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Editorial on the Research Topic

Dynamic functional connectivity in neuropsychiatric disorders:

Methods and applications, volume II

In 2010, the Global Burden of Disease Study (GBD) reported that the disease

burden of neuropsychiatric disorders accounted for 10.4% of global disability-adjusted

life years (DALYs). Psychiatric disorders, the fifth leading cause of DALYs, accounted

for 7.4% of global DALYs, while neurological disorders accounted for 3% of global

DALYs (Whiteford et al., 2015). As the population grows and ages, the global burden of

neuropsychiatric diseases continues to increase, which makes neuropsychiatric disorders

a prominent health issue.

Patients with neuropsychiatric disorders show multiple problems regarding to

emotion, cognition, behavior, and physical symptoms. The neuropathological alterations

underlying these somatic discomforts and functional deficits have been one of the

critical concerns of researchers. Magnetic resonance imaging (MRI), a safe and non-

invasive way to detect changes in brain structure and function, has been one of the most

important tools for studying neuropathological changes in neuropsychiatric diseases.

Since the discovery of resting-state functional connectivity (FC) by Biswal et al. (1995)

and the subsequent introduction of the default mode network (Biswal et al., 1995; Raichle

et al., 2001), functional MRI has greatly broadened and deepened our understanding of

brain function over the past two decades. However, the focus shifts toward temporal

fluctuations in blood-oxygen-level-dependent (BOLD) FC in the brain, considering

the rapidly changing neural activity of the brain. In addition to focusing on the
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dynamics of FC, the temporal fluctuations of the amplitude

of low-frequency fluctuation (ALFF), regional homogeneity

(ReHo), and other metrics commonly used in resting-state

functional MRI have also been explored for investigating the

neuropathological alterations of neuropsychiatric disorders.

This issue is a continuum of our previous topic (Fu et al.,

2020). In this Research Topic, we received several articles

applying neuroimaging tools to reveal the dynamic function of

the brain and articles focusing on neuropsychiatric disorders

with other imaging analyses. In the end, a total of 18 papers are

included in this Research Topic. We found that the concerns

of many studies shifted from a particular disorder to more

specific symptoms. Given the heterogeneous manifestations of

neuropsychiatric disorders, this symptom delineation might be

more conducive to the exploration of the neuropathological

mechanisms underlying specific symptoms. In addition, many

studies explored the correlation of imaging findings with clinical

symptoms and the robustness of differences between groups.

These attempts might have a positive influence on the clinical

application of these imaging tools.

Of these 18 articles, only 2 articles examined neurological

disorders, and the other 16 articles focused on psychiatric

disorders. Major depressive disorders (MDD) were the most

discussed disorders. Suicide, non-suicidal self-injury, childhood

trauma, and medication efficacy were the main focus of these

MDD studies.

MDD was responsible for the highest proportion of

neuropsychiatric disorder DALYs (Whiteford et al., 2015). Both

suicide and non-suicidal self-injury are strongly associated

with MDD. Li W. et al. and He et al. examined the neural

basis of suicide ideation (SI) of patients of MDD by using

different imaging analyses in various brain regions. Li W.

et al. used a dynamic FC to study a critical brain region of

a default mode network, the PCC, which has been reported

to be associated with suicidal ideation in depressed patients

in structural and functional MRI studies (Schmaal et al.,

2020). He et al. focused on the neuropathological alterations

of cingulo-opercular network in MDD patients with SI by

using structural and functional neuroimaging. Besides SI, non-

suicidal self-injury (NSSI) is also a symptom worthy of note,

especially in adolescent MDD. Both NSSI and SI exhibited

robust relationships to attempted suicide (Klonsky et al., 2013).

Liu H. et al. used an electrophysiological approach to explore

the difference in P300 in adolescent MDD patients with NSSI.

Yang C. et al. concentrated on suicide attempts (SA) in patients

withMDD, and they found that elevated activity in the cingulum

functioning may be related to SA.

The associations between childhood trauma and multiple

psychiatric disorders have been reported in many previous

studies (Varese et al., 2012; McKay et al., 2021). Childhood

trauma is a significant predictor of depression severity

(Hopfinger et al., 2016). Chen et al. investigated the functional

MRI data of female MDD patients with and without childhood

trauma and healthy controls. But no ALFF difference was

found between MDD patients with childhood trauma and

those without. Luo et al. also showed an interest in the

impact of childhood trauma on the brain function of

patients with MDD. They used multiple dynamic functional

MRI indices throughout the whole brain, and examined

the aberrant temporal fluctuations of brain function from

various perspectives.

As a non-invasive examination, MRI is also very promising

in predicting drug efficacy. Two articles in this special issue

examined the possibility thatMRI is used to predict drug efficacy

for two kinds of medical intervention, respectively. Zhang A.

et al. separated patients with MDD into a responsive group

and a non-responsive group based on the reduction rate of the

scores of Hamilton Depression Rating Scale (HAMD-17) after

2-week SSRI treatment and found that there were differences

in ReHo in the right parahippocampal gyrus and the middle

temporal gyrus between groups. Compared to the study of

Zhang A. et al., Zhang F. et al. focused on a novel antidepressant,

ketamine, an N-methyl-D-aspartate (NMDA) antagonist. The

responders in this study were defined as having an improvement

in the Montgomery-Asberg Scale (MADRS) scores ≥ 50% after

six intravenous injections of ketamine over 12 days. Zhang

F. et al. found that responders had lower values of degree

centrality in the right middle frontal gyrus (MFG) and stronger

FC between the MFG and the right supplementary motor area

(SMA) than non-responders.

Besides studies concerning MDD, there are also studies in

this special issue that focus on dynamic brain function changes

in other psychiatric disorders. Kong et al. investigated network

homogeneity (NH) of the default mode network in 57 first-

diagnosis drug-naïve schizophrenic patients and 50 healthy

controls. Fateh et al. evaluated the dynamic FC within six

subdivisions of the insula to investigate whether the dysregulated

dynamic FC in insula was related to social dysfunction in

patients with attention deficit hyperactivity disorder (ADHD).

Liu D. et al. examined both static and dynamic functional

brain network in adults with problematic smartphone use.

It is important to note that although both the International

Classification of Diseases (11 Edition, ICD-11) and Diagnostic

and Statistical Manual of Mental Disorders (Fifth Edition,

DSM-5) now include a diagnosis of gaming disorder (Gaming

Disorder in ICD-11 and Internet Gaming Disorder in DSM-

5), problematic smartphone use is not currently a disease.

Liu D. et al. found no group difference between participants

with and without problematic smartphone use, however the

severity of problematic smartphone use was correlated with

FC strength as well as temporal variability. Yang, Li, et al.

conducted the only comparative study on psychiatric disorders

in this special issue. They recruited patients with schizophrenia

(SZ), major depressive disorder (MDD) and bipolar disorder

(BD) and healthy controls to examine the common and specific

neuroanatomical characteristics.
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There are three articles in this special issue involved

in other diseases rather than psychiatric disorders. Yang,

Zhao, et al., and Su et al. all concerned about systemic

lupus erythematosus (SLE), an autoimmune disease sometimes

involving the nervous system, called neuropsychiatric systemic

lupus (NPSLE). The study of Su et al. demonstrated that

patients with NPSLE showed atrophic subcortical gray matter

and functional alterations in the default mode network,

salience network, sensorimotor network, and cerebellum. Yang,

Zhao, et al. explored the static and dynamic ALFF in SLE

patients with cognitive impairment (CI). Patients with SLE

showed altered dynamic ALFF no matter with or without

CI, and SLE patients with CI also had changed static ALFF.

Nevertheless, compared to SLE patients without CI, those

with cognitive impairment only showed higher static ALFF

in the right parahippocampal gyrus, but no difference in

dynamic ALFF was found between these two groups. Wang,

Wang, et al. used FC to discriminate between migraineurs and

tension-type headache, which share many similarities in

clinical practice.

Notably, three articles in this special issue introduced

novel analysis methods for neuropsychiatric disorders. These

three articles all proposed improvements and reflections

on the application of image analysis to disease diagnosis.

Wang, Fu, et al. used the random support vector machine

(SVM) cluster, a machine-learning framework, to extract

an optimized random SVM cluster that performs well

in classifying patients with autism spectrum disorder

(ASD) and healthy controls. Song et al. proposed a novel

brain-network-constrained multi-view sparse canonical

correlation analysis (BN-MSCCA), which combined the

structural and functional MRI data as well as diagnosis

information to explore the schizophrenia-related biomarkers.

Both articles introduced multiple or multimodal features

when testing the diagnostic model. Li Y. et al. combined

uncertain brain networks and a novel discriminative feature

selection method based on a statistical index (dfsSI) to

optimize the time consumption, computational cost and the

classification accuracy.

Overall, the articles in this special issue applied various

imaging analysis methods, with a particular focus on the

dynamic changes in brain function. These articles explored the

underlying neural basis of neuropsychiatric disorders and also

presented several novel approaches. It is hoped that clinicians

and researchers will benefit from them.
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Objective: For major depressive disorder (MDD), there has been a lack of neuroimaging
markers of efficacy of pharmacological treatment. In this study, we aimed to explore the
neuroimaging mechanisms in patients with first-episode MDD and identify markers that
predict the efficacy of 5-hydroxytryptamine reuptake inhibitors (SSRIs) with the use of
resting-state brain imaging technology.

Methods: A total of 101 patients with first-episode MDD and 53 normal controls were
finally included in this study. Based on the reduction rate of the score of Hamilton
Depression Rating Scale (HAMD-17) during the 2-week SSRI treatment, 31 patients
were assigned into the unresponsive group and 32 were assigned into the responsive
group. The brain function was compared between patients with MDD and normal
controls, and the diagnostic value of brain function was analyzed. With brain regions
showing differences between patients with MDD and normal controls as a mask, and
the brain function between the responsive and unresponsive groups were compared.
Correlations between brain function the HAMD-17 score reduction rate during the
2-week SSRI treatment were analyzed.

Results: Compared to normal controls, patients with MDD showed increased ReHo in
the left parahippocampal gyrus and right parahippocampal gyrus, decreased ReHo in
the right middle occipital gyrus, and decreased functional connectivity between the right
and left parahippocampal gyri, right middle occipital gyrus and middle temporal gyrus.
Receiver operator characteristic (ROC) curve analysis showed that the area under the
curve (AUC) was 0.544 (95% CI: 0.445–0.644) for ReHo and 0.822 (95% CI: 0.734–
0.909) for functional connectivity. Logistic regression pooling of the differences in ReHo
mean time series with the functional connectivity mean time series was performed for the
ROC curve analysis, which showed an AUC of 0.832 (95% CI: 0.752–0.911). Compared
to the responsive group, the unresponsive group showed elevated ReHo in the right
parahippocampal gyrus and lower functional connectivity in the middle temporal gyrus.
We also found that the ReHo value was negatively correlated with the HAMD-17 score
reduction after 2 weeks of SSRI treatment.
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Conclusion: Altered resting-state brain function in some regions might be a
neurobiological marker for the diagnosis of MDD, and ReHo values are expected to
be predictors of patient response to treatment with SSRIs.

Clinical Trial Registration: [http://www.chictr.org.cn/], identifier
[ChiCTR1900028722].

Keywords: major depressive disorder, resting-state functional MRI, SSRIs, regional homogeneity, functional
connectivity

INTRODUCTION

Major depressive disorder (MDD) is one of the most common
psychiatric disorders associated with severe impairments of
quality of life and social function. However, the response and
remission rates of MDD remain low as the pathogenesis is still
unclear at present. In clinical practice, only 30% of patients
are clinically cured by medication, with an response rate of
40–50% (Trivedi et al., 2006; Rush, 2007). Approximately 30%
of patients develop refractory depression, and around 70% of
patients require several courses of treatment or repeated “trial
and error” treatment to achieve remission (McIntyre et al.,
2014). A study showed that symptom improvement after 2 weeks
of treatment with antidepressants was predictive of clinical
remission after 6–8 weeks of treatment, and that patients with
MDD who did not respond to antidepressant treatment for
2 weeks had a final remission rate of only 4% if the regimen
was unchanged (Szegedi et al., 2009). Post-hoc analyses of
several clinical trials have also shown that non-response at
the end of 2 weeks of antidepressant treatment was predictive
of poor treatment outcome after 6–8 weeks (Szegedi et al.,
2003; Posternak and Zimmerman, 2005; Papakostas et al., 2006;
Taylor et al., 2006; Stassen et al., 2007; Henkel et al., 2009;
Hennings et al., 2009; van Calker et al., 2009; Tadić et al., 2010).
A study illustrated that non-response at the end of 2 weeks of
treatment with 5-hydroxytryptamine reuptake inhibitors (SSRIs)
can be considered a valid predictor of poor treatment outcome,
indicating that an alternate medication or a combination of
drugs could be commenced (Tadić et al., 2016). Therefore,
understanding the neuropathological mechanisms of MDD and
exploring biomarkers of early therapeutic responses in patients
with MDD can provide a basis for clinicians to develop treatment
strategies in clinical practice.

Resting-state functional magnetic resonance imaging (MRI)
studies have mainly focused on the differences in functional
brain activities at rest, while task-state functional MRI studies
mainly focused on functional brain activities during tasks;
these studies have been proven to be reproducible for the
brain imaging procedures and verifiable for the results. At
present, the studies of brain function mainly focus on
evaluating local functional changes; with brain regions of
interest (ROIs) as connection nodes, the spontaneous activities
between brain regions are observed, which are used as
connection coefficients of brain function to reflect the functional
connection between brain regions. Regional homogeneity
(ReHo) is used as a measure of regional synchronization

of the functional magnetic resonance imaging (fMRI) time
course, and has been widely used in clinical studies on
MDD. Previous studies on MDD based on resting-state fMRI
have revealed abnormalities in several brain regions and
functional connections, with more consistent findings involving
the prefrontal-amygdala-striatal-medial thalamic regions in
the emotion regulation loop. Subsequent studies showed
that increased activity in the amygdala and ventrolateral
prefrontal cortex at baseline was predictive of poor response
to antidepressants, while increased activity in the hippocampus
was associated with improvement in depressive symptoms
(Williams et al., 2015). During the treatment of MDD
with duloxetine, improvement in depressive symptoms was
associated with reduced orbitofrontal functional connectivity
in the default network; in contrast, reduced orbitofrontal
functional connectivity in the default network was associated
with poor response to escitalopram in elderly patients with
MDD. Meanwhile, increased levels of functional connections in
the orbitofrontal cortex prior to treatment were associated with
better response to antidepressants (Pizzagalli, 2011). A study
showed that a single dose of antidepressants was fast enough to
cause significant changes in functional connections in the brain
(Schaefer et al., 2014); through brain imaging scans on healthy
subjects before and after administration of a single dose of 5-
hydroxytryptamine reuptake inhibitors (SSRIs), this study found
that functional connections in their brains significantly altered
within 3 h. In this study, the whole-brain analysis showed that
single doses of 5-hydroxytryptamine reuptake inhibitors (SSRIs)
rapidly reduced the level of internal functional connectivity in
most brain regions; however, in the cerebellum and thalamus,
the level of brain functional connections was increased. It was
evident that resting-state fMRI technology has the potential
to reflect and identify objective neurobiological markers of
psychiatric disorders, and can be used to determine which
indicators to use for the early diagnosis and outcome prediction
of psychiatric disorders.

MATERIALS AND METHODS

Collection and Evaluation of Clinical Data
Subject Selection
A total of 167 first-episode and treatment-naive patients
with MDD were recruited from the inpatient and outpatient
department of mental health of the First Hospital of Shanxi
Medical University from September 2009 to December 2018. All
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the patients were assessed at baseline with the use of MRI and
symptom scales, including the Hamilton Depression Rating Scale
(HAMD-17) to assess depressive symptoms and the Hamilton
Anxiety Rating Scale (HAMA) to assess anxiety symptoms.
Eighty healthy controls were recruited from the community and
the university, and none of them were relatives of the patients. All
the participants provided informed consent.

Patients with MDD were diagnosed and screened by two
experienced psychiatrists with the following inclusion criteria:
(1) Han Chinese; (2) aged 18–60 years; (3) right-handed;
(4) diagnosed with first-episode MDD based on the DSM-IV
criteria and untreated; (5) HAMD-17 score > 17 and HAMA-14
score < 14; (6) having provided informed consent for this study.
The exclusion criteria were: (1) with MDD or bipolar disorder
secondary to organic diseases or antipsychotic drugs; (2) meeting
the DSM-IV-TR criteria for Axis I disorders such as alcohol
or drug dependence, traumatic stress, and schizoid affective
disorder; (3) with severe organic diseases such as neurological
diseases, severe liver and kidney dysfunction, cardiovascular
diseases, and craniocerebral trauma; (4) with severe suicidal
and self-injurious thoughts, history of suicide attempts (suicide-
related score ≥ 2 in the HAMD-17), obvious impulsivity, or
uncooperativeness; (5) breastfeeding or pregnant women; (6)
with contraindications to the MRI scan.

Treatment for the Subjects
The untreated patients with first-episode MDD were given
standardized antidepressant medication after enrollment. The
drugs were SSRIs, including fluoxetine dispersible tablets
(Eli Lilly; 10–40 mg/day), escitalopram tablets (Janssen; 5–
20 mg/day), citalopram tablets (Envac; 10–40 mg/day), and
sertraline tablets (Pfizer; 25–200 mg/day). All the drugs were
initiated at small doses and adjusted based on the patients’
own conditions. Patients with insomnia were given short-term
benzodiazepines or supportive psychotherapy as appropriate.
Other antidepressants, antipsychotics, electroconvulsive therapy,
or other physical therapies were not used within the 2-week
treatment period in this study. The patients’ symptoms were
evaluated and recorded before treatment and at 2 weeks after the
initiation of treatment.

Clinical Data Collection
General Demographic Information
The demographic information of participants, including sex,
age, education, marital status, smoking, alcohol consumption,
substance abuse, family history, etc., was recorded using the case
report form (CRF) developed by our department.

Scales for Clinical Symptoms
The Hamilton Depression Rating Scale (HAMD-17) was used to
assess depressive symptoms of the patients and the HAMA was
used to assess anxiety symptoms.

Resting-State Functional Magnetic
Resonance Imaging
The MRI scans were performed using a Magnetom Trio (A
Tim System) 3T whole-body magnetic resonance imaging device

manufactured by Siemens. All the subjects underwent MRI
scanning after fully informed of the procedure, approximate
time required, and possible adverse reactions to the examination.
At the time of scanning, the subjects were placed in a supine
position, had their heads fixed with sponge pads and wore
headphones to reduce the noise they hear. They were required
to keep their eyes closed while remaining awake, and refrain
from talking, moving or falling asleep. The subjects were also
given an alarm bell to end the scan if they were intolerant.
A cranial localization scan was first performed, followed by a
resting-state scan and a whole-brain stereo 3D high-resolution
T1-weighted scan.

A total of 32 layers were obtained with the use of the
following parameters: TR (repetition time) = 2,000 ms, TE
(echo time) = 30 ms, FOV (field of view) = 240 × 240 mm2,
FA (flip angle) = 90◦, acquisition matrix = 64 × 64, THK
(thickness) = 3 mm, and gap = 3.99 mm. The subjects were
scanned at a total of 212 time points, with the duration of
scanning being 8 min and 6 s.

Analysis of Resting-State Functional
Magnetic Resonance Imaging Data
Preprocessing of Resting-State Functional Magnetic
Resonance Imaging Data
The resting-state fMRI data was preprocessed using DPARSF1

based on the SPM8 software (Chao-Gan and Yu-Feng, 2010).
The procedures are as follows: (1) the first 10 time points were
discarded to allow the magnetic field to reach a steady state; (2) a
time-layer correction was performed to exclude the discrepancies
caused by intermittent image acquisition; (3) head movement
correction was performed by aligning images at all time points
to the first image to exclude possible head movements; (4) the
single shot echo planar imaging (EPI) template was used for
spatial normalization, and the data were normalized to montreal
neurological institute (MNI) space and resampled to achieve a
voxel size of 3 × 3 × 3 mm3; (5) the images were smoothed
with a 6-mm FWHM (full-width at half maximum) kernel
for subsequent analysis of functional connection; however, for
the ReHo (regional homogeneity) analysis, no smoothing was
performed; (6) the smoothed data were filtered for frequencies of
0.01–0.08 Hz; (7) the filtered images were delinearized to remove
the drift; and (8) regressions were performed on six cephalomotor
parameters, as well as cerebrospinal fluid and white matter signals
using the preprocessed data. As regression of whole-brain signals
would exaggerate the negative correlations between functional
connections, it was not performed to ensure the stability of
the results. Finally, ReHo and ROI-based functional connection
measures were calculated.

The image quality of raw data was checked by experienced
neuroimaging physicians to exclude obvious anatomical
abnormalities and artifacts in the MRI data of all participants.
Then, all images normalized in data space were checked for
obvious alignment errors during data preprocessing. Data
with artifacts or non-standard alignments were excluded after
inspection. Finally, subjects with head movements greater than

1http://rfmri.org/dpabi
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2.0 mm in the x, y, and z directions or rotations greater than 2.0
degrees were excluded.

Statistical Analyses
After exclusion of patients with unusable data, a total of 101
patients with MDD and 53 normal controls were included in the
study. Data analyses were performed using SPM8 software-based
DPARSF (see text footnote 1), and independent samples t-test
was used to compare ReHo, low-frequency oscillatory amplitudes
(ALFF)/low-frequency amplitude ratios (fALFF), and brain
regions with significant differences in whole-brain functional
connections between patients and normal controls. The ROI-
based whole-brain functional connectivity was calculated and
Fisher’s z transformation was performed using the Gaussian
random field (GRF) method. For all the above analyses,
P < 0.05 indicated statistical significance. Then, receiver operator
characteristic (ROC) curves were used to analyze the diagnostic
value of resting-state fMRI for MDD.

After 2 weeks of treatment with SSRIs, the patients
were divided into the unresponsive group (n = 31) and
the responsive group (n = 32) based on their HAMD-17
scores (unresponsive: reduction rate ≤ 20%, responsive:
reduction rate ≥ 50%). With brain regions showing significant
difference between patients and normal controls as masks,
independent samples t-test was performed to compare
ReHo, ALFF/fALFF, and ROI-based functional connectivity
across the whole brain at baseline between the responsive
and unresponsive groups. After the ROI-based functional

TABLE 1 | | General demographic information and clinical characteristics of the
patients with major depressive disorder (MDD) and normal controls.

Variables MDD patients
(n = 101)

HCs
(n = 53)

P-value

Age, years (x ± s) 34.50 ± 11.091 35.92 ± 9.23 0.814a

Sex (F/M) 56/45 26/27 0.747b

Education, years (x ± s) 4.25 ± 1.39 4.47 ± 1.20 0.329a

HAMD-17 scores (x ± s) 23.4 ± 2.3 NA –

at-test.
bχ2 test.
Education: 1 = illiterate, 2 = elementary school, 3 = junior high school, 4 = senior
high school, 5 = junior college, 6 = undergraduate, 7 = graduate and above.

TABLE 2 | | General demographic data and clinical characteristics of the
responsive and unresponsive groups.

Variables The effective
group (n = 32)

The ineffective
group (n = 31)

P-value

Age, years (x ± s) 34.59 ± 10.21 36.29 ± 12.49 0.577a

Sex (F/M) 18/14 13/16 0.189b

Education, years (x ± s) 4.48 ± 1.57 4.10 ± 1.51 0.348a

HAMD-17 scores (0 w)
(x ± s)

21.74 ± 4.03 20.65 ± 3.05 0.245a

HAMD-17 scores (2 w)
(x ± s)

7.58 ± 3.75 17.92 ± 3.37 0.000a

at-test.
bχ2 test.
Education: 1 = illiterate, 2 = elementary school, 3 = junior high school, 4 = senior
high school, 5 = junior college, 6 = undergraduate, 7 = graduate and above.

connectivity was calculated, Fisher’s Z transformation was
performed, with AlphaSim used for correction. The threshold
for statistical significance for a single voxel was set at p < 0.01
(uncorrected) and p < 0.05 (corrected). Finally, the mean
time series of the brain regions with difference between the
responsive and unresponsive groups were extracted and
used in a partial correlation analysis with the rate of HAMD
reduction during the 2-week treatment, with age, sex, and
education as covariates.

RESULTS

General Demographic Data and Clinical
Characteristics
A total of 101 patients with MDD and 53 normal controls with
satisfactory resting-state fMRI data were included in the analyses.
The general demographic data and clinical characteristics of
the patients with MDD and normal controls are presented in
Table 1. According to results of independent samples t-test
for age and education and chi-square test for sex, there were
no significant differences in age (t = −0.236, p = 0.814), sex
(x2 = 0.104, p = 0.747), and education (t = 0.980, p = 0.329)
between the two groups.

After 2 weeks of SSRI treatment, the patients were divided
into the unresponsive group (n = 31) and the responsive
group (n = 32) based on their HAMD-17 scores. The general
demographic data and clinical characteristics of the responsive
and unresponsive groups are presented in Table 2. According
to results of independent sample t-test for age, education and
HAMD-17 scores and chi-square test for sex, there were no
significant differences in age (t = −0.566, p = 0.577), sex
(X2 = 1.724, p = 0.189), and education (t = 1.175, p = 0.245)
between the two groups.

Resting-State Functional Magnetic
Resonance Imaging Results
ALFF/fALFF
The result of independent samples t-test showed that there was
no significant difference in ALFF/fALFF between patients with
MDD and the normal controls.

TABLE 3 | | ReHo of brain regions showing significant difference between patients
with major depressive disorder (MDD) and normal controls.

Regions Voxel
size

BA Left/
Right

MNI peak coordinates Peak t
value

x y z

MDD > NCs

Parahippocampal
gyrus

456 – Left −27 −27 −18 4.837

119 – Right 9 −24 6 4.572

MDD < NCs

Interoccipital gyrus 176 – Right 27 −84 24 −4.122

Frontiers in Neuroscience | www.frontiersin.org 4 February 2022 | Volume 16 | Article 83127813

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-831278 February 10, 2022 Time: 16:27 # 5

Zhang et al. Effect of SSRIs on fMRI in MDD

FIGURE 1 | | Brain regions with different ReHo between patients with major depressive disorder (MDD) and normal controls.

ReHo
The result of independent samples t-test showed that, after
GRF correction, ReHo significantly increased in the left
parahippocampal gyrus and right parahippocampal gyrus and
significantly decreased in the right middle occipital gyrus in
patients with MDD, as compared with normal controls (p < 0.05)
(see Table 3 and Figure 1).

Differences in Regions of Interest-Based Functional
Connections Between the Patients With Major
Depressive Disorder and Normal Controls
According to the independent samples t-test with GRF
correction, the functional connections between the left and right
parahippocampal gyri and between the right middle occipital
gyrus and middle temporal gyrus significantly decreased in
patients with MDD, as compared with normal controls (p < 0.05)
(see Table 4 and Figure 2).

ROC curve analysis was performed by extracting brain regions
with different ReHo values with the mean time series of the whole
brain functional connections in patients with MDD and normal
controls. The curves were plotted with the horizontal coordinate
as (1–specificity) and the vertical coordinate as sensitivity. The
Youden index of the ROC curve was further calculated as
sensitivity + specificity −1. The maximum value of the Youden
index was used as the basis for the optimal threshold to calculate

TABLE 4 | | Differences in regions of interest (ROI)-based functional connections
between patients with major depressive disorder (MDD) and normal controls.

Regions Voxel
size

BA Left/
Right

MNI peak coordinates Peak t
value

x y z

MDD < NCs

Temporal pole:
middle temporal
gyrus

57 – Right 42 21 −39 −23.081

44 – Left −45 18 −36 −19.406

Middle temporal
gyrus

56 – Left −69 −18 −9 −12.79

the sensitivity and specificity. As shown in Figure 3, the area
under the curve (AUC) for ReHo was 0.544 (95% CI: 0.445–
0.644), and the AUC for functional connectivity was 0.822 (95%
CI: 0.734–0.909). Logistic regression of mean time series of
ReHo with the mean time series of functional connections was
performed for the ROC curve analysis, which showed that the
AUC was 0.832 (95% CI: 0.752–0.911), with a sensitivity of 93.1%
and specificity of 75.5% (see Figure 4).

Comparison of Resting-State Brain
Function Between the Responsive and
Unresponsive Groups
ALFF/fALFF
There were no significant differences in brain areas between the
effective and ineffective groups in the ALFF/fALFF ratio using the
independent samples t-test.

ReHo
ReHo values in the right parahippocampal gyrus significantly
reduced in the responsive group as compared with the
unresponsive group, while no significant difference was found
in the right middle occipital gyrus and the left parahippocampal
gyrus, as shown in Table 5 and Figure 5.

Regions of Interest-Based Functional Connectivity
The result showed that functional connections of the middle
temporal gyrus in the unresponsive group were significantly
lower than those in the responsive group (p < 0.05), as shown
in Table 6 and Figure 6.

Correlations Between Changes in
Resting-State Brain Function and
Treatment Efficacy
The result showed that there was a negative correlation between
changes in resting-state ReHo and the HAMD-17 score reduction
rate when controlling for sex, age, and education (r = −0.265,
p = 0.028), as shown in Figure 7.
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FIGURE 2 | | Regions of interest (ROI)-based functional connections in patients with major depressive disorder (MDD) and normal controls.

FIGURE 3 | | ROC curves for patients with major depressive disorder (MDD).

Correlation Between Regions of Interest-Based
Functional Connectivity and Treatment Efficacy
According to the analysis, no correlation was found between
changes in resting-state functional connectivity and the HAMD-
17 score reduction rate (R = 0.116, p = 0.386).

DISCUSSION

The limbic system is the center of human emotions, behaviors,
and memories, and it helps to control stress responses, attention,
sexual instincts, etc. The limbic system consists of a complex set of
structures, including the cingulate gyrus, parahippocampal gyrus,
hippocampal structures, septa, and piriform lobe. As studies
advances, the scope of the limbic system has been gradually
expanded, and now includes areas that are similar to cortical
structures of the limbic lobe, such as the temporal lobe, the

posterior part of the frontal orbital gyrus, the anterior part of the
insula, and some subcortical structures that are closer in function
and connection, such as the septum, amygdala, hypothalamus,
superior colliculus, anterior thalamic nucleus, and medial region
of the midbrain tegmentum. The hippocampal structures,
parahippocampal gyrus and internal olfactory area, dentate
gyrus, cingulate gyrus, papillae, and amygdala are interconnected
through the Papez loop and connected extensively to other
brain structures, such as the neocortex, thalamus, and brainstem.
Therefore, researchers inferred that the role of the limbic
system is to enable information exchange between the midbrain,
mesencephalon, and neocortical structures. The limbic system
is involved in mediating instinctive and emotional behaviors
through connections with the hypothalamus and the autonomic
nervous system, which regulates involuntary body functions. The
limbic system is also involved in higher psychoneurological and
visceral activities; if damaged, it can lead to mental disorders
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FIGURE 4 | | Resting-state ROC curves for major depressive disorder (MDD).

such as hallucinations, emotional and memory disturbances,
abnormal behaviors, unresponsiveness, and impairment of
visceral activities.

In this study, no brain regions significantly differed in
ALFF/fALFF between patients with MDD and normal controls;
increased ReHo was found in the left parahippocampal gyrus
and right parahippocampal gyrus and decreased ReHo was found

TABLE 5 | | Brain regions with different resting-state ReHo between the
responsive and unresponsive groups.

Regions Voxel
size

Left/
Right

MNI peak coordinates Peak t
value

x y z

The effective group < ineffective group

Parahippocampal
gyrus

18 Right 30 −12 −27 −3.1133

FIGURE 5 | | Brain regions with different resting-state ReHo between the
responsive and unresponsive groups.

in the right middle occipital gyrus. With brain regions showing
different ReHo values between patients with MDD and normal
controls as ROIs, it was found that the functional connectivity
between the right and left parahippocampal gyri and between
the right middle occipital gyrus and middle temporal gyrus
were reduced in the patients with MDD. Previous studies have
found increased fALFF values in the left supraoccipital gyrus
and decreased fALFF values in the left parahippocampal gyrus
in patients with MDD, as compared to normal controls (Liu
et al., 2013). Fan et al. (2013) found that patients with MDD,
compared to normal controls, had increased ALFF values in
the right parahippocampal gyrus and decreased ALFF values
in the left angular gyrus and left middle occipital gyrus.
With regard to ReHo, a study found that patients with MDD
showed reduced ReHo values in the right orbitofrontal cortex,
cingulate gyrus, ventral anterior cingulate, posterior cingulate,
and insula, as well as in the left dorsal anterior cingulate, nucleus
accumbens, thalamus, temporal lobe, posterior cerebellum, and
bilateral occipital lobes (Yao et al., 2009). Studies on resting-
state functional connectivity in MDD selected different ROIs.
Using the cingulate gyrus as the ROI, studies found that the
anterior subgenual cingulate gyrus had enhanced connectivity to
the dorsomedial frontal lobe and left dorsolateral frontal lobe and
decreased connectivity to the insula, amygdala, and precuneus
in in patients with MDD (Wang et al., 2012; Connolly et al.,
2013). Using the amygdala as the ROI, studies have shown that
patients with MDD have decreased functional connectivity of
the amygdala with the ventral lateral prefrontal lobe, insula,

TABLE 6 | | Brain regions with different functional connectivity between the
responsive and unresponsive groups.

Regions Voxel
size

BA Left/
Right

MNI peak coordinates Peak t
value

x y z

The effective group < ineffective group

Middle temporal
gyrus

21 – Left −54 −21 0 −2.4946
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FIGURE 6 | | Brain regions with different functional connectivity between the
responsive and unresponsive groups.

middle temporal/superior gyrus, cerebellum and occipital lobe
and enhanced functional connectivity with the bilateral temporal
poles; the amygdala also had reduced functional connectivity with
the left ventral prefrontal lobe (Tang et al., 2013; Ramasubbu
et al., 2014). Using the hippocampus as the ROI, a study found
that patients with MDD had enhanced functional connectivity
of the hippocampus with the bilateral limbic system, temporal
lobe, and inferior/medial prefrontal lobe and reduced functional
connectivity with the bilateral prefrontal, occipital, and parietal
lobes, as well as the cerebellum (Cao et al., 2012). ReHo-mean
time series and the averaged functionally connected time series
were used in the logistic regression for the ROC curve analysis
with a discrimination of 83%, indicating that resting-state MRI
provided a high diagnostic value for MDD.

This study explored the association between the efficacy
of SSRIs for MDD and resting-state brain function. It found
that after 2 weeks of treatment with SSRIs, there was no

difference in ALFF/fALFF between the unresponsive group and
the responsive group, while elevated ReHo values were found
in the right parahippocampal gyrus. We also found that the
unresponsive group had lower functional connectivity in the
middle temporal gyrus. Previous studies have shown that the
activity of the bilateral frontal middle lobes, parahippocampal
gyrus, and cerebellum might be related to patient responses to
drugs (Alexopoulos et al., 2012). Differences in the correlations
between resting-state functional connectivity and treatment
outcomes might be resulted from different grouping method or
analyses of data from patients with different severities of MDD.

In summary, the inconsistent results of resting-state fMRI
studies on MDD might be attributed to the following factors.
First, the different diagnostic criteria for MDD used in these
studies led to differences in study samples; second, the status
of patients with MDD was different across studies; and third,
the different methods of data collection, processing, and analysis
might have an impact on the results. Based on resting-state
fMRI imaging, the present study found that the mechanisms of
MDD and the prediction of responses to SSRIs might involve
abnormalities in brain regions associated with affective disorders,
especially in the limbic system, including the hippocampus,
parahippocampal gyrus, cingulate gyrus, and temporal lobe.

Despite the strengths in our study, some limitations should
also be noted. Firstly, there is a lack of longitudinal MRI
data due to great loss to follow-up. A follow-up plan has
been developed to expand our sample and prepare for further
long-term longitudinal follow-up studies. Secondly, it has been
demonstrated in previous studies that the duration of illness
before treatment in patients with depression is associated with
greater volume loss in some brain regions. However, this was not
included the data collected for this study. Thirdly, the range of age
in this study was broad, and the effects of brain development and
aging were not taken into account. Finally, the reproducibility
of the study results was relatively low. Hopefully, future studies
using multiple imaging methods and multicenter data can further
validate the results of this study and provide guidance for the
prediction of treatment efficacy and individualized treatment for
patients with MDD.

FIGURE 7 | | Scatterplot of major depressive disorder (MDD) based on ReHo and HAMD-17 score reduction rate.
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CONCLUSION

Through analyses of the fMRI data and treatment response of
patients with MDD, this study suggested that altered resting-
state function in some brain regions might be a neurobiological
marker for the diagnosis of MDD and that the degree of
impairment in resting-state ReHo at baseline is expected to be
a predictor of the efficacy of SSRIs in patients with MDD.
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Objective: Adult patients with major depressive disorder (MDD) may not actively reveal
their suicidal ideation (SI). Therefore, this study is committed to finding the alterations
in the cingulo-opercular network (CON) that are closely related to SI with multi-imaging
methods, thus providing neuroimaging basis for SI.

Method: A total of 198 participants (129 MDD patients and 69 healthy controls)
were recruited and evaluated with the Montgomery–Asberg Depression Rating Scale
(MADRS). The healthy individuals formed the HC group, while the MDD patients were
subdivided into no SI MDD (NSI, n= 32), mild SI MDD (MSI, n= 64), and severe SI MDD
(SSI, n= 33) according to their MADRS item 10. We obtained MRI data of all participants
and applied regional homogeneity (ReHo) analysis to verify a previous finding that links
CON abnormality to SI. In addition, we employed the structural covariance network
(SCN) analysis to investigate the correlation between abnormal structural connectivity of
CON and SI severity.

Results: Compared to those of the HC group, MDD ReHo values and gray matter
volume (GMV) were consistently found abnormal in CON. ReHo values and GMV of
the right orbital inferior frontal gyrus (ORBinf.R) in the MDD group decreased with
the increase of SI. Compared to the HC group, the MDD patients showed enhanced
structural connectivity of three pairs of brain regions in CON [ACC.L–left superior
frontal gyrus (SFG.L), SFG.L–left middle temporal gyrus (MTG.L), and the SFG.L–left
post-central gyrus (PoCG.L)]. Compared with that of the NSI and MSI groups, the
structural connectivity of three pairs of brain regions in CON is enhanced in the SSI
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groups [ORBinf.L–right ventral posterior cingulate gyrus (VPCC.R), VPCC.R–SFG.R,
and SFG.R–PoCG.R].

Conclusion: Our findings showed the distinctive ReHo, GMV, and SCN pattern of
CON in MDD patients with SI; and with the severity of suicide, abnormal brain regions
increased. Our finding suggested that MDD patients with different severity of SI have
different neuroimaging changes.

Keywords: major depressive disorder, suicidal ideation, regional homogeneity, functional MRI, structure
connectivity

INTRODUCTION

Major depressive disorder (MDD) is a common disease affecting
more than 264 million people worldwide (World Health
Organization, 2017). Depression is different from mood swings
and short-term emotional responses to challenges in daily life,
and long-term moderate or severe depression may become a
serious illness. At its worst, depression can lead to suicide, and
nearly 800,000 people die by suicide each year (World Health
Organization, 2017). To a large extent, the results of the suicide
risk assessment can be attributed to the subjective willingness
of patients (Walker et al., 2015). Suicide incurs unacceptably
high costs for society, families, and individuals (Walker et al.,
2015). MDD patients with (vs. without) suicidal ideation (SI)
(Cooper et al., 1994) have a higher rate of suicide attempts
(Pfaff and Almeida, 2004; Du et al., 2017). SI can be considered
the first step on the road to a suicide attempt (Ding et al.,
2016). SI can lead to suicide attempts and may be caused
by biological factors (van Heeringen et al., 2014). The degree
of heritability of symptoms of depression, such as physical
symptoms, guilt, and SI, has been shown to vary (h2 range,
0–35%) (Fried and Nesse, 2015). SI has a higher heritability
coefficient than do other symptoms (Kappelmann et al., 2021).
In addition, SI is driven by neurobiological processes; it is not
merely a symptom of depression (Fried and Nesse, 2015; Du
et al., 2017). Identifying SI helps to reduce suicide attempts
(Ding et al., 2016).

Although the risk assessment of MDD patients can be carried
out by suicide scales, an investigative study found that adults may
not seek help by disclosing SI (McGillivray et al., 2022). MDD
patients with mild or severe SI can develop anxiety symptoms,
but people tend to pay more attention to patients with severe SI
while ignoring those with mild SI. This results in poor efficacy
for these patients and even severe, chronic, or even treatment-
resistant depression (Lieberman et al., 2020). Therefore, studying
the neural mechanisms of SI at different severity may prevent
this condition. MRI has been widely used as a non-invasive
method of studying brain structure and function in depressive
suicide attempters (Fried and Nesse, 2015; Du et al., 2017).
Neuroimaging may also be able to provide reliable indicators of
SI. Elucidating the neuroimaging characteristics of SI in MDD
could help clinicians to intervene early and thereby reduce the
risk of suicide. While the prefrontal cortex (PFC) has been proved
to be associated with SI in previous studies (Myung et al., 2016), it
is generally believed that SI is related to abnormal neural network

connectivity and not limited to a single brain region (Chase et al.,
2017; Bani-Fatemi et al., 2018; Schmaal et al., 2020).

Recent studies have reported that disconnection of the
cingulo-opercular network (CON) is the key to many mental
illnesses (Jollant et al., 2010). Components of the CON include
the anterior cingulate cortex (ACC), PFC, parietal cortex, and
basal ganglia. These are major brain regions associated with
MDD (Dosenbach et al., 2007; Kaiser et al., 2015). CON helps to
flexibly control target-oriented performance and has been shown
to participate in maintaining the stability of executive function
cross-testing in the main cognitive control and SI processing
(Dosenbach et al., 2007; Yang et al., 2020). In addition, research
has suggested that key areas of the CON are related to suicide in
MDD (Dosenbach et al., 2007; Bani-Fatemi et al., 2018; Yang et al.,
2020). For example, it was recently reported that abnormality
of brain regions in the CON is related to the severity of MDD
symptoms (Sylvester et al., 2012; Rappaport et al., 2020). Since
MDD patients with SI tend to have higher depression scores than
those without SI, and CON is associated with disease severity, it
is suggested that CON may reflect SI in MDD.

Regional homogeneity (ReHo) can reflect the temporal
homogeneity of blood oxygen level-dependent signals in a
certain region, revealing the temporal homogeneity of activity
in various brain regions in the resting-state functional network
(Yan et al., 2021). The ReHo analysis can be used to explore
the neural activity of abnormal brain regions in the functional
network. Structural covariance network (SCN) is an established
measure of the cortex–cortex connectivity, which shows a good
correspondence with transcribed brain networks and anatomical
connectivity inferred from white matter fiber tract imaging
(Gong et al., 2012). As a unique measure of connectivity,
SCN can be used to investigate communication factors between
anatomically connected non-adjacent brain regions where there
is information exchange between synapses of non-adjacent
neurons, forming macro-level structural covariance (Alexander-
Bloch et al., 2013). In addition, SCN can provide a model
for understanding progressive cortical abnormalities in mental
disorders (Crossley et al., 2014). The relationship between
functional ReHo and SCN changes should be explored because
this information will help to increase our understanding of
the mechanism of SI at the level of brain function and
structural connectivity.

We propose the hypothesis that SI at different severity in MDD
patients is associated with different changes of CON. ReHo value
and SCN analysis method based on gray matter volume (GMV)
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can reflect the characteristics of CON in functional and structural
connectivity and may better reveal whether the changes of CON
varied with different SI severity.

MATERIALS AND METHODS

Participants
First-episode, drug-naïve adults diagnosed with MDD were
recruited from the psychiatric outpatient and inpatient
departments of psychiatry in the First Affiliated Hospital of
Kunming Medical University between 2015 and 2017. To
mitigate the influence of vascular factors on brain structure, the
participants in this study were adults under the age of 45 (Kendler
et al., 2009). The psychiatric diagnosis was based on the DSM-IV,
and at least two psychiatrists were in agreement (vanPraag,
1990). Hamilton Anxiety Scale (HAMA) was used to assess the
severity of participants’ anxiety symptoms (Hamilton, 1960). All
of the patients had been diagnosed with MDD for the first time
and had never received anti-sedatives or systemic psychotherapy.
An HC group was matched for age, gender, education level, and
dominant hand. The exclusion criteria of MDD patients were
as follows: previous brain injury with loss of consciousness,
history of cortisol drug use, history of substance abuse, previous
neurological disease, pregnancy, diagnosis of another mental
illness or neurological disease, received electroconvulsive therapy
for MDD, and dominant left hand. The exclusion criteria of the
HC group were as follows: previous brain injury with loss of
consciousness, pregnancy, history of psychiatric or neurological
disease, and dominant left hand. The research protocol was
approved by the First Affiliated Hospital of Kunming Medical
University’s ethics committee. All participants were provided
with details about the study, and their consent was obtained.

Subgroups
To better study whether the brain abnormality model is related
to the severity of SI, the 10th item of the Montgomery–Asberg
Depression Rating Scale (MADRS) measures SI on a scale of
0–6, representing the feeling that life is not worth living, the
feeling that a natural death would be welcome, suicidal thoughts,
and preparations for suicide (Montgomery and Åsberg, 1979). In
the past, only patients with scores ≥4 were studied (Murrough
et al., 2015). A MADRS 10th item score ≥4 indicating severe
SI is consistent with other suicide-related scale assessments
(Montgomery and Åsberg, 1979; Murrough et al., 2015). To verify
the hypothesis of this current study, we extended on previous
research and MDD patients with scores from 1 to 3 and ≥4. All
recruited patients were divided into three groups: no SI (NSI, 0
points), mild SI (MSI, 1–3 points), and severe SI (SSI,≥4 points).

Image Acquisition
Magnetic resonance (MR) images were captured by an
experienced radiologist using an Achieva 3.0 Tesla MRI
system (Philips, Eindhoven, Netherlands) with a 16-channel
phased-array head coil. T1- and T2-weighted scans were
obtained for all of the participants to rule out the presence
of brain abnormalities. High-resolution three-dimensional

MRI scans were acquired using a fast-spoiled gradient recalled
acquisition (FSPGR) sequence with the following parameters:
repetition time (TR)= 7.38 ms, echo time (TE)= 3.4 ms, matrix
size= 256 mm× 256 mm, field of view (FOV)= 250× 250 mm,
flip angle = 8◦, slice thickness = 0.6 mm, slices = 230 with no
gap, and acquisition time= 6 min 53 s.

The functional image data at rest were obtained by
using the echo-planar imaging sequence with the following
parameters: TR = 2,200 ms, TE = 35 ms, flip angle = 90◦,
FOV = 230 mm × 230 mm, matrix size = 128 × 128 mm, slice
thickness = 3.0 mm without interlayer spacing, slices = 50, scan
duration time= 17 min 40 s.

Functional MRI Preprocessing and
Regional Homogeneity Calculation
Data preprocessing was performed in Matlab 2018b using the
resting-state functional MRI (fMRI) analysis package (DPABI1);
the first 10 images of the initial MRI signal were discarded
to reduce the effect of pre-subject instability, head motion
correction, and smoothing constraints. Participants were not
displaced by more than 1.5 mm in the x-, y-, or z-axes, temporally
bandpass filtered (0.01–0.08 Hz) and linearly detrended, imaging
data space was normalized to Montreal Neurological Institute
(MNI) space and resampled to 3 × 3 × 3 mm3, and 24 head
motion parameters were obtained.

Regional homogeneity analysis was conducted by the software
DPABI for the MDD and HC groups. The time series of a given
voxel with the time series of its nearest neighbors is generated
by calculating the Kendall coefficient (KCC) for each ReHo to be
mapped (neighboring voxels were set as 26) (Yan et al., 2021).
Normalization to ReHo was performed by dividing the KCC
between voxels by the average KCC of the whole brain to reduce
the effect of individual differences (Tononi et al., 1998).

Gray Matter Volume Preprocessing
FreeSurfer 7.0 software2 was used to process images to estimate
GMV. The pre-processing included motion correction, averaging
of multiple volume T1-weighted images, stripping non-brain
tissues by using hybrid watershed/cortical surface deformation,
automated Talairach deformation, segmentation of gray
matter tissue, subdivision of white matter boundary and
smoothing, intensity normalization, gray matter boundary
network identification, automatic topology correction, surface
deformation, and optimal positioning of intensity gradient
gray/white matter boundary. The location of the gray
matter/cerebrospinal fluid boundary was used to transform
the maximum intensity definition to other tissue types. The
entire cortex of each participant was visually inspected, and
the segmentation was manually edited for inaccuracies (Fischl,
2004). The cortex was then divided based on the Destrieux atlas
(Destrieux et al., 2010). This produced a vector of estimated
cortical volumes for each bilateral frontal lobe, the anterior
cingulate gyrus, the posterior cingulate cortex (PCC), the
thalamus, the parietal lobe, the temporal lobe, and the basal

1http://rfmri.org/DPABI
2https://surfer.nmr.mgh.harvard.edu
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ganglia in the CON (58 brain regions) for each participant (see
Figure 2A and details provided in the Supplementary Material).

Statistical Analysis
The demographics and clinical characteristics of the participants
were analyzed using SPSS 18.0. ANOVA was used to test
demographic differences among three MDD groups and the
HC group.

Regional Homogeneity Analysis
A voxel-based ANOVA comparison of the whole brain ReHo
maps among the MDD and HC groups was performed in REST
package viewer1.8.3 The statistical threshold was set at p < 0.05
after false discovery rate (FDR) correction with an extent cluster
of 100 contiguous voxels or greater using age, sex, and education
level as covariates. The ReHo values of each MDD patient were
extracted from the brain regions with abnormal ReHo, which
are based on Matlab using the DPABI (see text footnote 1).
The correlations between abnormal ReHo and MADRS total
scores and 10th item scores were determined using Pearson’s
correlation analyses, controlling for age, gender, and education
level (p < 0.05).

Gray Matter Volume Analysis
Analysis of covariance (ANCOVA) was used to test the GMV
values of CON (58 brain regions) among three MDD groups
and the HC group in which age, gender, and education level
were used as covariates. Then post hoc t-tests were conducted
to identify differences in the GMV values between each pair
of groups by using the same covariates mentioned above.
Then post hoc t-tests were used to compare among MDD
subgroups, by using age, sex, education level, and illness duration
as covariates. To correct for multiple comparisons, the FDR
was controlled at 5% using the Benjamini–Hochberg procedure
(Benjamini and Hochberg, 1995).

Structural Covariance Network Analysis
Gray matter volume was used as the morphological measurement
in this study, and Pearson’s correlation was used to calculate
structural covariance. A Pearson’s correlation coefficient was
calculated for the estimated GMV values of each pair of cortical
regions. First, age, gender, and illness duration were regressed on
the GMV estimates (Alexander-Bloch et al., 2013; Wannan et al.,
2019). An r-to-z transformation was performed on all correlation
coefficients to improve normality. Separate connection matrixes
were produced for each of the three patient groups and the HC
group to quantify the strength of the connection between the
pair of regions. A two-sample t-test was used to independently
test the structural covariance between the MDD groups and the
control group for each area pair. A non-parametric permutation
test (10,000 permutations) was used to determine the statistical
significance of between-group differences in the network. Non-
parametric methods were used to identify the null distribution
of the data, enabling the use of non-standard test statistics

3http://restfmri.net/forum/REST_V1.8

(Wannan et al., 2019). FDR was controlled to correct for multiple
comparisons (Benjamini and Hochberg, 1995).

RESULTS

Participants’ Characteristics
Table 1 shows the demographics and clinical characteristics of
the participants. There were no significant differences in gender,
age, and education level between 129 patients and 69 HCs. The
198 participants were classified as follows: 32 NSI, 64 MSI, 33
SSI, and 69 HC. The four groups showed no differences in age,
gender, education level, or illness duration. The NSI and MSI
groups scored lower than the SSI group for total MADRS score
(NSI group t = 1.62, p < 0.001; MSI group t = 1.37, p < 0.001)
and MADRS 10th item score (NSI group t = 0.14, p < 0.001; ESC
group t = 0.12, p < 0.001). There was no significant difference
in the MADRS total scores between NSI and MSI, but both were
lower than the score in the SSI group. The MSI and SSI groups
scored higher than the NSI group for HAMA total score (Table 1).

Regional Homogeneity and Correlation
Results
Figure 1A and Table 2 show the ANOVA of the ReHo value
between the MDD and HC groups with age, gender, and
education level as covariates. Compared with the HC group,
there were lower ReHo values in the left PCC, the left triangular
of the inferior frontal gyrus (IFGtriang), the left post-central
gyrus (PoCG), the left inferior parietal gyrus (IPL), the left
superior temporal gyrus (STG), the left temporal pole gyrus
(TPO), and the bilateral middle temporal gyrus (MTG) in the
MDD group, as well as higher ReHo values in the left ACC, the
left cerebellum (CE), the right median cingulate cortex (MCC),
the right middle frontal gyrus (MFG), the right orbital inferior
frontal gyrus (ORBinf), and the right precentral gyrus (PreCG)
in the MDD group. Disrupted ReHo is the core brain region
of CON at rest (Dosenbach et al., 2007; Kaiser et al., 2015).
We used the REX toolbox to extract the mean value of ReHo
in different brain regions of the MDD group; after controlling
for age, gender, and education level, the right orbital inferior
frontal gyrus (ORBinf.R) (r = −0.41, p < 0.01) and the right
middle frontal gyrus (MFG.R) were significantly correlated with
SI severity (MADRS 10th item, 0–6 scores) in the MDD group
(r = 0.46, p < 0.01) (Figure 1B).

Gray Matter Volume Results
Gray matter volume was found abnormal in regions of the left
ACC (ACC.L), the left superior frontal gyrus (SFG.L), the left
middle temporal gyrus (MTG.L), and the ORBinf.R in the MDD
and HC groups by ANCOVA (Table 3).

Compared with the HC group, the three MDD groups have
decreased GMV of the ACC.L and SFG.L. Post hoc analysis
revealed that GMV of the ACC.L and SFG.L in the NSI group;
the ACC.L, SFG.L, and ORBinf.R. in the MSI group; and the
ACC.L, MTG.L, SFG.L, PoCG.L, PoCG.R, ORBinf.R, and right
ventral posterior cingulate gyrus (vPCC.R) in the SSI group
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TABLE 1 | The demographics and clinical characteristics of the participants.

Variables (mean ± SD) MDD HC p-Value

Gender (male/female) 39/90 20/49 0.13a

Age (years) 32.4 ± 7.6 32.9 ± 7.5 0.63a

Education level (years) 12.0 ± 4.3 13.0 ± 4.0 0.19a

Variables (mean ± SD) NSI MSI SSI HC p-Value

Gender (male/female) 11/21 18/46 10/23 20/49 0.73b

Age (years) 33.3 ± 7.7 31.9 ± 7.5 31.9 ± 7.8 32.9 ± 7.5 0.70b

Education level (years) 12.1 ± 3.9 12.0 ± 4.4 12.3 ± 4.1 13.0 ± 4.0 0.94b

MADRS total score 26.279 ± 6.0* 28.64 ± 6.3* 37.18 ± 6.7* – 0.00c

MADRS 10th item(suicidal ideation) 0* 2 ± 0.61* 4.19 ± 0.59* 0.00c

HAMA score 18.03 ± 4.69* 24.41 ± 5.90* 25.41 ± 6.26* 0.01c

Illness duration (months) 14.00 ± 19.24 13.12 ± 17.81 12.39 ± 16.34 – 0.74b

MDD, major depressive disorder; MADRS, Montgomery–Asberg Depression Rating Scale; HAMA, Hamilton Anxiety Scale; LSD, least significant difference.
aThe p-values were obtained by two-sample t-test.
bThe p-values were obtained by ANOVA.
cThe p-values were obtained by chi-square test; LSD correction was used for post hoc comparison.
*Compared to MDD groups. p < 0.05 MADRS score: SSI > NSI, MSI; HAMA score: MSI, SSI > NSI.

FIGURE 1 | Correlation analysis of significant ReHo differences between MDD and HC groups with MADRS 10th item score. (A) Statistical map depicts higher and
lower ReHo of MDD compared with HC groups. Abnormal ReHo of anterior cingulate cortex, prefrontal lobe, parietal cortex, and cerebellum. Disrupted regional
homogeneity of the core brain region of CON at rest. (B) Correlation analyses between ReHo and MADRS 10th item score. Blue denotes lower ReHo, and red
denotes higher ReHo. L, left side; R, right side; ReHo, regional homogeneity; ORBinf, right orbital inferior frontal gyrus; MFG, middle frontal gyrus; MADRS,
Montgomery–Asberg Depression Rating Scale; FDR, false discovery rate; MDD, major depressive disorder. FDR p < 0.05. MADRS 10th item score: suicidal ideation,
0–6 score.

decreased (FDR correction) (Table 3). The GMV of the ACC.L
was smaller in the SSI group than in the NSI group (FDR
correction) (Figure 2B).

Compared with NSI, GMV of ORBinf.R decreased in SSI and
MSI. Compared with MSI, the GMV of ORBinf.R in the SSI group
was remarkably reduced (FDR correction) (Figure 2B).
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TABLE 2 | Regional homogeneity analysis between MDD and HC groups.

Cluster locationHC > MDD Hemisphere Peak (MNI) Number of voxels Z-value

x y z

Posterior cingulate cortex, PCC L −6 −54 6 32 4.2727

Triangular of Inferior frontal gyrus, IFGtriang L −48 27 24 36 4.3395

Post-central, PoCG L −60 −18 33 38 3.9647

Inferior parietal gyrus, IPL L −36 −42 42 38 5.0662

Superior temporal gyrus, STG L −54 −9 0 40 4.9904

Temporal pole gyrus, TPO L −51 9 −3 14 4.3405

Middle temporal gyrus, MTG L −51 −66 21 45 4.0296

Middle temporal gyrus, MTG R 63 −18 −12 56 4.0296

HC < MDD

Anterior cingulate cortex, ACC L 14 30 21 125 −4.3745

Cerebellum, CE L −3 −39 −12 28 −4.178

Median cingulate cortex, MCC R 12 −33 39 66 −4.0981

Middle frontal gyrus, MFG R 39 9 60 43 4.2547

Orbital inferior frontal gyrus, ORBinf R 33 −21 9 75 −4.4684

Precentral gyrus, PreCG R 18 −51 15 40 −6.4008

MNI, Montreal Neurological Institute; ReHo, regional homogeneity; L, left hemisphere; R, right hemisphere; MDD, major depressive disorder; FDR, false discovery rate.
FDR p < 0.05.

Structural Covariance Network Results
Compared with the HC group, SCNs of the ACC.L–SFG.L (HC
r = 0.32, z = 0.33; NSI r = 0.52, z = 0.57, MSI r = 0.48, z = 0.52;
and SSI r = 0.72, z = 0.90) and SFG.L–TMG.L (HC r = 0.40;
z = 0.42, NSI r = 0.56, z = 0.63; MSI r = 0.54 z = 0.60, and SSI
r = 0.68, z = 0.97) increased in the NSI, MSI, and SSI groups.
The SCN of SFG.L–PoCG.L (HC r= 0.49, z= 0.53; NSI r= 0.52,
z = 0.56; MSI r = 0.54, z = 0.59 and SSI r = 0.87, z = 1.32)
increased in SSI (FDR p < 0.05) (Figure 3, left).

The structural connectivity related to SI is mainly the
following three pairs: OrBInf.R–vPCC.R (HC r = 0.29, z = 0.29;
NSI r = 0.27, z = 0.28, MSI r = 0.47, z = 0.52 and SSI r = 0.56,
z = 0.71; SSI > MSI > NSI, HC); vPCC.R–SFG.R (HC r = 0.50,
z = 0.55; NSI r = 0.48, z = 0.50; MSI r = 0.68, z = 0.80 and
SSI r = 0.70, z = 1.03; SSI, MSI > NSI), and SFG.R–PoCG.R
(HC r = 0.31, z = 0.33; NSI r = 0.31, z = 0.32; MSI r = 0.33,
z = 0.35 and SSI r = 0.41, z = 0.44 SSI > MSI, NSI, HC).
SCN increased with the increase of Si severity (FDR p < 0.05)
(Figure 3, right).

DISCUSSION

Using multimodal imaging analyses, we explored the underlying
neuropathological mechanisms associated with SI severity in
MDD patients. From analyses of whole-brain ReHo values, we
found ReHo changes within the CON. Specifically, ReHo changes
of the right middle frontal gyrus and orbital inferior frontal
gyrus are negatively correlated with SI severity. Compared to HC,
MDD patients were found to have abnormal ReHo and GMV
in the ACC.L. GMV of the ORBinf.R was negatively correlated
with SI severity. This suggests that there is heterogeneity in
the function and structure of CON in MDD patients with
SI of different severity. Previous studies have demonstrated

intercorrelation between defects in brain structural connection
and brain dysfunctions (Honey et al., 2009). Changes in
functional dynamics are usually caused by changes in structures;
at the same time, long-term functional changes can lead to
structural changes through synaptic plasticity (Hagmann et al.,
2010). The present study builds upon this structural network
analysis and is the first to explore alterations in the structural
connectivity of the NSI, MSI, and SSI.

Compared with the HC group, with brain regions with
abnormal ReHo located in CON (Dosenbach et al., 2007; Jollant
et al., 2011), the MDD patients showed lower ReHo of the
ACC.L (Boes et al., 2018). The ACC.L is a key region associated
with MDD (Boes et al., 2018; Crowell et al., 2019; Cole et al.,
2020; Rappaport et al., 2020). We investigated that the ORBinf.R
(r =−0.41, p < 0.01) was significantly correlated with SI severity
(MADRS 10th item, 0–6 scores) at the rest of the MDD group.
The ORBinf is a part of the orbitofrontal cortex (OFC) in CON
that participates in decision-making, reward learning (Izquierdo,
2017), emotional processes, and cognitive control (Kuusinen
et al., 2018). Interestingly, poor decision-making about risk
and safety is associated with lateral activation changes in both
individuals with SI and their first-degree relatives, indicating that
lesions in the OFC (BA47) may be a biomarker of increased risk
of suicide (Ding et al., 2016; Johnston et al., 2017). Furthermore,
our study also showed that the ReHo values of ORBinf.R in CON
are negatively correlated with SI severity.

Compared with the HC group, the MDD patients showed
atrophy of the ACC.L, and atrophy of the ACC.L may be related
to MDD (Boes et al., 2018). In CON, we found the reduction
GMV of the ORBinf.R and decreased GMV with increased SI
severity. The magnitude of ORBinf.R volume atrophy and lower
ReHo has also been found to be positively correlated with SI
score in CON (Yang et al., 2020). A prior analysis showed that
reduction in OFC volume (Arnone et al., 2011) and cortical
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TABLE 3 | Analysis of covariance of gray matter volume among MDD and HC groups.

ANCOVA results Hemisphere F p

Anterior cingulate cortex, ACC L 7.07 0.008

Superior frontal gyrus, SFG L 6.01 0.01

Middle temporal gyrus, MTG L 6.77 0.01

Orbital inferior frontal gyrus, ORBinf R 8.27 0.005

NSI (n = 32) < HC (n = 69) Hemisphere NSI HC T p

Anterior cingulate cortex, ACC L 4, 138 ± 396 4, 351 ± 467 8.27 0.001

Superior frontal gyrus, SFG L 1, 570 ± 165 1, 826 ± 190 6.38 0.003

MSI (n = 64) < HC (n = 69) Hemisphere MSI HC T p

Anterior cingulate cortex, ACC L 3, 858 ± 380 4, 351 ± 467 8.70 0.0003

Superior frontal gyrus, SFG L 1, 599 ± 195 1, 826 ± 190 5.82 0.004

Orbital inferior frontal gyrus, ORBinf R 869 ± 107 1, 002 ± 178 7.00 0.002

SSI (n = 33) < HC (n = 69) Hemisphere SSI HC T p

Anterior cingulate cortex, ACC L 3, 590 ± 508 4, 351 ± 467 10.01 <0.0001

Middle temporal gyrus, MTG L 6, 764 ± 1, 360 7, 292 ± 1, 232 5.81 0.004

Superior frontal gyrus, SFG L 1, 269 ± 187 1, 826 ± 190 6.52 0.002

Post-central gyrus, PoCG L 3, 011 ± 613 3, 790 ± 558 5.12 0.003

Orbital inferior frontal gyrus, ORBinf R 821 ± 118 1, 002 ± 178 8.43 0.001

Ventral posterior cingulate cortex, vPCC R 697 ± 148 861 ± 131 4.43 0.012

The F values were obtained using ANCOVA for age, gender, and education level as covariates.
The post hoc t-tests were used to compare among MDD and HC groups.
FDR, p < 0.05, healthy group (HC), no suicidal ideation (NSI), mild suicidal ideation (MSI), and severe suicidal ideation (SSI).
L, left hemisphere; R, right hemisphere; MDD, major depressive disorder; ANCOVA, analysis of covariance; FDR, false discovery rate.

FIGURE 2 | Comparison of gray matter volume (GMV) of 58 brain regions in CON. (A) Frontal and parietal lobe (green), cingulate gyrus (purple), temporal lobe (blue),
insula (gray), basal ganglia (orange), and thalamus (gold) in CON (58 regions). (B) The left anterior cingulate gyrus (ACC.L) of three major depressive disorder (MDD)
groups has a smaller GMV than the HC, and NSI > SSI. The right orbital inferior frontal gyrus (ORBinf.R), MSI, and SSI have smaller GMV than HC, and
NSI > MSI > SSI [∗p < 0.05, false discovery rate (FDR)]. Healthy group (HC), no suicidal ideation (NSI), mild suicidal ideation (MSI), and severe suicidal ideation (SSI).

thickness (Suh et al., 2019) in MDD patients was associated
with SI (Wagner et al., 2011). The results of the GMV analysis
were consistent with the previous ReHo analysis, which also used

multimodal imaging analysis to verify the reliability of results. As
far as we know, there have been few studies on the structure of
the CON focusing on SI at different severity, and most related
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FIGURE 3 | Comparison of CON structural covariance network. (Left side) Compared with HC, there is an abnormal increase in the structural covariance of the
three MDD groups. The network is concentrated on the left side of the brain. The three pairs include the anterior cingulate gyrus (ACC)–superior frontal gyrus (SFG),
SFG–post-central gyrus (PoCG), and SFG–middle temporal gyrus (MTG). (Right side) The comparison of the three MDD groups is found to be concentrated on the
right side of the brain; three pairs include ORBinf–ventral posterior cingulate gyrus (vPCC), vPCC-SFG, and SFG–PoCG; structural covariance increases with
increasing suicidal ideation. There is no difference between HC and NSI. Healthy group (HC), no suicidal ideation (NSI), mild suicidal ideation (MSI), and severe
suicidal ideation (SSI). Blue line, comparison between MDD group and HC; yellow line, comparison between MDD three groups. ∗p < 0.05, false discovery rate
(FDR).

research has focused on functional abnormalities, which are often
due to structural abnormalities (Fried and Nesse, 2015).

Unlike the structural networks of the HC group, network
connectivity in the MDD groups was abnormal, and as the
severity of illness abnormality spread from the ACC.L to the
SFG.L, this then affected the left central posterior gyrus and left
middle temporal gyrus; this finding is consistent with a series of
studies (Repple et al., 2020; Yang et al., 2020). The cingulate gyrus
forms a C-shape adjacent to the prefrontal lobe (Williams(ed.),
2021). As MDD progresses, abnormal information transmission
by SFG.L neurons or reduction of regional nutrition results in
increased structural connectivity between the two brain regions,
and SFG.L is also affected (Raj et al., 2012; Weickenmeier
et al., 2018) by shrinkage and abnormal structural connectivity.
A functional brain network study of repetitive transcranial
magnetic stimulation (TMS) treatment of MDD (Philip et al.,
2018) found that the ACC.L of the pathological neural network
was connected to the left prefrontal lobe; after receiving TMS
treatment, abnormalities of the frontal and parietal network are
improved in clinically cured patients (Belleau et al., 2019). Our
results on the MDD and HC groups are basically consistent with
previous structural and functional network studies, indicating the
feasibility of SCN analysis.

In the present study, MDD patients with SI at different
severity showed not only specific differences in ReHo and GMV
but also characteristic structural connectivity between brain
regions in the SCN. Abnormal structural connectivity related
to SI was concentrated in the right hemisphere of the CON in
three circuits: ORBinf.R–vPCC.R, vPCC.R–SFG.R, and SFG.R–
PoCG.R. The concentration in the right hemisphere may be
because the right OFC is closely involved in cognitive control
and decision-making (Ding et al., 2016; Johnston et al., 2017).
Efferent nerve fibers traveling from the OFC to the cingulate
gyrus enable it to influence behavior and physiological responses
(Burks et al., 2018). As a result, ORBinf.R atrophy (Yang
et al., 2020) affects the communication of information between
the right-sided CON brain regions, resulting in the spread
of vPCC.R abnormalities to the frontal and parietal regions.
Eventually, the CON is progressively damaged with SI increases.
GMV atrophy of the ORBinf.R and ORBinf.R–vPCC.R circuit
abnormality may be associated with SI at different severity
and used as a marker for suicide prediction and assessment
in the future.

Our findings are consistent with previous studies that
demonstrated that MDD is a degenerative mental illness
dominated by disrupted ReHo (Späti et al., 2015) and GMV
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atrophy (Schmaal et al., 2020; Zhang et al., 2020; Stein et al.,
2021). By using ReHo and SCN analysis (Lerch et al., 2006;
Alexander-Bloch et al., 2013), we found that compared with
healthy people, MDD patients had functional and structural
defects in the CON and showed disrupted ReHo and GMV
atrophy in the ACC.L and abnormal structural connectivity
of the ACC.L–SFG.L (Boes et al., 2018; Crowell et al., 2019;
Cole et al., 2020; Rappaport et al., 2020). MDD with SI at
different severity has specific functional defects and structural
network changes located in the ORBinf.R of CON (Yang
et al., 2020) and showed disrupted ReHo and GMV atrophy
in the ORBinf.R and abnormal structural connectivity of the
ORBinf.R–vPCC.R (Kappelmann et al., 2021). Our finding
suggested that MDD patients with different severity of SI have
different neuroimaging changes.

LIMITATIONS AND FUTURE DIRECTIONS

A significant limitation of this study is its cross-sectional
design. A longitudinal study is required to confirm the
results. The number of MDD patients with severe SI is small
in the present study. Participants in this study were not
professionally assessed by SI and were simply grouped according
to the MADRS for SI, which should be further analyzed
in detail using the professional suicide assessment scale in
the future.
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Altered Cingulum Functioning in
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Resting-State Functional Magnetic
Resonance Imaging Study
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Background: Major depressive disorder (MDD) with suicide attempts (SA) poses a
significant public health issue. This study aims to identify neurobiological markers for
MDD with SA on resting-state brain functional magnetic resonance imaging (rs-fMRI).

Methods: Fifty-one unmedicated adult MDD participants, 27 with SA on the Beck
Scale for Suicidal Ideation and 24 without SA, underwent rs-fMRI scanning. A group
of 30 healthy controls (HC) matched for age, gender, and education-level with MDD
were chosen. A whole brain analysis of regional homogeneity (ReHo) was performed
on subjects to identify regions where brain activity was associated with SA. Multiple
comparison analysis was performed for ReHo. Pearson’s correlation analysis was
performed between HAMD-SA scores and ReHo. The statistical significance level was
set at p < 0.05.

Results: We examined whether there were significant differences among the three
groups in whole brain ReHo during resting state. Subjects with SA showed significant
increase of ReHo in the right Cingulum Post in comparison with those without
SA. Subjects with SA showed significant decrease of ReHo in the right Cingulate
Gyrus/Precuneus in comparison with HC. The mean ReHo from the significant brain
region was associated with HAMD-SA (item 3 of the HAMD) scores (r = 0.349,
P = 0.012) but was not associated with HAMD-24 scores.

Conclusion: These results indicate that SA is associated with altered resting-state
brain activity. The pattern of elevated activity in the cingulum functioning may be
related to SA. Identifying cingulum activity associated with SA may help to elucidate
its pathogenesis and etiology.

Keywords: major depressive disorder, resting-state fMRI, regional homogeneity (ReHo), suicidal attempts,
cingulum functioning
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INTRODUCTION

Major depressive disorder (MDD) is a worldwide widespread
psychiatric disorder associated with premature death by suicide
(Saraceno, 2002; Kalin, 2020). The lifetime risk of suicide in
patients with MDD ranges from 5 to 11% (Angst et al., 2005;
Isometsä, 2014). Approximately 40–70% of those who have
attempted or committed suicide were diagnosed with major
depressive disorder (Rihmer, 2007). Recent studies suggest that
the lifetime prevalence of suicide attempts (SA) in MDD was as
high as 31% worldwide (Dong et al., 2019). Although the social
and personal costs of suicidal behavior are devastating, clinically,
suicide risk in MDD patients is predicted based on a few limited
scale tests. However, these tests are largely dependent on the
subjective wishes of the patients. Also, patients may be inclined
to avoid discussing SA with clinicians (Zalsman et al., 2016).
Therefore, it is important to identify markers associated with
SA, which may help to develop tests to assess the risk of suicide
and also have the potential to create more targeted therapeutic
strategies to reverse SA (Schmaal et al., 2020).

In an attempt to identify factors contributing to suicidal
behavior, an increasing number of researchers have studied
neurobiological markers pointing to functional and structural
alterations in the limbic zone of MDD patients with suicidal
behavior (Cao et al., 2016; Zhang et al., 2016). Meanwhile,
previous studies also found that both psychotherapy (Chaïb
et al., 2020) and psychoactive medication (Zalsman et al., 2016)
could reduce the risk of suicide. However, there are no objective
indicators to quantify this risk yet. Therefore, elucidating the
neural basis of suicidal behavior in MDD may provide insights
into early intervention and treatment. Resting state functional
magnetic resonance imaging (rs-fMRI) studies have found that
SA often occurs during mind rest phases, brain processes that
occur when subjects are not engaged in any specific mental
task (Rush and Beck, 1978). Previous studies showed that
SA was associated with a pattern of low self-esteem (Cox
et al., 2004; Bhar et al., 2008). Another study showed that
two dimensions of rumination, brooding, and reflection, were
predictors of suicidal ideation (Miranda and Nolen-Hoeksema,
2007). Moreover, rs-fMRI study explained the neural substrates
of depressive rumination and explicit account of functional
abnormalities in sgPFC in MDD (Hamilton et al., 2015).
Therefore, rs-fMRI is particularly beneficial in finding SA in
MDD related brain regions.

In magnetic resonance imaging (MRI), a powerful tool to
explore alterations in neural circuits is regional homogeneity
(ReHo), which reflects statistical similarity in spontaneous neural
activity between spatially adjacent brain tissues (Zhu et al.,
2005). ReHo is believed to reflect anatomical, morphological,
and intrinsic geometric similarities and topological functional
interactions of local brain structures. Abnormal ReHo reflects
changes in the temporal aspects of regional neural activity
(Jiang and Zuo, 2016). At present, the studies of brain function
mainly focus on evaluating local functional changes, and ReHo
is used as a measure of regional synchronization of the fMRI
time course, and has been widely used in many studies on
MDD. ReHo alterations in the prefrontal cortex, thalamus, right

supplementary motor area, and primary visual, auditory, and
motor cortices have been detected in MDD. A recent study found
that lower ReHo in the postcentral gyrus was associated with
depressive symptoms in MDD. In addition, a recent study (Xia
et al., 2019) provided some evidence for differentiating subgroups
of MDD. ReHo may be a transdiagnostic neurobiological basis
for reproducible alterations in the assessment of underlying
depressive symptoms.

Research has focused on investigating dynamic functional
connectivity or networks, which can provide information about
dynamic tissue changes in brain strength or space (Bassett and
Sporns, 2017). Studies in depressed patients have linked SA
to impulsive behavior and executive and emotional processing
dysfunction (Myung et al., 2016; Johnston et al., 2017). Notably,
executive functions and emotional processing involve brain
regions such as the orbitofrontal cortex, anterior cingulate cortex,
dorsolateral prefrontal cortex and temporal polar gyrus (Rogers
et al., 2004; Olson et al., 2007). Frontal limbic (Du et al., 2017)
and orbitofrontal thalamic functional connectivity (Kim et al.,
2017) and frontal cortical white matter connectivity (Myung
et al., 2016) were reduced in patients with SA compared to MDD
patients without SA. Convergent findings suggest the presence of
structural and fMRI abnormalities in MDD SA patients (Myung
et al., 2016; Du et al., 2017; Kim et al., 2017). The reason for the
inconsistency of these research results may be due to the limited
research indicators or the different focus of the research objects,
some teenagers (Ordaz et al., 2018) and women (Wei et al., 2018).
However, there are a few promising studies (Cao et al., 2015;
Chen et al., 2021) on suicide and ReHo indicators, which in turn
encourages additional related research.

In an effort to characterize MDD patients with concomitant
SA, we applied ReHo on resting state fMRI of MDD patients
with and without SA. We sought to determine (1) whether MDD
patients with SA show a different pattern of local consistency
than MDD patients without SA and (2) whether the altered ReHo
values could provide a neural marker to predict the severity of
SA. By studying ReHo features in MDD patients with SA, we
expect to delineate brain regions associated with SA that have the
potential to be targeted for subsequent therapies. We also hope to
shed further light on the biological details of the brains of MDD
patients with SA.

MATERIALS AND METHODS

Participants
The participants consisted of 51 first-episode, drug-naive patients
with MDD. All of these patients were recruited from the
Department of Psychiatry in the First Hospital of Shanxi Medical
University between December 2018 and July 2019. Independent
diagnoses by at least two consultant psychiatrists according to
Diagnostic and Statistical Manual of Mental Disorders Fourth
Edition (DSM-IV) criteria for MDD. The patients were also
assessed with the Chinese Version of the Modified Structured
Clinical Interview for DSM-IV TR Axis I Disorders Patient
Edition (SCID-I/P, 11/2002 revision). At the same time, the
subjects were interviewed using the 24-item HAMD. All of the
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subjects included in this study meet the following inclusion
criteria: (1) aged from 18 to 65 years old; (2) right-handed;
(3) diagnosed with first-episode, drug-naive patients based on
the DSM-IV criteria; (4) HAMD-17 score >17 and HAMA-14
score <14. The exclusion criteria were: (1) meeting DSM-IV
axis I psychiatric disorders; (2) with severe organic diseases
such as neurological diseases; (3) obvious impulsivity, or
uncooperativeness; (4) pregnant women; (5) contraindications
for MRI scans.

The patients were divided into two groups based on whether
or not they had a history of suicide attempts. Suicide attempt is
defined as a self-destructive act leading to physical harm with
some degree of intention to die. Accordingly, 24 patients who
attempted suicide were categorized in the group. On the other
hand, 27 patients who never attempted suicide were classified in
the non-SA group. The Scale for Suicidal Ideation (SSI) was used
to assess suicidal ideation as well as the risk of suicide which was
not required for the non-SA and HCs group.

None of the subjects were excluded due to excessive head
motion during the fMRI scan. In order to explore neurobiological
markers for MDD with SA on rs-fMRI, 30 age-, gender-,
and education-level-matched healthy controls were selected.
Excluded subjects were those who were left-handed, had
mental disorders, a neurological illness, or showed abnormalities
on brain images.

Written informed consent was obtained from each participant
and consent from each participant’s guardian was also
obtained prior to data acquisition. The Ethical Committee
for Medicine of the First Hospital of Shanxi Medical University
approved this study.

Magnetic Resonance Imaging Data
Acquisition
Data preprocessing was conducted using an A MAGNETOM
Trio Tim 3.0 T (Siemens Medical Solutions, Germany) with a
12-channel birdcage head coil located. The head of participants
was positioned within a 32-channel head coil. A 3DFLASH
sequence was used to obtain high resolution trasaxial T1-
weighted anatomical images for voxel-based morphometry
(VBM) with the following parameters: 120 sagittal slices,
TR = 14 ms, TE = 4.92ms, thickness/skip = 1.5/0.3 mm,
FOV = 230 mm × 230 mm, matrix = 256 × 192 mm,
flip angle = 25◦. The rs-fMRI was performed using an
echo planar imaging (EPI) sequence with the following
parameters: TR = 2,000 ms, TE = 30 ms, Flip angle = 70◦,
FOV = 24 cm × 24 cm, matrix = 64 × 64, section
thickness = 3 mm, slice gap = 2 mm, acquired over 6 min and
212 volumes were obtained. Anatomic images were obtained
with 3D MPRAGE sequence for co-registration with the
functional data. The fMRI images were pre-processed in SPM5
(statistics parameter mapping1) and REST software for motion
correction, band-pass filter (0.01–0.1 Hz), image normalization
and 4 mm Gaussian spatial smoothing after Reho calculation.
During the scan, all subjects were confirmed that they did
not fall asleep.

1www.fil.ion.ucl.uk/spm

Regional Homogeneity Analysis
Regional homogeneity is based on the concept that BOLD signal
fluctuations in a particular region reflect activity close to neurons
at the same frequency, and this time synchronization is limited
to groups of neurons performing related functions (Zang et al.,
2004). We used the DPARSF software to calculate the ReHo.
Individual ReHo maps were generated by calculating Kendall’s
coefficient of concordance (KCC) of the time series of a given
voxel with those of its nearest neighbors (26 voxels) in a voxel-
wise analysis. Assuming that a voxel is similar to its neighbors in
time, the consistency and similarity of each individual is assessed
by calculating the KCC of the time series between a given voxel
and its neighbors in voxel analysis. After the ReHo map was
calculated on the basis of voxel-by-voxel, the standardized ReHo
images were then spatially smoothed with a Gaussian kernel
of 8 × 8 × 8 mm3 full width at half-maximum. Finally, low-
frequency fluctuations (LFFs) within a functional cluster were
synchronized with neighboring voxels.

Statistical Analyses
All statistical analyses were performed using IBM SPSS Statistics
Version 23.0 (SPSS23.0). One-way ANOVAs were conducted to
detect the differences among the three groups in terms of age
and, years of education. An X2-test was used to estimate group
differences in gender. T-tests were conducted to compare the
total HAMD score between the two patient groups. A multiple
comparison analysis was performed to analyze the ReHo. The
ReHo between the patient groups and controls were examined
using one-way ANOVA analysis followed by post-hoc two-sample
t-tests. The statistical significance level was set at p < 0.05.

To assess the effect of independent of SA, the value of the
suicide item (item 3) of the HAMD was subtracted from the
HAMD score in order to yield a clinical variable (HAMD-SA)
for further analyses. Pearson’s correlation analysis was performed
between HAMD-SA scores and ReHo.

RESULTS

We examined whether there were differences among the three
groups in whole brain ReHo during a resting state. Subjects
with SA showed a significant increase of in ReHo in the right
Cingulum Post compared to those without SA. Subjects with SA
showed a significant decrease of in ReHo in the right Cingulate
Gyrus/Precuneus compared to HC. The mean ReHo from the
significant brain region was associated with HAMD-SA scores
(r = 0.349, P = 0.012) but was not associated with HAMD-
24 scores.

Demographic Data Comparisons
The MDD patients and HC were comparable in age, gender, and
years of education with no significant differences. There were no
significant differences between the patients with SA and without
SA in their total HAMD-24 scores. The average SSI scores of with
Suicide Attempts group was 10.04 ± 1.78 (Table 1).
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TABLE 1 | Demographic and clinical characteristics of all participants.

Variable With suicide attempts group
(n = 24)

Without suicide attempts
symptoms group (n = 27)

HCs group (n = 30) x2/t/F-Value P-value

Gender (M/F) 8/16 14/13 16/14 1.26 0.289a

Age (years) 33.46 ± 9.47 30.96 ± 11.68 32.83 ± 8.42 0.45 0.640b

Education (years) 13.21 ± 4.45 13.41 ± 4.72 15.63 ± 3.41 2.90 0.061b

HAMD-17 total scores 20.83 ± 3.61 23.00 ± 3.09 − 1.06 0.308c

HAMD-24 total scores 26.54 ± 4.21 27.93 ± 3.97 − 0.14 0.714c

aP-value for chi-square test.
bP-values for one-way ANOVA.
cP-values for two-sample t-test.

Regional Homogeneity Regions
Differences in Suicide Attempts
Symptoms Group, Non-suicide Attempts
Symptoms Group, and Healthy Controls
Group
We examined whether there were differences among the three
groups in whole brain ReHo during resting state. Significant
differences in ReHo were observed among the three groups for
the right Cingulum Post (Table 2 and Figure 1A).

Compared to the non-SA group, the SA group showed
increased brain activity in the Right Cingulum Post (see
Table 2 and Figure 1B). Compared to the HCs group, the SA
group showed decreased brain activity in the right Cingulate
Gyrus/Precuneus (see Table 2 and Figure 1C).

Correlations Between HAMD-SA (item 3
of the HAMD) Scores and Regional
Homogeneity
Mean ReHo from the significant brain region was associated with
HAMD-SA (item 3 of the HAMD) scores (r = 0.349, P = 0.012)
(see Figure 2) but was not associated with HAMD-24 scores.

DISCUSSION

At the initial assessment, because patients and clinicians may
be relatively unaware of each other, suicide patients may deny
SA during an interview. Some patients may deliberately obstruct
interventions to prevent suicide (Brook et al., 2006). Identifying
neurophysiologic markers is of great importance for objectively
diagnosing SA in MDD patients. The results of our present study
show that the SA group demonstrated increased local consistency
of neural activity in the right cingulate relative to the NSA
group; however, it demonstrated less local consistency in the right
Cingulate/Precuneus relative to the HC group. In addition, the
mean ReHo of right cingulate from the significant brain region
correlated with the HAMD-SA score, but was not associated with
HAMD-24 scores. Finding these ReHo-altered functional brain
regions may shed light on the pathophysiological mechanism of
suicide in MDD patients.

Cingulate has been the subject of intense research, with
anterior cingulate cortex (ACC) volume loss being one of
the most consistent findings (Arnone et al., 2012). ACC is

involved in cognitive functioning and is executive functioning
(Breukelaar et al., 2017), and impaired executive functioning
may be a neuropsychological risk factor for suicidal behavior
(Westheide et al., 2008). It has been reported that there was
a volume decrease in the rostral anterior cingulate in patients
with suicidal MDD compared to non-suicidal MDD patients
(Wagner et al., 2011; Li et al., 2019). An autopsy study
revealed that the number and length of dendritic branches
in the anterior cingulate gyrus were significantly reduced in
depressed suicide completers compared to controls (Hercher
et al., 2010). A recent study reported decreased ACC activity in
adolescents with a history of suicide attempts and depression
compared to adolescents with a history of depression only (Pan
et al., 2011). However, our study illustrates increasing right
cingulate functioning in MDD patients with SA. Therefore,
we speculate that the ReHo changes of ACC in depression
and suicide should be similar, which may be related to the
common pathophysiological mechanism of depression and
suicide in this region.

Recent brain functional imaging studies have found that
the precuneus is associated with many high levels cognitive
functions, such as episodic memory, self-related information
processing. Previous studies mostly focused on the local
functional consistency of precuneus in depression, and little
attention has been paid on suicide. Of the two suicide-related
ReHo studies, one was that ReHo in the left precuneus was
higher in the SA group than in the normal control group
(Cao et al., 2015), the other study found lower ReHo of
the right cuneus in the SA group compared with the NSA
group (Chen et al., 2021). No such result was found in our
study. However, there are many studies on ReHo indicators
of depression. Liu et al. (2012) study found that compared to
the healthy controls, MDD patients had significantly decreased
ReHo in right precuneus. Moreover, other studies found that
there were significant lower in ReHo in left anterior cingulate
cortex and bilateral precuneus in MDD group compared with
the control group (Lai, 2018). These are consistent with the
results of our study. However, findings that are inconsistent
with ours were reported, including those those in the study
of Zhang et al. (2021) where it was shown that ReHo in
the right precuneus lobe of patients with SA depression was
significantly increased compared with healthy controls. Studies
reported that relative to patients with LOD (later adult onset
depression, age 30–44), patients with EOD (early adult onset
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TABLE 2 | Regions showing significant differences in regional homogeneity (ReHo) among major depressive disorder (MDD) with/without suicide attempts (SA) and
healthy controls.

Area Cluster size
(voxels) mm3

BA Side MNI Co-ordinatesa F/T-valueb

x y z

Differences among three groups

HCs > with suicide attempts group Cingulum post 4,617 23 Left −3 −39 24 11.6288

Cingulate Gyrus/Precuneus 189 − Right 12 −51 27 2.7282

Without suicide attempts group < with suicide attempts group Cingulum Post 1,188 − Right 3 −42 15 −3.2385

aCo-ordinates of primary peak locations in the Montreal Neurological Institute space.
bT-statistical value of peak voxel showing ReHo differences between groups.
BA, Brodmann area.
H represents healthy controls, Y represents depressed patients with SA, and N represents depressed patients without SA.

FIGURE 1 | (A–C) Regions showing significant differences in ReHo among MDD with/without SA and healthy controls. Red represents HCs > with suicide attempts
group brain area, blue represents without suicide attempts group < with suicide attempts group brain area.

FIGURE 2 | Represents the correlation between the mean ReHo of the right Cingulate Gyrus and HAMD-SA scores.

depression, age 18–29) displayed significantly increased ReHo
in the left precuneus (Chen et al., 2012; Shen et al., 2017). In
our study, we did not have similar observations on the left
precuneus, probably reflecting the idiosyncrasies of the different

study subjects. The reason for the similarities and differences
of these results may also be that precuneus is not necessarily a
dysfunctional brain area caused by suicide, but may be a specific
indicator of depression.
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Regarding the correlation between ReHo and HAMD, a study
found that the right cuneus of SI was positively correlated with
HAM-D (Chen et al., 2021). Another study (Modinos et al., 2014)
found that the volume of anterior cingulate gyrus negatively
correlated with suicidal symptoms. The correlation analysis of
another study (Zhang et al., 2021) showed that there was no
significant correlation between the BDI-II score and the ReHo
value of the precuneus in the SA group. Our study found that
the mean ReHo in the right cingulate gyrus was correlated
with HAMD-SA scores, but was not associated with HAMD-24
scores. It also indirectly illustrates that structural and functional
abnormalities of the cingulate gyrus may be closely related to the
symptoms of suicide.

Our study had some limitations: first, the sample size for MDD
patients was relatively small. A larger sample size is needed to
replicate the results we presented here. Second, our study was a
cross-sectional design, and the data were insufficient to establish
a causal relationship between depressive symptoms and suicidal
behavior. Future studies using longitudinal designs will be useful
for examining the causal relationship between depression and SA.
Third, we only studied suicidal ideation in MDD patients. Future
studies are needed to examine the role of the right cingulate gyrus
in suicidal behavior in patients with other mental disorders, such
as schizophrenia. Last but not least, it has been demonstrated
that periods of untreated depression are associated with greater
volume loss in some brain regions. We will certainly pay attention
to this point in future studies. Therefore, our findings should
be considered preliminary and should be confirmed before firm
conclusions can be drawn.

CONCLUSION

Our study showed that SA in depressed patients was associated
with alterations in resting state brain activity. Our results suggest
that the neural basis of psychopathology in depressed patients
with suicidal ideation may involve functional abnormalities
in multiple brain regions. The pattern of increased local
functional activity in the right cingulate may be related to SA.
Identifying cingulate activity may help elucidate the etiology and
pathogenesis associated with SA.
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Background: Migraineurs often exhibited abnormalities in cognition, emotion,
and resting-state functional connectivity (rsFC), whereas patients with tension-type
headache (TTH) rarely exhibited these abnormalities. The aim of this study is to explore
whether rsFC alterations in brain regions related to cognition and emotion could be used
to distinguish patients with migraine from patients with TTH.

Methods: In this study, Montreal Cognitive Assessment (MoCA), Self-Rating Anxiety
Scale (SAS), Self-Rating Depression Scale (SDS), and rsFC analyses were used
to assess the cognition, anxiety, and depression of 24 healthy controls (HCs),
24 migraineurs, and 24 patients with TTH. Due to their important roles in
neuropsychological functions, the bilateral amygdala and hippocampus were chosen
as seed regions for rsFC analyses. We further assessed the accuracy of the potential
rsFC alterations for distinguishing migraineurs from non-migraineurs (including HCs and
patients with TTH) by the receiver operating characteristic (ROC) analysis. Associations
between headache characteristics and rsFC features were calculated using a multi-
linear regression model. This clinical trial protocol has been registered in the Chinese
Clinical Trial Registry (registry number: ChiCTR1900024307, Registered: 5 July 2019-
Retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=40817).

Results: Migraineurs showed lower MoCA scores (p = 0.010) and higher SAS scores
(p = 0.017) than HCs. Migraineurs also showed decreased rsFC in the bilateral
calcarine/cuneus, lingual gyrus (seed: left amygdala), and bilateral calcarine/cuneus
(seed: left hippocampus) in comparison to HCs and patients with TTH. These rsFC
features demonstrated significant distinguishing capabilities and got a sensitivity of
82.6% and specificity of 81.8% with an area under the curve (AUC) of 0.868. rsFC
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alterations showed a significant correlation with headache frequency in migraineurs
(p = 0.001, Pc = 0.020).

Conclusion: The rsFC of amygdala and hippocampus with occipital lobe can be used
to distinguish patients with migraine from patients with TTH.

Clinical Trial Registration: [http://www.chictr.org.cn/showproj.aspx?proj=40817],
identifier [ChiCTR1900024307].

Keywords: migraine, tension-type headache, cognition, emotion, functional connectivity, resting state functional
magnetic resonance image

INTRODUCTION

Migraine is the second most common primary headache disorder
after tension-type headache (TTH) (Stovner et al., 2007),
and the second leading cause of disability worldwide (Feigin
et al., 2019). Migraine and TTH exhibit many similarities in
clinical practice (Vargas, 2008). Approximately 37% of patients
who were initially diagnosed with TTH developed migraine-
like attacks in the late stage (Lipton et al., 2002). Because
functional impairments, such as neuropsychological dysfunction
and neuroimaging abnormalities, caused by migraine are more
serious than those caused by TTH, it is urgent to distinguish
patients with migraine from patients with TTH.

Migraineurs often exhibited abnormalities in cognition,
psychological function, and resting-state functional connectivity
(rsFC), whereas patients with TTH rarely exhibited these
functional impairments (Vuralli et al., 2018; Skorobogatykh et al.,
2019). The interaction between neuropsychological performance
and neuroimaging features may be one of the potential
characteristics to distinguish patients with migraine from patients
with TTH. The amygdala and hippocampus are the key brain
regions related to cognition and emotion (Montagne et al.,
2019; de Carvalho et al., 2021; Dogra et al., 2021; Duan
et al., 2021; Mateus-Pinheiro et al., 2021; Nguyen et al., 2021).
The alterations in rsFC of the two brain regions have been
reported in migraineurs when compared to healthy controls
(HCs) (Hadjikhani et al., 2013; Zhu et al., 2021). However,
there is a lack of studies to directly compare functional brain
connectivity between migraine and TTH. As a result, it remains
unknown whether these abovementioned rsFC alterations are
specific to migraine or just a general marker of recurrent
episodes of headache. To clarify this issue, we have performed
the current study.

In this study, we conducted neuropsychological tests and
seed-based rsFC analyses on age-, sex- and educational years-
matched HCs, migraineurs, and patients with TTH. The
bilateral amygdala and hippocampus were chosen as seed
regions because of their important roles in cognition and

Abbreviations: ANCOVA, analysis of covariance; ANOVA, analysis of variance;
AUC, area under the curve; FD, framewise displacement; FDR, false discovery
rate; fMRI, functional MRI; ICHD-3, international classification of headache
disorders, 3th Edition; MNI, Montreal Neurological Institute; MoCA, Montreal
Cognitive Assessment; MRI, magnetic resonance imaging; ROC, receiver operating
characteristic; rsFC, resting-state functional connectivity; SAS, self-rating anxiety
scale; SDS, self-rating depression scale; TTH, tension-type headache; VBM, voxel-
based morphometry.

emotion. We further assessed the accuracy of the potential rsFC
alterations for distinguishing migraineurs from non-migraineurs
(including HCs and patients with TTH) by the receiver operating
characteristic (ROC) analysis. Moreover, we examined their
associations with headache characteristics in migraine and TTH
groups. The aim of this study is to explore whether the rsFC
alterations with brain regions (amygdala and hippocampus)
related to cognition and emotion can be used to distinguish
patients with migraine from patients with TTH.

MATERIALS AND METHODS

Participants
All participants were recruited from the Renmin Hospital of
Wuhan University from July 2018 to December 2019. A total of
24 HCs, 24 patients with migraine, and 24 patients with TTH
were included in this study. The age, gender ratio, and years
of education were matched across the three groups. Patients
with migraine and patients with TTH were diagnosed by two
neurologists according to the International Classification of
Headache Disorders, 3th Edition (ICHD-3) (Olesen et al., 2018).
Patients were included if they: (1) were between 18 and 60 years
old and had more than 6 years of education, (2) experienced
headache at least once a month in the last 3 months, and (3)
had a history of migraine or TTH for at least 6 months. Patients
were excluded if they: (1) had contraindications for magnetic
resonance imaging (MRI), (2) had any other diseases in addition
to migraine or TTH, (3) had a history of alcohol or drug abuse,
and (4) were pregnant or lactating. HCs had no known diseases.
The exclusion criteria for HCs were the same as those for patients.
To minimize the effects of an impending headache or a prior
headache, all patients were headache-free for at least 72 h at
the time of the MRI scan. Our clinical trial protocol has been
registered in the Chinese Clinical Trial Registry(registry number:
ChiCTR1900024307).1

Assessment of Cognition, Anxiety, and
Depression
The cognitive function of participants was assessed using
the Montreal Cognitive Assessment (MoCA), which evaluated
six cognitive domains with a total score of 30, including

1http://www.chictr.org.cn
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visuospatial/executive functions, naming, attention, language,
abstraction, delay recall, and orientation. A MoCA score ≥26
indicates normal cognition. Participants’ anxiety and depression
states were assessed using the Self-Rating Anxiety Scale (SAS)
and Self-Rating Depression Scale (SDS), respectively. The higher
the scores of SAS and SDS, the more serious the symptoms of
anxiety and depression.

Magnetic Resonance Imaging
Acquisition
Resting-state functional MRI (fMRI) scans were acquired on
a General Electric (Signa HDxt) 3.0T scanner, which had a
standard 8-channel head coil and used echo-planar imaging
with the following parameters: repetition time = 2,000 ms; echo
time = 30 ms; flip angle = 90◦; acquisition matrix = 64× 64; field
of view = 220 mm × 220 mm; and slice thickness = 4 mm with
a 0.6-mm gap. Each volume consisted of 31 axial slices, and each
run contained 240 volumes. During fMRI scanning, all subjects
were instructed to close their eyes and rest, and not to think about
anything or fall asleep.

Image Pre-processing
Image pre-processing was performed using the DPARSF
software.2 The first 10 volumes were discarded to avoid
signal instability. Slice-timing and head-motion correction were
conducted on the remaining 230 volumes. We used the Friston
24 parameter model to eliminate the effects of head motion
(Friston et al., 1996). Any participants with head motion greater
than 2.5 mm or 2.5◦ in any direction were excluded from this
study. As a result, one HC, one migraineur, and two patients
with TTH were discarded, and a total of 23 HCs, 23 migraineurs,
and 22 patients with TTH were ultimately included for further

2http://rfmri.org/DPARSF

analyses. We compared framewise displacement (FD) among the
HC, migraine, and TTH groups to avoid the effect of microscopic
head motions. The mean FD scores did not differ among the three
groups (p > 0.05) and were used as a covariate for intergroup
comparisons. Then, the realigned images were normalized to
the Montreal Neurological Institute (MNI) space, resampled to
a 3-mm isotropic voxel, and smoothened with a 4-mm full
width at half maximum isotropic Gaussian kernel. After these
steps, the processed data were detrended, and the white matter
and cerebrospinal fluid signals were removed by a regression
analysis. Finally, temporal bandpass filtering (0.01–0.1 Hz) was
applied to reduce the effects of low-frequency drift and high-
frequency noise.

Seed-Based Resting-State Functional
Connectivity Analyses
Previous studies have shown that migraineurs exhibited
alterations in the rsFC of amygdala and hippocampus
(Hadjikhani et al., 2013; Zhu et al., 2021), and the two brain
regions were associated with cognition and emotion (Montagne
et al., 2019; de Carvalho et al., 2021; Dogra et al., 2021; Duan
et al., 2021; Mateus-Pinheiro et al., 2021; Nguyen et al., 2021).
Considering the differences in neuropsychological performance
between migraine and TTH (Waldie et al., 2002; Gil-Gouveia
et al., 2015, 2016; Huang et al., 2017; Puledda et al., 2017; Karsan
and Goadsby, 2018; Vuralli et al., 2018), we chose the bilateral
amygdala and hippocampus as seed regions for rsFC analyses,
to explore the potential rsFC features that may distinguish the
two types of headache. The average time series were calculated
for each seed in each subject. Then, the Pearson correlation
coefficient was calculated between the average time course of
the seed and that of each voxel of the whole brain. A Fisher’s
z-transformation was applied to improve the normality of the

TABLE 1 | Demographic, psychometric, and headache characteristics of all participants.

HC (n = 24) Migraine (n = 24) TTH (n = 24) F/χ2/t P-value η2/Cohen’s ϕ /Cohen’s d

Age (years) 33.29 ± 9.34 30.75 ± 6.89 36.21 ± 9.23 2.442a 0.095a 0.066a

Female (%) 14 (58%) 18 (75%) 17 (71%) 1.661b 0.436b 0.263b

Educational level (years) 15.08 ± 2.19 14.29 ± 3.03 13.33 ± 2.37 2.825a 0.066a 0.076a

MoCA 28.73 ± 2.00 25.94 ± 1.95 26.33 ± 3.06 5.180a 0.010a* 0.131a

SAS 25.60 ± 4.48 35.16 ± 9.81 31.50 ± 8.49 4.210a 0.022a* 0.109a

SDS 27.60 ± 6.95 32.53 ± 9.49 29.08 ± 8.59 1.225a 0.305a 0.034a

Disease duration (years) NA 6.80 ± 4.28 5.00 ± 5.15 1.288c 0.205c 0.380c

Headache frequency (n/month) NA 2.25 ± 1.85 7.75 ± 10.20 −2.597c 0.016c* −0.750c

Single-attack duration (hours) NA 17.39 ± 17.52 8.52 ± 9.33 2.104c 0.043c* 0.632c

Headache intensity (0–10) NA 7.23 ± 1.53 4.96 ± 1.32 5.154c <0.001c* 1.589c

Categorical variables are reported as numbers and percentages; continuous variables are reported as means ± standard deviations (SDs). Demographic and clinical
characteristics were analyzed for all study subjects (n = 72), although only 68 subjects were ultimately subjected to resting-state functional connectivity (rsFC) analysis
due to the exclusion of one HC, one migraine patient, and two TTH patients after head-motion control.
aF-values, ap-values, and aη2 for the age, educational level, and neuropsychological scores in the three groups were obtained using one-way ANOVA.
bχ2-values, bp-values, and bcohen’s ϕ for the gender distribution in the three groups were obtained using chi-squared analysis.
cT-values, cp-values, and ccohen’s d for the headache characteristics in migraine and TTH groups were obtained using Welch’s two-sample t-test.
*p-value < 0.05.
HC, healthy control; TTH, tension-type headache; MoCA, Montreal Cognitive Assessment; SAS, self-rating anxiety scale; SDS, self-rating depression scale; ANOVA,
analysis of variance.
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correlation coefficient (Wang et al., 2006). Finally, the rsFC maps
of each seed were obtained for each subject.

Statistical Analysis
We used the R software (R version 3.6.1) for statistical analysis.
Potential differences in demographic and psychometric among
the HC, migraine, and TTH groups were evaluated using
one-way analysis of variance (ANOVA) and post-hoc analysis
for continuous variables, and chi-squared tests for categorical
variables. Potential differences in headache characteristics
between migraine and TTH groups were evaluated using Welch’s
two-sample t-test. The value of p < 0.05 was considered as
statistically significant.

A whole-brain voxel-wise analysis of intergroup differences in
the rsFC for each seed was performed using one-way analysis
of covariance (ANCOVA), with age, gender, years of education,
and mean FD as covariates. Statistical differences were set at a
threshold of false discovery rate (FDR) corrected p < 0.05 at
the voxel level. Post-hoc multiple comparisons were performed
on the clusters that showed significant differences in one-
way ANCOVA using Tukey’s test, to test pair-wise differences
between the groups (HC vs. migraine, HC vs. TTH, and migraine
vs. TTH). The accuracy of the potential rsFC alterations for
distinguishing migraineurs from non-migraineurs (including
HCs and patients with TTH) was assessed using the ROC
analysis. The optimal cut-off for classifying migraineurs vs. non-
migraineurs based on these rsFC alterations was calculated using
Youden’s index (J = sensitivity+ specificity–1). The optimal cut-
off was determined as the point with the maximum index value.

Additionally, the multiple linear regression model was
performed to examine the associations between headache
characteristics and the altered rsFC. In the model, the
averaged rsFC strengths in the significant regions were used
as dependent variables, and headache characteristics (disease
duration, headache frequency, single-attack duration, and
headache intensity) were used as independent variables, with
age, gender, and years of education as covariates. A threshold
of α = 0.05 was applied to consider regression weights
significant, and the Bonferroni correction was used for
multiple comparisons.

RESULTS

Basic Characteristics and Intergroup
Comparisons
The demographic, psychometric, and headache characteristics of
our study population (n = 72, including 24 HCs, 24 migraines,
and 24 TTH) are summarized in Table 1. Notably, demographic
and clinical characteristics were analyzed for all study subjects
(n = 72) although only 68 subjects were ultimately used for the
rsFC analysis due to the exclusion of one HC, one migraine
patient, and two patients with TTH after head-motion control.
The study population had a female proportion of 68%, an
age range from 18 to 54 years old at baseline (mean ± SD:
33.4 ± 8.7) and education of 14.2 ± 2.6 years. The difference in
age, gender ratio, and educational years among the three groups

did not reach statistical significance (p> 0.05; Table 1). Cognitive
performances (i.e., MoCA) significantly differed among the three
groups (p = 0.010; Table 1) with lower scores on MoCA in
migraine than HC (p = 0.010; Figure 1A), where lower scores
represent a worse cognitive function. The affected cognitive
domains in migraineurs were visuospatial/executive functions
(p = 0.045; Figure 1D) and attention (p = 0.046; Figure 1D)
in comparison with HCs. Participants’ anxiety states (i.e., SAS)
significantly differed among the three groups (p = 0.022; Table 1)
with higher scores on SAS in migraine than HC (p = 0.017;
Figure 1B), where higher scores represent more severe anxiety
symptom. The difference in participants’ depression states (i.e.,
SDS) among the three groups did not reach statistical significance
(p > 0.05; Table 1, Figure 1C). There were no significant
differences in MoCA, SAS, and SDS between TTH and HCs.
Headache characteristics of migraine and TTH were assessed
in terms of disease duration, headache frequency, single-attack
duration, and headache intensity. Migraineurs exhibited less
frequent episodes (p = 0.016; Table 1), a longer single-attack
duration (p = 0.043; Table 1), and a higher headache intensity
(p < 0.001; Table 1) in comparison with TTH. There were
no significant differences in the disease duration between
migraine and TTH groups.

Seed-Based Resting-State Functional
Connectivity
A significant result from one-way ANCOVA for the seed-
based rsFC among HC, migraine, and TTH groups is shown
in Table 2. Using the left amygdala as a seed, there were
significant differences in rsFC with the bilateral calcarine/cuneus
and bilateral lingual gyrus. For the left hippocampus, there were
significant differences in rsFC with the bilateral calcarine/cuneus.
No significant differences in rsFC were observed using the right
amygdala or the right hippocampus as seeds.

Post-hoc t-tests were then performed on the clusters that
showed significant differences in one-way ANCOVA, to test
pair-wise differences between the groups (HC vs. migraine, HC
vs. TTH, and migraine vs. TTH). Using the left amygdala as
a seed, migraineurs showed decreased rsFC with the bilateral
calcarine/cuneus (compared to HC: p< 0.001; compared to TTH:
p < 0.001; Figures 2A,B), left lingual gyrus (compared to HC:
p = 0.003; compared to TTH: p < 0.001; Figures 2C,D) and
right lingual gyrus (compared to HC: p < 0.001; compared to
TTH: p < 0.001; Figures 2E,F). Using the left hippocampus as a
seed, patients with migraine showed decreased rsFC with the left
calcarine/cuneus (compared to HC: p< 0.001; compared to TTH:
p = 0.003; Figures 3A,B) and right calcarine/cuneus (compared
to HC: p < 0.001; compared to TTH: p = 0.003; Figures 3C,D).
There were no significant differences in rsFC between HCs and
patients with TTH.

Classification of Migraineurs and
Non-migraineurs Based on the Altered
Resting-State Functional Connectivity
The accuracy of these rsFC alterations in discriminating
migraineurs from non-migraineurs including (HCs and patients
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FIGURE 1 | Intergroup differences in neuropsychological tests among healthy control (HC), migraine, and TTH groups. Migraineurs showed lower scores on MoCA
(A) and higher scores on SAS (B) than HCs; no significant differences in SDS were observed among the three groups (C); the affected cognitive domains in
migraineurs were visuospatial/executive functions and attention in comparison with HCs (D). The intergroup differences were tested using one-way ANOVA and
post-hoc analysis. Significant p-values for each pair of intergroup comparisons were depicted at the top of each figure (A–C); differences in cognitive performances
between migraineurs and HCs were assessed by Welch’s two-sample t-test, and were demonstrated by 95% CI and p-values. *p-value < 0.05 (D). TTH,
tension-type headache; MoCA, Montreal Cognitive Assessment; SAS, self-rating anxiety Scale; SDS, self-rating depression scale; ANOVA, analysis of variance; CI,
confidence interval.

TABLE 2 | Brain regions showing significant differences in rsFC among the HC, migraine and TTH groups.

Seed Regions of differences Peak coordinates (MNI) Cluster size
(voxels)

Peak F η2

X Y Z

Amy_L Bilateral calcarine/cuneus −3 −72 18 568 18.87 0.354

Left lingual gyrus −21 −66 −18 75 11.74 0.254

Right lingual gyrus 15 −69 −18 37 11.03 0.242

Hip_L Left calcarine/cuneus −15 −60 15 148 17.02 0.330

Right calcarine/cuneus 12 −63 15 39 11.67 0.253

The intergroup differences among the three groups were tested using one-way ANCOVA with age, gender, educational years, and mean FD values as covariates.
A threshold of p < 0.05 (FDR corrected) at voxel level was considered statistically different.
Amy_L, left amygdala; Hip_L, left hippocampus; MNI, Montreal Neurological Institute; HC, healthy control; TTH, tension-type headache; ANCOVA, analysis of covariance;
FD, framewise displacement; FDR, false discovery rate.
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FIGURE 2 | Intergroup differences in rsFC strengths (seed: left amygdala). Migraineurs showed decreased rsFC of left amygdala with bilateral calcarine/cuneus
(–3,–72, 18) (A,B), left lingual gyrus (–21,–66,–18) (C,D), and right lingual gyrus (15,–69,–18) (E,F) in comparison with HCs and patients with TTH. The pair-wise
differences in the significant clusters observed in one-way ANCOVA (Table 2) were tested using post-hoc t-tests. *p-value < 0.05; **p-value < 0.01;
***p-value < 0.001. rsFC, resting-state functional connectivity; Amy_L, left amygdala; HC, healthy control; TTH, tension-type headache; ANCOVA, analysis of
covariance.

with TTH) was assessed by the ROC analysis. Based on the
rsFC between the left amygdala and bilateral calcarine/cuneus,
the area under the curve (AUC), optimal cut-off, sensitivity, and
specificity of discriminating migraineurs from HCs (Figure 4A)
and of discriminating migraineurs from patients with TTH
(Figure 4D) were 0.839, 0.111, 82.6%, and 82.6% and 0.822,
0.096, 78.3%, and 81.8%, respectively. Based on the rsFC between
the left amygdala and left lingual gyrus, the AUC, optimal
cut-off, sensitivity, and specificity of discriminating migraineurs
from HCs (Figure 4B) and for discriminating migraineurs
from patients with TTH (Figure 4E) were 0.732, 0.261, 87%,
and 60.9% and 0.868, 0.242, 82.6%, and 81.8%, respectively.
Based on the rsFC between the left amygdala and right lingual
gyrus, the AUC, optimal cut-off, sensitivity, and specificity
of discriminating migraineurs from HCs (Figure 4C) and of
discriminating migraineurs from patients with TTH (Figure 4F)
were 0.828, 0.121, 82.6%, and 73.9% and 0.830, 0.114, 78.3%, and
86.4%, respectively.

Based on the rsFC between the left hippocampus
and left calcarine/cuneus, the AUC, optimal
cut-off, sensitivity, and specificity were 0.830, 0.124, 69.6%, and
82.6% for discriminating migraineurs from HCs (Figure 5A), and
0.779, 0.100, 65.2%, and 86.4% for discriminating migraineurs
from patients with TTH (Figure 5C). Based on the rsFC
between the left hippocampus and right calcarine/cuneus,
the AUC, optimal cut-off, sensitivity, and specificity were

0.854, 0.269, 95.7%, and 60.9% for discriminating migraineurs
from HCs (Figure 5B), and 0.783, 0.216, 82.6%, and 63.6% for
discriminating migraineurs from patients with TTH (Figure 5D).

Associations Between Headache
Characteristics and the Altered
Resting-State Functional Connectivity
Next, we examined associations between headache characteristics
(including disease duration, headache frequency, single-attack
duration, and headache intensity) and the altered rsFC in
migraine and TTH groups. In the migraine group, the rsFC
strength of the left amygdala with the bilateral calcarine/cuneus
was associated with headache frequency (p = 0.029); the rsFC
strength of the left amygdala with the left lingual gyrus was
associated with disease duration (p = 0.030), headache frequency
(p = 0.001, Pc = 0.020, Figure 6), single-attack duration
(p = 0.012), and headache intensity (p = 0.011); the rsFC strength
of the left amygdala with the right lingual gyrus was associated
with headache frequency (p = 0.049). However, in the migraine
group, only the association of headache frequency with rsFC
within the left amygdala and left lingual gyrus survived the
Bonferroni correction (Figure 6). In the TTH group, there were
no significant associations between headache characteristics and
rsFC strengths. Using the left hippocampus as a seed, there
were no significant associations between headache characteristics
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FIGURE 3 | Intergroup differences in rsFC strengths (seed: left hippocampus). Migraineurs showed decreased rsFC of left hippocampus with left calcarine/cuneus
(–15,–60, 15) (A,B) and right calcarine/cuneus (12,–63, 15) (C,D) in comparison with HCs and patients with TTH. The pair-wise differences in the significant clusters
observed in one-way ANCOVA (Table 2) were tested using post-hoc t-tests. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001. rsFC, resting-state functional
connectivity; Hip_L, left hippocampus; HCs, healthy controls; TTH, tension-type headache; ANCOVA, analysis of covariance.

and rsFC strengths in the migraine or TTH group. Specific β

coefficients and p-values can be found in Additional File 1.

DISCUSSION

In this study, we found that compared with HCs and patients
with TTH, migraineurs exhibited impaired cognition and
increased anxiety, which showed lower MoCA scores and
higher SAS scores. The rsFC features of amygdala and
hippocampus with the occipital lobe, such as the bilateral
calcarine/cuneus and lingual gyrus, could significantly
distinguish migraineurs from non-migraineurs (including
HCs and patients with TTH). Moreover, the rsFC strength of
the left amygdala with the left lingual gyrus was associated
with headache frequency in migraineurs. These findings
suggested that the rsFC features might be applied into
clinical practice in the future to distinguish migraineurs
from patients with TTH.

Impaired Cognition and Increased
Anxiety in Migraineurs
Migraineurs frequently experienced cognitive and psychological
dysfunction, such as difficulty in concentration, anxiety, and

unhappiness (Gil-Gouveia et al., 2015; Huang et al., 2017;
Puledda et al., 2017; Karsan and Goadsby, 2018; Vuralli et al.,
2018). Impaired cognitive and psychological functions may
distinguish migraineurs from patients with other types of
headaches (Vuralli et al., 2018). Although TTH is the most
common primary headache disorder, the neuropsychological
performance in patients with TTH has not been thoroughly
investigated as patients with migraine. Two prospective
comparative studies showed that the cognitive and psychological
functions of patients with TTH were similar to those of HCs,
but different from those from migraineurs (Waldie et al., 2002;
Gil-Gouveia et al., 2016). In this study, we found that migraineurs
exhibited impaired cognition, which was characterized by the
impairment of visuospatial/executive functions and attention,
as well as increased anxiety, which were generally consistent
with previous studies (Gil-Gouveia et al., 2015; Huang et al.,
2017; Puledda et al., 2017; Karsan and Goadsby, 2018; Vuralli
et al., 2018). Additionally, the neuropsychological scores
(i.e., MoCA, SAS, and SDS) of patients with TTH were
intermediate between those of migraineurs and HCs. These
findings confirmed that impaired cognition and increased
anxiety were more severe in patients with migraine than in
patients with TTH. Therefore, we suppose that the brain
functional changes with brain regions related to cognition
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FIGURE 4 | Classification of migraineurs and non-migraineurs based on the rsFC alterations (seed: left amygdala). Classification of migraineurs and HCs (A–C);
classification of migraineurs and patients with TTH (D–F). The point on each ROC curve represents the optimal cut-off (specificity and sensitivity). MG, migraine; HC,
healthy controls; TTH, tension-type headache; ROC, receiver operating characteristic; AUC, area under the curve.

and emotion may distinguish patients with migraine from
patients with TTH.

Resting-State Functional Connectivity
Alterations in Migraineurs and Their
Discriminative Ability
As a hypothesis-driven fMRI study, the bilateral amygdala and
hippocampus, which are known to be associated with cognition
and emotion in well-replicated studies (Montagne et al., 2019;
de Carvalho et al., 2021; Dogra et al., 2021; Duan et al., 2021;
Mateus-Pinheiro et al., 2021; Nguyen et al., 2021), were selected as
seed regions for subsequent rsFC analyses. Our results indicated
that migraineurs showed decreased rsFC mainly in the occipital
lobe, such as the bilateral calcarine/cuneus and lingual gyrus,
using the left amygdala and left hippocampus as seeds. Similarly,
the rsFC alterations in the occipital lobe have been identified as
the most specific imaging markers to distinguish patients with
migraine from HCs or patients with other chronic pain disorders,
such as chronic low back pain and fibromyalgia, using fMRI-
based machine learning approach (Tu et al., 2020) and network

mapping technique (Burke et al., 2020). However, previous
studies did not include other types of headache. As a result, they
did not reveal whether these alterations in rsFC are specific to
migraine or a general marker of recurrent episodes of headache.
In this study, we found that the altered rsFC of the amygdala and
hippocampus with the occipital lobe can be used to distinguish
migraineurs from not only the HCs but also patients with TTH.
When distinguishing migraineurs from HCs, the rsFC between
the left hippocampus and right calcarine/cuneus achieved the
highest AUC. When distinguishing migraineurs from patients
with TTH, the rsFC between the left amygdala and left lingual
gyrus achieved the highest AUC. Notably, previously observed
rsFC abnormalities in migraineurs did not exist in patients with
TTH, suggesting that these abnormalities may be unique to
migraine, not just a general sign of recurrent headache.

When the right amygdala and right hippocampus were
selected as seeds, we did not observe any difference in rsFC
among the three groups. This may be related to the inherent left
lateralization of the brain of migraine patients, which is consistent
with previous neuroimaging studies (Maniyar et al., 2014; Gaist
et al., 2018; Burke et al., 2020). A positron emission tomography
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FIGURE 5 | Classification of migraineurs and non-migraineurs based on the rsFC alterations (seed: left hippocampus). Classification of migraineurs and HCs (A,B);
classification of migraineurs and patients with TTH (C,D). The point on each ROC curve represents the optimal cut-off (specificity and sensitivity). MG, migraine; HC,
healthy controls; TTH, tension-type headache; ROC, receiver operating characteristic; AUC, area under the curve.

(PET) study investigated photic hypersensitivity of migraineurs
and reported peak hypermetabolism mainly occurred in the
left extrastriate cortex (Maniyar et al., 2014), and a cortical
thickness study identified increased left visual cortex thickness of
migraine patients (Gaist et al., 2018). Moreover, a recent voxel-
based morphometry (VBM) meta-analysis reported that migraine
atrophy coordinates were mainly connected to a cluster in the left
visual cortex (Burke et al., 2020). Future studies are needed to
explore the significance of left lateralization.

A Correlation Analysis Between
Headache Characteristics and
Resting-State Functional Connectivity
Alterations
Further, a correlation analysis showed that the rsFC
strength of the left amygdala with the left lingual gyrus
was associated with headache frequency in migraineurs.

This result supported previous findings that the migraine
attack frequency could be predicted by fMRI-based machine
learning approaches (Mu et al., 2020; Tu et al., 2020). In
clinical practice, the migraine attack frequency is often
assessed by self-report, resulting in the measurement of
headache frequency to become inaccurate and unreliable
(Berger et al., 2018; Haywood et al., 2018). Because attack
frequency is a risk factor for migraine progression, objective
measurements are needed to accurately estimate migraine
progression. Our results and previous finding (Mu et al.,
2020; Tu et al., 2020) suggested that neuroimaging markers
might be used to predict factors for the estimation of
migraine progression.

Limitations
There are several limitations to our study. Firstly, we did
not include other primary headache disorders, such as cluster
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FIGURE 6 | Associations between the rsFC strength of the left amygdala with
the left lingual gyrus and headache frequency in migraine (red) and TTH (blue)
groups. Only the association in migraine group (red) reached statistical
significance after Bonferroni correction. The associations of headache
characteristics with rsFC strengths in the significant regions were tested using
multiple linear regression model with age, gender, and educational years as
covariates. Specific β coefficients and p-values can be found in Additional File
1. TTH, tension-type headache.

headache or other trigeminal autonomic cephalalgias. We
included patients with TTH in our study because TTH is
the most common primary headache disorder and the most
common misdiagnosed migraine. We also included patients with
other primary headache disorders in the next diagnostic trials.
Secondly, we used pre-specified seed points as a hypothesis-
driven approach to reduce the “researcher degrees of freedom,”
but this method might miss some potential rsFC alterations.
A combination of hypothesis-driven and data-driven approaches
will be more appropriate for future studies with larger sample
sizes. Thirdly, we compared changes in rsFC in patients who
were not in the current headache episode, but it was not
clear whether the changes were persistent during the headache
episode. Future studies are needed to explore whether our
results were symptom-dependent or trait indicators. Fourthly,
our study yielded a relatively high AUC value, implying a good
differentiation for migraineurs by using these rsFC changes.
Nevertheless, it should be noted that this did not mean
that our method can be directly applied to clinical practice.
Fifthly, only MoCA, SAS, and SDS were used to assess the
cognition, anxiety, and depression of the study population, which
would not comprehensively reflect neuropsychological function.
More detailed and comprehensive neuropsychological tests are
needed in the future. Sixthly, we did not assess whether the
participants met the diagnosis of anxiety disorder, potentially
allowing the results to be influenced by a comorbid anxiety
disorder. Seventhly, the small sample size of our study might
reduce the statistical power of the study. A rigorous clinical
diagnostic trial with sufficient sample size is needed to further
validate our results.

CONCLUSION

Compared with HCs and patients with TTH, migraineurs
exhibited impaired cognition, increased anxiety, and
significant rsFC alterations. The rsFC features of amygdala
and hippocampus with occipital lobe could significantly
distinguish migraineurs from non-migraineurs (including
HCs and patients with TTH) and the rsFC strength of the
left amygdala with the left lingual gyrus was associated with
headache frequency in migraineurs. These findings offer
the possibility of developing objective criteria to distinguish
migraine from TTH.
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The brain network structure is highly uncertain due to the noise in imaging signals
and evaluation methods. Recent works have shown that uncertain brain networks
could capture uncertain information with regards to functional connections. Most of the
existing research studies covering uncertain brain networks used graph mining methods
for analysis; for example, the mining uncertain subgraph patterns (MUSE) method was
used to mine frequent subgraphs and the discriminative feature selection for uncertain
graph classification (DUG) method was used to select discriminant subgraphs. However,
these methods led to a lack of effective discriminative information; this reduced the
classification accuracy for brain diseases. Therefore, considering these problems, we
propose an approximate frequent subgraph mining algorithm based on pattern growth
of frequent edge (unFEPG) for uncertain brain networks and a novel discriminative
feature selection method based on statistical index (dfsSI) to perform graph mining
and selection. Results showed that compared with the conventional methods, the
unFEPG and dfsSI methods achieved a higher classification accuracy. Furthermore, to
demonstrate the efficacy of the proposed method, we used consistent discriminative
subgraph patterns based on thresholding and weighting approaches to compare the
classification performance of uncertain networks and certain networks in a bidirectional
manner. Results showed that classification performance of the uncertain network was
superior to that of the certain network within a defined sparsity range. This indicated that
if a better classification performance is to be achieved, it is necessary to select a certain
brain network with a higher threshold or an uncertain brain network model. Moreover, if
the uncertain brain network model was selected, it is necessary to make full use of the
uncertain information of its functional connection.

Keywords: frequent subgraph mining, discriminative feature selection, machine learning, classification, fMRI,
depression, uncertain brain network
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INTRODUCTION

Over recent years, the use of neuroimaging technology to
investigate the interaction of brain regions has gained has
attracted much attention and recognition (Richardson, 2010).
The Blood Oxygen Level-Dependent (BOLD) signal is now
routinely used as a neurophysiological indicator for resting-
state functional magnetic resonance imaging (rs-fMRI) to detect
endogenous or spontaneous activity in the brain neurons.
According to BOLD signals, a functional connectivity network
can be built and then applied to research the pathological
mechanisms underlying brain diseases. This theory has been
widely applied to the diagnosis of brain diseases, including
schizophrenia (Steardo et al., 2020), depression (Sen et al., 2019),
attention deficit syndrome (Riaz et al., 2020), and Alzheimer’s
disease (Shao et al., 2020).

Recent researchers have stated that uncertainty is inherent
in graph data connections and that this is due to problems
associated with data acquisition, the accuracy of equipment, and
evaluation methods (Yuan et al., 2016; Khan et al., 2018b; de
Ridder et al., 2019). These challenges suggest that it is only
possible to provide the probability of a link in the graph,
rather than precise values. For instance, the acquisition of
fMRI data is influenced by a variety of distinct factors, like
subject age (Wig, 2017), head movement (Vakamudi et al.,
2019), scanning time (Hagler et al., 2019), vasoconstriction
(An et al., 2015), heartbeat and respiration (Pinto et al., 2017;
Tong et al., 2019), arterial blood pressure (Steiner et al., 2020),
and arterial carbon dioxide concentration (Driver et al., 2016;
Prokopiou et al., 2018). Moreover, increasing evidence suggests
that even in the resting state, the neural activity in the brain
still exhibits transient and subtle dynamics (Kudela et al., 2017;
Zhao et al., 2020). However, most studies considered that the
interaction of brain regions remains unchanged during the
resting state, so as to construct a brain functional network.
Therefore, they can be concluded that the functional connections
between brain regions are highly uncertain if the rs-fMRI
data is employed to build the brain network. These functional
connections are obtained by considering processing steps, such
as the analysis of temporal correlations in spontaneous BOLD
signal oscillations, where each edge refers to a probability
to calculate the likelihood that the functional connection
exists in the brain.

Previous studies have applied traditional brain network
analysis based on certain network for the diagnosis of brain
diseases (Sporns, 2011, 2018; Farahani et al., 2020; Zhao et al.,
2021). This theory claims deciding whether there is an edge
between two brain regions; this is resolved using a threshold
or a threshold range (Zhou Z. et al., 2020). The employment
of binary networks helps to measuring the network properties
and diminishing the burden caused by the generation of graphs.
However, the employment of the threshold approach to construct
a certain network unavoidably results in the loss of uncertain
information (Kong et al., 2013; Hamdi et al., 2018; Zhang et al.,
2018). Simultaneously, in exiting researches, there is no gold
standard for deciding how to choose the optimal threshold for
constructing the effective certain network (Garrison et al., 2015).

To settle the issues of threshold selection in traditional
network, researchers selected a small range of thresholds to
evade sensitivity related to the selection of a threshold (Jie
et al., 2014); however, this method may result in incomplete
results or even misdirecting results if the network properties are
unsteady within a larger threshold range (Graham et al., 2009;
Zhang et al., 2018). Based on this problem, some researchers
have proposed the minimum spanning tree (MST) method to
build brain networks (Jackson and Read, 2010a; Stam et al.,
2014). However, the MST may miss the emphasize of low weight
connections and clusters in the interaction of the brain regions
(Tewarie et al., 2015), in particularly, from loops formed by
low weight links (Li et al., 2011). Moreover, MST analysis may
be less sensitive to small differences in the signal-to-noise ratio
between subjects because the MST was only lied in the rank
of the link weights of the strongest network connections (Van
Dellen et al., 2018). In addition, although MST analysis is not
dependent on the section of the threshold, it is influenced by the
network scale. which further effect the classification performance
(Van Dellen et al., 2018). In addition, there are other studies
that used direct functional connectivity strength as a feature for
classification (Zhang et al., 2021). Although this method also
effectively avoids the problems caused by threshold selection, it
does not construct a brain network and lacks information relating
to network topology properties; thus, whether the network is
connected or disconnected becomes irrelevant.

Considering above problems, the concept of the uncertain
network was introduced to characterize the uncertainty of
functional connections (Kong et al., 2013; Cao et al., 2015a,b;
Saha et al., 2021). Uncertain networks are based on uncertain
graph theory, where each node represents one object and each
edge is related to probabilities so that we can quantify the chances
that a pair of nodes exit (Khan et al., 2018b; Ke et al., 2020).
In neuroimaging, each node in an uncertain network refers to a
brain region, and each edge refers to a probabilistic connection;
this indicates the likelihood that a functional connection exists
in the brain. Over the past few years, uncertain networks have
been successfully applied to the field of neuroimaging. For
example, Kong et al. (2013) proposed the discriminative feature
selection for uncertain graph classification (DUG) algorithm to
mine discriminative subgraphs in uncertain brain network using
fMRI data and used this to classify Alzheimer’s disease and
normal controls. In another study, Cao et al. (2015b) proposed an
uncertain graph mining framework based on current data mining
techniques and then verified the framework using a bipolar
dataset and identified abnormal subgraph patterns in fMRI data.
In addition, Saha et al. (2021) reported how to compute a novel
concept of betweenness centrality in an uncertain brain network
and used subjects with autism to validate the efficacy of the
proposed solution.

As an important topological feature of an uncertain network,
a “frequent subgraph” represents the connected patterns that
appear most often in the network; this is an essential approach
for characterize uncertain graph (Zou et al., 2009; Kong
and Yu, 2014; Yuan et al., 2016; Chen et al., 2019). This
approach not only models the network connectivity patterns
around nodes but also capture changes on local areas. That is,
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subgraph patterns could balance local topological information
with global graph topological information (Kong and Yu, 2014;
Cao et al., 2015b). Therefore, in the analysis of uncertain
brain networks, most researchers usually used subgraph patterns
to quantify uncertain brain networks and applied them to
explore brain diseases (Kong et al., 2013; Cao et al., 2015b).
Specifically, the mining uncertain subgraph patterns (MUSE)
algorithm was mainly used to mine the frequent subgraphs of
uncertain brain networks, and the DUG method was used to
select discriminative subgraphs. Although the MUSE algorithm
has been successfully applied to extract frequent subgraphs,
a limitation of this algorithm is that the time complexity is
quite high (Papapetrou et al., 2011). Therefore, in the present
study, we improved on this algorithm and then proposed an
approximate algorithm; that is, we developed a frequent subgraph
pattern mining algorithm based on pattern growth of frequent
edge in an uncertain network (unFEPG). In this algorithm,
pattern growth of frequent edge was employed to substitute
the original pruning process exploited to frequent subgraphs.
This decreased the time consumption of the method and gives
an effective solution to the excessive computational cost of the
MUSE algorithm which arose from too many subgraph features
being extracted.

Previous researchers proposed the DUG method to identify
discriminative subgraph features in uncertain graphs based
on a statistical index (Kong et al., 2013; Cao et al., 2015b).
Specifically, based on the discrimination score function, dynamic
programming was used to calculate the probability distribution
of each subgraph. Then, combined with the theory of
the discrimination score function in a certain graph, the
discrimination score (statistical index) of each subgraph
was calculated. Based on discrimination score, discriminative
subgraphs were selected. The DUG method was able to
obtain the discrimination score in an effective manner but
also caused excessive computational consumption due to
the use of the dynamic programming method. In addition,
previous studies reported that the classification accuracy of
brain diseases obtained by the DUG method was too low;
that is, this method could not effectively extract biomarkers
for specific brain diseases (Kong et al., 2013). Thus, in this
paper, we propose a novel discriminative feature selection
method that is based on the statistical index (dfsSI). Unlike
the DUG method, the statistical index (mean value) was
directly calculated as the probability distribution of a subgraph
for each subgraph pattern in positive and negative samples.
Next, based on the theory of the discrimination score
function in a certain graph, the discrimination score for each
subgraph was calculated and discriminative subgraphs were
selected accordingly.

Considering the inherent uncertainty in graphs and the
limitations imposed by a certain brain network, this paper
introduced uncertain graph theory to construct an uncertain
brain network and then used the approximate algorithm
(unFEPG) to mine frequent subgraphs within the uncertain
brain network. Next, discriminative subgraphs were selected
using the statistical index (dfsSI) and the discriminative score
function. Finally, the discriminative subgraph features were

used for classification. Results show that the MUSE and
dfsSI method achieves better classification accuracy than the
traditional DUG method. Furthermore, to further prove the
efficacy of the proposed method, this paper also compared
an uncertain brain network with a certain brain network
in a bidirectional manner based on a unified subgraph
model. Results showed that under certain sparsity conditions
(that is, under certain threshold conditions), the classification
performance of the uncertain brain network was better than
that of the certain network. In addition, we also evaluated
the generalization performance of the classification model
constructed by the proposed method using our dataset
and an independent validation dataset respectively. We also
discuss the number of features, model parameters, and
classifier parameters.

MATERIALS AND METHODS

Method Framework
Figure 1 shows the entire flowchart. Specifically, this process
focuses on the analysis of uncertain brain network and includes
the following parts:

(1) Data acquisition and preprocessing.
(2) Group independent component (IC) analysis.
According to fMRI data, the ICs are estimated.
(3) Construction of uncertain brain networks in

which the correlation method is used to construct an
uncertain brain network.

(4) Mining frequent subgraphs of uncertain networks using
the approximate algorithm method, based on pattern growth of
frequent edge, to obtain a frequent subgraph pattern.

(5) Selection of discriminative features utilizing the
statistical index and the discrimination score function to
obtain discriminative subgraph features.

(6) Support vector machine classification.
A support vector machine (SVM) based on radial basis

function (RBF) kernel function is used for classification.
(7) Comparison of the uncertain and certain brain networks.
The uncertain discriminative subgraph is fitted with a

threshold and the certain discriminative subgraph is weighted
to obtain a consistent subgraph mode. On this basis, the
classification performance of the certain and uncertain networks
can be compared in a bidirectional manner.

Data Acquisition and Preprocessing
Following the recommendations of the Shanxi Medical Ethics
Committee (reference no. 2012013), all subjects needed to
provide their consent to participate. All participants provided
written informed consent in accordance with the Declaration of
Helsinki, including 38 subjects with first-time, drug-free, major
depression disorder (MDD) as the depression group and 28 age
and gender-matched healthy volunteers as the normal control
(NC) group. All subjects were righthanded. Participants in the
depression group participants were first-time, drug-free patients
identified by the criteria provided by the American Manual of
Diagnostic and Statistical Manual of Mental Disorders, Fourth
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FIGURE 1 | A description of the entire framework for the proposed method. (A) Data acquisition and preprocessing. (B) Construction of the uncertain brain network.
(C) Frequent subgraph mining. (D) Discriminative subgraph selection. (E) Classification. (F) Comparison of the uncertain network and certain brain network based on
consistent subgraph patterns. The left graph represents thresholding of discriminative subgraphs in the uncertain network. The right graph represents the weighting
of discriminative subgraphs in the certain network.

Edition (DSM-IV) (First and Gibbon, 1997). The severity of
depression was determined by the 24 Hamilton rating scale for
depression (HAMD) (Williams, 1988) and the clinical global
impression of severity (CGI-S) (Guy, 1976). Using a 3T magnetic
resonance scanner (Siemens Trio 3-Tesla scanner, Siemens,
Erlangen, Germany), resting-state functional magnetic resonance
scans were performed on 28 normal and 38 patients with
depression. Detailed information relating to the subjects is shown
in Table 1. The power analysis for subject inclusion is shown in
Supplementary Text S1.

Data acquisition was completed by the First Hospital of
Shanxi Medical University and all scans were performed
by radiologists who were familiar with the operation of
the MRI scanner. All patients underwent complete physical
and neurological examinations, standard laboratory tests, and
extensive neuropsychological assessments. During the scanning
period, subjects were asked to close their eyes, relax, and not
to think about anything specific, but to remain awake and
not to fall asleep. Scanning parameters were set as follows:
33 axial slices; repetition time (TR) = 2000 ms; echo time
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TABLE 1 | Demographic and clinical characteristics of the subjects.

NC (n = 28) MDD (n = 38) P-value

Age 26.60 ± 9.4 (17–51) 28.40 ± 9.68 (17–49) 0.44a

Gender (Female/Male) 15/13 23/15 0.57b

Handedness (Right/Left) 28/0 38/0 –

HAMD N/A 22.80 ± 13.30 (15–42) –

Data are presented as the range (mean± standard deviation). NC, normal controls;
MDD, major depressive disorder; HAMD, Hamilton Depression Rating Scale. aP-
value was calculated by two-sample two-tailed t-test; bP-value was computed by
two-tailed Pearson’s chi-square test.

(TE) = 30 ms; slice thickness/skip = 4/0 mm; field of view
(FOV) = 192 × 192 mm; matrix size = 64 × 64 mm; flip
angle = 90◦; volumes = 248. Detailed scanning parameters are
given in Supplementary Text S2.

Data preprocessing was performed in SPM8 software1. First,
the dataset was corrected for slice time and head motion.
From the final total of 66 subjects, data were not included
from any subject with a head movement greater than 3 mm
or with rotation greater than 3◦. Then, we performed co-
registration for spatial correction. Next, images underwent 12-
dimensional optimal affine transformation into the standardized
Montreal Neurological Institute (MNI) space, using 3 mm voxels.
Smoothing was further performed to eliminate the differences
between brain structures in different subjects and to improve
the signal-to-noise ratio. Linear dimensionality reduction and
bandpass filtering (0.01–0.10 Hz) were finally performed to
eliminate the effects of line frequency drift and high frequency
physiological noise. In addition, we used head, white matter and
cerebrospinal fluid signals as covariates for regression analysis to
remove nuisance information from images. However, we did not
regress global brain signals (Li et al., 2019).

Group Independent Component Analysis
In the current study, group independent component analysis
(GICA) was used to analyze the fMRI data. GICA was
carried using the GIFT package2. Specifically, the minimum
description length (MDL) criterion was applied to estimate the
optimal number of decomposition components (Koechlin and
Summerfield, 2007) in the normal group and in the depression
group. On this basis, we set the final number of ICs to 54.
Next, the ICs of each subject was decomposed using the Infomax
algorithm, thus resulting in 54 independent spatial components
in each subject. The principle of this algorithm was to minimize
the mutual information among the components of the output
by maximizing the mutual information between the input and
the output (Du and Fan, 2013). To strengthen the stability
and reliability of the ICs, the Infomax algorithm was run 20
times on ICASSO3 by randomly initializing the decomposition
matrix; after these repetitions, the same convergence threshold
(Nenert et al., 2014) was acquired. Finally, the GICA3 (the
third method based on group independent component analysis)

1http://www.fil.ion.ucl.ac.uk/spm
2https://trendscenter.org/software/gift/
3http://www.cis.hut.fi/projects/ica/icasso

algorithm was adopted to reconstruct the data such that the
spatial distribution and time series of the ICs of the subjects
(Erhardt et al., 2011) could be obtained. See Supplementary
Text S3 and Supplementary Table S1 for a detailed explanation
relating to the rationality for selecting the 54 ICs.

The ICs extracted by the GICA in this paper not only
included the components-of-interest from the brain network but
they also included other unrelated components and components
with more noise. Therefore, it was necessary to use a prior
template matching method to screen out these ICs and to further
confirm the components-of-interest using a manual inspection
method (Jafri et al., 2008). The screening criteria used for the
exclusion of intrinsic connection network components included
the following conditions: larger activation areas, where the
multiple regression coefficients matched the prior template; the
distribution of the main activation regions in the gray matter;
the overlap of these regions with known components, such as
blood vessels and head movements in low frequency space; and
the domination of the power spectrum for the time series in
activation regions by low frequency power (Allen et al., 2011).
Finally, 32 unrelated or noisy components were removed, and
22 brain network components were retained; these intrinsic
connectivity network components were identified as being part
of the auditory network, sensorimotor network, visual network,
default mode network (DMN), attention network, or frontal lobe
network. These 22 brain network components were common
regions for the two groups of subjects.

Construction of the Uncertain Brain
Network
Uncertain Graph Theory
Definition 1 (Uncertain Graphs)
Uncertain graphs are undirected graphs with uncertainties

represented as
∼

G = (V, E, p) (Khan et al., 2018b; Ke et al., 2020).
Of these, V = {v1, v2, ..., vn} refers to the node set, E ⊆ V ×
Vrefers to the probabilistic edge set, and p : E→ (0, 1] is a
function denoting the likelihood of the existence of each edge in
E. That is, p(e) denotes the probability of the edge about e ∈ E.
A certain graph is a special case of uncertain graph, where the
probability of its edges [p(e)] is 1.

An uncertain graph
∼

G may include a great quantity of
instances, each of which is a certain graph, represented by G.
Figure 2 shows an example of an fMRI uncertain brain network
including thirteen nodes and thirteen edges.

If all edges E(G) in the graph G are extracted from E(
∼

G) in

terms of the probability p(e) and E(G) ⊆ E(
∼

G), then a certain

graph G = (V, E) can be implied from an uncertain graph
∼

G
(denoted as

∼

G⇒ G). G is an instance of
∼

G, and all instances
consists of a set W(

∼

G) = {G|
∼

G⇒ G}. The probability that a

certain graph G ∈W(
∼

G) is implied from an uncertain graph
∼

G,
which is defined by Eq. 1 (Khan et al., 2018b; Ke et al., 2020).

Pr[
∼

G⇒ G] =
∏

e∈E(G)

Pr
∼

G
(e)

∏
e∈E(

∼

G)−E(G)

(1− Pr
∼

G
(e)) (1)

Frontiers in Neuroscience | www.frontiersin.org 5 April 2022 | Volume 16 | Article 88910553

http://www.fil.ion.ucl.ac.uk/spm
https://trendscenter.org/software/gift/
http://www.cis.hut.fi/projects/ica/icasso
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-889105 April 28, 2022 Time: 18:46 # 6

Li et al. Classification Method for Brain Network

FIGURE 2 | An example of an uncertain fMRI brain network. (A) Illustrates an uncertain brain network with thirteen nodes and thirteen edges. The value of edge
denotes the probability value of each edge. (B) Shows all possible instances for an uncertain graph composed of the blue nodes shown in (A).

In Eq. 1, e refers to the edge of an uncertain graph; E(G) refers

to the edge sets of graph G; E(
∼

G) refers to the edge sets of graph
∼

G; Pr∼
G
(e) refers to the existence probability for an edge e ∈ E(

∼

G).
Notably, the uncertain graph was similar with the weighted

graph in terms of its form. However, the largest difference
between the two graphs is the understanding of weights. An
uncertain graph can be considered as a special edge-weighted
graph (Zou et al., 2010) in which the weights refer to the
probability of an edge existing between a pair of nodes, thus
considering the noisy measurements of the underlying truth.
Edge probabilities are semantically different from edge weights,
and there is no meaningful way to perform such a casting (Khan
et al., 2018b). Moreover, with an uncertainty graph, we can set a
threshold probability value and decide to ignore any component
with an existence probability below that threshold (Khan et al.,
2018b). In recent years, uncertain graphs have been applied
to many fields, especially biological networks, mobile ad hoc
networks, social networks, and other applications where edges
are assigned a probability of existence due to a range of factors,
such as noisy measurements, the lack of precise information,
and inconsistent, incorrect, and potentially ambiguous sources of
information (Zhang et al., 2017; Khan et al., 2018a; Li et al., 2020;
Saha et al., 2021).

Construction of Uncertain Brain Networks
An uncertain brain network is based on uncertain graph theory
in which each node represents a region of interest and each edge
is associated with a probability p(e) that relates to the likelihood
that a functional connection exists in the brain. In exiting

studies, uncertain brain networks were mainly constructed
based on Pearson’s correlation method (Kong et al., 2013; Cao
et al., 2015a,b; Saha et al., 2021). Therefore, in this paper, we
used Pearson’s correlation method to construct an uncertain
brain network. Specifically, the locations in the cerebral cortex
that corresponded to the remaining 22 ICs (after removing
noise components) were used as the nodes of the uncertain
brain network. For each subject, a 22 × 22 correlation matrix
was obtained based on Pearson’s correlation method; this was
calculated by Eq. 2.

ri,j =
cov(i, j)

σiσj
(2)

In Eq. 2, ri,j denotes the correlation coefficient of the time
series relating to the independent component i (IC i) and
independent component j (IC j). cov(i, j) denotes the covariance
of the two independent component time series. σiand σj represent
the standard deviations of the time series about the two
ICs, respectively.

Given that the edges of the uncertain network were associated
with a probability that illustrates the likelihood of whether this
edge should exist or not, the correlation matrix was processed
according to Eq. 3.

bij =

{
rij, rij ≥ 0
0, rij < 0

(3)

In Eq. 3, bij denotes the edge value of IC i of IC j in the
uncertain brain network model (Kong et al., 2013; Saha et al.,
2021). Positive correlations were used as edge values (uncertain
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links) among different brain regions to form uncertain networks
(Kong et al., 2013; Cao et al., 2015a; Tokuda et al., 2018).

Frequent Subgraph Mining of Uncertain
Brain Networks
Subgraph Theory
Definition 2 (Subgraph)
In definition 2 (subgraph), g = (V

′

, E
′

) and G = (V, E) denote
two certain graphs, separately. If V

′

∈ Vand E
′

∈ E, then g
denotes a subgraph of G, or G contains a subgraph g (denoted
as g ⊆ G) (Kong and Yu, 2014).

Given an uncertain graph, the probability of
∼

Gcontaining
subgraph g is expressed by Eq. 4.

Pr[g ⊆
∼

G] =
∑

e∈E(g)

Pr(
∼

G⇒ G) · I(g ⊆ G) =

{∏
e∈E(g) p(e), E(g) ⊆ E(

∼

G)

0, otherwise
(4)

In Eq. 4, e refers to an edge of the uncertain graph; E(g) refers

to all edges in the graph g; E(
∼

G) refers to all edges in the graph
∼

G; Pr(
∼

G⇒ G) have the same meaning as in Eq. 1; when g ⊆ G,
then I(g ⊆ G) = 1, if not, then I(g ⊆ G) = 0; p(e) represents the
probability of the edge about e ∈ E(g).

Definition 3 (Support Degree)
Definition 3 (support degree) assumes that the uncertain graph

dataset W(
∼

D) including all of the certain graph set D is a
probability distribution; the support degree of subgraph g in
the middle is a probability distribution, as defined by Eq. 5.[

g1 g2 ... gm
Pr(g1) Pr(g2) ... Pr(gm)

]
(5)

In Eq. 6, the different subgraph patterns of W(
∼

D) are

g1, g2..., gm; Pr(gk) = Pr[gk ⊆
∼

Gi](k = 1, ..., m; i = 1, ..., n)

represents the probability of
∼

Gi including subgraph g which can
be referred to as the support degree of subgraph gk(Li et al.,
2012); m refers to the number of subgraph patterns, n refers
to the number of uncertain graphs; k refers to kth subgraph
patterns; i refers to the ith uncertain graph. Based on this, the
expected support degree of subgraph gk is defined by Eq. 6.

Esup(gk,
∼

D) =
1
n

n∑
i=1

Pr[gk ⊆
∼

G i] (6)

In Eq. 6, Pr[gk ⊆
∼

G i] has the same meaning as in Eq. 6. If the

Esup(gk,
∼

D) is more than the threshold minsup, then the subgraph
is regarded as a frequent subgraph.

Frequent Subgraph Mining Based on the Pattern
Growth of Frequent Edges
Frequent subgraph patterns are an important structural feature
of uncertain networks and balance local with global graph

topological information (Zou et al., 2009; Kong and Yu, 2014;
Yuan et al., 2016; Chen et al., 2019). Considering the limitations
of MUSE algorithm, in the present study, we improved the
algorithm and proposed an approximate algorithm: a frequent
subgraph pattern mining algorithm based on pattern growth
of frequent edge in an uncertain network (unFEPG) in which
pattern growth of frequent edge was employed to substitute the
original pruning process on the frequent subgraph. The specific
idea and process used by the algorithm was as follows.

We assumed that the given uncertain graph dataset
∼

D = {
∼

G 1,
∼

G 2, ...,
∼

G n}contained n uncertain graphs and

that
∼

G i represents the ith uncertain graph in
∼

D. Then,
y = [y1, y2, ..., yn]

Tdenotes the class labels vector and the
class labels are given by yi ∈ {−1,+1}. From this, the graph
for the depression group in this study can be represented as
∼

D MDD = {
∼

G i|
∼

G i ∈
∼

D∧yi ∈ +1} while that for the normal

group is represented as
∼

D NC = {
∼

G i|
∼

G i ∈
∼

D∧yi ∈ − 1} .
The main concept behind the unFEPG algorithm is to

construct a multi-layer sub-search space and select frequent
subgraphs from all subgraphs contained in each layer of the sub-
search space in all sub-search space. The frequent subgraphs
in all sub-search spaces constituted the frequent subgraphs in
the MDD group and the NC group. Of these, all subgraphs in
each layer sub-search space were obtained using the unFEPG
method. The unFEPG algorithm mainly consists of the following
steps. Firstly, we took the edges in uncertain brain networks
as the subgraphs of the 1-layer search space, calculated the
expected support degree (Eq. 7) corresponding to each edge
and compared this with the threshold minsup. Finally, the edge
whose expected support degree was greater than or equal to
minsup was regarded as a frequent edge and added to the 1-
subgraph pattern set in corresponding sub-search space (notably,
the frequent edges here were also frequent subgraphs), and
the number of frequent edges k was set as the number of
subgraph search spaces. Secondly, based on the 1-subgraph
pattern set, we used the pattern growth of frequent edge method
to construct the i-layer (i = 2,3,. . .,k) sub-search space. Next,
we judged all subgraphs in the i-layer sub-search space to assess
whether they were frequent according to the rules of frequent
subgraphs. If the conditions were met, then we defined this as
a frequent subgraph and added it to the i-subgraph pattern set
in corresponding sub-search space. Finally, if the i-subgraph
pattern set was null or i ≥ k, then ended the search of sub-search
space process and search the next sub-search space. Otherwise,
set i = i+1, iterate (2)-(3). In the next section, each step was
described in detail.

The specific steps required to obtain the 1-subgraph pattern

set are as follows. Given the input uncertain graph dataset
∼

D =

{
∼

G 1,
∼

G 2, ...,
∼

G n} and the threshold minsup; then all the subgraph
patterns in D̃ constitute the whole search space. First, the edges in
the uncertain brain networks were regarded as subgraphs of the
1-layer search space. Then, the expected support degree (Eq. 7)
of each edge in the MDD group and the NC group was calculated
and compared with the threshold minsup. If the expected support
degree of the edge was greater than minsup, then the edge was
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denoted as a frequent edge and added to the 1-subgraph pattern
set. Note, the frequent edges observed during this step were
frequent subgraphs. If the 1-subgraph pattern set contains the
edges m1, m2, ..., mk, then the whole search space can be divided
into k sub-search spaces that do not intersect each other, where
the i-subgraph pattern set was distributed in the i-layer of the
search space. In addition, to reduce the comparison of repeated
graphs, we did not include edges with subscripts less than i in the
i-th sub-search space.

The specific steps used to acquire the i-subgraph pattern in
corresponding sub-search space were as follows. (1) based on
the 1-subgraph pattern set, the pattern growth of frequent edge
method was adopted to construct the i-layer (i = 2,3,. . .,k) sub-
search space. (2) The pattern growth of frequent edge method is
based on the frequent edges in the 1-subgraph pattern set, each
frequent edge is selected to be added to the i-1 subgraph pattern
set in a retrospective manner. Here, to reduce the comparison of
repeated graphs and computation cost, frequent edges were only
selected if their subscripts were less than i in the 1-layer subgraph
pattern set. (3) according to the rules of frequent subgraphs,
all subgraphs in the i-layer sub-search space were only judged
if they are frequent subgraphs. When a subgraph satisfied the
conditions required by frequent subgraphs, then it was regarded
as a frequent subgraph and added to the i-subgraph pattern set in
the sub-search space. The specific condition for a subgraph to be
a frequent subgraph was that the subgraph must be connected,
and its expected support was greater than or equal to minsup.
(4) the process was terminated if the i-subgraph pattern set was
null or i ≥ k and search the next sub-search space. Otherwise, set
i = i+1, iterate (2)-(3). The detailed algorithm for this process is
shown in Tables 2, 3. Supplementary Text S4 shows an example
to illustrate the unFEPG algorithm. Note that in the i-subgraph
pattern set, the frequent subgraphs are all i edges.

Based on the uncertain brain networks in the MDD group and
NC group, we were able to obtain each layer subgraph pattern
set (that is, frequent subgraphs in each layer search space). These
frequent subgraphs constituted the final frequent subgraphs of
the two groups of subjects.

Discriminative Subgraph Feature
Selection for Uncertain Brain Networks
The number of frequent subgraphs extracted by uncertain
brain networks was very large. If all frequent subgraphs
participated in the classification, then this would reduce the
classification performance. Not all frequent subgraphs had
discriminative ability; in fact, only a few subgraphs are known
to possess discriminative ability (Guo et al., 2017). Thus, it
was necessary to select discriminative subgraphs as classification
features. In previous studies, researches usually measured the
discrimination score for each subgraph to select discriminative
subgraphs (Guo et al., 2017, 2018; Cui et al., 2018). The larger the
discriminative score, the stronger the discriminative ability of the
subgraph. In conventional certain networks, the discrimination
scores of the subgraph features were applied into discriminative
subgraph mining, in which the edge of each network was
certain. On this basis, there is clear certainty relating to the

number of times the subgraph feature appears in the network.
Accordingly, a discriminative subgraph can be selected according
to the discrimination scores (for example, the difference in
frequency for which a subgraph features in two groups of
subjects) (Guo et al., 2017). However, when the uncertainty
of the edges was presented in the form of a graphs (i.e., an
uncertain network), a subgraph feature only existed in a graph
with a specific probability. Thus, the discrimination scores
for a subgraph feature were no longer certain values; rather,
they were random variables with probability distributions (Gao
and Wang, 2010). Therefore, due to the uncertainty of the
edges being taken into account, the selection of discriminative
subgraphs in the uncertain brain network was every different
from that of a conventional certain network (Kong et al., 2013).
Supplementary Figure S1 shows an example to illustrate the
differences of discriminative capabilities between subgraphs from
uncertain and certain networks.

Considering the problem of low classification accuracy of
discriminative subgraphs in existing uncertain brain network
research, we combined the calculation method used to define
the discriminative score in certain and uncertain networks and
proposed a novel discriminative feature selection method based

TABLE 2 | Algorithm for frequent subgraph mining based on frequent edges.

Input: The uncertain graph dataset
∼

D and minimum expected support degree
minsup

Recursive subgraphs mining:

(1) Traverse
∼

D to acquire all 1-layer sub-search space in
∼

D, and calculate the

expected support degree Esup(g,
∼

D) according to formular 7.

(2) If Esup(g,
∼

D) ≥ minsup of the subgraph (frequent edge) in the 1-layer search
space, then add it to the 1-subgraph pattern set M and the frequent subgraph
pattern dataset R.
(3) Set the number of subgraph sub-search spaces as k according to the number of
subgraphs in M.
(4) For each subgraph in M, employ the algorithm for pattern growth given in Table
3 to acquire the i-layer (i = 2,3,. . .,k) corresponding sub-search space N.
(5) For the subgraph in i-layer (i = 2,3,. . .,k) search space N, use formular 7 to
calculate the expected support Esup; similarly, if Esup≥minsup in the i-layer
(i = 2,3,. . .,k) sub-search space, then add it the i-subgraph pattern set in i-layer
(i = 2,3,. . .,k) sub-search space and the frequent subgraph pattern dataset R.
(6) i = i+1, repeat steps 4 and 5 until i-subgraph pattern set was null or i ≥ k and
search the next sub-search space.
Output:

The frequent subgraph pattern dataset R from
∼

D.

TABLE 3 | Algorithm for pattern growth.

Input: The (i-1)-subgraph pattern set in (i-1)-layer (i = 2,3,. . .,k) sub-search space
and the 1-subgraph pattern set M.

Pattern growth:
(1) Label the sub-search space where the (i-1)-subgraph pattern is defined as i-1.
(2) For each subgraph pattern (frequent edge) in M, if it has a label > i-1, then add it
to the (i-1)-subgraph pattern set to acquire the new subgraph s (the number of
edge in the subgraph is i).
(3) If subgraph s is connected, then add it to the i-layer (i = 2,3,. . .,k) sub-search
space N.
Output:
The i-layer (i = 2,3,. . .,k) sub-search space N.
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on statistical index (dfsSI) to select discriminative subgraph
features from an uncertain brain network.

First, the selection method used for a discriminative subgraph
in a certain network was referenced. In a certain network, a
discriminative subgraph was obtained by counting the number
of times a subgraph appeared in positive and negative samples
and then applying this to the discriminative score function to
calculate the discriminative score. The higher the discriminative
score, the stronger the discriminative ability of the subgraph.
As mentioned earlier, a certain network can be regarded as a
special uncertain network with a probability of 1 on each edge.
On this basis, the number of times a subgraph appears can be
regarded as the sum of the probabilities in a positive and negative
sample. This was the methodology applied in the current study.
In addition, considering the balance between sample sizes, we
further introduced the statistical index method for uncertain
networks. In other words, the statistical index was introduced to
calculate the probability distribution of a subgraph appearing in
the two groups of subjects respectively. Then, we applied this into
the discriminative score function to calculate a discriminative
score for each subgraph.

Many statistical indicators have been used in existing studies,
including mean, median, and range (Chen, 2014; Franceschelli
et al., 2017; Ben-Aharon et al., 2019). In this study, we adopted the
mean index as a statistical index as this has been widely applied
to discriminative subgraph mining in uncertain networks (Zou
et al., 2009, 2010; Kong et al., 2013). The mathematical definition
of the mean values for this study were given as shown in Eqs 7, 8.

Mean(g,
∼

D
MDD

) =
1
M

M∑
i=1

Pr[g ⊆
∼

Gi] (7)

Mean(g,
∼

D
NC

) =
1
N

N∑
i=1

Pr[g ⊆
∼

Gi] (8)

In Eqs 7, 8,
∼

D
MDD

represents the set of uncertain networks

for the depression group;
∼

D
NC

represents the set of uncertain

networks for the normal group;
∼

Gi represents the uncertain brain
network for the ith subject; g represents a frequent subgraph;∑N

i=1 Pr[g ⊆
∼

Gi] represents the corresponding probability values

for subgraph g contained in
∼

Gi; M refers to the number
of subjects in the depression group; and N refers to the
number of subjects in the normal group. After calculating the
mean value for frequent subgraphs, we then carried out the
discriminative score function to obtain discriminative scores for
frequent subgraphs. In uncertain graph theory, the common
discriminative score functions contain confidence (Jin and
Wang, 2011), frequency ratio (Yan et al., 2008), G-test score
(Gao and Wang, 2010), and Hillbert Schmidt independence
criterion (HSIC) (Kong et al., 2011). The confidence method
possesses good subgraph discrimination ability and a strong
generalization ability, which has been widely applied in
previous researches (Jackson and Read, 2010a,b). Therefore,
in the present study, we used the confidence method as the

discriminative score function to select discriminative subgraphs.
We measured the confidence values of the frequent subgraphs
respectively for the MDD group and the NC group. Then
we arranged the two group values in reverse order, and
selected the top-k values in the two groups as discriminative
subgraph features. Finally, we acquired 2k discriminative
subgraphs. The specific definition was expressed by Eqs 9, 10.

Confidence(ng
MDD, ng

NC) =
ng

MDD

ng
MDD + ng

NC
(9)

Confidence(ng
MDD, ng

NC) =
ng

NC

ng
MDD + ng

NC
(10)

In Eqs 10, 11, ng
MDD refers to Mean(g,

∼

D
MDD

); ng
NC refers to

Mean(g,
∼

D
NC

).

Classification
The discriminative subgraph was selected using the dfsSI
method (that is, the mean value was used as the statistical
index value and applied to the discriminative score
function to select the discriminative subgraph). Then,
the classification model was constructed according to the
discriminative subgraph feature. In this study, we adopted
a SVM classifier based on the RBF kernel for classification.
Here, we used the LIBSVM toolkit in MATLAB to classify
our data4.

We adopted the 10-fold cross validation to evaluate
classification performance. The samples were randomly
divided into 10 parts, with one part regarded as the test set
and the other nine as the training set. Finally, the average of 10
results was measured to assess the performance of the classifier.
In addition, to increase the accuracy of our results, the 10-fold
cross-validation was repeated 100 experiments in the experiment,
and the average value of the 100 experiments was considered as
the final result.

RESULTS

Intrinsic Connectivity Network
In this study, we chose 22 ICs using GICA. Supplementary
Figure S2 shows the spatial maps of these 22 ICs. In terms
of the spatial maps of each IC, the inherently connected
network to which they belong was determined, as shown in
Supplementary Figure S2.

These 22 ICs were similar to those identified in previous
work (Beckmann et al., 2005; Calhoun et al., 2008; Smith
et al., 2009; Allen et al., 2011). Here, we described these
22 ICs in detail. Resting-state networks are grouped by their
anatomical and functional properties. IC 15 forms a rather
prototypical representation of the large parts of the auditory
system (AUD), mainly including bilateral activation of the

4http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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superior temporal gyrus (Seifritz et al., 2002; Specht and Reul,
2006). The Sensorimotor networks (SM) were captured by five
components (ICs 4, 8,11, 22, and 36) situated in the vicinity
of the central sulcus, mainly including activation of the left
precentral gyrus, right postcentral gyrus, bilateral activation of
the paracentral lobule, supramarginal gyrus and supplementary
motor area (Krienen and Buckner, 2009; Abouelseoud et al.,
2010). The visual system (VIS) is also represented by six
components (ICs 10, 19, 32, 34, and 38) in good agreement with
the anatomical and functional delineations of occipital cortex.
The main active regions were the lingual gyrus, cuneiform lobe,
suboccipital gyrus, talus gyrus and middle temporal gyrus (Grill-
Spector and Malach, 2004). The DMN was captured by three
independent components (ICs 16, 18, and 31); the main active
regions were located in the precuneus lobe, lingual gyrus and
temporal lobe etc. The attention network (ATTN) was captured
by six independent components (ICs 24, 25, 30, 35 39, and 40); the
main active regions were located in the frontal lobe, parietal lobe,
precuneus lobe, temporal lobe and angular gyrus (Corbetta and
Shulman, 2002; Vincent et al., 2008). Finally, frontal networks
(FRONT; ICs 33 and 43) known to mediate executive as
well as memory and language functions was observed, whose
active regions were located in the medial prefrontal cortex and
parietal lobe (Koechlin et al., 2003; Koechlin and Summerfield,
2007).

Frequent Subgraph Patterns and
Discriminative Subgraph Patterns
After constructing the uncertain brain network, the unFEPG
algorithm was separately used to mine the frequent subgraphs
from the NC and MDD groups. When the minsup parameter
was set to 0.25, 289 frequent subgraphs were mined from
the NC group and 192 from the MDD group. Specific
information relating to the frequent subgraphs is given in
Supplementary Table S2.

According to the frequent subgraphs, the dfsSI algorithm was
used to calculate discriminative scores for the frequent subgraphs.
Then, discriminative subgraphs from the NC group and MDD
group were selected based on discriminative scores. To ensure a
balanced number of subgraph features, we respectively selected
the top 15 frequent subgraphs with the highest discriminative
scores from the two groups of subjects as the discriminative
subgraph features to perform classification, as shown in Figure 3
(see Section “The Influence of the Number of Features” for
a discussion of the number of subgraph features). To analyze
the difference of the discriminative subgraphs between the
two groups, we combined 15 discriminative subgraphs from
each group, as shown in Figure 4A. Results showed that the
abnormal components obtained by the two sets of discriminative
subgraphs were almost identical, and included IC16, IC32,
IC34, IC4, IC8, IC15, IC24, IC25, IC33, IC18, IC38, and
IC35. On this basis, we counted the number of times each
IC appeared in all discriminative subgraphs to select the most
discriminative components for MDD, as shown in Figure 4B.
The results showed that the top 3 abnormal components
were IC16, IC32, and IC34. Of these, IC16 occurred the

most frequently in the abnormal components (seven times).
This was followed by IC32 and IC34 respectively (occurring
six times each).

Classification Results
Based on the discriminative subgraph features, we next assessed
classification performance by calculating classification accuracy,
sensitivity, and specificity, and the area under the curve (ROC).

We evaluated classification performance based on probability
values representing functional connections (PV-FC), the unFEPG
method and by combining the unFEPG method with the
dfsSI method; then, we compared these two outcomes with
the traditional DUG method. First, the DUG method applied
Pearson’s correlation method to construct an uncertain brain
network. Secondly, the probability distribution for each current
subgraph was calculated based on dynamic programming, in
which a current subgraph was selected based on a DFS-code
tree in gSpan. Then, based on the probability distribution and
the values obtained by discriminant score function (confidence)
for each current subgraph, statistical indicator (discriminative
scores) was acquired. Furthermore, we set the minimum
expected frequency (min_sup) and the minimum discriminative
score (θ), and then compared the expected frequency and
discriminative scores for each current subgraph with min_sup
(min_sup was set as 0.25) and θ. If these values were greater
than min_sup and θ, then the current subgraph was added
to the discriminative subgraph set. Otherwise, the sub-tree of
the current subgraph was pruned by the branch-and-bound
algorithm. Next, a recursion process based on a depth-first
search was carried out to identify other discriminative subgraphs.
Finally, the top 15 discriminative subgraphs were selected as
subgraph features for classification. The classification results
for these methods are summarized in Table 4. We found
that the accuracy of the unFEPG method, when combined
with the dfsSI method, reached 92.9%; this was higher than
other three methods (PV-FC, the unFEPG method and the
traditional DUG method).

COMPARISON OF UNCERTAIN AND
CERTAIN BRAIN NETWORKS

Considering inconsistency between uncertain and certain
graphs with regards to subgraph features, and their
different forms of feature characteristics, we used consistent
discriminative subgraph patterns to bidirectionally compare
the classification performance of uncertain networks and
certain networks.

Thresholding Discriminative Subgraphs
in Uncertain Brain Networks
To assure that the subgraph patterns were consistent when
comparing the classification performance of uncertain and
certain networks, we first carried the discriminative subgraph
acquired from uncertain brain networks as subgraph features,
and then utilized the thresholding method to map them to
the certain network. The specific thresholding method process
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FIGURE 3 | Frequent subgraphs of MDD and NC group. (A) Represent top 15 discriminative subgraphs in MDD group. Edge refers to the edges are assigned with a
probability of existence in MDD group. (B) Represent top 15 discriminative subgraphs in NC group. Edge refers to the edges are assigned with a probability of
existence in NC group.

is as follows. First, the probability values for all edges in the
uncertain brain network were ordered in reverse order. Then,
based on the selected sparsity, the minimum weight at which
an edge can exist was regarded as min_weight. When the value
of an edge of a subgraph in the uncertain network was larger
than min_weight, then the edge existed in a certain network,
and vice versa. Accordingly, we acquired the discriminative
subgraph patters for the corresponding certain network. Here,

note that we obtained distinct subgraph features for a certain
network if the sparsity was set distinctly, and the mapped
subgraph pattern for a certain network was not necessarily
exited. When the mapped subgraph feature was exitent in the
certain network, this was represented as 1 (and 0 it not exitent).
Using this method, we were able to construct a classification
feature matrix for a certain graph. Figure 5 shows an example
of thresholding.
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FIGURE 4 | The abnormal independent components of subgraph feature. (A) Represents all discriminative subgraphs were combined in each group. AUD, auditory
network; SM, sensorimotor network; VIS, visual network; DMN, default mode network; ATTN, attentional network; FRONT, frontal network. Edge refers to the edges
are assigned with a probability of existence. (B) Represents a statistical chart about the occurrences of these independent components in (A).

The detailed steps taken to perform thresholding for
discriminative subgraphs in an uncertain brain network
were as follows. First, after construction of the uncertain
brain network, we separately used the unFEPG algorithm
to the NC group and then to the MDD group to obtain
corresponding frequent subgraphs. Next, we used the dfsSI
method to measure discriminative scores and extracted the

top k subgraph features from the NC group and the MDD
group as discriminative subgraph features; ranging features
were set to 10–130 with a step size of 10. Then, based on the
specific sparsity in a certain brain network, and by applying the
thresholding method, the discriminative subgraph features in
the uncertain network were changed into the corresponding
discriminative subgraph in the certain network. Accordingly,
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TABLE 4 | Comparison of classification performance for different researches.

Method Research Disease Accuracy Sensitivity Specificity

Frequent subgraph mining of uncertain graphs PV-FC MDD 77.85% 81.18% 72.43%

unFEPG method MDD 79.15% 86.58% 65.29%

unFEPG and dfsSI method MDD 92.90% 93.40% 85.83%

DUG method (Kong et al., 2013) ADNI 71.70% – –

MDD 81.04% 88.50% 68.26%

The PV-FC method represents probability values representing functional connections. The unFEPG method represents frequent subgraph pattern mining algorithm based
on pattern growth of frequent edge. The unFEPG and dfsSI method represents combining frequent subgraph pattern mining algorithm based on pattern growth of
frequent edge and discriminative feature selection method based on statistical index. The DUG method represents the traditional discriminative feature selection for
uncertain graph classification algorithm. MDD, major depressive disorder; ADNI, Alzheimer’s disease.

we were able to construct a corresponding classification
feature matrix for the certain brain network. Finally, SVMs
were adopted to carry out classification and the 10-fold
cross-validation was repeated 100 experiments to validate the
classification performance.

Weighting of Discriminative Subgraphs
in the Certain Brain Network
In this part of the study, we used the well-known gSpan
algorithm (Yan, 2002) to extract frequent subgraphs from the
certain network. Due its high efficiency for graph traversal
and subgraph mining, the gSpan algorithm has been widely
employed in neuroimaging (Du et al., 2016; see Supplementary
Text S5). To ensure the consistency of this experiment, the
maximum total number of discrimination subgraphs for the
certain network was set at 130.

Next, we first took the discriminative subgraph patterns
obtained from certain networks as subgraph features, and
then proposed the weighting method to map them to the
uncertain network. The specific weighting method process
was as follows. The weight of each edge in the certain
network was separated into two values: 0 and 1; in other
words, the edge of certain network includes two states,
existent and non-existent. During the procedure of subgraph
conversion, each edge weight in the certain network was
regarded as the probability of the edge in the uncertain
network. Here, it should be noted that according to the
specific sparsity, the discriminative subgraph features of each
certain network must include a corresponding uncertain
discriminative subgraph. An example of weighting is shown in
Figure 5.

The detailed steps used to weight discriminative subgraphs
in the certain brain network were as follows. First, a
corresponding certain network was constructed by ranging
different sparsity from 0.05 to 0.4, with a step size of 0.05.
Second, based on each brain network being constructed
with a specific sparsity, the gSpan algorithm was used to
mine frequent subgraphs. Third, the discriminative score
was calculated using the frequency differences for the NC
group and MDD group. The top k subgraph features for
the NC group and the MDD group were then extracted
as discriminative subgraph features for the certain brain
network; ranging features were set to 10–130 with a step

size of 10. Then, for each specific sparsity, based on the
weighting method, the discriminative subgraph features in
the certain brain network constructed by the specific sparsity
were mapped into the corresponding discriminative subgraph
in the uncertain network. On this basis, we were able to
construct a corresponding classification feature matrix for
the uncertain brain network, based on the certain brain
network constructed by each specific sparsity. Finally,
SVMs were adopted to carry out classification and 10-fold
cross-validation was repeated 100 experiments to validate
classification performance.

Comparison of Classification Results
Thresholding Discriminative Subgraphs in the
Uncertain Brain Network
Based on the sparsity in the certain brain network, we
used the thresholding method to map discriminative subgraph
features of the uncertain brain network to the certain network.
Then, under these consistent discriminative subgraph patterns,
classification performance was compared between the uncertain
network and the certain brain network. Classification results are
shown in Figure 6; following the thresholding of discriminative
subgraphs for the uncertain network and when considering
all discriminative subgraph features, the classification accuracy
for the uncertain brain network was better than that of
the certain brain network with a sparsity of 0.05–0.25 and
was lower than that of the certain brain network with a
sparsity of 0.3–0.4.

Weighting Subgraphs in the Certain Brain Network
Based on the weighting method, the discriminative
subgraphs obtained from the certain brain network
constructed by each specific sparsity were matched to the
uncertain brain network. Then, under these consistent
and discriminative subgraph patterns, we compared the
classification performance between the certain network
and the uncertain brain network. The classification
results are shown in Figure 7. With increasing sparsity,
the classification accuracy of the uncertain network was
consistently higher than that of the certain network.
The classification accuracy of the uncertain network was
consistently lower than that of the certain network until the
sparsity reached 0.35.
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FIGURE 5 | The process of thresholding and weighting between uncertain networks and certain brain networks. Specific clarification is that (A) Illustrates the
thresholding of discriminant subgraphs in the uncertain network. (B) Illustrates the weighting of discriminant subgraphs in the certain network.

DISCUSSION

Considering the inability to provide effective classification
information in the existing subgraph mining and selection
methods of uncertain brain network (Papapetrou et al., 2011;
Kong et al., 2013), we proposed unFEPG and dfsSI algorithm
for subgraph mining and selection in uncertain network. First,
we constructed an uncertain brain network to represent the
uncertain information with regards to functional connection.
Then, the unFEPG algorithm was used to mine frequent
subgraphs. Next, dfsSI algorithm was used to select the
discriminant subgraph. Finally, SVM was used for classification.

The results show that compared with the conventional methods,
our uncertain brain network classification method greatly
improved the diagnostic accuracy for depression’s disease.

Abnormal Components
The best classification performance was obtained when 30
frequent subgraph patterns were selected as discriminative
subgraph patterns (NC: 15; MDD: 15). Therefore, we analyzed
the most discriminative abnormal components obtained by 30
discriminative subgraphs. First, the number of times each IC
appeared in all discriminative subgraphs was determined. Then,
the top three components were considered to be the most

Frontiers in Neuroscience | www.frontiersin.org 14 April 2022 | Volume 16 | Article 88910562

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-889105 April 28, 2022 Time: 18:46 # 15

Li et al. Classification Method for Brain Network

FIGURE 6 | Classification performance using the thresholding method to map
discriminative subgraph features of the uncertain brain network to the certain
network. The ordinate denotes the accuracy, and the abscissa indicates
different feature numbers.

discriminative components (IC16, IC32, and IC34). Of these,
IC16 was contained in the DMN. The DMN can be regarded
as a high-level cognitive network system; the main function of
this network is self-reference. In previous studies, researchers
confirmed that the default network was significantly associated
with depression (Chen et al., 2015; Zhou H.-X. et al., 2020). In
addition, the remaining two discriminative components, IC32
and IC34, were contained in the visual network. The visual
network is mainly responsible for the preliminary information
processing of stimuli and is regulated by specific regions, such
as attention. Existing studies have shown that the pathological
mechanisms underlying MDD are related to the visual network;
when the visual processing time was significantly increased, the
connection pattern was abnormal (Wang et al., 2019). These
abnormalities may relate to the selective attention and working
memory disorders that occur in depressive patients (Moreno-
Ortega et al., 2019). Therefore, the abnormal component results
obtained in this experiment are consistent with those in the
literature. In addition, we further discussed the pathological
mechanism of depression from the brain regions to which
the discriminative ICs belong (see Supplementary Text S6).
According to brain regions, it could also be concluded that the
markers of depression in current study were the same as the
existing research.

Classification Results
The PV-FC, the unFEPG method, the combined unFEPG and
dfsSI method, and the traditional DUG method, were respectively
applied to the MDD and NC groups for classification purposes,
as shown in Table 4. The classification results of the method
proposed in this paper (a combination of the unFEPG and
dfsSI methods) were higher than those of the PV-FC, the

FIGURE 7 | Classification performance using the weighting method to map
discriminative subgraph features of the certain brain network to the uncertain
network. The ordinate denotes the accuracy, and the abscissa indicates
different feature numbers.

unFEPG and traditional DUG methods. Among the other three
methods, PV-FC has the lowest accuracy. This suggested that
the classification performance can be improved after using graph
theory to measure and characterize the uncertain brain network.
Conversely, the classification results obtained by the unFEPG
and dfsSI method were higher than those obtained from the
unFEPG method. This may be due to the selection of the
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most discriminative subgraph features on the basis of frequent
subgraphs. However, the unFEPG method only utilized frequent
subgraph feature mining and did not select discriminative
subgraphs. This made led to the inclusion of more features
with too much redundant information, fewer features related
to class labels, and significant information loss. Accordingly,
the generalization ability of the model was reduced (Nouinou
et al., 2018). This result was also confirmed by the classification
results relating to the selection of the number of discriminative
subgraph features (see section “Classification Results”). In the
current study, we considered the influence of the number of
discriminative subgraph features to evaluate the classification
model; the number of discriminative subgraph features ranged
from 10 to 100, with a step size of 10. We found that when
the number of discriminative subgraph features exceeded 30 and
gradually increased, the classification results gradually decreased.
This result suggests that some frequent subgraph features were
not strongly correlated with brain diseases and could not
effectively classify brain diseases (i.e., MDD). Therefore, it is
necessary to select more discriminative subgraph features to
perform classification when using frequent subgraphs.

The classification results obtained by the unFEPG and dfsSI
method was higher than the traditional DUG method. This
may be because the unFEPG and dfsSI method fully considered
uncertain information in the uncertain brain network. The DUG
method was predominantly based on the number of occurrences
for each subgraph feature and then used dynamic programming
to calculate the probability distribution of all possible occurrences
for each subgraph in all samples. For example, for a selected
subgraph, the number of possible occurrences of the subgraph
in all uncertain brain networks was set as 0-n (n is the number
of subjects). Next, the dynamic programming method was used
to calculate the probability distribution of the subgraph in which
the number of occurrences of the subgraph was i (i = 0,...,n).
Furthermore, the score of the subgraph for when the number of
occurrences of the subgraph was i was calculated based on the
discriminant score function theory in the certain brain network.
Finally, based on the probability distribution of all possible
occurrences and the corresponding scores, the discriminant score
of the subgraph was calculated by using statistical indicators.

However, the unFEPG and dfsSI method did not consider
the number of possible occurrences of the subgraph feature
in all sample sets, calculate the probability distribution for all
possible occurrences, and then determine the discriminant score
of a subgraph by measuring statistical indicators. Instead, our
method was inspired by a certain brain network that can be
regarded as a special uncertain brain network with a probability
of 1 for each edge. From the perspective of probability, that
is, starting from the uncertain information contained in the
uncertain brain network, the number of occurrences of the
subgraphs in the discriminant score function was regarded
as the sum of the probabilities in all samples. Furthermore,
considering the balance between sample sizes, the sum of
the probabilities of a subgraph was transformed into a mean
probability which was then applied to the discriminant score
function to calculate the discriminant score of a subgraph.
That is, the uncertain information contained in the uncertain

brain network was fully considered. Moreover, compared with
the DUG method, the time consumption associated with our
combined method was greatly reduced. This result implies
that more effective discriminative subgraph features in the
uncertain brain network would be selected, the ability to
distinguish differences between the MDD and NC groups would
be improved, and more accurate biological markers of depression
would be obtained when the uncertain information of the
uncertain brain network was considered.

Furthermore, we used thresholding and weighting methods
to generate consistent discriminative subgraph patterns for
uncertain networks and certain networks, and bidirectionally
compared the classification performance of these network
models. We found that the classification performance of
the uncertain network was superior to that of the certain
network within a defined sparsity range (Figures 6, 7),
regardless of the thresholding method (discriminative subgraphs
from the uncertain brain network were converted to the
certain brain network) or weighting method (discriminative
subgraphs of the certain brain network were converted to
the uncertain brain network). The underlying reason is
that the number of edges, and the information contained
in the certain network, also increased when the sparsity
gradually increased. The frequent subgraph pattern of the
certain network might be superior to the subgraph pattern of
the corresponding uncertain network; thus, the classification
accuracy of the certain network was greater than that of the
uncertain network.

These results show that the classification accuracy for brain
diseases was related to the effective information contained
within its subgraph features. To achieve a better classification
performance, it is necessary to select a certain brain network
with a higher threshold or an uncertain brain network model.
Moreover, if an uncertain brain network model is selected, then it
is necessary to make full use of the uncertain information related
to its functional connections.

The Discussion of Time Complexity
Between This Algorithm and Mining
Uncertain Subgraph Patterns Algorithm
Previous studies mainly used three methods for the data-driven
analysis of uncertain graphs, including frequent subgraph pattern
mining, clustering algorithm calculation for uncertain graphs,
and shortest and minimum generation based trees (Potamias
et al., 2010; Khan et al., 2018b). The frequent subgraph pattern
mining has been used in the field of neuroimaging. Therefore,
we proposed to use this novel approximate frequent subgraph
algorithm in the current study based on the fact that it has
been widely used to apply the frequent subgraph algorithm
(the MUSE algorithm; Zou et al., 2009; Kong et al., 2013) on
uncertain graphs.

Although the traditional MUSE algorithm adopts the
approximation algorithm, alongside expected support and spatial
clipping technology, to reduce temporal and space complexity,
the computational consumption incurred by this technique is still
large (Papapetrou et al., 2011). Therefore, we improved upon
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this algorithm and proposed an approximation algorithm to
generate the unFEPG algorithm, in which the pattern growth
of frequent edge was applied to replace the original pruning
process on frequent subgraphs. This technique reduced the time
complexity associated with the algorithm, thus improving upon
the traditional method which takes too long because it considers
too many subgraph patterns during frequent subgraph mining.
Specifically, the traditional algorithm uses the APRIOR property
to crop the entire search space. In contrast, in our research, we
adopted the pattern growth method; that is, we replaced the
traditional pruning process with the growth of frequent edges
on the frequent subgraph, thus reducing time consumption. In
addition, the traditional algorithm incorporated the subgraph
isomorphism algorithm when calculating the expected support,
although the judgment required by subgraph isomorphism is
still time-consuming (Huan et al., 2003). However, the unFEPG
algorithm proposed in this study encoded edges and applied the
depth-first search method, so that we were able to prune the
search space within the database. This allowed for additional
optimization due to early termination and efficient scheduling to
avert expensive subgraph isomorphism tests.

In conclusion, this proposed algorithm was superior to
the traditional MUSE algorithm in terms of computational
consumption. The computational cost for the two algorithms was
investigated in each minimum support threshold (minsup) using
the same dataset. Same as this article, minsup was selected from
0.15 to 0.35, with a step size of 0.05; results are shown in Figure 8.

The Validation of Generalization
Performance for the Classification
Results
We verified the generalization performance of the proposed
method from two aspects. On the one hand, we divided our
datasets into a training set and a validation set (they are
the same site), where the validation set did not participate
in the construction of the classification model at all and did
not participate in the process of subgraph feature extraction
and selection, but was used directly to validate classification
model. On the other hand, we introduced independent validation
datasets from other sites and used them to evaluate the
generalization performance of classification models.

We randomly divided our dataset into training set and
validation set with a ratio of 7:3. As for the training set, after
these processes of network construction, subgraph mining, and
the selection of discriminative subgraphs, we used the 10-fold
cross-validation method to obtain multiple SVM classification
models. The generalization performance of the classification
model was then evaluated using the validation set. Specifically,
the training set data was randomly divided into 10 equal parts,
one of which was used as the validation set (Sn) and the
remainder as the training set (S-n). S-n was then divided into
two parts (training set TR and test set TE). Since different SVM
parameter settings led to different results, based on training set
TR, classifiers were constructed by choosing different parameters
(c, g) values, and the (c, g) value that gave the highest classification
accuracy regarding training set TR was determined to be the best

parameter. Here, similar to manuscript (c, g) value was set in
the [−5, 5] range with a step size of 1. In this way, ten different
classification models were built. Then, we used each classification
models to predict validation dataset. Finally, the accuracy of
each model was averaged as final classification accuracy in this
cross-validation. Furthermore, to increase the robustness of our
results, dataset partitioning was repeated 20 times and the 10-fold
cross-validation in training dataset was repeated 100 times in the
experiment, and the mean of the 20∗100 results was taken as the
final test result. The results are shown in Supplementary Text
S7, indicating that under each method, the difference between the
test accuracy and the classification results obtained in Table 4 of
this paper, about 2–5%, except the subgraph feature with sparsity
0.5. The method proposed in this paper differed by 3%, and finally
achieved a test accuracy of 89.56%, which shows that the method
proposed in this paper could obtain a satisfactory generalization
performance in our dataset.

In addition, we used all site and each site dataset as
independent validation datasets to verify the generalization
performance of the classifier constructed in this paper. The
dataset is obtained from DecNef Project Brain Data Repository5.
See Tanaka et al. (2021) for the specific demographic information
of the subjects. Similar to the validation of above generalization
performance. We mainly applied separately the datasets of each
site and all site into each of classifiers to perform prediction.
The classification results are shown in Supplementary Text
S7. The results show that the classifier constructed in this
paper has reached more than 70% on all independent data
sets, and the accuracy in the HUH dataset was the highest,
reaching 75%, which is higher than the results in the existing
research (Yamashita et al., 2020). This also indicated that
the features obtained by the proposed method can construct
an effective MDD classifier. For a detailed discussion, see
Supplementary Text S7.

METHODOLOGY

Many parameters were considered in this study. We found
that the final classification performance was different when
the parameter selection was different. These parameters mainly
referred to the feature number, the support degree minsup for
frequent subgraph mining, the penalty factor c in the SVM model,
and the kernel parameter g in the kernel function. In the next
section, we discuss each of these parameters individually.

The Influence of the Number of Features
In this paper, the unFEPG method was used to obtain the
frequent subgraphs of the uncertain brain network, and the
dfsSI method was used to calculate the discriminant scores and
sort them to select the frequent subgraphs corresponding to
the top-k discriminant scores as the discriminant subgraphs for
classification. Here, the selection of the k value will affect the
classification, that is, the number of discriminative subgraph
features was different, and the classification was different.

5https://bicr-resource.atr.jp/decnefpro/
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FIGURE 8 | Time complexity under each minsup in two groups of subjects. (A) Refers to the execution time mining frequent subgraph under each minsup in MDD
group. (B) Refers to the execution time mining frequent subgraph under each minsup in NC group. MUSE represents traditional the mining uncertain subgraph
patterns algorithm. The proposed method represents unFEPG and dfsSI methods. “msec” refers to millisecond.

Therefore, in present study, the number of features was set to
10–130 with a step size of 10. The classification model was
respectively constructed and the effect of the number of features
on the classification performance was analyzed. It should be
noted that when the number of features was larger than 130,
the discriminant score value was almost similar or even smaller.
This illustrated that the discriminative ability of these subgraphs
was not too great. Thus, in present study, the maximum feature
number of the discriminative subgraph was set at 130. As is
shown in Figure 9, the results show that as the number of features
increased, the classification performance gradually decrease after
the initial increase. When the number of features was 30, the
highest classification accuracy is achieved. The potential reason
is that if the feature number is too small, the difference between
the MDD group and the NC group is not well expressed; on the
contrary, if the number of features is too large, the redundant
features would be included, so that affect the construction
of the classifier.

The Influence of the min_sup of unFEPG
Method
Based on fMRI data, mining frequent subgraphs from uncertain
networks includes the minimum expected support degree
(min_sup), which affects the number of frequent subgraphs
mined from the uncertain network. In present study, the
min_sup was set to 0.05–0.35 with a step size of 0.05.
These min_sup was chosen to analyze the classification
performance and the other parameters being fixed. Figure 10
show that the classification result was the highest when
the min_sup was set to 0.25. The potential reason is when
the min_sup selected is too large, many effective frequent
subgraph features may be missed at the mining stage, which
caused the classification performance is lower. When the
min_sup selected is too small, the sizes of the frequent
subgraphs will be too large, which caused the redundancy

FIGURE 9 | Classification performance based on different feature numbers in
the uncertain brain network. Yellow denotes the sensitivity in different feature
numbers. Green denotes the specificity in different feature numbers. Red
denotes the accuracy in different feature numbers.

of discriminative subgraph features. This also affected the
classification performance. The result indicated that if we want
to obtain effective frequent subgraphs, the min_sup setting
should be moderate.

The Influence of Support Vector Machine
Classification Parameters c and g
In the classification process, the two parameters of the SVM
model, the penalty factor c and the kernel parameter g, strongly
effect the classification, and thus it is important to finding the
optimal values (Chapelle et al., 2002). The penalty factor c
is applied to adjust the range of confidence intervals in data
subspace. The kernel parameter g of the RBF is involved to decide
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FIGURE 10 | Effect of the minimum support degree (minsup) of unFEPG
method on the classification performance. Green denotes the sensitivity in
different feature numbers. Blue denotes the specificity in different feature
numbers. Red denotes the accuracy in different feature numbers.

the function for mapping data to a high-dimensional feature
space. Selecting the optimal (c, g) can improve the construction
of classification model. For given values of (c, g), we utilized
the K-fold cross-validation method to obtain the training set

validation accuracy. The values of (c, g) that generated the highest
validation classification accuracy were selected as the optimum
parameters. The ranges of parameter settings applied for c and
g were [2−5, 25] and [2−8, 22], with a step of 1. Figure 11
displays the results of parameter optimization of (c, g) when using
classification features as training sets. The results show that when
c = 0.25 and g = 0.5, the classification accuracy of the training sets
was the highest, reaching 93.85%.

Limitation
We must also note some limitations of our new method in
that the frequent subgraph mining proposed in this paper
was a simplified approximate algorithm. This greatly reduced
the running time of the algorithm but may have led to
the omission of some frequent subgraphs. Therefore, future
research should focus on how to further optimize the frequent
subgraph mining algorithm for uncertain networks without
increasing its computation time. In addition, at the network
construction level, we constructed a resting state uncertain
brain network in a static form. However, increasing evidence
suggests that even in the resting state, the neural activity in
the brain still exhibits transient and subtle dynamics. Moreover,
these dynamic changes are essential for understanding the
basic characteristics relating to brain organization and may
be significantly correlated with the pathological mechanisms
underlying brain diseases; consequently, these changes may

FIGURE 11 | Training classification accuracy of different SVM parameters (c, g).
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provide useful information for disease classification (Kudela et al.,
2017; Zhao et al., 2020). Therefore, dynamic uncertain brain
networks could be introduced for the diagnosis of brain diseases
and the exploration of pathological mechanisms in future
studies. At the feature extraction level, we adopted subgraph
features to represent the topology information of uncertain
brain networks, which ignore the local topological property
information of uncertain brain networks. In future studies,
researchers can combine the local properties of uncertain brain
networks [e.g., betweenness centrality and shortest paths (Saha
et al., 2021)] to comprehensively characterize the topological
information of uncertain brain networks, thus fuse multi-feature
to further improve classification validity of the model. At
the subgraph selection level, we calculated the discriminative
score of frequent subgraphs through the statistical index (i.e.,
mean) value. However, study has shown that the mean index
may not be robust to extreme values (Kong et al., 2013).
Therefore, in future research, index such as extreme index
(Chen, 2014) can be introduced to satisfy the sensitivity
of extreme values between subgraph patterns in uncertain
brain networks. At the classification model level, we used
traditional machine learning——SVM to classify and diagnose
depression. In future research, based on the uncertain brain
network model, we can introduce deep learning models such
as graph neural network (Zhao et al., 2021) to improve brain
psychiatric diseases.

CONCLUSION

Studies have shown that certain brain networks inevitably
lead to the loss of uncertain information with regards to
functional connections. Therefore, uncertain brain networks are
proposed to represent uncertain information with regards to
functional connections. The frequent subgraph mining (MUSE)
method and the discriminative subgraph method (DUG) cannot
effectively extract sufficient subgraph features, thus leading
to low classification accuracy in the existing uncertain brain
network studies. Therefore, in the present study, we used the
unFEPG method to mine frequent subgraphs and used the dfsSI
method to select discriminative subgraphs from the perspective
of probability, in which uncertain information in the uncertain
brain network was fully used to improve the ability to identify
differences between the MDD and NC groups. The result
showed that the unFEPG and dfsSI method obtained a higher
classification accuracy. In addition, to further verify the efficacy
of the method proposed in this study, we adopted weighting and
thresholding methods to unify the subgraph pattern between the
uncertain network and the certain network. The classification
performance of the uncertain network was superior to that
of the certain network within a defined sparsity range. This
meant that a satisfactory effect can be obtained from a certain
brain network irrespective of whether a higher threshold or
an uncertain brain network model was selected. Moreover, if
the uncertain brain network model was selected, it is necessary
to make full use of the uncertain information held by its
functional connections.
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Objective: To investigate morphological and functional alterations within gray matter
(GM) in female patients with neuropsychiatric systemic lupus (NPSLE) and to explore
their clinical significance.

Methods: 54 female patients with SLE (30 NPSLE and 24 non-NPSLE) and 32 matched
healthy controls were recruited. All subjects received a quantitative MRI scan (FLAIR,
3DT1, resting-state functional MRI). GM volume (GMV), fractional amplitude of low-
frequency fluctuation (fALFF), regional homogeneity (ReHo), and degree of centrality
(DC) were obtained. Between-group comparison, clinical correlation, and discrimination
of NPSLE from non-NPSLE were achieved by voxel-based analysis, cerebellar seed-
based functional connectivity analysis, regression analysis, and support vector machine
(SVM), respectively.

Results: Patients with NPSLE showed overt subcortical GM atrophy without
significantly abnormal brain functions in the same region compared with controls. The
dysfunction within the left superior temporal gyri (L-STG) was found precede the GM
volumetric loss. The function of the nodes in default mode network (DMN) and salience
network (SN) were weakened in NPSLE patients compared to controls. The function
of the cerebellar posterior lobes was significantly activated in non-NPSLE patients but
attenuated along with GM atrophy and presented higher connectivity with L-STG and
DMN in NPSLE patients, while the variation of the functional activities in the sensorimotor
network (SMN) was the opposite. These structural and functional alterations were
mainly correlated with disease burden and anti-phospholipid antibodies (aPLs) (r ranges
from -1.53 to 1.29). The ReHos in the bilateral cerebellar posterior lobes showed high
discriminative power in identifying patients with NPSLE with accuracy of 87%.

Conclusion: Patients with NPSLE exhibit both structural and functional alterations
in the GM of the brain, which especially involved the deep GM, the cognitive, and
sensorimotor regions, reflecting a reorganization to compensate for the disease damage
to the brain which was attenuated along with pathologic burden and cerebral vascular
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risk factors. The GM within the left temporal lobe may be one of the direct targets of
lupus-related inflammatory attack. The function of the cerebellar posterior lobes might
play an essential role in compensating for cortical functional disturbances and may
contribute to identifying patients with suspected NPSLE in clinical practice.

Keywords: neurosychiatric systemic lupus, gray matter, resting sate fMRI, female, cerebellar seed-based
functional connectivity

INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic autoimmune
disorder involving multiple organ systems, typically presents
in females of childbearing age, with the incidence ratio
of female to male is around 9:1 (Mok et al., 1999). The
role of female reproductive hormones in the development
of the disease has been reported (Costenbader et al., 2007).
Neuropsychiatric systemic lupus (NPSLE) is one of the most
common manifestations of lupus, affecting 21–95% of patients
with SLE and related to high disability and mortality (Pamfil
et al., 2015). The central nervous system is involved in
approximately 90% of patients with NPSLE, with various clinical
manifestations, including cognitive impairment, headache, mood
disorders, cerebrovascular disease, psychosis, seizures, and acute
confusional state, etc. (Pamfil et al., 2015).

The pathogenesis of NPSLE is not yet fully clear, but
several mechanisms are implicated, including autoimmune
inflammatory neuronal damage, vasculitis and vasculopathy with
ischemia, precocious atherosclerosis, and embolisms (Cohen
et al., 2017; Gelb et al., 2018). The diagnosis of NPSLE in clinical
practice still requires the judgment of experienced physicians.
Correct attribution of neuropsychiatric events to NPSLE or an
alternative etiology is still a challenge, considering the absence of
a diagnostic gold standard. Magnetic resonance imaging (MRI)
of the brain has been applied to SLE for years, but the findings
are nonspecific; the most common presentations of conventional
MRI are cerebral atrophy (15–20%), diffused white matter (WM)
lesions or hyperintensities (30–75%), focal lesions after stroke,
etc (Sarbu et al., 2015). However, more than 40% of patients
with NPSLE showed no remarkable changes on conventional
MRI (Luyendijk et al., 2011). Hence, advanced brain imaging
techniques (e.g., structural and resting state functional MRI) have
been applied into this field to successfully characterize the brain
microstructural and functional abnormalities, to study in vivo
neural mechanisms of neurologic and psychiatric manifestations
of the disease invisible with only structural imaging, attempting
to help classify and evaluate patients with suspected NPSLE in
clinical practice (Sarbu et al., 2017). Resting state (RS) functional
connectivity (FC) abnormalities have been reported both in
NPSLE patients and non-NPSLE patients (Nystedt et al., 2019;
Bonacchi et al., 2020; Cao et al., 2021), suggesting reorganizations
of the neuronal networks may take place even before the onset of
neuropsychiatric symptoms, and may be adaptive or maladaptive
to the brain functional impairments.

Meanwhile, previous neuroimaging studies suggest that
lupus patients have characteristic subcortical and regional gray
matter atrophy when compared to controls (Jung et al., 2010;

Kalinowska-Łyszczarz et al., 2018), and that these group
differences may be more significant in NPSLE patients. However,
other functional MRI research of SLE patients indicated an
apparent lack of overlap between gray matter volume reduction
and functional alterations. The different patterns of relationship
between the structure and function of brain found in the disease
worth exploring more deeply (Lin et al., 2011).

In this context, by using structural and resting state
functional MRI, we aimed to investigate the morphological
and functional alterations of the gray matter and their possible
inter-relationship in female patients with NPSLE, and to
explore their potential clinical significance. This approach
increased the homogeneousness of the enrolled subjects and the
accuracy of the results.

MATERIALS AND METHODS

Participants
Seventy-four female patients (including 40 NPSLE and 34
non-NPSLE) were randomly recruited from the Department
of Rheumatology and Immunology in Peking Union Medical
College Hospital, fulfilling at least four of the American College
of Rheumatology (ACR) classification criteria for SLE (Smith
and Shmerling, 1999) between Jan 2017 and Dec 2018. Thirty-six
female age-matched healthy controls (HCs) were enrolled.
Primary CNS NPSLE manifestations were defined according
to the ACR definition and the Systemic Lupus International
Collaborating Clinics (SLICC) model B criteria (Bortoluzzi
et al., 2018). All the clinical information of patients with
SLE was verified by an experienced rheumatologist and an
experienced neurologist. The diagnosis of cognitive disorder
and mood disorder were made by the neurologist according to
the routine screening tests [Mini-Mental State Exam (MMSE),
Montreal Cognitive Assessment (MoCA), Hamilton Anxiety
Scale (HAMA), and Hamilton Depression Scale (HAMD)]. The
inclusion criteria also included age between 18 and 65 years and
right handedness. The exclusion criteria were as follows: (Mok
et al., 1999) taking psychoactive medication or alcohol/drug
abuse; (Costenbader et al., 2007) any current or past diagnosed
primary mental illness; (Pamfil et al., 2015) secondary NPSLE
due to infections, electrolyte disturbances, hypertension, or
other causes; (Cohen et al., 2017) any evident MRI lesions in
the HCs; (Gelb et al., 2018) further contraindications to MRI
scan; and (Sarbu et al., 2015) poor MRI image quality, e.g., overt
motion and susceptibility artifacts, and low signal-to-noise ratio.
From the original cohort, 20 patients with SLE and 4 HCs were
excluded due to Mok et al. (1999) incomplete records of medical
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history (n = 6); (Costenbader et al., 2007) secondary NPSLE
(n = 5); (Pamfil et al., 2015) remittent mild headache as the single
neuropsychiatric symptom (n = 3); and (Cohen et al., 2017)
poor MRI data quality (n = 10). The remaining 30 patients with
primary CNS NPSLE with at least one classified neuropsychiatric
symptom, 24 patients with non-NPSLE and 32 healthy volunteers
were finally enrolled. All the patients had received treatment with
steroids and immunosuppressors. Disease activity was assessed
using the Systemic Lupus Erythematosus Diseases Activity Index
2000 (SLEDAI-2k) scores. Accumulative disease damage was
assessed with the Systemic Lupus International Collaborating
Clinics/American College of Rheumatology (SLICC/ACR)
damage index (SDI) scores. The demographics, clinical data
(disease duration, manifestations of SLE, current medications,
and immunological data) were registered. The interval between
clinical evaluations and MRI scans was within 7 days. The study
protocol was approved by the Ethics Committee at the Peking
Union Medical College Hospital. All participants gave their
written informed consent.

Image Acquisition
The conventional MR sequences [T2 and fluid-attenuated
inversion recovery (FLAIR)], high-resolution T1-weighted
imaging [3DT1], and resting state functional MRI [rs-fMRI]
were performed on a 3.0-Tesla MR system (Siemens Magnetom
Trio Tim System, Siemens Healthcare GmbH, Erlangen,
Germany) using a 32-channel head coil. Axial T2-weighted
images and FLAIR images with 4-mm slice thickness were
acquired for lesion identification. High-resolution anatomical
images were acquired using T1-weighted three-dimensional
volumetric magnetization-prepared rapidly acquired gradient-
echo (MPRAGE) sequence: repetition time (TR) = 1600 ms;
echo time (TE) = 2.13 ms; flip angle (FA) = 9◦; inversion
time (TI) = 1000 ms; in-plane resolution 1 × 1 mm2; slice
thickness = 1 mm; matrix = 256 × 224; 176 axial slices.
Rs-fMRI data were collected using a gradient rapid echo-
echo planar imaging (GRE-EPI) sequence: TR = 2000 ms;
TE = 30 ms; FA = 90◦; in-plane resolution = 3.5× 3.5 mm2; slice
thickness = 3 mm; slice gap = 1 mm; matrix = 64 × 64; 35 axial
slices. The MRI scans of the patients with SLE were acquired at
least 4 weeks from the last relapse and treatment to minimize
their confounding effects on the following analysis.

Magnetic Resonance Imaging Image
Processing
The fMRI images were preprocessed by using DAPARSF (Data
Processing Assistant for Resting-State fMRI, Advanced Edition1).
Preprocessing steps include removing the first 10 time points,
slice timing correction, realigning fMRI volumes, reorienting
fMRI and T1 images, coregistering the structural T1 image
to functional MRI image, segmenting the structural T1 with
DARTEL (Diffeomorphic Anatomical Registration Through
Exponentiated Lie Algebra) and then warping these images
into Montreal Neurological Institute (MNI) space, regressing
the nuisance covariates (including signal linear drift, head

1http://rfmri.org/DPARSF

motion parameters, mean signals within white matter and CSF),
warping the processed fMRI images into MNI space with
the normalization parameters derived from the structural T1
segmentation and normalization, and resampling the fMRI voxel
into 3 mm × 3 mm × 3 mm. In our preprocessing steps,
smoothing was not carried out to preserve the signal details.

The fractional low frequency amplitude (fALFF) within the
0.01-0.1 Hz band was calculated, and then the fMRI signals were
filtered with the frequency band of 0.01-0.1 Hz to reflect the low-
frequency oscillator fluctuations of resting state fMRI signals.
The regional homogeneity (ReHo) to measure the similarity of
time series within local brain areas and degree centrality (DC)
to measure the importance of local brain areas in the functional
connectivity were obtained by using the filtered images. Z-score
maps of all the parameter images were obtained and smoothed
by a 4-mm full width at half maximum Gaussian kernel
for the following voxel-based statistical analysis. Additionally,
the segmented and normalized gray matter (GM) images in
MNI space were modulated and smoothed for voxel-based
morphometry (VBM) analysis.

The CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012)
v.20.b toolbox2 is used for resting-state functional connectivity
analysis. Pre-processing of the data used the default pipeline of
CONN included discard the first 10 time points, slice-timing
correction, functional realignment and unwarping, structural
segmentation, functional and structural normalization in the
MNI-space (normalization of the co-registered T1 image and EPI
volumes with a voxel size of 2 × 2 × 2mm), functional outlier
detection (ART-based scrubbing) and smoothing (8-mm FWHM
Gaussian filter). Then, the toolbox step to a denoising procedure:
the confounding effects such as the white matter, cerebrospinal
fluid, realignment results, scrubbing results, and the rest were
regressed out of the fMRI time series, and after that, the data were
bandpass-filtered with the default CONN values (0.008–0.09 Hz)
and linear detrended.

Seed Based Connectivity Analysis
(Seed-To-Voxel Analysis)
According to FSL Harvard-Oxford atlas in CONN, bilateral
cerebellar Crus I & Crus II and only right cerebellar Crus II
were used as the seeds, respectively. Their BOLD response was
correlated with those of each voxel in the rest of the brain.

Statistical Analysis
The statistical analysis was performed using SPSS (SPSS for
Windows, version 25.0; IBM, Armonk, NY, United States), the
statistics toolbox in MATLAB (MATLAB 2019a) and Statistical
Parametric Mapping (SPM123).

The values are expressed as the mean and standard
deviation (SD) for normally distributed variables and median
and interquartile range (IQR) for parameters without a
normal distribution.

One-way ANOVA and post hoc comparison and Student’s
t-test were used for variables with a normal distribution. The

2http://www.nitrc.org/projects/conn
3https://www.fil.ion.ucl.ac.uk/spm/
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Wilcoxon and Kruskal-Wallis test, post hoc analysis and Mann-
Whitney U test were used for variables that were not normally
distributed. Multiple comparisons were performed by Bonferroni
correction. P value < .05 was deemed statistically significant.

For voxel-based statistical analysis of GM structural and
functional measures, nonparametric one-way ANOVA
[permutation test with 5000 permutations and familywise
error (FWE) correction for multiple comparisons with p < 0.05]
with age and total intracranial volume [TIV, only for GM
volume (GMV)] as covariates were first performed, followed by
nonparametric two-sample analysis (permutation test with 5000
permutations and FWE correction for multiple comparisons
p < 0.05) to compare each pair of groups.

For seed-to-voxel analysis, one-way ANOVA was used to
compare the differences in functional connectivity between
NPSLE, non-NPSLE and HCs groups. Then, multiple
comparisons were adjusted by applying the correction of
False discovery rate (FDR) (p < 0.05).

Linear regression analyses were performed to find
the associations between the MRI and clinical features
with adjustment for age for SLE patients (including both
NPSLE and non-NPSLE).

Logistic regression analysis was performed to evaluate the
ability [by sensitivity, specificity, and area under the curve
(AUC)] of structural and functional MRI measures to distinguish
between patients with NPSLE and patients with non-NPSLE.

Support Vector Machine for
Discriminating Patients With
Neuropsychiatric Systemic Lupus From
Patients With Non-neuropsychiatric
Systemic Lupus
Support vector machine with linear kernel (SVM, using libsvm4)
was adopted to identify patients and further distinguish
different types of patients with SLE by using structural
and functional features, which showed statistically significant
differences between groups. Multivariate logistic regression was
first used for feature selection. Leave-one-out cross-validation
was adopted to train and evaluate the SVM model. Accuracy,
sensitivity, specificity, precision, recall, and F1-score were used
to evaluate the performance of the classification.

RESULTS

Demographic Characteristics and
Clinical Findings
All demographic and clinical characteristics are summarized
in Table 1. There was no significant difference in disease
duration, SLEDAI scores, the rate of patients with SLEDAI ≥ 5,
anti-ribosomal P protein antibody, antiphospholipid antibodies
(aPLs), traditional vascular risk factors or current medication
between patients with NPSLE and non-NPSLE (all p > 0.05).
However, patients with NPSLE showed higher Systemic
Lupus International Collaborating Clinics/American College

4http://www.csie.ntu.edu.tw/~cjlin/libsvm/

of Rheumatology(SLICC/ACR) Damage Index (SDI) scores
compared to the patients with non-NPSLE, which was mainly
due to the neurological involvement (p < 0.05).

The current study included 10(33.3%) patients with active
NPSLE. The median time interval between the first NP event
to the imaging assessment was 32.5 (40.4) months, while
the median time interval between the last NP event to the
imaging assessment was 9.2 (16.4) months. The neuropsychiatric
manifestations of patients with NPSLE included seizure disorders
(n = 13, 43.3%), cognitive disorder (n = 12, 40%), demyelinating
syndrome (n = 9, 30%), mood disorder (n = 9, 30%),
severe headache (n = 7, 23.3%), psychosis (n = 6, 20.0%),
acute confusional state and cerebrovascular events (n = 5,
16.7%, respectively).

On conventional MRI, patients with NPSLE showed
significantly increased lesion volume, when compared with
patients with non-NPSLE [0.0 (0.0, 1164.0) vs 2188.0 (0.0,
6176.0), p = 0.002].

Gray Matter Volumetric Alterations in
Systemic Lupus Erythematosus
Compared to HCs, patients with non-NPSLE presented no
significant GM atrophy, while patients with NPSLE presented
widespread GM atrophy in the cortical cortex including the
frontal (e.g., rectus gyrus and precentral gyrus), temporal
(e.g., superior/inferior temporal gyrus), parietal (e.g., postcentral
and precuneus gyrus) and occipital (e.g., fusiform, lingual
gyrus and calcarine) cortex, subcortical nuclei (e.g., thalamus,
hippocampus, and putamen) and cerebellum (Figure 1 and
Table 2).

Compared to patients with non-NPSLE, patients with NPSLE
presented GM atrophy in the left superior temporal gyrus, right
thalamus, and bilateral putamen (Figure 1 and Table 2).

Gray Matter Functional Alterations in
Systemic Lupus Erythematosus
Compared to HCs, patients with non-NPSLE presented increased
fALFF in the left inferior occipital lobe and decreased fALFF
in the bilateral postcentral and paracentral lobules; patients
with NPSLE presented decreased fALFF in the left medial
superior frontal gyrus, left anterior cingulum, and bilateral
middle cingulate. Compared to non-NPSLE, patients with NPSLE
presented increased fALFF in the bilateral postcentral gyrus
(Figure 2 and Table 2).

Compared to HCs, patients with non-NPSLE presented
increased ReHo in the left cerebellar posterior lobe (L-
Crus II, L-Crus I) and decreased ReHo in the left superior
temporal gyrus, left postcentral gyrus, and right precentral
gyrus; patients with NPSLE presented increased ReHo in the
right fusiform and lingual gyrus and decreased ReHo in the
left anterior cingulum gyrus, left superior temporal gyrus,
right insula, and cerebellar vermis. Compared to non-NPSLE,
patients with NPSLE presented decreased ReHo in the bilateral
cerebellar posterior lobes (Crus II, Crus I) (Figure 2 and
Table 2).

Compared to HCs, patients with non-NPSLE presented
decreased DC in the right postcentral gyrus. No difference was
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TABLE 1 | Demographic and clinical characteristics of SLE patients with and without neuropsychiatric manifestations.

non-NPSLE NPSLE P value

(n = 24) (n = 30)

Age, mean (SD), years 29.1 (10.0) 32.5 (12.8) 0.30
Duration, median (IQR), years 28.0 (10.5, 54.0) 66.0 (12.0, 168.0) 0.060
SLEDAI score, median (IQR) 4.0 (1.0, 7.5) 6.0 (3.0, 12.0) 0.061
SLEDAI score ≥ 5, n (%) 9 (38%) 18 (62%) 0.10

Non-neurological SLEDAI score, median (IQR) 4.0 (1.0, 7.5) 4.0 (2.0, 8.0) 0.55
SLICC SDI score, median (IQR) 0.0 (0.0, 0.0) 1.0 (0.0, 1.0) < 0.001
Active NP, n (%) 10 (33.3%)

Period between 1st NP event to scanning, median (IQR), months 32.5 (40.4)
Period between last NP event to scanning, median (IQR), months 9.2 (16.4)
Cumulative organ system involvement, n (%)
Cutaneous 15 (63%) 22 (73%) 0.56
Vasculitis 6 (25%) 6 (20%) 0.75
Articular 12 (50%) 14 (47%) 1.00
Serositis 6 (25%) 10 (33%) 0.56
Renal 12 (50%) 18 (60%) 0.58
Hematologic 18 (75%) 19 (63%) 0.39
Interstitial pneumonia 2 (8%) 6 (20%) 0.28
Cardiac 0 (0%) 3 (10%) 0.25

Manifestations of NP, n (%)

Seizure disorder 13(43.3%)

Cerebrovascular events 5(16.7%)
Acute confusional state 5(16.7%)
Psychosis 6(20.0%)

Cognitive disorder 12(40.0%)

Mood disorder 9(30.0%)

Severe headache 7(23.3%)

Demyelinating syndrome 9(30.0%)
Laboratory findings, n (%)
Anti-dsDNA (+) 12 (50%) 18 (60%) 0.58
Anti-ribosomal P (+) 8 (33%) 15 (50%) 0.27

aPLs (+) 5 (21%) 12 (40%) 0.15

Hypocomplementemia 19 (79%) 28 (93%) 0.22

Complications, n (%)

Sjogren’ syndrome 2 (8%) 7 (23%) 0.27

Hashimoto’s disease 1 (4%) 5 (17%) 0.21

Smoking 0 (0%) 0 (0%)

Hypertension 1 (4%) 7 (23%) 0.063

Diabetes 1 (4%) 1 (3%) 1.00

Dyslipidemia 0 (0%) 4 (13%) 0.12

Current medication, n(%)

Glucocorticoids 21 (88%) 29 (97%) 0.31

Cumulative dose of steroids, median (IQR) 11.2 (3.9, 14.6) 11.4 (7.2, 29.4) 0.16

Low dose of steroids (Pred < 10mg/d) 15 (63%) 15 (52%) 0.58

*DMARDs* 20 (83%) 24 (83%) 1.00

Anticoagulants/antiplatelets 4 (17%) 9 (31%) 0.34

Lipid lowering agents 2 (8%) 9 (31%) 0.086

Vasodilators 0 (0%) 4 (14%) 0.12

cMRI Imaging

Lesion Volume, median (IQR) 0.0 (0.0, 1164.0) 2188.0 (0.0, 6176.0) 0.002

Values are mean ± SD, median (IQR), or number (%).
P values are for Wilcoxon’s rank sum test on continuous variables and for Fisher’s exact test on categorical variables.
*Include Cyclophosphamide, Mycophenolate Mofetil, Azathioprine, Methotrexate, Ciclosporin, and Tacrolimus.
SD, standard deviation; IQR, interquartile range; SLE, systemic lupus erythematosus; anti-dsDNA, anti-double strand DNA antibody; aPLs, anti-phospholipid antibodies;
SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; SLICC SDI, Systemic Lupus International Collaborating Clinics/American College of Rheumatology
Damage Index; DMARDs, disease modifying antirheumatic drugs; cMRI, conventional MRI.
The bold values mean p < 0.05 or nearly to 0.05.
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FIGURE 1 | The different patterns of GM atrophy in patients with NPSLE and non-NPSLE. The colored bar indicates the statistical T distribution between groups.

found between HCs and patients with NPSLE or between patients
with non-NPSLE and those with NPSLE (Figure 2 and Table 2).

Cerebellar Seed-Based Functional
Connectivity Alterations in Systemic
Lupus Erythematosus
According to the results from the structural and functional
imaging data analysis mentioned above, we found that the
cerebellar posterior lobes might play a crucial role in the
compensation for the disease damage. We next did the seed-
based functional connectivity analysis with using the cerebellar
posterior lobes (Crus I, Crus II) as the seeds, to further investigate
the potential interaction of the cerebellar posterior lobes with
other cognitive networks in SLE.

Figure 3 and Table 3 summarized the voxel-wise differences
of RS FC between subgroups, with the cerebellar posterior lobes
as the seeds. Compared to non-NPSLE patients, NPSLE patients
exhibited hyperconnectivity between the bilateral Crus I & II
region and the left-posterior superior temporal gyrus (L-pSTG),
left planum temporale and left parietal operculum. Specifically,
with a seed placed at the right cerebellar Crus II, an essential node
for the cerebellum network, the NPSLE group had increased FC
of the posterior cingulate gyrus, precuneous cortex, left posterior
temporal fusiform cortex and left posterior parahippocampal
gyrus within the posterior DMN, but reduced FC of the L-pSTG
and left planum temporale as compared to the non-NPSLE group.

Correlations of Magnetic Resonance
Imaging Indices With Clinical Variables
As shown in Table 4, lesion volume presented significant negative
correlations with GM volume (GMV) in the bilateral putamen
and GMV in the right thalamus and ReHo in the left cerebellum.

Disease duration presented negative correlations with ReHo
in the left cerebellum and positive correlations with ReHo in the
right precentral cortex and DC in the right postcentral gyrus.

Systemic Lupus Erythematosus Diseases Activity Index
(SLEDAI) scores presented a positive correlation with DC in the
right postcentral cortex and a negative correlation with fALFF in
the left inferior occipital gyrus.

SDI scores presented negative correlations with GMV in
the right cerebellum/fusiform/lingual/hippocampus/bilateral
thalamus, GMV in the left cerebellum/fusiform/lingual gyrus,
GMV in the right inferior frontal/precentral/postcentral/superior
temporal/insula/putamen, GMV in the left inferior
frontal/precentral/postcentral/superior temporal/insula,
GMV in the right thalamus, and GMV in the left superior
temporal gyrus and a positive correlation with DC in the
cerebellar posterior lobe.

Cumulative doses of steroids presented significant positive
correlations with ReHo in the left and right cerebellum and
negative correlations with ReHo in the right precentral gyrus and
DC in the right postcentral gyrus.

Hypertension was positively correlated with ReHo in
the left postcentral/paracentral lobule and DC in the right
postcentral gyrus.

Anti-phospholipid antibodies (aPLs) presented a mildly
negative correlation with fALFF and ReHo at the whole brain
level, fALFF in the left inferior occipital region and a mildly
positive correlation with ReHo in the left anterior cingulum.

Logistic Analysis for the Discrimination
of Patients With Neuropsychiatric
Systemic Lupus From
Non-neuropsychiatric Systemic Lupus
For the discrimination of patients with NPSLE from non-NPSLE,
logistic analysis results showed structural features, with the top
3 leading AUCs being GMV in the right thalamus, left putamen
and left superior temporal, and functional features with the top
3 leading AUCs being ReHo in the bilateral cerebellum and left
postcentral gyrus (Figure 4).
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TABLE 2 | Statistically significant structural and functional alterations in SLE patients using voxel-based analysis.

MR features Between groups Brain areas cluster size
(voxels)

Peak MNI coordinate Peak T

X Y Z

Gray matter
volume

HCs vs NPSLE Right cerebellar anterior and posterior lobe/bilateral thalamus 8392 –1.5 –10.5 7.5 5.56

Left cerebellar anterior and posterior lobe 4443 –28.5 –55.5 –18 4.55

Right inferior and middle temporal gyrus/right fusiform gyrus 1972 37.5 –10.5 –36 5.03

Left inferior temporal gyrus 285 –57 –12 –18 3.95

Right insula/right superior temporal gyrus 6169 27 22 –13 5.13

Left rectus gyrus 1123 –3 37.5 –22.5 4.47

Left superior and middle frontal gyrus 3990 –31 29 46 4.54

Left superior temporal gyrus/left postcentral gyrus/left insula 6156 –53 –1 1 5.17

Right superior and middle frontal gyrus 4267 36 40 26 5.17

Bilateral cingulum and bilateral precuneus 10240 –2 –6 49 5.09

Left middle occipital gyrus 424 –24 –75 22.5 4.1696

Right middle cingulum 225 –1.5 39 31.5 3.952

Left inferior parietal gyrus 608 –35 –46 41 4.53

Right superior and inferior parietal gyrus 1314 28.5 –55.5 45 4.6806

Right superior and middle frontal gyrus 268 25.5 –3 54 3.9186

Non-NPSLE vs NPSLE Left putamen 739 –22.5 7.5 1.5 4.0225

Right putamen 701 24 6 6 4.4821

Bilateral thalamus 269 3 –10.5 3 3.7348

Left superior temporal gyrus 390 –55.6 –6 6 4.0848

ReHo HCs vs non-NPSLE Left cerebellar posteiro lobe 48 –48 –54 –45 –3.7567

Left superior temporal; pole 73 –39 9 –27 5.0354

Right precentral gyrus 36 9 –21 78 3.2704

Left postcentral gyrus 50 0 –30 72 3.4827

HCs vs NPSLE Left superior temporal pole 40 –39 15 –21 3.9901

Right Fusiform/right lingual gyrus 51 27 –69 6 –3.9288

Right insula 42 42 15 –6 4.1044

Left anterior Cingulum 41 –3 42 –3 3.7632

Vermis_4_5 32 –3 –35 –1 3.6127

Non-NPSLE vs NPSLE Left cerebellar posterior lobe 150 –51 –54 –45 4.1608

Right cerebellar posterior lobe 59 33 –51 –42 3.6234

DC HCs vs non-NPSLE Right postcentral gyrus 30 30 –36 72 3.3265

HCs vs NPSLE Right cerebellar posterior lobe 30 6 –93 –36 –3.4111

fALFF HCs vs non-NPSLE Left inferior occipital gyrus 32 –30 –81 –12 –3.5115

Left postcentral gyrus 120 –3 –33 75 3.5695

HCs vs NPSLE Left superior medial frontal gyrus/left anterior cingulum 108 –3 48 33 4.4221

Bilateral middle cingulum_ 201 1 23 32 4.66

non-NPSLE vs NPSLE left Postcentral Gyrus 39 –15 –45 72 –3.1991

Peak T, peak T value.

Support Vector Machine Classification
for the Discrimination of Patients With
Systemic Lupus Erythematosus From
Healthy Controls and Patients With
Neuropsychiatric Systemic Lupus From
Non-neuropsychiatric Systemic Lupus
As shown in Table 5, the structural and functional features were
selected by logistic regression with coefficients of p < 0.005 and
p < 0.001 to investigate the robust features. The classification
performance had accuracies of 94.44% and 87.04% for features

with p < 0.005 and p < 0.001 for the discrimination of patients
with NPSLE from patients with non-NPSLE, respectively. The
most robust MRI features were ReHo in the bilateral cerebellar
posterior lobes.

DISCUSSION

In this study, we adopted a well-validated quantitative MRI
approach (3D T1, T2/FLAIR, and rs-fMRI) to investigate the
structural and functional characteristics of GM in patients with
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FIGURE 2 | The fALFF, ReHo and DC changes in patients with NPSLE and non-NPSLE. The colored bar indicates the statistical T distribution between groups.

FIGURE 3 | The cerebellar seed-based resting state functional connectivity (RS FC) changes in patients with NPSLE and non-NPSLE. (A): Clusters of abnormal RS
FC between subgroups of patients with SLE, as the bilateral cerebellar posterior lobes (cerebellar Crus I & Crus II) being the seed. (B): Clusters of abnormal RS FC
between subgroups of patients with SLE, as the right cerebellar Crus II being the seed. The colored bar indicates the statistical T distribution between groups.

NPSLE compared with patients with non-NPSLE and HCs.
Then, we correlated MRI abnormalities with clinical variables
to study the clinical relevance of our findings. Finally, we
introduced SVM, the more advanced discriminative approach,
to identify potential MRI imaging biomarkers to assist the
diagnosis of NPSLE.

In accordance with previous MRI imaging studies, we found
widespread GM atrophy in patients with NPSLE (Appenzeller
et al., 2007; Jung et al., 2010; Piga et al., 2015; Liu et al.,
2018), with significant subcortical GM (the right thalamus
and bilateral putamen) atrophy as compared to patients with
non-NPSLE, as showed in Figure 1 and Table 2. SLE is

bound to cause cerebral atrophy through autoantibody and
cytokine induced vascular damage, blood-brain barrier (BBB)
impairment, inflammatory neurotoxicity, and other uncovered
mechanisms (Sibbitt et al., 2010; Prechl and Czirjak, 2015;
Cohen et al., 2017; Schwartz et al., 2019). However, subcortical
GM atrophy is not specific for NPSLE: it can also be found
in other neuropsychiatric diseases, such as Parkinson’s disease,
Alzheimer’s disease, multiple sclerosis, depression, and autism
(Orhun et al., 2019). Subcortical GM atrophy in NPSLE might
be a mixture of several mechanisms, including vulnerability of
this territory to hemodynamic and hypoxic impairment (Chiang
et al., 2019; Eslami et al., 2019). It is putatively linked to cognitive
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decline. However, Kalinowska-Łyszczarz et al. (2018) found no
correlations between subcortical atrophy and cognitive deficits
in SLE. They concluded the cognitive impairment in SLE is

independent of brain atrophy or lesion volume. Notably, in our
present study, we also found no significant functional alterations
in basal ganglia or thalamus in SLE patients, suggesting that the

TABLE 3 | Clusters of abnormal RS FC between HC and SLE patients and between subgroups of SLE patients, as the parts of the cerebellar posterior lobes (Crus I,
Crus II) being the seeds.

Contrast Clusters Size X Y Z F PFDR

Seed: bilateral cerebellar Crus I & Crus II

NPSLE>HCs NS

non-NPSLE>HCs NS

NPSLE>non-NPSLE Left planum temporale Left
parietal operculum cortex L-

pSTG

274 –54 –32 +16 7.35 0.018

Seed: right cerebellar Crus II

NPSLE>HCs NS

non-NPSLE>HCs NS

NPSLE>non-NPSLE Posterior cingulate gyrus L
cerebellum 4 5 Precuneous

cortex

339 –12 –42 2 4.97 0.012

Posterior cingulate gyrus 259 20 –44 0 4.60 0.022

L cerebellum 4 5 Posterior
temporal fusiform cortex L
posterior Parahippocampal

gyrus

213 –60 –40 –10 –5.39 0.025

NPSLE<non-NPSLE L planum temporale L-pSTG 233 –22 –40 10 4.93 0.023

L, left; L-pSTG, left posterior superior temporal gyrus.

TABLE 4 | The clinical associations of MRI measurements with clinical variables using linear regression in SLE patients (including both NPSLE and non-NPSLE).

Features Brain regions Disease duration
(months)

SLEDAI
scores

SDI scores Cumulative steroid
dose (g)

Lesion
volume

Hypertension aPLs

GMV right cerebellum/fusiform/lingual/
hippocampus/bilateral thalamus

–0.37 (0.035)

Left cerebellum/fusiform/lingual
gyrus

–0.46 (0.008)

right inferior
frontal/precentral/postcentral/

superior temporal/insula/putamen

–0.40 (0.021)

left inferior
frontal/precentral/postcentral/

superior temporal/insula

–0.33 (0.049)

left putamen –0.49
( < 0.001)

right putamen –0.40 (0.001)

right thalamus –0.44 (0.008) –0.32 (0.028)

left superior temporal –0.36 (0.020)

fALFF whole brain –0.14 (0.037)

left inferior occipital –0.49 (0.003) –0.12 (0.024)

ReHo whole brain –0.16 (0.039)

left cerebellum –1.53 (0.001) 1.29 (0.003)

right precentral 1.15 (0.032) –1.17 (0.020)

left postcentral/paracentral lobule 0.32 (0.033)

left anterior cingulum 0.14 (0.024)

left cerebellum –1.31 (0.005) 0.87 (0.041) –0.41 (0.033)

DC right postcentral 0.75 (0.034) 0.36 (0.03) –0.87 (0.009) 0.31 (0.002)

cerebellar posterior lobe 0.55 (0.009)

The results are presented with the regression coefficients and the corresponding p values. Statistical significance of two-sided p < 0.05 was adopted.

Frontiers in Neuroscience | www.frontiersin.org 9 May 2022 | Volume 16 | Article 83919480

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-839194 April 27, 2022 Time: 17:7 # 10

Su et al. Gray Matter Characteristics in Lupus

FIGURE 4 | The logistic regression analyses of the structural and functional features in statistically significant brain regions for discrimination of patients with NPSLE
from those with non-NPSLE (features with the top 3 leading AUCs are presented). Classificational sensitivity, specificity and AUC are presented at the cut-off point
(red).

TABLE 5 | SVM classification results for the diagnosis of SLE from HCs and NPSLE from non-NPSLE using statistically significant structural and functional features
selected by logistic regression with p < 0.005 and p < 0.001, respectively.

Feature numbers Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) Recall (%) F1 score

MRI features (logistic regression with p < 0.005)

HCs vs non-NPSLE+NPSLE 9 97.67 98.15 96.88 98.15 98.15 0.98

HCs+non-NPSLE vs NPSLE 10 93.02 96.67 91.07 85.29 96.67 0.91

HCs vs non-NPSLE 12 94.64 875 100 100 87.50 0.93

HCs vs NPSLE 9 100 100 100 100 100 100

non-NPSLE vs NPSLE 5 94.44 96.67 91.67 93.55 96.67 0.95

MRI features (logistic regression with p < 0.001)

HCs vs non-NPSLE+NPSLE 9 97.67 98.15 96.88 98.15 98.15 0.98

HCs+non-NPSLE vs NPSLE 8 95.35 93.33 96.43 93.33 93.33 0.93

HCs vs non-NPSLE 5 94.64 91.67 96.88 95.65 91.67 0.94

HCs vs NPSLE 8 100 100 100 100 100 100

non-NPSLE vs NPSLE 2 87.04 90.00 83.33 87.10 90.00 0.89

function of subcortical nuclei is relatively intact in SLE, similar
with the results we previously found in neuromyelitis optica
(NMO) (Liu et al., 2015). The dissociation of morphological
and functional alterations in GM within this region in SLE
may further support the hypothesis of brain reorganization
to compensate for the functional impairments caused by
neuronal injury in SLE.

In what follows, as showed in Figure 2 and Table 2,
we found that in patients with non-NPSLE, the function of
the left superior temporal gyri (L-STG) within default mode
network (DMN) was decreased without detectable volumetric
reduction, while in patients with NPSLE, the functional

impairment of the same region was conspicuous with significant
atrophy. L-STG is involved in limbic system connecting
closely with hippocampus. These regions play crucial roles in
social cognition and emotion regulation. Microstructural and
functional alterations of this area were previously reported
in patients with autoimmune encephalitis (e.g., anti-NMDAR)
with schizophrenia-like psychiatric manifestations as the initial
presentation (Bost et al., 2016). Meanwhile, prior studies using
mouse models and in vitro experiments demonstrated that
anti-double stranded DNA antibody and anti-ribosomal P
protein antibody could cross react with neuron surface receptors
including NMDARs (DeGiorgio et al., 2001), mainly injuring
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the hippocampus, inducing neuronal death and leading to
cognitive disorders and memory loss. Taken together, our data
thus verified in vivo the L-STG is one of the potential neural
substrates of neuropsychiatric impairment in patients with SLE
(Kowal et al., 2006; Schwarting et al., 2019). Besides, choric
neurological histopathological lesions characterized by non-
specific focal vasculopathy have already been found in the brain
tissue of patients with non-NPSLE, while in that of patients with
NPSLE, it progresses into more specific lesions including diffuse
vasculopathy and microthrombi, which is related to clinical
neuropsychiatric symptoms (Cohen et al., 2017). Therefore,
hypothetically, NPSLE is considered the consequence of these
cumulative pathological damages to the nervous system when
exceeding a certain threshold (Petri et al., 2008; Kozora et al.,
2012; Cohen et al., 2017; Schwartz et al., 2019). On the basis of
these findings and hypothesis, we speculated that the GM within
the left temporal lobe including the L-STG may be one of the
direct targets of lupus-related inflammatory attack, in which it
exhibited a progressive pathological change.

In accordance with previous fMRI studies (Desmond et al.,
2003; Hester and Garavan, 2004; Ren et al., 2012), we also
found that (Figure 2 and Table 2), to compensate for the
cerebral regional dysfunction, the areas in cerebellar posterior
lobes were significantly activated in patients with non-NPSLE.
Thus, cerebellar posterior lobes, an area which has a role in
working memory, language processing and other executive tasks
and is also included within the DMN (Schmahmann et al.,
2019), may play a central role in the adaptability and plasticity
of the brain to limit the functional impairment that has been
caused by the disease. However, in patients with NPSLE as we
found, while the GM volume within the cerebellar posterior lobes
significantly reduced, its functional activities were attenuated as
well, with increased FC of the ROIs within the posterior DMN
and the regions around the L-STG. Increased cerebellar RS FC
has been found in many neurological (Simioni et al., 2016) and
neuropsychiatric (Feng et al., 2017) diseases. Bonacchi et al.
(2020) identified that higher RS FC in the left cerebellar crus I
was associated with worse memory performance. Taken together,
these findings indicated a probable maladaptive rewiring and a
trend of decompensation of the cerebellum to the disease damage
in the state of NPSLE (Nystedt et al., 2019). In addition, other
studies have demonstrated that compensatory functional signals
decreased in SLE patients with disease duration of more than
10 years, indicating that the compensatory activations could be
weakened by irreversible neural injuries (Mackay et al., 2011).

In line with the recently published literature (Bonacchi et al.,
2020), the cerebral clusters in which we observed significant
functional alterations during resting state in patients with NPSLE
as compared with controls were the bilateral middle cingulate, the
left superior temporal gyri, the bilateral cerebellar posterior lobes
and the left medial superior frontal gyri within DMN, the right
insula and the left anterior cingulate within salience network
(SN), and the precentral and postcentral gyri within sensorimotor
network (SMN). These neural networks are organized in balance.
Previous research have verified the DMN and the SMN are anti-
correlated, both regulated by the SN (Fox et al., 2005; Huang
et al., 2015; Wang et al., 2019; Russo et al., 2020). The SN plays

a critical role in attention and attributing saliency to external or
internal originated events or stimuli and thus exerts control and
balance on the DMN and other networks including the SMN
(Shott et al., 2012; Martino et al., 2016). During resting state,
the DMN is activated while the SMN is inhibited through the
SN in healthy subjects. In patients with NPSLE, we observed
attenuation of the DMN and the SN, and increased activation
of the SMN during resting state. DMN abnormalities have been
consistently verified in several neurological (Hohenfeld et al.,
2018; Valsasina et al., 2019; Preziosa et al., 2020) and psychiatric
(Chahine et al., 2017) disorders. As previous research reported
(Barraclough et al., 2019), the DMN was indicated to have
attenuated deactivation during performing cognitive tasks, and
hypoconnectivities within it and between the cognitive networks
during resting state (Nystedt et al., 2018) in NPSLE patients,
which was interpreted as a compensatory mechanism resulting in
preserved cognitive performance. Meanwhile, as previous fMRI
studies reported, the RS FC within SN is severely impaired in
major depression (Philip et al., 2018). However, Bonacchi et al.
(2020) found increased RS FC in the left insular cortex with more
severe depression, and decreased RS FC in the right anterior
cingulate cortex with better memory performance within SN,
suggesting an adaptive mechanism, probably contributing to a
more efficient performance of the SN on cognitive tasks. Taken
together, we speculated that the increased function of the nodes
within SMN might be the consequence of the disinhibition of it,
due to weakened control and regulation from the attenuated SN
and DMN (Lin et al., 2011; Nystedt et al., 2018; Papadaki et al.,
2018), which was also reported in previous studies (Nystedt et al.,
2018), and may partially explain the inattention, hyperactivity
and impulsivity in patients with NPSLE as reported in prior
literature (Garcia et al., 2013; Gao et al., 2015).

By correlation analysis, we verified that the widespread
GM atrophy in patients with NPSLE was negatively correlated
with SDI scores. Meanwhile, the subcortical GM atrophy was
negatively correlated with lesion volume (Table 3). These results
suggested that the distribution and the degree of brain GM
atrophy in NPSLE patients could be an indicator of disease
burden (Mak et al., 2016; Liu et al., 2018). In addition, we found
that the characteristic functional alterations in the cerebellar
posterior lobes and the sensorimotor center as detailed above
were associated with disease duration, SDI scores, lesion volume,
hypertension, and aPLs, which was consistent with previous
evidence, reflecting a reduction of the brain adaptability to
maintain normal function along with severe pathologic burden
and multiple cerebral vascular risk factors (Rocca et al., 2006;
Mackay et al., 2011; Cohen et al., 2017; Papadaki et al., 2018).
However, it is worth noting that the functional alterations in GM
within these regions was negatively associated with cumulative
corticosteroid use, which might suggest a therapeutic effect for
corticosteroids and requires further study.

In addition, the SVM analysis (Figure 3 and Table 4) further
confirmed that the combination of the ReHo of the bilateral
cerebellar posterior lobes may be a potential imaging biomarker
in early diagnosis of NPSLE, with both sensitivity and specificity
above 0.8. Our results provided relatively satisfactory proof of the
notion that the diagnostic process of NPSLE could be aided by
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objective MRI imaging parameters rather than merely physician
assessment (Zirkzee et al., 2012; Fanouriakis et al., 2016).

There are some limitations in our study. First, the sample
size is relatively small. However, sample sizes of this magnitude
have been confirmed to have adequate signal sensitivity to
obtain statistical significance as a pilot study. Certainly, further
studies are needed to confirm the present observations on a
larger sample, with longitudinal follow-up and assistance of
neuropsychiatric assessments. Second, the patients recruited
in our study had all received treatment with steroids and
immunosuppressors. However, this limitation is inherent to this
type of study. Third, the educational level of the subjects should
be considered as a potential confounder in the future study.
Forth, there were around 1/3 patients with active NPSLE, which
might probably influence the results due to active inflammation.
However, the median SLEDAI scores and the rate of patients with
SLEDAI score ≥ 5 between the NPSLE and non-NPSLE groups
had no significant difference, which had balanced the potential
confounder. Fifth, the patients enrolled in the NPSLE group were
heterogeneous, according to the different NP manifestations the
patients had. However, in the present pilot study, we aimed to
investigate the overall characteristics of the GM in patients with
NPSLE, and we planned to refine the patients with NPSLE in the
future study. Despite its exploratory nature, this quantitative MRI
pilot study offers valuable insights into the brain reorganizational
capacity in SLE patients, as well as indicates for the first time
the functional parameter of the cerebellar posterior lobes may
be a potential imaging biomarker to aid the early diagnosis of
NPSLE. Further investigation of the underlying lupus-related
vascular damage and BBB impairment in SLE patients using other
advanced quantitative MRI techniques (e.g., high-resolution MR
angiography, MR permeability imaging, susceptibility weighted
imaging, and quantitative susceptibility mapping) is, therefore,
an essential next step.

CONCLUSION

In this study, characteristic deep nuclei atrophy and functional
alteration pattern in GM within brain networks were identified
in patients with NPSLE as compared with matched groups,
which especially involved the cognitive and sensorimotor regions,
and mainly associated with disease burden and aPLs. The
different forms of the relationship between the structural and
functional changes in patients with NPSLE and non-NPSLE
reflected a compensatory mechanism of the brain to maintain

normal function, which was attenuated along with pathologic
burden and cerebral vascular risk factors. We also, for the
first time, demonstrated in vivo that the GM within the left
temporal lobe may be one of the direct targets of lupus-
related inflammatory attack. Finally, we found that the function
of the cerebellar posterior lobes might play an essential role
in compensating for cortical functional disturbances and may
contribute to identifying patients with suspected NPSLE in
clinical practice. Larger longitudinal studies are required to
further validate these data.
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Childhood trauma is a non-specific risk factor for major depressive disorder
(MDD). resting-state functional magnetic resonance imaging (R-fMRI) studies have
demonstrated changes in regional brain activity in patients with MDD who experienced
childhood trauma. However, previous studies have mainly focused on static
characteristics of regional brain activity. This study aimed to determine the specific brain
regions associated with MDD with childhood trauma by performing temporal dynamic
analysis of R-fMRI data in three groups of patients: patients with childhood trauma-
associated MDD (n = 48), patients without childhood trauma-associated MDD (n = 30),
and healthy controls (n = 103). Dynamics and concordance of R-fMRI indices were
calculated and analyzed. In patients with childhood trauma-associated MDD, a lower
dynamic amplitude of low-frequency fluctuations was found in the left lingual gyrus,
whereas a lower dynamic degree of centrality was observed in the right lingual gyrus
and right calcarine cortex. Patients with childhood trauma-associated MDD showed
a lower voxel-wise concordance in the left middle temporal and bilateral calcarine
cortices. Moreover, group differences (depressed or not) significantly moderated the
relationship between voxel-wise concordance in the right calcarine cortex and childhood
trauma history. Overall, patients with childhood trauma-associated MDD demonstrated
aberrant variability and concordance in intrinsic brain activity. These aberrances may be
an underlying neurobiological mechanism that explains MDD from the perspective of
temporal dynamics.

Keywords: major depressive disorder, childhood trauma, resting-state functional magnetic resonance imaging,
concordance, temporal dynamics

INTRODUCTION

Major depressive disorder (MDD) is a common mental illness that affects over 350 million
people. It is a heterogeneous clinical syndrome that can include symptoms of disturbed mood,
difficulty concentrating, bodily complaints, self-loathing, delusions of guilt, indecision, and even
a strong wish to die (de Kwaasteniet et al., 2013; McCarron et al., 2021). MDD is a major leading
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cause of disability and has an approximate 12-month prevalence
of 6% worldwide (Kessler and Bromet, 2013). The onset and
development of MDD is a complicated process and involves
various factors, including genetic vulnerability (Howard et al.,
2019), stressful life events and circumstances (Hammen, 2005;
Southwick et al., 2005), dysfunctional cognition (Gotlib and
Joormann, 2010; Figueroa et al., 2015), interpersonal dysfunction
(Hammen and Brennan, 2002), female sex (Kuehner, 2017;
Salk et al., 2017), and childhood trauma (Huh et al., 2017;
Nelson et al., 2017).

Childhood trauma is a non-specific risk factor for MDD.
Patients with childhood trauma-associated MDD have a worse
treatment response (Nikkheslat et al., 2020). According to
existing studies, among individuals with childhood trauma,
54% suffer from depression, 64% are addicted to illicit drugs,
and 67% have experienced suicidal ideation (Dube et al.,
2003). Childhood trauma consists of emotional, physical, and
sexual abuse, and emotional and physical neglect (Danese and
Baldwin, 2017), and has been closely associated with numerous
psychiatric disorders such as MDD (Yu M. et al., 2019), bipolar
disorder (Begemann et al., 2021), post-traumatic stress disorder
(Kisely et al., 2018), and borderline personality disorder (Nicol
et al., 2015). The neurobiological mechanisms underlying the
association remain unclear. Yu M. et al. (2019) found that
traumatic childhood experiences and dimensional symptoms
are linked to aberrant network architecture in MDD, providing
strong evidence for the negative impact of childhood trauma.
Furthermore, Heim et al. (2008) and Du et al. (2016), observed
an aberrant amplitude of low-frequency fluctuation (ALFF) and
fractional amplitude of low-frequency fluctuation (fALFF) in
patients with MDD across widespread brain regions relative to
healthy controls, demonstrating that childhood trauma might
lead to brain dysfunction and increased risk of MDD. Similarly,
in a multimodal study, Duncan et al. (2015) found that
childhood trauma causes long-term functional and structural
effects in the brain.

Although previous studies have provided insights into the
neurobiological mechanisms underlying MDD in patients who
experienced childhood trauma, they did not examine variability
and concordance in intrinsic brain activity. Brain activity
fluctuates and changes over time in response to context and
activity and underlies temporal-dynamic integration in the
brain (Park et al., 2018). A number of studies have captured
the temporal dynamic patterns of intrinsic brain activity
using the sliding window method. Evidence has indicated that
aberrant variability and concordance of resting-state functional
magnetic resonance imaging (R-fMRI) indices are related to the
mechanisms underlying MDD (Hutchison et al., 2013; Allen
et al., 2014; Xue et al., 2020). Regarding aberrant variability, Zhao,
Lei and colleagues reported significantly decreased dynamic
ALFF (dALFF) in the emotion network in depressed patients
(Zhao et al., 2021). Xue et al. (2020) observed a consistently
decreased dynamic regional homogeneity (dReHo) in patients
with MDD in both fusiform gyri, the right temporal pole,
and the hippocampus relative to healthy controls. Additionally,
Zhang et al. (2022) revealed the relationship between brain
dynamic working patterns and chronic stress in adolescent MDD

using the dynamic functional connectivity (FC) method. Zhu
et al. (2020) reported abnormal cerebellar-cerebral dynamic FC
changes in MDD. As for abnormal concordance, Zhu et al.
(2019) reported decreased volume-wise concordance in patients
with MDD relative to healthy controls. To characterize the local
characteristics of the single voxel, ALFF and its normalized
version fALFF have been used to compute the mean value of
amplitudes within the 0.01–0.1 Hz low-frequency range from a
Fourier decomposition of the blood oxygenation level-dependent
(BOLD) time course (Zang et al., 2007; Zou et al., 2008).
Regional homogeneity (ReHo) was developed to represent the
level of regional brain activity coherence (Zang et al., 2004).
Voxel-mirrored homotopic connectivity (VMHC) was adopted
as the Pearson’s correlation coefficient between the time series
of each voxel in one hemisphere and the time series of its
symmetrical counterpart in the opposite hemisphere (Zuo et al.,
2010b). Global signal connectivity (GSCorr) was considered as
the Pearson’s correlation coefficient between the averaged time
series and the time series of each voxel within the entire gray
matter (Hahamy et al., 2014; Yang et al., 2017; Zhang et al., 2019).
To depict the functional importance of the specific voxel, degree
centrality (DC) was developed to calculate FC within the whole
brain using the graph-theoretical approach (Buckner et al., 2009;
Tomasi and Volkow, 2010; Zuo et al., 2012; Liu et al., 2015).
Collectively, those R-fMRI indices have been applied widely to
investigate aberrant intrinsic brain activity in depressed patients,
which has enabled significant breakthroughs in the exploration
of MDD neurobiological mechanisms (Guo et al., 2012; Liu et al.,
2013, 2014; Shen et al., 2015; Gong et al., 2020; Ebneabbasi
et al., 2021; Zhou et al., 2021). Therefore, in this study, we
extensively applied dALFF, dynamic fALFF (dfALFF), dReHo,
dynamic voxel mirrored homotopic connectivity (dVMHC),
dynamic global signal correlation (dGSCorr), and dynamic DC
(dDC) to investigate functional alterations of the brain in patients
with MDD who experienced childhood trauma.

Previous studies have not explored alterations in variability
and concordance of brain activity in MDD with childhood
trauma. This study compared temporal dynamics analysis data
based on R-fMRI images acquired from patients with MDD
who experienced childhood trauma with data from patients
with MDD who did not experience childhood trauma as well
as healthy controls. We hypothesized that patients with MDD
who experienced childhood trauma exhibit aberrant dynamic
regional brain activity and concordance and that the concordance
is associated with the severity of childhood trauma.

MATERIALS AND METHODS

Participants
We recruited 78 patients with MDD and 108 healthy subjects for
this study. MDD diagnosis was made by two psychiatrists with
extensive experience using the DSM-5 diagnostic criteria. We
used the Hamilton Depressive Rating Scale (HAMD) (Helmreich
et al., 2012) to assess the depression severity (for those with
MDD). It is well established that the Childhood Trauma
Questionnaire (CTQ) is a reliable tool to evaluate the negative
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influence of maltreatment experience (Wu et al., 2022). Prior
studies have proved that the CTQ has high validity in different
countries (Kim et al., 2013; Isvoranu et al., 2017; Zhang et al.,
2020; Petrikova et al., 2021). Using the CTQ cutoff points for
the CTQ subscale scores to determine whether participants with
and without traumatic experience has been widely validated
and accepted (Jansen et al., 2016; Xie et al., 2018; Monteleone
et al., 2020). Hence, we followed the same criterion to identify
whether the participants suffered childhood maltreatment. To
summarize, we used the cutoff point for the CTQ subscales
score to distinguish the participants with and without childhood
trauma, and the CTQ total score was used to quantify the severity
of childhood maltreatment history. The CTQ total score and its
subscale scores were used as continuous variables in this study.
According to different types of childhood maltreatment, the CTQ
can be divided into the following subscales: (i) emotional neglect
(EN), (ii) physical neglect (PN), (iii) emotional abuse (EA), (iv)
physical abuse (PA), and (vi) sexual abuse (SA) (Xie et al., 2018).
The detailed cutoff points of CTQ subscales are shown below:
(i) EN score ≥ 15, (ii) PN score ≥ 10, (iii) EA score ≥ 13,
(iv) PA score ≥ 10, and SA score ≥ 8 (Jansen et al., 2016;
Xie et al., 2018). Participants with any above-threshold score in
the childhood trauma subtype will be considered as exposed to
childhood maltreatment and will be included in our study. All
participants received an assessment of the negative impact of
traumatic history.

Based on whether each participant with or without traumatic
history (using the cutoff points of the CTQ subscales to identify
the participants with trauma exposure), had or had not been
diagnosed with MDD (diagnosis of the patient with MDD
was made by two psychiatrists), participants were divided into
MDD with childhood trauma group (n = 48), MDD without
childhood trauma group (n = 30), and healthy control group
(n = 108). Patients with MDD were recruited from the inpatient
department of the Affiliated Brain Hospital of Guangzhou
Medical University. Correspondingly, 108 age-, gender-, and
education-matched healthy controls were recruited from the
advertising and nearby community. We excluded patients who (i)
did not have a first episode of depression, (ii) had a history of any
other major mental illness and physical disorder, (iii) had a family
history of any other major mental illness and physical disorder,
(iv) were taking psychiatric medication before (non-drug-naive),
(v) received systemic psychotherapy and electroconvulsive
therapy before, and (vi) were with contraindication for R-fMRI.
The study was approved by the Ethics Committee of the
Affiliated Brain Hospital of Guangzhou Medical University. All
participants offered their written informed consent before the
data collection.

Magnetic Resonance Imaging Data
Acquisition
MRI images were obtained using a 3T Philips scanner at
the radiology department of The Affiliated Brain Hospital
of Guangzhou Medical University in China. (i) Resting-
state functional scans were performed using a gradient-echo
echoplanar imaging sequence with the parameters listed below:

TR = 2,000 ms, TE = 30 ms, number of slices = 33, flip
angle = 90◦, matrix = 64 × 64, field of view = 220 × 220 mm2,
and slice thickness = 4 mm with 0.6 mm interslice gap. The
whole scanning process included 240 time points, lasting for
8 min. (ii) High-resolution 3D T1 images were acquired with
the parameters listed below: TR/TE = 8.2/3.7 ms, number of
slices = 188, slice thickness = 1 mm, flip angle = 7◦, acquisition
matrix = 256 × 256, and voxel size = 1 mm × 1 mm × 1 mm.
All participants were instructed to close their eyes, relax, remain
motionless, and keep awake.

Magnetic Resonance Imaging Data
Preprocessing
Using the DPARSF toolbox (DPARSFA1) to preprocess the
R-fMRI images, first, we removed the first ten volumes to allow
data to reach equilibrium; second, we performed slice timing and
head motion. Notably, the mean framewise displacement (FD)
based on the Jenkinson model (FD-Jenkinson) was computed
by averaging the FD from every time point for each subject
(Jenkinson et al., 2002). We included only subjects with relatively
low head motion (criteria: mean FD < 0.2 mm). Third, we
conducted structural image alignment with a six-degree-of-
freedom linear transformation to align the T1 image to the
functional image; subsequently, we segmented the transformed
structural images into the cerebrospinal fluid, white matter,
and gray matter (Ashburner and Friston, 2005); Then, we
spatially normalized the motion-corrected functional images
into standard MNI space with 3 mm × 3 mm × 3 mm
using the normalization parameters estimated during unified
segmentation. The normalized images of the resulting ALFF
and fALFF were then smoothed using a 4-mm FWHM
Gaussian kernel. Subsequently, we treated Friston 24-head
motion parameters, the white matter signal, and the CSF signal
as the nuisance covariates to regress out (Friston et al., 1996). As
for calculating ReHo, VMHC, and DC, the normalized images
were subjected to nuisance regression to regress out Friston 24-
head motion parameters, the white matter signal, and the CSF
signal (Friston et al., 1996). Finally, the images were filtered with
a temporal band-pass filter between 0.01 and 0.08 Hz.

Dynamic Resting-State Functional
Magnetic Resonance Imaging Indices
Calculation
Dynamic indices were computed using the temporal dynamic
analysis toolkits on DPABI (Yan et al., 2016) (DPABI,2 version
4.5). We used the sliding-window approach to explore alterations
in variability and concordance of dynamic R-fMRI indices
throughout the whole brain. For the calculation of the dynamic
R-fMRI indices, window length is an essential but open
parameter. Prior research has pointed out that 50 TRs window
length is the most suitable parameter to maintain the balance
between achieving reliable estimates of intrinsic brain activity
(with a longer window length) and capturing high-speed shifting

1www.restfmri.net/forum/DPARSF
2http://rfmri.org/dpabi
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dynamic brain activity (with a shorter window length) (Liao et al.,
2019; Cui et al., 2020; Liu et al., 2021). Thus, a sliding window
length of 50 TRs and a step size of 1 TR were selected to analyze
the dynamic R-fMRI indices in this study.

The time series of each subject was divided into 181
windows. In each window, R-fMRI metrics, including ALFF,
fALFF, ReHo, GSCorr, VMHC, and DC, were calculated. Then,
the following dynamic indices were analyzed: dALFF, dfALFF,
dReHo, dGSCorr, dVMHC, and dDC. Images for calculating
ALFF and fALFF were smoothed but not filtered; the images
for calculating the other indices were filtered but not smoothed.
A standard deviation (SD) across the windows was then
computed to represent the dynamic indices. Finally, smoothing
and Z standardization were executed on the SD maps (apart
from dALFF and dfALFF, which were smoothed before). Window
sizes of 30 TRs and 70 TRs were also computed (refer to
Supplementary Data).

Computation of Multiple Resting-State
Functional Magnetic Resonance Imaging
Indices
Interdependence among the following six R-fMRI brain activity
indices was investigated:

(i) ALFF and fALFF: Above all, we transformed the
time course into the frequency domain to acquire the
corresponding power spectrum by using a Fast Fourier
Transform. Then, we computed the square root at
each frequency of the power spectrum. In particular, the
averaged square root within the 0.01–0.1 Hz low-frequency
range was considered the ALFF value (Zang et al., 2007).
Moreover, fALFF was accepted as the ratio of the power
spectrum within the 0.01–0.1 Hz low-frequency range to
that of the whole frequency range (Zou et al., 2008). Owing
to the high colinearity between ALFF and fALFF, we only

included the fALFF value in the subsequent concordance
calculation, as it improves specificity and sensitivity when
examining regional brain activity (Zou et al., 2008; Zuo
et al., 2010a; Yan et al., 2013).

(ii) ReHo: ReHo was adopted to represent the level of regional
brain activity coherence. It was accepted as Kendall’s
coefficient of concordance of the BOLD time course of a
specific voxel with its 26 neighboring voxels’ time course
(Zang et al., 2004).

(iii) GSCorr: GSCorr was considered the Pearson’s correlation
coefficient between the averaged time series and time series
of each voxel within the entire gray matter (Hahamy et al.,
2014; Yang et al., 2017; Zhang et al., 2019). Afterward, the
above GSCorr values underwent Fisher’s z-transformation
to reach distribution normality.

(iv) VMHC: VMHC was adopted as the Pearson’s correlation
coefficient between the time series of each voxel in
one hemisphere and the time series of its symmetrical
counterpart in the opposite hemisphere (Zuo et al., 2010b).
Subsequently, the above VMHC values underwent Fisher’s
z-transformation to reach distribution normality.

(v) DC: We computed the Pearson’s correlation coefficients
between the time series of all the pairwise voxels within the
entire gray matter. This correspondingly resulted in the FC
matrix of the entire gray matter. DC was accepted as the
sum of positive FC (defined as FC values above a threshold
of 0.25) between a given voxel and the rest of the voxels
(Buckner et al., 2009; Zuo et al., 2012).

Our study is an exploratory analysis and aims to examine
the aberrant variability and concordance of dynamic resting-
state fMRI indices (i.e., dALFF, dfALFF, dReHo, dVMHC,
dGSCorr, and dDC) in patients with MDD who experienced
childhood trauma. Following extensive exploratory analysis, we
observed significant variability differences in dALFF and dDC.

TABLE 1 | Demographic and clinical scale scores of MDD with childhood trauma, MDD without childhood trauma, and HC group.

MDD with childhood
trauma (n = 48)

MDD without
childhood trauma

(n = 30)

HC (n = 103) F/t/x2 p-value

Age (years), mean ± SD 28.1 ± 6.524 29.07 ± 7.913 27.03 ± 6.591 1.185 0.308

Gender (male/female) 24/23 11/19 44/59 2.436 0.119

Educational level (years), mean ± SD 12.92 ± 3.319 13.73 ± 3.35 14.32 ± 2.598 3.778* 0.025

MDD onset age 27.9 ± 6.722 28.00 ± 7.424 26.94 ± 7.268 2.122 0.560

HAMD score 29.46 ± 8.543 29.73 ± 5.458 – 0.025 0.876

HAMA score 16.65 ± 6.849 19.7 ± 6.276 – 3.91 0.052

Mean FD (mm) 0.564 ± 0.021 0.582 ± 0.021 0.561 ± 0.017 0.141 0.869

CTQ score 55.33 ± 12.575 29.7 ± 4.535 38.09 ± 9.126 78.385** <0.001

Emotional neglect 18.04 ± 3.984 7.43 ± 2.921 11.15 ± 4.729 66.043** <0.001

Physical neglect 12.19 ± 3.486 5.77 ± 1.04 8.31 ± 2.927 51.169** <0.001

Emotional abuse 11.02 ± 4.987 5.73 ± 1.165 7.06 ± 2.678 30.897** <0.001

Physical abuse 8.06 ± 4.503 5.57 ± 1.165 6.07 ± 1.767 11.035** <0.001

Sexual abuse 6.02 ± 2.686 5.2 ± 0.407 5.5 ± 1.065 2.754 0.066

*p < 0.05, **p < 0.01.
MDD, major depressive disorder; CTQ, childhood trauma questionnaire; HC, healthy control.
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However, no significant variability difference was identified for
the other metrics.

Concordance Analysis
Concordance values were computed based on Kendall’s
W coefficient. Two types of concordance indices were
calculated: (i) volume-wise concordance, computed as the
global level concordance index across voxels; and (ii) voxel-wise
concordance, computed as the voxel-level concordance across
time windows of each subject.

Statistical Analysis
Statistical analyses were conducted using SPSS software version
19.0 (IBM Corp., Armonk, NY, United States). Demographic
data, clinical scale scores, and volume-wise concordance were
compared between groups using the chi-square test and one-
way ANOVA with post hoc Bonferroni correction. To compare
voxel-wise concordance and standardized SD maps between
groups, one-way ANOVA with post hoc Bonferroni correction
for multiple comparisons was conducted. Significant results
are obtained from the multiple comparisons with Bonferroni
correction post hoc tests. Family-wise error correction (FWE)
was conducted with a significance threshold of p < 0.05 and
a cluster size of > 15 voxels (Wang et al., 2014). Mean
dynamic index values were extracted from brain regions showing
significant intergroup differences in the voxel-wise dynamic
analyses. In the multiple comparisons in regions with differences
in dDC, p < 0.05/2 = 0.025 was accepted as significant owing
to dDC analysis resulting in two significant clusters. In the
multiple comparisons in regions with differences in voxel-wise
concordance, p < 0.05/3 = 0.016 was accepted as significant
(voxel-wise concordance analysis resulting in three significant
clusters). Pearson’s correlation analyses were used to explore the
associations of voxel-wise concordance with CTQ score in all
participants [p < 0.05/18 = 0.0027, with Bonferroni correction
of 18 being due to three clusters and 6 scales (i.e., CTQ scale
and its five subscales)]. In addition, to further quantitatively
compare correlation coefficients between groups, we used a
regression model with group moderating the associations of
dynamic indices with CTQ score (p < 0.05/3 = 0.016, with
Bonferroni correction of 3 due to three clusters). In this study,
age, gender, and education were considered as control variables.

TABLE 2 | Regions with differences in dynamic R-fMRI indices among the MDD
with childhood trauma, MDD without childhood trauma, and HC groups.

Anatomical region Peak MNI Cluster size F

x y z

dALFF

Left lingual 0 −81 3 36 11.6394

dDC

Right lingual 9 −81 0 26 12.7027

Right calcarine 12 −63 18 78 11.8277

dALFF, dynamics of amplitude of low-frequency fluctuations; dDC, dynamics of
degree centrality; MDD, major depressive disorder; HC, healthy control.

RESULTS

Demographic Data
As shown in Table 1, no significant differences were found
between the patients with MDD-associated childhood trauma,
patients without MDD-associated childhood trauma, and control
groups with respect to demographic data, Hamilton Anxiety
Rating Scale score, and Hamilton Depressive Rating Scale score.
However, the CTQ score and its subscale scores significantly
differed between groups.

Dynamics of Resting-State Functional
Magnetic Resonance Imaging Indices
Intergroup differences in dALFF were detected in the left
lingual gyrus (Table 2 and Figure 1), whereas differences in
dDC were observed in the right lingual gyrus and the right
calcarine cortex (Table 2 and Figure 1). The post hoc testing
showed that dALFF and dDC were lower in the patients with
childhood trauma-associated MDD group than in the patients
without childhood trauma-associated MDD and the control
group (Table 3 and Figure 1). Other dynamic indices did not
significantly differ between groups.

Volume-Wise Concordance of
Resting-State Functional Magnetic
Resonance Imaging Indices
Mean volume-wise concordance values significantly differed
among the three groups (p = 0.001). The post hoc testing showed
that mean concordance was lower in the patients with childhood
trauma-associated MDD group than in the control group. SD
values of volume-wise concordance did not significantly differ
between the three groups (p = 0.996; Figure 2 and Table 4).

Voxel-Wise Concordance of
Resting-State Functional Magnetic
Resonance Imaging Indices
Significant differences were observed in the left middle temporal
and bilateral calcarine cortices when comparing voxel-wise
concordance between the groups (Figure 3 and Table 5). Multiple
comparisons showed that the concordance of these regions in
the patients with childhood trauma-associated MDD group was
lower than that in the other two groups (Figure 3 and Table 6).

Correlation Analysis and Multiple Linear
Regression Analysis
We further examined the associations of dALFF and dDC with
the CTQ total score. As shown in Figure 4 and Table 7,
the correlation analyses revealed that childhood trauma history
was negatively correlated with voxel-wise concordance in the
left middle temporal (r = −0.166, p = 0.026), left calcarine
(r = −0.160, p = 0.032), and right calcarine (r = −0.165,
p = 0.027), respectively.

Moreover, multiple linear regression analysis (Baron and
Kenny, 1986) was used to investigate whether a history of
childhood trauma has the same effect on dALFF and dDC in
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FIGURE 1 | Regions with differences in dALFF and dDC between the MDD with childhood trauma, MDD without childhood trauma, and HC groups and post hoc
analysis. (A) The intergroup difference in dALFF in the left lingual gyrus. (B,C) The intergroup difference in dDC in the right lingual gyrus and the right calcarine cortex,
respectively. (D,E) The multiple comparisons in regions with differences in dALFF and dDC, respectively. MDD, major depressive disorder; HC, healthy control;
dALFF, dynamics of amplitude of low-frequency fluctuations; dDC, dynamics of degree centrality. * means the p-value has reached a significant level. In the multiple
comparisons in regions with differences in dDC, p < 0.05/1 = 0.05 was accepted as significant. In the multiple comparisons in regions with differences in dDC,
p < 0.05/2 = 0.025 was accepted as significant.
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TABLE 3 | Multiple comparisons in regions with differences in dALFF and dDC.

Dynamic R-fMRI
indices

Anatomical
region

(I) (J) Mean difference (I-J) p 95% CI

dALFF Left lingual MDD with childhood
trauma

MDD without childhood trauma −0.0622708 0.413 −0.212051 0.08751

HC −0.2512045* <0.001 −0.363675 −0.138734

MDD without childhood
trauma

MDD with childhood trauma 0.0622708 0.413 −0.08751 0.212051

HC −0.1889337* 0.006 −0.32245 −0.055417

HC MDD with childhood trauma 0.2512045* <0.001 0.138734 0.363675

MDD without childhood trauma 0.1889337* 0.006 0.055417 0.32245

dDC Right lingual MDD with childhood
trauma

MDD without childhood trauma −114.333 0.589 −531.23 302.56

HC −696.346* <0.001 −1009.4 −383.3

MDD without childhood
trauma

MDD with childhood trauma 114.333 0.589 −302.56 531.23

HC −582.013* 0.002 −953.64 −210.38

HC MDD with childhood trauma 696.346* <0.001 383.3 1009.4

MDD without childhood trauma 582.013* 0.002 210.38 953.64

Right calcarine MDD with childhood
trauma

MDD without childhood trauma 2043.499* <0.001 1646.31 2440.69

HC −708.469* <0.001 −1006.72 −410.22

MDD without childhood
trauma

MDD with childhood trauma −2043.499* <0.001 −2440.69 −1646.31

HC −2751.968* <0.001 −3106.03 −2397.91

HC MDD with childhood trauma 708.469* <0.001 410.22 1006.72

MDD without childhood trauma 2751.968* <0.001 2397.91 3106.03

*Padjust was set as 0.05/2 = 0.025. MDD, major depressive disorder; HC, healthy control.

FIGURE 2 | Comparison of volume wise concordance among the MDD with childhood trauma, MDD without childhood trauma, and HC groups. MDD, major
depressive disorder; HC, healthy control. *p < 0.05.

individuals with and without depression. We defined group
difference (depressed or not), CTQ total score, and their
interaction as independent variables; functional concordance
was defined as the dependent variable; age, gender, and

education were considered as nuisance covariates. To avoid
multicollinearity, we performed mean centering for all the
independent variables before constructing the interaction terms
(Holmbeck, 1997). As shown in Table 8, further regression
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TABLE 4 | Comparison of volume wise concordance among the MDD with
childhood trauma, MDD without childhood trauma, and HC groups.

MDD with
childhood trauma

MDD without
childhood trauma

HC F p

Mean 0.521 ± 0.043 0.524 ± 0.048 0.546 ± 0.038 7.068 0.001

SD 0.036 ± 0.013 0.036 ± 0.012 0.036 ± 0.011 0.004 0.996

MDD, major depressive disorder; HC, healthy control.

analyses showed an interaction of group and childhood trauma
history on dALFF of the left lingual gyrus (F = 6.798, p < 0.001),
dDC of the right lingual gyrus (F = 5.423, p < 0.001), and dDC of
the right calcarine cortex (F = 5.529, p < 0.001).

DISCUSSION

This study adopted temporal dynamic analysis to examine
aberrant variability and concordance of intrinsic brain activity
in patients with childhood trauma-associated MDD. Several
findings were interesting: (i) patients with childhood trauma-
associated MDD exhibited lower dALFF in the left lingual gyrus
and lower dDC in the right calcarine cortex as well as the
right lingual gyrus relative to healthy subjects; (ii) patients with
childhood trauma-associated MDD showed decreased volume-
wise concordance compared with healthy controls; (iii) decreased
voxel-wise concordance was observed in the left middle temporal
cortex and bilateral calcarine cortices in patients with childhood
trauma-associated MDD; and (iv) multiple linear regression

FIGURE 3 | Regions with differences in the voxel wise concordance of R-fMRI indices among the MDD with childhood trauma, MDD without childhood trauma, and
HC groups and post-hoc analysis. MDD, major depressive disorder; HC, healthy control. * means the p-value has reached a significant level. In the multiple
comparisons in regions with differences in voxel-wise concordance, p < 0.05/3 = 0.016 was accepted as significant (voxel-wise concordance analysis resulting in
three significant clusters).
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TABLE 5 | Regions with differences in the voxel-wise concordance of R-fMRI
indices among the MDD with childhood trauma, MDD without childhood
trauma, and HC groups.

Anatomical region Peak MNI Cluster size F

x y z

Left middle temporal −60 −27 −6 36 15.8445

Left calcarine −21 −69 15 57 11.8452

Right calcarine 21 −60 9 68 15.5341

analysis revealed that history of childhood trauma had a different
impact on aberrant brain functional concordance in depressed
patients and healthy subjects. However, dynamic R-fMRI index
and functional concordance analyses showed no significant
differences between the MDD with childhood trauma group and
the MDD without childhood trauma group, which may be related
to our small sample size.

Patients with childhood trauma-associated MDD had lower
dALFF (mainly detected in the left lingual gyrus) and
dDC (mainly detected in the right lingual gyrus and right
calcarine cortex) than healthy subjects, suggesting stable but
inflexible intrinsic brain activity in patients with childhood
trauma-associated MDD. Previous studies have suggested
that dysfunction in the lingual gyrus and calcarine cortex
is closely linked to the development of MDD in patients
with previous childhood trauma. Childhood trauma has been
associated with impairment of emotion regulation, involving the
multiprocess of emotion regulatory stages that precede and follow
psychological regulatory implementation (Bonanno and Burton,
2013). Preliminary investigations that focused on the neural basis
of emotion dysregulation have reported that activation in specific
brain areas (including the lingual gyrus and calcarine cortex) is
associated with attentional deployment, cognitive change, and
response modulation (Sheppes et al., 2015).

Greater activation in the left lingual gyrus has been observed
during the processing of the sadness emotion (Groves et al.,
2018), suggesting that different patterns of brain activation in
the lingual gyrus might be related to the underlying neural
mechanisms of depression. Moreover, Daniels et al. (2012)
identified a positive relationship between the history of childhood
trauma and higher activation in the lingual gyrus. Evidence
from temporal dynamics analysis has also revealed a key role
for the lingual gyrus in processing negative emotions. In a
neuroimaging study of brain dynamics in depressed patients,
Zhang et al. (2021) detected significantly lower dALFF in patients
with MDD relative to healthy subjects, which is in line with
our findings. In a dynamic functional network connectivity
analysis, Zhi et al. (2018) found that depressed patients exhibited
decreased harmonic centrality values in the lingual gyrus, which
was correlated with clinical symptom severity and self-cognition.
In depressed patients with suicidal ideation, an aberrant dynamic
functional connection between the lingual gyrus and habenula
has been detected (Qiao et al., 2020). Considering the findings
of prior studies as well as this study, abnormal brain activity
variability in the lingual gyrus might indicate disrupted dynamic
intrinsic brain activity in patients with MDD. Moreover, the

lingual gyrus is widely involved in distinguishing emotional
facial expressions and verbal declarative memory (Kitada et al.,
2010); difficulties with these processes are common in patients
with childhood trauma-associated MDD. The lingual gyrus
dysfunction in patients with childhood trauma-associated MDD
might reflect an increased ability to identify and encode adverse
experiences in verbal declarative memory (Kitada et al., 2010).
In conclusion, the alterations in variability in the lingual
gyrus might be specific to the additive effects of MDD and
childhood trauma history.

We detected a significant decrease in dDC in the right
lingual gyrus and right calcarine cortex. Calcarine cortex
dysfunction is frequently observed in patients with MDD and
is closely related to depression severity. A previous study
has confirmed a relationship between increased depressive
symptoms and increased FC between the calcarine cortex and
basolateral amygdala in veterans with MDD (McGlade et al.,
2020). Additionally, a previous meta-analysis reported decreased
cortical thickness in the left calcarine cortex and lingual gyrus in
depressed patients compared with healthy controls (Suh et al.,
2019). Similarly, decreased normalized cerebral blood flow in
the right calcarine cortex in early-onset MDD patients has
been observed, providing more experimental evidence for the
contribution of calcarine dysfunction to the development of
depression (Liao et al., 2017). More powerful evidence from
FC analysis detected significantly reduced FC between the right
posterior insular gyrus, calcarine cortex, and lingual gyrus in
adolescents with MDD (Hu et al., 2019). Notably, childhood
trauma might also cause calcarine cortex dysfunction (Luo et al.,
2022). In addition to statistical analysis, dynamic analysis has
also revealed a key role of abnormal calcarine variability in
contributing to the negative impact of depression from the
perspective of temporal dynamics. Decreased dALFF has been
previously detected in the calcarine cortex (Zhang et al., 2021),
which is consistent with our findings and further confirms
the relationship between the development of depression and
abnormal brain variability in the calcarine cortex. Similarly, by
examining alterations in dfALFF, Hu, L. and colleagues identified
altered variability in the calcarine cortex in depressed patients
with mild cognitive impairment relative to those without mild
cognitive impairment (Yu Y. et al., 2019). Furthermore, Li et al.
(2021) surprisingly found that baseline functional stability in
the calcarine cortex could effectively predict improvement of
clinical symptoms in depressed patients. The altered variability
in the calcarine cortex observed in our study may be a core
neurobiological feature of MDD with childhood trauma.

Intergroup differences were found in functional voxel-
wise and volume-wise concordance. Specifically, patients with
childhood trauma-associated MDD showed decreased voxel-wise
concordance in the left middle temporal, left calcarine, and
right calcarine cortices compared with healthy controls; volume-
wise concordance was also lower in patients with childhood
trauma-associated MDD. The temporal gyrus is involved in
language and memory function (Eichenbaum et al., 2007),
whereas the calcarine cortex plays a key role in integrating
“visuopsychic” and “visuosensory” processing (Ffytche and
Catani, 2005). In a previous study, adults who experienced
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TABLE 6 | Multiple comparisons in regions with differences in voxel-wise concordance.

Anatomical region (I) (J) Mean difference (I-J) p 95% CI

Right calcarine MDD with childhood trauma MDD without childhood trauma −0.001788 0.911 −0.03344 0.02986

HC −0.063534* <0.001 −0.0873 −0.03977

MDD without childhood trauma MDD with childhood trauma 0.001788 0.911 −0.02986 0.03344

HC −0.061746* <0.001 −0.08996 −0.03353

HC MDD with childhood trauma 0.063534* <0.001 0.03977 0.0873

MDD without childhood trauma 0.061746* <0.001 0.03353 0.08996

Left calcarine MDD with childhood trauma MDD without childhood trauma −0.002346 0.891 −0.03622 0.03153

HC −0.060463* <0.001 −0.0859 −0.03503

MDD without childhood trauma MDD with childhood trauma 0.002346 0.891 −0.03153 0.03622

HC −0.058117* <0.001 −0.08831 −0.02792

HC MDD with childhood trauma 0.060463* <0.001 0.03503 0.0859

MDD without childhood trauma 0.058117* <0.001 0.02792 0.08831

Left middle temporal MDD with CT MDD without childhood trauma −0.007787 0.63 −0.03959 0.02402

HC −0.063079* <0.001 −0.08696 −0.0392

MDD without childhood trauma MDD with childhood trauma 0.007787 0.63 −0.02402 0.03959

HC −0.055292* <0.001 −0.08364 −0.02694

HC MDD with childhood trauma 0.063079* <0.001 0.0392 0.08696

MDD without childhood trauma 0.055292* <0.001 0.02694 0.08364

*Padjust was set as 0.05/3 = 0.016.
MDD, major depressive disorder; HC, healthy control.

FIGURE 4 | Correlation between childhood trauma history and voxel wise concordance.
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TABLE 7 | Correlation between voxel wise concordance and childhood trauma.

Emotional abuse Physical abuse Sexual abuse Emotional neglect Physical neglect Total score of CTQ

Right calcarine −0.200* −0.221* 0.042 −0.13 −0.100 −0.165

Left calcarine −0.183* −0.136 −0.001 −0.149 −0.072 −0.160

Left middle temporal −0.124 −0.160 0.108 −0.125 −0.168* −0.166

*Padjust was set as 0.05/18 = 0.0027.

TABLE 8 | Multiple linear regressions analyses between childhood trauma history and dynamic indices.

Model Unstandardized
coefficients

Standardized
coefficients

t p 95% confidence interval

B Beta Lower bound Upper bound

dALFF of left lingual gyrus Age 0.011 0.224 3.215* 0.002 0.004 0.018

Education −0.018 −0.156 −2.193 0.03 −0.034 −0.002

Gender 0.038 0.055 0.794 0.428 −0.056 0.132

Group 0.232 0.334 4.633* <0.001 0.133 0.33

CTQ total score −0.004 −0.158 −2.097 0.037 −0.008 0.000

Group * CTQ total score −0.0012 −0.004 −0.058 0.954 0.000 0.000

dDC of right lingual gyrus Age 14.176 0.099 1.392 0.166 −5.92 34.272

Education −11.806 −0.036 −0.499 0.618 −58.513 34.901

Gender −123.058 −0.063 −0.896 0.371 −394.124 148.007

Group 626.742 0.319 4.339* <0.001 341.682 911.802

CTQ total score −12.595 −0.17 −2.204 0.029 −23.875 −1.315

Group * CTQ total score −0.011 −0.136 −1.836 0.068 −0.023 0.001

dDC of right calcarine cortex Age 12.291 0.087 1.227 0.221 −7.472 32.053

Education −13.183 −0.041 −0.566 0.572 −59.114 32.748

Gender −104.621 −0.054 −0.775 0.44 −371.183 161.942

Group 636.274 0.329 4.48* <0.001 355.95 916.599

CTQ total score −11.588 −0.159 −2.062* 0.041 −22.68 −0.495

Group * CTQ total score −0.013 −0.158 −2.145 0.033 −0.025 −0.001

*Padjust was set as 0.05/3 = 0.016.

childhood trauma had increased activation in the left middle
temporal gyrus and left superior frontal gyrus, indicating an
association between middle temporal gyrus dysfunction and
underlying neurophysiological MDD mechanisms (Heany et al.,
2018). Furthermore, increased FC between the calcarine cortex
and amygdala has been shown in patients with post-traumatic
stress disorder, which demonstrates that the calcarine cortex
plays an essential role in the processing of fear and threat cues
(Morey et al., 2015). Moreover, R-fMRI metrics have been shown
to have a high concordance in cortical and subcortical areas
across the whole time window (Yan et al., 2017). Voxel-wise
concordance might characterize the homogeneity between the
various R-fMRI metrics (Lou et al., 2021). Therefore, aberrant
functional concordance in the left middle temporal and left and
right calcarine cortices might reflect the impaired integrative
function of intrinsic brain activity.

In our multiple linear regression analyses of dynamic indices
and childhood trauma history, group differences (depressed or
not) significantly moderated the relationship between dALFF and
dDC and childhood trauma history, indicating that childhood
trauma has a significantly different impact on aberrant brain
functional concordance in depressed patients and healthy
subjects. This result highlights the key role of childhood trauma

in mental health development and provides evidence that
it is detrimental.

Limitations and Future Directions
This study had several limitations. First, we used a cross-sectional
approach, which does not examine cause and effect. Second, the
sample size was small, which is probably why we could not detect
a difference between MDD patients with and without childhood
trauma. Future large-scale studies are warranted. Moreover,
childhood trauma subtype analyses were not conducted due
to the small sample size. Future studies should focus on the
impact of a single subtype of childhood trauma, such as neglect
or abuse. Third, childhood trauma was assessed retrospectively
via self-report; although the CTQ is reliable and widely used,
evaluation of traumatic history using an objective tool would have
been preferable.

CONCLUSION

Patients with childhood trauma-associated MDD demonstrated
aberrant variability and concordance in intrinsic brain activity.
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These aberrances may be an underlying neurobiological
mechanism that explains MDD from the perspective of
temporal dynamics.
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Autism spectrum disorder (ASD) is a kind of neurodevelopmental disorder that often

occurs in children and has a hidden onset. Patients usually have lagged development

of communication ability and social behavior and thus suffer an unhealthy physical and

mental state. Evidence has indicated that diseases related to ASD have commonalities in

brain imaging characteristics. This study aims to study the pathogenesis of ASD based

on brain imaging data to locate the ASD-related brain regions. Specifically, we collected

the functional magnetic resonance image data of 479 patients with ASD and 478 normal

subjects matched in age and gender and used a machine-learning framework named

random support vector machine cluster to extract distinctive brain regions from the

preprocessed data. According to the experimental results, compared with other existing

approaches, the method used in this study can more accurately distinguish patients from

normal individuals based on brain imaging data. At the same time, this study found that

the development of ASD was highly correlated with certain brain regions, e.g., lingual

gyrus, superior frontal gyrus, medial gyrus, insular lobe, and olfactory cortex. This study

explores the effectiveness of a novel machine-learning approach in the study of ASD

brain imaging and provides a reference brain area for the medical research and clinical

treatment of ASD.

Keywords: autism spectrum disorders, fMRI, pathogenic brain regions identification, disease diagnosis, random

SVM cluster

INTRODUCTION

Autism spectrum disorder (ASD) is a kind of brain developmental disorder with complex etiology
and hidden onset (Lord et al., 2018). It is most often diagnosed in teenagers and children because
of the high plasticity of their brain function. Children with ASD will suffer various difficulties in
early development, including slow response to sensory information (e.g., hearing, smell, and taste),
lagged language learning, limited interest, difficulty interacting with others, etc. (Vallianatos et al.,
2018; McKinnon et al., 2019; Kang et al., 2020; Santore et al., 2020). Currently, there is no specific
therapy for ASD in the clinic, which will cause the long-term economic burden of family and social
support (Helkkula et al., 2020). Considering that the ages of patients are relatively small, it is difficult
to diagnose based on the general quantitative evaluation of social behavior in clinics. Therefore,
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looking for characteristic biomarkers to help clinical workers
make accurate clinical decisions in the early stage is an important
research direction at present (Frye et al., 2019).

Magnetic resonance imaging (MRI) is a commonly applied
technique for diagnosing brain diseases in clinical, which can
intuitively show the location and degree of brain lesions. MRI
is currently playing a major auxiliary role in the treatment
and research of complex brain diseases, such as ASD (Hao
et al., 2017; Du et al., 2019; Dryburgh et al., 2020; Yang et al.,
2021). Specifically, functional MRI (fMRI) is a new neuroimaging
technique that can measure the hemodynamic changes caused
by neuronal activity and generate a time series to reflect the
activity characteristics of certain brain regions. Some open-access
datasets, such as autism brain imaging data exchange (ABIDE),
usually contain sufficient fMRI data, which greatly promotes
the development of relevant research (Di Martino et al., 2014,
2017). For example, Cheng et al. (2017) conducted a knowledge-
based enrichment analysis of fMRI data of patients with autism
and healthy controls (HCs) and found that some functional
connections (FCs) decreased significantly at the network circuit
level. Through specific correlation analysis technology, the
correlation networks among multiple regions of interest (ROIs)
can be established, which provides a broader perspective in
pathogenetic studies (Franzmeier et al., 2019; Noble et al., 2019).
For example, Ingalhalikar et al. (2021) obtained fMRI data in
ABIDE, proposed a novel technology to eliminate differences
between sites, and found several important FCs of patients
with ASD.

Efficiency is usually an important factor in imaging data
analysis. In recent years, machine-learning algorithms have been
increasingly used in dimension reduction and feature extraction
in brain imaging data and have played a key role in the
research of ASD and many other brain diseases (Abraham
et al., 2017; Heinsfeld et al., 2018; Li et al., 2020). Among the
existing machine-learning approaches, a support vector machine
(SVM) can keep a stable performance in optimizing the feature
dimension of samples (Guo et al., 2019; Wei et al., 2019). In
the research related to ASD, Chaitra et al. (2020) proposed a
new feature-eliminating mechanism to iteratively improve the
classification ability of the trivial SVM method and obtained the
connected feature subset with better ASD recognition ability.
Osredkar et al. (2019) combined SVM and radial kernel function
with 4 urine biomarkers to diagnose ASD and found that the
levels of 8-hydroxy-2′-deoxyguanosine and 8-isoproterenol in
urine can improve the diagnosis performance.

The extraction of the most discriminative features is the
central work to ensure the efficiency of SVM. However, most
previous studies focused on optimizing single SVM classifiers.
The disadvantage of such approaches is that current methods of
feature extraction can hardly avoid remaining some important
features incorrectly ignored and the screened features can
difficult be reconsidered after the optimization of a single SVM
classifier. Also, the pathogeny identification in the existing
studies is often based on limited data, which may lead to few
reliable results and weak generality. Therefore, this study applies
a random SVM cluster framework to extract features from fMRI
data to classify patients with ASD and HCs (Bi et al., 2018). With

the help of ensemble learning, only the features shared by most
classifiers are extracted as the important features, which reduces
the blindness in feature selection and prevents over-fitting even
under a large scale of data. As the results indicate, the optimized
random SVM cluster performs well in classifying patients with
ASD and HCs, and the feature extraction results are consistent
with many existing studies. Compared to the other existing
works, this study provides an attractive framework to detect the
disease-associated factors of ASD based on the fMRI data.

MATERIALS AND METHODS

Overview
The entire analysis pipeline of this study can be divided into
three major parts, which are depicted in Figure 1. First, the fMRI
data are preprocessed, resulting in the time series for each ROI.
Second, a random SVM cluster is constructed to extract the
characteristic features. Finally, further analysis is conducted to
identify pathogenetic brain regions.

Subjects
All biological data in this study are from the ABIDE database
and do not involve bio-standard safetymeasures and institutional
safety procedures. The data acquirement has been approved
by relevant departments and complies with relevant standards.
The subjects used in this study are determined through further
screening. This study has tried to keep as many samples as
possible to ensure the robustness of the conclusion. However,
it is a necessity to eliminate the data that occur errors while
preprocessing. At last, it remains raw fMRI data of 479 patients
with ASD and 478 HCs obtained from ABIDE-I for analysis.
All HCs have signed written consent and are out of any other
neurological diseases. ABIDE database has strict standards for
data collection and processing, which ensures the homology of
data structure.

The online datasets extendedly provide additional
information on subjects, including age, full-scale intelligence
quotient (FIQ), performance intelligence quotient (PIQ), and
verbal intelligence quotient (VIQ). The latter three indicators
are used to quantify the comprehensive performance of
the intellectual function. This study evaluated the statistical
differences in the above attributions between ASD and HC
groups. The basic information of the two groups of subjects is
shown in Table 1, which indicates no significant difference in all
indicators among the participants.

Data Preprocessing
All fMRI data are collected from MRI scanners whereas the
subjects are in the resting state, which means all subjects
are relaxed without doing any thinking work during the
scanning. To conduct data preprocessing, this study uses a
Data Processing Assistant for Resting-State fMRI (DPARSF),1 a
widely applied tool in the MATLAB platform that is dedicated
to fMRI preprocessing (Karpiel et al., 2019). Specific steps of
preprocessing are listed as follows:

1http://rfmri.org/dpabi
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FIGURE 1 | The entire workflow of this study.

TABLE 1 | Basic information of the subjects.

Variable Patients with ASD HC subjects p-value

Age 16.70 ± 8.23 17.20 ± 8.06 0.798*

FIQ 105.21 ± 16.56 111.20 ± 12.80 0.000**

PIQ 104.89 ± 17.06 108.61 ± 13.31 0.001**

VIQ 103.25 ± 18.05 110.37 ± 13.50 0.000**

*This study calculated the p-value corresponding to the age through chi-square test.

**This study calculated the p-values corresponding to FIQ, PIQ, and VIQ using two-

sample t-test. All information listed in this table is expressed by the format of “mean ±

standard deviation.” It shows no statistical difference between two groups of data if the

corresponding p-value is >0.05.

(1) Inputting the raw DCM files and converting the data format
to NIFTI;

(2) Deleting the initial 10 time points and slice timing;
(3) Realigning the head movement to eliminate artifact effect;
(4) Readjusting, including standardizing the functional image to

echo plane imaging template and smoothing;

(5) Eliminating the residual noise which increases or decreases
over time;

(6) Temporal filtering to maintain the fluctuation being within
0.01± 0.08Hz;

(7) Removing covariates and head movements that may affect
unnatural BOLD fluctuations.

Construction of Sample Features
Functional connections can reflect the organization and
interrelationships among different ROIs even if they are not
histologically connected. In this study, FCs are constructed as
the features of the samples. Specifically, the weight value of an
FC is calculated to represent the tightness of the corresponding
ROI–ROI pair. Concrete construction steps are as follows.

(1) Separating all brain images into ROIs according to the
automatic anatomical labeling template, which is applied
in many fMRI-based studies (Liu et al., 2016). The applied
template can generate 116 ROIs in total, of which 90 ROIs
belong to the brain whereas the other 26 ROIs belong to
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the cerebellum. As a common practice, this study focuses
only on the brain and the ROIs in the cerebellum are
therefore omitted.

(2) Calculating the Pearson correlation coefficient value between
each ROI pair as the FCs. Before the calculation, time series
are normalized and further sliced to a uniform length to
eliminate the effect of inter-site difference (Esteban et al.,
2017; Wang et al., 2022). The higher the coefficient value, the
stronger the FC between two ROIs.

(3) Constructing sample features. For each sample, a vector
composed of 4,005 (i.e., the number of free combinations
among 90 ROIs) weight values of FCs is calculated as the
sample feature for subsequent experiments. In other words,
the dimensionality of the original sample features is 4,005 in
this study.

Construction of the Random Support
Vector Machine Cluster
In machine learning, excessively big feature dimensionality
may cause mass computing load. However, if the feature
dimensionality is too small, a large amount of important
information may be lost. Ensemble learning is an effective
strategy that can effectively improve the model performance by
integrating single classifier to form clusters and generate results
through a voting mechanism (Chen et al., 2018a; Wei et al.,
2018). According to our previous research, ensemble learning
shows great potential in feature selection (Bi et al., 2020, 2021).
In this study, this study adopted a method named random SVM
cluster to effectively analyze the high-dimensional data, which
has performed well in the fMRI-based study of Alzheimer’s
disease. The concrete procedure details are as follows.

First, the initial sample set S is divided into three subsets,
namely, a training set S1 with 382 subjects, a verifying set S2 with
96 subjects, and a testing set S3 with 479 subjects. The size rate
is ∼4:1:5. The proportion balance of patients and HCs is kept
during the division.

Second, to construct an SVM classifier, M samples are
randomly selected from the training set S1.and a d-dimension
sub-feature is generated by randomly selecting d components
from the original 4,005-dimension feature. The above procedure
improves the diversity of SVM classifiers, which, according to the
theory of ensemble learning, will bring significant improvement
to the generalization performance of the integrated learner. By
repeating the above procedure for n times, n SVMs are derived
and the random SVM cluster is constructed accordingly.

Third, the SVM classifiers are further screened for
optimization. Specifically, the verification set S2 is applied
to evaluate all constructed SVM classifiers by their respective
classification accuracies. The classifiers with classification
accuracies lower than 0.5 will be deleted, in that such
performance is inferior to the randomly guessing and will
passively affect the performance of the overall cluster. After the
selection, k superior SVMs (k < n) have been selected to form a
new cluster.

Finally, sample classification and feature extraction are
conducted using the random SVM cluster. Concretely, k screened

SVMs in the cluster separately classify the samples in the testing
set S3 and generate the final result through the majority voting
mechanism. By calculating the ratio of the number of correctly
classified samples to the size of the S3, the accuracy of the entire
cluster is obtained.

Identification of Pathological Brain
Regions
The SVM classifiers in this study are generated through the
random selection of features and samples, which makes the
features of each classifier not the same. At the same time, the
classification accuracy of a classifier indicates the significance of
its corresponding features. After the screening of classifiers, the
remaining features are taken as the important features that have
strong classification ability for ASD andHC. In other words, ASD
and HC have more obvious differences in these characteristics,
which means that the ROIs contained in these characteristics
are more prone to functional or structural damage. Further,
considering that these features are defined as FCs of ROI–ROI
pairs, the ROIs that appear the most in the important features are
selected as the pathological brain regions. The specific procedure
of pathogeny identification is as follows.

(1) Sorting and determining the superior classifiers. All SVM
classifiers are sorted in descending order of classification
accuracy. Then, a classifier whose accuracy is greater than
a certain threshold of 0.75 would be determined as the
superior classifier.

(2) Extracting the optimal features. The appearance frequency of
each feature in superior SVM classifiers is calculated. Then,
the features with the highest frequencies are extracted as the
optimal features, which represent the most discriminative
FCs between patients with ASD and HC subjects.

(3) Determining the pathological brain regions of ASD. In
this study, this study defined the weight of an ROI as its
appearance frequency in optimal features. The ROIs with the
highest weights are taken as the pathological brain regions.

RESULTS

Performance Comparison With Existing
Methods
To certify the efficiency of the random SVM cluster, this article
compared its performance with other common approaches
for feature selection. The baseline methods include product-
based neural network (PNN), backpropagation neural network
(BPNN), K-nearest neighbor (KNN), naïve Bayes classifier
(Bayes), single SVM classifier (SVM), random forest (RF), and
random SVM cluster (RSVMC). Considering the randomness in
sample division and feature selection, all comparative methods
have been repeated 50 times to avoid accidental errors. The box
plot in Figure 2 depicts the comparative results.

It could be observed that the applied random SVM cluster
was significantly superior to the baseline approaches. It is worth
noting that the random forest method, as a typical ensemble
learner, performed better than all single learners, which indicates
the effectiveness of ensemble learning. Also, the highest accuracy
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FIGURE 2 | Classification accuracy of different classification method.

of single SVM among all single learners proves the superiority
of SVM in brain imaging analysis. Such results implied that the
superiority of our method derives from the effective integration
of the advantages of SVM and ensemble learning.

To compare the performances of the machine-learning
methods, this study further calculated the precision and recall
values of all comparative methods. Figure 3 depicted the
Precision-Recall (P-R) curves of all competing methods, where
we could observe that the random SVM cluster owned the highest
position among all methods, and the superiority of our method is
confirmed from another angle.

Parameter Optimization
According to the method definition, the SVM number n and
feature dimensionality d are the two important parameters to
be optimized, which is critical to finalizing a well-performed
random SVM cluster. Parameter optimizing results are shown
as follows.

On the one hand, this study conducted experiments to find
the optimal number of SVM classifiers in the initial cluster.
Specifically, the number of the SVMwas gradually increased from
5 to 600 with a step length of 5, during which the accuracy of
the random SVM cluster had first increased and then tended
to be stable. According to the experimental results depicted in
Figure 4, it can be observed that when the cluster includes 360

SVMs, the overall performance started to be stable. Thus, the base
classifier number n was determined as 360.

On the other hand, this study determined the optimal feature
dimensionality. To ensure the performance of the model, the
conventional practice is to set the feature dimensionality as
the square root of the original feature dimensionality (Belgiu
and Drǎgu, 2016). However, considering the data complexity
of fMRI, such means may cause a great loss of important
information, which inspired us to expand and optimize the
feature dimensionality. First, this study built the initial cluster
with 70 out of 4,005 randomly opted features. The initial number
is determined as 70 because it was an approximate value of
the square root of 4,005. Subsequently, this study increased the
feature dimensionality up to 300 in a step of 2 and calculated
the overall accuracy of the cluster in each iteration. Finally,
this study took the feature dimensionality corresponding to
the highest accuracy as the optimal dimensionality of features.
Figure 5 depicted the results during all iterations, which showed
that when the feature dimensionality is determined as 148, the
accuracy was 88.1%. It is worth noting that the equivalence
of accuracies in two optimization experiments was an accident
and these two experiments were carried out successively,
which means that in the second experiment, the number
of SVM classifiers was determined as 360 according to the
former experiment.
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FIGURE 3 | The P-R curves of comparative methods.

Extraction Results of the Pathological
Brain Regions
By fitting the optimal number of features to 148, the performance
of the random SVM cluster was maximized and the cost of
computing resources was concurrently reduced. Consequently,
148 discriminative FCs in patients with ASD and HCs were
obtained. The top 20 FCs with the highest frequencies were
visualized in Figure 6, where the node size that corresponds to
each brain region represents the weight of the brain region, that
is, the frequency of the brain area. The larger the node, the higher
the frequency of brain regions. Subsequently, the frequencies of
all 90 ROIs included in the 148 FCs are shown in Figure 7.

DISCUSSION

This study utilized an improved SVM learner and achieved
the classification accuracy of 88.1% in patients with ASD

identification. Compared with other recent endeavors based
on ABIDE datasets, our method also shows superiority in
classification performance. Liu et al. (2020) proposed amulti-task
objective function to extract the dynamic functional connectivity
specific to ASD, archiving an accuracy of 76.8%. Wang et al.
proposed a new method integrating ensemble learning with
sparseness constraints and tested the method on two different
sites of data in ABIDE, obtaining accuracies of 72.6 and 71.4%,
respectively. Epalle et al. (2021) improved the deep neural
network model and tested the proposed classification framework
based on cross-validation, achieving the final accuracy value
of 78.07%.

As shown in Figure 7, the discriminative FCs of ASD
mainly existed in the lingual gyrus (LING.R), superior frontal
gyrus, medial (SFGmed.R), olfactory cortex (OLF.L), insula
(INS.R), parahippocampal gyrus (PHG.R), posterior cingulate
gyrus (PCG.R), and fusiform gyrus (FFG.R). On the one hand,
our findings were consistent with other existing studies of
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FIGURE 4 | Performance of the random SVM cluster with different number of SVM.

single brain regions. For instance, Herringshaw et al. (2016)
utilized meta-analysis methods to quantify the common and
consistent brain activation patterns that usually develop the
language processing control, and the results showed that the
activation of the LING.R in patients with ASD increased. Lee
et al. (2020) used a univariate universal linear model to determine
the regions of average connectivity differences between male and
female subjects with ASD, and the results showed similar gender
differences in the tongue gyrus and the posterior cingulate gyrus
cortex. Qian et al. (2018) analyzed the time-varying connectivity
using the resting-state fMRI data to investigate brain state
mutations in children with ASD and finally found abnormal
connectivity between INS.R and visual network (and in the
middle). Glerean et al. (2016) calculated the correlation between
the hemodynamic time courses of each pair of 6-mm isotropic
voxels and the proportional inclusiveness between all pairs of
subjects, and the results indicated that the subjects who had lower
autism quotient scores conversely showed significantly higher
nodule intensity in certain brain regions, including FFG.R.

On the other hand, some connection-based studies also verify
the results in this article. Huang et al. (2019) enhanced the
representation of FC networks by fusing and conveying the
public and supplementary information into multiple networks
to identify the biomarkers of neuropsychiatric diseases, and the

results indicated that OLF.L in subcortical regions is a potential
discriminative brain region. Liu and Huang (2020) applied
multivariate model analysis to study the connectedness subset
of whole-brain FC, finding out that the severity of ASD with
SFGmed.R and SFGmed.L changed significantly. Noriega (2019)
adopted a sliding-time window method based on an adjusted
time span to study whether the time proportion of correlation
measure was above or below the average, and the results showed
that the FC related to OLF.L was significantly enhanced in
controls relative to ASD-severe. Delbruck et al. studied the action
observation network of children with ASD and observed that
atypical connectomes related to FFG.R showed great significance
to the social cognitive defection.

Some other highly-rated ROIs found in our work, such as the
PCG.R and PHG.R, were rarely studied in other research about
ASD. Nevertheless, certain studies have indicated their potential
relation to ASD. For example, PCG.R has been presently found as
the tissue correlated with sensation, stereo location, andmemory.
The hippocampus is an emotion regulation center, which had
been long paid special attention in depression research. In
addition, as the main cortex of the hippocampus, PHG.R can
significantly affect the cognitive and emotional functions of the
brain. Thus, the findings in this article may provide a new insight
for further exploration of the pathological mechanism of ASD.
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FIGURE 5 | Accuracies of the random SVM cluster with different numbers of important fusion features.

FIGURE 6 | Top 20 functional connections corresponding to the extracted optimal features.
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FIGURE 7 | Frequencies of all ROIs.

Despite the satisfactory performance, our study still has
limitations. First, in this study, this study uses a normalization
strategy to preprocess fMRI data obtained from multiple sites,
whereas many advanced approaches have been proposed to
eliminate the inter-site differences (Moradi et al., 2017; Wang
et al., 2019), which may be applied in future work. Second,
this study utilizes the Anatomical Automatic Labeling (AAL)
template for brain segmentation, but there are many other
proposed templates, e.g., the Harvard-Oxford Atlas template,
which may provide some quite different information and help
to discover different types of FCs (Lei et al., 2020). Finally, in
this study, this study only analyzed the medical imaging data
for feature extraction. In the follow-up work, we will try to
expand the data types in various ways and may involve genes,
cells, electrocardiographs, or other clinical phenotypes for further
research (Raka et al., 2017; Wang et al., 2017; Chen et al., 2018b;
Du et al., 2020).

CONCLUSION

This article conducted an fMRI-based study for ASD diagnosis
using a machine-learning approach named random SVM
cluster. Defining the sample features as FCs among ROIs, the
pathological factors of ASD were explored. According to the
experimental results, discriminative ROIs of patients with ASD
and HCs were identified, including LING.R, SFGmed.R, OLF.L,
INS.R, PCG.R, PHG.R, and FFG.R. The contributions of our
work can be summarized in two key points. On the one hand,
an efficient random SVM cluster was applied for ASD diagnosis.
On the other hand, some pathological FCs and ROIs highly

related to the development of ASD are identified, which can
provide valuable references for the medical research and clinical
treatment of ASD.
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Anomalies in large-scale cognitive control networks impacting social attention abilities

are hypothesized to be the cause of attention deficit hyperactivity disorder (ADHD).

The precise nature of abnormal brain functional connectivity (FC) dynamics including

other regions, on the other hand, is unknown. The concept that insular dynamic FC

(dFC) among distinct brain regions is dysregulated in children with ADHD was evaluated

using Insular subregions, and we studied how these dysregulations lead to social

dysfunctioning. Data from 30 children with ADHD and 28 healthy controls (HCs) were

evaluated using dynamic resting state functional magnetic resonance imaging (rs-fMRI).

We evaluated the dFC within six subdivisions, namely both left and right dorsal anterior

insula (dAI), ventral anterior insula (vAI), and posterior insula (PI). Using the insular

sub-regions as seeds, we performed group comparison between the two groups. To do

so, two sample t-tests were used, followed by post-hoc t-tests. Compared to the HCs,

patients with ADHD exhibited decreased dFC values between right dAI and the left middle

frontal gyrus, left postcentral gyrus and right of cerebellum crus, respectively. Results also

showed a decreased dFC between left dAI and thalamus, left vAI and left precuneus and

left PI with temporal pole. From the standpoint of the dynamic functional connectivity of

insular subregions, our findings add to the growing body of evidence on brain dysfunction

in ADHD. This research adds to our understanding of the neurocognitive mechanisms

behind social functioning deficits in ADHD. Future ADHD research could benefit from

merging the dFC approach with task-related fMRI and non-invasive brain stimulation,

which could aid in the diagnosis and treatment of the disorder.

Keywords: attention deficit hyperactivity disorder, dynamic functional connectivity, insula, rs-fMRI, social

dysfunction

111

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.890596
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.890596&domain=pdf&date_stamp=2022-05-31
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:homerzeng@126.com
https://doi.org/10.3389/fnins.2022.890596
https://www.frontiersin.org/articles/10.3389/fnins.2022.890596/full


Fateh et al. Insular dFC in ADHD

1. INTRODUCTION

Attention Deficit Hyperactivity Disorder (ADHD) is the most
commonly diagnosed condition in children, characterized by
age-inappropriate problems like inattention, impulsivity, and
hyperactivity (Thomas et al., 2015; Sayal et al., 2018). ADHD
is therefore related to cognitive, academic, familial, and
occupational problems (Usami, 2016). Social functioning is also
directly impacted by ADHD. This might be manifested as peer
rejection and disagreements. Social dysfunction may negatively
affect the short- and long-term prognosis of ADHD youngsters.
The activities that encourage social inadequacies are directly
linked to ADHD diagnosis in some infants. While children with
ADHD crave social interaction, they often struggle to adapt their
behavior to their environment due to the nasty, angry tone of
their interactions as well as their hyperactive/impulsive behavior.
This implicates rule infractions, aggressive and dominating
behavior, and physical and verbal animosity. It also includes
agitation and intrusion, which are often inappropriate and
difficult to remedy (Lahey et al., 2005).

ADHD is linked to functional deficits in the cognitive,
academic, familial, and occupational areas of everyday life
(Usami, 2016). Social functioning is another crucial aspect of
ADHD that is directly affected. This might present itself as
peer rejection and disputes with other children and adults.
Social dysfunction may have a significant negative impact on
the short- and long-term prognosis of children with ADHD.
The practices that promote social deficiencies may be a direct
result of diagnosing symptoms of ADHD in at least some infants.
Some of ADHD’s DSM-IV criteria, such as “interrupting or
intruding on others,” even explicitly relate to poor social conduct
(Lahey et al., 2005). Generally, the combination of hyperactivity,
impulsivity, and inattention is likely to affect social behavior.
Although children with ADHD have a strong desire to interact
with others, they typically struggle to adapt their attitude to
their surroundings. Two behavioral characteristics are typically
linked to social difficulties in children with ADHD, namely the
unpleasant, hostile tone of their interactions, as well as their
hyperactive/impulsive behavior. Rule violations, antagonistic and
dominating behavior, and the use of physical and verbal hostility
are examples of the first aspect. These actions may pose a direct
threat to others, and they have been proven to be substantial
predictors of negative peer nominations in both ADHD and non-
ADHD children. Examples of the second aspect comprise restless
and invasive conduct, which is frequently inappropriate in the
current setting and difficult to remedy (Lahey et al., 2005).

The orbitofrontal cortex (OFC), the amygdala, and the
temporal cortex (mostly the superior temporal sulcus-STS) were
found to be primary elements of the so called “social brain,”
in the early 1990s (Brothers, 1990). Afterwards, other areas like
the medial prefrontal cortex (mPFC) and the anterior cingulate
cortex (ACC), were shown to be primary for social functioning
and were therefore included with the initial core (Frith and
Frith, 2006; Bickart et al., 2014). Modern definitions of social
brain usually incorporate dynamic and hierarchical structure of
circuitry entangled in elementary constructs of more automated
systems like the identification of socially significant stimuli as

well as relatively overlapping circuitry implicated in higher-
order operations of the psychological condition. For instance,
feelings such as disgust or anger were basically associated
with the aversion network where the insula is key component
(Buckholtz et al., 2008). This implicates that the insula, among
other brain regions in the aversion network, is mediated in
aversive behaviors such as avoiding strangers that are not
trustworthy. Studies have also demonstrated the implication
of the insula in the "social decision making" that enables the
selection of flexible behavioral responses to others (Rogers-Carter
and Christianson, 2019). More precisely, the insular cortex is
anatomically located to connect integrated social sensory cues
to the social decision making network, resulting in flexible and
adaptive behavioral outcomes to social and emotional stimuli. In
line with these findings, Belfi et al. (2015) suggested that subjects
with lesion on the insula had aberrant trust expressions. During
a trust game, when acting as an investor, these people behaved
benevolently (showing misguided trust), and when acting as a
trustee, they acted malevolently (infringing their partner’s trust).
Although the topic of attention, play and social behavior in
children with ADHD has been studied for years now, yet, it
is unfortunate that tackling the role of the insula in the social
dysfunctioning in children with ADHD is still scarce. Large
body of research barely mentioned the insula as part of different
networks related to social functioning, especially with regard to
neuroimaging-based investigations.

The majority of neuroimaging research indicates static brain
networks across the course of an fMRI session. These networks
show functional connections and interactions between distinct
cortical and subcortical brain regions during task execution
or at rest. However, because activity in static networks does
not clearly display changes that occur over short periods of
time during an fMRI scan, dynamic reconfiguration-based
methods to discover the modular architectures of changing
networks are becoming more popular and the so called dFC
was introduced. By partitioning fMRI images into time windows,
the interconnections between brain regions can be better
understood. Dynamic reconfigurations are more sensitive and
able to detect more changes in human brain activity than static
reconfigurations (Patil et al., 2021). whether static or dynamic,
at rest or task-based, accurately identifying the altered functional
connectivity generated by ADHD or any other specific disorder is
a critical endeavor that may reveal the disorder’s causative factors.
Both in childhood and adulthood, imaging studies have revealed
structural and functional abnormalities in the brains of ADHD
patients. Many evidence from fMRI studies strongly suggest that
biomarkers and alterations in interactions within and between
different brain connectivity may contribute to the disruption
of normal brain functions and cognitive performance, leading
to fluctuations in attention in patients with ADHD (Sonuga-
Barke and Castellanos, 2007; Shappell et al., 2021). Functional
impairments in fronto-cortical and fronto-subcortical networks
are basic deficiencies in both children and adults with ADHD,
according to Rubia et al. (2014). Consistent with these findings,
Guo et al. (2020) questioned the consistency of ADHD diagnosis
from childhood to maturity, as well as the similarities and
differences in abnormal functional connectivities (FCs) across
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ADHD children and adults. To put it another way, they looked
at clinical changes and pathophysiological continuity in ADHD
patients from childhood to adulthood. On the other hand, a
thorough research in the literature yielded to very few researches
addressing dFC in ADHD. For instance, Ahmadi et al. (2021)
revealed that subtypes of ADHD have generalized anomalies in
static FC and dFC between large-scale resting state networks,
encompassing cortical and subcortical areas, when compared to
typically developing youngsters. They came to the conclusion
that dynamic changes in brain FC may better help to explain
the pathophysiology of ADHD. Sun et al. (2021) suggested state-
dependent dynamic changes in large-scale brain connections
and network topologies in ADHD. Yang et al. (2021) found
that children with ADHD have more unstable dFC of the
amygdala subregions, which may impact their cognitive skills.
As a result, it should be indicated that to ensure successful
diagnosis, therapy, and prevention, it is critical to research the
sophisticated mechanisms underlying ADHD, as well as the
functional deficits of the diseased brain. rs-fMRI is one such a
non-invasive and safe method of detecting spontaneous brain
activity (Lu et al., 2018). Over the last three decades, numerous
studies have been conducted to investigate potential imaging
changes and biomarkers of ADHD. However, no significant
findings were yield to study the dFC of the insula in children with
ADHD, and its contribution to social dysfunction.

From a neurobiologic standpoint, ADHD is increasingly being
recognized as a disorder resulting from disruptions in large-
scale brain networks. Extant studies of brain’s FC in ADHD,
however, have provided inconsistent outcomes, with some
research suggesting hyper- and hypoconnectivity with respect to
neurotypical controls and others providing null findings, mostly
between the same brain networks, likely due to weak theoretical
models, inadequate quantitative approaches, and variation in
protocols and measures across data collection silos. Importantly,
little is understood about the dynamics of brain connectivity
in ADHD, because earlier research assumed that functional
linkages across brain regions or networks were stationary.
Aiming to overcome these challenges, this study investigated
Insular subregions to test the hypothesis that insular dFC among
different brain regions is impaired in children with ADHD,
and these impairments may play a role in social dysfunction.
Furthermore, the neural biomarkers found in children with
ADHD were analyzed to see if they might be used as group-
level features to distinguish patients with ADHD from HCs. The
findings of this study could provide new imaging-based insights
that can assist explain the clinical manifestations of ADHD and
improve our understanding of the brain mechanism behind its
symptoms in the pathway to ADHD.

2. MATERIALS AND METHODS

2.1. Participants and Measures
Shenzhen Children’s Hospital provided data with a total of
30 ADHD boys aged between 7 and 10 years and 28 HCs
having the same age range. Two experienced psychiatrists
assessed all of the patients to ensure that they met the
diagnostic criteria for ADHD based on clinical interviews

that followed the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition. The participants and their parents
were interviewed using the Schedule for Affective Disorders
and Schizophrenia for School-Age Children-Present and
Lifetime Version interview (K-SADS-PL; Kaufman et al.,
1997). ADHD diagnoses were based on the Diagnostic and
Statistical Manual of mental disorders-fourth edition (DSM IV)
(Association, 2013). Clinically-referred children who satisfied
the DSM-IV criteria (either mixed, mainly inattentive, or
predominantly hyperactive/impulsive subtype) were included in
this study.

For each ADHD patient, parents, teachers, and other
people who are in charge of caring for the kid were
asked about the child’s behaviors and conducts in various
settings, such as at home, school, or with peers. The
Conners-3 parent/teacher ratings (Conners, 2008) was used
to evaluate ADHD symptoms and associated issues such
as disruptive behavior and learning difficulties. The used
lengthy Conner-3 version has 105/111 items (parent/teacher)
that are graded on a 4-point Likert-scale from 0 (never)
to 3 (very much/very frequently). The Conners-3 comprises
scales such as hyperactivity/impulsivity, inattention, learning
problems, executive functions, aggression, peer relations (content
scales); DSM IV-inattention and hyperactivity/impulsivity, DSM
IV-conduct disorder, DSM IV-oppositional defiant disorder
(symptom scales); ADHD index, Global index. We obtained an
internal consistency Cronbach’s α (Christiansen et al., 2016) of
0.84 for the content scales and α = 0.80 for the symptom scales
of the Conners-3 parent rating scale. Children with ADHD who
showed persistent patterns of inattention and/or hyperactivity-
impulsivity that affect their functioning and development for
at least 6 months were diagnosed. Accordingly, healthcare
providers examined symptoms of inattention such as: (1) failing
to pay close attention to details or making thoughtless blunders,
in schoolwork, (2) frequently struggling to maintain focus
on chores or recreational activities, (3) frequently ignoring
instructions and directions and failing to complete homework
or chores (e.g., loses focus, side-tracked), (4) having a hard
time keeping track of tasks and activities, (5) during regular
activities, the kid is prone to forgetfulness and distraction, (6)
frequently misplaces items required for chores and activities (e.g.,
school materials, pencils, books, tools, eyeglasses), (7) frequently
avoids, hates, or is hesitant to accomplish tasks that demand
sustained mental effort (such as schoolwork or homework).
Symptoms related to hyperactivity and impulsivity were also
examined such as: (1) being unable to play or participate in
leisure activities in a peaceful manner, (2) talking excessively,
(3) having difficulty waiting for their turn, (3) disturbs or
invades the privacy of others (e.g., butts into conversations or
games). The cognitive function was assessed using the Stroop
Color and Word Test (SCWT) (Lee and Chan, 2000) which
indeed has effect on the working memory that can, in turn,
have behavioral consequences similar to those of externally
perceived stimuli. As for the assessment of social functioning,
there were specific questions about the number of close friends,
the contact with them. Ratings were made on a 4-point scale
(less than one, 1–2, 3–4, 5 or more). The quality of ADHD
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children’s relationships with friends and their reactions to
family members visits was also evaluated using a questionnaire
of a 5-point scale [from 0 (no contact/reaction at all) to 5
(very well)].

The K-SADS-PL was used to consult the children in HCs
group, as well as their parents, to check that they did not fulfill
the diagnostic criteria for ADHD or any other mental illnesses.
Normal eyesight and hearing were also required, as well as a
Full-Scale Intelligence Quotient (FSIQ) ≥ 70 calculated using
the Wechsler Intelligence Scale for Children, Fourth Edition.
Participants with current or previous psychological illnesses,
major physical disorders, neurological disorders, or brain injuries
were not allowed to participate in this study. The Shenzhen
Children’s Hospital Medical Research Ethics Committee gave
their approval to this study. All of the children agreed to take part
in this study, and their parents gave signed informed consent.

2.2. rs-fMRI Data Acquisition
The rs-fMRI data for all participants were obtained using a 3.0-
T system scanner (Siemens Magnetom Skyra) at the Radiology
Department of Shenzhen Children’s Hospital, Shenzhen, China.
The rs-fMRI data were acquired using echo-planar imaging (EPI)
sequence with the following parameters: repetition time (TR)
= 2, 000 ms; echo time = 30 ms; flip angle= 90◦; matrix size =
64× 64; 32 axial slices; field of view = 24× 24 cm2; slice thickness
= 3 mm and no gap. Structure 3D-MPRAGE; T1 Repetition
Time [TR, ms] = 2,300 ms, Echo Time [TE, ms]= 2.26; Number
of Averages = 1.0, Slice Thickness = 1.0 mm, Field of View
(FOV)= 256mm.

2.3. Data Pre-processing
The DPABI toolkit (Yan et al., 2016) was used to preprocess the
data. Because of the volatility of the initial magnetic resonance
imaging signal and the participants’ adaption to the experimental
setup, the first 10 volumes were eliminated. The remaining 220
volumes were first realigned to correct for head-motion before
being corrected by the acquisition time delay among different
slices. Under the head motion criterion of ±3 mm and no
participant was excluded. The pictures were then normalized
and resampled into a voxel size of 3 × 3 × 3 mm3 utilizing
an uniform segmentation of anatomical images. The following
three steps were engaged in normalization: 1) Each participant’s
T1 structural images were co-registered to their corresponding
functional images; 2) Co-registered T1 images were segmented
into gray matter, white matter, and cerebrospinal fluid using
transformation parameters that indicated transformation from
subject native space to standard Montreal Neurological Institute
(MNI) space; 3) Functional images were finally transformed
into the standard space using transformation p. Additional
regression was applied to nuisance factors, such as 24 head
movement parameters, global signal, white matter signal, and
cerebrospinal fluid signal, to adjust for physiological noise,
such as motion and cardiac and respiratory cycles. Following
that, the data were linearly detrended, filtered at 0.01–0.08
Hz, and smoothed with a 6mm full-width-at-half-maximum
Gaussian kernel.

2.4. Head Motion
The mean framewise displacement (FD) created during the
scanning process was removed using Jenkinson’s relative root-
mean-square technique (Jenkinson et al., 2002). To evaluate the
voxel-wise motion differences between the two groups, the mean
FD (Jenkinson) was determined. The mean FD did not change
substantially between the ADHD and HC groups (p < 0.6).

2.5. Static Functional Connectivity Analysis
Seed areas were chosen based on the presence of social
dysfunctioning-related anomalies in right and letf dAI, vAI,
and PI in FC. The seeds were obtained using cluster analysis,
in agreement with earlier literature (Deen et al., 2011), in
which the insula was subdivided based on FC pattern clustering.
We were primarily interested in the rdAI and rvAI regions,
which have been linked to attention and emotion, as well
as an outwardly and inwardly oriented system, respectively
(Touroutoglou et al., 2012). The right and left hemispheres of the
dAI, vAI, and PI were then transformed to MNI 152 standard
brain (3-mm resolution) and used as seed regions in the FC
analysis in HC and ADHD patients. We used the REST toolbox
(http://restfmri.net/forum/index.php) to perform seed-based FC
studies to evaluate the aberrant sFC of seed regions in HC and
ADHD. Between the mean time course of each seed region and
the time course of all other voxels in the entire brain, Pearson’s
correlation coefficient was derived. To increase the Gaussianity of
their distribution, the resulting r maps were turned into z maps
using Fisher’s r-to-z transformation. We obtained z-score maps
for each subject that represented the sFC of the right and left of
dAI, vAI, and PI.

2.6. Dynamic Functional Connectivity
Analysis
Using the DynamicBC toolbox (Liao et al., 2014), the sliding
windowmethod was used to analyze the dFC for each participant.
According to previous research, the window length is an open
but important parameter in sliding window based resting state
dynamic computation (Fateh et al., 2020; Li et al., 2020; Yang
et al., 2021). This approach can calculate the time-varying
covariance of interregional neural signals, which is the variance
of dFC, and reveal the temporal aspects of FC during the full scan
period. The sliding window method uses the window length as a
crucial parameter.The minimum window length should not be
smaller than 1/fmin, as per Leonardi and van de Ville (Leonardi
and Van De Ville, 2015), because a very short window length may
generate spurious fluctuations. In addition, the fmin represents
the time courses’ minimal frequency. The dynamic properties
of the time series would be made unobservable if the window
length was too long. We chose a window length of 50 TRs (i.e.,
100s) and a step size of 1 TR because a window length of 50
TR was proposed to maximize the balance between recording
a fast altering dynamic relationship and producing credible
estimations of the correlations between regions (Liao et al.,
2018) (i.e., 2s). In the validation analyses that followed, other
window lengths and step sizes were also evaluated. Liao et al.
(2018) computed the Fisher’s z-transformed Pearson’s correlation
coefficient between the average time series of each seed region
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and the remaining voxels in the whole brain in each window.
As a result, each participant received a set of sliding-window
correlation maps. Calculating standard deviation values at each
voxel across sliding-windows was used to estimate the dFC.

2.7. Statistical Analyses
To see if there was a difference in the dFC of the insular subregion
between HCs and ADHD patients, a two-sample t-test model was
used. Confounding factors such as the mean FD, age, gender, and
grade were regressed out. T-statistic images were transformed to
z-statistic images, and then thresholder using clusters identified
by a z value of > 2.3 and a cluster-level thresholder p-value of
0.05, corrected for whole-brain multiple comparison correction
using Gaussian random field theory. The regions of interest
(ROIs) for the post-hoc analysis were chosen from the survivors’
brain clusters. The data were corrected by multiple comparisons
using Gaussian random field theory (GRF, voxel-wise p < 0.001,
cluster-wise p < 0.05, two-tailed) and the dynamic R-fMRI
indices and voxel-wise concordance were compared using a two-
sample t-test. On these ROIs, a two-tailed, two-sample t-test
was used to evaluate the differences between two groups (HC
vs. ADHD). The statistical significance level is p < 0.05/6.
(Bonferroni correction). Brain regions data are summarized in
Table 1 and the positions of the Insular sub-regions are depicted
in Figure 1.

2.8. Validation Analysis
We performed validation analysis for several sliding window
lengths besides 50 TR to corroborate our findings of dFC
variability derived from 50 TR lengths of the sliding window. As
a consequence, we recalculated the primary dFC results with the
other two window lengths (30TR and 80TR).

3. RESULTS

3.1. Demographic and Clinical Information
The demographic and clinical characteristics of the ADHD
and HC groups were listed in Table 2. No differences in sex
and mean FD were detected between the two groups. We
found a large differences in IQ, working memory and learning
problems between the two groups, in a way that these variables
were lower in ADHD patients compared to HCs. For social
functioning, children with ADHD had a significantly lower
number of social contacts, and a poorer quality of social contacts

with family members compared to the HCs group. It was also
shown that ADHD patients had more problems with social
relations with their peers although the effects were marginally
significant (i.e., p < 0.1).

3.2. Differences of the dFC in the Right dAI,
vAI and PI Among ADHD, and HCs
Compared with HCs, patients with ADHD showed significantly
decreased dFC between right dAI with left middle frontal gyrus
and left postcentral gyrus and between right vAI with right
cerebellum crus. No significance was found in the PI. Moreover,
no increased dFC has been obtained between the two group.
Details regarding information on differences of dFC in between-
group are introduced in Figure 2 and Table 2.

3.3. Differences of the dFC in the Left dAI,
vAI and PI Among ADHD, and HC
Compared with HCs, patients with ADHD showed significantly
decreased dFC between dAI, vAI and PI and left thalamus, left
precuneus and right temporal pole, respectively. No increased
dFC has been detected between the two group. Details pertaining
to the results of between-group differences in dFC of left
subregions of insula is presented in Figure 3 and Table 2.

3.4. Validation Analyses
To verify our findings of dFC in insular subregions variability
obtained from sliding-window length of 50 TRs (100s), we
performed auxiliary analyses with different sliding window

FIGURE 1 | Seed regions of the insula in the Brian.

TABLE 1 | Brain clusters showing significant effects in the dFC of insular subregions.

Seed region Brain regions Cluster size Z score M N I ADHD(n = 30) HC(n = 28)

Voxels X Y Z M ± SD M ± SD

Right dAI Left middle frontal gyrus 80 –5.76 –33 9 36 0.02 ± 0.01 0.05 ± 0.01

Right dAI Left postcentral gyrus 85 –5.02 –48 –33 63 0.02 ± 0.009 0.05± 0.019

Right vAI Right cerebelum_crus 91 –5.54 33 –75 –48 –0.13 ± 0.14 –0.001± 0.12

Left dAI Left thalamus 68 –7.75 –3 –15 3 0.02 ± 0.012 0.05± 0.019

Left vAI Left precuneus 79 8.1 –42 –60 0 –0.09 ± 0.15 0.02 ± 0.14

Left PI Right temporal pole 65 –6.27 43 20 –22 0.02 ± 0.0.01 0.05 ± 0.016

SD, Standard Deviation; M, Mean value; dAI, dorsal Anterior Insula; vAI, Ventral Anterior Insula; PI, Posterior Insula.
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TABLE 2 | Demographic and clinical information.

Variables HC (n = 28) ADHD (n = 30) p-values

Age, mean ± SD 8.6 ± 0.97 8.6 ± 0.56 0.11a

Sex (male) 28 30

Grade, mean ± SD 3 ± 0.83 2.6 ± 0.56 0.02a

FD, mean ± SD 0.05 ± 0.02 0.06 ± 0.02 0.6a

IQ scores, mean ± SD 108.6 ± 10.81 84.3 ± 9.37 < 0.001a

Working memory,

mean ± SD

19.5 ± 3.10 9.95 ± 2.11 < 0.001a

Behavioral problems,

mean ± SD

1.12 ± 0.45 0.50 ± 0.40 < 0.001a

Anxiety score,

mean ± SD

0.54 ± 0.35 0.12 ± 0.10 < 0.01a

Learning problems,

mean ± SD

1.15 ± 0.5 0.45 ± 0.30 < 0.01a

Psychosomatic

disorder, mean ± SD

0.21 ± 0.18 0.12 ± 0.30 0.51a

IS(time), mean ± SD 18.2 ± 8.5 9 ± 3.5 < 0.01a

Number of social

contacts

3.2± 0.80 2.98± 0.82 < 0.1a

Quality of social

contacts-family

3.45 ± 1.07 3.34 ±1.04 < 0.1a

Quality of social

contacts-friends

3.78 ± 1.50 4.10 ± 1.28

Problems with social

relations with their

peers

3.00 ± 2.19 3.04 ± 2.80 < 0.1a

HC, healthy control; ADHD, Attention deficit hyperactivity; FD, frame-wise displacement;

SD, Standard deviation; a, Two-samplet-test; IS, interference score.

lengths. We recalculated the main results by using two other
window lengths (30 TR and 80 TRs) were similar to the main
results of 50 TR in our study.The corresponding results are shown
in the Supplementary Materials. All validation analysis results
are presented in Supplementary Figures S1–S4.

4. DISCUSSION

Impaired attention, impulsivity and hyperactivity are the solely
hallmarks in ADHD. These symptoms are directly related
to social dysfunctioning that mostly affects the daily life of
ADHD patients, especially kids. Despite its importance to the
neuroimaging research community, few studies about dFC in
children and adolescents with ADHD have been published so
far. Although there are no clinically accurate biomarkers for the
diagnosis of ADHD, this study investigated the insula dFC with
other brain regions in the hope that such research can promote
to the discovery of numerous viable candidate biomarkers,
especially those associated to social dysfunctioning. Our findings
support the hypothesis that the insular dFC with distinct brain
regions is altered, and these deficits may be implicated in social
dysfunction. Consistent with our hypothesis, compared to HCs,
patients with ADHD showed decreased dFC values between right
dAI and the left frontal_mid gyrus, left postcentral gyrus and the
right of cerebellum crus. Results also indicated a decreased dFC

between left dAI and thalamus, left vAI and left precuneus and
left PI with temporal pole mid.

Social dysfunctioning is a broad term that is manifested by
various neuropsychiatric disorders. To date, the majority of
studies investigating social functioning have relied on self-report,
questionnaire-based measures of social function (Hodgetts et al.,
2017). In this study, with regard to ADHD, during diagnosis
testing, we opted for a number of aspects (i.e., cognitive and
executive functioning, working memory, learning problems,
and anxiety-related symptoms and other measures; namely the
number of social contacts, the quality of social contacts for
both family and friends and the problems with social relations
with their peers) depending on the available participants’ data.
These aspects entail other related concepts such as emotion
regulation and attention orientation. The current findings, as
well as those from earlier studies (Biederman et al., 1993),
suggest that children with ADHD frequently experience issues
with social relationships. Due to their behavioral problems (e.g.,
not following the rules when playing a game), these children
may not have the same opportunities to make friends. Other
impaired functional connectivity that are possibly associated with
social dysfunctioning are discussed below considering our dFC’s
findings. We also found a considerable differences in IQ, working
memory and learning problems between the two groups. Many
studies have demonstrated that both IQ and workingmemory are
related to learning in a sense that these IQ and working memory
would predict reading, writing, and math skills in children
(Alloway and Copello, 2013). Our findings are consistent with
other existing studies in the literature (Rohrer-Baumgartner et al.,
2014) that found in children with below median IQ-score, a
larger number of ADHD symptoms were more likely to be
accompanied by reports of lower expressive language skills. One
possible reason for such lower scores and their implications
to the lower expressive language skills is due to impaired
(decreased) dFC between the Insula and the frontal middle
gyrus since these two regions have been involved in language,
self expression and learning. More related interpretations are
presented below.

The insula (or insular cortex) is a thin ribbon of gray matter
tissue that lies just deep to the lateral brain surface, separating
the temporal lobe from the inferior parietal cortex (Broder and
Preston, 2011). Taste, visceral sensation, and autonomic control
are only a few of the homeostatic activities pertaining to basic
survival needs that involve the insula. It was also proved that the
insula regulates the sympathetic and parasympathetic nervous
systems, which control autonomic activities (Bud Craig, 2009).
According to functional connectivity studies and in line with
our study, the human insula has at least three different segments
(Nomi et al., 2016). A dorsal anterior insula (dAI) subdivision
with connections to the frontal, anterior cingulate, and parietal
areas is participated in cognitive control processes; a ventral
anterior insula (vAI) subdivision has connections to limbic
areas and is involved in affective processes; and a mid-posterior
insula (PI) subdivision has connections to brain regions for
sensorimotor processing (Cereda et al., 2002). Based on our dFC
analysis, while studying time-varying patterns of interactions
between insular subdivisions and other brain regions, we found
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FIGURE 2 | The variance of dFC between the right insula and other brain regions, obtained by comparing HCs and ADHD groups, using two sample t-test;

(A) Between right dAI and Left Middle frontal gyrus (first row) and Left postcentral gyrus (second row). (B) Between right vAI and right cerebelum curs.

that the dAI has more changeable connections than the other
insular segments. This is consistent with previous research
indicating the dAI’s functional "diversity," which is engaged
across numerous task domains (Penfield and Faulk, 1955; Cereda
et al., 2002). On the other hand, recent functional imaging
investigations have found that the left or right lateralization
of emotional processing is influenced by stimulus valence
(positive or negative emotions) (Harrington, 1995), behavior
(approach/withdrawal) (Davidson et al., 1990), and subjective
state (perception/experience) (Peelen et al., 2010). In regard to
the lateralization of the human insula, our findings revealed
the following insights: (1) stronger dFC of the insula in the
left hemisphere than the right, which was manifested among
all subdivisions (2) heterogeneous connectivity between insula
subdivisions’ profiles. In accordance with these findings, a
number of lesion case studies elucidated the role of left insula in
executive set-switching (executive functioning) which is mainly
associated with ADHD. For instance, Varjačić et al. (2018)
suggested support for the role of the left insular cortex in flexible
attention switching among stroke survivors. Markostamou et al.
(2015) studied the case of a woman with an acute left anterior
insular infarction that led to executive (word and design fluency,

mental flexibility, sustained attention, inhibitory control) but not
language, visuoperceptual, or memory deficits. Conflicting with
these findings, by considering the the way we relate language to
our interpersonal relationships, while some functional imaging
studies reported greater activation in the left insula in equal
bilingual young adults (Chee et al., 2004), others demonstrated
the brain’s ability to sustain proper language without the
insula (Duffau et al., 2001). On the other hand, regarding our
second finding which supports many relevant recent researches
proposing a tripartite organization rather than the traditional
anterior-posterior dichotomy. Nomi et al. (2018) elucidated that
the functional profiles of the insular subdivisions are both unique
and overlapping.

Our decreased dFC results were compatible with other studies
(Wang et al., 2020) that found significant decreases in both
functional connectivity and global network efficiency. This
decrease may correspond to either patients’ insula incapability
to integrate external sensory information with cognitive abilities
including supervisory attentional control (Cieslik et al., 2015) and
interior emotion or to the small size of the data sample. The
former inference is due to the anatomy of the nervous system
whereby the thalamus takes information from “homeostatic
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FIGURE 3 | The variance of dFC between the left insula and other brain regions, obtained by comparing HCs and ADHD groups, using two sample t-test;

(A) Between left dAI and Left thalamus. (B) Between left vAI and left precuneus, (C) between left PI and right temporal_pole_mid.

afferent” sensory pathways and transfers it to the insula, which
then sends it to a number of limbic-related regions, including
the amygdala.

Another key result of this study is the alteration of dFC
between left AI and left thalamus. Consistent with our findings, in
regard with social dysfunctioning, the processing of information
relevant to gustatory, visceral, and autonomic functions, and
even salient information and emotion regulation, is underpinned
by connections between the thalamus and the anterior insula
(Ghaziri et al., 2018). A decreased FC with limbic regions such
as the amygdala, hippocampus, thalamus, and insula in people
with subclinical anxiety were reported in Scheinost et al. (2013)
and in ADHD adolescents (Rubia et al., 2019). Mills et al. (2012),
in turn, also suggested a corticostriatal-thalamic connectivity
changes in children with ADHD and they then discussed the
relation of these results to patients’ working memory ability.
Working memory is critical for reasoning, decision-making, and
behavior guidance and it is among the core difficulties especially
for students with ADHD. We continually handle social cognitive
information, whether it’s keeping track of friends’ viewpoints
during conversation, a roomful of colleagues’ beliefs during a

conference, or the political ideology of someone we just met.
Smooth social interaction necessitates keeping track of a variety
of social data, such as individual attributes and interpersonal
relationships and this referred to social working memory where
both the thalamus and the insula are involved (Meyer and
Lieberman, 2012). This illustrates our result in a sense that
deficits in working memory in children, especially during
learning-based activities, can result in children experiencing
information overload and thus they may act out behaviorally or
withdraw socially. In other words, this disrupted dFC between
left AI and left thalamus, a finding that can be interpreted as
support for the significant differences we found in IQ, working
memory and behavioral problems between the two groups.

Importantly, we found a disrupted dFC between the right dAI
and frontal middle gyrus. The implication of the frontal middle
gyrus in competencies such as literacy, numeracy has been
widely discussed by neuroimaging studies (Koyama et al., 2017).
However, in line with our findings, Japee et al. (2015) suggested
the role of middle frontal gyrus in the reorienting of attention
which indicates the individuals’ ability to efficiently pick and
guide their attention toward behaviorally relevant information in
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their environment. Postcentral gyrus, on the other hand, was also
involved in our study whereby dFC analysis showed alterations
between this region and the right dAI. Intriguingly, Du et al.
(2020) found a stronger within-network connectivity in the
insula, the thalamus and the postcentral gyrus among other brain
regions that constitute the so called punishment network. From a
social psychological standpoint, this study strongly supports our
results in such a way that people are compelled to comply out
of fear of punishment since a minority position is aversive and
it can result in hostility, condemnation, rejection from others,
or social isolation. People may be encouraged to adhere to the
majority position in order to escape such social penalty. Along
with our results, the finding that the postcentral gyrus is amongst
the potentially relevant brain areas in punishment processing,
represents what could be a previously unknown function for this
part of the brain and could provide a new target for researchers.

Our findings also showed altered dFC between left PI and
right temporal pole. Generally, temporal areas comprising the
temporal sulcus were found to be involved in the so called
social attention and face perception particularly (Nummenmaa
and Calder, 2009). Social attention refers to the social conduct
that underpins joint attention, with the goal of coordinating
attention allocation with others. These crucial social abilities are
thought to be dependent on the development of attention skills
such as (1) detecting eye-direction and (2) allocating attention
to the same focus of attention as another human being. These
cortical areas are critical in the processing of socially relevant
cues such gaze following, eye direction, and head orientation
(Hopkins et al., 2014). Conflicting with these findings, other
literature interestingly suggested that temporal pole activations
are more common in sophisticated emotional tasks like theory
of mind activities, but are less common in simpler emotional
tasks like emotional face perception or gaze perception tasks
(Olson et al., 2007).

To sum up, by interpreting our results, we displayed the
insula’s ability to be both specialized and integrative and
to operate both independently and cooperatively. This could
explain how the insula functions as a network hub, coordinating
input from various cognitive areas and activities. More replicated
research on this area is required in the future especially for
more specified aspects associated to social dysfunction such as
social inattention.

4.1. Limitations
Power considerations may limit our ability to examine the
consequences of medications and comorbidity with other
diseases, particularly those with inattention impairments like
autism, substance dependence, depression, anxiety or learning
disorders. Furthermore, the consequences of head motion are in
general a constant source of concern in in ADHD and imaging
youth. To deal with the issue of motion, we omitted high-motion
subjects as an exclusion criteria, and we suggest considering
other methods such as regressing realignment parameters
and performing individual-level separation techniques such
as independent component analysis. Moreover, this research
used cross-sectional data and merely served as a surrogate
for maturational effects. Extending and refining dynamic

connectivity techniques in ADHD will be possible in the future
with larger and longitudinal subject populations.

Furthermore, in task-based fMRI trials, nothing is known
about how dynamic functional connections are associated to
social dysfunctioning. Although prior research has shown that
the insula’s static functional connections are altered within the
salience and default mode networks (Zhao et al., 2017), there
have been few studies that have looked at dynamic functional
connections underlying social dysfunctioning during task states
(Fong et al., 2019). Future research should look into how dynamic
connections between insula subdivisions function in task-based
fMRI studies.

Also, in our current configuration, functional connectivity
evaluations were conducted using standardized insular sub-
region seeds. Individual differences in the size and placement
of functional areas may have an impact on connectivity maps.
Individualized seeds created from a functional parcellation
approach will aid future investigations in overcoming these
methodological flaws.

Finally, It should be noted that the current dFC method
is just one of several approaches for mapping the dynamic
functional connections between distinct brain areas. Graph
theoretical approaches (Braun et al., 2015), test statistics tracking
time course variations (Zalesky et al., 2014), co-activation
pattern identification (Chen et al., 2015), and employing time
frequency information (Yang et al., 2014) have all held promise
in identifying changes in functional connections that static FC
methods fail to capture. Future research should look into how
these different measurements can help to better understand the
dynamic functional links of the insula subdivisions.

5. CONCLUSION

Clinicians can diagnose psychopathology associated to insular
dysfunction and stratify differential remedies by translating basic
science into clinically useful facts. To improve our treatments,
we must connect the pieces of evidence to fully comprehend
any brain region, learn how the brain works, and decode clinical
manifestations. The regulation of instrumental parts of the brain,
such as the insula, is at the heart of daily life’s micro-operations.
This study provides evidence that the ability of the insula to serve
as a subjective experiencing and feeling center that combines
emotional, sensory, cognitive, and motor functions is its primary
purpose. Therefore, we suggest that the insula is implicated
in social dysfunctioning in childern with ADHD, and hence,
aberrant insular dFC and provides an essential connectivity
marker associated with a diagnosis of ADHD.
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Schizophrenia (SZ), major depressive disorder (MDD), and bipolar disorder (BD) are
severe psychiatric disorders and share common characteristics not only in clinical
symptoms but also in neuroimaging. The purpose of this study was to examine common
and specific neuroanatomical features in individuals with these three psychiatric
conditions. In this study, 70 patients with SZ, 85 patients with MDD, 42 patients with BD,
and 95 healthy controls (HCs) were recruited. Voxel-based morphometry (VBM) analysis
was used to explore brain imaging characteristics. Psychopathology was assessed
using the Beck Depression Inventory (BDI), the Beck Anxiety Inventory (BAI), the Young
Mania Rating Scale (YMRS), and the Positive and Negative Syndrome Scale (PANSS).
Cognition was assessed using the digit symbol substitution test (DSST), forward-digital
span (DS), backward-DS, and semantic fluency. Common reduced gray matter volume
(GMV) in the orbitofrontal cortex (OFC) region was found across the SZ, MDD, and BD.
Specific reduced GMV of brain regions was also found. For patients with SZ, we found
reduced GMV in the frontal lobe, temporal pole, occipital lobe, thalamus, hippocampus,
and cerebellum. For patients with MDD, we found reduced GMV in the frontal and
temporal lobes, insular cortex, and occipital regions. Patients with BD had reduced GMV
in the medial OFC, inferior temporal and fusiform regions, insular cortex, hippocampus,
and cerebellum. Furthermore, the OFC GMV was correlated with processing speed as
assessed with the DSST across four groups (r = 0.17, p = 0.004) and correlated with
the PANSS positive symptoms sub-score in patients with SZ (r = − 0.27, p = 0.026).
In conclusion, common OFC alterations in SZ, MDD, and BD provided evidence that
this region dysregulation may play a critical role in the pathophysiology of these three
psychiatric disorders.

Keywords: schizophrenia, major depressive disorder, bipolar disorder, gray matter volume (GMV),
psychopathology
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INTRODUCTION

Schizophrenia (SZ), major depressive disorder (MDD), and
bipolar disorder (BD) are highly complex psychiatric disorders
for which the diagnosis primarily depends on the patient’s clinical
symptoms and the psychiatrist’s experiences. The literature has
shown that these psychiatric disorders share some common
genetic vulnerability and clinical symptoms (Wang et al., 2017;
Cross-Disorder Group of the Psychiatric Genomics Consortium,
2019).

Previous research using voxel-based morphometry (VBM)
found that decreased gray matter (GM) volume in the right
inferior frontal gyrus was a common abnormality feature in both
MDD and BD (Cai et al., 2015). Atrophy or decreased GM
volume (GMV) was found in the subgenual anterior cingulate
cortex (ACC) in MDD and in the subcallosal ACC (Niida et al.,
2014, 2019) and bilateral fronto-insular cortex (Bora et al., 2012)
in BD. Further analysis revealed that patients with both MDD
and BD showed decreased GMV in the bilateral insula cortex
(Wise et al., 2016), left ACC, and right hippocampus (Chen
et al., 2018). Patients with SZ showed some evidence of GMV
reduction in the prefrontal and temporal cortex (Yuksel et al.,
2012; Nenadic et al., 2015; Knochel et al., 2016), bilateral insular
cortex (Niida et al., 2019), thalamus, hippocampus, striatum,
and cerebellum (Watson et al., 2012; Nenadic et al., 2015). In
addition, it was found that patients with both SZ and BD had
some common GMV reduction in the superior temporal gyrus
(STG) and inferior parietal lobule (Cui et al., 2011).

A meta-analysis found GM loss in the bilateral insula and
dorsal ACC across SZ, BD, depression, addiction, anxiety, and
obsessive-compulsive disorder (Goodkind et al., 2015). Chang
et al. (2018) reported that the SZ, MDD, and BD shared
reduced GMV in 87.9% of the whole brain regional volume.
In addition, previous studies found functional abnormalities of
the insula in MDD (Wang et al., 2018; Wang J. et al., 2020;
Wang L. et al., 2020).

However, the common and specific GMV studies of SZ,
MDD, and BD are scarce and inconsistent. Therefore, in the
present study, we hypothesize that SZ, MDD, and BD may have
common specific characteristics that can be explored by brain
structure imaging. Further, this study may provide objective
image markers for the diagnosis and differential diagnosis of
these three psychiatric disorders. Thus, we used VBM analysis to
explore possible common and specific changes in neuroimaging
features in patients with SZ, MDD, and BD.

MATERIALS AND METHODS

Participants
The participants included four groups of subjects: SZ (n = 70),
MDD (n = 85), BD (n = 42), and healthy controls (HCs,
n = 95). The study was conducted between March 2013 and
October 2017 at the Second Affiliated Hospital of Xinxiang
Medical University, China. The study was approved by the Ethics
Committee of the Second Affiliated Hospital of Xinxiang Medical
University. All participants provided written informed consent.

All participants were between 18 and 55 years old, Han Chinese
in origin, and right-handed. Patients with SZ, MDD, and BD
were independently diagnosed by two experienced psychiatrists
using the Structured Clinical Interview for Diagnostic and
Statistical Manual of Mental Disorders (DSM)-IV Axis I
Disorders. Exclusion criteria were the following: heart, kidney,
or liver disease; other mental disorders; and the presence
of implanted metal frames or electronic devices preventing
Magnetic Resonance Imaging (MRI) scanning. Symptoms were
measured using the Beck Anxiety Inventory (BAI) (Beck et al.,
1988) and Beck Depression Inventory (BDI) (Beck et al., 1961)
for patients with MDD, the BDI, BAI, and Young Mania Rating
Scale (YMRS) (Young et al., 1978) for patients with BD, and
the Positive and Negative Syndrome Scale (PANSS) (Kay et al.,
1987) for patients with SZ. Patients with BD were further
diagnosed with depression (n = 15), mania (n = 25), and
stable mood (n = 2). Cognitive function tests were carried
out using the digit symbol substitution test (DSST), forward-
digital span (DS), backward-DS, and semantic fluency. None
of the HCs had a personal history of psychotic illness or a
family history of psychosis in their first-, second-, or third-
degree relatives. HCs were excluded if one of the following were
present: (1) history of head injury, (2) the presence of a major and
unstable physical illness, (3) heart, kidney, or liver disease, (4)
pregnant or breast-feeding women, or planning pregnancy, and
(5) the presence of implanted metal frames or electronic devices
preventing MRI scanning.

Data Acquisition and Pre-processing
All participants underwent T1-weighted imaging using a 3.0
Tesla Siemens Scanner (Siemens, Verio, Germany). Acquisition
parameters for T1-weighted scans were as follows: repetition
time= 2,530 ms, echo time= 2.43 ms, inversion time= 1,100 ms,
flip angle = 7◦, matrix size = 256 × 256 × 192, and voxel
size = 1 × 1 × 1 mm. Foam pads and earplugs were used to
reduce head motion and scanner noise.

All T1-weighted images were processed using Statistical
Parametric Mapping (SPM12, Wellcome Department of
Imaging Neuroscience, London, United Kingdom)1 and the
Computational Anatomy Toolbox (CAT12). Briefly, the images
were bias-corrected and segmented into different tissues, such
as GM, white matter, and cerebrospinal fluid images. The
tissue images were then spatially normalized and resampled
to a resolution of 1.5 × 1.5 × 1.5 mm3. To preserve regional
volumetric information, the images were modulated by the
Jacobian determinants of the deformations during the warping.
Finally, 6-mm full width at half maximum Gaussian kernel
smoothing was performed to generate the voxel-based GMVs for
each subject for the subsequent statistical analysis.

Statistical Analysis
The demographic characteristics of the groups were compared
using analysis of variance and χ2-tests. MRI data were analyzed
using the CAT12. Group differences in regional GMVs were
investigated by comparing the pre-processed GM images from

1http://www.fil.ion.ucl.ac.uk/spm/
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each pair of groups using a general linear model with age,
gender, and total intracranial volume (TIV) as covariates. We
performed AlphaSim correction with a threshold of p < 0.01
for multiple comparisons. The correction was achieved with
a voxelwise threshold of p < 0.005 and a minimum cluster
extent of 298 voxels. Identification of overlapping regions across
mental disorders was performed on the basis of regions showing
consistent GM changes after multiple corrections. No statistical
method was used to identify overlapping regions. Pearson’s
correlations were used to assess (i) relationships between GMVs
in overlapping regions and digit symbol scores across all groups
and (ii) relationships between GMVs and symptom severity as
measured by BDI, BAI, and PANSS scales in MDD, BD, and SZ.
Partial correlation analysis was performed using age, sex, TIV,
and the group as confounding variables.

RESULTS

Sociodemographic and Clinical
Characteristics
Sociodemographic and clinical data are presented in Table 1.
No statistically significant differences in age or sex were noted
between each pair of two groups except that patients with SZ were
younger than patients with BD (SZ vs. BD, t =− 3.35, p= 0.001)
and patients with MDD (SZ vs. MDD, t = − 3.27, p = 0.001).
Significant differences were also observed in the duration of
illness, age of onset, and medication status across patient groups.

Voxel-Based Morphometry Comparisons
Patients with SZ, MDD, and BD had significantly reduced
regional GMVs when compared to HCs. The common GMV was
reduced in the orbitofrontal cortex (OFC) region of patients with
SZ, MDD, and BD. Specifically, patients with SZ had reduced
GM in the frontal lobe, temporal lobe, occipital lobe, thalamus,
hippocampus, and cerebellum. For patients with MDD, the
differences were most pronounced in the frontal and temporal
lobes, insular cortex, and occipital regions. For patients with BD,
GM deficits were found in the medial OFC, inferior temporal and
fusiform regions, insular cortex, hippocampus, and cerebellum
(Figure 1 and Supplementary Table 1). When compared TIV
among three patient groups, we found the significant difference
between SZ and BD, (t = − 2.184, p = 0.029), BD and DP
(t = 2.009, p = 0.047), and the TIV, there was no significant
difference between SZ and DP (t = 0.143, p= 0.886).

Orbitofrontal cortex GM sizes were correlated with processing
speed as assessed with the DSST across four groups and PANSS
positive scales only in patients with SZ (r = 0.17 and − 0.27,
both p < 0.03; Figure 1). In addition, patients with MDD had
significantly smaller GM in the superior and middle frontal gyri
(SFG/MFG; Figure 2). However, GM sizes in SFG/MFG were not
significantly correlated with BAI in patients with MDD and BD
(r = − 0.10, p = 0.360), or in MDD (r = 0.11, p = 0.301) or BD
(r = − 0.13, p = 0.419) patients only. We also found reduced
GMVs in the middle cingulum and middle frontal gyrus in the
BD depression subgroup when compared with the BD mania
subgroup (Figure 3).

Further, we also found common changes in GM size in the
insular cortex in MDD and BD, in the frontal lobe, temporal pole,
and occipital lobe in MDD and SZ, and in the hippocampus and
cerebellum in BD and SZ.

DISCUSSION

In this study, we revealed a transdiagnostic feature of GMV
decrease in the OFC across SZ, MDD, and BD. Meanwhile,
the specific GMV was decreased in the frontal and temporal
lobes, insular cortex, and occipital regions in MDD, in the
medial OFC, inferior temporal and fusiform regions, insular
cortex, hippocampus, and cerebellum in BD, and in the frontal
lobe, temporal pole, occipital lobe, thalamus, hippocampus, and
cerebellum in SZ. The present study further provides evidence for
the common and specific GMV loss in SZ, MDD, and BD.

The present study is a part of the systematic exploration
of the common and specific MRI features of SZ, MDD, and
BD in the Chinese population. Our published studies revealed
a decreased functional connectivity in the insula (Yang et al.,
2019) and reduced white matter integrity in the body and genu
of the corpus callosum and corona radiata across these three
psychiatric disorders (Cui et al., 2020). The corpus callosum and
corona radiata are related to the prefrontal cortex (PFC) and
ACC (Goodkind et al., 2015; Dong et al., 2017), and the corona
radiata is also related to the pathway of the anterior insula (Nomi
et al., 2018). The previous meta-analysis reported common GM
loss in the dorsal ACC, right insula, and left insula across six
psychiatric disorders that include SZ, MDD, and BD (Goodkind
et al., 2015). Meanwhile, a study in the Chinese population found
that common GM was decreased in the OFC, dorsolateral PFC,
angular gyri, cingulate gyri, parahippocampal gyri, and temporal
pole (Chang et al., 2018). Recent meta-analysis found that the
decreased GM in the right cerebellum might be a common brain
structural abnormality across SZ, BD, and MDD, and the regional
GM abnormalities in thalamus, neocortex, and striatum appear to
be disorder-specific (Zhang et al., 2020). Interestingly, our finding
suggested that the GMV decreased in the OFC, which is part of
the PFC, is a common feature of the three psychiatric disorders.
Therefore, our finding is consistent with a previous study (Chang
et al., 2018) and further supported by the loss of GMV in
psychiatric disorders (Goodkind et al., 2015; Chang et al., 2018).
Therefore, our findings indicated that OFC impairment may be
correlated with brain function in MDD, SZ, and BD. Previous
functional connectivity studies have reported that the default
mode network (DMN) plays an important role in psychiatric
disorders (Meda et al., 2014; Cheng et al., 2022; Pang et al., 2022).
Since the OFC is located in the DMN, further research needs to
explore the functional abnormalities of the OFC in these three
psychiatric disorders.

Orbitofrontal cortex, one of the three main regions of the
PFC, plays a role in affective and cognitive processes, such
as the integration of multiple sensory information (Forbes
and Grafman, 2010). The OFC has been implicated in MDD
(Bremner et al., 2002), BD (Konarski et al., 2008), and SZ (Haijma
et al., 2013) in previous studies. A previous study found decreased
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TABLE 1 | Demographic characteristics of the participants.

MDD (n = 85) BD (n = 42) SZ (n = 70) HC (n = 95) F/χ2-values P-values

Male (%) 40.0 54.8 44.3 49.5 1.09 0.350

Age (years) 32.44 (8.79) 32.88 (8.79) 28.40 (4.92)a 30.21 (6.85) 5.15 0.002*

Education (years) 11.5 (3.60)(n = 84) 10.5 (3.83)(n = 40) 11.48 (2.76)(n = 64) 13.80 (2.88)(n = 94) 13.89 <0.001

Age of onset (years) 29.18 (9.32)(n = 84) 26.25 (8.88)(n = 40) 24.54 (4.86)(n = 64) N/A 6.61 0.002

Medication (Yes/No) 66/19 37/5 44/26 N/A 9.55 0.008

Antipsychotics (Yes) 5 24 44 N/A 62.66 <0.001

Antidepressants (Yes) 64 15 0 N/A 91.03 <0.001

Mood stabilizer 1 24 0 N/A 95.25 <0.001

Duration of illness (months) 40.81 (55.87)(n = 84) 77.10 (77.16)(n = 40) 43.26 (43.28)(n = 64) N/A 5.89 0.003

Digit symbol 48.56 (13.40)(n = 81) 47.53 (15.25)(n = 40) 38.18 (10.47)(n = 57) 62.31 (11.92)(n = 94) 11.6 <0.001

BDI 18.60 (7.66)(n = 68) 9.95 (11.71)(n = 40) N/A N/A 21.55 <0.001

BAI 42.83 (11.41)(n = 48) 31.85 (13.75)(n = 39) N/A N/A 16.59 <0.001

PANSS total N/A N/A 78.5 (18.15) N/A N/A N/A

PANSS positive N/A N/A 22.74 (3.75) N/A N/A N/A

PANSS negative N/A N/A 19.86 (5.29) N/A N/A N/A

Values are mean (SD) unless otherwise indicated.
BAI, Beck Anxiety Inventory; BD, bipolar disorder; BDI, Beck Depression Inventory; HC, healthy control; MDD, major depressive disorder; N/A, not applicable; PANSS,
Positive and Negative Syndrome Scale; SZ, schizophrenia.
*SZ had significantly younger age in years than BD and MDD. No significant differences were found in age or gender between three mental disorders (MDD, BD, and SZ)
and HC.

FIGURE 1 | Common gray matter (GM) deficits in major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). (A,B) Reduced GMVs were found
in the medial orbitofrontal cortex (OFC) across three mental disorders. AFNI’s AlphaSim was used for multiple comparisons corrections; (C) GMVs in medial OFC
were correlated with digit symbol substitution test across four groups and PANSS positive scales in patients with SZ.

GMVs in the OFC, dorsolateral PFC, insula, temporal pole,
cingulate gyri, parahippocampal gyri, and angular gyri across
SZ, MDD, and BD (Chang et al., 2018). The present study is

consistent with this study, as we found a decreased GMV of the
OFC in these three psychiatric disorders. In the present study,
65.9% of all patients had a recurrent episode and had a long illness
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FIGURE 2 | Major depressive disorder (MDD) showed reduced gray matter (GM) volumes in superior and middle frontal gyri (SFG/MFG) compared with bipolar
disorder (BD) and schizophrenia (SZ) patients (A,B).

duration, whereas, in previous studies, 72.9% (Chang et al., 2018)
and 67.8% (Xia et al., 2018) of all patients had the first episode and
short illness duration. Meanwhile, the common genetic variations
are 15% for SZ and BD, 10% for MDD and BD, and 9% for MDD
and SZ (Lee et al., 2013). This may explain why our findings
with respect to morphology in these three psychiatric disorders
were different from those of a previous study on six psychiatric
disorders (Goodkind et al., 2015).

Previous studies have confirmed that the insula plays an
important role in patients with depression or BD, both from
structural (Wise et al., 2016) and functional imaging (Wang et al.,

FIGURE 3 | Reduced GM volumes in the middle cingulum and middle frontal
gyrus in the BD depression subgroup when compared with the BD mania
subgroup.

2019), and may be a potential biomarker. In the present study,
we found a common decrease in GMV in the insular in MDD
and BD. This was in line with previous studies (Bora et al.,
2012; Wise et al., 2016). Further, common decreases in GMV
between SZ and BD were observed in the hippocampus and
cerebellum, which is inconsistent with the common decreased
GMV in the STG and inferior parietal lobule (Cui et al., 2011).
Meanwhile, our study provided further evidence that the GMV
was decreased in the frontal lobe, temporal pole, and occipital
lobe in MDD and SZ.

Specifically, we revealed GM deficits in the frontal and
temporal lobes, insular cortex, and occipital regions in MDD.
These results are partly supported by a previous study, which
reported that the GMV was reduced in the lateral temporal
and occipital cortices in MDD (Frodl et al., 2008). One study
also found that GM decreases in the right precentral gyrus in
BD (Chang et al., 2018). Further, our study is in line with
the founding of GM deficits in the bilateral insular cortex in
BD (Wise et al., 2016). Meanwhile, specific GM deficits in the
temporal pole (Colibazzi et al., 2017), thalamus (Anticevic et al.,
2015; Zhang et al., 2020), PFC, and hippocampus (Ganzola
et al., 2014) in SZ were also in consistence with our findings.
Therefore, those specific reduced GMV brain regions may
provide objective biological markers for image diagnosis and
discriminate SZ, MDD, and BD.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2022 | Volume 16 | Article 919272127

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-919272 June 4, 2022 Time: 15:6 # 6

Yang et al. GMV in Three Psychiatric Disorders

A recent study found the associations between
psychopathological syndromes and regional GMV across
affective and psychotic disorders. Especially found positive
formal thought disorder was correlated with the GMV of
bilateral OFC (Stein et al., 2021). There was also a follow-
up study in SZ that showed the important role of OFC in
SZ. They found that greater pre-treatment OFC GMV was
associated with greater post-treatment improvement in positive
symptoms, particularly in hallucinations and persecutory beliefs
(Premkumar et al., 2015). Therefore, our result was obtained at
baseline MRI and also supports that the decreased GMV of OFC
was correlated with positive symptoms in SZ. Executive function
is related to the fronto-cingulo-parietal network (van Amelsvoort
and Hernaus, 2016) and includes basic cognitive processes, such
as attentional control, working memory, cognitive inhibition,
and flexibility. It is impaired in multiple disorders, such as MDD,
BD, and SZ (Hosenbocus and Chahal, 2012; Etkin et al., 2013).
The OFC is related to the visual cortex, and decreased GM of
the visual cortex is significantly associated with poor executive
function (Goodkind et al., 2015). In the present study, we found
that the OFC was correlated with processing speed as assessed
with the DSST. Meanwhile, processing speed is considered as a
part of cognitive processes. Therefore, our study suggested that
OFC impairment may be related to executive function deficits.

Our study had some limitations. Firstly, compared with a
previous study (Chang et al., 2018), the sample size of our BD
patient group was relatively small. Future studies of the Chinese
population will need to include multi-site samples to enlarge
the sample sizes. Secondly, factors, such as duration of illness
and age of onset, are difficult to control and match between
the three groups. Previous research (Chang et al., 2018) was
also difficult to achieve such an ideal state and reported that
there had significant differences in duration (months), and the
first episode (years) among SZ, MDD, and BD. Finally, most
patients in the present study were treated with medication. Of
197 patients, 147 (74.6%) used at least one type of medication,
such as antipsychotics, antidepressants, and mood stabilizers.
The effects of the medication may have influenced the results.
However, a recent study reported no significant difference in SZ,
MDD, and BD between patients with and without medication
(Chang et al., 2018). Moreover, data on medication-free patients
are not easily available. Future studies will be needed to analyze
the effects of medication.

CONCLUSION

In conclusion, our findings of common OFC alterations in SZ,
MDD, and BD provided evidence that this region dysregulation
may play a critical role in the pathophysiology of these three
psychiatric disorders. In addition, our findings indicated that
based on reduced GMV in specific regions, we were able to
discriminate MDD from SZ and BD, SZ from MDD and BD,
or BD from MDD and SZ. Future studies will need to make
a verification for these findings and evaluate the common and
specific connection features at the brain network level and in
different ethnic groups.
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Recent studies have proved that dynamic regional measures extracted from the

resting-state functional magnetic resonance imaging, such as the dynamic fractional

amplitude of low-frequency fluctuation (d-fALFF), could provide a great insight into

brain dynamic characteristics of the schizophrenia. However, the unimodal feature

is limited for delineating the complex patterns of brain deficits. Thus, functional

and structural imaging data are usually analyzed together for uncovering the neural

mechanism of schizophrenia. Investigation of neural function-structure coupling enables

to find the potential biomarkers and further helps to understand the biological

basis of schizophrenia. Here, a brain-network-constrained multi-view sparse canonical

correlation analysis (BN-MSCCA) was proposed to explore the intrinsic associations

between brain structure and dynamic brain function. Specifically, the d-fALFF was first

acquired based on the sliding window method, whereas the gray matter map was

computed based on voxel-based morphometry analysis. Then, the region-of-interest

(ROI)-based features were extracted and further selected by performing the multi-view

sparse canonical correlation analysis jointly with the diagnosis information. Moreover,

the brain-network-based structural constraint was introduced to prompt the detected

biomarkers more interpretable. The experiments were conducted on 191 patients with

schizophrenia and 191 matched healthy controls. Results showed that the BN-MSCCA

could identify the critical ROIs with more sparse canonical weight patterns, which are

corresponding to the specific brain networks. These are biologically meaningful findings

and could be treated as the potential biomarkers. The proposed method also obtained

a higher canonical correlation coefficient for the testing data, which is more consistent

with the results on training data, demonstrating its promising capability for the association

identification. To demonstrate the effectiveness of the potential clinical applications, the

detected biomarkers were further analyzed on a schizophrenia-control classification task

and a correlation analysis task. The experimental results showed that our method had

a superior performance with a 5–8% increment in accuracy and 6–10% improvement in
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area under the curve. Furthermore, two of the top-ranked biomarkers were significantly

negatively correlated with the positive symptom score of Positive and Negative Syndrome

Scale (PANSS). Overall, the proposed method could find the association between

brain structure and dynamic brain function, and also help to identify the biological

meaningful biomarkers of schizophrenia. The findings enable our further understanding

of this disease.

Keywords: multimodal brain image analysis, brain network constraint, sparse canonical correlation analysis,

schizophrenia, biomarker

INTRODUCTION

Schizophrenia (SCZ) is a severe psychiatric disorder, which is

characterized by cognitive dysfunction, delusions, hallucinations,
and personality disturbance (Ventura et al., 2009). It has affected
about 1% of the population throughout the world, and has
potentially become a lifetime burden for the patients and their
families (McGrath et al., 2008). Finding objective biomarkers
for the accurate diagnosis and effective intervention in the early
stage of SCZ is of great importance for the neuroscience and
medical science. However, it is still challenging to identify the
accurate biomarkers of SCZ as the pathological mechanism of
this disease is unclear yet (Insel, 2010). In the recent decades, the
advancements in magnetic resonance imaging (MRI) techniques

have provided an alternative opportunity to search for SCZ-
related biomarkers. Using the non-invasive MRI, such as
functional MRI (fMRI), structural MRI (sMRI), and diffusion
tensor imaging (DTI), the brain functional and structural
abnormalities can be detected, facilitating the understanding

about the pathophysiology of SCZ (Ding et al., 2019; Steardo
et al., 2020,Sagarwala and Nasrallah, 2021).

A lot of literatures proved that fMRI has played an
important role in the analysis of SCZ (Wang et al., 2018;
Steardo et al., 2020). Based on the resting-state fMRI (rs-
fMRI), the static functional measures are commonly extracted

to find the abnormal patterns in brain, and then, the disease-
related biomarkers are identified for further analysis. Currently,
beyond the traditional static analysis of functional brain activity,
the temporal dynamic features of brain have attracted more
and more attention, which can depict the temporal alteration
of brain function (Filippi et al., 2019). Dynamic regional
measurements at resting-state were widely investigated on brain
disorders, demonstrating their sensitive detection capability for
the abnormal characteristics of brain (Tang et al., 2018). Dynamic
fractional amplitude of low-frequency fluctuation (d-fALFF) is
one of the popularly used dynamic regional measurements in
SCZ research, which can reflect the temporal variability of the
amplitude of intrinsic neural activity (Yan et al., 2017; Zhang
et al., 2019). However, as a complex brain disorder, such single-
modality data cannot adequately depict the defective pattern
caused by SCZ. Recently, an increasing number of evidences have
shown that the combination of multimodal imaging data might
provide distinct and complementary information, contributing
to the comprehensive investigation of SCZ (Zhuang et al., 2019;
Lei et al., 2020a). Among these multimodal studies, the fMRI

and sMRI were most commonly combined, following with a
machine learning method, to conduct the subsequent analysis
such as the classification of healthy controls (HCs) and SCZ
(Cao et al., 2020). Even though the improved performances were
obtained based on these multimodal methods, the inter-modality
relationships were inevitably overlooked in most of these studies,
which are also important for the multimodal analysis.

In the neuroscience field, researchers have been aware of
the importance of exploring the inter-modality associations (Du
et al., 2020). Various types of correlation analysis method have
been proposed to identify the relationship between different
modalities (Shen and Thompson, 2020). Within them, the
sparse canonical correlation analysis (SCCA) is one of the most
popular methods (Witten et al., 2009). The SCCA could identify
multivariate associations between two sets of variables, while it
is an unsupervised approach, indicating that it cannot utilize
the diagnosis information to guide the exploration of disease-
related associations. So, it is limited to find the disease-related
and biologically interpretable biomarkers. To overcome this
shortcoming, the multi-view SCCA (e.g., three-view SCCA) was
adopted by including the diagnosis information as the third
type of data, with the aim of simultaneously maximizing the
pairwise correlations among diagnosis information and other
two sets of variables. By introducing the diagnosis information,
the disease-related biomarkers could be detected based on
this kind of methods (Hao et al., 2017; Won et al., 2020).
However, from the point of view of biologically meaningful
interpretation, it still remains a challenge to obtain biologically
interpretable findings for the current multi-view SCCA method.
To incorporate the biologically meaningful structure knowledge,
simplify the model complexity, and reduce the risk of overfitting,
different regularization methods were used in the SCCA, such
as lasso penalty (Witten et al., 2009), graph-constrained elastic
net (Kim et al., 2021), group lasso regularization (Du et al.,
2014), and so on. Recent studies have tried to associate the
detected brain regions with a certain brain network, and found
network-level aberrant alterations in SCZ (Li et al., 2019; Supekar
et al., 2019). Based on the observations above, it is hypothesized
that this brain-network-based structural information might be
helpful for the exploration of SCZ-related biomarkers. To our
best knowledge, this kind of structure information has not
been utilized in SCCA yet. Thus, a novel multi-view SCCA
method, which could simultaneously utilize the brain-network-
based structural information and the diagnosis information to
help to explore the disease-related biomarkers, is needed for
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FIGURE 1 | The flowchart of our proposed method.

better identifying disease-related multivariate associations and
producing biologically meaningful findings.

In this study, we proposed a novel brain-network-constrained
multi-view SCCA (BN-MSCCA) to explore the complex
relationships between brain structure and dynamic brain

function, and subsequently identify the SCZ-related biomarkers.
The temporal dynamic analysis (TDA) was first performed to
compute the dynamic brain functional measurement (e.g., d-
fALFF) using the sliding window method. Then, voxel-based

morphometry (VBM) analysis was performed to obtain the gray
matter (GM) map. After that, the region of interest (ROI)-based

features were further extracted from these two measurements.
Finally, the three-view canonical correlation analysis jointly with

the diagnosis information was performed. Moreover, the brain-
network-based structural constraint was introduced into the
model to prompt the detected biomarkers more interpretable.
Using 191 SCZ and 191 HC data, BN-MSCCA obtained
more sparse canonical weight patterns and higher canonical
correlation coefficients (CCCs). The subsequent classification

and PANSS correlation experiments also proved the capability of
detected biomarkers for depicting the abnormalities of SCZ.

The rest of this article is organized as follows. Section
Materials and Methods describes the materials used in this
study and the proposed BN-MSCCA method following with its
optimization algorithm. The specific experimental settings and
the results are introduced in Section Experiments and Results. In
Section Discussion, a comprehensive discussion about the results
is presented. Section Conclusion concludes this article.

MATERIALS AND METHODS

The proposed method comprised of four main steps, such as
(1) data preprocessing and feature extraction, (2) identifying
associations using the proposed BN-MSCCA method, (3)
detecting SCZ-related biomarkers, and (4) subsequent analysis
based on the detected biomarkers. Figure 1 presents the
overall flowchart of the proposed BN-MSCCA method. In
this section, we mainly introduce the data preprocessing,
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TABLE 1 | Participant demographics.

Characteristic SCZ (N = 191) HC (N = 191) p-value*

Age (mean ± sd, year) 23.16 ± 8.45 23.28 ± 4.69 0.863

Gender (M/F) 91/100 89/102 0.838

*t-test is used for comparison of age, and χ2 test is used for gender comparison.

feature extraction, the proposed BN-MSCCA method, and its
optimization algorithm.

Data Preprocessing and Feature Extraction
Data Acquisition
The dataset used in this study was collected at the First
Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
For the patients with SCZ, the psychiatric diagnoses were
based on the USA manual of the Diagnostic and Statistical
Manual of Mental Disorders IV (DSM-IV) (Guze, 1995). The
exclusion criteria included the presence of traumatic brain
injury, severe endocrine diseases, anemia, hematological diseases
or other mental diseases, a history of excessive drinking or
abuse of psychotropic substances, or the incompletion of MRI
examination. Finally, 191 patients with SCZ were enrolled in this
work, in which 108 patients have the complete PANSS score.

A total of 191 healthy subjects with matched age and gender
were recruited as the HC group. The subjects were able to
complete the MR scanning and had no history of organic brain
disease or other chronic diseases and mental disorders, nor
a family history of psychosis. The demographic information
of the studied subjects is summarized in Table 1. The study
procedures have passed the approval of the ethics committee of
the First Affiliated Hospital of Zhengzhou University. All the
participants and their legal guardian have consented and signed
the informed consent.

The T1-weighted MRI and rs-fMRI were acquired on a GE
Discovery 750 3T MRI scanner with an 8-channel head coil. The
T1 images were acquired with repetition time (TR) = 8.2ms,
echo time (TE) = 3.2ms, field of view (FOV) = 256 mm × 256
mm, slice number = 188, slice thickness = 1mm, flip angle =

12◦, and 256 × 256 matrix. The rs-fMRIs were collected using
the echo planar imaging sequence (EPI) with TR = 2,000ms, TE
= 30ms, FOV = 220 mm × 220 mm, slice number = 32, slice
thickness = 4mm, inter-slice gap = 0.5mm, flip angle = 90◦,
and 64 × 64 matrix, and the scanning time for each subject is
about 6min (resulting in 188 volumes). During the scanning, the
participants were required to think about nothing in particular
and keep their head still and eyes closed at the same time.

Data Pre-processing
CAT12 (http://www.neuro.uni-jena.de/cat), an extension
toolkit of SPM12, provides a platform for both surface-based
morphometry and VBM analysis. Using the T1-weighted
MRI data, we followed the standard pipeline of the CAT12
to conduct the VBM analysis. The main steps included the
correction of bias-field inhomogeneities, segmentation of brain
tissues (gray matter, white matter and cerebrospinal fluid),

spatial normalization into the Montreal Neurological Institute
(MNI) space, resampling to 1.5 mm × 1.5 mm × 1.5 mm, and
non-linear modulation. Finally, the obtained GM maps were
smoothed using an 8mm full width at half maximum (FWHM)
Gaussian kernel.

The rs-fMRI data were preprocessed using the DPABI (http://
www.rfmri.org/dpabi) software. The processing steps are as
follows. First, the initial 10 volumes were removed, followed
by the slice-timing correction. Then, the time series of each
subject were realigned by a linear transformation. After the
realignment, the mean functional image was co-registered to
the corresponding T1 image, which had been segmented into
gray matter, white matter, and cerebrospinal fluid using a unified
segment method (http://www.fil.ion.ucl.ac.uk/spm). Finally, the
functional images were resampled to 3 mm × 3 mm × 3 mm
and then normalized into the MNI space using the DARTEL
(Ashburner, 2007). To alleviate the influence of noise, the images
were smoothed by a 4-mm FWHM Gaussian kernel and band-
pass filtered within 0.01–0.1HZ. The nuisance regression was
used to regress out the irrelevant variable interferences, including
the Friston-24 parameters, white matter signal, cerebrospinal
fluid signal, and global signal.

Feature Extraction
Based on the GM images, the ROI-based features were extracted
for the subsequent analysis. First, the normalized and modulated
GM maps were resampled to 3 mm × 3 mm × 3 mm using the
trilinear method. Then, the whole GM map was divided into 116
ROIs according to the AAL atlas. Finally, we averaged the values
within each ROI to obtain the ROI-based measurements.

As for the rs-fMRI, we computed the d-fALFF through the
TDA module in DPABI. First, we divided all BOLD time series
of the whole brain into multiple overlapping windows. In this
study, we empirically set the width of each sliding window as 60 s
and the interval between time windows as 10 s. Second, the fALFF
was calculated based on the time series in a specific time window.
The time series was converted to the frequency domain using the
fast Fourier transform, and the square root of power spectrum
was computed. Then, the sum of amplitude in 0.01–0.1HZ was
divided by the entire frequency range to obtain the fALFF map.
Subsequently, the mean and standard deviation of each voxel in
the fALFF maps of all sliding windows were computed. Finally,
we obtained the coefficient of variation (CV) of these fALFF
maps, which was usually regarded as d-fALFF and it was acquired
by dividing the standard deviation by the mean in details. The
raw d-fALFF of each voxel was further divided by the mean value
of the whole brain to reduce the global effects of variability across
the subjects (Wang et al., 2020). Similar to T1 image, the d-fALFF
of each ROI was also obtained based on the AAL template. To
remove the possible effects of age and gender, we pre-adjusted all
these imaging features using the regression.

Methods
In this article, we define a matrix using the uppercase letter and
a vector using the lowercase letter. Specifically, let X ∈ R

n×p and
Y ∈ R

n×q represent the data matrices, where X corresponds to
the d-fALFF-based features with n samples and p variables, and
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Y corresponds to the GM volume-based features with n samples
and q variables.

SCCA
For identifying the complex multivariate associations, SCCA
was proposed with the aim to find the linear transformation
of X and Y and obtain the maximal correlation between these
two transformed variables. Meanwhile, the penalty terms were
introduced to make the variables more sparse and avoid the
overfitting (Witten et al., 2009). The SCCA could be formulated
as follows.

max
u,v

uTXTYv (1)

s.t. uTXTXu ≤ 1, vTYTYv ≤ 1, ‖u‖1 ≤ a1, ‖v‖1 ≤ a2

where u and v are the canonical weights for the corresponding
data modalities (X and Y), showing the contribution of
each feature in this canonical correlation. In this model, the
uTXTXu ≤ 1 and vTYTYv ≤ 1 are used to describe the
covariance structure of the data. The ‖u‖1 ≤ a1 and ‖v‖1 ≤

a2 are constraints for controlling the sparsity and selecting the
most relevant features from the d-fALFF-based and GM volume-
based features, respectively. However, the SCCA can only capture
associations between two distinct types of data, which cannot
meet the demand for identifying multi-view associations among
more than two different types of modalities. On the other hand,
the SCCA is an unsupervised method indicating that it cannot
make full use of the diagnosis information.

Multi-View SCCA
Recently, to uncover the complex associations among multiple
types of data, a variant of SCCA, called multi-view SCCA
(MSCCA), was proposed to include more than two types of
data (Witten and Tibshirani, 2009; Hao et al., 2017). Using
the MSCCA, some studies were performed to investigate
relationships among three modalities (Du et al., 2021). The
MSCCA could be formulated as follows:

max
u,v,w

uTXTYv+ vTYTZw+ wTZTXu (2)

s.t. uTXTXu ≤ 1, vTYTYv ≤ 1, wTZTZw ≤ 1,

‖u‖1 ≤ a1, ‖v‖1 ≤ a2, ‖w‖1 ≤ a3

Note that Z ∈ R
n×r is the third type of data, where r is its feature

dimension and w is the canonical weight of Z. As a special case of
MSCCA, the task-oriented MSCCA was used to incorporate the
supervision information as the third type of data, which is from
the target task (Hao et al., 2017; Won et al., 2020). According
to these studies, the MSCCA has demonstrated its promising
capacity for uncovering the disease-related biomarkers. However,
the data structure information was overlooked in these methods
as the L1-norm penalty can only enforce the individual sparsity
without considering the internal structure of the data.

BN-MSCCA
In this work, we focused on association identification among the
GM volume-based and d-fALFF-based features. The diagnosis
information was also introduced into the model, so that we
can find the brain functional and structural biomarkers that
are relevant to the disease. Considering the brain structure
information as prior information, we further embedded the
brain-network-based structural constraint of both imaging
features into theMSCCAmodel, which is formulated as Equation
(3). We call it the BN-MSCCA.

max
u,v,w

uTXTYv+ vTYTZw+ wTZTXu (3)

s.t. uTXTXu ≤ 1, vTYTYv ≤ 1,wTZTZw ≤ 1,

‖u‖1 + ‖u‖bn ≤ a1, ‖v‖1 + ‖v‖bn ≤ a2,

‖w‖1 ≤ a3

Here ‖u‖bn and ‖v‖bn are the brain-network-based structural
penalties, introducing the brain-network-based prior
information. Their definitions were given in Equations (4)
and (5), respectively.

‖u‖bn =

K
∑

k=1

√

√

√

√

∑

j∈k

u2j =

K
∑

k=1

∥

∥

∥
Uk

∥

∥

∥

2
(4)

‖v‖bn =

K
∑

k=1

√

√

√

√

∑

j∈k

v2j =

K
∑

k=1

∥

∥

∥
Vk

∥

∥

∥

2
(5)

Specifically, the ROI-based GM volume and d-fALFF features
were extracted based on the same AAL template (116 ROIs).
We manually grouped these 116 regions into K = 15 brain
networks (including both left and right hemispheres) according
to a previous study (Han et al., 2019). In our work, the cerebellum
was divided into two networks (each in one hemisphere), and the
whole vermis was treated as a single brain network. Thus, the
objective function for BN-MSCCA was rewritten as follows.

min
u,v,w

−uTXTYv− vTYTZw− wTZTXu+
1

2
‖Xu‖22

+
1

2
‖Yv‖22 +

1

2
‖Zw‖22 + λ1α ‖u‖bn + λ1 (1− α) ‖u‖1

+λ2β ‖v‖bn + λ2 (1− β) ‖v‖1 + λ3 ‖w‖1 (6)

In this function, λ1, λ2, λ3, α, and β are the non-negative
tuning parameters. λ1, λ2, and λ3 are used to balance between
the penalty and the loss function, whereas α and β are used
to balance the brain-network-based and individual ROI-based
feature selections for the functional and structural modalities
respectively.
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Algorithm 1 | BN-MSCCA.

Require:

d-fALFF-based features X = [x1, . . . , xn]
T
∈ R

n×p,

GM volume-based features Y = [y1, . . . , yn]
T
∈ R

n×q, p = q = 116

in our study,

diagnosis information Z = [z1, . . . , zn]
T
∈ R

n×r , r = 1

Ensure: canonical weights u, v, w

Initialization: u ∈ R
p×1, v ∈ R

q×1, w ∈ R
r×1

While not converged do

Calculate the diagonal matrix D1 and D1;

Update u =

(

XTX + λ1αD1 + λ1 (1− α)D1

)−1
XT (Yv+ Zw);

Scale u so that ‖Xu‖22 = 1;

Calculate the diagonal matrix D2 and D2;

Update v =
(

YTY + λ2βD2 + λ2 (1− β)D2

)−1
YT (Xu+ Zw);

Scale v so that ‖Yv‖22 = 1;

Calculate the diagonal matrix D3;

Update w =
(

ZTZ + λ3D3

)−1
ZT (Xu+ Yv);

Scale w so that ‖Zw‖22 = 1;

End while

Optimization Algorithm
In this study, we used the alternative iteration algorithm to
optimize the BN-MSCCA. To minimize the equation, we take
the derivate of the objective function with respect to u, v, and
w separately and make them approach zero. Then, we arrive at

u =

(

XTX + λ1αD1 + λ1 (1− α)D1

)−1
XT(Yv+ Zw) (7)

D1 is a diagonal matrix with the j-th diagonal entry being 1
|uj|

.D1

is a block diagonal matrix of the k-th diagonal block as 1
2‖Uk‖2

.

Using the same procedure, we can obtain the solution of v and w:

v =
(

YTY + λ2βD2 + λ2 (1− β)D2

)−1
YT(Xu+ Zw) (8)

w =

(

ZTZ + λ3D3

)−1
ZT(Xu+ Yv) (9)

During each iterative procedure, we first fix v and w to solve u,
then fix u and w to solve v, and finally fix u and v to solve w. The
process stops until meeting the stopping criterion. Algorithm 1

shows the pseudocode of the BN-MSCCA algorithm.

EXPERIMENTS AND RESULTS

Experimental Setup
To evaluate the effectiveness of the proposed BN-MSCCA, we
chose three closely related methods as the benchmarks. They
are SCCA (Witten et al., 2009), MSCCA (Hao et al., 2017),
and SCCAR (Du et al., 2019). These three methods could find
the associations between GM volume-based and d-fALFF-based
features. However, the SCCA ignores the diagnosis information.
SCCAR combines the linear regression with SCCA to guide
the correlation analysis using the diagnosis information, and
the discriminative biomarkers could be detected. Both MSCCA

and BN-MSCCA extend the SCCA into three-view condition,
so that it could introduce the diagnosis information into
model for guiding the association identification; meanwhile, BN-
MSCCA further incorporated the brain-network-based structure
information as prior.

There are five parameters λ1, λ2, λ3, α, and β in the
proposed BN-MSCCA method. The α and β were fixed as 0.5
to balance the brain-network-based and individual ROI-based
feature selections for the functional and structural modalities
respectively. Such settings simplified the parameter tuning
procedure and reduced the time consumption without affecting
the performance significantly. The optimal values of λ1, λ2, and
λ3 were found by the grid searching strategy during a nested 5-
fold cross-validation. ForMSCCA and BN-MSCCA, we tuned λ1,
λ2, and λ3 in the range of [0.01, 0.1, 1, 10, 100]. As for SCCA
and SCCAR, due to the limitation of sparse parameter values
by applying the soft-thresholding function (Parkhomenko et al.,
2009), we tuned the parameters in the range of [0.01: 0.05: 0.5],
according to the strategy in the study of Du et al. (2019). For
these four methods, the corresponding optimal parameters were
determined by minimizing the differences between training and
validating canonical correlation coefficients (CCCs). For each
comparison method, the overall procedure was repeated for five
times to ensure the robustness of results; meanwhile, the time
consumption was acceptable. In addition, the data partition and
termination condition were same for all comparison methods.
The experiments of all comparison methods were executed on
the same software platform.

Multivariate Association Identification
In the field of medical image analysis, the detected imaging
biomarkers are of great importance. In this work, we compared
the amplitude of the canonical weight, which indicated the
importance of the biomarkers. After the cross-validation, the
canonical weights were averaged for each ROI. The heatmaps
of canonical weights U of d-fALFF and V of GM volume for
different methods are shown in Figures 2, 3, respectively. In
these figures, each row stands for the canonical weights for
one method, in which the deeper color indicates the features
corresponding to the canonical weights more important. From
Figures 2, 3, it can be seen that the SCCA and SCCAR
methods identified too many signals, which may misguide
the subsequent investigation. MSCCA and our proposed
method detected more sparse canonical weight patterns than
SCCA and SCCAR methods. Moreover, our method obtained
more interesting canonical weight patterns compared with the
MSCCA. As shown in Figure 2, the largest weight consistently
located in left putamen for the MSCCA and BN-MSCCA
methods. What is more, the d-fALFF in left hippocampus is
also detected by our proposed BN-MSCCA method. Both of
them belong to the subcortical network in left hemisphere.
As for the canonical weight V in Figure 3, the greatest
signal in right pallidum is found by the MSCCA and BN-
MSCCA methods. Besides this, the right middle cingulate
and right hippocampus are also identified by our proposed
method. These three ROIs are within the right subcortical
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FIGURE 2 | The mean canonical weight U of d-fALFF during five times 5-fold cross-validation.

FIGURE 3 | The mean canonical weight V of gray matter volume during five times 5-fold cross-validation.
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TABLE 2 | Comparison of CCCs on different methods (mean ± standard

deviation).

Method CCC (training) CCC (testing)

SCCA 0.25 ± 0.02 0.09 ± 0.06

SCCAR 0.26 ± 0.03 0.08 ± 0.06

MSCCA 0.22 ± 0.08 0.11 ± 0.07

BN-MSCCA 0.16 ± 0.03 0.14 ± 0.08

network. These results demonstrated that the proposed BN-
MSCCA is very promising in finding the biologically meaningful
imaging biomarkers by introducing the brain-network-based
structural information.

We also compared BN-MSCCA with other methods in
terms of CCCs between d-fALFF-based and GM volume-
based features. For each method, the CCCs across the cross-
validation were averaged for the training and testing data
respectively, and their corresponding mean and standard
deviation were calculated. From Table 2, we can see that
our method achieved the best CCC result in the testing
data, which is also more consistent with the CCC result in
the training data. This indicates that our method may have
better generalization performance compared with the other
competing methods.

Classification Setting and Results
To investigate the effectiveness of the identified biomarkers for
assisting the diagnosis of SCZ, we performed the classification
task based on different feature selection methods. In this study,
we compared our BN-MSCCA method with five competing
methods, including the method with the original features
(without feature selection), the method with two-sample t-test
feature selection, SCCA, SCCAR, and MSCCA. The details of
these methods are summarized as follows.

Original features: In this method, the GM volume-based and
d-fALFF-based features were directly concatenated as a feature
vector to fit the classifier. Two-sample t-test feature selection:
Similar to the method with original features, we first obtained
the feature vector for each subject. Then, two-sample t-test
was used to find the most discriminative features. A threshold
of p-value was set for feature selection. The selected features
were used for further model training and testing. The optimal
threshold for selecting the features was determined from a
set of 10 predefined p-values of [0.01–0.1] with the step of
0.01. SCCA: In this method, the GM volume-based and d-
fALFF-based features were analyzed using SCCA. According to
the absolute value of canonical weights, the top ten features
were selected in each imaging modality for the classification.
SCCAR: Similarly, the GM volume-based and d-fALFF-based
features were analyzed using SCCAR. According to the absolute
value of canonical weights, the top ten features were selected
for the classification. MSCCA: The GM volume-based and
d-fALFF-based features were selected using MSCCA method.
Different with SCCA, the diagnosis information was treated as

the third type of data to guide the feature selection. We used
the features with top ten absolute value of canonical weights in
each imaging modality for the classification. BN-MSCCA: The
GM volume-based and d-fALFF-based features were selected
using BN-MSCCA, with the guidance of diagnosis information
for feature selection. And the features corresponding to the top
ten absolute value of canonical weights were used to conduct
the classifier.

In our study, all the methods used the linear kernel-based
support vector machine (SVM) with the same default setting
to perform the classification. The 10-fold cross-validation was
repeated ten times to ensure the robustness of the model. Finally,
the classification performance was evaluated by computing
metrics such as the accuracy (ACC), specificity (SPE), sensitivity
(SEN), and area under the curve (AUC). As shown in Table 3,
we can see that the two-sample t-test based method, SCCAR,
MSCCA, and BN-MSCCA outperform the method with original
features. However, the classification performance of SCCAR
and MSCCA methods are slightly worse than that of two-
sample t-test based method, as the latter one is directly
designed for finding the discriminative features between two
classes. Apparently, our BN-MSCCA method achieves the best
performance, and also has the increments of 5.33%, 5.01%,
5.63%, and 6.77% on ACC, SEN, SPE, and AUC respectively,
compared with the two-sample t-test based method. Overall,
we can conclude from these results that the GM volume-based
and d-fALFF-based features are effective for the classification of
SCZ. After using the feature selection, the performance could be
improved. In addition, our proposed BN-MSCCA particularly
takes both the diagnosis information and the brain-network-
based structural information into consideration, achieving the
best classification performance.

Correlation With PANSS Score
The correlation analysis between the detected biomarkers and the
PANSS score has been regarded as a proof for the effectiveness of
the feature selection in this SCZ research. We used the adjusted
features to conduct the correlation with the PANSS scores based
on 108 patients with SCZ, whose PANSS scores were available
and complete for this analysis. Figure 4 shows that significant
correlations exist between the PANSS scores and two of the
detected biomarkers respectively. It is obvious that the d-fALFF
of left cerebellum shows a significant negative correlation with
the positive symptom score of PANSS (R = −0.2, p = 0.035).
Additionally, the gray matter volume of left heschl is negatively
correlated with positive symptom score of PANSS at a significant
level (R=−0.21, p= 0.026).

DISCUSSION

In this section, we summarized the main idea and contributions
of this study and further discussed the top 10 identified
brain regions of d-fALFF and gray matter volume respectively,
following with the investigation about their pairwise correlations.
Then, both the classification with the identified biomarkers
and the correlation between PANSS score and the detected
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TABLE 3 | Comparison of classification performance on different feature selection methods (mean ± standard deviation).

Method ACC (%) SEN (%) SPE (%) AUC (%)

Original features 62.98 ± 7.96 63.28 ± 12.04 62.62 ± 10.80 67.90 ± 8.30

Two-sample t-test 65.17 ± 7.24 64.72 ± 10.70 65.63 ± 10.34 69.77 ± 7.36

SCCA 62.04 ± 8.02 62.39 ± 11.30 61.73 ± 12.13 66.20 ± 8.27

SCCAR 64.92 ± 7.33 63.89 ± 11.05 65.95 ± 9.69 68.63 ± 8.03

MSCCA 64.47 ± 7.42 64.32 ± 11.82 64.57 ± 10.69 70.54 ± 8.20

BN-MSCCA 70.50 ± 7.43 69.73 ± 10.31 71.26 ± 10.76 76.54 ± 7.46

Bold values indicate the best results.

FIGURE 4 | Two detected biomarkers (adjusted values) which have significant correlations with the positive symptom score of PANSS.

TABLE 4 | Top 10 ROIs of d-fALFF identified by our method.

ROI Related brain network Weight

PUT.L SN.L 0.72464

HIP.L SN.L 0.354

PHG.L SN.L 0.04529

CEREcrus1.L CN.L 0.014084

PAL.L SN.L 0.012935

CERE10.L CN.L 0.012429

CERE3.L CN.L 0.0094317

VERS12 VN 0.0060698

ORBinf.L ATN.L 0.0053477

OLF.L SN.L 0.0050575

R, right; L, left; PUT, putamen; HIP, hippocampus; PHG, parahippocampal gyrus;

CEREcrus, cerebellum_crus; PAL, pallidum; CERE10, cerebellum_10; CERE3,

cerebellum_3; VERS12, vermis_1_2; ORBinf, inferior orbitofrontal cortex; OLF,

olfactory; SN, subcortical network; CN, cerebellum network; VN, vermis network; ATN,

attention network.

biomarkers are analyzed. Finally, the limitations of our method
and the potential future study directions are presented.

Main Idea and Contributions
In this study, a brain-network-constrained multi-view SCCA was
proposed. It has been demonstrated that the proposed method
has significantly improved performance for the identification of
brain structural and functional biomarkers, compared with the
other competing methods. The main idea and key contributions
of this study are summarized as follows: (1) a novel model was
proposed to jointly analyze the d-fALFF, gray matter volume,
and diagnosis information for the identification of SCZ-related
biomarkers; (2) the brain-network-based structural constraint
was introduced into the model, so that the detected biomarkers
were interpretable; (3) the experiments were performed on
191 patients with SCZ and 191 matched healthy controls, and
the proposed method achieved superior performance for the
biomarker detection, compared with the other methods; (4) the
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FIGURE 5 | The top 10 ROIs of d-fALFF selected by BN-MSCCA (different colors denote different brain networks).

effectiveness of detected biomarkers was further verified on two
subsequent analysis tasks, including the SCZ-HC classification
and the PANSS correlation analysis. The results proved the
potential usage of these biomarkers for the clinical applications.
Overall, the proposed method would be a powerful alternative
method for multimodal analysis. In addition, the findings in
this study could be supplementaries and verifications to the
exploration of biomarkers for SCZ.

Top-10 Selected Brain Regions of d-FALFF
We calculated themean values of the canonical weights across the
five times 5-fold cross-validation to select the top brain regions
of d-fALFF. The top ten ROIs are shown in Table 4. We also
visualized these top-10 selected regions in Figure 5. According
to Table 4 and Figure 5, we observed that multiple detected

regions belong to a certain brain network. For example, five
detected regions are within the left subcortical network, including
the putamen, hippocampus, parahippocampal, pallidum, and

olfactory gyrus in left hemisphere. Previous studies about
SCZ have demonstrated the increased functional connectivities

between certain subcortical regions and cortical ROIs, showing
the important role of the subcortical network in SCZ (Zhang

et al., 2012). And the cerebellum might be another key brain
region involved in the cognitive function. A study has suggested
the functional abnormalities of the cerebellum in a cerebellar-

subcortical-cortical loop in the brains of SCZ patients, and it

TABLE 5 | Top 10 ROIs of gray matter volume identified by our method.

ROI Related brain network Weight

HIP.R SN.R 0.46577

MCG.R SN.R 0.39399

PAL.R SN.R 0.30736

ROL.L AUN.L 0.060209

MCG.L SN.L 0.052595

ORBinf.L ATN.L 0.047987

CERE3.L CN.L 0.045651

INS.L AUN.L 0.038043

PHG.R SN.R 0.035748

HES.L AUN.L 0.032479

R, right; L, left; HIP, hippocampus; MCG, middle cingulate gyrus; PAL, pallidum; ROL,

rolandic operculum; ORBinf, inferior orbitofrontal cortex; CERE3, cerebellum_3; INS,

insular; PHG, parahippocampal gyrus; HES, heschl; SN, subcortical network; AUN,

auditory network; ATN, attention network; CN, cerebellum network.

may be the underlying mechanism of SCZ (Zhuo et al., 2018).
A total of three ROIs which located in left cerebellum were
found in our study, which might be support for this previous
finding. The above findings have verified the effectiveness of
BN-MSCCA for identifying the interpretable biomarkers of
SCZ. With the help of the L1-norm, the proposed method
also detected some individual-level SCZ-related ROIs, such
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FIGURE 6 | The top 10 ROIs of gray matter volume selected by BN-MSCCA (different colors denote different brain networks).

as vermis and the left inferior frontal gyrus, which is also
consistent with the findings in the previous studies (Jeong et al.,
2009,Collin, 2011).

Top-10 Selected Brain Regions of Gray
Matter Volume
The top-10 selected brain regions of gray matter volume based on
their respective average canonical weights are shown in Table 5.
Accordingly, four ROIs in right subcortical network and three
ROIs in left auditory network are detected as the most important
biomarkers, proving the effectiveness of introducing the brain-
network-based structural constraint. The left middle cingulate
gyrus, left inferior frontal gyrus, and left cerebellum were also
detected in the GM volume-based features, which is prompted
by the L1-norm. Figure 6 shows the visualization of these top
10 selected regions. As can be seen in Table 5 and Figure 6, we
obtained consistent results with the previous studies about these
most important ROIs for SCZ (Witthaus et al., 2009; Kubera et al.,
2014; Krause and Pogarell, 2017; He et al., 2019).

Refined Correlation Analysis
After identifying SCZ-related biomarkers for each single
modality, we further conducted a refined correlation analysis
between d-fALFF-based and GM volume-based biomarkers
to explain their relationships. We here present the pairwise
correlation results between top 10 ROIs of d-fALFF and top 10
ROIs of gray matter volume. Figure 7 shows the heatmap of

this correlation analysis of each pair, where circles labeled with
“∗” indicate that the correlations between the d-fALFF and gray
matter volume of their corresponding regions are significant (p
< 0.05). As shown in Figure 7, when looking horizontally, the
d-fALFF of left putamen is significantly correlated with most
(seven out of ten) of the GM volume-based biomarkers. The d-
fALFF in left hippocampus is positively correlated with three
brain regions of gray matter volume (left rolandic operculum,
right parahippocampal, and left heschl gyrus) at significant
level. When looking vertically, six regions of gray matter
volume (bilateral middle cingulate, right pallidum, left rolandic
operculum, right parahippocampal, and left heschl gyrus) are
significantly correlated with at least two regions of d-fALFF.
These pairwise correlation results show that our proposed
method could identify the brain regions where the brain function
and structure are significantly associated with each other, and
these significant correlations might reflect the abnormal brain
regions of SCZ.

SCZ-HC Classification and PANSS
Correlation
By now, we have selected the SCZ-related ROIs of d-fALFF
and gray matter volume respectively based on our method.
To investigate the effectiveness of their potential clinical
applications, we performed two subsequent analyses, including
the SCZ-HC classification and the correlation with PANSS score.
According to the classification results, these two types of features
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FIGURE 7 | The pairwise correlations between top 10 ROIs of d-fALFF (column) and top 10 ROIs of gray matter volume (row). Here * denotes p < 0.05.

could classify the SCZ from the HC with a reasonable accuracy.
By performing the feature selection, we also found that the most
discriminative features were retained and the redundant features
were discarded, which helped achieve significant improvements
in the classification performance. Multiple studies have proved
SCZ is a disorder with brain network abnormalities (Rubinov
and Bullmore, 2013; Li et al., 2019). The detection of such brain
network abnormalities could help capture the different patterns
between SCZ and HC. Thus, various studies performed the SCZ-
HC classification using the brain network-based measurements,
which depicted the abnormal alterations of brain functional
or structural network (Han et al., 2019; Lei et al., 2020b).
Our method can take both the diagnosis information and the
brain-network-based prior information into consideration for
the selection of the most discriminative features. The biomarkers
detected by the proposed method have strong discriminative
power, and the classification performance outperforms all
comparison methods.

We also conducted the PANSS correlation analysis based on
the detected biomarkers. Two significant negative correlations

were found in our study, which included the correlation between
the d-fALFF of cerebellum and the positive symptom score of
PANSS, and the correlation between the gray matter volume
of left heschl and the positive symptom score of PANSS.
Interestingly, previous studies have proved the same negative
correlation trend between the positive symptom score of PANSS
score and these two brain regions in SCZ (Narayanaswamy et al.,
2015; Du et al., 2017), demonstrating the reasonability of our
findings. Here only two detected biomarkers showed significant
correlation with the positive symptom score of PANSS. The
potential reason may be that the diagnosis information was used
as the target to guide the canonical correlation in this study,
which might lead to the detected biomarkers not specific to the
PANSS score.

Limitations and Future Directions
Based on the above experimental results and discussion, we could
conclude that our proposed BN-MSCCA has a great capability
for the biomarker identification. However, there are also some
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limitations in this study. First, only two imaging modalities
were included in this work. In fact, SCZ is a complex and
multi-factor induced disease. The other types of data, such
as gene and gut microbiome, were also investigated for SCZ
(Guan et al., 2021; Li et al., 2021). These different modalities
could provide useful and complementary information, which
would be considered in our future work. Second, due to the
proposed method is based on the MSCCA, it requires that
the identified d-fALFF-based biomarkers should be correlated
with GM volume-based biomarkers and diagnosis information
simultaneously. Thus the modality-specific correlation and its
corresponding biomarkers would be overlooked, which might
be also valuable for the understanding of the disease. Third,
recent studies have proved that SCZ is a heterogeneous disease
comprising various symptoms, which could be divided into
multiple subtypes (Chand et al., 2020). However, only two
diagnostic classes were considered in this work, ignoring the
different patterns of abnormalities among different subtypes of
patients. Our future direction includes exploring the biomarkers
which are oriented to a specific subtype of SCZ, aiming for the
accurate diagnosis and treatment of this disease. Fourth, we only
used a specific AAL atlas, which may limit the capability of
biomarker detection. Future studies should also consider other
widely used atlases for feature extraction, such as Power 264 atlas
(Power et al., 2011), exploring the influences of different atlases
on BN-MSCCA.

CONCLUSION

In this study, we developed a brain-network-constrained multi-
view SCCA method namely BN-MSCCA, which could uncover
the brain structural and functional associations and identify
the potential biomarkers for SCZ. The proposed BN-MSCCA
could leverage the inter-modality associations to better find
the disease-related multimodal neuroimaging biomarkers, which
is achieved by performing the multi-view sparse canonical
correlation analysis among brain structural features, functional
features, and diagnosis information simultaneously. Moreover,
the identified biomarkers were encouraged to locate in multiple
predefined brain networks. Thus more biologically interpretable
results could be achieved, which was guaranteed by incorporating
the brain-network-based structural constraint.

The proposedmethodwas validated on a SCZ dataset, with the
aim of mining the relationship between d-fALFF-based features
and GM volume-based features and further finding the SCZ-
related biomarkers. Compared with the SCCA, SCCAR, and
MSCCA method, the BN-MSCCA could not only identify more
sparse and meaningful canonical weight patterns, but also obtain

the larger testing CCC. Furthermore, the detected biomarkers
were evaluated by the subsequent classification and correlation
analysis tasks for validating the effectiveness of their clinical
applications. Experimental results showed that our method could
identify more discriminative biomarkers, achieving the superior
classification performance to other competing strategies for
feature selection. Moreover, the significant negative correlations
were found between the positive symptom score of PANSS and

two of the identified biomarkers respectively, demonstrating the
promising application of these biomarkers in discovering the
severity of SCZ symptoms.
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Accumulating evidence indicates the presence of structural and functional abnormalities
of the posterior cingulate cortex (PCC) in patients with major depressive disorder
(MDD) with suicidal ideation (SI). Nevertheless, the subregional-level dynamic functional
connectivity (dFC) of the PCC has not been investigated in MDD with SI. We therefore
sought to investigate the presence of aberrant dFC variability in PCC subregions in
MDD patients with SI. We analyzed resting-state functional magnetic resonance imaging
(fMRI) data from 31 unmedicated MDD patients with SI (SI group), 56 unmedicated MDD
patients without SI (NSI group), and 48 matched healthy control (HC) subjects. The
sliding-window method was applied to characterize the whole-brain dFC of each PCC
subregion [the ventral PCC (vPCC) and dorsal PCC (dPCC)]. In addition, we evaluated
associations between clinical variables and the aberrant dFC variability of those brain
regions showing significant between-group differences. Compared with HCS, the SI
and the NSI groups exhibited higher dFC variability between the left dPCC and left
fusiform gyrus and between the right vPCC and left inferior frontal gyrus (IFG). The SI
group showed higher dFC variability between the left vPCC and left IFG than the NSI
group. Furthermore, the dFC variability between the left vPCC and left IFG was positively
correlated with Scale for Suicidal Ideation (SSI) score in patients with MDD (i.e., the SI
and NSI groups). Our results indicate that aberrant dFC variability between the vPCC
and IFG might provide a neural-network explanation for SI and may provide a potential
target for future therapeutic interventions in MDD patients with SI.

Keywords: major depressive disorder, posterior cingulate cortex, magnetic resonance imaging, suicidal ideation,
dynamic functional connectivity (dFC)
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INTRODUCTION

Suicide presents a heavy burden on public health, resulting
in nearly one million deaths each year worldwide (Turecki
and Brent, 2016). Important contributors to suicide include
familial, social, cultural, genetic vulnerability, psychological, and
psychiatric factors (Turecki and Brent, 2016). It is reported that
up to 80% of people who die by suicide have mental disorders
(Ilgen et al., 2010) and more than half of suicide attempters
suffered from depression at the time of the attempt (Chahine
et al., 2020). Suicidal ideation (SI), described as the consideration
or plan to commit suicide (Klonsky and May, 2014), is a
significant risk factor for suicide among patients with major
depressive disorder (MDD) (Klonsky et al., 2016). Therefore,
efforts to achieve a better comprehension of the neurobiological
mechanisms underlying SI in patients with MDD are crucial to
make progress in the treatment and prevention of suicide.

The posterior cingulate cortex (PCC), which forms a key
part of the default mode network (Buckner et al., 2008),
demonstrates different brain activity and increased functional
connectivity during the resting state than during cognitive
tasks (Greicius et al., 2003; Pfefferbaum et al., 2011). The PCC
forms a key hub for self-referential processing (Johnson et al.,
2009), cognitive control (Vanyukov et al., 2015), and emotion
processing and underlies multidomain cognitive functions by
linking to distal cortical areas, such as the prefrontal cortex
(Leech et al., 2011). In the last decade, much neuroimaging
literature has reported structural and functional changes in
the PCC of MDD patients with SI (Schmaal et al., 2020).
A structural study found increased PCC volume in MDD
patients with SI when compared with MDD patients with
suicide attempts (SAs) (Hong et al., 2021). Functional magnetic
resonance imaging (fMRI) has been widely used to investigate
aberrant brain activity in the PCC in MDD patients with SI,
and brain dysfunction has been related to cognitive control
(Minzenberg et al., 2015) and self-referential (Quevedo et al.,
2016) observations in these patients. For instance, Marchand
et al. (2013) reported aberrant functional connectivity between
the PCC and dorsolateral prefrontal cortex and inferior frontal
gyrus (IFG) during motor control tasks in MDD patients with SI.
Additionally, this aberrant functional connectivity was positively
correlated with SI intensity (Marchand et al., 2013). Analogous to
this, decreased resting-state functional connectivity between the
PCC and habenula has also been detected in MDD patients with
SI (Ambrosi et al., 2019).

The abovementioned studies were conducted from the
viewpoint that the PCC is a single homogeneous structure;
however, accumulating evidence indicates that the PCC is not
homogeneous, either structurally or functionally (Leech et al.,
2011). On the basis of the cytoarchitectonic characteristics of
the PCC, Fan et al. (2016) recommended that the PCC should
be divided into two major subregions, the ventral PCC (vPCC)
and dorsal PCC (dPCC) nuclei. The dPCC is reported to play an
important role in the orientation of the self and body in visual
space (Vogt et al., 2006), whereas the vPCC is at an intermediate
stage of information processing between visual recognition
and emotion-related substrate and plays a key role in self-
reflective function (Johnson et al., 2002; Uddin et al., 2005). PCC

subregion-based network abnormalities or volume differences
have been reported in schizophrenia (Ebisch et al., 2018),
epilepsies (Parvizi et al., 2021), autism spectrum disorders (Lau
et al., 2019), obsessive-compulsive disorder (Matsumoto et al.,
2010), Alzheimer’s disease (Xu et al., 2009), and chronic pain
(Yoshino et al., 2018). Nevertheless, PCC dysfunction at the
subregional level has been little studied in MDD patients with
SI. Therefore, we still know little about whether PCC subregion-
based dysfunction is disrupted in MDD patients with SI.

Using the approach of static functional connectivity, aberrant
brain activity in PCC subregions was reported in MDD patients
with SI (Chase et al., 2021, 2017). Of note, resting-state
functional connectivity has traditionally relied on static analytic
approaches that assume stable patterns of connectivity across the
entire resting scan period. However, human brain connectivity
shows time-varying profiles across periods of unconstrained
rest (Allen et al., 2014; Zalesky et al., 2014). Analysis of
the variability of functional connectivity (dFC) may therefore
enable a more sophisticated demonstration of the spontaneous
fluctuating nature of neural signals (Vidaurre et al., 2021) and
their association with cognition and behavioral performance
(Kucyi et al., 2017). Thus, investigation from the perspective of
temporal dynamics is needed to explore aberrant dFC in MDD
patients with SI. Recently, dFC is increasingly being suggested
as a prognostic indicator of disease (Preti et al., 2017; Lurie
et al., 2020), such as Parkinson’s disease (Kim J. et al., 2017),
Huntington’s disease (Espinoza et al., 2019), and depression (Liao
et al., 2018). Moreover, a prior study reported that patients with
depression with SI revealed increased dynamic connectomics
relative to patients with depression without SI and healthy
controls (HCs) (Liao et al., 2018). Thus, a better understanding
of dFC variability may offer nuanced insights into brain activity
in MDD patients with SI, further improving our understanding
of the psychopathological mechanisms underlying MDD with SI.
Up to now, no study has investigated dFC variability differences
in PCC subregions in MDD patients with SI.

In the current study, we analyzed resting-state fMRI data
from 31 unmedicated MDD patients with SI, 56 unmedicated
MDD patients without SI, and 48 matched healthy subjects. The
sliding-window method was applied to characterize the whole-
brain dFC of each PCC subregion. We generated the following
hypotheses: (i) relative to HCs and MDD patients without SI,
MDD patients with SI would exhibit anomalous dFC patterns
in PCC subregions; and (ii) the aberrant dFC variability would
show associations with clinical variables. With these hypotheses,
we sought to identify aberrant dFC variability in PCC subregions
in MDD patients with SI. In addition, we evaluated correlations
between clinical variables and the aberrant dFC variability of
brain regions showing significant between-group differences.

MATERIALS AND METHODS

Participants
In total, 89 unmedicated patients with MDD between the
ages of 18 and 65 years were drawn from the Molecular
Biomarkers of Antidepressant Response study (clinical trial
number: ChiCTR1800017626) cohort, the data of which were
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published in our previous study (Lan et al., 2021). For all patients,
the entrance criteria were (i) meeting the criteria for MDD
according to the Diagnostic and Statistical Manual of Mental
Disorders, 5th edition; (ii) available imaging data and data on
symptoms; (iii) a score ≥ 17 on the 17-item Hamilton Depression
Rating Scale (HAMD-17) (Helmreich et al., 2012); and (iv)
medication-free for at least 4 weeks before inclusion in the trial.

The exclusion criteria included a history of other major
psychiatric disorders meeting the criteria of axis I of the
Diagnostic and Statistical Manual of Mental Disorders, 5th
edition, current serious and unstable somatic disease or a
history of neurologic or other chronic medical conditions, a
history of substance abuse or dependence, breast-feeding, and
pregnancy. Recruitment was carried out at the Affiliated Brain
Hospital of Guangzhou Medical University, Guangzhou, China.
Ethics approval was obtained from the ethics committees of the
Affiliated Brain Hospital of Guangzhou Medical University. In
addition, healthy volunteers (n = 48) recruited from the local
community served as HCs. Informed consent was signed by all
participants before participating in this study.

Assessment of Suicidal Ideation and
Depression
The severity of depressive symptoms was assessed using the
17-item HAMD. All raters were masters- or doctoral-level
psychiatrists who had undergone training on performing the
HAMD-17 before the study to maintain inter-rater reliability, and
they all showed an intra-class correlation coefficient > 0.9. The
Scale for Suicidal Ideation (SSI) was used to assess the presence
and intensity of SI according to 19 items (Beck et al., 1979).
Each item has three alternative statements graded from 0 to 2,
with the total score ranging from 0 to 38 points, with higher
scores indicating greater SI. In this study, the patients with MDD
were classified into an SI group (SSI > 3) and a no SI (NSI)
group (SSI ≤ 3). This threshold has been described as a clinically
significant cutoff for SI in previous studies (Holi et al., 2005;
Ballard et al., 2015; Grunebaum et al., 2018).

Magnetic Resonance Imaging Data
Acquisition
Participants underwent resting-state fMRI on a 3T Philips
Achieva MRI Scanner (Philips, Netherlands). Whole-brain
fMRI was acquired using a gradient-echo echo planar imaging
sequence with the following parameters: repetition time
(TR) = 2,000 ms, echo time = 30 ms, flip angle = 90◦,
slice thickness = 4 mm, number of slices = 33, and field of
view = 220 mm × 220 mm. A total of 240 functional volumes
were acquired in 8 min. During the MRI scans, all participants
were instructed to keep their eyes closed but stay awake.

Resting-State Functional Magnetic
Resonance Imaging Preprocessing
Functional image preprocessing was performed using the Data
Processing Assistant for Resting-State fMRI (DPARSF1)

1http://rfmri.org/DPARSF

implemented in MATLAB (version R2013b). For each
participant, the first 10 functional volumes were removed
to ensure signal stabilization, then the remaining 230 volumes
were corrected for timing differences between slices. The
motion-corrected functional images were conducted using a six
motion parameter (rigid body). Notably, the mean framewise
displacement (FD) based on the Jenkinson model (FD-
Jenkinson) was computed by averaging the FD from every time
point for each participant (Jenkinson et al., 2002). Participants
with more than 3 mm of head movement or 3◦ of rotation were
excluded. The images were then spatially normalized to the
standard Montreal Neurological Institute echo planar imaging
template and resampled to 3 mm × 3 mm × 3 mm. After
spatial normalization, the images were smoothed using a 4-mm
full-width at half-maximum Gaussian kernel. Subsequently, we
treated the six parameters from the rigid-body translation, the
white matter signal, and the CSF signal as nuisance covariates to
be regressed out. Finally, the images were filtered with a temporal
band-pass filter of 0.01–0.08 Hz.

Dynamic Functional Connectivity
Analysis
Bilateral dPCC and bilateral vPCC regions of interest (ROIs)
were derived from the Brainnetome Atlas (2Figure 1). dFC
analysis was conducted using a sliding-window approach in the
DPABI software3. The sliding-window method was performed to
explore time-varying changes in functional connectivity during
resting-state fMRI scans. The resting-state blood oxygenation
level-dependent (BOLD) time series was segmented into 50 TR
windows with a size of 100 s. A sliding window with a step
size of 1 TR was applied, resulting in 181 consecutive windows
across the entire scan. We chose a window length of 50 TR
(100 s) with a step size of 1 TR (2 s) because it has been
shown to be able to maintain a balance between capturing rapidly
shifting dynamic relationships and obtaining steady correlations
(Leonardi and Van De Ville, 2015; Shunkai et al., 2021). For
each window, correlation z maps were calculated between the
truncated time course of the ROI and all other voxels using
Fisher’s z−transformed Pearson correlation coefficient, resulting
in 181 sliding-window correlation z maps across the entire scan
for each participant. Consequently, the dFC was estimated by
calculating the standard deviation (SD) of the z maps across the
181 windows, and z-standardization was then applied to the dFC
maps. Finally, all dFC maps were spatially smoothed using a
Gaussian kernel of 4 mm × 4 mm × 4 mm full-width at half
maximum. To further validate the reliability of the results, we also
analyzed other window sizes of 30 and 70 TR (Liao et al., 2014).

Statistical Analyses
Demographic and clinical data were tested for normality using
the Shapiro–Wilk or Kolmogorov–Smirnov normality test. If
demographic and clinical data passed the normality test, a
Student’s t-test or one-way ANOVA was used, whereas a
Mann–Whitney test was performed if data were not normally

2http://www.brainnetome.org/
3http://rfmri.org/dpabi

Frontiers in Neuroscience | www.frontiersin.org 3 July 2022 | Volume 16 | Article 937145148

http://rfmri.org/DPARSF
http://www.brainnetome.org/
http://rfmri.org/dpabi
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-937145 July 13, 2022 Time: 19:36 # 4

Li et al. Dynamic Functional Connectivity in MDD

FIGURE 1 | Four seeds of the posterior cingulate cortex in the bilateral hemisphere. L, left; R, right; dPCC, dorsal posterior cingulate cortex; vPCC, ventral posterior
cingulate cortex.

distributed. Chi-square tests or Fisher exact tests were used
for categorical variables. Statistical calculations were carried out
using Statistical Package for the Social Sciences 24.0 (SPSS Inc.,
NY, United States).

To identify the within-group dFC patterns of each PCC
subregion, one-sample t-tests were conducted in the SI, NSI,
and HC groups (p < 0.05, uncorrected). For each PCC
subregion, analysis of covariance (ANCOVA) was used to test
for between−group differences in dFC maps within the union
mask of one-sample t-tests of the SI, NSI, and HC groups.
Age, gender, and mean FD were treated as covariates. All
statistical maps were corrected for multiple comparisons using
Gaussian random field (GRF) correction (cluster significance
p < 0.05/4 = 0.0125, voxel significance p < 0.005) performed
using DPABI software. The mean z-scores of brain regions
showing significant differences among the three groups were
extracted for further post hoc analyses (p < 0.05, Bonferroni
correction test). Finally, correlations between clinical variables
(SSI scores and HAMD without suicide) and the aberrant
dFC variability measurements were performed in the patients
with MDD using Spearman correlation (p < 0.05, Bonferroni-
corrected test).

RESULTS

Demographic and Clinical
Characteristics
There were no significant differences in gender, mean FD, and age
between the SI, NSI, and HC groups (all p > 0.05). In addition,
no significant differences were found in education, duration of
illness, and age of onset between the SI and NSI groups (all
p > 0.05). However, we found significant differences in the scores
of HAMD-17, HAMD-17 without suicide, and SSI between the
SI and NSI groups (all p < 0.05). The detailed demographic and
clinical features of the participants are presented in Table 1.

Dynamic Functional Connectivity
Variability in the Posterior Cingulate
Cortex Subregions
The dFC variability of each PCC subregion, as derived from
the one-sample t-tests, is shown separately for the three groups

in Figure 2 (p < 0.05, uncorrected). Significant differences in
dFC variability between the three groups were observed between
the left dPCC and left fusiform gyrus, left vPCC and left IFG,
and right vPCC and left IFG (Table 2 and Figure 3A; GRF
corrected, cluster significance p < 0.0125, voxel significance
p < 0.005). However, no significant differences were found in the
whole-brain dFC variability of the right dPCC between the three
groups. The results of the post hoc analysis on the brain regions
showing significant differences are shown in Figure 3B (p < 0.05,
Bonferroni-corrected test). Compared with the HCs, the SI and
NSI groups showed higher dFC variability between the left dPCC
and left fusiform gyrus and between the right vPCC and left IFG.
The SI group exhibited higher dFC variability between the left
vPCC and left IFG than the NSI group.

Correlation Analyses
The dFC variability between the left vPCC and left IFG
was positively correlated with the SSI scores of all patients
with MDD (i.e., the SI group and NSI group combined;
r = 0.254, Bonferroni-corrected p = 0.048; Figure 4). However, no
correlation was observed between dFC and SSI scores within the
SI group (r = 0.102, p = 0.572) or within the NSI group (r = 0.020,
p = 0.886). There were no significant correlations between
HAMD without suicide scores and dFC variability between the
left vPCC and left IFG in patients with MDD. Furthermore, no
significant correlations were found between other significantly
different dFC variability subregions and the scores of SSI and
HAMD without suicide in patients with MDD.

Validation Analysis
The results of the 30-TR sliding-window length analysis validated
the main results (50 TRs; see Supplementary Figure 1 and
Supplementary Table 1). However, no significant differences
were observed with the 70-TR sliding-window length.

DISCUSSION

To our knowledge, this study is the first to report aberrant
dFC variability of PCC subregions in MDD patients with SI.
Aberrant dFC variability between the left vPCC and left IFG was
observed in MDD patients with SI in comparison with those with
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TABLE 1 | Demographic and clinical features of subjects.

Variables SI NSI HCs T/Z/F/χ2 P-value

Numbers of subjects 33 56 48 –

Gender (male/female) 10/23 27/29 23/25 3.216 0.200a

Age (years) 24.52 ± 5.82 26.04 ± 5.13 27.54 ± 5.95 2.900 0.059b

Education (years) 13.09 ± 2.98 13.14 ± 3.00 NA −0.079 0.937c

Duration of illness (month) 30.17 ± 24.06 23.26 ± 21.89 NA 1.618 0.106d

Age of onset 22.03 ± 6.26 24.21 ± 5.09 NA −1.793 0.076c

HAMD-17 26.21 ± 5.32 22.21 ± 4.23 NA 3.685 0.001c**

HAMD-17 without suicide 23.61 ± 5.37 21.23 ± 4.21 NA 2.177 0.034c*

SSI 15.88 ± 5.69 0.95 ± 1.05 NA 7.971 <0.001d***

Mean framewise displacement 0.05 ± 0.02 0.05 ± 0.02 0.06 ± 0.02 0.419 0.658b

SI, major depressive patients with suicidal ideation; NSI, major depressive patients without suicidal ideation; HCs, healthy controls; HAMD-17, the 17-item Hamilton
Depression Rating Scale; SSI, scale for suicide ideation.
aChi-square test.
bOne-way ANOVA.
cTwo-sample t-test.
dMann–Whitney U test.
*p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 2 | The dFC variability patterns of the bilateral dorsal posterior cingulate cortex (dPCC) and the bilateral ventral posterior cingulate cortex (vPCC) within NSI,
SI and HCs groups (p < 0.05, uncorrected). The color bar represents a dynamic functional connection. dFC, dynamic functional connectivity; dPCC, dorsal posterior
cingulate cortex; vPCC, ventral posterior cingulate cortex; SI, major depressive patients with suicidal ideation; NSI, major depressive patients without suicidal
ideation; HCs, healthy controls.

MDD patients without SI, while dFC variability abnormalities
between the left dPCC and left fusiform gyrus, right vPCC,
and left IFG were detected in MDD patients with SI relative
to HCs. Furthermore, we confirmed the relationship between
dFC abnormalities of the vPCC subregion and SI severity in
patients with MDD. Overall, our findings reveal alterations in
dFC variability between brain regions and demonstrate that SI
is linked to aberrant dFC variability in patients with MDD. Our
data advance the understanding of the potential neurobiological

mechanisms of MDD with SI and point to options for clinical
diagnostic biomarkers in the future.

Aberrant Dynamic Functional
Connectivity Variability in dPCC
The PCC has previously been subdivided into dorsal and ventral
regions on the basis of post-mortem cytology measurements
(Vogt et al., 2006). Each of the PCC subregions has distinct
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TABLE 2 | The areas of significantly different dFC among the SI, NSI, and HCs group (voxel p < 0.005, cluster p < 0.0125, GRF corrected).

Subregion Significant regions MNI coordinates Voxel size (mm3) F-value

X Y Z

Left dPCC Left Fusiform −27 −57 −12 486 15.345

Left vPCC Left inferior frontal gyrus −45 9 24 513 11.637

Right vPCC Left inferior frontal gyrus −42 9 21 459 11.122

SI, major depressive patients with suicidal ideation; NSI, major depressive patients without suicidal ideation; HCs, healthy controls; dPCC, dorsal posterior cingulate
cortex; vPCC, ventral posterior cingulate cortex.

cytoarchitecture, patterns of structural connectivity, and
resting-state functional connectivity (Vogt and Laureys, 2005;
Margulies et al., 2009). It was suggested that the dPCC plays
an important role in visual space and executive control of
behavior (Vogt et al., 2006). In the current study, relative to
HCs, both MDD patients with and without SI showed higher
dFC variability between the left dPCC and left fusiform gyrus.
However, no significant difference was observed between MDD
patients with SI and MDD patients without SI. Our findings
reflect the pathological effect of MDD on altered dFC patterns.
The dPCC and fusiform gyrus are consistently reported to be
involved in many aspects of cognition, such as word recognition,
processing of color information (Weiner and Grill-Spector,
2010), and attentional focus (Leech and Sharp, 2014). Since
these brain regions play a major role in cognition, the disrupted
dFC variability between the left dPCC and left fusiform gyrus
might contribute to negative self-perceptions and confer negative
emotions (Schniering and Rapee, 2004) in depressed individuals.
Our results highlight the idea that the dFC of key brain
regions (such as the dPCC and left fusiform gyrus) in patients
with MDD might show abnormalities and thus constitute a
neurophysiological basis for the decreased ability to react flexibly
to external or internal cognitive demands (Hamilton et al., 2011;
Hutchison et al., 2013). Scholars have consistently proposed an
analogous viewpoint. For example, Luo et al. (2021) detected
decreased temporal variability of the dynamic index of bilateral
PCC in patients with MDD in comparison with HCs, while other
recent studies have reported dynamic alterations in brain activity
in the fusiform gyrus in patients with MDD (Hou et al., 2018;
Xue et al., 2020; Zhang et al., 2021). Therefore, it is plausible to
consider that the observed anomalous dFC between the dPCC
and fusiform gyrus is a neurobiological feature of patients with
MDD. In conclusion, our findings could further enhance our
understanding of how dFC properties support normal brain
functions in patients with MDD.

Aberrant Dynamic Functional
Connectivity Variability in vPCC
In the current study, when compared with HCs, MDD patients
with SI showed higher dFC variability between the left dPCC
and the left IFG and between the right vPCC and left
IFG. Moreover, relative to MDD patients without SI, MDD
patients with SI showed higher dFC between the left vPCC
and left IFG. Our data suggest that disrupted dFC between
the vPCC and IFG may provide clues to the representation
of neurocognition in MDD patients with SI. The vPCC is

at an intermediate stage of information processing between
visual recognition and emotion-related substrate (Johnson et al.,
2002; Uddin et al., 2005). Interestingly, deficits in interference
processing and learning/memory constitute an enduring defect
in information processing in MDD patients with SI (Keilp et al.,
2014). A previous study indicated that MDD patients with
suicidal thoughts and behaviors showed structural and functional
abnormalities in the PCC (Dombrovski et al., 2013; Peng et al.,
2014).

Our findings could also be interpreted from a broader
perspective. It is well known that the vPCC plays a key role
in the default mode network (responsible for the processing of
rumination) (Leech et al., 2011), while the IFG is the center hub of
the frontoparietal network (responsible for handling behavioral
inhibition) (Corbetta and Shulman, 2002). Thus, aberrant dFC
between the vPCC and IFG in MDD patients with SI could
constitute a high-risk circumstance in which the SI is converted
to lethal action via impaired top-down behavior inhibition and
impulsive decision-making (Schmaal et al., 2020). Hence, we
conclude that the observed abnormal dFC variability in the
MDD patients reveals impaired connectivity between the default
mode network and frontoparietal network, which might relate
to the potential neurobiological mechanisms of SI. In line with
our findings, experimental evidence demonstrates altered dFC
between the default mode network and frontoparietal network
in patients with MDD (Demirtas et al., 2016; Yao et al., 2019).
Furthermore, Liao et al. (2018) quantified dynamic connectomic
variability using topological properties in patients with MDD
with SI and found that the topological properties of dynamic
connectomics could not only distinguish MDD patients with and
without SI but could also predict the degree of SI. Congruent
with previous findings, we suggest that the aberrant dFC might
be regarded as a neurobiological feature for use in predictive and
diagnostic models in patients with MDD with SI.

Correlations Between Aberrant Dynamic
Functional Connectivity Variability and
Clinical Variables
We confirmed an association between dFC variability in the
left vPCC subregion and SI severity in patients with MDD.
However, we observed no correlation between dFC variability
in the left vPCC subregion and the scores of HAMD without
suicide in the patients with MDD. With regard to our finding
that dFC variability is associated with SI severity but not with
MDD severity (measured by the HAMD score without the SI
part), we speculate that this may reflect the substantial impact
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FIGURE 3 | ANCOVA analyses of dFC values among three groups when taking the subregion of posterior cingulate cortex as a seed. (A) Brain regions with
significant differences among three groups, voxel p < 0.005, cluster p < 0.0125, GRF corrected. (B) Post hoc analyses of dFC values among three groups.
Bonferroni corrected. dFC, dynamic functional connectivity; vPCC, ventral posterior cingulate cortex; dPCC, dorsal posterior cingulate cortex; IFG, inferior frontal
gyrus; SI, major depressive patients with suicidal ideation; NSI, major depressive patients without suicidal ideation; HCs, heathy controls. n.s., not significant.
**p < 0.01, ***p < 0.001.

of SI on brain dysfunction, rather than the pathological effects
of the disease. Our findings support the idea that SI severity
is related to anomalous dFC variability in patients with MDD.

Schmaal et al. (2020) reviewed neuroimaging investigations
across different mental illnesses for brain function, structural, and
molecular alterations showing associations with suicidal thoughts
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FIGURE 4 | Correlation analysis between dFC and SSI score in depressed
subjects (i.e., SI group and NSI group). The dFC between the between left
vPCC and left IFG was positively associated with SSI score (r = 0.254,
Bonferroni-corrected p = 0.048). SI, major depressive patients with suicidal
ideation; NSI, major depressive patients without suicidal ideation; dFC,
dynamic functional connectivity; vPCC, ventral posterior cingulate cortex; IFG,
inferior frontal gyrus; SSI, scale for suicide ideation.

and behaviors. They found that brain dysfunctions particularly
converged in brain areas processing visual recognition and
emotion regulation, such as the vPCC. Analogously, Auerbach
et al. (2021) reported that altered vPCC volume was associated
with SI and non-suicidal self-injury. Overall, we expect that the
anomalous dFC variability in the left vPCC subregion underlies
an emotional imbalance in individuals with SI. Collectively, the
anomalous dFC variability in the left vPCC subregion may reflect
SI severity, rather than illness per se.

There are several limitations to the current study. First,
our study is a cross-sectional analysis, which restricts causal
interpretations and longitudinal tracking of SI. Second, we
compared the dFC variability differences between HCs and MDD
patients with or without SI but did not include MDD patients
with SA, who frequently show PCC dysfunction. A previous
study reported that young depressed patients with SA exhibited
lower PCC gray matter volume relative to HCs (Peng et al.,
2014). In addition, decreased activity was found in the PCC
during cognitive control in patients with mood disorders with
SA (Minzenberg et al., 2015), and patients with MDD with SA
exhibited an increased PCC response relative to HCs during the
viewing of knives (Kim Y. J. et al., 2017). Furthermore, MDD
patients with SA exhibited increased functional connectivity
between the dPCC and left IFG when compared with MDD
patients but without SA (Kim Y. J. et al., 2017). Thus, it would
be meaningful to conduct a direct comparison of the dFC of
PCC subregions between patients with SI and those with SA.
Third, we acknowledge that our findings must be interpreted
with caution because of the relatively small sample size. Finally,
because of limitations resulting from the small sample size, we
could not confirm the relationship between the dFC of the left

vPCC subregion and SI severity in MDD patients with and
without SI. The robustness of the left vPCC-left IFG contribution
to SI needs further validation. Future studies with greater sample
sizes that include longitudinal designs and across different mental
illnesses are needed to corroborate our findings.

CONCLUSION

Using dFC variability analyses of PCC subregions, we found that
MDD patients with SI showed higher dFC between the left PCC
and left IFG than those with MDD without SI. Moreover, the
dFC variability positively correlated with SSI scores within all
patients with MDD. The observed dFC abnormalities between
vPCC and IFG might provide a neural-network explanation for
SI and may provide new clues on the potential neurophysiological
mechanisms of MDD with SI.
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Schizophrenia is a severe mental disorder affecting around 0.5–1% of the

global population. A few studies have shown the functional disconnection

in the default-mode network (DMN) of schizophrenia patients. However, the

findings remain discrepant. In the current study, we compared the intrinsic

network organization of DMN of 57 first-diagnosis drug-naïve schizophrenia

patients with 50 healthy controls (HCs) using a homogeneity network

(NH) and explored the relationships of DMN with clinical characteristics

of schizophrenia patients. Receiver operating characteristic (ROC) curves

analysis and support vector machine (SVM) analysis were applied to calculate

the accuracy of distinguishing schizophrenia patients from HCs. Our results

showed that the NH values of patients were significantly higher in the left

superior medial frontal gyrus (SMFG) and right cerebellum Crus I/Crus II

and significantly lower in the right inferior temporal gyrus (ITG) and bilateral

posterior cingulate cortex (PCC) compared to those of HCs. Additionally,

negative correlations were shown between aberrant NH values in the right

cerebellum Crus I/Crus II and general psychopathology scores, between NH

values in the left SMFG and negative symptom scores, and between the NH

values in the right ITG and speed of processing. Also, patients’ age and the

NH values in the right cerebellum Crus I/Crus II and the right ITG were the

predictors of performance in the social cognition test. ROC curves analysis

and SVM analysis showed that a combination of NH values in the left SMFG,

right ITG, and right cerebellum Crus I/Crus II could distinguish schizophrenia

patients from HCs with high accuracy. The results emphasized the vital role of

DMN in the neuropathological mechanisms underlying schizophrenia.

KEYWORDS

schizophrenia, cognitive dysfunction, default-mode network, resting-state
functional magnetic resonance imaging, network homogeneity
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Introduction

Schizophrenia is a chronic psychiatric syndrome impacting
around 0.5–1% of the world’s population (Smigielski et al.,
2020), and disturbances in sensory perception, emotion
processing, thought, and social function as well as cognitive
deficits, are hallmarks of schizophrenia (Jauhar et al., 2022).
With complex heterogeneity in clinical manifestations and
the low cure and high recurrence rates, considerable medical
resources are devoted to the treatment and rehabilitation of
schizophrenia patients, causing an increased economic burden
on society and patients’ families. Therefore, it is important to
further elucidate the potential pathological mechanisms of this
disorder to develop effective therapeutic interventions.

Implicated by the disconnection hypothesis, one of the main
pathological characteristics of schizophrenia is the disruption of
neural synchronization and information integration. Evidence
shows that network disruptions might be a biomarker of
schizophrenia (van den Heuvel and Fornito, 2014). Among
the empirically studied resting-state networks of schizophrenia,
it is noteworthy that a set of functionally connected brain
regions, comprising the medial prefrontal cortex (MPFC),
bilateral posterior cingulate cortex/precuneus (PCC/PCu),
lateral posterior cortices, the cerebellum Crus I and Crus II,
and parts of the parietal and temporal lobe cortex and the
hippocampus, of the default-mode network (DMN), play a key
role in the development of schizophrenia (Guo et al., 2014a,c).
Several regions of DMN are active at rest and inhibited when
the brain is working (Raichle et al., 2001). Previous studies
demonstrated that hyperactivity within the DMN played a role
in cognitive dysfunction and psychotic symptoms of patients
with schizophrenia (Buckner et al., 2008) and that the changes
in the DMN were associated with diagnosis (de Filippis et al.,
2019) and treatment response of antipsychotic drugs (Mehta
et al., 2021; Yang et al., 2021). Healthy individuals at high
risk of schizophrenia also showed abnormal levels of functional
connectivity (FC) within this network (Shim et al., 2010; Dodell-
Feder et al., 2014; Anteraper et al., 2020), which highlighted
the importance of the DMN as a potential biomarker of the
development of schizophrenia and implied that genetic factors
may play a role in the pathogenesis of diseases by interacting
with the strength of FC in this network.

Although neuroimaging studies have shown dysfunctions
in the network of schizophrenia, the findings are inconsistent.
The FC of some regions of the DMN decreased (Camchong
et al., 2011) and increased in some other regions (Jamea et al.,
2021). Moreover, the relationships between specific regions of
the DMN and clinical symptoms also are different (Camchong
et al., 2011; Jamea et al., 2021; Roig-Herrero et al., 2022). The
heterogeneity of the results may be related to the heterogeneity
of factors such as patient characteristics and analytical methods,
including those used to analyze the DMN and assess clinical
symptoms. Previous studies have widely used the seed-based

region of interest (ROI) and independent component analysis
(ICA) methodologies to analyze the DMN. While the ROI
analysis may be biased to the selection of the predetermined
seeds, ICA may fail to identify a direct relationship between
extracted components and the previously defined hypothesis.
Here, network homogeneity (NH), a voxel-wise measure,
provides an unbiased survey of a particular network and
identifies abnormal brain regions in network coherence (Uddin
et al., 2008). This approach is extensively used to explore the
significance of networks in the pathogenesis of psychoses (Guo
et al., 2014b; Wei et al., 2016; Zhang et al., 2020), and the findings
proved that NH has great potential to explore the pathological
mechanisms underlying diseases, including schizophrenia.

In the current study, the FC analysis of the DMN was
performed using the NH method in first-diagnosis, drug-
naïve schizophrenia patients. We hypothesized that altered
NH values within the DMN would be identified in patients
in contrast to healthy subjects. Multiple stepwise regression
analysis was performed to identify how distinctly altered
NH values in these brain regions correlated to cognition
dimensions and clinical symptoms differently, to provide
a reference for developing better therapeutic interventions
targeting specific brain regions to alleviate symptom severity
of schizophrenia patients. Additionally, we applied the receiver
operating characteristic (ROC) curves analysis and a machine
learning approach [support vector machine (SVM)] to identify
the brain regions that will help differentiate patients from the
healthy subjects.

Materials and methods

Subjects

A total of 57 subjects with schizophrenia treated at the
Affiliated Brain Hospital of Nanjing Medical University were
recruited between April 2018 and December 2019. The inclusion
criteria were as follows: (1) patients who were clinically
diagnosed with schizophrenia by two chief psychiatrists based
on the diagnostic criteria of schizophrenia of the International
Classification of Diseases, 10th Revision; (2) first-diagnosis
antipsychotic drug-naïve patients; (3) patients who were 16–
60 years old, Han nationals, and right-handed; (4) who had
a Wechsler intelligence score ≥ 70; and (5) a Positive and
Negative Syndrome Scale (PANSS) (Kay et al., 1987) total
scores ≥ 60. The exclusion criteria were as follows: (1) patients
who had other mental disorders or any severe physical diseases
or substance abuse ever; (2) severe organic brain disease or
brain trauma; (3) contraindications or non-cooperation during
magnetic resonance imaging (MRI).

Age- and sex-matched healthy controls (HCs) were
recruited via an advertisement during the same period.
The inclusion criteria were as follows: (1) no history of
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psychotic symptoms assessed using the MINI-International
Neuropsychiatric Interview; (2) no familial history of psychiatric
illness in two lines and three generations. The exclusion criteria
were similar to that of the patient group.

The psychopathology and cognitive performance were
measured using the PANSS for patients and MATRICS
Consensus Cognitive Battery (Nuechterlein et al., 2008) for all
participants. All participants signed written informed consent.
The current study was approved by the local Medical Ethics
Committee of the Affiliated Brain Hospital of Nanjing Medical
University (2017-KY017).

Magnetic resonance imaging
acquisition

Images were obtained using a 3T Siemens MRI scanner.
Participants were informed to close their eyes, stay awake,
and remain motionless. The MRI scanning parameters were as
follows: slice thickness = 4 mm; repetition time = 2,000 ms;
field of view = 220 × 220 mm; gap = 0.6 mm; flip angle = 90◦;
matrix size = 64 × 64; time point = 240; echo time = 30 ms;
and layers = 33.

Data preprocessing

Data Processing Assistant for Resting-State Functional MRI
(DPARSF) in MATLAB (Mathworks) was applied to preprocess
the MRI data. If the maximal translation of the participants
was over 3 mm and maximal rotation was over 3◦ in x, y,
or z axes after slice timing and head motion correction, the
images were excluded. Next, the motion-corrected functional
volumes were spatially normalized to the Montreal Neurological
Institute (MNI) space and resampled to 3 mm× 3 mm× 3 mm.
After normalization, the transformed images were temporally
bandpass filtered (0.01–0.08 Hz) and were linearly detrended.
Several spurious covariates, including the signal from the 24
head motion parameters acquired by rigid body correction,
ventricular seed-based ROI, and the white matter-centered brain
region, were removed. The global signal was preserved for
further analyses (Hahamy et al., 2014).

Default-mode network identification

The group ICA, in the GIFT toolbox1, was performed for all
subjects (Liu C. H. et al., 2012; Guo et al., 2013). The three main
steps followed in the analysis were as follows: (1) reduction of
data; (2) the minimum description length criterion was set to

1 http://mialab.mrn.org/software/

20 to estimate separation of independent components; (3) back
reconstruction. Finally, the generated DMN mask was applied
in the following NH analyses (Raichle, 2015). More details
are provided in the Supplementary Methods [Default-Mode
Network (DMN) identification].

Network homogeneity analysis

We carried out NH analysis using MATLAB software
(Mathworks). For a given voxel with others in a particular
whole-brain network, the time series similarity is defined
as homogeneity, and the NH value of a voxel is its mean
correlation coefficient. The average correlation coefficients were
transformed in z-values using Fisher r-to-z transformation
(Buckner et al., 2009) to generate the NH maps after being
smoothened using a Gaussian kernel of 8-mm full-width at half-
maximum for further analyses. Age, sex, and education were
regarded as confounders. The two-sample t-test via voxel-wise
cross-subject statistics was applied to calculate the differences
in NH in the DMN between patients and HCs. A corrected
p-value < 0.05 indicated significance for multiple comparisons
using the Gaussian Random Field approach (voxel significance,
p < 0.001; cluster significance, p < 0.05).

Statistical analyses

For the demographic and clinical data, the continuous
variables were compared using a two-sample independent t-test
between patients and HCs. A Chi-square test was employed
to identify gender differences. Significance was indicated by a
two-tailed p-value < 0.05.

Region of interest were brain regions with aberrant NH
values. Mean NH values in these ROIs were calculated for
stepwise multiple regression analysis between the NH values
in abnormal brain regions and the PANSS scores as well as
the cognitive dimension scores, with the aberrant NH values
in the DMN regions, age, education, and illness duration as
independent variables, and the scores of the subdimensions
of PANSS as well as all subsets of cognitive performance as
dependent variables in the patient group. The statistical analyses
were performed using the Statistical Package for Social Science
version 25.0 (SPSS 25.0).

Classification analysis using receiver
operating characteristic and support
vector machine

Receiver operating characteristic analyses were conducted
using SPSS 25.0. The values of Sensitivity + Specificity – 1
were defined as the Youden index to identify the cut-off points.
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TABLE 1 Characteristics of the subjects.

Patients
(n = 57)

HCs (n = 50) t/x2 P

Age (years) 31.63± 11.43 28.38± 6.87 1.81 0.074b

Education (years) 12.86± 3.42 15.64± 2.26 − 5.02 0.000b

Gender
(male/female)

20/37 23/27 1.32 0.251a

Speed of processing 34.70± 12.12 44.28± 9.10 − 4.57 0.000b

Attention/Vigilance 38.19± 13.61 45.56± 9.69 − 3.25 0.002b

Verbal Learning 37.67± 13.66 44.52± 7.51 − 3.27 0.002b

Visual Learning 42.05± 11.61 47.16± 9.50 − 2.50 0.014b

Reasoning and
Problem Solving

38.84± 10.78 45.44± 9.91 − 3.28 0.001b

Working Memory 32.51± 12.32 34.28± 11.22 − 0.77 0.441b

Social Cognition 33.14± 8.15 35.32± 6.49 − 1.52 0.132b

Overall Composite 28.47± 13.45 37.60± 9.19 − 4.14 0.000b

Duration (years) 2.41± 2.70

PANSS

Positive symptoms 26.39± 4.85

Negative symptoms 20.68± 6.89

General
psychopathology

44.79± 7.41

Total 91.84± 14.16

HCs, healthy controls; PANSS, Positive and Negative Syndrome Scale.
aThe p-value was obtained by x2 test.
bThe p-value was gained by two-sample independent t-tests.

Patients could be correctly distinguished from the HCs with
optimal sensitivity and specificity using the cut-off points.

To further improve the accuracy of classification, we
employed SVM, a method of supervised learning, to test the
feasibility and effectiveness of abnormal NH values in the brain
regions to differentiate patients from HCs using the LIBSVM
software package2. The LIBSVM software used the leave-one-
out method. The grid search method was applied to search the
optimal parameters of the classification model with aberrant
NH values in the DMN regions to discriminating patients from
HCs. More details are provided in the Supplementary Methods
[Classification analysis using support vector machine (SVM)].

Results

Demographic distribution and clinical
information of subjects

There was no difference between the patients with
schizophrenia and HCs in age (t-test, t = 1.808, df = 105,
p = 0.074) and gender distribution (Chi-square test, χ2 = 1.320,
df = 1, p = 0.251). However, the years of education of HCs

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

were higher than those of patients (t-test, t = –5.018, df = 105,
p = 0.000).

No difference was found in social cognition as well as
working memory between patients with schizophrenia and HCs.
However, other parameters of cognitive performance were poor
in patients with schizophrenia compared to HCs (Table 1).

Default-mode network mask

The DMN mask was identified with a template mask using
the group ICA method for all participants. The DMN consisted
of the ventral anterior cingulate cortex (ACC), bilateral MPFC,
PCC/PCu, lateral temporal cortex, cerebellum Crus I/Crus II,
and lateral, medial, and inferior parietal lobes (Figure 1). The
obtained DMN mask was used for NH analyses.

Differences in network homogeneity
between patients with schizophrenia
and healthy controls

As shown in Figure 2 and Table 2, significant differences
in NH values on the DMN mask were identified using
the voxel-wise cross-subject comparisons. Compared to HCs,
schizophrenia patients showed higher NH values in the left
superior medial frontal gyrus (SMFG) and right cerebellum
Crus I/Crus II and lower NH values in the right inferior
temporal gyrus (ITG) and bilateral PCC.

Correlations between clinical
characteristics and network
homogeneity values in the brain
regions in patients

We calculated the average NH values in the left SMFG,
right cerebellum Crus I/Crus II, bilateral PCC, and right
ITG. As shown in Figure 3 and Table 3, significant negative
correlations were observed between aberrant NH values in the
right cerebellum Crus I/Crus II and general psychopathology
scores (standardized β coefficients = –0.316, p = 0017),
between NH values in the left SMFG and negative symptom
scores (standardized β coefficients = –0.284, p = 0.032),
and between NH values in the right ITG and speed of
processing (standardized β coefficients = –0.270, p = 0.042).
Moreover, the patients’ age and the NH values in the right
cerebellum Crus I/Crus II and the right ITG were the
predictors of performance in social cognition test (standardized
β coefficients = 0.368, p = 0.002; standardized β coefficients = –
0.319, p = 0.008; standardized β coefficients = –0.286, p = 0.017,
respectively). Additionally, age explained 12.3% of the variance
in attention/vigilance (standardized β coefficients = 0.373,
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FIGURE 1

The DMN mask was determined using ICA. R and L denote the right and left sides, respectively; DMN, default-mode network; ICA, independent
component analysis.

p = 0.004), and education accounted for 10.4% of the variance in
reasoning and problem solving (standardized β coefficients = –
0.346, p = 0.008).

Classification results to differentiate
patients from healthy controls

As shown in Table 4 and Figure 4, the brain areas with
abnormal NH values could distinguish patients from HCs
with a relatively high degree of accuracy using ROC analysis.
Our results indicated that the NH values in bilateral PCC
with an accuracy of 72.30%, a sensitivity of 66.70%, and a
specificity of 74.00% discriminated schizophrenia patients from
healthy subjects. Moreover, the optimal accuracy, specificity,
and sensitivity of the NH values in the left SMFG were
70.70, 50.00, and 86.00%, respectively and those in the right
ITG were 73.80, 76.00, and 59.60%, respectively. The right

cerebellum Crus I/Crus II NH values showed an accuracy of
71.20%, a specificity of 80.00%, and a sensitivity of 56.10% in
differentiating schizophrenia patients from healthy individuals.

The SVM results demonstrated that the NH values in the
combined brain regions of the right cerebellum Crus I/Crus II,
right ITG, and left SMFG showed an optimal accuracy of 84.11%
to distinguish patients from HCs (Table 5 and Figure 5).

Discussion

Our present study demonstrated that the patients with
schizophrenia exhibited increased NH values in the left SMFG
and right cerebellum Crus I/Crus II, and reduced NH values in
the bilateral PCC and right ITG compared to HCs. Moreover, for
patients with schizophrenia, we observed negative correlations
between the NH values in the left SMFG and negative symptom
scores, between the NH values in the right cerebellum Crus
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FIGURE 2

Differences in the NH values in the brain regions between patients and HCs. The color of the bars denotes the t-values (two-sample t-tests).
Blue and red represent lower and higher NH, respectively. R and L denote the right and left sides, respectively; HCs, healthy controls; NH,
network homogeneity.

I/Crus II and general psychopathology scores, and between
the right ITG and the speed of processing scores. Age, NH
values in the right cerebellum Crus I/Crus II and the right ITG
significantly contributed to the social cognition performance in
schizophrenia patients. In conclusion, the correlations between
the NH values in these regions and the symptom/cognition
dimensions implied that the poor-level coordination in the
DMN may be responsible for deficits in cognitive performance
and symptoms to some extent.

As a core node of DMN, the MPFC abnormalities have
been considered an intrinsic feature of schizophrenia and found
to be related to severe psychiatric symptoms like deficits in
cognition, especially the execution control function (Li et al.,
2019). Our study showed increased NH values in the left
SMFG. Zhang et al. (2020) also found increased NH values
in the left MPFC, which may help distinguish schizophrenic
patients from HCs. In contrast to our results, previous studies
also found reduced NH values in left MPFC in the DMN
(Guo et al., 2014c) or no difference in NH values in MPFC
at baseline in patients with schizophrenia compared to HCs,
but after 6 months of treatment with Olanzapine, NH in

TABLE 2 Differences in DMN NH values between groups.

Cluster location Peak (MNI) Number
of voxels

T value

x y z

Left SMFG –3 54 45 30 3.5043

Right Cerebellum Crus I
and II

24 –75 –39 45 3.9834

Bilateral PCC –18 –51 15 90 −3.6884

Right ITG 51 –18 –27 63 −3.7776

SMFG, superior medial frontal gyrus; PCC, posterior cingulate cortex; ITG, inferior
temporal gyrus; MNI, Montreal Neurological Institute; NH, network homogeneity;
DMN, default-mode network.

the left superior MPFC increased in the patient group (Guo
et al., 2017). The difference in results may be associated with
the heterogeneity of patients with schizophrenia, such as age
and sex, illness duration, clinical characteristics, and so on.
Moreover, our study showed a negative correlation between
the NH values in the left SMFG and the scores of negative
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FIGURE 3

Scatterplots of significant associations between NH values in the SMFG and negative symptom scores (A), NH values in the right cerebellum
Crus I/Crus II and general psychopathology scores (B), NH values in the right ITG and speed of processing scores (C), age and social cognition
scores (D), NH values in the right cerebellum Crus I/Crus II and social cognition scores (E), NH values in the right ITG and social cognition
scores (F), age and attention/vigilance scores (G), and education and reasoning and problem-solving scores (H) in the patient group. SMFG,
superior medial frontal gyrus; ITG, inferior temporal gyrus; PANSS, Positive and Negative Syndrome Scale; NH, network homogeneity.

TABLE 3 Multiple stepwise regression analysis between the abnormal NH values in the brain regions and PANSS dimensions and cognitive tests.

Dependent variable Predictive variables

Adj R2 B F P Variable Standardized β P

PANSS

Negative symptoms 0.081 22.89 4.83 0.032 Left SMFG − 0.284 0.032

General psychopathology 0.083 43.76 6.10 0.017 Right Cerebellum Crus I and II − 0.316 0.017

Speed of processing 0.056 31.07 4.33 0.042 Right ITG − 0.270 0.042

Attention/Vigilance 0.123 24.15 8.89 0.004 Age 0.373 0.004

Reasoning and Problem Solving 0.104 52.87 7.48 0.008 Education − 0.346 0.008

Social Cognition 0.270 21.11 7.92 0.000 Age 0.368 0.002

Right Cerebellum Crus I and II − 0.319 0.008

Right ITG − 0.286 0.017

SMFG, superior medial frontal gyrus; ITG, inferior temporal gyrus; PANSS, Positive and Negative Syndrome Scale; NH, network homogeneity.

symptoms. Also, longitudinal brain analysis to elucidate the
effects of drug treatment showed that antipsychotic drugs
can regulate the functional and connectional integrity of this
region to improve the severity of psychotic symptoms, and the
levels of FC of the bilateral superior MPFC at baseline could
predict the effectiveness of treatments (Guo et al., 2017; Shan
et al., 2020). Studies using magnetic resonance spectroscopy
further showed that the improvement in symptoms was
accompanied by changes in the levels of γ-aminobutyric acid
neurotransmitters in the MPFC brain region after antipsychotic
drug treatment (Li et al., 2022), further verifying that functional
disconnection in MPFC within the whole DMN was involved
in the manifestation of clinical symptoms. Taken together,

further therapeutic measures targeting the specific brain
region containing MPFC are important to improve psychotic
symptoms of schizophrenia.

Consistent with the previous reports (Lee et al., 2016), our
findings showed a negative correlation between the abnormal
neural activity of ITG and neurocognitive performance,
especially in speed of processing and social cognition. Using
the NH method, previous studies showed no difference
between patients with schizophrenia and HCs in the right
ITG (Guo et al., 2014c, 2017; Shan et al., 2020; Zhang
et al., 2020); however, we found that the NH values in
right ITG reduced in the patients. The difference in results
may be associated with the heterogeneity of patients with
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TABLE 4 ROC analyses for differentiating the schizophrenia
patients from the HCs.

Brain
regions

Area
under

the curve

Cut-off
point

Sensitivity Specificity

Right
cerebellum Crus
I and II

0.712 0.5852 56.10% 80.00%

Bilateral PCC 0.723 0.5622 66.70% 74.00%

Left SMFG 0.707 0.4571 86.00% 50.00%

Right ITG 0.738 0.5678 59.60% 76.00%

SMFG, superior medial frontal gyrus; ITG, inferior temporal gyrus; PCC, posterior
cingulate cortex; HCs, healthy controls; ROC, receiver operating characteristic.

schizophrenia. Nevertheless, research comprising functional
or structural MRI using different analyses, such as global-
brain FC (Zhao et al., 2022), the dynamic amplitude of low-
frequency fluctuation (Wang et al., 2021), full- and short-
range strength of FC (Miao et al., 2020), and Trace (Lee
et al., 2016), have observed aberrant ITG in patients with
schizophrenia, which is associated with psychotic (Lee et al.,
2016) and cognitive symptoms (Lee et al., 2016) and might
predict the response to an antipsychotic drug after 8 weeks (Zhu
et al., 2018). Previous studies also showed that both patients
with schizophrenia and their unaffected siblings shared similar
alterations in the ITG (Liu H. et al., 2012; Zhu et al., 2018),
and the neural activity of ITG was regulated by regulating

by the Disrupted-in-Schizophrenia-1 gene (Gou et al., 2018),
suggesting that the ITG might be a potential biomarker of
endophenotype for schizophrenia. Zhu et al. (2020) stated that
the right ITG might show unique abnormalities in patients with
schizophrenia compared with those with bipolar disorder and
attention-deficit/hyperactivity disorder. Moreover, Miao et al.
(2020) showed that the functional impairment in this region
might be an ongoing pathological process in schizophrenia
patients, and it is barely affected by antipsychotic drugs.
Above all, to a certain extent, our results provided diverse
findings regarding ITG and novel insights into exploring
symptomatic and cognitive-related mechanisms in patients
with schizophrenia.

In addition to being engaged in motor control and
coordination, the cerebellum also plays an important role
in emotion and cognitive processing (Stoodley et al., 2012;
Sokolov et al., 2017). In line with the results in our study,
higher NH values in the right cerebellum Crus I (Guo et al.,
2014c) and right cerebellum Crus II (Shan et al., 2020)
have been reported in schizophrenia patients. Further, our
results of stepwise regression analysis showed that abnormal
NH values in both these brain regions were associated with
general psychopathology and social cognition. Kuhn et al.
(2012) showed that gray matter volume of left cerebellum
Crus I/Crus II was related to thought disorder and Trail-
making test B. The reduction in general psychopathology was
associated with the gray matter volume in the cerebellum (Crus

FIGURE 4

Results of the ROC analyses used to differentiate between patients and HCs using the NH values in the different brain regions. NH, network
homogeneity; HCs, healthy controls; PCC, posterior cingulate cortex; SMFG, superior medial frontal gyrus; ITG, inferior temporal gyrus; ROC,
receiver operating characteristic.
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TABLE 5 The results of SVM to classify patients from HCs.

Feature Accuracy (%) Feature Accuracy (%)

1 65.42 123 79.44

2 69.16 124 74.77

3 65.42 134 84.11

4 64.49 234 76.64

12 72.90 1234 74.77

13 72.90

14 70.09

23 74.77

24 73.83

34 77.57

1, 2, 3, 4 represent right cerebellum Crus I and II, bilateral posterior cingulate cortex, left
superior medial frontal gyrus, right inferior temporal gyrus, respectively.
SVM, support vector machine.

I) (Premkumar et al., 2009), further supporting our results that
cerebellum Crus I/Crus II might participate in the pathological
mechanism of schizophrenia. The differences among studies
might be associated with the heterogeneity of patients and
the analysis methods. Laidi et al. (2019) demonstrated that
patients with schizophrenia showed a decrease in the cerebellum
(Crus II), whereas there was no corresponding alternation in
patients with bipolar disorder, indicating that the abnormalities
in cerebellum Crus I and/or Crus II might be specific to
schizophrenia. According to these reports and our results of
SVM, combined with SMFG, right ITG, and right cerebellum
Crus I/Crus II might help distinguish between patients with
schizophrenia and HCs.

Posterior cingulate cortex, as one of the important nodes
of the DMN and limbic system, was associated with cognition,
psychotic symptoms, and micro-RNA 137 (Zhang et al., 2018),
which might participate in the pathological mechanism of
schizophrenia (Leech and Sharp, 2014). Our results showed
lower NH values in PCC, which is consistent with previous
studies (Shan et al., 2020; Zhang et al., 2020) but in contrast to
the study by Guo et al. (2014c). The difference might be related
to the heterogeneity of patients with schizophrenia. Several
reports showed abnormalities in PCC using different analysis
methods in patients with schizophrenia, including aberrant
DMN connectivity strength (Hilland et al., 2022), increased
global-brain functional connectivity (Ding et al., 2019), and
so on. Despite the differences in results, both the studies
support that the PCC is involved in the pathological mechanism
of schizophrenia. Moreover, PCC is rich in N-methyl-D-
aspartate (NMDA) receptors (Ma and Leung, 2018), whereas
phencyclidine (PCP), an NMDA receptor antagonist, is
regarded as a pharmacological model of schizophrenia. He
et al. (2006) showed that quetiapine might ameliorate the
apoptosis in PCC induced by PCP, implicating that PCC
may be a potential target for antipsychotic drugs, such as
quetiapine.

Limitations

Several limitations must be taken into account for this
study. Firstly, owing to the small sample size, the results herein,
cannot be extrapolated to the general population. Secondly,
the DMN mask extracted from all the participants using

FIGURE 5

Visualization of classification using SVM analysis with the NH values in the combined brain regions, comprising the left SMFG, right cerebellum
Crus I/Crus II, and right ITG; (A) confusion matrix; (B) SVM parameter results of 3D view. Target Class and Output Class represent actual and
predicted results of classification, respectively; SMFG, superior medial frontal gyrus; ITG, inferior temporal gyrus; NH, network homogeneity;
SVM, support vector machine.
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ICA may have affected the analyses (Uddin et al., 2008).
Thirdly, we may have neglected the pathophysiology in the
other brain regions or networks by focusing on the connective
dysfunction of the DMN. Finally, the years of education of
schizophrenia patients were different from those of HCs, which
may have an effect on the cognitive performance, especially
reasoning and problem solving, in schizophrenia patients. The
age of patients also affected the clinical characteristics in
the patient group although there were no differences in age
between patients and HCs. Future studies should consider these
confounding effects.

Conclusion

Despite its limitations, our study revealed significantly
aberrant intrinsic network organization of the DMN in
schizophrenia and demonstrated that the combination of
NH values in the SMFG, right ITG, and right cerebellum
Crus I/Crus II might help distinguish between patients
with schizophrenia and HCs and can be regarded as an
underlying biomarker.
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Objective: Childhood trauma is a strong predictor of major depressive

disorder (MDD). Women are more likely to develop MDD than men. However,

the neural basis of female MDD patients with childhood trauma remains

unclear. We aimed to identify the specific brain regions that are associated

with female MDD patients with childhood trauma.

Methods: We recruited 16 female MDD patients with childhood trauma, 16

female MDD patients without childhood trauma, and 20 age- and education

level-matched healthy controls. All participants underwent resting-state

functional magnetic resonance imaging (MRI). Regional brain activity was

evaluated as the amplitude of low-frequency fluctuation (ALFF). Furthermore,

functional connectivity (FC) analyses were performed on areas with altered

ALFF to explore alterations in FC patterns.

Results: There was increased ALFF in the left middle frontal gyrus (MFG)

and the right postcentral gyrus (PoCG) in MDD with childhood trauma

compared with MDD without childhood trauma. The areas with significant

ALFF discrepancies were selected as seeds for the FC analyses. There was

increased FC between the left MFG and the bilateral putamen gyrus. Moreover,

ALFF values were correlated with childhood trauma severity.

Conclusion: Our findings revealed abnormal intrinsic brain activity and FC

patterns in female MDD patients with childhood trauma, which provides new

possibilities for exploring the pathophysiology of this disorder in women.

KEYWORDS

childhood trauma, amplitude of low-frequency fluctuation, functional connectivity,
middle frontal gyrus, postcentral gyrus, putamen
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Introduction

Major depressive disorder (MDD) is a serious mental
disorder that affects mood, interest, and cognitive function (Otte
et al., 2016). It has enduring impacts throughout life (Kessler
et al., 2007) and heavy economic and social burdens (Murray
et al., 2012; Ferrari et al., 2013). Women are approximately twice
as likely to experience MDD as men (Seedat et al., 2009). Thus,
being a woman is a risk factor for developing MDD (Otte et al.,
2016). Researchers have speculated that the sex differences in
MDD development might relate to variations in susceptibility
(both physical and psychological) as well as environmental
factors that work at both the micro and macro levels (Kuehner,
2017). However, the neural mechanisms underlying female
MDD patients remain unclear.

Childhood trauma is a common psychological stressor and
includes experiences of abuse and neglect (Bernstein et al.,
2003). Multiple studies have reported that childhood trauma
can predict psychiatric disorders such as bipolar disorder,
anxiety, substance use disorder, post-traumatic stress disorder,
and MDD (Baldwin et al., 2019; Hailes et al., 2019; McKay
et al., 2021). There are sex differences in childhood trauma.
Compared with men, the impact of childhood trauma is even
more profound in women. Women also have more complex
patterns of childhood trauma (Haahr-Pedersen et al., 2020),
and the female sex also plays a synergistic role with childhood
trauma in certain mental disorders (e.g., anxiety and depressive
episodes) (Whitaker et al., 2021). Previous studies of childhood
trauma have focused on neuroendocrinology (Silva et al., 2021;
Tan et al., 2021), neuroinflammation (Andersen, 2022), and
neuroimaging (Tozzi et al., 2020; Ma et al., 2021) to analyze
the intrinsic biological mechanisms of MDD. However, trauma-
related brain dysfunction is not fully understood. In particular,
brain neuroimaging studies of women with childhood trauma
experience remain severely lacking. It is, therefore, important to
investigate the pathophysiology and etiology of MDD in women
who have experienced childhood trauma.

A growing body of evidence indicates that the amplitude of
the low-frequency fluctuation (ALFF) method can be used to
capture local brain activity and identify various physiological
conditions in the brain (Yang et al., 2007; Yan et al., 2009).
Previous studies have detected ALFF alterations in MDD
with childhood trauma, including in the left insula, right
dorsal anterior cingulate cortex, bilateral amygdala, and left
orbital/cerebellum (Du et al., 2016; Wu et al., 2020). Moreover,
functional connectivity (FC) methods have been developed
to measure both the temporal correlations (Du et al., 2016;
Wu et al., 2020) and the coordination of brain activity
(Biswal et al., 1995; Noble et al., 2019) among multiple brain
regions. Yu et al. (2019) reported that childhood trauma across
different dimensions of symptoms is associated with abnormal
network architecture in patients with MDD. A combination of

ALFF and FC has been recommended to investigate abnormal
intrinsic brain function in patients with MDD (Hu et al., 2019;
Ebneabbasi et al., 2021; Yan et al., 2022). However, ALFF and FC
alterations in female MDD patients with childhood trauma have
not yet been investigated. To address this gap, we used ALFF and
FC methods to explore brain function and FC patterns in female
MDD patients with childhood trauma. The aim of this study
was to provide new insights into the underlying neurobiological
mechanisms of the disease.

Materials and methods

Participants

Individual mentalization in early adulthood is not yet fully
matured, and individuals in early adulthood are more vulnerable
to childhood traumatic experiences (Sonu et al., 2019; Hamlat
et al., 2021). Interestingly, the scholar found that early adulthood
is the peak period of MDD onset (Kessler et al., 2007). However,
mental illness in early adulthood did not raise major attention
and age has not been well controlled in previous studies. Thus,
we only included female participants in early adulthood (18–35)
in this research.

A total of 52 early adulthood women were recruited. The
diagnosis of MDD was made by professional psychiatrists
referring to the Diagnostic and Statistical Manual of Mental
Disorders–Fourth Edition (DSM-V) criteria. The 17-item
Hamilton Depression Scale (HAMD) (Zimmerman et al., 2013)
was used to measure depression severity. The Childhood
Trauma Questionnaire (CTQ) was employed to evaluate the
negative impact of childhood trauma. The CTQ can be divided
into 5 subscales, including emotional abuse (EA), emotional
neglect (EN), sexual abuse (SA), physical abuse (PA), and
physical neglect (PN). The cutoff points for the CTQ subscale
are as follows: (i) EA ≥ 13, (ii) EN ≥ 15, (iii) SA ≥ 8, (iv)
PA ≥ 10, and (v) PN ≥ 10 (Xie et al., 2018; Georgieva et al.,
2021). Childhood trauma history was considered to exist in
participants scoring over the subscale threshold (moderate–
severe). The HAMD and CTQ were only used for the assessment
of patients with MDD.

According to the above criterion, participants were divided
into MDD with the childhood trauma group (n = 16),
MDD without the childhood trauma group (n = 16), and
the healthy control group (n = 20). Subjects with MDD
were recruited from the outpatient clinics of the Affiliated
Brain Hospital of Guangzhou Medical University. We recruited
healthy participants from the local community with matching
age and education levels. In this study, the exclusion criteria
are as follows: (i) any other physical and mental illness
except for MDD; (ii) history of seizures, head trauma,
or unconsciousness; (iii) received electroconvulsive therapy
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TABLE 1 Characteristics of MDD with childhood trauma, MDD without childhood trauma, and HC groups.

Characteristics MDD with childhood
trauma (n = 16)

MDD without childhood
trauma (n = 15)

HC (n = 20) F/T P-value

Age, years 24.93 ± 3.73 24.26 ± 3.17 23.40 ± 3.16 0.94 0.39a

Education, years 13.93 ± 3.76 14.66 ± 2.76 14.35 ± 1.81 0.26 0.77a

HAMD 30.00 ± 6.39 30.20 ± 4.97 − 0.64 0.92b

CTQ score

Emotional abuse 11.37 ± 4.67 6.73 ± 1.79 − 3.60 <0.01b

Physical abuse 7.00 ± 2.87 6.13 ± 1.55 − 1.03 0.31b

Sexual abuse 7.56 ± 4.17 5.26 ± 0.59 − 2.10 0.04b

Emotional neglect 18.37 ± 3.11 8.00 ± 2.10 − 10.78 <0.01b

Physical neglect 11.31 ± 3.07 5.86 ± 0.91 − 6.59 <0.01b

Total 55.62 ± 11.15 32.00 ± 4.32 − 7.67 <0.01b

CTQ, Childhood Trauma Questionnaire; HAMD, Hamilton Depression Rating Scale; plus-minus values are means ± S.D.
aThe P-values were obtained by one-way analysis of variance test.
bThe P-values were obtained by two sample-test.

FIGURE 1

Amplitude of low-frequency fluctuations (ALFF) value among the MDD with childhood trauma, MDD without childhood trauma, and HC groups.
One-way ANCOVA with age and education as covariates was performed to compare ALFF maps in the experimental groups. Left middle frontal
gyrus (A) and right postcentral gyrus (B) showed the most significant differences according to ALFF analysis (AlphaSim-corrected p < 0.05).

TABLE 2 Group differences in amplitude of low-frequency fluctuations in MDD with childhood trauma, MDD without childhood trauma and HC.

Brain regions Hemisphere Peak MNI Cluster size F

X Y Z

Middle frontal gyrus Left −33 18 45 57 30.40

Postcentral gyrus Right 42 −33 51 63 16.35

MNI, Montreal Neurological Institute; x, y, z, coordinates of primary peak locations in the MNI space.

within the past 6 months, recently taken contraceptives, and
taken psychiatric drugs before; (iv) substance dependence; (v)
pregnant, lactating, or menstruating women; and (vi) any
contraindications to magnetic resonance imaging (MRI). All

participants were fully informed and written informed consent
was obtained before enrollment. This study was approved by the
Ethics Committee of the Affiliated Brain Hospital of Guangzhou
Medical University.
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FIGURE 2

Post hoc two samplet—tests were used to determine the between groups differences in ALFF value in left middle frontal gyrus and right
postcentral gyrus showing significant differences in ALFF maps in the previous ANOVA. *Bonferroni correction with P < 0.025 was set for
significance. MFG, middle frontal gyrus; PoCG, postcentral gyrus.

TABLE 3 Multiple comparisons of ALFF in left middle frontal gyrus and right postcentral gyrus.

Brain regions Pair group (I VS. J) Mean difference (I–J) P 95%CI

Left middle frontal gyrus G1 VS. G2 0.2311 <0.001 0.1567 0.3054

G1 VS. G3 0.1389 <0.001 0.0695 0.2082

G2 VS. G3 −0.092 <0.001 −0.1628 −0.0215

Right postcentral gyrus G1 VS. G2 0.1544 0.242 −0.0603 0.3692

G1 VS. G3 −0.3008 0.002 −0.5013 −0.1003

G2 VS. G3 −0.4552 <0.001 −0.6594 −0.2511

G1, MDD with childhood trauma; G2, MDD without childhood trauma; G3, HC.

Magnetic resonance imaging data
acquisition

The MRI data were obtained on a 3.0T MRI system (Philips,
Best, The Netherlands) in the Affiliated Brain Hospital of
Guangzhou Medical University. Tampons were used to reduce
noise, while foam pads were used to restrain head movement.
During the scan, subjects were asked to remain still and
close their eyes, but not fall asleep and think. The parameters
of the echo plane imaging (EPI) sequence were as follows:
repetition time (TR) = 2,000 ms, echo time (ET) = 30 ms,
flip angle = 90◦, field of view (FOV) = 220 × 220 mm2,
slices = 33, thickness = 4 mm, inter-slice gap = 0.6 mm,
and matrix = 64 × 64. Meanwhile, the parameters of the
T1-weighted sagittal images were as follows: TR = 8.2 ms,
ET = 3.7 ms, flip angle = 7◦, thickness = 1 mm, and
matrix = 256 × 256. To strictly control the effect of head

movement, we excluded one subject whose head translation was
greater than 1.5 mm.

Magnetic resonance imaging data
preprocessing

The fMRI data were conducted by a Data Processing
Assistant for Resting-State fMRI Advanced Edition V4.5
(DPARSFA)1 (Yan et al., 2016). In addition to the first 10
volumes being removed, all the images were corrected for
temporal differences and head motion. We excluded the
participants whose image translation movement was more
than 1.5 mm or rotational movement was more than 1.5◦.
The T1-weighted image was co-registered with the average

1 www.restfmri.net/forum/DPARSF
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FIGURE 3

Resting-state functional connectivity analyses among MDD with
childhood trauma, MDD without childhood trauma, and HC
groups. One-way ANCOVA with age and as covariates was
performed to compare functional connectivity maps in all the
three groups and identified significant differences between left
middle frontal gyrus and bilateral putamen (A, left putamen
gyrus; B, right putamen gyrus) (AlphaSim-corrected p < 0.05).

functional image after motion correction. Then, the images were
normalized to the Montreal Neurological Institute template
and resampled to a spatial resolution of 3 × 3 × 3 mm3.
Subsequently, the functional images were smoothed with a
Gaussian kernel (full-width half-maximum = 4 mm). In
addition, in order to remove the effects of nuisance covariates,
we regressed headmotor parameters, white matter signals, and
CSF signals. Finally, the time series for each voxel was subjected
to linear trend reduction and temporal filtering (0.01–0.08 Hz)
to reduce low-frequency drift and high-frequency noise (Biswal
et al., 1995; Lowe et al., 1998).

Analysis of amplitude of low-frequency
fluctuation

We applied DPASF4.5 to compute ALFF and FC. Briefly, we
converted the frequency domain power spectrum of the whole-
brain signal with the fast Fourier transform. In addition, based
on the power spectrum between 0.01 and 0.08 Hz, we calculated

the ALFF. Finally, to minimize variability in general whole-
brain ALFF levels between participants, the ALFF value was
standardized to the Z-value (zALFF).

Analysis of functional connectivity

Subsequently, a seed-based interregional FC analysis was
conducted. Seeds were chosen from brain regions correlated
with childhood trauma in between-group ALFF discrepancy. FC
analysis was calculated after a time series of the seed area average
was extracted. The seed area and the rest of the brain were
then correlated voxel-by-voxel. Finally, in order to enhance the
normality of the correlation coefficient, we performed a Fisher’s
r to z transformation.

Statistical analysis

Statistical analyses were calculated using Statistical Package
for the Social Sciences, version 19.0 (SPSS, Inc., Chicago,
United States). Group differences in demographic and
clinical data were assessed by one-way analysis of covariance
(ANCOVA) or two sample t-tests. In this study, significant
differences were defined as p < 0.05.

To identify the significance of the brain district that
had altered ALFF and FC values, a voxel-based ANCOVA
was conducted using education and age as covariates. The
significance was set with a cluster-level corrected threshold of
p < 0.05 (cluster-forming threshold at voxel level p < 0.001
using the AlphaSim method) (Forman et al., 1995; Poline et al.,
1997). Then, to examine group differences in mean ALFF and
FC values, two sample t-tests were conducted on three groups
identified after ANCOVA. Multiple comparison correction was
employed with the Bonferroni method, and the significance level
was determined at p < 0.05/2 = 0.025 (voxel-wise concordance
analysis resulting in two significant clusters). In addition, partial
correlation analyses were performed to discover the contact of
voxel-wise concordance with CTO score in all subjects with
MDD [p < 0.05/12 = 0.0041 with Bonferroni correction of 12
being due to two clusters and 6 scales (i.e., CTO scale and
its 5 subscales)]. Finally, we further explored the association
of brain dysfunction with childhood trauma in female patients

TABLE 4 FC differences between left middle frontal gyrus seed and left putamen gyrus and right putamen gyrus in MDD with childhood trauma,
MDD without childhood trauma, and HC.

Seed Brain regions Peak MNI Cluster size F

X Y Z

Left middle frontal gyrus Left putamen gyrus −21 −3 −3 74 12.41

Right putamen gyrus 30 6 3 81 8.57

MNI, Montreal Neurological Institute; x, y, z, coordinates of primary peak locations in the MNI space.
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FIGURE 4

Post hoc analyses revealed significant increased functional connectivity of left PUT to left middle frontal gyrus in MDD with childhood trauma
compared to both MDD without childhood trauma and HC group. The functional connectivity of right PUT to left middle frontal gyrus in the
MMD patient groups were significantly higher than that in the HC group, but there was no significant difference between those with and
without childhood trauma. *Bonferroni correction with P < 0.025 was set for significance.

TABLE 5 Multiple comparisons of functional connectivity between left middle frontal gyrus seed and left putamen gyrus and right putamen gyrus.

Seed Brain regions Pair group (I VS. J) Mean difference (I–J) P 95%CI

Left middle frontal gyrus Left putamen gyrus G1 VS. G2 0.0328 0.207 −0.0109 0.0766

G1 VS. G3 0.0810 <0.001 0.0401 0.1219

G2 VS. G3 0.0482 0.018 0.0065 0.0898

Right putamen gyrus G1 VS. G2 −0.0145 1.000 −0.0677 0.0387

G1 VS. G3 0.0629 0.009 0.0132 0.1126

G2 VS. G3 0.0774 0.001 0.0268 0.1281

G1, MDD with childhood trauma; G2, MDD without childhood trauma; G3, HC.

with MDD by multiple linear regression with CTQ total scores
and the characteristic values of brain region (ALFF and FC).
Age and education were considered control variables in partial
correlation and multiple linear regression.

Results

Demographic and clinical measures

As shown in Table 1, no significant difference was found in
age and education level among the three groups (all p < 0.05).
Significant differences were detected in CTQ total score and
its subscale scores (e.g., EA, EN, SA, and PN) between MDD
with the childhood trauma group and MDD without the
childhood trauma group.

Assessed by one-way analysis of
covariance plus post hoc comparisons
of amplitude of low-frequency
fluctuation

Significant ALFF alterations were found in the left middle
frontal gyrus (MFG) (57 voxels) and the right postcentral gyrus
(PoCG) (63 voxels) between the three groups (Figure 1 and
Table 2). MDD with the childhood trauma group revealed
increased ALFF values in the left MFG compared to MDD
without the childhood trauma group and the HC group
(Figure 2 and Table 3). Moreover, decreased ALFF was detected
in the right PoCG in MMD patient groups relative to the
HC group. Nonetheless, no significant ALFF difference was
discovered among MDD with and without childhood trauma
groups (Figure 2 and Table 3).
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FIGURE 5

Partial correlation analyses between amplitude of low-frequency fluctuation value (ALFF) in left middle frontal gyrus and childhood trauma
scores in different subscale were performed by combining all of MDD participants as a whole. Age and education were considered as control
variables. (A) Shows the correlation between EN scores and ALFF value of the left middle frontal gyrus; (B) shows the correlation between CTQ
total scores and ALFF value of the left middle frontal gyrus. EA, emotional neglect.

TABLE 6 Partial correlation between CTQ scores and ALFF.

Brain regions Emotional abuse Physical abuse Sexual abuse Emotional neglect Physical neglect Total score of CTQ

r P r P r P r P r P r P

Left middle frontal gyrus 0.262 0.068 0.091 0.533 0.352 0.013 0.465* 0.001 0.331 0.020 0.458* 0.001

Right postcentral gyrus −0.009 0.949 −0.018 0.903 0.025 0.865 0.142 0.329 0.236 0.102 0.116 0.426

ALFF, amplitude of low-frequency fluctuations; CTQ, Childhood Trauma Questionnaire.
Age and education were considered as control variables.
*padj < 0.004, corrected for multiple comparisons.

Functional connectivity analyses

In this study, the brain areas that showed group differences
in the ALFF analysis were selected as seed (i.e., left MFG) in the
FC analysis. Significant FC difference in the left MFG–bilateral
putamen was observed between groups (Figure 3 and Table 4).
Compared to the HC group, MDD groups showed increased FC
between left MFG and bilateral putamen (Figure 4 and Table 5).
However, no observable discrepancy was found between MDD
with and without childhood trauma (Figure 4 and Table 5).

Partial correlation analyses and
multiple linear regressions analyses

Partial correlation analysis confirmed the positive
correlation between ALFF in the left MFG and EN scores
(r = 0.465 p = 0.001) and CTQ total score (r = 0.458, p = 0.001),
respectively (Figure 5 and Table 6). We did not find a significant
correlation between FC and CTQ total scores or its subscale
scores. Regression analyses further showed the correlation of
ALFF value in the left MFG on childhood trauma (F = 2.476,
p < 0.05) (Table 7).

Discussion

In this study, we focused on ALFF and FC alterations
in female MDD patients with childhood trauma. There was
increased ALFF in the left MFG and right PoCG in MDD
with childhood trauma compared with MDD without childhood
trauma. The brain regions with significant ALFF discrepancies
were selected as seeds for the FC analyses. There was increased
FC in the left MFG and bilateral putamen gyrus. Moreover, we
confirmed an association between altered ALFF and childhood
trauma history. Together, our findings indicate the presence
of abnormal intrinsic brain activity and FC patterns in female
MDD patients with childhood trauma. The results of our
research also offer important insights into the neurobiological
mechanisms of MDD and childhood trauma.

An interesting finding in this study was that, in the left MFG,
ALFF was higher in the MDD group with childhood trauma
than in the group without childhood trauma. In addition, ALFF
was positively correlated with CTQ scores and EN. Previous
studies have reported that left MFG activation is associated
with working memory (Zhang et al., 2003), the processing
of social information and social perception (Vollm et al.,
2006), memory retrieval (Tulving et al., 1994), and emotion
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regulation (Ochsner and Gross, 2005; Bermpohl et al., 2006).
This area is also associated with rumination (Wang et al., 2018),
which in turn increases an individual’s risk of MDD (Abela
and Hankin, 2011). For example, Shors et al. (2017) reported
that interventions targeting rumination generally reduce MDD
incidence in women. Furthermore, O’Mahen et al. (2015)
revealed that EN and abuse in childhood are associated with
depression, with rumination partially mediating this effect.
To some extent, our findings support this conjecture. Local
brain activity may be affected by previous childhood trauma,
especially EN, which in turn affects cognitive processing patterns
such as rumination. Notably, Tulving et al. (1994) reported that
the left MFG is related to memory retrieval. Thus, abnormal
left MFG activation in individuals with childhood trauma
may repeatedly trigger traumatic memories and exacerbate
rumination. This may be the underlying cause of heightened
depressive symptoms in MDD patients with childhood trauma.
Overall, our results suggest that abnormal left MFG function
might indicate the impact of childhood trauma in young
adult women with MDD.

We also revealed that patients with MDD were at a higher
risk for dysfunction in the right PoCG; however, there were
no significant differences between patients with and without
childhood trauma. Numerous studies have noted that the
PoCG is mainly involved in the processing of some sensory
information (Phillips et al., 2003), cognitive activities (Wager
and Smith, 2003), and emotional processing (Luo et al., 2022).
Tadayonnejad et al. (2015) reported that regional properties
of neural activity in the PoCG are associated with depression
severity. Moreover, neuroimaging studies have demonstrated
structural and functional changes in the precentral and
postcentral gyri of patients with MDD (Guo et al., 2011;
Wang et al., 2012). Abnormal brain function in the PoCG may
thus be a unique neurobiological feature of MDD; our results
support this idea. Together, these findings provide theoretical
support for further research into the relationship between
the PoCG and MDD.

In this study, we investigated FC patterns in female MDD
patients with childhood trauma. We measured the FC of each
cluster vs. the rest of the brain using altered ALFF clusters
with clinical correlations as the ROIs. The FC between the left
MFG and bilateral putamen was observably increased in the
MDD group compared with the HC group. The putamen is
associated with motor control and learning (Luo et al., 2020), is
one of the core regions for emotion production and processing
(Wager et al., 2003), and plays an important role in cognitive and
executive functions (Peters et al., 2016). Su et al. (2018) reported
that a decrease in glucose metabolism in the putamen of patients
with MDD impaired FC to key centers, such as the inferior and
middle frontal gyri. Although the results of our study differed
from those of predecessors, the discrepancies may be caused by
differences in sample size, research subjects, or other reasons.
Abnormal connectivity between the MFG and the putamen

TABLE 7 Multiple linear regressions analyses between childhood
trauma and brain dysfunction.

R2 F B T

Step1

Age 0.048 1.22 0.136 0.885

Education −0.236 −1.534

Step2

Age 0.204* 2.476* −0.009 −0.055

Education −0.142 −0.98

ALFF of left MFG 0.452 3.115*

ALFF of right PoCG 0.026 0.176

FC of right PUT −0.084 −0.433

FC of left PUT 0.049 0.253

*p < 0.05.

appears to be an important characteristic of MDD. However, our
study revealed that the FC between the left MFG and bilateral
putamen had no observable discrepancy in the MDD with the
childhood trauma group compared with the MDD without the
childhood trauma group. Jeong et al. (2021) found that trauma
exposure may be related to structural alterations in the MFG
and putamen. Thus, trauma exposure may also be an important
factor underlying structural abnormalities of the MFG and
putamen, but we need further research to find out if there are
also functional abnormalities in this brain region. Furthermore,
both trauma exposure and MDD appear to be associated with
these two cognitively related regions. Thus, perhaps the main
crux of depression with childhood trauma is changing in
cognition; this may have a certain guiding significance for the
clinical treatment of MDD and will be a major direction of our
future research. Collectively, our findings provide an important
base for investigating the neuropathological mechanisms of
MDD as well as those of childhood trauma.

Our study has certain limitations. First, it remains
unclear whether self-reported trauma history reflects authentic
experiences during childhood and early adolescence. To
minimize information bias, we, therefore, conducted in-
depth interviews to confirm adverse childhood experiences. In
addition, the study age was set at early adulthood (18–35 years
of age) to minimize any differences in the duration of childhood
trauma. However, this study did not further subdivide the
types of childhood trauma. This is also the direction of future
research to further analyze the effects of childhood trauma
on the brain in terms of different dimensions, intensities, and
durations, for example. Second, this study used a cross-sectional
approach with small sample size and lacked any comparisons
with the male population. The current results should, therefore,
be interpreted with caution. Future studies will expand the
sample size to further validate the results and add a male control
group to investigate whether the identified brain regions are
unique to women.
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Conclusion

Overall, after controlling age-related confounding factors as
much as possible, our study found that left MFG abnormality
and left MFG–putamen dysfunction may be unique neural
mechanisms in female MDD patients with childhood trauma.
Our findings provide a basis for future research into the
relationship between childhood trauma and MDD.
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Background: Cognitive dysfunction (CI) is frequently reported in patients with

systemic lupus erythematosus (SLE), but the identification and assessment of

SLE-related CI remain challenging. Previous studies have focused on changes

in static brain activity, and no studies have investigated the characteristics of

dynamic brain activity in SLE patients with CI.

Objects: We calculated the dynamic amplitude of low-frequency fluctuation

(dALFF) by combining the ALFF with a sliding window method to

assess the temporal variability of brain functional activity in SLE patients

with and without CI.

Methods: Thirty-eight SLE with CI, thirty-eight SLE without CI, and thirty-

eight healthy controls (HCs) were recruited. By comparing static ALFF (sALFF)

and dALFF among the three groups, changes in brain activity intensity and

its temporal variability were assessed in patients with SLE with or without CI.

Spearman correlation coefficients were calculated between the brain function

indicator and Mini-mental State Examination (MMSE) scores of SLE with CI.

Results: Subjects among the three groups exhibited significant sALFF

differences in the right parahippocampal gyrus, left caudate nucleus, right

putamen, and left cuneus. Compared to the SLE without CI, the right

parahippocampal gyrus exhibited higher sALFF in the SLE with CI group.

Compared to the HCs, the left caudate nucleus exhibited increased sALFF in

the SLE with CI group. Participants in the three groups exhibited significant

dALFF variability in the right parahippocampal gyrus, right lingual gyrus, and

bilateral inferior occipital gyrus. Compared to the HCs, the right lingual gyrus

exhibited reduced dALFF in the SLE without CI group. Compared to the HCs,

the right parahippocampal gyrus exhibited increased dALFF, left calcarine

fissure, and the surrounding cortex exhibited reduced dALFF in the SLE with CI

group. There was no significant correlation between the MMSE score, sALFF,

and dALFF in the SLE with CI group.
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Conclusion: SLE patients with CI have abnormal brain activity intensity and

stability. By analyzing the dynamics of intrinsic brain activity, it provides a new

idea for evaluating SLE-related CI. However, more research and validation with

multiple metrics are needed to determine the link between the severity of

cognitive impairment (CI) and brain activity in patients with SLE.

KEYWORDS

systemic lupus erythematosus, cognitive impairment, resting-state fMRI, dynamic
amplitude of low-frequency fluctuation, static amplitude of low-frequency
fluctuation

Introduction

Systemic lupus erythematosus (SLE) is a typical
autoimmune disease with a global prevalence rate of 0–
241/100,000 (Rees et al., 2017). When SLE involves the
central and/or peripheral nervous system, it is called
neuropsychiatric systemic lupus erythematosus (NPSLE).
The clinical manifestations of NPSLE are complex, ranging
from mild headache, cognitive impairment (CI), mood
disturbance, a series of neurological symptoms, and mental
disorders ranging from subtle abnormalities, such as neuritis,
to severe manifestations such as epilepsy, cerebrovascular
accident, and myelopathy are considered to be the most serious
complications and poor prognostic factors of SLE. NPSLE
is the second leading cause of death after lupus nephritis in
patients with SLE (Schwartz et al., 2019), and the mortality
rate is 10 times higher than that of the general population
(Zirkzee et al., 2014), and it severely damaged the patients’
quality of life (Ogunsanya et al., 2018). The prevalence of CI
in patients with SLE reported in previous studies was highly
heterogeneous, ranging from 6.6 to 80.0% (Schwartz et al.,
2019), significantly higher than in healthy individuals (Kozora
et al., 1996; Al-Homood et al., 2017; Zhang et al., 2017; Shaban
and Leira, 2019; Kim et al., 2021). Identifying and assessing
SLE-related CI remains challenging at present due to the lack of
sensitive and standardized neuropsychiatric tests and diagnostic
biomarkers (Seet et al., 2021).

Functional magnetic resonance (fMRI) is divided into
resting-state fMRI (rs-fMRI) and task-state fMRI. The most
commonly used method is blood oxygenation level-dependent
(BOLD) imaging. When the brain neurons are excited, their
oxygen consumption increases and the local blood flow in
the brain area increases. This process will lead to changes
in the ratio of local oxyhemoglobin and deoxyhemoglobin.
Oxyhemoglobin is diamagnetic, while deoxyhemoglobin is
paramagnetic. BOLD-fMRI uses hemoglobin as an endogenous
contrast agent to measure the BOLD signal generated by
the difference in the magnetization vector between the two
hemoglobins to observe the activity of the brain indirectly,
non-invasively, and non-radioactively (Fox and Raichle, 2007;

Liu et al., 2018). The commonly used indicators of fMRI
include regional homogeneity (ReHo), low-frequency amplitude
(amplitude of low-frequency fluctuation, ALFF), fractional low-
frequency amplitude (fractional amplitude of low-frequency
fluctuation, fALFF), degree centrality (degree centrality, DC),
etc. Local brain activity reflects the intrinsic properties of brain
tissue activity and is related to psychological and cognitive
processes (Britz et al., 2011; Hutchison and Morton, 2016).
ReHo is the similarity of the time series of a given voxel to
the time series of its nearest neighbors, i.e., the consistency of
the functional activity between the local voxel and the adjacent
voxels (Zang et al., 2004); ALFF is an indicator that can reflect
the characteristics of spontaneous activity of local neurons in the
resting state by calculating the power spectrum of low-frequency
fluctuation signals with a frequency of 0.08–0.10 Hz (Zang
et al., 2007), and fALFF is the ratio of ALFF to the root mean
square of full-spectrum power, which can reduce the sensitivity
of ALFF to physiological noise (Zou et al., 2008). fMRI has
been used to study brain function in diseases including SLE.
For example, a systematic review of fMRI studies in patients
with SLE found that 72.7% of the literature reported increased
brain activity in SLE, including pediatric patients without
neuropsychiatric symptoms and patients with disease duration
of less than 2 years (Mikdashi, 2016). A resting-state fMRI study
of non-NPSLE patients found that ReHo values in the fusiform
gyrus and thalamus were decreased, and ReHo values in the
parahippocampal gyrus and uncinate gyrus were increased in
patients with SLE. The ReHo value of the cerebellum was
positively correlated with disease activity and the ReHo value of
the frontal gyrus was negatively correlated with disease activity,
and some brain regions showed correlation with depression
and anxiety states (Liu et al., 2018). Another similar study
also found that non-NPSLE patients had abnormal increases or
decreases in ALFF, fALFF, and ReHo in multiple brain regions
compared with healthy controls (HCs), and these abnormalities
were correlated with self-rating anxiety scales (Piao et al.,
2021). A task-state fMRI study of non-NPSLE patients found
abnormally reduced activation of the limbic system but higher
activation of memory, emotion, and behavioral systems in
patients with SLE, suggesting that these patients with SLE have
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subclinical cognitive dysfunction and decision-making deficits
(Wu et al., 2018).

Previously, common resting-state fMRI studies defaulted to
a constant intensity of brain activity throughout the MRI scan,
but more and more studies have shown that even during MRI
scans, changes in brain activity over time are dynamic. Brain
dynamics-based studies can deepen connections to human brain
mechanisms and disease-induced brain damage (Allen et al.,
1991; Leonardi et al., 2013; Li et al., 2019). Therefore, some
studies have proposed using ALFF combined with dynamic
ALFF (dALFF) analysis to study the dynamic changes of local
brain activity in the human brain, that is, to study the temporal
variation of local brain activity amplitude between voxels by
calculating the ALFF changes over time, which helps to improve
the reliability of research results (Tagliazucchi et al., 2014; Fu
et al., 2018; Han et al., 2019; Cui et al., 2020). The study
by Cui et al. (2020) found that generalized patients with
anxiety disorder have increased dALFF in a wide range of
brain regions, such as bilateral dorsomedial prefrontal cortex
and hippocampus, which is positively related to the severity
of symptoms. Another study found that compared to HCs,
dALFF was significantly increased in brain regions such as
the bilateral thalamus, the bilateral cerebellum posterior lobe,
and the vermis in patients with major depressive disorder, and
the dALFF value of some brain regions with abnormal dALFF
is positively correlated with the severity of major depressive
disorder symptoms (Zheng et al., 2021). However, whether there
is abnormal dynamic local brain activity in patients with SLE has
not been reported.

In the present study, we used ALFF combined with a sliding
window approach to calculate dALFF for assessing the temporal
variability of intrinsic brain activity in SLE patients with or
without CI. We will preprocess fMRI data to calculate sALFF
map and dALFF map of each subject and further verify whether
the above two indicators are different in SLE patients with or
without CI and HCs to explore potential imaging indicators
that can be used to identify and evaluate SLE-related CI and
provide a new perspective for a more complete understanding
of the underlying neuropathological mechanisms of NPSLE.
We expected an altered dALFF pattern in patients with SLE
compared with HCs. Furthermore, dALFF can detect a subset
of potentially abnormal brain activity that is not available
with sALFF, which could deepen our understanding of the
pathological mechanisms of NPSLE. We also hypothesized that
dALFF might be associated with cognitive function.

Materials and methods

Participants

A total of seventy-six patients with SLE (thirty-eight
with and without CI, respectively) were recruited from the

outpatient and inpatient departments of the Rheumatology and
Immunology Department of the First Affiliated Hospital of
Kunming Medical University.

The inclusion criteria for the case group were: (1) patients
diagnosed as SLE according to the 1997 revised American
college of rheumatology (ACR) SLE classification criteria; (2)
age range from 18 to 50 years; (3) CI was confirmed after Mini-
mental State Examination (MMSE) scale assessment (A MMSE
score ≤ 26 was identified as CI); (4) right-handedness.

The exclusion criteria for the case group were: (1) patients
with connective tissue disorders such as rheumatoid arthritis,
systemic sclerosis, primary or secondary Sjögren’s syndrome
who meet the ACR classification criteria; (2) patients with
epilepsy, severe active mental illness, stroke, traumatic brain
injury, history of intracranial surgery, etc. that may interfere
with brain structure or functional imaging; (3) patients with
a history of drug abuse and alcoholism; (4) women during
pregnancy or lactation; (5) patients who have contraindications
to MRI (e.g., claustrophobia, metal implants); (6) patients with
structural brain abnormalities on conventional T1- or T2-
weighted MRI scan.

Thirty-eight gender and age-matched HCs were
recruited for this study.

This study has been approved by the Ethics Committee of
the First Affiliated Hospital of Kunming Medical University.
Before the start of the trial, the subjects and their legal guardians
were informed of the trial procedures in detail and they signed
the informed consent.

Psychological assessment and disease activity
index scale

On the day of the MRI examination, a psychiatrist and a
rheumatologist, respectively assessed the cognitive function and
SLE disease activity index of each SLE patient using the MMSE
scale and SLE disease activity index 2,000 (SLEDAI-2k).

Magnetic resonance imaging data
acquisition

An experienced neuroradiologist acquired MRI images
of all subjects using a 1.5T MRI scanner with head
coils. First, conventional T1WI and T2WI scans were
performed to exclude subjects with obvious brain structural
abnormalities. No subjects were excluded due to structural
brain abnormalities; 3D-MRI uses a 3D-T1-weighted fast
phase perturbation gradient echo (3D-T1-fspgr) sequence with
the following parameters: repetition time (TR) = 10.5 ms,
echo time (TE) = 2.0 ms, inversion time = 350 ms, slice
thickness = 1.8 mm and no layer interval, flip angle (FA) = 15◦,
spatial resolution = 0.94 mm × 0.94 mm × 0.9 mm, scanning
matrix = 256 × 256, FOV = 24 cm × 18 cm, layer number = 172,
scans cover the entire brain. The resting-state fMRI uses the
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TABLE 1 Results of demographic and clinical data of SLE patients with cognitive impairment group, SLE patients without cognitive impairment, and
healthy controls.

SLE with cognitive
impairment (n = 38)

SLE without cognitive
impairment (n = 38)

HCs (n = 38) Statistical P-value

Gender (female/male) 4/34 4/34 4/34 χ2 = 0 1.000

Age (year) 30.50 ± 6.45 29.55 ± 6.03 31.89 ± 7.53 F = 1.18 0.31

Duration of disease (month) 12.00 (3.00, 24.00) 12.50 (1.66, 32.75) NA U = 707.50 0.88

SLEDAI-2k 10.42 ± 5.07 9.58 ± 6.26 NA t = 0.65 0.52

MMSE scores 24.00 (21.00, 25.00) 29.50 (29.00, 30.00) NA U <0.01 <0.01

Antibody, n (%)

Anti-Sm antibody 20 (52.63) 21 (55.26) NA χ2 = 0.05 0.82

Anti-dsDNA antibody 28 (73.68) 19 (50.00) NA χ2 = 4.52 0.03

Anti-U1RNP antibody 12 (31.58) 14 (36.84) NA χ2 = 0.23 0.63

Anti-P0 antibody 23 (60.53) 16 (42.11) NA χ2 = 2.58 0.11

GC accumulation (g) 2.55 (0, 10.61) 1.64 (0.26, 12.09) NA U = 657.50 0.50

HCQ accumulation (g) 0 (0, 3.30) 0.35 (0, 11.70) NA U = 604.00 0.18

CTX accumulation (g) 0 (0, 1.00) 0 (0, 0.25) NA U = 628.50 0.25

SLEDAI-2k, Systemic Lupus Erythematosus disease activity index 2000; MMSE, Mini-mental State Examination; NA, not applicable; GC, glucocorticoid; HCQ, hydroxychloroquine; CTX,
cyclophosphamide.

gradient echo (GRE) sequence of EPI technology, and the
specific parameters are as follows: TR = 2,000 ms, TE = 40 ms,
NEX = 2.0, imaging matrix = 64 × 64, FOV = 24 cm × 24 cm,
FA = 90◦, slice thickness = 5 mm, slice interval = 1 mm, slice
number = 24, time points = 160, a total of 320 s, and the
scanning range covers the whole brain.

The subjects are required to stay awake, rest, lie flat on the
examination bed, breathe calmly, fix their head, and minimize
the movement of their head and other parts. At the same time,
they are required to rest with their eyes closed and try not to do
any thinking activities.

Data preprocessing

BOLD-fMRI data were preprocessed using the DPARSF
(Data Processing Assistant for Resting-State fMRI) v4.4 software
in the DPABI v6.1 (a toolbox for Data Processing and Analysis
for Brain Imaging)1 (Yan et al., 2016) software package in the
Windows operating system. The specific data preprocessing
includes the following: (1) data organization, where the original
fMRI data in the format and structure required by DPABI is
organized so that the software can automatically recognize and
read the fMRI data; (2) input parameters such as time point
(160) and TR (2 s); (3) format conversion, where Dicom files
are converted to NIfTI files; (4) the first 10 time points are
removed. At several time points at the beginning of the scan,
due to factors such as unstable gradient magnetic field and
patient incompatibility, the image noise is large. To reduce its
influence on the overall image, the data of the first 10 time

1 http://rfmri.org/dpabi

points were removed; (5) slice timing: to correct the errors
caused by different acquisition times between each layer; (6)
head movement correction: to calculate, the subject’s head
movement are reported and corrected. To reduce the impact
of head movement on data quality and statistical results, those
with translation > 2.0 mm and rotation > 2.0◦ in the head
movement parameters are excluded. (7) The physiological and
head movement effects were reduced by removing covariates
and linear drift, including white matter and cerebrospinal fluid
signal and 24 Friston movement parameters; (8) Register T1
structural image to fMRI: the high resolution of T1 structural
image to improve the accuracy of subsequent fMRI data analysis
is used; (9) segmentation: the image is segmented into gray
matter, white matter, and cerebrospinal fluid; (10) regression
of irrelevant covariates and de-linear drift: the influence of
machine noise and head movement in the whole brain signal
is removed; (11) Filtering: the filtering range of 0.01–0.1 Hz is
selected to eliminate the influence of noise other than the BOLD
signal frequency; (12) Spatial normalization and resampling:
The fMRI images of each subject were registered to the same
template for subsequent comparisons. This study used the MNI
space-based EPI template and resampled the voxels to 3 × 3 × 3
mm3; (13) Smoothing: to improve the signal-to-noise ratio, the
FWHM selected in this study is “4 4 4.”

Static and dynamic amplitude of
low-frequency fluctuation
computation

The ALFF reflects the low-frequency oscillation strength of
spontaneous brain activity (Zang et al., 2007). The calculation of
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TABLE 2 Regions changes in sALFF in SLE with CI group compared
with the SLE without CI and HCs groups.

Brain regions Cluster size
(voxels)

xyz-peak
(MNI)

F/t-value

ANCOVA

Right parahippocampal gyrus 207 –18/–3/–21 12.65

Left caudate nucleus 135 –12/12/6 11.78

Right putamen 59 27/12/-6 7.85

Left cuneus 71 0/-75/18 8.10

HCs vs. SLE with CI

Left caudate nucleus 169 –12/12/6 –4.151

SLE with CI vs. SLE without CI

Right parahippocampal gyrus 137 15/6-24 3.80

Statistical significance was set at voxel P < 0.01, cluster P < 0.05, controlling for age,
gender and head motion, GRF corrected.
ALFF, amplitudes of low-frequency fluctuation; SLE with CI, Systemic lupus
erythematosus patients with cognitive impairment; SLE without CI, Systemic lupus
erythematosus patients without cognitive impairment; HCs, Healthy controls; MNI,
Montreal Neurological Institute.

sALFF is to Fourier transform the time series eigenvalues of a
certain voxel to frequency space to obtain the average amplitude
value in a specific frequency range. The frequency range in this
study is 0.01–0.10 Hz. A sliding-window method (Leonardi and
Van De Ville, 2015) was used to calculate the dALFF maps by
the Dynamic and Stability Analyses module in DPABI v6.1 (Yan
et al., 2016) software. Existing research believes that the choice
of window length will affect the results of sliding window-related
research (Shakil et al., 2016), and window sizes in the range of
40–100 s can capture the dynamic changes of the brain well
(Zalesky and Breakspear, 2015). The fmin is interpreted as the
minimum frequency of the time series. To minimize spurious
fluctuations, the minimum window length should be higher
than 1/fmin (Li et al., 2018). Thus, we select the optimal window
width of 50 TRs (100 s) and a window with a step size of 1 TR (2
s) to dynamically intercept the fMRI time signal and finally apply
the variance to quantify the difference between the average ALFF
values to obtain the mean dALFF value. The standard deviation
(SD) of the measured values in all time windows was calculated
by using the mean value of dALFF to quantitatively analyze and
compare the time dynamic characteristics of dALFF. Finally,
a z-transformation was conducted on the individual sALFF
maps and dALFF maps to generate normally distributed zsALFF
and zdALFF maps.

Statistical analysis

All demographics and clinical characteristics data were
analyzed by SPSS 23.0 software package. Non-parametric K-S
test was used to test the normality of the data, and the
data distributed normally were expressed as mean ± standard
deviation (x ± s), while the data with skewed distribution

were expressed as median (p25%, p75%). One-way analysis of
variance (ANCOVA) was used to compare the age differences
among the three groups. Chi-square test (χ2) was used to
compare the gender composition ratio among the three groups.
Duration of the disease, MMSE score, and drug accumulation
were compared between the SLE with CI and SLE without
CI groups by Mann–Whitney U-test. Independent-sample
t-test was used to compare SLEDAI-2K scores in SLE with
and without CI groups. For each test statistic, a two-tailed
probability value of < 0.05 was considered as significant. To
further investigate differences in changes in dALFF temporal
variability, data statistics module in DPABI software was used
to conduct a voxel-based ANCOVA to compare the difference
of dALFF value across the three groups with age, gender, and
head motion (mean framewise displacement, FD) as covariate,
multiple comparisons were performed using the LSD method.
To reduce the family-wise error rate (FWER), we adopted
a conservative approach with Gaussian random field (GRF)
theory (voxel level P < 0.01, cluster level P < 0.01). Post-hoc
pairwise comparisons were performed by a two-sample t-test
if ANCOVA yielded significant results and a GRF correction
was used at the cluster threshold of P < 0.01 and a voxel-
wise threshold of P < 0.01. The sALFF of the three groups
were compared using the same method. Each brain region
was found to be significant different in dALFF and sALFF
between SLE with CI group and SLE without CI group or
HCs group was identified as the region of interest (ROI). We
used DPABI software (Yan et al., 2016) to extract the mean
value of dALFF and sALFF of each ROI, respectively. Spearman
correlation analysis was applied between dALFF and sALFF for
each ROI and MMSE scores in the SLE with CI group by using
GraphPad 8.0.2 software.2 The threshold for significance was set
at P < 0.05.

Results

Demographics and clinical
characteristics

The demographics and clinical characteristics of the three
groups are summarized in Table 1. No significant differences
were detected among SLE patients with CI, SLE patients without
CI, and HCs in age and gender. SLE patients with CI and SLE
patients without CI groups showed no significant difference
in duration of disease, SLEDAI-2k scores, anti-Sm antibody,
anti-U1RNP antibody, drug accumulation of glucocorticoids,
hydroxychloroquine, and cyclophosphamide, but significant
difference in anti-dsDNA antibody and MMSE scores. For SLE
patients with CI, the MMSE scores ranged from 17 to 26.

2 https://www.graphpad.com/
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FIGURE 1

Brain regions with significant differences of sALFF among SLE with CI, SLE without CI and HCs. Specifically, (A) ANCOVA results of sALFF among
three groups (voxel P < 0.01, cluster P < 0.05, controlling for age, gender and head motion, GRF corrected), (B,C) Differences between the
groups were calculated using post-hoc analysis based on a two-sample t-test (voxel P < 0.01, cluster P < 0.05, controlling for age, gender, and
head motion, GRF corrected). (D) Correlation analysis showed no significant correlation was found between sALFF and MMSE scores in SLE with
CI groups. Color bars represent statistical value; the solid lines and dashed lines represented the linear regression fitted line and 95% confidence
interval of the Spearman correlation analysis, respectively, SLE with CI, systemic lupus erythematosus patients with cognitive impairment; SLE
without CI, systemic lupus erythematosus patients without cognitive impairment; HCs, healthy controls; sALFF, static amplitudes of
low-frequency fluctuation; MMSE, Mini-mental State Examination; L, left hemisphere; R, right hemisphere; PHG, parahippocampal gurys; CAU,
caudate nucleus; PUT, lenticular nucleus, putamen; CUN, Cuneus.

Static amplitude of low-frequency
fluctuation result

The results of ANCOVA revealed that subjects in the SLE
with CI, SLE without CI, and HC groups exhibited significant
sALFF variability in the right parahippocampal gyrus, left
caudate nucleus, right putamen and left cuneus (voxel P < 0.01,
cluster P < 0.05, controlling for age, gender and head motion,
GRF corrected) (Table 2 and Figure 1A). Compared to the SLE
without CI, the right parahippocampal gyrus exhibited higher
sALFF in the SLE with CI group (Figure 1B). Compared to
the HC, the left caudate nucleus exhibited increased sALFF in
the SLE with CI group (Figure 1C). There was no significant

difference in the sALFF between the HC group and the SLE
without CI group.

Dynamic amplitude of low-frequency
fluctuation variance result

The results of ANCOVA revealed that participants in the
SLE with CI, SLE without CI, and HCs groups exhibited
significant dALFF variability in the right parahippocampal
gyrus, right lingual gyrus, and bilateral inferior occipital gyrus
(voxel P < 0.01, cluster P < 0.05, controlling for age, gender,
and head motion, GRF corrected) (Table 3 and Figure 2A).
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FIGURE 2

Brain regions with significant differences of dALFF among SLE with CI, SLE without CI, and HCs. Specifically, (A) ANCOVA results of dALFF
among three groups (voxel P < 0.01, cluster P < 0.05, controlling for age, gender, and head motion, GRF corrected). (B,C) Differences between
the groups were calculated using post-hoc analysis based on a two-sample t-test (voxel P < 0.01, cluster P < 0.05, controlling for age, gender,
and head motion, GRF corrected). (D,E) Correlation analysis showed no significant correlation was found between dALFF and MMSE scores in
SLE with CI groups. Color bars represent statistical value; the solid lines and dashed lines represented the linear regression fitted line and 95%
confidence interval of the Spearman correlation analysis, respectively, SLE with CI, systemic lupus erythematosus patients with cognitive
impairment; SLE without CI, systemic lupus erythematosus patients without cognitive impairment; HCs, healthy controls; dALFF, dynamic
amplitudes of low-frequency fluctuation; MMSE, Mini-mental State Examination; L, left hemisphere; R, right hemisphere; PHG, para
hippocampal gurys; LING, lingual gyrus; IOG, inferior occipital, putamen; CAL, calcarine fissure and surrounding cortex.

Compared to the HCs, the right lingual gyrus exhibited reduced
dALFF in the SLE without CI group (Figure 2B). Compared to
the HC, the right parahippocampal gyrus exhibited increased
dALFF and left calcarine fissure, and the surrounding cortex
exhibited reduced dALFF in the SLE with CI group (Figure 2C).
No significant differences were found in the dALFF between the
SLE with CI group and the SLE without CI group.

Correlation analysis results

There was no significant correlation between sALFF, dALFF
values and MMSE scores for each ROI in the SLE with CI group
(Figures 1D, 2D,E).

Discussion

So far, this is the first fMRI study in patients with SLE that
uses both the sALFF and dALFF analysis. We also performed
correlation analyses on the sALFF and dALFF abnormalities and
MMSE scores. Our study found that compared with HCs and
SLE patients without CI, SLE patients with CI showed different
characteristics of brain intrinsic functional connectivity strength
and stability, among which, the sALFF of SLE with CI was
increased in the right parahippocampal gyrus compared with
SLE patients without CI, and increased in the left caudate
nucleus compared with HCs. In terms of temporal variability
in the amplitude of local brain activity, the dALFF of SLE
with CI was increased in the right parahippocampal gyrus, but
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TABLE 3 Regions changes in dALFF in SLE with CI group compared
with the SLE without CI and HCs groups.

Brain regions Cluster size
(voxels)

xyz-peak
(MNI)

F/t-value

ANCOVA

Right parahippocampal gyrus 29 18/3/–30 10.87

Right lingual gyrus 60 12/-72/-12 13.60

Right inferior occipital gyrus 37 33/–90/–15 7.44

Left inferior occipital gyrus 34 –36/–78/–6 13.67

HCs vs. SLE with CI

Right parahippocampal gyrus 59 –9/–6/–18 –3.73

Left calcarine fissure and
surrounding cortex

48 –15/–69/6 3.41

HCs vs. SLE without CI

Right lingual gyrus 56 12/–72/–12 4.12

Statistical significance was set at voxel P < 0.01, cluster P < 0.05, controlling for age,
gender, and head motion, GRF corrected.
ALFF, amplitudes of low-frequency fluctuation; SLE with CI, Systemic lupus
erythematosus patients with cognitive impairment; SLE without CI, Systemic lupus
erythematosus patients without cognitive impairment; HCs, Healthy controls; MNI,
Montreal Neurological Institute.

reduced in the left calcarine fissure and surrounding cortex
compared with HCs. Compared to the HCs, the right lingual
gyrus exhibited reduced dALFF in the SLE without CI group.
We did not find a correlation between abnormal sALFF and
dALFF in SLE patients with CI and their cognitive performance.

Several previous studies have investigated the intensity of
intrinsic brain activity in patients with SLE within the scope of
sALFF. These studies found that non-NPSLE patients showed
a decrease of sALFF in the bilateral precuneus and an increase
in the right cuneus and the right calcarine fissure surrounding
cortex, respectively (Yu H. et al., 2019). Another study found
increased standardized ALFF in the left inferior temporal gyrus
and left putamen in non-NPSLE patients compared with HCs
(Yu Y. et al., 2019). A previous study by our research group
found that, compared with HCs group, the ALFF values of
the bilateral postcentral gyrus in the non-NPSLE group were
lower than those in the HCs group, while the ALFF values in
the bilateral inferior temporal gyrus, left putamen, and bilateral
precuneus were higher than those in the HCs group (Piao et al.,
2021). Our study included SLE patients with CI and found
that these patients had two brain regions with different sALFF
values than HCs and SLE patients without CI. The caudate
nucleus participates in cognitive processes by stimulating the
correct movement patterns and selecting appropriate secondary
targets based on the assessment of the action outcome
(Grahn et al., 2008). The parahippocampal gyrus is located in
the medial under the occipital and temporal lobes, is the main
cortical input to the hippocampus, is considered to play an
important role in high cognitive functions including memory
coding retrieval and visuospatial processing, and is an important
center for memory processing (Lin et al., 2021). This study

found that the sALFF in the above two brain regions of SLE
patients with CI was higher than that of HCs and SLE patients
without CI, respectively, suggesting that the local brain activity
intensity of these two brain regions increased, which may be
related to the compensation of cognitive dysfunction. Similar
results have also been reported in studies of major depressive
disorder (Liu et al., 2014), and amnestic CI (Zhang et al., 2021)
and its specific mechanism still needs further research.

Previous studies assumed that ALFF was static throughout
the rs-fMRI scan, but recent studies confirmed that ALFF
is time-varying (Fu et al., 2018). To better understand the
mechanism of cognitive dysfunction in patients with SLE,
we used a sliding window approach for the first time on
the basis of sALFF to study the brain dynamics describing
temporal changes in energy expenditure (temporal variability
of dALFF). We found that SLE patients with CI did indeed
have temporal ALFF alterations. Specifically, compared with
HCs, the SLE patient group with CI had a brain region
that showed increased (right parahippocampal gyrus) and
decreased (left calcarine fissure and surrounding cortex) dALFF,
respectively. Brain dynamics reflect functional capabilities of the
nervous system (Kucyi et al., 2017), and may more sensitively
reflect disruption of cognitive function in multiple diseases
(Cui et al., 2020; Lu et al., 2020; Zheng et al., 2021). The
results obtained by this innovative dALFF method have led
us to realize that in addition to the abnormal local activity
intensity of the brain, there are also changes in the stability
of local activity dynamics in patients with SLE. As mentioned
above, the right parahippocampal gyrus is involved in memory
and other cognitive functions (Lin et al., 2021), and the
abnormal enhancement of the intensity variability of brain
functional activity in this brain region may be one of the
mechanisms of CI in patients with SLE. Similar results have
been reported in chronic obstructive pulmonary disease patients
with semantic-memory impairments. Calcarine fissure and the
surrounding cortex is responsible for receiving and transmitting
visual signals (Huang et al., 2020), changes in the stability
of functional activity in this brain region have been reported
in studies on non-NPSLE (Chen et al., 2021), but its exact
effect on CI needs more studies to clarify. Notably, the brain
regions with abnormal sALFF and dALFF values did not
overlap, which may reflect that the intensity and stability
of brain activity affect cognitive function in patients with
SLE through different neuropathological pathways, suggesting
that the assessment of dALFF can complement the results
of traditional sALFF and promote our understanding of
the pathological mechanism. Future studies can explore the
possibility of dALFF as a new biomarker for SLE patients with CI
by imaging machine learning or receiver operator characteristic
(ROC) curve analysis.

Unfortunately, we did not find a correlation between
abnormal sALFF values, dALFF values, and cognitive function
scores in the SLE patient group with CI, other than possibly
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due to our relatively small sample size and the use of only
one scale to assess cognitive function in patients with SLE,
it may also be related to the properties of fMRI and the
pathogenesis of SLE-related CI. Researchers have tried to use
neuroimaging, immunology (Varley et al., 2020), bioinformatics
(Geng et al., 2020), and other methods to study NPSLE.
Considering the diversity of its clinical manifestations, the
pathogenesis of NPSLE is generally considered to be the result of
the interaction of multiple pathological processes. Some studies
have found that certain autoantibodies and cytokines may
lead to cerebrovascular lesions and/or interfere with neuronal
connections by mediating immune responses (Bertsias and
Boumpas, 2010; Borowoy et al., 2012; Schwartz et al., 2019),
and genetic factors and disruption of the blood–brain barrier
may also be involved in the pathogenesis of NPSLE (Schwartz
et al., 2019). The confounding caused by this heterogeneity in
etiology may cause differences in the performance of individual
brain functions, and ultimately the sALFF and dALFF values
of the regions with the most obvious differences between
groups are not significantly related to individual cognitive
function. On the other hand, the changes of sALFF and
dALFF may be more sensitive than MMSE in distinguishing
SLE from CI, that is, the changes of these two indicators
can help to identify subclinical CI patients in SLE earlier.
In the future, we also need to group the etiology as much
as possible through the detection of autoantibodies (such as
antiphospholipid antibodies, etc.) and cerebrospinal fluid and
obtain more representative subgroups to study the correlation
between CI and brain function in a more targeted manner.
Future research can perform other scales that reflect neuronal
function such as Montreal Cognitive Assessment (MoCA),
mini-Cog, etc. and analyze the correlation with sALFF and
dALFF values, which may reveal more about the relationship
between cognitive function and its fMRI indicators in patients
with SLE. In addition to ALFF, fALFF, ReHo, and other fMRI
indicators can also complement ALFF to help us understand
NPSLE more comprehensively.

This study also has some limitations. First of all, the
field strength of the magnetic resonance scanner used in
this study (1.5T) is lower than that currently mainstream
in brain imaging research (3.0T), so our results may be
biased due to the smaller signal-to-noise ratio. We actually
started this research 10 years ago and continued the same
1.5T MRI scanner and scanning parameters to build the
database. In this study, we conducted strict quality control,
including manual visual inspection and software quality
control. We also hope to use new magnetic resonance
scanners in the future to obtain more accurate results.
Secondly, we only used a window length and step size
recommended by previous studies and did not use other
methods to validate the main results. Finally, this study only
applied dALFF to examine the temporal dynamics of local
brain activity. However, future work can also explore the

changes in fMRI indicators such as dfALFF and dReHo in
patients with SLE.

Conclusion

In conclusion, SLE patients with CI not only have abnormal
brain activity intensity but also have changes in brain activity
stability. By describing the dynamic changes in the intrinsic
brain activity, it provides a new idea for elucidating the
pathophysiological mechanism of cognitive dysfunction in SLE.
However, more research and validation with multimodal data
are needed to determine the link between the severity of CI and
brain activity in patients with SLE.
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Background: Ketamine, a robust antidepressant, has promising potential in

the treatment of major depressive disorder (MDD). However, it does not work

for all MDD patients, and the mechanism underlying its anti-depressive effects

is unclear. Researchers have explored the mechanisms of ketamine action in

MDD patients through MRI, a technique that measures brain activity intuitively.

Notably, many MRI results were inconsistent because they selected different

brain regions as seeds, particularly with respect to functional connectivity (FC)

analysis. To eliminate the influence of prior seeds as much as possible, we used

the significantly different results in degree centrality (DC) analysis as seeds to

explore the FC changes in MDD patients to identify an imaging biomarker of

ketamine’s effect.

Methods: Forty-four MDD patients and 45 healthy controls (HCs) were

included in the study. Patients, aged 18–65, received six intravenous ketamine

injections over 12 days. Depressive symptoms were estimated and MRI scans

were performed at baseline and the day after the sixth infusion. We estimated

FC differences between responders, non-responders and HCs using the

region that showed significant differences between responders and non-

responders in DC analysis as the seed. The correlation between the MADRS

changes and zFC values was performed, and the potential of zFC values

to be a neuroimaging biomarker was explored using the receiver operating

characteristic curve.

Result: Compared with non-responders, responders had significantly

decreased DC values in the right middle frontal gyrus (MFG). In the analysis

of FC using the region that showed significant differences in DC as a seed,

there was a significant difference in the region of the right supplementary

motor area (SMA) among responders, non-responders, and HCs. This region

also overlapped with the bilateral median cingulate gyrus. In post hoc
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analysis, responders had higher FC than non-responders and HCs, and non-

responders had lower FC than HCs. Importantly, the FC between the MFG and

SMA (overlapping bilateral median cingulate gyrus) was correlated with the

improvement of symptoms, which was estimated by the Mongomery-Asberg

Depression Scale (MADRS). FC has the potential to be an imaging biomarker

that can predict the ketamine effect in MDD patients according to the receiver

operating characteristic curve analysis.

Conclusion: Our results revealed that FC between the SMG and SMA and

mACC was highly correlated with depressive symptoms and has the potential

to be a neuroimaging biomarker to predict the effect of ketamine in MDD.

KEYWORDS

ketamine, major depressive disorder, degree centrality (DC), functional connectivity,
default mode network, biomarker

Introduction

Ketamine, an N-methyl-D-aspartate receptor (NMDAR)
antagonist, provides hope for patients with major depressive
disorder (MDD) due to its quick and potent antidepressant
effects (Serafini et al., 2014). Studies demonstrated that a
single intravenous infusion of ketamine (0.5 mg/kg) had an
antidepressant effect 40 min post-infusion, and the crest value
occurred 1 day after infusion (Berman et al., 2000; Zarate et al.,
2006; Murrough et al., 2013a). Previous studies have shown that
MDD patients had a prolonged response after receiving a total
of 6 ketamine injections (Murrough et al., 2013b; Zheng et al.,
2018). Nevertheless, the mechanism of the antidepressant effect
of ketamine is not known.

Recently, an increasing number of researchers have used
neuroimaging to explore the mechanism of ketamine action in
MDD through functional connectivity (FC), a neuroimaging
analysis using blood oxygenation level-dependent (BOLD)
signals obtained from the in vivo brain (Scheidegger et al.,
2016; Kraguljac et al., 2017; Teng et al., 2018; Chen et al., 2019;
Mkrtchian et al., 2021; Rivas-Grajales et al., 2021). Mkrtchian
et al. (2021) revealed that FC between the ventral striatum-left
dorsolateral prefrontal cortex, dorsal caudate-right ventrolateral
prefrontal cortex, dorsal caudal putamen-pregenual anterior
cingulate cortex, and ventral rostral putamen-orbitofrontal
cortex increased in treat-resistant depressive participants after
ketamine treatment. However, Kraguljac et al. (2017) found
that there were no areas that showed increased hippocampus
connectivity during a ketamine challenge. Thus, these results are
often inconsistent.

These heterogeneous results are due to the different “seeds”
in FC analysis, a priori brain regions selected based on
information obtained from task activation studies, functional
neuroanatomy, or even structural deficits (Craddock et al., 2009;

Zhang et al., 2016). To avoid this influence, we used the
degree centrality (DC) to select the seed (Zuo et al., 2012),
which is a kind of network analysis that estimates each node’s
correlation with the others to measure the importance of
each node (Wang et al., 2011; Yang et al., 2014). This is a
measure of the importance of each voxel from a whole-brain
network perspective, and getting seeds from it can partly reduce
the influence (Cheng et al., 2022). Increased DC values in
a brain region mean this region plays a key role in brain
activity.

In the present study, we obtained seed from DC analysis
to reduce bias based on previous brain regions. Then we
estimated the different FC among responders, non-responders,
and HCs at baseline. The relationship between Mongomery-
Asberg Depression Scale (MADRS) score changes and FC
values was investigated. In addition, the receiver operating
characteristic curve analysis was used to explore the potential
of the zFC values as a neuroimaging biomarker of ketamine’s
antidepressant effect in MDD patients. We wish we could
find a reliable neuroimaging biomarker to predict the effect of
ketamine in MDD patients.

Patients and method

Study participants

Participants were recruited from a clinical trial (ChiCTR-
OOC-17012239) in the Affiliated Brain Hospital of Guangzhou
Medical University. Two experienced psychiatrists used the
Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-
5, SCID) to screen patients. Our study was approved by the
Clinical Research Ethics Committee of the Affiliated Brain
Hospital of Guangzhou Medical University.
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The inclusion criteria for the MDD group were as follows:
(a) aged 18–65, (b) 17-item Hamilton Depression Rating Scale
(HAMD-17) score ≥ 17 at baseline, (c) failure of two adequate
antidepressant treatments or Beck Scale for Suicide Ideation-
Part I score ≥ 2 at baseline.

Healthy controls (HCs) and their family members must have
had no DSM-5 diagnosis.

The exclusion criteria for both MDD patients and HCs were
as follows: (a) psychotic symptoms; (b) alcohol or substance
abuse, (c) any serious or unstable medical conditions at present,
or (d) MRI contraindications.

Patients with psychiatric medication treatment, were
required to maintain a stable dosage over 4 weeks before
ketamine infusion and take stable medications throughout the
infusion period.

Forty-four patients were recruited and all signed the consent
form. Excluding four patients with maximum head motion
parameters over 2 mm or 2◦, finally, 40 patients were included in
the analysis. Forty-five MRI scans from HCs were also included
in the analysis.

Study design

Forty-four MDD patients received six ketamine infusions in
12 days, they were on days 1, 3, 5, 8, 10, and 12, respectively.
After an overnight fast, ketamine (0.5 mg/kg) was diluted in
saline and injected intravenously through a pump over 40 min.
Depressive symptoms and MRI scans were collected at baseline
(1 day before the first infusion), and post-treatment (1 day after
the sixth infusion). The detailed study design has been described
in our previous studies (Zheng et al., 2018; Zhou et al., 2018a,b).

Rating scales

Depressive symptoms were estimated using the
Montgomery-Asberg Scale (MADRS) and the responders
were defined as having an improvement in MADRS scores
(1MADRS%) ≥ 50%. This was calculated as follows: baseline
MADRS score minus posttreatment MADRS score, then
divided by the baseline MADRS, and finally multiplied by 100%.

Acquisition of MRI data

Participants completed fMRI scans at baseline and
posttreatment. Participants were required to close their
eyes but stay awake during the scans. BOLD signals were
collected using a 3.0-T Philips Achieva MRI scanner
(Philips, the Netherlands). An eight-channel SENSE head
coil was used to record fast field echo (FFE) echo-planar
images (EPI), the parameters were as follows: repetition

time = 2,000 ms; echo time = 30 ms; flip angle = 90◦; 33 slices;
matrix = 64 × 64; field-of-view = 220 × 220 × 150 mm3; voxel
size = 3.44 × 3.44 × 4 mm3; gap = 0.6 mm; and the number of
signal averages (NSA) = 1. The resting fMRI scan (8 min, 43 s)
comprised 240 contiguous volumes.

Preprocessing of MRI data

The MRI data were preprocessed using the toolbox of
data processing and analysis for (resting-state) Brain Imaging
(DPABI version 6.0),1 running in MATLAB R2019b (The
Mathworks, Natick, MA, USA).

We converted the data from the digital imaging and
communications in medicine (DICOM) to a standard format
(Neuroimaging Informatics Technology Initiative). The first
10 time points were removed to keep the signal stable.
The remaining images were corrected using slice timing and
realignment to reduce the interval scanning time difference and
head motion. Four images were excluded for their maximum
head motion parameter of over 2 mm or 2◦. The remaining
images were normalized to the Montreal Neurological Institute
(MNI) using EPI templates. Nuisance signals from 24-parameter
head motion profiles, white matter signals, cerebrospinal fluid
signals, and global signals were removed using linear regression.
Detrending was performed to remove the linear drift. To
decrease physiological noise, images were filtered at 0.01–
0.08 Hz.

Degree centrality

After preprocessing, the DC value was calculated using
DPABI software. The BOLD signal of each voxel was
extracted and collected with every other voxel. The number
of correlations, which was over 0.25 (r > 0.25), was the DC
value (Buckner et al., 2009; Wang et al., 2021). Then the
DC values were z-transformed to acquire the Z score DC
value images. Finally, these images were smoothed using a
6 mm × 6 mm × 6 mm full width at half the maximum Gaussian
kernel.

Functional connectivity

The significantly different clusters in the DC map were
used as seeds. The average time series of these regions were
separately correlated with the remaining voxels to calculate the
FC values and then z-transformed to obtain zFC maps of all
MDD patients and HCs.

1 http://rfmri.org/DPARSF
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Statistical analysis

Demographic characteristics, including educational level,
duration of illness, baseline MADRS score, posttreatment
MADRS score, and the dose of antidepressant (converted
to standard fluoxetine equivalents) were compared between
responders and non-responders using the Kruskal–Wallis H
test. Body mass index (BMI) between responders and non-
responders was analyzed using two-sample t-tests, and the
gender was compared using the chi-square test. The age data and
head motion were analyzed among responders, non-responders
and HCs using analysis of variance (ANOVA). All of the above
were run on SPSS 25.0 software, and the significance threshold
was p < 0.05.

DC values were compared between responders and non-
responders using a two-sample t-test analysis with age, BMI, and
head motion as covariates in SPM12. AAL 90 was used as a mask
in the analysis.

A one-way ANOVA with age, gender, and head motion
as covariates was used in SPM12 to explore zFC differences
among responders, non-responders, and HCs. The mean zFC
values in the different clusters were extracted to conduct a
post hoc analysis.

Moreover, we explored the relationship between the mean
zFC values of MDD patients and 1MADRS% using Spearman’s
correlation analysis. The mean zFC values of responders and
non-responders were extracted separately and assessed the
diagnostic efficiency using the receiver operating characteristic
curve analysis in GraphPad Prism 5 (GraphPad Software Inc.,
USA).

Results

Demographic characteristics and
clinical symptoms

The demographic and clinical results are shown in Table 1.
There was no significant difference in gender, educational level,

duration of illness, head motion, dose of antidepressant, or
baseline MADRS score. However, responders were older and
had a higher BMI than non-responders (p < 0.05). As expected,
the responder group showed a higher posttreatment MADRS
score than the non-responder group (p < 0.05).

Degree centrality analysis

Compared with responders, non-responders had higher
values in the DC map (voxel-level p < 0.001; peak-level p < 0.05
corrected by FDR). It is a cluster located in the right middle
frontal gyrus (MFG; x = 36, y = 15, z = 45, k = 32), shown in
Figure 1.

Functional connectivity analysis

Among the 3 groups, MFG-related zFC maps were
different in a region centered in the right supplementary
motor area (SMA) (x = 6, y = 3, z = 45, k = 90; voxel-
level P < 0.001, cluster-level P < 0.05 corrected by
FDR). This region also contained parts of the bilateral
median cingulate gyrus (SMA and mACC), as shown in
Figure 2. The post hoc analysis revealed that responders
had higher zFC values than non-responders and HCs,
and non-responders had lower zFC values than HCs
(Figure 3).

Relationship between the zFC value
and 1MADRS%

As Figure 4 shows, Spearman’s correlation analysis revealed
that the zFC values between MFG and SMA and mACC
were positively correlated with 1MADRS% in MDD patients
(r = 0.495, P < 0.05). Importantly, the zFC value has
the potential to be a predictor of the effect of ketamine
(AUC = 0.872, P < 0.001).

TABLE 1 Demographics and clinical characteristics of the MDD and HCs at baseline.

Responders Non-responders HCs P

Subjects 24 16 45 –

Gender (female/male) 15/9 9/7 27/18 0.925

Age (Year, mean ± SD) 39.79 ± 11.58 30.69 ± 11.09 31.44 ± 7.98 0.002

Education (year) 12 (9, 15) 13.5 (9, 15) – 0.594

Duration (month) 60 (24, 153) 42 (8.25, 105) – 0.345

BMI (mean ± SD) 24.23 ± 2.70 21.36 ± 3.24 – 0.004

Baseline MADRS 31.5 (26, 34.75) 33 (23.5, 39.25) – 0.503

Post-treatment MADRS 8 (4.25, 11) 27 (20, 31.5) – 0.000

Head motion (FD) 0.048 (0.039, 0.063) 0.044 (0.035, 0.055) 0.052 (0.047, 0.066) 0.05

The dose of antidepressant (convert
to standard fluoxetine equivalents)

51 (20, 60) 35 (20, 63.75) – 0.733

HCs, healthy control.
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FIGURE 1

Differences in DC between responders and non-responders.
(Two sample t-test, voxel- level p < 0.001, peak p < 0.05
corrected by FDR).

Discussion

In this study, we used the seed obtained from the DC
map to explore the FC alterations in patients with MDD. The
results revealed that the non-responder group had increased DC
compared with the responder group in the region of the right
MFG, a part of the DMN. The seed-based FC analysis showed a
significant difference in the SMA and mACC among responders,
non-responders, and HCs. The zFC in this region had a highly
sensitive response to ketamine in MDD after six infusions. It can
be used as a neuroimaging biomarker.

The MFG was a major part of the default mode network
(DMN). The DMN is a key network in MDD and plays the
role of cognitive control and integrating information (Yeshurun
et al., 2021; Liu et al., 2022; Pang et al., 2022b). According to
the prevalent triple network model, the symptoms of depression

FIGURE 3

Differences in zFC values among responders, non-responders
and HCs. (one-way ANOVA, Bonferroni’s Multiple Comparison
Test. *p < 0.05, ***p < 0.0001).

can be explained by dysfunction between the DMN, salience
network, and central executive network, especially the increased
FC in the DMN (Hamilton et al., 2015; Kaiser et al., 2015; Li
et al., 2022). Using graph theory-based methods in the data of
821 MDD and 765 HCs, Yang et al. (2021) revealed that patients
with MDD were characterized by decreased nodal efficiency in
the DMN. Another study compared 848 MDD patients with 794
HCs and also found decreased FC in the DMN (Yan et al., 2019).
Our results went one step further and revealed a difference
within the MDD group. Liang et al. found two MDD subgroups
with differing FC profiles of the DMN from 690 MDD patients;
one group exhibited increases in connectivity, and the other
subgroup showed decreases in connectivity (Liang et al., 2020).
Price et al. (2017) also revealed two subgroups in MDD patients
by assessing the difference in connectivity patterns across DMN

FIGURE 2

Differences in xFC among responders, non-responders and HCs. (one- Way ANOVA, voxel-level p < 0.001, cluster-level p < 0.05 corrected by
FDR).
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FIGURE 4

(A) Correlation between zFC values and L’lMADRS% in MOD patients. (B) ROC curve showing an area under the curve (AUC) of 0.8672
(p < 0.001) for the zFC values, with a sensitivity of 100%, and specificity of 68.75%.

nodes. A prior study found that ketamine can reduce FC (Price
et al., 2017). Moreover, research has found that changes in FC
at baseline could predict the effect of ECT (Pang et al., 2022a).
In our results, the FC of responders will be toward HCs while
non-responders will be far away from HCs if the FC has been
reduced. It seems that the two groups qualitatively had different
FC in the DMN, although the FC was negative in both groups.
This finding supports the theory mentioned above: there were
two subgroups in MDD, one of which is sensitive to ketamine
while the other is not.

An increasing number of studies have partly revealed
the function of the SMA. Gabbay et al. (2013) revealed that
anhedonia scores were positively correlated with the intrinsic FC
strength of the SMA; Westlund Schreiner et al. (2017) revealed
a hyperconnectivity between the amygdala in self-injured
adolescents without suicidal, which may show that negative
effects have an important link with habitual behaviors; while
other researchers showed that the FC value of the right SMA was
negatively correlated with depressive symptoms in depressed
patients with irritable bowel syndrome (Li et al., 2021). There
were also some results regarding the cortical thickness in
the SMA. Some studies have shown depressed patients had
significantly smaller volumes of the right pre-SMA than control
subjects (Exner et al., 2009; Cheng et al., 2010; Gabbay et al.,
2013; Westlund Schreiner et al., 2017). Salomons et al. (2012)
revealed fractional anisotropy of connected white matter tracts
along the corticospinal tract were associated with helplessness
and mediated the relationship between the SMA cortical
thickness and helplessness. Besteher et al. (2017) revealed that
somatization symptoms showed a negative correlation with the
gray matter volume of the right SMA. Moreover, Li et al. (2015)
found that regional cerebral glucose metabolism (rCMglu) in
the bilateral SMA was decreased in the medication-resistant
depression (MRD) group than in the non-MRD group, the
MRD group patients also had decreased rCMglu in the SMA

than the control group, while Chen et al. (2018) revealed that
TRD patients who received the 0.5 mg/kg ketamine infusion
had significantly higher glucose metabolism in the SMA than
those who received the 0.2 mg/kg ketamine infusion, these
authors suggest that the persistent antidepressant effect of a
0.5 mg/kg ketamine infusion may be mediated by increased
activation in the SMA. These results indicate that the SMA
has a tighter connection with MDD and plays an important
role in habitual behaviors, depressive symptoms, and helpless
feelings.

It’s worth noting that the significant cluster located in
the right SMA also overlapped with the bilateral median
cingulate gyrus. The cingulate participates in the control of
cognition and emotion, and executive attention (Botvinick
et al., 2004; Etkin et al., 2006). Recently, an increasing
number of studies have shown that the cingulate plays a
key role in MDD and bipolar disorder (BP). A large meta-
analysis, including 148 MDD patients and 7,957 HCs, indicated
that patients with MDD had a thinner cortical anterior
cingulate cortex and posterior cingulate cortex (Schmaal
et al., 2017). Several studies indicated that the volume of
the anterior cingulate cortex was associated with BP, the
volume of the anterior midcingulate cortex at baseline was
associated with greater symptom improvement after follow-
up and patients who remitted had less volume decline
than non-remitted patients in the left anterior cingulate
cortex during a 3-year follow-up period (Lochhead et al.,
2004; McDonald et al., 2004; Frodl et al., 2008; Phillips
et al., 2015). Regarding FC, Greicius et al. (2007) found
that the FC of the subgenual anterior cingulate cortex was
correlated with the depressive episode length. A study using
rTMS to treat treatment-resistant depression used sgACC-
DLPFC and rACC-IPL connectivity as features, and found
responder-non-responder classification accuracies of 84 and
76% (end-of-treatment), 88 and 81% (3-month follow-up)
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(Ge et al., 2020). Enhanced FC between the right middle
cingulum and right medial prefrontal cortex was positively
correlated with the duration of depression since onset (Marazzi
et al., 2021). This region is a key node in MDD that we cannot
ignore.

Our findings should be considered with some limitations.
First, patients took antidepressants and received ketamine
injections at the same time. Although there was no difference
in the dose, it may have affected the FC in the whole brain,
thereby, impacting our final result. However, in the present
study, it was closer to a real situation in patients’ daily lives.
Second, we only explored the FC values in the cerebrum (using
the mask of AAL90), excluding the cerebellum. This may cause
us to ignore the role of the cerebellum in brain activity. Third,
we did not include the baseline MADRS score as a covariate
because we did not collect it from HCs. It may improve results
in our future studies. Finally, the MDD patients in our study
include treatment-resistant depressive patients and patients
with suicidal ideation. This could have biased our results.

Our results partially support the DMN’s key role of the DMN
in MDD and MDD patients could be identified as two subgroups
by FC in the DMN. We also revealed that FC between the
DMN and SMA and mACC was more highly correlated with
depressive symptoms. In addition, FC has the potential to be a
neuroimaging biomarker to predict the ketamine effect.
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Introduction: This study aimed to investigate the possible associations

between problematic smartphone use and brain functions in terms of both

static and dynamic functional connectivity patterns.

Materials and methods: Resting-state functional magnetic resonance

imaging data were scanned from 53 young healthy adults, all of whom

completed the Short Version of the Smartphone Addiction Scale (SAS-SV) to

assess their problematic smartphone use severity. Both static and dynamic

functional brain network measures were evaluated for each participant. The

brain network measures were correlated the SAS-SV scores, and compared

between participants with and without a problematic smartphone use after

adjusting for sex, age, education, and head motion.

Results: Two participants were excluded because of excessive head motion,

and 56.9% (29/51) of the final analyzed participants were found to have a

problematic smartphone use (SAS-SV scores ≥ 31 for males and ≥ 33 for

females, as proposed in prior research). At the global network level, the

SAS-SV score was found to be significantly positively correlated with the

global efficiency and local efficiency of static brain networks, and negatively

correlated with the temporal variability using the dynamic brain network

model. Large-scale subnetwork analyses indicated that a higher SAS-SV

score was significantly associated with higher strengths of static functional

connectivity within the frontoparietal and cinguloopercular subnetworks, as

well as a lower temporal variability of dynamic functional connectivity patterns

within the attention subnetwork. However, no significant differences were

found when directly comparing between the groups of participants with and

without a problematic smartphone use.

Conclusion: Our results suggested that problematic smartphone use is

associated with differences in both the static and dynamic brain network
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organizations in young adults. These findings may help to identify at-risk

population for smartphone addiction and guide targeted interventions for

further research. Nevertheless, it might be necessary to confirm our findings

in a larger sample, and to investigate if a more applicable SAS-SV cutoff

point is required for defining problematic smartphone use in young Chinese

adults nowadays.

KEYWORDS

addiction, problematic smartphone use, mobile phone use, fMRI, dynamic functional
connectivity

Introduction

In the past years, the popularity and availability of
smartphones have been increasing worldwide, and such a trend
is accompanied by increased concerns regarding the potential
overuse of smartphones (Horvath et al., 2020; Ratan et al., 2021).
Recently, the term “problematic smartphone use” (or also called
“problematic mobile phone use” by some researchers) has been
introduced, which is defined as excessive use of smartphones
with features of craving, dependence, loss of control, and
potentially related physical and mental health problems (Long
et al., 2016; Harris et al., 2020; Zou et al., 2021). These problems
include, for instance, bodily pain (Ng et al., 2020), poor sleep
quality (Huang et al., 2020), reduced physical fitness (Wacks and
Weinstein, 2021), as well as mental problems such as depressive
symptoms (Elhai et al., 2017; Yang X. et al., 2021) and even major
depressive disorder (Alageel et al., 2021).

Identifying factors associated with problematic smartphone
use can help identify at-risk population and guide targeted
interventions for further research (Luk et al., 2018; Roh et al.,
2018). Resting-state functional magnetic resonance imaging
(rs-fMRI) offers a promising approach for characterizing
the intrinsic brain functional organizations (Canario et al.,
2021; Lin et al., 2021). Using rs-fMRI, a growing body
of neuroimaging studies has suggested that problematic
smartphone use is associated with brain dysfunction even in
non-clinical samples with no diagnosis of psychiatric disorders
(Chun et al., 2018; Paik et al., 2019; Horvath et al., 2020;
Ahn et al., 2021; Pyeon et al., 2021; Zou et al., 2022). For
example, the severity of problematic smartphone use has been
reported to be positively associated with functional connectivity
between the parahippocampal gyrus and middle temporal
gyrus (Zou et al., 2022), and negatively associated with the
fronto-limbic functional connectivity (Pyeon et al., 2021) in
general populations. In another study, problematic smartphone
use was suggested to be related to enhanced functional
connectivity within the salience network, as well as between
the salience and default-mode networks (Ahn et al., 2021).
Importantly, some of these alterations (e.g., parahippocampal

gyrus-middle temporal gyrus functional connectivity) have
been found to moderate the relationship between problematic
smartphone use and depressive symptoms in adolescents
(Zou et al., 2022). Appreciably, these findings have advanced
our understanding of the potential neurobiological factors
associated with problematic smartphone use, which may guide
further research on interventions for this problem.

The currently published rs-fMRI studies on problematic
smartphone use, however, are limited in several ways. Firstly,
most of these studies were focused on connectivity patterns
within predefined regions of interest (ROIs). Although there
have been some attempts (Ahn et al., 2021), investigations
on how problematic smartphone use would affect the large-
scale configurations of brain networks are relatively limited.
Especially, it has been suggested that graph-theoretical-based
features of the whole-brain network (e.g., global and local
efficiency) can provide a powerful and reliable framework
for understanding the alterations in brain function (Achard
and Bullmore, 2007; Cao et al., 2014; Yang H. et al., 2021),
but their possible relationships with problematic smartphone
use were seldom reported. Secondly and importantly, while
conventional rs-fMRI studies were generally performed under
the assumption that connectivity patterns between brain areas
are static, recent studies have proved that the brain connectivity
patterns are actually dynamically changed over time (Hutchison
et al., 2013a,b). The “dynamic functional connectivity (dFC)”
was suggested to reflect important information ignored by
conventional “static functional connectivity (sFC)” (Park et al.,
2018; Zhang W. et al., 2018), and has been widely used in
recent rs-fMRI studies in both psychiatric (Sheng et al., 2021;
Chen et al., 2022) and non-clinical (Long et al., 2019; Huang
D. et al., 2021) populations. Nonetheless, whether problematic
smartphone use would affect the brain dFC patterns have
been barely investigated to our knowledge, and needs further
investigation.

To overcome the above limitations, this study aimed
to investigate the possible associations between problematic
smartphone use and differences in large-scale brain network
organizations by combining both sFC and dFC analyzing
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methods. We anticipate that the results would provide
meaningful information to previous studies focusing on only
specific ROIs and/or on only brain sFC patterns, and further
improve our understanding of the possible biological factors
associated with problematic smartphone use.

Materials and methods

Participants and measures

Fifty-three young healthy adults were recruited from the
Changsha city area, Hunan Province, China based on the
following inclusion criteria: (1) 18∼25 years of age; (2) native
Chinese speakers; (3) right-handed; (4) were never diagnosed
with any psychiatric diseases; and (5) had no contraindications
to rs-fMRI scanning. All participants had signed informed
consent, and the study was proved by the Ethics Committee of
Second Xiangya Hospital, Changsha, China.

The participants were asked to complete the Short Version
of the Smartphone Addiction Scale (SAS-SV) (Kwon et al., 2013)
to assess the problematic smartphone use severity. The SAS-
SV was a self-reported scale that contains 10 items, each rated
from 1 (“strongly disagree”) to 6 (“strongly agree”). Thus, the
total score of SAS-SV ranges from 10 to 60, and a higher score
indicates a higher level of current problematic smartphone use
(Kwon et al., 2013; Luk et al., 2018). The Chinese version of SAS-
SV has been proved to be valid (Luk et al., 2018) and was widely
applied in Chinese adults (Chen et al., 2017; Guo et al., 2020,
2021; Zhang et al., 2022).

All participants also completed the following scales to
estimate their current mental health situations during the past
two weeks: (1) the 9-item Patient Health Questionnaire (PHQ-
9), a screening instrument for depressive symptoms (Kroenke
et al., 2001; Wu et al., 2022); and (2) the seven-item Generalized
Anxiety Disorder Scale (GAD-7), a questionnaire to assess
anxiety levels (Spitzer et al., 2006; Wu et al., 2022). The
Cronbach’s α coefficients of the SAS-SV, PHQ-9, and GAD-
7 in this study were 0.869, 0.831, and 0.867 respectively,
which suggests a good internal consistency (Cronbach’s α

coefficient > 0.7) (Wu et al., 2022).

Imaging data acquisition and
preprocessing

The rs-fMRI data were acquired from each participant using
a 3.0 T Siemens scanner with the following key parameters:
matrix = 64 × 64, slices = 32, repetition time (TR) = 2,000 ms,
echo time (TE) = 30 ms, slice thickness = 5 mm, gap = 0 mm,
flip angle = 90◦, field of view (FOV) = 240 × 240 mm2,
and total volumes = 216. T1-weighted images were also
acquired for registration with the following key parameters:

matrix = 256 × 256, slices = 176, TR = 1,900 ms, TE = 2 ms,
slice thickness = 1 mm, gap = 0 mm, and FOV = 256 × 256
mm2. After data acquisition, the images of all participants were
preprocessed using the DPARSF software1 (Chao-Gan and Yu-
Feng, 2010; Yan et al., 2016) with the standard pipeline. Briefly,
the pipeline includes removing the first 10 time points, slice
timing, motion realignment, spatial normalization, temporal
filtering (0.01–0.10 Hz), and nuisance regression (including the
white matter and cerebrospinal fluid signals) (Yan et al., 2019;
Long et al., 2020a). The following procedures were performed to
ensure data quality: (1) all preprocessed images were manually
checked by trained researchers to rule out overt artifacts or poor
registration; (2) data were excluded from the analyses when
excessive head motion occurred during scanning, as defined by
mean framewise-displacement (FD) > 0.2 mm (Huang X. et al.,
2021); (3) the mean FD values were further used as a controlling
variable in all the following analyses. More details about the data
acquisition parameters and preprocessing steps can be found in
a previously published work (Huang D. et al., 2021).

Static and dynamic brain network
constructions

The Power functional atlas (Power et al., 2011), which
includes a total of 264 ROIs distributed across the brain (see
Figure 1A), was used to define the nodes in brain networks for
each participant. We chose the Power atlas here since it was
widely used and validated in both sFC and dFC studies (Cao
et al., 2014; Tan et al., 2020; Long et al., 2021). The mean time
series were firstly extracted from each of the 264 nodes (ROIs)
by averaging rs-fMRI signals within each node. The sFC strength
for any pair of two nodes was computed as the Fisher’s r-to-z
transformed Pearson’s correlation coefficients of the extracted
time series, yielding a 264∗264 sFC matrix which represents the
static brain network organization (Figure 1B).

To construct dynamic brain networks, the extracted time
series were further segmented into a number of continuous
time windows using a common sliding-window approach (Long
et al., 2020a; Zhao et al., 2021). A window width of 50 TRs
(100 s) and a step length of 3 TRs (6 s) were used based on
previous recommendations (Sun et al., 2019; Long et al., 2020a;
Tang et al., 2022), resulting in a total of 53 time windows.
Similar to the sFC matrixes, a 264∗264 dFC matrix was then
generated for each time window based on the Fisher’s r-to-z
transformed connection strengths between nodes. These dFC
matrices are time-ordered, and thus formed a dynamic brain
network G = (Gt)t= 1, 2, 3, ..., 53, in which the tth matrix (Gt)
represents the “snapshot” of brain dFC patterns within the tth
time window (Sun et al., 2019; Huang D. et al., 2021; Figure 1B).

1 http://rfmri.org/DPARSF
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FIGURE 1

(A) The regions of interests (ROIs) used to define the brain nodes and their subnetwork assignments. (B) A summary of procedures for static
functional connectivity (sFC) and dynamic functional connectivity (dFC) analyses (see details in the Methods section). ATT, attention
subnetwork; AUD, auditory subnetwork; CON, cinguloopercular subnetwork; DMN, default-mode subnetwork; FPN, frontoparietal subnetwork;
NaN, unassigned; SAL, salience subnetwork; SM, sensorimotor subnetwork; SUB, subcortical subnetwork; VIS, visual subnetwork.

Global and nodal brain network
metrics

Several common global and nodal network metrics
were calculated for both the static and dynamic (weighted,
undirected) brain networks for each participant. Static network
metrics included the global efficiency (Eglob) and local efficiency
(Eloc) at the global level, as well as the nodal degree of each node.
The Eglob and Eloc are two of the most intuitive and widely-used
metrics to measure the information transfer efficiency of a static
brain network (Tan et al., 2020; Yang H. et al., 2021; Liu D.
et al., 2022). The nodal degree is a basic measure of the overall
connectivity of a node to the rest of the brain (Li T. et al.,
2021; Yang H. et al., 2021). The Eglob and Eloc were calculated
in a range of density levels from 0.10 to 0.34 with an interval
of 0.01, to avoid possible bias caused by a single density level
(Achard and Bullmore, 2007; Lv et al., 2021; Yang H. et al.,
2021). This range was chosen because it guaranteed that the
network metrics were estimable and there were not too many
spurious edges (Achard and Bullmore, 2007; Zhang et al., 2011).
For each metric, the area under the curve (AUC) across such a
density range (0.10–0.34) was calculated and fed into statistical
analyses (Zhang et al., 2011; Yang H. et al., 2021). Referring
to the previous work, the characteristic path length (Lp) and
clustering coefficient (Cp) were also calculated for the latter
validation analyses (Yang H. et al., 2021). The above static brain
network metrics were calculated using the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010).

The examined dynamic network metrics included the
temporal variability for the entire brain network and nodal
temporal variability of each node (Zhang et al., 2016; Dong et al.,
2019; Long et al., 2020b; Sun et al., 2022). These two metrics
quantify the temporal stability of brain dFC patterns at the
global and nodal levels, respectively; higher values of temporal

variability indicate more fluctuations of the dFC patterns (less
stable dFCs) over time. More details about the calculations of
these two metrics can be found in previous publications (Zhang
et al., 2016; Dong et al., 2019; Long et al., 2020b; Sun et al., 2022).

Large-scale subnetwork analyses

Besides the global and nodal network metrics, large-scale
subnetwork analyses were also performed on both the sFC
and dFC architectures strictly following the procedures in
previous publications (Dong et al., 2019; Long et al., 2020b;
Li L. et al., 2021; Sun et al., 2022). According to prior
work (Cole et al., 2013; Mohr et al., 2016; Long et al.,
2019, 2021), all ROIs in the Power atlas were firstly assigned
into nine large-scale subnetworks including the default-
mode, salience, visual, subcortical, auditory, frontoparietal,
cinguloopercular, sensorimotor and attention subnetworks
(Figure 1A). The strengths of within-and between-subnetwork
sFC were calculated by averaging the z-transformed sFC values
across all involved connections within a specific subnetwork,
or between a specific pair of subnetworks (Li L. et al., 2021).
Similarly, the temporal variabilities of within- and between-
subnetwork dFC were also obtained by calculating the average
variabilities of dFC across all involved connections (Dong et al.,
2019; Long et al., 2020b; Sun et al., 2022). This resulted in
nine within-subnetwork sFC/dFC measures and 36 between-
subnetwork sFC/dFC measures.

Statistics

The possible associations between problematic smartphone
use and all the sFC/dFC measures were investigated from two
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FIGURE 2

A summary of how to test the mediation effects of brain network measures in the relationship between problematic smartphone use severity
and psychological symptoms. A significant mediation occurred when the 95% confidence interval for the indirect effect did not include zero.

perspectives. Firstly, relationships between all brain network
measures and the SAS-SV score were assessed using the partial
Pearson correlations adjusted for age, sex, years of education,
and head motion (mean FD value). False discovery rate (FDR)
corrections were applied to correct for multiple correlation tests
(e.g., across the three global metrics, the 264 nodes, the nine
within-subnetwork and 36 between-subnetwork measures).
Significance was set at FDR-corrected p < 0.05. The results were
visualized partly using the BrainNet Viewer (Xia et al., 2013).

Secondly, all brain network measures were compared
between the groups of participants with and without a
problematic smartphone use, as defined by the commonly-
used SAS-SV cutoff points proposed in prior research (SAS-SV
scores ≥ 31 for males and ≥ 33 for females) (Kwon et al.,
2013; Luk et al., 2018; Saadeh et al., 2021; Liu H. et al., 2022).
All brain network measures were compared between the two
groups using the analysis of covariance (ANCOVA) covarying
for age, sex, years of education, and head motion. Similarly, FDR
corrections were applied to correct for multiple comparisons,
and significance was set at FDR-corrected p < 0.05.

Validation analyses

Several follow-up analyses were performed to validate the
results. Firstly, the associations between the SAS-SV score and
Lp/Cp, which have equivalent meanings to the Eglob and Eloc
(Yang H. et al., 2021), were estimated using the same methods.
Secondly, since the optimal window width and step length for
the sliding-windows method are still being debated (Leonardi

and Van De Ville, 2015; Zhang C. et al., 2018), the analyses on
all dFC measures were repeatedly with a set of different window
and step lengths for the sliding windows [window/step = (80,
100, 120)/(4, 6, 8) s] to see if the results were affected by such
analyzing strategies.

Exploratory analyses

In the present study, we performed two-step exploratory
analyses to see if those problematic smartphone use-related
differences in sFC/dFC would have mediation effects in
the relationship between problematic smartphone use and
psychological symptoms. Firstly, the linear regression analyses
(controlling for age, sex, and education) were used to determine
whether an association existed between the SAS-SV score
and the GAD-7/PHQ-9 score. Secondly, when significant
associations existed (p < 0.05), the analyses of mediation effects
were further conducted using the PROCESS software (Hayes,
2012) on the sFC/dFC measures. Model 4 in the PROCESS
software was used with 5,000 bootstrapping resamples; a
significant mediation occurred when the 95% confidence
interval (CI) for the indirect effect did not include zero
(Figure 2; Rhudy et al., 2020; Li J. et al., 2021; Wu et al., 2021).

Additionally, since no significant results were found in
group comparisons between the participants with and without
a problematic smartphone use (see later in Section “Group
comparisons”) based on the SAS-SV cutoff points proposed
in prior research (≥ 31 for males and ≥ 33 for females),
we explored whether the results would change when using
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TABLE 1 Characteristics of the final analyzed sample (n = 51).

Mean ± Standard deviation

Age 21.51± 1.55

Sex (males/females) 16/35

Year of education 15.65± 1.93

SAS-SV score 32.78± 9.21

SAS-SV score (in males) 34.69± 7.87

SAS-SV score (in females) 31.91± 9.74

GAD-7 score 3.12± 3.20

PHQ-9 score 4.18± 3.66

a different cutoff. Here, referring to some published studies
(Mullins et al., 2007; Asarnow et al., 2019; Quintero Garzón
et al., 2021), we used a cutoff score estimated based on one
standard deviation above the mean of SAS-SV score in the
surveyed sample; this resulted a new cutoff score of ≥ 43 for
males and ≥ 42 for females. Group comparisons were repeated
based on such new cutoff.

Results

Sample characteristics

During data preprocessing, two participants were excluded
because of excessive head motion. Thus, the final analyzed
sample consisted of 51 subjects and their demographic and
clinical characteristics are presented in Table 1.

Correlation analyses

At the global level, significant correlations were found
between the SAS-SV score and the Eglob of static brain networks
(r = 0.288, corrected p = 0.049), as well as between the SAS-
SV score and the Eloc of static brain networks (r = 0.335,
corrected p = 0.032) (Figure 3A). Furthermore, a significant
negative correlation was found between the SAS-SV score and
the temporal variability of dynamic brain networks (r =−0.354,
corrected p = 0.032) (Figure 3B). At the nodal level, however, no
significant correlations were found for any metric (all corrected
p > 0.05).

As shown in the Figure 4, significant positive correlations
were found between the SAS-SC score and sFC strength within
the frontoparietal subnetwork (r = 0.458, corrected p = 0.011), as
well as between the SAS-SC score and sFC strength within the
cinguloopercular subnetwork (r = 0.424, corrected p = 0.013);
moreover, a significant negative correlation was found between
the SAS-SC score and dFC temporal variability within the
attention subnetwork (r = −0.409, corrected p = 0.038). No
significant results were found on the between-subnetwork
sFC/dFC measures (all corrected-p > 0.05).

Group comparisons

Based on the cutoff of a SAS-SV score ≥ 31 for males
and ≥ 33 for females, 56.9% (29/51) of the participants
were found to have a problematic smartphone use. However,
no significant group differences were found on any brain
network measure between the participants with and without
a problematic smartphone use (all corrected p > 0.05), even
for those measures showing significant correlations with the
SAS-SV score (Figure 5A).

Validation analyses

Significant correlations were found between the SAS-SV
score and Lp (r = 0.363, corrected p = 0.023), as well as between
the SAS-SV score and Cp (r = −0.332, corrected p = 0.023)
(Figure 3C), which thus partly validate the findings on Eglob and
Eloc.

The relationships between the SAS-SV score and dFC
measures remained significant when repeating the analyses with
a set of different window and step lengths (see Supplementary
Tables 1, 2). Therefore, the results were unlikely to be largely
affected by the analyzing parameters.

Exploratory analyses

The linear regression analyses revealed a significant positive
relationship between the SAS-SV score and the PHQ-9 score
(β = 0.154, t = 2.787, p = 0.008), suggesting that problematic
smartphone use is associated with a higher level of depressive
symptoms. However, no significant mediation effects were
observed for any sFC/dFC measure in the relationship between
problematic smartphone use and depressive symptoms (no
significant indirect effects were observed, as shown in Table 2).

When defining problematic smartphone use with a new
cutoff (SAS-SV score ≥ 43 for males and ≥ 42 for females),
17.6% (9/51) of the participants were considered to have a
problematic smartphone use. When using such new cutoff
points, significant group differences were found between the
participants with and without a problematic smartphone use
on most brain network measures which showed significant
correlations with the SAS-SV score (corrected p < 0.05,
Figure 5B).

Discussion

In this study, we investigated the possible associations
between problematic smartphone use and brain functions
in young healthy adults combining both the sFC and
dFC analyzing methods. Overall, our results suggested
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FIGURE 3

Results of the partial correlations between the short version of the smartphone addiction scale (SAS-SC) score and each global brain network
metric. (A) Results on the Eglob and Eloc of static brain networks. (B) Results on the temporal variability of dynamic brain networks. (C) Results on
the Cp and Lp of static brain networks (as validation analyses). The partial Pearson correlation coefficients (r) and corrected p values are
presented.

FIGURE 4

Results of partial correlations between the short version of the smartphone addiction scale (SAS-SC) score and the within-or
between-subnetwork static functional connectivity (sFC) strength (A) and dynamic functional connectivity (dFC) temporal variability (B). The
scatter plots for the significant correlations were also presented on the right side. ATT, attention subnetwork; AUD, auditory subnetwork; CON,
cinguloopercular subnetwork; DMN, default-mode subnetwork; FPN, frontoparietal subnetwork; SAL, salience subnetwork; SM, sensorimotor
subnetwork; SUB, subcortical subnetwork; VIS, visual subnetwork. *Indicates a significant correlation with corrected p < 0.05.
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FIGURE 5

(A) Results of group comparisons when defining problematic smartphone use with the cutoff proposed in prior research [short version of the
smartphone addiction scale (SAS-SV) score ≥ 31 for males and ≥ 33 for females]. (B) Results of exploratory group comparisons when defining
problematic smartphone use with a new cutoff (SAS-SV score ≥ 43 for males and ≥ 42 for females, as estimated by one standard deviation
above the mean scores). The error bars represent the 95% confidence intervals, and the “*” indicates a significant difference with corrected
p < 0.05. ATT, attention subnetwork; CON, cinguloopercular subnetwork; PSU, problematic smartphone use.

that the severity of smartphone use is associated with
significant differences in both the static and dynamic brain
network organizations.

For static brain network properties, our results suggested
that higher smartphone use severity is significantly associated
with a higher Eglob as well as a higher Eloc at the global level
(Figure 3A). Such results were further validated by significant
results on the Cp and Lp, which were known to have equivalent
meanings to the Eglob and Eloc (Yang H. et al., 2021; Figure 3C).
While the neuroimaging studies on problematic smartphone use
are growing (Ahn et al., 2021; Pyeon et al., 2021; Zou et al.,
2022), the possible effects of problematic smartphone use on
these graph-theoretical-based brain network features are still
seldom reported. Nevertheless, similar alterations in the brain
networks (increased Eglob and/or Eloc) have been associated with
some common psychiatric diseases such as posttraumatic stress
disorder (Lei et al., 2015), as well as multiple substance/non-
substance addictions such as the nicotine dependence (Lin
et al., 2015) and Internet gaming addiction (Park et al., 2017).
Our results may thus provide preliminary evidence that higher

smartphone use severity could be related to changing trends in
topological functional brain organizations, which is similar to
changes in patients with these disorders. These findings may
help to identify at-risk population for smartphone addiction,
and guide targeted interventions for further research.

Using the dynamic network model, our results suggested
that problematic smartphone use is associated with a lower
temporal variability (Figure 3B), which indicates a decreased
dynamism of brain networks (Long et al., 2020b). Previous
studies have proved that there are unignorable dynamic
fluctuations in the human brain’s functional organizations
(Hutchison et al., 2013a,b), which is closely related to
the cognitive (Patil et al., 2021) and emotional (Tobia
et al., 2017) processes. Meanwhile, both excessively increased
(Long et al., 2020b; Sun et al., 2022) and decreased (Jin et al.,
2017; Luo L. et al., 2021; Luo Z. et al., 2021) dynamisms
were thought to be reflective of abnormal brain functions.
Specially, a decreased dynamism may indicate a disturbance
in the information processing across brain regions (Luo Z.
et al., 2021). Here, our results therefore provide one of the first
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TABLE 2 Results of the mediation effect analyses on each brain
network measures in the relationship between the short version of the
smartphone addiction scale (SAS-SV) score and patient health
questionnaire (PHQ-9) score.

Brain
network
measures

Direct effects (with
95% confidence

intervals)

Indirect effects (with
95% confidence

intervals)

Global network
metrics

Global efficiency 0.140 (0.022, 0.259)* 0.015 (−0.013, 0.065)

Local efficiency 0.141 (0.020, 0.261)* 0.015 (−0.021, 0.068)

Temporal
variability

0.152 (0.030, 0.275)* 0.003 (−0.040, 0.059)

Characteristic
path length

0.142 (0.022, 0.263)* 0.013 (−0.021, 0.066)

Clustering
coefficient

0.141 (0.019, 0.263)* 0.014 (−0.025, 0.065)

Subnetwork-
level
measures

Within-FPN sFC
strength

0.138 (0.010, 0.267)* 0.017 (−0.045, 0.087)

Within-CON
sFC strength

0.155 (0.029, 0.282)* 0.000 (−0.060, 0.058)

Within-ATT
dFC temporal
variability

0.150 (0.025, 0.275)* 0.006 (−0.043, 0.054)

The “*” indicates a significant direct or indirect effect (with a 95% confidence interval not
including zero). ATT, attention subnetwork; CON, cinguloopercular subnetwork; FPN,
frontoparietal subnetwork.

evidence that problematic smartphone use may decrease the
functional brain network dynamism.

At the subnetwork level, it was found that a higher
smartphone use severity is associated with increased sFC
strengths within the frontoparietal and cinguloopercular
subnetworks (Figure 4A), as well as decreased dFC temporal
variability within the attention subnetwork (Figure 4B). The
frontoparietal and cinguloopercular subnetworks are known to
be implicated in higher-level cognitive functions (Wallis et al.,
2015; Schmidt et al., 2016). The attention subnetwork is thought
to be responsible for the top-down attentional process, whose
abnormality is associated with attention deficits (Vossel et al.,
2014; Baldassarre et al., 2016). Therefore, it may be hypothesized
that these brain subsystems are prominently disrupted by
problematic smartphone use, which may be partially related
to the smartphone use-caused cognitive impairments (Wacks
and Weinstein, 2021) and attention deficits (Choi et al., 2021).
However, this assumption remains speculative and needs to be
tested in further studies, since no cognitive or attentional tests
were performed in this study. Additionally, it is noteworthy
that in the current study, the sFC and dFC analyses suggested
significant smartphone use-associated effects in difference brain
subnetworks, indicating that they may reflect different aspects
of brain function. This may partly support the opinion that dFC

can capture important information ignored by conventional
static methodology (Hutchison et al., 2013a), and further
highlight the value of integrating the sFC and dFC analyses in
research on problematic smartphone use.

While significant correlations were found between the brain
network metrics and SAS-SV score, no significant differences
were obtained when directly comparing between the groups
of participants with and without a problematic smartphone
use (Figure 5A). One possible reason is that our sample size
is relatively small, which may limit the statistical power of
this research; a larger sample might be needed to detect the
between-group differences. We also note that based on the
commonly-used SAS-SV cutoff points (≥ 31 for males and≥ 33
for females), a considerable proportion (56.9%) of participants
were found to have a problematic smartphone use. However,
such a proportion is much higher than most previous research
[e.g., 29.8% in Mainland China (Chen et al., 2017), 24.8% in
South Korea (Kwon et al., 2013), and 38.5% in Hong Kong
populations (Luk et al., 2018)]. Here, we thus propose that
such a cutoff may be not optimal for the current sample of
young Chinese adults. The previous SAS-SV threshold points
proposed by the scale developers (Kwon et al., 2013) may lead
to an over-estimated prevalence of problematic smartphone
use nowadays, considering that the use of smartphone has
been largely increased in recent years and is being frequently
engaged with everyday life and work. In fact, such an opinion
has also been expressed by other researchers (Saadeh et al.,
2021), and may be partly supported by the results of our
exploratory analyses using more strict cutoff points (Figure 5B).
Therefore, further studies may be warranted to investigate if a
more applicable SAS-SV cutoff point is required for defining
problematic smartphone use in young Chinese nowadays.

Previous studies have reported that alterations in brain
structures may act as a moderator of the relationship between
problematic smartphone use and depressive symptoms in young
adults (Zou et al., 2021). In the current study, on the contrary, no
similar mediation effects were found on any sFC/dFC measure
(Table 2). Nonetheless, it is noteworthy that the sample size is
relatively low; moreover, only healthy participants were included
whose depressive levels were relatively low. Further studies may
be warranted to detect possible mediation effects in a larger
sample and in clinical populations.

Some other limitations of this study should be noted. First,
because of the nature of cross-sectional research, we are unable
to determine the causality relationship between problematic
smartphone use and brain dysfunctions. Second, as the SAS-
SV is a self-reported scale, the results could be biased by
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potential over-or under-reports. Third, while only the sFC/dFC
patterns during rest were analyzed, further studies conducted
under specific tasks (Choi et al., 2021) may further improve
our knowledge. Fourth, in this study, we chose the sliding-
window approach to analyze dFC rather than other approaches
such as the temporal independent component analysis (tICA),
considering that the tICA requires a large number of scanning
time points (Li et al., 2020) and the sliding-window approach
might be more suitable for the current dataset. Nevertheless,
other approaches such as the tICA may provide further
important information and can be investigated in the future
studies.

In conclusion, this study showed that problematic
smartphone use is associated with differences in brain functions
in young healthy adults, as characterized by differences in both
static and dynamic brain network organizations. These findings
may help to improve our understanding of the biological
associates of problematic smartphone use. However, further
studies may be warranted to confirm our findings in a larger
sample, and to investigate if a more applicable SAS-SV cutoff
point is required for defining problematic smartphone use in
young Chinese nowadays.
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Prefrontal cortex neural activity
predicts reduction of
non-suicidal self-injury in
adolescents with major
depressive disorder: An event
related potential study
Huishan Liu†, Yujiao Wen†, Xiumei Liang, Yifan Xu, Dan Qiao,
Chunxia Yang, Min Han, Hong Li, Tian Ren, Xuemin Zhang,
Gaizhi Li* and Zhifen Liu*
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Background: Non-suicidal self-injury (NSSI) is common in adolescent MDD,

which is also a risk factor for suicide. However, there is few research on

biomarkers and predictors about treatment response of NSSI. The purpose

of this study was to find the difference of P300 between adolescent

MDD with NSSI and healthy controls, and to explore whether the baseline

electrophysiological level can predict the change of NSSI after treatment.

Methods: We collected 62 first-episode drug-naïve MDD adolescents

with NSSI (MDD with NSSI group) and 44 healthy controls (HC

group). The demographic data, HAMD score, self-injury frequency and

electrophysiological level of NSSI group and HC group were collected. The

HAMD score, frequency of NSSI in was also collected after 8 weeks of

antidepressant treatment.

Results: Compared to HC, the latency of the N2, P3a, and P3b components

were significantly prolonged, whereas the amplitude of P3a and P3b were

decreased in the MDD with NSSI group (P < 0.001). The frequency of self-

injury decreased significantly after treatment (P < 0.001). Regression analysis

showed that the amplitudes of P3b had a significant positive predictive effect

on the rate of change of NSSI frequency after 8 weeks.

Conclusion: P3b at baseline can be used as potential predictor for the

reduction of NSSI in adolescent MDD.
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Introduction

Non-suicidal self-injury (NSSI) behavior refers to those
behaviors that directly and intentionally damage one’s body
without the purpose of suicide, and is socially and culturally
unacceptable (Ross and Heath, 2002). Common forms of NSSI
include pulling hair, scalding, cutting skin, scratching, hitting
oneself, preventing wounds from healing, biting, pricking
needles, and swallowing dangerous substances, et al. (Saraff
and Pepper, 2014). NSSI behavior is listed as an independent
clinical disorder in the Diagnostic and Statistical Manual
of Mental Disorders, 5th Edition (DSM-5) (Andover, 2014;
Zetterqvist, 2015).

Adolescent with NSSI behavior is common in the world,
and its incidence is increasing year by year. About 14–
15% of global adolescents have experienced NSSI behavior
at least once (Liu et al., 2018). According to the results of
a survey, 13.5% of girls and 4.3% of boys aged 14–17 said
they had experienced NSSI at least once in their lifetime.
The incidence of NSSI behaviors varies in different countries.
The incidence of NSSI behaviors is 13.8% in Scotland, 15.3%
in the United States and 24% in New Zealand, and only
3.1% in Germany. Adolescent in different regions of China
have different degrees of NSSI behaviors, and the incidence
is gradually increasing (Whitlock et al., 2011; Fleming et al.,
2014; Rasmussen and Hawton, 2014; Cimen et al., 2017;
Zhang et al., 2018).

Investigations have found that adolescent with major
depressive disorder (MDD) are prone to risk behaviors such
as self-injury and suicide (Jacobson and Gould, 2007), NSSI
may be a unique and important risk factor for suicide
(Klonsky et al., 2013). Suicide is the third major cause of
death among adolescents (Centers for Disease Control and
Prevention [CDC], 2009). The detection rate of suicidal
ideation among adolescents is 10.72–12.1%, and that there
are suicide attempts and plans for adolescents is 8.1% (Laye-
Gindhu and Schonert-Reichl, 2005). In addition, NSSI is also
common among adolescents with MDD, but little attention
had been paid to it in clinical studies. NSSI will have a
great impact on adolescents and seriously harm their physical
and mental health.

Treatment for adolescents MDD with NSSI behavior include
drug therapy, psychotherapy, physical therapy, combined
therapy, etc. A non-RCT study found that ziprasidone
was effective in reducing the incidence of NSSI behavior
in adolescents compared with risperidone, olanzapine, and
promethazine (Libal et al., 2005). A systematic review
indicated the effectiveness of dialectical behavioral therapy,
cognitive behavioral therapy, and psychosocial basic therapy
in the treatment of adolescent NSSI (Ougrin et al., 2014).
Sertraline is one of the first selective serotonin reuptake
inhibitors (SSRIs) approved for the treatment of childhood
and adolescent depression, and it is also the most widely

used drug (Gómez-Lumbreras et al., 2021). It can effectively
relieve the depressive symptoms in a short time, improve the
cognitive function of the patients, and improve the quality
of life of the patients (Kaštelan et al., 2019). Currently,
there are a variety of treatment methods for adolescent with
MDD with NSSI behavior, however, the treatment response
varies, so it is critical to find an effective predictor of
treatment response.

Previous studies on NSSI behavior mostly focused on
emotion regulation, ignoring the role of cognition. On the
basis of summarizing four emotion regulation models, Hasking
et al. (2017) combined cognitive model and emotion model
to construct a new cognitive emotion model related to NSSI,
which reflects the important role of cognition. At present, the
research on cognitive factors of self-injury behavior mostly
adopts neuropsychological test or scale, and research on
objective predictors are still lacking. Event related potential
(ERP) is a suitable choice due to its high time resolution,
simplicity, convenience and cheapness. One component related
to cognitive function is P300, which is considered to reflect
cognitive processes, including attention distribution, executive
function and memory (Polich, 2012). The cerebral cortex of
suicidal depressed patients showed a decrease in serotonin-
activated neurological function and a significant increase in
the amplitude of prefrontal P300, so P300 can be regarded
as a reference index to predict the risk of suicide in suicidal
depressed patients (Chen et al., 2005). The previous research
group found that, compared with the HC group, the adolescent
with MDD with NSSI behavior significantly prolonged the
incubation period on P300, significantly reduced the amplitude,
and had significant cognitive dysfunction, such as executive
dysfunction and memory impairment (Wen et al., 2021). Based
on this, sertraline was selected as the treatment drug in this
study. The incubation period and amplitude of P300 at baseline
were used as predictors, and the scores of Hamilton Depression
Scale (HAMD) and NSSI Diary Card at baseline and 8 weeks
were used as indicators. To observe whether the changes of ERP
can predict the clinical efficacy of sertraline in the treatment of
adolescent with MDD with NSSI behavior.

The purposes of this study are: firstly, to explore the
difference between NSSI group and HC group by the related
indicators of ERP, HAMD scores and the NSSI frequency;
secondly to examine whether the changes of ERP can
predict the clinical efficacy of sertraline in the treatment of
adolescent MDD with NSSI.

Materials and methods

Participants

The study included 106 subjects aged 10–23 years: 62
unmedicated patients with first-episode adolescent MDD with
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NSSI and 44 healthy control (HC) subjects. All NSSI group
patients were from the Department of psychiatry and mental
health, the First Hospital of Shanxi Medical University.
All HC group subjects were recruited from Taiyuan City,
Shanxi Province, China, using community advertisements.
All subjects were independently evaluated by two trained
psychiatrists using structured clinical interviews for DSM-
5, Research Version (SCID-5-RV). The Research Ethics
Committee of the First Hospital of Shanxi Medical University
approved this study.

Inclusion and exclusion criteria for patients
with MDD

The inclusion criteria for MDD patients were as
follows: (1) age between 10 and 23 years with no
restrictions on gender; (2) DSM-5 diagnostic criteria
for MDD; (3) right handed; (4) first-episode MDD with
no previous use of antidepressant or other psychotropic
medications; and (5) volunteered to participate in the study
and signed the informed consent form. The exclusion
criteria were as follows: (1) patients with severe or
unstable heart, liver, kidney, endocrine, blood and other
internal diseases and nervous system diseases; (2) any
cooccurring mental disorder; (3) alcohol dependence or
abuse; (4) previous history of nervous system disease or
brain injury; (5) personal or family history of epileptic
seizures; (6) other situations that are not suitable to
participate in this study.

Inclusion and exclusion criteria for HCs
Inclusion criteria for HCs were as follows: (1)

age 10–23 years; (2) no mental disorder found in the
initial screening; (3) matched to the MDD patients in
terms of sex and education level; and (4) participated
voluntarily and signed the informed consent form.
The exclusion criteria were as follows: (1) organic
disease; (2) alcohol abuse within 30 days or alcohol
or drug dependence within 6 months prior to the
screening; (3) participation in other clinical trials in
the previous 3 months; and (4) other conditions that
disqualified the subject from the study, as determined by
the investigators.

Measures

Eligible participants were asked to provide
sociodemographic information including name, gender,
age. For clinically related variables measures, we used the
Hamilton depression scale-24 (HAMD-24) to assess the
severity of depressive symptom. NSSI Diary Card was used
to record the frequency of NSSI. Most items in HAMD-24
adopt a 5-level scoring method of 0–4 points. The criteria

at all levels are: 0-none, 1-mild, 2-moderate, 3-severe, 4-
extremely severe. A few items adopt a three-level scoring
method of 0–2 points, and the grading standards are: 0-
none, 1-mild-moderate, and 2-severe. If the total score
exceeds 35, it may be severe depression; More than 20
points may be mild or moderate depression; If less than
8 points, there is no depressive disorder. NSSI diary card
was used to record the number of self-injuries in the past
month and 1 week.

For eligible adolescents with MDD, sertraline was used
for treatment, with a daily dose of 50–200 mg and an initial
dose of 25–50 mg.

Event related potential parameters

Event related potential data were collected using the 128-
electrode NEMUS 2 system (Brain products GmbH, Germany).
Recording electrodes were placed at the Fz, Cz, and Pz positions;
the electrode at the Cz position was the standard and those
at the Fz and Pz positions were references for waveform
identification. Reference electrodes are TP9 and TP10, and
the ground electrode (GND) are placed in the middle of
the parietal lobe.

P300 detection
The task employed the classic Oddball experimental

paradigm. The stimulus sequence was composed of a target
stimulus (T) and non-target stimulus (NT) at a probability
ratio of 0.2/0.8; T was randomly interspersed among NT,
and the task consisted of 60 T and 240 NT. Subjects were
required to press a key as soon as T appeared. The stimulus
frequency was 0.5–1 time/s; stimulus interval was 1–3 s;
and total task duration was 14 min. Electrode resistance
was <5 k�; the time window for data segmentation was
-200 to 1500 ms.

Statistical analysis

Data were analyzed using SPSS 22.0 (SPSS Inc., Chicago,
IL, USA). The threshold of statistical significance was set
as α = 0.05 for all the analyses. For the demographic
data, categorical variables were compared with the χ2 test
and continuous variables were compared using the two
independent sample t test, which was used for HAMD-24,
NSSI diary card scores. Mann-Whitney U test was also
used to analyze ERP indicators, the major components of
ERPs were identified and their index values determined
according to the internationally recognized maximum
waveforms of the time analysis window. Linear regression
analysis was used to predict the improvement of depression
and NSSI frequency in the NSSI group. The results were
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considered significant if P < 0.05, corrected by false
discovery rate (FDR).

Results

Demographics and clinical
characteristics of all participants

There were no significant differences between the two
groups in terms of age, gender, and education years (P > 0.05).
The NSSI and HC groups showed significant differences in
HAMD-24 and NSSI frequency (both 1 mouth and 1 week)
(P < 0.001) (Table 1).

Event related potential results analysis
between the two groups

Compared with HC subjects, the latency of N2, P3a, and P3b
in NSSI group were significantly prolonged; the amplitude of
P3a and P3b decreased (P < 0.001). In other ERP components,
there was no significant difference between the two groups
(Table 2 and Figures 1, 2).

Changes of clinical symptoms after
treatment

The results of paired sample t-test showed that HAMD-24
total score and the frequency of NSSI decreased significantly
after 8 weeks of treatment (Table 3).

TABLE 1 Demographic and clinical of all participants.

Variable MDD with
NSSI (n = 62)

HC
(n = 44)

χ2/F/t P

Gender

Male 16 11 0.009 0.925

Female 46 33

Age, years 16.74± 2.72 17.34± 2.85 −1.093 0.277

Education, years 9.66± 2.61 10.34± 2.92 −1.254 0.213

HAMD-24 25.74± 6.35 2.00± 2.83 23.18 <0.001***

NSSI diary card
(1 mouth)

2.44± 1.78 0.00± 0.000 9.96 <0.001***

NSSI diary card
(1 week)

1.52± 1.91 0.00± 0.000 5.803 <0.001***

***Indicates p < 0.001.
All subjects were students of Han ethnicity, not married, with no religious affiliation.
Data represent number, mean± standard deviation.
HAMD, Hamilton Depression Scale; HC, healthy control; NSSI, non-suicidal self-injury.
The frequency of NSSI in the NSSI group in the past 1 month was assessed at baseline
(0 week) using NSSI diary card.
The frequency of NSSI in the NSSI group in the past 1 week was assessed at baseline
(0 week) using NSSI diary card.

Regression analysis of event related
potential index and clinical symptom
improvement

Taking the latency and amplitude of N1, P2, N2, P3a, and
P3b and total score of HAMD-24 after 8 weeks as independent
variables and the rate of change of NSSI frequency between 8
weeks and baseline as dependent variables, the linear regression
results show that:

In the assessment of NSSI frequency, the amplitude of P3b (t
= 5.242, P < 0.001) has significant positive prediction effect on
the change of NSSI frequency. Other indexes in the independent
variable have no significant difference in the prediction effect on
the dependent variable (Table 4).

Discussion

In this study, 62 first-episode adolescent MDD with
NSSI behavior and 44 healthy controls were included.
The oddball task was used to observe the difference of
electrophysiological level between the two groups. Regression
analysis was used to explore whether baseline P300 can
be used as a neural marker to predict the clinical efficacy
of sertraline tablets in the treatment of adolescent MDD
with NSSI behavior.

TABLE 2 P300 value between the NSSI and HC groups.

P300 NSSI HC Z P

Md (P25,
P75)

Md (P25,
P75)

Latency, ms N1 105.5 (99.25,
119)

109 (102.75,
118)

−0.712 0.476

P2 206.5 (200,
220.75)

202 (195.75,
208.75)

−1.745 0.135

N2 243.5 (231.25,
258.75)

232 (218,
252.25)

−2.318 0.04*

P3a 343 (332, 356) 316 (306.75,
332.25)

−5.668 <0.001***

P3b 370.5 (363.25,
386)

331 (323, 345) −7.638 <0.001***

Amplitude, µV N1 −2.81 (−6.12,
0.52)

−3.425 (−5.795,
−1.44)

−0.933 0.39

P2 2.195 (0.15, 4.42) 3.18 (0.325, 5.86) −1.064 0.36

N2 −0.3 (−3.385,
3.38)

−0.91 (−4.22,
0.81)

−1.363 0.25

P3a 7.47 (3.725,
11.58)

11.76 (9.58,
14.25)

−4.29 <0.001***

P3b 8.315 (3.45,
11.26)

12.76 (9.36,
14.73)

−4.796 <0.001***

*Indicates p < 0.05; ***indicates p < 0.001.
Data represent Median (quartile, third quartile).
ERP, event-related potential; HC, healthy control; NSSI, non-suicidal self-injury.

Frontiers in Neuroscience 04 frontiersin.org

215

https://doi.org/10.3389/fnins.2022.972870
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-972870 November 3, 2022 Time: 7:24 # 5

Liu et al. 10.3389/fnins.2022.972870

FIGURE 1

Waveform diagram of P300 in CZ channel; NSSI, non-suicidal self-injury (n = 62); HC, healthy control (n = 44).

FIGURE 2

Topographic map of P300 in CZ channel 200–500 ms; NSSI, non-suicidal self-injury (n = 62); HC, healthy control (n = 44).

In this study, the MDD adolescents with self-injury behavior
is mainly in the middle school stage, which is basically consistent
with previous research results (Swannell et al., 2014; Gao et al.,
2021; Jiang et al., 2021).

P300 incubation period is an electrophysiological index
reflecting the speed of mental activities, and its amplitude
can reflect the utilization of effective resources by the brain
in information processing, which mainly depends on the
sensitivity of the patient to stimulation (Duncan et al., 2005).
This study found that compared with HC group, NSSI

TABLE 3 NSSI frequency and HAMD-24 score before and
after treatment.

Baseline 8 week t P

HAMD-24 25.74± 6.35 12.11± 6.75 12.012 <0.001***

NSSI diary card (1 mouth) 2.44± 1.78 0.08± 0.33 9.962 <0.001***

NSSI diary card (1 week) 1.52± 1.91 0.08± 0.33 5.619 <0.001***

***Indicates p < 0.001.

group had significantly longer N2, P3a, and P3b latency and
significantly lower P3a and P3b amplitude, indicating that
patients with depression had lower brain nerve excitability and
cognitive speed, suggesting that NSSI group may have cognitive
impairment. This is consistent with previous study, as Zhou
et al. (2022) used oddball paradigm to compare the differences
of P3b components among NSSI + MDD, MDD and HC
groups. Leone et al. (2021) used laser evoked potential as an
index to study the suicide risk of NSSI adolescents suggest that
the amplitude of N2 component in NSSI patients is reduced,
which is different from our study, may be due to different
experimental paradigms. In this study, no significant difference
was found in the latency of N1 between the two groups, which
was different from Wen’s study (Wen et al., 2021). Which
may be related to the age of healthy subjects. Some studies
suggest that N2 represents reaction inhibition and conflict
monitoring, P3a is related to automatic attention capture,
and P3b is related to stimulus classification and processing,
working memory, reaction inhibition and executive function
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TABLE 4 Regression analysis of the reduction rate of NSSI after 8 weeks of treatment.

Variable B B 95% CI Beta t P

Latency, ms N1 −0.001 −0.014 0.012 −0.025 −0.191 0.849

P2 0.001 −0.01 0.019 0.230 1.917 0.063

N2 0.000 −0.08 0.007 −0.006 −0.061 0.952

P3a 0.002 −0.014 0.018 0.045 0.275 0.785

P3b 0.002 −0.012 0.017 0.055 0.328 0.745

Amplitude, µV N1 −0.029 0.073 0.014 −0.164 −1.372 0.178

P2 −0.043 −0.09 0.04 −0.195 −1.852 0.072

N2 0.02 −0.014 0.18 0.109 0.957 0.785

P3a −0.011 −0.046 0.024 −0.077 −0.62 0.539

P3b 0.112 0.069 0.155 0.672 5.242 <0.001***

HAMD-24 (8 week) −0.015 −0.039 0.010 −0.126 −1.234 0.225

R2 = 0.666, F = 6.693, df = 11, P < 0.001.
***Indicates p < 0.001.
R2 , coefficient of determination; F, statistics in F, Fisher–Snedecor test; df, degrees of freedom; P, probability in the test; B, unstandardized parameter; CI, confidence interval; Beta
standardized parameter (size of effect); t, statistics in t test.
NSSI, non-suicidal self-injury.

(Bareš et al., 2007; Albert et al., 2010; Sanger and Dorjee, 2015;
Deiber et al., 2021; Penengo et al., 2022), which seems to
explain the results of this study. One study found that the main
effect of N2 component was significant under whether self-
injury cues were present, and N2 represented conflict detection
and monitoring, which may indicate that greater conflicts were
generally detected during exposure to self-injury cues (Zhou
et al., 2022). Under the self-injury cue, the P3 amplitude of
NSSI group was larger than that of HC group, and the P3
amplitude with the self-injury cue was significantly larger than
that with the neutral cue, indicating that the neural response
of NSSI adolescents changed during exposure to the self-injury
cue (Zhou et al., 2022). Allen found difficulty in response
inhibition in the group of eating disorders with NSSI (Allen
et al., 2020), Nilsson also found that compared with healthy
people (Nilsson et al., 2021), patients with intentional self-
mutilation had defects in cognitive flexibility and response
inhibition, and Zhang also found executive dysfunction in the
group of MDD adolescents with NSSI (Zhang et al., 2022). Our
study find neuroelectrophysiological evidence in the adolescent
MDD with NSSI compared with HC.

At present, there is no effective drug treatment option for
adolescent NSSI. According to the treatment guidelines for
adolescent MDD (Cheung et al., 2018; American Psychological
Association [APA], 2019) and the treatment guidelines for
adolescent NSSI (National Institute for Health and Care
Excellence [NICE], 2011; Plener et al., 2016), SSRI seems to
be the preferred treatment for adolescent MDD with NSSI
behavior, because they are beneficial to alleviate depressive
symptoms and do not seem to increase the rate of NSSI
(Cheung et al., 2018; American Psychological Association
[APA], 2019). Based on this, sertraline was selected as drug
treatment in this study. The results showed that the frequency

of self-injury behavior decreased significantly after the sertraline
treatment. Previous studies have different evidence. The results
of a study in the group of adolescent refractory depression
show that the subjects who choose SSRI for intervention
have the lowest incidence of self-injury behavior (Brent et al.,
2009). Glenn found that among adolescents with anxiety
disorder, the frequency of self-injury in the intervention group
combined with fluoxetine decreased significantly compared
with adolescents who only used cognitive behavioral therapy
(Melvin et al., 2019). However, a recent meta-analysis of
psychotropic drugs for the treatment of NSSI in children and
adolescents showed that there was no statistically significant
difference in the occurrence of NSSI in adolescents between
SSRI and the control group (drug or placebo) (Eggart et al.,
2022). Whether there is a recommended drug choice for NSSI
behavior of adolescents needs to be carried out in a larger
randomized controlled study in the future.

The results of regression analysis showed that baseline P3b
amplitudes had a significant positive predictive effect on the
8 week NSSI frequency, which indicated that the higher the
baseline amplitude, the higher the reduction rate of 8 week NSSI
behavior frequency. Many studies suggest that P3 components
are related to response inhibition and executive function (Zhang
et al., 2021; Egbert et al., 2022; Reed et al., 2022), which indicates
that subjects with higher response inhibition and executive
function at baseline, the NSSI behavior are more likely to
reduce significantly after treatment. The results of a systematic
review of neuroimaging of NSSI behavior showed that the
activation of brain areas related to executive function decreased
in NSSI samples (Brañas et al., 2021). The results of a near
infrared spectroscopy study suggest that NSSI patients show
the deactivation of the dorsolateral prefrontal cortex (DLPFC),
which plays a key role in the executive regulation of cognitive
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and behavioral responses to the environment (Zahid et al.,
2020). The results of a cross-sectional resting state fMRI
study in MDD samples of adolescents with NSSI behavior
also provide supporting evidence (Huang et al., 2021). In
the past, most studies on self-injury behavior focused on
the use of scale evaluation to find mediators or regulatory
variables, and most studies on neuroimaging were cross-
sectional studies. To our knowledge, this study found
neurophysiological markers that can predict the reduction
of self-injury behavior in adolescent MDD with NSSI
for the first time.

This study has some limitations. firstly, the sample size is
relative small. Although we found that the baseline P300 index
can predict the reduction of adolescent MDD patients self-injury
frequency, this needs to be verified in a larger cohort; adolescent
MDD group without NSSI behavior was not included in this
study, which is also a limitation; 8 weeks follow-up is relatively
short, we will continue to follow up.

Conclusion

Compared with HC subjects, the cognitive impairment of
adolescent MDD with NSSI patients was mainly manifested in
response inhibition, decreased executive function and poor anti-
interference ability. Baseline P300 can be used as a potential
predictor of the improvement of 8 week NSSI frequency in MDD
adolescents with NSSI behavior.
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