doing so, Grid 3 operated as a “link” between BCI2000 and
the specific applications (Figure 1; e.g., WhatsApp, YouTube,
and Google Chrome).

To carry out the experimental protocol, we used a 34-inch
screen (3,440 × 1,440 pixel, 79.7 × 33.3 cm). The distance

between the screen and the patient’s eyes was 100 cm. Grid 3
interfaces were characterized by the presence of a control matrix
on the left side of the screen and the application interface on
the right side of the screen, where commands were delivered.
The control matrix for each application consisted of the main
starting matrix (Figures 2A–C) and of a keyboard matrix (6× 5;
Figure 2D), which could be accessed by selecting a specific icon
on the main matrix (Figure 2). The interface delivered auditory
feedback when a selection was made on control matrices.

WhatsApp control matrix (3 × 3; Figure 2A) allowed
to move through contacts and messages and to write and
send messages, emojis, and predefined messages. Emojis and
predefined messages were organized in two different submatrices
(4 × 3); in the h-BCI system control, the latter matrices
were accessible by means of a conventional input device
(hybrid control).

YouTube control matrix (4 × 3; Figure 2B) allowed to
search videos, go through a list of videos, play a video, and
control the volume.

Google Chrome control matrix (4 × 3; Figure 2C) allowed to
make personalized surfing on the web, scan and select links on
a web page, go back to a previous page, and refresh a web page.
Each matrix included a command to pause the BCI control.

Evaluation Protocol
The protocol consisted of two sessions performed on
2 different days.

Session I – BCI control ability test: Patients with MS were
asked to control a P300-speller (Farwell and Donchin, 1988) to
familiarize themselves with a BCI system and test their ability to
control a validated BCI system whose reliability has been largely
demonstrated (Rezeika et al., 2018). The P300-speller session
lasted about 90 min.

Session II – Grid 3 access via AT input and via BCI
control: Participants were asked to use Grid 3 to access three
applications (WhatsApp, YouTube, and Web Browser) with (1)
a conventional commercial AT input device (Grid 3 access via
a conventional AT input) and (2) with the h-BCI system (Grid
3 access via BCI control). Interfaces and tasks were comparable
in the two conditions. Data obtained in the two conditions were
compared in terms of usability. This session lasted about 120 min.

Sessions I and II were performed within 10 days.

Session I: Brain-Computer Interface Control Ability
Test
Patients with MS had to operate a P300-speller (Farwell and
Donchin, 1988) on a 15′′ screen. The distance between the screen
and the patient’s eyes was 60 cm. Scalp EEG signals were acquired
using a 16-channel amplifier (g.USBamp, g.tec, Austria; 256 Hz)
from 16 sintered Ag/AgCl active electrodes (g.Ladybird, g.tec,
Austria) placed according to the 10-10 International System (Fz,
Cz, Pz, Oz, P3, P4, PO7, PO8, F3, F4, FCz, C3, C4, CP3, CPz,
CP4, referenced to the right ear lobe and grounded to the left
mastoid). A conductive gel was applied between the electrodes
and the scalp to lower impedances. The impedance value did not
exceed 10 k�. The P300-speller consisted of a 6× 5 matrix, which
contained 30 alphabetic characters intensified in pseudo-random
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TABLE 1 | Information about the neuropsychological assessment, the problems, the assistive technology, and the participation in the h-BCI evaluation for each patient
included in the study.

MS patient Neuropsychological
assessment

Problems (IPPA) Assistive Technology h-BCI

P1 Executive Functions: X
Attention: X
Working Memory:X

Computer accessibility Mouse emulator: Joystick X

P2 Executive Functions: 7

Attention: X
Working Memory:7

Reading due to fatigue Mainstream solutions with customized
accessibility settings

X

P3 Executive Functions: X
Attention: X
Working Memory:X

Computer and smartphone accessibility Mouse emulator: Head-tracker X

P4 Executive Functions: X
Attention: X
Working Memory:X

Computer accessibility Mainstream solutions with customized
accessibility settings

X

P5 - Computer accessibility Mainstream solutions with customized
accessibility settings

X

P6 Executive Functions: X
Attention: X
Working Memory:X

- Mainstream solutions with customized
accessibility settings

X

P7 Executive Functions: 7

Attention: 7

Working Memory:7

Computer accessibility Mainstream solutions with customized
accessibility settings

X

P8 Executive Functions: 7

Attention: 7

Working Memory: 7

Face to face communication
Reading/writing

Making phone calls

Customized Grid 3 interface operated with a
button switch and a scanning modality

X

P9 Executive Functions: 7

Attention: 7

Working Memory: 7

Smartphone accessibility Reading Mainstream solutions with customized
accessibility settings

7

P10 Executive Functions: X
Attention: X
Working Memory:X

Face to face communication
Writing/reading

Computer and smartphone accessibility
Social interactions

Independence in daily activity

Mainstream solutions with customized
accessibility settings

7

P11 Executive Functions: X
Attention: 7

Working Memory:X

Computer accessibility Writing/reading Mouse emulator: Joystick 7

P12 Executive Functions: X
Attention: X
Working Memory:7

Face to face communication
Smartphone accessibility Accessibility to

entertainment applications.

Customized Grid 3 interface to support access
to PC applications, operated with a button

switch and a scanning modality

7

P13 - Computer and smartphone accessibility
Accessibility to domotic system

Head tracker to support access to PC 7

Neuropsychological assessment: the column reports the results of clinical neuropsychological assessment for executive functions, attention, and working memory. The
mark “7” stands for a deficit, the mark “X” stands for normal cognitive functioning, and “-” stands for the absence of a neuropsychological assessment. Problems (IPPA):
the column reports the problems identified by participants by filling in the IPPA (Individually Prioritized Problem Assessment interview; Wessels et al., 2002). IPPA is a
semi-structured interview that aims at investigating seven (or fewer) problems (related to communication and environmental interaction in this case) that the patients would
like to solve with the AT. Assistive Technology: the column reports the AT solution used by each participant to overcome the problems identified with the IPPA. H-BCI:
the column reports the participation (or not) in the h-BCI system evaluation session. The mark “7” is used when the patient completed all the sessions included in the
protocol, and the mark “X” is used when the patients did not complete all the tasks included in the protocol.

FIGURE 1 | Illustration of the system design and the relationship between the software modules.
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groups according to the checkerboard stimulation paradigm
(Townsend et al., 2010). The stimulus duration was 125 ms
and the interstimulus interval (ISI) was 125 ms [stimulus onset
interval (SOA): 250 ms].

Participants had to spell eight predefined five-character words
(eight runs) with a pause of about 3 min between them.
Each target was intensified 16 times, corresponding to eight
stimulation sequences, and participants were instructed to attend
the target stimulus and mentally count how many times it
was intensified. Target characters were cued at the beginning
of each trial. No feedback was provided during the first three
runs (15 selections; calibration). This EEG data set was used
to extract the BCI classifier parameters by applying a Stepwise
Linear Discriminant Analysis (SWLDA; Krusienski et al., 2006).
We used the BCI classifier parameters to determine the online
feedback on the spelling of the following five words (25 selections;
online copy mode).

Session II: Grid 3 Access via Assistive Technology
Input and via Brain-Computer Interface Control
Grid 3 Access via Assistive Technology Input
The “Grid 3 access via AT input” condition was aimed at
evaluating patients’ ability to operate Grid 3 independently from
the BCI channel. Patients with MS operated Grid 3 with their own
conventional (PC mouse) or alternative input device (e.g., head
tracker and switch; see Table 1).

In this condition, the number of selections needed to complete
a task varied as a function of the input channel: e.g., the selection
of an item operated with a switch and the scanning modality
required a double-action (selection of the row and then of
the column containing it) in comparison with the selection
performed with the mouse emulators, allowing direct control of
the cursor (e.g., head tracker and joystick).

Patients with MS were first instructed about the experimental
procedures. They were then asked to perform the following tasks:

• Task 1: WhatsApp (selections required: 8 or 16 in case of
scanning modality). Participants had to select the second
contact in the chat list by scrolling it down, open the
keyboard, and write the message “OK,” then they had to go
back to the “main menu,” send the message, open the emoji
menu, and send the second emoji.
• Task 2: YouTube (selections required: 5 or 10 in case of

scanning modality). Participants were required to scroll
down the video list and open the second video, turn up the
volume, and pause the video.
• Task 3: Google Chrome (selections required: 5 or 10 in case

of scanning modality). Participants had to open the second
link of a web page, scroll down the page, and select the
command “pause.”

Grid 3 Access via Brain-Computer Interface Control
Patients with MS had to operate Grid 3 using the h-BCI,
combining the P300-based BCI and the conventional/alternative
input device used in the Grid 3 access via AT input condition
(hybrid control). Scalp EEG signals were acquired using a 16-
channel amplifier (g.USBamp, g.tec, Austria; 256 Hz) from eight

sintered Ag/AgCl active electrodes (g.Ladybird, g.tec, Austria)
placed according to the 10-10 International System (Fz, Cz, Pz,
Oz, P3, P4, PO7, PO8, referenced to the right ear lobe and
grounded to the left mastoid). A conductive gel was applied
between the electrodes and the scalp to lower impedances.
Each h-BCI system session consisted of a “Calibration” and an
“Online mode.” Patients with MS were instructed to focus their
attention on the target and mentally count how many times it
was intensified. The experimenter pointed at the target stimuli.

Calibration consisted of six runs (4 items each; 24 total items)
with matrices of different sizes: two runs with a 3 × 3 matrix,
two runs with a 4 × 3 matrix, and two runs with a 6 × 5
matrix. No feedback was provided to participants. Items were
randomly intensified by rows and columns for 125 ms and
with an ISI of 125 ms; each item was intensified 30 times (15
stimulation sequences). The EEG data set collected during the
calibration was used to extract the BCI classifier parameters by
applying an SWLDA.

The “online mode” consisted of three runs; patients were asked
to perform the same tasks performed during the “Grid 3 access
via AT input” condition. The number of stimulation sequences
was optimized for each participant. The criterion applied to
establish the number of sequences to be used in the online mode
was n + 1, where “n” was the number of sequences necessary to
reach 100% offline accuracy (applying a sixfold cross-validation
procedure to the data recorded in the calibration). Feedback
occurred at the end of each trial.

Task 1: WhatsApp (minimum number of selections required:
8 or 9 in case of hybrid control based on scanning modality).
Only the emoji (one out of eight selections) was selected
with the hybrid control (conventional/alternative input device);
the remaining seven were BCI-based selections. This leads to
variability in the number of selections.

Task 2: YouTube (minimum number of selections required: 5).
Task 3: Google Chrome (minimum number of

selections required: 5).
In case of wrong selection, the participant had to

correct the error.
The tasks were interrupted if the participants reached the k× 3

number of selections (where “k” is the minimum number of
selections expected to complete the task).

Outcome Measures
Session I: Brain-Computer Interface Control Ability
Test
P300-speller performance was evaluated as follows and then
compared with h-BCI system performance:

• Online accuracy (%) is defined as the ratio between correct
selections and selections needed to complete the task.
• The highest written symbol rate (WSR; Furdea et al., 2009)

was assessed as a function of the number of stimulus
repetitions delivered in a given trial of the five online copy-
mode runs. The maximum WSR value for each subject
provides an objective evaluation of the system performance
by combining the accuracy level with the time needed to
reach it, in terms of the number of stimulation sequences. In
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FIGURE 2 | The h-BCI system interfaces. (A) WhatsApp interface: “contact up” and “contact down” icons allow the user to scroll through the contacts, the
“keyboard icon” (in the upper-left corner of the matrix) allows to open the keyboard (D) and spell the message, the message is sent by selecting the “send” icon.
“Message up” and “message down” icons allow the user to scroll through the messages received within a contact chat. (B) YouTube interface: the “search” icon (in
the upper-left corner of the matrix) is selected to search the desired item by opening the keyboard (D) and spelling a keyword, the “arrow” icons (video up, video
down, video left, and video right) are selected to scroll through the videos displayed on the screen; “open video” icon allows to choose the desired item and the
“play/pause” one to start and stop the video. (C) Google Chrome interface: the “search” icon (in the upper-left corner of the matrix) is selected to search the desired
link, the “scroll up” and “scroll down” icons allow to scroll the links displayed on the screen, “open link” icon allows to choose the link to be opened. (D) Keyboard:
the keyboard matrix is accessed by selecting the “keyboard” (A) and the “search” (B,C) icons on the main matrices.

the “copy-mode” runs, the participants were asked to (copy)
spell predefined words. In case of errors, the participants
were not asked to correct the wrong selection; he/she had
to proceed with the next letter of the word. Therefore, the
number of selections was fixed.

Session II: Grid 3 Access via Assistive Technology
Input and via Brain-Computer Interface Control
The usability of the system in the two conditions of session
II (Grid 3 access via AT input and Grid 3 access via BCI
control) was evaluated in terms of effectiveness, efficiency, and
satisfaction (ISO, 2019).

• Effectiveness is defined as the accuracy and completeness
with which the user achieves goals while using the system.
It was evaluated as follows:

• Online accuracy (%): Calculated by dividing the number
of correct selections by the total number of selections.

• Completeness: Indicated with the number of participants
who completed the protocol. The tasks were not
considered complete after the n× 3 number of selections
(with “n” as the minimum number of selections needed
to complete the task).

• Efficiency describes the degree to which the system enables
quick, effective, and economic performance in terms of
time, human effort, costs, and materials. It was evaluated
in terms of workload.

The workload was assessed through the National
Aeronautics and Space Administration – Task
Load Index (NASA-tlx; Hart, 2006). NASA-tlx is a
multidimensional questionnaire that assesses perceived
workload during the usage of a high technology device.
It was administered by an experimenter at the end of
both the “Grid 3 access via AT input” and “Grid 3 access
via BCI control” conditions. The overall workload score
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TABLE 2 | Performance data in sessions I and II.

MS patient Session I BCI control ability test (P300-speller) Session II

Grid 3 access via AT input Grid 3 access via BCI control

Acc (%) WSR Task completion Acc (%) Task completion Acc (%) Task completion

P1 56 2.7 X 100 X 79.0 X

P2 88 2.4 X 87.8 X 62.8 X

P3 96 9.1 X 100 X 80.4 X

P4 100 9.4 X 100 X 94.4 X

P5 44 0 7 100 X 46.5 7

P6 92 6 X 93.3 X 100 X

P7 0 0 7 85.4 X 11.4 7

P8 0 0 7 87.6 X 40 7

Mean ± SD 59.5 ± 41.7 94.3 ± 6.5 64.3 ± 30.2

P9 96 3.4 X 100% X – –

P10 96 6.1 X – – – –

P13 96 4.9 X – – – –

Mean ± SD 69.4

Acc, accuracy; WSR, written symbol rate. Task completion: the mark “X” stands for the complete task, the mark “7” stands for the incomplete task, and the mark “–”
means that the patient did not participate in that task.

(0–100) is a weighted average between the rating of six
factors (i.e., mental demand, physical demand, temporal
demand, performance, effort, and frustration level).
Each factor has a weighted rating that ranges from 0 to
33.33. Higher scores are associated with higher levels of
workload.

• Effectiveness/efficiency: Time per correct selection and WSR
were considered metrics belonging to both effectiveness and
efficiency constructs:

• WSR (Furdea et al., 2009) was assessed offline as a
function of the number of stimulus repetitions delivered
in a given trial of calibration; it was considered the
highest offline WSR value. WSR was computed only for
the “Grid 3 access via BCI control.”
• Time for correct selection (s) was computed as the ratio

between the total time to complete the online tasks and
the number of correct selections.

• Satisfaction represents the degree to which the user’s
physical, cognitive, and emotional responses that result
from the use of a system meet the user’s needs and
expectations. It was evaluated by means of the System
Usability Scale (SUS; Bangor et al., 2009). SUS is a 5-
point Likert scale that assesses user satisfaction with a
technological device. Participants were required to express
their agreement/disagreement with the statements on the
scale. It was administered by an experimenter at the end of
both conditions.

Statistical Analysis
We investigated the correlation between the P300-speller
accuracy and the h-BCI system accuracy by means of Spearman’s
rank test. These analyses aimed at demonstrating the reliability

of the h-BCI, assuming the reliability of the well-validated P300-
speller.

Usability Assessment
To evaluate whether the introduction of the P300-based BCI as
an additional channel to control the AT software would affect
system usability, we compared the “Grid 3 access via AT input”
condition with the “Grid 3 access via BCI control” condition
for the five patients who successfully controlled the h-BCI. We
compared the two conditions in terms of effectiveness (accuracy),
efficiency (time per correct selection, NASA-tlx scores), and
satisfaction (SUS scores) scores by means of a (non-parametric)
Wilcoxon matched-pairs test since the distributions violated the
assumption of normality. Regarding the NASA-tlx, we compared
both the overall perceived workload score and the single-factor
scores (mental demand, physical demand, temporal demand,
performance, effort, frustration) by means of a (non-parametric)
Wilcoxon matched-pairs test. Finally, any possible correlations
between the accuracy in “Grid 3 access via BCI control” condition
and FSS scores (level of fatigue) and EDSS scores (level of
disability) were investigated by means of Spearman’s rank test to
evaluate whether the level of fatigue and disability could influence
the ability to control the h-BCI.

RESULTS

Pilot Evaluation
We first evaluated the h-BCI system, including a convenience
sample of 13 healthy volunteers (mean age = 27.2 ± 2.9; nine
women), with no history of neurological/psychiatric disorders.
All participants were able to control the system with a mean
(±SD) online accuracy of 98.1 ± 2.7% and a mean (±SD) time
per correct selection 25.3 s (±8.1). The mean (± SD) overall
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perceived workload (NASA-tlx) was 39.1 (±18.2), and the mean
(± SD) satisfaction score (SUS) was 81.4 (± 12.6).

Session I: Brain-Computer Interface
Control Ability Test
A total of 11 of 13 patients with MS participated in session I
(two women; mean age: 52 ± 14.0; mean time since diagnosis:
248.8± 133.2 months; years of formal education: 13± 3.1 years).
Three patients gained a control accuracy of the P300-speller
below the 50% (Table 2; P5, P7, P8) and showed a WSR = 0,
not supporting an efficient communication. Two of those patients
had an accuracy of 0%. A total of 8 of 11 patients had a WSR > 2,
showing an efficient control of the P300-speller.

Session II: Grid 3 Access via Assistive
Technology Input
A total of 9 of 13 patients with MS participated in the
“Grid 3 access via AT input” condition (two women;
mean age: 54.9 ± 10.6; mean ± SD time since diagnosis:
249.2± 128.1 months; mean education: 13± 3.5 years).

• Effectiveness: All patients with MS completed the tasks
(Tables 2, 3), with a mean accuracy of 94.9± 6.4%.
• Efficiency: Mean time per correct selection of the nine

participants in the session was 8.8 s (±6.3). Total workload
(NASA-tlx) was 22.3 (±20.8) with weighted ratings of
NASA-tlx factors ranging from 1.2 (effort) to 8.1 (mental
demand) (Table 4).
• Satisfaction: SUS score was on average 78.1 (±10.8)

(Table 4).

Session II: Grid 3 Access via
Brain-Computer Interface Control
Eight patients with MS participated in the “Grid 3 access via BCI
control” condition (two women; mean age: 54.1 ± 11.1; mean
time since diagnosis: 249.5 ± 137.0 months; mean education:
13± 3.8 years).

• Effectiveness. Five out of eight patients with MS (P1, P2,
P3, P4, and P6) controlled the h-BCI system since they
completed the three online tasks. Three participants (P5,
P7, and P8) did not complete the online tasks (Tables 2, 3).
Patients with MS that controlled the h-BCI system obtained
a mean online accuracy of 83.3%± 14.6% (Table 3).
• Efficiency. The five patients with MS that controlled the

system obtained a mean (± SD) time per correct selection
of 41.0 s ± (16.2) and a mean offline WSR of 4.4
sym/min (±3.7); the mean (±SD) overall workload score
was 24.4 (±21.0) in patients with MS that controlled the
h-BCI; weighted ratings of NASA-tlx factors ranged from
1.2 (performance) to 10.7 (mental demand). The mean
(±SD) overall workload score was 35.8 (±10.9) in patients
with MS that did not control the h-BCI system, and
the weighted ratings of NASA-tlx factors ranged from 1
(physical demand) to 13.3 (mental demand) (Table 4).
• Satisfaction. The mean (±SD) SUS score (0–100) was 78

(±16.6) in the five patients with MS that were able to

control the h-BCI system and 69.2 (±8.0) in the three
patients with MS who did not control the h-BCI system
(Table 4).

Brain-Computer Interface Control Ability
Test vs. Grid 3 Access via
Brain-Computer Interface Control
Considering all the eight patients with MS who participated
in session II, we found a significant correlation between the
P300-speller online copy-mode accuracy and the h-BCI system
accuracy (Grid 3 access via BCI control condition; rs = 0.9,
p < 0.05).

The three patients with MS (P5, P7, P8) who did not complete
the three tasks in the “Grid 3 access via BCI control” condition
also did not control the P300-speller (accuracy < 50%, WSR = 0).

Usability Assessment
Effectiveness
All the eight patients who participated in both the “Grid 3
access via AT input” condition and the “Grid 3 access via BCI
control” condition successfully completed the “Grid 3 access via
AT input” condition. Five of them successfully completed the
“Grid 3 access via BCI control” condition (Table 2). Considering
the five patients with MS who completed both the conditions,
we did not find significant differences in the accuracy (Z = 1.5;
p = 0.1; Figure 3).

No significant correlations were found between the h-BCI
system online accuracy and the FSS scores (rs = 0.29, p = 0.49)
and the EDSS scores (rs = –0.57, p = 0.013), respectively.

Efficiency
Considering the five patients with MS who completed both the
“Grid 3 access via AT input” condition and the “Grid 3 access
via BCI control” condition, we did not find significant differences
in workload scores (NASA-tlx scores: overall workload: Z = 1.1,
p = 0.3; mental demand: Z = 1.1, p = 0.3; physical demand: Z = 0.9,
p = 0.4; temporal demand: Z = 1.1, p = 0.3; performance: Z = 0.5,
p = 0.6; effort: Z = 1.8, p = 0.1; frustration: Z = 1.3, p = 0.2). We
found a significant difference in time per correct selection, which
was significantly higher in the “Grid 3 access via BCI control”
condition (Z = 2.0, p < 0.05; Figure 3).

Satisfaction
Considering the five participants who successfully controlled the
h-BCI system, no significant differences were found between the
SUS scores in the “Grid 3 access via AT input” condition and in
the “Grid 3 access via BCI control” condition (Z = 0.9, p = 0.3;
Figure 3).

DISCUSSION

We implemented an h-BCI system combining the P300-based
BCI technology with commercial AT input devices to access
a range of computer applications through a widely used AT
software for communication and environmental interaction:
Grid 3. We evaluated the usability of the h-BCI system involving
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TABLE 3 | The mean (± SD) group results, including the patients who completed each session.

Outcome measures Session I BCI control ability test Session II

Grid 3 access via AT input Grid 3 access via BCI control

Patients (n) 8/11 9/9 5/8

Effectiveness Online accuracy (%) 90 ± 14.2 94.9 ± 6.4 83.3 ± 14.6

Efficiency NASA-tlx (Total workload; 0–100) – 22.3 ± 20.8 24.4 ± 21.0

Effectiveness/Efficiency WSR (sym/min) 5.5 ± 2.7 – 4.4 ± 3.7

Time for correct selections (s) – 8.8 ± 6.3 41.0 ± 16.2

Satisfaction SUS (0–100) – 78.1 ± 10.8 78 ± 16.6

Session I, patients with WSR > 0; Session II, patients who completed the three tasks.

TABLE 4 | Scores for the NASA-tlx and SUS questionnaires in session II: Grid 3 access via AT input and Grid 3 access via BCI control.

Patient NASA-TLX SUS

Workload tot Mental demand Physical demand Temporal demand Performance Effort Frustration

Grid 3 access via AT input

P1 4 1.3 1.3 1.3 0 0 0 95

P2 60.3 31.7 6.7 10 10 2 0 70

P3 6.7 0 2.7 1.3 0 2.7 0 87.5

P4 12.6 3.3 1.3 5.3 2 0.7 0 87.5

P5 8.3 2.7 0.3 2.7 1 1.7 0 62.5

P6 0 0 0 0 0 0 0 82.5

P7 30.3 10 0 0 2.7 2.7 15 67.5

P8 39.3 16 4.7 4.7 4 0 10 72.5

Mean ± SD 20.2 ± 21.1 8.1 ± 11 2.1 ± 2.4 3.2 ± 3.4 2.5 ± 3.4 1.2 ± 1.2 3.1 ± 5.9 78.1 ± 11.6

Grid 3 access via BCI control

P1 4.7 1.3 1 1.7 0 0.7 0 90

P2 46.7 23.3 5 1.3 1.3 15 0.7 57.5

P3 40.3 10.7 4 1.3 4.7 4.7 25 62.5

P4 30.3 18.3 0 2.7 0 9.3 0 92.5

P5 48.3 18.7 2.7 24 0 1.3 1.7 72.5

P6 0 0 0 0 0 0 0 87.5

P7 29.7 13.3 0.3 3.3 6.7 2.7 3.3 75

P8 29.3 8 0 4 8 2.7 6.7 60

Mean ± SD 28.7 ± 17.9 11.7 ± 8.4 1.6 ± 2 4.8 ± 7.9 2.6 ± 3.4 4.5 ± 5.1 4.7 ± 8.5 74.7 ± 14

13 patients with MS who were admitted to the AT service
of Fondazione Santa Lucia, IRCCS (Rome, Italy). Patients
participated in two sessions, including (i) the control of the P300-
speller (BCI control ability test; Farwell and Donchin, 1988) and
(ii) the access to WhatsApp, YouTube, and Web Browser through
Grid 3 first with a conventional commercial input device and
then with the h-BCI system (Grid 3 access via AT input and
via BCI control).

First, we tested the reliability of the newly developed h-BCI
system referring to the stand-alone P300-speller, assuming
the P300-speller as the most validated BCI. The comparison
showed that those patients who successfully controlled the
P300-speller also succeeded in mastering the h-BCI system.
On the other hand, the three patients who were not able
to control the h-BCI system showed similar “illiteracy” for
the P300-speller control (Table 2; P5, P7, P8). Overall, these
data underlined the reliability of the h-BCI system and allow
us to infer that the inability to control the h-BCI system

was due to patients’ peculiarities (Oreja-Guevara et al., 2019;
see below) rather than the system features. As shown by
way of example in Figure 4, the amplitude of the P300
waveform over Pz for the participant who best controlled
the h-BCI system (P6) was, at a visual inspection, higher
with respect to the participant who did not control the
system (P7). Furthermore, we noted that patients who did not
control the h-BCI system showed a deficit in the executive
functions, attention, and working memory (as for P5 the
neuropsychological assessment was not available; Table 1). We,
therefore, hypothesize that cognitive impairments could, in part,
account for the inability to control the h-BCI system. This
was consistent with previous studies that found a significant
involvement of cognitive abilities in BCI performance in patients
with amyotrophic lateral sclerosis (Riccio et al., 2013, 2018;
Geronimo et al., 2016) and underlines the importance to
consider the cognitive abilities in the implementation of BCI-
based AT devices.
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FIGURE 3 | Box plots compare the results for the two control mode conditions: Grid 3 Access via BCI control (left) and Grid 3 access via AT input (right). Online
accuracy: the ratio between correct selections and selections needed to complete the task; time for correct selection: the ratio between the total time to complete
the tasks and the number of correct selections; NASA-tlx: the overall workload scores in the NASA-tlx questionnaire; System Usability Scale: level of satisfaction
evaluated with the SUS. Box plots represent the distribution of the measurements, whiskers reach from minimum to maximum, the lines depict the medians, the “x”
depicts the mean level, and the boxes cover the values between the first and third quartile. * indicates a significant difference (p < 0.05).

FIGURE 4 | Illustration of the P300 waveform in Pz from the participant who best controlled the h-BCI system (P6; in red) and the participant who worst controlled
the system (P7; in black). EEG data sets were high-pass and low-pass filtered with cutoff frequencies of 0.1 and 10 Hz, respectively; a notch filter was used to
remove 50 Hz contamination. EEG signal was segmented in epochs of 1 s starting at the onset of each stimulus. A baseline correction was done based on the
average EEG activity within 200 ms immediately preceding each epoch. The average waveform for both target and non-target epochs was computed for each trial
to assess P300 peak amplitude and latency. The ERP waveforms were obtained from a sample-by-sample contrast between the target and non-target ERP
waveform amplitude and therefore show the difference between target and non-target; the analysis was conducted on the data sets from the six calibration runs.

Patients with MS have been rarely considered as potential
BCI end-users. To the best of our knowledge, only one
previous study (Martinez-Cagigal et al., 2016) reported the
evaluation of a P300-based BCI (for the web browser access)
with 16 patients with MS. The authors reported a control
accuracy of 84.14(±10.08)% which is comparable with our results
(83.3% ± 14.6% accuracy), with three patients who had a
classification accuracy in the calibration session of <70%, and
were then excluded from the assessment.

In addition to the investigation of the ability to control the
system in patients with MS, we evaluated the h-BCI system

usability according to the UCD metrics (Kübler et al., 2014; Riccio
et al., 2015; Schettini et al., 2015). The comparison between the
two conditions (Grid 3 access via AT input and BCI control) did
not reveal significant differences both in terms of effectiveness
and users’ satisfaction. As for the efficiency, the access to Grid 3
was faster when conventional input devices were used compared
with the BCI input. However, this disadvantage (in terms of
time resources involved by the user) in the efficiency of the
h-BCI system was not confirmed by the workload as perceived by
patients with MS (NASA-tlx), which was comparable between the
two conditions. Also, participants’ satisfaction was not affected
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in the h-BCI system despite the h-BCI system time demand.
Thus, we can infer that taking into account the (well-known)
high time demand of the BCI channel, the BCI addition as a
control channel of the AT software does not worsen the usability
of the whole system. However, we must consider that these results
could be influenced by an effect of the fascination with high
technologies associated with the fact that patients performed
brief tasks proposed only once. Further developments aimed at
addressing the time demand issue and consequently at improving
the system efficiency would include the asynchronous control
(dynamic stopping of the stimulation) and automatic control
suspension features together with the automatic recalibration
of the classifier’s parameters (Schettini et al., 2014; Guy et al.,
2018). Also, such developments would concern the evaluation
of classifiers potentially more accurate than the SWLDA and
the evaluation of their feasibility with the proposed system;
e.g., BLDA classifier, (non)linear SVM (Manyakov et al., 2011),
and Riemannian classifiers (Delgado et al., 2020). Moreover, the
fact that our results did not show any relation between the
system control and the patients’ level of fatigue underlines the
importance of deeply investigating such an issue to hypothesize
an advantage of the h-BCI system to access ATs.

Although cautious due to the limited sample size and
the fact that the study was conducted in an experimental
setting, these preliminary findings support the reliability of
a P300-based BCI as an additional input channel to access
a commercial AT and the evidence that such an additional
channel has no additional costs on users’ perception of usability
with respect to muscular-based aids. Future studies involving a
larger cohort of patients should be performed to improve the
power of the statistical analysis and to better investigate the
potential of this (hybrid) approach in real-life scenarios. This
would allow considering more variables (e.g., the comfort of
the EEG cap montage, including electrodes characteristics, the
use of the conductive gel, the essential presence of a skilled
operator), and their influence on patients’ perceived satisfaction.
Furthermore, to overcome the possibility that a unique evaluation
session would lead patients to overestimate the usability of
the system, a longitudinal study in an ecological setting would
be the next step.

Finally, we consider the integration of the BCI with the
daily/commercial AT devices and the involvement of AT
services in the development of innovative devices and in their
customization and validation as an important step for the BCI
inclusion in AT services portfolio of solutions.
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Technologies like passive brain-computer interfaces (BCI) can enhance human-machine

interaction. Anyhow, there are still shortcomings in terms of easiness of use, reliability,

and generalizability that prevent passive-BCI from entering real-life situations. The current

work aimed to technologically and methodologically design a new gel-free passive-BCI

system for out-of-the-lab employment. The choice of the water-based electrodes and

the design of a new lightweight headset met the need for easy-to-wear, comfortable,

and highly acceptable technology. The proposed system showed high reliability in both

laboratory and realistic settings, performing not significantly different from the gold

standard based on gel electrodes. In both cases, the proposed system allowed effective

discrimination (AUC> 0.9) between low and high levels of workload, vigilance, and stress

even for high temporal resolution (<10 s). Finally, the generalizability of the proposed

system has been tested through a cross-task calibration. The system calibrated with the

data recorded during the laboratory tasks was able to discriminate the targeted human

factors during the realistic task reaching AUC values higher than 0.8 at 40 s of temporal

resolution in case of vigilance and workload, and 20 s of temporal resolution for the stress

monitoring. These results pave the way for ecologic use of the system, where calibration

data of the realistic task are difficult to obtain.

Keywords: passive-BCI, EEG, water-based electrodes, workload, vigilance, stress, human factors

INTRODUCTION

The human–machine interaction involves all the processes of interaction and communication
between a human user and a machine. It aims to make the human even more “understandable
to the machine” by systems that can detect and classify human feelings, emotions, and cognitive
states (Di Nardo et al., 2020). In recent times, more and more attention arose around the use
of brain signals to detect the human state, that is the passive brain-computer interfaces (BCI).
BCI was born for clinical needs and progressively moved from translating intentional (actions)
to unintentional (mental states) brain outputs, thus, from active to passive-BCI (Zander et al.,
2009). The passive-BCI does not aim to voluntarily control the external world but to allow
the surroundings to automatically adapt their behavior to the actual subject’s mental states

73

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.901387
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.901387&domain=pdf&date_stamp=2022-07-14
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nicolina.sciaraffa@brainsigns.com
https://doi.org/10.3389/fnhum.2022.901387
https://www.frontiersin.org/articles/10.3389/fnhum.2022.901387/full


Sciaraffa et al. A New Lightweight EEG Technology

(Zander and Kothe, 2011; Aricò et al., 2018). The impact of this
new aspect of the BCI is clear for safety-critical environments,
where the mental state of users is usually correlated to the
probability of making errors or, more generally, to human factors
(Aricò et al., 2017b; Zander et al., 2017). The monitoring of the
user-state is just one of the countless applications of passive-
BCI that have been resumed in 5 categories. The additions to
user-state monitoring are safety and security, training, education,
cognitive improvement, gaming, and entertainment (Erp et al.,
2012).

Despite the growing interest in passive-BCI applications, there
is still a gap between theory and practice. On the one hand, the
advantage of using a human-centered design is clear, since it
could facilitate the operator’s work and reduce safety risks (Ke
et al., 2021). On the other hand, ethical and technical limitations
prevent the growth of passive-BCI technology within operational
contexts: ease of use, reliability, and generalizability are the key
characteristics affecting the end-users perception and choice of a
passive-BCI system (Douibi et al., 2021).

Technical Limitations of Passive-BCI
Systems
In this context, electroencephalography (EEG) is the most used
method to measure the electrical activity of the brain. It is
usually preferred, thanks to its portability, non-invasiveness, and
high temporal resolution (Roman-Gonzalez, 2012). However,
a traditional passive-BCI setup requires the use of Ag/AgCl
electrodes that are in contact with the scalp through the
electrolytic gel. This strongly limits the ease of use (Webster,
2009). In fact, in place of excellent signal quality, these recording
systems required the scrubbing of the skin to lower the electrode
impedance before using electrolytic gel. This is a time-consuming
activity that takes 20min or more depending on the number of
electrodes used. Extra time is also needed because the subject
should wash the hair to remove gel residues. This approach
and gel-based electrodes are still considered the gold standard.
However, the gap between the new water and gel electrodes is
narrowing (Volosyak et al., 2010; Chi et al., 2012; Lopez-Gordo
et al., 2014; Di Flumeri et al., 2019a). Water-based electrodes
consisted of felt or similar tissue soaked in water or saline
solution to connect the electrode to the skin (Müller-Putz and
Wriessnegger, 2021). This makes both setup and clean-up faster
and easier, as well as more comfortable without affecting the
quality of the signal (Volosyak et al., 2010). In this regard,
different portable and gel-free EEG recording systems have been
employed in several studies: the tested electrodes were able to
guarantee the same quality levels as the gel electrodes, along with
significantly faster setup and higher comfort (Volosyak et al.,
2010; Amaral et al., 2017; Vourvopoulos et al., 2017; Di Flumeri
et al., 2019a).

Despite this, the wearable EEG devices available on the market
are a step behind other wearable devices. A recent analysis
of the current market found 28 companies developing wired
and wireless EEG equipment (Jamil et al., 2021). However, it
has not yet been possible to converge comfort with pleasant

appearance, effective recording, and adaptability to different
operating contexts.

Despite the wide range of recording systems, the time-to-
market estimate made 10 years ago for passive-BCI systems
has not yet been met (Erp et al., 2012). This is also because
the reliability of a passive-BCI system depends not only on
hardware but also on software aspects. On the one hand, the
recording technology should guarantee ease of use without
adversely affecting signal quality. On the other hand, the passive-
BCI system should be accurate and not bore the user with
frequent calibrations. This aspect depends on the suitability of
the algorithm implemented in the system. First, signal processing
techniques should be adapted for out-of-the-lab use. For
example, the low number of channels expected for wearable EEG
and the need for high reactivity disfavor the most widely used
signal correction methods, such as Independent Component
Analysis (Makeig et al., 1995). Furthermore, themore the number
of pre-processing steps, the higher the computational effort
required, resulting in larger computational modules and faster
battery consumption. In addition, for online use, all methods
that need to know the entire data (e.g., normalization methods)
cannot be used. Once clean EEG signals have been obtained,
further steps have to be performed to obtain features that
can identify the user’s mental state. Spectral features can be
efficiently calculated and can provide real-time feedback. Such
features are usually used to train machine learning or deep
learning algorithms (Aricò et al., 2016). These methods must
be reliable, but must not require frequent calibration, ideally
zeroing it out with an unsupervised approach (Schultze-Kraft
et al., 2016). Although unsupervised approaches may allow
greater generalizability of the system, supervised methods are
preferred as they allow significantly higher accuracies to be
achieved (Blankertz et al., 2016). Better generalization results can
be achieved using a cross-task approach. An open issue related to
the use of passive-BCI during a realistic task is the lack of specific
calibration tasks able to elicit a specificmental state in the subject.
Well-designed laboratory tasks can be effective for calibration use
in a cross-task approach.

To summarize, EEG technology and calibration of the passive-
BCI system remain the two main gaps for out-of-the-lab use.

Targeted Human Factors
Drivers, air traffic controllers, surgeons, athletes, and pilots
represent some of the users who could benefit most from the
use of passive-BCI systems during both training and operational
conditions (Aricò et al., 2017a; Zander et al., 2017; Alimardani
and Hiraki, 2020). In general, the common denominator of
these application areas is human performance: passive-BCI could
allow obtaining information on the user’s psychophysiological
state, in terms of different human factors, to develop solutions
for improving performance and safety. Building on this, three
human factors have been targeted in the current work: mental
workload, stress, and vigilance.

The mental workload has been chosen due to its relevant
role in safety-critical applications (Young et al., 2015). In
general, the mental workload quantifies the mental resources
used during a task and is correlated with the performance
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(Wickens, 2008). Extremely high (i.e., overload), while extremely
low (i.e., underload) workloads have been associated with poorer
performances. Therefore, a passive BCI system could intervene
to detect a fatal overload/underload condition. Assessment of
mental workload by EEG provides a reliable and objective
measure that can be used for this purpose in different laboratory
and realistic contexts (Zhou et al., 2021).

Stress is another relevant human factor in many operational
domains (Aricò et al., 2017b). One of the definitions of stress
is “a state that occurs when demand outstrips coping strategies”
(Hobfoll and Shirom, 1993). High task demand, frustration,
time pressure, uncontrollability, and negative judgment are
typical stressors that adversely affect performance by altering the
cognitive processes underlying decision-making, attention, and
memory (Skoluda et al., 2015). Stress assessment by EEG takes
advantage of the higher temporal resolution and the possibility
of direct access to the activity of the central nervous system,
measuring stress levels continuously and without interfering
with human activities (Borghini et al., 2020). Moreover, there
are several examples of real-time measures of stress based on
EEG signals using machine learning methods (Saeed et al., 2015;
Attallah, 2020; Halim and Rehan, 2020; Hekmatmanesh et al.,
2021; Katmah et al., 2021).

Finally, monitoring levels of vigilance has proven to be a
key aspect in several fundamental environments (Neigel et al.,
2020). The concept of vigilance belongs to the broader domain
of attention. A physiological decrease in vigilance over time
is associated with performance degradation, such as slower
reaction times and loss of situation awareness, whereas optimal
performance is ensured by an adequate level of activation
throughout the task (Parasuraman et al., 1998). EEG measures
have been used as features for machine learning models to
monitor vigilance levels in different contexts (Sebastiani et al.,
2020; Kamrud et al., 2021; Li and Chung, 2022).

In this framework, the present work aims to evaluate a new
lightweight EEG technology for translational use of passive-
BCI. In particular, the system based on water-based electrodes
was tested in terms of impedances, artifacts, usability, and
human factors assessment and was compared with a gel-based
equivalent that was used as a gold standard. To analyze the
reliability and generalizability of the proposed system, it has been
tested during two studies focusing on laboratory and realistic
settings, respectively.

MATERIALS AND METHODS

Experimental Participants
Twenty healthy subjects (29.3 ± 5.12 years old) took part in
the study: 8 women and 12 men were recruited voluntarily.
Informed consent was obtained from each subject and all the
data were pseudorandomized to prevent any association with the
subject’s identity. The experiments were conducted following the
principles outlined in the 1975 Declaration of Helsinki, as revised
in 2000. Experiments were approved by the Ethical Committee
of the Sapienza University of Rome. Due to the involvement in
a realistic driving experiment, a driver’s license and the ability

to drive a car with a manual transmission were required as
inclusion criteria.

Experimental Set-Up
Gel and water-based electrodes were used for this experiment
(Figure 1A). The gel-based electrodes were traditional Ag/AgCl
electrodes produced by EasyCap GmbH (Woerthsee-Etterschlag,
Germany). The water-based electrodes consisted of open-celled,
hydrophilic, and highly absorbent cylindrical sponges produced
by Brain Products GmbH (Gilching, Germany). It hardens when
dry and becomes soft and expandable when wet. The porous
material is intended to soak aqueous electrolyte solutions (1–
2% sodium chloride solutions are used as electrolytes). The
electrolyte solution is used to accomplish an easy electrically
conducting connection to the skin of the subject. While this
mechanism of aqueous electrolyte is similar to the one of gel
electrodes, the big advantage of aqueous electrolyte is that it does
not leave significant amounts of residuals in the hair; the water in
the electrolyte evaporates over time just leaving tiny amounts of
salt on the skin that is removed with the next hair wash. To slow
down the evaporation of water, a soft pedestal hermetically sealed
the chamber. The sponges are integrated into a holder that can
be easily connected to the electrode base using a bayonet twist
lock (i.e., sponge holder). When the sponge holder is screwed
into its counterpart on the electrode, the other end of the sponge
comes into contact with an electrode pellet. The electrode pellet
is made of a conductive plastic that is coated with a thin layer
of silver/silver chloride (Ag/AgCl), which is an electrically stable
and widely used electrode material.

Both gel-based and water-based electrodes have been
positioned at a 1.5 cm of distance between each other on
a standard EEG cap (Figure 1B). This has been done to
maximize the hypothesis to ideally record from the same point
and to guarantee a minimum distance to not generate short
circuits between near electrodes The investigated scalp positions
corresponded to AFz, AF3, AF4, AF7, AF8, Pz, P3, and P4 of the
10–10 International System. These specific channels have been
chosen for both theoretical and practical reasons. On the one
hand, these positions should guarantee the assessment of the
identified human factors covering the required brain areas as
known from previous evidence (please refer to “Targeted Human
Factors” in the Section Introduction). On the other hand, a low
number of electrodes is necessary to foster ease of use. It was also
inserted a gel-based “Control” electrode, at a 1.5 cm of distance to
the AFz position to quantify the possible difference between near
couples of electrodes because of the distance among them.

For each set of electrodes, we used a LiveAmp amplifier
(Brain Products GmbH, Gilching, Germany) (Figure 1A). Each
amplifier has been connected to a homemade recording software
developed in Python and based on Lab Streaming Layer (LSL)
communication protocol. This software was run on two tablets
with Microsoft Windows 10 operating system. The two tablets
were connected to the same intranet, by using a wired LAN
connection. Thanks to the LSL protocol and the LAN wired
connection, it was possible to guarantee a perfect synchronization
among all the connected devices, unless there is a lag of two times
the inverse of the sampling rate (i.e., 8 ms).
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FIGURE 1 | Scheme of the experimental set-up. (A) A scheme of the position of the electrodes and instrumental set-up. Water-based electrodes are shown in red,

gel-based electrodes in blue, and the control electrode in green. (B) The actual experimental set-up was used for the EEG sensors comparison. (C) Mindtooth Touch

EEG headset, designed for working with water-based electrodes (right), and modified version equipped with the LiveAmp amplifier (left).

In addition, the water-based electrodes have also been tested
when embedded in the Mindtooth Touch EEG headset (referred
to as “New Structure” in the Section Results) to maximize
the comfort for the user, sensor contact, and easiness to fit
(Figure 1C). In particular, the front part of the headset hosts
the five anterior-frontal EEG sensors and is designed to fit the
user’s forehead. To maximize comfort, it is elastic and made of a
combination of flexible materials. The front part has removable

padding made in polyurethane (PU) foam to further improve
comfort. The rear part hosts the ground and reference sensors,
the three parietal EEG sensors, and the EEG amplifier. Ground
and reference sensors are fitted to two separate “fingers” on
the mastoids. The “fingers” of the three parietal EEG sensors
are made as a separate part that is fitted and fixed to the rear
part of the headset. All the parietal EEG sensors’ holders have
been prolonged and fitted to a rotating end-piece “a fingertip”
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to make it easier to adapt to all head shapes, split the hair, and
touch the scalp. The hardware within the EEG amplifier has been
developed by Brain Products (GmbH, Gilching, Germany). For
the specific purposes of this experiment, the original amplifier of
the Mindtooth Touch headset has been replaced with a LiveAmp
amplifier, so as to not induce any bias due to different hardware.

EEG Acquisition and Preprocessing
Once arrived, each subject was asked to wear the EEG standard
cap with both the electrode types. Sponges of water-based
electrodes were first disinfected using a solution of water (70%)
and isopropanol (30%) and then partially soaked with 1% of NaCl
saline solution. The quantity of saline solution was limited to the
needed quantity to have a good signal quality, but not too much
to induce dripping, and so as to generate possible shortcuts with
near gel-based electrodes. At this point, the conductive gel was
applied to all the gel-based electrodes in a limited quantity, so as
to not generate any shortcuts between near electrodes. Reference
electrodes of both the systems were put on the earlobe, and the
ground on the left mastoid, by assuring even there a minimum
distance to not have any shortcuts. Before starting the recording,
the impedances have been brought below 40 kΩ (Ferree et al.,
2001) and 100 kΩ (Kappenman and Luck, 2010) threshold for
gel and water-based sensors, respectively.

The EEG signal was first band-pass filtered with a fifth-order
Butterworth filter in the interval 2–30Hz. The blink artifacts were
detected using the Reblinca method (Di Flumeri et al., 2016) and
were corrected by leveraging the ocular component estimated
through a multi-channel Wiener Filter (MWF) (Somers et al.,
2018). EEG signals were segmented into epochs of 1 s, and the
threshold criterion (±80 µV) was applied for artifact rejection
(Hubbard et al., 2019). This conservative value has been preferred
to 100µV, the default value suggested within the EEGlab toolbox,
because just one criterium has been adopted (Delorme and
Makeig, 2004).

Experimental Protocol
The experimental protocol consisted of a sequence of laboratory
(Study 1) and realistic (Study 2) tasks. They have been proceeded
by two rest conditions: the subjects were asked to stay 1min with
closed eyes and 1min with open eyes looking at a white cross on
a screen. The closed eyes condition has been used to compute
the individual alpha frequency (IAF) value (Klimesch, 1999).
Since the alpha peak is mainly prominent during rest conditions,
the subjects were asked to keep their eyes closed for a minute
before starting the experiment. Such a condition was then used
to estimate the IAF value specifically for each subject. The open
eyes condition has been used to compare the two systems in terms
of spectral features (Lopez-Gordo et al., 2014).

Therefore, the subjects were asked to familiarize themselves
with the tasks. During task familiarization, they wore the
Mindtooth Touch headset embedded with water-based
electrodes. In this time interval of about 40min, the impedances
have been evaluated and saved at the end of each sample task.
These values have been compared with the impedances of water-
based electrodes recorded while placed on the standard EEG cap
to compare the stability of the signals against the Mindtooth

Touch Headset. Moreover, at the end of each experimental
condition during both studies 1 and 2, impedance values of gel
and water-based sensors were evaluated and saved to compare
the stability of the impedance values between the two kinds
of sensors.

Study 1: Test Laboratory Tasks
The aim of Study 1 was to analyze the performance of the light
EEG system during standard controlled laboratory tasks like
Multitasking and psychomotor vigilance task (PVT) as well as
to provide the data for calibrating the passive-BCI system for a
cross-task application.

First, the subjects were asked to accomplish the multitasking.
The multitasking application comprises a set of four concurrent
cognitive tasks of varying difficulty presented via split-screen
(Figure 2A). The four chosen tasks are:

1. Mental arithmetic (left-up): The addition results must be
entered into the numeric keypad. As the difficulty increases,
the number of digits (from 1 to 3) and carryover digits (from
0 to 2) increases.

2. Auditory monitoring (right-up): A target tone must be
identified between two tones of different frequencies emitted
at regular intervals. As the difficulty increases, the target tone
and distractor tone increase in similarity.

3. Visual monitoring (left-down): A horizontal fill bar should be
reset as soon as it becomes full. As the difficulty increases, the
fill rate increases.

4. Phone number entry task (right-down): A number must be
entered on a keypad. As the difficulty increases, the number of
digits to be entered increases (from 4 to 10).

According to the literature, performing several concurrent tasks
compared to the single-task approach induces an increase in
mental workload (Comstock, 1992; Wetherell and Sidgreaves,
2005). In addition, increased difficulty induces a greater
perception of time pressure and frustration, resulting in increased
stress. Therefore, the subjects were asked to perform the
four tasks individually. In this case, a 30-s condition was
performed for the auditorymonitoring, visual monitoring, phone
number entry task, easy mental arithmetic task, and hard
mental arithmetic task. After that, subjects performed the four
concurrent tasks (multitasking phase) at the same time. In this
regard, 7 levels of 1min multitasking at increasing difficulty have
been performed. To confirm workload and stress manipulation,
performance measures have been recorded. We hypothesized
that the subject experienced the following: (i) low mental
workload during the single task execution; (ii) high mental
workload during the multitasking execution; and (iii) increasing
stress during the 7 levels of multitasking at increasing difficulty.

At the end of multitasking, the subjects were asked to perform
the PVT to elicit different levels of vigilance. The PVT is a
computerized version of the Wilkinson and Houghton task
(Wilkinson and Houghton, 1982) aiming to analyze the decrease
of vigilance in 10min (Figure 2B). During this task, subjects
are asked to press the space bar on the keyboard as quickly
as possible in response to a red circle appearing on the screen
for 1 s after a fixation cross. The inter-stimulus intervals range
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FIGURE 2 | Experimental settings. (A) Multitasking application screen. In clockwise order, they are the auditory monitoring, the phone number entry task, the visual

monitoring, and the mental arithmetic task. (B) Psychomotor vigilance task (PVT). During a 10-min stimulation, the subjects are required to press the space bar on the

keyboard only when the red circle appears. (C) Car simulator. Car Driving simulator where the experimental participant is sitting.

randomly from 2 to 5 s. According to the literature (Molina et al.,
2019), this monotonous task can induce a decrement of vigilance
in participants, therefore we hypothesized that the experimental
sample experienced: (i) a high level of vigilance during the first 2
mins (levels PVT1 and PVT2); (ii) low level of vigilance during
the last 2 mins (levels PVT9 and PVT10).

Study 2: Test Realistic Driving Task
The aim of Study 2 was to analyze the performance of
the light EEG system during realistic driving and to test
the passive-BCI system calibrated with data recorded
during the laboratory tasks. The car simulator is a typical
real car setup (seat and dashboard with the steering
wheel, gearshift, and all the common commands), while

the virtual environment is reproduced through three 27
′′

screens (Figure 2C). This configuration was enough to make
the driving environment immersive for the participants,
thanks to the high realism of the driving environment. The
implemented exercise allowed the elicitation of variations in
workload, stress, and vigilance. The task for the participants
was to follow the navigator instructions shown on the
central screen.

In particular, for the mental workload assessment, two
repetitions of easy and hard exercises have been generated. In
the first repetition, the exercise was set in a circuit, and in the
second repetition, it was set in an urban context with traffic. The
level of difficulty was changed by acting on the number of curves,

intersections, bottlenecks, pedestrians crossing the street, and the
number of cars. Easy and hard conditions have been randomized
among subjects.

For the stress scenarios, participants were instructed to
perform the same two-run repetitions just completed, but with
three more stressors:

1. Time pressure: Participants have a limited time to make
the same route. A chronometer was used to show the
remaining time.

2. White coat effect: An operator was just behind the driver,
taking notes of errors committed.

3. External noise: Heavy urban traffic noise has been presented
during the exercise.

Finally, the subjects were asked to complete the scenario used
to induce decrement in vigilance. It was a 10-mins drive on the
highway, without any traffic, in which the participant had to drive
all the time in first gear in complete silence (i.e., the sound of the
car has been muted).

The car simulator was able to generate a log file with all
the specific events that could happen within each scenario
execution. Among the possible available events, collisions of the
car with anything in the simulated world have been considered
performance indicators. In particular, the more the number of
collisions, the more difficult or stressful the specific level was.
We analyzed the number of collisions for the easy, hard, and
stressful conditions.
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Performed Analysis
Taking into account the spatial and temporal variability of
the EEG signal, standard procedures to compare two or more
recording systems make use of a comparison to a gold standard
(i.e., gel electrodes) through two possible approaches, either
simultaneously or serially (Ruffini et al., 2008). Most encountered
parameters for evaluating EEG signal quality are comparisons
of the power spectral densities, analysis of signal-to-noise ratio
(SNR), and test of electrodes during applications (Tǎutan et al.,
2014).

Signal Quality Analysis
In this work, the two systems were used for a simultaneous
recording of EEG signals from contiguous scalp positions. Since
our final aim is to use the proposed system for passive-BCI
applications, for which spectral features will be used, the two
systems have been compared in terms of variation of the
impedance values over time and power spectra correlation.

Gel and water-based electrode impedance were considered
good enough, for values respectively below 40 kΩ (Ferree
et al., 2001) and 100 k� (Kappenman and Luck, 2010). Since
the acceptability thresholds for the starting impedance values
were set at two different values according to the literature, the
impedances were not compared between the two systems for
the same time point. However, to analyze the stability of each
system during the recording, the impedances of the analyzed
systems were evaluated at the beginning and the end of each
experimental condition, and then, were linearly interpolated
to have an impedance value every 10-min during a 40-min
interval. Similarly, the effects related to the use of an unoptimized
structure as sensor holders have been analyzed. Leveraging the
time spent by the subject for task familiarization, they were asked
to wear the Mindtooth Touch headset and, also in this case,
the impedances were evaluated at the beginning and the end
of each sample condition, and then, were linearly interpolated
to have an impedance value every 10min during a 40-min
interval. It is noteworthy to highlight that in this case there is a
temporal delay in impedance assessment because they have been
measured in two different moments. The Wilcoxon signed-rank
test (Bonferroni corrected) was performed to test the difference
of each electrode concerning the starting point.

As impedance values affect SNR, we compared the number
and the distribution of artifacts of the two systems. TheWilcoxon
signed-rank test was performed to test the difference between the
two systems in terms of the number of artifacts.

Finally, the power spectral densities (PSD) obtained through
the two systems during open eyes conditions for each channel
have been compared in terms of correlation. The higher the
correlations between the frequency spectra of the gel and water
electrode, the higher the possibility that both systems are equally
capable of measuring spontaneous EEG (Zander et al., 2011). The
open-eyes condition has been chosen because the EEG signal can
be considered stationary during this condition. For each subject,
Pearson’s correlation has been computed between each couple
of contiguous channels (e.g., AF3-water and AF3-gel) and for
each band, that are Theta (3÷7Hz), Alpha (7÷13), Beta (13÷26),
and High Beta (21÷26). Each correlation value was Bonferroni

corrected for multiple comparisons, therefore the threshold for
significance has been set to α = 0.0025 (corresponding to a
correlation value of R = 0.423). The obtained values have been
statistically compared with the values of correlation obtained
correlating the “Control” electrode and the AFz-gel electrode
through a Wilcoxon signed-rank test (Bonferroni corrected). As
they are both gel electrodes 1.5 cm apart, the obtained correlation
can be considered the maximum achievable and the difference in
correlation was only due to the distance between them.

Usability
To evaluate the usability and the comfort of the new system,
participants were asked to answer specific questions regarding
these aspects. In particular, the usability questions investigated
the easiness of putting on and taking off the Mindtooth
Touch headset. Participants could choose among four answers:
Easy, Acceptable, Hard, Impossible. To assess the comfort,
the participant had to choose among four possible answers:
Comfortable, Acceptable, Tolerable, and Uncomfortable.

Neurometrics
For each human factor (workload, stress, and vigilance) a subset
of channels and bands of interest have been chosen according
to the literature and previous results (see Section Introduction
for details). We defined “Neurometric” as the measure of each
Human Factor, by using a specific combination of Global Field
Power values (Di Flumeri et al., 2018). The Global Field Power
(GFP) was calculated using the clean EEG for each frequency
band of interest. The bands were defined accordingly with IAF
values. Consequently, the following EEG bands were defined
(Klimesch, 1999):

• Theta= (IAF – 6): (IAF – 2) Hz
• Alpha= (IAF – 2): (IAF+ 2) Hz
• Beta= (IAF+ 2): (IAF+ 16) Hz
• Beta High= (IAF+ 11): (IAF+ 16) Hz

The workload neurometric is defined as the ratio between frontal
activity in theta and parietal activity in the alpha band (Borghini
et al., 2013). The theta rhythm increases, especially over the pre-
frontal cortex, when the mental workload increases, while the
alpha rhythm presents an inverse correlation with the mental
workload, especially over the parietal cortex (Gevins et al., 1997).
Therefore, the workload neurometric in this work was defined
according to the literature as:

Workload =
Theta(AF8,AF7,AFz,AF3,AF4)

Alpha(P3,P4,Pz)

Regarding stress measurement, the literature proved that there is
a correlation between cortisol and brain activity in beta (Seo and
Lee, 2010). A stress neurometric based on parietal brain activity
in the high beta band was effectively tested during laboratory
multitasking and was validated during realistic driving, proving
that it is possible to have reliable stress measurements using the
following (Sciaraffa et al., 2022):

Stress = BetaHigh (P3,P4)
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From the neurophysiological point of view, vigilance-related
processes involve mainly the right inferior frontal brain regions
(Di Flumeri et al., 2019b; Sebastiani et al., 2020; Sciaraffa
et al., 2021). Increased frontal activity in the beta band,
more in right than in the left hemisphere, is correlated with
vigilance decrement (Molina et al., 2013). Therefore, the vigilance
neurometric was defined as:

Vigilance = −Beta (AF4,AF8)

The effectiveness of each neurometric (obtained by means of
the water-based and the gel-based electrodes) was tested by
statistically comparing through the Wilcoxon signed-rank test,
their efficiency in discriminating experimental conditions. In
particular, the following are compared for both laboratory and
realistic tasks:

• workload neurometric was compared between easy and
hard conditions;

• stress neurometric was compared between low and high-
stress conditions;

• vigilance neurometric was compared between high and low
vigilance conditions.

Machine Learning Model Calibration
Once obtained the neurophysiological information
characterizing each mental state of interest, a machine learning-
based approach has been employed to classify the two levels
of each mental state (easy vs. hard for workload, and low vs.
high for stress and vigilance, respectively) even at different time
resolutions. The GFP values were used in this case as features:

• workload: AF7, AF8, AF3, AF4, and AFz in the Theta band and
P3, P4, and Pz in the Alpha band (8 Features);

• stress: P3 and P4 in Beta High band (2 Features);
• vigilance: AF4 and AF8 computed in the Beta

band (2 Features).

Each observation belonging to a specific run was labeled
according to the level of mental state expected for that run.
In the case where the classes (e.g., easy and hard) were too
unbalanced because of the number of rejected artifacts, the
Adaptive Synthetic (ADASYN) method was used to provide
synthetic resampling (He et al., 2008). Once the observations for
each class were balanced, and intra-subject approach was used to
train the machine learning model (i.e., both training and testing
were performed using the observations coming from the same
subject). At this point two different procedures were performed,
depending on the number of repetitions available for each task:

1. For each task having two repetitions per condition (i.e., the
workload in a realistic setting, vigilance, and stress in both
laboratory and realistic setting) one repetition has been used
to train the algorithm and optimize the parameters, and one to
test the algorithm.

2. For each task that does not have two repetitions per condition
(i.e. workload in a laboratory setting), the k-fold cross
validation has been performed (Schaffer, 1993). This allows to
divide the dataset in k (k = 3) fold and to use two of them as

a training dataset and one as a test dataset. Even in this case,
all the possible combinations of training and testing sets have
been analyzed.

Following preliminary analysis, the Random Forest was chosen
as the model and the number of estimators and the max depth
have been optimized in the range from 50 to 500, and from 1 to
50, respectively (Breiman, 2001).

The effectiveness of each model was assessed by computing
the area under curve (AUC) (Bamber, 1975) between 0 and
1 at different temporal resolutions from 1 to 60 s. The whole
described classification procedure has been repeated for water-
based and gel-based systems and the two AUC curves obtained
at different time resolutions have been statistically compared
through Wilcoxon signed-rank test.

To test the generalizability of the proposed water-based
passive BCI system, the same Random Forest model has been
calibrated through a cross-task approach. For each human factor,
the data recorded during the laboratory tasks (Study 1) has been
used to calibrate the model. It has been then tested on the data
recorded during the realistic driving (Study 2), and the AUC has
been reported for time resolution from 1 to 60 s. This approach
has been statistically compared with the intra-subject approach
already described through Wilcoxon signed-rank test. Finally,
each identified model was used to predict the probability of a
specific observation belonging to a realistic session to have a
high value of mental state (i.e., to belong to the high class).
These curves were compared in terms of Pearson’s correlation
and distances between the curves using the root mean squared
error (RMSE).

RESULTS

Usability
For the usability assessment, the first aspect considered was
referred to the easiness to wear the Mindtooth Touch headset.
Putting on the headset was “Easy” for the 85% and “Acceptable”
for the 15%. Moreover, we found that the time needed to
put on the headset was 10 s on average (Figure 3). Therefore,
participants were asked to take off the headset, and rate how
it was. Eighty-five percent replied that it was “Easy,” 10%
“Acceptable,” and 1 participant “Hard.” Regarding comfort, after
10min of subjects’ wearing the headset, 70% of them felt it was
“Comfortable” and 30% felt it was “Acceptable”.

Signal Quality
Figure 4A shows that the water electrodes exhibited significant
higher impedance values compared to starting point depending
on the position and the duration of the recording. In particular,
AF7 (Z= 26, p= 0.041), AF8 (Z= 26, p= 0.008), and Pz (Z= 18,
p = 0.002) showed significantly higher impedances after 10min
of recording; AF4 (Z = 32, p= 0.019) and P4 (Z = 37, p= 0.038)
after 30min. The same electrodes embedded on the Mindtooth
Touch Headset exhibited lower impedances even if all the frontal
electrodes significantly increase over time starting from 30 min:
AFz (Z= 30, p= 0.015), AF3 (Z= 34, p= 0.026), AF4 (Z= 17, p
= 0.002), AF7 (Z = 19, p= 0.01), and AF8 (Z = 13, p= 0.0006).
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FIGURE 3 | System usability. Easiness perception of headset put-on and take-off. The pie chart shows the percentage distribution of the perceived difficulty rated on

the scale Easy, Acceptable, Hard, and Impossible.

The gel electrodes did not show significant differences apart from
the electrode AF7 after 40min (Z = 142, p= 0.008).

The following analysis shows the number of artifacts for
each recording technology (Figure 4B). The analysis shows a
significantly higher number of artifacts by using the water
compared to the gel sensors for frontal sites (Z = 198, p =

0.0001). Moreover, both the systems exhibited a higher number
of artifacts on frontal sites compared to parietal sites (Water: Z =

210, p < 10−5; Gel: Z = 207, p < 10−5). Anyhow, the number of
artifacts with water-based technology was about 5% on average.

At this point, we investigated if the higher impedance values
of the water technology negatively affect the spectral features
used to compute EEG neurometrics related to the selected human
factors. Figure 5A shows the averaged spectra obtained with
both sensors after the artifacts’ rejection. These spectra were
analyzed in terms of Pearson’s correlation (R). Figure 5B shows
the distributions of the R values for each frequency band. Nine of
the 720 obtained R values were lower than 0.423, therefore, not
significant according to Bonferroni correction. The correlation
is on average higher than 0.95 for each channel and band.
These distributions were statistically compared with the R values
obtained correlating the spectra of AFz-gel and control electrode.
TheWilcoxon signed-rank test (Bonferroni corrected) shows that
the correlation between gel and water spectra is significantly
lower compared to the Control-AFz spectra especially for alpha
and beta bands, whereas this is less evident in the theta band.

Study 1: Test on Laboratory Tasks
During multitasking tasks, single and multitasking levels were
considered as low and high workload conditions, respectively.
Figure 6A shows that the Neurometrics of workload computed
by using both the technologies showed a significant difference
between the easy and the hard condition (Gel: F= 19, p= 0.0006;
Water: F = 14, p= 0.0002). The machine learning-based analysis

(Figure 6B) did not highlight any difference between the AUC
values of the two systems, at any time resolution, showing for
both the technologies AUC on average higher than 0.8.

Neurometrics of stress computed by using both technologies
showed a significant difference between the low stress and the
high-stress conditions (Gel: Z = 45, p = 0.024; Water: Z =

3, p < 10−5) (Figure 7A). The machine learning-based analysis
(Figure 7B) highlighted a statistically significant difference
between the AUC values of the two systems, starting from
4 s resolution. In particular, the water-based system provided
significantly higher AUC than gel-based ones.

Neurometrics of vigilance (Figure 8A) computed by using
both the two technologies showed a significant difference
between the High vigilance and the Low vigilance conditions
(Gel: Z = 179, p = 0.0042; Water: Z = 183, p = 0.0023). The
machine learning-based analysis (Figure 8B) did not highlight
any difference between the AUC values of the two systems,
at any time resolution. The AUC overcame 0.8 at 10 s of
temporal resolution.

Study 2: Test on Realistic Driving
Neurometrics of workload computed by using both the two
technologies showed a significant difference between the easy
and the hard condition (Gel: Z = 34, p = 0.0064; Water: Z
= 35, p = 0.0073) (Figure 9A). The machine learning-based
analysis (Figure 9B) did not highlight any difference between the
AUC values of the two systems, at any time resolution. For both
systems, the AUC overcomes 0.8 at 30 s of temporal resolution.

To investigate the ability to generalize the proposed water-
based passive-BCI system, the data recorded during the
laboratory tasks have been used to calibrate the system.
Therefore, it has been tested on simulated driving. Results in
Figure 10A showed that the system reached an AUC value
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FIGURE 4 | Analysis of impedances and percentage of artifacts. (A) Analysis of the stability of impedances over time for water-based (in red), gel (in blue), and water

electrodes embedded on Mindtooth Touch headset. The asterisks show the results of the Wilcoxon signed-rank (Bonferroni corrected) test of the impedances of

water and gel electrodes compared with the start point (*p < 0.05, **p < 0.01). (B) Percentage of artifacts in EEG signals. The boxplots show the distributions of the

artifacts that occurred through the gel (blue) and water (red) acquisition system. Results have been obtained by averaging the electrodes in two groups: Frontal (AFz,

AF3, AF4, AF7, and AF8) and Parietal (P3, P4, and Pz) channels. The asterisks show the results of the Wilcoxon signed-rank test (***p < 0.001, ****p < 0.0001).

higher than 0.8 with 40 s of temporal resolution. The cross-
task approach did not perform significantly differently compared
to the intra-subject approach. In Figure 10B the related scores
obtained at 40 s of temporal resolution indicate that there is a
medium correlation between the outputs of the two models. The
median over the population of the correlation between the scores
obtained is R = 0.60 (IQR = 0.54, all p < 10−5), and the RMSE
= 0.16 (IQR= 0.05).

Neurometrics of stress (Figure 11A) computed by using both
the two technologies showed a significant difference between the
low stress and the high-stress conditions (Gel: Z = 0, p < 10−5;
Water: Z = 0, p < 10−5). The machine learning-based analysis
(Figure 11B) did not highlight any difference between the AUC

values of the two systems, at any time resolution, showing for
both the technologies AUC higher than 0.8 on average.

Even for the stress, it has been investigated the ability to
generalize of the proposed water-based passive-BCI system. First,
the data recorded during the laboratory multitasking have been
used to calibrate the system. Then, the calibrated system has been
tested on the simulated driving. Results in Figure 12A showed
that the system reached AUC values higher than 0.8 almost in real
time. The intra-subject calibration performed significantly better
than the cross-task approach until a temporal resolution of 45 s.
The related scores shown in Figure 12B indicated that there is
a high correlation between the outputs of the two models. The
median (IQR) over the population of the correlation between the
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FIGURE 5 | Spectral analysis. (A) EEG spectra for each channel in the interval 2–30Hz. Spectra obtained with water electrodes are shown in red, and spectra

obtained with gel electrodes are shown in blue. The last subplot shows the AFz-gel and control electrode. The solid lines represent the average of the spectra over the

population, and the shadowed areas represent the standard deviation. (B) Boxplots of Pearson’s correlation values computed between water and gel electrodes for

each channel and band. Each distribution has been compared with the values obtained from AFz-control correlation. The asterisks show the results of the Wilcoxon

signed-rank test (Bonferroni corrected, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

FIGURE 6 | Workload discrimination between easy and hard conditions in laboratory settings. (A) Statistical comparison has been performed for water-based and

gel-based Neurometrics. The asterisks show the results of the Wilcoxon signed-rank test (***p < 0.001). (B) AUC values obtained by water (red) and gel (blue)

electrodes for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the participants. The shadows represent the mean absolute

deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of the Wilcoxon signed-rank test. The threshold of

significance (p = 0.05) has been highlighted in the same color.
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FIGURE 7 | Stress discrimination between low and high conditions in laboratory settings. (A) Statistical comparison has been performed for water-based and

gel-based Neurometrics. The asterisks show the results of the Wilcoxon signed-rank test (*p < 0.05, ****p < 0.0001). (B) AUC values obtained by water (in red) and

gel (in blue) electrodes for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the participants. The shadows represent the

mean absolute deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of the Wilcoxon signed-rank test. The

threshold of significance (p = 0.05) has been highlighted in the same color.

FIGURE 8 | Vigilance discrimination between low and high conditions in laboratory settings. (A) Statistical comparison has been performed for water-based and

gel-based Neurometrics. The asterisks show the results of the Wilcoxon signed-rank test (**p < 0.01). (B) AUC values obtained by water (in red) and gel (in blue)

electrodes for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the participants. The shadows represent the mean absolute

deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of the Wilcoxon signed-rank test. The threshold of

significance (p = 0.05) has been highlighted in the same color.
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FIGURE 9 | Workload discrimination between easy and hard conditions in a realistic setting. (A) Statistical comparison has been performed for water-based and

gel-based Neurometrics. The asterisks show the results of the Wilcoxon signed-rank test (**p < 0.01). (B) AUC values obtained by water (in red) and gel (in blue)

electrodes for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the participants. The shadows represent the mean absolute

deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of the Wilcoxon signed-rank test. The threshold of

significance (p = 0.05) has been highlighted in the same color.

scores obtained is R = 0.89 (IQR = 0.28, all p<10−3), and the
RMSE= 0.27 (0.16).

Neurometrics of vigilance (Figure 13A) computed by using
the two technologies showed a significant difference between
the High vigilance and the Low vigilance conditions (Gel: Z
= 198, p = 0.00013; Water: Z = 177, p = 0.0056). The
machine learning-based analysis (Figure 13B) did not highlight
any difference between the AUC values of the two systems, at any
time resolution. AUC values higher than 0.8 were reached at 30 s
of temporal resolution.

The data recorded during the PVT has been used to calibrate
the water-based passive-BCI system. Then, the calibrated system
has been tested on the simulated driving. Results in Figure 14A

showed that the cross-task and the intra-subject calibration did
not provide significantly different performances, even if the intra-
subject approach provided the highest values of AUC overcoming
0.9. The scores shown in Figure 14B have been analyzed in terms
of correlation and distances between the curves. Themedian over
the population of the correlation between the scores obtained is
R= 0.48 (IQR= 0.36, all p < 0.01), and the RMSE= 0.19 (0.12).

DISCUSSION

Passive-BCI systems are an effective tool for strengthening
human-machine interaction. The use of such technologies
has been proved to be particularly useful in those human-
centered areas where safety and adaptive training are relevant
concerns. However, their employment away from laboratories
or research activities has not yet taken place. The reason for
this lies in shortcomings in three fundamental aspects: reliability,
generalizability, and ease of use. In this context, this work aimed

to evaluate a new water-based passive-BCI system covering (i)
each of the aforementioned features; (ii) laboratory and realistic
settings; and (iii) three different human factors.

Water-Based vs. Gel-Based System:
Impact on the Ease of Use and Reliability
The results obtained showed that the use of the new water-based
system represents a decisive improvement in terms of usability
and that the signal quality guarantees result comparable to those
obtained with the gel system.

The usability test of the Mindtooth Touch headset embedded
with water-based electrodes showed that it allows a quick
and easy application, 10 s on average, avoiding every kind of
damaging skin preparation. However, one of the participants
found it “Hard” to take off the headset (Figure 3). This issue was
mainly due to the imperfections at the corners of the electrode
holders, which could get stuck in the hair. This possible issue will
be mitigated by smoothing and rounding edges. No participants
found it uncomfortable to wear the headset. After 10min, 30%
considered wearing the headset acceptable. By interviewing the
participants, we understood that the comfort issue was mainly
due to the pressure induced by the frontal holders. One solution
implemented to mitigate this issue was to place a soft foam pad
attached with Velcro to the front to evenly distribute pressure
over the front head and improve overall comfort. In general,
due to the ease of use and comfort, the system proved to be
ready for recording EEG out of the lab, and its use will be
validated in real settings like pilots and driver training and during
working activities.

To analyze the stability of each system during the recording,
the impedances of the analyzed systems were evaluated at the
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FIGURE 10 | Comparison between intra-subject and cross-task calibration for workload discrimination in a realistic setting. (A) AUC values obtained by water

electrodes through intra-subject (red) and cross-subject (green) calibration for different time resolutions (1–60 s). The solid lines represent the median of the AUC

among the participants. The shadows represent the mean absolute deviation of the AUC across participants. The dashed green line represents the results in terms of

p-values of the Wilcoxon signed-rank test. The threshold of significance (p = 0.05) has been highlighted in the same color. (B) The workload index obtained from each

of the two models at 40 s of temporal resolution. The line represents the average over the population, the shadow represents the standard deviation.

beginning and the end of each experimental condition. The
results demonstrated that the impedances of gel electrodes did
not significantly vary over time, except for AF7 showed a

significant reduction compared to the start of the experiment
(Figure 4A). This is because the impedances of gel electrodes are
usually subjected to a natural adaptation before the gel gets dry
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FIGURE 11 | Stress discrimination between low and high conditions in a realistic setting. (A) Statistical comparison has been performed for water-based and

gel-based Neurometrics. The asterisks show the results of the Wilcoxon signed-rank test (****p < 10−5). (B) AUC values obtained by water (in red) and gel (in blue)

electrodes for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the participants. The shadows represent the mean absolute

deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of the Wilcoxon signed-rank test. The threshold of

significance (p = 0.05) has been highlighted in the same color.

(Toyama et al., 2012). The impedances of water electrodes are on
average lower than 100 kΩ . Unlike the parietal electrodes, the
frontal electrodes showed a significant increment of impedances
in the 40-minute window that has been analyzed. This indicates
that the electrodes on the forehead were subjected to a faster
drying than the parietal, whereas the presence of hair can
prevent this from happening. However, these differences did
not depend only on the electrochemical characteristics of the
electrodes, but also on the mechanical fixation. Analyzing the
same water electrodes placed on the specially designed structure,
the impedances decreased to 50 kΩ , even if they showed the
same increase on the frontal sites over time. As seen so far,
the Mindtooth Touch structure in purpose has been specifically
designed to facilitate the use of water electrodes while promoting
comfort, time spent fitting the headset, and ease of use. However,
as the recording advances, and the saline solution evaporates,
impedances increase over time and this can negatively affect
the data quality of long recordings (Noreika et al., 2020). For
long recording (more than 30min) the saline solution could be
reapplied using a pipette and without removing the headset.

Higher impedances characterizing the water-based system
could impact on signal to noise ratio (SNR) of EEG signals
because of the common-mode rejection and cephalic skin
potentials. Common mode rejection refers to the ability of a
recording system to reject noise that is in common with the
recording sensors and reference electrodes. As the electrode
impedance increases, the common-mode rejection of the
system decreases, and the SNR of the recording decreases as
well. To deal with the problem of decreased common-mode
rejection with high electrode impedances, amplifiers with a

higher input impedance have been used. In this regard, the
used LiveAmp amplifier has a very high input impedance
(i.e., 200 MΩ), so this first problem could be automatically
solved. Electrode impedances that are too high may lead
to a second problem that cannot be solved using changes
to the amplifier’s input impedance, namely, an increase in
skin potential artifacts. Skin potentials arise because of the
standing electrical potential that is normally present between
the inside and the outside of the skin (Edelberg, 1972). Current
literature demonstrated that high impedance values (i.e., 200
kΩ) could increase noise and induce changes in a frequency
lower than 5Hz since skin potentials induce slow voltage
variations (Ferree et al., 2001; Kappenman and Luck, 2010). In
this regard, both systems showed a higher number of artifacts
on frontal electrodes compared to parietal ones (Figure 4B).
Frontal electrodes seem more sensitive to unrelated electrical
signals originating from non-brain physiological activities in
particular muscular and ocular activities, reflecting a non-
homogenous distribution of artifacts over the scalp (Abdi-
Sargezeh et al., 2021). Even if both systems showed a
percentage of artifacts on average that is lower than 5% of
the total amount of data recorded, the frontal water electrodes
recorded a significantly higher number of artifacts compared
to gel ones. In contrast, the number of artifacts on parietal
sites is not different between the two systems. The higher
number of artifacts on frontal sites could be due to the
mechanical fixation of the used EEG cap that disadvantaged
the water electrodes. As demonstrated, water sensors placed on
the Mindtooth Touch structure guarantee better contact and
lower impedances.
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FIGURE 12 | Comparison between intra-subject and cross-task calibration for stress discrimination in a realistic setting. (A) AUC values obtained by water electrodes

through intra-subject (red) and cross-subject (green) calibration for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the

participants. The shadows represent the mean absolute deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of

the Wilcoxon signed-rank test. The threshold of significance (p = 0.05) has been highlighted in the same color. (B) The stress index obtained from each of the two

models at 20 s of temporal resolution. The line represents the average over the population, and the shadow represents the standard deviation.

From the spectral perspective, we investigated if the higher
impedance values of the water-based technology compared to
the gel-based technology would negatively affect the spectral

features used to compute EEG neurometrics. Visual inspection
of the spectra obtained through water and gel electrodes showed
that the shape is very similar (Figure 5A). The most evident
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FIGURE 13 | Vigilance discrimination between low and high conditions in realistic settings. (A) Statistical comparison has been performed for water-based and

gel-based Neurometrics. The asterisks show the results of the Wilcoxon signed-rank test (**p < 0.01, ***p < 0.001). (B) AUC values obtained by water (in red) and gel

(in blue) electrodes for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the participants. The shadows represent the mean

absolute deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of the Wilcoxon signed-rank test. The threshold of

significance (p = 0.05) has been highlighted in the same color.

difference is that water electrodes showed higher values in the
theta band, while gel showed higher values in the alpha band.
The correlation analysis of specific EEG features (e.g., theta,
alpha, beta, and high beta bands) during open eyes conditions
suggested that the correlation between gel and water features
is high (R > 0.95). Comparing the distribution of R values
with that obtained from correlating the AFz-gel electrode with
the Control electrode (correlation between two gel electrodes
was used as a benchmark, therefore eventually differences in
correlation depend on the distances between the two electrodes),
we found that even if the correlation between gel and water
spectral features is high, it is significantly lower compared to the
control-AFz spectra especially for alpha and beta bands, whereas
this is less evident in the theta band. These differences found
between the different bands are coherent with similar spectral
comparisons performed between a gel-based and water-based
system (Topor et al., 2021). The authors found that the water-
based system behaves significantly different from the gel-based in
the detection of high-beta desynchronization, that the theta band
was the less consistent between the two systems, and that there
was a frontal shift of maximal power in theta and alpha bands. A
slow drift noise has been hypothesized to be the cause of this. This
correlation analysis has been performed on a highly controlled
condition (i.e., open eyes), however, the degree of freedom during
the analyzed paradigms could impact the spectral correlation
depending on the type of electrode (Tautan et al., 2014). The
possible loss of quality of EEG signal recorded from water-based
electrodes could not impact neurometrics assessment when the
experimental task is very controlled (i.e., the participant does
not move too much, simple tasks, low number of expected
artifacts), but it could affect the computation in real settings (i.e.,

higher number of expected artifacts, movement of the head, and
real tasks). For this reason, the employment of the proposed
water-based passive BCI has been tested in both laboratory and
realistic settings.

Study 1: Human Factors Discrimination During

Laboratory Tasks
The aim of Study 1 is to test the proposed system during
controlled laboratory tasks and to use these data to calibrate the
passive-BCI system based on a machine learning model. Before
going on to test a system during a realistic application, the step
to a more controlled application is a must in the case of passive-
BCI. One of the reasons is that the targeted human factors are not
independent variables. For example, stress is affected by workload
level, conversely, the effort involved in coping with stress actually
adds to the task demands (Stanton and Young, 2000); a variation
in workload is associated with a variation in fatigue (Roy et al.,
2016), and so on. Thanks to controlled tasks performed in the
laboratory it is more likely to induce a variation of a single
human factor per time compared to realistic contexts. Therefore,
two standard tasks have been used to elicit workload, stress, and
vigilance variations.

Multitasking has been chosen as a laboratory task to induce
workload and stress modulation. This task is similar to the
simultaneous capacity (SIMKAP) task usually used to elicit
workload variation and whose effectiveness in eliciting stress
variation has been already proved (Wetherell and Sidgreaves,
2005; Lim et al., 2018). Multitasking has been preferred
to operate-orientated task paradigms like the multi-attribute
task battery (MATB) because it consists of common tasks
like entry numbers, mathematical additions, bar filling, and
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FIGURE 14 | Comparison between intra-subject and cross-task calibration for vigilance discrimination in a realistic setting. (A) AUC values obtained by water

electrodes through intra-subject (red) and cross-subject (green) calibration for different time resolutions (1–60 s). The solid lines represent the median of the AUC

among the participants. The shadows represent the mean absolute deviation of the AUC across participants. The dashed green line represents the results in terms of

p-values of the Wilcoxon signed-rank test. The threshold of significance (p = 0.05) has been highlighted in the same color. (B) The vigilance index obtained from each

of the two models at 40 s of temporal resolution. The line represents the average over the population, the shadow represents the standard deviation.

auditory test, and the time of familiarization is shorter than
those required for the MATB (Comstock, 1992). Compared
to multitasking, the MATB was born in the context of

aviation research and usually requires 1 week of training
to avoid any learning bias. As the employed task should
be used to calibrate a cross-task system to be used in a
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realistic environment, it is necessary that the training is fast
and straightforward.

The results obtained on multitasking showed that the
neurometrics obtained with both gel and water electrodes were
able to significantly discriminate the high level of the workload
from the low. This confirms previous research, where a measure
of workload based on frontal activity in the theta band and
parietal activity in the alpha band has been consolidated and
applied in different contexts (Borghini et al., 2014). The same
neurophysiological information used as features to calibrate a
machine learning model based on a random forest showed AUC
values higher than 0.8 for high temporal resolution, and values
of almost 1 for resolution lower than 30 s in the laboratory
setting. There is not a statistically significant difference between
the performance obtained with the two systems. On a similar
multitasking dataset, 69.2% of accuracy has been reached through
a support vector machine (Lim et al., 2018) and 82.57% accuracy
using the LSTMmodel (Chakladar et al., 2020).

Analogously, the neurometrics obtained with gel and water
electrodes were both able to significantly discriminate between
high and low stress during the multitasking levels. Moreover, the
discrimination of stress levels during the laboratory task through
the machine learning-based approach showed significantly
different performances between the water and the gel systems.
In particular, the AUC values obtained with the water-based
system are significantly higher than those obtained with the
gel ones by about 10%. The proposed passive BCI system
employed to discriminate between two levels of stress showed
higher performance compared with the gold standard during the
laboratory experiment.We could hypothesize that this increment
could be associated with spectral differences discovered during
spectral analysis. Comparing these outcomes with the literature,
Attallah (2020) reached an accuracy of 99.26% for discriminating
between two levels of stress with a KNNmodel.

Finally, both systems provided neurometrics that can
significantly discriminate the high level of vigilance from the low
during the PVT. The discrimination of the two levels of vigilance
during the PVT, through the machine learning-based approach
provided AUC values higher than 0.7 on average for high
temporal resolution, and values higher than 0.95 for resolution
lower than 30 s in the laboratory setting. There is not a statistically
significant difference between the performance obtained with
the two systems. Therefore, the proposed passive BCI system
employed to discriminate between two levels of vigilance did not
behave differently from the gold standard. The results obtained
are in line with the literature: using an SVMmodel,Mehreen et al.
(2019) obtained 76% of accuracy, while Wei et al. (2018) reached
0.85 of AUC using a non-hair bearing EEG. In Choi et al. (2019),
the PVT task has been used to effectively train a system to detect
instantaneous drowsiness with EEG. Using an extreme gradient
boosting as a machine learning classifier, the authors tested both
a wired/wet EEG and a wireless/dry EEG verifying that the latter
reached 0.81 of AUC, 7 % less than the standard system.

In conclusion, analyzing the results of Study 1 the proposed
system did not behave differently from the gel-based system
when neurometrics are used to discriminate between human
factors levels. Moreover, water-based electrodes overcame the

traditional ones for the discrimination of the two levels of stress
and did not behave significantly differently in case of vigilance or
workload discrimination.

Study 2: Human Factors Discrimination During

Realistic Driving
The neurometrics obtained with both gel and water electrodes
were able to significantly discriminate the high level of the
workload from the low during realistic driving. Analogously, the
workload during the driving task has been discriminated with
AUC around 0.6 for high resolution (i.e., 1 s) and the threshold
of 0.8 was surpassed only after 30 s of time resolution. Also, in
this case, there was no significant difference between the two
systems. Therefore, the proposed passive BCI system employed
to discriminate between two levels of workload showed higher
performance in laboratory settings compared to the realistic
ones for the same time resolution. However, it did not behave
differently from the gold standard. Comparing the obtained
results with the literature, 72% accuracy has been obtained
through a support vector machine and a driving simulator
(Hernández et al., 2018). The author (Fan et al., 2015) obtained
an accuracy of 81.46% using a KNN and a driving system in
virtual reality.

The neurometrics obtained with gel and water electrodes were
both able to significantly discriminate between high and low
stress in realistic settings. Moreover, there is not a statistically
significant difference between the performance obtained with
the two machine -learning based systems during the realistic
driving. Both systems showed an AUC higher than 0.9 for
a temporal resolution that is lower than 4 s. Therefore, the
proposed passive BCI system employed to discriminate between
two levels of stress, showed higher performance compared
with the gold standard during the laboratory experiment,
while they behave similarly during realistic tasks. We could
hypothesize that this minimal decrease could be associated with
the differences in the position of the electrodes, thus, representing
one limitation of the current study. In Halim and Rehan (2020)
more than 50 automotive drivers have been tested during
various driving situations. An SVM model reached 97.95% of
accuracy in discriminating rest and stress during driving through
EEG signals.

The neurometrics obtained with gel and water electrodes were
both able to significantly discriminate the high level of vigilance
from the low ones in realistic settings. The vigilance during the
driving task has been discriminated with AUC around 0.6 for
high temporal resolution (i.e., 1 s) and the water-based electrodes
allowed to overcome 0.9 on average AUC for temporal resolution
lower than 50 s. Therefore, the proposed passive BCI system that
was employed to discriminate between two levels of vigilance
showed higher performance in a laboratory setting compared
to the real ones for the same time resolution. However, it did
not behave differently from the gold standard. Similar results
have been already obtained through dry electrodes in the driving
context. A case study involving 15 participants in an immersive
virtual driving environment demonstrates the reliability and the
feasibility of predicting the driver’s vigilance through support
vector regression (Lin et al., 2014).
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Generalizability of the Cross-Task
Approach
The generalizability of a passive-BCI system depends strictly on
the implemented algorithms, in terms of features and models.
Generalizability has been defined as the algorithm’s ability to
generalize across tasks, sessions, or subjects with an accuracy
higher than 80% (Zhou et al., 2021). In this work, we focused
on cross-task generalizability. For all the targeted human factors,
the water-based passive-BCI system has been calibrated using
laboratory data. The design of appropriate training tasks for a
cross-task approach is the main challenge since the tasks should
be simple, short, and without confounding effects (Gerjets et al.,
2014).

The obtained results showed that the water-based passive-BCI
system calibrated cross-task allowed the discrimination between
two levels of the targeted human factors. In particular, this
approach applied to the workload monitoring reached an AUC
higher than 0.8 at 40 s of temporal resolution providing the same
performance as the intra-subject approach. Similar results have
been obtained for the monitoring of vigilance. The intra-subject
approach provided performances 10% higher than the cross-task
approach, even if they are not significantly different. The highest
values in terms of AUC have been reached during the stress
monitoring: in both cases, the systems reached values higher than
0.95 after 20 s of temporal resolution. As said, these results are
affected by the choice of the task for calibration, therefore the
results indicated that the choice made for stress is as far better
than those made for workload and vigilance.

The approach used here allowed a continuous estimate of the
targeted human factors in terms of score (i.e., the probability
of belonging to the high class), which can be considered the
output index of the passive-BCI system. We have analyzed the
similarity between the indices obtained through the intra-subject
and the cross-subject approach. In particular, the stress indices
were highly correlated to the population (R = 0.89), whereas
they showed also higher distances (RMSE = 0.27) between
the curves compared to the indices obtained for vigilance and
workload. In contrast, the correlation between the workload
and vigilance indices obtained with the intra-subject and cross-
subject approach is medium (0.6 and 0.48, respectively). The
temporal delay between the training and testing data may
have disadvantaged the cross-task results. Future testing should
involve cross-session recordings to better investigate this bias.
Overall, the obtained results confirmed the appropriateness of
the cross-task approach used for stress assessment, and that
improvement should be achieved for workload and vigilance. In
future work, different calibration tasks will be designed and tested
on realistic driving.

Contextualizing these results in the literature, acceptable
values of performance have been found only for cross-task
calibrated and then tested on similar tasks. For example, Ke
et al. (2015) reached an accuracy higher than 0.9 in mental
workload classification using spatial and verbal n-back. In
contrast, the study of Baldwin and Penaranda (2012) showed
low accuracy in the cross-task classification using three different
working memory tasks. The authors hypothesized that this result
was due to the different neural structures underpinning each

task. Therefore, when the cross-task procedure encompasses a
predefined set of features, on the one hand, this can avoid the
misclassification due to diverse concurrent mental states. On the
other hand, a predefined set of features limits the generalizability
of the cross-task approach. Therefore, in future attempts, the
two approaches (predefined set of feature vs. features selection)
should be compared.

Limitations and Future Work
One limitation of this study is related to the choice of performing
simultaneous recording with the two kinds of electrodes. On
the one hand, the simultaneous registration allows for avoiding
temporal bias. On the other hand, there is a spatial bias that
can affect the obtained correlation because they record different
bioelectrical activities. The distance between the electrodes was
about 1.5 cm to avoid electrical bridges due to the simultaneous
presence of gel and water. A second limitation is related to
the specificity of neurophysiological indices in realistic contexts.
For example, visual-related activity during the task could hide
a variation of parietal alpha due to workload. Also, systematic
artifacts could be erroneously selected as features by the system
leading to incorrect classification. Moreover, the current paper
showed the system can discriminate between two levels of
workload, stress, or vigilance. However, it is essential to move
from a binary classification to multi-class classification. For
example, the well-known inverted-U function of the Yerkes–
Dodson law (Yerkes and Dodson, 1908) associated arousal with
performance. According to this, it would be ideal to distinguish
at least a suboptimal, an optimal, and an overload condition.

In the future, guidelines should be provided for the
description of the tasks to be performed for effective cross-task
calibration. The task in question must be simple to not require
too much time for training, although it must be long enough
to guarantee enough data for training the model. Finally, these
water-based electrodes should be tested against already existing
water electrodes (Volosyak et al., 2010; Schwarz et al., 2020).

CONCLUSION

The main aim of this work was to test a new water-based
passive BCI system for workload, vigilance, and stressmonitoring
for out-of-the-lab applications. The results showed that water
electrodes guarantee higher ease of use, without lowering the
performance compared to the gold standard. In addition, a
proper structure for housing the EEG equipment would make the
system wearable, so easy to fit and comfortable, and consequently
acceptable for many different real-life applications. Moreover,
the generalizability of the system, analyzed through a cross-task
approach, showed acceptable performance according to different
values of temporal resolution for each investigated human factor.
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Although interest in brain-computer interfaces (BCIs) from researchers and

consumers continues to increase, many BCIs lack the complexity and

imaginative properties thought to guide users toward successful brain activity

modulation. We investigate the possibility of using a complex BCI by

developing an experimental story environment with which users interact

through cognitive thought strategies. In our system, the user’s frontal alpha

asymmetry (FAA) measured with electroencephalography (EEG) is linearly

mapped to the color saturation of the main character in the story. We

implemented a user-friendly experimental design using a comfortable EEG

device and short neurofeedback (NF) training protocol. In our system, seven

out of 19 participants successfully increased FAA during the course of the

study, for a total of ten successful blocks out of 152. We detail our results

concerning left and right prefrontal cortical activity contributions to FAA

in both successful and unsuccessful story blocks. Additionally, we examine

inter-subject correlations of EEG data, and self-reported questionnaire data

to understand the user experience of BCI interaction. Results suggest the

potential of imaginative story BCI environments for engaging users and

allowing for FAA modulation. Our data suggests new research directions for

BCIs investigating emotion and motivation through FAA.

KEYWORDS

brain-computer interfaces, electroencephalography, neurofeedback, a�ective

computing, story, avant-garde, frontal alpha asymmetry, inter-subject correlations

1. Introduction

Despite the promise of brain-computer interfaces (BCIs) to create personalized and

exciting experiences for users (Robinson et al., 2020), BCIs are considered “not ready”

for use (Cattan, 2021), as aesthetics in BCI experiences are often not a priority, among

other reasons. Thus far, BCIs are not commercially successful (Kerous et al., 2018), and

present numerous challenges for researchers (Saha et al., 2021) such as simple interfaces

which may not be engaging for users (Cohen et al., 2016). While there exist multiple
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types of BCIs, neurofeedback-based BCIs are the most popular

(Kerous et al., 2018). Neurofeedback (NF) allows participants

to learn to control unconscious brain activity by perceiving

feedback concerning their brain activity. Feedback is often visual

and simple, such as a thermometer bar (Johnston et al., 2011;

Robinson et al., 2020).

While clinical NF often involves extensive training protocols

for the purposes of understanding long-term psychological

outcomes, BCI research harnesses NF techniques within

relatively short training sessions, with the primary goal of

examining novel, dynamic interaction methods for participants

(Sitaram et al., 2017; Charles et al., 2020). In this study, we

develop and investigate an affective BCI, which takes as input

correlates of user emotion and motivation through frontal alpha

asymmetry (FAA). FAA has been a target measurement in

EEG NF because it is relevant to Major Depressive Disorder

(MDD) (Zotev et al., 2020), and is often studied in the context

of affective and motivational disorders such as MDD and

anxiety. Therefore, FAA has been used as input for affective

BCIs investigating novel interaction systems for emotion self-

regulation. A review of the role of FAA in both emotional and

motivational processes can be found atHarmon-Jones andGable

(2018).

FAA can be modulated through NF paradigms in

which users learn to regulate brain activity through operant

conditioning, despite a lack of volitional control (Rosenfeld

et al., 1995; Aranyi et al., 2015b, 2016). Additionally, FAA

can potentially serve as a biomarker to study and modulate

approach motivation and affect (Briesemeister et al., 2013).

In this paper, we detail our developed experimental story BCI

which is designed with the goal of stimulating the imagination

of the user in order to prompt novel thought content strategies

for brain activity modulation. We report our experimental

design and analysis, which is inspired by affective BCI work

using FAA by Aranyi et al. (2016). We provide a discussion of

our findings in order to inform affective BCI protocol design

using complex stimuli with the broader goal of investigating

user-friendly, higher complexity BCIs.

Our BCI examines participant NF interaction success within

an experimental story BCI FAA NF protocol. The experimental

story was designed to allow participants to exercise their

imagination in order to explore mental strategies for increasing

FAA. We aim to understand the efficacy of the developed BCI

in allowing participants to increase their FAA score through the

examination of the following research questions:

• RQ1: Can participants successfully engage with the

developed experimental story BCI by increasing FAA?

– We hypothesize that some, but not all participants will

successfully increase FAA, and that successful blocks will

be characterized by large effect sizes.

• RQ2: Will successful blocks be characterized by an increase

in left frontal cortical activity?

– We hypothesize that increased FAA will be the result

of increased left frontal cortical activity rather than

decreased right frontal cortical activity.

• RQ3: Will participant cognitive thought strategies be

associated with NF interaction success?

– We hypothesize that successful participants will

primarily use direct strategies while unsuccessful

participants will primarily use indirect strategies to

modulate brain activity.

FAA scores, measured in real-time with

electroencephalography (EEG), serve as the input signal in

our BCI system. For the participant, visual feedback concerning

FAA is mapped to the color saturation of the main character

in the story environment. Participants engaged with eight

distinct story segments using imagination-based instructions

for thought content strategies. Greater FAA scores increased

the main character’s color saturation, while lower FAA scores

decreased color saturation of the main character in the

dream-like story environment.

1.1. BCI: Frontal alpha asymmetry (FAA)
and EEG

Frontal alpha asymmetry (FAA) refers to a difference in

brain activity between the right and the left prefrontal cortices of

the brain, and can be measured with a difference score between

corresponding right and left electrode sites on an EEG device.

Multiple studies have indicated that greater left relative to right

prefrontal cortical activity is associated with increased approach

motivation, defined as an organism’s tendency to approach

or expend energy in order to go toward stimuli rather than

away (Harmon-Jones and Gable, 2018). Additionally, greater left

relative to right prefrontal cortical activity has been associated

with better emotion self-regulation ability, increased positive

emotions, as well as reduced depressive symptoms (Cohen

et al., 2016; Quaedflieg et al., 2016; Harmon-Jones and Gable,

2018). In affective computing, determining new ways in which

humans can more directly control emotions is central to the

advancement of humanity generally (Cavazza et al., 2014b), as

emotional processing is diminished within numerous mental

health disorders. Thus, FAA has been studied within numerous

NF and BCI paradigms (Peeters et al., 2014; Aranyi et al., 2016;

Mennella et al., 2017) as well as applications aiming to alleviate

depression symptomology (Kelley et al., 2017).
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Our objective is to investigate the efficacy of our developed

BCI to facilitate FAA modulation for the user. As BCI research

often emphasizes technical aspects over both human interaction

and user guidance, we develop our BCI system with a focus on

the cybernetic paradigm “human in the loop,” as described by

Kosmyna and Lécuyer (2017). For our study, we use the Emotiv

Epoc X1 EEG headset. This headset is minimally intrusive, quick

to set up, and affordable enough to be selected by consumers;

perhaps why most BCI studies incorporate a consumer grade

device (Kerous et al., 2018).

1.2. Experimental storytelling techniques

While there is no concrete definition of “avant-garde,” there

exist certain attributes of both film and game works that are

considered characteristics which can often, but not always, be

found within the genre (Taberham, 2018). While techniques

within avant-garde films have been identified and described

after their creation, we use many experimental film making

techniques seen in avant-garde works within our developed

experimental story BCI, seeking to use these identified

techniques for the BCI experience, rather than develop a work

defined as “avant-garde.” Techniques we employed include

rejection of linear narrative, spatio-temporal discontinuity, lack

of causal logic, and prominent stylization. The primary goal

of avant-garde works is often to provide novel psychological

experiences for viewers, in which viewers must exert energy and

creative leaps of the imagination to think about and experience

the work (Koenitz, 2017; Taberham, 2018). This exercise of the

imagination is central to avant-garde works (Taberham, 2018).

Therefore, our goal was to explore experimental film-making

techniques identified within previously developed avant-garde

works, with the goal of stimulating the participant’s imagination

during NF interaction. Similar to Zioga et al. (2018), we believe

that interdisciplinary research such as this study will allow for

creative, new approaches to understanding NF interaction in

BCI experiences which may help understand these experiences

in real-world settings.

By experiencing the experimental BCI story environment,

participants may explore cognitive thought content strategies

for brain activity modulation more freely, as creativity and

imagination may be necessary to process the story environment.

We investigate our assumption that an experimental story

BCI may influence user mental strategies for BCI engagement

positively by evaluating participant BCI engagement success

through FAA measurements. We investigate commonalities in

user neural engagement through inter-subject correlations (ISC)

of EEG data as exploratory analyses as well, and obtain self-

reported questionnaire data in order to provide a more complete

picture of the user experience during BCI engagement.

1 https://www.emotiv.com/epoc-x/

2. Related work

Since the 1960s (Nijholt, 2015), artists have advanced the

field of BCIs through the creation of applications within real-

life contexts (Zioga et al., 2018). Previous research has explored

multi-brain activity amongst users through art installation work

(Mori, 2003; Albu, 2020), BCI collaborative control of music

(Le Groux et al., 2010), and mixed media performances (Zioga

et al., 2018); See Wadeson et al. (2015) for more earlier artistic

BCI work. Despite many previous, creative BCIs which provide

participants with imaginative, playful, as well as collaborative

experiences using brain activity, BCI research investigating NF

interaction success within more engaging BCI experiences is

limited.

Many NF protocols investigated through user studies

involve simple environments such as those which utilize status

bars, single auditory tones, shape changes (Cavazza et al.,

2017) or color changes (Cohen et al., 2016) for feedback

concerning the user’s brain activity. Moving cubes (Berger

and Davelaar, 2018), histograms (Mennella et al., 2017), and

box-plot meters (Quaedflieg et al., 2016) have also been

used to visualize brain activity for participants. Recent work

investigating the combined usage of EEG and functional

magnetic resonance imaging (fMRI) NF for emotion self-

regulation additionally used colored height bars to visualize

two signals from EEG and two signals from fMRI (Zotev

et al., 2020), as well as colored height bars in combination

with pictures of positive autobiographical memories (Dehghani

et al., 2020). In a study by Lackner et al. (2016), brain

activity was visualized through the movement of a ball, which

changed from blue to yellow with the participant’s alpha band

activity. Participants also saw a happy or sad smiley face after

each run. Research suggests that improving the complexity

of NF environments could lead to increased NF success

(Cohen et al., 2016).

Cohen et al. (2016) compared EEG NF success in emotion

down-regulation using a virtual animated scenario to using

a simple thermometer 2D feedback system. The authors

determined that the more complex, animated scenario was

not only more effective for NF learning, but was also more

motivating, engaging, and allowed for a greater NF learning

transferability to unfamiliar environments. Berger and Davelaar

(2018) examined attentional control in their BCI system, and

determined that participants had a higher learning rate for

increasing attention in their 3D environment than in their

2D environment. Gruzelier et al. (2010) determined greater

NF learning for participants in their Cave Automatic Virtual

Environment (CAVE) than for participants experiencing a

screen-based rendition of the same environment. Although

these studies examined varying attributes of environments

with higher complexity, greater interface complexity

appears to have contributed to increased NF success across

different platforms.
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While literature concerning affective BCIs using FAA is

limited (Aranyi et al., 2015b), there exist several BCI FAA

studies which utilize stories to enhance participant motivation

and success through an encouragement of the imagination.

Cavazza et al. (2014b) examined the use of an interactive

narrative for affective interaction. In their BCI, participants were

instructed to think positive thoughts in order to support the

main character of their story. In their story, a female doctor

experiences stressful life events such as patient death, abuse

from her boss, and overworking. The participant must mentally

support this character by using their thoughts in order for the

doctor’s outcome to improve throughout the story. Participants’

brain activity was mapped to the color of the female doctor,

whose color became more saturated as FAA increased. Although

a proof of concept study, half of the participants were able to

increase FAA with minimal training by mentally supporting the

protagonist through empathetic feelings.

Aranyi et al. (2015b) developed a story-based affective

BCI investigating FAA using a similar hospital story BCI

environment. Participants were instructed to express angry

thoughts toward an evil character, as anger has also been

associated with increased approach motivation and greater FAA

scores despite being a negative emotion. Brain activity was

mapped to the alpha channel of the evil character. In order

to prime participants to feel anger toward the evil character,

this character was depicted abusing co-workers in the story

environment. With greater FAA scores, the evil character

became translucent, as if he was disappearing from the scene.

With lower FAA scores, the evil character became more opaque,

remaining in the story. Despite minimal training, participants

were able to successfully engage with the BCI by increasing FAA

through anger expression.

In a later study also investigating FAA, Aranyi et al. (2016)

developed an affective BCI which mapped FAA scores to

facial expressions of a virtual agent (character). Participants

were instructed to express positive thoughts toward the agent.

With increased FAA, the agent would show a positive, happy

expression, and with decreased FAA, the agent would exhibit

a neutral expression or look away from the participant. The

authors determined that a majority of participants could

successfully increase FAA through their affective BCI paradigm.

For their BCI, the authors developed a short, user-friendly

NF protocol designed to control for differences in FAA both

between different NF blocks, and across different participants

(Aranyi et al., 2016). Our methodology is largely based upon

the NF protocol developed by Aranyi et al. (2016), as we seek

to investigate our BCI within a user-friendly NF protocol.

We investigate BCI complexity through the development

and evaluation of an experimental story environment BCI,

utilizing simple visual feedback in the form of color saturation,

as this visual feedback has been used in previous BCI studies.

Considering that multi-component BCIs have allowed for

greater NF success than single component BCIs (Jensen et al.,

2013), our BCI consists of eight distinct story segments with

which participants could interact through brain activity. With

this study, our primary goal was to investigate an imaginative,

complex BCI environment by providing participants with

an experimental story experience and imagination-based

instructions for engagement.

3. Materials and methods

3.1. Experimental story BCI system
overview

Our BCI system was developed in the Unity game engine

using the Emotiv plugin. To provide participants with real-

time visual feedback of their brain activity (FAA), FAA scores

were calculated by subtracting the natural log-transformed alpha

power of the left electrode (F3) from the natural log-transformed

alpha power of the right electrode (F4) (ln[Right] − ln[Left])

at a 2 Hz sampling rate, to match prior research by Aranyi

et al. (2016). For post-hoc analyses, FAA scores were calculated

after preprocessing the raw EEG data in EEGLAB (Delorme and

Makeig, 2004). Our post-hoc analyses determined participant

success rate in increasing FAA fromView to Engage components.

Our protocol is based on that of Aranyi et al. (2016), who

developed a similarly short NF protocol investigating FAA. In

our protocol, participants completed eight different story blocks.

Each story block consisted of a 30 s View component, and a 30 s

Engage component. Each of the eight View and Engage segment

pairs were separated by a 10 s Rest component for a total of eight

Rest components. During Rest, participants were instructed to

relax and try to minimize mental wandering. The timing of

our Rest and Prompt components matches that of Aranyi et al.

(2016). While Aranyi et al. (2016) presented Engage and View

components for 40 s, our protocol differs in that we presented

these components for 30 s each. This decision was made in order

to bothmatch the eight NF block protocol of Aranyi et al. (2016),

while keeping the BCI experience under 15 min for participants

as mentioned in Section 3.3.

During View, participants were instructed to count

backwards. Participants counted backwards by 2 s silently

starting at 500 (500, 498, 496, etc.) during each of the eight

View components. The number by which to count backwards

was determined through our pre-testing. It was determined

that counting backwards by two was adequate to maintain

attention while not being so difficult as to distract and frustrate

participants. Counting backwards was used to control for

unwanted thoughts, emotions, and mental processes (Aranyi

et al., 2016).

During Engage components, participants were instructed to

use their thoughts to interact with the main character in the

story, as described in more detail in the feedback mapping

subsection of this paper (see Section 3.3). A 3 s prompt screen
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was presented to participants before both View and Engage

components to indicate which component would be presented

next. Participants were made aware that they would receive

no visual feedback concerning their brain activity during View

components, and would only see visual feedback during Engage

components. Participants described mental strategies they used

during the experiment on the questionnaire. One of the eight

story segments of our NF protocol is shown in Figure 1.

3.1.1. Story blocks

We developed the story using the following design

techniques: spatio-temporal discontinuity, rejection of linear

narrative, abstraction of main character and narrative, and

prominent stylization. Live action video footage was filmed and

used for background textures within the story environment in

order to create a dream-like mood. A young female 3D model

was downloaded from Adobe Mixamo2 and used as the main

character, while the background character, an adult male 3D

model, was downloaded from the Microsoft Rocketbox Avatar

library, MoveBox (Gonzalez-Franco et al., 2020). A shader

program downloaded from the Unity asset store was applied

to both characters in order to distort spatial logic concerning

their forms. During View components, the main character and

the background character were unlit (no colors), with the shader

effect applied consistently throughout the View component. At

the beginning of each Engage component, the main character

faded out of the shader effect, returning to the original shape

of the 3D model, to clearly indicate the start of an Engage

component. During Engage components, participants were able

to use their thoughts to increase the main character’s color

saturation. Characters were animated with very slow animations

during both View and Engage components. Because increasing

color saturation has been used previously in an FAA NF BCI

(Cavazza et al., 2014b), as well as the manipulation of character

transparency (Aranyi et al., 2015b), we selected an interaction

mapping modality known to produce NF interaction success. In

this way, we could examine the influence of an experimental

story context on NF interaction success while employing a

known visual feedback modality. Jensen et al. (2013) suggests

examining how a combination of components might affect the

user’s imagination for usage in neurofeedback. All eight story

blocks, consisting of both View and Engage components are

shown in Figure 2.

Concerning the spatiality of the story environment, 3D

models in certain story blocks were positioned in ways that could

not be possible in reality. For example, a set of chairs and a

table were positioned diagonally, with a 45◦ tilt downwards, as

the characters hovered above the environment in Story Block

#3. In Story Block #5, the background character hovers well

above the ground. These story blocks can be seen in Figure 3.

2 https://www.mixamo.com/

Lacking a clear chronology of events, the story blocks were

presented in the same order for all participants. Previously

developed affective story BCIs have incorporated environments

with negative connotations, with the goal of guiding participants

more easily toward mindsets which may approach the target

brain activity (Gilroy et al., 2013; Cavazza et al., 2014a,b;

Aranyi et al., 2015b). Our story environment depicted the main

character being symbolically watched, controlled, chased, etc., as

our goal was to motivate participants to help the main character

escape from the bad dream-like environment by using their

thoughts. In pre-testing, participants acknowledged that the

story was dream-like, open-ended, and interesting, and offered

varying ideas concerning its meaning. Therefore, we concluded

that the developed story environment was appropriately abstract

to allow for a multiplicity of interpretations from participants.

3.2. BCI input

We used the Emotiv Epoc X EEG headset (Emotiv Systems

Inc., San Francisco, CA, USA) to collect EEG data from

participants. The Emotiv Epoc X is a consumer grade, 14 channel

EEG headset which includes electrode sites AF4, AF3, F3, F4,

F7, F8, FC5, FC6, O1, O2, P7, P8, T7, and T8. This electrode

scheme is based on the international 10-20 system, as shown

in Figure 4. Two additional electrodes served as reference and

ground; the electrode located at the M1 site (Driven Right Leg

[DRL]) functioned as an absolute voltage reference while the

electrode located at the M2 site (Common Mode Sense [CMS])

was used for feedback noise cancellation. The electrodes are

Ag/AgCl sensors which contain felt pads. Felt pads were fully

soaked in saline solution prior to inserting into each electrode

compartment in order to ensure the best conductance between

the participant’s scalp and the sensor. EEG data was recorded

with a 256 Hz sampling rate and was filtered online using a built-

in digital 5th order Sinc filter with a bandwidth of 16–43Hz, with

notch filters at 50 and 60 Hz.

Consumer-grade EEG data may provide researchers with

more ecologically valid results, as the headset is both minimally

obtrusive for participants, and has demonstrated EEG data

consistent with conventional EEG recordings (Le et al., 2020).

According to Gapen et al. (2016), EEG NF has made very

little impact in clinical care despite being used as a clinical

intervention for more than 30 years. Considering that wireless,

portable and small EEG systems which can be used outside

traditional laboratory environments may increase clinical

relevance (Enriquez-Geppert et al., 2017), we use such an EEG

device with the goal of investigating NF in a more real-world

setting.

F3 and F4, along with F7 and F8, are the most commonly

investigated electrode pairs in FAA research (Smith et al.,

2017; Kuper et al., 2019; David et al., 2021). To maintain

consistency between this study and our previous research, we
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FIGURE 1

One block of our NF protocol. Components include (A) Rest [10 s], (B,D) Prompt [3 s], (C) View [30 s], and (E) Engage [30 s].

FIGURE 2

All eight story blocks, with View and Engage components. 2b and 2g demonstrate FAA which has not crossed the threshold for visual feedback,

therefore, the 3d model remains dark. (a) Story block #1, (b) Story block #2, (c) Story block #3, (d) Story block #4, (e) Story block #5, (f) Story

block #6, (g) Story block #7, (h) Story block #8.

selected electrode sites F3 and F4 for FAA calculation to provide

participants with real-time visual feedback concerning their

brain activity.

3.3. Participants, procedure, and
feedback mapping

Data was collected from 23 participants, all students at

Purdue University. Due to excessive eye closure, movements,

or EEG signal capture malfunctions, four participants were

removed from the analysis, resulting in 19 participants (five

female and 14 male; age: M = 19.05, SD = 1.02; age

range: 18–22). With the exception of one participant who

was left-handed, all participants were right-handed. Only one

participant was currently undergoing psychiatric treatment.

These participants were not identified as outliers, and were

therefore included in the analysis. All participants had normal or

corrected-to-normal vision. The study was approved by Purdue

University’s institutional review board (IRB), and participants

provided written consent before participation. Similar to the BCI

cinematic experience created by Pike et al. (2016), participants

viewed the BCI on a large screen, in a quiet room. Participants

were seated in a comfortable chair in order to minimize motion

artifacts, and viewed the monitor from a comfortable viewing

distance. The study was completed during the week over a
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FIGURE 3

Spatio-temporal discontinuity in our story environment. (A) Story block #3, (B) Story block #5.

FIGURE 4

Electrodes in the Emotiv Epoc X System (image courtesy of

Emotiv).

three week period in late fall. Participants took 35–45 min

to complete the entire study, depending on how long it took

them to finish the questionnaire after the experiment. This time

included EEG preparation, participant instructions, a practice

round, the experiment, and questionnaire completion. The total

time spent engaging with the BCI during the experiment was

13.5 min, as it has been suggested that BCI tasks longer than

15–20 min can greatly contribute to participant fatigue and,

therefore, diminishing EEG data quality (Aranyi et al., 2015a).

Figure 5 shows a participant in the experiment, and the devices

used in the study.

The researcher first wiped the participant’s lateral forehead

and mastoid regions with alcohol to ensure similarly clean

recordings for each participant. After the EEG headset was

positioned on the head, the researcher adjusted participant hair

until the Emotiv system indicated 100% EEG signal quality

(all electrode indicators were green, which indicated sufficient

conductance levels). To increase participant compliance with

refraining from movements during the study, the researcher

asked participants to try clenching their jaw, frowning,

talking, and moving their limbs and face, and showed

participants the noise introduced into their EEG signal during

movements such as these. Additionally, the researcher showed

participants what the main character would look like with

full color saturation. Before the experiment, participants

completed one practice block in which they practiced counting

backwards during View components, and practiced using their

thoughts to change color saturation of the main character

during Engage components. The researcher ensured that

participants clearly understood these tasks prior to starting the

experiment.

Instructions concerning NF strategies are often vague so

as not to constrain participants to strategies which may not

be effective for them (Aranyi et al., 2016). During pre-testing,

participants expressed confusion with our initial instructions.

Therefore, a new set of instructions was developed. These

instructions were more detailed, while maintaining an open-

endedness. Defined as the ability to mentally reconstruct new

information, sensations, and objects, imagination (Szczelkun,

2018) was central to our participant instructions, provided

below.

In the experiment, you will observe the girl in her dream. Your

goal is to help her escape from her dream. During Engage

components, you may think about new objects, sensations,

ideas and possibilities, or new interpretations of the story,

which may help the girl escape from this dream environment.

You may imagine interacting with the girl. You may try

using positive thoughts. You may explore other strategies for

changing the main character’s color as well.
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FIGURE 5

The user and devices in our BCI system. (A) Emotiv Epoc X EEG headset. (B) User wearing the headset. (C) The BCI room set-up.

FIGURE 6

BCI system overview.

Following work by Aranyi et al. (2016), we defined the

brain activity (FAA) threshold for visual feedback based on

guidance for EEG-based FAA in NF paradigms (Rosenfeld et al.,

1995). FAA values from each View component were used to

determine the minimum and maximum FAA values necessary

for visual feedback for each corresponding Engage component.

Before calculating the minimum and maximum visual feedback

threshold points, outliers that were three standard deviations

higher or lower than the mean of the list of FAA values stored

during View were removed from the list of values, in order

to remove extreme values indicative of participant movements.

Next, the minimum value for visual feedback during the

corresponding Engage component was defined as the mean

of the FAA values (excluding outliers) during the preceding

View component plus 1.28 times their standard deviation. This

threshold requirement for minimum values determined that

visual feedback during NF would result in no feedback for

90% of the values from the View component, and instead show

visual feedback for only the top 10% of values from the View

component (Rosenfeld et al., 1995; Aranyi et al., 2016). The

maximum value for visual feedback (the highest FAA value

included in visual feedback during the Engage component) was

set as the maximum value recorded during View.

FAA values within the minimum and maximum range

were linearly mapped to the main character’s color saturation

values, with the maximum value resulting in the main character

being fully colored. Figure 6 shows an overview of our

BCI system.

View and Engage components were 30 s in length, as

determined by our pre-testing. During Engage components

only, FAA was mapped to the color saturation of the main

character, thus allowing the participant to change the color

saturation of the main character using their thoughts. Varying

color saturation of themain character based on FAA input can be

seen in Figure 7. The counting task during eachView component

provided an emotional control for each corresponding Engage

component (Aranyi et al., 2016). A video showing the developed

BCI can be found in our Supplementary material.

3.3.1. EEG preprocessing and analysis

To examine participant success in increasing FAA from

View to Engage post-hoc, we first preprocessed EEG data

using EEGLAB (Delorme and Makeig, 2004) within MATLAB

(MathWorks Inc.). Data was filtered between 1 Hz (high pass)

and 30 Hz (low pass) using EEGLAB’s eegfiltnew function,

following FAA EEG VR research by Kisker et al. (2021). Bad

channels were rejected and interpolated. After applying an

average reference, Independent Component Analysis (ICA) was

run on the data, and eye components with 50% probability

were removed. EEGLAB’s spectopo function was used on the

cleaned data to calculate the power spectra in the 8–13 Hz alpha

range. We subtracted the natural log-transformed alpha power

of the left electrode (F3) from the natural log-transformed alpha

power of the right electrode (F4) to calculate FAA: (ln[Right] −

ln[Left]) (Smith et al., 2017). FAA was calculated for each View
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FIGURE 7

Examples of varying FAA mapped to main character color. (a)

View component, (b) NF: No FAA increase, (c) NF: Moderate FAA

increase, (d) NF: Large FAA increase.

and Engage component for each participant. Within each 30 s

component, FAA was calculated from 2 s segments to create a

distribution of FAA scores.

3.3.2. FAA and alpha power measurements

We examine both FAAmeasurements as well as alpha power

measurements from the left and right electrode sites individually

in our study. FAA is calculated by subtracting the natural log

of the alpha power from the left electrode site from the natural

log of the alpha power of the right electrode site. However,

this FAA score does not provide information concerning how

much the alpha power from either the left or right electrode

site contributed to the FAA score (Smith et al., 2017). Like

Aranyi et al. (2016), we wanted to understand the contribution

of right and left prefrontal cortical activity to successful FAA

scores, as a higher FAA score could be indicative of either

increased left cortical activity or decreased right cortical activity

(Smith et al., 2017). Therefore, we conducted additional analyses

to understand how alpha power on the right and left sides

changed from View to Engage blocks. In this way, we wanted

to understand if FAA which increased from View to Engage

did so because of increased left prefrontal cortical activity, or

decreased right prefrontal cortical activity. Because alpha power

is inversely related to cortical activity (Allen et al., 2004), a higher

alpha power from the right electrode would indicate lower

cortical activity from the right electrode. Results concerning

alpha power from the right and left hemispheres are described

in Sections 4.1 and 4.2.

3.3.3. Inter-subject correlations (ISC) analysis

To determine between subject reliability of evoked

responses, inter-subject correlations (ISC) were calculated

(adapted from Dmochowski et al., 2012; Cohen et al., 2016).

Briefly, sample electrode covariances were calculated as:

Rij =
1

N

∑

t

xi(t)xj(t), (1)

where xn represents the time series electrical activity recorded

on all electrodes of subject n. Within and between subject

correlations were then calculated as:

Rw =
1

N

∑

n

Rnn (2)

Rb =
1

N(N − 1)

∑

i

∑

j,j6=i

∑

k

(xi(t)− x̄i)(xk(t)− x̄k)
T , (3)

where xn(t) is the measured scalp voltage on channel n and

x̄n is the time average of channel n. The value Rb represents

the summation over all cross-covariances of all electrodes of all

subjects. Maximal covariances are then calculated as component

projections:

Componenti =
vTi Rbvi

vTi Rwvi
, (4)

where vi is the i
th eigenvector of the matrix R−1

w Rb. Intersubject

correlation is then calculated as:

ISC =

∑

i

Ci. (5)

In keeping with previous ISC studies (Dmochowski et al., 2012;

Cohen et al., 2016), the three largest correlated components

are utilized in calculating ISC. Time resolved correlations were

formed by calculating ISCs across all electrodes for all subjects

for each scene within 1 s windows with an 800 ms overlap

between windows.

Spatial distributions ofmaximal correlation coefficients were

calculated using “forward model” analyses (Parra et al., 2005),

specifically:

A = RwW(WTRwW)∗, (6)

whereW is the set of linear spatial filters:

wij = argmaxw
wTRijw

√

wTRiiw
√

wTRjjw
, (7)

and ∗ designates the Moore-Penrose pseudo-inverse (Ben-Israel

and Greville, 2003), a generalization of the matrix inverse

which calculates a least-squares best fit via singular value
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decomposition to calculate amatrix inverse. TheMoore-Pensore

is used to ensure numerical stability between electrodes with

varying levels of activation.

Statistical significance of ISCs was assessed via permutation

testing (Fischer, 1971). Electrode time series were randomly

shuffled in time and empirical p-values reflective of one-tailed

type-1 error in rejecting the null hypothesis were calculated

from the distribution of time-shuffled correlations after 1,000

iterations. A window of ISC was considered significant if p <

0.05 after multiple comparisons correction using the Benjamini-

Hochberg procedure to control for the false discovery rate

(Benjamini and Hochberg, 1995).

4. Results and discussion

One hundred and fifty-two blocks were identified for

analysis (eight blocks for each of the 19 participants). Block

success was defined as a statistically significant increase in

average FAA during Engage components compared to average

FAA during View components within the same block. For

example, we compared the Engage and View components for

Story Block #1, then for Story Block #2, and so on, for each

participant individually. Block success was determined using

paired samples t-tests. Data was inspected using Q-Q plots of the

residuals and was normally distributed. Like Le et al. (2020), who

also investigated FAA using an Emotiv EEG recording device, we

winsorized outliers in the data in order to reduce the influence

of extreme scores. We winsorized the data by replacing outlier

values with the next minimum or maximum value for that

component (as the data included both positive and negative FAA

values). Seven out of 19 participants (37%) achieved statistically

significant NF success in increasing their FAA score in at least

one of the eight blocks, for a total of 10 successful blocks in the

experiment. Figure 8 shows the distributions of successful blocks

across participants.

We investigated effect sizes for successful blocks, in which

average FAA during Engage was statistically significantly greater

than average FAA during View. Effect sizes for successful

participant blocks were calculated using Hedge’s g using a

standard deviation of the difference. The smallest and largest

effect sizes detected were 0.477 and 1.27, respectively, with an

average effect size of 0.749. Similar to work by Aranyi et al.

(2016), our effect size values were negatively skewed, indicative

of larger effect sizes for successful blocks. Additionally, we

determined that successful blocks were characterized by a large

FAA increase (M = 0.46, SD = 0.04) fromView to Engage, while

unsuccessful blocks were characterized by a very small decrease

in FAA (M = −0.07, SD = 0.01), as shown in Figure 9. Despite

few successful blocks, ourRQ1 is supported as some participants

successfully increased FAA scores from View to Engage, and

successful blocks were characterized by large effect sizes as well

as large FAA increases.

FIGURE 8

Distribution of successful blocks across participants.

FIGURE 9

Mean FAA change from View to Engage for both successful and

unsuccessful blocks.

4.1. Successful blocks characterized by
increased left prefrontal cortical activity
from View to Engage

We used a two-way repeated measures analysis of variance

(ANOVA) with average alpha power as the dependent variable,

and Component Type (View or Engage) and Side (Left [F3]

or Right [F4]) as factors in the analysis. Alpha power

which was not normally distributed was transformed following

recommendations by Templeton (2011) prior to conducting

our parametric analyses. Our simple main effects analysis used

Bonferroni confidence interval adjustment.

We found a statistically significant interaction effect between

Side and Component Type [3 = 0.561, F(1,9) = 7.035, p =

0.026, η2p = 0.439]. Therefore, we conducted simple main effects

analyses for both Side and Component Type. We determined

a simple main effect for Side, finding that Left alpha power

(M = 8.74, SD = 9.41) during View was significantly greater
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FIGURE 10

Unsuccessful Blocks. Both Right and Left alpha power decrease

from View to Engage, although Left to a greater (significant)

extent.

FIGURE 11

Successful Blocks. Both Right and Left alpha power decrease

from View to Engage, but Right remains significantly greater

than Left during Engage.

than Right alpha power (M = 3.90, SD = 3.45) during View

[3 = 0.619, F(1,9) = 5.548, p = 0.043, η2p = 0.381]. However,

Left alpha power (M = 2.34, SD = 1.49) did not significantly

differ from Right alpha power (M = 2.51, SD = 1.29) during

Engage [3 = 0.960, F(1,9) = 0.373, p = 0.556, η2p = 0.040].

We also found a simple main effect for Component Type,

determining that Left alpha power (M = 8.74, SD = 9.41)

during View was significantly greater than Left alpha power

(M = 2.34, SD = 1.49) during Engage [3 = 0.591, F(1,9) =

6.231, p = 0.034, η
2
p = 0.409]. However, we found that Right

alpha power (M = 3.90, SD = 3.45) during View did not

significantly differ from Right alpha power (M = 2.51, SD =

1.29) during Engage [3 = 0.745, F(1,9) = 3.085, p = 0.113,

η
2
p = 0.255].

Our results indicate greater Right cortical activity than Left

cortical activity during View. Because greater relative Right than

Left cortical activity would indicate a lower FAA than if Left

> Right, it is possible that successful blocks were characterized

by a lower starting FAA during View compared to Engage.

Although Right cortical activity was greater than Left cortical

activity during View, Right and Left cortical activity do not differ

significantly during Engage, as seen in Figure 10. Considering

the decrease in alpha power (increase in cortical activity) on the

Left from View to Engage, an increase in Left cortical activity

appears to have contributed to increased FAA, rather than a

decrease in Right cortical activity from View to Engage. We

consider our RQ2 partially supported, as an increase in Left

cortical activity from View to Engage contributed to increased

FAA during Engage, despite determining no difference between

Left and Right cortical activity during Engage. Unlike Aranyi

et al. (2016), our results indicate a lateralization (Left > Right

alpha power) during View, but no lateralization during Engage.

Considering the increase in cortical activity on both Left and

Right sides from View to Engage (although, not a statistically

significant increase on the Right side), our results suggest an

increase in mental effort from View to Engage. This is in line

with our self-reported data examining the mental demand of

both components. Participants used a Likert scale taken from

the NASA Task Load Index (NASA TLX) (Hart, 2006), an

assessment of mental workload, to rate mental effort necessary

to perform both View and Engage tasks. We conducted a one-

tailed paired samples t-test [t(18) = −3.366, p = 0.002] and

determined that Engage mental demand (M = 4.74, SD =

1.59) was significantly greater than View mental demand (M =

2.63, SD = 1.83).

4.2. Unsuccessful blocks characterized by
comparable increases in Right and Left

prefrontal cortical activity

Of the 142 unsuccessful blocks, 6% were characterized by

a decrease in FAA. Therefore, unsuccessful blocks were largely

characterized by no change in FAA from View to Engage. We

investigated the contribution of Left and Right alpha power

in unsuccessful blocks as well, and determined a statistically

significant interaction between Side and Component Type [3 =

0.896, F(1,141) = 16.428, p < 0.001, η2p = 0.104]. Simple main

effects analysis of Sidewas also significant [3 = 0.795, F(1,141) =

36.467, p < 0.001, η
2
p = 0.205], indicating that Left alpha

power (M = 2.00, SD = 1.72) was significantly lower than

Right alpha power (M = 2.68, SD = 2.03) during View. This

is the opposite of our results for successful blocks, in which

Left alpha power was significantly greater than Right alpha

power duringView. It appears that unsuccessful blocks may have

instead been characterized by a higher starting FAA duringView,
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and therefore, it may have been significantly more difficult to

increase FAA further during Engage.

Unlike with successful blocks, we additionally determined a

statistically significant difference [3 = 0.873, F(1,141) = 20.460,

p < 0.001, η2p = 0.127] between Left (M = 1.72, SD = 1.37)

and Right alpha power (M = 2.11, SD = 1.57) during Engage,

indicative of greater Left than Right cortical activity during

Engage for unsuccessful blocks. Our results indicate that the lack

of a significant increase in FAA from View to Engage found in

unsuccessful blocks may have been influenced by the greater

increase in Right than Left cortical activity from View to Engage,

as seen in Figure 11.

A simple main effect analysis of Component Type was also

statistically significant [3 = 0.769, F(1,141) = 42.252, p < 0.001,

η
2
p = 0.231].We determined that Right alpha power duringView

(M = 2.68, SD = 2.03) was significantly greater than Right

alpha power during Engage (M = 2.11, SD = 1.57), indicative

of greater increased Right cortical activity during Engage than

during View. Left alpha power during View (M = 2.00, SD =

1.72) was significantly greater than Left alpha power during

Engage (M = 1.72, SD = 1.37), indicative of greater Left cortical

activity during Engage than during View [3 = 0.900, F(1,141) =

15.736, p < 0.001, η
2
p = 0.100]. Therefore, self-reported data

concerning mental demand of View and Engage blocks is in line

with unsuccessful blocks as well, in that more cortical processing

took place during Engage on both Right and Left sides.

Results suggest that while successful blocks were

characterized by a relatively greater increase in Left compared

to Right cortical activity, unsuccessful blocks were characterized

by a comparable increase in both Right and Left cortical activity.

While successful blocks may have also been characterized

by a relatively lower starting FAA during View, making an

increase in FAA more feasible during Engage, unsuccessful

blocks may have been characterized by a higher starting FAA

during View, perhaps making an increase in FAA during Engage

more difficult. Considering that there was also greater cortical

activity on both sides during Engage for unsuccessful blocks, it is

possible that participants exerted greater mental effort during

unsuccessful blocks as alpha power is thought to be inversely

related to cortical network activity (Allen et al., 2004; Smith

et al., 2017). Mean View and Engage FAA values for each block

for each participant are shown in Table 1.

4.3. Inter-subject correlations (ISC)
suggest varying strategies for achieving
NF success

ISCs and EEG forward modeling were calculated to explore

spatial distributions of sources of neural activity and to assess the

between subject reliability of evoked responses during View and

Engage blocks for each story block. As subject response to visual

feedback is not a stationary process, ISCs were calculated in 1 s

windows across all subjects for each story block and decomposed

into the three largest correlation components. Percentages of

windows which were significant above chance were calculated

and reported in Table 2. Components during View showed a

larger percentage of significant windowed correlation with the

exception of story blocks #2, #6, and #7, which showed an

equal or larger percentage of significant windows during Engage.

Results suggest that subject neural activity was significantly

less correlated during Engage, as neural activity showed longer

durations of significant correlated activity during View, with the

exception of story blocks #2, #6, and #7. Longer de-correlated

activity during Engage could be due to different thought content

strategies for changing the main character’s color saturation

employed by different subjects. Higher correlations during View

are not unexpected as subject counting strategies are likely more

consistent than strategies taken during the NF task.

Blocks were split into successful and unsuccessful groups

containing all successful or unsuccessful blocks respectively.

Forward EEG models of ISC of alpha power quantifying largest

correlation components across all subjects were calculated for

each group. As expected, forward models verify that successful

blocks show increased left-frontal activity relative to right-

frontal activity compared to unsuccessful blocks (Figure 12).

These data suggest that subject success on a given block was

marked by robust and reliable asymmetric activity.

4.4. Self-reported data

We collected self-reported data from our questionnaire to

inform us of the human experience of brain activity modulation

with the experimental BCI story environment. In this section,

we present our results concerning thought content strategies for

brain activity modulation, perceived success in BCI engagement,

and levels of enjoyment and frustration.

4.4.1. Participant strategies

All participants were asked to describe their strategies

during Engage blocks. We first investigated Direct and Indirect

strategies during Engage (Aranyi et al., 2016). We defined Direct

strategies as those which directly involved interacting with the

main character or the story environment. Examples of Direct

strategies include “protecting [the main character] and making

her feel safe,” “speak[ing] with her using my thoughts,” and

“creating exit strategies as well as trying to comfort or help

the girl escape.” Indirect strategies instead involved thoughts

that were unrelated to the story environment, such as recalling

past experiences and memories. Examples of Indirect strategies

include thinking of “something that makes me happy, like the

color purple... or my friends,” and “[having] a conversation with

myself.” We determined that seven participants used Indirect
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TABLE 1 The mean FAA values of the distribution of 15 FAA values, for each View and Engage Component of each story block, for each participant.

Story Block #1 Story Block #2 Story Block #3 Story Block #4 Story Block #5 Story Block #6 Story Block #7 Story Block #8

ID View Engage View Engage View Engage View Engage View Engage View Engage View Engage View Engage

#1 0.115 −0.267 −0.041 −0.182 -0.125 0.003 −0.098 0.172 0.188 0.058 −0.031 0.018 0.120 0.198 0.029 −0.077

#2 −0.193 0.057 0.150 0.068 −0.012 0.114 0.092 0.290 0.035 0.202 0.186 0.232 0.058 0.089 0.070 0.017

#3 −0.511 −0.114 −0.626 −0.535 −0.576 −0.595 −0.825 −0.374 −0.560 −0.484 −0.434 −0.563 −0.473 0.067 −0.173 −0.548

#4 0.416 0.484 0.415 0.587 0.812 0.202 0.119 0.464 0.400 0.615 0.508 0.239 0.091 0.291 0.588 0.684

#5 −0.610 −1.040 −0.872 −1.070 −0.944 −1.099 −1.058 −0.847 −0.996 −0.608 −0.815 −0.993 −0.981 −0.561 −-0.894 −1.101

#6 0.908 1.408 0.977 1.055 0.853 1.221 1.090 0.697 1.084 0.927 0.911 0.787 0.872 0.924 1.059 1.000

#7 0.237 0.339 0.496 0.326 0.063 0.557 0.353 0.212 0.271 0.251 0.205 0.032 0.349 0.471 0.352 0.095

#8 −0.497 −0.406 −0.020 −0.447 −0.065 −0.478 −0.340 −0.468 −0.134 −0.272 −0.269 −0.273 −0.231 −0.448 −0.216 −0.235

#9 0.493 0.632 0.339 0.408 0.371 0.458 0.644 0.560 0.454 0.473 0.513 0.570 0.592 0.478 0.423 0.629

#10 0.667 0.271 0.690 0.207 0.576 0.408 0.611 0.465 0.485 0.288 0.663 0.504 0.570 0.522 0.687 0.287

#11 −0.105 −0.104 −0.048 0.176 0.206 0.198 0.423 0.089 0.185 0.177 0.623 0.044 −0.096 0.086 0.503 −0.077

#12 0.645 0.396 0.696 0.576 0.593 1.057 0.762 0.482 0.911 0.814 0.387 0.481 0.673 0.742 0.618 0.423

#13 0.038 −0.268 −0.582 −0.087 −0.122 0.257 0.223 0.114 −.684 0.051 0.064 −0.203 0.053 −0.107 −0.446 −0.163

#14 0.635 0.826 0.475 0.649 0.677 0.840 0.839 0.777 0.561 0.509 0.602 0.810 0.695 0.528 0.573 0.759

#15 1.070 0.701 1.216 0.474 0.950 0.891 1.161 0.852 1.065 0.882 0.858 0.982 0.878 1.179 1.138 0.656

#16 −0.048 0.218 0.248 0.190 0.141 0.105 0.545 0.494 0.116 0.142 −0.132 0.462 0.232 0.427 0.154 0.291

#17 1.076 0.776 0.988 0.632 0.851 0.797 0.595 0.679 0.818 0.515 0.602 0.597 0.704 0.726 0.747 0.630

#18 −0.039 −0.218 0.294 0.176 −0.033 0.442 0.291 0.281 0.428 0.269 0.636 0.236 −0.200 0.059 0.330 −0.006

#19 0.606 0.228 0.700 0.402 0.788 0.332 0.438 0.321 0.105 0.412 0.499 0.251 0.417 0.426 0.599 0.326
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strategies while 12 participants used Direct strategies. We used

a Chi-Squared test and determined that there was no significant

association between block success (Success/Failure) and strategy

(Direct/Indirect), X2(1,N = 19) = 0.833, p = 0.361,

Cramer’s V = 0.209. In future work, it would be necessary to

control for strategy type in order to make conclusions about any

relationship between strategy and NF interaction success.

Our data shows five out of seven successful participants used

Direct strategies, while six out of 12 unsuccessful participants

used Direct strategies. Similarly, Aranyi et al. (2016) determined

that Indirect strategies were more prominent for unsuccessful

participants. Although block success was not significantly

associated with strategy type, ourRQ3 is partially supported, as a

majority of successful participants used Direct strategies during

Engage, while half of unsuccessful participants used Indirect

strategies.

4.4.2. Perceived success, enjoyment, frustration

Participants also provided subjective ratings of their success

during Engage blocks using an 8-point Likert scale. We used

a Pearson Bivariate one-tailed correlation and determined no

statistically significant correlation between perceived success

and number of successful blocks r(19) = −0.089, p = 0.358,

suggesting that participants were unclear about NF success.

However, enjoyment (M = 5.89, SD = 1.66) was significantly

greater than frustration (M = 2.79, SD = 2.28), as determined

by a one-tailed paired t-test [t(18) = 4.083, p < 0.001].

5. Conclusion

Our results indicate that seven out of 19 participants

were able to use thought strategies to modulate brain activity

(FAA) when engaging with the complex story-based BCI

environment. Results suggest that successful Engage blocks

are characterized by both a large increase in FAA from

View to Engage, and a large effect size, while unsuccessful

blocks are characterized by relatively no change in FAA from

View to Engage. Considering both successful and unsuccessful

blocks, prefrontal cortical activity on left and right sides was

significantly greater during Engage than View, in line with self-

reported data which demonstrates participants found Engage

blocks significantly more mentally demanding thanView blocks.

With our ISC analysis, we determined that components during

View showed a larger percentage of significant correlation time

than components during Engage. Therefore, it is likely that

patterns of participants’ neural activity were more similar during

View, in which participants counted, than during Engage, in

which thought content strategies were relatively unconfined.

During narrative film viewing, attention has been shown to

modulate similar EEG evoked responses (Cohen et al., 2017).
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FIGURE 12

Spatial distribution of between subject correlations shows no consistent pattern of neural activity across story blocks in engage and view states.

Therefore, it is possible that participants differed significantly in

their ability to pay attention during Engage blocks.

Our investigation of left and right prefrontal cortical

activities during successful blocks suggests that an increase in

left cortical activity, rather than a decrease in right cortical

activity from View to Engage was influential in increased FAA

scores from View to Engage, which suggests successful blocks

may have been the result of increased approachmotivation. Data

suggests increasing right and left prefrontal cortical activity from

View to Engage contributed to the unchanging FAA score for

unsuccessful blocks. Forward models of decomposed electrical

activity of strongest correlated responses also confirmed

that successful blocks were marked with robust left-right

asymmetries. It is possible that blocks in the unsuccessful

category have some level of asymmetry, but at lower levels than

successful blocks. As such, future work in FAA based BCIs

should titrate the level of left-right asymmetric activity with

reliable FAA detection and controlability.

While our results indicate multiple successful blocks

across ∼37% of participants, the percentage of unsuccessful

participants (63%) in this study is higher than typical BCI

illiteracy rates at 15–30% (Saha et al., 2021). However, BCI

illiteracy, when participants cannot modulate brain activity

within the time frame of the study, is not well-understood. We

offer several ideas concerning the difference in successful blocks

between our study and that of Aranyi et al. (2016). First, our

consumer-grade EEG device was likely not sensitive enough

to detect small changes in FAA, as indicated by successful

blocks characterized by moderate to large effect sizes only.

Second, our self-reported results concerning perceived success

indicate that participants did not understand when they were

successful in modulating brain activity, which may arise as a

diminished neural response ISC seen in Engage compared to

View data. Because success was unclear, participants may not

have felt rewarded by visual feedback of their brain activity.

Reward is essential for learning through operant conditioning,

and may explain some of the lack of BCI engagement

success.

Considering work by Hasson et al. (2008), it is possible that

certain film works may elicit more similar, homogeneous brain

responses across viewers, as seen through higher ISCs during

certain films over others. In their study, the authors determined

that higher ISCs were found when participants viewed a

film directed by an accomplished film director, compared to

unstructured video recorded in a park environment. Hasson

et al. (2008) conclude that films which can better guide attention

may lead to greater ISCs. Additionally, it is known that films

played backwards do not have as high ISCs as those played in

their original temporal order (forward, typically; Hasson et al.,

2008), or when scenes are scrambled in time (Dmochowski et al.,

2012). Because the experimental story presented was designed

to be abstract, unguided, and open-ended to interpretation, our

limited ISCs results are expected. Additionally, it is likely that the

open-ended nature of the experimental narrative contributed to

the comparable ISCs during View and Engage blocks as well, as

the unguided nature of the story blocks led to higher variances

in brain activity than might have been found with story blocks

with a more concrete, guided story. While a more guided story

BCI may have elicited greater ISC, future research is needed

to determine how ISC relates to NF interaction success with

different kinds of BCI experiences.

Previous research has explored participants’ prior BCI

experience, as it “could possibly influence [the participant’s]

participation in the study” (Zioga et al., 2018; p. 4). Considering

that none of the participants had previously interacted with

a BCI, it is possible that participants expected a different,

perhaps mentally passive experience, in which brain activity was

recorded “as is,” without the effort necessary to engage with NF,

such as the BCI experience of Zioga et al. (2018). Although our

goal was to provide participants with open-ended ideas for NF

interaction, story blocks may not have been salient enough for

participants to achieve high levels of NF success. While some
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participants expanded on the experimental story narrative in

creative ways through self-reported data, others were unable

to find any meaning or narrative structure within what one

participant referred to as “moving images.” Questionnaire data

suggests that participants did not apply one strategy consistently

throughout Engage blocks, as they did in the case of Aranyi et al.

(2016). Additional research concerning strategy consistency

in BCI engagement would elucidate our findings. Similar to

Aranyi et al. (2016), we did not control for valence (positive

of negative affect) of NF strategies. Questionnaire data showed

that participants used sad as well as happy thought content

strategies during Engage, which likely influenced NF success

rates. According to Friedrich et al. (2014) however, participants

can be divided into three groups: one third of participants who

gain control of brain signals immediately, one third who cannot

gain control of brain signals, and one third who can only gain

control of brain signals after training. With this in mind, it is

possible that our system did not allow for adequate training

for individuals who needed training to be successful, as only

one third of the participants achieved NF interaction success in

our study. Research has shown that NF success can be driven

by differences in learner (participant) strategies. For example,

Davelaar et al. (2018) found that learners (participants who

could gain control of their brain activity) described feeling,

or being aware of something, while non-learners (participants

who did not gain control of their brain activity during the

course of the training session) exerted significant mental effort

or tried to maintain strict attentional focus. Davelaar et al.

(2018) describe these strategies on a feeling-sensing continuum,

where NF success increases whenmoving from trying to sensing.

Therefore, our provided instructions, however open-ended,

may have prompted participants to try numerous different

mental activities, whereas simply “feeling” could have beenmore

effective.

However, results indicate that it is possible for participants

to engage with an affective BCI by increasing FAA while

experiencing a complex, experimental story environment with

imagination-based instructions. It is possible that only those

who need less training can be successful with NF interaction

with the current system. Despite lower NF success rates than that

of Aranyi et al. (2016), participants indicated higher enjoyment

than frustration in self-reported data. The role of strategy type

(direct or indirect) in FAA NF success is not clear in the

present study, and should be investigated in future work. Our

study contributes to the goal of making BCI experiences more

user-friendly, enjoyable and motivating, while investigating

experimental storytelling techniques with which to engage

participants during affective BCI interaction.

5.1. Limitations and future directions

Our study is limited in a number of different ways.

First, we did not collect self-reported data concerning

participants’ current mood, anxiety, or depression symptoms.

Our sample was also very homogeneous: undergraduate

students from our department. Ethnic data was not collected.

One participant reported currently undergoing psychiatric

treatment. Additionally, participants were not asked to refrain

from caffeine, cigarettes, alcohol or drugs within 12 h of the

experiment. Similar to work by Gapen et al. (2016), this study

was intended to be ecologically valid, therefore, its exclusion

criteria were limited. However, a positive, effortlessly relaxed

mental state may be best for NF interaction in BCIs (Friedrich

et al., 2014), therefore, negative moods may have contributed to

lack of success seen with our system. Collecting self-reported

mood ratings before and after the NF protocol (Zotev et al.,

2020) would additionally allow us to learn more about the

participant experience. Considering that the participant’s

motivation, locus of control as well as empathy levels can play a

role in BCI performance (Friedrich et al., 2014), a greater focus

on participant characteristics would inform both NF success

rates with experimental BCIs, and design techniques for future

BCI experiences.

In future work, we would like to explore BCI usage

in an environment outside the university or departmental

setting, with the goal of investigating a more diverse group of

participants. A replication of this study using a medical-grade

EEG device may also allow us to learn more about participants’

success rate during NF interaction, although likely within a less

comfortable, quick, and convenient experience and time frame

for participants.

Although designed to stimulate the imagination, many

factors of the experimental story BCI may have counteracted

NF success for certain participants. Although not mentioned

as confusing or disorienting to participants, it is possible

that the manipulation of spatial logic throughout story blocks

contributed to a lower NF success rate through a general

sense of displacement. Complex stimuli, such as the developed

multi-component experimental story interface, may have effects

on the learner (participants) which are not yet understood

(Enriquez-Geppert et al., 2017). A follow up study could

examine experimental storytelling components individually, in

order to understand the influence of each component. A few

examples of storytelling components to investigate include story

block order, depth of spatio-temporal discontinuity, distance

between two characters, vividness of environmental objects, and

realism of 3d models among a plethora of other possibilities.

Individuals clearly differ in their preference for story

genre and style. In future work, we believe an investigation

of learner (participant) preferences for story ambiguity will

be central in understanding the influence of experimental

storytelling in BCI experiences. Future work could also explore

guiding participant attention more directly within stories of

varying ambiguity. Lastly, examining NF success with blocks

of longer duration could allow participants who need more

training to be successful. Instead of 30 s, a longer NF

block duration, such as 60 s (Dehghani et al., 2020) may
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be necessary for some participants to increase FAA within

the block.
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Statistical variability of electroencephalography (EEG) between subjects and

between sessions is a common problem faced in the field of Brain-Computer

Interface (BCI). Such variability prevents the usage of pre-trained machine

learning models and requires the use of a calibration for every new session.

This paper presents a new transfer learning (TL) method that deals with this

variability. This method aims to reduce calibration time and even improve

accuracy of BCI systems by aligning EEG data from one subject to the

other in the tangent space of the positive definite matrices Riemannian

manifold. We tested the method on 18 BCI databases comprising a total

of 349 subjects pertaining to three BCI paradigms, namely, event related

potentials (ERP),motor imagery (MI), and steady state visually evoked potentials

(SSVEP). We employ a support vector classifier for feature classification. The

results demonstrate a significant improvement of classification accuracy, as

compared to a classical training-test pipeline, in the case of the ERP paradigm,

whereas for both the MI and SSVEP paradigm no deterioration of performance

is observed. A global 2.7% accuracy improvement is obtained compared to

a previously published Riemannian method, Riemannian Procrustes Analysis

(RPA). Interestingly, tangent space alignment has an intrinsic ability to deal

with transfer learning for sets of data that have di�erent number of channels,

naturally applying to inter-dataset transfer learning.

KEYWORDS

Brain-Computer Interface, Riemannian geometry, transfer learning, domain

adaptation, ERP, motor imagery, SSVEP

1. Introduction

A Brain-Computer Interface (BCI) is a system that allows interactions between a

human and a machine using only neurophysiological signals coming from the brain.

It aims at rehabilitating, improving, or enhancing the ability of the user by means of a

computerized system (Wolpaw et al., 2002). The most common modality used to record

neurophysiological signals is electroencephalography (EEG). This is mainly because

EEG is affordable, completely safe for the user and because it features a high temporal

resolution. EEG signals can be translated into a command to be sent to a computer by

means of a decoding algorithm. The loop is often closed by means of a feedback given to

the user.
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Several BCI applications have emerged to help patients, such

as spellers (Yin et al., 2015; Rezeika et al., 2018) or wheelchair

controllers (Li et al., 2013). The focus in this line of research is

to restore lost communication or movement capabilities. Other

applications are designed for the rehabilitation of patients after

an incapacitating event such as a stroke (Frisoli et al., 2012;Mane

et al., 2020). Non-clinical applications have also been proposed,

for example to provide a means of control in video games

(Congedo et al., 2011; Bonnet et al., 2013). Mixed approaches

are also possible, for example in the Cybathlon BCI Race, where

people with complete or severe loss of motor function compete

in a video game-based competition (Perdikis et al., 2018).

Several paradigms can be used in order to control

a BCI. The most commons are event related potentials

(ERP), motor imagery (MI), and steady state visually evoked

potentials (SSVEP). The ERP paradigm consists of electrical

potentials evoked by sensory stimulations; in MI the user

imagines to move body parts, resulting in synchronizations

and desynchronizations in the sensory-motor cortex; in SSVEP-

based BCIs, the user concentrates on visual stimuli flashed at

distinct frequencies, leading to responses at the same frequency

in the brain. Regardless of the paradigm, it is necessary to

calibrate the BCI system in order to allow proper decoding.

The calibration process is time consuming, annoying for the

healthy user and problematic for the clinical population, which

has limited mental resources (Mayaud et al., 2016). In fact, a

calibration is required not only for every new user, but also for

every new session of the same user. This is due to the high inter-

subject and inter-session variability of the features extracted

from the EEG. Such variability is caused by several factors,

including, but not limited to, the impedance and placement

of EEG electrodes, individual morphological and physiological

characteristics of the brain and changing brain states.

One way do deal with this variability is to use transfer

learning (TL). This means trying to reuse some of the

information we have already gathered on known data that may

be coming from either previous subjects or previous sessions.

In transfer learning we usually consider two types of data. The

source represents the data we already know on a given subject

whereas the target consists of a new subject whose some training

data may be available, but mostly is unlabeled and is to be used

as a test. The aim is to adapt as accurately as possible the data of

the target using the few available training data to the source data

(or vice versa). In order to do so, several methods have already

been developed.

The authors in Jayaram et al. (2016) adapt the weights given

to spatial features that are meant to predict the stimulus in order

to transfer information from one subject to another or from one

session to another. Some other methods adapt the parameters

of a neural network. For example the authors in Fahimi et al.

(2019) perform a partial retraining of a deep neural network on

a small number of samples of a new user, improving significantly

the accuracy. Unsupervised domain adaptation methods have

also emerged, as in Sun et al. (2015), where the authors perform

unsupervised transfer learning in the Euclidean domain, using

covariance matrices to align data from different subjects. A well-

established approach for classification in the BCI field is to

use covariance matrices of the signal since those matrices have

many relevant properties (Congedo et al., 2017). The covariance

matrices are Symmetric Positive Definite (SPD) and therefore lie

in a Riemannian manifold. In this way, some algorithms have

been developed to achieve transfer learning in the Riemannian

manifold of SPD matrices. For instance, the authors in Zanini

et al. (2018) propose a recentering procedure consisting in

translating the center of mass of both the source and target

data to the identity using parallel transport. This procedure is

actually equivalent to a whitening using the Riemannian mean

as anchor point. In Yair et al. (2019), both the center of mass

of the source and target data are translated to their midpoint

along the geodesic, allowing equivalent results. The authors of

Rodrigues et al. (2019), inspired by the Procrustes analysis,

proposed to add two more steps after recentering: a stretching

of the observations, so as to equalize the dispersion of the data

in the source and target domain and a rotation, so as to align as

much as possible the center of mass of each class between the

source and the target data set. The method, named Riemannian

Procrustes Analysis (RPA), was shown to allow efficient transfer

learning. A later alignment method was discussed in He and

Wu (2020). This method is similar to Sun et al. (2015) with

improvement related to enhanced dimensions in the Euclidean

space. The authors of Zhang et al. (2020) chose another approach

by transferring instances of the source close enough to the

target in order to enhance the low data availability of the target

model. They usedMI data and compared the proximity of source

and target trials using Hamming distance after preprocessing

steps. Another idea proposed in Zhang and Wu (2020) is to

find a common subspace between source and target, yielding a

projection matrix to reduce the gap between the source and the

target. Finally the authors train on the source subspace to test on

target subspace.

In this article we introduce a Riemannian transfer learning

approach similar in spirit to the RPA approach (Rodrigues et al.,

2019), but operating in the tangent space. Our contribution has

multiple benefits as compared to previous attempts. First, it lies

in a state-of-the-art BCI feature space, the Riemannian tangent

space, introduced in the BCI domain by Barachant et al. (2010).

Since the tangent space is an Euclidean space, there exists a wide

variety of well-established tools to decode the data therein and

in general they are faster as compared to a decoding approach in

the Riemannian manifold. Second, since it acts on an Euclidean

space, it can be used for all kind of feature vectors, not just

those obtained in a Riemannian setting. Third, our method

is computationally effective, as it only requires one singular

value decomposition (SVD). Fourth, it extends naturally to the

heterogeneous transfer learning case, i.e., when the number

and/or placements of electrodes is not the same in the source
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and target data set. In a similar previous attempt the SVD has

been applied independently on the source and target dataset and

the resulting matrices are then used to align the data (Sun et al.,

2015). Our method is instead casted as a Procrustes problem

and therefore it fulfills a well-known optimality condition for

inter-domain alignment.

A previous version of our method has been presented in

Bleuze et al. (2021). As compared to that presentation, we

have improved it by adding several ways to deal with the rank

deficiency of the cross product matrix. Also, here we test it

on a very large amount of data, namely, 18 BCI databases

comprising a total of 349 subjects. Furthermore, these databases

pertain to three BCI modalities: event related potentials (ERP),

motor imagery (MI), and steady state visually evoked potentials

(SSVEP). Therefore, the present study is a comprehensive test

bed, which is a well-grounded way to reach general conclusions

when comparing machine learning pipelines.

2. Materials and methods

2.1. Notations

Throughout this article we will denote matrices with upper

case bold characters (A), vectors with lower case bold characters

(a), indices and scalars by lower case italic characters (a), and

constants by upper case italics (A). The function tr(.) will

indicate the trace of a matrix, (.)T its transpose, ||.|| the 2-norm

or the Frobenius norm, ◦ the Hadamard product, log(.), and

exp(.) thematrix logarithm and exponential, respectively. IN will

denote the identity matrix in dimension N.

2.2. Riemannian geometry

Let us consider a set of trials {Xn}n∈[1,N] with shape (Nc,

Nsample), where Nc is the number of channels, Nsample the

number of (temporal) samples and N the number of matrices

in the set. A generic trial is simply denoted as X. In order to

be as close as possible to a realistic scenario, we consider data

with a low level of pre-processing and we do not use any artifact

removal method, such as ocular artifacts or outliers removal

(Çınar and Acır, 2017; Minguillon et al., 2017).

The (spatial) sample covariance matrix estimation (SCM)

writes

C =
1

Nsample − 1
XXT . (1)

The SCM has shape (Nc, Nc). It lies in a Riemannian manifold

of symmetric positive definite (SPD) matrices (Bhatia, 2009). It

is therefore possible to classify directly a set {Cn} of covariance

matrices by means of classification algorithms acting on such a

manifold, such as the Minimum Distance to Riemannian Mean

(MDRM) classifier (Barachant et al., 2012) or its refinement

Riemannian Minimum Distance to Means Field (RMDMF;

Congedo et al., 2019). It is also possible to project the matrices

onto the tangent space of the manifold at a base point M and

use Euclidean classifiers therein (Barachant et al., 2012, 2013).

The base point M in this work will always be chosen as the

Log-Euclidean mean, which is defined as Fillard et al. (2005).

M = exp

(

1

N

∑

n

log (Cn)

)

. (2)

The projection onto the tangent space at base point M is

obtained by the logarithmic map operator (Nielsen and Bhatia,

2013).

LogM (C) = M
1
2 log

(

M−
1
2CM−

1
2

)

M
1
2 . (3)

The projected matrix is now a (Nc, Nc) symmetric matrix. Since

we are concerned with transfer learning (TL), we are interested

in matching the position of the source and target data sets in

the manifold as much as possible. Following Zanini et al. (2018),

we recenter both the source and target data sets by setting

their global mean at the identity. This is simply obtained by

transforming all trials of a dataset such as

Crec = M−
1
2CM−

1
2 , (4)

where M is the center of mass of the observations and Crec

denotes the recentered trial. After recentering all trials their

center of mass becomes the identity matrix, corresponding to

the “zero” point in an Euclidean space.

The logarithmic mapping at the identity simplifies, yielding

LogINc
(Crec) = I

1/2
Nc

log
(

I
−1/2
Nc

M−
1
2CM−

1
2 I

−1/2
Nc

)

I
1/2
Nc

= log
(

M−
1
2CM−

1
2

)

.

The above recentering followed by tangent space projection was

first proposed in the BCI field in Barachant et al. (2012, 2013)

and is nowadays a standard processing procedure, which in this

article is carried out systematically, unless explicitly mentioned.

Once projected onto the tangent space the matrices are

vectorized. Since they are symmetric, only the upper (or lower)

triangle of the matrix is kept and the off-diagonal terms are

weighted by
√
2 so as to preserve the norm of the original matrix.

In mathematical notation, the vectorization of tangent vector S

reads

s = triu (S ◦ A) , (5)

with triu(.) the operator vectorizing the upper triangle and A a

matrix with the same shape as S, filled with 1 on the diagonal

and
√
2 on the off-diagonal part. Since the matrices have been

previously recentered, the resulting vectors are also recentered,

that is, the mean tangent vector is the zero vector.

Having obtained the tangent vectors as described here above,

it is possible to use all the well know classification algorithms
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that act in an Euclidean space, the most commonly employed in

the BCI community being the linear discriminant analysis (LDA;

Barachant et al., 2012), support vector classifier (SVC; Xu et al.,

2021) and Lasso logistic regression (LR) (Tomioka et al., 2006).

In this study, we use the SVC.

2.3. Alignment

As anticipated in the introduction, the method here

proposed has been inspired by previous Riemannian TL

methods, such as in Zanini et al. (2018) and Rodrigues et al.

(2019) which focus on covariance matrices in the Riemannian

space of SPD matrices. In Rodrigues et al. (2019) the authors

consider again the recentering and add two further alignment

steps:

1. a rescaling so as to match the dispersion around the mean

(center of mass) in both the source and target data sets and

2. a rotation so as to align the mean of each class as much as

possible. This effectively results in a Riemannian Procrustes

alignment.

In this article, the same steps are undertaken in the tangent

space. In particular, we rotate the tangent vectors using an

Euclidean Procrustes procedure.

Let us consider the set of centered tangent vectors for the

source {sn}n∈[1,Ns] and the target {tn}n∈[1,Nt] domain. Ns and

Nt are the number of vectors for, respectively, the source and

the target data set. As we will see, in the following it will not

be required that the source and target tangent vectors have

the same dimensions. Denoting s and t the generic source

and target tangent vectors, the rescaling is obtained setting the

average norm within each set to 1, which is readily obtained by

transformations

s̃ =
s

1
Ns

∑

n ||sn||
(6)

and

t̃ =
t

1
Nt

∑

n ||tn||
, (7)

yielding rescaled source and target data sets {s̃n}n∈[1,Ns] and

{t̃n}n∈[1,Nt]. It is also possible to set the norm of the target data

set equal to the norm of the source data set if it is sought not to

modify the norm of the source data set.

For the rotation (alignment), we propose a supervised

method that uses the mean point of the classes. Let us consider

K classes that we ought to align. Although other procedures

are possible, in the following we always align the target set to

the source set. Let y and z be the label vectors of, respectively,

{s̃n}n∈[1,Ns] and {t̃n}n∈[1,Nt] with shape Ns and Nt . We start by

computing the mean for each class k, given its Nk trials

sk =
1

Nk

∑

yi=k

s̃i (8)

for the source set and

tk =
1

Nk

∑

zi=k

t̃i (9)

for the target set. In the supervised procedure these vectors are

the anchor points we use for alignment. Therefore, we define

S = [sk, k ∈ [1,K]] (10)

and

T = [tk, k ∈ [1,K]] (11)

as the two matrices of shape
(

Nc(Nc+1)
2 ,K

)

holding the anchor

vectors stacked one next to the other. We can now define the

cross-product matrix

Cst = ST
T
. (12)

of shape
(

Nc(Nc+1)
2 , Nc(Nc+1)

2

)

. Like any rectangular matrix—

or squared when source and target have the same number

of channels—Cst can be decomposed by singular value

decomposition, such that

Cst = UDVT , (13)

withU andV the two orthonormal matrices holding in columns

the left and right singular vectors, respectively, andD a diagonal

matrix holding the singular values. As usual in signal processing,

we will retain a subset of the singular vectors in order to suppress

noise. Such a truncation has also the advantage to work for

the case where U and V do not have the same shape. As a

general rule, we seek the smallest number Nv of singular vectors

which corresponding singular values explain at least 99.9% of

the variance, resulting in Ũ and Ṽ with shape
(

Nc(Nc+1)
2 ,Nv

)

.

Finally, we are able to align the target vectors previously created

{t̃n}n∈[1,N] to the domain of the source vectors {s̃n}n∈[1,N] as

t̂ = ŨṼT t̃ (14)

where t̂ denotes the aligned target vectors. The newly created

set {t̂n}n∈[1,N] is now aligned to the space of source vectors

{s̃n}n∈[1,N], therefore it can be classified with algorithms trained

on the source domain. As it is well-known, when the cross-

product in Equation (12) is full-rank, the unique solution to the

Procrustes optimization problem

argmin
Z

(||ZT− S||) (15)
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FIGURE 1

Flowchart summarizing the analysis pipeline.

is indeed Z = UVT . In our case, the solution is not unique.

Note that a connection between this problem and the Bures-

Wasserstein metric has been recently described in Bhatia et al.

(2019).

The whole process for our method is summarized in

Figure 1.

2.4. Augmenting/improving Cst

Cross-product matrix Cst is usually rank deficient and its

estimation could be improved in several ways. In this section,

we will suggest two such improvements. First, as long as a

supervised TL is possible, since we are relying on averaging

the tangent vectors, it is possible to employ robust average

estimators. For instance, we may consider the trimmed means,

FIGURE 2

Schematic of a two-class dataset using the first dimension of a

PCA for each class.

the median or power means to estimate suitable anchor points.

We may also stack several of these average estimators to obtain

larger matrices sk and tk, which may provide more robust

information on the actual central tendency of the data.

Second, we cluster the data sets in several subsets describing

the shape of the data set when considered altogether and

compute separate means for each cluster. We may use, for

instance, principal component analysis (PCA) on each class

independently to create clusters, as depicted in Figure 2. The

centroid of those clusters are then computed and used as anchor

points. In order to obtain the clustering for both the source and

target data set, we consider for each class a PCA trained on the

source and used as such on both the source and target data set.

Using such a clustering procedure, if the source and the

target data set display a rather similar shape, their alignment will

be very effective, leading to promising transfer learning results.

Such a procedure is also possible with unlabeled data in case

of unsupervised TL. However, in this case, we have noticed

that at least two PCA components are necessary to obtain an

efficient transfer learning. Therefore, in the unsupervised case

we recommend using at least two PCA components and separate

data for each dimensions, creating a Cst matrix with shape
[

Nc(Nc+1)
2 ,Nd × Ng

]

with Nd the number of dimensions used

and Ng the number of groups created in each dimensions. An

effective strategy is to visualize the data and their representations

in order to verify whether the chosen reduced dimensionality

offers a good approximation of the data as it may be as

well totally inaccurate, depending on the data, especially for

unsupervised TL. For our results, we chose to create three PCA

clusters for each class and use these means to compute the

cross-product matrixCst as it gives enough information without

reducing the size of the data used for each mean too much.
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TABLE 1 List of the processed databases for event-related potentials,

motor imagery paradigms, and steady-state visual evoked potentials.

Type Ch Trials Sess Sub

2003–2015 P300 8 1,800 1 10

2008–2014 P300 8 4,200 1 8

2009–2014 P300 16 1,728 3 10

Brain Invaders 2013a P300 16 480 1 24

EPFL P300 dataset P300 32 3,268 4 8

2001–2014 MI 22 288 2 9

2001–2015 MI 13 400 2 12

2002–2014 MI 15 160 1 14

2004–2014 MI 3 720 5 9

Alexandre motor imagery MI 16 40 1 8

Cho 2017 MI 64 200 1 49

Grosse-Wentrup 2009 MI 128 300 1 10

Physionet motor imagery MI 64 45 1 109

Weibo 2014 MI 60 160 1 10

Zhou 2016 MI 14 290 3 4

SSVEP exoskeleton SSVEP 8 160 1 12

SSVEP Nakanishi SSVEP 8 180 1 9

SSVEPWang SSVEP 62 240 1 34

Ch, number of channels; Sess, number of sessions; Sub, number of subjects.

3. Results

The TSA algorithm previously introduced has been tested on

three well know BCI paradigms: ERP, MI, and SSVEP. We have

analyzed 18 open-access BCI databases available on the Mother

Of All BCI Benchmark (MOABB; Jayaram and Barachant, 2018).

Python library, of which five uses the ERP paradigm, 10 the MI

paradigm, and 3 the SSVEP paradigm. The 18 databases include

a total of 349 subjects with very high variability between and

within datasets. We summarize the data in Table 1, following

Congedo et al. (2019).

We execute transfer learning from one subject to the

other for all possible source/target pair of subjects within each

database. The accuracy is evaluated using balanced accuracy

since the number of trials per class is often unbalanced (always

for the ERP paradigm).

Since the amount of data of all pair-wise comparisons is

huge, we start by visually evaluating all balanced accuracies

obtained for a given database by means of seriation plots, i.e.,

plots showing the accuracy for each pair of target and source

subject arranged in matrix form. The accuracy is averaged over

all numbers of alignment trials for each pair. The case where

the target and the source are the same, i.e., on the diagonal,

is replaced by the classical train-test cross-validation accuracy,

offering a straightforward benchmark. Furthermore, the target

and source subjects are sorted on rows by descending order

of the train-test cross-validation accuracy. It should be kept

in mind that since the train-test procedure is fully supervised

and optimized for the train data, it is expected to outperform

a transfer learning method. Figure 3 shows a representative

seriation plot for each paradigm allowing the visual comparison

of the performance of the TSA vs. the RPA transfer learning

method; all figures are available as Supplementary material.

In order to evaluate the average performance, we plot the

balanced accuracy averaged across all subjects in a database

for each method as a function of the number of alignment

trials. Since we are averaging across subjects, for this analysis

we include only those subjects featuring at least 60% accuracy

in a classical train-test cross-validation. This restriction excludes

about half of the subjects, leaving 178 subject out of 349. It’s

important to note that subjects with an overall 60% accuracy

usually have more than 70% accuracy with all available training

trials. Figure 4 shows a representative plot for each paradigm. All

figures are available as Supplementary material.

Then, we summarize all the pair-wise accuracy information

in the accuracy tables such as Table 2. These tables give for

each target subject the accuracy averaged over numbers of

alignment trials and source subjects. For this database, there

are 30 numbers of alignment trials considered and 18 possible

source subjects, which makes an average over 540 values. This

makes the standard error low in general. Accuracy tables for all

databases are given as Supplementary material.

The accuracy tables confirm what can be evaluated visually

in the average accuracy plots and seriation plots; on the average

there is about 1% difference between classical train-test cross-

validation accuracy and TSA and about 5% between classical

train-test cross-validation and RPA. This speaks in favor of a

clear improvement of the TSA method over the RPA method.

Table 3 summarizes all the balanced accuracy for each dataset.

On the average across databases there is no loss of accuracy using

a TSA as compared to the optimal train-test accuracy. This is not

true for the RPA.

Finally, we performed statistical tests on all pair-wise

source/target accuracy results we have collected. To this end, we

follow the procedure introduced in Rodrigues et al. (2021). In a

nutshell: we first compute signed paired t-test for every target

subject comparing the accuracy between methods, yielding T

statistics Tm,i and p-values pm,i for each pair of methods m

and target subject i. In order to correct for the multiplicity

of statistical tests we use Holm’s sequential rejection multiple

test procedure (Holm, 1979) for each target subject. This

produces tables such as Table 4. Corresponding tables for each

database are available as Supplementary material. Then, we

combine the p-values we obtain using the Stouffer’s Z-score

method (Zaykin, 2011) for each database, yielding multiple

p-values corresponding to each pair of methods for each

database. Those p-values are also corrected by means of Holm’s

procedure and are summarized in Table 5. In this table we

can see that among the 18 databases we have analyzed, 11

show a significant improvement of TSA as compared to RPA.
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FIGURE 3

Representative seriation plots for TSA (left) and RPA (right) methods for each paradigms. See text for details. (A) Database Cho2017 (MI). (B)

Database brain invaders 2013a (ERP). (C) Database SSVEP exoskeleton (SSVEP).

No significant difference between the classical train-test cross-

validation accuracy and TSA is found with the exception of

two databases, for which TSA proves inferior. This number

grows to five databases comparing the classical train-test cross-

validation accuracy and the accuracy obtained by RPA. Finally,

using Stouffer’s Z-score method, p-values corresponding to each
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FIGURE 4

Accuracy as a function of the number of alignment trials for TSA

and RPA methods for a representative database in each

paradigm (MI, ERP, SSVEP). (A) Database Cho2017 (MI). (B)

Database brain invaders 2013a (ERP). (C) Database SSVEP

exoskeleton (SSVEP).

paradigm are computed and corrected with Holm’s procedure

(Table 6).

So far we have focused on cross-subject transfer learning,

however the method we propose can also be used to transfer

different information, such as from one session to another with

the same subject or from one task to the another. In order to

ensure the ability of our method to reduce the inter-session

variability, we used the dataset having multiple sessions and

TABLE 2 Balanced accuracy ± standard error for the good subjects of

database Cho 2017 averaged over number of alignment trials and

source for train-test, TSA, and RPA.

Train-test acc TSA acc RPA acc

Subject 1 67.86± 2.00 66.70± 0.43 65.84± 0.43

Subject 3 81.39± 0.81 77.78± 0.18 74.96± 0.32

Subject 4 69.26± 1.49 69.24± 0.40 69.25± 0.50

Subject 5 65.90± 2.12 65.03± 0.50 59.12± 0.55

Subject 6 70.74± 2.11 67.65± 0.38 59.80± 0.53

Subject 10 70.55± 1.91 70.71± 0.45 62.32± 0.43

Subject 12 70.97± 1.61 73.01± 0.39 67.68 pm0.29

Subject 13 63.60± 1.14 64.30± 0.25 60.83± 0.25

Subject 14 88.26± 1.52 86.99± 0.37 82.06± 0.45

Subject 15 66.15± 1.64 65.63± 0.38 65.20± 0.37

Subject 20 64.96± 1.13 64.64± 0.26 60.79± 0.33

Subject 21 60.63± 1.50 58.63± 0.24 56.54± 0.30

Subject 23 68.64± 1.62 66.69± 0.37 64.94± 0.41

Subject 34 82.73± 0.37 81.89± 0.09 79.97± 0.15

Subject 38 61.98± 1.27 61.51± 0.27 58.53± 0.35

Subject 40 76.73± 1.89 76.30± 0.44 72.21± 0.47

Subject 42 88.34± 3.32 83.02± 0.73 75.78± 0.77

Subject 46 62.55± 1.79 59.08± 0.37 54.64± 0.26

Subject 47 72.34± 1.66 67.98± 0.36 63.03± 0.42

TABLE 3 Balanced accuracy ± standard error for the good subjects of

each dataset averaged over number of alignment trials, target and

source for train-test, TSA, and RPA.

Train-test acc TSA acc RPA acc

2003–2015 69.04± 0.74 76.05± 0.57 69.63± 0.57

2008–2014 67.52± 0.69 72.00± 0.38 65.50± 0.38

2009–2014 70.48± 0.50 77.38± 0.21 70.90± 0.21

Brain invaders 2013a 67.26± 0.45 76.07± 0.11 69.59± 0.11

EPFL P300 dataset 67.22± 0.61 73.013± 0.24 65.28± 0.24

2001–2015 81.13± 0.73 79.01± 0.24 76.21± 0.24

2002–2014 78.40± 0.70 76.51± 0.20 72.55± 0.55

2004–2014 74.35± 1.30 76.00± 0.59 75.27± 0.59

Alexandre motor imagery 78.51± 2.82 76.30± 1.33 75.93± 1.33

Cho 2017 71.24± 0.52 69.83± 0.12 65.97± 0.12

Grosse-Wentrup 2009 77.20± 0.91 73.12± 0.34 72.16± 0.34

Physionet motor imagery 70.75± 1.35 64.28± 0.27 63.26± 0.27

Weibo 2014 73.97± 1.25 69.66± 0.50 71.27± 0.50

Zhou 2016 82.82± 1.59 82.43± 0.86 81.31± 0.86

SSVEP exoskeleton 69.50± 1.16 69.69± 0.40 68.72± 0.40

SSVEP Nakanishi 95.55± 0.82 95.95± 0.28 96.83± 0.28

SSVEPWang 68.26± 2.63 57.42± 0.76 59.11± 0.76

Global 74.42± 0.30 74.49± 0.12 71.79± 0.12

processed results for inter-session cross-validation. In order to

do so, we used the data of one session as a source, then for

each other sessions with 80% test and 20% training data split we

trained the transfer learning model and tested the results. The
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TABLE 4 Subject-wise p-values for MI database Cho 2017.

TSA>RPA TRAIN>TSA TRAIN>RPA

Subject 1 0.002∗ 0.818 0.420

Subject 3 0.033∗ <0.001∗ <0.001∗

Subject 4 0.005∗ 0.690 0.248

Subject 5 <0.001∗ 0.980 0.301

Subject 6 0.001∗ 0.379 0.013∗

Subject 10 <0.001∗ 0.503 0.007∗

Subject 12 <0.001 0.086 <0.001∗

Subject 13 0.001∗ 0.997 0.700

Subject 14 0.443 <0.001∗ <0.001∗

Subject 15 0.004∗ 0.964 0.843

Subject 20 0.385 0.991 0.988

Subject 21 <0.001∗ 1.000 0.999

Subject 23 0.009∗ 0.836 0.514

Subject 34 <0.001∗ <0.001∗ <0.001∗

Subject 38 <0.001∗ 1.000 0.980

Subject 40 0.020∗ 0.002∗ <0.001∗

Subject 42 0.361 <0.001∗ <0.001∗

Subject 46 0.126 1.000 0.995

Subject 47 <0.001∗ 0.038∗ <0.001∗

TRAIN, train-test; ∗Significant p-values after multiple comparison correction.

TABLE 5 Database-wise p-values.

TSA>RPA TRAIN>TSA TRAIN>RPA

2003–2015 < 0.001 1.000 0.663

2008–2014 0.002∗ 0.877 0.326

2009–2014 <0.001∗ 1.000 0.561

Brain invaders 2013a <0.001∗ 1.000 1.000

EPFL P300 dataset <0.001∗ 1.000 0.102

2001–2014 0.004∗ 0.468 0.191

2001–2015 <0.001∗ 0.133 0.005∗

2002–2014 <0.001∗ 0.139 <0.001∗

2004–2014 0.515 0.641 0.552

Alexandre motor imagery 0.636 0.353 0.280

Cho 2017 <0.001∗ 0.098 <0.001∗

Grosse-Wentrup 2009 0.097 0.083 0.071

Physionet motor imagery <0.001∗ <0.001∗ <0.001∗

Weibo 2014 1.000 0.099 0.189

Zhou 2016 0.071 0.453 0.398

SSVEP exoskeleton 0.002∗ 0.702 0.477

SSVEP Nakanishi 1.000 0.464 0.886

SSVEPWang 0.989 <0.001∗ <0.001∗

TRAIN, train-test; ∗Significant p-values after multiple comparison correction.

processed is then repeated using each session as the source. We

compared four different methods:

• Tangent Space Alignment (TSA), our method,

• Riemannian Procrustes Analysis (RPA) used as a

comparison in this article,

TABLE 6 p-values for each paradigm and in global for all tests that

have been done. The global p-values are the combination of the

p-values for all databases regardless of their paradigm.

TSA>RPA TRAIN>TSA TRAIN>RPA

p300 <0.001∗ 1.000 0.961

Imagery <0.001∗ <0.001∗ <0.001∗

SSVEP <0.654 <0.001∗ <0.001∗

Global <0.001∗ 1.000 <0.001∗

TRAIN, train-test; ∗Significant p-values after multiple comparison correction.

FIGURE 5

Bar graph giving the inter-session balanced accuracy for the

databases possessing multiple sessions.

TABLE 7 Inter-session balanced accuracy table for each dataset and

methods.

Train-test TSA RPA DCT

EPFL P300 74.85± 0.38 73.46± 0.38 72.24± 0.39 72.16± 0.40

2009–2014 78.19± 0.64 78.00± 0.65 76.79± 0.63 77.59± 0.64

2001–2014 79.66± 1.57 78.56± 1.66 78.48± 1.61 76.23± 1.63

2001–2015 83.78± 0.86 82.10± 0.95 81.19± 0.99 77.49± 1.03

2004–2014 75.83± 0.52 75.55± 0.50 74.11± 0.53 71.09± 0.50

Zhou 2016 88.48± 0.86 87.22± 0.84 87.83± 0.90 81.45± 1.19

• Usual train-test method using only target data,

• Direct testing (DCT) using algorithms trained on

the source without aligning target data by a rotation

(recentering only).

The results are given in Figure 5 and presented numerically in

Table 7.

These results are coherent with the previous ones. They yield

accuracies slightly improved as compared to sessions mixed all

together, which is expected. Moreover, the proposed method
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performs better than RPA on all databases with the exception

of Zhou 2016.

4. Discussion

The extensive analysis we have carried out shows that for

the ERP paradigm TSA clearly outperforms RPA. For the MI

paradigm we observe that TSA performs better than RPA and

that the classical train-test cross-validation outperforms both

TSA and RPA. For SSVEP, the classical train-test cross-validation

outperforms both TSA and RPA. In global, RPA is outperformed

by both TSA and the classical train-test cross-validation. Based

on Table 6, we do not conclude on the superiority of TSA as

compared to train-test in terms of accuracy as the global value

that can be found is mainly due to very large values found

for the ERP paradigm. To conclude with the results, it has

been shown that TSA outperforms RPA for the large majority

of the databases we have used in this analysis, reaching an

accuracy pretty close to the optimal train-test method. It is

also a clear improvement from a methodological point of view

in comparison to RPA as it naturally allows transfer learning

between datasets with different number of channels, where RPA

needs some extensions in order to do so (Rodrigues et al.,

2021).

In this paper, we have introduced a new method for

transfer learning inter and intra subject for brain computer

interfaces. Our study indicates that it outperforms a state-of-the-

art analogous method (RPA). However, it still does not reach the

same accuracy that can be achieved with a classical test-train

cross-validation procedure for the motor imagery and SSVEP

paradigm. Further research is needed to understand why the

performance of the TSA method is clearly superior for the ERP

paradigm.

In terms of computation time, since we have a closed

form for the rotation of TSA method, it is way faster than

the RPA method, where an optimization on the Grassmann

manifold is performed. However, even if our method can be

faster by one order of magnitude, with Nc being the size of

the pre-covariance signal (number of channels plus number of

channels of the average target for ERP, number of channels

for MI, number of classes times number of channels for

SSVEP) we compute rotations with size [Nc∗(Nc+1)
2 , Nc∗(Nc+1)

2 ]

where RPA computes rotation with size (Nc,Nc). This means

that for datasets with a significant amount of channels

the computational advantage of TSA will tend to vanish.

Table 8 shows the average time of computation for each

dataset if no spatial filter were to be applied before the

covariance estimation, sometimes yielding big covariance

matrices. Usually spatial filter are applied so the low time

values are those that are to be usually encountered. Moreover,

when computing the rotations for TSA, we can consider only

a number of channels that will result in a proportion of

TABLE 8 Database-wise average computation time for both TSA and

RPA methods.

TSA (s) RPA (s) Ratio Cov shape

2003–2015 1.027 11.889 11.57 16 ∗ 16

2008–2014 1.711 10.874 6.36 16 ∗ 16

2009–2014 0.897 6.118 6.82 32 ∗ 32

Brain invaders 2013a 0.774 13.368 17.26 32 ∗ 32

EPFL P300 dataset 1.341 8.607 6.42 64 ∗ 64

2001–2014 0.999 5.075 5.08 22 ∗ 22

2001–2015 0.664 4.362 6.57 13 ∗ 13

2002–2014 0.416 2.241 5.39 15 ∗ 15

2004–2014 0.029 0.166 5.74 3 ∗ 3

Alexandre motor imagery 0.067 0.777 11.61 16 ∗ 16

Cho 2017 5.299 16.858 3.18 64 ∗ 64

Grosse-Wentrup 2009 161.942 113.926 0.70 128 ∗ 128

Physionet motor imagery 2.739 4.432 1.62 64 ∗ 64

Weibo 2014 3.719 13.282 3.57 60 ∗ 60

Zhou 2016 0.468 3.752 8.02 14 ∗ 14

SSVEP exoskeleton 0.056 1.184 21.22 16 ∗ 16

SSVEP Nakanishi 0.41 0.970 23.81 16 ∗ 16

SSVEPWang 125.949 22.320 0.18 124 ∗ 124

the global variance of the data. This means that we do not

need to compute the whole [Nc∗(Nc+1)
2 , Nc∗(Nc+1)

2 ] rotation

matrix, we can select only a few singular values and their

corresponding vectors, highly reducing computation time if

needed.

We also observed that in some cases, mainly for ERPs,

skipping the rescaling of the target data will lead to improved

classification results. Further research is needed to fully

understand the role of rescaling in Procrustes-like transfer

learning methods.

In this article, we have proposed a procedure to improve the

rank deficiency of the cross-product matrix, making the result

more stable and more accurate. However, this improvement also

presents some downsides. When using only the average point

of the data for both source and target data, the method will

be pretty sensitive to noise since the number of points used

for means computation is drastically reduced. Adding trimmed

means and/or medians could make the method less sensitive to

noise. Additionally, when augmenting Cst using PCA, the more

groups will be created, the more each group will be sensitive to

noise. By reducing the number of points in a group one increases

the impact of artifacts on the average point. Furthermore, PCA

is an algorithm that is pretty sensitive to noise and could be

replaced by one of its robust variant. It is to be noticed that a

low number of groups in general allows a good approximation

of the shape of the data. Of course, artifact correction or removal

would allow better performances.
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It should be reminded that in this article we did not apply

any form of pre-processing in order to increase the overall

accuracy. We have done so because the goal of the article is

to compare transfer learning methods on a large amount of

data and in a wide variety of real-world situations, that is,

on noisy data. For the same reason, we are using all the data

of a subject without making any adaptation from one session

to the other. This choice obviously leads to reduced overall

accuracy, resulting in an important decrease in the number

of subjects used for the final average results. It is important

to do so, however, since, as it has been found in previous

studies, there is a large gap between “good” and “bad” subjects in

transfer learning accuracy (Zanini et al., 2018; Rodrigues et al.,

2019).

Another point to mention is that even though our method

has been tested extensively on many databases, there are even

more databases to test on. Additionally, some paradigms such

as affective BCI have not been investigated in this article.

Investigation on cross-database transfer learning is still to be

done.

As all efficient transfer learning methods, TSA can be very

helpful when used along with a machine learning model that

takes too much time for training on new data for online sessions.

TSA also allows the alignment of multiple subjects’ data into the

same feature space. Such alignment could improve classification

accuracy of multiple subjects and allow the training of robust

classifier on aligned data that will give improved results for new

subjects once they are aligned. This is the object of current

investigation in our laboratory.
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expansion via haptic devices
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Haptic devices use the sense of touch to transmit information to the

nervous system. As an example, a sound-to-touch device processes auditory

information and sends it to the brain via patterns of vibration on the skin for

people who have lost hearing. We here summarize the current directions of

such research and drawupon examples in industry and academia. Such devices

can be used for sensory substitution (replacing a lost sense, such as hearing or

vision), sensory expansion (widening an existing sensory experience, such as

detecting electromagnetic radiation outside the visible light spectrum), and

sensory addition (providing a novel sense, such as magnetoreception). We

review the relevant literature, the current status, and possible directions for

the future of sensory manipulation using non-invasive haptic devices.

KEYWORDS

senses, sensory substitution devices, hearing loss, haptics, sound

Introduction

The endeavor of getting information to the brain via unusual channels has a long

history. We here concentrate on non-invasive devices that use haptics, or the sense

of touch. In recent years, as computing technology has advanced, many haptic-based

devices have been developed. We categorize these devices into three groups based on

their function: sensory substitution, sensory expansion, and sensory addition.

The key to understanding the success of haptics requires remembering that the

brain does not directly hear or see the world. Instead, the neural language is built

of electrochemical signals in neurons which build some representation of the outside

world. The brain’s neural networks take in signals from sensory inputs and extract

informationally-relevant patterns. It strives to adjust to whatever information it receives

and works to extract what it can. As long as the data reflects some relevant feature about

the outside world, the brain works to decode it (Eagleman, 2020). In this sense, the brain

can be viewed as a general-purpose computing device: it absorbs the available signals and

works to determine how to optimally make use of them.

Sensory substitution

Decades ago, researchers realized that the brain’s ability to interpret different kinds

of incoming information implied that one might be able to get one sensory channel to
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carry another’s information (Bach-y-Rita et al., 1969). In

a surprising demonstration, Bach-y-Rita et al. placed blind

volunteers in a reconfigured dental chair in which a grid of

four hundred Teflon tips could be extended and retracted by

mechanical solenoids. Over the blind participant a camera was

mounted on a tripod. The video stream of the camera was

converted into a poking of the tips against the volunteer’s

back. Objects were passed in front of the camera while blind

participants in the chair paid careful attention to the feelings

in their backs. Over days of training, they became better at

identifying the objects by their feel. The blind subjects learned

to distinguish horizontal from vertical from diagonal lines,

and more advanced users could learn to distinguish simple

objects and even faces—simply by the tactile sensations on their

back. Bach-y-Rita’s findings suggested that information from

the skin can be interpreted as readily (if with lower resolution)

as information coming from the eyes, and this demonstration

opened the floodgates of sensory substitution (Hatwell et al.,

2003; Poirier et al., 2007; Bubic et al., 2010; Novich and

Eagleman, 2015; Macpherson, 2018).

The technique improved when Bach-y-Rita and his

collaborators allowed the blind user to point the camera,

using his own volition to control where the “eye” looked

(Bach-y-Rita, 1972, 2004). This verified the hypothesis that

sensory input is best learned when one can interact with the

world. Letting users control the camera closed the loop between

muscle output and sensory input (Hurley and Noë, 2003;

Noe, 2004). Perception emerges not from a passive input, but

instead as a result of actively exploring the environment and

matching particular actions to specific changes in sensory

inputs. Whether by moving extraocular muscles (as in

the case of sighted people) or arm muscles (Bach-y-Rita’s

participants), the neural architecture of the brain strives to

figure out how the output maps to subsequent input (Eagleman,

2020).

The subjective experience for the users was that objects

captured by the camera were felt to be located at a distance

instead of on the skin of the back (Bach-y-Rita et al., 2003; Nagel

et al., 2005). In other words, it was something like vision: instead

of stimulating the photoreceptors, the information stimulated

touch receptors on the skin, resulting in a functionally

similar experience.

Although Bach-y-Rita’s vision-to-touch system was the first

to seize the public imagination, it was not the first attempt

at sensory substitution. In the early 1960s, Polish researchers

had passed visual information via touch, building a system of

vibratory motors mounted on a helmet that “drew” the images

on the head through vibrations [the Elektroftalm; (Starkiewicz

and Kuliszewski, 1963)]. Blind participants were able to navigate

specially prepared rooms that were painted to enhance the

contrast of door frames and furniture edges. Unfortunately, the

device was heavy and would get hot during use, and thus was not

market-ready—but the proof of principle was there.

These unexpected approaches worked because inputs to the

brain (such as photons at the eyes, air compression waves at

the ears, pressure on the skin) are all converted into electrical

signals. As long as the incoming spikes carry information that

represents something important about the outside world, the

brain will attempt to interpret it.

In the 1990s, Bach-y-Rita et al. sought ways to go smaller

than the dental chair. They developed a small device called the

BrainPort (Bach-y-Rita et al., 2005; Nau et al., 2015; Stronks

et al., 2016). A camera is attached to the forehead of a blind

person, and a small grid of electrodes is placed on the tongue.

The “Tongue Display Unit” of the BrainPort uses a grid of

stimulators over three square centimeters. The electrodes deliver

small shocks that correlate with the position of pixels, feeling

something like Pop Rocks candy in the mouth. Bright pixels

are encoded by strong stimulation at the corresponding points

on the tongue, gray by medium stimulation, and darkness by

no stimulation. The BrainPort gives the capacity to distinguish

visual items with a visual acuity that equates to about 20/800

vision (Sampaio et al., 2001). While users report that they first

perceive the tongue stimulation as unidentifiable edges and

shapes, they eventually learn to recognize the stimulation at a

deeper level, allowing them to discern qualities such as distance,

shape, direction of movement, and size (Stronks et al., 2016).

The tongue provides an excellent brain-machine interface

because it is densely packed with touch receptors (Bach-y-

Rita et al., 1969; Bach-y-Rita, 2004). When brain imaging is

performed on trained subjects (blind or sighted), the motion of

electrotactile shocks across the tongue activates the MT+ area

of the visual cortex, an area which is normally involved in visual

motion (Merabet et al., 2009; Amedi et al., 2010; Matteau et al.,

2010).

Of particular interest is the subjective experience. The

blind participant Roger Behm describes the experience of

the BrainPort:

Last year, when I was up here for the first time, we were

doing stuff on the table, in the kitchen. And I got kind of... a

little emotional, because it’s 33 years since I’ve seen before.

And I could reach out and see the different-sized balls. I

mean I visually see them. I could reach out and grab them—

not grope or feel for them—pick them up, and see the cup,

and raise my hand and drop it right in the cup (Bains, 2007).

Tactile input can work on many locations on the body. For

example, the Forehead Retina System converts a video stream

into a small grid of touch on the forehead (Kajimoto et al.,

2006). Another device hosts a grid of vibrotactile actuators on

the abdomen, which use intensity to represent distance to the

nearest surfaces. Researchers used this device to demonstrate

that blind participants’ walking trajectories are not preplanned,

but instead emerge dynamically as the tactile information

streams in Lobo et al. (2017, 2018).
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As 5% of the world has disabling hearing loss, researchers

have recently sought to build sensory substitution for the

deaf (Novich and Eagleman, 2015). Assimilating advances in

high-performance computing into a sound-to-touch sensory-

substitution device worn under the shirt, Novich and Eagleman

(2015) built a vest that captured sound around the user and

mapped it onto vibratory motors on the skin, allowing users to

feel the sonic world around them. The theory was to transfer

the function of the inner ear (breaking sounds into different

frequencies and sending the data to the brain) to the skin.

Does the skin have enough bandwidth to transmit all the

information of sound? After all, the cochlea is an exquisitely

specialized structure for capturing sound frequencies with high

fidelity, while the skin is focused on other measures and has poor

spatial resolution. Conveying a cochlear-level of information

through the skin would require several thousand vibrotactile

motors—too many to fit on a person. However, by compressing

the speech information, just a few motors suffice (Koffler et al.,

2015; Novich and Eagleman, 2015). Such technology can be

designed in many different form factors, such as a chest strap

for children and a wristband with vibratory motors (Figure 1).

On the first day of wearing the wristband, users are at

the very least able to use the vibrations as cues that a noise

is happening. Users quickly learn to use the vibrations to

differentiate sounds, such as a dog barking, a faucet running,

a doorbell ringing, or someone calling their name. A few days

into wearing the wristband, users report that the conscious

perception of the vibrations fades into the background but

still aids them in knowing what sounds are nearby. Users’

ability to differentiate patterns of vibrations improves over time.

Figure 1C shows performance scores over time on a three-

alternative forced choice paradigm, where the three choices

were picked at random from a list of 14 environmental sounds.

One environmental sound was presented as vibrations on the

wristband and the user had to choose which sound they felt

(Perrotta et al., 2021).

Moreover, after several months users develop what appears

to be a direct subjective experience of external sound. After 6

months, one user reported that he no longer has a sensation of

buzzing followed by an interpretation of those vibrations, but

instead, “I perceive the sound in my head” (personal interview).

This was a subjective report and qualia are not possible to

verify; nonetheless we found the claim sufficiently interesting to

note here.

The idea of converting touch into sound is not new

(Traunmüller, 1980; Cholewiak and Sherrick, 1986;

Weisenberger et al., 1991; Summers and Gratton, 1995;

Galvin et al., 2001; Reed and Delhorne, 2005). In 1923, Robert

Gault, a psychologist at Northwestern University, heard about a

deaf and blind ten-year-old girl who claimed to be able to feel

sound through her fingertips. Skeptical, he ran experiments. He

stopped up her ears and wrapped her head in a woolen blanket

(and verified on his graduate student that this prevented the

ability to hear). She put her finger against the diaphragm of a

“portophone” (a long hollow tube), and Gault sat in a closet and

spoke through it. Her only ability to understand what he was

saying was from vibrations on her fingertip. He reports,

After each sentence or question was completed her

blanket was raised and she repeated to the assistant what had

been said with but a few unimportant variations.... I believe

we have here a satisfactory demonstration that she interprets

the human voice through vibrations against her fingers.

Gault mentions that his colleague has succeeded at

communicating words through a thirteen-foot-long glass tube.

A trained participant, with stopped-up ears, could put his palm

against the end of the tube and identify words that were spoken

into the other end. With these sorts of observations, researchers

have attempted tomake sound-to-touch devices, but until recent

decades the machinery was too large and computationally weak

to make for a practical device.

Similarly, the Tadoma method, developed in the 1930s,

allows people who are deaf and blind to understand the speech

of another person by placing a hand over the face and neck

of the speaker. The thumb rests lightly on the lips and the

fingers fan out to cover the neck and cheek, allowing detection

of moving lips, vibrating vocal cords, and air coming out of the

nostrils. Thousands of deaf and blind children have been taught

this method and have obtained proficiency at understanding

language almost to the point of those with hearing, all through

touch (Alcorn, 1945).

In the 1970s, deaf inventor Dimitri Kanevsky developed

a two-channel vibrotactile device, one of which captures the

envelope of low frequencies, and the other high. Two vibratory

motors sit on the wrists. By the 1980s, similar inventions in

Sweden and the United States were proliferating. The problem

was that all these devices were too large, with too few motors

(typically just one) to make an impact. Due to computational

limitations in previous years, earlier attempts at sound-to-touch

substitution relied on band-pass filtering audio and playing

this output to the skin over vibrating solenoids. The solenoids

operated at a fixed frequency of less than half the bandwidth

of some of these band-passed channels, leading to aliasing

noise. Further, multichannel versions of these devices were

limited in the number of actuators due to battery size and

capacity constraints. With modern computation, the desired

mathematical transforms can be performed in real time, at little

expense, and without the need of custom integrated circuits,

and the whole device can be made as an inexpensive, wearable

computing platform.

A wrist-worn sound-to-touch sensory substitution device

was recently shown in brain imaging to induce activity in both

somatosensory and auditory regions, demonstrating that the

brain rapidly recruits existing auditory processing areas to aid

in the understanding of the touch (Malone et al., 2021).
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FIGURE 1

A sensory substitution wristband for deafness (the Neosensory Buzz). (A) Four vibratory motors in a wristband transfer information about sound

levels in di�erent frequency bands. (B) Sample sounds translated into patterns of vibration on the motors of the wristband. Brighter colors

represent higher intensity of the motor. (C) Participant performance on sound identification improves through time. Data reprinted from

Perrotta et al. (2021).

There are cost advantages to a sensory substitution

approach. Cochlear implants typically cost around $100,000

for implantation (Turchetti et al., 2011). In contrast, haptic

technologies can address hearing loss for some hundreds of

dollars. Implants also require an invasive surgery, while a

vibrating wristband is merely strapped on like a watch.

There are many reasons to take advantage of the system of

touch. For example, people with prosthetic legs have difficulty

learning how to walk with their new prosthetics because of

a lack of proprioception. To allow participants to understand

the position of an artificial limb, other sensory devices can

channel the information. For example, research has shown

improvements in stair descent for lower limb amputees using

haptic sensory substitution devices (Sie et al., 2017), and

haptic sensory substitution devices have also been created for

providing sensory feedback for upper limb prosthetics (Cipriani

et al., 2012; Antfolk et al., 2013; Rombokas et al., 2013).

Some sensory substitution devices for upper limb amputees

use electrotactile stimulation instead of vibrotactile stimulation,

targeting different receptors in the skin (Saleh et al., 2018).

This same technique can be used for a person with a real

leg that has lost sensation—as happens in Parkinson’s disease

or peripheral neuropathy. In unpublished internal experiments,

we have successfully piloted a solution that used sensors in a

sock to measure motion and pressure and fed the data into the

vibrating wristband. By this technique, a person understands

where her foot is, whether her weight is on it, and whether

the surface she’s standing on is even. A recent systematic

review synthesizing the findings of nine randomized controlled

trials showed that sensory substitution devices are effective in

improving balance measures of neurological patient populations

(Lynch and Monaghan, 2021).

Touch can also be used to address problems with balance.

This has been done with the BrainPort tongue display (Tyler

et al., 2003; Danilov et al., 2007): the head orientation was fed

to the BrainPort tongue grid: when the head was straight up, the

electrical stimulation was felt in the middle of the tongue grid;

when the head tilted forward, the electrical signal moved toward

the tip of the tongue; when the head tilted back, the stimulation

moved toward the rear; side-to-side tilts were encoded by left

and right movement of the electrical signal. In this way, a person

who had lost all sense of which way her head was oriented could

feel the answer on her tongue. Of note, the residual benefits

extended even after taking off the device. Users’ brains figured
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out how to take residual vestibular signals as well as existing

visual and proprioceptive signals and strengthen them with

the guidance of the helmet. After several months of using the

helmet, many participants were able to reduce the frequency of

their usage.

We have developed a similar experimental system that is

currently unpublished but bears mentioning for illustration

purposes. In a balance study underway at Stanford University,

we use a vibratory wristband in combination with a 9-axis

inertial measurement unit (IMU) that is clipped to the collar

of a user. The IMU outputs an absolute rotation relative to a

given origin, which is set as the device’s position when the user is

standing upright. The pitch and roll of the rotation are mapped

to vibrations on the wristband to provide additional balance

information to the user’s brain: the more one tilts away from

upright, the higher the amplitude of vibrations one feels on the

wrist. The direction of the tilt (positive or negative pitch or roll)

is mapped to the vibration location on the wrist. Results of this

approach will be published in the future.

Besides the basic five senses, more complex senses can be

aided with sensory substitution devices. People with autism

spectrum disorder often have a decreased ability to detect

emotion in others; this, in one preliminary project, machine

learning algorithms classify the emotional states detected in

speech and communicate these emotional states to the brain

via vibrations on the wrist. Currently, the machine learning

algorithm detects and communicates how much someone’s

speech matches seven different emotions (neutral, surprise,

disgust, happiness, sadness, fear, and anger) and communicates

that to the wearer (ValenceVibrations.com).

Sensory substitution opens new opportunities to

compensate for sensory loss. However, similar devices can

move past compensation and instead build on top of normal

senses—we call these devices sensory expansion devices. Instead

of filling in gaps for someone with a sensory deficit, these

expand the unhindered senses to be better, wider, or faster.

Sensory expansion

Many examples of sensory expansion have been

demonstrated in animals. For example, mice and monkeys can

be moved from color-blindness to color vision by genetically

engineering photoreceptors to contain human photopigment

(Jacobs et al., 2007; Mancuso et al., 2009). The research team

injected a virus containing the red-detecting opsin gene behind

the retina. After 20 weeks of practice, the monkeys could use the

color vision to discriminate previously indistinguishable colors.

In a less invasive example, we created a sensory expansion

device by connecting a vibrating wristband to a near-wavelength

infrared sensor and an ultraviolet sensor. Although our eyes

capture only visible light, the frequencies of the electromagnetic

spectrum adjacent to visible light are in fact visible to a variety

of animals. For instance, honeybees can see ultraviolet patterns

on flowers (Silberglied, 1979). By capturing the intensity of light

in these ranges and mapping those intensities to vibrations, a

user can pick up on information in these invisible light regions

without gene editing or retinal implants. In this way, a wrist-

worn device can expand vision beyond its natural capabilities.

One of us (DME) wore an infrared bolometer connected to a

haptic wristband and was able to easily detect infrared cameras

in the darkness (Eagleman, 2020).

To illustrate the breadth of possibilities, it bearsmention that

we have performed an unpublished preliminary experiment with

blindness. Using lidar (light detection and ranging), we tracked

the position of every moving object in an office space—in this

case, humans moving around. We connected the data from the

lidar sensors to our vibrating vest, such that the vest vibrated to

tell the wearer if they were approaching an obstacle like a wall

or chair, where there were people nearby, and what direction

they should move to most quickly reach a target destination. We

tested this sensory expansion device with a blind participant.

He wore the vest and could feel the location of objects and

people around him as well as the quickest path to a desired

destination (such as a conference room). Interestingly, there was

no learning curve: he immediately understood how to use the

vibrations to navigate without colliding into objects or people.

Although sensory substitution devices can fill the gap left by

vision impairment, this device did more than that—it offered

an expanded, 360◦ sense of space. A sighted person could also

wear this device to expand their sense of space, allowing them

to know what objects or people are behind them. Because this

device does more than alleviate a sensory loss, it is an example of

sensory expansion.

Haptic sensory expansion is not limited to vision. Devices

from hearing aids to the Buzz can reach beyond the normal

hearing scale—for example, into the ultrasonic range (as heard

by cats or bats), or the infrasonic (as heard by elephants)

(Wolbring, 2013).

The sense of smell can also be benefited by sensory

expansion. To illustrate an unpublished possibility, imagine

converting the data from an array of molecular detectors into

haptic signals. While this is unproven, the goal should be clear:

for a person to access a new depth of odor detection, beyond the

natural sensory acuity of human smell.

One can also detect temperature via sensory expansion.

In preliminary experiments, participants use an array of mid-

wavelength infrared sensors to detect the temperature of nearby

objects and translate the data to vibrations on the wrist.

The wearer learns to interpret the vibrations as a sense of

temperature, but one that does not stop at the skin—instead,

their sense of temperature has expanded to include objects in

the surrounding environment.

For the purpose of illustrating the width of possibilities, we

note that internal signals in the body—such as the sense of one’s

own blood sugar levels—can be easily expanded by combining
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easily-obtainable technologies. For example, continuous glucose

monitoring devices allow users to look at their level of blood

sugar at any point; however, the user still must pull out a cell

phone to consult an app. By connecting a haptic device to

a continuous glucose monitoring device, one could create a

sensory expansion device that allows users to have continuous

access to their blood sugar levels without having to visually

attend to a screen.

More broadly, one could also make a device to expand

one’s sense of a partner’s wellbeing. By connecting sensors

that detect a partner’s breathing rate, temperature, galvanic

skin response, heart rate, and more, a haptic device could

expand the user’s information flow to allow them to feel their

partner’s internal signals. Interestingly, this sense need not be

limited by proximity: the user can sense how their partner is

feeling even from across the country, so long as they have an

internet connection.

An important question for any haptic sensory device is

whether the user is gaining a new sensory experience or is

instead consciously processing the incoming haptic information.

In the former case, the subjective experience of a temperature

sensing wristband would be similar to the subjective experience

of touching a hot stove (without needing to touch or be near

the surface), while the latter case would be closer to feeling an

alert on the wrist that warns of a hot surface. As mentioned

above, previous work has shown evidence for a direct subject

experience of a new sense, whether from brain imaging or

through subjective questionnaires (Bach-y-Rita et al., 2003;

Nagel et al., 2005). Until this investigation is done on each new

sensory device, it is unknown whether the device is providing a

new sense or rather a signal that can be consciously perceived

as touch.

While these devices all expand on one existing sense or

another, other devices can go further, representing entirely new

senses. These devices form the third group: sensory addition.

Sensory addition

Due to the brain’s remarkable flexibility, there is the

possibility of leveraging entirely new data streams directly into

perception (Hawkins and Blakeslee, 2007; Eagleman, 2015).

One increasingly common example is the implantation of

small neodymium magnets into the fingertips. By this method,

“biohackers” can haptically feel magnetic fields. The magnets

tug when exposed to electromagnetic fields, and the nearby

touch nerves register this. Information normally invisible to

humans is now streamed to the brain via the sensory nerves

from the fingers. People report that detecting electromagnetic

fields (e.g., from a power transformer) is like touching an

invisible bubble, one with a shape that can be assessed bymoving

one’s hand around (Dvorsky, 2012). A world is detectable that

previously was not: palpable shapes live around microwave

ovens, computer fans, speakers, and subway power transformers.

Can haptic devices achieve the same outcome without

implanting magnets into the fingertips? One developer created a

sensory addition device using a haptic wristband that translates

electromagnetic fields into vibrations (details of the project at

neosensory.com/developers). Not only is such an approach less

invasive, it is also more customizable. Instead of just feeling

the presence of an electromagnetic field, this device decomposes

the frequency of an alternating current signal and presents the

intensity of different parts of the spectrum via different vibrating

motors. Thus, an electrician can add this new sense to their

perception, knowing the frequency and intensity of electric

signals flowing through live wires.

What if you could detect not only the magnetic field around

objects but also the one around the planet—as many animal

species do? Researchers at Osnabrück University devised a belt

called the feelSpace to allow humans to tap into that signal. The

belt is ringed with vibratory motors, and the motor pointed to

the north buzzes. As you turn your body, you always feel the

buzzing in the direction of magnetic north.

At first, it feels like buzzing, but over time it becomes spatial

information: a feeling that north is there (Kaspar et al., 2014).

Over several weeks, the belt changes how people navigate: their

orientation improves, they develop new strategies, they gain a

higher awareness of the relationship between different places.

The environment seems more ordered. Relationships between

places can be easily remembered.

As one subject described the experience, “The orientation

in the cities was interesting. After coming back, I could retrieve

the relative orientation of all places, rooms and buildings, even

if I did not pay attention while I was actually there” (Nagel

et al., 2005). Instead of thinking about a sequence of cues, they

thought about the situation globally. Another user describes how

it felt: “It was different from mere tactile stimulation, because

the belt mediated a spatial feeling.... I was intuitively aware of

the direction of my home or of my office.” In other words,

his experience is not of sensory substitution, nor is it sensory

expansion (making your sight or hearing better). Instead, it’s a

sensory addition. It’s a new kind of human experience. The user

goes on:

During the first 2 weeks, I had to concentrate on

it; afterwards, it was intuitive. I could even imagine the

arrangement of places and rooms where I sometimes stay.

Interestingly, when I take off the belt at night I still feel the

vibration: When I turn to the other side, the vibration is

moving too—this is a fascinating feeling! (Nagel et al., 2005).

After users take off the feelSense belt, they often report that

they continue having a better sense of orientation for some time.

In other words, the effect persists even without wearing the

device. As with the balance helmet, weak internal signals can get
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strengthened when an external device confirms them. (Note that

one won’t have to wear a belt for long: researchers have recently

developed a thin electronic skin—essentially a little sticker on

the hand—that indicates north; see Bermúdez et al., 2018).

Other projects tackle tasks that require a great deal of

cognitive load. For example, a modern aircraft cockpit is packed

with visual instruments. With a sensory addition device, a

pilot can feel the high-dimensional stream of data instead

of having to read all the data visually. The North Atlantic

Treaty Organization (NATO) released a report on haptic devices

developed to help pilots navigate in low-visibility settings

(Van Erp and Self, 2008). Similarly, Fellah and Guiatni (2019)

developed a haptic sensory substitution device to give pilots

access to the turn rate angle, climb angle, and flight control

warning messages via vibrations.

As a related example, researchers at our laboratory are

piloting a system to allow doctors to sense the vitals of a

patient without having to visually consult a variety of monitors.

This device connects a haptic wristband to an array of sensors

that measure body temperature, blood oxygen saturation, heart

rate, and heart rate variability. Future work will optimize how

these data streams are presented to the doctor and with what

resolution. Both psychophysical testing and understanding user

needs will shape this optimized mapping (for example, how

much resolution can a doctor learn to feel in the haptic signal,

and what is the smallest change in blood pressure that should be

discernible via the device?).

Finally, it is worth asking whether haptic devices are optimal

for sending data streams to the brain. After all, one could

leverage a higher-resolution sense, such as vision or audition,

or perhaps use multiple sensory modalities. This is an open

question for the future; however, haptics is advantageous due

simply to the fact that vision and hearing are necessary for

so many daily tasks. Skin is a high-bandwidth, mostly unused

information channel—and therefore its almost-total availability

makes it an attractive target for new data streams.

Conclusion

We have reviewed some of the projects and possibilities of

non-invasive, haptic devices for passing new data streams to the

brain. The chronic rewiring of the brain gives it tremendous

flexibility: it dynamically reconfigures itself to absorb and

interact with data. As a result, electrical grids can come to feed

visual information via the tongue, vibratory motors can feed

hearing via the skin, and cell phones can feed video streams

via the ears. Beyond sensory substitution, such devices can be

used to endow the brain with new capacities, as we see with

sensory expansion (extending the limits of an already-existing

sense) and sensory addition (using new data streams to create

new senses). Haptic devices have moved rapidly from computer-

laden cabled devices to wireless wearables, and this progress,

more than any change in the fundamental science, will increase

their usage and study.
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