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quantification in nuclear physics
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Editorial on the Research Topic
Uncertainty quantification in nuclear physics

Uncertainty quantification (UQ) has emerged as a crucial aspect of the interface between
theory and experiment in nuclear physics. Over the past decade the field has undergone a
transformative shift into the “precision era” due to advancements in ab initio many-body
methods, computing power, sophisticated theoretical techniques, and the advent of a new
generation of experiments.

With experimental procedures now capable of probing observables with greater
precision, and in some cases even where data is lacking, the need for theoretical
predictions with well-quantified error bars has become more pronounced. This
requirement extends not only to ongoing experiments but also to future endeavors
seeking accurate measurements of more exotic processes including precision tests of the
Standard Model as well as Beyond the Standard Model searches.

The employment of Bayesian approaches, efficient emulators to overcome
computational limitations, and machine learning methods has sparked a surge of
interest in UQ, revolutionizing the field. These techniques have enabled researchers to
assess uncertainties in different theoretical domains, ranging from lattice quantum
chromodynamics to nuclear many-body forces to properties of atomic nuclei. Moreover,
they have enabled quantitative insights into the role played by future astrophysics and
gravitational observations for constraining the equation of state for neutron matter, the
determination of nucleon resonances in experimental data, and the development of reliable
nuclear-energy-density functionals for extrapolations into unexplored nuclear territories.

To consolidate the expertise and achievements in nuclear physics UQ, this Research
Topic aimed to bring together leading contributors in the field. We have received an
outstanding Research Topic that highlight recent accomplishments along this line of
research and that provide insights into the methodologies being developed and employed.

The Research Topic features 15 articles. Several contributions focus on the uncertainty
quantification in nuclear structure calculations. For instance, Alnamlah et al. discuss an
effective field theory (EFT) for rotational bands in odd-mass nuclei and employ a Bayesian
analysis to estimate uncertainties in rotational energy levels. They consider both
experimental and EFT truncation uncertainties, utilizing Markov Chain Monte Carlo
(MCMC) sampling to infer low-energy constants and the breakdown scale of the EFT.
Becker et al. investigate alpha clustering and collective properties in nuclei using emulators
within the ab initio symmetry-adapted no-core shell model framework. Their work
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highlights the importance of such emulators in quantifying
uncertainties and improving the precision of nuclear structure
calculations. They utilize the eigenvector continuation technique
to study various nuclear properties in 6Li and 12C including
excitation energies, point-proton root-mean-square radii, electric
quadrupole moments, and transitions.

Furthermore, Maris et al. examine uncertainties in theoretical
ground state energies of p-shell nuclei using interactions from chiral
EFT. They investigate the dependence of these energies on the chiral
order and analyze two- and three-body data for fitting, addressing
uncertainties stemming from basis truncations, omitted induced
many-body forces, and EFT truncation. Acharya et al. focus on
quantifying theoretical uncertainties in ab initio calculations of
electromagnetic observables in light and medium-mass nuclei.
They discuss different sources of uncertainties including
approximations introduced by few- and many-body solvers and
the truncation of the chiral EFT expansion.

Regarding reactions in nuclei, some contributions are particularly
noteworthy. Skibiński et al. investigate the nucleon-induced deuteron
breakup reaction using the Faddeev approach at specific laboratory
energies. They focus on quantifying theoretical uncertainties associated
with the predicted cross-section, particularly in relation to the regulator
cutoff parameter. Ceccarelli et al. concentrate on UQ for the muon
capture reaction μ−+ d→ n+ n+ ]μ in the doublet hyperfine state. They
address four sources of theoretical uncertainty including model
dependence, chiral-order convergence, uncertainty in the single-
nucleon axial form factor, and numerical techniques used for solving
the A = 2 systems.

Furthermore, Odell et al. focus on the estimation of uncertainties in
resolved resonance cross section data in nuclear physics using the R-
matrix framework. They introduce the Bayesian R-matrix Inference
Code Kit (BRICK) by implementing a MCMC sampler, specifically the
emcee algorithm, into the R-matrix code AZURE2. They apply
Bayesian uncertainty estimation to simultaneously fit the 3He(α, γ)
7Be and 3He(α, α)3He reactions, aiming to gain insights into the fitting of
capture and scattering data. The data from both reactions are relevant to
constrain the values of the bound state α-particle asymptotic
normalization coefficients in 7Be. Baker et al. investigate the effective
interaction between a nucleon and a nucleus based on optical potentials,
with a UQ perspective. They extracted elastic scattering observables for
4He, 12C, and 16O at projectile energies between 65 and 200MeV. Lastly,
Vassh et al. employ a MCMC procedure to predict ground state masses
for nucleosynthesis calculations and investigate conditions capable of
producing the observed solar r-process rare-earth abundance peak.
They examine howmass predictions change when using a few different
sets of r-process solar abundance residuals that have been reported in
the literature, with focus on uncertainty propagation.

The Research Topic also includes a review article by Ekström
et al. that provides a historical overview of the notion of ab initio in
nuclear physics and discusses its current relationship with
theoretical UQ.

Furthermore some of the article discuss various advancements
in UQ methodology. One of the topics covered is the use of
projection-based, reduced-order emulators as fast surrogate
models for complex high-fidelity models. Drischler et al. present
a pedagogical introduction to these emulators, which effectively
approximate complex models and offer an efficient approach to
calculations while addressing the challenges of UQ. Additionally,

Rothkopf discusses state-of-the-art methods for extracting spectral
functions using Bayesian inference, highlighting the importance of
prior domain knowledge for regularization. The use of machine
learning for spectral function reconstruction is also mentioned,
noting its contribution to the Bayesian community’s
understanding of the topic.

Verriere et al. focus on the challenges in studying atomic nuclei
and the potential of nuclear density functional theory to accurately
describe their properties with uncertainties. They explore the
application of machine learning and artificial intelligence
techniques to enhance DFT calculations and accelerate the
understanding of nuclear phenomena. In the paper by Giuliani
et al., the authors showcase the application of a principled Bayesian
statistical framework for UQ in nuclear physics. By employing the
reduced-based emulator and calibrating the energy density
functional, they provide accurate model calculations with
estimated uncertainties, supporting the nuclear theory
community in delivering reliable predictions in the face of
increasing data availability.

Lastly, Jiang et al. address the usefulness of the sampling/
importance resampling method in UQ for nuclear theory
applications. By employing sampling/importance resampling to
realistic scenarios, the authors demonstrate its effectiveness in
inferring posterior distributions and estimating the predictive
probability distribution of observables. Researchers in nuclear
theory can benefit from employing this Bayesian sampling
method to gain insights into uncertainties and make informed
decisions based on the obtained posterior distributions.

In conclusion, this Research Topic presents a comprehensive
collection of articles that contributes to the advancement of UQ in
nuclear physics. The diverse range of topics and methodologies
highlights the progress made in addressing uncertainties and
provides a solid foundation for future developments in the field.
We are grateful to all the scientists participating in this project and
hope that the reader will enjoy this Research Topic.
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Performing Bayesian Analyses With
AZURE2 Using BRICK: An Application
to the 7Be System
Daniel Odell 1*, Carl R. Brune1, Daniel R. Phillips1, Richard James deBoer2 and
Som Nath Paneru1,3

1Department of Physics and Astronomy, Institute of Nuclear and Particle Physics, Ohio University, Athens, OH, United States,
2Department of Physics, The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN, United States,
3Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, United States

Phenomenological R-matrix has been a standard framework for the evaluation of resolved
resonance cross section data in nuclear physics for many years. It is a powerful method for
comparing different types of experimental nuclear data and combining the results of many
different experimental measurements in order to gain a better estimation of the true
underlying cross sections. Yet a practical challenge has always been the estimation of the
uncertainty on both the cross sections at the energies of interest and the fit parameters,
which can take the form of standard level parameters. Frequentist (χ2-based) estimation
has been the norm. In this work, a Markov Chain Monte Carlo sampler, emcee, has been
implemented for the R-matrix code AZURE2, creating the Bayesian R-matrix Inference
Code Kit (BRICK). Bayesian uncertainty estimation has then been carried out for a
simultaneous R-matrix fit of the 3He (α,γ)7Be and 3He (α,α)3He reactions in order to
gain further insight into the fitting of capture and scattering data. Both data sets constrain
the values of the bound state α-particle asymptotic normalization coefficients in 7Be. The
analysis highlights the need for low-energy scattering data with well-documented
uncertainty information and shows how misleading results can be obtained in its absence.

Keywords: R-matrix, Bayesian uncertainty analysis, nuclear astrophysics, Big Bang nucleosynthesis, asymptotic
normalization coefficient

1 INTRODUCTION

Phenomenological R-matrix has been the standard analysis tool for cross section data that exhibit
overlapping yet resolved resonances for many years [1]. It is used extensively to evaluate data for
applications (e.g., the ENDF/B-VIII.0 evaluation [2]), to perform extrapolations to low, unobserved
energies in nuclear astrophysics (e.g., Azuma et al. [3]; Descouvemont et al. [4]), and to extract level
parameters for nuclear structure [5]. In all cases, it provides a reaction framework in which
experimental information of various different types can be combined to improve estimates of
the true cross sections. One challenging aspect of this type of analysis has been reliable uncertainty
propagation.

Traditionally, data have been fitted using χ2 minimization, with uncertainties being estimated
using one of two methods. The first is using partial derivatives and the assumption that the quantity
of interest is related linearly with the parameters of the model. The second is the assignment of
confidence intervals based on some Δχ2 value. The assumption of linearity is often a poor one and the
second method can become tedious or impossible to implement for a complicated model. Additional
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limitations are that one must assume Gaussian uncertainties on
the input data and there is almost no ability to include prior
information about the parameters. It is known that χ2 methods
may lead to biased results and/or underestimated uncertainties in
data evaluations [6]. The reason for these issues is understood to
be incomplete documentation or modeling of systematic
uncertainties. While systematic uncertainties are a difficult
subject in any approach, they are much easier to model and
implement using the Bayesian methods described below. Finally,
we would like to point out that a mixed approach is possible,
where χ2 minimization is combined with a Monte Carlo
simulation of some uncertainties. This method was used by
deBoer et al. [7] in a previous analysis of 3He (α,γ)7Be and
3He (α,α)3He.

Bayesian methods are increasingly becoming the standard for
performing Uncertainty Quantification in physical sciences and
engineering in general, and theoretical nuclear physics in
particular [8–34]. In contrast to a traditional χ2-minimization
they offer the opportunity to examine the entire probability
distribution for parameters of interest, rather than focusing on
the values that maximize the likelihood. Perhaps equally
important, in a Bayesian approach it is
straightforward—mandatory even—to declare and include
prior information on the parameters of interest. Bayesian
methods, combined with the possibility to use Markov Chain
Monte Carlo sampling to explore a high-dimensional parameter
space, allow one to introduce additional parameters without fear
of computational instabilities caused by shallow χ2 minima. The
use of MCMC sampling also makes uncertainty propagation
straightforward, as we will demonstrate here. And a Bayesian
framework is—to our knowledge—the only option if one wishes
to incorporate a rigorous formulation of theory uncertainties into

the statistical analysis. In this work, Bayesian uncertainty
quantification is implemented by pairing the R-matrix code
AZURE2 [3,35] with the MCMC Python package emcee [36].
The pairing is facilitated by a Python interface BRICK (Bayesian
R-matrix Inference Code Kit), enabling Bayesian inference in the
context of R-matrix analyses.

To benchmark this code, it has been applied to the analysis of
the 3He (α,γ)7Be and 3He (α,α)3He reactions. The 3He (α,γ)7Be
reaction is a key reaction in modeling the neutrino flux coming
from our Sun [37]. It also plays a role in Big Bang Nucleosynthesis
(BBN) [38]. The reaction cross section is dominated by the direct
capture process, but also has significant contributions from broad
resonances (see Figure 1). In recent years, high-precision
measurements of this reaction have been performed, using
direct γ-ray detection [39–41], the activation method [40–44],
and a recoil separator [45]. Additional higher energy
measurements have also been made recently by Szücs et al.
[46], but are outside the energy range of the present analysis.
Using these high precision measurements, several analyses have
been made to combine these data sets and extrapolate the cross
section to low energies using pure external capture [47], R-matrix
[7], effective field theory [21,22], a modified potential model [48],
and ab initio calculations [49–52]. These several recent analyses
make this reaction an ideal case for benchmarking since they use
both more traditional and Bayesian uncertainty estimation
methods.

As the energies pertinent to solar fusion and BBN the 3He (α,γ)
7Be cross section has a large contribution from external capture,
3He (α,α)3He data, through its constraints on the scattering phase
shifts, should also provide an additional source of constraint on
the low-energy extrapolation. This type of combined analysis has
been reported in deBoer et al. [7], but there it was found that the
available scattering data of Barnard et al. [53] was inconsistent
with the capture data, perhaps because of incomplete uncertainty
documentation in the former. With this in mind, new
measurements of the 3He (α,α)3He cross section were recently
reported by Paneru et al. [54].

In this work, a Bayesian uncertainty analysis is performed on
an R-matrix fit to the low energy 3He (α,γ)7Be [39–42,44,45] and
3He (α,α)3He [53,54] data. The [54] data is a new measurement
performed with the Scattering of Nuclei in Inverse Kinematics

FIGURE 1 | Level diagram of 7Be up to the proton separation energy.

FIGURE 2 | Representation of the different roles of emcee, BRICK, and
AZURE2 in the Bayesian analysis presented below. The asterisk in the emcee
rectangle indicates the starting point of the process.
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(SONIK) detector. The sensitivity of the fit to the scattering data
is the main focus, examining the differences resulting from the
two different scattering data sets considered. The mapping of the
posterior distributions of the fit parameters, cross sections, phase
shifts, and scattering lengths gives new insights into the
dependence of these quantities to the input scattering data.

2 WHAT IS BRICK?

BRICK is a python package that acts as an interface between the
AZURE2 [3,35] R-matrix code and an MCMC sampler. It is not a
replacement for AZURE2 nor is it intended to be. The primary
functionality that it provides is a user-friendly way to sample
parameters that have already been set up with the AZURE2
graphical user interface (GUI) to be varied.

2.1 AZURE2
AZURE2 is a multilevel, multichannel, R-matrix code (open
source) that was developed under the Joint Institute for
Nuclear Astrophysics (JINA) [3,35]. While the code was
created primarily to handle the added complexity of charged-
particle induced capture reactions [55], also has capability for a
wide range of other types of reaction calculations. The code is
primarily designed to be used by way of a GUI, but can also be
executed in a command line mode for batch processes [35]. The
code stores all of its setup information in a simple text input file.
While this file is usually edited by way of the GUI, it can also be
modified directly. This may be desirable for batch type
calculations, as are being used here.

AZURE2 primarily uses the alternative R-matrix
parameterization of Brune [56]. It has two main advantages.
The first is that it eliminates the need for the boundary conditions
present in the classical formalism of Lane and Thomas [1]. The

second is that the remaining fit parameters become the observed
level parameters. The remaining model parameters are the
channel radii which are fixed at 4.2 fm in this analysis.

A key advantage in using the parameterization of Brune [56]
for the fitting of low energy capture reactions is that level
parameters for bound or near threshold resonances can be
more directly included in the R-matrix analysis [57,58]. The
use of the Bayesian uncertainty estimation further facilitates
the inclusion of uncertainty information for these parameters.
This provides an improved method for communicating the level
structure information gained from transfer reaction studies into
an R-matrix analysis in a statistically rigorous way.

2.2 Implementation
2.2.1 Overview
The role of BRICK in our R-matrix calculations is to act as a
mediator. It maps proposed parameters—both R-matrix
parameters and normalization factors—from an MCMC
sampler to AZURE2 and R-matrix predictions from AZURE2
back to the sampler. First, it accepts proposed points in parameter
space, θ, from the sampler—in this analysis we use emcee [36]
—and packages them into a format that AZURE2 can read. Then
it reads the output from AZURE2 and presents it as a list. Each
item of the list contains the predictions, μ(θ), and data, y and σ,
corresponding to a specific output channel configuration. The
likelihood, represented in Figure 2 by L, can then be calculated
according to the user’s choice; the Gaussian likelihood chosen for
this work is given below in Eq. 2. Accompanied by prior
distributions, π, one can readily construct a Bayesian posterior,
P. Prior distributions chosen in this analysis are given in Section
3.2. The posterior value, or rather its logarithm lnP, is passed
back to emcee. Finally, based on the lnP value, the MCMC
algorithm decides to accept or reject the proposed point, proposes
a new θ, and the process repeats. A diagram is provided in
Figure 2 to illustrate the qualitative functionality of the different
software packages. The process described above starts at the
orange rectangle labeled “emcee.”

2.2.2 Details
BRICK is built such that different samplers can be used. The
analysis presented in this paper uses emcee, so the details
provided in this section will be somewhat specific to it.

TABLE 1 | Sampled parameters in the R-matrix model.

Jπ Eλ (MeV) Widths and ANCs Prior Distributions

1/2− 0.4291 C1 U (1, 5 MeV)
1/2− 21.6 Γα U (−200, 200 MeV)
1/2+ 14 Γα U (0, 100 MeV)

Γγ,0 U (0, 10 MeV)
Γγ,1 U (−10, 10 keV)

3/2− 0 C0 U (1, 5 MeV)
3/2− 21.6 Γα U (−100, 100 MeV)
3/2+ 12 Γα U (0, 100 MeV)

Γγ,0 U (−10, 10 keV)
Γγ,1 U (−3, 3 keV)

5/2− 7 Γα U (0, 100 MeV)
5/2+ 12 Γα U (0, 100 MeV)

Γγ,0 U (−100, 100 MeV)
7/2− U (1, 10 MeV) Γα U (0, 10 MeV)

Γγ,0 U (0, 1 keV)

Numbers indicate that the level energies were fixed. A distribution indicates that the
corresponding parameter was sampled. The subscripts α and γ indicate the exit particle
pair—scattering and capture, respectively. Capture particle pairs are distinguished by
ground (0) and excited (1) 7Be states. The signs of the partial widths and ANCs indicate
the signs of the corresponding reduced width amplitudes. The second column, Eλ, is
given in excitation energy relative to the ground state.

TABLE 2 | Common-mode errors associated with the SONIK measurements.

Energy (keV/u) No of Data points Common-mode errors

239 17 6.4
291 29 7.6
432 45 9.8
586 46 5.7
711 52 4.5
873(1) 52 6.2
873(2) 52 4.1
1196 52 7.7
1441 53 6.3
1820 53 8.9
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When initializing an instance of an EnsembleSampler, the
most relevant argument is log_prob_fn, the function that
returns the logarithm of the probability. One of the advantages of
emcee is that it allows the practitioner to perform arbitrary
calculations inside that probability function. That function must
meet only two requirements: (1) take an array of floating point
numbers that represents the vector in parameter space and (2)
return a floating point number that represents the logarithm of
the probability associated with that array. In between those two
steps, one is free to perform whatever calculations one needs. This
can be seen on the left-hand side of Figure 2. The parameter-
space vector, θ, is output from emcee. The logarithm of the
probability at that point, lnP, is subsequently input to emcee. In
this sense, emcee is well-suited to the implementation of “black-
box” physics models where one has limited access to the
source code.

The primary tasks that BRICK accomplishes are (1)
translating θ into a format that AZURE2 can read and (2)
reading the output from AZURE2 such that a lnP value can
be easily calculated. The means of accomplishing these tasks relies
on the command-line interface (CLI) to AZURE2, which is
accessible when installed on Linux machines. The CLI options
available to AZURE2 are well documented in the manual [35].
The most critical argument is the input file, typically
accompanied by the file extension.azr. This input file
contains all of the necessary information to perform an R-
matrix calculation with a given set of parameters. It is
generated when the R-matrix and data models are built with
the commonly used GUI, which AZURE2 provides. BRICK is not
built to replace that GUI. It accompanies AZURE2 by allowing the
user to bring their AZURE2-prepared R-matrix model over and
sample what was previously optimized. Accordingly, the default
behavior of BRICK is to respect the choices made by the user in
the AZURE2 GUI. If a parameter is fixed in AZURE2, it is fixed in
BRICK. If it is varied in AZURE2, it is sampled in BRICK.

BRICK accesses the AZURE2 CLI through the Python
module subprocess. But prior to that, BRICK must map
the values in θ to the proper locations in the input file. This is
accomplished by reading the <levels> and
<sectionsData> sections of the input file. BRICK reads
the appropriate parameters and flags looking for varied
parameters. As they are found, their locations are stored. When a
new θ is proposed, BRICK creates a new input file and maps the
values in θ to the varied parameter locations. Then AZURE2 is called
with the newly generated input file. The output from AZURE2 is
written to a sequence of files in the output directory by default.

Those files are read and the predictions, μ, and experimental data, y,
are extracted. A likelihood is then constructed. Under the assumption
that the uncertainties associatedwith y are uncorrelated and normally
distributed, this is amultivariate Gaussian distribution. Accompanied
by a list of prior distributions corresponding to the preexisting
knowledge of the sampled parameters, a posterior is finally
constructed and passed back to emcee.

Initially, this process was built in a single-threaded manner. As
emcee is a ensemble sampler, efficient exploration of the
posterior relies heavily on many, simultaneous walkers. In
order to scale this beyond the most basic calculations, we
modified our implementation to allow each walker to write its
own input file and read from its own output directory. Inside the
log-probability function, there is no access to any kind of walker
identifier, so each walker generates a file-space that is uniquely
identified by an eight-character random string. This allows each
walker to work independently, so on systems where many cores
are available, each walker can have a dedicated core. Or at least
the time spent waiting for CPU time is minimized. This also
allows for an increased number of walkers, which is a common
tactic used to decrease autocorrelation time.

3 APPLICATION TO 3He(α, α)3He AND
3He(α, γ)7Be

3.1 The R-Matrix Model
The starting point for the R-matrix model used here was that of
deBoer et al. [7]. In that work, ten levels were used with three
particle pairs (3He+α, 7Be+γ0, and

7Be+γ1) for a total of 16 R-
matrix fit parameters. Initial MCMC calculations showed that a
7/2− background level used in deBoer et al. [7] was not statistically
significant, and was thus dropped from the calculation. This
already demonstrated one of the powerful feature of this type of
MCMC analysis, it provided a clear identification of redundant fit
parameters. Likewise, we verified that the exact placement of
many of the background levels did not effect the fit results, as long
as they were placed at sufficiently high energies. The exception to
this was the 5/2− background level, placed at 7 MeV. Because
there are two real levels at Ex = 6.73 and 7.21 MeV in 7Be, this
background level needed to be placed close to their energies. It
was found that this single background level was sufficient to
model both the contributions from these levels and additional
higher energy 5/2− levels. The R-matrix model used here thus
consisted of nine levels, three particle pairs, and 16 R-matrix fit
parameters as summarized in Table 1.

TABLE 3 | Details of the capture data considered in this work: number of data points, energy ranges, and common-mode errors (δcommon). Energies are given the
laboratory frame.

Data set Total capture Branching ratio δcommon (%)

Seattle [2] 8 pts (0.57, 2.17 MeV) 8 pts (0.57, 2.17 MeV) 3
Weizmann [42] 4 pts (0.74, 1.67 MeV) - 3.7
LUNA [41] 7 pts (0.16, 0.30 MeV) 3 pts (0.17, 0.30 MeV) 3.2
ERNA [45] 47 pts (1.23, 5.49 MeV) 6 pts (1.93, 4.55 MeV) 5
Notre Dame [39] 17 pts (0.53, 2.55 MeV) 17 pts (0.53, 2.55 MeV) 8
ATOMKI [44] 5 pts (2.58, 4.43 MeV) - 6
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3.2 Priors on R-Matrix Parameters
Because this is a Bayesian analysis, we must choose priors for all
R-matrix parameters. We have chosen to use uninformative,
uniform priors. However, the signs of the reduced width
amplitudes (that is the interference solution), which are
implemented in AZURE2 by the signs of the partial widths,
were determined by the initial best χ2 fit using AZURE2. In
this case, a unique interference solution was found. This may not
always be the case: sometimes other interference solutions may be
possible. The emcee sampler may then not be able to easily find
these other interference solutions in the parameter space. It seems
to be likely that in cases where different interference solutions are
possible, each one will require a separate emcee analysis.

One common circumstance where a Bayesian analysis will
improve on previous uncertainty estimates is in the ability to give
priors for bound state level parameters determined from transfer
studies. Unfortunately, in the case of the 7Be system, there is
limited information available for the bound state α-particle
ANCs. A recent first measurement has been reported by Kiss
et al. [59], but the ANCs are rather discrepant from those found
from this and past R-matrix analyses of capture data. This
inconsistency has not been investigated here, but needs to be
addressed in future work. If reliable bound-state ANC
determinations become available, that are independent of the
capture and scattering data, it provides a path to further decrease
the uncertainty in the low energy S-factor extrapolation. One
could also adopt priors on the ANCs from ab initio calculations,
although we have not done so.

It is also tempting to implement more constraining priors into
the R-matrix analysis from a compilation like the National
Nuclear Data Center or the TUNL Nuclear Data Project [60].
However, great care must be taken to understand the source of the

values and uncertainties when weighted averages are used to
determine adopted values for level parameters in these
compilations. In particular, past analysis of the data being fit
in the R-matrix analysis may be a contributor to the evaluation
values. Thus blindly using evaluation level parameters and
uncertainties can lead to double counting and an erroneous
decrease of uncertainties. It is for this reason that uniform
priors on parameters are adopted in the present analysis. The
posterior shapes then clearly stem solely from the data sets
considered in the R-matrix analysis.

The priors for the R-matrix parameters used in this work
are listed in Table 1. In all but one case, level energies are fixed.
The exception is the 7/2− level energy which corresponds to the
lowest lying 7/2− resonance. The lowest 1/2− and 3/2− levels
and the 7/2− level are the only levels inside or below the energy
range covered by the analyzed data. All other levels are
background levels. For more details of the choices made in
formation of the R-matrix model, see Paneru [61]. The
distribution formed by the product of these R-matrix priors
and priors on the parameters introduced in the next section is
the overall prior π shown in Figure 2.

3.3 Modeling Systematic Errors in the Data
3.3.1 Common-Mode Errors
AZURE2 provides a method for the inclusion of a common-mode
error for each data set using a modified χ2 function

χ2 � ∑Nsets

α�1
∑Nα

j�1

f xα,j( ) − cαnαyα,j( )2
cαnασα,j( )2 + cα − nα( )/nα( )2

δ2cexp,α
⎛⎝ ⎞⎠, (1)

where cα is the normalization fit parameter, nα is the starting
normalization which is set to 1 in the present analysis, f (xα,j) is
the differential scattering cross section form the R-matrix, yα,j is the
data point value, σα,j is the combined statistical and point-to-point
uncertainty of a data point, and δcexp ,α is the fractional common-
mode uncertainty of the data set. The additional term in the χ2

function is derived by making the approximation that the common-

FIGURE 3 | Total capture S factor from Seattle [2] (blue circles)
Weizmann [42] (green squares), LUNA [41] (orange diamonds), ERNA [45]
(red, downward-pointing triangles), Notre Dame [39] (purple, upward-pointing
triangles), and ATOMKI [44] (black stars) data sets are shown with
reported error bars. DCSB and DCS results are shown with blue and green
bands, respectively. The band indicates 68% intervals. The solid, blue line
indicates the median prediction from the DCSB analysis. The dashed, green
line indicates the median prediction from the DCS analysis. Normalization
factors have not been applied to either the theory prediction or data, so
estimates of the extent to which BRICK’s fit agrees with the different data sets
are not straightforward to make from the figure.

FIGURE 4 | The branching ratio predictions are shown alongside the
four analyzed branching ratio data sets: Seattle [2], LUNA [41], ERNA [45], and
Notre Dame [39]. Colors, symbols, and line styles are the same as Panel 3.
Bands indicate 68% intervals.
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mode systematic uncertainty has a Gaussian probability distribution
[62]. The accuracy of this approximation is often unclear [6].

Common-mode errors are implemented in the present analysis in
BRICK, outside of AZURE2, i.e., the common-mode errors are
applied to the AZURE2 output. In BRICK the R-matrix parameter
set θR is augmented by a set of normalization factors fα and energy
shifts, ΔE,α. (At present energy shifts are only implemented for
scattering data.) The overall parameter set θ is then the union of the
set θR and {fα, ΔE,α}. The likelihood L is formed as a product of
standard Gaussian likelihoods for each data point, but with
normalization factors applied to the AZURE2 predictions μ:

L∝ ∏Nsets

α�1
∏Nα

j�1
exp − yjα − fαμ xjα; θR( )( )2

2σ2
jα

⎛⎝ ⎞⎠, (2)

where we have omitted overall factors that do not affect the
parameter estimation. Here xjα represents the kinematics of the
jth data point in data set α. For scattering data sets, xjα defines the
energy and angle at which the measurement was made. In those
cases exclusively, ΔE,α is added to the energy. σjα is the combined
statistical and point-to-point uncertainty of the corresponding
datum, yjα. Nα is the number of points in data set α, and the
product over α runs over all the sets that have independent
common-mode errors.

The priors on the fα’s are specified by the BRICK user. If a
Gaussian prior centered at 1 with a width equal to the common-
mode error reported in the original experimental publication is
employed for the fα’s, then the product of that prior on the
normalization factors and the likelihood Eq. 2 has the same

maximum value as the “extended likelihood” corresponding to
Eq. 1, that is used to estimate the fα’s in the frequentist framework
implemented in AZURE2.

In our analysis of the 3He(α,α)3He and 3He(α,γ)7Be reactions,
we adopted such a Gaussian prior, truncated to exclude negative
values of the cross section. We used a different fα for each energy
bin in the SONIK data, detailed in Section 4.2, with the widths of
the prior given by the common-mode errors stated in Table 2.
The common-mode error associated with the Barnard data,
described in Section 4.1, is taken to be 5%. The width of the
priors for the fα’s to be applied to the capture data, discussed in
Section 4.3, are specified by the common-mode errors listed in
Table 3. All normalization-factor priors are of the form

T 0,∞( )N 1, σ2fα( ) , (3)
where

T a, b( ) � 1 a, b[ ]
0 otherwise ,

{ (4)

andN (μ, σ2) represents a Gaussian distribution centered at μwith
a variance of σ2.

3.3.2 Energy Shifts
BRICK also has the capability of estimating (overall) beam-
energy shifts in a particular data set. This is implemented as
another parameter to be estimated ΔE,α. This parameter
affects all the AZURE2 evaluations for data set α. BRICK
implements the energy shift by generating a different input

FIGURE 5 | Angular dependence of the differential cross sections of Paneru et al. [54] are shown relative to the Rutherford prediction with grey x’s and error bars.
Each panel includes the measurements from three interaction regions [61]. Bands indicate 68% intervals. Green bands are generated for the analysis ofDCS. Blue bands
correspond to DCSB.
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and data files for each value of ΔE,α under consideration. The
flowchart of Figure 2 is thus not strictly accurate when this
feature is included. Gaussian priors were defined, centered at
zero, on possible energy shifts for the SONIK data and the
Barnard data. The widths of the priors are based on
information in the original papers, as summarized in
Sections 4.1, 4.2. For the SONIK data, the energy-shift
parameter’s prior has a standard deviation of 3 keV, based
on the energy uncertainty quoted in Paneru et al. [54].
Barnard et al. [53] cites a much larger uncertainty of
20–40 keV, depending upon the energy. The standard
deviation of the prior on the ΔE parameter is taken to be
40 keV for this data set, a much larger value than for the
SONIK data. It should be noted that the energy uncertainty

for the Barnard data set is not a constant, but it is not possible
to improve our modeling of this uncertainty due to the lack of
documentation of its origin.

4 DATA SETS

4.1 3He-α Elastic Scattering
Measurements of the elastic scattering products resulting from a
3He beam incident on a 4He target were reported in 1964 by
Barnard et al. [53], for 2.4 ≤ E [3He, lab] ≤ 5.7 MeV (1.4 ≤ Ec. m. ≤
3.3 MeV). The experiment provides excitation functions of
differential cross section at eight center-of-mass (c.m.) angles
covering 31.55° ≤ θ[3He, lab] ≤ 91.94° (54.77° ≤ θc.m. ≤ 140.8°). The

FIGURE 6 | Differential cross section as a function of energy as reported in Barnard et al. [53], shown as grey x’s with error bars. Blue bands represent the 68%
intervals generated from the DCSB analysis.
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systematic uncertainty in the measurements is estimated to be
5%. Detailed point-to-point uncertainties are not given, but are
stated to be about 3%. The measurements are subject to a
significant energy uncertainty, estimated to be 20 keV below E
[3He, lab] = 4 MeV and 40 keV above that energy. It was also
noted by the authors that their beam energy was only
reproducible to the level of 20 keV. In total, there are 646 data
points collected at 577 unique energies. The data were obtained
from EXFOR in the fall of 2021 and converted into the laboratory
frame when necessary. All eight angles were included. The
previous analysis by deBoer et al. [7] omitted the largest angle.

4.2 Paneru et al. 3He-α Elastic Scattering
A newmeasurement of 3He+α elastic scattering was performed at
TRIUMF using the SONIK [61,63] target and detector system.
SONIK was filled with 4He gas maintained at a typical pressure of
5 Torr bombarded with 3He with a beam intensity of about 1012

pps. Elastic scattering cross sections were measured at nine
different energies from Ec. m. = 0.38–3.13 MeV. SONIK covers
an angular range of 30° < θc.m. < 139°—a markedly larger range
than previous measurements. The detectors in SONIK were
arranged such that they observed three different points,
termed interaction regions, in the gas target along the beam
direction. When the beam traversed the gas target it lost energy,
so the bombarding energy, and therefore the scattering energy,
was slightly different in each of the three interaction regions.

As we will explore further below, the results for the differential
scattering cross section from this measurement are consistent
with previous determinations but have better precision. The data
also extend to markedly lower energies. The uncertainties with
this measurement are well quantified and are presented in Paneru
et al. [54]. A separate normalization uncertainty is determined for
each beam energy. These normalization uncertainties range from
4.1 to 9.8%.

FIGURE 7 | R-matrix parameter comparison between DCS (green) and DCSB (blue) analyses.

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 8884768

Odell et al. Bayesian Analysis of 7Be Using BRICK

14

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 8 | Correlation matrix of R-matrix parameters for theDCS analysis. Parameter chains are centered at zero and scaled to one prior to the computation. The
strongest correlations (anti-correlations) are highlighted with lighter (darker) colors.

FIGURE 9 | The normalization factors applied to the total cross section predicted by our R-matrix model are compared for each of the total capture data sets
(Seattle [2] Weizmann [42], LUNA [41], ERNA [45], Notre Dame [39], and ATOMKI [44]). DCSB (blue) and DCS (green) results are shown together for each data set.
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4.3 3He(α, γ) Data
The data selection [39–42,44,45] for the 3He (α,γ)7Be reaction for
this work follows that of previous recent works [7,22,47,64]. Note
that the LUNA measurements of Gyürky et al. [65] and
Confortola et al. [66] are collected in Costantini et al. [41].
The combined data sets cover a wide energy range from Ec. m. =
94–3130 keV, but still remain below the proton decay threshold.
Older data are not included due to a long history of
discrepancies, which manifested as differences between
experiments that used either direct detection of γ-rays or the
activation technique. More recent measurements have achieved
consistency resulting from improved experimental techniques
by performing consistency check measurements using both
direct detection of γ-rays and the activation technique [47].
Details about the capture data sets, including common-mode
errors for cross sections, are listed in Table 3.

4.4 Data Models
Two distinct data models are analyzed here,DCS andDCSB, where
C indicates the inclusion of the capture data described in Section
4.3, S indicates the inclusion of the SONIK data described in

Section 4.2, and B indicates the inclusion of the Barnard data
described in Section 4.1. DCSB is a more complete data model in
the sense that it includes more data and would naively be
considered the “best” data model. But, there are notable effects
when the data of Barnard et al. [53] are included that are
highlighted and discussed in Section 5.

5 RESULTS

The results of our analysis are presented here in two subsections.
The first discusses results in the energy regime of the data that was
analyzed. The second computes extrapolated
quantities—observables that lie in energy regimes outside
those covered by the analyzed data.

5.1 Fits to Data
First we examine the extent to which our results match
experimental data. We do this by comparing predicted and
measured observables.

5.1.1 Capture Data
Figure 3 shows the total capture S-factor data alongside bands
representing 68% intervals from the analyses of both data
models, DCSB and DCS. For energies above 400 keV both
analyses give very similar results. However, below that
energy, the DCS analysis provides a more “natural”
agreement with data—see the normalization factor
posteriors and the associated discussion below. The LUNA
data in particular discriminate between the two data models.
The fit to the CSB data includes a normalization factor for the
LUNA data that differs from 1 by about three times the stated
common-mode error, cf. below. The normalization factors are
not applied to the data in Figure 3, which is why the CSB band
sits well below the LUNA data.

The branching ratio, defined as the ratio of the excited-state
cross section to the ground-state cross section, results for both
data models—DCS and DCSB—are shown in Figure 4. The most
prominent differences between the DCSB and DCS results occur
near the upper and lower ends of the energy range. However, in
the context of the experimental uncertainties, these differences

FIGURE 10 | Summaries of the normalization factor posteriors for each
SONIK [54] data set are shown for DCSB (blue) and DCS (green). Error bars
represent 68% quantiles. Grey-shaded rectangles indicate the uncertainties
reported in [61].

FIGURE 11 | Posteriors of the normalization factor applied to the Barnard data and the energy shifts introduced to the Barnard et al. [53] and SONIK [54] data sets.
The Barnard normalization factor is applied to the theory prediction. Energy shifts are presented in keV. These results were obtained exclusively with the DCSB

data model.
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are not significant. Over the entire energy range, the predictions
from DCS and DCSB overlap at the 1-σ level.

5.1.2 Scattering Data
The differential cross sections from the SONIK [54] and Barnard
et al. [53] measurements are shown in Figures 5 and 6,
respectively, with the predictions from our analyses. In all
cases, both analyses reproduce the data to high accuracy.
However, the DCS analysis results in a much lower χ2/datum
at max ln P: 0.72 for the SONIK [54] data vs. 0.95 for the DCSB

analysis of the SONIK + Barnard [53] data sets.

5.2 Parameter Distributions
Separate corner plots for each data model are provided in the
Supplemental Material. There are notable differences in several R-
matrix parameters. In particular, the DCS ANCs are significantly
larger and their posterior distributions are noticeably wider. The
DCS analysis also produces a significantly smaller ratio of ANCs,
C1/C0. This is consistent with the smaller branching ratios at low
energies shown in Figure 4.

The DCS partial α widths in the 1/2+, 3/2+, and 5/2+ channels
are smaller and separated by more than two standard deviations
from the DCSB widths. The distributions for Γ(5/2+)γ,0 seem to
indicate opposite signs. The DCSBE(7/2−)

x posterior is markedly
smaller and narrower, and the constraints on Γ(7/2−)α from DCSB

are dramatically tighter. This is presumably due to the much

larger amount of data in the vicinity of the 7/2− resonance that is
present in the Barnard et al. [53] data set. It is also worth noting
the “non-Gaussian” behavior of several of these distributions—a
characteristic that would be difficult to identify in a typical
analysis that assumed linear propagation of uncertainties
around a minimum of the posterior pdf. Using Gaussian
approximations and linearizing would likely underestimate
uncertainties in the case of Γ(3/2+)γ,0 , for example.

All parameters shown in Figure 7 are well-constrained. By
comparing to the prior distributions listed in Table 1, one can
see the dominance of the data’s influence over the information
in the prior: all posterior distributions are markedly narrower
than the priors chosen. As discussed in Section 3.2, several R-
matrix-model iterations were taken to remove redundant
parameters.

The correlation matrix of the R-matrix parameters is
shown in Figure 8. The figure represents an approximation
of the full information contained in the corner plot given in
the Supplemental Material. There, significant, often-
nonlinear, correlations are observable between several pairs
of R-matrix parameters. In particular, the influence of the
ANCs over the entire R-matrix parameter space, either
directly or indirectly, means that it is very important for
scattering data to have well-defined uncertainties over its
full energy range.

The normalization factors applied to the theory predictions for
each of the total capture data sets are shown for both data models in
Figure 9. The comparison reveals good agreement betweenDCS and
DCSB for all but the LUNA data set [41]—the lowest-energy capture
data set in our analysis. The DCS analysis yields a normalization
factor for these data that is very close to 1. In contrast, the DCSB

FIGURE 12 | The two-dimensional posterior of the squares of the ANCs,
C0 and C1. Results for DCS are shown in green and for DCSB in blue. The EFT
analysis of capture data of Zhang et al. [22] extracted the ANC values shown in
red, and in the analysis of Barnard et al. [53] and capture data of deBoer
et al. [7] the ANCs were fixed at the location indicated by the purple,
dashed lines.

FIGURE 13 | a0-r0 correlation for both DCSB (blue) and DCS (green) data
models.
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analysis requires that the LUNA data be shifted by nearly 10%.
(Recall from Eq. 2, that f is applied to the theory prediction, and so
an f > 1 corresponds to a systematic error that reduces the
experimental cross section and uncertainties.). To put this in
perspective, the LUNA collaboration estimates their common-
mode error at 3.2%. Because the LUNA data set is the lowest
capture data set, this disagreement between the DCS and DCSB

analyses corresponds to a significant difference in the extrapolated
S(0) of these two analyses.

The normalization factors applied to the theory predictions for
each of the SONIK energies are shown in Figure 10. When the
data of Barnard et al. [53] are included in the analysis, the SONIK
normalization factors are significantly larger. This effect is
systematically apparent at lower energies. In more than half
the cases, the DCSB and DCS results are inconsistent with each
other. For eight out of ten SONIK energies, the normalization
factor obtained from the fit is within the common-mode error
estimated by the SONIK collaboration. Note that the common-
mode error in this experiment was estimated to be different at
different beam energies [61] 1. This is represented in Figure 10 by
the varying heights of the grey bands, which are priors in accord
with these experimentally assigned common-mode errors, see
Table 2.

The posteriors for fBarnard and the energy shifts for both the
Barnard et al. [53] and SONIK [54] data sets (see Section 3.3)
are shown in Figure 11. The result for fBarnard is 1.002+0.003−0.002:

well within the estimated systematic uncertainty of 5% given in
Barnard et al. [53]. A shift of 19.26+2.90−2.51 keV in the energies
reported in Barnard et al. [53] is found, but this result is
consistent with the energy uncertainty estimates ranging from
20 to 40 keV given in that paper. However, even such a clearly
nonzero shift does not seem to significantly impact
extrapolated quantities. Finally, the SONIK energy shift
indicated by our analyses is 1.59+2.43−1.81 keV. This result
matches very well with the reported energy uncertainty
estimate of 3 keV. The prior for this parameter was a
normal distribution centered at 0 keV with a 1-σ width of
3 keV. The primary difference between the posterior and the
prior for this parameter is the loss of probability in the negative
energy region. If any energy shift in the SONIK data [54] is
necessary, it is positive, but since 0 keV is well within one
standard deviation, there is strong evidence for no shift.

The ANCs corresponding to the two bound 7Be states are of
particular interest for extrapolating threshold quantities. First, we
point out that the inclusion of scattering data significantly
reduces the uncertainty of the ANCs. Our posterior is much
narrower than that obtained using capture-only data in Zhang
et al. [22]. This highlights the importance of scattering data in
constraining bound-state properties and the amplitudes
associated with transitions to them.

Second, the choice of scattering data set matters. The C1 results
from analyzingDCS andDCSB are discrepant at the 1-σ level. The
C0 results disagree by approximately 2-σ. The contrast is
highlighted in Figure 12 where the squares C2

1 and C2
0 are

compared. The differing values directly impact the S-factor
extrapolations discussed below.

5.3 Extrapolated Quantities
The Coulomb-modified effective range function is given in
Hamilton et al. [67] and van Haeringen [68] as

K E( ) � k2ℓ+1
η2ℓ

Γ2 ℓ + 1( )uℓ η( ) C2
0 η( )cot δℓ + 2ηh η( )[ ] , (5)

where k is the relative momentum, ℓ is the angular momentum, η
is the Sommerfeld parameter, Γ is the gamma function, uℓ(η) is
given by

uℓ η( ) � Γ2 2ℓ + 2( )C2
ℓ

2η( )2ℓC2
0

, (6)

with

FIGURE 14 | a0 posteriors obtained from DCS (green) and DCSB (blue)
analyses. The result from Zhang et al. [22] is shown in red.

TABLE 4 | A summary of the posteriors of the extrapolated quantities. Where
possible, results from other anlayses are included.

Analysis S(0) (keV b) a0 (fm) r0 (fm)

DCS 0.539+0.011−0.012 36.59+0.55−0.53 1.033+0.003−0.003
DCSB 0.495+0.008−0.008 32.32+0.18−0.18 1.004+0.001−0.001
deBoer et al. [7] 0.542+0.023−0.017 — —

Zhang et al. [22] 0.578+0.015−0.016 50.36+6.02−7.50 0.974+0.025−0.027

1We use slightly different common-mode uncertainty estimates in our prior
definitions than those listed in [61]. This update will be reflected in a
forthcoming publication by the SONIK collaboration [54].
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Cℓ � ℓ
2 + η2( )1/2

ℓ 2ℓ + 1( ) Cℓ−1 , (7)

C0 � 2πη
e2πη − 1
[ ]1/2 , (8)

h η( ) � 1
2

Ψ 1 + iη( ) + Ψ 1 − iη( )[ ] − ln η , (9)

and Ψ representing the digamma function [69]. This effective
range function is an analytic function of E (or k2) near E = 0.
From the phase shifts, obtained with BRICK, calculated over
a range of low momenta, one can fit the scattering length,
a0, and effective range, r0, according to the low-energy
expansion

K E( ) � − 1
a0

+ r0
2
k2 + . . . (10)

Our calculation involves 70 equally spaced phase shifts over a
range of low energies from 0.57 keV to 3.93 MeV. The results are
used to evaluate the effective range function defined by Eq. 5. The
energy dependence is then fit to Eq. 10 using a non-linear least
squares fit. In addition to a0 and r0 defined in Eq. 5, the shape
parameter atO(k4) was fit to ensure a better determination of a0
and r0.

The results from DCSB and DCS are shown in Figure 13. As in
the ANC comparison, they are strikingly discrepant. The naive
expectation would be that DCSB distributions would be smaller
subsets of the DCS distributions. For many relevant quantities,
this is not the case.

Figure 14 shows a comparison of the scattering lengths
obtained from the DCS and DCSB analyses. A comparison to
Zhang et al. [22], also included in Figure 14, reveals the impact of
including scattering data: the inclusion of scattering data drives
the median downward and constrains the uncertainties
significantly. A summary of these posteriors is given in Table 4.

The DCSB scattering length and effective range are both
smaller and more tightly constrained. One might have
expected that with more data—and more data at lower
energies—this extrapolated quantity would become more
tightly constrained. The two-dimensional posteriors shown in
Figure 13 seem to lie on the same line or band that defines the
correlation between a0 and r0, though two extended posteriors is
not sufficient to define such a line.

The total capture S factor at zero energy was extrapolated by
evaluating the S factor at 100 evenly spaced points between 1
and 100 keV, constructing a cubic-polynomial interpolation
function to represent the calculations, and evaluating that
function at zero energy. Errors from the interpolation/
extrapolation process are negligible when compared to
contributions from parameter uncertainties. The results are
shown alongside previous results in Figure 15. As expected
from the different low-energy behaviors shown in Figure 3, the
DCS and DCSB results are discrepant, only overlapping at the 2-
σ level. The inclusion of the Barnard et al. [53] data reduces the
uncertainty in S(0) and pulls the entire distribution downward,
outside the uncertainties of the DCS analysis. This effect is not
seen in [7] because the ANCs in that analysis were not varied
freely. The DCSB result is discrepant with the DCS results and
those reported in [7,22]. A summary of these posteriors is
given in Table 4.

Insights into the relevance of parameters can be obtained by
examining the correlations between them. In Figure 16, the
correlations between S(0) and a0, C

2
1 and C2

0 are shown. While
theDCS andDCSB results are discrepant in several astrophysically
relevant cases, the discrepancy is consistent, and this figure
exposes, to a large extent, why: the ANCs, particularly the
ground-state ANC, strongly correlates with S(0). The Barnard
et al. [53] data more tightly constrain these parameters at smaller
values, and this directly lowers the predicted S(0) extrapolation.

6 CONCLUSION

We have described and applied the Bayesian R-matrix Inference
Code Kit (BRICK), which facilitates communication between the
phenomenological R-matrix code AZURE2 [3] and a Markov Chain
Monte Carlo (MCMC) sampler such as emcee [36]. It thereby
enables MCMC sampling of the joint posterior probability density
function (pdf) for theR-matrix parameters and normalization factors.
With samples that represent such a posterior in hand, the
computation of the pdf for any quantity that can be calculated in
the R-matrix formalism is straightforward.

While BRICK is a general tool, we have also provided an
example of its application to an R-matrix fit of 3He-α scattering
and the 3He (α,γ)7Be capture reaction data, in order to make
inferences about the 7Be system. This application was partly

FIGURE 15 | Extrapolated S(0) posteriors from the analyses of both
DCSB (blue) and DCS (green) data models. Previous results from Zhang et al.
[22] (red) are deBoer et al. [7] (orange) are also summarized here for
comparison.
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motivated by the availability of a new 3He-α scattering data set
obtained using the SONIK detector at TRIUMF [61] following
the suggestion of deBoer et al. [7]. These data have more carefully
quantified uncertainties than a previous measurement by Barnard
et al. [53]. Our study shows this motivation was well justified,
finding discrepant values for extrapolated quantifies when the
data of Barnard et al. [53] were included. Our analysis of the
SONIK data shows consistency between them and capture data,
producing an S factor in accord with analyses of capture data
alone: our final DCS (capture + SONIK data) result for the S-
factor at zero energy is S(0) � 0.539+0.011−0.012 keV b. When the
Barnard et al. [53] data were included in the analysis, the
DCSB results produced significantly lower ANCs and S(0)
extrapolation. Indeed, the DCSB analysis produces values for
S(E) at c. m. energies of 10–20 keV that can only be
reconciled with the LUNA data [41] if the normalization of
these data is adjusted by 2–3 times the quoted common-
mode error.

This emphasizes the importance of detailed uncertainty
quantification when data sets are to be used for accurate
inference of extrapolated quantities, where Barnard et al.
[53] does not include these kinds of details regarding the
experiment. This makes the tension between the Barnard et al.
[53] and SONIK data regarding S(0) difficult to resolve, thus the
Barnard et al. [53] data may need to be omitted from future
evaluations. We emphasize, though, that these previous data were
invaluable in advancing our understanding of the 7Be system to its
current state, but data with more well defined uncertainties are
needed for current applications.

Zhang, Nollett, and Phillips pointed out that the s-wave 3He-α
scattering length is correlated with this result [22]. TheDCS analysis
produces a0 � 36.59+0.55−0.53 fm. Premarathna and Rupak
simultaneously analysed capture data and 3He-α phase shifts in
EFT and found a0 � 40+5−6 fm (Model A II of Premarathna and
Rupak [21])—in good agreement with this number. However, it
disagrees by 2σ with the a0 extracted using EFT methods from
capture data alone by Zhang et al. [22]: a0 � 50+6−7. Recently Poudel
and Phillips [70] performed an EFT analysis of the SONIK data,
using priors on the 7Be ANCs from the capture analysis of Zhang
et al. [22], and extracted a0 = 60 ± 6 fm—even further away from the
results of this R-matrix analysis.

Improvements in the analyses presented here could occur if
there were:

• Better documentation of the energy dependence of
systematic uncertainties in published data sets. The
Bayesian formalism that underlies BRICK allows
systematic uncertainties with any correlation structure to
be incorporated into the analysis.

• Improved understanding of the way theory uncertainties in
the phenomenological R-matrix formalism affect the
extrapolation of data.

• Detailed modern data with full uncertainty quantification in the
vicinity of the 7/2− resonance. Thismay help resolve some of the
ambiguities in results between the DCS and DCSB analyses.

FIGURE 16 | Two-dimensional posteriors are presented for the analyses
of both DCSB (blue) and DCS (green) data models. The “anchor” parameter is
S(0). The top panel gives its correlation with a0. The middle (bottom) panel
corresponds to the square of the excited- (ground-) state ANC.
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• Ab initio constraints, e.g., on ANCs could be incorporated
in the analysis.

• Data from transfer reactions that provided complementary
information on the 7Be ANCs.

Future applications of BRICK could include posteriors for
astrophysical reaction rates. This would enhance BRICK’s utility
as a tool for performing detailed uncertainty quantification on
nuclear reactions, especially those of astrophysical interest.
AZURE2 already includes the necessary functionality.
Implementing this feature ought to be a straightforward process.
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Analyzing rotational bands in
odd-mass nuclei using effective
field theory and Bayesian
methods
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We recently developed an Effective Field Theory (EFT) for rotational bands in

odd-mass nuclei. Herewe use EFT expressions to perform a Bayesian analysis of

data on the rotational energy levels of 99Tc, 155,157Gd, 159Dy, 167,169Er, 167,169Tm,
183W, 235U and 239Pu. The error model in our Bayesian analysis includes both

experimental and EFT truncation uncertainties. It also accounts for the fact that

low-energy constants (LECs) at even and odd orders are expected to have

different sizes. We use Markov Chain Monte Carlo (MCMC) sampling to explore

the joint posterior of the EFT and error-model parameters and show both the

LECs and the breakdown scale can be reliably determined. We extract the LECs

up to fourth order in the EFT and find that, provided we correctly account for

EFT truncation errors in our likelihood, results for lower-order LECs are stable as

we go to higher orders. LEC results are also stable with respect to the addition of

higher-energy data. We extract the expansion parameter for all the nuclei listed

above and find a clear correlation between the extracted and the expected

value of the inverse breakdown scale, W, based on the single-particle and

vibrational energy scales. However, the W that actually determines the

convergence of the EFT expansion is markedly smaller than would be

naively expected based on those scales.

KEYWORDS

EFT, bayesian analysis, rotational bands, collective models, nuclear structure

1 Introduction

Rotational bands are ubiquitous in the spectra of medium-mass and heavy nuclei. As

has been known for 70 years [1], they emerge in a description of the nucleus as a nearly

rigid axially-symmetric rotor [2]. For even-even nuclei the simplest rotational bands

consist of 0+, 2+, . . . states and their energies are described by an expansion in powers of

I(I + 1), where I is the spin of the rotational state [3, 4]. This behavior has recently been

obtained in ab initio calculations of the Be isotope chain [5–9] and 34Mg [10].

Odd-mass neighbors of a rotor nucleus can then be understood as a fermion coupled

to the rotor. The fermion dynamics is simpler in the intrinsic frame in which the nucleus is

not rotating, but this frame is non-inertial, so solving the problem there induces a Coriolis
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force proportional to �j · �I, the dot product of the single-fermion

angular momentum and the total angular momentum of the

fermion-rotor system. When combined with other mechanisms,

such as excitation of the fermion to higher-single particle states

and the fermion disturbing the rotor, this induces a string of

terms in the energy-level formula [11]. Odd powers of I appear,

and produce staggering between adjacent levels. Which powers of

I are present depends on the value of the quantum number, K, the

projection of the fermion angular momentum on the rotor axis.

For K = 1/2 bands the energy-level formula is:

E I( ) � AKI I + 1( ) + EK + A1 −1( )I+1/2 I + 1/2( )
+B1I I + 1( ) −1( )I+1/2 I + 1

2
( ) + BK I I + 1( )[ ]2 (1)

where AK, EK, A1, B1, and BK are parameters, related to rotor

properties and single-particle matrix elements, that need to be

either derived from a microscopic model or estimated from data.

Over the years a number of models have had success

describing this pattern from underlying density functional

theory [12–15] or shell-model [15–18] dynamics. The models

also predict specific values for the coefficients that appear in Eq.

1. In Ref. [19] we took a different approach, organizing formula

(1) as an effective field theory (EFT) expansion in powers of the

small parameter, Q. For values of I appreciably larger than one

the expansion parameter should be modified to Q = I/I{br}, with

I{br} the spin of the nuclear state at which dynamical effects

associated with single-particle and/or vibrational degrees of

freedom cause the polynomial expansion in powers of I to

break down. To simplify our later presentation we notate the

inverse of the breakdown scale as W ≡ 1/I{br}. We then have

Q=IW. This description of rotational bands in odd-mass nuclei

builds on the successful EFT developed for even-even nuclei in

Refs. [3, 4]. Other efforts to develop an EFT for these rotational

bands can be found in Refs. [20, 21].

In the odd-mass rotor EFT, Eq. 1 is the next-to-next-to-next-

to-next-to leading order (N4LO) result for the energies, and the

first corrections to it are O(EQ4). The EFT analysis of Eq. 1

organizes it in terms of increasingly accurate predictions: the

NkLO energy-level formula has accuracy O(EQk). All short-
distance/high-energy physical mechanisms that affect the

energies up to that accuracy are subsumed into the

parameters or low-energy constants (LECs) that multiply the

I-dependent terms in Eq. 1. In Ref. [19] we determined these

LECs by fitting the lowest levels in the different rotational bands

we analyzed. However, this runs the risk of fine-tuning the values

of the LECs to those levels, and it does not provide uncertainty

estimates for them. Better parameter estimation would use all the

data available on a particular band, and account for the O(EQk)
truncation uncertainty present at order NkLO [31, 32].

Bayesian methods for EFT parameter estimation do just that

[32–35]. Reference [34] showed that the effect of neglected terms

in the EFT expansion could be included in the error model by

modifying the likelihood so that the covariance matrix that

appears there includes both experimental uncertainties and

EFT truncation errors. More recently, Ref. [35] showed that

MCMC sampling of that likelihood enabled the simultaneous

determination of the LECs and the parameters of the error

model, i.e., the value of W and the typical size of the “order

one” dimensionless coefficients that appear in the EFT

expansion.

In this work we apply the EFT parameter estimation

technology developed in Refs. [32–35] to the problem of

rotational bands in odd-mass nuclei. We consider K = 1/2

bands in 99Tc, 167,169Er, 167,169Tm, 183W, 235U and 239Pu as well

as K = 3/2 bands in 155,157Gd and 159Dy. Section 2 summarizes the

elements of the EFT that are relevant for this paper. Section 3

then develops the Bayesian statistical model we use to analyze

data on rotational bands. We first write down the likelihood that

includes both experimental and theory uncertainties, and then

explain how we use known information on the expected size of

the LECs and the expansion parameter to set priors. A novel

feature of this work, compared to earlier Bayesian EFT

parameter-estimation studies, is that our statistical model

incorporates the possibility that the LECs at even and odd

orders have different typical sizes. This reflects the physics of

odd-order LECs that are associated with matrix elements of the

fermion spin, while even-order LECs contain a combination of

effects from the rotor and the fermion. Section 4 contains details

of our Markov Chain Monte Carlo sampler, and then Section 5

presents the results for LECs and the inverse breakdown scale,W,

that we obtain from sampling the Bayesian posterior. We

conclude in Section 6. All the results and figures generated

from this work can be reproduced using publicly available

Jupyter notebooks [36].

2 Rotational EFT background

Here we summarize the results of the EFT for rotational

bands in odd-mass nuclei that was developed up to fourth

order in the angular velocity of the system in Ref. [19]. This

theory constructs the Lagrangian of the particle-rotor system

using its angular velocity and the angular momentum of the

unpaired fermion, �j, as building blocks. The resulting

Lagrangian corrects that of a rigid rotor with

contributions arranged as a series in powers of a small

expansion parameter, Q = WpI, according to a power-

counting scheme that counts powers of the system’s

angular velocity. Naively, we expect W to be of order Erot/Ehigh,

where Erot is the energy scale at which rotational excitation

take place and Ehigh is the scale of high-energy physics not

explicitly taken into account by the EFT. At leading order

(LO), the energy of a rotational band on top of a bandhead

with spin K is

ELO I, K( ) � ArotI I + 1( ) + EK, (2)
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where I is the spin of the rotational state (or, equivalently, the

total angular momentum of the fermion-rotor system), and Arot

and EK are LECs that must be fitted to experimental data. Arot is

determined by the moment of inertia of the even-even nucleus

(the rotor) to which the unpaired fermion is coupled.

At next-to-leading order (NLO) rotational bands with K = 1/2

are affected by a term that takes the same �j · �I form as the Coriolis

force. This produces:

ENLO I, K( ) � ArotI I + 1( ) + EK

+A1 −1( )I+1/2 I + 1
2

( )δK1/2, (3)

where δKK′ is the Kronecker delta. The LEC A1 is expected to be of

orderArot times a sum of matrix elements involving the fermion’s

total angular momentum operator (for details see Ref. [19]).

From previous studies we see that A1/Arot < 1. This correction,

sometimes called the signature term, causes staggering between

adjacent states in K = 1/2 bands.

The energy of a rotational band at next-to-next-to-leading

order (N2LO) is

EN2LO I, K( ) � AKI I + 1( ) + EK

+A1 −1( )I+1/2 I + 1
2

( )δK1/2. (4)

The term proportional to AK combines the LO term proportional

to Arot and corrections entering at this order with the same spin

dependence. From our power counting we expect the shift ΔA =

Arot − AK to be of order ArotW. In contrast to Arot, AK is band

dependent and so should be fitted to data on the rotational band

of interest.

The N3LO corrections to the energy of a rotational band are

both ~ I3 for I ≫ 1, but take a different form in the K = 1/2 and

K = 3/2 bands:

ΔEN3LO I, K( ) � B1 −1( )I+1/2 I + 1
2

( )I I + 1( )δK1/2
+A3 −1( )I+3/2 I + 1

2
( ) I − 1

2
( ) I + 3

2
( )δK3/2. (5)

with B1 and A3 expected to be of order A1W
2. Last, at N4LO we

have the additional term:

ΔEN4LO I, K( ) � BK I I + 1( )[ ]2. (6)

with BK expected to be of order ArotW
3.

This pattern continues: at odd orders we add terms that

correct the staggering term and have LECs of orderA1W
n−1, while

the even-order terms provide the overall trend with I and have

LECs of order ArotW
n−1. (In both cases n is the order of our

expansion.) This difference in the expected sizes of odd and even

LECs comes from the physics. Odd-order LECs are associated

with operators in the effective Lagrangian that couple rotor and

fermionic degrees of freedom, while even-order LECs encode

both rotor-fermion interactions and effects coming from the

non-rigidity of the rotor itself.

In what follows we denote the LECs A1, ΔA, B1, and BK
generically as {an: n = 1, . . . , k}≡ak, where k is the order of the

EFT calculation. (In the case of K = 3/2 bands the set is ΔA, A3,

and BK, and a1 = 0.) We then divide the nth-order LEC, an, by the

reference scale and the power of the inverse breakdown scale

assigned to it by the EFT power counting, i.e., construct:

cn � an
ArotWn−1. (7)

We expect these coefficients cn to be of order one, i.e., they

should be natural coefficients. However, because sets of odd and

even natural coefficients seem to have different sizes we will assume

the even and odd cn’s are drawn from two different distributions

with different characteristic sizes that we denote by �ceven and �codd.

3 Building the Bayesian model

3.1 Building the posterior

Our goal in this analysis is to use the information on the

expected size of LECs to stablize the extraction of their values as

we addmore levels to the analysis, or as we use energy-level formulae

computed at different EFT orders. At the same time, we want to

estimate the inverse breakdown scale,W, of the theory, as well as the

characteristic sizes for even and odd coefficients, �ceven and �codd.

We want to obtain the posterior distribution for all the LECs

that appear at order k, a set we collectively denote by ak. Here we

will obtain the joint posterior pdf of ak, the inverse breakdown

scale, W, and the characteristic sizes. To do this we follow the

successful endeavor by the BUQEYE collaboration in Refs.

[33–35], and write the posterior, given experimental data,
�yexp, and prior information on the model, Pp, as

pr ak,W, �ceven, �codd| �yexp, Pp( ) � pr ak|W, �ceven, �codd, �yexp, Pp( )
× pr W|�ceven, �codd, �yexp, Pp( )
× pr �ceven|�codd, �yexp, Pp( )
× pr �codd| �yexp, Pp( ).

(8)
Marginalization of this posterior distribution over W, �ceven

and �codd yields the posterior distribution for ak. Other

marginalizations can be carried out to obtain posteriors for

W, �ceven and �codd.

This joint posterior distribution tells us the probability of the

LECs and the error model parameters given experimental data.

We could use this posterior distribution to get other quantities or

observables, such as the energy of a particular rotational level,

which depend on the LECs or the error model parameters. These

are now represented by distributions and not single numbers.

Their distributions are called posterior predictive distributions

(PPD). We write the PPD of an observable O as
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pr O| �yexp, Pp( ) � ∫ d �θδ O −O �θ( )( )pr �θ| �yexp, Pp( ) (9)

where �θ represents the LECs and the error model parameters.

Calculating the observable at each point in the parameter space �θ

and then integrating over the parameters �θ allows one to carefully

account for correlations between the parameters.

Using Bayes’ theorem, we can express the posterior of Eq. 8 as

pr ak,W, �ceven, �codd| �yexp, Pp( ) � pr �yexp|ak,W, �ceven, �codd, Pp( )
× pr ak|W, �ceven, �codd, Pp( )
× pr W|�ceven, �codd, Pp( )
× pr �ceven|Pp( )pr �codd|Pp( )
×

1

pr �yexp|Pp( ).
(10)

The terms on the right-hand side of Eq. 10 have the following

interpretations:

1. pr( �yexp|ak,W, �ceven, �codd, Pp) is the likelihood of the

experimental data given specific values of both the LECs

that appear in the energy formula at order k and the

parameters in our error model.

2. pr(ak|W, �ceven, �codd, Pp) is the prior distribution of the LECs

given the parameters encoding the systematic expansion of

the EFT.

3. pr(W|�ceven, �codd, Pp) is the prior distribution of the inverse

breakdown scale given the characteristic sizes of even and odd

natural coefficients.

4. pr(�ceven|Pp) and pr(�codd|Pp) are the prior distributions of the
even and odd characteristic sizes (In Eq. 10 we assume an

uncorrelated prior on �ceven and �codd.).

5. pr( �yexp|Pp) is the evidence, which we drop in what follows as

it does not depend on the parameters we are interested in

extracting and functions only as a normalization constant.

3.2 Building the likelihood

We now build the likelihood function accounting for the

expected error between the experimental and theoretical values,

for data on K = 1/2 rotational bands. The corresponding

likelihood for K = 3/2 bands is built analogously. Following

[34] we start by writing our observable (the energy of a particular

rotational level) at order k as

E I( ) � ArotI I + 1( )
1 + ∑k

n�odd
cnW

n−1 −1( )I+1/2 I + 1
2

( ) I I + 1( )[ ] n−3( )/2⎧⎨⎩
+ ∑k

n�even
cnW

n−1 I I + 1( )[ ] n−2( )/2}. (11)

We choose the leading-order energy for each level,

ArotI(I + 1), to be the reference scale Eref for the

observable. The dimensionless coefficients cn (see Eq. 7) are

assumed to beO(1). The theory error �σth at any order is due to

terms omitted from the summations in Eq. 11. Its most

significant contribution comes from the first omitted term

in the EFT expansion. Accounting only for this term yields an

estimate for the theory error that is fully correlated across

levels if k + 1 is even, and anticorrelated for adjacent levels if

k + 1 is odd. To account for this correlation or anticorrelation

we write the theory covariance matrix as the outer product of a

vector representing the theory error, Σth ≡ �σth ⊗ �σth. The

vector �σth contains the value of the first omitted term for

each of the m energy levels that enter the likelihood. We also

account for experimental errors by writing the covariance

matrix as

Σ � Σth + Σexp (12)

where we take (Σexp)ij ≡ ( �σexp)2i δij. The likelihood function is

then

pr �yexp|ak,W, �ceven, �codd, Pp( ) � ��������
1

2π( )m|Σ|
√

exp −1
2
�r
TΣ−1 �r( ),

(13)
where �r ≡ �yexp − �yth is the residual between the central

experimental energy for a level and the theory result from

Eq. 11 andm is the number of levels included in the likelihood

estimation.

We note that since the theory error is the outer product of the

theory error with itself, the theory covariance Σth is singular.

Including the experimental error solves this singularity problem

FIGURE 1
Comparing the log of the likelihood when accounting for
different number of omitted terms, p, in the theory error. Apart
from W, the parameters that enter the likelihood were chosen to
be themedian parameters after we had sampled the posterior
distribution for 169Er.
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for the covariance Σ. However, Σ can still become ill-conditioned

for higher values of W if the experimental errors are too small;

numerical issues then arise when we try to invert the covariance

matrix.

Including more terms in the estimate for the theoretical error

produces a steeper peak in the likelihood function, see Figure 1,

which, in turn, restricts the values sampled for W to a narrower

region. Because it precludes the sampler exploring large values of

W, this inclusion of more omitted terms in the model of the

theoretical error solves the numerical problem of ill-conditioned

matrices and gives amore accurate extraction of the LECs and the

error-model parameters.

In what follows we estimate the theory error including

omitted terms up to a certain cutoff order kmax. Our theory

error estimate for the level with spin I is then

σth I( ) � Arot ∑kmax

l�k+1
�ceven,oddW

l−1Pl I( ), (14)

where the �c that is used here is �ceven for even values of l and �codd
otherwise. The I-dependence of the lth term is chosen to match

that in Eq. 11, and is denoted here by Pl(I), a polynomial of power

l. We arrange the contributions to the theory error, Eq. 14 as the p

columns of am × pmatrix σth, where p = kmax − k is the number of

omitted terms. Each column in this matrix then corresponds to

the theory-error structure, while each row corresponds to a

different energy level. To obtain Σth we then again take the

outer product of σth with itself, i.e., we construct an outer product

in our m-dimensional data space, while also taking an inner

product in order space. This results in the theory error associated

with different orders being added in quadrature, while

maintaining the correlation structure of the theory error

across the data space.

3.3 Building the priors

The prior distributions for an order-n LEC is taken to be a

Gaussian with mean zero and standard deviation

σn � Arot�cevenW
n−1 if n is even;

Arot�coddW
n−1 if n is odd,

{ (15)

encoding the EFT expectations for the sizes of the LECs arising

from the power counting described in Section 2. The standard

deviation in Eq. 15 allows the possibility for even and odd LECs

to have different typical sizes. Combining the Gaussian priors for

the LECs yields

pr ak|W, �ceven, �codd, Pp( ) � 1
�E

���
2π

√ exp − E2
k

2�E2( )

∏k
n�1

1

σn

���
2π

√ exp − a2n
2σ2

n

( ). (16)

The LEC EK is just an energy shift and its size is not

determined by the EFT power counting. We set the prior on it

to be Gaussian with mean zero and a standard deviation, �E,

that is wide enough to capture its value. The value for �E is

determined from the energy of the bandhead and Arot by

means of Eq. 3.

We choose not to impose any expectations regarding the size

of the expansion parameter in the prior forW and so take it to be

flat between two limits:

pr W|�ceven, �codd, Pp( )∝ 1 W ∈ 0,Wcut( )
0 otherwise.

{ (17)

Limiting W from above restricts the sampler from going to

high values of W, as they make the covariance matrix ill-

conditioned and harder to invert. For all cases we check that

the posterior for W is confined to values well below Wcut.

The priors on the characteristic sizes �ceven and �codd, are taken

to be identical scaled-inverse-χ2 distributions

pr �c2l |Pp( )∝ χ−2 ] � 1, τ2 � 1( ) �c2l ∈ 0, �c2cut( )
0 otherwise,

{ (18)

where the cutoff �ccut prevents numerical issues inverting the

covariance matrix. The scaled-inverse-χ2 distribution,

given by

χ−2 x; ], τ2( ) � τ2]/2( )]/2
Γ ]/2( )

exp −]τ2
2x[ ]

x1+]/2 , (19)

is shown for different values of ] and τ in Figure 2. We stress that

we chose identical priors for �ceven and �codd even though we expect

the former to be larger than the latter based on previous analyses

of data on rotational bands [19]. We did not want to bias our

analysis by imposing this hierarchy on the prior, instead

FIGURE 2
Prior distribution of the size of the dimensionless natural
coefficients, �c.
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anticipating that it will emerge naturally in the posteriors for

those parameters.

The scaled-inverse-χ2 favors small values of �c2 and has long

tails. This allows the sampler to explore higher values of �c2. The

sharp decrease in this distribution for very small values of �c2

could be a problem for cases where �codd is much smaller than one.

This is a concern in some K = 3/2 bands where we expect smaller

odd-order corrections to the leading-order energy than inK = 1/2

bands.

4 Running the sampler

To sample the posterior distribution in Eq. 10 we use the Python

ensemble sampling toolkit for affine-invariantMCMC (emcee) [37].

We run the sampler for each nucleus at a certain EFT order using the

m rotational levels from the bandhead up to some Imax and

accounting for p omitted terms in the theory error. We use

64 walkers to sample the posterior distribution for an initial

10,000 steps. We then continue running the sampler with

FIGURE 3
Corner plot for the marginalized distributions of the LECs and the error-model parameters at N4LO for 167Er including all adopted rotational
levels (Imax =16.5) and accounting for six omitted terms in the theory error. The inset in the top right corner shows the correlations between posterior
parameters. The order of the parameters on the corner plot is the same on the correlations plot. (Here EK and all the EFT LECs are expressed in keV.
The error-model parameters are dimensionless.)
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3,000 step increments. After every 3,000 steps we calculate the

autocorrelation time, τα, where α indexes an LEC or an error-model

parameter. We declare the sampler to be converged if the sampler

meets two criteria. First, the number of steps has to be more than

50 times the highest τα. Second, the change in any of the τα’s has to

be less than 2% from its value after the last 3,000 step increment.

To get the posterior distributions we discard 2 ×max (τα)

steps from the beginning of the chain (burn-in) and 0.5 ×min (τα)

steps in between steps we accept (thinning).

A sample corner plot of the marginalized distributions of the

LECs and the error-model parametersW, �ceven and �codd, for the case

of 167Er is shown in Figure 3. This figure clearly shows that the

posterior distributions for all parameters are fully converged. For this

particular casewe setWcut= 0.16 and �ccut � 22 for both �ceven and �codd.

As explained in Section 3.3, the cutoffs on W and the characteristic

sizes prevent the covariance matrix from being ill-conditioned. We

also ran the sampler for 167Er at different values ofWcut and �ccut and

found that different choices of these hyperparameters do not result in

a significant change in the posterior distributions.

For some cases, namely 99Tc and 183W, the posterior distribution

of W was initially at the upper limit of the prior. We then ran into

numerical problems when increasingWcut trying to encompass the

entire posterior. This problem was solved by decreasing the number

of levels included in the analysis, i.e., decreasing Imax. It was then

possible to increase Wcut without encountering problems with

degenerate matrices. This means that for 99Tc we were only able

to extract the LECs andW at Imax = 11.5.We note that this is beyond

the breakdown scale for this particular nucleus and therefore we

believe that the extraction of the LECs and the error model

parameters is not as reliable as for the other nuclei considered in

this work. For 183Wwe needed to remove two levels from the upper

end of the data set for the sampler to be numerically stable.

In Figure 3 we see clear correlations between EK, A, and B and

also betweenA1 and B1. (Here we have dropped the subscriptK onA

and B; it is to be understood that all LECs are band dependent.) The

correlation coefficients given in the inset in the top-right corner of the

figure make the block-diagonal structure of the covariance matrix

clear. To a good approximation the correlation matrix can be

decomposed into a correlation matrix for even-order LECs, one

for odd-order LECs, and one for the error-model parameters.

We note that, as expected, �codd is smaller than �ceven.

Corrections to the energy levels carrying odd powers of I are

smaller than those carrying even powers of I. This size difference

is connected to different physics correcting the effective

Lagrangian at even and odd orders.

To see which of the parameters has the narrowest distribution

and therefore places the strongest constraint on the posterior

distribution, we did a Singular Value Decomposition (SVD) of

the Hessian matrix. We found that the eigenvector with the

highest eigenvalue, i.e., the parameter combination with smallest

absolute error, is made up mostly of the highest-order LEC. This is

unsurprising, since that LEC, B, is markedly smaller than the others

(we note that its relative error is actually larger than that on, e.g., A1).

We initially found a peculiar correlation between LECs in some

cases where the rotational band was built on the ground state of the

nucleus we were looking at. There we found the eigenvector with the

highest eigenvalue was a very particular linear combination that

involved all the LECs.We ultimately traced this correlation to the fact

that the ground state experimental error had been set to zero, and so

the combination of LECs that entered the formula for the ground-

state energy was very well constrained (theory error is also very small

there). This problemwas solved by adding a small experimental error

to the ground state. We chose it to be equal to the error that the

NNDC quotes on the energy of the first excited state.

5 Results

In this section we show results for our Bayesian analysis of

the rotational energy levels in 99Tc, 155,157Gd, 159Dy, 167,169Er,
167,169Tm, 183W, 235U and 239Pu. The experimental data are

taken from the National Nuclear Data Center (NNDC)

[22–30]. Except for the cases of 99Tc and 183W noted above,

we included all levels in a certain rotational band according to the

adopted level determination in the NNDC.

5.1 Stable LEC extraction across EFT
orders and additional data

In this subsection we show that lower-order LECs extracted

for the selected rotational bands are stable across EFT orders and

with the addition of high-energy data, provided that we account

for enough omitted terms when treating the theory error. For 169Er,
167Er, 169Tm, and 239Pu including omitted terms up to kmax = 10,

FIGURE 4
Posteriors for A1 describing

169Er as a function of Imax at
different EFT orders. The solid line connects themedian values and
the error bands encompass the 16th and 84th percentiles of the
marginalized distribution.
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i.e., accounting for six omitted terms at N4LO, was enough to

stabilize the extraction of the LECs.

As an example, we show the stability of the extracted LEC,A1,

across number of levels included at different EFT orders in

Figure 4. In this figure, Imax is the spin of the highest-energy

level included in a particular analysis. The central values of the

resulting posteriors are consistent with each other within 68%

credible intervals, shown as error bars in the figure. Adding more

levels to the analysis narrows the posteriors for the LECs up to a

certain Imax, after which the widths of these distributions

saturate. Figure 4 also demonstrates striking agreement

between the distributions obtained at low and high EFT

orders: they are almost identical as long as omitted terms up

to the same kmax are accounted for in both analyses.

The importance of includingmore than one omitted term in the

theory error estimate is evident in Figure 5. The top and bottom

panels of the figure show the way that posteriors for B1 and B evolve

as Imax increases. This is done using three error models that include

different numbers of omitted terms. These results show that

including more omitted terms in the model of the theory error

removes the drifting and staggering of the central values.

For both cases the distributions at kmax = 10 agree within

errors as we go higher in Imax. The narrowing of the distribution

as we go higher in Imax is clearly seen in those two figures. In

addition to having less data, the broadening of the error bands at

low Imax comes from the fact that including less levels in the

analysis leads to highly correlated LECs. This allows the

numerically larger errors on the lower-order LECs to

contribute to the errors on the higher-order LECs, thereby

enhancing them.

In Figure 6 we show the decrease in the correlations between the

LECs as Imax increases. The high correlation between the LECs at

FIGURE 5
Posteriors for B1 and B describing 239Pu a function of Imax for
different values of kmax. The solid line connects the median values
and the error bands encompass the 16th and 84th percentiles in
the marginalized distribution.

FIGURE 6
Correlations between LECs and error-model parameters as a
function of Imax, resulting from the analysis on the lowest K =1/2
rotational band in 239Pu at N4LO with kmax =10.

FIGURE 7
The distribution of EK for 169Er at N4LO and kmax =10 as we
successively remove the lowest energy levels from the data set D.
The solid blue line connects themedian values and the error bands
encompass uncertainties between on the 16th and 84th
percentiles of the samples in the marginalized distribution. The
solid black lines show to size of the standard deviation set with the
Gaussian prior on EK.

Frontiers in Physics frontiersin.org08

Alnamlah et al. 10.3389/fphy.2022.901954

31

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.901954


low Imax occurs because these analyses do not include enough data to

constrain all LECs independently. Furthermore, the high correlation

between the LECs at low Imax also results in an unreliable extraction

of the inverse breakdown scaleW. This comes from the fact that at

low energies the theory truncation error is very small compared to

the experimental error. Indeed, adding more terms to our EFT error

model (i.e., increasing kmax) leads to higher correlation between the

LECs at low Imax. Thus, the number of levels required to reliably

extract W increases with increasing kmax.

Starting instead at the low-I end of the data: when we

progressively remove the lowest-energy levels from the data

set D used to construct the likelihood we rapidly lose the

ability to reliably extract the LECs. Figure 7 shows that the

distribution for EK starts narrow and broadens as we remove

levels from below. When we remove the six lowest energy levels

the distribution of EK is exactly the same as the prior distribution:

the likelihood is making no contribution to the EK posterior.

The previous results were nearly the same for all cases

considered in this work. However, even for kmax = 10,

staggering and shifting of the LECs remains sizable for the

K = 1/2 bands in 183W, 167Tm and 235U. In 183W and 167Tm,

these effects could be attributed to large expansion parameters, as

they translate to large omitted contributions to the energies of the

rotational levels. In 235U, the fermionic matrix elements could be

larger than naively expected, causing the systematic expansion of

the EFT to be questionable as discussed in Ref. [19]. For 167Tmwe

needed to go to kmax = 12 to get stable results, and for 235U and
183W we needed to go to kmax = 18.

FIGURE 8
The posterior predictive distribution for energy-level
residuals at N4LO and kmax =10 for 169Er and Imax =17.5 (top panel)
and at kmax =18 for 235U and Imax =23.5 (bottom panel). The dark
and light red bands show the truncation error plus the
experimental error at 68% and 95% credible levels respectively.
The lighter blue lines connect the energy residuals calculated from
the distribution of the LECs. The solid black line represents the
median of the distribution and the dashed lines indicate the 16th
and 84th percentiles. The correlation shown on the plot is the
highest correlation between any LEC and any error-model
parameter. Ibr was determined from the distribution of W. The
dashed purple line shows the lower limit of Ibr. The inset on the plot
shows the residuals on the first five levels with an altered y-axis
scale.

FIGURE 9
A 2D cut of the posterior predictive distribution at N4LO and
kmax =10 for 169Er and Imax =17.5 (top panel) and at kmax =18 for 235U
and Imax =23.5 (bottom panel). The blue dots show the energies
calculated from the distribution of the LECs. The black cross
shows the experimental value and the black lines and black ellipse
shows the corresponding experimental uncertainty. The
remaining ellipses and lines show the truncation error and the
experimental error added in quadrature. (All the ellipses are
centered at the experimental value.) The orange, red and green
account for 1, two and six omitted terms in the theory error
respectively (In the top panel the red ellipse is completely covered
by the green ellipse.)
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For K = 3/2 bands, we were able to extract stable LECs from

the 159Dy analysis by setting Imax = 15.5. This extraction required

us to consider omitted terms up to kmax = 16. This is because the

spin at which the EFT breaks in this nucleus is Ibr ≈ 15.5. (This,

then, is the third case in which we do not use all the NNDC

energy-level data available on a particular band.) 157Gd is stable

across orders and Imax and we get stable results at kmax = 12, while
155Gd exhibits shifting and staggering due to a larger inverse

breakdown scale, W ≈ 0.07, and we needed to go to kmax = 18 to

get stable results.

The values of the LECs and the error-model parameters at

N4LO for the nuclei considered in this work are given in Tables 1,

2 respectively.

5.2 Prior sensitivity

In addition to using the scaled-inverse-χ2 distribution as a

prior for �ceven and �codd we tried truncated Gaussians with mean

zero and standard deviations σ = 7 and σ = 3 respectively for all

cases. These truncated Gaussian priors allow for smaller values of

the characteristic sizes. But the standard deviations were chosen

to still allow values for �codd and �ceven larger than those resulting

from scaled-inverse-χ2 priors with ] = 1 and τ2 = 1.

The change in prior for �codd and �ceven does not significantly

change the posteriors for the LECs: the corresponding central

values differ by less than 1%, and are consistent with each other

FIGURE 10
The size of the NLO LEC, A1 (top panel) and the N3LO LEC, B1

for K =1/2 bands and A3 for K =3/2 bands (bottom panel), on the
y-axis, compared to its expected size from the EFT power
counting, on the x-axis. Error bands on the LEC distribution
are small and can not been seen on the plot. The error bands on
the x-axis encompass the 16th and 84th percentiles. Different
nuclei are labeled in the legend of the plot. The black dashed line
has slope =1 and is plotted to facilitate comparison of prior
expectation and results from the posterior. The yellow colored
symbols are results for rotational bands with bandheads K =3/2, all
the others are K =1/2 bands. K =3/2 rotational bands do not have a
parameter A1 and we do not have them in the top panel. 99Tc and
155Gd are outliers and we exclude them from the plots (LECs values
for these nuclei can be found in Table 1).

FIGURE 11
The size of the N2LO LEC, ΔA (top panel) and the N4LO LEC, B
(bottom panel), on the y-axis, compared to its expected size from
the EFT power counting, on the x-axis. Error bands on the LEC
distribution are small and can not been seen on the plot. The
error bands on the x-axis encompass uncertainties between the
16th and 84th percentiles. Different nuclei are labeled in the
legend of the plot. The black dashed line has slope =1 and is
plotted to facilitate comparison of prior expectation with results
from the posterior. The yellow colored symbols are results for
rotational bands with bandheads K =3/2, all the others are K =1/2
bands. 99Tc and 183W are outliers and we exclude them from the
both plots. We also exclude 155Gd from the bottom plot only (LEC
values for these nuclei can be found in Table 1).
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within the 68% credible intervals. Central values of the posteriors

for W differ by less than 15%, and were similarly consistent.

The strongest dependence on the prior is that exhibited by

the posteriors for �codd and �ceven: the central values differ in some

cases by more than 50%. However, even these values are

consistent with each other within 68% credible intervals, since

the posteriors for the characteristic sizes are broad.

The changes in the posteriors of W on one hand and �codd &
�ceven on the other are anticorrelated. We only care about

combinations of them to set the size of the theory error and

the expected size of the LECs. Thus, the dependence of the theory

error and the expected size of the LECs on the prior for the

characteristic sizes is less profound. The difference in sizes of the

theory error resulting from the chosen priors is less than 20% for

all cases except 157Gd, where the difference is about 40%.

For all results that follow we used the scaled-inverse-χ2

distribution with ] = 1 and τ2 = 1 as the prior for both �codd
and �ceven, in keeping with the naturalness assumption.

5.3 Posterior predictive distributions

Figure 8 shows the PPDs (in blue) of the energy residuals as a

function of the spin I for two cases considered in this work. These

distributions are calculated using Eq. 9. In each figure,

translucent blue lines connect energy residuals resulting from

different LECs sets sampled from the posterior distribution in Eq.

8. The solid black line represents the median of the PPD, and the

dashed lines encompass the region between the 16th and 84th

percentiles. Meanwhile, the dark and light red bands show the

truncation error and the experimental error added in quadrature

at 68% and 95% credible levels respectively. To calculate the

truncation error, we consider a theory error that accounts for p

omitted terms. The omitted terms are combined in quadrature,

just as they are in the likelihood defined in Section 3. This

calculation was done using Eq. 9 i.e., by calculating the theory

error at each point in the sample space and then marginalizing

over the error parameters. The dependence of the size of the

theory error on the prior on �ceven and �codd is small in these cases:

the theory error changes by about 10%when the prior is changed.

The correlation coefficient written in the legend in Figure 8 is

the largest between any LEC and any error-model parameter for

the shown analysis. When this value is small, the truncation error

and the propagated LEC error could in principle be added

together in quadrature.

In viewing Figure 8 it is important to remember that the

truncation error on the energy residuals is highly correlated

across levels. This comes from the high correlation between

levels when building the correlation matrix that goes into the

likelihood. This correlation also flows into a correlation between

levels in the PPD of the energies. A correlation plot between two

energy levels, like the ones in Figure 9, gives a 2D cut of this

multi-dimensional correlation.

In both panels we see the importance of accounting for more

than one omitted term in the theory error. This is clearly shown

in the reverse in the direction of the correlation from a negative to

a positive correlation when going from the orange ellipse to the

red ellipse. The orange ellipse is obtained when we account for

only one omitted term, while the red ellipse includes the effect of

two omitted terms. After accounting for six omitted terms the

green ellipse is obtained and the 68% ellipse in principle expands.

This is more clearly seen when we go to high-energy levels

plotted in the lower panel in Figure 9. Note also that for lower-

energy levels the correlation is smaller since the experimental

error dominates over the truncation error, and we assumed that

the experimental errors are not correlated across energy levels.

5.4 Model checking

In Figures 10, 11 we compare the marginalized posterior

distributions of the LECs, on the y-axis, with their expected sizes

from the EFT power counting, on the x-axis. Since we also extract

the theory error parameters from the sampler and they are highly

correlated among themselves, we calculate the expected size from

the distributions of the error model parameters using Eq. 9. We

notice that the error on the distribution of the LECs is very small

compared to the error on the expected sizes that comes from the

distribution of the theory error parameters.

As these graphs are model-checking graphs, and since the

estimates of LEC sizes plotted on the x-axis are meant as order-

FIGURE 12
The extracted inverse breakdown scale W from the
marginalized posterior distribution obtained by sampling
compared to its naively expected size. The expected size is taken
to be the maximum of Erot/Esp and Erot/Evib. The dashed black
line shows the best linear fit and its parameters are printed on the
plot. The yellow colored symbols are results for rotational bands
with bandheads K =3/2, all the others are K =1/2 bands. 99Tc is an
outlier and we exclude it from the plot (its values can be seen in
Table 2).
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of-magnitude estimates, we do not expect perfect linear

correlations. Nevertheless, the top panel in Figure 11 shows

that, for all K = 1/2 bands considered, the LEC ΔA agrees

with its expected size within error bands. This result is

surprisingly better than expected. In contrast, the size of ΔA
for K = 3/2 bands is larger than expected, especially for 155Gd (see

yellow symbols in Figure 11). There are two factors that could

contribute to this. First, the K = 3/2 bands have larger fermionic

matrix elements. This could hinder the systematic expansion of

the EFT. Second, the K = 3/2 bands have relatively larger

expansion parameters, see Figure 12.

The same discussion applies to the results in the remaining

panels in Figures 10, 11, where we see good agreement between

the LECs and their expected sizes for K = 1/2 bands. The

disagreement with power-counting estimates for K = 3/2

bands at N3,4LO is less of a concern than the one at N2LO

seen in the top panel of Figure 11, since these higher-order LECs

are smaller than their expected sizes. This doesn’t undermine the

convergence of the EFT expansion.

We also note here that the scale of the x-axis is prior

dependent and could change by more than 50% in some

nuclei, depending on the choice of prior on �ceven and �codd. For
157Gd changing the prior on �ceven and �codd to a truncated normal

allowed for smaller values of �codd and A3 was then equal to the

expected size (i.e., the point for 157Gd then falls exactly on the line

in the bottom panel of Figure 10). This did not happen when the

truncated normal is chosen as a prior for the analysis in 155Gd and
159Dy; this may occur because there is strong N5LO energy-level

staggering present in the data for these nuclei.

The size of �ceven and �codd is constrained by both the sizes of

the LECs and the size of the theory error. In a good systematic

expansion the tension between those factors on setting the size

of the �c’s would be small and one number apiece would suffice

to represent the even and odd order corrections. However when

the systematic expansion is hindered, as in the case for K = 3/2

bands due to large fermionic matrix elements, this tension

becomes clear. One example of this is seen in Figure 11 for

K = 3/2 bands. There ΔA is large and favors large values of �ceven,

however, B is small and favors smaller values of �ceven. The

eventual result is a compromise. This tension may be

exacerbated by the truncation error also providing

information on the size of the �c’s.

TABLE 1 Themedian value of the LECs at N4LO comparedwith the standard deviation of their Gaussian priors with zeromean [see Eq. 15]. We see that,
for nearly all cases, the LECs fall within this standard deviation. The uncertainties encompass the 16th and 84th percentiles of the samples in the
marginalized distributions. K =3/2 rotational bands do not have a parameter A1 and the parameters (B1, A3) refer to K =1/2 and K =3/2 bands
respectively. All the numbers are in units of keV.

Nucleus EK �E A1 σ1 ΔA σ2 (B1, A3) σ3 B σ4

99Tc 147.31130.0141−0.0142 160 70.19130.0102−0.0103 12148−35 −7.66080.0085−0.0086 33.86.4−7.9 −7.58510.0022−0.0022 5.0581.614−1.177 −2.99160.0008−0.0008 1.36140.3417−0.2508
155Gd −45.11060.0178−0.0180 77 - - −8.52650.0060−0.0059 5.32.2−1.4 −0.00430.0006−0.0006 0.4990.201−0.168 0.00760.0005−0.0005 0.02400.0086−0.0055
157Gd −41.33840.0155−0.0160 56 - - −3.80640.0040−0.0039 4.53.6−1.8 −0.00940.0002−0.0002 0.0240.013−0.007 −0.00520.0003−0.0003 0.01300.0074−0.0043
159Dy −42.78940.0159−0.0152 62 - - −5.07050.0036−0.0040 4.42.7−1.4 −0.00630.0003−0.0002 0.0620.038−0.021 −0.00350.0003−0.0002 0.01360.0066−0.0038
167Er 207.20880.0054−0.0054 230 7.83830.0028−0.0028 117−4 −2.18980.0016−0.0016 2.51.4−0.8 −0.00630.0003−0.0003 0.0250.012−0.007 −0.00820.0001−0.0001 0.00550.0023−0.0014
169Er 0.96720.0196−0.0198 22 9.77760.0101−0.0100 106−3 −1.53820.0058−0.0054 2.31.6−0.9 −0.00640.0008−0.0009 0.0100.006−0.003 −0.00310.0002−0.0002 0.00220.0012−0.0007
167Tm −18.46330.0160−0.0164 22 −9.10880.0075−0.0074 1510−5 −0.91980.0028−0.0027 1.30.6−0.4 0.04100.0007−0.0007 0.0510.028−0.015 −0.00900.0001−0.0001 0.00450.0017−0.0011
169Tm −19.05320.0011−0.0011 22 −9.72050.0008−0.0008 128−4 −0.82690.0006−0.0006 1.51.0−0.5 0.02640.0002−0.0002 0.0250.013−0.007 −0.00500.0001−0.0001 0.00310.0015−0.0009
183W −6.84890.0065−0.0043 22 2.76300.0041−0.0028 125−3 −3.92990.0029−0.0044 16.34.9−5.5 −0.04480.0006−0.0009 0.0570.023−0.014 0.02290.0006−0.0004 0.07460.0188−0.0201
235U −6.18920.0009−0.0009 22 −1.72940.0007−0.0008 42−1 −1.19710.0006−0.0005 3.62.9−1.6 0.00250.0001−0.0001 0.0070.003−0.002 −0.00270.0000−0.0001 0.00620.0047−0.0027
239Pu −8.35770.0019−0.0019 22 −3.65600.0011−0.0011 74−2 −1.07150.0004−0.0004 1.20.7−0.4 0.00410.0001−0.0001 0.0060.003−0.002 −0.00150.0000−0.0000 0.00100.0005−0.0003

TABLE 2 Themedian value of the error model parameters at N4LO and
the estimated expansion parameters based on rotational and
single particle energy scales. The uncertainties encompass the 16th
and 84th percentiles of the samples in the marginalized distributions.

Nucleus W Erot/Evib Erot/Esp �ceven �codd

99Tc 0.2040.021−0.015 0.396 1.020 1.90.4−0.5 1.30.5−0.4
155Gd 0.0670.003−0.003 0.181 0.429 3.81.7−1.1 5.42.7−2.1
157Gd 0.0540.005−0.005 0.085 0.209 5.75.4−2.5 0.60.3−0.2
159Dy 0.0560.004−0.004 0.104 0.319 4.83.3−1.7 1.20.9−0.5
167Er 0.0470.005−0.004 0.102 0.147 4.02.6−1.4 0.80.5−0.3
169Er 0.0310.006−0.005 0.097 0.142 5.65.1−2.5 0.80.4−0.2
167Tm 0.0580.004−0.004 0.102 0.170 1.70.9−0.5 1.10.8−0.4
169Tm 0.0450.008−0.007 0.097 0.140 2.62.3−1.1 0.90.6−0.3
183W 0.0680.005−0.004 0.082 0.479 14.45.0−5.3 0.70.3−0.2
235U 0.0420.003−0.003 0.047 0.111 11.710.0−5.3 0.60.3−0.2
239Pu 0.0290.004−0.003 0.073 0.059 5.64.0−2.2 0.90.6−0.3
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5.5 Higher than expected break-down
scale

In Figure 12 we see a clear correlation between the

extracted values of W and those that are expected based on

each nucleus’ single-particle and vibrational energy scales, Esp
and Evib. The expectedW is the larger of Erot/Esp and Erot/Evib,

while the extracted W comes from sampling the posterior in

Eq. 10. This extracted W is what actually determines the

convergence of the EFT expansion. It is markedly smaller

than would be naively expected. The break-down scale of the

theory is thus higher than naively expected: our rotational

EFT works to much higher I than energy-scale arguments

would suggest. This could occur because coupling between the

higher rotational states explicitly included in the EFT and the

high-energy states that are not explicitly included in our EFT

is hindered by the large difference in angular momentum

between them.

6 Conclusion

We performed a Bayesian analysis to extract the LECs

and inverse breakdown scale W describing the rotational

energy levels of diverse odd-mass nuclei within a recently

developed EFT. This analysis corroborates the EFT

organization for energy-level formulae which results from

the assumed power-counting scheme: the extracted LECs of

order k scale as Wk−1, i.e., according to EFT expectations.

While our analysis reached this conclusion for both K = 1/2

and K = 3/2 rotational bands, the sizes of the LECs describing

the latter exhibit larger deviations from their expected values

than those describing the former. We attribute this behavior

to the size of fermionic matrix elements, assumed to be of

order one while organizing energy-level formulae. Since

these matrix elements involve the angular momentum of

the fermion, �j, we cannot exclude the possibility that the

systematic behavior of the EFT is hindered in bands build on

top of single-particle orbitals with larger values of K. For the

K = 3/2 bands studied in this work, however, this discrepancy

does not destroy the systematic improvement of calculated

energies up to N4LO, as the sizes of extracted LECs are

smaller that expected.

In order to ensure that the extracted values are

independent of the EFT order and number of energy levels

entering the analysis, we employed a theory error beyond the

first-omitted-term approximation, considering omitted

terms in the expansion for the energy of rotational levels

up to order kmax. As we increased the number of omitted

terms considered in the theory error, the corresponding log

likelihood exhibited steeper and steeper peaks. Therefore, the

‘widths’ of the sampled posteriors decrease as kmax increases.

Considering up to fourteen omitted terms at N4LO enabled a

stable extraction of the LECs and breakdown scale describing

the levels of interest. The shapes of posteriors for low-order

LECs extracted at this order and those extracted using lower-

order energy formulae are, for all practical purposes,

identical. On the other hand, the shapes of the posteriors

depend strongly on the number of levels informing the

model, narrowing as more levels are included.

Nevertheless, the 68% credible intervals of these posteriors

possess significant overlap, facilitating reliable LEC

extraction.

In addition to the posteriors for the LECs and the inverse

breakdown scales, our analysis yielded distributions for the

characteristic sizes of even and odd cn’s, �ceven and �codd. The

values of �codd are typically smaller than those for �ceven, in

agreement with results from previous studies where the LECs

were fitted to the smallest possible data sets. The difference of

the characteristic sizes of even and odd LECs has its origin in

the physics behind the corresponding contributions to the

effective Lagrangian: while odd-order contributions correct

the particle-rotor interaction, even-order contributions

include terms that depend exclusively on the rotor degrees

of freedom, thus correcting the physics of the core to which

the particle is coupled. Here this conclusion was reached solely

on the basis of experimental data; we assumed equal priors for

both characteristic sizes.

Although the distributions of �codd and �ceven change

depending on the choice of the their priors, that does not

significantly change the distributions of the LECs. Altering

the priors also does not have a large effect on the size of the

theory error, which changes by less than 20% for nearly all

cases.

These considerations mean that our extractions of the

LECs and the theory error parameters in the EFT of

rotational bands in odd-mass nuclei are robust under the

choice of prior. The formalism presented here also gives

robust results for LECs across orders and as more data is

added to the analysis. We conclude that a Bayesian

framework that incorporates theory errors in the

likelihood offers significant advantages for LEC

extraction in EFTs. This methodology has already been

used for the extraction of LECs in the NN potential from

phase shifts [34] and to constrain parameters of the three-

nucleon force [35]. But it is a very general approach which

should improve the parameter estimation for LECs in

any EFT.
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Bayesian probability updates
using sampling/importance
resampling: Applications in
nuclear theory

Weiguang Jiang* and Christian Forssén

Department of Physics, Chalmers University of Technology, Göteborg, Sweden

We review an established Bayesian sampling method called sampling/

importance resampling and highlight situations in nuclear theory when it can

be particularly useful. To this end we both analyse a toy problem and

demonstrate realistic applications of importance resampling to infer the

posterior distribution for parameters of ΔNNLO interaction model based on

chiral effective field theory and to estimate the posterior probability distribution

of target observables. The limitation of the method is also showcased in

extreme situations where importance resampling breaks.

KEYWORDS

bayesian inference, probability updates, importance resampling, uncertainty
quantification, ab initio nuclear theory, low-energy constants

1 Introduction

Bayesian inference is an appealing approach for dealing with theoretical uncertainties

and has been applied in different nuclear physics studies [1–16]. In the practice of

Bayesian analyses, a sampling procedure is usually inevitable for approximating the

posterior probability distribution of model parameters and for performing predictive

computations. Various Markov chain Monte Carlo (MCMC) methods [17–21] are often

used for this purpose, even for complicated models with high-dimensional parameter

spaces. However, MCMC sampling typically requires many likelihood evaluations, which

is often a costly operation in nuclear theory, and there is a need to explore other sampling

techniques. In this paper, we review an established method called sampling/importance

resampling (S/IR) [22–24] and demonstrate its use in realistic nuclear physics applications

where we also perform comparisons with MCMC sampling.

In recent years, there has been an increasing demand for precision nuclear theory.

This implies a challenge to not just achieve accurate theoretical predictions but also to

quantify accompanying uncertainties. The use of ab initio many-body methods and

nuclear interaction models based on chiral effective field theory (χEFT) has shown a

potential to describe finite nuclei and nuclear matter based on extant experimental data

(e.g. nucleon-nucleon scattering, few-body sector) with controlled approximations

[25–29]. The interaction model is parametrized in terms of low-energy constants

(LECs), the number of which is growing order-by-order according to the rules of a
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corresponding power counting [30–32]. Very importantly, the

systematic expansion allows to quantify the truncation error and

to incorporate this knowledge in the analysis [4–6, 10–14].

Indeed, Bayesian inference is an excellent framework to

incorporate different sources of uncertainty and to propagate

error bars to the model predictions. Starting from Bayes’ theorem

pr θ|D( )∝L θ( )pr θ( ), (1)

where pr(θ|D) is the posterior probability density function

(PDF) for the vector θ of LECs (conditional on the data D),

L(θ) ≡ pr(D |θ) is the likelihood and pr(θ) is the prior. Then for
any model prediction one needs to evaluate the expectation value

of a function of interest y(θ) (target observables) according to the

posterior. This involves integrals such as

∫ dθy θ( )pr θ|D( ), (2)

which can not be analytically solved for realistic cases. Fortunately,

integrals such as Eq. 2 can be approximately evaluated using a

finite set of samples {θi}Ni�1 from pr(θ|D). MCMC sampling

methods are the main computational tool for providing such

samples, even for high-dimensional parameter volumes [16].

However the use of MCMC in nuclear theory typically requires

massive computations to record sufficiently many samples from

the Markov chain. There are certainly situations where MCMC

sampling is not ideal, or even becomes infeasible:

1) When the posterior is conditioned on some calibration data

for which our model evaluations are very costly. Then we

might only afford a limited number of full likelihood

evaluations and our MCMC sampling becomes less likely

to converge.

2) Bayesian posterior updates in which calibration data is added

in several different stages. This typically requires that the

MCMC sampling must be carried out repeatedly from

scratch.

3) Model checking where we want to explore the sensitivity to

prior assignments. This is a second example of posterior

updating.

4) The prediction of target observables for which our model

evaluations become very costly and the handling of a large

number of MCMC samples becomes infeasible.

These are situations where one might want to use the S/IR

method [23, 24], which can exploit the previous results of model

evaluations to allow posterior probability updates at a much

smaller computational cost compared to the full MCMCmethod.

In the following sections we first review the S/IR method and

then present both toy and realistic applications in which its

performance is compared with full MCMC sampling. Finally, we

illustrate limitations of the method by considering cases where

S/IR fails and we highlight the importance of the so-called

effective number of samples. More difficult scenarios, in

which the method fails without a clear warning, are left for

the concluding remarks.

2 Sampling/importance resampling

The basic idea of S/IR is to utilize the inherent duality

between samples and the density (probability distribution)

from which they were generated [23]. This duality offers an

opportunity to indirectly recreate a density (that might be hard to

compute) from samples that are easy to obtain. Here we give a

brief review of the method and illustrate with a toy problem.

Let us consider a target density h(θ). In our applications this

target will be the posterior PDF pr(θ|D) from Eq. 1. Instead of

attempting to directly collect samples from h(θ), as would be the

goal in MCMC approaches, the S/IR method uses a detour. We

first obtain samples from a simple (even analytic) density g(θ).

We then resample from this finite set using a resampling

algorithm to approximately recreate samples from the target

density h(θ). There are (at least) two different resampling

methods. In this paper we only focus on one of them called

weighted bootstrap (more details of resampling methods can be

found in Refs. [22, 23]).

Assuming we are interested in the target density h(θ) = f(θ)/∫
f(θ) dθ, the procedure of resampling via weighted bootstrap can

be summarized as follows:

1) Generate the set {θi}ni�1 of samples from a sampling

density g(θ).

2) Calculate ωi = f(θi)/ g(θi) for the n samples and define

importance weights as: qi � ωi /∑n
j�1ωj.

3) Draw N new samples {θ*i }Ni�1 from the discrete distribution

{θi}ni�1 with probability mass qi on θi.

4) The set of samples {θi*}Ni�1 will then be approximately

distributed according to the target density h(θ).

Intuitively, the distribution of θ* should be good

approximation of h(θ) when n is large enough. Here we

justify this claim via the cumulative distribution function of

θ* (for the one-dimensional case)

pr θ*≤ a( ) � ∑n
i�1

qi ·H a − θi( ) �
1
n
∑n

i�1ωi ·H a − θi( )
1
n
∑n

i�1ωi

n �→∞→
Eg

f θ( )
g θ( ) ·H a − θ( )[ ]
Eg

f θ( )
g θ( )[ ] �

∫a

−∞
f θ( ) dθ

∫∞

−∞
f θ( ) dθ

� ∫a
−∞

h θ( ) dθ, (3)

withEg[X(θ)] � ∫∞
−∞ X(θ)g(θ) dθ the expectation value ofX(θ)

with respect to g(θ), and H Heaviside step function such that

H a − θ( ) � 1 if θ ≤ a,
0 if θ > a.{ (4)
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The above resampling method can be applied to generate

samples from the posterior PDF h(θ) � pr(θ|D) in a Bayesian

analysis. It remains to choose a sampling distribution, g(θ), which

in principle could be any continuous density distribution.

However, recall that h(θ) can be expressed in terms of an

unnormalized distribution f(θ), and using Bayes’ theorem 1)

we can set f(θ) � L(θ)pr(θ). Thus, choosing the prior pr(θ) as
the sampling distribution g(θ) we find that the importance

weights are expressed in terms of the likelihood,

qi � L(θi)/∑n
j�1L(θj). Assuming that it is simple to collect

samples from the prior, the costly operation will be the

evaluation of L(θi). Here we make the side remark that an

effective and computationally cost-saving approximation can be

made if we manage to perform a pre-screening to identify (and

ignore) samples that will give a very small importance weight. We

also note that the above choice of g(θ) = pr(θ) is purely for

simplicity and one can perform importance resampling with

any g(θ).

In Figure 1 we follow the above procedure and give a simple

example of S/IR to illustrate how to get samples from a posterior

distribution. We consider a two-dimensional parametric model

with θ = (θ1, θ2). Given dataD obtained under themodel we have:

pr θ1, θ2|D( ) � L θ1, θ2( )pr θ1, θ2( )∫∫L θ1, θ2( )pr θ1, θ2( ) dθ1dθ2
. (5)

For simplicity and illustration, the joint prior distribution for θ1,

θ2 is set to be uniform over the unit square as shown in Figure 1A.

In this example we also assume that the data D follows a

multivariate Student-t distribution such that the likelihood

function is

L θ1, θ2( ) � Γ ] + p( )/2[ ]
Γ ]/2( )]p/2πp/2|Σ|1/2 1 + 1

]
θ − μ( )TΣ−1 θ − μ( )[ ]− μ+p( )/2

, (6)

where the dimension p = 2, the degrees of freedom ] = 2, the

mean vector μ = (0.2, 0.5) and the scale matrix Σ = [[0.02, 0.005],

[0.005, 0.02]].

The importance weights qi are then computed for n = 2000

samples drawn from the prior (these prior samples are shown in

Figure 1A). The resulting histogram of importance weights is

shown in Figure 1B. Here the weights have been rescaled as ~qi �
qi/ max({q}) such that the sample with the largest probability

mass corresponds to 1 in the histogram. We also define the

effective number of samples, neff, as the sum of rescaled

importance weights, neff � ∑n
i�1~qi. Finally, in Figure 1C we

show N = 20, 000 new samples {θi*}Ni�1 that are drawn from

the prior samples {θi}ni�1 according to the probability mass qi for

each θi. The blue and green contour lines represent (68% and

90%) credible regions for the resampled distribution and for the

FIGURE 1
Illustration of S/IR procedures. (A) Samples {θ}ni�1 from the uniform prior in a unit square (n= 2000 samples are shown). (B)Histogramof rescaled
importance weights ~qi � qi/max({q}) where qi � L(θi)/∑n

j�1L(θj) with L(θ) as in Eq. 6. The number of effective samples is neff = 214.6. Note that the
samples are drawn from a unit square and that the tail of the target distribution is not covered. (C) Samples {θ*}Ni�1 of the posterior (blue dots with 10%
opacity) resampled from the prior samples with probability mass qi. The contour lines for the 68% and 90% credible regions of the posterior
samples (blue dashed) are shown and compared with those of the exact bivariate target distribution (green solid). Summary histograms of the
marginal distributions for θ1 and θ2 are shown in the top and right subplots.

TABLE 1 Target values, z, and error assignments, ε, for observables
used in the model calibration and for predictions. Energies in
[MeV], point-proton radii in [fm], and the deuteron quadrupole
moment in [e2fm2].

Calibration observables

Observable z εexp εmodel εmethod εem (%)

E(2H) −2.2298 0 0.05 0.0005 0.001

Rp(
2H) 1.976 0 0.005 0.0002 0.0005

Q(2H) 0.27 0.01 0.003 0.0005 0.001

Predicted observables

E(3H) −8.4818 0 0.17 0.0005 0.01

E(4He) −28.2956 0 0.55 0.0005 0.01

Rp(
4He) 1.455 0 0.016 0.0002 0.003
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Student-t distribution, respectively. This result demonstrates that

the samples generated by the S/IR method give a very good

approximation of the target posterior distribution.

3 Nuclear physics applications

Now that we have reviewed the basic idea of the S/IR method,

we move on to present realistic applications of the resampling

technique in nuclear structure calculations. Here we study

Bayesian inference involving the ΔNNLO chiral interaction

[33] with explicit inclusion of delta isobar degree of freedom

at next-to-next-to-leading order. In Weinberg’s power counting

the ΔNNLO interaction model is parametrized by 17 LECs, with

four pion-nucleon LECs (c1,2,3,4) that are inferred from pion-

nucleon scattering data and 13 additional LECs that should be

inferred from extant experimental data of low-energy nucleon-

nucleon scattering and bound-state nuclear observables.

For this application we treat only a subset of the parameters

as active and keep the other LECs fixed at values taken from the

ΔNNLOGO(450) interaction [34]. Specifically, we consider

deuteron observables and use seven active model parameters:

c1,2,3,4, ~C3S1, C3S1, CE1. Our Gaussian likelihood contains three

data wih independent errors: the deuteron ground state energy E,

its point-proton radius Rp and one-body quadrupole moment Q

with experimental and theoretical targets from Refs. [35–37].

Note that the target point-proton radii were transformed from

experimental charge radii using the same relation as in Ref. [38].

For the targetQ we use the theoretical result obtained by the CD-

Bonn [37] model. With these simplified conditions, we perform

S/IR as well as MCMC sampling to study 1) the posterior PDF for

the LECs and 2) posterior predictive distributions (PPDs) for

selected few-body observables. This application therefore allows

a straightforward comparison of the two different sampling

methods in a realistic setting. We note that the inclusion of

all 17 LECs as active parameters would have required more

FIGURE 2
The joint posterior of LECs sampled with S/IR (blue) compared with MCMC sampling (orange). The LECs are shown in units of 104 GeV−1,
104 GeV−2 and 104 GeV−4 for ci, ~Ci and Ci, respectively. The likelihood observables and assigned errors are given in Table 1. The contour lines indicate
68% and 90% credible regions.
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careful tuning of the MCMC sampling algorithm and

corresponding convergence studies.

It is the computation of observables, e.g., for likelihood

evaluations, which is usually the major, time-consuming

bottleneck in Bayesian analyses using MCMC methods. In this

application, the statistical analysis is enabled by the use of

emulators which mimic the outputs of many-body solvers but are

faster by orders ofmagnitude. The emulators employedhere for the

ground-state observables of the deuteron, and later for few-body

observables, are based on eigenvector continuation [39–41]. These

emulators allow to reduce the computation time from seconds to

millisecondswhilekeepingtherelativeerror(comparedwithfullno-

core shell model calculation) within 0.001%. Unfortunately,

emulators are not yet available for all nuclear observables. The

MCMC sampling of posterior PDFs, or the evaluation of

expectation integrals such as Eq. 2, will typically not work for

models with observables that require heavy calculations.

The experimental target values and error assignments for

the calibration observables used to condition the posterior

PDF are listed in the upper half of Table 1. In this study we

assume a normally-distributed likelihood, and consider

different sources of error when calibrating the model

predictions with experimental data. The errors are assumed

to be independent. They include experimental, εexp, model

(χEFT truncation) discrepancy, εmodel, many-body method,

εmethod, and emulator, εem, errors. The χEFT truncation errors

are estimated based on order-by-order calculations as in Ref.

[33]. More details on the determination of the error scales can

be found in Ref. [42].

Furthermore, we take advantage of previous studies and

incorporate information about c1,2,3,4 from a Roy-Steiner

analysis of pion-nucleon scattering data [43] and identify a

non-implausible domain for ~C3S1, C3S1, CE1 from a history

matching approach in Ref. [42]. With this prior knowledge we

FIGURE 3
The PPD obtained from samples of the LECs posterior distribution as shown in Figure 2. The bivariate histograms and the corresponding
contour lines denote the joint distribution of observables generate by S/IR (blue) and MCMC sampling (orange). The marginal distributions of the
observables are shown in the diagonal panels.
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set up the prior distribution of the seven LECs as the product of a

multivariate Gaussian for c1,2,3,4 and a uniform distribution for
~C3S1, C3S1, CE1

1. We note that the use of history matching is very

beneficial for both S/IR and MCMC sampling. For S/IR it allows

to select a sampling distribution that promises a large overlap

with the target distribution and it identifies prior samples that are

likely to have large weights in the resampling step. For MCMC,

the non-implausible samples from history matching serve as

good starting points for the walkers and thereby give faster

convergence.

3.1 Posterior sampling

Once we have the prior and the likelihood function we are able

to draw samples from the posterior PDF and to analyze the ab initio

description of few-nucleon systems with the present interaction

model. The joint posterior of the LECs is shown in Figure 2, where

we compare bivariate, marginal distributions from S/IR andMCMC

sampling. For the MCMC sampling we employed an open-source

Python toolkit called emcee [44] that performs affine-invariant

ensemble sampling. We use 150 walkers that are warmed up

with 5,000 initial steps and then move for 5 × 105 steps. This

amounts to 7.6 × 107 likelihood evaluations. The positions of the

walkers are recorded every 500 steps which gives 1.5 × 105 samples

from the posterior distribution of the LECs. On the other hand, for

S/IR we first acquire 2 × 104 samples from the prior distribution and

perform the same number of likelihood evaluations to get the

importance weights. From this limited set we then draw 1.5 ×

FIGURE 4
The posterior predictive distribution from sampling over two different posterior distributions. PPDA=2 (blue) is calibrated by the deuteron
observables while PPDA=2,3,4 (green) is calibrated by the deuteron, 3H and 4He observables. Themarginal distributions of the observables are shown in
the diagonal panels.

1 Specifically we use the non-implausible domain that was identified in
wave 2 of the history matching performed in Ref. [42]. This wave only
included deuteron observables.
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105 samples using resampling (the same final number as inMCMC).

Note that several prior samples occur more than once in the final

sample set. Here the number of effective samples for S/IR is neff =

1589.9. As we can see from Figure 2, the contour lines of both

sampling methods are in good agreement and, e.g., the correlation

structure of the LEC pairs are equally well described. The histograms

of S/IR and MCMC samples are both plotted in the figure but are

almost impossible to distinguish.

As a second stage we use the inferred model to perform

model checking of the calibration observables and to predict the
3H ground-state energy and the 4He ground-state energy and

point-proton radius (see Table 1). For this purpose the PPD is

defined as the set

yth θ( ): θ ~ pr θ |D( ){ }, (7)

where yth(θ) is the theoretical predictions of selected

observables using the model parameter vector θ. Figure 3

illustrate the PPD of the three deuteron observables using S/IR

(blue) and MCMC sampling (orange). The marginal

histograms of the observable predictions are shown in the

diagonal panels of the corner plot. In this study both sampling

methods give very similar distributions for all observables.

Note that the predictive distributions for the three deuteron

observables can be considered as model checking since they

appeared in the likelihood function and therefore conditioned

the LEC posterior. The 3H and 4He observables, on the other

hand, are predictions in this study. Their distributions are

characterized by larger variances compared to the deuteron

predictions.

3.2 Posterior probability updates

As mentioned in the introduction, the S/IR method requires a

minimum amount of computation to produce new samples when

the posterior PDF is updated for various reasons. Here we present

FIGURE 5
The posterior of LECs sampled with S/IR (blue) compared with MCMC sampling (orange) for a situation when the deuteron calibration
observables are associated with errors that have been reduced by an order of magnitude (see text for details). The LECs are shown in units of
104 GeV−1, 104 GeV−2 and 104 GeV−4 for ci, ~Ci and Ci, respectively.

Frontiers in Physics frontiersin.org07

Jiang and Forssén 10.3389/fphy.2022.1058809

45

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1058809


one likely scenario where the posterior is changed due to different

choices of calibration data (for instance the inclusion of newly-

accessible observables). Let us start from the previously described

calibration of our interaction model with three selected deuteron

observables. If we add 3H and 4He observables into the calibration

(experimental target values and error assignments as in Table 1) to

further condition the model, the likelihood function needs to be

updated accordingly. The sampling of the posterior PDF should be

repeated from the beginning and the new samples should be used to

construct PPDs. However, using S/IR we resample from the same set

of prior samples—only with different importance weights. The same

set of samples also appear in the sampling of PPDs. To distinguish

the original and the updated posteriors we use the notation PPDA=2

to denote predictions with only deuteron observable as calibration

data and PPDA=2,3,4 with
3H and 4He added to the likelihood. These

two different PPDs, generated by S/IR, are shown in Figure 4. Note

that the PPDA=2 (blue) is the same as in Figure 3, and is shown here

as a benchmark. As expected we observe that the description of 3H

and 4He observables is more accurate and more precise (smaller

variations) with PPDA=2,3,4 (green) as compared with PPDA=2 (blue).

We also find that the deuteron ground state energy is slightly

improved with the updated posterior. This can be explained by

the anti-correlation between Rp(
4He) and E(2H). The additional

constraints imposed by Rp(
4He) through the likelihood function

propagates to E(2H) via the correlation structure.

3.3 S/IR limitations

So far we have focused on the feasibility and advantage of

the S/IR approach. However, there are some important

limitations and we recommend users to be mindful of the

number of effective samples. In Figure 4, we found that our

S/IR sampling of PPDA=2 has neff = 1589.9, while for PPDA=2,3,4

it drops to neff = 314.9. This can be understood by the

resampling from a fixed set of prior samples. The more

FIGURE 6
The PPD generated using S/IR (blue) and MCMC sampling (orange) for the posterior distributions shown in Figure 5. Marginal histograms of the
observables are shown in the diagonal panels.
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complex the likelihood function, the less effective the samples.

As seen in Figure 4, the contour lines of PPDA=2,3,4 is less

smooth then those obtained from PPDA=2 due to the smaller

number of effective samples. The S/IR method will eventually

break when neff becomes too small. An intermediate remedy

could be the use of kernel density estimators, although that

approach typically introduces an undesired sensitivity to the

choice of kernel widths.

A similar situation occurs when the target observables are

characterized by very small error assignments. This leads to a

sharply peaked likelihood function and a decreased overlap with

the prior samples. The resulting large variance of importance

weights implies that the final set representing the posterior

distribution will be dominated by a very small number of

samples. Here we show such an example where resampling no

longer works. We attempted to reconstruct a PPD with only

deuteron observables in the calibration, but where all error

assignments in Table 1 had been reduced by an order of

magnitude. The results of this analysis are shown in Figures 5,

6 which display the PDFs and PPDs, respectively, generated by

S/IR (blue) and compared with MCMC (orange). The S/IR

method does not perform well in this case. With neff = 4.4 the

PDF and PPD generated by S/IR are represented by a few

samples. The MCMC sampling, on the other hand, does

manage to identify the updated distribution.

Unfortunately one can also envision more difficult scenarios

in which S/IR could fail without any clear signatures. For

example, if the prior has a very small overlap with the

posterior there is a risk that many prior samples get a similar

importance weight (such that the number of effective samples is

large) but that one has missed the most interesting region. Again,

history matching is a very useful tool in the analysis as it can be

used to ensure that we are focusing on the LECs domain that

covers the mode(s) of the posterior.

4 Summary

In this paper we reviewed an established sampling method

known as S/IR. Specifically, we applied importance resampling

using the weighted bootstrap algorithm and sampled the

posterior PDF for selected LECs of the ΔNNLO interaction

model conditioned on deuteron observables. The resulting

PDF and PPD were compared with those obtained from

MCMC sampling and a very good agreement was found. We

also demonstrated Bayesian updating using S/IR by the addition

of 3H and 4He observables to the calibration data set. As expected,

the predictions of 3H and 4He observables were improved, but

also the description of the deuteron ground-state energy which

could be explained by the correlation structure between E(2H)

and Rp(
4He). Finally, we illustrated some limitations of the S/IR

method that were signaled by small numbers of effective samples.

We found that such situations occured when the likelihood

became too complex for the limited model, or when prior

samples failed to resolve a very peaked posterior that resulted

from small tolerances. We also argued that prior knowledge of

the posterior landscape is very useful to avoid possible failure

scenarios that might not be signaled by the number of effective

samples.
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From the lightest Hydrogen isotopes up to the recently synthesized

Oganesson (Z = 118), it is estimated that as many as about 8,000 atomic

nuclei could exist in nature. Most of these nuclei are too short-lived to be

occurring on Earth, but they play an essential role in astrophysical events

such as supernova explosions or neutron star mergers that are presumed to

be at the origin of most heavy elements in the Universe. Understanding the

structure, reactions, and decays of nuclei across the entire chart of

nuclides is an enormous challenge because of the experimental

difficulties in measuring properties of interest in such fleeting objects

and the theoretical and computational issues of simulating strongly-

interacting quantum many-body systems. Nuclear density functional

theory (DFT) is a fully microscopic theoretical framework which has the

potential of providing such a quantitatively accurate description of nuclear

properties for every nucleus in the chart of nuclides. Thanks to high-

performance computing facilities, it has already been successfully

applied to predict nuclear masses, global patterns of radioactive decay

like β or γ decay, and several aspects of the nuclear fission process such as,

e.g., spontaneous fission half-lives. Yet, predictive simulations of nuclear

spectroscopy—the low-lying excited states and transitions between

them—or of nuclear fission, or the quantification of theoretical

uncertainties and their propagation to basic or applied nuclear science

applications, would require several orders of magnitude more calculations

than currently possible. However, most of this computational effort would

be spent into generating a suitable basis of DFT wavefunctions. Such a task

could potentially be considerably accelerated by borrowing tools from the

field of machine learning and artificial intelligence. In this paper, we review
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different approaches to applying supervised and unsupervised learning

techniques to nuclear DFT.

KEYWORDS

nuclear density functional theory, Gaussian process, deep learning, autoencoders,
resnet

1 Introduction

Predicting all the properties of every atomic nucleus in the

nuclear chart, from Hydrogen all the way to superheavy

elements, remains a formidable challenge. Density functional

theory (DFT) offers a compelling framework to do so, since the

computational cost is, in principle, nearly independent of the

mass of the system Eschrig [1]. Because of our incomplete

knowledge of nuclear forces and of the fact that the nucleus is

a self-bound system, the implementation of DFT in nuclei is

slightly different from other systems such as atoms or molecules

and is often referred to as the energy density functional (EDF)

formalism Schunck [2].

Simple single-reference energy density functional (SR-EDF)

calculations of atomic nuclei can often be done on a

laptop. However, large-scale SR-EDF computations of nuclear

properties or higher-fidelity simulations based on the multi-

reference (MR-EDF) framework can quickly become very

expensive computationally. Examples where such computational

load is needed range frommicroscopic fission theory Schunck and

Regnier [3]; Schunck and Robledo [4] to parameter calibration and

uncertainty propagation Kejzlar et al. [5]; Schunck et al. [6] to

calculations at the scale of the entire chart of nuclides Erler et al.

[7]; Ney et al. [8] relevant, e.g., for astrophysical simulations

Mumpower et al. [9]. Many of these applications would benefit

from a reliable emulator of EDF models.

It may be useful to distinguish two classes of quantities that

such emulators should reproduce. What we may call “integral”

quantities are quantum-mechanical observables such as, e.g., the

energy, radius, or spin of the nucleus, or more complex data such

as decay or capture rates. By contrast, we call “differential”

quantities the basic degrees of freedom of the theoretical

model. In this article, we focus on the Hartree-Fock-

Bogoliubov (HFB) theory, which is both the cornerstone of

the SR-EDF approach and provides the most common basis

of generator states employed in MR-EDF calculations. In the

HFB theory, all the degrees of freedom are encapsulated into

three equivalent quantities: the quasiparticle spinors, as defined

either on some spatial grid or configuration space; the full non-

local density matrix ρ(rστ, r′σ′τ′) and pairing tensor κ(rστ,
r′σ′τ′), where r refers to spatial coordinates, σ = ±1/2 to the

spin projection and τ = ±1/2 to the isopin projection Perlińska

et al. [10]; the full non-local HFB mean-field and pairing

potentials, often denoted by h (rστ, r′σ′τ′) and Δ(rστ, r′σ′τ′).
Obviously, integral quantities have the clearest physical

meaning and can be compared to data immediately. For this

reason, they have been the focus of most of the recent efforts in

applying techniques of machine learning and artificial

intelligence (ML/AI) to low-energy nuclear theory, with

applications ranging from mass tables Utama et al. [11];

Utama and Piekarewicz [12,13]; Niu and Liang [14];

Neufcourt et al. [15]; Lovell et al. [16]; Scamps et al. [17];

Mumpower et al. [18], β-decay rates Niu et al. [19], or fission

product yields Wang et al. [20]; Lovell et al. [21]. The main

limitation of this approach is that it must be repeated for every

observable of interest. In addition, incorporating correlations

between such observables, for example the fact that β-decay rates

are strongly dependent on Qβ-values which are themselves

related to nuclear masses, is not easy. This is partly because

the behavior of observables such as the total energy or the total

spin is often driven by underlying shell effects that can lead to

very rapid variations, e.g. at a single-particle crossing. Such

effects could be very hard to incorporate accurately in a

statistical model of integral quantities.

This problem can in principle be solved by emulating what

we called earlier differential quantities. For example, single-

particle crossings might be predicted reliably with a good

statistical model for the single-particle spinors themselves. In

addition, since differential quantities represent, by definition, all

the degrees of freedom of the SR-EDF theory, any observable of

interest can be computed from them, and the correlations

between these observables would be automatically reproduced.

In this sense, an emulator of differential quantities is truly an

emulator for the entire SR-EDF approach and can be thought of

as a variant of intrusive, model-driven, model order reduction

techniques discussed in Melendez et al. [22]; Giuliani et al. [23];

Bonilla et al. [24]. In the much simpler case of the Bohr collective

Hamiltonian, such a strategy gave promising results Lasseri

et al. [25].

The goal of this paper is precisely to explore the feasibility of

training statistical models to learn the degrees of freedom of the

HFB theory. We have explored two approaches: a simple one

based on independent, stationary Gaussian processes and a more

advanced one relying on deep neural networks with autoencoders

and convolutional layers.

In Section 2, we briefly summarize the nuclear EDF

formalism with Skyrme functionals with a focus on the HFB

theory preserving axial symmetry. Section 3 presents the results

obtained with Gaussian processes. After recalling some general

notions about Gaussian processes, we analyze the results of fitting

HFB potential across a two-dimensional potential energy surface

in 240Pu. Section 4 is devoted to autoencoders. We discuss choices
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made both for the network architecture and for the training data

set.We quantify the performance of autoencoders in reproducing

canonical wavefunctions across a potential energy surface in 98Zr

and analyze the structure of the latent space.

2 Nuclear density functional theory

In very broad terms, the main assumption of density

functional theory (DFT) for quantum many-body systems is

that the energy of the system of interest can be expressed as a

functional of the density of particles Parr and Yang [26]; Dreizler

and Gross [27]; Eschrig [1]. Atomic nuclei are a somewhat special

case of DFT, since the nuclear Hamiltonian is not known exactly

and the nucleus is a self-bound system Engel [28]; Barnea [29].

As a result, the form of the energy density functional (EDF) is

often driven by underlying models of nuclear forces, and the EDF

is expressed as a function of non-local, symmetry-breaking,

intrinsic densities Schunck [2]. In the single-reference EDF

(SR-EDF) approach, the many-body nuclear state is

approximated by a simple product state of independent

particles or quasiparticles, possibly with some constraints

reflecting the physics of the problem. We notate |Φ(q)〉 such

as state, with q representing a set of constraints. The multi-

reference EDF (MR-EDF) approach builds a better

approximation of the exact many-body state by mixing

together SR-EDF states.

2.1 Energy functional

The twomost basic densities needed to build accurate nuclear

EDFs are the one-body density matrix ρ and the pairing tensor κ

(and its complex conjugate κ*). The total energy of the nucleus is

often written as

E ρ, κ, κ*[ ] � Enuc ρ[ ] + ECou ρ[ ] + Epair ρ, κ, κ*[ ], (1)

where Enuc [ρ] represents the particle-hole, or mean-field,

contribution to the total energy from nuclear forces, ECou [ρ]

the same contribution from the Coulomb force, and Epair [ρ, κ,

κ*] the particle-particle contribution to the energy1. In this work,

we model the nuclear part of the EDF with a Skyrme-like term

Enuc ρ[ ] � ∑
t�0,1

∫ d3r χt r( ), (2)

which includes the kinetic energy term and reads generically

χt r( ) � Cρρ
t ρ

2
t + Cρτ

t ρtτt + CJJ
t J

2
t + CρΔρ

t ρtΔρt + Cρ∇J
t ρt · Jt. (3)

In this expression, the index t refers to the isoscalar (t = 0) or

isovector (t = 1) channel and the terms Cuu′
t are the coupling

constants associated with the energy functional. The particle

density ρt(r), kinetic energy density τt(r), spin-current tensor

Jt(r), and vector density Jt(r) are all derived from the full one-

body, non-local density ρ(rστ, r′σ′τ′) where r are spatial

coordinates, σ is the intrinsic spin projection, σ = ±1/2, and

τ = ±1/2 is the isospin projection; see Engel et al. [30];

Dobaczewski and Dudek [31]; Bender et al. [32]; Perlińska

et al. [10]; Lesinski et al. [33] for their actual definition. Since

we do not consider any proton-neutron mixing, all densities are

diagonal in isospin space. The two remaining terms in Eq. 1 are

treated in exactly the same way as in Schunck et al. [34]. In

particular, the pairing energy is derived from a surface-volume

density-dependent pairing force

V τ( ) r, r′( ) � V(τ)
0 1 − 1

2
ρ r( )
ρc

[ ]δ r − r′( ), (4)

where ρc = 0.16 fm−3 is the saturation density of nuclear matter.

2.2 Hartree-Fock-Bogoliubov theory

The actual densities in (3) are obtained by solving the

Hartree-Fock-Bogoliubov (HFB) equation, which derives from

applying a variational principle and imposing that the energy be

minimal under variations of the densities Schunck [2]. The HFB

equation is most commonly solved in the form of a non-linear

eigenvalue problem. The eigenfunctions define the quasiparticle

(q.p.) spinors. Without proton-neutron mixing, we can treat

neutrons and protons separately. Therefore, for any one type of

particles, the HFB equation giving the μth eigenstate reads in

coordinate space Dobaczewski et al. [35].

∫ d3r′∑
σ′

h rσ, r′σ′( ) − λδσσ′ ~h rσ, r′σ′( )
~h* rσ, r′σ′( ) −h rσ, r′σ′( ) + λδσσ′

⎛⎝ ⎞⎠
U Eμ, r′σ′( )
V Eμ, r′σ′( )⎛⎝ ⎞⎠ � Eμ

U Eμ, rσ( )
V Eμ, rσ( )⎛⎝ ⎞⎠,

(5)

where h (rσ, r′σ′) is the mean field, ~h(rσ, r′σ′) the pairing field2
and λ the Fermi energy. Such an eigenvalue problem must be

solved for protons and for neutrons.

For the case of Skyrme energy functionals and zero-range

pairing functionals, both the mean field h and pairing field ~h

become semi-local functions of r (semi-local refers to the fact that

these potentials involve differential operators). We refer to

1 The pairing contribution lumps together terms coming from nuclear
forces, Coulomb forces and possibly rearrangement terms.

2 Following Dobaczewski et al. [35,117], we employ the ‘russian’
convention where the pairing field is defined from the pairing
density ~ρ(rσ, r′σ′) rather than the pairing tensor. The quantity ~h is
related to the more traditional form of the pairing field Δ through:
~h(rσ, r′σ′) � −2σ′Δ(rσ, r′ − σ′).
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Vautherin and Brink [36]; Engel et al. [30] for an outline of the

derivations leading to the expressions of the mean field in the

case of Skyrme functionals and to, e.g., Dobaczewski and Dudek

[37]; Bender et al. [38]; Hellemans et al. [39]; Ryssens et al. [40]

for the expression of the mean field in terms of coupling

constants rather than the parameters of the Skyrme potential.

In the following, we simply recall the essential formulas needed in

the rest of the manuscript.

Expression 5 is written in coordinate space. In configuration

space, i.e., when the q.p. spinors are expanded on a suitable basis

of the single-particle (s.p.) Hilbert space, the same equation

becomes a non-linear eigenvalue problem that can be written as

h − λ ~h
~h* −h* + λ

( ) U V*
V U*

( ) � U V*
V U*

( ) −E 0
0 E

( ), (6)

where h, ~h, U and V are now Nbasis × Nbasis matrices, with Nbasis

the number of basis states. Eigenvalues are collected in the

diagonal Nbasis × Nbasis matrix E. The set of all eigenvectors

define the Bogoliubov matrix,

W � U V*
V U*

( ), (7)

which is unitary: WW† � W†W � 1. Details about the HFB

theory can be found in the standard references Valatin [41];

Mang [42]; Blaizot and Ripka [43]; Ring and Schuck [44].

2.3 Mean-field and pairing potentials

The mean fields are obtained by functional differentiation of

the scalar-isoscalar energy functional (1) with respect to all

relevant isoscalar or isovector densities, ρ0, ρ1, τ0, etc. For the

case of a standard Skyrme EDF when time-reversal symmetry is

conserved, the corresponding mean-field potentials in the

isoscalar-isovector representation become semi-local

Dobaczewski and Dudek [37,45]; Stoitsov et al. [46];

Hellemans et al. [39].

ht r( ) � −Mp
t r( ) + Ut r( )

+ 1
2i
∑
μ]

∇μσ]Bt,μ] r( ) + Bt,μ] r( )∇μσ]( ), (8)

where, as before, t = 0, 1 refers to the isoscalar or isovector

channel and the various contributions are.

Mt r( ) � Z2

2m
+ Cρτ

t ρt, (9a)
Ut r( ) � 2Cρρ

t ρt + Cρτ
t τt + 2CρΔρ

t Δρt + Cρ∇J
t  · Jt + U rear( )

t , (9b)
Bt,μ] r( ) � 2CρJ

t Jt,μ] − CρΔJ
t ∇μρt,]. (9c)

In these expressions, μ, ] label spatial coordinates and σ is the
vector of Pauli matrices in the chosen coordinate system. For

example, in Cartesian coordinates, μ, ] ≡ x, y, z and σ = (σx, σy, σz).

The term U(rear)
t is the rearrangement potential originating from

the density-dependent part of the energy. The resulting isoscalar

and isovector mean-field and pairing potentials can then

recombined to give the neutron and proton potentials,

h n( ) � h0 + h1, h p( ) � h0 − h1. (10)
Note that the full proton potential should also contain the

contribution from the Coulomb potential.

The pairing field is obtained by functional differentiation of

the same energy functional (1), this time with respect to the

pairing density. As a result, one can show that it is simply

given by

~h
τ( )

r( ) � V(τ)
0 1 − 1

2
ρ0 r( )
ρc

[ ]~ρ τ( ) r( ). (11)

2.4 Collective space

Nuclear fission or nuclear shape coexistence are two

prominent examples of large-amplitude collective motion of

nuclei Schunck and Regnier [3]; Heyde and Wood [47]. Such

phenomena can be accurately described within nuclear DFT

by introducing a small-dimensional collective manifold, e.g.,

associated with the nuclear shape, where we assume the

nuclear dynamics is confined Nakatsukasa et al. [48];

Schunck [2]. The generator coordinate method (GCM) and

its time-dependent extension (TDGCM) provide quantum-

mechanical equations of motion for such collective dynamics

Griffin andWheeler [49]; WaWong [50]; Reinhard and Goeke

[51]; Bender et al. [32]; Verriere and Regnier [52]. In the

GCM, the HFB solutions are generator states, i.e., they serve as

a basis in which the nuclear many-body state is expanded. The

choice of the collective manifold, that is, of the collective

variables, depends on the problem at hand. For shape

coexistence or fission, these variables typically correspond

to the expectation value of multipole moment operators on

the HFB state. A pre-calculated set of HFB states with different

values for the collective variables defines a potential energy

surface (PES).

In practice, PES are obtained by adding constraints to the

solutions of the HFB equation. This is achieved by introducing a

set of constraining operators Q̂a capturing the physics of the

problem at hand. The set of all such constraints q ≡ (q1, . . ., qN)

defines a point in the PES. In this work, our goal is to design

emulators capable of reproducing the HFB solutions at any

given point q of a PES. Throughout this article, we consider

exclusively two-dimensional collective spaces spanned by the

expectation values of the axial quadrupole Q̂20 and axial

octupole Q̂30 moment operators. In the presence of

constraints, the mean-field potential in the HFB equation is

modified as follows
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h rσ, r′σ′( ) − λδσσ′ → h rσ, r′σ′( ) − λ +∑
a

λaQa r( )⎛⎝ ⎞⎠δσσ′.
(12)

As is well known, the Fermi energies play in fact the role of the

Lagrange parameters λa for the constraints on particle number.When

performing calculations with constraints on the octupole moment, it

is also important to fix the position of the center of mass. This is

typically done by adding a constraint on the dipole moment Q̂10. In

the following, we note qλμ the expectation value of the operator Q̂λμ on

the quasiparticle vacuum, qλμ � 〈Φ(q)|Q̂λμ|Φ(q)〉.
Potential energy surfaces are a very important ingredient in a very

popular approximation to the GCM called the Gaussian overlap

approximation (GOA) Brink and Weiguny [53]; Onishi and Une

[54]; Une et al. [55]. By assuming, among other things, that the

overlap between two HFB states with different collective variables q
and q′ is approximately Gaussian, the GOA allows turning the

integro-differential Hill-Wheeler-Griffin equation of the GCM into

a much more tractable Schrödinger-like equation. The time-

dependent version of this equation reads as Verriere and Regnier [52].

iZ
z

zt
g q, t( ) � −Z

2

2
∑
αβ

z

zqα
Bαβ q( ) z

zqβ
+ V q( )⎡⎢⎢⎣ ⎤⎥⎥⎦g q, t( ), (13)

where the probability to be at point q of the collective space at time t is

given by |g (q, t)|2,V(q) is the actual PES, typically theHFB energy as a

function of the collective variables q (sometimes supplemented by

some zero-point energy correction) and Bαβ(q) the collective inertia
tensor. In (13), indices α and β run from 1 to the number Ncol of

collective variables. While the HFB energy often varies smoothly with

respect to the collective variables, the collective inertia tensor can

exhibit very rapid variations near level crossings.

2.5 Canonical basis

The Bloch-Messiah-Zumino theorem states that the Bogoliubov

matrixW of (7) can be decomposed into a product of three matrices

Ring and Schuck [44]; Bloch and Messiah [56]; Zumino [57].

W � D �WC � D 0
0 D*

( ) �U �V
�V �U

( ) C 0
0 C*

( ), (14)

where D and C are unitary matrices. The matrices �U and �V take

the very simple canonical form

�U �

0
1

uk 0
0 u�k

1
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

�V �

0
1

0 vk
v�k 0

1
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(15)
Starting from an arbitrary s.p. basis (ĉ, ĉ†) of the Hilbert

space, the transformation characterized by the matrix D leads

to a new basis (â, â†) that diagonalizes the density matrix ρ

and puts the pairing tensor κ into the canonical form similar

to that of �V. This new basis is called the canonical basis of the

HFB theory. Properties of the canonical basis are discussed in

details in the literature; see, e.g., Ring and Schuck [44];

Schunck [2]. In the HFB theory, quasiparticles are

superpositions of particle operators â† and hole operators

â. Thus, the canonical basis is transformed according to the

matrix �W to obtain a set of quasiparticle operators (α̂, α̂†).
There is another transformation of these operators associated

with the matrix C. However, the most important property for

the purpose of this paper is that physical observables

associated with HFB solutions do not depend on that last

transformation.

In addition to simplifying the calculation of many-body

observables, the canonical basis is also computationally less

expensive than the full Bogoliubov basis3. As an illustration,

let us take the example of the local density ρ(r). Assuming the

s.p. basis (ĉ, ĉ†) is represented by the basis functions

{ψn(r, σ)}n∈N, the local density (for isospin τ) is obtained from

the matrix of the Bogoliubov transformation by

ρ r( ) �∑
σ

∑
μ

∑
mn

Vmμ* Vnμ ψm r, σ( )ψn* r, σ( ). (16)

Notwithstanding the constraints imposed by the

orthonormality of the q.p. spinors, the number of

independent parameters in this expression approximately

scales like 2 × N2
basis × Nqp × Nr, where Nbasis is the size of

the s.p. basis, Nqp the number of q.p. states μ and Nr the total

number of points in the spatial grid r (which depends on the

symmetries imposed). In the canonical basis, and assuming

that the state âμ|0〉 is associated with the wavefunction φμ(r,
σ), the same object is represented by

ρ r( ) �∑
σ

∑
μ

v2μ|φμ r, σ( )|2. (17)

The number of data points now scales like 2 × Nqp × Nr + Nqp, or

about N2
basis smaller than before. For calculations with Nbasis ≈

1,000 the compression enabled by the canonical basis is of the

order of 106.

2.6 Harmonic oscillator basis

All calculations in this article were performed with the

HFBTHO code Marević et al. [58]. Recall that HFBTHO

works by expanding the solutions on the axially-deformed

3 This statement is obviously not true when solving the HFB equation
directly in coordinate space. In the case of the local density discussed
here, the expression ρ(r) � ∑σ∑μVμ(r, σ)Vμ*(r, σ) is just as
computationally expensive as the canonical basis expression ρ(r) �∑σ∑μv

2
μ|φμ(r, σ)|2.
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harmonic oscillator basis Stoitsov et al. [46]. Specifically, the HO

basis functions are written

ψn r, σ( ) � ψΛ
nr

r( )ψnz
z( ) e

iΛθ���
2π

√ χΣ σ( ), (18)

where n ≡ (nr, nz, Λ, Ω = Λ ±Σ) are the quantum numbers

labeling basis states and.

ψΛ
nr

r( ) � Nnrβ⊥
�
2

√
η|Λ|/2e−η/2L|Λ|

nr
η( ), (19a)

ψnz
z( ) � Nnz

��
βz

√
e−ξ

2/2Hnz ξ( ), (19b)

With η � β2⊥r
2 and ξ = βzz dimensionless variables, L|Λ|nr

the

associated Laguerre polynomials of order nr andHnz the Hermite

polynomial of order nz. The oscillator scaling factors β⊥ and βz
are the inverse of the oscillator lengths, i.e., βz = 1/bz.

All integrations are performed by Gauss quadrature, namely

Gauss-Hermite for integrations along the ξ-axis of the intrinsic

reference frame and Gauss-Laguerre for integrations along the

perpendicular direction characterized by the variable η. In the

following, we note Nz the number of Gauss-Hermite nodes and

N⊥ the number of Gauss-Laguerre nodes.

3 Supervised learning with Gaussian
processes

Gaussian processes (GPs) are a simple yet versatile tool for

regression that has found many applications in low-energy

nuclear theory over the past few years, from determining the

nuclear equation of state Drischler et al. [59], quantifying the

error of nuclear cross sections calculations Kravvaris et al. [60];

Acharya and Bacca [61] to modeling of neutron stars Pastore

et al. [62]. In the context of nuclear DFT, they were applied to

build emulators of χ2 objective functions in the UNEDF project

Kortelainen et al. [63–65]; Higdon et al. [66]; McDonnell et al.

[67]; Schunck et al. [6], of nuclear mass models Neufcourt et al.

[15,68–70], or of potential energy surfaces in actinides Schunck

et al. [34]. In this section, we test the ability of GPs to learn

directly the HFB potentials across a large, two-dimensional

collective space.

3.1 Gaussian processes

Gaussian processes are commonly thought of as the

generalization of normally-distributed random variables

(Gaussian distribution) to functions. There exists a

considerable field of applications for GPs and we refer to the

reference textbook by Rasmussen and Williams for a

comprehensive review of the formalism and applications of

GPs Rasmussen and Williams [71]. For the purpose of this

work, we are only interested in the ability of GPs to be used

as a regression analysis tool and we very briefly outline below

some of the basic assumptions and formulas.

We assume that we have a dataset of observations

{y � yi}i�1,...,n and that these data represent n realizations of

y � f x( ) + ϵ, (20)

where f: x↦f(x) is the unknown function we are seeking to learn

from the data. Saying that a function f is a Gaussian process

means that every finite collection of function values f = (f (x1), . . .,

f (xp)) follows a p-dimensional multivariate normal distribution.

In other words, we assume that the unknown function f follows a

normal distribution in ‘function space’. This is denoted by

f x( ) ~ GP m x( ), k x, x′( )( ), (21)

where m: x↦m(x) is the mean function and k: (x, x′)↦k (x, x′)
the covariance function, which is nothing but the generalization

to functions of the standard deviation,

k x, x′( ) � E f x( ) −m x( )( ) f x′( ) −m x′( )( )[ ]. (22)

Thanks to the properties of Gaussian functions, the mean and

covariance functions have analytical expressions as a function of

the test data y and covariance k; see Eqs (2.25)-(2.26) in

Rasmussen and Williams [71].

The covariance function is the central object in GP

regression. It is typically parametrized both with a functional

form and with a set of free parameters called hyperparameters.

The hyperparameters are determined from the observed data by

maximizing the likelihood function. In our tests, the covariance

matrix is described by a standard Matérn 5/2 kernel,

k x, x′( ) � 1 +
�
5

√
ℓ
‖x − x′‖ + 5

3ℓ2
‖x − x′‖2( )exp −

�
5

√
ℓ
‖x − x′‖( ),

(23)
where ℓ is the length-scale that characterizes correlations

between values of the data at different locations. The length-

scale is a hyper-parameter that is optimized in the training phase

of the Gaussian process. In this work, we only considered

stationary GPs: the correlation between data points x and x′
only depends on the distance ‖x − x′‖ between these points, not

on their actual value.

3.2 Study case

3.2.1 HFB potentials
Section 2.2 showed that the HFB mean-field potential

involves several differential operators. When the HFB matrix

is constructed by computing expectation values of the HFB

potential on basis functions, differentiation is carried over to

the basis functions and computed analytically—one of the many

advantages of working with the HO basis. In practice, this means

that the elements of the HFBmatrix are computed bymultiplying
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spatial kernels with different objects representing either the

original HO functions or their derivatives. This means that we

cannot consider a single emulator for the entire HFB potential.

Instead, we have to build several different ones for each of its

components: the central potential U (derivative of the EDF with

respect to ρ), the r- and z-derivatives of the effective mass M*

(derivative with respect to the kinetic density τ), the r- and z-

derivatives of the spin-orbit potential W, and the pairing field ~h.

There are six such functions for neutrons and another six for

protons. We denote this set of twelve functions as {fi}i�1,...,12.
At any given point q of the collective space, these functions

are all local, scalar functions of η and ξ, fi(q) ≡ fi: (η, ξ)↦fi (η, ξ; q)
where (η, ξ) are the nodes of the Gauss-Laguerre and Gauss-

Hermite quadrature grid. We note generically fik(q) the value at
point k of the quadrature grid (linearized) of the sample at point q
of the function fi. When fitting Gaussian process to reproduce

mean-field and pairing potentials, we consider a quadrature grid

ofNz ×N⊥ = 3,200 points. Our goal is thus to build 3,200 different

emulators, one for each point k of that grid, for each of the

12 local functions characterizing the mean-field and pairing

potentials. This gives a grand total of 38,400 emulators to

build. While this number is large, it is still easily manageable

on standard computers. It is also several orders of magnitude

smaller than emulating the full set of quasiparticle spinors, as we

will see in the next section.

In addition, the value of all the Lagrange parameters used to

set the constraints must also be included in the list of data points.

In our case, we have 5 of them: the two Fermi energies λn and λp
and the three constraints on the value of the dipole, quadrupole

and octupole moments, λ1, λ2 and λ3, respectively. Finally, we

also fit the expectation value of the three constraints on Q̂10, Q̂20

and Q̂30. We thus have a grand total of 38,408 functions of q to

emulate.

3.2.2 Training data and fitting procedure
We show in Figure 1 the potential energy surface that we are

trying to reconstruct. This PES is for the 240Pu nucleus and was

generated with the SkM* parameterization of the Skyrme energy

functional Bartel et al. [72]. The pairing channel is described with

the zero-range, density-dependent pairing force of Eq. 4 that has

exactly the same characteristics as in Schunck et al. [73].

We imposed constraints on the axial quadrupole and

octupole moments such that: 0 b ≤ q20 ≤ 300 b and 0 b3/2 ≤
q30 ≤ 51 b3/2 with steps of δq20 = 6 b and δq30 = 3 b3/2, respectively.

The full PES should thus contain 918 collective points. In

practice, we obtained Np = 887 fully converged solutions.

Calculations were performed with the HFBTHO solver by

expanding the solutions on the harmonic oscillator basis with

Nmax = 28 deformed shells and a truncation in the number of

states ofNbasis = 1,000. At each point of the PES, the frequency ω0

and deformation β2 of the HO basis are set according to the

empirical formulas given in Schunck et al. [73]. Following

standard practice, we divided the full Np = 887 dataset of

points into a training (80% of the points) and validation (20%

of the points) set. The selection was done randomly and resulted

in Ntrain = 709 training points and Nvalid. = 178 validation points.

The training points are marked as small black crosses in Figure 1

while the validation points are marked as larger white circles.

Based on the discussion in Section 3.2.1, we fit a Gaussian

process to each of the 38,408 variables needed to characterize

completely the HFB matrix. Since we work in a two-dimensional

collective space, we have two features and the training data is

represented by a two-dimensional array X of dimension (nsamples,

nfeatures) with nsamples =Np and nfeatures = 2. The target values Y (=

the value at point k on the quadrature grid of any of the functions

fi) are contained in a one-dimensional array of size Np. Prior to

the fit, the data is normalized between 0 and 1. The GP is based

on a standard Matérn kernel with ] = 2.5 and length-scale ℓ. In

practice, we use different length-scales for the q20 and q30
directions so that ℓ = ℓ is a vector. We initialized these values

at the spacing of the grid ℓ = (δq20, δq30). We added a small

amount of white noise to the Matérn kernel to account for the

global noise level of the data.

3.2.3 Performance
Once the GP has been fitted on the training data, we can

estimate its performance on the validation data. For each of the

Nvalid. = 178 validation points, we used the GP-fitted HFB

potentials to perform a single iteration of the HFB self-

consistent loop and extract various observables from this

single iteration. Figure 2 focuses on the total HFB energy and

the zero-point energy correction ε0. Together, these two

quantities define the collective potential energy in the

FIGURE 1
Potential energy surface of 240Pu with the SkM* EDF for the
grid (q20, q30) ∈ [0 b, 300 b] × [0 b3/2, 51 b3/2] with steps δq20 = 6 b
and δq30 = 3 b3/2. The black crosses are the training points, the
white circles the validation points. Energies indicated by the
color bar are in MeV relatively to −1820 MeV.
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collective Hamiltonian (13) of the GCM. The left panel of the

figure shows the histogram of the error ΔE � E(true)
HFB − E(GP)

HFB ,

where E(true)
HFB is the result from the fully converged HFB solution

and E(GP)
HFB is the value predicted by the Gaussian process. The bin

size is 100 keV. Overall, we find that the large majority of the

error is within ±200 keV. This is a rather good result considering

the span of the PES and the fact that basis truncation errors can

easily amount to a few MeV Schunck [74].

To gain additional insight, we draw in the right panel of Figure 2

each of the validation points with a marker, the size of which is

proportional to the error of the prediction. To further distinguish

betweenmost points and the few outliers, we show in gray the points

for which the absolute value of the error is less than 500 keV and in

black the points for which it is greater than 500 keV. For the gray

points, we use 5 different marker sizes corresponding to energy bins

of 100 keV: the smaller grey symbol corresponds to an error smaller

than 100 keV, the larger one between 400 and 500 keV. Similarly,

the larger black circles have all an error greater than 500 keV and are

ordered by bins of 400 keV (there are only two points for which the

error is larger than 4MeV). Interestingly, most of the larger errors

are concentrated in the region of small elongation q20 < 80 b and

high asymmetry q30 > 30 b3/2. This region of the collective space is

very high in energy (more than 100MeV above the ground state)

and plays no role in the collective dynamics.

FIGURE 2
(A): Histogram of the error on the GP-predicted total HFB energy and zero-point energy correction across the validation points. Bin size is
100 keV. (B): Size of the error on the GP-predicted total HFB energy across the validation set. Gray circles have an error lower than 500 keV and the
size of themarkers correspond to energy bins of 100 keV. Black circles have an error greater than 500 keV and are binned by 400 keV units. Energies
indicated by the color bar are in MeV relatively to −1820 MeV.

FIGURE 3
(A): Histogram of the error on the GP-predicted values of the multipole moments. The bin size is 0.2 bλ/2 with λ = 2 (quadrupole moment) or λ =
3 (octupole moment). (B): Histogram of the relative error, in percents, on the GP-predicted values of the components of the collective inertia tensor.
The bin size is 1, corresponding to 1% relative errors.
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Note that the expectation values of the multipole moments

themselves are not reproduced exactly by the GP: strictly

speaking, the contour plot in the right panel of Figure 2 is drawn

based on the requested values of the constraints, not their actual

values as obtained by solving the HFB equation once with the

reconstructed potentials. The histogram in the left panel of

Figure 3 quantifies this discrepancy. It shows the absolute error

Δqλμ � q(true)λμ − q(GP)λμ , where q(true)λμ is the result from the fully

converged HFB solution and q(true)λμ is the value predicted by the

Gaussian process. On average, the error remains within ±0.5 b for q20
and ±0.5 b3/2 for q30, which is significantly smaller than themesh size.

The collective potential energy is only one of the two

ingredients used to simulate fission dynamics. As mentioned

in Section 2.4, see Eq. 13, the collective inertia tensor is another

essential quantity Schunck and Robledo [4]; Schunck and

Regnier [3]. In this work, we computed the collective inertia

at the perturbative cranking approximation Schunck and

Robledo [4]. Since we work in two-dimensional collective

spaces, the collective inertia tensor B has three independent

components, hereafter labeled B22, B33 and B32 = B23. Figure 3

shows the relative error on these quantities, defined as

ϵ � (B(true)
λλ′ − B(GP)

λλ′ )/B(true)
λλ′ . Overall, the error is more spread

than for the energy but rarely exceeds five percents4.

Both the total energy and the collective mass tensor are

computed from the HFB solutions. However, since the GP fit is

performed directly on the mean-field and pairing potentials, one

can analyze the error on these quantities directly. In Figure 4, we

consider two different configurations. The configuration C1 �
(q20, q30) � (198 b, 30 b3/2) is very well reproduced by the GP

with an error in the HFB energy of 4.4 keV and a relative error on

B22 of -0.43% and B22 of -0.84% only. In contrast, the

configuration C2 � (q20, q30) � (138 b, 51 b3/2) is one of the

worst possible cases, with a total error on the HFB energy of

9.0 MeV and relative errors on B22 of -71.0% and B22 of -13.7%.

For each of these two configurations, we look at the central part of

the mean-field potential for protons, the term Up = U0 − U1 of

(9b). The left side of Figure 4 shows, respectively, the actual value

of Up(r, z) across the quadrature grid (top panel) and the

difference between the true value and the GP fit (bottom

panel) for the configuration C1. The right side of the figure

shows the same quantity for the configuration C2. In all four

plots, the energy scale is in MeV; it is identical for the two panels

at the top, but it is different for the two at the bottom.

We see that for the “good” configuration C1, the error is

between −0.6 MeV and 1.0 MeV but is mostly occurring at the

surface of the nucleus and at the edges of the domain. Conversely,

the “bad” configuration C2 actually corresponds to a scissioned

configuration: the mean-field potential (upper right panel) shows

two different regions corresponding to fully separated

fragments5. Such a geometric configuration is very different

FIGURE 4
(A): Central part of the mean-field potential for protons, Up(r, z) for the configuration (q20, q30) = (198 b, 30 b3/2); (B): Error in the GP fit for that
same configuration. (C): Central part of the mean-field potential for protons, Up(r, z) for the configuration (q20, q30) = (138 b, 51 b3/2); (D): Error in the
GP fit for that same configuration. In all figures, the energy given by the error bar is in MeV. Note the much smaller energy scale for the bottom left
panel.

4 Note that B32 vanishes for axially-symmetric shapes. As a result, the
relative error can be artificially large for values of q30 ≈ 0 b3/2.

5 This particular scission configuration corresponds to what is called
cluster radioactivity Warda and Robledo [118]; Warda et al. [119];
Matheson et al. [120]. The heavy fragment is much larger than the
light one. Here, 〈AH〉 = 205.6, 〈AL〉 = 34.4.
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from the rest of the potential energy surface shown in Figure 1,

which contains mostly non-scissioned configurations. As a result,

the error in the GP fit is very large in the region between the two

fragments since it predicts this configuration to be non-

scissioned. Note that in HFBTHO, the representation of the

potentials on the quadrature points does not contain the

exponential factor exp(−βzξ2) exp(−β2⊥ξ2) which is factored in

the quadrature weights. Therefore, the large errors at the edges of

the domain, for z ≈ − 30 fm, z ≈ + 30 fm or r ≈ 18 fm are not

significant since they are entirely absorbed by this exponential

factor.

Overall, Gaussian processes seem to provide an efficient way

to predict HFB solutions across potential energy surfaces. Their

primary advantage is that they are very simple to implement,

with several popular programming environments offering ready-

to-use, full GP packages, and very fast to train (a few minutes at

most for a few hundreds of samples). As our examples suggest,

GPs are very good at interpolating across a domain where

solutions behave smoothly. In the case of PES, this implies

that the training data must not contain, e.g., scissioned and

non-scissioned configurations. More generally, it should not

feature too many discontinuities Dubray and Regnier [75].

When these conditions are met, GPs can be used to quickly

and precisely densify a PES, e.g., to obtain more precise fission

paths in spontaneous fission half-live calculations

Sadhukhan [76].

However, Gaussian processes are intrinsically limited. In our

example, we treated the value of each potential at each point of

the quadrature mesh as an independent GP. Yet, such data are in

reality heavily correlated. To incorporate such correlations

requires generalizing from scalar GPs to vector, or multi-

output GPs Bruinsma et al. [77]. In our example of nuclear

potentials, the output space would be RD with D ≈ 32,008. An

additional difficulty is related to choosing the kernel that is

appropriate to describe the correlated data and identifying

what the prior distribution should be Álvarez et al. [78]. Yet

another deficiency of standard Gaussian processes, especially in

contrast to the deep-learning techniques discussed below, is that

they are not capable to learn a latent representation of the data.

For these reasons, we consider such techniques helpful mostly to

densify existing potential energy surfaces.

4 Deep learning with autoencoders

Even though self-consistent potential energy surfaces are

key ingredients in the microscopic theory of nuclear fission

Bender et al. [79], we must overcome two significant obstacles

to generate reliable and complete PES. First, the

computational cost of nuclear DFT limits the actual

number of single-particle d.o.f. When solving the HFB

equation with basis-expansion methods, for example, the

basis must be truncated (up to a maximum of about a few

thousand states, typically), making the results strongly basis-

dependent Schunck [80]; even in mesh-based methods, the

size of the box and lattice spacing also induce truncation

effects Ryssens et al. [81]; Jin et al. [82]. Most importantly, the

number of collective variables that can be included in the PES

is also limited: in spontaneous fission calculations, which do

not require a description of the PES up to scission, up to Ncol =

5 collective variables have been incorporated Sadhukhan [76];

when simulating the PES up to scission, only 2 collective

variables are included with only rare attempts to go

beyondRegnier et al. [83]; Zhao et al. [84]. As a

consequence, the combination of heavily-truncated

collective spaces and the adiabatic hypothesis inherent to

such approaches leads to missing regions in the PES and

spurious connections between distinct channels with

unknown effects on physics predictions Dubray and

Regnier [75]; Lau et al. [85]. The field of deep learning may

offer an appealing solution to this problem by allowing the

construction of low-dimensional and continuous surrogate

representations of potential energy surfaces. In the following,

we test the ability of autoencoders—a particular class of deep

neural networks—to generate accurate low-dimensional

representations of HFB solutions.

4.1 Network architecture

The term ‘deep learning’ encompasses many different types

of mathematical and computational techniques that are almost

always tailored to specific applications. In this section, we

discuss some of the specific features of the data we seek to

encode in a low-dimensional representation, which in turn help

constrain the network architecture. The definition of a proper

loss function adapted to quantum-mechanical datasets is

especially important.

4.1.1 Canonical states
We aim at building a surrogate model for determining

canonical wavefunctions as a function of a set of continuous

constraints. Canonical states are denoted generically φ(τ)
μ (r, σ)

with r ≡ (r, z, θ) the cylindrical coordinates and σ = ±1/2 the spin.

Fully characterizing an HFB state requires the set of canonical

wavefunctions for both neutrons and protons, which are

distinguished by their isospin quantum number τ = +1/2

(neutrons) and τ = −1/2 (protons). As mentioned in Section

2, an HFB solution |Φ(q)〉 is entirely determined up to a global

phase by the set of all canonical states {φ(τ)
μ (r, σ)}μ and their

associated occupation amplitudes {v(τ)μ }μ.
In this work, we restrict ourselves to axially-symmetric

configurations. In that case, the canonical wavefunctions are

eigenstates of the projection of the total angular momentum on

the symmetry axis Ĵz with eigenvalue Ω and acquire the same

separable structure (18) as the HO basis functions,
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φ τ( )
μ r, σ( ) � φ τ( )

μ r, z, σ( ) e
iΛθ���
2π

√ , (24)

where φ(τ)
μ (r, z, σ) is the canonical wavefunction at θ = 0. In this

initial work, we only consider even-even nuclear systems and time-

reversal symmetric nuclear Hamiltonians. Therefore, Kramer’s

degeneracy ensures that paired particles in the canonical basis are

time-reversal partners of each other: φ(τ)
�μ (r, σ) � 2σφ(τ)*

μ (r,−σ).
This guarantees that the canonical wavefunction at θ = 0 can be

chosen purely real. Incidentally, it also means that we only need to

describe one wavefunction per pair of particles. Using these

properties, we can completely describe a canonical wavefunction

in ourmodel by only predicting a single pair of real-valued functions

(one for each spin projection σ).

As shown by Eqs 8, Eqs 9a–9c, all mean-field and pairing

potentials are functions of the Skyrme densities. The kinetic

energy density τ(r, z), spin-current tensor J(r, z), and vector

density J (r, z) involve derivatives of the quasiparticle spinors or,
in the canonical basis, of the canonical wavefunctions on the

quadrature grid Stoitsov et al. [46]. We compute these derivatives

by first extracting the coefficients α(τ)nμ of the expansion of the

canonical wavefunctions φ(τ)
μ (r, σ) in the HO basis

φ τ( )
μ r, σ( ) �∑

n

α τ( )
nμ ψn r, σ( )0α τ( )

nμ � ∫ d3r ψn* r, σ( )φ τ( )
μ r, σ( ),

(25)
using Gauss-Laguerre and Gauss-Hermite quadrature. Since all

the derivatives of the HO functions can be computed analytically,

the expansion (25) makes it very easy to compute partial

derivatives with respect to r or z, for example,

zφ τ( )
μ

zz
r, σ( ) �∑

n

α τ( )
nμ

zψn

zz
r, σ( ). (26)

4.1.2 Structure of the predicted quantity
In the ideal case, the canonical wavefunctions evolve smoothly

with the collective variables. The resulting continuity of the many-

body state with respect to collective variables is a prerequisite for a

rigorous description of the time evolution of fissioning systems, yet

it is rarely satisfied in practical calculations. We discuss below the

three possible sources of discontinuity of the canonical

wavefunctions in potential energy surfaces.

First, the canonical wavefunctions are invariant through a

global phase. Since the quantity we want to predict is real, the

orbitals can be independently multiplied by an arbitrary sign.

Even though this type of discontinuity does not impact the

evolution of global observables as a function of deformation,

it affects the learning of the model: since we want to obtain

continuous functions, a flipping of the sign would be seen by the

neural network as a discontinuity in the input data. We address

this point through the choice of the loss, as discussed in Section

4.1.3, and through the determination of the training set, as

detailed in Section 4.2.

Second, we work within the adiabatic approximation, which

consists in building PES by selecting the q.p. vacuum that

minimizes the energy at each point. When the number Ncol of

collective variables of the PES is small, this approximation may

lead to discontinuities Dubray and Regnier [75]. These

discontinuities correspond to missing regions of the collective

space and are related to the inadequate choice of collective

variables. Since we want to obtain a continuous description of

the fission path, we must give our neural network the ability to

choose the relevant degrees of freedom. This could be achieved

with autoencoders. Autoencoders are a type of neural networks

analogous to the zip/unzip programs. They are widely used and

greatly successful for representation learning—the field of

Machine Learning that attempts to find a more meaningful

representation of complex data Baldi [86]; Burda et al. [87];

Chen et al. [88]; Gong et al. [89]; Bengio et al. [90]; Zhang et al.

[91]; Yu et al. [92] and can be viewed as a non-linear

generalization of principal component analysis (PCA). As

illustrated in Figure 5, an autoencoder Ξ typically consists of

two components. The encoder E (T(φ)) encodes complex and/or

high-dimensional data T(φ) to a typically lower-dimensional

representation v(φ). The latent space is the set of all possible

such representations. The decoder D (v(φ)) takes the low-

dimensional representation of the encoder and uncompresses

it into a tensor T(ϕ) as close as possible to T(φ). Such architectures

are trained using a loss function that quantifies the discrepancy

between the initial input and the reconstructed output,

Lrec. T
(ϕ)( ) � d T(φ), T(ϕ)( ), (27)

where d (., .) defines the metric in the space of input data. We

discuss the choice of a proper loss in more details in Section 4.1.3.

FIGURE 5
An autoencoder is the association of two blocks. The first
one, on the left, compresses the input data into a lower-
dimensional representation, or code, in the latent space. The
second one, on the right, decompresses the code back into
the original input.
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Third, the evolution of the q.p. wavefunctions as a function of

the collective variables q may lead to specific values qi where the
q.p. solutions are degenerate. These degeneracies form a sub-

manifold of dimension at most D − 2, where D is the number of

collective d.o.f.s. As a consequence, they cannot appear in one-

dimensional PES: q.p. solutions with the same symmetry “cannot

cross” (the famous no-crossing rule von Neuman and Wigner

[93]). In multi-dimensional spaces, this rule does not hold

anymore: when following a closed-loop trajectory around such

a degeneracy, the sign of the q.p. wavefunctions is flipped, in a

similar manner that we flip side when winding around aMoebius

strip Teller [94]; Longuet-Higgins et al. [95]; Longuet-Higgins

[96]. In the field of quantum chemistry, such degeneracies are

referred to as diabolical points or conical intersections Domcke

et al. [97]; Larson et al. [98]. The practical consequence of conical

intersections for deep learning is that the manifold of all the

q.p. wavefunctions cannot be embedded in a D-dimensional

latent space. Such singularities can be treated in two ways: (i)

by using a latent space of higher dimension than needed or (ii) by

implementing specific neural network layers capable of handling

such cases. For now, we do not consider these situations.

4.1.3 Loss functions and metrics
As already discussed in Section 4.1.2, autoencoders are

trained through the minimization of a loss function that

contains a reconstruction term of the form (27). As suggested

by its name, this term ensures that the autoencoder can correctly

reconstruct the input tensor T(φ) from its compressed

representation. It depends on a definition for the metric d (.,

.) used to compare the different elements of the input space. Since

our canonical wavefunctions φμ are expanded on the axial

harmonic oscillator basis of Section 2.6, they are discretized

on the Gauss quadrature mesh without any loss of

information. Therefore, both the input and output tensors of

our surrogate model are a rank-3 tensor T(ϕ) ≡ T(φ) ≡ Tijk of

dimensions N⊥× Nz × 2, where i is the index of the Gauss-

Laguerre node along the r-axis, j the index of the Gauss-Hermite

node along the z-axis, and k the index of the spin component.

A standard loss used with autoencoders is the mean-square-

error (MSE). Because of the structure of our input data, see

Section 4.1.1, the MSE loss reads in our case

dMSE T(φ), T(ϕ)( ) � 1
N⊥ × Nz × 2

∑N⊥−1

i�0
∑Nz−1

j�0
∑1
i�0

T(ϕ)
ijk − T(φ)

ijk( )2.
(28)

The MSE is very general and can be thought of, quite simply, as

the mean squared “distance” between the initial and

reconstructed data. However, this generality implies that it

does not contain any information about the properties of the

data one tries to reconstruct.

Indeed, we can define a metric that is better suited to the

physics we aim to describe. Let us recall that our goal is to

compute potential energy surfaces that can be used, e.g., for

fission simulations. These PES are nothing but generator states

for the (TD)GCM mentioned in Section 2.4. The GCM relies on

the norm kernel N (q, q′) and the Hamiltonian kernel H(q, q′),
which are defined as.

N q, q′( ) � 〈Φ(q)|Φ(q′)〉, (29)
H q, q′( ) � 〈Φ(q)|Ĥ|Φ(q′)〉. (30)

Since the norm kernel involves the standard inner product in the

many-body space, it represents the topology of that space.

Therefore, it should be advantageous to use for the loss a

metric induced by the same inner product that defines the

norm kernel.

In our case, we want to build an AE where the encoder v(φ) =
E (T(φ)) compresses the single-particle, canonical orbitals {φμ}μ
associated with |Φ〉 into a low-dimensional vector v(φ) and where
the decoder T(ϕ) = D (v(φ)) is used to compute the set of

reconstructed canonical orbitals {ϕμ}μ. Most importantly, this

reconstruction should be such that the reconstructed many-body

state |Ψ〉 is as close as possible to the original state |Φ〉. In other

words, we need to use a loss that depends on the norm overlap

(between many-body states) but since we work with single-

particle wavefunctions, we must have a way to relate the

norm overlap to these s.p. wavefunctions. This can be

achieved with Equations 5.4 and (5.6) of Haider and Gogny

[99], which relate the inner product 〈Φ|Ψ〉 in the many-body

space with the inner product (overlap) 〈φμ|ϕ]〉 between the

related canonical orbitals φμ and ϕ],

〈φμ|ϕ]〉 ≡ τ
φϕ( )

μ] � â(φ)†μ , âϕ]{ } �∑
σ

∫ d3r φμ* r, σ( )ϕ] r, σ( ) (31)

and with the occupation amplitudes. However, it assumes that

the canonical wavefunctions of each many-body state are

orthogonal. This property is not guaranteed for our

reconstructed canonical wavefunctions. In fact, because of this

lack of orthogonality, the reconstructed wavefunctions cannot be

interpreted as representing the canonical basis of the Bloch-

Messiah-Zumino decomposition of the quasiparticle vacuum

and the Haider and Gogny formula cannot be applied ‘as is’.

However, we show in Supplementary Appendix S1 that it is

possible to find a set of transformations of the reconstructed

wavefunctions that allows us to define such as genuine canonical

basis.

We want the loss function to depend only on the error

associated with the reconstructed orbital ϕμ. Therefore, we

should in principle consider the many-body state |~Φμ〉 where

only the orbital φμ is substituted by its reconstruction ϕμ. We can

then compute the inner product between |Φ〉 and |~Φμ〉 using

Supplementary Appendix S1 and deduce any induced metric f

df
exact T

φ( ), T ϕ( )( ) � f
〈Φ|~Φμ〉��������
〈~Φμ|~Φμ〉

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (32)
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However, computing this metric is too computationally involved

to be carried out explicitly for each training data at each epoch.

Instead, we keep this metric for comparing a posteriori the

performance of our model.

Instead of explicitly determining dfexact(T(φ), T(ϕ)), we focus
on reproducing canonical orbitals using the metrics of the one-

body Hilbert space. In practice we considered the distance noted

d(0)◦ that is induced by the inner product between normalized

functions in the one-body Hilbert space, that is,

d 0( )
◦ φ, ϕ( ) ≡ 〈φ|�����

〈φ|φ〉√ − 〈ϕ|�����
〈ϕ|ϕ〉√( ) |φ〉�����

〈φ|φ〉√ − |ϕ〉�����
〈ϕ|ϕ〉√( ),

(33)
which is nothing but

d 0( )
◦ φ, ϕ( ) �∑

σ

∫ d3r φ r, σ( ) − ϕ r, σ( )∣∣∣∣ ∣∣∣∣2, (34)

where the φ(r, σ) and ϕ(r, σ) have been normalized. Since all

wavefunctions are discretized on the Gauss quadrature mesh, this

distance reads

d 0( )
◦ φ,ϕ( ) � ∑

n⊥nznσ

Wn⊥nz T
φ( )

n⊥nznσ − T
ϕ( )

n⊥nznσ

∣∣∣∣∣∣ ∣∣∣∣∣∣2, (35)

where the weights W are given by

Wn⊥nz �
wGL

n⊥

2b2⊥
× 2π ×

wGH
nz

bz
. (36)

These weights, which depend on the indices n⊥ and nz in the

summation, are the only difference between the squared distance

loss (Eq. 35) and the MSE loss (Eq. 28). Although the distance

(Eq. 35) is norm-invariant6, it still depends on the global phase of

each orbital. We have explored other possible options for the loss

based on norm- and phase-invariant distances; see

Supplementary Appendix S2 for a list. However, we found in

our tests that the distance d(0)◦ systematically outperformed the

other ones and, for this reason, only show results obtained with

this one.

4.1.4 Physics-informed autoencoder
From a mathematical point of view, deep neural networks

can be thought of as a series of compositions of functions. Each

composition operation defines a new layer in the network.

Networks are most often built with alternating linear and

nonlinear layers. The linear part is a simple matrix

multiplication. Typical examples of nonlinear layers include

sigmoid, tanh, Rectified Linear Unit (ReLU) functions. In

addition to these linear and nonlinear layers, there could be

miscellaneous manipulations of the model for more specific

purposes, such as adding batch normalization layers Ioffe and

Szegedy [100], applying dropout Srivastava et al. [101] to some

linear layers, or skip connection He et al. [102] between layers.

Our data is a smooth function defined over a N⊥× Nz = 60 ×

40 grid and is analogous to a small picture. For this reason, we

chose a 2D convolutional network architecture. Convolutional

layers are popular for image analysis, because they incorporate

the two-dimensional pixel arrangement in the construction of the

weights of the network. These two-dimensional weights, or

filters, capture local shapes and can model the dependent

structure in nearby pixels of image data. Given a 2D m × m

input array, a 2D filter F is a n × nmatrix, usually with n≪ m. If

we note In the space of n × n integer-valued matrices, then the

convolutional layer C is an operation of the C: (In, In) → N that

is applied to all pairs (F, C) where C is any n × n chunk of the

input image; see Figure 6 for an example. This way, the resulting

output summarizes the strength and location of that particular

filter shape within the image. As the model gets trained, the filter

parameters are fitted to a shape that is learned to be important in

the training data. Convolutional neural network are very effective

for image analysis and are currently widely used Krizhevsky et al.

[103]; Zeiler and Fergus [104]; Sermanet et al. [105]; Szegedy

et al. [106].

In this work, we used the Resnet 18 model as our encoder and

constructed the decoder from a transposed convolution

architecture of the Resnet 18. The Resnet 18 model was first

introduced by He et al. as a convolutional neural network for

image analysis He et al. [102]. It was proposed as a solution to the

degradation of performance as the network depth increases.

Resnet branches an identity-function addition layer to sub-

blocks (some sequential layers of composition) of a given

network. While a typical neural network sub-block input and

output could be represented by x and f(x), respectively, a Resnet

sub-block would output f(x) + x for the same input x, as in

Figure 2 of He et al. [102]. This architecture is called ‘skip

FIGURE 6
Schematic example of a convolutional layer. For any 2 × 2
chunk C of the input image on the left, this convolutional layer
performs the point-wise multiplication of C with the filter F
followed by the addition of all elements. This compresses the
initial chunk of the image into a single integer.

6 A distance d(u, v) is norm-invariant if for any positive real number α and
β, we have d(αu, βv) = d(u, v).
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connection’ and was shown to be helpful for tackling multiple

challenges in training deep neural network such as vanishing

gradient problem and complex loss function Li et al. [107]; He

et al. [102]. Since then, the Resnet architecture has been widely

successful, often being used as a baseline for exploring new

architectures Zhang et al. [108]; Radosavovic et al. [109] or as

the central model for many analyses Cubuk et al. [110]; Yun et al.

[111]; Zhang et al. [112]. In a few cases, it was also combined with

autoencoders for feature learning from high-dimensional data

Wickramasinghe et al. [113].

For the decoder part, we designed a near-mirror image of the

encoder using transposed convolution. Transposed convolution

is essentially the opposite operation to convolution in terms of

input and output dimensions. Here the meaning of transpose

refers to the form of the filter matrix when the convolution layer

is represented by a 1D vector input obtained from linearizing the

2D input. Note that the mirror-located filters in the decoder are

independent parameters and not the actual transposed filter

matrix of the encoder. Such a construction ensures

symmetrical encoder and decoder models, making the decoder

model close to the inverse shape of the encoder model. Figure 7

illustrates the operation: one input value is multiplied by the

entire kernel (filter) and is added to the output matrix at its

corresponding location. The corresponding output location for

each colored input number are color-coded and show how the

addition is done.

The first and the last layer of the Resnet architecture are

mostly for resizing and were minimally modified from the

original Resnet 18 model since the size of our input data is

significantly smaller than typical image sizes used for Resnet

image classification analyses. We also modified the number of

input channels of the first layer of the encoder to be 2 (for each of

the spin components of the nuclear wavefunction) instead of the

usual number 3 (for the RGB colors of colored images) or 1 (for

black-and-white images). The spin components are closely

related to each other with covariance structure, similar to how

colors interact within an image. Therefore, we treat a pair of spin

components as a single sample and treat each component as an

input channel. The same applies to the output channel of the

decoder.

The full network is represented schematically in Figure 8.

Parametric Rectified Linear Unit, or PRELU, layers were added to

impose nonlinearity in the model He et al. [114]. PRELU layers

are controlled by a single hyperparameter that is trained with the

data. Batch normalization is a standardizing layer that is applied

to each batch by computing its mean and standard deviation. It is

known to accelerate training by helping with optimization steps

Ioffe and Szegedy [100]. The average pooling layer (bottom left)

averages each local batch of the input and produces a downsized

output. The upsampling layer (top right) upsamples the input

using a bilinear interpolation.

4.2 Training

As mentioned in Section 4.1.4, the loss is the discrepancy

between the input of the encoder and the output of the decoder.

The minimization of the loss with respect to all the model

parameters w, such as the filter parameters, is the training

process. We used the standard back-propagation algorithm to

efficiently compute the gradient of the loss function with respect

to the model parameters. The gradient computation is done with

the chain rule, iterating from the last layer in the backward

direction. We combined this with the mini-batch gradient

descent algorithm: ideally, one would need the entire dataset

to estimate the gradient at the current model parameter value.

However, with large datasets, this becomes computationally

inefficient. Instead we use a random subset of the entire data,

called mini-batch, to approximate the gradient, and expedite the

convergence of the optimization. For each mini-batch, we update

each parameter w by taking small steps of gradient descent,

wt+1 � wt − α zL
zwt

. At step t, or at tth mini-batch, the average loss

FIGURE 7
Schematic illustration of the 2D-transposed convolution. Each input value, e.g., 55, 57, etc., is multiplied by the entire kernel resulting in a 3 × 3
matrix. These matrices are then added to one another in a sliding and overlapping way.
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L and the gradient with respect to current model parameter wt

are computed. Then α-sized gradient descent step is taken to

update the model parameters. Instead of using the current

gradient for the update, one can use a weighted average of

past gradients. We employed the well-known Adam

algorithm, which uses the exponential moving average of

current and past gradients Kingma and Ba [115].

Iterating over the entire dataset once, using multiple mini-

batches, is called an epoch. Typically a deep neural network needs

hundreds to thousands of epochs for the algorithm to converge.

Parameters such as the batch size or learning rate, the parameters

of the optimizer itself (Adam’s or other), and the number of

epochs are hyper-parameters that must be tuned for model

fitting. For our training, we used the default initialization

method in PyTorch for the model parameters. The linear

layers were initialized with a random uniform distribution

over [ − 1/k, 1/k], where k is the size of the weight. For

example, if there are 2 input channels and 3 × 3 convolution

filters are used, k = 2 × 3 × 3. PRELU layers were initialized with

their default PyTorch value of 0.25. We proceeded with mini-

batches of size 32 with the default β1 = 0.9, β2 = 0.999 and ϵ = 10–8:

all these numbers refer to the PyTorch implementation of the

Adam’s optimizer. For α, we used 0.001 as starting value and used

a learning rate scheduler, which reduces the α value by a factor of

0.5 when there is no improvement in the loss for 15 epochs. After

careful observation of the loss curves, we have estimated that at

least 1,000 epochs are needed to achieve convergence.

To mitigate the problem of the global phase invariance of the

canonical wavefunctions discussed in Section 4.1.2, we doubled

the size of the dataset: at each point q of the collective space (=the
sample), we added to each canonical wavefunction φμ(r, σ) the
same function with the opposite sign − φμ(r, σ). The resulting

dataset was then first split into three components, training,

validation and test datasets, which represent 70%, 15%, and

15% of the entire data respectively. Training data is used for

minimizing the loss with respect to the model parameters as

explained above. Then we choose the model at the epoch that

performs the best with the validation dataset as our final model.

Finally, the model performance is evaluated using the test data.

4.3 Results

In this section, we summarize some of the preliminary results

we have obtained after training several variants of the AE. In

Section 4.3.1, we give some details about the training data and the

quality of the reconstructed wavefunctions. We discuss some

possible tools to analyze the structure of the latent space in

Section 4.3.2. In these two sections, we only present results

obtained for latent spaces of dimension D = 20. In Section

4.3.3, we use the reconstructed wavefunctions to recalculate

HFB observables with the code HFBTHO. We show the

results of this physics validation for both D = 20 and D = 10.

4.3.1 Performance of the network
Figure 9 shows the initial potential energy surface in 98Zr

used in this work. Calculations were performed for the SkM*

parametrization of the Skyrme potential with a surface-volume,

density-dependent pairing force with V(n)
0 � −199.69 MeV.fm−3,

V(p)
0 � −223.59 MeV.fm−3 and an “infinite” pairing cutoff. The

FIGURE 8
Representation of ourmodified Resnet 18 architecture for the
encoder (A) and the decoder (B). Large numbers on the left of each
side label the different layers. Numbers such as 64, 128, etc. refer
to the size of the filer; see text for a discussion of some of the
main layers.
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basis was identical for all points with oscillator length b0 =

1.971 fm, deformation β0 = 0.3 and number of shells Nbasis =

20. The PES contains 548 HFB calculations with constraints on

the axial quadrupole, q20 � 〈Q̂20〉, and axial octupole moment,

q30 � 〈Q̂30〉. The mesh was: − 12.5 b ≤ q20 ≤ 25.0 b with steps

δq20 = 1 b and 0.0 b3/2 ≤ q30 ≤ 3.0 b3/2 with step δq30 = 0.125 b3/2.

The black dots in Figure 9 indicate the location of the converged

solutions. For each solution, the np = 60 highest-occupation

proton and nn = 87 highest-occupation neutron canonical

wavefunctions were used as training data for the network7.

For each of the losses discussed in Supplementary Appendix

S2, we trained the AE with the slightly modified Resnet

18 architecture described in Section 4.1.4. It is important to

keep in mind that the value of these losses should not be

compared with one another. The only rigorous method to

compare the performance of both networks would be to

compute the many-body norm overlap across all the points in

each case—or to perform a posteriori physics validation with the

reconstructed data, as will be shown in Section 4.3.3.

To give an idea of the quality of the AE, we show in Figure 10

one example of the original and reconstructed canonical

wavefunctions. Specifically, we consider the configuration (q20,

q30) = ( − 7.0 b, − 0.25 b3/2) in the collective space and look at the

neutron wavefunction with occupation number v2μ � 0.945255,

which is located near the Fermi surface. This example was

obtained for an AE trained with the d(0)o loss and compressed

to D = 20. The figure shows, in the left panel, the logarithm of the

squared norm of the original wavefunction across the quadrature

mesh, ln |φμ|2 ≡ ln |T(φμ)
n⊥nznσ |2, in the middle panel, the same

quantity for the reconstructed wavefunction, and in the right

panel the logarithm of the absolute value of the difference

between the two. On this example, the AE can reconstruct the

wavefunction with about 3% error.

4.3.2 Structure of the latent space
One of the advantages of AEs is the existence of a low-

dimensional representation of the data. In principle, any visible

structure in this latent space would be the signal that the network

has properly learned, or encoded, some dominant features of the

dataset. Here, our latent space has dimension D = 20. This means

that every canonical wavefunction, which is originally a matrix of

size n = N⊥× Nz, is encoded into a single vector of size D. From a

mathematical point of view, the encoder is thus a function

Ê: Rn → RD

φ ⟼ v � Ê φ( ) (37)

Let us consider some (scalar) quantity P associated with the

many-body state |Φ(q)〉 at point q. Such a quantity could be an

actual observable such as the total energy but it could also be an

auxiliary object such as the expectation value of the multipole

moment operators. In fact, P could also be a quantity associated

with the individual degrees of freedom at point q, for example the

q.p. energies. In general terms, we can think of P as the output

value of the function

P̂: Rn → R

φ ⟼ P � P̂ φ( ) (38)

For example, if P represents the s.p. canonical energies, then the

function P̂ is the one that associates with each canonical

wavefunction its s.p. energy. Therefore, for every canonical

wavefunction, there is a different value of P. Conversely, if

P � 〈Q̂20〉, there is a single value for all the canonical

wavefunctions at point q. Since there is a vector in the latent

space for each canonical wavefunction, and there is also a value

for the quantity P for each such function, we can then define the

new function P̂ acting on vectors of the latent space and

defined as

P̂: RD → R

v ⟼ P � P̂ v( ) (39)

and it is straightforward to see that: P̂ � P̂◦Ê. Our goal is now to

try to analyze where various quantities P are located in the latent

space and whether one can identify some specific features of these

locations.

Since we have a total of nt = 147 wavefunctions for each of the

Np = 552 points in the collective space, the encoder yields a set of

nt × Np vectors of dimension D. This means that, in the latent

space, every quantity P above is also represented by a cloud of

FIGURE 9
Potential energy surface of 98Zr in the (q20, q30) plane.
Converged HFBTHO solutions are represented by black dots.
Energies given by the color bar are in MeV relatively to the ground
state.

7 Since time-reversal symmetry is conserved, the Fermi energy is located
around states with indices μp ≈ 20 and μn ≈ 29. Therefore, our choice
implies that in our energy window, about 1/3 of all states are below the
Fermi level and about 2/3 of them are above it.
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nt ×Np such vectors. This is obviously impossible to visualize. For

this reason, we introduce the following analysis. First, we perform

a linear regression in the D-dimensional latent space of a few

select quantities of interest P, that is, we write

P � α · v + b, (40)

where α is a D-dimensional vector, v is the vector associated with
the quantity P in the latent space and b ∈ R. The unit vector u =

α/‖α‖ can be interpreted as representing the leading direction in

the latent space. The quantity u = u ·v is a scalar which we obtain

easily from the result of the linear regression. We can thus plot

the function P: u↦P(u). Examples of such functions are shown in

Figure 11. Each point in the figures represents the value P � P̂(v)
of some characteristic quantity at point u = u ·v.

The three cases shown in Figure 11 illustrate that the network

has not always identified relevant features. The case of Ω, middle

panel, is the cleanest: there is a clear slope as a function of u: if one

sets u = 1, for example, then only values of 7/2 ≤ Ω ≤ 15/2 are

possible. Conversely, the AE has not really discovered any feature

in the neutron Fermi energy (right panel): for any given value of

u, there is a large range of possible values of Fermi energies. In the

case of the total energy (left panel), the situation is somewhat

intermediate: there is a faint slope suggesting a linear dependency

of the energy as a function of u.

4.3.3 Physics validation
The results presented in the Section 4.3.1 suggest the AE has

the ability to reproduce the canonical wavefunctions with good

precision. To test this hypothesis, we recalculated the HFB

solution at all the training, validation and testing points by

substituting in the HFBTHO binary files the original

canonical wavefunctions by the ones reconstructed by the AE.

Recall that only the lowest nt wavefunctions with the largest

occupation were encoded in the AE (nn = 87 for neutrons and

np = 60 for protons); the remaining ones were unchanged. In

practice, their occupation is so small that their contribution to

nuclear observables is very small (< 10 keV for the total energy,

for example).

FIGURE 10
(A): Contour plot of the logarithm of the squared norm of the neutron canonical wavefunctionwith occupation number v2μ � 0.945255 (without
the exponential factor). Middle: Same for the reconstructed wavefunction. (B): Logarithm of the difference between the squared norm of the original
and reconstructed wavefunctions.

FIGURE 11
One-dimensional projections of the D-dimensional linear fit for the total energy EHFB (A), the projection Ω of the canonical state (B) and the
neutron Fermi energy λn (C). Each point represents one of these quantities for a canonical wavefunction μ and a point q in the collective space.
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Figure 12 shows the error on the potential energy across the

(q20, q30) collective space obtained with the reconstructed

canonical wavefunctions for latent spaces of dimension D =

20 (left) and D = 10 (right). In each case, we only show

results obtained when using the d(0)o loss, which gives the best

results. The black crosses denote the location of all the original

points; the white circles show the location of the validation

points. Overall, the results are very encouraging. In both

cases, most of the error is concentrated near regions of the

PES where there are discontinuities (hence, the lack of

converged solutions). Everywhere else, the error is small and

mostly randomly distributed across the PES, that is, it is not

systematically larger at the validation points. As expected, the

quality of the reconstruction is a little worse whenD = 10: one can

notice about a dozen points for which the error is significantly

larger, in absolute value. Examples include (q20, q30) = ( − 5.0 b,

1.125 b3/2) or (q20, q30) = ( + 8.0 b, 2.5 b3/2) in the validation set,

and (q20, q30) = (0.0 b, 1.75 b3/2) or the region around 1 b ≤ q20 ≤
4 b and 1.5 b3/2 ≤ q30 ≤ 2.25 b3/2 in the training set. These may

suggest that forD = 10, the loss may not have fully converged yet.

Because of the existence of discontinuities near these points, this

could also be the manifestation that our continuous AE cannot

build a continuous representation of the data everywhere.

However, the fact that an increase of the compression by a

factor 2, fromD = 20 toD = 10, does not substantially degrade the

performance of the AE is very promising.

The two histograms in Figure 13 give another measure of the

quality of the AE. The histogram in the left shows the distribution

of the error on the HFB energy for two sizes of the latent space,

D = 20 and D = 10. For the D = 20 case, the mean error is ΔE �

FIGURE 12
(A): Potential energy surface in the (q20, q30) plane for 98Zr obtained after replacing the first nn = 87 and np = 60 highest-occupation canonical
wavefunctions by their values reconstructed by the AE for a latent space of dimensionD = 20. The black dots show the location of the training points
only, the white circles the location of the validation points. (B): same figure for a latent space of dimensionD= 10. For both figures, energies are given
in MeV.

FIGURE 13
(A): Histogram of the difference in total HFB energy between the original HFBTHO calculation and the result obtained by computing the energy
in the canonical basis with the reconstructed wavefunctions (see text for details). Calculations were performed both for a D = 20 and D = 10 latent
space. (B): Similar histogram for the expectation value of the axial quadrupole moment.
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104 keV and the standard deviation σE = 89 keV. These numbers

increase a little bit in the case of D = 10: ΔE � 122 keV and σE =

153 keV. To better estimate the quality of the AE, we applied the

same Gaussian process technique as described in Section 3 to the

dataset in 98Zr. Since GPs are interpolators and reproduce the

training data, we can only test them across the validation set,

which, in the case of 98Zr contains only 110 configurations. After

computing the energy with the HFB potentials obtained from the

GP across this set, we obtain: ΔE(GP) � −32 keV and σ(GP)E � 225

keV. This is comparable to what the AE predicts. As mentioned

before, it is important to bear in mind that, for the AE, the points

with the higher error ΔE < − 150 keV or ΔE > 250 keV do not

correspond to testing points only.

The histogram on the right shows the distribution of the

error for q20, in units of b. Here, the mean and standard deviation

of the error are: Δq20 � 6.8 mb and σq = 33.0 mb for D = 20, and

Δq20 � −7.4mb and σq = 48.2 mb forD = 10. For comparison, the

results obtained (across the validation set only) with the GP are:

Δq20 � −12.7 mb and σq = 68.3 mb. Once again, the AE performs

just as well, if not slightly better, than the GP fit.

5 Conclusion

Nuclear density functional methods are amenable to large-

scale calculations of nuclear properties across the entire chart of

isotopes relevant for, e.g., nuclear astrophysics simulations or

uncertainty quantification. However, such calculations remain

computationally expensive and fraught with formal and practical

issues associated with self-consistency or reduced collective

spaces. In this article, we have analyzed two different

techniques to build fast, efficient and accurate surrogate

models, or emulators, or DFT objects.

We first showed that Gaussian processes could reproduce

reasonably well the values of the mean-field and pairing-field

potentials of the HFB theory across a large two-dimensional

potential energy surface. The absolute error on the total

energy was within ±100 keV and the relative errors on the

collective inertia tensor smaller than 5%. However, GPs

require the training data to be “smoothly-varying”,

i.e., they should not include phenomena such as nuclear

scission or, more generally, discontinuities in the PES. It is

well known that GPs are not reliable for extrapolation: such a

technique can thus be very practical to densify (=interpolate)

an existing potential energy surface but must not be applied

outside its training range.

Our implementation of standard versions of GPs is fast and

simple to use, but it misses many of the correlations that exist

between the values of the HFB potentials on the quadrature

grid: (i) all components of the full Skyrme mean field (central,

spin-orbit, etc.) are in principle related to one another through

their common origin in the non-local one-body density matrix;

(ii) the correlations between the value of any given potential at

point (r, z) and at point (r′, z′) were not taken into account; (iii)

the correlations between the variations of the mean fields at

different deformations was also neglected. Incorporating all

these effects may considerably increase the complexity of the

emulator. In such a case, it is more natural to directly use deep-

learning techniques. In this work, we reported the first

application of autoencoders to emulate the canonical

wavefunctions of the HFB theory. Autoencoders are a form

of deep neural network that compresses the input data, here the

canonical wavefunctions, into a small-dimensional space called

the latent representation. The encoder is trained simultaneously

with a decoder by enforcing that the training data is left

invariant after compression followed by decompression. In

practice, the measure of such “invariance” is set by what is

called the loss of the network. We discussed possible forms of

the loss that are best adapted to learning quantum-mechanical

wavefunctions of many-body systems such as nuclei. We

showed that such an AE could successfully reduce the data

into a space of dimension D = 10 while keeping the total error

on the energy lower than ΔE = 150 keV (on average). The

analysis of the latent space revealed well-identified structures in

a few cases, which suggests the network can learn some of the

physics underlying the data. This exploratory study suggests

that AE could serve as reliable canonical wavefunctions

generators. The next step will involve learning a full

sequence of such wavefunctions, i.e., an ordered list, in order

to emulate the full HFB many-body state.
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Bayesian inference of real-time
dynamics from lattice QCD

Alexander Rothkopf*

Faculty of Science and Technology, University of Stavanger, Stavanger, Norway

The computation of dynamical properties of nuclear matter, ranging from

parton distribution functions of nucleons and nuclei to transport properties

in the quark-gluon plasma, constitutes a central goal of modern theoretical

physics. This real-time physics often defies a perturbative treatment and the

most successful strategy so far is to deploy lattice QCD simulations. These

numerical computations are based onMonte-Carlo sampling and formulated in

an artificial Euclidean time. Real-time physics is most conveniently formulated

in terms of spectral functions, which are hidden in lattice QCD behind an ill-

posed inverse problem. I will discuss state-of-the art methods in the extraction

of spectral functions from latticeQCD simulations, based on Bayesian inference

and emphasize the importance of prior domain knowledge, vital to regularizing

the otherwise ill-posed extraction task. With Bayesian inference allowing us to

make explicit the uncertainty in both observations and in our prior knowledge, a

systematic estimation of the total uncertainties in the extracted spectral

functions is nowadays possible. Two implementations of the Bayesian

Reconstruction (BR) method for spectral function extraction, one for MAP

point estimates and one based on an open access Monte-Carlo sampler are

provided. I will briefly touch on the use ofmachine learning for spectral function

reconstruction and discuss some new insight it has brought to the Bayesian

community.

KEYWORDS

Bayesian inference, lattice QCD, spectral functions, strong interaction, inverse
problem

1 Introduction

1.1 The physics challenge

After a successful decade of studying the static properties of the strong interactions,

such as their phase diagram (for reviews see e.g. [1, 2]) and equation of state (for recent

studies see e.g., [3–5]) through relativistic heavy-ion collisions (for an overview see e.g.,

[6]) and more recently through the multi-messenger observations of colliding neutron

stars (for a review see e.g. [7]), high energy nuclear physics sets out to make decisive

progress in the understanding of real-time dynamics of quarks and gluons in the coming

years.
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The past heavy-ion collision campaigns at collider facilities

such as RHIC at Brookhaven National Laboratory (BNL) and the

LHC at the European Center for Nuclear Physics (CERN)

provided conclusive evidence for the existence of a distinct

high-temperature state of nuclear matter, the quark-gluon-

plasma (for a review see e.g., [8]). At the same time, theory,

by use of high-performance computing, predicted the

thermodynamic properties, such as the equation of state

[9–13] of hot nuclear matter from first principles. When data

and theory were put to the test in the form of phenomenological

models based on relativistic hydrodynamics, excellent agreement

was observed (for a review see e.g., [14]).

Similarly past e−+p collider experiments at HERA (DESY)

revealed (for a review see [15]) that the properties of nucleons can

only be understood when in addition to the three valence quarks

of the eponymous quark-model also the virtual excitations of

quarks and gluons are taken into account. In particular the

emergent phenomenon of asymptotic freedom manifests itself

clearly in their data, as the coupling between quarks and gluons

becomes weaker with increasing momentum exchange in a

collision (for the current state-of-the art see e.g., [16]).

Simulations of the strong interactions are by now able to map

this intricate behavior of the strong coupling over a wide range of

experimentally relevant scales, again leading to excellent

agreement between theory and experiment (for a community

overview see Chapter 9 of [17]).

Going beyond the static or thermodynamic properties of nuclear

matter proves to be challenging for both theory and experiment. In

heavy-ion collisions most observed particles in the final state at best

carry a memory on the whole time-evolution of the collision. This

requires phenomenology to disentangle the physics of theQGP from

other effects e.g., those arising in the early partonic stages or the

hadronic aftermath of the collision. It turns out that in order to

construct accurate multi-stage models of the collision dynamics (see

e.g., [18–20]), a variety of first-principles insight is needed. The

dynamics of the bulk of the light quarks and gluons which make up

the QGP produced in the collision is conveniently characterized by

transport coefficients. Of central interest are the viscosities of

deconfined quarks and gluons and their electric charge

conductivity. The physics of hard probes, such as fast jets (see

e.g., [21]) or slow heavy quark bound states (see e.g., [22]), which

traverse the bulk nearly as test particles on the other hand requires

insight into different types of dynamical quantities. In this context

first principles knowledge of the complex in-medium potential

between a heavy quark and antiquark, the heavy quark diffusion

constant or the so-called jet quenching parameter q̂, which

summarizes the momentum broadening of a parton jet is called

for. As it turns out computing any of these quantities represents a

major challenge for numerical simulation methods of the strong

interactions.

Going beyond merely establishing asymptotic freedom and

instead revealing the full 6-dimensional phase space (i.e., spatial

and momentum distribution) of partons inside nucleons and

nuclei is the aim of an ambitious collider project just green-lit in

the United States. The upcoming electron-ion collider [23] will

be able to explore the quark and gluon content of nucleons in

kinematic regimes previously inaccessible and opens up the first

opportunity to carry out precision tomography of nuclei using

well-controlled point-particle projectiles. Simulations have

already revealed that the virtual particle content of nucleons is

vital for the overall angular momentum budget of the proton (see

e.g., [24, 25]). A computation of the full generalized transverse

momentum distribution [26] however has not been achieved yet.

This quantity describes partons in terms of their longitudinal

momentum fraction x, the impact parameter of the collision bT
and the transverse momentum of the parton kT. Integrating out

different parts of the transverse kinematics leads to simpler

object, such as transverse momentum distributions (TMDs,

integrated over bT) or generalized parton distributions (GPDs,

integrated over kT). Integrating all transverse dependence leads

eventually to the conventional parton distribution functions

(PDFs), which depend only on the longitudinal Bjorken x

variable. A vigorous research community has made significant

conceptual and technical progress over the past years, moving

towards the first-principles determination of PDFs and more

recently GPDs and TMDs from lattice QCD (for a community

overview see [27]). Major advances in the past years include the

development of the quasi PDF [28] and pseudo PDF [29]

formalism, which offer complementary access to PDFs besides

their well-known relation to the hadronic tensor [30]. With the

arrival of the first exascale supercomputer in 2022, major

improvements in the precision and accuracy of parton

dynamics from lattice QCD are on the horizon.

1.2 Lattice QCD

In order to support experiment and phenomenology, theory

must provide model independent, i.e., first-principles insight into

the dynamics of quarks and gluons in nuclei and within the QGP.

This requires the use of quantum chromo dynamics (QCD), the

renormalizable quantum field theory underlying the strong

interactions. Renormalizability refers to the fact that one only

needs to provide a limited number of experimental

measurements to calibrate each of its input parameters (strong

coupling constant and quark masses) before being able to make

predictions at any scale. In order to utilize this vast predictive

power of QCD however we must be able to evaluate correlation

functions of observables from their defining equations in terms of

Feynman’s path integral

〈O t1( ) ~O t2( )〉 � 1
Z
∫D Aμ

a,ψ
a
f, �ψ

a
f[ ] O t1( ) ~O t2( )

exp iSQCD Aμ
a,ψ

a
f, �ψ

a
f[ ][ ], (1)

where Aμ
a denotes the gluon fields and ψa

f the color charged

quarks of flavor f. The path integral weight is given by the
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exponentiated QCD action denoted by SQCD (for more details see

[31]) and the normalization Z refers to the path integral

evaluated in the absence of observables in the integrand.

Computing the dynamical properties of quarks and gluons

both inside nucleons as well as in the experimentally accessible

QGP requires us to evaluate the above path integral in the

presence of strong fluctuations, which invalidate commonly

used weak-coupling expansions of the path integral weight.

Instead a non-perturbative evaluation of observables is called

for. While progress has been made in non-perturbative analytic

approaches to QCD, such as the functional renormalization

group [32, 33] or Dyson-Schwinger equations [34, 35], I focus

here on the most prominent numerical approach: lattice QCD

(for textbooks see e.g., [36, 37]).

In lattice QCD four-dimensional spacetime is discretized on

a hypercube with N4 grid points n, separated by a lattice spacing

a. In order to maintain the central defining property of QCD, the

invariance of observables under local SU(3) rotations of quark

and gluon degrees of freedom, in such a discrete setting, one

introduces gauge link variables

Uμ(x) � exp[−igAa
μ(x + 1

2 aμ̂)Ta], which connect the nodes of

the grid in direction μ̂. Here g denotes the strong coupling

constant and Ta refers to the Gell-Mann matrices defining the

gauge group SU(3). From the closed products of four or more link

variables, as well as the quark fermion fields, discrete but fully

gauge invariant actions can be constructed (the simplest one

called the Wilson action). This action allows to formulate a

discretized version of Feynman’s path integral.

It is the next and final step in the formulation of lattice QCD,

which is crucial to understand the challenge we face in extracting

dynamical properties from its simulations. The path integral of

QCD, while already formulated in a discrete fashion, still

contains the canonical complex Feynman weight

exp[−iSQCD[U,ψ, �ψ]]. So far, even though progress is being

made, no universal numerical method to evaluate such highly

dimensional oscillatory integrals has been developed, a challenge

often referred to as the sign problem (see e.g., [38, 39]). Instead

one circumvents this difficulty by making use of complex analysis

and analytically continues theMinkowski time variable t onto the

imaginary axis in the lower half complex plane τ = it. The

additional factors of the imaginary unit, which arise from this

manipulation can be conveniently combined to cancel the

prefactor of i in the Feynman weight leading to

〈On1
~On2〉 � 1

Z
∫∏

n

∏
μ

dUμ,nd ψf,n, �ψf,n[ ] On1
~On2

exp SE U,ψ, �ψ[ ][ ]. (2)

The action SE ∈ R one obtains after analytic continuation is

referred to as Euclidean action. As a curiosity of quantum field

theory one should note that due to a subtle relation between the

Boltzmann factor, which describes thermal systems and time

evolution in imaginary time, the extent of the imaginary time axis

is directly linked to the inverse temperature β = 1/T of the system

[40]. By varying the length of the imaginary time axis it is

therefore possible to change between a scenario at T ≈ 0

relevant for nucleon structure and T > 0 relevant for the

study of the QGP.

Besides allowing us to incorporate the concept of

temperature in a straight forward manner, this Euclidean path

integral is now amenable to standard methods of stochastic

integration, since the Euclidean Feynman weight is real and

bounded from below. Using established Markov-Chain Monte

Carlo techniques one generates ensembles of gauge field

configurations distributed according to 1
Z exp[−SE[U,ψ, �ψ]].

Evaluating (measuring) correlation functions D(τ = τ2−τ1) =

〈O(τ1)O(τ2)〉 on Nconf statistically independent field realizations

U(k) and computing the mean, systematically estimates the

quantum statistical expectation value

D τ( ) � 〈O τ1( )O τ2( )〉

� 1
Nconf

∑Nconf

k�1
O τ1;U

k( )( )O τ2;U
k( )( ) +O 1/ �����

Nconf

√( ).
(3)

here the error decreases with the number of generated

configurations independent of the dimensionality of the

underlying integral.

To avoid misunderstandings, let me emphasize that results

obtained from lattice QCD at finite lattice spacing may not be

directly compared to physical measurements. A valid

comparison requires that the so-called continuum limit is

taken a → 0, while remaining close to the thermodynamic

limit V → ∞. Different lattice discretizations may yield

deviating results, as long as this limit has not been adequately

performed. For precision lattice QCD computations a

community quality control has been established through the

FLAG working group [17] to catalog different simulation results

including information on the limits taken.

2 The inverse problem

The technical challenge we face is now laid bare: in order to

make progress in the study of the dynamics of the strong

interactions we need to evaluate Minkowski time correlation

functions in QCD, related to parton distribution functions in

nucleons or the dynamical properties of partons in the QGP. The

lattice QCD simulations we are able to carry out however are

restricted to imaginary time. Reverting back to the real-time

domain as it turns out presents an ill-posed inverse problem.

The key to attacking this challenge is provided by the spectral

representation of correlation functions [40]. It tells us that

different incarnations of relevant correlation functions (e.g.

the retarded or Euclidean correlators) share common

information content in the form of a so-called spectral
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function [41]. The Källén–Lehmann representation reveals that

the retarded correlator of fields in momentum space may be

written as

DR p0, p( ) � i

π
∫ dμ 1

p0 − μ + iϵ ρ μ, p( ), (4)

while the same correlator in Euclidean time is given as

DE τ, p( ) � ∫dμ e−τμ

1 ∓ e−βμ
ρ μ, p( ), (5)

where the sign in the denominator differs between bosonic (−)

and fermionic (+) correlators. Both real-time and Euclidean

correlator therefore can be expressed by the same spectral

function, integrated over different analytically known kernel

functions.

As we do have access to the Euclidean correlator, extracting

the spectral function from it in principle gives us direct access to

its Minkowski counterpart. It is important to note that often

phenomenologically relevant physics is encoded directly and

intuitively in the structures of the spectral function, making

an evaluation of the real-time correlator superfluous.

Transport coefficients e.g., can be read off from the low

frequency behavior of the zero-momentum spectral function

of an appropriate correlation function [42].

For the extraction of parton distribution functions similar

challenges ensue. PDFs can be computed from a quantity

christened the hadronic tensor WM(t) [30], a four-point

correlation function of quark fields in Minkowski time. The

Euclidean hadronic tensor on the lattice is related to its real-time

counterpart via a Laplace transform

WE τ( ) � ∫ dμ e−μτ WM μ( ) (6)

that needs to be inverted. Recently the pseudo PDF approach [29]

has shown how a less numerically costly three-point correlation

functionMIoffe can be used to extract similar information on e.g.,

quark distributions q(x). It too is hidden behind an inverse

problem of the form

MIoffe ]( ) � ∫ dx cos ]x( ) q x( ), (7)

where the Ioffe-time matrix elementsMIoffe(]) are accessible on
the lattice.

All the above examples of inverse problems share that they

are in fact ill-posed. The concept of well- and conversely ill-

posedness has been studied in detail and was first formalized by

Hadamard [43]. Three conditions characterize a well posed

problem: its solution exists, the solution is unique and the

solution changes continuously with given initial conditions

(which in our case refers to the supplied input data for the

reconstruction task).

In the context of spectral function reconstruction, the latter

two criteria present central challenges. Not only is the

Euclidean correlator from the lattice Di known only at Nτ

discrete points τi, but in addition, as it arises from Monte-

Carlo simulations, it also carries a finite error ΔD/D ≠ 0. This

entails that in practice an infinite number of spectral functions

exist, which all reproduce the input data within their statistical

uncertainties.

Even in the case that one could simulate a continuous

correlator, the stability of the inversion remains an issue. The

reason is that as one simulates on limited domains, be it limited

in Euclidean time due to a finite temperature (transport

coefficients) or limited in Ioffe time (PDFs) the inversion

exhibits strong sensitivity on uncertainties in the input data.

The presence of exponentially small eigenvalues in the kernel K

renders the inversion task in general ill-conditioned.

To be more concrete, let us write down the discretized

spectral representation in terms of a spectral function ρl
discretized at frequencies μl along Nμ equidistant frequency

bins of with Δμl and the discretized kernel matrix Kil

Dρ
i � 1

2
Δμ1Ki1 ρ1 + ∑Nμ−1

l�2
ΔμlKil ρl +

1
2
ΔμNμ

KiNμ ρNμ
. (8)

The task at hand is to solve the inverse problem of

determining the parameters ρl from the sparse and noisy Di’s.

The ill-posedness of this inverse problem is manifest in Eq. 8 in

two aspects:

State-of-the-art lattice QCD simulations provide only around

O(10 − 100) points along imaginary time τ. From it we must

reconstruct the function ρ, which often contains intricate

patterns at different scales. The fact that Nμ ≫ Nτ entails that

many degenerate sets of ρl exist, which all reproduce the input

dataDiwithin their statistical uncertainty. The inverse problem is

thus highly degenerate.

In addition many of the kernel functions we have to deal with

are of exponential form. This entails a strong loss of information

between the spectral function and the Euclidean correlator. In

other words, large changes in the spectral function translate into

minute changes in the Euclidean correlator. Indeed, each of the

tiny eigenvalues of the kernel is associated with a mode along

frequencies, which can be added to the spectral function without

significantly changing the correlator. Reference [44] has recently

investigated this fact in detail analytically for the bosonic finite

temperature kernel relevant in transport coefficient

computations.

Even the at first sight benign cos kernel matrix arising in the

pseudo PDF approach turns out to feature exponentially

diminishing eigenvalues [45] as the lattice simulation cannot

access the full Brillouin zone in ]. I.e., the matrix Kil is in general

ill-conditioned, making its inversion unstable even if no noise is

present. In the presence of noise the exponentially small

eigenvalues lead to a strong enhancement of even minute

uncertainties in the correlation functions rendering the

inversion meaningless without further regularization.
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We will see in the next section how Bayesian inference and in

particular the inclusion of prior knowledge can be used to

mitigate the ill-posed (and ill-conditioned) nature of the

inversion task and give meaning to the spectral function

reconstruction necessary for extracting real-time dynamics

from lattice QCD.

3 Bayesian inference of spectral
functions

The use of Bayesian inference to extract spectral functions

from lattice QCD simulations was pioneered by a team of

researchers from Japan in two seminal papers [46, 47].

Inspired by prior work in condensed matter physics [48] and

image reconstruction [49], the team successfully transferred the

approach to the extraction of QCD real-time information. The

work sparked a wealth of subsequent studies, which have applied

and further developed Bayesian techniques to the extraction of

real-time information from lattice QCD in various contexts, zero

temperature hadron spectra and excited states [50–52], parton-

distribution functions [45, 53], in-medium hadrons [54–67], sum

rules [68, 69], transport coefficients [42, 70–76, 76], the complex

in-medium heavy quark potential [77–80] and parton spectral

properties [81–83].

The following discussion focuses on the Bayesian extraction

of spectral functions that does not rely on a fixed parametrization

of the functional form of ρ. If strong prior information exists, e.g.

if vacuum hadronic spectral functions consist of well separated

delta peaks, direct Bayesian parameter fitting methods are

applicable [84] and may be advantageous. Similarly, some

studies of in-medium spectra and transport phenomena

deploy explicit parametrization of the spectral function

derived from model input, whose parameters can be fitted in

a Bayesian fashion (see Ref. [85] for a recent example). Our goal

here is to extract spectral features for systems in which no such

apriori parametrization is known.

3.1 Bayesian inference

Bayesian inference is a sub-field of statistical data analysis

(for an excellent introduction see e.g., [86, 87]), which focuses on

the estimation of unobserved quantities, based on incomplete

and uncertain observed data (see Figure 1). The term unobserved

is used to refer to the unknown parameters governing the

process, which generates the observed data or to as of yet

unobserved future data. In the context of the inverse problem

in lattice QCD, the Euclidean correlation functions produced by

a Monte-Carlo simulation take on the role of the observed data

while the unobserved parameters are the values of the discretized

spectral function ρl. Future observations can be understood as

further realizations of the Euclidean correlator along the

Markov-Chain of the simulation.

Whatmakes Bayesian inference particularly well suited to attack

the inverse problem is that it offers an explicit and well controlled

strategy to incorporate information (I) beyond the measured data

(D) into the reconstruction of spectral functions (ρ). It does so by

using a more flexible concept of probability, which does not

necessarily rely on the outcome of a large number of repeatable

trials but instead assigns a general degree of uncertainty.

To be more concrete, Bayesian inference asks us to

acknowledge that any model of a physical process is

constructed within the context of its specific domain, in our

case strong interaction physics. I.e., the structure of the model

and its parameters are chosen according to prior information

FIGURE 1
Statistical inference attempts to estimate from observed dataD(k) the unknown process parameters ρl and as of yet unobserved data ~D. Bayesian
inference exploits the fact that in many instances our model of the unknown process is embedded in a domain from which prior knowledge can be
derived.
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obtained within its domain. Bayesian inference then requires us to

explicitly assign degrees of uncertainty to all these choices and

propagate this uncertainty into a generalized probability

distribution called the posterior P[ρ|D, I]. Intuitively it describes

how probable it is that a test function ρ is the correct spectral

function, given simulated data D and prior knowledge I.1

The starting point of any inference task is the joint

probability distribution P[ρ, D, I]. As it refers to the

parameters ρ, data D and prior information I it combines

information about the specific process generating the data as

well as the domain it is embedded in. After applying the rules of

conditional probability one obtains the work-horse of Bayesian

inference, the eponymous Bayes theorem

P ρ|D, I[ ]
|

posterior

� P D|I, ρ[ ]
|

likelihood

P ρ|I[ ]
|

prior

/ P D|I[ ]
|
evidence

. (9)

It tells us how the posterior P[ρ|D, I] can be efficiently

computed. The likelihood denotes the probability for the data

D to be generated from QCD given a fixed spectral function ρ.

The prior probability quantifies how compatible ρ is compared to

our domain knowledge. Historically the ρ independent

normalization has been called the evidence. Let us construct

the different ingredients to Bayes theorem in the following.

What is the likelihood in the case of spectral function

reconstruction? In Monte-Carlo simulations one usually

computes sub-averages of correlation functions on each of the

Nconf generated gauge field configurations. For many commonly

studied correlation functions, thanks to the central limit theorem,

such data already approximate a normal distribution to a good

degree. It is prudent to check the approach to Gaussianity for

individual correlation functions, as it has been revealed in Refs.

[88, 89] that some actually exhibit a log-normal distribution

which converges only very slowly.

In case that the input data is approximately normal

distributed, the corresponding likelihood probability P[D|ρ, I]

∝ exp[−L], written in terms of the likelihood function L, too is a

multidimensional Gaussian

P D|ρ, I[ ] � N Dρ, C[ ]∝ exp −∑
ij

1
2

Di −Dρ
i( )C−1

ij Dj −Dρ
j( )⎡⎢⎢⎣ ⎤⎥⎥⎦,
(10)

where Di denotes the mean of the simulated data at the ith

Euclidean time step and Dρ
i the corresponding Euclidean

datapoint, arising from inserting the parameters ρl into the

spectral representation Eq. 8. Cij refers to the covariance

matrix of the mean

Cij � 1
Nconf Nconf − 1( ) ∑

Nconf

k�1
D k( )

i −Di( ) D k( )
j −Dj( ), (11)

where the individual measurements enter as D(k). Note that in

order to obtain an accurate estimate of Cij, the number of samples

Nconf must be significantly larger than the number of data along

imaginary time. In particular Cij develops exact zero eigenvalues

if the number of configurations is less than that of the datapoints.

In lattice QCD simulations, which are based on Monte-Carlo

sampling, correlators computed on subsequent lattices are often

not statistically independent. At the same time Eq. 11 assumes

that all samples are uncorrelated. Several strategies are deployed

in the literature to address this discrepancy. One common

approach is to rely on resampling methods, such as the

(blocked) Jackknife (for an introduction see Ref. [90]) or

similar bootstrap methods in order to estimate the true

covariance matrix. Alternatively one may compute the

exponential autocorrelation time τDi for each correlator data

Di along Monte-Carlo time (see e.g., Chapter 7 of [36]). This

quantity encodes how many subsequent lattices remain

statistically correlated. To account for finite autocorrelation in

Eq. 11, one multiplies Cij with the prefactor τDiτDj.

A speedup in the computation of the likelihood can be achieved

in practice if, following Ref. [46], one computes the eigenvalues σi
and eigenvectors of C and changes both the kernel and the input

data into the coordinate system where StCS = diag[σi] becomes

diagonal. Then the two sums in Eq. 10 collapse onto a single one

L � ∑i
1
2( ~Di − ~D

ρ
i )2/σ2i with ~D

ρ
i � StijKjlρl and ~Di � StijDj.

Since the likelihood is a central ingredient in the posterior, all

Bayesian reconstruction methods ensure that the reconstructed

spectral function, when inserted into the spectral representation

will reproduce the input data within their uncertainty. I.e., they

will always produce a valid statistical hypothesis for the

simulation data. This crucial property distinguishes the

Bayesian approach from competing non-Bayesian methods,

such as the Backus-Gilbert method and the Padé

reconstruction (see examples in e.g., [91, 92]), in which the

reconstructed spectral function does not necessarily reproduce

the input data.

In case that we do not possess any prior information we have

P[ρ|I] = 1 and Bayes theorem only contains the likelihood. Since

the functional L is highly degenerate in terms of ρl’s, the question

of what is the most probable spectral function, i.e., the maximum

likelihood estimate of ρ, does not make sense at this point. Only

by supplying meaningful prior information can we regularize and

thus give meaning to the inverse problem.

3.2 Bayesian spectral function
reconstruction

Different Bayesian strategies to attack the ill-posed spectral

function inverse problem differ by the type of domain
1 This prior knowledge may be supplied by a quantum field theory such

as QCD and QED but also from experiment.
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information they incorporate in the prior probability P[ρ|I] ∝
exp[S], where S is called the regulator functional. Once the prior

probability is constructed, the spectral reconstruction consists of

evaluating the posterior probability P[ρ|D, I], which informs us of

the distribution of the values of ρl in each frequency bin μl.

The versatility of the Bayesian approach actually allows us to

reinterpret several classic regularization prescriptions in the

language of Bayes theorem, providing a unifying language to

seemingly different strategies.

When surveying approaches to inverse problems in other

fields, Tikhonov regularization [93] is by far the most popular

regularization prescription. It amounts to choosing an

independent Gaussian prior probability for each parameter

P ρ|I[ ] �∏Nμ

l�1
N ml, 1/ ��αl

√[ ]∝ exp −∑Nμ

l�1
αl

1
2

ρl −ml( )2⎡⎢⎣ ⎤⎥⎦. (12)

Each normal distribution is characterized by its maximum

(mean) denoted here byml and width (uncertainty) 1/
��
αl

√
. In the

literature ml is usually referred to as the default model and αl
simply as hyperparameter. The significance of the two quantities

is that in the absence of simulation data, ml denotes the most

probable apriori value of ρl with intrinsic uncertainty 1/
��
αl

√
.

Since these parameters, even though they are constrained by

QCD, will be known only up to a some uncertainty, the Bayesian

strategy requires us to assign distributions P[m] and P[α] to these

model parameters. This is a first example of a so-called

hierarchical model, where each level of the model encodes the

uncertainties and correlations among model (hyper-)parameters

in the subsequent layer. It then remains the task of the user to

extract from QCD domain knowledge appropriate uncertainty

budgets for m and α.

Another regularization deployed in the field of image

reconstruction is the so-called total variation approach [94].

Here the difference between neighboring parameters ρl and

ρl+1, i.e., Δρl, is modelled [95] as a Laplace distribution

P Δρ|I[ ] � ∏Nμ−1

l�1
Laplace ml, αl[ ]∝ exp − ∑Nμ−1

l�1
αl | ρl+1 − ρl( ) −ml|⎡⎢⎣ ⎤⎥⎦.

(13)
Since Δρl is related to the first derivative of the spectral

function this regulator incorporates knowledge about rapid

changes, such as kinks, in spectral features. Choosing αl and

ml appropriately one may e.g., prevent the occurrence of kink

features in the reconstructed spectral function, if it is known that

the underlying true QCD spectral function is smooth.

In Ref. [96] I proposed a regulator related to the derivative of

ρ, with a different physical meaning

P Δρ|I[ ] � ∏Nμ−1

l�1
N ml, αl[ ]∝ exp − ∑Nμ−1

l�1
αl ρl+1 − ρl( ) −ml( )2⎡⎢⎣ ⎤⎥⎦.

(14)

Often spectral reconstructions, which are based on a

relatively small number of input data, suffer from ringing

artifacts, similar to the Gibbs ringing arising in the inverse

problem of the Fourier series. These artifacts lead to a

reconstructed spectral function with a similar area as the true

spectral function but with a much larger arc length due to the

presence of unphysical wiggles. Since such ringing is not present

in the true QCD spectral function we may apriori suppress it by

penalizing arc length ℓ � ∫dμ �����������
1 + (dρ/dμ)2
√

. And since the

square root is monotonic, we may remove it for our purposes,

as well as discard the addition of unity, as it is absorbed into the

normalization of the corresponding prior distribution. The

hyperparameters of such a prior must be chosen

appropriately, since the remedy to one artifact, ringing, can

lead to the introduction of a different artifact, which is over-

damping of reconstructed spectral features. The relevant ranges

for α and m, as e.g., in Ref. [67], can be established using mock

data tests.

If our prior domain knowledge contains information about

the smoothness and the absence of ringing then it is of course

possible to combine different regulators by multiplying the prior

probabilities. The reconstruction of the first picture of a black

hole e.g., combined the Tikhonov and total variation

regularization [97]. In the presence of multiple regulators, the

hyperparameters α and m of each of these distributions need to

be assigned an (independent) uncertainty distribution.

One may ask, whether a proliferation of such parameters

spoils the benefit of the Bayesian approach? The answer is that in

practice one can estimate the probable ranges of these parameters

by use of mock data. One carries out the spectral function

reconstruction, i.e., the estimation of the posterior probability

P[ρ|D, I], using data, which has been constructed from known

spectral functions with realistic features and which has been

distorted with noise similar to those occurring in Monte-Carlo

simulations (see e.g., [67]). One may then observe from such test

data sets, what the most probable values of the hyperparameters

are and in what interval they vary, depending on different

spectral features present in the input data.

The three priors discussed so far are not commonly used as

stand-alone regulators in the reconstruction of hadron spectral

functions from lattice QCD in practice. The reason is that neither

of them can exploit a central prior information available in the

lattice context, which is the positivity [36] of the most relevant

hadronic spectral functions. I.e., in most of the relevant

reconstruction tasks from lattice QCD, the problem can be

formulated in terms of a positive definite spectral function,

which significantly limits the function space of potential

solutions. Methods that are unable to exploit this prior

information, such as the Backus-Gilbert method have

therefore been shown to perform poorly relative to the

Bayesian approaches, when it comes to the reconstruction of

well-defined spectral features (see e.g., [53]).
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In the following let us focus on two prominent Bayesian

methods, which have been deployed in the reconstruction of

positive spectral functions from lattice QCD, the Maximum

Entropy Method (MEM) and the Bayesian Reconstruction

(BR) method.

The MEM [47–49, 98] has originally been constructed to

attack image reconstruction problems in astronomy. It therefore

focuses on two-dimensional input data and deploys the

Shannon-Jaynes entropy SSJ as regulator:

P ρ|I[ ]∝ exp ∑Nμ

l�1
αl Δμ ρl −ml − ρl log

ρl
ml
[ ]( )⎡⎢⎣ ⎤⎥⎦. (15)

Its regulator is based on four axioms [49], which specify

the prior information the method exploits. They are subset

independence, which states that prior information on ρl’s at

different discrete frequency bins l can be combined in a linear

fashion within SSJ. The second axiom enforces that SSJ has its

maximum at the default model, which establishes the meaning

of ml as the apriori most probable value of ρl in the absence of

data. These two axioms are not specific to the MEM and find

use in different Bayesian methods. It is the third and fourth

axiom that distinguish the MEM from other approaches:

coordinate invariance requires that ρ itself should

transform as a dimensionless probability distribution. To

be more concrete, as MEM was constructed with image

reconstruction in mind, this axiom requires that the

reconstructed image (in our case the spectral function)

should be invariant under a common coordinate

transformation of the two-dimensional input data and the

prior. The last axiom is system independence and requires that

in a two-dimensional reconstructed image no additional

correlations between the two dimensions of the image are

introduced, beyond those that are already contained in the

data (for more details see Ref. [99]).

From the appearance of the logarithm in SSJ it is clear that the

MEM can exploit the positivity of the spectral function. Due to

the fact that the logarithm is multiplied by ρ, SSJ is actually able to

accommodate exact zero values of a spectral function. Since the

reconstruction task in lattice QCD is one-dimensional, it is not

obvious how to directly translate system independence. An

intuitive way of interpreting this axiom using e.g. the

kangaroos example of Ref. [48] is that the MEM shall not

introduce correlations among ρl’s where the data does not

require it. This is a quite restrictive property, as it is exactly

prior information, which should help us to limit the potential

solutions space by providing as much information about the

structure of ρ as possible. Similarly, the assumption that ρ must

transform as a probability distribution, while appropriate for a

distribution of dimensionless pixel values in an image, does not

necessarily apply to spectral functions. These are in general

dimensionful quantities and may even contain UV

divergences when evaluated naively.

To overcome these conceptual difficulties the BR method was

developed in Ref. [100] with the one-dimensional reconstruction

problem of lattice QCD real-time dynamics in mind. The BR

method features a regulator SBR related to the Gamma distribution

P ρ|I[ ] � ∏Nμ

l�1
Gamma 1 + Δμαl,Δμαl/ml[ ],

∝ exp ∑Nμ

l�1
αl Δμ 1 − ρl

ml
+ log

ρl
ml
[ ]( )⎡⎢⎣ ⎤⎥⎦, (16)

which looks similar to the Shannon-Jaynes entropy but differs in

crucial ways. Its construction shares the first two axioms of the

MEM but replaces the third and fourth axiom with the following:

scale invariance enforces that the posterior may not depend on

the units of the spectral function, leading to only ratios between ρl
and the default model ml, which by definition must share the

same units. The use of ratios also requires that neither ρ nor m

vanishes. SBR differs therefore from the Shannon-Jaynes

regulator where the integrand of SSJ is dimensionful. The

units of Δμ enter as multiplicative scale and can be absorbed

FIGURE 2
Comparison of the regulators of the Tikhonov approach
(green), the MEM (red) and the BR method (blue) in linear scale (A)
and double logarithmic scale (B) for the choice of m = 1. The
Shannon-Jaynes regulator accommodates ρ = 0 but appears
flat for spectral functions with values close to zero. The BR prior
shows the weakest curvature for ρ > m among all regulators.
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into a redefinition of α (and which will be marginalized over as

described in Section 3.3). Furthermore, one introduces a

smoothness axiom, which requires the spectral function to be

twice differentiable. While it may appear that the latter axiom is

at odds with the potential presence of delta-function like

structures in spectral functions, it ensures that one smoothly

approximates such well defined peaks as the input data improves.

Let us compare the regulators of the Tikhonov approach, the

MEM and the BR method in Figure 2, which plots the negative of

the integrand for the choice of m = 1. The top panel shows a

linear plot, the bottom panel a double logarithmic plot. By

construction, all feature an extremum at ρ = m.

The functional form of the BR regulator turns out to be the one

with the weakest curvature among all three for ρ > m, while it still

manages to regularize the inverse problem. Note that the weaker

the regulator, the more efficiently it allows information in the data

to manifest itself (it is actually the weakest on the market). At the

same time a weaker regulator is less potent in suppressing artifacts,

such as ringing, which may affect spectral function reconstruction

based on very small number of datapoints.2

Note that the BR regulator requires ρ to be positive definite,

whereas the MEM accommodates spectral functions and default

models that vanish identically over a range of frequencies. In

hadronic spectra, e.g., it is known that the spectral function can

vanish in regions below threshold. While in the MEM this fact can

be incorporated naturally, in the BR method a small but finite value

must be supplied in the default model everywhere. In practice this is

most often not a problem, since it is below threshold where the non-

perturbative bound state structures lie that onewishes to reconstruct.

Hence reliable prior information is in general not available and one

chooses an uninformative finite, i.e. constant default model there.

Having focused primarily on positive spectral functions so far, let

us briefly discuss some of the Bayesian approaches used in the

literature to study non-positive spectral functions. This task may

arise in the context of hadron spectral functions if correlators with

different source and sink operators are investigated (see e.g.,

Discussion in [101]) or if the underlying lattice simulation deploys

a Szymanzik improved action (see e.g., [102]). The quasiparticle

spectral functions of quarks and gluons are known to exhibit

positivity violation, their study from lattice QCD therefore apriori

requires methods that can accommodate spectral functions with both

positive and negative values. We already saw that the Tikhonov

approachwithGaussian prior does not place restrictions on the values

of the spectral function and has therefore been deployed in the study

of gluon spectral functions in the past [81, 83]. After the development

of the MEM, Hobson and Lasenby [103] extended the method by

decomposing general spectral functions into a positive (semi-)definite

and negative (semi-)definite part. To each of these a Shannon-Jaynes

prior is assigned. The third approach on themarket is an extension of

the BR method [104], which relaxes the scale invariance axiom and

proposes a regulator that is symmetric around ρ=m. Thismethodhas

been deployed in the study of gluon spectral functions [82] and in the

extraction of parton distribution functions [45].

An alternative that is independent of the underlying Bayesian

approach (see e.g., [105]) is to add to the input data that of a

known, large and positive mock-spectral function, which will

compensate for any negative values in the original spectral

function. After using a Bayesian method for the reconstruction

of positive ρs from the modified data, one can subtract from the

result the knownmock spectral function. In practice this strategy is

found to require very high quality input data to succeed.

The challenge one faces in the reconstruction of non-positive

spectral functions is that the inversion task becomes significantly

more ill-posed in the sense of non-uniqueness. Positivity is a

powerful constraint that limits admissible functions that are able

to reproduce the input data. In its absence, many of the functions

associated with small and even vanishing singular values of the

kernel K can contaminate the reconstruction. Often these

spurious functions exhibit oscillatory behavior which

interferes with the identification of genuine physical peak

structures encoded in the data (see also discussion in [91]).

Having surveyed different regulator choices, we are ready to

carry out the Bayesian spectral reconstruction. I.e. after choosing

according to one’s domain knowledge a prior distribution P[ρ|I(m,

α)] and assigning appropriate uncertainty intervals to their

hyperparameters P[α] and P[m] via mock-data studies, we can

proceed to evaluate the posterior distribution P[ρ|D, I]. If we can

access this highly dimensional object through a Monte-Carlo

simulation (see e.g., Section 4.3) it provides us not only with the

information of what the most probable spectral function is, given

our simulation data, but also contains the complete uncertainty

budget, including both statistical (data related) and systematic errors

(hyperparameter related). The maximum of the prior defines the

most probable value for each ρl and its spread allows a robust

uncertainty quantification beyond a simple Gaussian approximation

(i.e., standard deviation) as it may contain tails that lead to a

deviation of the mean from the most probable value.

3.3 Uncertainty quantification for point
estimates

While access to the posterior allows for a comprehensive

uncertainty analysis, a full evaluation of P[ρ|D, I] historically

remained computationally prohibitive. Thus the community

focused predominantly3 on determining a point estimate of

2 To avoid this complication, the BR regulator has been successfully
combined with the arc-length penalty regulator in Ref. [67].

3 A few works have explored stochastic strategies for the evaluation of
the posterior in the context of the SOM [106] or the stochastic analytic
continuation (SAI) method [107, 108], of which the MEM is a special
limit [109].
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the most probable spectral function from the posterior P[ρ|D, I],

also called MAP, the maximum aposteriori estimate

δ

δρ
P ρ|D, I[ ]∣∣∣∣∣∣∣∣

ρ�ρMAP

� 0 OR
δ

δρ
Q ρ|D, I[ ]∣∣∣∣∣∣∣∣

ρ�ρMAP

� 0,

(17)
where in practice often the logarithm of the posterior is used in

the actual optimization Q � log[P[ρ|D, I]].
While estimating the MAP, i.e., carrying out a numerical

optimization, is much simpler than sampling the full posterior,

only a fraction of the information contained in P[ρ|D, I] is made

accessible. In particular most information related to uncertainty

remains unknown and thus needs to be approximated separately.

The above optimization problem in general can be very

demanding as the posterior may contain local extrema in

addition to the global one that defines ρMAP (see sketch in Figure

3). At least in the case of the Tikhonov, MEM and BR method it is

possible to prove that if an extremum for Eq. 17 exists it must be

unique. The reason is that all three regulators are convex. The proof

of this statement does not rely on a specific parametrization of the

spectral function and therefore promises that standard (quasi)

Newton methods, such as Levenberg-Marquardt or LBFGS (see

e.g., Ref. [110]) can be used to locate this unique global extremum in

the Nμ dimensional search space.

Also from an information point of view it is fathomable that

at this point a unique solution to the former ill-posed inverse

problem can be found. We need to estimate the most probable

values of Nμ parameters ρl and have now provided Nτ simulation

dataDi, as well as Nμ pieces of information in the form of theml’s

and αl’s each. I.e., the number of knowns 2Nμ+Nτ > Nμ is larger

than the number of unknowns, making a unique determination

possible. The proof presented in Ref. [47] formalizes this intuitive

statement.

In practice it turns out that the finite intercept of the Shannon-

Jaynes entropy for ρ = 0 can lead to slow convergence if spectral

functions with wide ranges of values close to zero are

reconstructed. In lattice QCD this occurs regularly when e.g.

hadronic spectral functions contain sharp and well separated

peak structures. SSJ for very small values (see Figure 2) is

effectively flat and thus unable to efficiently guide the optimizer

toward the unique minimum and convergence slows down.

It is therefore that one finds in the literature that the

extremum Eq. 17 in the MEM is accepted for tolerances

around Δ ≈ 10−7, which is much larger than zero in machine

(double-)precision. Such a large tolerance does not guarantee

bitwise identical results when starting the optimization from

different initial conditions. Note that the definition of Δ varies in

the literature and we here define it via the relative step size in the

minimization of the optimization functional Q.

The BR prior on the other hand does not exhibit a finite

intercept at ρ = 0 and therefore avoids this slow convergence

problem. It has been found to be capable of locating the unique

extremum ρMAP in real-world settings down to machine precision,

which guarantees that the reconstruction result is independent of the

starting point of the optimizer.

Bayesian inference, through the dependencies of the posterior

P[ρ|D, I], forces us to acknowledge that the result of the

reconstruction is affected by two sources of uncertainty:

statistical uncertainty in the data and systematic uncertainty

associated with the choice and parameters of the prior probability.

Before continuing to the technical details of how to estimate

uncertainty, let us focus on the role of prior information first. It

enters both through the selection of a prior probability and the

choice of the distributions P[m] and P[α]. It is important to

recognize that already from an information theory viewpoint,

one needs to supply prior information if the goal is to give

meaning to an ill-posed inverse problem: originally we started

out to estimateNμ≫Nτ parameters ρl fromNτ noisy input dataDi.

I.e., in order to select among the infinitely many degenerate

parameter sets ρl a single one as the most probable, we need

information beyond the likelihood. Conversely any method that

offers a unique answer to the inverse problem utilizes some form of

prior information, whether it acknowledges it or not. Bayesian

inference, by making the role of prior knowledge explicit in

Bayes theorem, allows us to straight forwardly explore the

dependence of the result on our choices related to domain

information. It is therefore ideally suited to assess the influence

of prior knowledge on reconstructed spectral functions. This

distinguishes it from other approaches, such as the Backus

Gilbert method, where a similarly clear distinction of likelihood

and prior is absent. The Tikhonov method is another example.

Originally formulated with a vanishing default model, one can find

statements in the literature that it is default model independent.

Reformulated in the Bayesian language, we however understand that

its original formulation just referred to one specific choice of model,

which made the presence of prior knowledge hard to spot.

The presence of the prior as regulator also entails that among

the structures in a reconstructed spectral function only some are

constrained by the simulation data and others are solely

constrained by prior information. It is only in the Bayesian

continuum limit, which refers to taking simultaneously the

error on the input data to zero while increasing the number of

available datapoints toward infinity, that the whole of the spectral

function is fixed by input data alone. Our choice of regulator

determines how efficiently we converge to this limit and which

type of artifacts (e.g., ringing or over-damping) one will encounter

on the way. One important element of uncertainty analysis in

Bayesian spectral reconstruction therefore amounts to exploring

how reconstructed spectra improve as the data improves.4 This is a

well-established practice in the community.

4 In lattice QCD it is often easier to collect more samples than to
simulate on grids with more points along Euclidean time. Then at
least the improvement of the reconstruction with increasing statistics
needs to be considered.
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When reconstructing the spectral function according to a given

set of Monte–Carlo estimates Dk
i of a lattice QCD correlator Di, we

need to reliably estimate the statistical and systematic uncertainty

budget. It is important to recognize that these may be related, e.g.,

increasing the precision of input data often makes the reconstructed

spectrum less susceptible to changes in m or α. An often deployed

strategy is to nevertheless estimate the effects separately: In order to

assess statistical uncertainty we may use established bootstrap

methods or the (blocked) Jackknife (see Ref. [90]), where the

reconstruction is performed repeatedly on subensembles of the

input data Dk
i and the variance among the reconstructed spectra

provides a direct estimate of their statistical uncertainty.

In the case of point estimates, one usually decides apriori on a

regulator and fixes to a certain value of the default model m and

of the hyperparameter α, before carrying out the reconstruction.

The freedom in all these choices enters the systematic uncertainty

budget.

Often the user has access to a reliable default model m(ω) only

along a limited range of frequencies μ. In lattice QCD such

information is often obtained from perturbative computations

describing the large frequency and momentum behavior of the

spectral function (see e.g. [111–114]).When considering continuum

perturbative results as default model one must account for the finite

lattice spacing by introducing a cutoff by hand. In addition the

different (re-)normalization schemes in perturbation theory and on

the lattice often require an appropriate rescaling. Subsequently,

perturbative default models can reproduce input datapoints

dominated by the spectrum at large frequencies (e.g., small

Euclidean times). One additional practical challenge lies in the

functional form of spectral functions obtained from (lattice)

perturbation theory, since they may exhibit kink structures. If

supplied as default model, as is, such structures may induce

ringing artifacts in the reconstructed result. In practice one

therefore smooths out kink structures when constructing m(ω).

In the low frequency part of the spectrum, where non-

perturbative physics dominates, we often do not possess

relevant information about the functional form of ρ. It is then

customary to extend the default model into the non-perturbative

regime using simple and smooth functional forms that join up in

the perturbative regime.

In practice the user repeats the reconstruction using different

choices for the unknown parts of m, e.g., different polynomial

dependencies on the frequency and subsequently uses the

variation in the end result as indicator of the systematic

uncertainty. It is important to note that if there exist different

regulators that encode compatible and complementary prior

information that one should also consider repeating the

reconstruction based on different choices of P[ρ|I] itself.

Since we have access to the likelihood and prior, we may ask

whether a combined estimation of the statistical and systematic

uncertainty can be carried out even in the case of a point estimate.

Since the reconstructed spectrum ρMAP denotes a minimum of the

posterior, one may try to compute the curvature of the (log)

posterior L−S around that minimum, which would indicate how

steep or shallow that minimum actually is. This is the strategy

laid out e.g., in Ref. [47]. In practice it relies on a saddle point

approximation of the posterior and therefore can lead to an

underestimation of the uncertainty. Many recent studies thus

deploy a combination of the Jackknife and a manual variation of

the default model.

Since the treatment of hyperparameters differs among the

various Bayesian methods, let me discuss it here in more detail.

Appropriate ranges for the values of m can often be estimated

from mock data studies and since the functional dependence of

the default model is varied as part of the uncertainty estimation

discussed above, we focus here on the treatment of α. I.e., we will

treat the values of m as fixed and consider the effect of P[α]. If

alpha is taken to be small, a large uncertainty in the value m

ensues, which leads to a weak regularization and therefore to

large uncertainty in the posterior. If α is large it constrains the

posterior to be close to the prior and limits the information that

data can provide to the posterior.

Three popular strategies are found in the literature to treat α.

Note that in the context of the MEM, a common value is assigned

to all hyperparameters αl, i.e., the same uncertainty is assigned to

the default model parameters ml at all frequencies, an ad hoc

choice.

The simplest treatment of α, also referred to as the Morozov

criterion or historic MEM is motivated by the goal to avoid over

fitting of the input data. It argues that if we knew the correct

spectral function and were to compute the corresponding

likelihood function L, it would on average evaluate to 〈L〉 �
1
2Nτ i.e. half the number of datapoints. Therefore one should tune

the value of α such that the likelihood reproduces this value.

The second and third strategy are based directly on Bayes

theorem. The Bayesian way of handling uncertainties in model

parameters is to make their dependence explicit in the joint

probability distribution P[ρ, D, I(m, α)]. Now that the

distribution depends on more than three elements, application

of conditional probabilities leads to

P ρ, D, α, m[ ] � P D|ρ, α, m[ ]P ρ|α, m[ ]P α, m[ ],
� P α|ρ, D,m[ ]P ρ|D,m[ ]P D,m[ ]. (18)

The modernMEM approach solves Eq. 18 for P[α|ρ,D,m]. It

then integrates point estimates ρMAP
α obtained for fixed values of

α over that probability distribution. In order to compute P[α|ρ,D,

m] two ingredients are necessary: the full posterior P[ρ|D, α, m]

and the distribution P[α]. The former is in general not

analytically known and therefore is in practice approximated

by a saddle point approximation. The latter is in the literature

either chosen as constant or as P[α]∝ 1/α, a choice referred to as

Jeffrey’s prior.

Let me briefly clarify the often opaque notion of Jeffrey’s

prior [115]. Given a probability distribution P[x|α, m] and a

choice of parameter, e.g., α, Jeffrey’s prior refers to the

unique distribution PJ[α] �
��������
det[I(α)]√

defined from the
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Fisher information matrix I(α). This definition is considered

to be uninformative, as it remains invariant under a change

of coordinates of α. Using the one-dimensional Gaussian

distribution as example, we can obtain an intuitive

understanding of its role. Let P[x|σ, m] � N [x|σ, m], then

PJ m[ ] �

����������������������������
∫ dxN x|σ, m[ ] d

dm
N x|σ, m[ ]( )2

√√
�
��
1
σ2

√
� const.,

(19)

PJ σ[ ] �

���������������������������
∫ dxN x|σ, m[ ] d

dσ
N x|σ, m[ ]( )2

√√
�
��
2
σ2

√
� �

2
√ 1

σ
.

(20)
Jeffrey’s prior for m is independent of m and thus refer to

the unique translation invariant distribution on the real values

(Haar-measure for addition). It therefore does not impart any

information on the location of the peak of the normal

distribution. Similarly PJ[σ] is a scale invariant distribution

on the positive real values (Haar-measure for multiplication).

Since the uncertainty parameter σ enters as a multiplicative

scale in the normal distribution its Jeffrey’s prior also does not

introduce any additional information. Both priors

investigated here are improper distributions, i.e., they are

well-defined only in products with proper probability

distributions.

The third strategy to treat the parameters αl has been put

forward in the context of the BR method. It sets out to overcome

the two main limitations of the MEM approach: the need for

saddle point approximations in the handling of α and the overly

restrictive treatment of assigning a common uncertainty to all

ml’s. The BR method succeeds in doing so, by using Bayes

theorem to marginalize the parameters αl apriori, making the

(highly conservative) assumption that no information about αl is

known, i.e., P[αl] = 1. It benefits from the fact that in contrast to

the Shannon-Jaynes prior, the BR-prior is analytically tractable

and its normalization can be expressed in closed form.

We start from Eq. 18 and assume that the parameters α

and m are independent, so that their distributions

factorize. Marginalizing a parameter simply means

integrating the posterior over the probability

distribution of that parameter. Via application of

conditional probabilities it is possible to arrive at the

corresponding expression

∏
l
∫ dαlP α|ρ, D,m[ ]P ρ|D,m[ ] � P D|ρ, I[ ]

P D|m[ ]P m[ ]
∏
l
∫ dαlP ρ|α, m[ ]P α[ ]P m[ ],

P ρ|D,m[ ] � P D|ρ, I[ ]
P D|m[ ]∏

l

∫ dαlP ρ|α, m[ ]P α[ ], (21)

where P[ρ|D, m] does not depend on α anymore and by

definition of probabilities ∫dαP[α|ρ, D, m] = 1. The

posterior P[ρ|D, m] now includes all effects arising from

the uncertainty of α without referring to that variable

anymore. Due to the form of the BR prior P[ρ|α, m], the

integral over αl is well defined, even though we used the

improper distribution P[α] = 1. One may wonder whether

integrating over αl impacts the convexity of the prior. While

not proven rigorously, in practice it turns out that the

optimization of the marginalized posterior P[ρ|D, m] in the

BR method does not suffer from local extrema.

A user of the BRmethod therefore only needs to provide a set

of values for the default model ml to compute the most probable

spectral function

δ

δρ
P ρ|D,m[ ]∣∣∣∣∣∣∣∣

ρ�ρMAP
BR

� 0. (22)

By carrying out several reconstructions and varying the

functional form of m within reasonable bounds, established by

mock-data tests, the residual dependence on the default model

can be quantified.

So far we have discussed the inherent uncertainties from the

use of Bayesian inference and how to assess them. Another

source of uncertainty in spectral reconstructions arises from

specific implementation choices. Let me give an example

based on the Maximum Entropy Method. In order to save

computational cost, the MEM historically is combined with a

singular value decomposition to limit the dimensionality of the

solution space. The argument by Bryan [116] suggests that

instead of having to locate the unique extremum of P[ρ|D, I]

in the full Nμ dimensional search space of parameters ρl, it is

sufficient to use a certain parametrization of ρ(μ) in terms of Nτ

parameters, the number of input data points. The basis functions

are obtained from a singular value decomposition (SVD) of the

transpose of the kernel matrix Kt. Bryan’s argument only refers to

the functional form of the Kernel K and the number of data

points Nτ in specifying the parametrization of ρ(μ). If true in

general, this would lead to an enormous reduction in

computational complexity. However, I have put forward a

counter example to Bryan’s argument (originally in [117])

including numerical evidence, which shows that in general the

extremum of the prior is not part of Bryan’s reduced search

space.

One manifestation of the artificial limitation of Bryan’s search

space is a dependence of the MEM resolution on the position of a

spectral feature along the frequency axis. As shown in Figure 3 of

Ref. [118], if one reconstructs a single delta peak located at different

positions μ0 with theMEM, one finds that the reconstructed spectral

functions show a different width, depending on the value of μ0. This

can be understood by inspecting the SVD basis functions, which are

highly oscillatory close to μmin the smallest frequency chosen to

discretize the μ range. At larger values of μ these functions however
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damp towards zero. I.e. if the relevant spectral feature is

located in the μ range where the basis functions have

structure, it is possible to reconstruct a sharp peak

reasonable well, while if it is located at larger μ the

resolution of the MEM decreases rapidly. The true Bayesian

ρMAP, i.e. the global extremum of the MEM posterior, however

does not exhibit such a resolution restriction, as one can see

when changing the parametrization of the spectral function to

a different basis, e.g., the Fourier basis consisting of cos and

sin functions. In addition Ref. [57] in its Figure 28 showed that

using a different parametrization of the spectral function,

which restricts ρ to a space that is equivalent to the SVD

subspace from a linear algebra point of view, one obtains a

different result. This, too, emphasizes that the unique global

extremum of the posterior is not accessible within these

restricted search spaces. Note that one possible explanation

for the occurrence of the extremum of P[ρ|D, I] outside of the

SVD space lies the fact that in constrained optimization

problems (here the constraint is positivity), the extremum

can either be given by the stationarity condition of the

optimization functional in the interior of the search space

or it can lie on the boundary of the search space restricted by

the constraint.

I.e., in addition to artifacts introduced into the

reconstructed spectrum via a particular choice of prior

distribution and handling of its hyperparameters (e.g.,

ringing or over-damping), one also must be aware of

additional artifacts arising from choices in the

implementation of each method.

The dependence of Bryan’s MEM on the limited search space

was among the central reasons for the development of the BR

method. The advantageous form of the BR prior, which does not

suffer from slow convergence in finding ρMAP in practice, allows

one to carry out the needed optimization in the full Nμ

dimensional solution space to P[ρ|D, I] with reasonable

computational cost. The proof from Ref. [47] which also

applies to the convex BR prior, guarantees that in the full

search space a single unique Bayesian solution can be located

if it exists.

In Section 4 we will take a look at hands-on examples of using

the BR method to extract spectral functions and estimating their

reliability.

3.4 Two lattice QCD uncertainty
challenges

Spectral function reconstruction studies from lattice QCD

have encountered two major challenges in the past.

The first one is related to the number of available input

data points, which, compared to simulations in e.g. condensed

matter physics is relatively small, of the order O(10−100).

Especially when analyzing datasets at the lower end of this

range, the sparsity of the Di’s along Euclidean time τ often

translates into ringing artifacts. Due to the restricted search

space of Bryan’s MEM, this phenomenon may be hidden,

while the global extremum of the MEM posterior ρMAP
MEM, as well

as the BR method MAP estimate ρMAP
BR do show ringing. Since

ringing leads to spectral functions with a too large arc length

compared to the true spectral function one can treat this

artifact by combining either the MEM or the BR prior with the

arc-length penalty regulator discussed in Section 3.2. The

additional hyperparameters associated with this penalty

term can be estimated using realistic mock data, as shown

e.g., in Ref. [67]. The benefit of this genuine Bayesian

approach is that the mechanism by which ringing is

suppressed is made explicit and is not hidden in a

particular choice of basis function.

The second challenge affects predominantly spectral

reconstructions at finite temperature, in particular their

comparability at different temperatures. In lattice QCD,

temperature is encoded in the length of the imaginary time

axis. I.e., simulations at lower temperature have access to a

larger τ regime, as those at higher temperature. Since the

FIGURE 3
Sketch of how the confluence of (A) likelihood (red) and (a convex) prior (blue) in the posterior [orange, (B)] leads to a regularization of the
inverse problem. Instead of multiple degenerate minima in the likelihood (gray circles) only a single unique one remains in the posterior.

Frontiers in Physics frontiersin.org13

Rothkopf 10.3389/fphy.2022.1028995

83

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1028995


available Euclidean time range affects the resolution capabilities

of any spectral reconstruction it is important to calibrate one’s

results to a common baseline. I.e., one needs to establish how

the accuracy of the reconstruction method changes as one

increases temperature. Otherwise changes in the

reconstructed spectral functions are attributed to physics,

while they actually represent simply a degradation of the

method’s resolution. The concept of the reconstructed

correlator [55] is an important tool in this regard. Assume

we have a correlator encoding a certain spectral function at

temperature T1 with NT_1
τ points. We can now ask: how would

the correlator look like where the same spectral function is

encoded at a higher temperature T2, i.e., within a smaller

Euclidean time window of NT_2
τ points. Since the underlying

kernel relating spectral function and correlator is often

temperature dependent, this question is not easily answered

by just discarding imaginary time datapoints from the large τ

region of the original correlator.5 Instead if one wishes to

evaluate the corresponding higher temperature correlator

Ref. [60] showed that for the bosonic finite temperature

kernel KT>0(μ, τ) = cosh[μ(τ−β/2)]/sinh[μβ/2], relevant for

studies of relativistic bosonic spectral functions, one has to

form the following quantity

Drec τ, T2|T1( ) � ∑NT1
τ −NT2

τ +τ/a
τ′/a�τ/a,Δτ′/a�NT1

τ

Dlattice τ′|T1( ). (23)

By carrying out a reconstruction based on two correlators

at different Euclidean extent Dlattice(τ|T1) and Dlattice(τ|T2)

one will in general obtain two different spectral functions.

Only when one compares the reconstruction based on Drec(τ,

T2|T1) with that of Dlattice(τ|T2) is it possible to disentangle the

genuine effects of a change in temperature from the one’s

induced by the reduction in access to Euclidean time. This

reconstruction strategy has been first deployed for relativistic

correlators in Ref. [66]. A similar analysis in the context of

non-relativistic spectral functions in Ref. [67] showed that the

temperature effect of a negative mass shift for in-medium

hadrons was only observable, if the changes in resolution of

the reconstruction had been taken into account.

4 Hands-on spectral reconstruction
with the BR method

This publication is accompanied by two open-source

codes. The first [119], written in the C/C++ language,

implements the BR method (and the MEM) in its

traditional form to compute MAP estimates with arbitrary

precision arithmetic. The second [120], written in the Python

language uses standard double precision arithmetic and

utilizes the modern MCStan Monte-Carlo sampler to

evaluate the full BR posterior.

4.1 BR MAP implementation in C/C++

The BR MAP code deploys arbitrary precision arithmetics,

based on the GMP [121] and MPFR [122] libraries, which offers

numerical stability for systems where exponential kernels are

evaluated over large frequency ranges. A run-script called

BAYES.scr is provided in which all parameters of the code

can be specified.

The kernel for a reconstruction task is apriori known and

depends on the system in question. The BR MAP code

implements three common types encountered in the context

of lattice QCD (see parameter KERNELTYPE). Both zero

temperature kernel KT=0(μ, τ) = exp[−μτ], and the naive finite

temperature kernel for bosonic correlators KT>0(μ, τ) = cosh

[μ(τ−β/2)]/sinh[μβ/2] are available. Here β refers to the extend of

the imaginary time axis. The third option is the regularized finite

temperature kernel KT>0
reg (μ, τ) � β

2π atan[μ]KT>0(μ, τ) suggested
in Ref. [60] (see also [72, 123]). It lifts the divergence of the kernel

at μ = 0, which is related to the antisymmetry of bosonic spectral

functions at T > 0. Note that when redefining the kernel, one also

redefines the spectral function to reconstruct and thus an

appropriately modified default model must be supplied.

Next, the discretization of the frequency interval μ needs to

be decided on (see parameters WMIN and WMAX). When

relativistic lattice QCD correlators are investigated, the lattice

cutoff ±
�
3

√
π
a provides a reliable estimate up to where spectral

structures will be present. It is often a good crosscheck to use a

larger range of frequencies beyond where the input data can

provide constraining information, in order to see that the

reconstructed spectral function in that regime is correctly

given by the supplied default model. In case that lattice

effective field theory correlators are investigated, the user has

to keep in mind that their spectra may be populated beyond the

naive lattice cutoff. In some cases the appropriate range can be

estimated from an inspection of semi-analytically tractable free

theory spectral functions. A rough guess for the UV cutoff can be

obtained by fitting an exponential to the first few correlator

points at small imaginary time τ. Depending on the resolution

required for the encoded spectral features, the number of

frequency bins Nμ can be chosen via NOMEGA. If a very sharp

peak feature is present, one can use the parameters HPSTART,

HPEND and HPNUM to define a high resolution window along μ

for which HPNUM of the NOMEGA points are used.

The number of points along the Euclidean time axis of the

lattice simulation is specified by NT and its extend noted by

BETA. Depending on the form of the kernel and the choices for β

5 In cases where the kernel is temperature independent, e.g., for lattice
effective field theory correlators, discarding large τ datapoints is
equivalent to computing the reconstructed kernel.
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and μmax the dynamic range of the kernel matrix may be large

and one has to choose an appropriate precision NUMPREC for the

arithmetic operations used.

For the analysis of lattice QCD correlators FILEFORMAT 4 is

most useful. Each of the total NUMCONF measurements of a

correlator is expected to be placed in individual files with a

common name DATANAME (incl. directory information) and a

counter as extension, which counts upward from FOFFSET. The

format of each file is expected to contain two columns in ASCII

format, the first denoting the Euclidean time step as integer and

the second one the real-valued Euclidean correlator. Via TMIN

and TMAX the user can specify which are the smallest and largest

Euclidean times provided in each input data file, while TUSEMIN

and TUSEMAX define which of these datapoints are used for the

reconstruction.

In order to robustly estimate the statistical uncertainty of the

input data, the code is able to perform an analysis of the

autocorrelation among the different measurements. The value

of ACTHRESH is used to decide to which threshold the

normalized autocorrelation function [36] must have decayed,

for us to consider subsequent measurements as uncorrelated. To

test the quality of the estimated errors one can manually enlarge

or shrink the assigned error values using the parameter

ERRADAPTION.

As discussed in the previous section, a robust estimate of the

statistical uncertainty of the spectral reconstruction can be

obtained from a Jackknife analysis. The code implements this

type of error estimate when the number of Jackknife blocks are

set to a value larger than two in JACKNUM. The NUMCONF

measurements are divided into consecutive blocks and in each

iteration of the Jackknife a single block is remove when

computing the mean of the correlator. If JACKNUM is set to

zero a single reconstruction based on the full available statistics is

carried out.

Once the data is specified, we have to select the default

model. The default model can either be chosen to take on a

simple functional form choosing values 1 or 2 for

PRIORMODEL. The latter corresponds to a constant given

by MFAC. The former leads to m(μ) � m0/(μ − μmin + 1)power,
where the power is set via the parameter PRIORPOWER and

m0 via MFAC. To supply more elaborate default models the

user can set PRIORMODEL to 4 and provide a file prior.0 in

the working directory of the code that contains two columns,

the first with the frequencies μ and the second with the values

of m. Note that we have already marginalized over the

uncertainty of the default model using P[α] = 1 so that

specifying m suffices for the BR method.

In the present implementation of the BR method

(ALGORITHM value 1) the integration over α is

implemented in a semi-analytic fashion, which is based on

a large S expansion. In practice this simply means that one

must avoid to start the minimizer from the default model for

which S = 0.

The original Ref. [100] conservatively stated that it is

advantageous with regards to avoiding overfitting to instruct

the minimizer to keep the values of the likelihood close to the

number of provided datapoints. The codemaintains this condition

within a tolerance that is specified by a combination of the less than

ideal named ALPHAMIN and ANUM parameters. The

reconstruction will be performed ANUM times where in each of

the iterations counted internally by a variable ACNT the likelihood

is constrained to fulfill |L −Ndata| � (1/ALPHAMIN × 10ACNT).

The search for ρMAP
BR is carried out internally using the LBFGS

minimization algorithm [124]. It terminates when the relative

step size of the minimizer falls below the threshold MINTOL.

Note that for high precision arithmetic a correspondingly small

threshold should be specified (e.g., for NUMPREC =

128 MINTOL = 10−30 or for NUMPREC = 256 MINTOL =

10−60). The results of the minimizer are output into the folder

RESULTNAME every 2,000 steps in files called

BAYES_rhovalues_A(ANUM-ACNT).dat and the final

result is found in the file spec_rec.dat. The spectra are

also collected in the file PROB_ESTIMATES_FREQ.dat in

column 6, where the frequencies are listed in column 4. If the

Jackknife analysis is selected then this file contains multiple

spectra for each Jackknife subaverage counted by the value in

column 8.

To speed up the convergence in case that very high precision

data is supplied (i.e. when very sharp valleys exist in the

likelihood) it is advantageous to carry out the reconstruction

first with artificially enlarged errorbars via ERRADAPTION> 1.

The corresponding result in file

BAYES_rhovalues_A(ANUM).dat if copied into the

working directory of the code with the name start.0 can

be used as starting point for the next minimization with the

actual errorbars, by selecting the value 2 for the parameter

RESTARTPREV.

The code, when compiled with the preprocessor macro

VERBOSITY set to value one, will give ample output about

each step of the reconstruction. It will output the frequency

discretization, the values for the Euclidean times used, as well as

show which data from each datafile has been read-in. In addition

it presents the estimated autocorrelation and the eigenvalues of

the covariance matrix, before outputting each step of the

minimizer to the terminal. This comprehensive output allows

the user to spot potential errors during data read-in and allows

easy monitoring whether the minimizer is proceeding normally.

The incorrect estimation of the covariance matrix due to

autocorrelations is a common issue, which can prevent the

minimizer to reach the target of minimizing the likelihood

down to values close to the number of input data. Enlarging

the errorbars until the likelihood reaches small enough values

provides a first indication of how badly the covariance matrix is

affected by autocorrelations. Another diagnosis step is to only

consider the diagonal entries of the covariance matrix, which can

be selected using the preprocessor macro DIAGCORR set to 1.
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4.2 MEM MAP implementation in C/C++

The provided C/C++ code also allows to perform the MAP

estimation based on the MEM prior using arbitrary precision

arithmetic. By setting the parameter ALGORITHM to value 2 one

can choose Bryan’s implementation, where the spectral function

is parametrized via the SVD of the kernel matrix. The standard

implementation uses as many SVD basis functions as input

datapoints are provided. By varying the SVDEXT parameter

the user may choose to include more or reduce the number of

SVD basis function deployed. Alternatively by using the value

3 the user can deploy the Fourier basis functions introduced in

Ref. [118] and for value 4 ρMAP
MEM is searched for in the full Nμ

dimensional search space. Due to the proof of uniqueness of the

extremum, even searching in the full space is supposed to locate a

single Bayesian answer ρMAP
MEM to the inverse problem.

In the MEM, the common uncertainty parameter α for the

default model ml is still part of the posterior and needs to be

treated explicitly. To this end the MEM reconstruction is

repeated ANUM times, scanning a range of α values between

ALPHAMIN and ALPHAMAX. Since apriori the appropriate range

of values is not known, the user is recommended to carry out

reconstructions with artificially enlarged errorbars via

ERRADAPTION that converge quickly and which allow to

scan a large range between usually α ∈ [0; 100].

The LBFGSminimizer will be used to find the point estimates

ρMAP
α for each fixed value of the hyperparameter and then

according to Ref. [47] estimate the probability distribution P

[α|D, I] over which a weighted average is computed. The values of

α and the probabilities are output to the 4th and 6th column of

the file Probabilities.dat respectively. The final result is

then outputted in the file spec_rec.dat in column 4 with the

frequencies located in column 3. Intermediate steps of the

minimizer are output to files

MEM_rhovalues_A(ACNT).dat, where ACNT refers to

the step along the alpha interval. In case of a Jackknife

analysis all reconstructed spectra can be found in

PROB_ESTIMATES_FREQ.dat in column 6, where the

frequencies are listed in column 4.

Note that due to the functional form of the Shannon-Jaynes

prior the convergence for spectral functions with large regions of

vanishing values is often slow, which is why in practice the

tolerance for convergence is chosen by MINTOL around 10−7.

Note that the estimation of the α probabilities involves the

computation of eigenvalues of a product of the kernel with itself.

In turn this step may require additional numerical precision via

NUMPREC if an exponential kernel is used. If the precision is

insufficient, the determination of the eigenvalues might fail and

the final integrated spectral function will show NAN values, while

intermediate results in MEM_rhovalues_A(ACNT).dat are

well behaved. In that case rerunning the reconstruction with

higher precision will remedy the issue.

4.3 Full Monte-Carlo based BR method in
python

In many circumstances the MAP point estimate of spectral

functions already provides relevant information to answer

questions about real-time physics from lattice QCD.

However, as discussed in the previous section Section 3.3, its

full uncertainty budget may be challenging to estimate. It is

therefore that I here discuss a modern implementation of the

BR method, allowing for access to the posterior distribution via

Monte-Carlo sampling.

The second code provided with this publication is a Python script

based on theMCStanMonte-Carlo sampler library [125, 126]. It uses

the same parameters for the description of frequency and imaginary

time as the C/C++ code but works solely with double precision

arithmetic. Since different kernels are easily re-implemented, the script

contains as single example the zero temperature kernel KT=0(τ, μ).

In order to sample from the posterior, we must define all the

ingredients of our Bayesian model in the MCStan language. A

simple model consists of three sections, data, parameters and

the actualmodel. Indata the different variables and vectors used

in the evaluation of the model are specified. It contains e.g. the

number of datapoints sNt and the number of frequency binssNw.

The decorrelated kernel is provided in a two-dimensional matrix

datatype Kernel, while the decorrelated simulation data come in

the form of a vector D. The eigenvalues of the covariance matrix

enter via the vector Uncertainty. The values of the default

model are stored in the vector DefMod. In the original BRmethod

we would assume full ignorance of the uncertainty parameters αl
with P[α] = 1. Such improper priors may lead to inefficient

sampling in MCStan, which is why in this example script a

lognormal distribution is used. It draws α values from a range

considered relevant in mock data tests. The user can always check

self consistently whether the sampling range of α′s was chosen

appropriately by interrogating the marginalized posterior for α

itself, making sure that its maximum lies well within the sampling

range.

After selecting how many Markov-chains to initialize via

NChain and howmany steps inMonte Carlo time to proceed via

NSamples the Monte-Carlo sampler of MCStan is executed

using the sample command. MCStan automatically adds

additional steps for thermalization of the Markov chain.

Depending on how well localized the histrograms for each ρl
are, the number of samples must be adjusted. Since the BR prior

is convex, initializing different chains in different regions of

parameter space does not affect the outcome as long as enough

samples are drawn.

We may then subsequently estimate the spectral function

reconstruction from the posterior by inspecting the histograms

for each parameter. Since in this case we have access to the full

posterior distribution we can now answer not only what the most

probable value for ρl is but also compute its mean and median,
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giving us relevant insight about the skewness of the distribution

of values.

4.4 Mock data

Both code packages contain two realistic mock-data test sets,

which have been used in the past to benchmark the performance

of Bayesian methods. They are based on the Euclidean Wilson

loop computed in first order hard-thermal-loop perturbation

theory, for which the temperature independent kernel K(τ, μ) =

exp[−τμ] is appropriate. The correlator included here

corresponds to the one computed at T = 631 MeV in Ref.

[127] and which is evaluated at r = 0.066 fm, as well as r =

0.264 fm spatial extend. The continuum correlator is discretized

with 32 steps in Euclidean time. The underlying spectral

functions are provided in the folder MockSpectra in

separate files for comparison.

To stay as close to the scenario of a lattice simulation, based

on the ideal correlator data, a set of 1,000 individual datafiles is

generated in the folder MockData in which the imaginary time

data is distorted with Gaussian noise. The noise strength is set to

give a constant ΔD/D = 10−4 relative error on the mean when all

samples are combined. The user is advised to skip both the first

D(0) and last datapoint D(τmax) in the dataset, which are

contaminated by unphysical artifacts related to the

regularization of the Wilson loop computation.

The reader will find that this mock data provides a challenging

setting for any reconstruction method, as it requires the

reconstruction both of a well defined peak, as well as of a broad

background structure. It therefore is well suited to test the resolution

capabilities of reconstructionmethods, as well as their propensity for

ringing and over-damping artifacts.

For the C/C++ implementation of the BR MAP estimation a set

of example scripts are provided. The user can first execute e.g.

BAYESMOCK066_precon.scr to carry out a preconditioning

run with enlarged errorbars. In a second step one provides the

outcome of the preconditioning run as file start.0 and executes

BAYESMOCK066.scr to locate the global extremum of the BR

posterior. The outcome of these sample scripts is given for reference in

Figure 4 compared to the semi-analytically computed HTL spectral

functions in SpectrumWilsonLoopHTLR066.dat.

5 New insight from machine learning

Over the past years interest in machine learning approaches to

spectral function reconstruction has increased markedly (see also

[128]). Several groups have put forward pioneering studies that

explore how established machine learning strategies, such as

supervised kernel ridge regression [129, 130], artificial neural

networks [44, 45, 131–135] or Gaussian processes [136, 137] can

be used to tackle the inverse problem in the context of extracting

spectral functions from Euclidean lattice correlators. The machine

learningmindset has already lead to new developments in the spectral

reconstruction community, by providing new impulses to

regularization of the ill-posed problem.

As a first step let us take a look at howmachine learning strategies

incorporate the necessary prior knowledge to obtain a unique answer

to the reconstruction task. While in the Bayesian approach this

information enters explicitly through the prior probability and its

hyperparameters, it does so in the machine-learning context in three

separate ways: To train supervised reconstruction algorithms a training

dataset needs to be provided, often consisting of pairs of correlators and

information on the encoded spectral functions. Usually a limited

FIGURE 4
BR MAP reconstructions of the HTL Wilson loop spectral
function (gray points) evaluated at T = 631 MeV and spatial
separation distance r = 0.066 fm (A) and r = 0.264 fm (B). The
reconstruction based on Nτ = 32 Euclidean data and a
frequency range between μa ∈ [−5, 25] with Nω = 1,000 are shown
as colored open symbols. The red data denotes the reconstruction
based on the preconditioning ERRADAPTION = 50 while the final
result exploting the full ΔD/D = 10−4 is given in blue.
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selection of relevant structures is included in this training data set,

which amounts to prior knowledge on the spectrum. Both supervised

and unsupervised machine learning is build around the concept of a

cost- or optimization functional, which contains information on the

provided data. It most often also features regulator terms, which can be

of similar form as those discussed in Section 3.2. This in particular

means that these regulators define the most probable values for the ρl’s

in the absence of data and therefor take on a similar role as a Bayesian

default model. The third entry point for prior knowledge lies in the

choice of structures used to compose the machine learning model. In

case that e.g. Gaussian processes are used, the choice of kernel of the

common normal distribution for observed and unobserved data is

based on prior knowledge, as is the selection of its hyperparameters. In

case that neural networks are used, the number and structure of the

deployed layers and activation functions similarly imprint additional

prior information on the reconstructed spectral function, such as e.g.,

their positivity.

Direct applications of machine learning approaches

developed in the context of image reconstruction to positive

spectral function reconstruction have shown good performance

on-par with Bayesian algorithms, such as the BR method or

the MEM.

Canwe understandwhymachine learning so far has not outpaced

Bayesian approaches? One potential answer lies in the information

scarcity of the input correlators themselves. If there is no unused

information present in the correlator also sophisticated machine

learning cannot go beyond what Bayesian approaches utilize. As

shown in recent mock-data tests in the context of finite

temperature hadron spectral functions in Ref. [67], increasing the

number of available datapoints in imaginary time (i.e., going closer to

the continuum limit) does not necessarily improve the reconstruction

outcome significantly. One can see what is happening, when

investigating the Matsubara frequency correlator, obtained from

Euclidean input data via Fourier transform. As one decreases the

temporal lattice spacing, the range of accessible high lying Matsubara

frequencies increases but their coarseness, given by the inverse

temperature of the system, remains the same. Of course formally

all thermal real-time information can be reconstructed from access to

the exact values of the (discrete) Matsubara frequency correlator. In

practice, in the presence of finite errors, one finds that the in-medium

correlator only at the lowest Matsubara frequencies shows significant

changes compared to the T = 0 correlator and agrees with it within

uncertainties at higher lying Matsubara frequencies. I.e. the

contribution of thermal physics diminishes rapidly at higher

Matsubara frequencies, which may in practice require increasingly

smaller uncertainties on the input data for successful reconstruction at

higher temperatures.

This information scarcity dilemma asks us to provide our

reconstruction algorithms with more QCD specific prior

information. So far the Bayesian priors have focused on very

generic properties, such as positivity and smoothness. It is here

that machine learning can and already has provided new impulses

to the community.

One promising approach is to use neural networks as

parametrization of spectral functions or parton distribution functions.

First introduced in the context of PDFs in Ref. [45] and recently applied

to the study of finite temperature spectra in Ref. [44] this approach

allows to infuse the reconstructionwith additional information about the

analytic properties of ρ. Traditionally one would choose a specific

parametrization apriori such as rational functions (Padé) or SVD

basis functions (Bryan) and vary their parameters. The more versatile

NNapproach, thanks to the universal approximation theorem, allows us

instead to explore different types of basis functions and assign an

uncertainty to each choice.

The concept of learning can also be brought to the prior

probability or regulator itself. Instead of constructing a regulator

based on generic axioms, one may consider it as a neural network

mapping the parameters ρl to a single penalty valueP[ρ|I]. Training an

optimal regulator within a Bayesian setting, based e.g., on realistic

mock data, promises to capture more QCD specific properties than

what is currently encoded in the BR or MEM. Exploring this path is

work in progress.

6 Summary and conclusion

Progress inmodern high-energy nuclear physics depends on first-

principle knowledge of QCD dynamics, be it in the form of transport

properties of quarks and gluons at high temperatures or the phase-

space distributions of partons inside nucleons at low temperatures.

Lattice QCD offers non-perturbative access to these quantities but due

to its formulation in imaginary time, hides them behind an ill-posed

inverse problem. The inverse problem is most succinctly stated in

terms of a spectral decomposition, where the Euclidean correlator

accessible on the lattice is expressed as integral over a spectral function

multiplied by an analytic kernel. The real-time information of interest

can often be read-off directly from the structures occurring in the

spectral function. The determination of PDFs from the hadronic tensor

and via pseudo PDFs can be formulated in terms of a similar inversion

problem.

Bayesian inference provides a versatile tool set for the

reconstruction of spectral functions. It gives meaning to the ill-

posed inverse problem by incorporating relevant domain

knowledge with an associated uncertainty budget through the prior

probability distribution. Evaluating the posterior distribution, defined

through Bayes theorem, gives access to themost probable values of the

spectral function based on simulation data and prior knowledge. In

addition it also encodes the full uncertainty budget through its spread.

Traditionally predominantlyMAPpoint estimates were computed due

to lower computational cost of the corresponding optimization

problem, compared to full Monte-Carlo sampling of the posterior.

In that case information about the uncertainty budget is hidden from

the user and it must be estimatedmanually. Several relevant challenges

for uncertainty estimation in the lattice QCD context were discussed,

including the problem of ringing and those related to comparing

reconstructions based on different Euclidean time extents.
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A brief user guide described how to run two open access

codes accompanying this publication. One focuses on the

determination of MAP point estimates based on the BR and

MEM prior. The other utilizes a modern Monte-Carlo library to

sample from the full BR posterior.

Last but not least a brief look is taken at machine learning

approaches to spectral function reconstruction. The need for

providing prior information is discussed and a common challenge

among all reconstruction approaches, information scarcity in the

input data, is pointed out. Two venues for combining the machine-

learning viewpoint with the Bayesian strategy are touched upon.

With the concrete conceptual and technical discussions

contained in this publication, the reader is equipped with a

solid basis to carry out Bayesian spectral reconstructions. The

provided open-access source codes offer a quick entry into the

research field and can be modified according to different needs in

regards to kernels arising in different lattice QCD studies.
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In recent work, we developed a Markov Chain Monte Carlo (MCMC) procedure

to predict the ground state masses capable of forming the observed Solar r-

process rare-earth abundance peak. By applying this method to

nucleosynthesis calculations which make use of distinct astrophysical

conditions and comparing our results to the latest precision mass

measurements, we are able to shed light on the conditions/masses capable

of producing a rare-earth peak which matches Solar data. Here we examine

how our mass predictions change when using a few different sets of r-process

Solar abundance residuals that have been reported in the literature. We explore

how the differing error estimates of these Solar evaluations propagate through

the Markov Chain Monte Carlo to our mass predictions. We find that Solar data

which reports the rare-earth peak to have its highest abundance at mass

number A = 162 can require distinctly different mass predictions from data

with the peak centered at A = 164. Nevertheless, we find that two important

general conclusions from past work, regarding the inconsistency of ‘cold’

astrophysical outflows with current mass measurements and the need for

local stability at N = 104 in ‘hot’ scenarios, remain robust in the face of

differing Solar data evaluations. Additionally, we show that the masses our

procedure finds capable of producing a peak at A < 164 are not in line with the

latest precision mass measurements.

KEYWORDS

nucleosynthesis, solar abundances, r-process, heavy elements, Markov Chain Monte
Carlo (MCMC), uncertainty quantification (UQ)

The study of the origin of the heaviest elements has in recent years been buzzing

with new discussions surrounding the interpretation of the multi-messenger neutron

star merger event GW170817 [1–3]. This event was first detected in gravitational

waves and then followed-up by the telescope community to be observed across the

electromagnetic spectrum [4, 5]. The prospect of learning from real-time

nucleosynthesis events such as this is indeed a direction in which the field will

grow for years to come. However, if such single events are to be connected back to our

own Solar System origins, the importance of messengers of heavy element synthesis
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closer to home, that is Solar spectroscopic data and

meteorites, must continue to be recognized. From these

sources the Solar isotopic pattern, that is the relative

amounts of species of a given mass number, is able to be

determined [6]. This bit of observational information is

unique to our Solar System with only elemental abundance

patterns being available for other stars through spectroscopy

[7]. The Solar isotopic pattern serves as an important

benchmark for studies of the rapid neutron capture process

(r-process), with it being common practice to compare these

abundances to nucleosynthesis predictions in order to sort out

the possible contributions a given astrophysical scenario or

the plausibility of a given set of nuclear inputs (e.g. [8–11]). In

recent work [12–17], rather than proceeding with the Solar

isotopic pattern as solely a final point of comparison, we have

instead made use of these abundances as the starting point for

Markov Chain Monte Carlo (MCMC) methods aiming to

work backwards toward deriving fundamental nuclear

physics quantities. This approach is possible due to the

clear impact of the properties of neutron-rich nuclei on

astrophysical abundances, as evidenced by the second and

third r-process abundance peaks seen in the Solar data at A

~130 and A ~195 from the closed neutron shells at N = 82 and

N = 126 respectively [18]. Our approach therefore exploits

this interplay between nuclear physics and observables by

focusing on an abundance feature of uncertain origin, the r-

process rare-earth abundance peak [19, 20], in order to probe

previously unmeasured nuclear masses of rare-earth species.

Our MCMCmethod considers the masses needed in order to

form the rare-earth abundance peak by applying the mass

parameterization:

M Z,N( ) � MDZ Z,N( ) + aNe
− Z−C( )2/2f (1)

where MDZ corresponds to the masses predicted by the

Duflo-Zuker (DZ) mass model [21] and aN values are the

parameters being determined by the MCMC. In these

calculations we set f = 10 based on fits to mass trends of the

Atomic Mass Evaluation (AME) 2012 data [22] and set C = 58 or

C = 60 as was determined by numerous initial runs in which this

parameter was allowed to float (see [15] for a detailed discussion).

Following our mass adjustments we then calculate neutron

capture, β-decay, and photodissociation rates corresponding to

the mass changes before performing the nucleosynthesis

calculation. Additionally, as discussed in [15], we perform

external checks on quantities, such as the one neutron pairing

metric and the σrms deviation with respect to AME2012 mass

values, in order to ensure that we do not explore unphysical

solutions.

Since the astrophysical conditions present during the

nucleosynthesis impact the formation of abundance

features, in past work we considered our MCMC approach

along with several distinct astrophysical outflows. We

consider an outflow ‘hot’ if neutron capture and

photodissociation undergo an extended equilibrium during

the synthesis. If rather photodissociation falls out of

equilibrium early leaving neutron capture to compete with

β-decay, we consider this a ‘cold’ outflow. As can be seen in

Figure 1, we predict distinct mass surface trends to be needed

to form the rare-earth peak for each of the distinct

FIGURE 1
(A) The MCMC predicted masses for samarium (Z =62),
relative to the DZ mass model, given two distinct moderately
neutron-rich (Ye =0.2) astrophysical outflows that could be found
in accretion disk winds: a hot case which undergoes an
extended (n,γ)%(γ,n) equilibrium (red band) and a cold case (blue
band) for which photodissociation falls out of equilibrium early
(adapted from Figure 20 of [15]). The AME2012 data [22] used to
guide the calculation is shown along with CPT at CARIBU [14] data
of which the calculation was not informed. All bands were
determined from the average and standard deviation of 50 parallel,
independent MCMC runs (B) Demonstration that the mass
solutions are uniquely tied to the astrophysical conditions, with the
solid red line showing the abundance results using the MCMC
masses of top panel and the dotted red line showing the results
when these masses are applied in a nucleosynthesis calculation
with the cold trajectory. Likewise the blue solid line shows the
abundances predicted by the blue band in the top panel along with
the resultant abundances when this mass solution is applied to the
hot trajectory (Figure 2 of [16]). Note that results in the top panel
were determined from runs which applied symmetrized Solar data
derived from Arnould+07 [29] (described in [15]) which is shown as
black points in the bottom panel.
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astrophysical outflows. Here note that since our mass

predictions M are illustrated via the mass difference with

respect to DZ (M−MDZ) a positive value implies our MCMC

requires masses less tightly bound than DZ and a negative

value implies a more tightly bound system than is predicted by

DZ. Since the nucleosynthesis outcome is sensitive to how the

properties of a given nucleus relate to the properties of its

neighbors, the most influential mass surface features will be

ones that introduce strong local differences, such as the drop

in the red band from positive to negative M−MDZ from N =

102 to N = 104 which creates a region of ‘enhanced stability’ at

N = 104 relative to neighboring nuclei. Independent mass

measurements performed by the Canadian Penning Trap

(CPT) at the CAlifornium Rare Isotope Breeder Upgrade

(CARIBU) of which the MCMC calculation was not

informed are found to be most consistent with the masses

need in hot astrophysical outflows. Therefore this method can

ultimately point to the type of astrophysical conditions which

dominantly produced the lanthanide elements we see in the

Solar System, which can then be traced back to candidate sites

such as neutron star mergers or magneto-rotationally driven

supernovae through comparisons with hydrodynamics

predictions (e.g. [23–28]) and multi-messenger observations.

This exciting prospect to use advancements in statistical

methods in order to progress our understanding of the origins

of Solar System elements however hinges on how precisely we

know the r-process content of the Solar System. The so-called

‘Solar r-process residuals’ are derived from subtracting out the

predicted contribution to the Solar System for the slow neutron

capture process (s-process). This is accepted as the standard

approach since the s process occurs closer to stable species and so

the nuclear data of importance to this process is significantly

better understood than the data of relevance to the r process.

Such ‘s-process subtractions’ have been performed over the years,

taking into account new nuclear data measurements or new

information on the conditions present at the astrophysical site of

the s process, Asymptotic Giant Branch (AGB) stars. However

very few of these independent Solar data evaluation sets from the

literature report error estimates. The few that do report errors do

so via propagating uncertainties from multiple sources including

the observational data, neutron capture and β-decay

measurement uncertainties, as well as estimates of the

astrophysical variations which may be present in s-process

sites (e.g. [30]). This procedure can thus yield different

predictions for the relative abundances of neighboring nuclei

as well as big differences in the reported errors depending on the

error propagation treatment. Such considerations are highly

relevant for our r-process MCMC calculations since the

absolute value (Y⊙(A)) and error (ΔY⊙(A)) of the Solar r-

process residuals at a given mass number dictates how our

Markov chains evolve. This is because whether or not new

masses of given step are adopted is determined by the

likelihood ratio R � Lj

Li
with j being the new step, i being the

previous step, and the likelihood function beingL ~ e−χ2/2 with χ2

defined by

χ2 � ∑180
A�150

Y⊙ A( ) − Y A( )( )2
ΔY⊙ A( )( )2 . (2)

Here we consider the Solar data impact on our MCMC mass

predictions by applying two evaluations which report error

estimates, those of Arnould+07 [29] and those of Beer+97 [31],

and the data set of Sneden+08 [32] which does not report error

estimates. As can be seen from Figure 2, Arnould+07 and

Beer+97 not only have distinctly different trends in the shape of

the relative abundances of the rare-earths, but also very different

error estimates with the Beer+97 set being the case considered here

with the smallest reported error. Even though the Sneden+08 dataset

does not come with its own unique error estimate, this is an

important set to consider given its frequent use as a comparison

point for nucleosynthesis calculations in the literature. To utilize the

Sneden+08 set in our MCMC approach, we must assign an

abundance uncertainty in order to calculate χ2. For our purposes,

the most intriguing feature of the Sneden+08 dataset is the location

of the peak of the rare-earth abundances since our calculations must

find nuclear properties which can pile up nuclei at the needed mass

number. Therefore for this case we take the error to be the average

error of the Arnould+07 set applied equally to all points so that our

MCMC analysis can investigate sensitivity to peak location rather

than overall error. Thus the Beer+97 case will bemost informative of

the impact of error estimates and the Sneden+08 case will serve to

observe howmuch the relative abundances and exactly placement of

the highest peak point influence our MCMC.

In Table 1 we compare the χ2 fits for each astrophysical

scenario/Solar data combination reported in this work. Note

that we report unnormalized χ2 values because of the difficulty

in defining the number of degrees of freedom due to the nature of

how our MC parameters propagate through to the abundance

values. We use 28 aN parameters to adjust the masses of ~ 300

nuclei that are then inputs for the neutron capture rates,

photodissociation rates, and β-decay rates that ultimately

determine the abundances entering the χ2 calculation for A =

150–180 (30 data points). Propagation of our 28 parameters to

reaction rates introduces non-trival correlations amongst the

30 abundances being investigated, and the number of

correlations introduced is a necessary ingredient to define the

number of degrees of freedom (for instance standard deviations

require dividing by N-1 where N is the number of points and one

degree of freedom is subtracted since the average of N values enters

the calculation and thus introduces one correlation). See the

discussion in [15] for further details.

As can be seen in Table 1, since the errors we assume for the

Sneden+08 Solar data set are based on the average of the

Arnould+07 set, the χ2 for the initial baseline nucleosynthesis

abundance is similar, being between 180–286 for both the hot

and cold astrophysical scenarios. The set considered here with
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the smallest errors, that is Beer+97, is distinct in having a much

larger initial χ2 abundance baseline of 865 for the hot

astrophysical outflow. This leads to the MCMC not being able

to achieve as low of χ2 solutions as could be found in the

Arnould+07 and Sneden+08 cases, despite the fact that the

average number of steps taken by MCMC runs with

Beer+97 was more than 10,000. Note that a few preliminary

runs considered another Solar evaluation dataset in the literature

of Arlandini+99 [33] which does report an error estimate for the

r-process residuals. However in this case the error bars are

especially small when compared to the sets pursued here,

leading to a very large initial χ2 of 6941.8. Such a high initial

χ2 implies that our Duflo-Zuker baseline mass model produces

abundances very far off from the targeted Solar data, reported to

be very precise in the Arlandini+99 case. Such a big initial

discrepancy produced challenges to our current approach with

all preliminary runs having a low acceptance rate. Such

challenges could be overcome by, for example, exploring new

baselines, but we leave such investigations to future work. Thus

we concentrated our computational time on the Sneden+08 and

Beer+97 cases since these already permit us to explore the

influence of the unique features of each evaluation in terms of

their error size and overall shape of the rare-earth peak. To

provide a sense of the computational cost of a given MCMC

result, we note that there are two main factors determining this:

1) the time to run the β-decay code which calculates the β-

delayed neutron emission probabilities (~30 s) and 2) the time to

run the nucleosynthesis network (PRISM), with both being

performed for every timestep. Runtime for the network can

take between 30 s and 3 min depending on whether we are

considering an astrophysical scenario in which the fission

products must be included in the network. Therefore a single

MCMC run which takes 10,000 steps can translate into anywhere

from ~2,000–10,000 core-hours depending on the speed of

FIGURE 2
The Solar r-process abundance residuals for the rare-earth peak (~ A=150−180) given several evaluations and error estimates. The set applied in
previous MCMC work (grey) were derived from those in Arnould+07 [29, 30] by performing a symmetrization procedure as described in [15]. Also
shown is the Solar data evaluation of Beer+97 [31] (purple) which reports significantly smaller error estimates. Another set considered is the popular
Sneden+08 Solar data evaluation [32] (orange) which does not report errors. For this Sneden+08 set, the average error on abundances between
A =150−180 from [29, 30] was applied.

TABLE 1 Summary of the χ2 for the DZ baseline and MCMC results for all cases presented in this work.

Description of Astro. Cond C Solar r-process evaluation Baseline χ2 Average χ2 Average # of steps

Cold, low entropy, moderately neutron-rich (Ye = 0.2) 58 Arnould+07 (Symm Error) 285.7 21.6 17,095

Cold, low entropy, moderately neutron-rich (Ye = 0.2) 58 Sneden+08 180.4 23.9 16,020

Hot, low entropy, moderately neutron-rich (Ye = 0.2) 60 Arnould+07 (Symm Error) 200.1 22.7 16,800

Hot, low entropy, moderately neutron-rich (Ye = 0.2) 60 Sneden+08 184.4 18.7 17,624

Hot, low entropy, moderately neutron-rich (Ye = 0.2) 60 Beer+97 864.9 128.9 10,714
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network calculation and the set-up of the computing cluster (this

work made use of three distinct computing facilities). Therefore a

50 run band result ultimately requires ~100,000 to 500,000 core-

hours depending on the scenario.

We now evaluate whether the Solar data applied modifies our

previous conclusions regarding cold astrophysical scenarios being

inconsistent with the latest mass measurements. As can be seen in

Figure 3, the MCMC calculations with Arnould+07 and

Sneden+08 give similar mass predictions in the cold case, with

the mass surface behavior at N = 103 and N = 108 as the main

features forming the peak consistently appearing in the trends of

both calculations. As discussed in [15], the time evolution of peak

formation in the cold case first starts with a shifted peak with highest

abundance atA = 162, which is moved via late time neutron capture

to having highest abundance atA= 164 as predicted byArnould+07.

Thus in the case of Sneden+08 data which peaks instead at A = 162,

theMCMCmass solution does not have to be significantly modified

as it can already accommodate an abundance pile-up at A = 162,

leading to relatively minor mass differences near N = 100 where the

Sneden+08 case requires some enhancement in the stability of such

nuclear species in order to keep the highest abundance from shifting

beyond A = 162. Most importantly, we find that the differing peak

placement of these distinct r-process Solar residual evaluations does

not present an avenue towards resolving the tension between the

predicted masses and the latest mass measurements given this cold

astrophysical outflow.

We next consider the impact of the Solar data onmass solutions

in the hot astrophysical scenario. Our uncertainty bands are derived

from 50 MCMC runs when applying Arnould+07 and

Sneden+08 Solar data and in the case of Beer+97 data are

determined from 25 runs. As can be seen in Figure 3 of [15],

previous investigations demonstrated that a 20 run result can

underestimate the total uncertainty band by at most 0.26MeV or

0.05MeV on average when considering theN= 93–110 range which

influences rare-earth peak formation most strongly. For the 30 run

case we find this underestimate to be only at most 0.06MeV or

0.02MeV on average. Therefore we estimate that our 25 run results

likely underrepresent the reported total uncertainty by roughly

0.035–0.16 MeV, but still adequately capture the overall mass

surface trends.

As discussed in [15], peak formation in the hot case centers

around nuclei being held at neutron number N = 104 during the

time evolution of the synthesis. To achieve this, in the case of

Arnould+07 data, we require a strong difference in the predicted

masses at N = 102 and N = 104 which can be seen as a dive in the

mass surface shown in Figure 4. The latest precision measurements

agree with this predicted N = 102 rise, however measurements fall

just short of providing information on mass behavior at N = 104.

Contrary to the result using Arnould+07 Solar data, the MCMC

predictions when Sneden+08 data is applied show the drop in the

mass surface is needed to instead begin at neutron number N = 100

in order for the highest abundance peak to be produced instead at

A = 162. This behavior is also present in the predicted MCMC

solution using the Solar data of Beer+97 since this case also requires

higher abundances than Arnould+07 at A = 162, 163 and a lower

abundance than Arounld+07 at A = 164. Since this drop in the

predicted masses after N = 100 is inconsistent with CPT

measurements, we find that Solar evaluations in which the rare-

earth peak has its highest abundance atA < 164 to be in tension with

FIGURE 3
The MCMC predicted masses for samarium (Z =62) given the
cold, moderately neutron-rich outflow with different sets of Solar
data applied: those from Arnould+07 [29, 30] with symmeterized
errors (as described in [15]) (dark blue, band derived from
50 runs) as well as the Solar residuals from Sneden+08 [32] (light
blue, band derived from 25 runs) which differ in their prediction for
the location of highest abundance in the rare-earths (A = 162 for
[32] and A = 164 for [29, 30]).

FIGURE 4
The MCMC predicted masses for samarium (Z =62) given the
hot, moderately neutron-rich outflow with different sets of Solar
data applied: those from Arnould+07 [29, 30] with symmeterized
errors (as described in [15]) (red, band derived from 50 runs),
those from Sneden+08 [32] (orange, band derived from 50 runs),
and those reported in Beer+97 [31] (purple, band derived from
25 runs).
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the latest mass data. Additionally, from Figure 4 we can see directly

the influence of the size of the Solar data error bars. The case with

Sneden+08 and Arnould+07 data show very similarly sized mass

surface bands whereas significantly tighter mass surface bands are

predicted in the Beer+97 case (even with accounting for the slight

underestimate of the bands due to the smaller statistics of a 25 run

result) which is consistent with expectations given that this set has

the smallest error on average. Interestingly, we find that regardless of

the differences in the Solar data values and overall errors, all MCMC

solutions in hot scenarios predict a local region of enhanced stability

at N = 104.

Here we demonstrated that studies, such as the MCMC

work presented, which seek to be quantitative when using

Solar abundance data are directly dependent upon a careful

accounting of abundance uncertainties. The Solar r-process

abundances are regularly used as a comparison point with

theoretical nucleosynthesis calculations, however often the

associated error on these abundances is not considered.

Since the Solar r-process abundances are in actuality the

‘residual’ abundances remaining after subtracting the

predicted s-process contribution from the total Solar

inventory, our understanding of the Solar System r-process

content is directly dependent on uncertainties in s-process

nucleosynthesis predictions. More recent evaluations have

demonstrated the importance of accounting for new

neutron capture measurements [34] and more sophisticated

treatments of the s-process astrophysical site [35].

Nevertheless, the r-process community remains in need of

updated Solar s-process subtractions which put together all

such new information while also carefully propagating the

uncertainties associated with the meteoritic and spectroscopic

data which are used to determine the total abundances of Solar

System heavy elements.

The application of distinct Solar data evaluations reveals that

the mass predictions of our MCMC are sensitive to both the

location of the highest peak abundance as well as the abundance

error estimates, such that both the predicted uncertainty bands and

overall mass trends can be affected. Nevertheless, two important

general conclusions from utilizing Arnould+07 Solar data in our

previous MCMC work [15] remain robust, that is: (1) cold

astrophysical outflows remain inconsistent with the latest mass

measurements and (2) hot astrophysical outflows consistently

point to a local enhancement in stability at N = 104 as the

mechanism by which the rare-earth peak forms. This

consistency further argues for the importance of mass

measurements at this neutron number, as may be possible in

the future at Argonne National Laboratory’s N = 126 Factory, the

Facility for Rare Isotopes Beams (FRIB), or the Advanced Rare

Isotope Laboratory (ARIEL) at TRIUMF.

Since we have demonstrated that ourMCMCmethod is sensitive

to the overall shape and errors of the r-process abundances, our

calculations permit us to consider what the masses of neutron-rich

nuclei can teach us about Solar r-process evaluations.We find that in

the case of Solar evaluations which predict the highest abundance of

the rare-earth peak to occur beforeA = 164, ourmethod points to the

need for masses which are not consistent with the most recent

measurements. Therefore, this result favors Solar r-process

evaluations with the highest abundance of the rare-earth peak

located at A = 164 as those which can be readily replicated given

the latest nuclear data. We note that robust conclusions regarding

Solar r-process abundances from such an MCMC approach require

more exhaustively considering the uncertainties of all nuclear data

inputs such as the β-decay strength function and neutron capture

model. Therefore, since the interplay between β-decay, neutron

capture, and photodissociation is at the heart of peak formation,

future MCMC studies which consider other β-decay and neutron

capture treatments when propagating mass changes to astrophysical

reaction and decay rates could yield even more robust statements on

whether the highest rare-earth peak abundance can occur at A < 164.

We leave these investigations to future work, but note that such an

approach could apply a more global analysis with both mass and β-

decay measurements guiding the Markov chains and therefore

informing uncertainty estimates. Nevertheless, the work presented

here highlights how statistical methods such as our MCMC

procedure can be used to explicitly link nuclear data and

astrophysical observations, thereby serving to inform and drive

progress in both nuclear physics and astrophysics communities.
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We present strategies to quantify theoretical uncertainties in modern ab initio
calculations of electromagnetic observables in light and medium-mass nuclei. We
discuss how uncertainties build up from various sources, such as the approximations
introduced by the few- ormany-body solver and the truncation of the chiral effective
field theory expansion. We review the recent progress encompassing a broad range
of electromagnetic observables in stable and unstable nuclei.
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1 Introduction

Uncertainty quantification is an emerging field in nuclear theory. It is nowadays
expected for any theoretical calculation of nuclear observables to have a corresponding
uncertainty bar, which is vital to make progress in our understanding of strongly
interacting systems through the comparison of theoretical modeling with experimental
data. While this is clearly the goal, the specific approach to uncertainty quantification and
its sophistication level strongly depends on the used theoretical method and on the
observables under investigation. In this review, we focus on electromagnetic reactions
and on how they can be calculated with corresponding uncertainty in the so-called ab initio
methods. It is fair to say that the sub-field of quantification of theoretical uncertainties is
just now developing, and while there is still much to be done there has been recent
significant progress. Here, we report on such progress, discuss its philosophy and identify
areas where improvements can be expected in the future.

In the ab initio approach to nuclear theory [1–3] the goal is to explain nuclear phenomena,
including electromagnetic processes, starting from protons and neutrons as degrees of freedom
and to solve the related quantum-mechanical problem in a numerical way, either exactly or
within controlled approximations. To achieve this, one typically solves the Schrödinger
equation for a given Hamiltonian H and then computes transition matrix elements of the
electromagnetic operator Jμ between the eigenstates ofH. Hence, before discussing the approach
devised to quantify uncertainties in electromagnetic observables, we define the dynamical
ingredients (Hamiltonian and currents), as well as the specific observables we want to
investigate.
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1.1 Hamiltonians and currents

The starting point of an ab initio computation of a nucleus
composed of A nucleons is the nuclear Hamiltonian,

H � TK +∑A
i<j

Vij + ∑A
i<j<k

Wijk, (1)

where TK is the intrinsic kinetic energy, Vij is the two-body
interaction and Wijk is the three-body interaction. As opposed to
a phenomenological derivation of nuclear forces, effective field
theories (EFT) offer a more systematic approach [4]. In this
paper, we will use effective Hamiltonians which are derived in
chiral effective field theory (χEFT) [5–7]. In this framework, the
Hamiltonian is expanded in powers of (Q/Λ), where Q is the
typical low–momentum characterizing nuclear physics and Λ is
the breakdown scale of the effective field theory. The various
components relevant for Vij and Wijk are presented in terms of
Feynman diagrams in Figure 1, where ]0 is the first power
entering in the counting. The unresolved short range physics
is encoded in the values of the low energy constants (LECs),
which are usually calibrated by fitting to experimental data.
Different optimization and fitting strategies have been used to
calibrate the LECs [8–11]. Here, we will use only a selected set of
different Hamiltonians obtained from χEFT. Furthermore,
interactions with explicit Δ degrees of freedom are becoming
available [12–17] and should be explored. In the present work we
will present results with both chiral Δ-full and Δ-less
interactions.

The nuclear response to external probes is described by the
interaction Hamiltonian, which depends on nuclear dynamics
through the nuclear current operator. The χEFT expansion exists
also for the electromagnetic four-vector current Jμ = (ρ, J), where
the time-like component is the charge operator and the space-like
component is the three-vector current operator. The first
diagrams entering the χEFT expansion for (ρ, J) are shown in
Figure 1, where we omit the diagrams that contribute to the elastic
form factors. The reader can find more details on our
implementation of the currents in Ref. [18]. While different

authors adopt different power counting schemes for the
currents [19–22], we follow the conventions of Ref. [22].

1.2 Electromagnetic observables

Electromagnetic probes are key tools to study nuclear structure
because measured cross sections are easily related to the few-/many-
body matrix elements of electromagnetic operators via perturbation
theory. Here, we focus on electromagnetic observables that can be
explained to high precision in first order perturbation theory,
i.e., processes where one single photon is exchanged between the
probe and the nucleus. This is the case for the photoabsorption process
and the electron scattering process, see Figure 2. The exchanged
photon can in general transfer energy ω and momentum q. In the
photonuclear process, a real photon with ω = |q| = q is absorbed by the
nucleus, while in electron scattering a virtual photon is exchanged,
where one can vary ω and q independently.

In the cases of the photoabsorption and the electron-scattering
process (see also Sections 3, 5), the cross section can be written in
terms of a so-called response function, which, in the inclusive
unpolarized case, is defined as

R ω, q( ) � ∫∑
0f

〈Ψf|Θ q( )|Ψ0〉
∣∣∣∣ ∣∣∣∣2δ Ef − E0 − ω( ). (2)

Here, Θ(q) is the electromagnetic operator, which can be directly one
of the operators (ρ, J) or can be just a multipole of them. |Ψ0/f〉 are the
ground state and the excited states of the Hamiltonian H, respectively.
The symbol ∑0 indicates an average on the initial angular momentum
projection, while the symbol ∫∑f corresponds to both a sum over
discrete excited states and an integral over continuum eigenstates
of the Hamiltonian. Indeed, |Ψf〉 may include not only bound excited
states, but also states in the continuum where the nucleus is broken up
into fragments.

The calculation of continuum wave functions represents a
challenging task especially in an inclusive process, where one needs
information on all possible fragmentation channels of the nucleus at a
given energy. To avoid the issue, one can use integral transforms, such

FIGURE 1
The χEFT expansion of the nuclear Hamiltonian and
electromagnetic currents. The filled circles, squares and diamond
denote strong-interaction vertices with chiral dimension 0,1 and 2,
respectively. The ⊗ symbols denote the electromagnetic vertices. In
the literature, ]0 is usually taken as 0 for the potential and −3 for the
currents.

FIGURE 2
Feynman diagrams for the photoabsorption process (left), where a
real photon γ is exchanged, and the electron scattering process, where a
virtual photon γ* is exchanged between the probe and the nucleus (cyan
blob).

Frontiers in Physics frontiersin.org02

Acharya et al. 10.3389/fphy.2022.1066035

102

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1066035


as the Lorentz integral transform (LIT) technique [23, 24]. Originally
used in few-body calculations, the LIT technique is based on the
calculation of the following integral of the response function R (ω, q),

L σ, Γ, q( ) � Γ
π
∫dω R ω, q( )

ω − σ( )2 + Γ2, (3)

which can be shown to be the squared norm of the solution of a
Schrödinger-like equation calculated using bound-state techniques.
Once L (σ, Γ, q) is calculated, a numerical inversion procedure allows
one to recover R (ω, q), see Ref. [24] for details.

1.3 Numerical solvers

In order to calculate electromagnetic observables, we first need a
numerical solution of the Schrödinger equation. In the applications
discussed in Sections 3, 4 and 5, we will use either few-body or many-
body solvers depending on the mass range A of the addressed nuclei.

We obtain the bound-state and scattering-state wave functions for
the A = 2 problem by solving the partial-wave Lippmann-Schwinger
equations for the Hamiltonian. The response functions are then
calculated by directly evaluating the matrix elements of the
electromagnetic operator in coordinate space.

To calculate few-body problems with 2 < A < 8 we use
hyperspherical harmonics expansions. In this framework, one
expands the A-body intrinsic wave function in terms of
hyperspherical harmonics HK and hyperradial functions Rn as

Ψ � ∑Kmax

K

∑nmax

n

αnKRn ρr( )HK Ω( ), (4)

where αnK are the coefficients of the expansion and where for the sake
of simplicity we omit spin and isospin degrees of freedom. Here, ρr is
the hyperradius while Ω is a set of hyperangles, on which the
hyperspherical harmonics HK with grandangular momentum K
depend. The expansion is performed up to a maximal value of
hyperradial functions nmax and a maximal value of grandangular
momentum Kmax. Reaching convergence in nmax is typically not
difficult. The expansion in hyperspherical harmonics is instead
more delicate and one needs to ensure that the dependence of the
calculated observables on this truncation is under control. To
accelerate convergence, an effective interaction a la Lee-Suzuki can
be introduced [25], obtaining the so-called effective interaction
hyperspherical harmonics (EIHH) method, which allows to
eventually achieve sub-percentage accuracy in the 4He calculations
of binding energies and electromagentic observables [26].
Hyperspherical harmonics expansions can be conveniently used
also to solve the Schrödinger-like equation obtained when applying
the LIT method described above. The interested reader can consult,
e.g., Refs. [2, 24–28] for more details.

For nuclei with A ≥ 8 we use coupled-cluster theory. In this
framework, for a given Hamiltonian H one starts from a Slater
determinant |Φ0〉 of single particle states and assumes an
exponential ansatz to construct the correlated many-body wave
function as

|Ψ0〉 � exp T( )|Φ0〉. (5)
The operator T is typically expanded in n-particle-n-hole excitations
(or clusters) as T = T1+T2+/ + TA. Coupled-cluster theory is exact

when the expansion of the T operator is considered up to A
particle—A hole excitations (Ap–Ah) within a model space
determined by the number Nmax of oscillator shells considered
[29]. Even though truncations are typically introduced, they can
lead to a result very close to the exact one due to the exponential
ansatz Eq. 5). Because the computational cost of this method scales
polynomially with increasing mass number A, it is a very convenient
solver for medium mass and even heavy nuclei [30].

For closed (sub-) shell nuclei, coupled-cluster theory truncated at
the 2p–2h level, in the so called coupled-cluster singles and doubles
(CCSD) scheme, captures about 90% of the full correlation energy.
When including triples excitation, even at the leading order in the so-
called CCSDT-1 scheme [31], one can obtain almost 97% of the
correlation energy [29, 32]. It has been shown that coupled-cluster
theory can be also used in conjunction with the LIT method, where
one can reduce the problem to the solution of a bound-state like
equation of motion [33].

2 Uncertainty quantification

In each of our computations of electromagnetic observables, the
final accuracy will be controlled on the one hand by the employed
χEFT (determined by Hamiltonian and currents) and on the other
hand by the accuracy to which one can solve the few–body or
many–body problem for a given Hamiltonian and current operator.
Hence, in the following we will divide the sources of uncertainties in
two broad categories:

1) χEFT uncertainties;
2) Numerical uncertainties.

Among the uncertainties in 1), there are possible dependencies on
the employed interaction or current model (including cutoff
dependencies), as well as uncertainties introduced by the truncation
to a given order ] of the employed χEFT, and uncertainties due to
extracting the LECs from experimental data or from lattice calculations.
If the LECs are well constrained by experimental data, the χEFT
uncertainty is typically dominated by the truncation error of the
χEFT expansion. Regarding the latter, if the leading non-vanishing
contribution to a calculated observable O enters at order ]0 and one is
able to perform calculations that include all effects up to order ]0+k, one
can naively expect to incur a relative error of δχEFTO /O ≈ (Q/Λ)k+1 from
the neglected higher-order terms. A more rigorous estimate can be
obtained by using the calculated order-by-order results O] as “data” to
inform the uncertainty analysis. For example, using the simple
algorithm proposed by Ref. [34], the absolute truncation error can
be estimated as

δχEFTO � max
Q

Λ( )k+1
O]0

∣∣∣∣ ∣∣∣∣, Q

Λ( )k

O]0+1 −O]0

∣∣∣∣ ∣∣∣∣, . . . , Q

Λ( ) O]0+k −O]0+k−1
∣∣∣∣ ∣∣∣∣{ }. (6)

More recently, Bayesian methods have been adopted for
quantification of the χEFT truncation error [35–38]. These
methods start from Bayesian priors that encode naturalness of the
coefficients {c]} defined, using a suitable reference Oref , by

O]0+k � Oref ∑k
]�0

c]
Q

Λ( )]

. (7)
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The priors are then updated using the calculated data to arrive at a
Bayesian posterior for the truncation error δχEFTO . A key advantage of
this approach is that the estimates have a statistical interpretation,
which allows us to validate the assumptions made and to easily
combine truncation errors with other sources of uncertainties such
as fitting or random sampling of parameters. This opens a possible
path for a complete and consistent accounting of theory uncertainty
from all dynamical ingredients in the future.

Regarding the uncertainties in 2), the protocol to evaluate them will
depend on the implemented numerical solver. On the one hand, when
performing a few-body calculations with hyperspherical harmonics, one
needs to carefully take the convergence in Kmax into account. When using
the LIT method, one also needs to consider the uncertainty of the
inversion procedure. On the other hand, when using coupled-cluster
theory, one needs to account for at least two different patterns of
convergence. First, there is always a truncation on the model space
controlled by the maximum number of harmonic oscillator (HO)
shells Nmax, which, in a sense, is analogous to the Kmax in
hyperspherical harmonics. If convergence in Nmax is reached, the
results should in principle be independent of the underlying HO
frequency ZΩ used for single particle states. However, in practice, one
is always left with some residual ZΩ dependence which should be
explored. Second, in coupled-cluster theory one has a cluster
expansion of the operator T. Here, the most frequently adopted
approximation is CCSD. When possible, one should include higher
order excitations, such as leading order triples corrections with
CCSDT-1. Finally, when using the LIT method, one incurs the extra
numerical uncertainty coming from the inversion procedure.

In general, we expect uncertainties of 2) to be sub–percentage or at
most one percent in light nuclei up to mass number 4, while for
medium–mass nuclei they may increase up to a few percent,
depending on the specific observable. In particular, it is to note
that binding energies, because of their eigenvalue nature, can
usually be obtained with higher precision, while for example
quadrupole transitions are notoriously difficult in methods such as
coupled-cluster theory or in-medium similarity renormalization
group [39]. Beyond the lightest nuclei, whether the uncertainties of
1) dominate over those of 2) may, in principle, depend on the specific
system/observable considered. Experience has shown so far that
uncertainties related to the χEFT 1) are typically the largest. We
will compare the specific contributions in each example below.

3 Photoabsorption cross section

Photoabsorption cross sections have been extensively studied
using ab initio techniques, especially in the sector of light nuclei,
see Ref. [2] and references therein. The photoabsorption cross section
is related to the response function by

σγ ω( ) � 4π2

ω
αRT ω,ω( ), (8)

where RT (ω, ω) is the response function of Eq. 2 where theΘ operator
is the transverse (with respect to photon propagation) part of the
electromagnetic current operator J and where ω = q. In the unretarded
dipole approximation, the cross section can be obtained from

σγ ω( ) � 4π2αωRD ω( ), (9)

where RD(ω) is the response function of the electric dipole operator D
(acting only on the Z protons) in the long wavelength approximation,
defined as

D � ∑Z
i

zi − Zcm( ), (10)

where zi and Zcm are the z-components of the ith particle and center-
of-mass coordinates, respectively.

Below, we will discuss two examples. First, we will deal with the
radiative capture reaction np → γd reaction, which is important for
astrophysics and is related to the photoabsorption reaction γd→ np by
time-reversal. Next, we will discuss the inclusive photoabsorption of
4He, for which we will present new original results obtained with chiral
forces at four different orders, including an analysis of its
uncertainties.

3.1 The n p ↔ γd reaction

The primordial Deuterium abundance, which is very well
constrained by astronomical [44] and cosmological [45]
observations, can also be determined from nuclear physics by
measuring or calculating the rates of the Deuterium production
and burning reactions of the big-bang-nucleosynthesis network.
While there is a reasonable agreement between these at the
moment [46], a higher-precision comparison will search more
rigorously for potential conflict which will be indicative of
missing physics in one or the other and may even hint at new
physics beyond the Standard Model. This elevates the importance
of uncertainty quantification in the primordial Deuterium production
reaction, np → γd.

In the relevant energy regime, M1 and E1 transitions are both
important; we, therefore, evaluate the cross section using the full
response function RT (ω, ω) with the one- and two-body current
operators shown in Figure 1. The uncertainties associated with the
solution of the Schrödinger equation and other numerical
approximations are negligible for this system. We therefore focus
on χEFT uncertainties for this reaction. Working with fixed currents,
we used the semi-local momentum-space-regularized chiral
interactions of Ref. [47] to study the convergence properties of
the χEFT expansion of the nuclear potential in Ref. [48]. We
employed the Gaussian Process (GP) error model developed in
Ref. [49] to perform a Bayesian analysis of the χEFT convergence
for observables that have parametric dependence on a kinematic
variable, which in this case is the np relative momentum. We
performed detailed diagnostic checks to quantitatively assess the
adequacy of the GP model and found that it described the observed
convergence very well, which allowed us to extract reliable Bayesian
posteriors for δχEFTO at various orders.

In Figure 3, we show the 95% degree-of-belief bands for
calculations at next-to-leading order (NLO), next-to-next-to-
leading order (N2LO) and next-to-next-to-next-to-leading order
(N3LO) obtained by using the leading order (LO) result as the
reference Oref (see Eq. 7). We note that the theory uncertainty
from the truncation of χEFT at N2LO and N3LO are much smaller
than experimental errors at the energy range of astrophysical
relevance. The uncertainty from truncation of the current operator
is a subject of future study.
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3.2 The γ4He → X reaction

The photodisintegration cross section of 4He has been a focus of
several past studies [50–55]. In this work, we provide new original
results for this reaction obtained within the frameworks of χEFT using
the EIHH [25, 56, 57] as a solver. We start from Eq. 9 and keep the
dipole operator fixed, while changing the nuclear interaction in the
Hamiltonian implementing different orders in the chiral expansion.
We work up to N2LO with a maximally local version of the chiral
interaction developed for the first time in Refs. [58–60], which we
previously adapted to the EIHHmethod in Ref. [26]. In the same spirit
of our work in the n p↔ γd reaction, the uncertainty coming from the
numerical solution of the Schrödinger equation is neglected here, since
the EIHH method has been proven to be very precise for three- and

four-body systems, with uncertainties that usually are below the
percent level.

To bypass the explicit calculation of the continuum wave
functions, the electric dipole response RD(ω) of Eq. 9 is obtained
by first computing its LIT and then performing the inversion. This
introduces a numerical uncertainty of the order of 1%–2%, which can
be seen in Figure 4 (left panel), where we present the calculation of
σγ(ω) at LO, NLO, N2LO and N3LO in different colors. The width of
the band is the uncertainty introduced by the inversion.

To assess uncertainty coming from the truncation of the chiral
expansion, we start from the calculations of σγ(ω) at the various chiral
orders and implement the algorithm in Eq. 6, which requires a choice
for the expansion parameter Q/Λ. A reasonable choice for Q is
obtained by a smooth max-function (see Eq. 46 of Ref. [49]) of mπ

FIGURE 3
The product of p (n, γ)d cross section σnp and the neutron speed vn versus the neutron energy En (left panel); and the deuteron photodissociation cross
section σγd as a function of the photon energy ω in the rest frame of the deuteron (right panel). The bands indicate 95% Bayesian degree-of-belief intervals at
the various orders. Experimental data are from Ref. [40] (triangles) [41] (circle) [42] (crosses) and [43] (square). Experimental errors in beam-energy resolution
are not shown.

FIGURE 4
Inclusive 4He photoabsorption cross section calculated at different order in the chiral interaction. Left panel: bands display the numerical uncertainty in
the inversion of the LIT. Right panel: bands display the χEFT truncation uncertainty, estimated using Eq. 6. The experimental data are taken from Ref. [61].

Frontiers in Physics frontiersin.org05

Acharya et al. 10.3389/fphy.2022.1066035

105

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1066035


and prel � ����
2μω

√
, wheremπ is the pion-mass and μ is the reduced mass

of the main photodisintegration channel, for which we take p−3H. For
the breakdown scale Λ we conservatively take 500 MeV, which yields
an expansion parameter for the χEFT consistent with Ref. [62]. When
implementing Eq. 6, we go beyond our calculations with local chiral
interactions which go all the way up to N2LO, and also consider the
partial N3LO calculation from Ref. [54] and use it to estimate the
uncertainty also at this order.

In Figure 4 (right panel), we show the cross section with
corresponding χEFT uncertainty at the NLO, N2LO and N3LO
orders. For every order the threshold energies are shifted to the
experimental value. Clearly, the χEFT errors account for the largest
portion of the overall uncertainty budget with respect to the numerical
inversion uncertainty, which are therefore not even included in the
right panel of Figure 4. The χEFT truncation errors are such that the
calculated photoabsorption cross section at each order is consistent
with the previous order within its uncertainties, as well as with the
experimental data from Ref. [61]. At NLO we get an uncertainty at the
cross section maximum of roughly 30% (half width), while at N2LO it
is 15% (half width). Finally, the N3LO band, which is roughly 5% (half
width), is located slightly below the shown experimental data. To
facilitate comparison of theory with experiment, we have chosen to
show only one representative set of data [61], which covers a wide
range in energy. More data exist than are shown here, see, e.g., Ref. [2]
and references therein.

4 Electromagnetic sum rules

Starting from the nuclear response function, one can compute
electromagnetic sum rules, i.e., the moments of the response function
of Eq. 2 interpreted as a distribution function. These quantities are
defined as

mn q( ) � ∫dω ωnR ω, q( ), (11)

where n is an integer. Sum rules can be calculated directly from the
LIT. Since for Γ → 0, the limit of a Lorentzian corresponds to a delta
function, we get

L σ, Γ → 0, q( ) � ∫dω R ω, q( )δ ω − σ( ) � R q, σ( ). (12)

This means that the moments of R(ω, q) can be obtained from the
following expression

mn q( ) � ∫dσ σnL σ, Γ → 0, q( ). (13)

As illustrated in Ref. [63], this procedure is equivalent to the
computation and subsequent integration of the response. Moreover,
this strategy does not require an inversion, which represents an
additional source of uncertainty.

Among the sum rules, the electric dipole polarizability αD is an
interesting one, as it is correlated to parameters in the neutron-
matter equation of state [64]. The electric dipole polarizability
can be obtained starting from the inverse-energy weighted
sum rule

αD � 2α∫dω RD ω( )
ω

� 2αm−1, (14)

where m−1 is calculated using Eq. 11 and RD(ω) is the response
function of the dipole operator in the long wavelength
approximation. From Eq. 14, it is clear that the polarizability is
dominated by the low-energy part of the response function.

In a recent work [65], we performed coupled-cluster
computations of dipole-excited state properties of the halo
nucleus 8He, focusing on αD and the energy-weighted sum rule
m1 using χEFT potentials derived at N2LO. Our calculations

FIGURE 5
The ZΩ-convergence pattern of αD and m1 for

8He calculated with ΔNLOGO (450) and ΔN2LOGO (450) at fixed Nmax =14. The green and blue bands
indicate the CC truncation uncertainty. The black points are the results obtained including 3p-3h excitations in both the ground- and excited-state
computations.
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included an estimate of the theoretical uncertainty related to the
model space convergence in Nmax and to the truncation of the
coupled-cluster expansion, according to the strategy illustrated in
Ref. [66]. Regarding the first source of uncertainty, the maximum
available model space is Nmax = 14, so we consider the residual ZΩ-
dependence at this Nmax as the uncertainty in the model space
expansion. To assess the uncertainty in the coupled-cluster
expansion, we take two different approximation schemes, the
CCSD and the CCSDT-1, since we have no higher order
coupled-cluster approximations available. The truncation
uncertainty is then estimated taking half of the difference
between the CCSD and CCSDT-1 results. The two
contributions are then summed in quadrature.

To complement our previous analysis, we consider in this work
the dependence on the order of the χEFT expansion in the case of
the Δ-full interaction model, by providing a new calculation at a
lower order (NLO). In Figure 5, we show the ZΩ convergence
pattern of αD and m1 for the ΔNLOGO (450) and ΔN2LOGO (450)
potentials [17], indicating with bands the contribution of the
coupled-cluster truncation uncertainty. In the case of the dipole
polarizability, the theoretical error receives substantial contributions
from both the many-body method and the residual dependence on the
coupled-cluster convergence parameters. The polarizability is sensitive
to the outer part of the nuclear wave function, and this makes the
convergence slower for a loosely-bound system like 8He.ΔNLOGO (450)
predicts a slightly larger polarizability with respect to ΔN2LOGO (450).
Taking into account the uncertainty budget coming from the many-
body solver (around 7%of the central value), the two results come out to
agree within errobars.

The situation changes when turning to the energy-weighted sum
rule. Here the overall uncertainty is dominated by the coupled-cluster
truncation and it is estimated to be below 2%. Also in this case
ΔNLOGO (450) leads to a larger value for m1. However, due to the
smooth convergence of this observable, the difference between the two
chiral orders, amounting to 3%, can be better appreciated than in the
case of the polarizability. At the moment it is possible only to compute
two orders in the χEFT expansion, namely the NLO and N2LO,
therefore we refrain from using the algorithm of Eq. 6 in this case.
Clearly, the uncertainty analysis is then less sophisticated than for the

A = 2, 4 nuclei, but it is reassuring to see that the NLO and N2LO error
bands overlap.

5 Electron scattering cross section

Electron scattering has proven to be a powerful tool to investigate
the nuclear structure and dynamics at various energy scales and for
different systems. Very recently we started investigating the region of
the quasielastic peak which becomes a dominating mechanism for the
momentum transfer of the order of hundreds of MeV, below the pion
production threshold. The inclusive electron-nucleus cross section can
be expressed as

d2σ

dΩdω
� σMott

q2 − ω2

q2
RL ω, q( ) + q2 − ω2

2q2
+ tan2θ

2
( )RT ω, q( )( )

(15)
with the longitudinal and transverse response functions RL/T and the
scattering angle θ. The response functions can be disentangled
experimentally via the Rosenbluth separation technique. From the
theoretical point of view, it is convenient to investigate first the
longitudinal component, which is the response function of Eq. 2
where the operator Θ(q) is the charge operator

ρ q( ) � ∑Z
i�1

eiq zi−Zcm( ). (16)

Typically, then nucleon form factors are folded in (see e.g. Ref. [68]).
The operator structure of ρ is simpler than that of the electromagnetic
current J and two-body contributions appear at a high order in the
chiral expansion (see Figure 1), so that it can be neglected if
performing studies up to N2LO. While the ab initio calculations of
RL in light systems were performed in several theoretical frameworks,
we recently extended these studies to the region of medium-mass
nuclei [69]. We focused on 40Ca, for which Rosenbluth separated
response functions are available, using two different N2LO potentials
[9, 17]. Here, we complement our uncertainty analysis by performing a
new calculation with an NLO potential.

Similarly to the photoabsorption considered in Section 3.2, the
calculation of RL requires computing the LITs which afterwards

FIGURE 6
Longitudinal response functions of 40Ca for the momentum transfer q =300 MeV/c (left panel) and q =400 MeV/c (right panel). Two orders of the chiral
expansion of the nuclear Hamiltonian are shown. The uncertainty band originates from the inversion procedure of the LITs. The experimental data are taken
from Ref. [67].
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have to be inverted, introducing an additional source of uncertainty
with respect to the sum-rule calculation. We obtain the LITs using
coupled-cluster theory within the CCSD approximation. The role
played by 3p−3h excitations will be a topic of the future
investigation. We calculate RL using a single model space of
Nmax = 14 and harmonic oscillator frequency ZΩ = 16 MeV. In
our previous work [69] we varied the frequency of the underlying
harmonic oscillator basis and its size and we found that the LITs are
already well converged. In this situation, the numerical uncertainty
is driven by the inversion procedure which is represented by the
band shown in Figure 6.

To assess the uncertainty coming from the χEFT expansion we
look at the dependence on the order of expansion of the Δ-full
potential [17] at NLO and N2LO. In Figure 6 we present RL for q =
300 MeV/c (left panel) and q = 400 MeV/c (right panel). At q = 300
MeV/c the predictions of ΔNLOGO (450) and ΔN2LOGO (450)
agree to great extent within the uncertainty bands and with the
data. In contrast, at q = 400 MeV, the uncertainty bands of
ΔNLOGO (450) and ΔN2LOGO (450) overlap less and the
agreement with data slightly deteriorates. When comparing the two
interactions, we see that the ΔN2LOGO (450) leads to a slightly higher
and narrower quasielastic peak with respect to the ΔNLOGO (450) (the
difference of around 8% in the peak for q = 400 MeV/c), bringing the
results closer to the data as the chiral order increases. Because a
quantitative analysis would require more than two orders of the
χEFT Hamiltonian, we refrain here from applying Eq. 6, which
would only contain one term.

At the qualitative level, we observe that the size of the uncertainties
of kind 1) and 2) are comparable, and those of kind 1) seem to depend
on the momentum transfer and grow at larger q value. This is, after all,
not surprising, because χEFT is expected to work better at low
momenta than at higher momenta.

6 Conclusion

In this paper, we review the recent progress made in uncertainty
quantification for ab initio calculations of electromagnetic observables
focusing on the one hand on our recent results and on the other hand
providing also new original results to complement the uncertainty
analysis. We show several examples where nuclei of different masses
are scrutinized.

We first showcase the recent computations of the n p ↔ γd
reaction, where an uncertainty analysis of the χEFT truncation with
Bayesian tools was implemented. Then, we show new results for the
photoabsoprtion cross section of 4He computed with χEFT
potentials at LO, NLO and N2LO. The uncertainty
quantification we present is based on the use of Eq. 6 and
pushed to N3LO using the results from Ref. [54]. For both these
examples in the sector of light nuclei, we find that numerical
uncertainties are negligible and the bulk of the error stems from
the truncation of the χEFT expansion. Next, we discuss sum rules in
the exotic 8He nucleus, where we confront the existing calculation
at N2LO with a new computation at NLO in the χEFT expansion
using Δ degrees of freedom. Here, we see that numerical
uncertainties and χEFT truncation errors are comparable in size.
Finally, we show results for the longitudinal response function of
40Ca using the same interactions we used for 8He. Also in this case,
the uncertainty stemming from the χEFT truncation seems

comparable to that coming from the numerical solver. It is
important to note here that we are not yet able to fully account
for the numerical uncertainties, because we have not yet included
3p–3h excitations. Furthermore, we only have two orders in the
χEFT so a quantitative uncertainty cannot yet be reliably estimated.
Interestingly, we qualitatively observe a momentum-transfer
dependence in the difference between the calculation at NLO
and N2LO, which is not unexpected given that χEFT is a low-
momentum expansion. A precise quantitative description of the
dependence of the χEFT expansion on the momentum transfer,
which is obscured by the fact that we use phenomenological form
factors to represent photon-nucleon vertices, is a subject of future
study.

Clearly, the level of sophistication of our uncertainty
quantification is higher for lighter nuclei and decreases as the
mass grows. The most rigorous analysis was performed for A = 2,
where we were able to express the truncation errors as Bayesian
degree-of-belief intervals. For the range of A ≃ 4 one can expect that
a Bayesian analysis will be implemented in the future. A
quantitative analysis of nuclei with A ≥ 8 will need more effort.
We expect LO calculations to be far from experimental data for
these nuclei, but if one wants to go beyond N2LO in the χEFT
expansion, one would need consistent potentials that are soft
enough for many-body calculations to converge. Moreover, to
fully assess uncertainties in electromagnetic observables, one
must also consider the χEFT expansion in the current and in
the interaction simultaneously. Examples of how one can vary
the χEFT expansion in the current operators can be found in the
literature for example in Refs. [2, 70] and reference therein.
Another consideration to take into account in a full uncertainty
quantification is the variation between different χEFTs,
i.e., different regularization schemes [38] or different degrees of
freedom [15]. Here, we have explored only a few options and
obviously more work in this direction needs to be done by the
whole community. Finally, in the future statistical approaches for
the variation of the LECs such as those shown in Ref. [30] should be
applied broadly to the study of electroweak dynamical observables,
such as response functions and cross sections.
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Bayes goes fast: Uncertainty
quantification for a covariant
energy density functional
emulated by the reduced basis
method
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1FRIB/NSCL Laboratory, Michigan State University, East Lansing, MI, United States, 2Department of
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Houston, TX, United States, 5Department of Physics, Florida State University, Tallahassee, FL,
United States

A covariant energy density functional is calibrated using a principled Bayesian

statistical framework informed by experimental binding energies and charge

radii of several magic and semi-magic nuclei. The Bayesian sampling required

for the calibration is enabled by the emulation of the high-fidelity model

through the implementation of a reduced basis method (RBM)—a set of

dimensionality reduction techniques that can speed up demanding

calculations involving partial differential equations by several orders of

magnitude. The RBM emulator we build—using only 100 evaluations of the

high-fidelity model—is able to accurately reproduce the model calculations in

tens of milliseconds on a personal computer, an increase in speed of nearly a

factor of 3,300when compared to the original solver. Besides the analysis of the

posterior distribution of parameters, we present model calculations for masses

and radii with properly estimated uncertainties. We also analyze the model

correlation between the slope of the symmetry energy L and the neutron skin of
48Ca and 208Pb. The straightforward implementation and outstanding

performance of the RBM makes it an ideal tool for assisting the nuclear

theory community in providing reliable estimates with properly quantified

uncertainties of physical observables. Such uncertainty quantification tools

will become essential given the expected abundance of data from the

recently inaugurated and future experimental and observational facilities.

KEYWORDS

bayesian, reduced basis method (RBM), relativistic mean field (RMF) theory, nuclear
physics, density functional theory
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1 Introduction

Nuclear science is undergoing a transformational change

enabled by the commissioning of new experimental and

observational facilities as well as dramatic advances in high-

performance computing [1]. The newly operational Facility for

Rare Isotope Beams (FRIB), together with other state-of-the-art

facilities throughout the world, will produce short-lived isotopes

that provide vital information on the creation of the heavy

elements in the cosmos. In turn, earth and space-based

telescopes operating across the entire electromagnetic

spectrum will constrain the nuclear dynamics in regimes

inaccessible in terrestrial laboratories. Finally, improved and

future gravitational-wave detectors will provide valuable

insights into the production sites of the heavy elements as

well as on the properties of ultra-dense matter at both low

and finite temperatures [2–9].

To fully capitalize on the upcoming discoveries, a strong

synergy will need to be further developed between theory,

experiment, and observation. First, theory is needed to

decode the wealth of information contained in the new

experimental and observational data. Second, new

measurements drive new theoretical advances which, in

turn, uncover new questions that motivate new

experiments. From the theoretical perspective,

sophisticated and highly-accurate ab initio methods have

been developed to solve the complicated many-body

problem. Besides the adoption of a many-body solver, one

needs to specify a nuclear interaction that is informed by two-

and three-nucleon data. A highly successful approach relies

on a nuclear interaction rooted in chiral effective field theory

(EFT). Chiral EFT—a theoretical framework inspired by the

underlying symmetries of QCD—provides a systematic and

improvable expansion in terms of a suitable small parameter,

defined as the ratio of the length scale of interest to the length

scale of the underlying dynamics [10–12]. During the last

decade, enormous progress has been made in our

understanding of the equation of state (EOS) of pure

neutron matter by systematically improving the chiral

expansion [13–19]. However, the chiral expansion breaks

down once the relevant energy scale of the problem

becomes comparable to the hard scale associated with the

underlying dynamics. This fact alone precludes the use of

chiral perturbation theory in the study of high density matter.

A more phenomenological approach that could be

extended to higher densities is Density Functional Theory

(DFT). Developed in quantum chemistry [20] but now widely

used in nuclear physics, DFT is a powerful technique whose

greatest virtue is shifting the focus away from the complicated

many-body wave function that depends on the spatial

coordinates of all particles, to an energy density functional

(EDF) that depends only on the three spatial coordinates of

the ground state density. Moreover, DFT guarantees that both

the exact ground-state density and energy of the complicated

many-body system may be obtained from minimizing a

suitable functional [21, 22]. In an effort to simplify the

solution of the problem, the Kohn–Sham formalism

reformulates the DFT problem in favor of one-particle

orbitals that may be obtained by solving self-consistently a

set of equations that closely resemble the structure of the

well-known Hartree equations [22]. It is important to note

that the theorems behind DFT offer no guidance on how to

construct the correct EDF. This fact is mitigated in nuclear

physics by incorporating as many physical insights as

possible into the construction of the functional, and then

calibrating the parameters of the model by using the available

experimental and observational data. However, unlike chiral

EFT, DFT is unable to quantify systematic errors associated

with missing terms in the functional that may become

important at higher densities. Nevertheless, given that

modern covariant EDFs are informed by the existence of

two-solar mass neutron stars, the parameters of the model

encode (at least partially) information on the high-density

component of the EOS.

The calibrated models are not static, however, and theory

must be nimble in its response to the exciting new data that will

emerge from future experiments and observations. In the

particular case of DFT, new data must be promptly

incorporated into the refinement of the EDF to explore the

full impact of the new information. This is particularly

relevant given that nuclear physics has the ability to predict

the structure and properties of matter in regions inaccessible to

either experiment or observation. For example, one may use

Bayesian inference to identify strong correlations between a

desired property, which cannot be measured, and a surrogate

observable that may be determined experimentally. However,

Bayesian methods often require multiple evaluations of the same

set of observables for many different realizations of the model

parameters. If the nuclear observables informing the EDF are

computationally expensive, then direct Bayesian inference is

highly impractical. This computational challenge has

motivated many of the recent efforts by the nuclear theory

community in the development and adoption of emulators to

accelerate computation speed with a minimal precision loss

[23–35]. In this work we explore the application of one such

class of emulators, the Reduced Basis Method (RBM) [36–38],

which falls under the umbrella of the general Reduced Order

Models (ROM) techniques [39, 40].

The Reduced Basis Method encapsulates a set of

dimensionality reduction approaches that generally aim at

speeding up computations by approximating the solution to

differential equations with just a handful of active

components (the reduced basis). These methods have been

shown to exhibit speed increases of several orders of

magnitude in various areas of science and engineering

[41–44], including specific applications for uncertainty
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quantification [45, 46], and have been recently demonstrated to

be viable for applications in nuclear physics DFT [29]. Solving

the full system of differential equations self-consistently in the

framework of covariant DFT is not a particularly demanding

computational task for modern computers, usually taking around

a minute for a heavy nucleus such as 208Pb. The computational

bottleneck appears when millions of such evaluations must be

carried out sequentially to perform Bayesian inference, and the

problem multiplies when several nuclei are involved or if one

wants to consider and compare different EDFs. A speed-up factor

of three orders of magnitude or more provided by techniques

such as the RBM could bridge the computational gap and enable

new scientific advancements that would otherwise be impossibly

or significantly more expensive. The adoption of these methods,

paired together with leadership-class computing infrastructure,

will enable the quick response that is needed to take full

advantage of the vast wealth of experimental and

observational data that will be coming in the next years.

The intent of this manuscript is to develop and showcase a

pipeline for the calibration and uncertainty quantification of a

nuclear model—a covariant energy density functional—enabled

by the RBM emulation. To that goal, in Sec. II we provide a brief

introduction to the relativistic mean field model we use,

culminating with the set of differential equations that need to

be solved in order to calculate nuclear observables. In Sec. III we

present the reduced basis methodology, alongside an explanation

on how it is used to construct an emulator that simplifies the

computations of the DFT model. In Sec. IV we explain the theory

and implementation of the Bayesian statistical analysis used to

calibrate the model parameters, with full uncertainty

quantification. In Sec. V we present and discuss the results of

the calibration, displaying the Bayesian posterior distribution of

the model parameters, together with the model predictions with

quantified uncertainties for binding energies and charge radii, as

well as the correlation between the slope of the symmetry energy

L and the neutron skin thickness of both 208Pb and 48Ca. These

two observables have been the focus of recent experimental

campaigns [47–49], and its widespread implications are of

great interest to the nuclear physics and astrophysics

communities [50, 51]. Finally, in Sec. VI we present our

conclusions and outlooks, with a perspective on the role that

this class of emulators could play, in the near future, on the

nuclear theory-experiment cycle enhanced by statistics and

machine learning [31, 52, 53].

2 Relativistic mean field calculations

The cornerstone of covariant density functional theory is a

Lagrangian density that includes nucleons and mesons as the

effective degrees of freedom. Besides the photon that mediates

the long-range Coulomb interaction, the model includes the

isoscalar-scalar σ meson, the isoscalar-vector ω meson, and

the isovector-vector ρ meson [54, 55]. The interacting

Lagrangian density consists of a nucleon-nucleon interaction

mediated by the various mesons alongside non-linear meson

interactions [55–60]. That is,

Lint � �ψ gsϕ− gvVμ+ gρ

2
τ · bμ+ e

2
1+τ3( )Aμ( )γμ[ ]ψ

− κ

3!
gsϕ( )3− λ

4!
gsϕ( )4+ ζ

4!
g4
v VμV

μ( )2 + Λv g2
ρ bμ · bμ( ) g2

vV]V
]( ).
(1)

The first line in the above expression includes Yukawa

couplings gs, gv, and gρ of the isoscalar-scalar (ϕ), isoscalar-

vector (Vμ), and isovector-vector (bμ) meson fields to the

appropriate bilinear combination of nucleon fields. In turn,

the second line includes non-linear meson interactions that

serve to simulate the complicated many-body dynamics and

that are required to improve the predictive power of the

model [56–58]. In particular, the two isoscalar parameters κ

and λ were designed to soften the equation of state of symmetric

nuclear matter at saturation density. In turn, the isoscalar

parameter ζ also softens the EOS of symmetric nuclear matter

but at much higher densities. Finally, the mixed isoscalar-

isovector parameter ∧v was introduced to modify the density

dependence of the symmetry energy, particularly it slope at

saturation density. For a detailed account on the physics

underlying each terms in the Lagrangian see Refs. [60, 61].

2.1 Meson field equations

In the mean-field limit, both the meson-field operators and

their corresponding sources are replaced by their ground state

expectation values. For spherically symmetric systems, all meson

fields and the photon satisfy Klein-Gordon equations of the

following form [59]:

d2

dr2
+ 2
r

d

dr
−m2

s( )Φ0 r( ) − g2
s

κ

2
Φ2

0 r( ) + λ

6
Φ3

0 r( )( )
� −g2

s ρs,p r( ) + ρs,n r( )( ), (2a)
d2

dr2
+ 2
r

d

dr
−m2

v( )W0 r( ) − g2
v

ζ

6
W3

0 r( ) + 2ΛvB
2
0 r( )W0 r( )( )

� −g2
v ρv,p r( ) + ρv,n r( )( ), (2b)

d2

dr2
+ 2
r

d

dr
−m2

ρ( )B0 r( ) − 2Λvg
2
ρW

2
0 r( )B0 r( )

� −g
2
ρ

2
ρv,p r( ) − ρv,n r( )( ), (2c)
d2

dr2
+ 2
r

d

dr
( )A0 r( ) � −eρv,p r( ), (2d)

Where we have defined Φ = gsϕ, Wμ = gvVμ, and Bμ = gρbμ.

The various meson masses, which are inversely proportional to

the effective range of the corresponding meson-mediated
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interaction, are given byms,mv, andmρ. The source terms for the

Klein-Gordon equations are ground-state densities with the

correct Lorentz and isospin structure. Finally, the above scalar

(s) and vector (v) densities are written in terms of the occupied

proton and neutron Dirac orbitals:

ρs,t r( )
ρv,t r( )( ) � ∑occ

nκ

2jκ + 1
4πr2

( ) g2
nκt r( ) ∓ f2

nκt r( )( ). (3)

Here t identifies the nucleon species (or isospin) and n denotes

the principal quantum number. We note that some of the semi-

magic nuclei that will be used to calibrate the energy density

functional may have open protons or neutron shells. In such case,

we continue to assume spherical symmetry, but introduce a

fractional occupancy for the valence shell. For example, in the

particular case of 116Sn, only two neutrons occupy the valence d3/2
orbital, so the filling fraction is set to 1/2.

2.2 Dirac equations

In turn, the nucleons satisfy a Dirac equation with scalar and

time-like vector potentials generated by the meson fields. The

eigenstates of the Dirac equation for the spherically symmetric

ground state assumed here may be classified according to a

generalized angular momentum κ. The orbital angular momentum

l and total angular momentum j are obtained from κ as follows:

j � |κ| − 1
2
; l � κ, if κ> 0;

− 1 + κ( ), if κ< 0,{ (4)

where κ takes all integer values different from zero. For example,

κ = − 1 corresponds to the s1/2 orbital. The single-particle

solutions of the Dirac equation may then be written as

Unκmt r( ) � 1
r

gnκt r( )Y+κm r̂( )
ifnκt r( )Y−κm r̂( )( ), (5)

where m is the magnetic quantum number and the spin-spherical

harmonics Yκm are obtained by coupling the orbital angular l

momentum and the intrinsic nucleon spin to a total angular

momentum j. However, note that the orbital angular momentum

of the upper and lower components differ by one unit, indicating that

the orbital angular momentum is not a good quantum number. The

functions gnκt and fnκt satisfy a set of first order, coupled differential

equations that must be solved to obtain the single particle spectrum:

d

dr
+ κ

r
( )ga r( )

− Ea +M −Φ0 r( ) −W0 r( ) ∓ 1
2
B0 r( ) − e

1
0

{ }A0 r( )[ ]fa r( )

� 0,

(6a)

d

dr
− κ

r
( )fa r( )

+ Ea −M + Φ0 r( ) −W0 r( ) ∓ 1
2
B0 r( ) − e

1
0

{ }A0 r( )[ ]ga r( )

� 0,

(6b)
Where the upper numbers correspond to protons and the

lower ones to neutrons, and we have used the shorthand notation

a = {nκt} to denote the relevant quantum numbers. The mass of

both nucleons is denoted by M, and it is fixed to the value

939 MeV. Finally, ga(r) and fa(r) satisfy the following

normalization condition:

∫∞
0

g2
a r( ) + f2

a r( )( )dr � 1. (7)

Looking back at Eq. 3, we observe that the proton and

neutron vector densities are conserved, namely, their

corresponding integrals yield the number of protons Z and

the number of neutrons N, respectively. In contrast, the scalar

density is not conserved.

2.3 Ground state properties

From the solution of both the Klein-Gordon equations for

the mesons Eq. 2 and the Dirac equation for the nucleons Eq. 6,

we can calculate all ground-state properties of a nucleus

composed of Z protons and N neutrons. The proton and

neutron mean square radii are determined directly in terms of

their respective vector densities:

R2
p ≡

4π
Z

∫∞
0

r4ρv,p r( )dr, (8a)

R2
n ≡

4π
N

∫∞
0

r4ρv,n r( )dr. (8b)

Following [60] we approximate the charge radius of the

nucleus by folding the finite size of the proton rp as:

R2
ch � R2

p + r2p, (9)

where we have used for the radius of a single proton rp =

0.84 fm [62].

In turn, the total binding energy per nucleon E/A− M,

includes contributions from both the nucleon and meson

fields: E = Enuc + Emesons. The nucleon contribution is

calculated directly in terms of the single particle energies

obtained from the solution of the Dirac equation. That is,
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Enuc � ∑occ
a

2ja + 1( )Ea, (10)

where the sum is over all occupied single particle orbitals, Ea is

the energy of the ath orbital, and (2ja + 1) is the maximum

occupancy of such orbital. For partially filled shells, one must

multiply the above expression by the corresponding filling

fraction, which in the case of 116Sn, is equal to one for all

orbitals except for the valence d3/2 neutron orbital where the

filling fraction is 1/2.

The contribution to the energy from the meson fields and the

photon may be written as

Emesons � 4π∫∞
0

Eσ + Eω + Eρ + Eγ + Eωρ( )r2 dr, (11)

where the above expression includes individual contributions

from the σ, ω, and ρmesons, the photon, and the mixed ωρ term.

In terms of the various meson fields and the ground-state

nucleon densities, the above contributions are given by.

Eσ � 1
2
Φ0 r( ) ρs,p r( ) + ρs,n r( )( ) − κ

12
Φ3

0 r( ) − λ

24
Φ4

0 r( ), (12a)

Eω � −1
2
W0 r( ) ρv,p r( ) + ρv,n r( )( ) + ζ

24
W4

0 r( ), (12b)

Eρ � −1
4
B0 r( ) ρv,p r( ) − ρv,n r( )( ), (12c)

Eγ � −1
2
eA0 r( )ρv,p r( ), (12d)

Eωρ � ΛvW
2
0 r( )B2

0 r( ). (12e)

Following [60], in this work we calibrate the relativistic mean

field model by comparing the calculations of charge radii and

binding energies with the experimentally measured values for the

doubly magic and semi-magic nuclei: 16O, 40Ca, 48Ca, 68Ni1, 90Zr,
100Sn, 116Sn, 132Sn, 144Sm, 208Pb.

2.4 Bulk properties parametrization

The Lagrangian density of Eq. 1 is defined in terms of seven

coupling constants. These seven parameters plus the mass of the

σ meson define the entire 8-dimensional parameter space (the

masses of the two vector mesons are fixed at their respective

experimental values of mv = 782.5 MeV and mρ = 763 MeV).

Although historically the masses of the two vector mesons have

been fixed at their experimental value to simplify the search over

a complicated parameter landscape, such a requirement is no

longer necessary. Bayesian inference supplemented by RBMs can

easily handle two additional model parameters. Given that the

aim of this contribution is to compare our results against those

obtained with the traditional fitting protocol, we fix the masses of

the two vector mesons to their experimental values, and defer the

most ambitious calibration to a future work.

Once the theoretical model and the set of physical

observables informing the calibration have been specified, one

proceeds to sample the space of model parameters: α ≡ {ms, gs, gv,

gρ, κ, λ, ∧v, ζ}. However, given that the connection between the

model parameters and our physical intuition is tenuous at best,

the sampling algorithm can end up wandering aimlessly through

the parameter space. The problem is further exacerbated in

covariant DFT by the fact that the coupling constants are

particularly large. Indeed, one of the hallmarks of the

covariant framework is the presence of strong—and

cancelling—scalar and vector potentials. So, if the scalar

coupling gs is modified without a compensating modification

to the vector coupling gv, it is likely that no bound states will be

found. To overcome this situation one should make correlated

changes in the model parameters. Such correlated changes can be

implemented by taking advantage of the fact that some of the

model parameters can be expressed in terms of a few bulk

properties of infinite nuclear matter [60, 64]. Thus, rather

than sampling the model parameters α, we sample the

equivalent bulk parameters θ = {ms, ρ0, ϵ0, M*, K, J, L, ζ}. In

this expression, ρ0, ϵ0, M*, and K are the saturation density, the

binding energy, effective nucleon mass, and incompressibility

coefficient of symmetric nuclear matter evaluated at saturation

density. In turn, J and L are the value and slope of the symmetry

energy also at saturation density. The quartic vector coupling ζ is

left as a “bulk” parameter as the properties of infinite nuclear

matter at saturation density are largely insensitive to the value of

ζ [57]. The virtue of such a transformation is twofold: first, most

of the bulk parameters given in θ are already known within a

fairly narrow range, making the incorporation of Bayesian priors

easier and natural, and second, a modification to the bulk

parameters involves a correlated change in several of the

model parameters, thereby facilitating the success of the

calibration procedure.

In the context of density functional theory, Eqs 2–6 represent

the effective Kohn–Sham equations for the nuclear many-body

problem. Once the Lagrangian parameters α have been calculated

from the chosen bulk parameters θ, these set of non-linear

coupled equations must be solved self-consistently. That is,

the single-particle orbitals satisfying the Dirac equation are

generated from the various meson fields which, in turn, satisfy

Klein-Gordon equations with the appropriate ground-state

densities as the source terms. This demands an iterative

procedure in which mean-field potentials of the Wood-Saxon

form are initially provided to solve the Dirac equation for the

occupied nucleon orbitals which are then combined to generate

1 The charge radius of 68Ni was recently measured [63] and we do not
include in the calibration to better compare with the previous results
[60]. The charge radius of 100Sn has not been measured yet. Therefore,
our calibration dataset consists of 18 points, 10 binding energies and 8
charge radii.
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the appropriate densities for the meson field. The Klein-Gordon

equations are then solved with the resulting meson fields

providing a refinement to the initial mean-field potentials.

This procedure continues until self-consistency is achieved,

namely, the iterative process has converged.

In the next section we show how the reduced basis method

bypasses such a complex and time-consuming procedure by

constructing suitable reduced bases for the solution of both

the Klein-Gordon and Dirac equations.

3 The reduced basis method

A system of coupled differential equations in the one-

dimensional variable r, such as Eq. 2 and Eq. 6, can be

computationally solved by numerical methods such as finite

element or Runge-Kutta. We shall refer to the numerical

solutions obtained from those computations as high fidelity

solutions for the rest of the discussion. Those approaches

possess an intrinsic resolution Δr—such as the grid spacing in

the case of finite element or the step size in the case of Runge-

Kutta2. For a given interval L in which we are interested in solving

the equations, each of the functions involved will have roughly

N ~ L
Δr elements. In the case of the finite element method for

example, for fixed particle densities and a given grid, the four

fields involved in Eq. 2 become arrays of unknown values:

r → r1, r2, . . . , rN[ ],
Φ0 r( ) → Φ0 r1( ), Φ0 r2( ), . . . , Φ0 rN( )[ ],
W0 r( ) → W0 r1( ), W0 r2( ), . . . , W0 rN( )[ ],
B0 r( ) → B0 r1( ), B0 r2( ), . . . , B0 rN( )[ ],
A0 r( ) → A0 r1( ), A0 r2( ), . . . , A0 rN( )[ ].

(13)

In turn, once the differential operators such as d2

dr2 are

transformed into matrices of finite differences, the

differential equations themselves will become matrix

equations for the unknown arrays Eq. 13. The same

procedure follows for the Dirac equations Eq. 6 for fixed

fields, with each upper and lower components gnκ(r) and

fnκ(r) for protons and neutrons becoming arrays of unknown

values that must be solved for.

Both the traditional Runge-Kutta solver and the finite

element solver we developed to iteratively tackle Eqs 2 and

6 have L = 20 fm, Δr = 0.05 fm, and therefore N � 400. The

goal of the Reduced Basis (RB) approach is to build a

framework that, after a preparation period called the offline

stage, can obtain approximate solutions to the differential

equations with as few—or even better, none—calculations of

size N during the evaluation period called the online stage

[37]. Any observable computed from such solutions, such as

binding energies and radii, should also involve as few

calculations of size N as possible to streamline the

uncertainty quantification procedure.

The RBM implementation we construct in this work consists

of two principal steps: “training and projecting” [29]. In the first

step we build the RB using information from high fidelity

solutions, while in the second step we create the necessary

equations for finding the approximate solution by projecting

over a well-chosen low-dimensional subspace. The following

subsections explain both steps in detail.

3.1 Training

We begin by proposing the corresponding RB expansion for

each function involved in Eqs 2 and 6:

Φ0 r( ) ≈ Φ̂0 r( ) � ∑nΦ
k�1

aΦk Φk r( ), (14a)

W0 r( ) ≈ Ŵ0 r( ) � ∑nW
k�1

aWk Wk r( ), (14b)

B0 r( ) ≈ B̂0 r( ) � ∑nB
k�1

aBk Bk r( ), (14c)

A0 r( ) ≈ Â0 r( ) � ∑nA
k�1

aAk Ak r( ), (14d)

g r( ) ≈ ĝ r( ) � ∑ng
k�1

agk gk r( ), (14e)

f r( ) ≈ f̂ r( ) � ∑nf
k�1

afk fk r( ), (14f )

The subscripts n and κ have been omitted from the gnκ and fnκ
components for the sake of clarity, but it is important to note that

the expansion will have unique coefficients ak, and possible

different number of basis ng and nf for each level. The

functions with sub-index k, Ak(r) for example, form the RB

used to build their respective approximations, Â0(r) in this case.

It is interesting to note that Eq.2d can be solved to explicitly

obtain A0(r) as integrals of the proton density (see Eq. 7 in [59]).

Nevertheless, we found that expanding A0(r) in its own RB

resulted in appreciably bigger speed up gains by the RBM

emulator with negligible loss in accuracy.

Once chosen, each RB is fixed and will not change when

finding approximated solutions to Eqs 2 and 6 for different

parameters α. The coefficients a(·)k do depend on the

parameters α and are the ones responsible for adjusting the

approximate solution as the parameter space is explored. It is

important to note that, if there is a level crossing, the

occupancy configuration of the nucleus will change. The

RBM implementation we describe here—relying on smooth

2 Both the grid size and the step size could be adaptive instead of
constant across the spatial domain. We shall assume a constant Δr
for the rest of the discussion for the sake of simplicity.
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variations of the functions involved as α changes—is unable to

correctly emulate the solution if suddenly an orbital looses or

gains nucleons. For the parameter ranges we studied we do not

expect that to happen for the closed shell magic nuclei we

employed given the gap in the single particle spectrum. We did

not observe level crossing either on the partially filled

neutrons and protons shells of 116Sn and 144Sm.

For future applications going beyond the spherical

approximation it will be important to modify the approach

accordingly, both in expanding the number of basis states to

capture the richness of the solutions and in directly including

information on the occupation of the single particle orbitals. This

can be done at either the Hartree-Fock-Bogoliubov or the

Hartree-Fock + BCS level and will naturally address the issue

of level crossings and deformation at the expense of the slower

performance associated with larger bases and more coupled

equations to be solved. The trade-off is tempered by the fact

that, because the RBM does not depend on the original

dimensionality of the problem, moving from a spherical

picture to full 3D will not be as heavily penalized as the high

fidelity solver.

There are several approaches for the construction of the reduced

basis [36, 37], most of which involve information obtained from high

fidelity solutions for a sample of the parameters α. For this work, we

choose the Proper Orthogonal Decomposition (POD) approach,

which consists of building the RB as the first n components

(singular vectors) of a Singular Value Decomposition (SVD)

[65]—see also Principal Component Analysis (PCA) [66]—

performed on a set of high fidelity solutions.

For each nucleus involved we compute high fidelity

evaluations for 50 parameter sets sampled from the

multivariate Gaussian distributions obtained in the calibration

performed in [60].We perform the SVD on each of the four fields

and each of the wave functions for the respective protons and

neutron levels for all ten nuclei considered in this study. For

example, for 48Ca for protons and neutrons there are six and

seven fa(r) and ga(r), respectively. Figure 1 shows the normalized

singular values σk/σ1 for the field and nucleon wave functions for
48Ca and 208Pb. Each singular value represents how much of the

total variance in the entire sample that particular component is

capable of explain [40]. A fast exponential decay of the singular

values can indicate that a RB with few components should be able

to approximate the full solution with good accuracy (see also the

discussion on the Kolmogorov N-width in Chapter V of [36]).

Figure 2 shows the first three principal components obtained

from the SVD of the 50 high fidelity evaluations for theΦ0(r) and

A0(r) fields, the upper component g(r) of the first neutron level,

and the lower component f(r) for the last proton level for 48Ca.

The figure also shows the corresponding 50 high fidelity

solutions, although the spread is barely noticeable for the two

wave function components, and is imperceptible outside of the

inset plot for the photon field A0(r). We observed a similar small

spread of the fields and wave functions for all the nuclei

considered for the 50 high fidelity evaluations. This is

consistent with the fact that the relativistic mean field model

has been calibrated to reproduce ground state experimental

observables such as masses and radii within a 0.5% error3

[60]. Appreciable variations of the solutions would deteriorate

such values.

Choosing how many reduced bases to include for each field

or wave function—the upper limits on the sums in Eq. 14 [nΦ,

nW, nB, nA, ng, nf]—is a non-trivial process. In general, the more

basis used the more precise the approximation will be, but that

comes at the trade-off of an increased calculation time. This choice

will not depend only on the relative importance of the singular

values shown in Figure 1, but rather on the quantities we are

FIGURE 1
Normalized singular values σk/σ1 for the fields Φ0(r), W0(r),
B0(r), and A0(r), and the single particle wave functions of the upper
gnκ(r) and lower fnκ(r) components for 48Ca (A) and 208Pb (B). The
single particle proton levels are denoted as g(P) and f(P) for
the upper and lower components, respectively, while the single
particle neutron levels are denoted as g(N) and f(N) for the upper
and lower components, respectively. There are six proton levels
and seven neutron levels for 48Ca (A), while for 208Pb there are
sixteen proton levels and twenty-two neutron levels.

3 With an error of around 1.4%, the charge radius of 16O can be treated as
an outlier in which the mean field approximation might break down.
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interested in calculating after solving the coupled differential

equations. For example, for 48Ca, the photon field A0(r) has the

fastest decaying singular values shown in Figure 1, which could

indicate that we need a smaller basis to reproduce it to the same

level of accuracy than any of the other fields, such as B0(r).

Nevertheless, if our primary objective is to obtain accurate

calculations for binding energies and charge radii, for example,

it might be the case that we need to reproduceA0(r) tomuch better

precision than B0(r), requiring nA > nB. We elaborate this

discussion later when we describe our method for selecting the

number of basis for each function.

3.2 Projecting

For a fixed nucleus and a chosen RB configuration we have nΦ +

nW + nB + nA free coefficients for the fields, ∑lP
i�1(n(i,P)g + n(i,P)f )

coefficients for the single particle wave functions for protons, and∑lN
i�1(n(i,N)

g + n(i,N)
f ) for the single particle wave functions for

neutrons. In these expressions lP and lN denote the total levels of

protons and neutrons for the given nucleus, respectively.

Additionally, since Eq. 6 are eigenvalue equations, the respective

energies Ei,p and Ei,N for each of the protons and neutrons levels also

count as unknown quantities that need to be determined. Let

us denote a list of such coefficients and energies as

a ≡ {aΦ1 , aΦ2 , . . . , aW1 , . . .E1P, E2P, . . .}.
For example, consider we are working with 48Ca which has

six proton levels and seven neutron levels. If we set three RB

for every field and wave function expansion in Eq. 14, we will

have 12 coefficients associated with the fields, 36 coefficients

and six energies associated with the protons, and

42 coefficients and seven energies associated with the

neutrons. This amounts for a total of 103 unknown

quantities that must be determined from 103 equations.

Each single particle level for protons and neutrons has an

associated normalization condition shown in Eq. 7. These

normalization equations go in par with the unknown energies.

The rest of the unknown coefficients—90 in this example—are

determined from the Galerkin projection equations that we

now describe. The Galerkin method [67] is the traditional

approach for obtaining such coefficients in the RBM [37, 39].

Let us denote the set of field functions and wave functions in the

compact notation Ξ≡{Φ0, W0, B0, A0, g, f} and their respective RB

approximation Ξ̂ ≡ {Φ̂0, Ŵ0, B̂0, Â0, ĝ, f̂}. Let us denote the Klein-
Gordon and Dirac equations as operators acting on the set Ξ, re-
arrange them such that they are all equal to 0, and label them as:

FIGURE 2
First three principal components in red, orange, and green respectively, for Φ0(r) (A), eA0(r) (B), the first g(r) for neutrons (C), and the sixth f(r) for
protons (D) in 48Ca. The second and third components (in orange and green) have been re-scaled arbitrarily for plotting convenience. The
50 solutions used in the training set are shown in different shades of blue in each figure. The spread of such solutions is barely visible forΦ0(r) and f(r),
and almost undetectable for the other two cases. The spread is further enhanced in the inset plots within the magenta squares in each sub
figure.
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Eq.(2a) → FΦ
α Ξ[ ] � 0,

Eq.(2b) → FW
α Ξ[ ] � 0,

Eq.(2c) → FB
α Ξ[ ] � 0,

Eq.(2d) → FA
α Ξ[ ] � 0,

Eq.(6a) → Fg
α Ξ[ ] � 0,

Eq.(6b) → Ff
α Ξ[ ] � 0.

For example, FA
α [Ξ] � 0 reads

( d2

dr2 + 2
r

d
dr)A0(r) + eρv,p(r) � 0, and it only depends explicitly

on the photon field A0(r) and on the protons components g(r)

and f(r) through the density ρv,p(r). There is a different associated

operator for each proton and neutron level for the Dirac

equations, but we omit a tracking index to keep the notation

simpler.

Finding a solution Ξ for given parameters α means finding a

collection of fields and wave functions such that all the operators

F(·)
α [Ξ] acting on such list give back the function that is zero for

every r. Such solution must satisfy as well the normalization

condition Eq. 7. In general, these requirements cannot be

satisfied by any choice of the RB coefficients under the RB

approximation, i.e. F(·)
α [Ξ̂] ≠ 0 simultaneously for any choice

of a. We can relax these conditions by projecting each operator

Fα[Ξ̂] over a set of “judges” ψ(·)
j (r) [29] and requiring that the

projections are zero:

〈ψΦ
j |FΦ

α Ξ̂[ ]〉 � 0, 1≤ j≤ nΦ, (16a)
〈ψW

j |FW
α Ξ̂[ ]〉 � 0, 1≤ j≤ nW, (16b)

〈ψB
j |FB

α Ξ̂[ ]〉 � 0, 1≤ j≤ nB, (16c)
〈ψA

j |FA
α Ξ̂[ ]〉 � 0, 1≤ j≤ nA, (16d)

〈ψg
j |Fg

α Ξ̂[ ]〉 � 0, 1≤ j≤ ng, (16e)
〈ψf

j |Ff
α Ξ̂[ ]〉 � 0, 1≤ j≤ nf, (16f)

Where we have made the choice of projecting each

operator F(·)
α [Ξ] a total of n(·) times, where n(·) is the

number of RB expanding the associated function. Once

again, there will be a different set of projection equations

for every proton and neutron level for a given nucleus. The

projection operation, which we write using Dirac’s notation,

is used here to mean the usual inner product integral over the

radial variable, r ∈ [0,∞):

〈ψ r( )|ϕ r( )〉 ≡ ∫∞
0

ψ* r( )ϕ r( )dr (17)

Following our previous approach [29], we choose the

“judges” to be the same as the RB expansion, as it is common

practice with the Galerkin method [68]. For example, in the case

of 48Ca with three basis for every field and wave function, since

the photon field RB expansion Â0 � ∑3
k�1aAk Ak has three

unknown coefficients, there will be three “judges” projecting

the operator FA
α [Ξ̂]. These “judges” are chosen as ψA

j (r) � Aj(r)

for 1 ≤ j ≤ 3. In total, for this 48Ca example, we will have three

projection equations for each field, three equations for each g and

three for each f for each level of protons and neutrons, for a total

of 90 projection equations. Such system of equations, together

with the normalization conditions uniquely determines (if it has

a solution) the 103 RB coefficients and energies a for each new

value of the parameters α.

We also note that the dependence of Eqs 2 and 6 on the

parameters α is affine, which means that every operator can be

separated into a product of a function that only depends on α and

a function that only depends on r. For example, the non-linear

coupling between the isoscalar-vector meson ω and the

isovector-vector meson ρ in Eq.2c reads:

−2(g2
ρΛv)[W0(r)B0(r)]. In practice, this means that every

integral in r in the projection equations Eq. 16 can be done,

once the RB has been fully specified, without explicitly assigning

numerical values to the parameters such as g2
ρ or ∧v. These

computations are usually done once during the offline stage and

then stored in memory to be used during the online stage [37].

The result of this procedure is a set of projected

equations—agnostic to the r variable—that do not involve any

computation in the high fidelity space of sizeN . These equations

will involve a small amount of linear combinations of products of

the model parameters α and the unknown coefficients a, usually
much more computationally tractable than the original coupled

equations of size N . The two observables we study in this work,

the charge radius and binding energy of each nucleus, are also

affine functions of the parameters α and the solution’s

coefficients a, see Eqs. 8 and Eqs 10–12. This means that

these observables can also be pre-computed, avoiding

calculations of size N when the emulator is used for fast

evaluations4.

For a concrete example, consider 48Ca now with only two

basis for all functions. Each of the two projection equations

associated with the proton’s g and f Eq. 16e and Eq. 16f contains a

total of 22 terms. The equation for f for the first proton

level—with the choice of basis we describe in the next

section—with all numbers printed to two decimals precision

reads:

〈gf
1 r( )|Ff

α Ξ̂[ ]〉 � 0.06af1 − 0.09af2 − EP 0.8ag2 + 1.66ag1( )
+M 1.66ag1 + 0.8ag2( ) − 2.89aΦ1 a

g
1 − 1.45aΦ2 a

g
1

+ 2.35aW1 a
g
1 + 1.17aW2 a

g
1 − 0.03aB1a

g
1

− 0.01aB2a
g
1 + 0.07aA1 a

g
1 − 0.01aA2 a

g
1 − 0.8aΦ1 a

g
2

− 2.71aΦ2 a
g
2 + 0.64aW1 a

g
2 + 2.18aW2 a

g
2 − 0.02aB1a

g
2

+ 0.01aB2a
g
2 + 0.03aA1 a

g
2 + 0.04aA2 a

g
2 � 0.

(18)

4 If the dependence on the parameters α of the operators involved in the
system’s equations, or in the observable’s calculations is not affine,
techniques such as the Empirical Interpolation Method [37, 69, 70] can
be implemented to avoid computations of size N in the online stage.
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3.3 Accuracy vs. speed: Basis selection

As with many other computational methods, the RBM posses a

trade-off between accuracy and speed. If we use more bases for the

expansions Eq. 14 we expect that our approximation will be closer to

the high fidelity calculation, but that will come at the expense of

more coefficients to solve for in the projection equations Eq. 16. If we

use too few bases, the underlying physical model will be miss-

represented when compared with experimental data, but if we use

too many bases we might waste computational time to obtain an

unnecessary accuracy level. To find a satisfactory balance we study

the performance of the RBM, both in terms of accuracy and speed,

for different basis size configurations on a validation set containing

50 new high fidelity evaluations drawn from the same distribution as

the one we used for the training set [60].

As a metric of performance we define the emulator root mean

squared errors as:

ΔRch �

������������������
1
Nv

∑Nv

i�1
Rmo
ch i − Rem

ch i( )2
√√

(19)

For the charge radius, and as:

ΔBE �

�������������������
1
Nv

∑Nv

i�1
BEmo

i − BEem
i( )2

√√
, (20)

For the total binding energy. In both expressions Nv is the

total number of samples in the validation set (50) and the

superscripts “mo” and “em” stand for the high fidelity model

and the RBM emulator, respectively.

A straightforward approach for exploring different basis

configurations consists of setting all basis numbers {nΦ, nW, nB,

nA, ng, nf} to the same value n. There are two main disadvantages of

this approach. First, the basis increments can be too big, making it

harder to obtain a good trade-off. For example, in the case of 208Pb

with n = 2 we have a total of 160 basis, while for n = 3 we jump

straight to 240. Second, the accuracy in the emulation of the

observables could be impacted differently by how well we

reproduce each function involved in Eq. 2 and Eq. 6. Having a

leverage that allows us to dedicate more resources (bases, that is) to

more crucial functions could be therefore beneficial, and the

simplistic approach with a common number n is unable to

optimize the computational resources in that sense.

On the other hand, exploring all possible basis size

configurations for a given maximum basis size is a

combinatorial problem that can quickly become intractable.

Therefore, we decided to follow a Greedy-type optimization

procedure in which we incrementally add new basis to the

current configuration, choosing the “best” local option at each

step. The basis are chosen from the principal components

obtained from the training set of 50 high fidelity runs. For all

the nuclei the starting configuration was seven basis for each

one of the fields {Φ0, W0, B0, A0} and two basis for each of the

wave functions g and f on all the nucleus’ levels. On each step,

we add one more basis to both g and f to the four levels across

both protons and neutrons which were reproduced most

poorly in the previous iteration on the validation set. The

“worst performers” are chosen alternating in terms of either

the single particle energies (serving as a proxy for the total

binding energy), and the L2 norm on the wavefunctions

themselves (serving as a proxy for the proton and neutron

radius). The fields basis numbers are all increased by one once

one of the wave functions basis number reaches their current

level (7 in this case).

For example, for 48Ca we start with seven basis for the four

fields {nΦ, nW, nB, nA} = {7, 7, 7, 7}, and {ng, nf} = {2, 2} for

every one of the six levels for protons and seven levels for

neutrons. On the first step we compare the RBM calculations

with the 50 high fidelity solutions from the validation set and

identify the first neutron level, and the first, third, and fifth

proton levels as the worse (on average) estimated single

particle energies. Consequently, their respective basis are

increased by their third principal components (see

Figure 2): {ng, nf} = {3, 3}. On the next step, we re-calculate

FIGURE 3
Performance of the RBM emulator for 48Ca (A) and 208Pb (B)
as the total number of basis is increased following the Greedy
algorithm described in the text. The dashed red and green lines in
both plot indicate an error of 0.1% in the charge radius and
total binding energy, respectively. The computation time per
sample is calculated solving the RBM equations in Mathematica,
which is substantially slower than the production emulator used in
the calibration and detailed in Sec. IIID.
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the RBM solutions with the new updated basis and identify the

fifth neutron level, and the second, third, and sixth proton

levels as the worst performances in terms of the overall wave

function sense (the L2 norm). This procedure is repeated as the

overall basis number increases as is illustrated in Figure 3 for
48Ca and 208Pb. We observed similar behaviors for the other

eight nuclei involved in this study.

For the range of basis explored, the overall performance for

both the charge radius and total binding energy roughly

improves exponentially, although not monotonically5, with the

total basis number. The error in the radius and binding energy

reduces by more than a factor of 100 for 48Ca and by a factor of

10 for 208Pb. The computational time also increases

exponentially, expanding almost an entire order of magnitude

for both nuclei.

To select an optimal configuration of bases we used as a

target a 0.1% error in both observables for all nuclei involved,

which is roughly three times smaller than the average

deviation between the originally calibrated RMF and the

available experimental values [60]. These targets are

shown as the red and green dashed lines in Figure 3.

Table 1 shows the basis size for the chosen basis and the

results from this validation analysis. In the case where we

would like to have a faster emulator at the expense of

accuracy, we could choose a smaller basis size from the

configurations showed in Figure 3. In the case where we

need a more accurate emulator for particular calculations,

configurations with more basis functions could be chosen at

the expense of speed.

3.4 RBM code optimization

The offline stage consisting of the symbolic construction of

the Galerkin projection equations and the expressions for the

observables of interest is performed in Mathematica, resulting in

polynomial equations in the parameters and RB coefficients such

as Eq. 18. These equations are then parsed and converted into

both Python and Fortran functions which can then be compiled

into a library and evaluated in the calibration driver software. The

explicit Jacobian matrix is also constructed and parsed in the

same way, resulting in fewer evaluations of the polynomial

equations and thus faster convergence of the root finding

routine. This automated pipeline from symbolic representation

in Mathematica to compiled Python library vastly simplifies the

development process of the emulator and allows for various basis

sizes to be included at will while ensuring an efficient

implementation.

For the Python implementation Cython is used to first

convert the Python code into C which is subsequently

compiled into a Python compatible library. The Fortran

implementation is similarly compiled using the NumPy f2py

tool to produce a performant Fortran library with an appropriate

TABLE 1 Results from the basis selection procedure using the 50 samples from the validation set.

Nuc Basis Time Δ Rch 0.1% Rch Δ BE 0.1% BE
Size [ms] [10–3 fm] [10–3 fm] [MeV] [MeV]

16O 68 0.7 1.8 2.7 0.1 0.1

40Ca 116 2.2 1.2 3.5 0.2 0.3

48Ca 120 2.4 0.4 3.5 0.1 0.4

68Ni 128 3.1 1.8 3.9 0.5 0.6

90Zr 168 6.6 0.9 4.3 0.2 0.8

100Sn 180 8.1 1.0 4.5 0.3 0.8

116Sn 176 8.0 2.4 4.6 0.8 1.0

132Sn 184 9.5 1.9 4.7 0.8 1.1

144Sm 216 14 1.8 4.9 0.8 1.2

208Pb 236 20 0.9 5.5 1.5 1.6

The second column shows the total basis size for the selected configuration for each nucleus for the RBM emulator we use in the rest of the manuscript. Column three shows the average time

to compute a single RB full solution for that nucleus using the optimized compiled emulator in Python, which we detail in the next section. Columns four and six show the root mean

squared error of the emulator (see Eqs 19 and 20) when compared to the high fidelity solutions for the charge radius and the total binding energy, respectively. Columns five and seven show

the target of 0.1% of the experimental value of the respective quantity used in the basis selection procedure. For the charge radius of68Ni and100Sn the central value of FSUGold2 [60] was

used instead for column five.

5 For some steps the emulator’s performance -in terms of Δ Rch and Δ
BE-gets worse when adding the four new basis, which at first might
seem counter-intuitive. It is important to note, however, that with each
new basis we add we are changing the entire system of equations both
by adding four new projections and by adding new elements to the
previous ones. Nothing prevents the solution a to the new system to
under perform in comparison to the previous one in the particular
metric we are using.
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Python interface. Regardless of the generating code, the resulting

interface of the modules are the same and can be used

interchangeably depending on the needs of the user. Each

evaluation of the emulator for a given set of parameters then

uses the MINPACK-derived root finding routine in SciPy [71]

to find the optimal basis coefficients which are used as input for

the observable calculations.

This procedure results in a time-to-solution on the order of

hundreds of microseconds to tens of milliseconds depending on

the nucleus being considered, as detailed in Table 1. The Runge-

Kutta high-fidelity solver (written in Fortran) does not exhibit

such a strong scaling across different nuclei, thus the relative

speed-ups vary from 25,000x for 16O, to 9,000x for 48Ca and

1,500x for 208Pb. This level of performance brings the evaluation

of the surrogate model well within our time budget for the

calibration procedure and also represents the simplest method

in terms of developmental complexity. If the evaluation of the

emulator needs to be further accelerated, a pure Fortran

implementation of the root finding routine exhibits an

additional decrease in time-to-solution of order 3x in

comparison to the hybrid Python/compiled model detailed

above at the cost of a slightly less user-friendly interface for

the emulator.

Having constructed an emulator with the accuracy and

calculation speed level we require, we now proceed to build

the Bayesian statistical framework that will be used to perform

the model calibration. In this calibration, the emulator finite

accuracy will be included as part of our statistical model.

4 Framework for Bayesian
uncertainty quantification

To calibrate our nuclear model properly, we need to

account for the sources of error associated with each data

point. We will use the well-principled Bayesian framework for

this task [23, 72], which produces a full evaluation of

uncertainty for every model parameter, in the form of

posterior probability distributions given all the data. Its

ingredients are twofold: first, a probability model, known as

the likelihood model, for the statistical errors linking the

physically modeled (or emulated) output to the

experimental data given physical model parameters; second,

another probability model for one’s a priori assumptions

about the physical model parameters. The output of the

Bayesian analysis takes the form of a probability

distribution for all model parameters; this is known as the

parameters’ posterior distribution. In this work, given the

paucity of data, we choose to estimate the standard deviations

of the statistical models separately, ahead of the Bayesian

analysis, either using uncertainty levels reported in the

literature, or using a natural frequentist statistical

estimator. This minor deviation from a fully Bayesian

framework is computationally very advantageous, an

important consideration given this manuscript’s overall

objective.

The Bayesian framework can also be used as a predictive

tool, by integrating the high-fidelity or emulated physical

model against the posterior distribution of all model

parameters, for any hypothetical experimental conditions

which have not yet been the subject of an experimental

campaign. Such predictions are expected also to take into

account the uncertainty coming from the statistical errors in

the likelihood version of the physical model. Relatively early

examples of these uses of Bayesian features in nuclear physics

work can be found in [73, 74].

In this section, we provide the details of our likelihood and prior

models, and how they are built in a natural way, as they relate to

experimental values, their associated emulated values, and all physical

model parameters. We also explain in detail how the statistical model

variance parameters are estimated ahead of the Bayesian analysis. All

our modeling choices are justified using the physical context and the

simple principle of keeping statistical models as parsimonious as

possible.

4.1 Specification of the statistical errors
and the likelihood model

Let us denote by yex
i the ith experimental

observation—binding energies or charge radii in our case—of

the 10 nuclei considered. We have a total of 10 measured binding

energies and 8 charge radii (the charge radii of 68Ni was not

included in the calibration, while 100Sn does not have a measured

charge radii), therefore 1 ≤ i ≤ 18. Let us denote by ymo
i (α) the

high fidelity model calculation associated with yex
i for a given

value of the model parameters α. Finally, let us denote yem
i (α) the

RBM emulated calculation associated with the same observable.

We identify three main sources of errors6 in the model

calibration, namely experimental, modeling, and emulation

errors—the latter being the difference between ymo
i (α) and

yem
i (α) — which we write into a statistical model as follows:

for every i,

yex
i � ymo

i α( ) + δi α( ) + ϵi
� yem

i α( ) + ηi α( ) + δi α( ) + ϵi. (21)

These three sources of error are represented in Figure 4 as an

illustrative stylized example.

The experimental error, ϵi, is assumed to come from a normal

distribution with mean zero and standard deviation σexi :

6 A fourth source of error could be, in principle, the computational error
in the high fidelity solver for the physical model. We expect this error to
be negligible in comparison to the other three at the level of resolution
Δr our high fidelity solvers have.
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ϵi ~ N (0, (σexi )2). These errors are assumed to be uncorrelated

between measurements of different nuclei and different quantities.

The error scale for each measurement, σexi , is an estimate of the

aggregate of the many uncertainty sources—both systematic and

statistical—that can play a role during the experimental campaign.

In principle, since each measurement comes from a different

campaign i, it is important to allow σexi to change from i to i.

Since the experiments are not conducted in consort, it is legitimate to

assume these errors are uncorrelated. As shown in Figure 4, these

experimental errors ϵi should not be interpreted as the discrepancy

between the theoretical prediction and the experimental value.

Rather, they represent the estimated difference between the

observed experimental value during realistic conditions,

compared to its (unattainable) value in ideal settings free of

experimental noise. This noise is thus due for instance to the

known imprecision of measurement instruments.

The modeling error, or model discrepancy term, δi(α), represents

the intrinsic failures of the physical model when reproducing reality,

for a given value of α. It is an aggregate of the many simplifications

made during the construction of the model, as well as any physical

effects, known or unknown, which are unaccounted for by the

physical model. In the limit where the experimental errors become

negligible, it is the term that explains the deviation between theory and

observation. Due to these model limitations, we expect that even the

best regions in the parameter space—values of α that make the

discrepancies as small as possible—cannot make them all vanish

simultaneously (δi(α) = 0) for every observable i.

It is typically unrealistic to expect a very precise estimate of the

statistical properties of the set of δi(α) as α varies. Indeed, first, because

the usual dataset in low-energy physics studies consist only of a few

spherical magic or semi-magic nuclei, limiting the statistical analyses

that can be made. Second, since the origin of δi(α) has roots in

phenomena not completely understood, it becomes very hard to give

accurate estimates when the experimental observations are not

available. This motivates us to propose a parsimonious model, in

accordance with the statistical principle that parsimony promotes

robustness, an idea that traces back several decades (e.g. [75]). We

assume that, up to scaling at the level of observables, the modeling

error variances are sharedwithin each of the two observable categories

(binding energies and charge radii), and do not depend on the

parameters α within their physical meaningful range that

reproduces the nuclear properties. This is represented by the scale

σmo
i (to be defined precisely shortly) in Figure 4.

Finally, for a given fixed value of the parameters α, the emulator

error, ηi(α), represents the difference between the model’s original

high fidelity calculation, and the approximate version computed by

the emulator. In Figure 4 it is represented as the difference between

the red and magenta vertical lines. This is the easiest error to obtain

exactly, given a fixed α, since it is entirely computable, given access to

the high fidelity and the emulator implementations. The challenge

lies in estimating ηi(α) for new values of αwithout the use of the high

fidelity solver. In the RBM literature, there exist approaches to

estimate the emulator’s error in terms of the properties of the

underlying differential equation [37], [76] and [77], but to our

knowledge they have not been yet extended to the type of

coupled nonlinear equations that describe our physical model Eq.

2 and Eq. 6. Our proposal below is to model all emulator errors,

including the unobserved ones, using the same statistical model,

where the emulator error intensity does not depend on α, thereby

circumventing the issue of developing an analytical approach to

extrapolating these errors in a non-linear setting, and keeping with

the principle of parsimony.

Having identified and described these three sources of errors,

we proceed to propose and implement methods to estimate their

combined effect in order to calibrate our physical model properly

through the RBM emulator.

In the case of binding energies and charge radii, the

experimental determinations are precise enough that the

typical error scale σexi can be ignored in comparison to the

typical model discrepancies7. Therefore, we decide to neglect

the experimental errors for the rest of our analysis.

FIGURE 4
Visual representation of the statistical model with the three
sources of uncertainty for an observable yi. For a particular value of
α, the model calculation, ymo

i (red vertical line) deviates from the
center of the experimental distribution, P(yexi ) (blue curve) by
the model error δi(α). The size of the experimental error,
characterized by σexi , is exaggerated in the figure to facilitate
showing. The estimated value by the emulator, yemi (vertical
magenta line) deviates from the model calculation, ymo

i , by the
emulator error, ηi(α). The model error scale, σmo

i , characterizes the
expected size of δi(α) as the parameters α are varied within their
meaningful physical range. This parameter range is characterized
by the Bayesian posterior distribution P(ymo

i |Y) (orange curve),
-obtained only after the analysis is done-of the observable yi given
all the calibration data Y.

7 For example, the binding energy of 208Pb is known to a precision better
than 10–4% [78], while its charge radius to a precision of 0.02% [79]. In
contrast, the estimated model error we calculate in the following
discussion for the same quantities is 0.25% and 0.26%, respectively.
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We assume that the model discrepancies δi(α) scale

proportionally to the value of each individual experimental

datapoint. This is because each datapoint represents a

different physical reality, and while, say, two binding energies

for two similar nuclei may be subject to the same intensity of

modeling error, this may not be a good assumption for two nuclei

which are more distant in the nuclear landscape. Specifically, we

assume that each scaled model discrepancies ~δi ≡ δi/yex
i comes

from a common normal distribution with mean zero and either

variance σ2BE for a binding energy datapoint or variance σ
2
R for a

charge radius datapopint. Another assumption lies in our

treatment of these errors being independent of each other,

and thus uncorrelated. A more elaborate statistical framework

could be developed to account for this correlation between errors,

requiring additional information to provide structure to the

correlation matrix and avoid overfitting the statistical model.

In the absence of such information, our assumption of

independence is consistent with an agnostic view about these

errors’ correlation. We estimate these errors’ scales σBE and σR
from the deviations between the originally calibrated RMFmodel

FSUGold2 [60] and the experimental observations, simply by

using a version of the classical unbiased variance estimator.

Explicitly, for the variance of the modeling errors on the

binding energy side, where the model is FSUGold2, with

NBE = 10 for the ten binding energy datapoints, we let

σ2BE �
1

NBE
∑NBE

i�1

yex
i − yFSUGold2

i

yex
i

( )2

, (22)

And similarly for σ2R as the variance of the modeling error for

charge radii. These expressions are calculated for all the data with

available experimental values in Table 2 in [60]. These formulas

are the classical minimum-variance unbiased estimators

(MVUE) of variances for datapoints coming from a normal

distribution with known means and unknown common

variance. One can view each model-calculated datapoint as

the error-prone data, with the experimental value as its mean

value. This results in a mathematically identical unbiased

estimator as if all means were equal. In our case, since we

choose to normalize the modeled data by dividing it by the

experimental data, we are in fact handling a classical situation,

where the data’s mean value is known to equal 1. In that scenario,

the classical MVUE is the one given in formula (22). Note that its

leading factor is 1/NBE rather than 1/(NBE − 1); this is because the

mean is known. In other words, the model to which this MVUE

Eq. 22 responds is

yFSUGold2
i

yex
i

� 1 + ~δi (23)

where ~δi are assumed to be independent mean-zero normal

errors with unknown variance σ2BE for the binding-energy

data, and similarly for σ2R. Applying the estimation to the data

in [60] we obtain:

σBE � 0.25%, (24)

And

σR � 0.26%. (25)

We express these two values as percentages since they are

dimensionless. We treat the charge radius of 16O as an outlier and

exclude it from this estimation, assigning it its own estimated

error scale of σR,16O � 1.4%, so that NR = 7. The corresponding

modeling error standard deviations σmo
i for specific observables yi

are obtained by multiplying the one based on scaled data by their

respective experimental values, which provides the correct

standard deviations for all δi in accordance with how we

defined ~δi. For example, for i = BE for 48Ca,

σmo
i � σBE × (416 MeV) � 0.25

100 × (416 MeV) ≈ 1 MeV.8

We follow a similar parsimonious approach and model the

emulator error ηi(α) as coming from a normal distribution with

mean zero and scale (standard deviation) σemi that does not

depend on α. In Figure 4, σemi would be the scale of a Gaussian

distribution (not shown to keep the figure easier to read) centered

at yem
i (α). From our assumptions we would expect that such

distribution will contain within one standard deviation the true

model evaluation ymo
i around 68% of the time both computations

are made, independent of the exact value of α within the

physically meaningful range where the emulator was trained.

We estimate the scale σemi from the empirically observed

deviations between the RBM emulator and the high fidelity

solutions in the validation set used for the selection of the

basis in the previous section. We select, therefore, σemi as the

values reported in the fourth column (Δ Rch) and sixth column (Δ
BE) in Table 1. Of potential concern is the degradation of the

Reduced Basis approximation for values of α outside of the

TABLE 2 Prior central values and standard deviations for the eight
model parameters used in the calibration.

θj θ0,j σθ,j

ms [MeV] 500 50

ρ0 [fm
−3] 0.15 0.04

ϵ0 [MeV] -16 1

M* [MeV] 0.6 0.1

K [MeV] 230 10

ζ 0.03 0.03

J [MeV] 34 4

L [MeV] 80 40

8 The experimental values of the charge radii for 68Ni was not known at
the time of the calibration in [60], while the charge radii of 100Sn is still
not known. In these cases, we used the values reported for FSUGold2
as proxies to preserve these two nuclei in the analysis when creating
predictive posterior distributions with the calibrated model.
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training and validation regions. We note that such values would

be outside the accepted physically meaningful range and thus are

unlikely to be visited by the Monte Carlo sampling we use later

for the model calibration. Additionally, as shown in similar RBM

applications [24, 25, 29], the emulation error tends to change

smoothly outside of the training region. This gives us confidence

that even in the rare event that such parameter values are visited,

they will have negligible impact on the overall calibration

procedure. Finally, we assume that the emulator’s errors and

the model discrepancy errors are independent (and thus

uncorrelated) across different quantities, and within the same

observable as well.

Under the assumptions we have made about the three sources of

uncertainties, including the independence of all error terms which

implies that the variance of their sum is the sum of their variances, we

can finally specify the likelihood function for our statistical model. To

simplify the prior specification and the exploration of the parameter

space, we construct our statistical modeling using the bulk matter

parametrization θ, which is equivalent to the Lagrangian couplings

one with α (see Secion 2). DenotingN =NBE +NR = 18 and denoting

byY theN-dimensional vector formed of the experimental datapoints

yex
i , our likelihood model is:

P Y |θ( )∝ e−χ
2/2, (26)

Where

χ2 � ∑NBE

i1�1

yem
i1

θ( ) − yex
i1

( )2
σemi1

2 + σmo
i1

2
+ ∑NR

i2�1

yem
i2

θ( ) − yex
i2

( )2
σemi2

2 + σmo
i2

2
. (27)

Ourmodeling assumptions about the error structure, plus the

standardization in Y, imply indeed that χ2 is chi-squared

distributed with N degrees of freedom. Note that σmo
i2

has the

associated 0.26% value for all i2 except for
16O, for which it has

the value of 1.4%.

4.2 Prior

For the prior distribution we adopt an uncorrelated

multivariate normal in θ as follows:

P θ( )∝ e−χ
2
0/2, (28)

where:

χ20 � ∑8
j�1

θj − θ0,j( )2
σ2θ,j

. (29)

The central values θ0,j and standard deviations σθ,j are

specified for the eight components of θ in Table 2. They were

chosen to roughly cover the expected parameter region with wide

ranges based on the previous calibration [60].

4.3 Posterior

With our likelihood and priors fully set up, the posterior

densities p.(θ|Y) for the parameters θ are given classically by

Bayes’ rule [72] as being proportional to the product of the

likelihood in Eq. 26 and the prior in Eq. 28, where the likelihood

is evaluated at the experimentally observed datapoints labeled

above as Y. From here, we are interested in using the Bayesian

analysis to compare the calculations of the fully calibrated model

with the experimental values of the observables, to verify that our

uncertainty quantification is accurate. If our uncertainty bands

on these predicted values are too narrow (too optimistic), too

high a proportion of our 18 observations will fall outside of the

bands. If our uncertainty bands are too wide (too conservative),

many or all of our 18 observations will be inside their

corresponding uncertainty bands. Being slightly too

conservative is easily construed as a virtue to hedge against

the risk of being too optimistic. The latter should be

construed as an ill-reported uncertainty quantification. The

method we propose here, to gauge the accuracy our

uncertainty quantification, with results described in Section 5,

is a manual/visual implementation of the now classical notion of

Empirical Coverage Probability (ECP, see [73] for a nuclear

physics implementation), appropriate for our very small

dataset with 18 points. To compute the posterior density of

every predicted value corresponding to our experimental

observations, we view the likelihood model as a predictive

model, featuring the fact that it includes statistical noise

coming from the δ′s and η′s (see Figure 4 and Eq. 21), not

just the posterior uncertainty in the parameters, and we simply

use Bayesian posterior prediction, namely

P ypred
i |Y( ) � ∫P ypred

i |θ( )P θ|Y( ) dθ, (30)

where p (θ|Y) is the posterior density of all model parameters.

In this fashion, the posterior uncertainty on the parameters,

and the statistical uncertainty from the likelihood model, are

both taken into account in a principled way. Note that this

predictive calculation can be performed for all 20 observables

of interest, though ECP-type comparisons with the

experimental datapoints happen only for the 18 points we

have, excluding charge radii for 100Sn and 68Ni. The next

subsection explains how all Bayesian analyses are

implemented numerically.

4.4 Metropolis-Hastings and surmise

The difficulty with any Bayesian method is to know how to

understand the statistical properties of the posteriors. The

simplest way to answer this question is to sample repeatedly

(and efficiently) from those probability distributions. To sample

from the posterior densities of the model parameters θ, we use the
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standard Metropolis-Hastings algorithm implemented in the

surmise Python package [80]. For the results presented

here, eight independent chains of 725,000 samples were ran

using the direct Bayes calibrator within surmise. For the

step size used, the ratio of acceptance for proposed new steps

was about 30% across all chains. The first 100,000 samples of each

chain were taken as a burn-in, reducing the effective sample size

of the calibration to 5,000,000 evaluations. The eight chains were

run in parallel and thus the 5,800,000 total evaluations took about

a day on a personal computer with commodity hardware. For

comparison, it would have taken nearly 6 years of continuous

computation to produce the same results using the original code

for the high-fidelity model.

To evaluate posterior predictive distributions to compare

with the experimental data, we rely on the fact that

surmise, like any flexible Monte-Carlo Bayesian

implementation, gives us access to all Metropolis-Hastings

samples. For each multivariate sample of the parameters in θ,

we draw independent samples from the normal distributions

in the likelihood model Eq. 21, and evaluate the

corresponding value of yex
i in that model by plugging

those sampled values into the right-hand side of that

specification. Note that the second line in Eq. 21 must be

used for this purpose, not the first line, in order to account

for the uncertainty due to emulation. This procedure

provides a sampling method for the distribution in Eq. 30

which has a level of accuracy consistent with the accuracy of

the Metropolis-Hastings method for sampling from the

parameters’ posterior densities.

5 Results and discussion

Having defined the covariant density functional model in

Secion 2, the reduced basis emulator in Secion 3, and the

statistical framework and the computational sampling tools

in Secion 4 we are in position to use the experimental data to

calibrate the model under a Bayesian approach. At the time

of the original calibration of the FSUGold2 functional [60],

this would have represented an exceptional computational

challenge, mainly because of the absence of the

computational speed up of three orders of magnitude

provided by the RBM. Instead, in the original calibration,

one was limited to finding the minimum of the objective (or

χ2) function and the matrix of second derivatives. In this

manner, it was possible to compute uncertainties and

correlations between observables, but only in the

Gaussian approximation. We compare and contrast our

results and procedure, highlighting that with the

exception of the information on the four giant monopole

resonances and the maximum neutron star mass, both

calibrations share the same dataset of binding energies

and charge radii.

We begin by displaying in graphical form the results of our

Bayesian implementation in surmise as a corner plot in

Figure 5. The corner plot summarizes the posterior

distribution of bulk parameters alongside the two-

dimensional correlations. For comparison, the Gaussian

distribution of parameters extracted from the original

FSUGold2 calibration is displayed by the vertically scaled

blue line. As expected, the width of the one-dimensional

distributions has increased—in some cases

significantly—relative to the Gaussian approximation that is

limited to explore the parameter landscape in the vicinity of

the χ2 minimum. The inclusion of bigger estimated model

errors δi in Eq. 21 likely also share responsibility for the

increased overall uncertainty. Besides the increase in the

width of the distribution, we see a relatively significant

shift in the average value of the incompressibility

coefficient K. We attribute this fact to the lack of

information on the GMR, which is the observable that is

mostly sensitive to K.

Beyond the corner plot that displays the distribution of bulk

parameters and the correlations among them, we illustrate in

Figure 6 and Table 3 the performance of the model as compared

with the experimental data informing the calibration. Note that

in Figure 6 as well as in Table 3 we have defined the binding

energy as a positive quantity.

The blue histograms display the posterior predictive

distributions Eq. 30 of each of the 20 observables.

Included in our results is the prediction for the yet to be

measured charge radius of 100Sn, as well as the charge radius

of 68Ni not used in the calibration. The vertical red lines

indicate the values of the experimental datapoints specified

in [60] and [63]. These plots show excellent coverage of all

datapoints within our reported uncertainty. With 19

datapoints, one would expect about one of them to fall

outside of 95% credible intervals. The credible intervals

are printed in Table 3, showing that none of our

datapoints fall outside those intervals around the posterior

means. This implies that our uncertainty quantification leans

towards the conservative side, although the binding energy

for 48Ca and the charge radii of 68Ni are very close to falling

outside the 95% band. Our method has produced

uncertainties which are very likely not to be overly

wasteful by significantly over-reporting uncertainty, and

which are very likely not to under-report uncertainty.

This is exactly where a Bayesian predictive posterior

coverage analysis wants to be in a study with such a small

number of datapoints.

Being the lightest of all the nuclei included in the calibration,
16O may be regarded as a questionable “mean-field” nucleus. As

such, comparing its experimental charge radius with our

posterior results is particularly interesting, since the model

standard deviation we used was more than 5 times larger than

for the other observables. Yet, our reported uncertainty sees the

Frontiers in Physics frontiersin.org16

Giuliani et al. 10.3389/fphy.2022.1054524

126

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1054524


experimental measurement fairly well reproduced. This is an

indication that it was important to use the higher model variance,

or our prediction could have reported too low of an uncertainty.

Using a smaller variance for the model error δi could have also

pushed the parameters too strongly towards the 16O charge

radius outlier, deteriorating the overall performance of the

calibration on the other nuclei. The final coverage of all

data points illustrates our method’s ability to handle

heteroskedasticity (uneven variances) well. Finally, in

Figure 6, because our comparison with predictive

distributions performs very well and is only mildly

conservative, we can be confident that our prediction for

the charge radii of 100Sn is robust. How narrow these

histograms are is a testament to the quality of the original

modeling, its emulation, and our uncertainty quantification.

Coming back to the corner plot in Figure 5, we note that

the strongest correlation between observables involves the

value of the symmetry energy (J) and its slope (L) at

saturation density. The symmetry energy quantifies the

energy cost in transforming symmetric nuclear

matter—with equal number of neutrons and protons—to

pure neutron matter. In the vicinity of nuclear matter

saturation density, one can expand the symmetry energy

in terms of a few bulk parameters [82]:

S ρ( ) � J + Lx + 1
2
Ksymx

2 +/ (31)

where x = (ρ − ρ0)/3ρ0 is a dimensionless parameter that

quantifies the deviations of the density from its value at

saturation. Given that the calibration is informed by the

FIGURE 5
Corner plot [81] from the posterior distribution of the eight bulk matter parameters θ obtained from the Metropolis-Hasting sampling with
surmise. A total of five million samples were used, distributed along eight independent chains. The saturation density ρ0 is expressed in fm−3, the
mass of the σmesonms, the binding energy at saturation ε0, the incompressibility coefficient K, the symmetry energy J and its slope L at saturation are
all expressed inMeV. For comparison, the original calibration done in [60] is shown as the blue curves along the diagonal, scaled vertically to fit in
the same plot as our posterior results in black.
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binding energy of neutron-rich nuclei, such as 132Sn and
208Pb, the symmetry energy ~J � S(~ρ) ≈ 26MeV is well

constrained at an average density of about two-thirds of

saturation density, or ~ρ≈0.1 fm−3 [83]. As a result, one obtains
the following relation:

~J � J − L

9
+ Ksym

162
+/≈ J − L

9
0 J ≈ ~J + L

9
. (32)

Hence, accurately calibrated EDFs display a strong correlation

between J and L by the mere fact that the calibration included

information on the binding energy of neutron-rich nuclei. In the

original calibration of FSUGold2 [60], one obtained a correlation

coefficient between J and L of 0.97, while in this work we obtained a

correlation coefficient of 0.92. The slight non-linearity observed in

Figure 5 on the correlation between J and L is due to Ksym, which was

neglected in the simple argument made in Eq. 32.

FIGURE 6
Posterior distributions for the binding energies (inMeV) and charge radii (in fm) of the ten nuclei involved in our study. A total of 100,000 samples
from the 5,000,000 visited parameter values were used to make these distributions. The vertical red line in each plot represents the associated
experimental values, all contained within the 95% credible interval of the model, including the charge radii of 68Ni which was not included in the
calibration of the model. On the other hand, 100Sn does not have a measured charge radius, making its associated posterior distribution a true
prediction from our calibration. The numerical values for the mean and credible intervals on all these quantities are displayed in Table 3.

TABLE 3 Mean values and 95% credible intervals of the Bayesian posteriors on charge radii (in fm) and binding energy (in MeV), showed in Figure 6.
Also displayed are the 19 available experimental values [60, 63]. The credible intervals are calculated as equal-tailed intervals—such that the
probabilities of falling above or below the interval are both equal to 2.5%.

Nucleus 〈Rem
ch 〉 [2.5%–97.5%] Rex

ch 〈BEem〉 [2.5%–97.5%] BEexp

16O 2.736 [2.660–2.812] 2.690 127.90 [127.04–128.77] 127.62

40Ca 3.467 [3.446–3.488] 3.471 341.83 [339.75–343.91] 342.05

48Ca 3.470 [3.451–3.490] 3.470 414.05 [411.66–416.45] 416.00

68Ni 3.864 [3.841–3.888] 3.887 590.99 [587.47–594.52] 590.41

90Zr 4.262 [4.238–4.286] 4.264 782.34 [778.14–786.52] 783.90

100Sn 4.462 [4.433–4.490] - 827.69 [822.49–832.87] 825.30

116Sn 4.606 [4.580–4.632] 4.620 985.21 [979.57–990.86] 988.68

132Sn 4.705 [4.678–4.733] 4.704 1,104.3 [1,097.3–1,111.4] 1,102.84

144Sm 4.941 [4.914–4.968] 4.947 1,196.3 [1,189.4–1,203.1] 1,195.73

208Pb 5.512 [5.478–5.544] 5.497 1,640.7 [1,630.1–1,651.3] 1,636.43
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Although not directly an observable, L has been

determined to be strongly correlated to the thickness of the

neutron skin of heavy nuclei [83–85]; the neutron skin

thickness is defined as the difference in the mean square

radii between the neutron and proton vector densities (see

Eq. 8). In Figure 7 we show the correlation plot between L and

the neutron skin of 48Ca and 208Pb calculated directly from

100,000 random samples from our posterior distributions. It is

important to note that we have not included the model error δi
through Eq. 30 in these histograms9, and as such we do not

expect the uncertainties to be accurate, as we discuss later in

Sec. VI.

The correlation between L and the thickness of the

neutron skin of heavy nuclei has a strong physical

underpinning. For example, in the case of 208Pb, surface

tension favors the formation of a spherical liquid drop

containing all 208 nucleons. However, the symmetry energy

increases monotonically in the density region of relevance to

atomic nuclei. Hence, to minimize the symmetry energy, is

energetically favorable to move some of the excess neutrons to

the surface. It is then the difference in the symmetry energy at

the core relative to its value at the surface that determines the

thickness of the neutron skin; such a difference is encoded in

the slope of the symmetry energy L. If such a difference is large

enough to overcome surface tension, then some of the excess

neutrons will be pushed to the surface, resulting in a thick

neutron skin [86]. That the correlation between the neutron

skin thickness of 208Pb and L is strong has been validated using

a large set of EDFs [85]. Note that L is closely related to the

pressure of pure neutron matter at saturation density—a

quantity that has been extensively studied using chiral

effective field theory [13–19], and which is of great

relevance to our understanding of the structure of neutron

stars [87].

It is important to note that no information on neutron skins—or

any other observable that is strongly correlated to L—was included in

our calibration procedure, making it difficult to estimate the model

error associated with such quantities. This also indicates that in the

absence of any guidance, the class of covariant EDFs used in this work

tend to produce stiff symmetry energies, in contrast to Skyrme-type

EDFs and chiral effective field theories that tend to favor relatively soft

symmetry energies [13–19, 88]. Particularly interesting to note is that

whereas R208
skin and L are strongly correlated, the correlation deviates

significantly from the one obtained using a large set of both covariant

and Skyrme energy density functionals [85]. It is known, however,

that R208
skin displays a stronger correlation with the slope of the

symmetry energy at 0.1 fm−3 than at ρ0; see Ref. [50] and

references contained therein. However, the correlation between

R208
skin and R

48
skin we observe remains as strong as observed in Ref. [89].

Given the recently reported results from the PREX-II [48] and

CREX [49] experimental campaigns, our model’s average predicted

neutron skin for both 208Pb (0.27 fm) and 208Ca (0.23 fm) might

indicate that the physics encapsulated in the Lagrangian density

depicted in Eq. 1 is insufficient to describe both skins

simultaneously. Granted, with only two isovector parameters the

model may be too rigid to break the strong observed model

correlation between R208
skin and R48

skin. However, whereas models

with a more refined isovector sector may be able to reconcile both

measurements at some level, a consensus is emerging that this can

only be done at the expense of introducing significant tension with

other calculated observables by the model.

To make a clear assessment, we will need to both include a

statistical treatment of the expected model error in these quantities, as

well as mitigate possible model dependencies by directly comparing

with experimental observations such as the parity violating asymmetry.

We are planing to do so as an immediate direction by calibrating

covariant EDFs with an extended andmore elaborated isovector sector

that might help bridge both neutron skin results without

compromising the success of the model in reproducing other

nuclear observables, such as the ones displayed in Figure 6. As we

discuss in the next and final section, well quantified uncertainties

enabled by powerful emulators such as the RBMwill be indispensable

to achieve those goals and make full use of the anticipated new

FIGURE 7
Correlation corner plot [81] between the posterior
distributions for the neutron skin of 48Ca and 208Pb (both in fm), and
the slope of the symmetry energy L (in MeV). A total of
100,000 samples from the 5,000,000 visited parameter
values were used to make these distributions. Both neutron skins
R48
skin and R208

skin are strongly correlated, each with negative
skewness. The distribution for L, on the other hand, has a positive
skewness and, while it is strongly correlated with both neutron
skins, the correlation displays a non-linear behavior in both cases.

9 Such procedure would require to first give an accurate estimation of
the model error on neutron radii -a non trivial task given the lack of
experimental data on neutron radii-, and second to take into account
the model correlation between Rp and Rn.
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laboratory experiments and astronomical observations that will be

coming in the next years.

6 Conclusion and outlook

In the last few decades nuclear theory has gone through

several transformational changes brought on by embracing

philosophies and techniques from the fields of statistics and

computational science. It is now expected that theoretical

predictions should always be accompanied by uncertainties

[93]. This is particularly true in theoretical nuclear physics

where predictions from QCD inspired models require the

calibration of several model parameters. This newly-adopted

philosophy has also prompted the exploration of uncertainty

quantification across the many sub-fields of nuclear theory [34,

94–97]. Furthermore, several recent advancements and

discoveries have become feasible only through the successful

integration of machine learning and other novel computational

approaches to the large body of theoretical models developed

over many decades [31, 74, 98–100]. This dedication is also

exemplified by the theory community’s proactive efforts to

organize topical conferences, summer schools, and workshops

in service of disseminating the technical know-how to every level

of the community.

Aligned with these developments and efforts, our present work

aimed at showcasing a pipeline for integrating a statistical framework

through one such innovative computational technique. We have

calibrated a covariant energy density functional within a Bayesian

approach using available experimental values of binding energies and

charge radii. The calibration of themodel, as well as the quantification

of the uncertainties of its predictions, required millions of evaluations

for different values of its parameters. Such titanic computational

burden was made possible—straightforward even—thanks to the

emulation of the model through the reduced basis method, which

decreased the necessary calculation time from months or years to a

single day on a personal computer.

Our calibration’s main results, which consists of posterior

distributions for all the model’s parameters, were presented in

Figure 5. From these posteriors, and following the statistical

framework we developed in Sec. IV, the model output can be

estimated with well quantified uncertainties that can take into

account experimental, model, and emulator errors. We showed

such calculations with their respective estimated uncertainties in

Figure 6 and Table 3 for the binding energies and charge radii of

the 10 nuclei involved in the study. The fact that the experimental

values used in the calibration, depicted as red vertical lines in

Figure 6, fall within the 95% our calculated credible intervals

gives us confidence that our uncertainty procedure was not

biased towards being too optimistic for this dataset. This is

especially true for the case of the charge radii of 16O, which

was treated as an outlier based on prior expert knowledge on the

expectation of the limits of the mean field approach for smaller

systems. Once the experimental value for the charge radii of 100Sn

becomes available, it will be interesting to contrast our model

prediction’s and gauge the success of the uncertainty level

estimated.

However, the picture changes when we focus on the calculations

for the neutron skin thickness of 48Ca and 208Pb showed in Figure 7.

The recent experimental campaigns PREX [101], PREX-II [102],

and CREX [49] on parity violating electron scattering have

published results which suggest that the neutron skins of 48Ca

and 208Pb stand in opposite corners. While 208Pb is estimated to

have a relatively thick neutron skin of around 0.28 fm [102], 48Ca

[49] is estimated to have a significantly smaller skin of around

0.12 fm. Albeit we have not included a model error term in the

calculations shown in Figure 7, it seems that our current model is

unable to satisfy both values simultaneously.

Moving forward, we envision two complementary research

directions that could help mitigate the problems identified above.

First, one could build a more robust statistical framework that, by

including strong isovector indicators, such as information on the

electric dipole response of neutron rich nuclei, will impose stringent

constraints on the isovector sector. Second, and as already

mentioned, we could increase the flexibility of the isovector

sector by adding additional interactions that modify the density

dependence of the symmetry energy. The use of dimensionality

reduction techniques such as the RBM to significantly speed up the

calculation time—especially if information on nuclear excitations is

incorporated into the calibration of the EDF—will become a

fundamental pillar of the fitting protocol.

We believe that the RBMwe showcased here has the potential

to further impact many of the nuclear theory areas that have

already made use of similar emulators, as well as expanding the

frontiers of the physical models that can be successfully

emulated. Indeed, the RBM’s unique combination of few high-

fidelity evaluations needed to build an effective emulator, the

simplicity and flexibility of the Galerkin projection, and the

ability to precompute many observables and equations in the

offline stage could allow the community to deploy trained

emulators for use on different computer architectures and on

cloud infrastructure [103]. This could effectively lower the barrier

created by the need of running expensive computer models

locally. This could give access of cutting edge theoretical

models and simulations to an increased number of research

groups, opening new opportunities to expand the network of

collaborative research.

In short, the computational framework detailed in this work

attempts to provide an end-to-end solution for model calibration

and exploration with a focus on statistical rigor without sacrificing

computational efficiency. By leveraging this efficiency to nimbly

incorporate new experimental data, one can imagine the continuous

calibration of models that can be updated in a matter of hours

without requiring large-scale computing facilities. Finally, the heavy

focus on integrating these disparate parts into a user-friendly form to

generate physics-informed emulators is ultimately in service of our
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wider goal to increase data availability and software accessibility, and

is a necessity in the paradigmatic shift towards probability

distributions—rooted in Bayesian principles—defining physical

models rather than a single set of optimal parameters.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found below: https://figshare.com/

projects/RBM_Calibration_Pipeline/149840.

Author contributions

PG, KG, and EB created the RBM framework. PG and KG

implemented the computational pipeline. PG and FV created the

Statistical Framework. KG created the computational sampling

framework. JP provided the RMF physical description and insight

and created the Relativistic Mean Field original code. All authors

contributed to the writing and editing of the manuscript.

Funding

This work was supported by the National Science Foundation

CSSI program under award number 2004601 (BAND

collaboration) and the U.S. Department of Energy under

Award Numbers DOE-DE-NA0004074 (NNSA, the

Stewardship Science Academic Alliances program), DE-

SC0013365 (Office of Science), and DE-SC0018083 (Office of

Science, NUCLEI SciDAC-4 collaboration). This material is

based upon work supported by the U.S. Department of

Energy Office of Science, Office of Nuclear Physics under

Award Number DE-FG02-92ER40750.

Acknowledgments

We are grateful to Moses Chan for guiding us on the use of

the surmise python package, as well as for useful discussions

and recommendations on good practices for the Monte Carlo

sampling. We are grateful to Craig Gross for useful discussions

about the reduced basis method, including the visualization of

the speed up gained in terms of the high fidelity solver sizeN . We

thank Diogenes Figueroa for his reading of the manuscript. We

thank Kei Minamisono for providing information regarding the

experimentally measured charge radius of 68Ni. We thank the two

referees for a careful read of the manuscript and for comments

and suggestions that improved it.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Reaching for the Horizon: The 2015 long range plan for nuclear science,” (2015).

2. Abbott BP. LIGO scientific collaboration, virgo collaboration. Phys Rev Lett
(2017) 119:161101. doi:10.1103/physrevlett.121.129902

3. Drout MR, Piro AL, Shappee BJ, Kilpatrick CD, Simon JD, Contreras C, et al.
Light curves of the neutron star merger GW170817/SSS17a: Implications for
r-process nucleosynthesis. Science (2017) 358:1570. doi:10.1126/science.aaq0049

4. Cowperthwaite PS, Berger E, Villar VA, Metzger BD, Nicholl M, Chornock
R, et al. The electromagnetic counterpart of the binary neutron star merger
LIGO/virgo GW170817. II. UV, optical, and near-infrared light curves and
comparison to kilonova models. Astrophys J (2017) 848:L17. doi:10.3847/2041-
8213/aa8fc7

5. Chornock R, Berger E, Kasen D, Cowperthwaite PS, Nicholl M, Villar VA,
et al. The electromagnetic counterpart of the binary neutron star merger LIGO/
virgo GW170817. IV. Detection of near-infrared signatures of r-process
nucleosynthesis with gemini-south. Astrophys J (2017) 848:L19. doi:10.
3847/2041-8213/aa905c

6. Nicholl M, Berger E, Kasen D, Metzger BD, Elias J, Briceño C, et al. The
electromagnetic counterpart of the binary neutron star merger LIGO/virgo
GW170817. III. Optical and UV spectra of a blue kilonova from fast polar
ejecta. Astrophys J (2017) 848:L18. doi:10.3847/2041-8213/aa9029

7. Fattoyev FJ, Piekarewicz J, Horowitz CJ. Neutron skins and neutron stars in the
multimessenger era. Phys Rev Lett (2018) 120:172702. doi:10.1103/physrevlett.120.
172702

8. Annala E, Gorda T, Kurkela A, Vuorinen A. Gravitational-wave constraints on
the neutron-star-matter equation of state. Phys Rev Lett (2018) 120:172703. doi:10.
1103/physrevlett.120.172703

9. Abbott BP. LIGO scientific collaboration, virgo collaboration). Phys Rev Lett
(2018) 121:161101. doi:10.1103/physrevlett.121.129902

10. Weinberg S. Nuclear forces from chiral Lagrangians. Phys Lett B (1990) 251:
288–92. doi:10.1016/0370-2693(90)90938-3

11. van Kolck U. Few-nucleon forces from chiral Lagrangians. Phys Rev C (1994)
49:2932–41. doi:10.1103/physrevc.49.2932

12. Ordóñez C, Ray L, van Kolck U. Two-nucleon potential from chiral
Lagrangians. Phys Rev C (1996) 53:2086–105. doi:10.1103/physrevc.53.2086

13. Hebeler K, Schwenk A. Chiral three-nucleon forces and neutron matter. Phys
Rev C (2010) 82:014314. doi:10.1103/physrevc.82.014314

14. Tews I, Kruger T, Hebeler K, Schwenk A. Neutron matter at next-to-next-to-
next-to-leading order in chiral effective field theory. Phys Rev Lett (2013) 110:
032504. doi:10.1103/physrevlett.110.032504

Frontiers in Physics frontiersin.org21

Giuliani et al. 10.3389/fphy.2022.1054524

131

https://figshare.com/projects/RBM_Calibration_Pipeline/149840
https://figshare.com/projects/RBM_Calibration_Pipeline/149840
https://doi.org/10.1103/physrevlett.121.129902
https://doi.org/10.1126/science.aaq0049
https://doi.org/10.3847/2041-8213/aa8fc7
https://doi.org/10.3847/2041-8213/aa8fc7
https://doi.org/10.3847/2041-8213/aa905c
https://doi.org/10.3847/2041-8213/aa905c
https://doi.org/10.3847/2041-8213/aa9029
https://doi.org/10.1103/physrevlett.120.172702
https://doi.org/10.1103/physrevlett.120.172702
https://doi.org/10.1103/physrevlett.120.172703
https://doi.org/10.1103/physrevlett.120.172703
https://doi.org/10.1103/physrevlett.121.129902
https://doi.org/10.1016/0370-2693(90)90938-3
https://doi.org/10.1103/physrevc.49.2932
https://doi.org/10.1103/physrevc.53.2086
https://doi.org/10.1103/physrevc.82.014314
https://doi.org/10.1103/physrevlett.110.032504
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1054524


15. Kruger T, Tews I, Hebeler K, Schwenk A. Neutron matter from chiral effective
field theory interactions. Phys Rev (2013) C88:025802. doi:10.1103/PhysRevC.88.
025802

16. Lonardoni D, Tews I, Gandolfi S, Carlson J. Nuclear and neutron-star matter
from local chiral interactions. Phys Rev Res (2020) 2:022033. doi:10.1103/
physrevresearch.2.022033

17. Drischler C, Holt JW, Wellenhofer C. Chiral effective field theory and the
high-density nuclear equation of state. Annu Rev Nucl Part Sci (2021) 71:403–32.
doi:10.1146/annurev-nucl-102419-041903

18. Sammarruca F, Millerson R. Overview of symmetric nuclear matter properties
from chiral interactions up to fourth order of the chiral expansion. Phys Rev C
(2021) 104:034308. doi:10.1103/physrevc.104.064312

19. Millerson F, Millerson R. The equation of state of neutron-rich matter at
fourth order of chiral effective field theory and the radius of a medium-mass
neutron star. Universe (2022) 8:133. doi:10.3390/universe8020133

20. Kohn W. Nobel Lecture: Electronic structure of matter-wave functions and
density functionals. Rev Mod Phys (1999) 71:1253–66. doi:10.1103/revmodphys.71.
1253

21. Kohn P, Kohn W. Inhomogeneous electron gas. Phys Rev (1964) 136:
B864–B871. doi:10.1103/physrev.136.b864

22. ShamW, Sham LJ. Self-consistent equations including exchange and correlation
effects. Phys Rev (1965) 140:A1133–A1138. doi:10.1103/physrev.140.a1133

23. PhillipsDR, Furnstahl RJ, HeinzU,Maiti T, NazarewiczW,Nunes FM, et al. Get on
the BAND wagon: A bayesian framework for quantifying model uncertainties in nuclear
dynamics. J Phys G: Nucl Part Phys (2021) 48:072001. doi:10.1088/1361-6471/abf1df

24. Frame D, He R, Ipsen I, Lee D, Lee D, Rrapaj E. Eigenvector continuation with
subspace learning. Phys Rev Lett (2018) 121:032501. doi:10.1103/physrevlett.121.
032501

25. König S, Ekström A, Hebeler K, Lee D, Schwenk A. Eigenvector continuation
as an efficient and accurate emulator for uncertainty quantification. Phys Lett B
(2020) 810:135814. doi:10.1016/j.physletb.2020.135814

26. Furnstahl R, Garcia A, Millican P, Zhang X. Efficient emulators for scattering
using eigenvector continuation. Phys Lett B (2020) 809:135719. doi:10.1016/j.
physletb.2020.135719

27. Melendez J, Drischler C, Garcia A, Furnstahl R, Zhang X. Fast & accurate
emulation of two-body scattering observables without wave functions. Phys Lett B
(2021) 821:136608. doi:10.1016/j.physletb.2021.136608

28. Drischler C, Quinonez M, Giuliani P, Lovell A, Nunes F. Toward emulating
nuclear reactions using eigenvector continuation. Phys Lett B (2021) 823:136777.
doi:10.1016/j.physletb.2021.136777

29. Bonilla E, Giuliani P, Godbey K, Lee D, (2022), Training and projecting: A
reduced basis method emulator for many-body physics. Phys Rev C (2022) 106:
054322. doi:10.1103/PhysRevC.106.054322

30. Sarkar A, Lee D. Self-learning emulators and eigenvector continuation. Phys
Rev Res (2022) 4:023214. doi:10.1103/physrevresearch.4.023214

31. Boehnlein A, Diefenthaler M, Sato N, Schram M, Ziegler V, Fanelli C, et al.
Colloquium: Machine learning in nuclear physics. Rev Mod Phys (2022) 94:031003.
doi:10.1103/revmodphys.94.031003

32. Tews I, Davoudi Z, Ekström A, Holt JD, Becker K, Briceño R, et al. Nuclear
forces for precision nuclear physics: A collection of perspectives. Few-body Syst
(2022) 63:1. doi:10.1007/s00601-022-01749-x

33. Higdon D, McDonnell JD, Schunck N, Sarich J, Wild SM. A Bayesian
approach for parameter estimation and prediction using a computationally
intensive model. J Phys G Nucl Part Phys (2015) 42:034009. doi:10.1088/0954-
3899/42/3/034009

34. McDonnell JD, Schunck N, Higdon D, Sarich J, Wild SM, Nazarewicz W.
Uncertainty quantification for nuclear density functional theory and information
content of new measurements. Phys Rev Lett (2015) 114:122501. doi:10.1103/
physrevlett.114.122501

35. Anderson AL, O’Donnell GL, Piekarewicz J. Applications of reduced-basis
methods to the nuclear single-particle spectrum. Phys Rev C (2022) 106:L031302.
doi:10.1103/physrevc.106.l031302

36. Quarteroni A, Manzoni A, Negri F. Reduced basis methods for partial
differential equations: An introduction, 92. Springer (2015). doi:10.1007/978-3-
319-15431-2

37. Hesthaven JS, Rozza G, Stamm B. Certified reduced basis methods for
parametrized partial differential equations, 590. Springer (2016). doi:10.1007/
978-3-319-22470-1

38. Melendez JA, Drischler C, Furnstahl RJ, Garcia AJ, Zhang X. Model reduction
methods for nuclear emulators. J Phys G: Nucl Part Phys (2022) 49:102001. doi:10.
1088/1361-6471/ac83dd

39. Quarteroni A, Rozza G. Reduced order methods for modeling and
computational reduction, 9. Springer (2014). doi:10.1007/978-3-319-02090-7

40. Brunton SL, Kutz JN. Data-driven science and engineering: Machine learning,
dynamical systems, and control. Cambridge University Press (2019). doi:10.1017/
9781108380690

41. Benner P, Gugercin S, Willcox K. A survey of projection-based model
reduction methods for parametric dynamical systems. SIAM Rev (2015) 57:
483–531. doi:10.1137/130932715

42. Sartori A, Cammi A, Luzzi L, Rozza G. A reduced basis approach for modeling
the movement of nuclear reactor control rods. J Nucl Eng Radiat (2016) 2:1062.
doi:10.1115/1.4031945

43. Quarteroni A, Rozza G,Manzoni A. Certified reduced basis approximation for
parametrized partial differential equations and applications. J Math Ind (2011) 1:1.
doi:10.1186/2190-5983-1-3

44. Field SE, Galley CR, Herrmann F, Hesthaven JS, Ochsner E, Tiglio M.
Reduced basis catalogs for gravitational wave templates. Phys Rev Lett (2011) 106:
221102. doi:10.1103/physrevlett.106.221102

45. Nguyen NC, Rozza G, Huynh DBP, Patera AT. Reduced basis approximation
and a posteriori error estimation for parametrized parabolic PDEs: Application to
real-time bayesian parameter estimation. In: Large-scale inverse problems and
quantification of uncertainty. John Wiley & Sons (2010). p. 151–77. Chap. 8.
doi:10.1002/9780470685853.ch8

46. Jiang J, Chen Y, Narayan A. A goal-oriented reduced basis methods-
accelerated generalized polynomial chaos algorithm. Siam/asa J Uncertainty
Quantification (2016) 4:1398–420. doi:10.1137/16m1055736

47. Abrahamyan S, Ahmed Z, Albataineh H, Aniol K, Armstrong DS, Armstrong W.
Measurement of the neutron radius of 208Pb through parity violation in electron
scattering. Phys Rev Lett (2012) 108:112502. doi:10.1103/PhysRevLett.108.112502

48. Adhikari D. Accurate determination of the neutron skin Th. Phys Rev Lett
(2021) 126:172502. doi:10.1103/PhysRevLett.126.172502

49. Adhikari D. Precision determination of the neutral weak form factor of 48 Ca.
Phys Rev Lett (2022) 129:042501. doi:10.1103/PhysRevLett.129.042501

50. Reed BT, Fattoyev FJ, Horowitz CJ, Piekarewicz J. Implications of PREX-2 on
the equation of state of neutron-rich matter. Phys Rev Lett (2021) 126:172503.
doi:10.1103/physrevlett.126.172503

51. Reinhard P-G, Roca-Maza X, Nazarewicz W, Combined theoretical analysis of
the parity-violating asymmetry for 48Ca and 208Pb. (2022), arXiv:2206.03134 [nucl-th] .

52. Ireland D, Nazarewicz W. Enhancing the interaction between nuclear
experiment and theory through information and statistics. J Phys G Nucl Part
Phys (2015) 42. doi:10.1088/0954-3899/42/3/030301

53. Bedaque P, Boehnlein A, Cromaz M, Diefenthaler M, Elouadrhiri L, Horn T,
et al. Eur Phys J A (2021) 57:1. doi:10.1140/epja/s10050-020-00290-x

54. Walecka JD. A theory of highly condensed matter. Ann Phys (1974) 83:
491–529. doi:10.1016/0003-4916(74)90208-5

55. Serot BD, Walecka JD. Relativistic nuclear many-body theory. Adv Nucl Phys
(1986) 16:1. doi:10.1007/978-1-4615-3466-2_5

56. Bodmer J, Bodmer AR. Relativistic calculation of nuclear matter and the nuclear
surface. Nucl Phys A (1977) 292:413–28. doi:10.1016/0375-9474(77)90626-1

57. Mueller H, Serot BD. Relativistic mean-field theory and the high-density nuclear
equation of state. Nucl Phys A (1996) 606:508. doi:10.1016/0375-9474(96)00187-X

58. Piekarewicz CJ, Piekarewicz J. Neutron star structure and the neutron radius
ofP208b. Phys Rev Lett (2001) 86:5647–50. doi:10.1103/physrevlett.86.5647

59. Todd BG, Piekarewicz J. Relativistic mean-field study of neutron-rich nuclei.
Phys Rev C (2003) 67:044317. doi:10.1103/physrevc.67.044317

60. ChenW-C, Piekarewicz J. Building relativisticmean fieldmodels for finite nuclei and
neutron stars. Phys Rev C (2014) 90:044305. doi:10.1103/physrevc.90.044305

61. Piekarewicz J, Piekarewicz J. Covariant density functional theory in nuclear
physics and astrophysics. Annu Rev Nucl Part Sci (2020) 70:21–41. doi:10.1146/
annurev-nucl-101918-023608

62. Tiesinga E, Mohr PJ, Newell DB, Taylor BN. CODATA recommended values
of the fundamental physical constants: 2018. J Phys Chem Reference Data (2021) 50:
033105. doi:10.1063/5.0064853

63. Kaufmann S, Simonis J, Bacca S, Billowes J, Bissell ML, Blaum K. Charge
radius of the short-lived Ni 68 and correlation with the dipole plarizability. (2020).
Phys Rev Lett (2012) 124:132502. doi:10.1103/PhysRevLett.127.182503

64. Glendenning NK. Compact stars. Springer-Verlag New York (2000). doi:10.
1007/978-1-4684-0491-3

65. Blum A, Hopcroft J, Kannan R. Foundations of data science. Cambridge
University Press (2020). doi:10.1017/9781108755528

Frontiers in Physics frontiersin.org22

Giuliani et al. 10.3389/fphy.2022.1054524

132

https://doi.org/10.1103/PhysRevC.88.025802
https://doi.org/10.1103/PhysRevC.88.025802
https://doi.org/10.1103/physrevresearch.2.022033
https://doi.org/10.1103/physrevresearch.2.022033
https://doi.org/10.1146/annurev-nucl-102419-041903
https://doi.org/10.1103/physrevc.104.064312
https://doi.org/10.3390/universe8020133
https://doi.org/10.1103/revmodphys.71.1253
https://doi.org/10.1103/revmodphys.71.1253
https://doi.org/10.1103/physrev.136.b864
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1088/1361-6471/abf1df
https://doi.org/10.1103/physrevlett.121.032501
https://doi.org/10.1103/physrevlett.121.032501
https://doi.org/10.1016/j.physletb.2020.135814
https://doi.org/10.1016/j.physletb.2020.135719
https://doi.org/10.1016/j.physletb.2020.135719
https://doi.org/10.1016/j.physletb.2021.136608
https://doi.org/10.1016/j.physletb.2021.136777
https://doi.org/10.1103/PhysRevC.106.054322
https://doi.org/10.1103/physrevresearch.4.023214
https://doi.org/10.1103/revmodphys.94.031003
https://doi.org/10.1007/s00601-022-01749-x
https://doi.org/10.1088/0954-3899/42/3/034009
https://doi.org/10.1088/0954-3899/42/3/034009
https://doi.org/10.1103/physrevlett.114.122501
https://doi.org/10.1103/physrevlett.114.122501
https://doi.org/10.1103/physrevc.106.l031302
https://doi.org/10.1007/978-3-319-15431-2
https://doi.org/10.1007/978-3-319-15431-2
https://doi.org/10.1007/978-3-319-22470-1
https://doi.org/10.1007/978-3-319-22470-1
https://doi.org/10.1088/1361-6471/ac83dd
https://doi.org/10.1088/1361-6471/ac83dd
https://doi.org/10.1007/978-3-319-02090-7
https://doi.org/10.1017/9781108380690
https://doi.org/10.1017/9781108380690
https://doi.org/10.1137/130932715
https://doi.org/10.1115/1.4031945
https://doi.org/10.1186/2190-5983-1-3
https://doi.org/10.1103/physrevlett.106.221102
https://doi.org/10.1002/9780470685853.ch8
https://doi.org/10.1137/16m1055736
https://doi.org/10.1103/PhysRevLett.108.112502
https://doi.org/10.1103/PhysRevLett.126.172502
https://doi.org/10.1103/PhysRevLett.129.042501
https://doi.org/10.1103/physrevlett.126.172503
https://doi.org/10.1088/0954-3899/42/3/030301
https://doi.org/10.1140/epja/s10050-020-00290-x
https://doi.org/10.1016/0003-4916(74)90208-5
https://doi.org/10.1007/978-1-4615-3466-2_5
https://doi.org/10.1016/0375-9474(77)90626-1
https://doi.org/10.1016/0375-9474(96)00187-X
https://doi.org/10.1103/physrevlett.86.5647
https://doi.org/10.1103/physrevc.67.044317
https://doi.org/10.1103/physrevc.90.044305
https://doi.org/10.1146/annurev-nucl-101918-023608
https://doi.org/10.1146/annurev-nucl-101918-023608
https://doi.org/10.1063/5.0064853
https://doi.org/10.1103/PhysRevLett.127.182503
https://doi.org/10.1007/978-1-4684-0491-3
https://doi.org/10.1007/978-1-4684-0491-3
https://doi.org/10.1017/9781108755528
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1054524


66. Jolliffe IT. Principal component analysis. Springer (2002). doi:10.1007/b98835

67. Rawitscher G, dos Santos Filho V, Peixoto TC. Galerkin and collocation
methods. In: An introductory guide to computational methods for the solution of
physics problems. Springer (2018). p. 17–31. doi:10.1007/978-3-319-42703-4

68. Fletcher CA. Computational Galerkin methods. Springer (1984). doi:10.1007/
978-3-642-85949-6

69. Grepl MA, Maday Y, Nguyen NC, Patera AT. Efficient reduced-basis
treatment of nonaffine and nonlinear partial differential equations. Esaim: M2an
(2007) 41:575–605. doi:10.1051/m2an:2007031

70. Barrault M, Maday Y, Nguyen NC, Patera AT. An ’empirical interpolation’method:
Application to efficient reduced-basis discretization of partial differential equations.
Comptes Rendus Mathematique (2004) 339:667–72. doi:10.1016/j.crma.2004.08.006

71. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau
D, et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat
Methods (2020) 17:261–72. doi:10.1038/s41592-019-0686-2

72. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. Chapman
and Hall/CRC (1995). doi:10.1201/b16018

73. Neufcourt L, Cao Y, Nazarewicz W, Viens F. Bayesian approach to model-
based extrapolation of nuclear observables. Phys Rev C (2018) 98:034318. doi:10.
1103/physrevc.98.034318

74. Neufcourt L, Cao Y, Nazarewicz W, Olsen E, Viens F. Neutron drip line in the
Ca region from bayesian model averaging. Phys Rev Lett (2019) 122:062502. doi:10.
1103/physrevlett.122.062502

75. Ludwig D. Parsimonious asymptotics. SIAM J Appl Math (1983) 43:664–72.
doi:10.1137/0143045

76. Veroy K, Prud’Homme C, Rovas D, Patera A. A posteriori error bounds for
reduced-basis approximation of parametrized noncoercive and nonlinear elliptic
partial differential equations. Fluid Dyn Conf (2003) 3847. 16th AIAA Comput.
doi:10.2514/6.2003-3847

77. Buffa A, Maday Y, Patera AT, Prud’homme C, Turinici G. A prioriconvergence of
the Greedy algorithm for the parametrized reduced basis method. Esaim: M2an (2012)
46:595–603. doi:10.1051/m2an/2011056

78. Huang W, Wang M, Kondev FG, Audi G, Naimi S. The AME 2020 atomic
mass evaluation (I). Evaluation of input data, and adjustment procedures*. Chin
Phys. C (2021) 45:030002. doi:10.1088/1674-1137/abddb0

79. Marinova I, Marinova KP. Table of experimental nuclear ground state charge radii:
An update. At Data Nucl Data Tables (2013) 99:69–95. doi:10.1016/j.adt.2011.12.006

80. PlumleeM, SürerÖ,Wild SM.Tech. Rep. Version 0.1.0. NAISE (2021). Surmise users
manual. Available at: https://surmise.readthedocs.io/en/latest/introduction.html

81. Foreman-Mackey D. corner.py: Scatterplot matrices in Python. Joss (2016) 1:
24. doi:10.21105/joss.00024

82. Piekarewicz J, Centelles M. Incompressibility of neutron-rich matter. Phys Rev
C (2009) 79:054311. doi:10.1103/physrevc.79.054311

83. Furnstahl RJ. Neutron radii in mean-field models. Nucl Phys A (2002) 706:
85–110. doi:10.1016/s0375-9474(02)00867-9

84. Brown BA. Neutron radii in nuclei and the neutron equation of state. Phys Rev
Lett (2000) 85:5296–9. doi:10.1103/PhysRevLett.85.5296

85. Roca-Maza X, Centelles M, Viñas X,WardaM. Neutron skin ofPb208, nuclear
symmetry energy, and the parity radius experiment. Phys Rev Lett (2011) 106:
252501. doi:10.1103/physrevlett.106.252501

86. Horowitz CJ, Piekarewicz J. The neutron radii of Lead and neutron stars. Phys
Rev C (2001) 64:062802. doi:10.1103/physrevc.64.062802

87. Fattoyev J, Fattoyev FJ. Neutron-rich matter in heaven and on Earth. Phys
Today (2019) 72:30–7. doi:10.1063/pt.3.4247

88. Reinhard P-G, Roca-Maza X, Nazarewicz W. Information content of the
parity-violating asymmetry in Pb208. Phys Rev Lett (2021) 127:232501. doi:10.1103/
physrevlett.127.232501

89. Piekarewicz J. Implications of PREX-2 on the electric dipole polarizability of
neutron-rich nuclei. Phys Rev C (2021) 104:024329. doi:10.1103/physrevc.104.
024329

90. Hu B, Jiang W, Miyagi T. Ab initio predictions link the neutron skin of 208Pb
to nuclear forces. Nat Phys (2022) 18:1196–200. doi:10.1038/s41567-022-01715-8

91. Zhang Z, Chen L-W, (2022), Bayesian inference of the symmetry energy and
the neutron skin in 48Ca and 208Pb from CREX and PREX-2, arXiv:
2207.03328 [nucl-th].

92. Mondal C, Gulminelli F, (2022), Nucleonic metamodelling in light of
multimessenger, PREX-II and CREX data, arXiv:2209.05177 [nucl-th].

93. Join A. A new mass model for nuclear astrophysics: Crossing 200 keV
accuracy. Phys Rev A (2011) 83:040001.

94. Godbey K, Umar S, Simenel C. Theoretical uncertainty quantification for heavy-ion
fusion. Phys Rev C. (2022) 106:L0511602. doi:10.1103/PhysRevC.106.L051602

95. King G, Lovell A, Neufcourt L, Nunes F. Direct comparison between bayesian
and frequentist uncertainty quantification for nuclear reactions. Phys Rev Lett
(2019) 122:232502. doi:10.1103/physrevlett.122.232502

96. Odell D, Brune CR, Phillips DR, deBoer RJ, Paneru SN. Performing bayesian
analyses with AZURE2 using BRICK: An application to the 7Be system. Front Phys
(2022) 423:888476. doi:10.3389/fphy.2022.888476

97. Drischler C, Furnstahl RJ, Melendez JA, Phillips DR. How well do we know
the neutron-matter equation of state at the densities inside neutron stars? A
bayesian approach with correlated uncertainties. Phys Rev Lett (2020) 125:
202702. doi:10.1103/physrevlett.125.202702

98. Hamaker A, Leistenschneider E, Jain R, Bollen G, Giuliani S, Lund K, et al.
Precision mass measurement of lightweight self-conjugate nucleus 80Zr. Nat Phys
(2021) 17:1408–12. doi:10.1038/s41567-021-01395-w

99. Utama R, Piekarewicz J, Prosper H. Nuclear mass predictions for the crustal
composition of neutron stars: A bayesian neural network approach. Phys Rev C
(2016) 93:014311. doi:10.1103/physrevc.93.014311

100. Kuchera MP, Ramanujan R, Taylor JZ, Strauss RR, Bazin D, Bradt J, et al.
Machine learning methods for track classification in the AT-TPC. Nucl Instr
Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment
(2019) 940:156–67. doi:10.1016/j.nima.2019.05.097

101. Abrahamyan S, Ahmed Z, Albataineh H, Aniol K, Armstrong D, Armstrong
W, et al. Measurement of the neutron radius of 208Pb through parity violation in
electron scattering. Phys Rev Lett (2012) 108:112502. doi:10.1103/PhysRevLett.108.
112502

102. Adhikari D, Albataineh H, Androic D, Aniol K, Armstrong D, Averett T,
et al. Accurate determination of the neutron skin thickness of Pb208 through parity-
violation in electron scattering. Phys Rev Lett (2021) 126:172502. doi:10.1103/
physrevlett.126.172502

103. Godbey K, Giuliani P, “BMEX - The Bayesian Mass Explorer”, (2022).
Available at: https://bmex.dev

Frontiers in Physics frontiersin.org23

Giuliani et al. 10.3389/fphy.2022.1054524

133

https://doi.org/10.1007/b98835
https://doi.org/10.1007/978-3-319-42703-4
https://doi.org/10.1007/978-3-642-85949-6
https://doi.org/10.1007/978-3-642-85949-6
https://doi.org/10.1051/m2an:2007031
https://doi.org/10.1016/j.crma.2004.08.006
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1201/b16018
https://doi.org/10.1103/physrevc.98.034318
https://doi.org/10.1103/physrevc.98.034318
https://doi.org/10.1103/physrevlett.122.062502
https://doi.org/10.1103/physrevlett.122.062502
https://doi.org/10.1137/0143045
https://doi.org/10.2514/6.2003-3847
https://doi.org/10.1051/m2an/2011056
https://doi.org/10.1088/1674-1137/abddb0
https://doi.org/10.1016/j.adt.2011.12.006
https://surmise.readthedocs.io/en/latest/introduction.html
https://doi.org/10.21105/joss.00024
https://doi.org/10.1103/physrevc.79.054311
https://doi.org/10.1016/s0375-9474(02)00867-9
https://doi.org/10.1103/PhysRevLett.85.5296
https://doi.org/10.1103/physrevlett.106.252501
https://doi.org/10.1103/physrevc.64.062802
https://doi.org/10.1063/pt.3.4247
https://doi.org/10.1103/physrevlett.127.232501
https://doi.org/10.1103/physrevlett.127.232501
https://doi.org/10.1103/physrevc.104.024329
https://doi.org/10.1103/physrevc.104.024329
https://doi.org/10.1038/s41567-022-01715-8
https://doi.org/10.1103/PhysRevC.106.L051602
https://doi.org/10.1103/physrevlett.122.232502
https://doi.org/10.3389/fphy.2022.888476
https://doi.org/10.1103/physrevlett.125.202702
https://doi.org/10.1038/s41567-021-01395-w
https://doi.org/10.1103/physrevc.93.014311
https://doi.org/10.1016/j.nima.2019.05.097
https://doi.org/10.1103/PhysRevLett.108.112502
https://doi.org/10.1103/PhysRevLett.108.112502
https://doi.org/10.1103/physrevlett.126.172502
https://doi.org/10.1103/physrevlett.126.172502
https://bmex.dev
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1054524


Muon capture on deuteron using
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The muon capture reaction μ− + d→ n + n + ]μ in the doublet hyperfine state

is studied using nuclear potentials and consistent currents derived in the

chiral effective field theory, which are local and expressed in coordinate

space (the so-called Norfolk models). Only the largest contribution due to

the 1S0 nn scattering state is considered. Particular attention is given to the

estimate of theoretical uncertainty, for which four sources have been

identified: 1) the model dependence, 2) the chiral-order convergence for

the weak nuclear current, 3) the uncertainty in the single-nucleon axial form

factor, and 4) the numerical technique adopted to solve the bound and

scattering A = 2 systems. This last source of uncertainty has turned out to be

essentially negligible. For the 1S0 doublet muon capture rate ΓD(1S0), we

obtain ΓD(1S0) � 255.8(0.6)(4.4)(2.9) s−1, where the three errors come from

the first three sources of uncertainty. The value for ΓD(1S0) obtained within

this local chiral framework is compared with previous calculations and found

in very good agreement.

KEYWORDS

muon capture, deuteron, chiral effective field theory, ab initio calculation, error
estimate

1 Introduction

The muon capture on a deuteron, i.e. the process

μ− + d → n + n + ]μ, (1)

is one of the few weak nuclear reactions involving light nuclei which, on one side, are

experimentally accessible, and, on the other, can be studied using ab initio methods.

Furthermore, it is a process closely linked to the proton–proton weak capture, the so-

called pp reaction,

p + p → d + e+ + ]e, (2)
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which, although being of paramount importance in astrophysics,

is not experimentally accessible due to its extremely low rate and

can only be calculated. Since the theoretical inputs to study

reaction (2) and reaction (1) are essentially the same, the

comparison between the experiment and theory for muon

capture provides a strong test for the pp studies.

The muon capture reaction (1) can take place in two different

hyperfine states, f = 1/2 and 3/2. Since it is well known that the

doublet capture rate is about 40 times larger than the quartet one

(see, for instance, Ref. [1]), we will consider the f = 1/2 state only,

and we will focus on the doublet capture rate, ΓD. The

experimental situation for ΓD is quite confused, with available

measurements which are relatively old. These are the ones

of Refs. [2–5], 365 (96) s−1, 445 (60) s−1, 470 (29) s−1, and

409 (40) s−1, respectively. All these data are consistent with

each other within the experimental uncertainties, which are,

however, quite large. To clarify the situation, an experiment

with the aim of measuring ΓD with 1% accuracy is currently

performed at the Paul Scherrer Institute, in Switzerland, by the

MuSun Collaboration [6].

Many theoretical studies are available for the muon capture

rate ΓD. A review of the available literature from up to about

10 years ago can be found in Ref. [7]. Here, we focus on the work

conducted in the past 10 years. To the best of our knowledge, the

capture rate ΓD has been studied in Refs. [8–12]. The studies of

Refs. [9, 11] were performed within the phenomenological

approach, using phenomenological potentials and currents. In

Ref. [9], the first attempt to use the chiral effective field theory

(χEFT) was presented, within the so-called hybrid approach,

where a phenomenological nuclear interaction is used in

conjunction with χEFT weak nuclear charge and current

operators. In the study we present in this contribution,

though, we are interested not only in the determination of ΓD
but also an assessment of the theoretical uncertainty. This can be

grasped more comfortably and robustly within a consistent χEFT

approach. Therefore, we review only the theoretical works of

Refs. [8, 10, 12], which were performed within a consistent χEFT.

The studies of Refs. [8, 10] were essentially performed in parallel.

They both employed the latest (at those times) nuclear chiral

potentials and consistent weak current operators. In Ref. [8], the

doublet capture rate was found to be ΓD = 388.1 (4.3) s−1, when

the NN chiral potentials of Ref. [13], obtained up to the next-to-

next-to-next-to-leading order (N3LO) in the chiral expansion,

were used. When only the 1S0 channel of the final nn scattering

state was retained, it was found that ΓD(1S0) � 247.7(2.8) s−1. In
Ref. [10], a simultaneous study of the muon capture on a

deuteron and 3He was performed using the same N3LO chiral

potentials, but varying the potential cutoff Λ = 500, 600 MeV [13,

14], and consequently refitting consistently for each value of Λ
the low-energy constants (LECs) entering into the axial and

vector current operators. For the muon capture on a deuteron, it

was obtained ΓD = 399 (3) s−1, the spread accounting for the cutoff

sensitivity, as well as uncertainties in the LECs and electroweak

radiative corrections. When only the 1S0 channel is considered,

ΓD(1S0) � 254.9(1.4) s−1, where, in this case, the (small)

uncertainty arising from electroweak radiative corrections is

not included. In the case of the muon capture on 3He, an

excellent agreement with the available extremely accurate

experimental datum was found. Although obtained by

different groups and with some differences in the axial and

vector current operators adopted in the calculations, the

results of Refs. [8, 10] for ΓD and ΓD(1S0) should be

considered in reasonable agreement. It should be mentioned

that in both studies of Refs. [8, 10], a relation between the LEC

entering the axial current operator (denoted by dR) and cD, one of

the two LECs entering the three-nucleon potential (the other one

being cE) was taken from Ref. [15]. Then, the A = 3 binding

energies and the Gamow–Teller matrix element of tritium β-

decay were used to fix both cD (and consequently dR) and cE for

each given potential and cutoff Λ. Unfortunately, the relation

between dR and cD of Ref. [15] is missing of a factor −1/4, as

clearly stated in the Erratum of Ref. [10] (see also the Erratum of

Ref. [15]). While the work of Ref. [8] has not yet been revisited,

that of Ref. [10] has been corrected, finding very small changes in

the final results, which become ΓD = 398 (3) s−1 and

ΓD(1S0) � 253.5(1.2) s−1.
The most recent and systematic study of reaction (1) in χEFT,

even if only retaining the 1S0 nn channel, is that of Ref. [12].

There, ΓD(1S0) was calculated using a pool of 42 non-local chiral
potentials up to the next-to-next-to-leading order (N2LO), with a

regulator cutoff Λ in the range 450–600 MeV and six different

energy ranges in the NN scattering database [16]. The consistent

axial and vector currents were constructed (with the correct

relation between dR and cD), and a simultaneous fitting procedure

for all the involved LECs was adopted. The final result was found

to be ΓD(1S0) � 252.8(4.6)(3.9) s−1, in excellent agreement with

Ref. [10]. Here, the first error is due to the truncation in the chiral

expansion and the second one is due to the uncertainty in the

parameterization of the single-nucleon axial form factor (see as

follows). Furthermore, in Ref. [17], it has been found that a non-

proper treatment of the infrared cutoff when the bound-state

wave function is represented in a truncated basis (as in the case of

Refs. [9, 10]) can lead to an error of the order of ~ 1% in the few-

nucleon capture cross sections and astrophysical S-factors (as

that of the pp reaction, the case studied in Ref. [17]). Therefore,

we believe that it is also important to investigate this issue related

to the present muon capture process.

The chiral nuclear potentials involved in all the

aforementioned studies are highly non-local and expressed in

momentum space. This is less desirable than the r-space in the

case of the pp reaction, where the treatment in the momentum

space of the Coulomb interaction and the higher-order

electromagnetic effects is rather cumbersome. To overcome

these difficulties, local chiral potentials expressed in the r-

space would be highly desirable. These have been developed

only in recent years, as discussed in the recent review of Ref. [18].
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These potentials are very accurate and have proven to be

extremely successful in describing the structure and dynamics

of light and medium-mass nuclei. In particular, we are interested

in the work of the models of Ref. [19], the so-called Norfolk

potentials, for which, in these years, consistent electromagnetic

and weak transition operators have been constructed [20–22].

This local chiral framework has been used to calculate energies

[23] and charge radii [24] and various electromagnetic

observables in light nuclei, as the charge form factors in

A = 6, 12 [24] and the magnetic structure of few-nucleon

systems [22]. It has also been used to study weak transitions

in light nuclei [25, 26], the muon captures on A = 3, 6 nuclei [27],

neutrinoless double β-decay for A = 6, 12 [28] and the β-decay

spectra in A = 6 [29], and, finally, the equation of the state of pure

neutron matter [30, 31]. However, the use of the Norfolk

potentials to study the muon capture on a deuteron and the

pp reaction is still lacking. One of the aims of this work is to start

this path. Given the fact that ΓD(1S0) is the main contribution to

ΓD, and the 1S0 channel is also the only one of interest for pp

fusion [32, 33], we focus our attention only on ΓD(1S0). A full

calculation of ΓD, together with the rates for muon capture on A =

3, 6 nuclei, is currently underway. The second aim of the present

study is to provide a more robust determination of the theoretical

uncertainty than the work of Ref. [10], although probably not as

robust as the full work presented in Ref. [12]. However, the

procedure we plan to apply in the present work is much simpler

and, as shown as follows, with a quite similar outcome. We will

consider four sources of uncertainties: 1) the first one is due to

model dependence. In this study, the use of the local Norfolk

potentials will allow us to take into consideration the uncertainty

arising from the cutoff variation, as well as the energy ranges in

the NN scattering database up to which the LECs are fitted. In

fact, as it will be explained in Section 2.2, we will employ four

different versions of the Norfolk potentials, obtained using two

different sets of short- and long-range cutoffs, and two different

energy ranges, up to 125 MeV or up to 200 MeV, in the NN

scattering database. 2) The second source of uncertainty arises

from the chiral-order convergence. In principle, this should be

investigated by maintaining the same order for potentials and

weak nuclear currents. However, at present, the Norfolk

potentials, for which weak current operators have been

consistently constructed, are those obtained at N3LO. This

chiral order is needed to reach good accuracy in the

description of the NN systems and of light nuclei. Therefore,

it is questionable whether a study of reaction (1) using

potentials and currents at a chiral order which does not even

reproduce the nuclear systems under consideration, would be of

real interest. As a consequence, we will study, in the present

work, only the chiral-order convergence for the weak nuclear

currents, keeping fixed the chiral order of the adopted

potentials. 3) The third source of uncertainty is due to the

uncertainty in the parameterization of the single-nucleon axial

form factor gA(q2σ) as a function of the squared four-

momentum transfer q2σ . This aspect is discussed in detail in

Section 2.2. Here, we only notice that the most recent

parameterization for the single-nucleon axial form factor is

given by

gA q2σ( ) � gA 1 − 1
6
r2Aq

2
σ +/( ), (3)

where the dots indicate higher-order terms, which are

typically disregarded, and rA is the axial charge radius, its

square being given by r2A � 0.46(16) fm2 [34]. The large

uncertainty on r2A will significantly affect the total

uncertainty budget, as already found in Ref. [12]. 4) The

final source of uncertainty is the one arising from the

numerical technique adopted to solve the bound and

scattering A = 2 systems. Taking into consideration the

arguments of Ref. [17], we have decided to use two

methods. The first one is the method already developed by

Refs. [9, 10], i.e., a variational method, in which the bound and

scattering wave functions are expanded on a known basis and

the unknown coefficients of these expansions are obtained

using variational principles. The second method is the so-

called Numerov method, where the tail of the bound-state

wave function is, in fact, imposed “by hand” (see Section 2.3).

This last source of uncertainty will be shown to be completely

negligible.

The paper is organized as follows: Section 2 presents the

theoretical formalism, providing a schematic derivation for

ΓD(1S0) in Section 2.1, a description of the adopted nuclear

potentials and currents in Section 2.2, and a discussion of the

methods used to calculate the deuteron and nn wave functions in

Section 2.3. The results for ΓD(1S0) are presented and discussed

in Section 3, and some concluding remarks and an outlook are

given in Section 4.

2 Theoretical formalism

We discuss, in this section, the theoretical formalism

developed to calculate the muon capture rate. In particular,

Section 2.1 gives the main steps of the formalism used to

derive the differential and the total muon capture rate on a

deuteron in the initial doublet hyperfine state. A through

discussion is given by Ref. [9]. Section 2.2 reports the main

characteristics of the nuclear potentials and currents we used in

the present study. Finally, Section 2.3 presents the variational and

the Numerov methods used to calculate the deuteron bound and

nn scattering wave functions.

2.1 Observables

The differential capture rate in the doublet initial hyperfine

state dΓD/dp can be written as [9]
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dΓD
dp

� E2
] 1 − E]

mμ +md( )⎡⎢⎣ ⎤⎥⎦ p2dp̂
8π4

|TW|2, (4)

where p is the nn relative momentum, and

E] �
mμ +md( )2 − 4m2

n − 4p2

2 mμ +md( ) , (5)

with mμ, mn, and md being the muon, neutron, and deuteron

masses, respectively. The transition amplitude |TW|2 reads [9]

|TW|2 � 1
2f + 1

∑
s1s2h]

∑
fz

|TW f, fz; s1, s2, h]( )|2, (6)

where f, fz indicate the initial hyperfine state, fixed here to be

f = 1/2, while s1, s2, and h] denote the spin z-projection for the

two neutrons and the neutrino helicity state, respectively. In turn,

TW (f, fz; s1, s2, h]) is given by

TW(f, fz; s1, s2, h]) ≡ 〈nn, s1, s2; ], h] | HW | (μ, d);f, fz〉
≃

GV�
2

√ ψ1s ∑
sμsd

〈1
2
sμ, 1sd | ffz〉 lσ(h], sμ)

×〈Ψp,s1s2(nn) | jσ(q) | Ψd(sd)〉 , (7)

with GV being the vector coupling constant, chosen to be

GV � 1.14939 × 10−5 GeV−2, consistently with what has been

used in the fitting procedure of the LECs in the transition

currents (see Section 2.2). With lσ and jσ we indicate the

leptonic and hadronic current densities, respectively [9],

written as

lσ h], sμ( ) ≡ �u k], h]( ) γσ 1 − γ5( )u kμ, sμ( ), (8)
and

jσ q( ) � ∫ dx eiq·x jσ x( ) ≡ ρ q( ), j q( )( ). (9)

Here, the leptonic momentum transfer q is defined as

q = kμ − k] ≃ − k]. Furthermore, Ψd (sd) and Ψp,s1s2(nn) are
the initial deuteron and final nn wave functions, respectively,

with sd indicating the deuteron spin z-projection. Finally, in Eq.

7, the function ψ1s represents the 1s solution of the Schrödinger

equation for the initial muonic μ − d atom. Since the muon

capture occurs in the region where the deuteron and the muon

wave functions overlap, ψ1s can be approximated as the average

over the nuclear volume [9, 35], namely,

|ψ1s| ≃ |ψav
1s | ≡ |ψ1s 0( )| �

�������
α μμd( )3
π

√
, (10)

where ψ1s (0) denotes the Bohr wave function for a point charge e

evaluated at the origin, μμd is the reduced mass of the (μ, d)

system, and α = 1/137.036 is the fine-structure constant.

The final nn wave function can be expanded in partial waves as

Ψp,s1s2(nn) � 4π∑
S

〈1
2
s1,

1
2
s2 | SSz〉

× ∑
LLzJJz

iLYLLz
* (p̂)〈SSz, LLz | JJz〉 �ΨLSJJz

nn (p), (11)

where �ΨLSJJz
nn (p) is the nn wave function with orbital angular

momentum LLz, total spin SSz, and total angular momentum JJz.

In the present work, we restrict our study to the L = 0 state (1S0 in

spectroscopic notation).

Using standard techniques described in Refs. [9, 35], a

multipole expansion of the weak charge, ρ(q), and current,

j(q), operators can be performed, resulting in

〈�ΨLSJJz
nn p( )|ρ q( )|Ψd sd( )〉 � ���

4π
√ ∑

Λ≥0

������
2Λ + 1

√
iΛ

×
〈1sd,Λ0|JJz〉�����

2J + 1
√ CLSJ

Λ q( ), (12)

〈�ΨLSJJz
nn p( )|jz q( )|Ψd sd( )〉 � − ���

4π
√ ∑

Λ≥0

������
2Λ + 1

√
iΛ

×
〈1sd,Λ0|JJz〉�����

2J + 1
√ LLSJ

Λ q( ), (13)

〈�ΨLSJJz
nn (p) | jλ(q) | Ψd(sd)〉 � ���

2π
√ ∑

Λ≥1

������
2Λ + 1

√
iΛ

×
〈1sd,Λ − λ | JJz〉�����

2J + 1
√

× [−λMLSJ
λ (q) + ELSJ

Λ (q)] ,
(14)

where λ = ±1, and CLSJ
Λ (q), LLSJΛ (q), ELSJ

Λ (q), andMLSJ
Λ (q) denote

the reduced matrix elements (RMEs) of the Coulomb (C),

longitudinal (L), transverse electric (E), and transverse

magnetic (M) multipole operators, respectively, as defined in

Ref. [9]. Since the weak charge and current operators have scalar/

polar-vector (V) and pseudo-scalar/axial-vector (A) components,

each multipole consists of the sum of the V and A terms, having

opposite parity under space inversions. Given that, in this study,

only the 1S0 contribution is considered, the only contributing

multipoles are C1(A), L1(A), E1(A), and M1(V), where the

superscripts LSJ have been dropped. The integration of the

matrix elements is performed using ~ 50 Gaussian points

on the angles and a scaled grid on r with a maximum value

rmax ~ 42 fm. This permits full convergence of the integrals, and

the grid of r is large enough that all the low-energy components

of the current become negligible.

To calculate the differential capture rate dΓD/dp in Eq. 4, we

need to integrate over p̂. This is carried out numerically using the

Gauss-Legendre method with a number of points of the order of

10 so that an accuracy of better than 1 part in 103 can be achieved.

Finally, the total capture rate ΓD is obtained as

ΓD � ∫pmax

0

dΓD
dp

dp, (15)

where pmax is the maximum value of the momentum p. To find

the smallest needed number of grid points on p to reach

convergence, we computed the capture rate by integrating

over several grids starting from a minimum value of 20 points

up to a maximum of 80. We verified that the results obtained by

integrating over 20 or 40 points differ by about 0.1 s−1, while the

ones obtained with 40, 60, and 80 points differ by less than
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0.01 s−1. Therefore, we have used 60 grid points in all the studied

cases mentioned below.

2.2 Nuclear potentials and currents

In this study, we consider four different nuclear interaction

models and consistent weak current operators derived in χEFT.

We decided to concentrate our attention on the recent local r-

space potentials of Ref. [19] (see also Ref. [18] for a recent

review). The motivation behind this choice is that, in the future,

we plan to use this same formalism to the pp reaction, for which

the Coulomb interaction and also electromagnetic higher-order

contributions play a significant role at the accuracy level reached

by theory. The possibility to work in the r-space is clearly an

advantage compared with the momentum space, which would be

the unavoidable choice when using non-local potentials.

However, in the momentum space, the full electromagnetic

interaction between the two protons is not easy to be taken

into account. The potentials of Ref. [19], which we will refer to as

Norfolk potentials (denoted as NV), are chiral interactions that

also include, beyond pions and nucleons, Δ-isobar degrees of

freedom explicitly. The short-range (contact) part of the

interaction receives contributions at the leading order (LO),

next-to-leading order (NLO), and next-to-next-to-next-to-

leading order (N3LO), while the long-range components arise

from one- and two-pion exchanges, and are retained up to the

next-to-next-to-leading order (N2LO). By truncating the

expansion at N3LO, there are 26 LECs which have been fitted

to the NN Granada database [36–38], obtaining two classes of

Norfolk potentials, depending on the range of laboratory energies

over which the fits have been carried out: the NVI potentials have

been fitted in the range 0–125 MeV, while for the NVII

potentials, the range has been extended up to 200 MeV. For

each class of potential, two cutoff functions CRS(r) and CRL(r)
have been used to regularize the short- and long-range

components, respectively. These functions have been defined as

CRS r( ) � 1

π
3
2R3

S

e− r/RS( )2 , (16)

CRL r( ) � 1 − 1

r/RL( )6e r−RL( )/aL + 1
, (17)

with aL ≡ RL/2. Two different sets of cutoff values have been

considered, (RS; RL) = (0.7; 1.0) and (0.8; 1.2), and the resulting

models have been labeled “a” and “b,” respectively. All these

potentials are very accurate: in fact, the χ2/datum for the NVIa,

NVIIa, NVIb, and NVIIb potentials are 1.05, 1.37, 1.07, and

1.37 [19], respectively. It should be noted that in Ref. [19],

another set of NV potentials labeled NVIc and NVIIc was

constructed, with (RS; RL) = (0.6; 0.8). The reason for not

considering these potential models in this work is that they

have been found to lead to a poor convergence in the

hyperspherical harmonics method used to calculate the 3H

and 3He wave functions needed to predict the Gamow–Teller

matrix element in tritium β-decay. This study is, in turn,

necessary to fit the aforementioned dR LEC (see as follows

and Ref. [20]). Therefore, for the NVIc and NVIIc potentials,

consistent currents are not available, and we have disregarded

them in this work.

We now turn our attention to the weak transition operators.

When only the 1S0 nn partial wave is included, we have seen that

the contributing multipoles are C1(A), L1(A), E1(A), and M1(V).

Consequently, the weak vector charge operator is of no interest in

the process under consideration, and we will not discuss it here.

The weak vector current entering M1(V) can be obtained from

the isovector electromagnetic current, performing a rotation in

the isospin space, i.e., with the substitutions

τ i,z/20τ i,± � τ i,x ± iτi,y( )/2, (18)
τi × τj( )

z
0 τi × τj( )

±
� τ i × τj( )

x
± i τ i × τj( )

y
. (19)

Therefore, we will review the various contributions to the

electromagnetic current, even if we are interested only in their

isovector components. The electromagnetic current operators up

to one loop have been most recently reviewed in Ref. [22]. Here,

we only give a synthetic summary. Following the notation of Ref.

[22], we denote withQ the generic low-momentum scale. The LO

contribution, at the order Q−2, consists of the single-nucleon

current, while at the NLO or order Q−1, there is the one-pion-

exchange (OPE) contribution. The relativistic correction to the

LO single-nucleon current provides the first contribution of

order Q0 (N2LO). Furthermore, since the Norfolk interaction

models retain explicitly Δ-isobar degrees of freedom, we take into

account also the N2LO currents originating from explicit Δ
intermediate states. Finally, the currents at order Q1 (N3LO)

consist of 1) terms generated by minimal substitution in the four-

nucleon contact interactions involving two gradients of the

nucleon fields and by non-minimal couplings to the

electromagnetic field; 2) OPE terms induced by γπN

interactions of sub-leading order; and 3) one-loop two-pion-

exchange terms. A thorough discussion of all these contributions

as well as their explicit expressions is given in Ref. [22]. Here, we

only remark that 1) the various contributions are derived in

momentum space and have power–law behavior at large

momenta, or short range. Therefore, they need to be

regularized. The procedure adopted here, as in Ref. [22], is to

carry out first the Fourier transforms of the various terms. This

results in r-space operators which are highly singular at vanishing

inter-nucleon separations. Then, the singular behavior is

removed by multiplying the various terms by appropriate r-

space cutoff functions, identical to those of the Norfolk potentials

of Ref. [19]. More details are given in Refs. [21, 22]. 2) There are

5 LECs in the electromagnetic currents which do not enter the

nuclear potentials and need to be fitted using electromagnetic

observables. These LECs enter the current operators at N3LO; in
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particular, two of them are present in the currents arising from

non-minimal couplings to the electromagnetic field, and three of

them are present in the sub-leading isoscalar and isovector OPE

contributions. In this study, these LECs are determined by a

simultaneous fir to the A = 2–3 nuclei magnetic moments and the

deuteron threshold electrodisintegration at backward angles over

a wide range of momentum transfers [22]. In this work, we used

the LECs labeled with set A in Ref. [22].

The axial current operators used in the present work are the

ones of Ref. [20]. They include the LO term of order Q−3, which

arises from the single-nucleon axial current, and the N2LO and

N3LO terms (scaling as Q−1 and Q0, respectively), consisting of

the relativistic corrections and Δ contributions at N2LO, and of

OPE and contact terms at N3LO. It should be noted that at NLO,

here of orderQ−2, there is no contribution in χEFT. The explicit r-

space expression of these operators is given in Ref. [20]. Here, we

only remark that all contributions have been regularized at a

short and long range consistently with the regulator functions

used in the Norfolk potentials. Furthermore, the N3LO contact

term presents a LEC, here denoted by z0 (but essentially equal to

the dR LEC mentioned in Section 1), defined as

z0 � gA

2
m2

π

f2
π

1

mπRS( )3 − mπ

4gAΛχ
cD + mπ

3
c3 + 2c4( ) + mπ

6m
[ ].

(20)
Here, gA = 1.2723 (23) is the single-nucleon axial

coupling constant, m = 938.9 MeV is the nucleon mass,

mπ = 138.04 MeV and fπ = 97.4 MeV are the pion mass and

decay constant, respectively, Λχ ~ 1 GeV is the chiral-

symmetry breaking scale, and c3 = −0.79 and c4 = 1.33 are

two LECs entering the ππN Lagrangian at N2LO and taken

from the fit of the pion-nucleon scattering data with Δ-isobar
as explicit degrees of freedom [39]. As mentioned previously,

cD is one of the two LECs which enter the three-nucleon

interaction, the other being denoted by cE. The two LECs cD
(and consequently z0) and cE have been fitted to

simultaneously reproduce the experimental trinucleon

binding energies and the central value of the Gamow–Teller

matrix element in tritium β-decay. The explicit values for cD
are −0.635, −4.71, −0.61, and −5.25 for the NVIa, NVIb,

NVIIa, and NVIIb potentials, respectively.

The nuclear axial charge has a much simpler structure than

the axial and vector currents, and we have used the operators as

derived in Ref. [40]. At LO, i.e., at the order Q−2, it retains the

one-body term, which gives the most important contribution. At

NLO (orderQ−1), the OPE contribution appears, which, however,

has been found to be almost negligible in this study. The N2LO

contributions (order Q0) exactly vanish, and at N3LO (order Q1),

there are two-pion-exchange terms and new contact terms where

new LECs appear. N3LO has not been included in the calculation,

since the new LECs have not been fixed yet. However, we have

found the contribution of C1(A) to be two orders of magnitude

smaller than the one from the other multipoles. Therefore, the

effect of the axial current correction at N3LO can be safely

disregarded.

All the axial charge and current contributions are multiplied by

the single-nucleon axial coupling constant, gA(q2σ), written as a

function of the squared of the four-momentum transfer q2σ .

Contrary to the triton β-decay, in the case of the muon capture

on a deuteron, the four-momentum transfer is quite large. The

dependence of gA(q2σ) on q2σ is, therefore, crucial and, as already

mentioned in Section 1, is a source of theoretical uncertainty in this

study. In the past, it has been used for gA(q2σ), a dipole form [9], but

in Ref. [41], it has been argued that the dipole form introduces an

uncontrolled systematic error in estimating the value of the axial

form factor. Alternatively, it has been proposed to use the small-

momentum expansion, which leads to the expression of Eq. 3. In our

study, we decided to use the new parameterization for gA(q2σ) of Eq.
3, but with a slightly smaller uncertainty on the axial charge radius rA
compared with Ref. [41], as discussed in Ref. [34]. In this work, rA
has been chosen as the weighted average of the values obtained by

two independent procedures having approximately the same

accuracy, about 50%. One procedure is the one of Ref. [41] and

used for the axial form factor a convergent expansion given by

gA q2σ( ) � ∑kmax

k�0
akz q2σ( )k, (21)

where the variable z(q2σ) is defined as

z q2σ( ) � �������
tcut − q2σ

√ − ������
tcut − t0

√�������
tcut − q2σ

√ + ������
tcut − t0

√ , (22)

with tcut � 9 m2
π and −∞ < t0 < tcut. In Eq. 21, ak is the expansion

parameters that encode the nuclear structure information and

need to be experimentally fixed. From gA(q2σ) in Eq. 21, we can

obtain r2A as [41]

1
6
r2A ≡

1
gA 0( )

dgA q2σ( )
dq2σ

∣∣∣∣∣∣∣∣
q2σ�0

. (23)

The value for r2A is obtained by fitting experimental

data of neutrino scattering on a deuterium and is found

to be r2A(z exp.]) � 0.46(22) fm2 [41].

Alternatively, it is possible to obtain r2A from experiments

on muonic capture on protons, as carried out by the MuCap

Collaboration. To date, these experiments are characterized by

an overall accuracy of 1%, but a future experiment plans to

reduce this uncertainty to about 0.33% [34]. In this case,

r2A(MuCap) � 0.46(24) fm2 [34]. In order to take into account

both r2A(z exp.]) and r2A(MuCap), we adopted for r2A the value

r2A � 0.46(16) fm2, as suggested in Ref. [34]. The uncertainty

on r2A remains quite large, at about 35%, but it is slightly

smaller than the one of Ref. [41], which has been adopted in

the study of Ref. [12]. The consequences on the error budget

are discussed in Section 3. We finally notice that the dipole
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function for gA(q2σ), with a cutoff value of ΛA = 1 GeV as used,

for instance, in Refs. [9, 10], can be reduced to Eq. 3 by

imposing r2A � 0.467 fm2.

2.3 Nuclear wave functions

The calculation of the nuclear wave functions of the deuteron

and nn systems was, first of all, performed using the variational

method described in Ref. [9], where all the details of the

calculation can be found. Here, we summarize only the main

steps.

The deuteron wave function can be written as

Ψd r, Jz( ) � ∑
α

∑M−1

i�0
cα,i fi r( )Yα r̂( ), (24)

where the channels α ≡ (l; s; J; t) denote the deuteron quantum

numbers, with the combination (l = 0, 2; s = 1; J = 1; t = 0)

corresponding to α = 1, 2, respectively, and the functions Yα(r̂)
are given by

Yα r̂( ) ≡ Yl r̂( ) ⊗ χs[ ]
JJz
ξttz . (25)

The M radial functions fi(r), normalized to unity, with i = 0, . . .,

M − 1, are written as

fi r( ) �
������
i!γ3

i + 2( )!

√
e−

γ
2 r 2( )Li γr( ), (26)

where γ is a non-variational parameter chosen to be [9]

γ = 0.25 fm−1 and (2)Li (γr) are the Laguerre polynomials of

the second type [42]. The unknown coefficients cα,i are obtained

using the Rayleigh–Ritz variational principle, i.e., imposing the

condition

z

zcα,i
〈Ψd|H + Bd|Ψd〉 � 0, (27)

where H is the Hamiltonian and Bd is the deuteron binding

energy. This reduces to an eigenvalue–eigenvector problem,

which can be solved with standard numerical techniques [9].

The nn wave function �ΨLSJJz
nn (p) in Eq. 11 is written as a sum

of a core wave function Ψc(p), and of an asymptotic wave

function Ψa(p), where we have dropped the superscript LSJJz
for ease of presentation. The core wave function Ψc(p) describes

the nn scattering state where the two nucleons are close to each

other, and is expanded on a basis of Laguerre polynomials,

similarly to what we did for the deuteron wave function.

Therefore,

Ψc p( ) � ∑M−1

i�0
di p( )fi r( )Yα r̂( ), (28)

where fi(r) and Yα(r̂) are defined in Eqs 26, 25, respectively. It

should be noted that α ≡ L = 0; S = 0, J = 0, Jz = 0. In the

unknown coefficients di(p), we have explicitly kept the

dependence on p.

The asymptotic wave function Ψa(p) describes the nn

scattering system in the asymptotic region, where the nuclear

potential is negligible. Consequently, it can be written as a linear

combination of regular (Bessel) and irregular (Neumann)

spherical functions, denoted as jL(pr), nL(pr), respectively, i.e.,

Ψa p( ) � ~FL pr( )Yα r̂( ) + ∑
L′
RLL′ ~GL′ pr( )Yα′ r̂( ), (29)

where RLL’ is the reactance matrix, and ~FL′(pr) and ~GL′(pr) are
defined as

~FL′ pr( ) ≡ jL pr( )
pL

, (30)
~GL′ pr( ) ≡ nL pr( ) 1 − e−ϵr( )2L+1pL+1, (31)

so that they are well defined for p → 0 and r → 0. The function

(1 − e−ϵr)2L+1 was found to be an appropriate regularization

factor at the origin for nL (pr). We use the value ϵ = 0.25 fm−1

as in Ref. [9]. It should be noted that since L = L′ = 0 the reactance

matrix is, in fact, just a number here, and R00 = tan δ0, δ0 being

the phase shift.

To determine the coefficients di(p) in Eq. 28 and the

reactance matrix RLL’ in Eq. 29, we use the Kohn variational

principle [43], which states that the functional

RLL′ p( )[ ] � RLL′ p( ) − mn

Z2
〈�Ψα′ p( )|H − E|�Ψα p( )〉 (32)

is stationary with respect to di(p) and RLL’. In Eq. 32, E is the nn

relative energy (E = p2/mn, mn being the neutron mass) and H is

the Hamiltonian operator. Performing the variation, a system of

linear inhomogeneous equations for di(p) and a set of algebraic

equations for RLL’ are derived. These equations are solved by

standard techniques. The variational results presented in the

following section are obtained using M = 35 for both the

deuteron and the nn scattering wave functions.

To test the validity of the variational method and its

numerical accuracy, in this work, we also used the Numerov

method for the deuteron and the nn wave functions.

For the deuteron wave function, we used the so-called

renormalized Numerov method, based on the work of Ref.

[44]. Within this method, the Schrödinger equation is

rewritten as

I
d2

dx2
+ Q x( )[ ]Ψ x( ) � 0, (33)

where I is the identity matrix and Q(x) is a matrix defined as

Q x( ) � 2μ

Z2( ) EI − V x( )[ ], (34)

and Ψ(x) is also a matrix whose columns are the independent

solutions of the Schrödinger equation with non-assigned

boundary conditions on the derivatives. In Eq. 34, μ is the np
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reduced mass, E ≡ − Bd, and V(x) is the sum of the np nuclear

potential Vnp(x) and the centrifugal barrier, i.e.,

V x( ) � Vnp x( ) + Z2l l + 1( )
2μr2

. (35)

The Schrödinger equation is evaluated on a finite and discrete

grid with a constant step h. The boundary conditions require

knowing the wave function at the initial and final grid points,

given by x0 = 0 and xN = Nh, respectively. Specifically, it is

assumed that Ψ(0) = 0 and Ψ(Nh) = 0. No conditions on first

derivatives are imposed.

Equation 33 can be rewritten equivalently as [44]

I − T xn+1( )[ ]Ψ xn+1( ) − 2I + 10T xn( )[ ]Ψ xn( )
+ I − T xn−1( )[ ]Ψ xn−1( ) � 0, (36)

where xn ∈ A, A ≡ (x0, xN), and T (xn) is a 2 × 2 matrix defined

as [44]

T xn( ) � − h2

12
Q xn( ). (37)

It should be noted that Eq. 36 is, in fact, the natural extension to a

matrix formulation of the ordinary Numerov algorithm (see Eq.

65 as follows).

By introducing the matrix F (xn) as [44]

F xn( ) � I − T xn( )[ ]Ψ xn( ), (38)

Equation 36 can be rewritten as

F xn+1( ) − U xn( )F xn( ) + F xn−1( ) � 0, (39)
where the matrix U (xn) is given by

U xn( ) � I − T xn( )[ ]−1 2I + 10 T xn( )[ ]. (40)

Furthermore, we introduce the matrices R (xn) and R̂(xn),
defined as [44]

R xn( ) � F xn+1( )F−1 xn( ), (41)
R̂ xn( ) � F xn−1( )F−1 xn( ), (42)

and their inverse matrices as

R−1 xn( ) � F xn( )F−1 xn+1( ), (43)
R̂
−1

xn( ) � F xn( )F−1 xn−1( ). (44)
By using definitions (41) and (42), it is possible to derive from Eq.

39 the following recursive relations:

R xn( ) � U xn( ) − R−1 xn−1( ), (45)
R̂ xn( ) � U xn( ) − R̂

−1
xn+1( ). (46)

We now notice that, since Ψ(0) = 0, Eq. 38 implies that F (0) = 0

and, consequently, from Eq. 43, it follows that R−1 (0) = 0.

Similarly, since Ψ(Nh) = 0, from Eqs 38, 44 we obtain

R̂
−1(Nh) � 0. Starting from the R−1(0) and R̂

−1(Nh)
values, and iteratively using Eqs 45, 46, it is possible to

calculate the R (xm) and R̂
−1(xm+1) values up to a matching

point xm, so that the interval A remains divided into two sub-

intervals, A1 ≡ [x0, xm+1] and A2 ≡ [xm, xN]. These values are

needed to calculate the deuteron binding energy and its wave

function. In fact, assuming we knew the deuteron binding energy

Bd ≡ − E for a given potential, then we could integrate Eq. 33 in

the two sub-intervals A1 and A2, obtaining the outgoing (left)

solution Ψl (xn) in A1, and the incoming (right) solution Ψr (xn)

in A2. If Bdwere a true eigenvalue, then the functionΨ(xn) and its
derivative have to be continuous in xm. The wave function

continuity at two consecutive points, for example, xm and

xm+1, implies that

Ψl xm( ) · l � Ψr xm( ) · r ≡ ψ xm( ), (47)
Ψl xm+1( ) · l � Ψr xm+1( ) · r ≡ ψ xm+1( ), (48)

where l and r are two unknown vectors. Multiplying Eq. 48 by

[I − T(xm+1)] and using Eq. 38, we obtain

Fl xm+1( ) · l � Fr xm+1( ) · r ≡ f xm+1( ). (49)
Similarly, from Eq. 47, we can write

Fl xm( ) · l � Fr xm( ) · r ≡ f xm( ). (50)

Using Eq. 41 with xn = xm for the outgoing solution and Eq. 42

with xn = xm+1 for the incoming solution, we can write

Fl xm+1( ) � R xm( )Fl xm( ), (51)
Fr xm+1( ) � R̂

−1
xm+1( )Fr xm( ). (52)

By replacing Eqs 51, 52 with Eq. 49 and using Eq. 50, we obtain

that

R xm( )f xm( ) � R̂
−1

xm+1( )f xm( ) (53)
or equivalently that

R xm( ) − R̂
−1

xm+1( )[ ]f xm( ) � 0. (54)

A non-trivial solution is only admitted if the aforementioned

equation satisfies the following condition:

det R xm( ) − R̂
−1

xm+1( )[ ] � 0. (55)

This determinant is a function of the energy E, i.e.,

det E( ) � det R xm( ) − R̂
−1

xm+1( )[ ]. (56)

Therefore, we proceed as follows: starting from an initial trial

value E1, we calculate det (E1). Fixing a tolerance factor ϵ, for
example ϵ = 10–16, if det (E1) ≤ ϵ, we assume E1 being the

eigenvalue, otherwise we compute the determinant for a second
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energy value E2. If det (E2) ≤ ϵ, we take the deuteron binding

energy as Bd = −E2, otherwise it is necessary to repeat the

procedure iteratively until det (Ei) ≤ ϵ. For the iterations after

the second one, the energy is chosen through the relation

Ei � Ei−2 − det Ei−1( ) Ei−2 − Ei−1
det Ei−2( ) − det Ei−1( ), (57)

which follows from a linear interpolation procedure. The

procedure stops when det (Ei) ≤ ϵ, and the deuteron binding

energy is taken to be Bd = −Ei.

To calculate the S- and D-wave components of the reduced

radial wave function, denoted as u0 (xn) and u2 (xn), respectively,

we notice that they are the two components of the vector ψ(xn),

defined in Eq. 47 at the point xm. The starting point is to assign an

arbitrary value to one of the two components of the vector

function f (xm) (see Eq. 50). Since R (xm) and R̂
−1(xm+1) are

known, the value of the other component is fixed by Eq. 54. By

defining the outgoing function as f (xn) = F (xn) ·l, from Eq. 41, it

follows that

f xn( ) � R−1 xn( )f xn+1( ), (58)

where n = m − 1, . . ., 0. Similarly, we can proceed with the

incoming function. By defining it as f (xn) = F (xn) ·r, from Eq. 42

we have

f xn( ) � R̂
−1

xn( )f xn−1( ), (59)
where n = m + 1, . . ., N. At this point, the vector function f (xn)

can be calculated ∀ xn ∈ [x0, xN], through Eqs 58, 59. The u0 (xn)
and u2 (xn) functions are given from f (xn) by

ψ xn( ) � I − T xn( )[ ]−1f xn( ). (60)

Finally, the deuteron wave function is normalized to unity.

The single-channel Numerov method, also known as a

three-point algorithm, is used to calculate the nn wave

function. Although the method is quite well known, to

provide a comprehensive review of all the approaches to

the A = 2 systems, we briefly summarize its main steps.

Again, we start by defining a finite and discrete interval I,

with constant step h, characterized by the initial and final

points, x0 = 0 and xN = Nh, respectively. Then, the

Schrödinger equation can be cast in the form

u″ xn( ) ≡ d2 u x( )
dx2

∣∣∣∣∣∣∣∣x�xn � W xn( )u xn( ), (61)

where

W xn( ) � 2μ

Z2( )V xn( ) − p2, (62)

with V (xn) being the nuclear potential and p the nn relative

momentum. To solve Eq. 61, it is convenient to introduce the

function z (xn), defined as

z xn( ) � u xn( ) − h2

12
u″ xn( ). (63)

By replacing Eq. 61 with Eq. 63, z (xn) can be rewritten as

z xn( ) � 1 − h2

12
W xn( )( )u xn( ). (64)

By expanding z (xn−1) and z (xn+1) in an interval around the point

xn in a Taylor series up to O (h4), and adding together the two

expressions, we obtain

z xn+1( ) � 2z xn( ) − z xn−1( ) + h2u″ xn( ) + O h6( ). (65)

This is a three-point relation: once the z (xn−1) and z (xn) values

are known, after calculating u″(xn) using Eq. 61, we can compute

z (xn+1) at the order O (h6).

By fixing the values u (0) = 0 and u(h) = h, we consequently know

z (0) and z(h), i.e.,

u 0( ) � 00z 0( ) � 0, (66)

u h( ) � h0z h( ) � 1 − h2

12
W h( )( )u h( ), (67)

and u″(h) is obtained by Eq. 61. Then, z (2h) is obtained from Eq.

65, and consequently,

u 2h( ) � z 2h( )
1 − h2/12( )W 2h( )[ ], (68)

whereW (2h) is given by Eq. 62. Equation 68 can be used again

to determine the u(3h) value, and, proceeding iteratively, the

S-wave scattering reduced radial wave function is fully

determined except for an overall normalization factor. This

means that for a sufficiently large value of xn ∈ A, denoted as

x�n, we can write

u x�n( ) � N j0 kx�n( ) + tan δ0 n0 kx�n( )[ ], (69)

where N is the sought normalization constant, and the phase shift δ0
can be computed by taking the ratio between Eq. 69 written for x�n

and the same equation written for xm, m being close to �n so that

TABLE 1 Deuteron binding energies Bd, in MeV, and nn S-wave phase
shift δ0 at E=5 MeV, in deg, calculatedwith theNumerov (Num.) or
the variational (Var.) methods using the four Norfolk chiral potentials
NVIa, NVIIa, NVIb, and NVIIb. Here, we report the results up to the
digit fromwhich the twomethods start to differ. The experimental
value for Bd is Bexp

d � 2.2245 MeV.

Potential Bd (Num.) Bd (Var.) δ0(Num.) δ0(Var.)

NVIa 2.22465 2.22464 57.714 57.714

NVIIa 2.22442 2.22441 57.766 57.766

NVIb 2.22482 2.22486 57.815 57.812

NVIIb 2.22418 2.22427 57.964 57.960
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tan δ0 � u xm( )j0 kx�n( ) − u x�n( )j0 kxm( )
u x�n( )n0 kxm( ) − u xm( )n0 kx�n( ). (70)

Finally, using Eq. 69, the normalization constant N is given by

N � u x�n( )/ j0 kx�n( ) + tan δ0n0 kx�n( )[ ] (71)

so that the function u(xn) turns out to be normalized to

unitary flux.

To compare the results obtained with the variational and

the Numerov methods, Table 1 shows the deuteron binding

energies and the nn phase shifts at the indicative relative

energy E = 5 MeV for the four chiral potentials under

consideration. In the table, we can see an excellent

agreement between the two methods, with a difference well

below 1 keV for the binding energies. The phase shifts

calculated with the two methods are also in excellent

numerical agreement. Furthermore, Figure 1 shows the

deuteron and the nn wave functions, still at E = 5 MeV as

an example, for the NVIa potential. The results obtained with

the other chiral potentials present similar behavior. In the

figure, we can see that the variational method fails to

reproduce the u0(r) function for r > 20 fm. However, it

should be noticed that in this region, the function is almost

two orders of magnitude smaller than in the dominant range of

r ~ 0–5 fm. As we will see in the following section, we already

anticipate that these discrepancies in the deuteron wave

functions will have no impact on the muon capture rate.

3 Results

We present, in this section, the results for the ΓD(1S0) muon

capture rate, obtained using the Norfolk potentials and consistent

currents, as presented in Section 2.2. In particular, we will use the

four Norfolk potentials NVIa, NVIb, NVIIa, and NVIIb,

obtained varying the short- and long-range cutoffs (models a

or b), and the range of laboratory energies over which the fits

have been carried out (models I or II). For each model, the weak

vector current and the axial current and the charge operators

have been consistently constructed. In particular, we will indicate

with the label LO those results obtained including only the LO

contributions in the vector current and axial current and charge

operators, and with NLO those obtained including, in addition,

the NLO contributions to the vector current and axial charge

FIGURE 1
Deuteron u0(r) (left top panel) and u2(r) (right top panel) functions, and the nn 1S0 function (left bottom panel) at E =5 MeV are calculated with
the variational (dashed red line) and the Numerov (black solid line) methods. The NVIa potential is used. To appreciate the differences between the
two methods, the function u0(r) and u2(r) are shown in a semilogarithmic scale.
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operators. We remind the reader that there are no NLO

contributions to the axial current. With the label N2LO we

will indicate those results obtained including the N2LO terms

of the vector and axial currents, but not the axial charge since

they vanish exactly. Finally, with N3LO we will indicate the

results obtained when N3LO terms in the vector and axial

currents are retained. It should be noted that this is the order

in which new LECs appear. The contributions at N3LO for the

axial charge are, instead, discarded for the reasons explained

in Section 2.2. Finally, we will use the dependence given in Eq. 3

with gA = 1.2723 and r2A � 0.46 fm2 for the axial single-nucleon

form factor. However, to establish the uncertainty arising from

the rather poor knowledge of r2A (see Ref. [34] and the

discussion in Section 1 and at the end of Section 2.2), we

will also show results obtained with r2A � 0.30, 0.46, 0.62 fm2,

so that the 0.16 fm2 uncertainty on r2A [34] will be taken into

account.

First, we begin by proving that the uncertainty arising from

the numerical method adopted to study the deuteron and the

nn scattering states is well below the 1% level. In fact, Table 2

shows the results obtained with the NVIa potential and

currents with up to N3LO contributions, using either the

variational or the Numerov method to solve the two-body

problem (see Section 2.3). The function dΓD(1S0)/dp (see Eq.

4) calculated with the same potential and currents is shown in

Figure 2. As the figure and the table show, the agreement

between the results obtained with the two methods is

essentially perfect, of the order of 0.01 s−1 in ΓD(1S0), well
below any other source of error (≃ 0.005%). Therefore, from

now on, we will only present results obtained using the

variational method, which is numerically less involved than

the Numerov one.

Table 3 shows the results for ΓD(1S0), obtained using all four
Norfolk potentials, NVIa, NVIb, NVIIa, and NVIIb, and

consistent currents, from LO up to N3LO. The axial charge

radius is fixed at r2A � 0.46 fm2. As seen in the table, we can

provide our best estimate for ΓD(1S0), which we calculate

simply as the average between the four values at N3LO,

ΓD(1S0) � 255.8 s−1. Furthermore, we would like to remark

that the overall model dependence is quite small, the largest

difference being of the order of 1.1 s−1 between the NVIa and

NVIIb results, at N3LO. Going into more detail, 1) by comparing

the NVIa (NVIIa) and NVIb (NVIIb) results, still at N3LO, we

can get a grasp on the cutoff dependence, which turns out to be

smaller than 1 s−1 for both models I and II. 2) By comparing the

NVIa (NVIb) and NVIIa (NVIIb) results, again at N3LO, we can

conclude that the dependence on the NN database used for the

LECs’ fitting procedure for the potentials is essentially of the

same order. To remain conservative, we decided to define the

theoretical uncertainty arising from model dependence as the

half range, i.e.,

TABLE 2 Total doublet capture rate in the 1S0 nn channel, ΓD(1S0) in
s−1, calculated using either the Numerov or the variational
methods to obtain the deuteron and the nn scatteringwave functions.
Here, we report the results up to the digit for which the two methods
differ. The NVIa potential and consistent currents at the various
chiral order are used, and the axial charge radius is taken to be
r2A � 0.46 fm2.

χ-order Numerov Variational

LO 245.43 245.42

NLO 247.59 247.58

N2LO 254.67 254.65

N3LO 255.31 255.30

FIGURE 2
Differential doublet capture rate in the 1S0 nn channel,
dΓD(1S0)/dp in s−1MeV−1, as a function of the nn relative
momentum p in MeV, calculated using either the Numerov (black
solid line) or the variational (red dashed line) methods in order
to obtain the deuteron and the nn scattering wave functions. The
curves are exactly on top of each other. The NVIa potential and
consistent currents at N3LO are used. The axial charge radius is
taken to be r2A � 0.46 fm2.

TABLE 3 Total doublet capture rate in the 1S0 nn channel, ΓD(1S0) in
s−1, calculated using the four Norfolk potentials NVIa, NVIb, NVIIa,
and NVIIb, and consistent currents, at the various chiral orders. We
also report the uncertainty due to the truncation of the chiral
expansion in the current for each order. The axial charge radius is
taken to be r2A � 0.46 fm2, and the variational method is applied to
calculate the deuteron and the nn scattering wave functions.

χ-order

Potential

NVIa NVIb NVIIa NVIIb

LO 245.4 (62.0) 245.1 (61.9) 245.7 (62.1) 246.6 (62.3)

NLO 247.6 (15.7) 247.6 (15.7) 247.9 (15.7) 249.0 (15.7)

N2LO 254.7 (4.1) 259.1 (4.4) 255.0 (4.1) 260.3 (4.4)

N3LO 255.3 (1.1) 255.6 (1.3) 255.9 (1.1) 256.4 (1.4)
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ΔΓD 1S0( ) mod − dep[ ] ≡ |ΓD 1S0( )NVIIb − ΓD 1S0( )NVIa|
2

. (72)

From this, we obtain ΔΓD(1S0)[mod − dep] � 0.6 s−1. We want

to remark that this estimate of ΔΓD(1S0)[mod − dep] does not
take into account the error on the fit of the nuclear

interaction’s LECs or its chiral truncation. Therefore, it

should be considered just as a lower bound of the actual

uncertainty.

From Table 3, we can conclude that the chiral-order

convergence seems to be quite well under control for all the

potential models. In fact, in going from LO to NLO, ΓD(1S0)
has increased by 2.2 s−1 for the a models, and 2.5 s−1 and 2.4 s−1 for

the models NVIb and NVIIb, respectively. This small change is

because the only correction appearing at NLO comes from the

vector current. Passing fromNLO toN2LO, the muon capture rate

increases by 7.1 s−1 for the interactions NVIa and NVIIa, and

11.5 s−1 and 11.3 s−1 for the models NVIb and NVIIb, respectively.

This can be understood considering that the terms with the Δ-
isobar contributions appear at this order for the vector and axial

current. The convergence at N3LO shows instead a more involved

behavior: for the models NVIa and NVIIa, an ΓD(1S0) increase of
0.6 s−1 and 0.9 s−1, respectively, while for the models NVIb and

NVIIb, the muon capture rate decreases by 3.5 s−1 and 3.9 s−1,

respectively. Even if the results are in reasonable agreement with

the expected chiral convergence behavior (in particular for the

models a), the chiral convergence of the current shows a significant

dependence on the regularization that we tracked back to the axial

current corrections and in particular to the different value of the

constant cD (see Section 2.2). We still find remarkable that the

results at N3LO obtained with the various potentials, even if their

chiral convergence patterns are quite different, turn out to be

within 1.1 s−1.

The theoretical uncertainty arising from the chiral-order

convergence of the nuclear weak transition operators can be

studied using the prescription of Ref. [45]. Here, we report

the formula for the error at N2LO only. At this order, for

each energy, we define the error for the differential capture

rate (to simplify the notation from now on we use

ΓD(p) � dΓD(1S0)/dp), as

ΔΓD p( ) ≡ max Q3|ΓDLO p( )|, Q2|ΓDNLO p( ) − ΓDLO p( )|,{
Q|ΓDN2LO p( ) − ΓDNLO p( )|}, (73)

where we assumed

Q � 1
Λ

p8 +m8
π

p7 +m7
π

(74)

as in Ref. [46] for the case of the np↔ dγ reaction. Here, p is the

relative momentum of the nn system and we assume a value of

Λ ≃ 550 MeV, which is of the order of the cutoff of the adopted

interactions. Analogous formulas have been used to study the

other orders (see Ref. [45] for details).

In Figure 3, we show the error on dΓD(1S0)/dp order by

order in the expansion of the nuclear current up to N3LO for the

NVIa interaction. From the figure, the nice convergence of the

chiral expansion of the currents is evident. The total error arising

from the chiral truncation of the currents on ΓD(1S0) is then

computed by integrating the error of the differential capture rate

over p, namely,

ΔΓD 1S0( ) curr − conv[ ] � ∫pmax

0
ΔΓD p( )dp. (75)

Note that here we assumed the distribution of the truncation

error to be uniform, this being a systematic error. Therefore,

we do not square it in Eq. 75. Table 3 also shows for each order

the error relative to the chiral truncation of the electroweak

currents. To be the most conservative as possible, we keep as

error the largest obtained with the various interaction models.

In the same spirit, we consider the error computed at N2LO,

since the calculation at N3LO does not contain all the

contributions of the axial charge (see discussion Section

FIGURE 3
Differential doublet capture rate in the 1S0 nn channel,
dΓD(1S0)/dp in s−1MeV−1, as a function of the nn relative
momentum p in MeV, calculated order by order with the relative
errors computed following the prescription of Ref. [45]. The
axial charge radius is taken to be r2A � 0.46 fm2.

TABLE 4 Total doublet capture rate in the 1S0 nn channel, ΓD(1S0)
in s−1, is calculated using all the different interactions and
consistent currents up to N3LO, and three different values of
r2A, r

2
A � 0.30,0.46,0.62 fm2. The variational method is applied to

calculate the deuteron and the nn scattering wave functions.

Potential r2A � 0.30 r2A � 0.46 r2A � 0.62

NVIa 258.2 255.3 252.4

NVIb 258.5 255.6 252.8

NVIIa 258.7 255.9 253.0

NVIIb 259.3 256.4 253.6
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2.2). Therefore, we obtain ΔΓD(1S0)[curr − conv] � 4.4 s−1. In

comparison, the same calculation at N3LO would give as an

error ΔΓD(1S0)[curr − conv]|N3LO � 1.4 s−1. We want to remark

that the uncertainty computed here arises only from the chiral

truncation of the currents and it represents only a lower bound

of the total chiral error.

Finally, Table 4 shows the results obtained with all the

interactions and consistent currents up to N3LO for the three

values of the axial charge radius, r2A � 0.30, 0.46, 0.62 fm2. This

allows us to understand the importance of this last source of

theoretical uncertainty. The three values are chosen to span

the range of values proposed in Ref. [34], being the lower limit,

central value, and upper limit for r2A. We also verified that

ΓD(1S0) has a linear dependence on r2A. As a consequence,

performing the calculation for the three mentioned values of

r2A is essentially equivalent to the “standard” error

propagation. Again, we define the theoretical uncertainty

ΔΓD(1S0)[r2A] arising from this last source as the half-range

of the results, i.e.,

ΔΓD 1S0( ) r2A[ ] ≡ max
pot

|ΓD 1S0( )r2
A
�0.30 − ΓD 1S0( )r2

A
�0.62|

2

⎧⎨⎩ ⎫⎬⎭, (76)

where maxpot indicates that we take the maximum value among

the different interactions considered. From the table, we can

conclude that ΔΓD(1S0)[r2A] � 2.9 s−1, which is found to be

essentially model-independent.

In conclusion, our final result for ΓD(1S0) is
ΓD 1S0( ) � 255.8 0.6( ) 4.4( ) 2.9( ) s−1, (77)

where the three uncertainties arise from model dependence,

chiral convergence, and the experimental error in the axial

charge radius rA. The overall systematic uncertainty becomes

5.0 s−1 when the various contributions are summed. The

uncertainty on r2A is instead statistical and, therefore, must

be treated separately. This result can be compared with those

of Refs. [10, 12]. In Ref. [10], we found a value of 253.5 (1.2) s−1,

the error taking care of the cutoff dependence and the

uncertainty in the dR LEC fitting procedure. When only the

cutoff dependence is considered, it reduces to 0.2 s−1, somewhat

smaller than the present 0.6 s−1. The central values that we

obtained and the one quoted in Ref. [10], even if the chiral

potentials are very different, are instead in reasonable

agreement. In Ref. [12], it was found that

ΓD(1S0) � 252.8(4.6)(3.9) s−1, where the first error is due to

the truncation in the chiral expansion and the second is due to

the uncertainty in the nucleon axial radius rA. These two

errors should be compared with our 5.0 s−1 and 2.9 s−1. The

agreement for the first error is very nice, while the

small difference in the second error is certainly due to the

fact that in Ref. [12] a larger uncertainty for r2A was used

(0.22 fm2 vs. the present 0.16 fm2). Also, in this case, the

agreement between the central values is good, even if the

potential models adopted are very different. This could

suggest that the observable ΓD(1S0) is not sensitive to the

nuclear potential model, as long as this can properly

reproduce the deuteron and the nn scattering systems (as, in

fact, any realistic modern potential usually does).

4 Conclusion and outlook

We investigated, for the first time, with local nuclear

potential models derived in χEFT and consistent currents,

the muon capture on deuteron, in the 1S0 initial nn scattering

state. The use of this framework allowed us to 1) provide a new

estimate for the capture rate ΓD(1S0), which turned out to

agree with the results already present in the literature and

obtained still in χEFT, but with different (non-local) potential

models [10, 12]; 2) accompany this estimate with a

determination of the theoretical uncertainty, which arises

from model dependence, chiral convergence, and the

uncertainty in the single-nucleon axial charge radius rA.

We also verified that the uncertainty arising from the

numerical technique adopted to solve the two-body bound-

and scattering-state problem is completely negligible.

Our final result is ΓD(1S0) � 255.8(0.6)(4.4)(2.9) s−1,

where the three errors come from the three sources of

uncertainty just mentioned. To provide an indicative value

for the overall uncertainty, we propose to sum the systematic

uncertainties arising from sources 1) and 2), obtaining the

value of 5.0 s−1. Then, this error can be summed in quadrature

with the one of source 3), 2.9 s−1. Therefore, we obtain

ΓD(1S0) � 255.8(5.8) s−1. We remark again that the value of

5.8 s−1 for the overall uncertainty is only indicative, and the

preferable procedure should be to treat the three errors,

0.6 s−1, 4.4 s−1, and 2.9 s−1, separately. Moreover, it is

important to remind that the errors coming from the

sources 1) and 2) can be considered only as lower limits of

the actual uncertainty coming from the model dependence

and the chiral truncation.

Given the success of this calculation in determining

ΓD(1S0) and its uncertainty, with a procedure less involved

than the one of Ref. [12], which still leads to similar results, we

plan to proceed with applying this framework to the

calculation of ΓD, retaining all the nn partial waves up to

J = 2 and L = 3. These are known to provide contributions to ΓD
up to 1 s−1 [9]. In parallel, we plan to study the muon capture

processes also on 3He and 6Li, in the footsteps of Ref. [27].

Here, the Norfolk potentials were used in conjunction with the

variational and Green’s function Monte Carlo techniques to

solve for the A = 3, 6 bound states, and the final results were

found to disagree, to some level, with the experimental data. It

will be interesting to verify these outcomes, using the

hyperspherical harmonics method to solve for the A = 3, 6

nuclei [47–49]. Last but not least, we plan to apply this same
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framework to weak processes of interest for solar standard

models and solar neutrino fluxes, i.e., the proton weak capture

on proton (reaction 2), and on 3He (the so-called hep

reaction). In this second case, it is remarkable that a

consistent χEFT calculation is still missing (see Refs.

[50–52]). For both reactions, we will be able to provide a

value for the astrophysical S-factor at zero energy

accompanied by an estimate of the theoretical uncertainty.
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The effective interaction between a nucleon and a nucleus is one of the most
important ingredients for reaction theories. Theoretical formulations were
introduced early by Feshbach and Watson, and efforts of deriving and computing
those ‘optical potentials’ in a microscopic fashion have a long tradition. However,
only recently the leading order term in the Watson multiple scattering approach
could be calculated fully ab initio, meaning that the same nucleon-nucleon (NN)
interaction enters both the structure as well as the reaction pieces on equal footing.
This allows the uncertainties from the underlying chiral effective NN interaction to be
systematically explored in nucleon-nucleus elastic scattering observables. In this
contribution the main ingredients for arriving at the ab initio leading order of the
effective nucleon-nucleus interaction in the Watson approach will be reviewed.
Concentrating on one specific chiral NN interaction from the LENPIC collaboration
and light nuclei with a 0+ ground state, the leading order nucleon-nucleus
interaction is calculated using up to the third chiral order (N2LO) in the nucleon-
nucleon potential, and elastic scattering observables are extracted. Then pointwise
as well as correlated uncertainty quantification is used for the estimation of the chiral
truncation error. Elastic scattering observables for 4He, 12C, and 16O for between
65 and 200 MeV projectile energy will be analyzed.

KEYWORDS

elastic nucleon-nucleus scattering, multiple scattering expansion, ab initio optical potential,
chiral nucleon-nucleon interaction, truncation uncertainty quantification

1 Introduction

Simplifying the many-body problem posed by scattering of a proton or neutron from a
nucleus to a two-body problem with an effective (optical) potential was introduced already by
Bethe [1] in the 1930s, and its justification summarized by Feshbach [2]. Since then differential
cross sections as well as spin observables for elastic scattering played an important role in either
determining the parameters in phenomenological optical models for proton or neutron
scattering from nuclei or in testing validity and accuracy of microscopic models thereof.
The theoretical approach to elastic scattering from a nuclear target presented in this article is
based on the ansatz of a multiple scattering expansion that was pioneered by Watson [3, 4],
made familiar by Kerman, McManus, and Thaler (KMT) [5]. and refined further as spectator
expansion [6–8]. Specifically, elastic scattering from stable nuclei has led in the 1990s to a large
body of work on microscopic optical potentials in which the nucleon-nucleon interaction and
the density of the nucleus were taken as input to rigorous calculations of first-order potentials,
in either a Kerman-McManus-Thaler (KMT) or a Watson expansion of the multiple scattering
series (see e.g. [9–14]). Here the primary goal was a deeper understanding of the reaction
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mechanism. However, a main disadvantage of that work was the lack
of sophisticated nuclear structure input compared to what is available
today.

Recent developments of the nucleon-nucleon (NN) and three-
nucleon (3N) interactions, derived from chiral effective field theory,
have yielded major progress [15–22]. These, together with the
utilization of massively parallel computing resources (e.g., see
[23–27]), have placed ab initio large-scale simulations at the
frontier of nuclear structure and reaction explorations. Among
other successful many-body theories, the ab initio no-core shell-
model (NCSM) approach (see, e.g. [28–31]), has over the last
decade taken center stage in the development of microscopic tools
for studying the structure of atomic nuclei. The NCSM concept
combined with a symmetry-adapted (SA) basis in the ab initio SA-
NCSM [32] has further expanded the reach to the structure of
intermediate-mass nuclei [33].

Following the developments in nuclear structure theory, it is very
natural to again consider rigorous calculations of effective folding
nucleon-nucleus (NA) potentials, since now the nuclear densities
required as input for the folding with the NN scattering amplitudes
can be based on the same chiral NN interaction. This development
also allows to investigate effects of truncation uncertainties in the
chiral expansion on NA scattering observables in a similar fashion as
already successfully performed in NN scattering (see e.g. [34–36]),
nucleon-deuteron scattering [37], or structure observables for light
nuclei [31, 38].

The theoretical and computational developments leading to ab
initio NA effective interactions (in leading order in the spectator
expansion) are described in a serious of publications by the authors
[39–43] and others (see e. g. [44–47]). Thus the aim of this review is to
shed light on truncation uncertainties in the chiral expansion, and
within that context give a perspective on intricacies of the spectator
expansion as well as the explicit content of its leading order term,
which can now be calculated ab initio.

Deriving ab initio optical potentials within a multiple scattering
approach focuses on projectile energies at energies about 80 MeV or
higher, since the expectation is that at those energies the leading order
term may already capture the most important physics. Another recent
ab initio approach starts from a formulation introduced by Feshbach
[48] and constructs optical potentials and elastic scattering
observables within a Green’s function approach [49, 50]. For elastic
scattering from medium-mass nuclei the coupled-cluster method [51]
and the SA-NCSM [52] approach have been successfully
implemented. These approaches are by design better suited for
calculating scattering observables at energies below about
20–30 MeV due to restrictions on the size of the model spaces
which increase with increasing projectile energy. In Ref. [53] an
extensive overview of the status of the field of optical potentials
and their need in the rare-isotope era is given and the current
status of ab initio approaches is discussed. We want to encourage
the reader to refer to this work, for more details.

2 Watson optical potential within the
spectator expansion

The standard starting point for describing elastic scattering of a
single projectile from a target of A particles within a multiple

scattering approach is the separation of the Lippmann-Schwinger
(LS) equation for the transition operator T,

T � V + VG0 E( )T (1)
into two parts, namely an integral equation for T,

T � U + UG0 E( )PT, (2)
where U is the effective potential operator defined by a second integral
equation,

U � V + VG0 E( )QU. (3)
Here p is a projection onto the ground state of the target,P � |Φ0〉〈Φ0 |

〈Φ0|Φ0〉 , with
P + Q = 1 and [G0(E), P] = 1. The free propagator for the projectile and
target system is given by G0(E) � (E − h0 −HA + iϵ)−1 where h0 is the
kinetic energy of the projectile and HA is the Hamiltonian of the target
nucleus. The general solutions of the nuclear bound state problemHA|Φ〉
include the ground state, excited states and continuum states. For the
scattering problem given by the transition amplitude T the reference
energy separating bound and continuum states is chosen such that the
ground state energy is set to zero. Thus energies referring to the target
Hamiltonian in G0 are excitation energies of the target. With these
definitions the transition operator for elastic scattering may be
redefined as Tel = PTP, in which case Eq. 2 can be written as

Tel � PUP + PUPG0 E( )Tel. (4)

2.1 Spectator expansion of the operator U

The transition operator for elastic scattering is given by a
straightforward one-body integral equation, which of course
requires the knowledge of PUP, which is a many-body operator.
For a brief review we follow the spectator expansion of PUP as
introduced in Ref. [54] in contrast to Ref. [6] where the expansion
of T is considered. Following those references, we assume the presence
of two-body forces only for the present discussion. The extension to
many-body forces is not precluded by the formulation. With this
assumption the operator U can be expanded as

U � ∑A
i�1

Ui, (5)

where Ui is given by

Ui � v0i + v0iG0 E( )Q∑A
j�1

Uj, (6)

provided that V � ∑A
i�1v0i, where the two-body potential v0i acts

between the projectile and the ith target nucleon. Through the
introduction of an operator τi which satisfies

τi � v0i + v0iG0 E( )Qτ i, (7)
Eq. 6 can be rearranged as

Ui � τ i + τiG0 E( )Q∑
j≠i

Uj. (8)

This rearrangement process can be continued for all A target particles,
so that the operator for the optical potential can be expanded in a
series of A terms of the form
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U � ∑A
i�1

τ i + ∑A
i,j≠i

τ ij + ∑A
i,j≠i,k≠i,j

τijk +/ . (9)

This is the Spectator Expansion for U, where each term is treated in
turn. The separation of the interactions according to the number of
interacting nucleons has a certain latitude, due to the many-body
nature of G0(E), which needs to be considered separately. In the
following we will concentrate on the leading-order term, which is still a
many-body operator due the presence of G0(E). The next-to-leading
order term in this spectator expansion forU has been formally derived
and connected to standard three-body equations in Ref. [54].

2.2 Propagator expansion in the leading-
order term of U

When using the leading-order term of the spectator expansion as
given in Eq. 7, for elastic scattering only PτiP, or equivalently
〈Φ0|τi|Φ0〉 needs be considered. With this in mind, Eq. 7 can be
re-expressed as

τ i � v0i + v0iG0 E( )τ i − v0iG0 E( )Pτ i � τ̂ i − τ̂ iG0 E( )Pτ i, (10)
or

〈Φ0|τi|Φ0〉 � 〈Φ0|τ̂ i|Φ0〉 − 〈Φ0|τ̂ i|Φ0〉
1

E − EA( ) − h0 + iε
〈Φ0|τi|Φ0〉,

(11)

where τ̂i is defined as the solution of

τ̂ i � v0i + v0iG0 E( )τ̂ i. (12)
The combination of Eqs 10, 2 corresponds to the leading-order

Watson optical potential [3, 4]. In ab initio structure
calculations the one-body densities or ground state wave
functions for protons and neutrons are calculated separately, so
that Eq. 11 allows to combine e.g. for proton scattering of a
nucleus the proton-neutron interaction (τ̂i�pn) with the neutron
one-body density and the proton-proton interaction with
the proton one-body density. The sum over i then adds
both to obtain the driving term 〈Φ0|τ̂i|Φ0〉 the integral
equation, Eq. 11.

If the projectile-target-nucleon interaction is assumed to be the
same for all target nucleons and if iso-spin effects are neglected then
the KMT approximation (A−1A 〈Φ0|τ̂i|Φ0〉) can be derived from the
leading-order Watson potential [5]. When working with momentum
space integral equations, the numerical implementation of Eq. 11 is
straightforward [40, 41, 45, 55]. Working in coordinate space with
differential equations does not allow an equally straightforward
implementation, and thus the KMT prescription is the most
favorable alternative. A comparison between leading-order Watson
potential and the KMT prescription is shown in Figure 1 for elastic
proton scattering from 8He at 71 MeV laboratory kinetic energy.
Despite the relatively large difference between the proton and
neutron densities for this nucleus the KMT prescription agrees
with the exact Watson description very well up to momentum
transfers of about 2 fm−1.

Since Eq. 11 is a one-body integral equation, the principal problem
is to find a solution of Eq. 12, which due to many-body character of
G0(E) is still a many-body integral equation, and in fact no more easily
solved than the starting point of Eq. 1.

For most practical calculations the so-called closure
approximation to G0(E) is implemented [56] turning Eq. 12 into a
one-body integral equation. This approximation replaces HA by a
constant that is interpreted as an average excitation energy, and is
justified when the projectile energy is large compared to typical
excitation energies of the nucleus. The closure approximation is
very successfully applied for elastic scattering around 80 MeV and
higher.

Going beyond the closure approximation in the spirit of the
spectator expansion we want to single out one target nucleon i and
write G0(E) as

G0 E( ) � E − h0 −HA + iε( )−1

� E − h0 − hi −∑
j≠i

vij −Hi + iε⎛⎝ ⎞⎠−1

,
(13)

where the target Hamiltonian is expanded as HA = hi+ ∑j≠ivij + Hi

with vij being the interaction between target nucleons i and j, and
Hi being an (A-1)-body operator containing all higher order
effects. Realizing that ∑j≠ivij ≡ Wi and thus Hi = HA−hi−Wi

does not have an explicit dependence on the ith particle, then
Hi may be replaced by an average energy Ei which is akin to the
effective binding energy between the ith nucleon and the A−1
spectator. This is not an approximation since G0(E) may be
regarded as

G0 E( ) � E − Ei( ) − h0 − hi −Wi − Hi − Ei( ) + iε[ ]−1 (14)

FIGURE 1
The angular distribution of the differential cross section divided by
the Rutherford cross section (upper panel) and the analyzing power (Ay)
for elastic proton scattering from 8He at 71 MeV laboratory kinetic
energy as function of the momentum transfer q and the c. m. angle
calculated with the LENPIC SCS chiral interaction [19] with a cutoff R =
1 fm. The calculations are based on non-local densities using ZΩ =
14 MeV at Nmax = 14. The solid (red) line stands for using the Watson
optical potential while the black (dashed) line represents the KMT
prescription.
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and (Hi−Ei) should be set aside to be treated in the next order of the
expansion of the propagator G0(E). In this order of the expansion
G0(E) becomes

Gi E( ) � E − Ei( ) − h0 − hi −Wi + iε[ ]−1, (15)
and Eq. 12 reads

τ̂i � v0i + v0iGi E( )τ̂ i. (16)
In order to connect the above expression with the free NN
amplitude

t0i � v0i + v0igit0i (17)
with

gi � E − Ei( ) − h0 − hi + iε[ ]−1. (18)
algebraic relations between the resolvents lead to

τ̂ i � t0i + t0iGiWigi E( )τ̂ i. (19)
Defining GiWi � giT i with T i � Wi +WigiT i leads to

τ̂i � t0i + t0igiT igiτ̂i. (20)
The three-body character of the above expression becomes more
evident if one defines it as a set of coupled equations as

τ̂ i � t0i + t0igiXi

Xi � T igiτ̂i.
(21)

Though the spectator expansion of the operator U in terms of active
particles is defined in Eq. 9, we see that this expansion is performed in
terms of quantities which contain many-body propagators. Each of the
ingredients τi, τij, etc. may themselves be expanded in a spectator
expansion, i.e. expanding the many-body propagator also according to
the number of active participants. The corrections to the propagator in the
leading-order term of U contributions that arise from the Q space,
whereas the terms arising from the propagator remain in the P space
at first order level. Thus their contribution may be more relevant for
elastic scattering.

In an explicit treatment of Gi(E) it is necessary to consider the
explicit form of ∑j≠ivij =Wi, which is a priori a two-body operator. In
the framework of ab initio nuclear structure calculations this will
involve two-body densities. In earlier work [54, 57, 58] the quantityWi

was treated as one-body operator, specifically a mean-field potential.
This was a physically reasonable choice, though being outside the strict
demands of the spectator expansion. However, those studies revealed
that the next order in the propagator expansion has little effect on
elastic scattering observables at energies larger than 100 MeV, while
the description of differential cross section and spin-observables for
elastic scattering from 40Ca at 48 MeV showed considerable
improvement with respect to experiment [57]. Obviously this type
of calculation will need to be explored within an ab initio approach. In
Ref. [57] the energy Ei of Eq. 18 was set to zero.

As illustrated in this section, deriving a multiple scattering
expansion for elastic NA scattering means projecting on the
ground state of the target in order to obtain a Lippman-Schwinger
type equation for the transition amplitude and obtaining an operator
U for the effective interaction, which is defined in the space Q = 1 − P.
In this spirit, the spectator expansion contains therefore two pieces,
namely the expansion of the operator U in terms of active particles in
the scattering process as well as the expansion of target Hamiltonian
HA in the propagatorG0(E) in a similar fashion. Thus it is very difficult
to define a single expansion parameter which governs the convergence
of the expansion.

3 Leading order ab initio optical potential
based on a chiral NN interaction

The leading order of the spectator expansion involves two
active nucleons, the projectile and a target nucleon. Therefore,
the leading order is driven by the NN amplitude �M, which in its
most general form can be parameterized in terms of Wolfenstein
amplitudes [59–61],

�M q,KNN, ϵ( ) � A q,KNN, ϵ( )1 ⊗ 1
+iC q,KNN, ϵ( ) σ 0( ) · n̂( ) ⊗ 1
+iC q,KNN, ϵ( ) 1 ⊗ σ i( ) · n̂( )
+M q,KNN, ϵ( ) σ 0( ) · n̂( ) ⊗ σ i( ) · n̂( )
+ G q,KNN, ϵ( ) −H q,KNN, ϵ( )[ ]
× σ 0( ) · q̂( ) ⊗ σ i( ) · q̂( )

+ G q,KNN, ϵ( ) +H q,KNN, ϵ( )[ ]
× σ 0( ) · K̂( ) ⊗ σ i( ) · K̂( )

+D q,KNN, ϵ( ) σ 0( ) · q̂( ) ⊗ σ i( ) · K̂( )[
+ σ 0( ) · K̂( ) ⊗ σ i( ) · q̂( )], (22)

where σ(0) describes the spin of the projectile, and σ(i) the spin of the
struck nucleon. The average momentum in the NN frame is defined as
KNN � 1

2 (k′NN + kNN). The scalar functions A, C,M, G,H, and D are
referred to as Wolfenstein amplitudes and only depend on the
scattering momenta and energy. Each term in Eq. 22 has two
components, namely a scalar function of two vector momenta and
an energy and the coupling between the operators of the projectile and
the struck nucleon. The linear independent unit vectors q̂, K̂, and n̂ are
defined in terms of the momentum transfer and the average
momentum as

q̂ � q

q
∣∣∣∣ ∣∣∣∣ , K̂ � K

K| | , n̂ � K × q

K × q
∣∣∣∣ ∣∣∣∣, (23)

FIGURE 2
The expansion parameter Q, defined by Eq. 30 where Λb =
x600 MeV, as a function of the center-of-mass angle θc.m. for a range of
lab projectile energies Elab. In this case of nucleon-nucleus (NA) elastic
scattering, the transition betweenwhen the expansion parameter is
dominated by the center-of-mass momentum and the momentum
transfer can easily be identified.
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and span the momentum vector space. With the exception of the
momentum transfer q, which is invariant under frame transformation,
the vectors in Eq. 23 need to be considered in their respective frame in
explicit calculations [41, 62]. For the struck target nucleon the
expectation values of the operator one and the scalar products of
σ(i) with the linear independent unit vectors of Eq. 23 need to be
evaluated with the ground state wave functions of the respective
nucleus when calculating the leading-order NA effective
interaction. Evaluating the expectation value of the operator one in
the ground state of the nucleus results in the scalar non-local,
translationally invariant one-body density that has traditionally
been used as input to microscopic or ab initio calculations of
leading order effective interactions [11, 12, 40, 44]. The other
operators from Eq. 23, namely (σ(i) · n̂), (σ(i) · q̂), and (σ(i) · K̂)
need to also be evaluated for a leading-order ab initio NA effective
interaction, in which the NN interaction is treated on equal footing in
the reaction and structure calculation.

Thus, the general expression for a non-local density needs to
include the spin operator σ(i) explicitly,

ρKs
qs

p, p′( ) �〈Φ0′ ∑A
i�1

δ3 pi − p( )δ3 pi′ − p′( )σ i( )Ks
qs

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣Φ0〉, (24)

where σ(i)Ks
qs

is the spherical representation of the spin operator and
the wavefunction Φ0 (p1, . . . , pA) � 〈p1, . . . , pA|Φ0〉 is defined in
momentum space. Evaluating this expression for Ks = 0 gives the
non-local one-body scalar density andKs = 1 becomes a non-local one-
body spin density.

The Wolfenstein parameterization of Eq. 22 requires the
evaluation of scalar products of the one-body spin density with
unit momentum vectors. Since those only depend on the momenta
p and p′, those can be calculated as ρKs(p, p′) · n̂, ρKs(p, p′) · q̂, and
ρKs(p, p′) · K̂. For the explicit calculation of ρKs(p, p′) · n̂, we refer the
reader to [41, 62]. The scalar products (σ(i) · q̂) and (σ(i) · K̂)
represent scalar products of a pseudo-vector and a vector, a
construct that is not invariant under parity transformations, and
thus vanish when sandwiched between ground state wave
functions, which is explicitly shown in [62]. Thus the tensor
contributions of the NN force only enter the leading order effective
NA interaction through theWolfenstein amplitudeM as long as elastic
scattering is considered. When e.g. transition amplitudes between
states of different parity would be considered, the other tensor
amplitudes will contribute.

Currently contributions to elastic scattering observables due to the
spin-projected one-body densities have only been calculated for light
nuclei with 0+ ground states, and it was found that this contribution is
very small for nuclei with equal proton and neutron numbers [41, 42].
This is likely different for nuclei with ground states of non-zero spin,
which was explored for 10B polarization transfer observables in Refs.
[63, 64], where the authors assume a nuclear structure which consists
of a core and valence nucleons. The work of Ref. [45] extends the
standard leading order calculation to non-zero spin nuclei, however
does not consider the inherent tensor contributions from the NN force
in their formulation. This leaves the importance of a consistent
treatment of the NN force on elastic scattering from non-zero spin
nuclei still an open question.

The complete calculation of the leading-order effective
interaction describing the scattering of a proton from a nucleus
in a 0+ ground state and which enters the integral Eq. 11 as driving
term is given by

Ûp q,KNA,ϵ( )� ∑
α�n,p

∫d3Kη q,K,KNA( )Apα q,
1
2

A+1
A

KNA −K( );ϵ( )ρKs�0
α P′,P( )

+ i σ 0( ) · n̂( )×∑
α�n,p

∫d3Kη q,K,KNA( )Cpα q,
1
2

A+1
A

KNA −K( );ϵ( )ρKs�0
α P′,P( )

+ i ∑
α�n,p

∫d3Kη q,K,KNA( )Cpα q,
1
2

A+1
A

KNA −K( );ϵ( )Sn,α P′,P( )cosβ
+ i σ 0( ) · n̂( ) ∑

α�n,p
∫d3Kη q,K,KNA( )

× −i( )Mpα q,
1
2

A+1
A

KNA −K( );ϵ( )Sn,α P′,P( )cosβ. (25)

The term η(q,K,KNA) is the Møller factor [65] describing the
transformation from the NN frame to the NA frame. The
functions Apα, Cpα, and Mpα represent the NN interaction through
Wolfenstein amplitudes [59]. Since the incoming proton can interact
with either a proton or a neutron in the nucleus, the index α indicates
the neutron (n) and proton (p) contributions, which are calculated

FIGURE 3
Reaction cross section for proton scattering on (A) 4He at 65 MeV
and (B) 16O at 100 MeV, both at N2LO as a function of Nmax. The error
bars show a 68% credible interval (CI) from using a pointwise error
estimationwith the LO, NLO, and N2LO results. The shaded regions
show variations with respect to the harmonic oscillator parameter ZΩ.
The values of the expansion parameters used were Q = .47 for4He at
65 MeV and Q = .69 for 16O at 100 MeV. Note the different scales in
(A, B).
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separately and then summed up. With respect to the nucleus, the
operator i(σ(0) · n̂) represents the spin-orbit operator in momentum
space with respect to the projectile. As such, Eq. 25 exhibits the
expected form of an interaction between a spin-12 projectile and a target
nucleus in a J = 0 state [66]. The momentum variables in the problem
are given as

q � p′ − p � k′ − k,

K � 1
2

p′ + p( ),
KNA � A

A + 1
k′ + k( ) + 1

2
p′ + p( )[ ],

P � K + A − 1
A

q
2
,

P′ � K − A − 1
A

q
2
.

(26)

The two quantities representing the structure of the nucleus are the
scalar one-body density ρKs�0

α (P′,P) and the spin-projected
momentum distribution Sn,α(P′,P) � ρKs�1(P′,P) · n̂. Both
distributions are non-local and translationally invariant. The
reduced matrix elements entering the one-body densities are
obtained within the NCSM (SA-NCSM) in the center-of-mass
frame of the nucleus. In order to employ them in calculating the
leading-order effective NA interaction, this center-of-mass variable
must be removed. Within the framework of NCSM (SA-NCSM) the
technique for obtaining non-local and translationally invariant one-
body densities is well developed [40, 44, 67–70]. Lastly, the term cos β
in Eq. 25 results from projecting n̂ from the NN frame to the NA
frame. For further details, see Ref. [41].

4 Chiral truncation uncertainties in the
leading order optical potential

With the emergence of nuclear forces based on chiral effective field
theory (EFT), we are presented with an opportunity to study the
nucleon-nucleus effective interaction as it develops order-by-order in
a chiral EFT framework. Given the hierarchical nature of chiral EFT,
we can combine these order-by-order results to reliably estimate
truncation uncertainties associated with the higher chiral orders
not included in the calculations. To this end, Refs. [35–37] first
implemented uncertainty quantification for the cases of NN and
Nd scattering by assuming a quantity y(x) at a chiral order k can
be written as

yk x( ) � yref x( )∑k
n�0

cn x( )Qn x( ) (27)

where yref(x) is a reference value that sets the scale of the problem and
also includes the dimensions of the quantity y(x) of interest. By
construction, the coefficients cn(x) are dimensionless and are
expected to be of order unity. The remaining quantity Q(x) is the
expansion parameter associated with the chiral EFT. The expansion
parameter is usually defined as

Q � 1
Λb

max Mπ , p( ) (28)

where Λb is the breakdown scale of the EFT, Mπ is the pion mass,
and p is the relevant momentum for the problem. Various works
[35–37] have identified the relevant momentum in different ways,
but keeping with Ref. [43] we choose the relevant momentum as

the center-of-mass (c.m.) momentum in the nucleon-nucleus
system

p2
NA � ElabA2m2 Elab + 2m( )

m2 A + 1( )2 + 2AmElab
(29)

where Elab is the kinetic energy of the projectile in the laboratory
frame, A is the target nucleus’s mass number, andm is the mass of the
nucleon.

Previous scattering works [36, 43] have noted that various
results indicate, when identifying the relevant momentum,
the momentum transfer q should also be considered. That
is, the expansion parameter would be more appropriately
defined as

Q � 1
Λb

max Mπ , pNA, q( ) (30)

The momentum transfer in elastic scattering is defined as

q � 2pNA sin
θc.m.

2
( ) (31)

where θc.m. is the scattering angle in the c. m. frame. Notably, including
the momentum transfer in Eq. 30 makes the expansion parameter a
function of θc.m., even though the other momentum scales in Eq. 30 are
independent of the scattering angle. When considering observables
such as the differential cross section or analyzing power that are
functions of θc.m., this implies the expansion parameter will be larger at
backward angles than at forward angles. Furthermore, since the
leading order of the spectator expansion is not applicable at low
energies, we only consider scattering at lab energies of 65 MeV or
higher. As a result, the chiral expansion parameter becomes Q =
max(pNA, q)/Λb. This expansion parameter is shown in Figure 2 for the
case of A = 4 and Λb = 600 MeV. Because of the factorization of the c.
m. momentum, there is a universal scattering angle at which the
momentum transfer q begins to dominate the expansion parameter,
regardless of the chosen Elab or nucleus. We will exploit this behavior
in later sections.

TABLE 1 Ground state binding energies (top) and point-proton RMS radii
(bottom) of 4He, 12C, and16O with LO, NLO, and N2LO LENPIC SCS NN potentials.
Both our estimated numerical uncertainties (first set of uncertainties) and chiral
truncation uncertainty estimates (second set of uncertainties, not evaluated for
LO) are given.

4He 12C 16O

Binding energy (MeV)

LO 45.45(.01) 137.(1.) 224.(2.)

NLO 28.53(.01)(3.5) 97.(3.)(9.) 156.(5.)(14.)

N2LO 28.11(.01)(.9) 94.(4.)(3.) 149.(5.)(4.)

expt 28.30 92.16 127.62

Point-proton radius (fm)

LO 1.08(.02) 1.85(.17) 1.8(.2)

NLO 1.40(.02)(.08) 2.04(.16)(.09) 2.05(.16)(.10)

N2LO 1.42(.02)(.02) 2.12(.15)(.03) 2.11(.15)(.03)

expt 1.46 2.32 2.58
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4.1 Nuclear structure calculations

Prior to our detailed study of truncation uncertainties of a chiral
NN interaction in elastic NA scattering observables we need to choose
a specific chiral NN interaction. Here we want to focus on the EKM
chiral NN interaction [18, 19] with a semi-local coordinate space
regulator of R = 1 fm, which has a breakdown scale ofΛb = 600MeV. This
interaction gives a slightly better description of the ground state energies
in the upper p-shell than a similar, more recent interaction with a semi-
local momentum space regulator. For consistency with the leading-order
optical we only use the NN potentials, omitting three-nucleon forces,
which appear at N2LO in the chiral expansion, both in the structure
and the scattering part of the calculations. Including three-nucleon
forces consistently in both, the structure and scattering calculations
requires going beyond the leading-order optical potential, and is

beyond the scope of this work. Though initial attempts of
incorporating three-nucleon forces as an effective density-
dependent NN force in the scattering part have been presented
[46], they can not yet be considered as systematic consideration of
three-nucleon forces in NA scattering. For similar reasons, we
restrict most of our results to N2LO since three-nucleon force
contributions at N3LO and N4LO are significant [71].

Next, the translationally-invariant one-body density needed for
the scattering calculation can be obtained using the NCSM approach,
in which the nuclear wavefunction is expanded in Slater determinants
of harmonic oscillator basis functions [30]. Ideally, one uses a
sufficiently large basis to ensure convergence of this expansion, but
in practice observables depend on both the many-body basis
truncation, Nmax (defined as the total number of harmonic
oscillator quanta in the many-body system above the minimal

FIGURE 4
Differential cross section divided by Rutherford for proton scattering on 4He at (first row) 65 MeV, (second row) 71 MeV, (third row) 100 MeV, and (fourth
row) 200 MeV for LO (left column), NLO (middle column), and N2LO (right column) with corresponding 1σ (darker bands) and 2σ (lighter bands) error bands.
Black dots are experimental data from Ref. [75] (65 MeV) [76], (71 MeV) [77], (100 MeV), and [78] (200 MeV).

Frontiers in Physics frontiersin.org07

Baker et al. 10.3389/fphy.2022.1071971

155

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1071971


configuration), and on the harmonic oscillator scale ZΩ. In Table 1 we
give the ground state binding energies and point-proton radii of 4He,
12C, and 16O obtained with the EKM chiral NN potential [18, 19] with
a semi-local coordinate space regulator of R = 1 fm (note that at N2LO
we did not include any three-nucleon forces).

For 4He we can obtain nearly converged results for both the
binding energy and the proton radius, and these results agree, to
within their estimated numerical uncertainties (the first set of
uncertainties in Table 1), with Yakubovsky calculations using the
same NN potential [71]. However, for larger nuclei such as 12C and 16O
we are more limited in the Nmax values that can be reached on current
computational resources.1

4.2 Pointwise truncation uncertainties

To assess the relative size of chiral truncation uncertainties compared
to other known uncertainties, e.g. the harmonic oscillator parameters
Nmax and ZΩ, we employ a pointwise truncation procedure and study
reaction observables that are not functional quantities, e.g. reaction cross
sections at a specified laboratory energy. This pointwise approach was
previously implemented in Refs. [36, 43] and it starts by assuming the
expansion parameterQ and reference scale yref are known. From there, we
can apply Eq. 27 to calculate the coefficients cn, which are treated as
independent draws from the same underlying distribution. The properties
of this distribution can be learned from Bayesian techniques and the
posterior distribution for the prediction can be readily calculated with its
associated credible intervals. For more details, see Ref. [36].

In order to estimate the chiral truncation uncertainties of the
obtained ground state binding energies and radii, we apply the
pointwise approach with Q ≈ .3 as the effective expansion
parameter, following Ref. [31]. These uncertainties are listed as the
second set of uncertainties in Table 1, starting from NLO. Here we see
that for the energies, the chiral uncertainties are at least of the same
order as the estimated numerical uncertainties; however, the
uncertainties of the radii of 12C and 16O are clearly dominated by
their systematic dependence on the basis parameter ZΩ.

To illustrate the pointwise approach for scattering observables,
Figure 3 shows the reaction cross sections for proton scattering from
4He at 65 MeV and 16O at 100 MeV. For each case, the result is shown as
a function ofNmax, and variations with respect to ZΩ are indicated.While
more obvious for the smaller nucleus where the NCSM can better
converge, in both cases the uncertainty resulting from the chiral
truncation remains larger than the uncertainty arising from the many-
body method. To better illustrate this point, we present the reaction cross
section for 4He with a scale starting from 115 mb and with a range of only
45 mb, while using the full range of 600 mb for 16O. While larger model
spaces will better converge the NCSM results, smaller truncation
uncertainties will only be achieved by higher chiral orders, despite the
noticeable dependence of the radii on the harmonic oscillator parameter
ZΩ, in particular for the heavier nuclei, in the current calculations. Note
however that even at N3LO we anticipate the chiral truncation
uncertainties will be larger than the indicated variations with respect
to the harmonic oscillator parameter ZΩ due to the rather large value of
the expansion parameter Q in the scattering calculation.

4.3 Correlated truncation uncertainties

For functional quantities y(x) we employ a correlated approach that
includes information at nearby values of x. This approach is better for
observables such as a differential cross section, which we know does not
vary wildly from values at nearby angles. It also starts from Eq. 27 and
treats the coefficients cn(x) as independent draws from an underlying
Gaussian process. This Gaussian process encodes information about the
correlation length ℓ, and the qualities of the underlying distribution can be
learned from the order-by-order results. This training is followed up by
testing procedures which seek to confirm the Gaussian process has been
appropriately fit to the available results, and if not, to diagnose potential
issues. From a well-fit Gaussian process we can then extract truncation
uncertainties for the functional quantities. For more details and
applications, see Refs. [36, 43].

In the following examples, we examine proton scattering for 4He, 12C,
and 16O at various projectile energies and compare to the available
experimental data. In each case, we show the convergence with respect
to chiral order and the resulting decrease in the size of the chiral
truncation uncertainties, as well as discuss any associated physics
insights. To avoid concerns about the expansion parameter increasing
at larger angles, wemostly restrict our analysis to forward angles where we
expect the expansion parameter to be independent of the scattering angle.

For proton scattering on 4He, we see good agreement with
experiment for the differential cross sections (Figure 4) at lower
projectile energies. Below 100 MeV, most data points fall within
the 2σ uncertainty band, and at 100 MeV a majority of the data
points are within the 1σ band. At the highest energy of 200 MeV, the
chosen interaction seems unable to reproduce the experimental data,
though this is not uncommon for scattering from 4He.

The analyzing powers for proton scattering on 4He (Figure 5) is more
complicated. For the lower energies of 65 and 71MeV, the experimental
data shows a near zero value, regardless of scattering angle. In the
scattering of a spin-1/2 particle from a spin-0 nucleus, this indicates
that there is no spin-orbit force at play. This behavior is only reproduced
by the LO result, for which the chiral NN interaction only contains the
one-pion exchange and contact terms, which do not produce a spin-orbit
force. At NLO the two-pion exchange diagrams are responsible for
reproducing the NN p-waves and thus provide a spin-orbit force that

1 One commonly applies a Similarity Renormalization Group (SRG)
transformation to the NN potential in order to improve the convergence
of themany-body calculation. However, this leads to induced three-nucleon
forces that are non-negligible; omitting those would lead to a strong
dependence on the SRG parameter. We therefore choose to not employ
such a transformation here. For the binding energies we use an exponential
extrapolation to the complete basis, with associated uncertainties, see Ref.
[71] for details. Radii converge rather slowly in a harmonic oscillator basis, and
they do not necessarily converge monotonically with increasing Nmax;
furthermore, in the scattering calculations we use densities obtained at
fixed values of the harmonic oscillator parameters Nmax and ZΩ. We
therefore simply give in Table 1 our results for the point-proton radii of
12C and 16O atNmax = 10, averaged over the range 16 ≤ ZΩ ≤ 28 MeV (the same
range as is used for the scattering calculations). The numerical uncertainty
estimates for the radii listed in Table 1 correspond to the spread over this ZΩ
interval; this is a systematic uncertainty due to the Gaussian fall-off of
harmonic oscillator basis functions, and is therefore strongly correlated
for the different chiral orders. However, the trend of a significant increase
in the radii going from LO to NLO, followed by a smaller increase going from
NLO to N2LO, is robust, and correlates with the decrease in binding energies
going from LO to NLO to N2LO. Note that we did not include any chiral EFT
corrections to the R2 operator; and the experimental point-proton radii are
extracted from the charge radius measured in electron scattering
experiments, using standard proton and neutron finite-size corrections,
relativistic corrections, and meson-exchange corrections.
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leads to a non-zero value for the analyzing power in NA scattering. At
N2LO there are no new terms in the two-nucleon sector, and thusAy does
not change its shape at that chiral order. Therefore, one needs to conclude
that in this case other physics which goes beyond the leading order NA
effective interaction may be needed to describe the analyzing power.

For the higher energy of 200MeV, all of the experimental data points
are within the 2σ uncertainty band, though there is a slight offset in the
shape. In all cases, the analyzing power ismore difficult to reproduce using
this interaction, though other interactions have done better [39, 41].

For proton scattering from 12C, the differential cross sections
(Figure 6) are reliably reproduced by the central value of the N2LO
calculations up to 100MeV laboratory kinetic energy, and systematically
over-predict at higher energies. As the projectile energy increases, the
expansion parameter increases and as a result uncertainty bands become
larger. This is most noticeable at 160MeV: the experimental data is within
the 1σ band, but the size of that band, as well as the 2σ band, are so large
that they are not practically useful. The gray bars in the cross section
panels for N2LO indicate the momentum transfer up to where we expect
the expansion parameter to be dominated by the c. m. momentum pNA.
Once the momentum transfer exceeds the value given by the bar, the
uncertainty is dominated by the momentum transfer q, and is thus
underrepresented by themethodwe use. Note that the vertical bar is at the
same scattering angle θc.m., but different momentum transfer q, as
function of the projectile energy since pNA is a function of the
projectile energy as given in Eq. 29. Looking at the lower energies, the

increasing agreement with experiment in the first peak and minimum as
higher orders in the chiral NN interaction are included gives the correct
trend.Minima in the differential cross section correlate with the size of the
target nucleus. It is well well known [31], and also evident from Table 1,
that the nuclear binding energy calculated with the LO of the chiral NN
interaction is way too large and correspondingly the radius much too
small. Only when going to NLO and N2LO the binding energy as well as
the radiusmove into the vicinity of their experimental values. This finding
from structure calculations is corroborated by the calculations in Figure 6,
where with increasing chiral order the calculated first diffraction
minimum moves towards smaller momentum transfers indicating a
larger nuclear size.

The analyzing powers for proton scattering on 12C are at 65 MeV also
almost zero for small momentum transfers and rise at q = 1.2 fm−1 to its
maximum value of +1. This is captured by the NLO calculation where
spin-contributions occur in the NN interaction (Figure 7). For 65 MeV,
the experimental data is mostly within the 2σ band until approximately
θc.m. = 60°, where we expect the expansion parameter to being increasing
and the uncertainty bands to thus be underestimates. For 122MeV, the
very forward direction is inside the 1σ band, but the overall shape of the
experimental data is not well captured by this interaction.

For proton scattering from 16O, the differential cross sections
(Figure 8) are similar to the 12C case. Namely, the lower energies do
reasonably well at describing the data within the 2σ bands, but as the
projectile energy increases the uncertainty bands increase to unhelpful

FIGURE 5
Analyzing power for proton scattering on 4He at (first row) 65 MeV, (second row) 71 MeV, and (third row) 200 MeV) for LO (left column), NLO (middle
column), and N2LO (right column) with corresponding 1σ (darker bands) and 2σ (lighter bands) error bands. Black dots are experimental data from Ref. [75]
(65 MeV) [76], (71 MeV), and [78] (200 MeV).
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sizes. At the lowest energy of 65 MeV, we see a better and better
reproduction of the first minimum in the differential cross section as
the chiral order increases. Again, this first minimum is known to be
related to the size of the nucleus, so this is an important feature to
reproduce from both a structure, see Table 1, and reaction perspective.

The analyzing powers for proton scattering on 16O (Figure 9) are
again similar to the 12C case. At lower energies (65 and 100 MeV), we
again see a good reproduction to within 1σ or 2σ of the forward
direction data, but beyond θc.m. = 60°, the experimental data is outside
the uncertainty bands. At the higher energy of 135 MeV, many of the
experimental data are within the uncertainty bands but for a nucleus of
this size, the expansion parameter has already increased such that the
resulting uncertainty bands are unhelpfully large.

As stated toward the beginning of the section we omit three-nucleon
forces for consistency with the leading-order optical potential which only

treats two active nucleons. Those three-nucleon forces already appear at
N2LO in the chiral expansion, however, including them consistently in the
structure as well as reaction calculation requires going beyond the leading-
order optical potential and is beyond the scope of this work. For the sake of
investigating truncation errors in the chiral NN force, one may carry out
inconsistent calculation in the sense that the structure part of the calculation
is keptfixed atN2LO, and in the reaction part higher orders in theNN force
are used. Proceeding in this fashion is sensible, since the scattering
calculation is more sensitive to the NN force compared to the structure
calculation, provided this structure calculation gives a reasonable
description of the ground state one-body density. To show how the
chiral truncation error develops when higher chiral orders in the NN
interaction are introduced, we show in Figure 10 proton scattering from 16O
at 100MeV projectile energy, where the higher chiral orders are only
employed in the scattering part through the corresponding Wolfenstein

FIGURE 6
Differential cross section divided by Rutherford for proton scattering on 12C at (first row) 65 MeV, (second row) 100 MeV, (third row) 122 MeV, and (fourth
row) 160 MeV for LO (left column), NLO (middle column), and N2LO (right column) with corresponding 1σ (darker bands) and 2σ (lighter bands) error bands.
Black dots/purple triangles are experimental data from Ref. [79] (65 MeV, black dots) [80], (65 MeV, purple triangles) [81], (96 MeV, purple triangles) [82],
(99 MeV, black dots), and [83] (122 MeV and 160 MeV). Figure from Ref. [43].
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amplitudes. In both, the differential cross section as well as the analyzing
power the twomost right panels depicting the inconsistent calculation show
that the uncertainty bands become smaller when higher chiral orders in the
NN interaction are included. However, these uncertainty bands are not
necessarily realistic due tomissing higher-body effects, which include higher
orders in the chiral force as well as higher orders in the multiple scattering
expansion. Therefore, we can not draw firm conclusions from the fact that
data are outside the uncertainty estimates.Nevertheless, it is obvious that the
decrease in the uncertainties in the chiral truncation is rather slowdue to the
large expansion parameter. Furthermore, the medians of the calculations
shown in Figures 8, 9 do not change when higher chiral orders are
considered in Figure 10, which further indicates that the smaller error
bands of the higher order chiral truncations may be artificial.

4.4 Analysis of posteriors

Even while restricting our analysis to a region where we expect the
expansion parameter to be constant, we can still observe effects on the
uncertainty bands if the expansion parameter is large, as noted inmany of
the results at larger projectile energies. In fact, this behavior will place
limits on the size of nucleus that can be considered with this approach,
since pNA as defined by Eq. 29 will continue to increase as A increases,
yieldingQ > 1 eventually.While this situation is not ideal, we non-etheless
find support for it in our analysis after examining the posteriors for Q, in
accordance with Refs. [36, 43].

In Figure 11, we calculated posteriors for the differential cross sections
in proton scattering from 4He, 12C, and 16O at the energies previously
discussed. From these, we can extract a single best guess for the value of Q
based on the order-by-order calculations and compare that to the
expectation for Q based on Eq. 30. For 16O, the largest nucleus
considered, we see generally good agreement between the expected
value of Q and the best guess value from the posteriors (Figure 11C).
However, as the nucleus decreases in size and as the laboratory energy

decreases, some differences begin to emerge between the two values. In
Figure 11B for 12C, the comparisons are roughly similar to the 16O case, but
for the 4He analysis (Figure 11A), the differences are more pronounced,
especially for the lower laboratory energies. A similar analysis of neutron
scattering on 12C did not show any significant differences between the two
values [43], which implies 4He may be the outlier in this approach. This
analysis may imply scattering from 4He with projectiles at lower energies
could be analyzedwith a smaller expansion parameterQ, though the higher
energy results still favor the larger expansion parameter. As the smallest
nucleus considered here, it may also point to the few-body character of 4He,
which has not historically been well captured in an optical potential
approach.

5 Outlook

Procedures that quantify the theoretical uncertainties
associated with the underlying chiral EFT NN interaction are by
now well established for the NN and nucleon-deuteron systems as
well as nuclear structure calculations, while the systematic study of
chiral truncation uncertainty is not as widely used in ab initio
effective interaction employed to describe the scattering of protons
or neutrons from nuclei. Contributing factors for this relatively
slow development include that when considering a multiple
scattering approach to deriving this effective NA interaction in
an ab initio fashion only recent progress in calculating the leading-
order term in the multiple scattering approach has allowed to treat
the NN interaction on the same footing in the structure and
reaction part [41] by considering the spin of the struck target
nucleon. Though calculations showed that the latter does not
contribute significantly to observables when considering
scattering from nuclei with a 0+ ground state, one nevertheless
needs a consistent ab initio implementation of the leading-order
term of the effective NA interaction in order to study the

FIGURE 7
Analyzing power for proton scattering on 12C at (first row) 65 MeV and (second row) 122 MeV for LO (left column), NLO (middle column), and N2LO (right
column) with corresponding 1σ (darker bands) and 2σ (lighter bands) error bands. Black dots are experimental data from Ref. [84] (65 MeV) and [83] (122 MeV).
Figure taken from Ref. [43].
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theoretical uncertainties imprinted on NA observables by the chiral
EFT NN interaction.

In this work we carry out a systematic study of chiral truncation
uncertainties of the EKM chiral interaction on the ab initio effective NA
interaction calculated in leading order of the spectator expansion for 4He,
12C, and 16O. We find that this interaction allows for a good description of
experiment at energies around 100MeV projectile kinetic energy and
slightly lower, provided we focus on regions of momentum transfer where
the analysis of the EFT truncation uncertainty is valid. When considering
the lower energy of 65 MeV, the agreement with data starts to
deteriorate. This is an indication that errors other than the
truncation error in the chiral interaction should come into play,
specifically errors that result from the spectator expansion itself.
Theoretical consideration of the next-to-leading-order term in the
spectator expansion are described in some detail in this work in
order to lay out necessary theoretical and computational

developments for this non-trivial endeavor. At at the next-to-
leading order three-nucleon forces will naturally enter the
effective interaction. At present this step has only been
attempted in approximative fashions, namely by approximating the
next-to-leading order in the propagator expansion via a nuclear mean
field force [54] or by introducing an effective, density dependent NN
potential in the scattering part of the calculation [46]. Since we are not
considering next-to-leading order terms in the spectator expansion, we
restrict our analysis to N2LO in the chiral interaction and only consider
two-nucleon forces. In this case the choice of the EKM interaction with a
semi-local coordinate space regulator of 1.0 fm is advantageous [38], since
this specific interaction gives a slightly better description of the ground
state energies in the upper p-shell compared to other more recent chiral
EFT interactions when using two-nucleon interactions only.

In our study the chiral truncation errors at energies larger than
100 MeV increase considerably and the agreement with experiment

FIGURE 8
Differential cross section divided by Rutherford for proton scattering on 16O at (first row) 65 MeV, (second row) 100 MeV, (third row) 135 MeV, and (fourth
row) 180 MeV for LO (left column), NLO (middle column), and N2LO (right column) with corresponding 1σ (darker bands) and 2σ (lighter bands) error bands.
Black dots are experimental data from Ref. [85] (65 MeV) [86], (100 MeV) [87], (135 MeV), and [88] (180 MeV). Figure taken from Ref. [43].
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deteriorates. The increase in the chiral truncation error can simply be
traced back to the expansion parameter in our approach is getting too
large. The deterioration of the agreement with experiment when going

to higher energies is more difficult to answer. One conclusion may be
that the specific EKM chiral interaction employed here in using the
leading-order in the spectator expansion is not well suited to describe

FIGURE 9
Analyzing power for proton scattering on 16O at (first row) 65 MeV, (second row) 100 MeV, and (third row) 135 MeV for LO (left column), NLO (middle
column), and N2LO (right column) with corresponding 1σ (darker bands) and 2σ (lighter bands) error bands. Black dots are experimental data from Ref. [85]
(65 MeV) [86], (100 MeV), and [87] (135 MeV). Figure taken from Ref. [43].

FIGURE 10
Differential cross section divided by the Rutherford cross section (top) and analyzing power (bottom) for proton scattering from 16O at 100 MeV. The first
three columns are the same as the second rows of Figures 8, 9. The additional two rightmost panels are inconsistent calculations with use up to N2LO in the
structure calculations and up to N3LO (fourth column) or N4LO (fifth column) in the reaction calculation. Due to the inconsistency of the calculation the
uncertainty bands are not fully realistic. The data are the same as cited in Figures 8, 9.
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proton-nucleus scattering observables for 4He, 12C, and 16O at higher
energies. For the chiral NN interaction from Ref. [72] this is not the case
as shown in Refs. [40, 41]. Therefore one will have to investigate what

features of a chiral NN interaction are most relevant for a description of
NA scattering observables for light nuclei.

To put this in perspective, let us reconsider the basic ideas of the
spectator expansion. By design, the leading-order term should be
dominant at energies 150 MeV projectile kinetic energy and higher,
since the reaction time of the projectile with nucleons inside the
nucleus is short, and thus an ‘impulse approximation’ is in general
very good. However, we do not want to consider here projectile
energies larger than 400 MeV, where a relativistic treatment e.g. via
the Dirac equation may be preferred [73, 74]. Thus at energies around
200 MeV the leading order term by design should give a reasonably
good description of NA scattering data. This has been the case in the
microscopic calculations of the 1990s (see e.g. [9–14]) and a set of
recent calculations with specific chiral NN interactions [40, 41, 46].
Attempts to go beyond the leading order by incorporating 3NFs in a
density dependent fashion into the many-body propagator [46]
indicate that effects at 200 MeV are only visible at higher
momentum transfer. In a similar fashion, investigations going
beyond the leading order term in Ref. [54] indicate that those
effects become important at around 100 MeV and at higher
momentum transfers. Thus, if the 3NFs inherent in the chiral
expansion are needed to influence calculations with chiral NN
forces in the leading order of the spectator expansion at higher
energies, then a new look at the interplay between NN and 3NFs
in the leading-order spectator expansion must be developed.
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BUQEYE guide to projection-based
emulators in nuclear physics
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The BUQEYE collaboration (Bayesian Uncertainty Quantification: Errors in Your
effective field theory) presents a pedagogical introduction to projection-based,
reduced-order emulators for applications in low-energy nuclear physics. The
term emulator refers here to a fast surrogate model capable of reliably
approximating high-fidelity models. As the general tools employed by these
emulators are not yet well-known in the nuclear physics community, we discuss
variational andGalerkin projectionmethods, emphasize the benefits of offline-online
decompositions, and explore how these concepts lead to emulators for bound and
scattering systems that enable fast and accurate calculations using many different
model parameter sets. We also point to future extensions and applications of these
emulators for nuclear physics, guided by themature field of model (order) reduction.
All examples discussed here and more are available as interactive, open-source
Python code so that practitioners can readily adapt projection-based emulators for
their own work.

KEYWORDS

emulators, reduced-order models, model order reduction, nuclear scattering, uncertainty
quantification, effective field theory, variational principles, Galerkin projection

1 Introduction

Nuclear systems are notoriously complex. But typically, our theoretical modeling of nuclear
phenomena contains superfluous information for quantities of interest. Model order reduction
(MOR) refers to powerful techniques that enable us to reduce a system’s complexity
systematically (e.g., see Refs. [1–3] for comprehensive introductions). These techniques
enable emulators, which are low-dimensional surrogate models capable of rapidly and
reliably approximating high-fidelity models, making practical otherwise impractical
calculations. But the nuclear physics community has barely scratched the surface of the
types of emulators that could be crafted or explored their full range of applications.

A fertile area for new emulators is uncertainty quantification (UQ) [4–13] in nuclear
physics, which is the general theme of this Frontiers Research Topic [14]. Quantifying
theoretical uncertainties rigorously is crucial for comparing theory predictions with
experimental and/or observational constraints and performing model comparison and/or
mixing [15]. However, UQ has only recently drawn much attention as nuclear theory has
entered the precision era. Bayesian parameter estimation for nuclear effective field theory (EFT)
and optical models, UQ for nuclear structure pushing toward larger masses and for reactions
across the chart of nuclides, experimental design [15–17] for the next-generation of precision
experiments probing the nuclear dripline, and many other applications will all benefit from
emulators. This Research Topic [14] already contains several new applications of emulators for
nuclear physics. Key to the wider adoption of these tools is the evangelization of their potential
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and the creation of pedagogical guides for those first starting in this
field [18]. This article is aimed at both goals.

To do so, the BUQEYE collaboration (Bayesian Uncertainty
Quantification: Errors in Your EFT) [19] has created a rather
unconventional document comprised of the article you are reading
now along with a companion website [20] containing interactive
supplemental material and source code that generates all the results
shown, and much more. Interested individuals can dynamically
generate different versions of this document based on tunable
parameters. We hope that this format encourages readers to
experiment and build upon the examples presented here, thereby
facilitating new applications.

Various types of emulators have already been applied with success
within nuclear physics. A non-exhaustive list of applications includes
Refs. [7, 9, 21–42]. But as emphasized in Refs. [18, 43], there is a broad
and relatively mature MOR literature outside of nuclear physics
waiting to be exploited (e.g., see Ref. [44] for an overview of the
Universe of MOR approaches). Our goal in this guide will be to
facilitate this exploitation through a selective treatment of physics-
informed, projection-based emulators relevant to a wide range of
nuclear physics problems.

To this end, we organize this guide as follows. Section 2 focuses on
emulators for bound-state calculations using subspace-projection
methods. We then provide a more general introduction to MOR
for solving differential equations in Section 3, which leads to our
discussion of scattering emulators in Section 4. Section 5 concludes
with a summary and outlook. Throughout, we draw connections
between variational and Galerkin projection methods and illustrate
these concepts with pedagogical examples, supplemented by source
code on the companion website [20].

2 Eigen-emulators

In this section, we discuss the construction of fast and accurate
emulators for bound-state calculations. Given a (Hermitian)
Hamiltonian H(θ) parameterized by θ, we aim to find the solutions
{E(θ), |ψ(θ)〉} of the Schrödinger Equation

H θ( )|ψ θ( )〉 � E θ( )|ψ θ( )〉, (1)
subject to the normalization 〈ψ(θ)|ψ(θ)〉 = 1. The components of the
vector θ may be model parameters, such as the low-energy couplings
of a nuclear EFT, or other parameters describing the system of interest
[33, 40]. We consider here cases in which Eq. 1 can be solved with high
fidelity, but doing so requires a significant amount of compute time.
This compute time is compounded when repeated solutions are
required throughout the parameter space, e.g., during optimization
routines or Monte Carlo sampling. In the following, we will discuss
how the Ritz variational principle and the Galerkin method can be
used to construct rapid and reliable1 emulators that facilitate these
calculations.

2.1 Variational approach

To construct an emulator for bound state calculations, we use here
the Rayleigh–Ritz method2 and thus consider the energy functional

E ~ψ[ ] � 〈~ψ|H θ( )|~ψ〉 − ~E θ( ) 〈~ψ|~ψ〉 − 1( ), (2)
where the Lagrange multiplier ~E(θ) (also known as Ritz value)
imposes the normalization condition 〈~ψ|~ψ〉 � 1 for bound states.
The Generalized Ritz Theorem [47]3 states that the functional (Eq.
2) is stationary about all (discrete) solutions of the Eq. 1, not just the
ground state solution, which can be seen by imposing the stationary
condition

δE ~ψ[ ] ≡ 0 � 2〈δ ~ψ| H θ( ) − ~E θ( )[ ]|~ψ〉 − δ~E θ( ) 〈~ψ|~ψ〉 − 1[ ], (3)

and noting that Eq. 3 is only fulfilled for arbitrary variations 〈δ ~ψ| if |~ψ〉
is a solution of the Schrödinger Eq. 1 with ~E(θ) � E(θ).

Let us now define the trial wave function we use in conjunction
with the functional (2):

|~ψ〉 �∑nb
i�1

βi|ψi〉 ≡ X �β, (4a)

X � |ψ1〉 |ψ2〉 / |ψnb
〉[ ], (4b)

where the column-vector �β contains the to-be-determined coefficients
and the row-vector 4 X the (in principle) arbitrary basis states. Here, we
use snapshots of high-fidelity solutions of the Eq. 1 at a set of given
parameter values; i.e., {|ψi〉 ≡ |ψ(θi)〉}nbi�1 [2, 48–50]. No assumption
has been made as to how to obtain the high-fidelity solutions.

FIGURE 1
Illustration of a projection-based emulator using only two
snapshots |ψi〉 ≡ |ψ(θi)〉 (dark gray points). These snapshots are high-
fidelity solutions of the Schrödinger Eq. 1, which span the subspace of
the reduced-order model, as indicated by the red arrows and the
gray plane. The trajectory of a high-fidelity eigenvector is denoted by the
blue curve. The orange dot depicts an eigenvector |ψ(θ)〉 along the
trajectory that, when projected onto the reduced space, corresponds to
the turquoise point; hence, the difference between the orange and
turquoise points represents the error due to the emulator’s subspace
projection (i.e., the dotted line). Inspired by Figure 2.1 in Ref. [2].

1 A reliable emulator may not necessarily be required to be highly accurate,
e.g., if the other uncertainties of the theoretical calculation dominate the
overall uncertainty budget

2 For a critical commentary on the history of the method’s name, see, e.g.,
Refs. [45, 46].

3 Many helpful theorems relevant to the Rayleigh–Ritzmethod can be found in
Section 3 in Ref. [47].

4 In a representation of H, the ψi corresponding to |ψi〉 are the nb columns of
the matrix X in that representation
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Figure 1 motivates the efficacy of snapshot-based trial
functions. Although a given eigenvector |ψ(θ)〉 obtained from
a high-fidelity solver resides in a high-dimensional (or even
infinite-dimensional) space, the trajectory traced out by
continuous variations in θ remains in a relatively low-
dimensional subspace (as illustrated by the gray plane). Hence,
linear combinations of high-fidelity eigenvectors spanning this
subspace (i.e., the snapshots) make extremely effective trial wave
functions for variational calculations. In nuclear physics,
snapshot-based emulators already have accurately
approximated ground-state properties, such as binding
energies, charge radii [7, 9, 25], and transition matrix elements
[9, 29], and have been explored for applications to excited
states [51].

Given the trial wave function (4), we determine the
coefficients �β+ that render E[~ψ � X �β] stationary under
variations |δ ~ψ〉 � X|δ �β〉 of the trial wave function, as opposed
to arbitrary variations. Solving for the optimal �β+ occurs then in
the low-dimensional space spanned by the basis elements in X
(i.e., the red arrows in Figure 1) rather than in the high-
dimensional space in which |ψ〉 resides. From the stationarity
condition Eq. 3, we obtain the reduced-order model [52],

~H θ( ) �β+ θ( ) � ~E θ( ) ~N �β+ θ( ), (5a)
�β
†

+ θ( ) ~N �β+ θ( ) � 1, (5b)
where ~H(θ) ≡ X†H(θ)X is the subspace-projected Hamiltonian
and ~N ≡ X†X the norm matrix in the snapshot basis. As
opposed to H(θ) in Eq. 1, ~H(θ) (and likewise ~N) is a nb × nb
Hermitian matrix,

~H θ( ) �
〈ψ1|H θ( )|ψ1〉 / 〈ψ1|H θ( )|ψnb

〉
..
.

1 ..
.

〈ψnb
|H θ( )|ψ1〉 / 〈ψnb

|H θ( )|ψnb
〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

In practice, the generalized eigenvalue problem Eq. 5 may
experience numerical instabilities due to small singular values in
~N. (The instabilities also appear in reduced-order modeling of
differential equations, see Section 3). One way to ameliorate these
instabilities is to orthonormalize the snapshots in X, hence
yielding ~N � 1. This approach could also permit some
efficiency gains, by excluding the least important vectors as
measured by their singular values. Alternatively, Ref. [53]
recently introduced a trimmed sampling algorithm that can
substantially reduce the effects of noise in solving generalized
eigenvalue problems. Finally, a well-known approach to
regularize both generalized eigenvalue problems and matrix
inversion is through the use of a nugget [54, 55]. Here, a
regularization parameter ] ≪ 1 (called a nugget) is added to
the diagonal of the ill-conditioned matrix one wishes to invert
(here, ~N), thus shifting its singular values.

By solving the generalized eigenvalue problem Eq. 5, one
obtains nb pairs {~E(θ), �β+(θ)} consisting of a Lagrange
multiplier (i.e., an eigenvalue) and its corresponding
coefficient vector. Let us index the eigenvalues of the Eq. 5 and
Eq. 1 in ascending order; that is, ~En#~En+1 and En#En+1,
respectively, with n = 1 indicating the lowest eigenvalue. If the
snapshot basis X in the trial wave function (Eq. 4) contains nb

linearly independent states, then the Min–Max Theorem [47]
asserts that each Lagrange multiplier,

~En θ( )PEn θ( ) for 1#n#nb, (7)
provides an upper bound on its corresponding eigenvalue of the
Schrödinger Eq. 1.5 Furthermore, the Generalized Ritz Theorem
implies that the ~En(θ) provide not only the variational bounds (Eq.
7) but also stationary approximations for these high-fidelity
eigenvalues. Adding another basis state to X can only improve
these approximations, which converge to the high-fidelity
eigenvalues as the projected subspace approaches the high-fidelity
space [47].

Although excited states can also be emulated, especially when
adding excited-state snapshots to the trial wave function to improve
the emulator’s accuracy (see also Ref. [51]), we focus on ground-state
properties and thus use only ground-state snapshots in the trial wave
function. For brevity, we will omit the subscripts henceforth. To obtain
the approximate ground-state wave function associated with ~E(θ), one
evaluates the Ritz vector |ψ(θ)〉≈ X �β+(θ). Expectations values of
operators O can then be straightforwardly computed using

〈ψ θ( )|O θ( )|ψ θ( )〉 ≈ �β
†

+ θ( ) ~O �β+ θ( ), (8)
with the subspace-projected ~O(θ) � X†O(θ)X. However, these
expectation values generally do not provide variational bounds
unless O = H is the Hamiltonian, as discussed (see, e.g., Figure 5 in
Ref. [25] for emulated 4He ground-state radii).

2.2 Galerkin approach

The reduced-order model (5) can be alternatively derived via a
Galerkin projection, as we will also see with the variational emulators
for scattering in Section 4. To this end, we construct the weak form of
the Eq. 1 by left-multiplying it by an arbitrary test function 〈ζ| and
asserting that

〈ζ |H θ( ) − E θ( )|ψ〉 � 0, ∀〈ζ |. (9)
If the weak form (9) is satisfied for all 〈ζ| for a given set {E, |ψ〉}, then
the set must also satisfy the Eq. 1. The proof of this statement can be
obtained via a contrapositive: if Eq. 1 were not satisfied, then one could
find a 〈ζ| such that Eq. 9 is nonzero.

The weak form of the high-fidelity system is the starting point for
deriving a reduced-order model. Although Eq. 9 still operates in the
large space in which |ψ〉 resides (cf. Figure 1), we can reduce its
dimension by replacing |ψ〉→|~ψ〉, where |~ψ〉 is defined in Eq. 4. With
the degrees of freedom for |ψ〉 reduced, we enforce a less strict
orthogonality condition: we select nb test functions ζi and assert
that the residual due to the trial wave function (cf. Figure 1)
should be orthogonal to the subspace Z spanned by these test
functions Z � [|ζ1〉, . . . , |ζnb〉]:

H θ( ) − ~E θ( )( )|~ψ〉⊥ Z, (10)
or likewise

5 For non-Hermitian Hamiltonians, one generally does not obtain the
variational bounds (Eq. 7) as can be observed in, e.g., the subspace-
projected coupled-cluster method developed in Ref. [7].
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〈ζ |H θ( ) − ~E θ( )|~ψ〉 � 0, ∀|ζ〉∈ Z. (11)
But replacing |ψ〉→|~ψ〉 also implies that the true eigenvalue E is in
general not exactly reproduced unless X contains |ψ(θ)〉. Hence, we
also had to apply the approximation ~E ≈ E in Eqs. 10 and 11.

In the Galerkin method, which is also known as the “method of
weighted residuals,” the test and trial function bases are chosen to be
equivalent; i.e.,Z � X . The so-called Galerkin condition Eq. 11 is then
equivalent to imposing that 〈ψi|H − ~E|~ψ〉 � 0 holds for i ∈ [1, nb].
This yields a system of nb equations with nb unknowns �β and, together
with the normalization condition, reduces to Eq. 5 obtained from the
variational principle in Section 2.1. However, we stress that the test
and trial function bases can be chosen differently (i.e., |ζi〉 ≠ |ψi〉),
which makes the Galerkin method more general than the variational
approach. Note that the normalization condition does not affect the
Galerkin condition Eq. 11 and can be implemented by normalizing the
trial function.

2.3 Emulator workflow and offline-online
decomposition

Figure 2 illustrates the workflow for implementing fast and
accurate emulators as described in Section 2.1. The workflow involves

1. a computational framework capable of reliably solving the high-
fidelity system Eq. 1,

2. the snapshot-based trial wave function Eq. 4 with the optimal
coefficients (i.e., the weights) determined by the Eq. 5, and

3. an efficient offline-online decomposition in which the
computational heavy lifting is performed once before the
emulator is invoked.

Several computational frameworks exist in nuclear physics
(and quantum chemistry) for solving the few- and many-body
Schrödinger Eq. 1 [56]. For illustration, Figure 2 assumes that the
high-fidelity solver performs a direct diagonalization of the Nh ×
Nh Hamiltonian in a chosen (truncated) model basis of length Nh.
The corresponding runtime ts per sampling point θi is indicated
by the width of the blue bar in Figure 2. In nuclear physics, such

approaches are referred to as Configuration Interaction (CI).
However, the following discussion will be independent of how
the high-fidelity solutions of the Eq. 1 are obtained in practice.

Using the high-fidelity solver, one constructs a set of snapshots
{|ψ(θi)〉}nbi�1 in the truncated model basis to build the columns of the
Nh × nb matrix X. The runtime for this task is nb × ts. For simplicity,
Figure 2 assumes nb = 3 and depicts the basis functions
schematically in different colors. This phase of the emulator
needs to be completed only once before the emulator is invoked
and is thus called the offline stage as opposed to the online stage of
the emulator. The predictions are made quickly and with little
memory footprint in the online stage.

The appearance of the full-order Hamiltonian during the
offline stage, where the projected Hamiltonian
~H(θ) ≡ X†H(θ)X is computed (see Figure 2), implies that this
class of projection-based emulators is intrusive in nature. In
general, intrusive emulators apply the basis expansions and
projections to the operators implemented in the high-fidelity
model [57]. On the other hand, non-intrusive emulators use
only outputs of the full-order solver without access to the full-
order operators such as the Hamiltonian. Non-intrusive
emulators include Gaussian processes [58], Dynamic Mode
Decompositions [59, 60], and other machine learning methods
[61–63]. More details on this classification scheme can be found in
Section 8 in Ghattas and Willcox [57].

The emulator’s efficiency greatly benefits from moving all size-Nh

operations into the offline stage, which can easily be achieved for
HamiltoniansH(θ) with an affine parameter dependence. These affine
operators can be written as a sum of products of parameter-dependent
functions hn(θ) and parameter-independent operators Hn,

H(θ) �∑
n

hn(θ)Hn. (12)

Note that the functions hn(θ) are only required to be smooth but not
necessarily linear in θ. The affine parameter dependence in Eq. 12 then
allows one to store the subspace-projected operators ~Hn � X†HnX
separately up front in the offline phase, from which

~H θ( ) �∑
n

hn θ( ) ~Hn, (13)

FIGURE 2
Illustration of the workflow for implementing fast and accurate emulators, including a high-fidelity solver (left) and an intrusive, projection-based
emulator with efficient offline-online decomposition (right), for sampling the (approximate) solutions of the Schrödinger Eq. 1 in the parameter space θ. For
brevity, the figure assumes that the snapshots are orthonormalized during the offline stage such that ~N � 1 in the emulator Eq. 5. See the main text for details.
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can be efficiently constructed for each θi during the online stage to
solve the emulator equation 5. For instance, Hamiltonians derived
from chiral EFT can be cast into the form (12) due to their affine
dependence on the low-energy couplings. The runtime per sample θi
in the online phase is therefore typically just a small fraction of that
of the high-fidelity solver, as depicted by the small blue box in
Figure 2. Likewise, emulating expectation values of other operators
with an affine parameter dependence via Eq. 8 also benefits from this
offline-online decomposition. For non-affine operators, various
hyperreduction methods have been developed to construct
approximate affine representations [50, 64], including the
empirical interpolation (EIM) [65–68] and gappy proper
orthogonal decomposition [69, 70]. See also Refs [48, 71–73] for
hyperreduction methods that interpolate X or ~H(θ) directly, and
Refs [33, 74] for recent applications of machine learning tools for
hyperreduction.

How should one choose the snapshots in the trial wave function
Eq. 4 effectively? For relatively small parameter spaces, one can use
Latin hypercube sampling to obtain space-filling snapshots or choose
the snapshots in the proximity of the to-be-emulated parameter
ranges, keeping nb ≪ Nh in practice. A chosen set of snapshots
expressed in the (truncated) model basis can be optimized by
applying a singular value decomposition (SVD) or the closely
related proper orthogonal decomposition (POD) [75] to the Nh ×
nb matrix X. One then creates a new set of snapshots from the
(orthonormal) left-singular vectors associated with the singular
values greater than a chosen threshold [64]. This (optional)
preprocessing step can be performed during the offline stage, as
illustrated in Figure 2, thereby rendering the Eq. 5 an eigenvalue
problem (i.e., ~N � 1) and less sensitive to numerical noise.

The basis states of the trial wave function can also be obtained
iteratively, using a greedy algorithm [64, 76, 77]. These algorithms
estimate and then minimize the emulator’s overall error by adding
basis states (obtained from a high-fidelity solver) in the parameter
space where the error is expected to be the largest. Greedy algorithms
require fast approximations of the emulator’s error and terminate
when either a requested error tolerance or a maximum number of
iterations has been achieved. Uncertainty quantification for reduced-
order models has been studied in various contexts, including
differential equations [64, 77, 78] and nuclear physics problems
[24, 43].

2.4 Illustrative example

The formal results so far in this Section can be illuminated by a
simple example, which allows us to compare results from a
snapshot-based emulator to more conventional approaches, such
as direct diagonalization in a harmonic oscillator basis and
Gaussian process emulation. Let us define the system we would
like to solve as a single particle with zero angular momentum in
three dimensions and trapped in an anharmonic oscillator
potential. This example can be directly generalized to few- and
many-body systems. The potential operator is the sum of a
conventional harmonic oscillator (HO) potential and a finite-
range piece:

V r; θ( ) � VHO r( ) +∑3
n�1

θn exp −r2/σ2n( ), (14)

with σn = [0.5, 2, 4] fm. The potential Eq. 14 has the affine structure
defined in Eq. 12 for θ and hence can be emulated rapidly after
projecting into the snapshot basis during the offline stage. Even the
high-fidelity system considered here is still small enough to be solved
quickly and accurately using a fine radial mesh on a standard
laptop. However, this provides an illuminating setting within which
we can observe many qualities seen in more complicated scenarios.

Following the MOR paradigm, we take snapshots of the high-
fidelity wave function at various training parameters {θi} and collect
them into our basis X. Here, we choose nb = 6 training points
randomly and uniformly distributed in the range [−5, 5] MeV for
all θn; 50 validation parameter sets are chosen within the same range.
The snapshots and the corresponding potentials are shown in Figure 3.
These snapshots are then used to construct the reduced-order system
as in Eq. 5. All of this, and more, is made simple by the
EigenEmulator Python class provided in the supplemental
material [20].

Once the reduced system has been constructed and the affine
structure of the Hamiltonian exploited to store the projected matrices
during the offline stage, we can begin rapid emulation during the
online stage. To help provide a baseline to a common approach in
nuclear physics, we provide an emulator constructed with the first nb =
6 HO wave functions as the trial basis X in Eq. 5. We label this
approach the HO emulator and the snapshot-based approach the
reduced-basis method (RBM) emulator. See Ref. [18] for a guide to the
extensive literature on RBMs. One can emulate quantities with this
HO approach via our OscillatorEmulator class [20].

For example, we take three of the validation parameter sets we
sampled and compare the exact and emulated wave functions for both
emulators. Figure 4 shows the results. The gray lines depict the nbwave
functions used to create the reduced-order models, and the colored
lines show the emulated results on top of the high-fidelity solutions
(black lines). Although both the reduced basis and HO basis are rich

FIGURE 3
Basis functions for training the snapshot-based eigen-emulator.
The black curves show the potential, and the blue curves show the wave
functions as functions of the radial coordinate r. The wave functions are
offset vertically by their corresponding energies for clarity. See the
main text for details.
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enough to capture the main effects of varying θ, the RBM emulator is
much more effective at capturing the fine details of the wave function.
This can be seen in more detail in Figure 5, where the absolute
residuals of the RBM emulator are orders of magnitude smaller than
those of the HO emulator. The sensitivity of the emulator accuracy as
nb is varied can be readily studied using the Python code provided on
the companion website [20].

The quality of the emulators can be understood by noting in
Figure 4 that the basis functions of the RBM emulator match much
more closely with the emulated wave functions than the HO emulator,
whose wave functions have nodes not seen in the ground state (see the
gray lines). Thus, although the HO basis functions may be better at
spanning the space of all possible wave functions, they are, in fact, a
poor basis for spanning the set of all possible ground states as θ are
varied. The RBM emulator constructs an extremely effective basis
almost automatically, with minimal input required by the modeler.
This can prove particularly effective for cases where the system’s
complexity limits the quality of the basis that can be constructed from
intuition or expertise alone.

Next, we discuss the emulation of bound-state observables.
Straightforward to emulate are the eigen-energies E(θ), whose
emulated values ~E(θ) are the result of solving the Eq. 5. But as
discussed in Section 2.1, other observables associated with the
operator O can be emulated via 〈ψ(θ)|O|ψ(θ)〉 ≈ 〈~ψ(θ)|O|~ψ(θ)〉
using the ~ψ(θ) found from Eq. 5. We choose to show the results of
emulating the radius-squared operator R2, defined here to be

〈ψ|R2|ψ〉 � 1
N∫

∞

0
r2 dr r2ψ2 r( ), (15)

with the normalization N � ∫∞
0
r2 drψ2(r). As stated previously, the

bulk of the numerical effort in the evaluation of this matrix element is
handled during the offline stage, where the integration is performed
once,

~R
2

ij ≡ 〈ψi|R2|ψj〉 � 1
N∫

∞

0
r2 dr r2ψi r( )ψj r( ), (16)

and then the online stage emulation can occur quickly via Eq. 8; i.e.,
〈ψ(θ)|R2|ψ(θ)〉 ≈ ∑ij

�β
(i)
+ (θ)~R2

ij
�β
(j)
+ (θ).

For illustrative purposes, we continue our example using the
trained RBM and HO emulators, but add a popular emulation tool
to the discussion: Gaussian processes (GPs). GPs are non-parametric,
non-intrusive machine learning models for both regression and
classification tasks [58, 79, 80]. Their popularity stems partly from
their convenient analytical form and flexibility in effectively modeling
various types of functions. GPs benefit from treating the underlying set
of codes as a black box [57]; as we will soon see, this is a double-edged
sword. We employ two independent GPs to emulate the ground-state
energy and the corresponding radius expectation value. Each GP uses
a Gaussian covariance kernel and is fit to the observable values at the
same values of θi used to train the RBM emulator. We use the
maximum likelihood values for the hyperparameters.

The absolute residuals at the validation points for each of the
RBM, HO, and GP emulators are shown in Figures 6 and 7 for the
energy and radius, respectively. Among these emulators, the GP
emulators perform the worst, despite being trained on the values of
the energies and radii themselves to perform this very emulation
task. Furthermore, its ability to extrapolate beyond the support of
its training data is often poor unless great care is taken in the
design of its kernel and mean function (see Figures 1 and 2 in Ref.
[25]). The GP suffers from what, in other contexts, could be
considered its strength: because it treats the high-fidelity system
as a black box, it cannot use the structure of the high-fidelity
system to its advantage (although some information can be
conveyed via physics-informed priors for the hyperparameters).
Note that the point here is not that it is impossible to find some GP
that can be competitive with other RBM emulators after using
expert judgment and careful (i.e., physics-informed)
hyperparameter tuning. Rather, we emphasize that with the
reduced-order models, remarkably high accuracy is achieved
without the need for such expertise.

FIGURE 4
Emulated wave functions for the RBM emulator (top panel) and HO
emulator (bottom panel) as a function of the radius. The solid black lines
represent the exact solution, and the dots represent the emulator result.
The gray lines give the wave functions used to train the emulator.
See the main text for details.

FIGURE 5
Absolute residuals of the emulated wave functions (in fm−1/2) based
on the RBM and HO emulator as a function of r, with colors
corresponding to those in Figure 4. The emulator results are compared
to the exact solutions. See the main text for details.
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The HO emulator performs better than the GP emulator, but it was
not “trained” per se, it was merely given a basis of the lowest six HO wave
functions as a trial basis, from which a reduced-order model was derived.
However, the HO emulator can still outperform the GP emulator because
it takes advantage of the structure of the high-fidelity system: it is aware
that the problem to be solved is an eigenvalue problem, for this is built into
the emulator itself. This feature permits a single HO emulator to emulate
the wave function, energy, and radius simultaneously.

Coming in first in the comparison of the emulators’ performances is
the RBM emulator, which typically results in higher accuracies than the
HO and GP emulators by multiple orders of magnitude. The RBM
emulator combines the best ideas from the other emulators. Like the GP,
the RBM emulator uses evaluations of the eigenvalue problem as training
data. However, its “training data” are curves (i.e., the wave functions)
rather than scalars (e.g., eigen-energies), like the GP is trained upon. Like
the HO emulator, the RBM emulator takes advantage of the structure of
the systemwhen projecting the high-fidelity system to create the reduced-
ordermodel.With these strengths, the RBM emulator is highly effective in
emulating bound-state systems, even with only a few snapshots and far
from the support of the snapshots (see Figures 1 and 2 in Ref. [25]). As we
will see in Section 4, many of these strengths carry over to systems of
differential equations.

3 Model reduction

In this Section, we provide a more general discussion of variational
principles and the Galerkin method as the foundations for
constructing highly efficient emulators for nuclear physics (see also
Ref. [18]). The general methods discussed here will be used as a
springboard to develop emulators for the specific case of scattering
systems in Section 4.

We consider (time-independent) differential equations that
depend on the parameter vector θ and aim to find the solution ξ of

D ξ; θ( ) � 0 inΩ, (17a)
B ξ; θ( ) � 0 on Γ, (17b)

where {D, B} are differential operators and Ω is the domain with
boundary Γ. See Ref. [18] for illustrative examples. Here, we use the

generic function ξ because different choices of ξ will be made in
Section 4. In what follows, we will discuss two related methods for
constructing emulators from Eq. 17, which states the physics problem
in a strong form (i.e., Eq. 17 holds for each point in the domain and on
the boundary). The first begins by finding a variational principle
whose stationary solution implies Eq. 17. The second instead
constructs the corresponding weak form of Eq. 17.

3.1 Variational principles

Variational principles (VPs) have a long history in physics and play a
central role in a wide range of applications; e.g., for deriving equations of
motion using stationary-action principles and Euler–Lagrange equations
in classical mechanics (see, e.g., Ref. [81] for a historical overview). Here,
we use VPs as an alternate way of solving the differential Eq. 17.

Variational principles are based on scalar functionals of the form

S[ξ] � ∫
Ω
dΩF ξ[ ] + ∫

Γ
dΓG ξ[ ], (18)

where F and G are differential operators. Many differential Eq. 17 can
be solved by finding stationary solutions of a corresponding functional
Eq. 18; i.e., the solution ξ+ that leads to δS[ξ+] � 0.

However, VPs can also lead straightforwardly to a reduced-order
model. This follows from the following trial ansatz

|~ξ〉 ≡ ∑nb
i�1

βi|ξi〉 � X �β, (19a)

X ≡ |ξ1〉 |ξ2〉 / |ξnb〉[ ], (19b)
with the to-be-determined coefficients vector �β. Rather than stipulate
that δS � 0 for any arbitrary variation δξ, we instead extract the
optimal coefficients, �β+, as those for which S is stationary under
variations in �β:6

δS �∑nb
i�1

zS
zβi

δβi � 0. (20)

FIGURE 7
Similar to Figure 6 but for the root-mean-squared radius

�����
〈R2〉
√

and
in units of fm.

FIGURE 6
Absolute residuals in the energy (in MeV) at the 50 validation points
for the RBM, HO, and GP emulators. The validation points are chosen
randomly from a uniform distribution within the same range as the
training points. See the main text for details.

6 For simplicity we consider ξ to be a real variable; for complex variables,
independent variations δ �β* should be included in the discussion
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The general case would involve a numerical search for the solution to
Eq. 20 but if S is quadratic in ξ, as are all the examples considered here,
then the solution can be determined exactly. In this case, S can be
written as

S[ �β] � 1
2
�β
u
A �β + �b · �β + c (21)

for some matrix A, vector �b, and scalar c. Symmetrizing the quadratic
portion—if it is not already symmetric—by rewriting A← (A + Au)/2
can be desirable for numerical purposes. It then follows that the
optimal coefficients, �β+ are those for which

δS � A �β+ + �b � 0, (22)
which can be solved for �β+ using standard linear algebra methods.
Solving for �β+ occurs only in a space of size nb, the number of basis
elements {ξi}nbi�1, rather than in the much larger space of ξ itself.
Therefore, as long as {ξi}nbi�1 approximately spans the space in which ξ

lives, the trial function constructed by Eqs. 19a and 22 will be both a
fast and accurate emulator of ξ.

Similar to the discussion in Section 2.1, the matrix A in Eq. 22 may
be ill-conditioned and require regularization. A nugget ] ≪ 1 can be
added to the diagonal elements of A to help stabilize the solution for
�β+ [54, 55].

3.2 Galerkin emulators

The Galerkin approach, also more broadly called the “method of
weighted residuals,” relies on the weak formulation of the differential
Eq. 17. To obtain the weak form, the differential equation and
boundary condition (in Eq. 17) are left-multiplied by arbitrary test
functions ζ and �ζ and integrated over the domain and boundary,
respectively, and then their sum is set to zero:

∫
Ω
dΩ ζD ξ( ) + ∫

Γ
dΓ �ζB ξ( ) � 0. (23)

If Eq. 23 holds for all ζ and �ζ , then Eq. 17) must be satisfied as well.
The form of Eq. 23 is often rewritten using integration by parts to
reduce the order of derivatives and simplify the solution.
Importantly, the weak form has the integral form needed for
our emulator application. The weak form and its Galerkin
projection are used extensively, e.g., in the finite element
method; see Refs. [82–84] for an in-depth study and examples.
For a discussion of the convergence properties of the Galerkin
method, its relation to abstract variational problems, and other
salient mathematical details, see Refs. [64, 85–87]. Here, we follow
the introduction of Galerkin methods as provided in Ref. [82].

Starting with the weak form, we can construct an emulator that
avoids the need for an explicit variational principle. It begins by first
noting that substituting our trial function Eq. 4 into D(ξ) and B(ξ) will
not, in general, satisfy Eq. 17 regardless of the choice of �β. Therefore,
there will be some residual, and the goal is to find the �β+ which
minimizes that residual across a range of test functions ζ and �ζ . This
system would be over-determined in the case of truly arbitrary test
functions, so instead, we propose the test bases

|ζ〉 �∑nb
i�1

δβi|ζ i〉, |�ζ〉 �∑nb
i�1

δβi|�ζ i〉, (24)

where δβi are arbitrary parameters, not related to the βi in Eq. 19a. The
δβi will play the same role as those in Eq. 20, namely as a bookkeeping
method for determining the set of equations that are equivalently zero.
By enforcing that the residuals against these test functions vanish for
arbitrary δβi, the bracketed expression in

δβi ∫
Ω
dΩ ζ iD X �β+( ) + ∫

Γ
dΓ �ζ iB X �β+( )[ ] � 0, (25)

is zero for all i ∈ [1, nb], from which the optimal �β+ are extracted.
Because this approximately satisfies the weak formulation, we have
found an approximate solution to Equation (17).

In a variety of cases [82], the subspace Z spanned by the test
function basis is chosen to coincide with the subspace X spanned by
the trial function basis X; i.e., Z � X . This particular choice is known
as the Galerkin method, but it is sometimes further specified as the
Ritz–Galerkin or Bubnov–Galerkin methods. The Galerkin method is
more general than the variational methods described in Section 3.1
because the test space need not be equivalent to the trial space (i.e.,
Z ≠ X). In these cases, the approach is described as the
Petrov–Galerkin method [82]; this can result in more efficient
emulators for some differential equations (84).

4 Scattering emulators

In this Section, we describe various reduced-basis emulators
one could construct for quantum scattering systems. Throughout,
we note how the variational principles used to construct emulators
in recent works are related [30–33, 88]. We also describe how each
of the results from VPs could instead be derived from Galerkin
projections.

For scattering problems, the Equation 1 is no longer an eigenvalue
problem. The task is to solve the differential equation for the wave
function at a given energy E rather than searching for discrete energies
with normalizable wave functions. Differential equations are well
studied in the field of MOR, where parametric reduced-order
models have been constructed with great success across a multitude
of fields [44, 89]. This is a relatively mature field whose formal results
are quite extensive. For example, UQ for the RBM has been well
studied, along with the development of effective algorithms for
choosing the best training points [64, 76, 77, 90].

One can formulate the Schrödinger equation in multiple ways,
including any flavor of Lippmann-Schwinger (LS) integral equation
(which builds in boundary conditions) or as a differential equation in
either homogeneous or inhomogeneous form. This freedom, along
with the freedom of trial and test bases for the Galerkin projection,
leads to multiple alternative emulators that one could construct for
quantum scattering systems. For simplicity, we restrict our discussion
to two-body scattering for Hermitian Hamiltonians. (See, however,
Section 4.6.2 for an extension to higher-body systems.) As a concise
reference, we provide Table 1 to show the connections between the
fundamental differential or integral equations, variational principles,
and Galerkin projections. This section thus provides multiple distinct
examples of using Galerkin projections to create emulators, whichmay
prove useful to newcomers wishing to apply model reduction to their
own systems, and ends with an example for an emulator applied to a
separable potential.
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4.1 Constrained Kohn emulators

The Kohn variational principle (KVP) [91, 92] is one of the most
well-known VPs for quantum scattering systems. Here we focus on the
KVP flavor that relates a trial wave function to the reactance matrix K.
However, alternative flavors exist for other matrices such at T± and S
(see Section 4.6). Analogously to the Ritz VP for bound states, the KVP
then allows us to guess effective wave functions by finding those that
make the KVP stationary. This Section will discuss a style of KVP
emulator that relies on the homogeneous Schrödinger equation, which
requires a normalization constraint during emulation; an alternative
style without such a constraint will be discussed in Section 4.2.

We start with a rescaled version of the KVP discussed in Ref. [30]:

K ~ψ[ ] � ~KE + 〈~ψ|H − E|~ψ〉, (26)
where |~ψ〉 is the trial wave function (denoted by |~ξ〉 in Section 3) and
~KE ≡ ∑iβiKE,i the associated on-shell trial K matrix with on-shell
energy E = q2/2μ. This flavor of KVP applies when ψ satisfies the
asymptotic normalization condition in position space

ψ
ℓ
r( ) �������→

r ����→∞
jℓ qr( ) + nℓ qr( )tan δℓ , (27)

where ϕ(r) = jℓ(qr) is the (regular) free-space wave function, and jℓ(qr)
and nℓ(qr) are spherical Bessel and Neumann functions, respectively. 7

Note that we define the on-shell KE matrix as

KE � −tan δℓ
2μq

, (28)

which differs from the convention in Ref. [30]. The KVP is
stationary about exact solutions ψ, such that K[ψ + δψ] � KE +
O(δK)2.

Eq. 26 can be cast into the form of the generic functional (Eq. 18)
by noting that, in position space,

∫Γ dΓG ~ψ[ ]→G ~ψ[ ]∣∣∣∣∞r�0 ≡
W rϕ, r~ψ; r( )

2μ

∣∣∣∣∣∣∣∣
∞

r�0
� ~KE,

(29)

which has defined the surface functional G in Eq. 18 and where we
have used the Wronskian

W ϕ,ψ; r( ) ≡ ϕ r( )ψ′ r( ) − ϕ′ r( )ψ r( ). (30)
Both rϕ(r) and r~ψ(r) vanish at r = 0 so only the limit of r → ∞
contributes, from which we can use Eq. 27 when evaluating
Eq. 29.

Because the Schrödinger equation is a linear, homogeneous
differential equation, the normalization of rψ(r) is proportional to
its derivative at, say, r = 0. Therefore, a constraint on the normalization
of ψ is equivalent to a boundary condition on ψ′. However, to satisfy
this boundary condition we must include a constraint on Eq. 26 if we
are to ensure that the trial function ~ψ continues to satisfy the
normalization condition of Eq. 27. If we assume that each snapshot
ψi satisfies Eq. 27, then

~ψ
ℓ
r( ) � ∑

i

βi⎡⎣ ⎤⎦jℓ qr( ) + nℓ qr( )∑
i

βi tan δℓ,i , (31)

whose first term implies that we must impose the constraint∑iβi = 1.
We are now in a position to find the �β that make Eq. 26 stationary.

If we insert the definition of ~ψ and ~K into Eq. 26, along with the
Lagrange multiplier, we have (with repeated indices indicating
summations)

K �β[ ] � βiKE,i + 1
2
βiΔ ~Uijβj + λ ∑

i

βi − 1⎡⎣ ⎤⎦, (32)

where we define Vi = V(θi) and

Δ ~Uij ≡ 〈ψi|H − E|ψj〉 + i ↔ j( )
� 〈ψi|V θ( ) − Vj|ψj〉 + i ↔ j( ). (33)

In the second line we have used that the |ψj〉 are eigenstates with the
corresponding Vj. If V(θ) is affine in θ, then Δ ~U can be projected once
in the emulator’s offline stage, and reconstructed quickly during the
online stage.

TABLE 1 Description of common variational principles (VPs) in quantum scattering, and how to relate them to a Galerkin projection. The quantities are defined as the free wave
function |ϕ〉, the full wave function |ψ〉, the scattered wave function |χ〉, and the reactancematrix K along with its on-shell form KE. Tildes denote trial quantities. The expressions for
the Newton VP are written in operator rather than scalar form; any matrix element can be made individually stationary (see Section 4.4 for details). To compute the weak form of
the Schwinger and Newton VPs, one must first left multiply by V(θ) and G0, respectively, before orthogonalizing against the test basis. The rightmost column specifies whether a
constraint for the trial wave function has to be imposed (e.g., using a Lagrange multiplier λ).

Variational principle Galerkin projection information

Name Functional for K Strong form Trial basis Test basis Constrained?

Kohn (λ) ~KE + 〈~ψ|H − E|~ψ〉 H|ψ〉 = E|ψ〉 |ψi〉 〈ψi| Yes

Kohn (No λ) 〈~χ|H − E|~χ〉 + 〈ϕ|V|~χ〉
+〈ϕ|H − E|ϕ〉 + 〈~χ|V|ϕ〉

[E−H]|χ〉 = V|ϕ〉 |χi〉 〈χi| No

Schwinger 〈~ψ|V|ϕ〉 + 〈ϕ|V|~ψ〉
−〈~ψ|V − VG0V|~ψ〉

|ψ〉 = |ϕ〉 + G0V|ψ〉 |ψi〉 〈ψi| No

Newton V + VG0 ~K + ~KG0V
− ~KG0 ~K + ~KG0VG0 ~K

K = V + VG0K Ki Ki No

7 We focus here on examples with real-valued potentials and without long-
range Coulomb interactions. Cases with complex-valued potentials and/or
the Coulomb interaction may be analyzed in similar ways; relevant
discussions specific to Kohn emulators can be found in Refs. [30, 32].
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Now we can follow the steps outlined in Section 3.1 to determine
�β+. Taking the gradient of Eq. 32 with respect to �β and setting it equal
to 0 yields

�KE + Δ ~U �β+ + λ+ � 0, (34)
where �KE are the nb on-shell K-matrices used to train the emulator,
and �β+ are the optimal coefficients of the trial wave function. The
gradient with respect to λ simply returns the constraint. This system
can be solved via the system of equations

Δ ~U �1
�1u 0

[ ] �β+
λ+
[ ] � − �KE

1
[ ], (35)

where �1 is an nb × 1 vector of ones. If the nb number of basis functions
is much smaller than the size of ψ, then Eq. 35 can be a highly
computationally efficient emulator for scattering systems and requires
little computer memory to store. The on-shell K matrix can then be
emulated via

KE ≈ K �β+[ ] � �β+ · �KE + 1
2
�β
u

+Δ ~U �β+, (36)

whose operations all occur quickly in the size-nb space during the
online stage.

The derivation above followed closely that of Refs [30, 93], but one
could instead arrive at exactly Eq. 35 from a Galerkin projection [43].
Rather than begin with the VP, we start here with (the strong form of)
the homogeneous Schrödinger equation, i.e., H(θ)|ψ〉 = E|ψ〉. To
construct the weak form, we multiply with a test function |ζ〉 and
assert that the residual vanishes:

〈ζ |H − E|ψ〉 � 0, ∀|ζ〉. (37)
To make explicit the boundary conditions, we make use of the
relation

0 � 〈ζ |H − E|ψ〉
� 〈ζ |H←− E|ψ〉 −W rζ , rψ; r( )

2μ

∣∣∣∣∣∣∣∣
∞

r�0
,

(38)

where we have again used theWronskian from Eq. 30, and assignedH
←

as the operator acting, after integration by parts, on 〈ζ| instead of |ψ〉.
By adding Eqs. 38 and 37, we have

〈ζ |H − E|ψ〉 + 〈ζ |H←− E|ψ〉 �W rζ , rψ; r( )
2μ

∣∣∣∣∣∣∣∣
∞

r�0
. (39)

This is the weak form of the homogeneous Schrödinger equation
that we will use to construct the emulator, although the
asymptotic normalization condition Eq. 27 still needs to be
enforced. This will be imposed via a Lagrange multiplier after
inserting our trial basis.

Now that we have a weak form, the next step to construct the
reduced-order model equations is to define our trial and test bases to
project the weak form into the finite space of these bases. To align with
the Kohn emulator from the variational argument above, we choose
the trial and test basis to be identical as snapshots ψi. Then we can
evaluate

W rψi, rψj; r( )
2μ

∣∣∣∣∣∣∣∣∣∣
∞

r�0
� Kj − Ki (40)

and thus, it follows after including the Lagrange multiplier that

λ + 〈ψi|H − E|ψj〉 + 〈ψi|H
←− E|ψj〉[ ]βj �∑

j

βjKj −Ki∑
j

βj. (41)

The sum in the rightmost term can be evaluated using the constraint∑j βj = 1, and we can make the redefinition λ′ ≡ λ−∑j βj Kj without
impacting the solution because this term does not depend on i. Thus,
we have

λ′ + �KE + Δ ~U �β+ � 0, (42)
which is exactly Eq. 34 found by making the KVP stationary. This
simplification can be understood by noting that if { �β+, λ+} satisfy
Eq. 41, then we know that { �β+, λ+′ } is the unique solution to Eq. 42.
Therefore, we can solve Eq. 42 to obtain �β+ rather than Eq. 41. In
conclusion, using the Galerkin projection of the homogeneous
Schrödinger equation with trial and test bases of ψi, we were able
to obtain the same coefficients as the KVP in Eq. 35, which yield
the same on-shell K matrix when used in Eq. 36.

4.2 Unconstrained Kohn emulators

The Kohn emulators from Section 4.1 start with the
homogeneous Schrödinger equation, which does not enforce any
specific normalization of the wave function; hence this requirement needs
to be enforced at the time of emulation. This effectively takes the nb
degrees of freedom {ψi}—which were potentially costly to obtain—and
reduces the degrees of freedom to nb−1. However, one can instead build in
the normalization from the very start, thus removing the need to constrain
our basis via ∑nb

j�1βj � 1 during emulation. The unconstrained emulator
is fundamentally different from any approach that constrains the
coefficients (e.g., explicit substitution of β1 � 1 −∑nb

j�2βj), regardless of
if a Lagrangemultiplier is explicitly used as in Section 4.1. This is the topic
of the current section.

The full wave function |ψ〉 can be written as the sum of the free
wave function |ϕ〉 and the scattered wave |χ〉, that is, |ψ〉 = |ϕ〉 + |χ〉.
Thus, we can rewrite the KVP as

K � K + 〈ψ| H − E[ ]|ψ〉
� K + 〈χ| H − E[ ]|χ〉 + 〈ϕ| H − E[ ]|χ〉

+〈ϕ| H − E[ ]|ϕ〉 + 〈χ| H − E[ ]|ϕ〉
� 〈χ| H − E[ ]|χ〉 + 〈ϕ|V|χ〉 + 〈ϕ| H − E[ ]|ϕ〉 + 〈χ|V|ϕ〉,

(43)

where we used (via integration by parts)

〈ϕ| H − E[ ]|χ〉 − 〈ϕ| H
←− E[ ]|χ〉 � −K. (44)

We choose our trial function as |~χ〉, which always enforces the
normalization condition |~ψ〉 � |ϕ〉 + |~χ〉, and so no additional
constraint needs to be included in the variational principle.

Now we can construct the set of linear equations that makes Eq. 43
stationary in |~χ〉 � ∑iβi|χi〉. By taking the gradient with respect to βi,
we find

Ω �β+ � �ω, (45)
where
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Ωij � 〈χi| E −H[ ]|χj〉, (46a)
ωi � 〈χi|V|ϕ〉, (46b)

which is the set of equations used to obtain �β+. The matrix elements
Ωij can be evaluated with the help of

E −H[ ]|χj〉 � E −Hj[ ]|χj〉 + Vj − V[ ]|χj〉
� Vj|ϕ〉 + Vj − V[ ]|χj〉, (47)

with Hj = H (θj) and Vj = V (θj).
An equivalent approach follows from a Galerkin

orthogonalization procedure. We begin by writing the
homogeneous Schrödinger equation in inhomogeneous form using
|ψ〉 = |ϕ〉 + |χ〉:

E −H[ ]|χ〉 � V|ϕ〉. (48)
We can construct the weak form by multiplying by a generic test
function |ζ〉, which yields

〈ζ |E −H|χ〉 � 〈ζ |V|ϕ〉. (49)
Next, we insert the trial function |~χ〉 and choose the test basis of {|χi〉}i,
which is the same as the trial basis. This yields a reduced weak form
that is identical to Eq. 45.

We have shown that the coefficients �β+ found via the appropriate
Galerkin procedure aligns exactly with the KVP. However, we can
go one step further and in fact derive an estimate for the K matrix
that is equivalent to K[ �β+]. By inserting the optimal coefficients into
K|ϕ〉 = V|ψ〉,

〈ϕ′|K|ϕ〉 ≈ 〈ϕ′|V|ϕ〉 + 〈ϕ′|V|~χ〉
� 〈ϕ′|V|ϕ〉 +∑

ij

〈ϕ′|V|χi〉 Ω−1( )ij〈χj|V|ϕ〉[ ], (50)

with the factors in brackets equating to βi using Eq. 45. The
equivalence to the KVP is demonstrated in Refs. [94, 95].

4.3 Schwinger emulators

The Schwinger variational principle (SVP) is given by [94].

K ~ψ[ ] � 〈~ψ|V|ϕ〉 + 〈ϕ|V|~ψ〉 − 〈~ψ|V − VG0V|~ψ〉, (51)
where G0 is the Green’s operator. This too has the stationary property
K[ψ + δψ] � K +O(δK)2 when ψ is a wave function satisfying the LS
equation. Following the MOR philosophy and inserting a trial
function ~ψ, the stationary condition becomes

W �β+ � �w, (52)
where

Wij � 〈ψi|V − VG0V|ψj〉 (53a)
wi � 〈ψi|V|ϕ〉, (53b)

for all i ∈ [1, . . ., nb].
The system of Eq. 52 can also be determined by a Galerkin

projection procedure. In this case, we start with the LS equation
for wave functions,

|ψ〉 � |ϕ〉 + G0V|ψ〉, (54)

and create a weak form by left-multiplying by V(θ) along with the test
function |ζ〉:

〈ζ |V|ψ〉 � 〈ζ |V|ϕ〉 + 〈ζ |VG0V|ψ〉. (55)
The weak form can then be converted to its discrete form by setting
ψ → ~ψ and enforcing orthogonality against |ζi〉 = |ψi〉 for i ∈ [1, . . .,
nb].

8 This yields then Eq. 52, and so the coefficients found by making
Eq. 51 stationary are indeed identical to those found via the Galerkin
procedure for Eq. 54.

Using the emulation of ψ, which is calculated by inserting the
optimal coefficients obtained from Eq. 52 into the definition of ~ψ, we
can get the associated K through

〈ϕ′|K|ϕ〉 � 〈ϕ′|V|ψ〉
≈ 〈ϕ′|V|~ψ〉
�∑

ij

〈ϕ′|V|ψi〉 W−1( )ij〈ψj|V|ϕ〉.
(56)

This Equation is exactly the solution for K found via the LS equation
while assuming a finite-rank approximation for V:

Vf �∑
ij

V|ψi〉Λij〈ψj|V, (57)

where

Λ−1( )ij � 〈ψi|V|ψj〉. (58)

It is known that the SVP yields a K matrix that is equivalent to that
found via a finite-rank approximation to V [94, 95], which shows that
the Galerkin projection described in this Section is identical to
the SVP.

4.4 Newton emulators

The Newton variational principle (NVP) for the Kmatrix is given
by [31, 96].

K ~K[ ] � V + VG0
~K + ~KG0V − ~KG0

~K + ~KG0VG0
~K, (59)

where ~K is a trial matrix. If desired, one could instead emulate T(±) by
imposing the associated boundary conditions on G0. Here it is
assumed that we have chosen an on-shell energy E, which will
remain implicit throughout. A separate emulator can be
constructed for each choice of E. The functional Eq. 59 is
stationary about exact solutions of the LS equation, i.e.,
K[K + δK] � K + (δK)2. If we write the trial matrix as a linear
combination of exact snapshots

~K �∑nb
i�1

βiKi, (60)

then we can construct an emulator of the K matrix in the spirit of
the RBM.

Unlike some of the VPs discussed so far, the NVP is written here
in operator form, without yet projecting it into a basis. This gives us

8 Note that left-multiplying by V(θ) and enforcing orthogonality against |ζi〉 =
|ψi〉 is different than simply defining |ζ〉 = V|ψ〉 and enforcing orthogonality
against |ζi〉 = Vi|ψi〉 because V(θ) depends on θ. Thus, this is indeed a purely
Galerkin approach, rather than a Petrov-Galerkin approach

Frontiers in Physics frontiersin.org11

Drischler et al. 10.3389/fphy.2022.1092931

175

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1092931


the freedom to assert that any component 〈ϕ′|K|ϕ〉 constructed
from Eq. 59 is stationary, which yields an emulator for 〈ϕ′|K|ϕ〉.
For example, one could choose |ϕ〉 to be a plane-wave partial-wave
basis |kℓm〉 with momentum k and angular momentum quanta (l,
m), or one could keep the angular dependence explicit via |ϕ〉 = |k〉
in a single-particle basis. Coupled channels could be emulated by
choosing the angular momentum quanta differently between |ϕ′〉
and |ϕ〉. In fact, the NVP does not even require |ϕ〉 and |ϕ′〉 to be
free-space states; one can impose stationarity of Eq. 59 between any
two states due to its operator form. Note that the independent
coefficients �β are found for each choice of |ϕ′〉 and |ϕ〉. Thus, in the
case of coupled partial waves, for example, each channel is
emulated independently. To compute phase shifts, we must
emulate K at the on-shell energy E = q2/2μ and thus, k = k′ = q
for |ϕ〉 = |kℓm〉 and 〈ϕ′| = 〈k′ℓ′m′|.

Expressed in the chosen basis, simplifying the functional Eq. 59
after inserting Eq. 60 yields [31]

〈ϕ′|K θ, �β( )|ϕ〉 � 〈ϕ′|V θ( )|ϕ〉 + �β
u �m θ( ) − 1

2
�β
u
M θ( ) �β, (61)

with

mi θ( ) � 〈ϕ′| KiG0V θ( ) + V θ( )G0Ki[ ]|ϕ〉, (62a)
Mij θ( ) � 〈ϕ′| KiG0Kj − KiG0V θ( )G0Kj[ ]|ϕ〉 + i ↔ j( ). (62b)

If the potentialV(θ) has an affine parameter dependence, �m andM can
be efficiently constructed by linear combinations of matrices pre-
computed during the emulator’s offline stage, resulting in substantial
improvements in CPU time, e.g., for chiral interactions.

By imposing the stationary condition zK/z �β � 0, one then finds
�β+(θ) such that M �β+ � �m. Given that the optimal �β+(θ) yields a
trial matrix Eq. 60 with an error δK, one can insert �β+ in Eq. 61 to
obtain an error (δK)2. The resulting emulator K+(θ) ≡ K(θ, �β+) is
then [31]

〈ϕ′|K|ϕ〉 ≈ 〈ϕ′|K|ϕ〉 � 〈ϕ′|V|ϕ〉 + 1
2
�m
u
M−1 �m. (63)

Reference [31] studied several applications of the emulator Eq. 63
to short-range potentials with and without the Coulomb interaction
and partial-wave coupling. They demonstrated that the NVP emulator
has remarkable extrapolation capabilities (see Figure 2 in Ref. [31])
and can quickly reproduce high-fidelity calculations of neutron-
proton cross sections based on modern chiral interactions with
negligible error.

We now repeat the derivation for the NVP emulator, but instead
from the perspective of a Galerkin projection. Here, we will focus on
the case where 〈ϕ′| = 〈ϕ|. We start with the LS equation

K � V + VG0K, (64)
which, in this context, constitutes the strong form of the integral
equation. Although Eq. 64 is written in terms of abstract operators, it
can be turned into a vector equation in a specific representation after
right-multiplying by |ϕ〉. To derive the weak form we left-multiply by
G0 and a test function 〈ζ|:

〈ζ |G0K − G0VG0K|ϕ〉 � 〈ζ |G0V|ϕ〉. (65)
The trial function in this case is K|ϕ〉, which can be expanded in a
discrete (snapshot) basis using Eq. 60. We further employ the
Galerkin prescription, where the test basis is equivalent to the trial

basis, making 〈ζi| = 〈ϕ|Ki. With these assumptions, the reduced
weak form becomes

M �β+ � �m, (66)
with M and �m defined in Equation (62), again with 〈ϕ′| = 〈ϕ|. Thus,
we find the same �β+ using either the NVP or the Galerkin projection.

Given the optimal coefficients �β+, the emulator can be derived by
substituting ~K into the right-hand side of Eq. 64:

〈ϕ|K|ϕ〉 ≈ 〈ϕ|V|ϕ〉 + 〈ϕ|VG0
~K|ϕ〉

� 〈ϕ|V|ϕ〉 + 1
2
�muM−1 �m,

(67)

which is equivalent to Eq. 63 under the assumption that 〈ϕ′| = 〈ϕ|.
Therefore, both the NVP and Galerkin projection lead to identical
emulators for the K matrix.

4.5 Origin emulators

The scattering emulators discussed so far are best known as VPs
but are equivalent to various types of Galerkin projections of the
Schrödinger or LS equation (see Table 1). However, other types of
emulators can be constructed via Galerkin projections, even if they do
not necessarily correspond to any well-known VP.

Starting from the Schrödinger equation—a second-order
differential equation—we must impose two boundary conditions.
The first is that rψ(r) vanishes at r = 0; this constraint has been
automatically satisfied by our choice of trial bases in all VPs considered
above. But the second constraint is yet to be chosen. In the KVP, for
example, the second constraint was obtained via the normalization of
rψ(r) as r→∞, which, in the constrained KVP, led to a normalization
constraint for the coefficients βi. Because the Schrödinger equation is
linear and homogeneous, this normalization condition is equivalent to

FIGURE 8
Results for the scattering emulator with origin boundary conditions
in arbitrary units. Six basis functions are shown as gray lines, and the
exact wave function as a black line. Each of the basis functions and the
emulated wave function satisfy the constraints at the origin.
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imposing a constraint on the derivative of rψ(r), e.g., evaluated at the
origin.

Thus, an alternative weak form for the Schrödinger equation could
be constructed using only constraints at the origin. Let us construct a
coordinate-space emulator with (rψ)′(0) = 1. Starting from the generic
weak form (23), we obtain

〈ζ |H − E|ψ〉 + �ζ rψ( )′ − 1[ ]∣∣∣∣r�0 � 0, (68)

where ζ and �ζ are the (independent) test functions in the domain and
on the boundary, respectively, and the boundary condition is only
evaluated at the origin. Here, we can make the Galerkin choice of
(domain) test functions, where 〈ζ| = 〈ψ|, but make a Petrov-Galerkin
choice for the boundary, with �ζ(0) � 1.

Thus, the discretized weak form, from which our emulator
equations follow, is given by

〈ψi|H − E|ψj〉βj +∑
j

βj − 1 � 0, (69)

where we have assumed that the trial basis is constructed such that
each snapshot satisfies (rψj)′(0) � 1.

As an example, we show the output of such an s-wave (ℓ = 0)
emulator in Figure 8. Here, the potential is given by a sum of two
Gaussians,

V r, θ( ) � θ1 exp −κ1r2( ) + θ2 exp −κ2r2( ), (70)
with κ1 = 0.5 and κ2 = 1. The parameters to be varied are θ = {θ1, θ2}. The
six training and one validation parameters are selected randomly from a
uniform distribution in the range of [−5, 5]. To obtain the snapshots, the
partial-wave decomposed radial Schrödinger equation for ℓ = 0 can be
expressed as the system of coupled first-order differential equations,

y′0(r)
y′1(r)( ) � (rψ)′(r)

2μ V(r; θi) − E[ ](rψ)(r)( ), (71)

and numerically solved with Runge-Kutta methods. For more details
on solving the radial Schrödinger equation and matching the solutions
to the asymptotic boundary condition (27), see, e.g., Ref. [97]. As we
can see from Figure 8, each training and emulated wave function has
matching boundary conditions at the origin, and the discrepancy from
the true wave function is less than 10–3.

4.6 General Kohn variational principle

The KVP functional given in Eq. 26 can be extended to include
arbitrary boundary conditions [32, 98]. For simplicity, let us consider
short-range potentials V(θ) that have been partial-wave decomposed
into an uncoupled channel with angular momentum ℓ. The general
asymptotic form of the (coordinate-space) radial wave functions will
be linear combinations of free-space solutions9

ψ
ℓ,E(r) �������→r ����→∞

�ϕ
(0)
ℓ,E(r) + Lℓ,E

�ϕ
(1)
ℓ,E(r) , (72)

where

�ϕ
(0)
ℓ,E r( )
�ϕ
(1)
ℓ,E r( )

⎛⎝ ⎞⎠ � N −1 u00 u01

u10 u11
( ) jℓ qr( )

η
ℓ
qr( )( ), (73)

with q � ����
2μE
√

and an arbitrary normalization constant N ≠ 0.
Here, Lℓ,E is a generic scattering matrix that is determined by the
boundary condition, as parametrized by the non-singular
matrix u.

We now define L as a general functional for the generic L-matrix
in Eq. 72 [32, 88, 98],

L[~ψ] � Lℓ,E + 2μN 2

q det u
〈~ψu|H − E|~ψu〉. (74)

Note that Eq. 74 is not restricted to coordinate space, e.g., it also holds
for scattering in momentum space (see Ref. [88]). With Eq. 26, one can
follow the process described in Section 4.1 to emulate any asympototic
boundary condition. Obtaining an emulator prediction for different
boundary conditions does not mean that Eq. 74 has to be solve
multiple times. In fact, it only needs to be solved once and each
term in the functional rescaled using the relations derived in Ref. [32]:

Δ ~U
u′( ) � C′−1 Li( )C′−1 Lj( ) det u

det u′Δ
~U

u( )
, (75)

C′ L( ) � det u
det u′

u11′ − u10′ K L( )
u11 − u10K L( ). (76)

The non-primed terms refer to the initial state and primed terms
refer to the final state (explained below). The snapshots used to train
the emulator in the offline stage are transformed using the Möbius (or
linear fractional) transform

L′ L( ) � −u01′ + u00′ K L( )
u11′ − u10′ K L( ) . (77)

Let us consider solving Eq. 74 using the K-matrix boundary
condition, but then wanting a prediction for the T-matrix. We
would first rescale Δ ~U using Eq. 75. Here, u and u′ would
correspond to uK and uT, respectively, given by

uK � 1 0
0 1
[ ], uT � 1 0

i 1
[ ]. (78)

Once Δ ~U
(u′)

is calculated and the snapshots transformed from
the K- to the T-matrix according to Eq. 77, we apply Eq. 35 to
obtain the emulator prediction for the T-matrix. One can also
inverse transform the new emulated solution back to its K-matrix
equivalent by using

K L( ) � u01 + u11L

u00 + u10L
. (79)

Variational principles may not always provide a (unique)
stationary approximation, causing the appearance of spurious
singularities known as Kohn (or Schwartz) anomalies [32, 98,
101], which can render applications of VPs ineffective; especially
for sampling of a model’s parameter space.10 The appearance of
these anomalies depends on the parameters θ used to train the
emulator in the offline stage, the scattering energy, and the
evaluation set used in the online stage. However, Ref. [32]

9 We follow the conventions for scatteringmatrices in Refs. [99, 100]. Thus, the
K matrix in this section is dimensionless and defined without the negative
sign in Eq. 28.

10 These anomalies are not restricted to the KVP but also appear in other VPs
such as the NVP and SVP [102].

Frontiers in Physics frontiersin.org13

Drischler et al. 10.3389/fphy.2022.1092931

177

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1092931


demonstrated that a KVP-based emulator that simultaneously
emulates an array of KVPs with different boundary conditions
can be used to systematically detect and remove these anomalies.
The anomalies can be detected by assessing the (relative)
consistency of the different emulated results for, e.g., the
scattering S-matrix. The results that do not pass the
consistency check are discarded and the remaining ones
averaged to obtain an anomaly-free estimate of the S matrix
(or any other matrix). If all possible consistency checks fail,
one can change the basis size of the trial wave function
iteratively, which typically shifts the locations of the Kohn
anomalies in the parameter space in each iteration. The basic
idea for removing Kohn anomalies is general and can be applied
to other emulators, including the NVP-based emulator discussed
in Section 4.4, as long as multiple scattering boundary conditions
can be emulated independently and efficiently. Alternatively, one
might also consider comparing the consistency of emulated
results obtained from different VPs such as the ones
summarized in Table 1.

4.6.1 Generalization to coupled systems
Following Ref. [88], let us now extend the generalized KVP in

Section 4.6 to coupled systems, which could be coupled partial-wave or
reaction channels. The stationary approximation to the high-fidelity
L-matrix then reads

Lss′ � βiL
ss′
i + 1

2
βiΔ ~U

ss′
ij βj, (80)

where

Δ ~U
ss′
ij ≡

2μN 2

q det u
〈ψs

i |H(θ) − E|ψs′
j 〉[ + i ↔ j)( ]

� 2μN 2

q det u
〈ψs

i |V(θ) − Vj|ψs′
j 〉[ + i ↔ j)( ], (81)

with s and s′ corresponding to the entrance and exit channels. The
uncoupled case is retrieved by replacing ss′ → ℓ. Solving for �β now
proceeds as in Eq. 35 but for a specific choice of ss’ channels. Note
that the coefficients �β are to be determined independently for each
ss′ pair.

The coefficients are independent because Lss′ is independently
stationary for each ss’ pair. This becomes apparent when considering
how one would solve for the coefficients in the case where there are
two uncoupled channels, where ss′ → ℓ in Eqs. 80 and 81. Here, each
partial wave is completely independent of one another, and thus each
VP and their corresponding coefficients �β are independent of one
another across values of ℓ. Without loss of generality, let the two

channels be labeled as ℓ = 0 and ℓ = 1, and let �β
(0)

and �β
(1)

denote the
independent sets of coefficients found by making each channel’s KVP
stationary. Now consider adiabatically turning on a coupling between

two partial waves: the coefficients �β
(0)

and �β
(1)

should remain nearly
fixed to their previously uncoupled values, but now there is a new set of

coefficients to determine, which one could label as �β
(01)

. Thus, even in
the coupled case, there are multiple independent sets of coefficients to
determine: one for each pair of incoming and outgoing channels.

An alternative way to understand how the �β enter in the coupled
case is to instead start with the Schrödinger equation and enforce
(Petrov-)Galerkin orthogonalization as in Section 4.1. For the
diagonal channels, the test functions are chosen to have the

same outgoing channel as the trial functions, making the
procedure of standard Galerkin form. But for the off-diagonal
channels, the test functions have a different outgoing channel
(s) than the trial functions (s′). Because the basis of test
functions differs from the basis of the trial function, this is
instead a Petrov–Galerkin approach. The linear equations to be
solved are exactly what one would obtain from enforcing
stationarity in Eq. 80 for each ss′ independently. See Ref. [88]
for more information on coupled channel emulation.

4.6.2 Generalizations to higher-body systems
The variational emulators for two-body scattering described

so far can be generalized to higher-body scattering. In fact, the
KVP, as a powerful method for solving scattering problems, has
been applied in developing high-fidelity solvers (as opposed to a
KVP-based emulator) for studying three- and four-nucleon
systems (e.g., nucleon-deuteron elastic scattering below and
above the deuteron break-up threshold) [103, 104].11 It is then
natural to combine the KVP with the variational emulation
strategy to develop fast and accurate emulators beyond just
two-body scattering.

Here, we follow Ref. [33], which developed KVP-based emulators
for three-body systems. We focus on systems of three identical spinless
bosons, particularly the elastic scattering between boson and two-
boson bound state in the channel without any relative angular
momenta and below the bound state’s break-up threshold. The
corresponding scattering S-matrix can be estimated via a
variational functional that resembles Eq. 74 in the two-body case:

S ~ψ[ ] � S − i

3N 2 〈~ψ| H − E[ ]|~ψ〉. (82)

Here, S is the S-matrix associated with the trial three-body wave
function |~ψ〉, H and E the full Hamiltonian and energy, respectively.
The trial wave function has the following asymptotic behavior [33]:

〈R1, r1|~ψ〉 →R1→∞ N�
v

√ uB r1( )
r1R1

−e−iPR1 + S eiPR1( ), (83)

with R1, r1 as one of three different Jacobi coordinate sets; v and P as
the relative velocity and momentum between the scattering particles,
N the normalization constant that also appeared in Eq. 82, and uB(r1)
the radial wave function of the two-body bound state.

The emulation procedure is generally similar to those for two-body
emulations. We first collect high-fidelity calculations of |~ψi〉 at various
points in the Hamiltonian’s parameter space during the offline (i.e.,
training) stage and then use these snapshots as the basis to construct
the trial solution (see Eq. 19b) to be used in the variational functional
during the online emulation stage. A similar set of the low-dimensional
linear equations as in Eq. 35 can be derived to fix the weights βi. The
variational functional with these inputs produce accurate results for the S-
matrix at the emulation points [33]. This is all straightforward if we vary
only the three-body interactions in H(θ) when exploring its
parameter space. If the two-body interactions are also changed,
the two-body bound states of those snapshots are different among
themselves and therefore the trial wave functions based on Eq. 19b

11 The other high-fidelity solvers in this context solve problems in momentum
or coordinate space based on the Faddeev formalism [105–107].
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fails to satisfy the asymptotic behavior described in Eq. 83. In Ref.
[33], proper modifications were applied to the constructions of the
trial wave functions to satisfy the asymptotic condition. The
resulting emulator is again a low-dimensional equation system,
but the projected ~H(θ) matrices and the Δ ~U matrices lose the
affine structure as needed for fast emulation (see Eq. 13). To
mitigate this issue, the GP emulation method was employed to
interpolate and extrapolate the Δ ~U’s matrix elements in the
parameter space (note that this dependence is much smoother
than the parameter dependence of the observables). Other
hyperreduction approaches [48] could also be explored in this
context.

The results in Ref. [33] are encouraging: the time cost for
emulating three-boson scattering is on the order of milliseconds
(on a laptop), while the emulation’s relative errors vary from 10–13

to 10–4 depending on the case. It is straightforward to generalize it
to elastic scattering above the break-up threshold, but more
studies need to be done for emulating the break-up processes
and even higher-body systems. Of course, the Fermi statistics,
spin and isospin degrees of freedom, and partial waves beyond the
s-wave need to be included to realize emulation for realistic three
and higher-body scatterings (e.g. for three-nucleon systems).

4.7 A scattering example

We have covered the reduced-order models that can be
constructed from the Kohn, Schwinger, and Newton VPs, and
now we put them into action. This example is given in the context
of a rank-n separable potential where simple analytic forms are
available for the snapshots. This provides a sandbox to explore
many aspects of the RBM for quantum scattering without the
complicating details of more realistic systems. All of the source
code that generates the results shown here is available to explore
on the companion website [20].

Separable potentials lead to simple formulas for the K matrix and
the scattering wave function [108]. A rank-n separable potential in
momentum space is given by

Vℓ �∑n
ij

|vℓi 〉Λij〈vℓj|, (84)

where Λij = Λji are the coefficients of the potential that will be varied
during emulation. For simplicity, we consider here only s-wave
scattering (i.e., ℓ = 0). The potential (Eq. 84) leads to an affine
structure that lends itself to the offline-online decomposition
discussed in Section 3. From the potential (Eq. 84), simple
expressions for K and ψ can be derived [109]. For instance, the K
matrix is given in operator form by

K �∑n
ijk

|vi〉Λij 1 − JΛ[ ]−1jk〈vk|, (85)

with the identity matrix 1 and the matrix

Jij ≡ 〈vi|G0|vj〉, (86)

FIGURE 9
Phase shifts (top panel) and absolute residuals (bottom panel) in
arbitrary units for the Yamaguchi potential Eq. 87 for each scattering
emulator discussed above. The solid black lines represent the high-
fidelity solution and the dots represent the emulator results. The
emulators are so accurate that they are indistinguishable unless looking
at residuals. The training set is given by the two gray lines.

FIGURE 10
Wave functions (top panel) and absolute residuals (bottom panel)
for the Yamaguchi potential Eq. 87 in arbitrary units using the
constrained KVP. The top panel legend description is similar to Figure 9,
but for three different values of q. The bottom panel shows the
relative residuals of the three values previously mentioned.
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where the Green’s function G0 implicitly depends on the on-shell
energy E. Thus, it follows that K is separable if V is separable.

We choose to study the Yamaguchi potential [110].

〈p|vℓi 〉 ≡ vℓi p( ) � pℓ

p2 + b2i( )ℓ+1 (87)

with ℓ = 0 and assume a rank-2 potential with bi = [2, 4] and 2μ = 1. In
this case,

Jij � π

2

q2 − bibj( )
bi + bj( ) q2 + b2i( ) q2 + b2j( ), (88)

which permits all phase shifts, wave functions, and reduced-order
matrices (e.g., Δ ~U) to be evaluated analytically. The training
parameters {Λ00, Λ01, Λ11} are sampled randomly from a uniform
distribution in [−50, 50]. The companion website [20] provides the
following Python classes that implement the scattering emulators:
{Newton, Schwinger, Kohn, UnconstrainedKohn}Emulator.

Figure 9 shows the phase shifts and the absolute residuals for the
Yamaguchi potential Eq. 87 for emulators constructed with nb = 2
training points. The top panel depicts the high-fidelity solution (solid
black curve) and the emulator results (dots). Here, only the
constrained KVP is shown because the others would be
indistinguishable. In gray we show the basis states used to train the
emulator in the offline stage. The bottom panel shows the absolute
residuals for each of the emulators. We can see that all but the
constrained KVP are extremely accurate, with the residuals mostly
governed by the choice of nugget used to regularize the matrix
inversion (see also Section 2.1). For the constrained KVP, we see
that the loss of a degree of freedom to implement the constraint
significantly impacts its predictive power given that we only have two
basis states, although it is still quite accurate in this case. Increasing the
basis to nb = 5 yields predictions that are accurate to 10–13 degrees, or
better, for all emulators.

Figure 10 shows the high-fidelity (solid black line), emulated
(dots), and basis (solid gray line) wave functions for three values of
q with their absolute residuals using the constrained KVP constructed
with nb = 5 training points. The emulator reproduces the high-fidelity
solution at all three values of q, with q = 2.0 having the smallest
residual. The sensitivity of the emulator accuracy as nb is varied can be
readily studied using the Python code provided on the companion
website [20]. An example of how the accuracy is affected when varying
nb is also given in Ref. [88].

While all emulators described in this Section are applicable to
scattering problems in general, their efficacy will depend in practice
on various factors, such as their computational complexity and the
potential to be emulated. The constrained KVP has the advantage that
terms constant in θ, such as the (long-range) Coulomb potential, cancel in
the computation of Eq. 33 but it loses one degree of freedom due to the
normalization constraint of the coefficients. On the other hand, both the
NVP and SVP involve the computation of Green’s functions, which
makes them computationally more complex than the KVP—especially
the SVP since it also depends quadratically on the potential.

5 Summary and outlook

We have presented a pedagogical introduction to projection-
based, reduced-order emulators and general MOR concepts suitable

for a wide range of applications in low-energy nuclear physics.
Emulators are fast surrogate models capable of reliably
approximating high-fidelity models due to their reduced content of
superfluous information. By making practical otherwise impractical
calculations, they can open the door to the various techniques and
applications central to the overall theme of this Frontiers Research
Topic [14], such as Bayesian parameter estimation for UQ,
experimental design, and many more.

In particular, we have discussed variational and Galerkin methods
combined with snapshot-based trial (or test) functions as the
foundation for constructing fast and accurate emulators. These
emulators enable repeated bound state and scattering calculations,
e.g., for sampling a model’s parameter space when high-fidelity
calculations are computationally expensive or prohibitively slow. A
crucial element in this emulator workflow, as summarized in Figure 2,
is an efficient offline-online decomposition in which the heavy
computational lifting is performed only once before the emulator is
invoked. Chiral Hamiltonians allow for such efficient decompositions
due to their affine parameter dependence on the low-energy couplings.
Furthermore, we discussed the high efficacy of projection-based
emulators in extrapolating results far from the support of the
snapshot data, as opposed to the GPs.

While MOR has already reached maturity in other fields, it is still
in its infancy in nuclear physics—although rapidly growing—and
there remains much to explore and exploit [18, 35, 36, 43]. In the
following, we highlight some of the many interesting research avenues
for emulator applications in nuclear physics. All of these avenues can
benefit from the rich MOR literature and software tools available (e.g.,
see Refs. [1–3]):

• Emulator uncertainties need to be robustly quantified and
treated on equal footing with other uncertainties in nuclear
physics calculations, such as EFT truncation errors. This will be
facilitated by the extensive literature on the uncertainties in the
RBM [76, 77, 90, 111].

• The performance of competing emulators (e.g., the Newton vs.
Kohn variational principle) is typically highly implementation
dependent. Best practices for efficient implementation of nuclear
physics emulators should be developed. This may include
exploiting MOR software libraries from other fields, such as
pyMOR [112], when possible.

• Galerkin emulators are equivalent to variational emulators for
bound-state and scattering calculations if the test and trial basis
are properly chosen. But Galerkin (and especially Petrov-
Galerkin) emulators are more general and exploring their
applications in non-linear problems may be fruitful in
nuclear physics. Emulator applied to non-linear problems will
have challenges in terms of both speed and accuracy: 1) the basis
size will, in general, need to be large(r) resulting in lower speed-
up factors and longer offline stages; 2) using hyperreduction
methods will lead to additional approximations that worsen the
accuracy of the emulator and whose uncertainties need to be
quantified.

• Many technical aspects should be further explored, such as greedy
(or active-learning) [24] and SVD-based algorithms for choosing
the training points more effectively, hyperreduction methods for
non-affine problems, and improved convergence analyses.

• Scattering emulators could play pivotal roles in connecting
reaction models and experiments at new-generation rare-
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isotope facilities (e.g., the Facility for Rare Isotope Beams). In
this regard, further studies on incorporating long-range
Coulomb interactions and optical potentials beyond two-body
systems will be valuable. Furthermore, emulators for time-
dependent density functional theories could see extensive
applications in interpreting fission measurements. At facilities
such as Jefferson Lab and the future Electron-Ion Collider,
explorations of nuclear dynamics at much higher energy
scales should also benefit from emulators.

• The emulator framework can be used to extrapolate
observables far away from the support of the training data,
such as the discrete energy levels of a many-body system
calculated in one phase to those of another, as demonstrated
in Ref. [22]. Using emulators as a resummation tool to
increase the convergence radius of series expansions [26]
falls into this category as well, and so does using them to
extrapolate finite-box simulations of quantum systems across
wide ranges of box sizes [40]. Moreover, for general quantum
continuum states, emulation in the complex energy plane can
enable computing scattering observables with bound-state
methods [113]. Extrapolation capabilities of emulators
should be investigated further.

• While projection-based emulators have had successes (e.g., see
Refs. [7, 9, 25]), it is also important to understand their
limitations and investigate potential improvements. The
synergy between projection-based and machine learning
methods [114] is a new direction being undertaken in the
field of MOR for this purpose (e.g., see Ref. [63]). Nuclear
physics problems, with and without time dependence, will
provide ample opportunities for such explorations.

• Emulators run fast, often with a small memory footprint, and
can be easily shared. These properties make emulators effective
interfaces for large expensive calculations, through which
users can access sophisticated physical models at a
minimum cost of computational resources and without
specialized expertise, creating a more efficient workflow for
nuclear science. As such, emulators can become a
collaboration tool [33, 34] that can catalyze new direct and
indirect connections between different research areas and
enable novel studies.

To help foster the exploration of these (and other) research
directions in nuclear physics, we have created a companion website
[20] containing interactive supplemental material and source code so
that the interested reader can experiment with and extend the
examples discussed here.

We look forward to seeing more of the MOR methodology
implemented as these research directions are being pursued. But

especially we look forward to the exciting applications of emulators
in nuclear physics that are currently beyond our grasp.
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What is ab initio in nuclear theory?
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Ab initio has been used as a label in nuclear theory for over two decades. Its
meaning has evolved and broadened over the years. We present our
interpretation, briefly review its historical use, and discuss its present-day
relation to theoretical uncertainty quantification.

KEYWORDS

ab initio nuclear theory, effective field theory, Bayesian inference, many-body methods,
uncertainty quantication

1 Introduction

The literal meaning of the latin term ab initio implies that one starts from the beginning.
In computations of atomic nuclei, this means that the relevant degrees of freedom should be
quarks and gluons. However, the history of physics tells us that we do not need to know
everything to describe something and that we have some freedom in choosing the starting
point. As such, we do not necessarily have to employ Standard Model degrees of freedom. In
fact, many nuclear properties were successfully analyzed in terms of hadronic degrees of
freedom before we even knew about the existence of quarks [1–3]. Today, we know how to
explain this using renormalization group (RG) ideas [4, 5]. One may wonder about the exact
meaning of the ab initio method and what should constitute the beginning. However, it is
safe to say that a hallmark of this approach is its promise of precise and accurate predictions,
with quantified uncertainties, across the multiple energy scales relevant to nuclei. Examples
range from low-energy collective phenomena such as deformation and rotation [6–10], to
loosely bound and unbound nuclei [11–16], and to lepton nucleus scattering in the quasi-
elastic energy regime [17–19]. We expect the ab initio method to reliably extrapolate, in a
controlled and systematic way, to regions outside the ones used for inferring the model
parameters. Following the ideas from effective field theory (EFT) [20], we interpret the ab
initio method to be a systematically improvable approach for quantitatively describing nuclei
using the finest resolution scale possible while maximizing its predictive capabilities.A key part
of this interpretation is the possible tension between the two latter aspects. In a nuclear
physics context, we therefore let nucleons, and possibly other relevant hadronic degrees of
freedom, define the beginning. Lattice quantum chromodynamics (QCD) might one day be
the optimal starting point for predicting nuclear phenomena. Presently, Lattice QCD
continues to provide useful input for EFTs based on hadronic degrees of freedom.
However, it currently lacks predictive power for describing atomic nuclei [21–25].

We acknowledge that the ab initio method is interpreted differently by different people;
see, e.g., Refs. [26–33]. In nuclear physics, the evolution of ab initio and its wide application
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reflect the creativity and innovation of the scientists who perform ab
initio computations. In this sense, ab initio is unlike Tennessee
Whiskey or French Champagne, which are internationally protected
labels, but rather like Gruyère cheese, i.e., a generic expression that
benefits a “vibrant, competitive marketplace”1. In this review we
provide a brief history of ab initio nuclear physics (Section 2), clarify
our interpretation of this label (Section 3), explain how this
approach creates an inferential advantage (Section 4), and
provide examples in connection with some remaining challenges
(Section 5).

2 A brief history of ab initio nuclear
physics

A search of the term ab initio in the title on arXiv:nucl-th returns
about 300 papers, with the earliest one by Navrátil, Vary, and Barrett
(Ref. [34]) dating back to the year 2000. When the search includes
abstracts, the count increases to more than 700, and papers by
Leinweber (Ref. [35]) and Friar (Ref. [36]) are the earliest published
in the mid-1990s. Since then, an ever-increasing number of authors
have used the term ab initio to characterize their work. In Figure 1,
we show a plot of the data for the yearly use of this term in titles and
abstracts.

The authors of Ref. [34] did not explain what distinguished their
ab initio no-core shell model computations from quite similar earlier
approaches [37, 38] (see also Ref. [39]). Whatever the reason, the
term ab initio stuck and has been popular ever since. Colloquially,
we often use ab initio to label theoretical analyses of nuclei based on
“realistic” nucleon-nucleon, and three-nucleon potentials, with
solutions to the nuclear many-body problem obtained either
“virtually” exactly or with controlled approximations. Over the

years, however, the small number of available “realistic” or “high-
precision” nucleon-nucleon potentials [40, 41] have been replaced
by nucleon-nucleon potentials plus three-nucleon potentials from
chiral effective field theories (χEFTs) of QCD [42–44].

Because of the power counting in χEFT the potentials are
recognized as approximate with a fidelity that presumably
increases with increasing chiral order. This presented an
opportunity for systematically improvable many-body methods
that scale polynomially with increasing mass number [26, 30,
45–52]. Why solve an approximate potential virtually exactly?
This class of gently-scaling methods has now extended the reach
of many-body calculations to medium-mass and heavy-mass nuclei
[13, 53–58]. The computational cost of these calculations is kept
manageable by also approximating three-nucleon potentials as
normal-ordered, i.e., “density-dependent,” two-body potentials
[53, 57, 59, 60], and using the intrinsic kinetic energy alleviated
problems with the center of mass in the laboratory system [61–63].
These efforts also revealed the need for nuclear potentials that
accurately reproduce bulk observables beyond the lightest-mass
nuclei [64, 65]. This spurred the development of many new
potentials differing by the degrees of freedom they used, how the
numerical values of the low-energy constants (LECs) were
determined, the choice of regulator function, power counting,
and degree of locality [64–79].

Since the mid-to-late 1990s, this two-decades-long struggle to
describe nuclei has brought nuclear structure and reactions closer
together [11, 12, 80, 81]. Ideas from EFT [82] and RG [83, 84] have
changed our views on what is observable [85], the importance of
understanding the intrinsic resolution-scale and scheme
dependencies [86, 87], how we can systematically account for
finite-size corrections [88, 89], and estimate the effects of
truncating the EFT expansion [69, 72, 90, 91]. These ideas have
also led to the advent of the in-medium similarity renormalization
group [49, 51, 52] and nuclear lattice EFT [92, 93] as the latest many-
body methods.What we nowadays refer to as ab initio computations
of nuclei [16, 56, 58, 94] is intimately linked to the ideas of EFT and
uncertainty quantification. Clearly, what we considered ab initio
two decades ago does not necessarily pass as ab initio today, and vice
versa.

3 Our interpretation of the ab initio
method

The methods of EFT [82] and RG [83, 84] provide a valuable
foundation for the idea that the physics at a given energy scale does
not explicitly depend on the details at much higher energies. The
beginning can therefore be marked by identifying a scale separation,
specifying the relevant degrees of freedom and symmetries, and
allowing interactions accordingly. A power counting facilitates
meaningful truncations.

We interpret the ab initio method as employing Lagrangians,
Hamiltonians, or energy density functionals based on EFT principles
and with degrees of freedom chosen such that it maximizes our
predictive capabilities. Ab initio descriptions of atomic nuclei
concern the physics of multi-hadron systems in an energy range
from keV to a few hundreds of MeV. As such, it is reasonable to start
from hadronic degrees of freedom with interactions derived from

FIGURE 1
Number of times the term ab initio appears in the abstract (red
circles) and titles (blue squares) of papers on arXiv:nucl-th in a given
year.

1 https://www.nytimes.com/2022/01/12/business/gruyere-cheese-us-
court-ruling.html
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the Standard Model using the principles of EFT. While hadrons are
composite systems, and QCD is the underlying theory of the strong
nuclear force, Lattice QCD calculations of two-hadron systems are
not yet under control [21, 22]. This might change, and one could
imagine computing nuclei ab initio from QCD. Moving the
beginning from hadronic degrees of freedom to quarks and
gluons would extend the upper limit of the applicable energy
scale by several orders of magnitude and thus increase predictive
capabilities significantly. It is, however, an open question whether
this ansatz will capture emergent phenomena like the saturation of
nuclear forces [95]. Even if this were possible, it is another question
how much understanding would be gained about emergent
phenomena that involve novel (low-resolution) degrees of
freedom from such a high-resolution perspective. The usefulness
of the tower of EFTs will most likely remain [96].

Assuming that ab initio descriptions of nuclei inherit the physics
of the Standard Model via EFT methods, we expect to obtain more
reliable predictions compared to complementary and
phenomenological approaches. Also, building on an EFT, the ab
initio method should be systematically improvable, organizing the
relevant physics according to importance following the principles of
power counting. To use this advantage, we must obtain observables
using numerically exact methods or, if necessary, using controlled
approximations that allow for a systematic analysis. By controlled
approximations, we mean ignoring, in a graded way, what we believe
to be less essential physics. Doing so, we obtain a handle on what we
discard and a more meaningful estimate of our prediction
uncertainty. We would like to emphasize the distinction between
ignored physics and unresolved physics. An example of the latter is
short-range physics that, although unresolved, is accounted for in
the Hamiltonian via contact interactions [97].

It is pivotal to incorporate and declare our knowledge base and
assumptions in analyzing uncertainties. The ab initio method does
not emerge from a vacuum. That would be an ex nihilo method, of
which we cannot find any example in science. Quantifying
theoretical uncertainties grounded in systematicity should create
an advantage when assessing discrepancies between theory and
experiment. Note that according to our interpretation, the ab
initio method does not guarantee that we can find absolute
bounds on the theoretical uncertainties nor that we approach the
true data-generating mechanism by gradually reducing all
truncations. Indeed, should tensions between experiment and
theory remain despite our best efforts to quantify uncertainties
and keep the truncations at a minimum, we obtain quantitative
evidence that we should contest at least one of our assumptions.

4 How the ab initio method creates an
inferential advantage

The use of probability theory to quantify uncertainty plays a
central role in the scientific endeavor of inferring new knowledge
about the Universe. In this context, the ab initiomethod has evolved
significantly over the last few years and now offers a distinct
advantage. However, before we can elaborate on the topic of
inductive inference and its relation to the ab initio method, we
must briefly discuss the nature of science in terms of data, theories,

and models. This topic is expanded upon in the context of EFTs
much more thoroughly in, e.g., Refs. [98, 99].

Let us start with the data D obtained through a measurement
process. All data are equipped with uncertainties of various origins;
let us denote this δD. Given some data D, one could ask what this
data can tell us about future data F . At present, the future data is
uncertain and must therefore be described with a conditional
probability p(F |D, I) [100]. Here I denotes all available
background information. The obvious question is: How does one
go from this abstract probability to something that can be evaluated
quantitatively? The answer is to develop a theory within which we
can formulate a model that allows for numerical evaluation.

In physics, a theory is very often some framework that postulates
or deduces from some foundational principles the spacetime
dependence of a system of interacting bodies, e.g., Einstein’s field
equations in the general theory of relativity or Heisenberg’s
equations of motion in quantum mechanics. A physical theory
always comes with some prior probability of being wrong and
this probability should never be exactly zero or one. Otherwise
no new evidence/data will ever influence the validity of the theory. In
this sense, all theories are wrong, i.e., never correct with absolute
certainty. This provocative statement is designed to draw attention
to the fact that all theories can be improved or replaced as we
progress and gather more data.

A physical model M allows quantitative evaluation of the system
under study. Any model we employ will always depend on model
parameters θ with uncertain numerical values. Moreover, like theories:
“all models are wrong” [101]. Indeed, there will always be some physics
that we still need to include or are unaware of today. If we denote the
mismatch between model predictions and data as δM, we can write

D � M θ( ) + δD + δM. (1)
We often refer to the mismatch term δM as the model

discrepancy [102]. Naturally, we are uncertain about this term, so
we represent it by a probability distribution following our beliefs
about the limitations of M. It is no trivial task to incorporate model
discrepancies in the analysis of scientific models and data.
Nevertheless, it is crucial to avoid overfitting the model
parameters θ and making overly confident model predictions
[103]. It is in this context that the ab initio method creates an
inferential advantage. The promise of systematicity grounded in
EFT, and the controlled approximations underlying the
computation of nuclear observables, allows us to be quantitative
about the distribution that governs δM as we increase the fidelity of
M. For simplicity we sometimes refer to EFTs as models. However,
an EFT is more than a physical model in the traditional sense.
Indeed, within its domain of applicability an EFT prediction reflects
the underlying theory up to a truncation error. In this sense, the EFT
is complete, which is a distinct advantage compared to traditional
models. This is sometimes referred to as model-independence. Of
course, the underlying theory might be wrong, and such model
discrepancies cannot be remedied at the level of the EFT.

For example, assume that we operate with an EFT of QCD to
derive the potential for the nuclear interaction up to some order in
the relevant power counting. In addition, suppose that we use a
systematically improvable many-body method at some well-defined
truncation level to solve the many-body Schrödinger equation for
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the ground-state energy in our favorite nucleus. Then we can say
more about δM than if we use a shell model description grounded in
phenomenologically defined interaction matrix elements tailored to
a specific model space. We are not saying that the latter calculation
cannot provide valuable guidance or insight. However, we are saying
that it is possible to systematically test the underlying assumptions
within the ab initio method. Having quantified δM also tells us the
significance of a possible discrepancy or tension between experiment
and theory.

The distribution of future data conditioned on past data and
background information I, i.e., p(F |D, I), is referred to as a
posterior predictive distribution (PPD). Assuming that we have a
model M (θ) for the data-generating mechanism, then we can
express the PPD by marginalizing over the uncertain model
parameters θ belonging to some parameter space Ω

p F |D, I( ) � ∫
Ω
p F |θ, I( )p θ|D, I( ) dθ. (2)

By performing this integral, we average all predictions with
respect to our uncertainty of the model parameters θ. To evaluate the
posterior probability density function (PDF) p(θ|D, I) for the model
parameters, we can employ Bayes’ theorem, i.e.,

p θ|D, I( ) � p D|θ, I( )p θ|I( )
p D|I( ) . (3)

This requires a likelihood function p(D|θ, I) and a prior
distribution of the model parameters p(θ|I). The denominator,
p(D|I), does not explicitly depend on θ and is only needed for
proper normalization. Quantifying the posterior is called Bayesian
parameter estimation and is a staple of Bayesian inference. It is a
probabilistic generalization of parameter optimization and
maximum likelihood estimation.

In the historical developments of “high-precision” nucleon-nucleon
potentials, one often employed a χ2-measure to quantify the goodness of
fit to nucleon-nucleon scattering data [40, 41]. Although such an
approach has several drawbacks, most notably its limited use in
uncertainty quantification and non-trivial incorporation of prior
knowledge and model discrepancy, it is undoubtedly less demanding
computationally than quantifying a multi-dimensional posterior PDF.
Evaluating the posterior requires numericalmethods likeMarkovChain
Monte Carlo [104, 105], which is no silver bullet and by no means
guaranteed to succeed. To compute the denominator in Eq. (3), i.e., the
marginal likelihood, is even more difficult. There is significant progress
in linking ab initiomethods to the Bayesian inferential approach in the
nucleon-nucleon and few-nucleon sectors [106]. The development of
efficient and accurate emulators [107–110] should provide us with
sufficient leverage to continue applying Bayesian methods for analyzing
and quantifying uncertainties for non-trivial nuclear structure
observables and reaction cross sections. Access to emulators also
opens the door to detailed experimental design studies [111–116].

5 A few examples

We will briefly discuss a few examples and highlight some
remaining challenges to clarify our interpretation of the ab initio
method to analyze nuclei.

For light-mass nuclei, methods like the Faddeev-Yakubovsky
equations [117], hyperspherical harmonics expansion [27], no-
core shell model [39], and quantum Monte Carlo [118] yield
virtually exact solutions to the many-body Schrödinger equation
[119], barring systematic truncations of the single-particle basis
and the Hilbert space of many-body wave functions, or limited
sampling statistics. As such, the fidelity of the prediction is
mainly limited by the available computational resources [120].
When we employ these methods with interactions that can be
systematically improved, we obtain the prototypical ab initio
calculation of a nucleus. As an example, in Figure 2, we show the
predictions for ground-state energies in selected nuclei with mass
numbers A = 4–12 as obtained in a systematic study [77] of light
nuclei using two-plus three-nucleon interactions up to next-to-
next-to-leading order in χEFT. The parameters of the employed
interactions, i.e., the LECs, were calibrated to reproduce selected
two- and three-nucleon data. The authors of that study
recognized the well-known trend [54] of over-binding starting
at A ≈ 10 and increasing with A. Whether going to higher orders
in χEFT ameliorates this issue remains to be understood. A recent
paper [122] shows that ground-state energies are better
reproduced when going to the next order, but nuclear radii
remain challenging to describe.

In contrast to increasing the chiral order of the nuclear
potential, which also introduces additional LECs to be
inferred, it was demonstrated in Ref. [64] that one could
obtain accurate predictions for binding energies and nuclear
radii in medium-mass nuclei using a chiral interaction at
next-to-next-to-leading order (NNLOsat), which is calibrated

FIGURE 2
Predictions for ground-state energies of selected light nuclei
using interactions up to next-to-next-to-leading order in χEFT. The
grey (coral) bands indicate 68% (95%) credible intervals for the
theoretical uncertainty stemming from truncating the χEFT
expansion. Figure from Ref. [121], where additional details can be
found.
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to reproduce data for bulk observables in nuclei with A = 2–16,
see Figure 3, in addition to nucleon-nucleon scattering cross
sections. Calibrating the LECs to reproduce this wider class of
nuclear data residing in the domain of applicability of χEFT, has
been very fruitful and informative. This approach was expanded
upon in Ref. [65] by exploiting empirical information from
nuclear matter at saturation densities and including the
Δ(1232)-isobar in the chiral expansion of the nuclear
interaction. The strategy of inferring LECs to also reproduce
bulk properties of medium-mass nuclei runs the risk of
overfitting but there are Bayesian methods to mitigate this, as
discussed in the next paragraph. The interactions in Refs. [64, 65]
account for rudimentary theory and method errors and can be
systematically improved. Therefore we characterize them, and
ensuing predictions utilizing controlled approximations, as ab
initio. On the contrary, nuclear interactions designed to
maximize the data likelihood of nucleon-nucleon scattering
cross sections at any cost, invoking, e.g., unphysical
parameters of the regulator for fitting purposes [78], cannot
be considered as an ab initio approach despite being based on
EFT Lagrangians. A smaller χ2-value does not imply greater ab
initio content.

Utilizing Bayesian inference methods, one can express the
PDF for the LECs conditioned on low-energy data while
accounting for the truncation errors of χEFT and our
knowledge about the accuracy of the employed many-body
methods. The challenge, however, is to quantify these
uncertainties. There are methods based on, e.g., Gaussian
processes to account for correlated EFT truncation errors in
nucleon-nucleon scattering [124] and nuclear matter
predictions [125]. However, studies of the χEFT truncation
error for finite nuclei deserve more attention [126]. Hu et al.
[58] took the first step in this direction to analyze heavy-mass

nuclei, where they quantified an ab initio PPD for the neutron-
skin thickness in 208Pb. This distribution is conditioned on low-
energy data from light- and medium-mass nuclei together with
assigned uncertainties of the employed nuclear interactions and
the many-body methods.

To enable predictions for nuclei with A ≳ 10, one must use
methods whose computational complexity scales gently with A
and the size of the single-particle basis. Still, these methods must
retain essential many-body physics to describe the observable of
interest. Three-nucleon interactions can be challenging to handle
computationally [127]. Operating with truncated model spaces
and normal-order-approximated interactions goes well with the
ideas of the ab initio method. Here, we exemplify our discussion
using the coupled cluster method [30] with polynomial scaling in
A, but we note that several methods [128, 129] of this kind exist.
The coupled cluster method exploits an exponentiated cluster
operator T̂ expanded on particle-hole excitations of some many-
body reference state. Truncating the expansion of T̂ at some level
of n-particle n-hole excitations, and solving for the remaining
excitation amplitudes, constitutes a systematically improvable
description of the many-body wave function. Although a formal
bound on the effect of higher-order particle-hole excitations is
lacking, it is clear how to improve. This recipe for improvement is
what we seek in an ab initio method. Unfortunately, the
convergence pattern might be irregular and vary significantly
depending on the observable considered. For example, a rapid
convergence for the ground- and first excited-state energies does
not imply that their respective wave functions yield a converged
description of non-stationary observables [130]. Convergence
must be inspected empirically by either gradually increasing the

FIGURE 3
Ground-state energy (negative of binding energy) per nucleon
(top), and residuals (differences between computed and experimental
values) of charge radii (bottom) for selected nuclei computed with
chiral interactions. In most cases, theory predicts too-small radii
and too-large binding energies. Figure from Ref. [123], where
additional details can be found.

FIGURE 4
Relative contributions to the correlation energy E(2+3)

corr of several
closed-shell nuclei from coupled cluster with singles and doubles
(CCSD) and triples using the CCSD(T) approximation for the 1.8/2.0
(EM) interaction of Ref. [67] (left bars) and CCSDT-1 for the
ΔNNLOGO (394) interaction of Ref. [65] (right bars). The CCSD result
accounts for about 90% of the correlation energy for different nuclei
and interactions, and this visualizes the systematic improvements of
the coupled-cluster expansion. The data is taken from Ref. [132].
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number of particle-hole excitations, or defining a more
appropriate starting point (reference state) for the expansion,
see, e.g., Ref. [131]. Understanding this kind of convergence
pattern is important for proper uncertainty quantification and
remains an open question that requires significant domain
knowledge.

In Figure 4, we show how the 2p-2h and 3p-3h excitations of
the coupled-cluster method contribute to the correlation energy
of various closed-shell nuclei. The correlation energy is defined
as the difference between the predicted binding energies and the
Hartree-Fock energy. Here, the correlation energy E(2+3)

corr is the
sum of the 2p-2h correlation energy from CCSD and the 3p-3h
correlation energy from the triples, namely the Λ-CCSD(T)
approximation [133] (for the 1.8/2.0 (EM) interaction of Ref.
[67]) and the CCSDT-1 approximation [134] (for the
interaction of Ref. [65]). We see that CCSD accounts for
about 90% of the correlation energy for different nuclei and
interactions. Various quantum chemistry applications [135]
have obtained similar results. This strongly suggests that
coupled-cluster theory provides us with a systematic
approximation when truncated at the doubles, triples, etc
levels. While we do not (yet), have an understanding of the
hierarchy (i.e. triples yield much smaller energy contributions
than doubles) shown in Figure 4, Sun et al. [132] proposed RG
arguments as a possible explanation: Lowering the resolution
scale in the three-body subsystems of a many-body system
corresponds to removing (short-ranged) triples excitations.
Extending the arguments by Lepage [5] and Bogner and
Roscher [136] from two to three-body systems then suggests
that removal of short-ranged triples excitation can be
compensated by a renormalization of the three-body contact.

As discussed, the ab initio method aims at maximizing its
predictive power over multiple energy scales relevant to nuclei. If
we increase the resolution scale to resolve quarks and gluons, we
can use Lattice QCD to study nuclear interactions [137, 138] and
currents [139, 140]. However, the method is not yet operational
for accurate predictions of atomic nuclei [21-25] at physical
quark masses. Nevertheless, short of practical and
computational challenges, some of the pion-nucleon couplings
of χEFT have been computed on the lattice [141]. Although still
operating at unphysical pion masses, lattice results can be
extrapolated in the infrared using EFT methods [142]. This
extrapolative approach has turned out to be particularly
valuable in the data-scarce hyperon sector [143] to, e.g.,
elucidate the role of strangeness in dense nuclear matter
[144]. If we instead decrease the resolution scale, likely at the
cost of predictive power, we can integrate out the pion to obtain a
systematically improvable pionless EFT [145, 146] for which we
can solve the Schrödinger equation and perform ab initio
computations of processes at very low external momenta.
Continuing in this direction, one can devise halo EFT [147,
148], and EFTs for collective phenomena [149–153]. Although
these latter two methods are systematically improvable, i.e., they

are equipped with a power-counting scheme, they have even less
predictive power because they exhibit a relatively small
breakdown scale and are tailored to analyze a particular class
of low-energy phenomena.

The traditional shell model can be formulated as an ab initio
approach if one derives the valence-space interaction from a few-
nucleon Hamiltonian, based on χEFT, using a systematically
improvable prescription [52, 154–156]. Likewise, coarse-grained
representations of nuclear phenomena, like those provided by
density functional theory, might be cast as an ab initio method
one day if we can link them to low-energy interactions derived from
χEFT [157, 158]. However, this has not yet come to fruition
[159, 160].

Finally, it is essential to point out that different and sometimes
conflicting assumptions regarding the power counting scheme and
its meaning are in use. Besides the foundations, which are covered at
length in, e.g., Refs. [79, 161–165], all power counting schemes strive
to furnish an EFT description of the nuclear interaction that become
increasingly refined at higher orders of the expansion. To test this,
we must perform calculations to predict nuclear observables. This is
an important example of how the nuclear ab initio method and
nuclear EFTs are intimately connected and how they can benefit
from each other.

6 Summary

The ab initio method should not be confused with nuclear
EFT. The ab initio method includes the ideas of EFT in the sense
that it is systematically improvable, and one starts from degrees
of freedom determined by the relevant scale separation and
resolution. However, the ab initio method is also something
more. What this “more” is, has not been specified or discussed
much in our community. Naturally, misunderstandings and
controversies often arise, and one may meet questions like: “Is
this really ab initio?” With this paper we hope to bring some
clarity to that question.

In our view, the ab initiomethod should set the beginning at a
resolution scale that maximizes the method’s predictive power
and enables reliable predictions for phenomena at multiple
energy scales ranging from a few tens of keV’s to hundreds of
MeV’s. This implies that nucleons are currently the appropriate
degrees of freedom for the ab initio method. However, it is an
open question whether the beginning can be shifted to an even
finer resolution scale, e.g., quarks and gluons while increasing the
predictive power across energy scales significantly. We interpret
the ab initio method as a systematically improvable approach
employing Lagrangians, Hamiltonians, or energy density
functionals derived from the Standard Model according to the
principles of EFT. Subsequently solving for observables using
numerically exact methods or, if necessary, controlled
approximations that allow for systematic predictions with
quantified uncertainties.
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Despite our best efforts, tensions between theoretical predictions
and experimental results remain. It is however clear that the ab initio
method offers a unique advantage for estimating the uncertainties
necessary for assessing the significance of discrepancies between
theory and experiment.
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Ab initio symmetry-adapted
emulator for studying emergent
collectivity and clustering in nuclei
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We discuss emulators from the ab initio symmetry-adapted no-core shell-model
framework for studying the formation of alpha clustering and collective properties
without effective charges. We present a new type of an emulator, one that utilizes the
eigenvector continuation technique but is based on the use of symplectic symmetry
considerations. This is achieved by using physically relevant degrees of freedom,
namely, the symmetry-adapted basis, which exploits the almost perfect symplectic
symmetry in nuclei. Specifically, we study excitation energies, point-proton root-
mean-square radii, along with electric quadrupole moments and transitions for 6Li
and 12C.We show that the set of parameterizations of the chiral potential used to train
the emulators has no significant effect on predictions of dominant nuclear features,
such as shape and the associated symplectic symmetry, alongwith cluster formation,
but slightly varies details that affect collective quadrupole moments, asymptotic
normalization coefficients, and alpha partial widths up to a factor of two. This makes
these types of emulators important for further constraining the nuclear force for
high-precision nuclear structure and reaction observables.

KEYWORDS

ab initio symmetry-adapted no-core shell model, nuclear collectivity, nuclear clustering,
eigenvector continuation, emulators, 6Li, 12C

Introduction

Ab initio approaches to nuclear structure and reactions (for an overview, see Ref. [1]) aim to
provide accurate predictions based on few-nucleon forces, such as the ones derived from chiral
effective field theory (EFT) [for a review, see e.g. Ref. [2] and references therein]. To achieve this,
it is imperative to utilize high-precision nuclear forces that accurately describe nuclear
correlations, from short- to long-range correlations, as well as to quantify uncertainties that
arise from the nuclear force and the controlled approximations in solving the many-body
Schrödinger equation [3]. Such developments use statistical tools, including, for example,
Bayesian analysis [4], global sensitivity methods [5], and uncertainty estimates based on
regression [6, 7], that sometimes require a large number of computationally intensive
calculations which often poses a challenge.

In this paper, we seek to overcome some of these difficulties by combining the symmetry-
adapted no-core shell model (SA-NCSM) framework [8–10] with the methodology of
eigenvector continuation (EVC) [5, 11, 12]. The SA-NCSM uses a physically relevant basis
that, in manageable model spaces, achieves descriptions of light to medium-mass nuclei,
including challenging nuclear features, such as collectivity, clustering, and related continuum
effects. Similarly, EVC further reduces the sizes of Hamiltonian matrices by mapping them
onto much smaller matrices referred to as emulators, low-dimensional manifolds built upon a
set of characteristic solutions to the many-body Schrödinger equation. The proposed
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symmetry-adapted eigenvector continuation (SA-EVC) method opens
the door to calculations up through the medium-mass region and
studies of collective and clustering nuclear features that otherwise
might be computationally infeasible.

With a view toward inferring new knowledge of the nuclear forces
relevant to structure and reaction observables, we construct novel SA-
EVC emulators to study collective and clustering nuclear properties in
6Li and 12C (an emulator for the 6Li binding energy is validated in Ref.
[13]). Because this study focuses on the method validity, we utilize SA-
NCSM calculations for a single harmonic oscillator (HO) strength ZΩ,
for which and for a specific parameterization of the chiral potential we
show that the observables under consideration converge with the
number of HO excitations, including point-proton root-mean-square
(rms) radii and E2 transitions. The SA-NCSM utilizes a symplectic
Sp(3,R)-adapted basis and selected model spaces1 that are significantly
reduced in size due to symmetry considerations without sacrificing the
physics of interest. Moreover, we show that the set of chiral potential
parameterizations used to train the emulators has no significant effect
on dominant nuclear features such as the nuclear shape (and
associated symplectic symmetry) and cluster formation, making the
SA model spaces highly suitable for this study. However, from one
parameterization to another we find that probability amplitudes of
wave functions and cluster peak distance vary slightly, affecting by a
factor of two or less collective quadrupole moments, asymptotic
normalization coefficients (ANCs), and alpha partial widths (which
provide the probability for the alpha decay among all possible decays
of a state). This suggests that these types of observables, and associated

emulators, are important to inform and construct the nuclear forces
for high-precision nuclear calculations.

Theoretical methods

Ab initio symmetry-adapted no-core shell
model

Ab initio large-scale calculations [8, 9] have recently revealed a
remarkably ubiquitous and almost perfect symmetry, the Sp(3,R)
symplectic symmetry, in nuclei that naturally emerges from first
principles up through the calcium region (anticipated to hold even
stronger in heavy nuclei [14]). Since this symmetry does not mix
nuclear shapes, this novel nuclear feature provides important insight
from first principles into the physics of nuclei and their low-lying
excitations as dominated by only one or two collective
shapes—equilibrium shapes with their vibrations—that rotate
(Figure 1A).

The SA-NCSM theory [8, 10, 15] capitalizes on these findings and
exploits the idea that the infinite Hilbert space can be equivalently
spanned by “microscopic” nuclear shapes and their rotations [or
symplectic irreducible representations (irreps), subspaces that
preserve the symmetry], where “microscopic” refers to the fact that
these configurations track with the position and momentum
coordinates of each particle. A collective nuclear shape can be
viewed as an equilibrium (“static”) deformation and its vibrations
(“dynamical” deformations) of the giant-resonance type, as illustrated
in the β-γ plots of Figure 1A [8, 16]. A key ingredient of the SA concept
is illustrated in Figure 1B, namely, while many shapes relevant to low-
lying states are included in typical shell-model spaces (Figure 1B, top),

FIGURE 1
(A) Emergent symplectic symmetry in nuclei: Contribution of the most dominant shape to the 0+ ground state of 20Ne and its rotational band (2+, 4+, 6+,
and 8+), as well as to excited 0+ states, pointing to a fragmented giant monopole resonance [8]; for selected states, the deformation distributionwithin a shape
is shown in terms of the shape parameters, the average deformation β and triaxiality angle γ (based on ab initio SA-NCSM calculations with NNLOopt in amodel
space of 11 HO shells with ZΩ = 15 MeV inter-shell distance). (B) Schematic illustration of the SA concept shown for 8Be: a smaller model space (square)
includes all possible shapes (labeled as “All”) and yields spatially compressed wave functions (top); a larger model space (rectangle in lower panel)
accommodates, in a well prescribed way, spatially extended modes (“SA selection”) that are neglected in smaller model spaces. Figure from Ref. [9] under the
terms of its CC BY license.

1 Throughout the paper, we will refer to the selected SA-NCSM model spaces
as SA model spaces.
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the vibrations of largely deformed equilibrium shapes and spatially
extended modes like clustering often lie outside such spaces. The
selected model space in the SA-NCSM remedies this, and includes, in a
well prescribed way, those configurations. Note that this is critical for
enhanced deformation, since spherical and less deformed shapes,
including relevant single-particle effects, easily develop in
comparatively small model-space sizes.

In this study, we utilize the ab initio SA-NCSM theory [8–10] that
is based on the NCSM concept [17, 18] with nuclear interactions
typically derived from the chiral EFT (e.g. [2, 19–23]). We use SA-
NCSM model spaces, which are reorganized to a correlated basis that
respects the shape-preserving Sp (3,R) symmetry and its embedded
symmetry, the deformation-related SU(3) [8–10]. We note that while
the model utilizes symmetry groups to construct the basis and
calculate matrix elements, descriptions are not limited a priori to
any symmetry and can account for significant symmetry breaking.

The SA-NCSM is reviewed in Refs. [9, 10] and has been applied to
light and medium-mass nuclei using SU(3)- and Sp(3,R)-adapted
bases. Themany-nucleon basis states of the SA-NCSM are constructed
using efficient group-theoretical algorithms and are labeled according
to SU(3) × SU(2) by the proton, neutron and total intrinsic spins, Sp,
Sn, and S, respectively, and (λω μω) quantum numbers with λω = Nz −
Nx and μω =Nx −Ny, whereNx +Ny +Nz =N0 +N, for a total ofN0 +N
HO quanta distributed in the x, y, and z directions2. Here, N0ZΩ is the
lowest total HO energy for all particles (“valence-shell configuration”)
and NZΩ (N ≤ Nmax) is the additional energy of all particle-hole
excitations. Thus, for example, (λω μω) = (0 0), for whichNx = Ny = Nz,
describes a spherical configuration, while Nz larger than Nx = Ny (μω =
0) indicates prolate deformation. In addition, a closed-shell
configuration has (0 0). Indeed, spherical shapes, or no
deformation, are a part of the SA basis. However, most
nuclei—from light to heavy—are deformed in the body-fixed frame,
which for 0+ states appear spherical in the laboratory frame.

Furthermore, considering the embedding symmetry Sp(3,R)
⊃SU(3), one can further organize SU(3) deformed configurations
into subspaces that preserve Sp(3,R) symmetry. Each of these
subspaces (symplectic irrep, labeled by σ) is characterized by a
given equilibrium shape, labeled by a single deformation Nσ(λσ μσ).
For example, the symplectic irrep Nσ(λσ μσ) = 0(8 0) in 20Ne consists of
a prolate 0(8 0) equilibrium shape (static deformation) with λω = 8
and μω = 0 in the valence-shell 0p-0h (0-particle-0-hole) subspace,
along with many other SU(3) deformed configurations or dynamical
deformation (vibrations), such as Nω(λω μω) = 2(10 0), 2(6 2), and 8
(16 0), which include particle-hole excitations of the equilibrium shape
to higher shells [8, 14, 16]. These vibrations are multiples of 2ZΩ 1p-1h
excitations of the giant-resonance monopole and quadrupole types,
that is, induced by the monopole r2 � ∑A

i�1 �ri · �ri and quadrupole Q2 ������
16π/5

√ ∑A
i�1r2i Y2(r̂i) operators, respectively (for further details, see

Refs. [10, 24]).
An advantage of the SA-NCSM is that the SA model space can be

down-selected from the corresponding ultra-large Nmax complete
model space to a subset of SA basis states that describe static and
dynamical deformation, and within this SA model space the spurious
center-of-mass motion can be factored out exactly [25, 26]. Another
benefit is the use of group theory for constructing the basis and

calculating matrix elements, including the Wigner-Eckart theorem,
which allows for calculations with SU(3) reduced matrix elements that
depend only on (λ μ), along with computationally efficacious group-
theoretical algorithms and data structures, as detailed in Refs. [27–31].
A third advantage is that deformation and collectivity are examined
and treated in the approach without the need for breaking and
restoring rotational symmetry. The reason is that basis states utilize
the SU(3)(λ μ) ⊃ SO(3)L reduction chain that has a good orbital angular
momentum L, whereas all SU(3) reduced matrix elements can be
calculated in the simpler canonical SU(3)(λ μ) ⊃ SU(2)I reduction chain
(for details, see Refs. [32, 33]). The canonical reduction chain provides
a natural reduction to the x and y degrees of freedom, it is simple to
work with, and most importantly, provides a complete labeling of a
basis state that includes the single-shell quadrupole moment
eigenvalue that measures the deformation along the body-fixed
symmetry z-axis [34]. SU(3) reduced matrix elements calculated
within this scheme yield, in turn, matrix elements for the SA-
NCSM basis by invoking the Wigner-Eckart theorem with the
appropriate SU(3)(λ μ) ⊃ SO(3)L Clebsch-Gordan coefficients that
are readily available [32].

We emphasize that all basis states are kept up to some NC
max,

yielding results equivalent to the corresponding NC
max NCSM

calculations. Building upon this complete NC
max model space, we

expand the model space to Nmax by adding selected basis states to
include only the necessary vibrations of largely deformed equilibrium
shapes that lie outside this NC

max (such SA-NCSM model spaces are
denoted as 〈NC

max〉Nmax).

Eigenvector continuation method in the
symmetry-adapted framework

As introduced in Ref. [11], the EVC method utilizes the fact that if
a Hamiltonian is a smooth function of some real-valued parameters,
its eigenvectors will also be well-behaved functions of those
parameters. In practice, this means that one can use a relatively
small number of known wave functions to construct an accurate
emulator well-approximated by a low-dimensional manifold, and with
it accurately predict observables for an arbitrary chiral potential
parameterization [12]. To compute these initial wave functions
from first principles, it is advantageous to use SA model spaces
that can accommodate deformation, including spatially expanded
modes, as well as medium-mass regions.

An advantage of the EVC method is that solutions are achieved by
diagonalizing matrices with sizes that are many orders of magnitude
smaller than those used in exact calculations. This results in a
drastically reduced computational time with practically no
discrepancies from the exact results. EVC thus provides a means of
generating large samples of nuclear observables from variations in the
Hamiltonian parameters. This, in turn, makes computationally
intensive statistical analyses, such as sensitivity studies [5, 12],
possible. It also allows for a reduced computational load for
quantifying uncertainties of ab initio predictions.

In this study, we construct emulators capable of probing collective
and clustering features by employing the EVC method with SA model
spaces. As illustrated in Table 1, the SA-NCSM reduces the sizes of
Hamiltonian matrices by up to four orders of magnitude, or
equivalently by more than 97%. The application of EVC to these
SA spaces results in an additional reduction of up to 3 more orders of2 We follow the notations of Ref. [15].
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magnitude, or as much as 99%. In this combined framework, the final
size of the resulting matrices are as much as 10–5 times smaller than
they would be in the corresponding Nmax complete spaces. As the first
step, we consider a chiral EFT nucleon-nucleon (NN) interaction
truncated at next-to-next-to-leading order (NNLO), which depends
on 14 low-energy constants (LECs). It turns out that we can write the
chiral Hamiltonian as H( �c) � ∑14

i�0cihi, where �c is a vector
representing a unique combination of the LECs, hi are the
constituent chiral potentials, h0 is the LEC-independent part of the
chiral potential plus relative kinetic energy and the Coulomb
interaction, and c0 = 1.

A state |ψ( �c)〉 can be well-approximated as a linear combination
of known “training” wave functions ∑NT

j αj( �c)|ψ(cT→j)〉, where each
|ψ(cT→j)〉 in this study is the lowest-energy eigenvector ofH(cT→j) for a
given Jπ, cT

→ corresponds to a training point in the LEC parameter
space, andNT is the number of training points. The chiral Hamiltonian
matrices hi are constructed in the representation of the training wave
functions. These NT × NT matrices are used to emulate the wave
function for any set of LECs �c by solving the Schrödinger equation for
the unknown αj( �c) as a generalized eigenvalue problem that uses the
norm matrix for the training wave functions, Mij � 〈ψ(cT→i)|ψ(cT→j)〉.

The new features here are that we generate the emulator for the
electric quadrupole moment Q by constructing the Q matrix in the
representation of the training eigenvectors (as done for rms radii in
Ref. [5]), and that these are calculated using SA model spaces. The
quadrupole moment is then approximated by computing
〈ψ( �c)|Q|ψ( �c)〉 � ∑ijαi( �c)αj( �c)〈ψ(cT→i)|Q|ψ(cT→j)〉.

Results and discussions

The results presented in this paper use the SA-NCSM in an
Sp(3,R) basis with an NN chiral potential up to NNLO as used in
[21]. The consistent treatment of NN and three-nucleon (3N) forces at
this order is feasible but outside the scope of the present study,
which aims to show the validity of the SA-EVC method. We also
include the outcomes for a specific NN parameterization,
NNLOopt [21], for which the 3N forces have been shown to
contribute minimally to the 3- and 4-nucleon binding energy
[21]. Furthermore, the NNLOopt NN potential has been found to
reproduce various observables, including the 4He electric dipole
polarizability [35]; the challenging analyzing power for elastic
proton scattering on 4He, 12C, and 16O [36]; neutron-deuteron
scattering cross-sections [37]; along with B (E2) transition

strengths for 21Mg and 21F [38] in the SA-NCSM without
effective charges.

For the EVC calculations, we use NT = 32 training points within
the 14-dimensional parameter space for NNLO.We restrict the ranges
of the LECs to lie within ±10% of their values for NNLOopt [21] and
adopt the regularization for NNLOopt. We sample training points
using a randomly seeded latin hypercube design, and validate the
emulators for 256 points that are different from the training points but
within the same range of the LECs.

The SA-EVC results start with SA model spaces that are reduced
by three to four orders of magnitude compared to the corresponding
Nmax complete model space (or, equivalently, NCSM calculations), as
outlined in Table 1. Moreover, the associated observables are in good
agreement for SA and complete model spaces, with differences that are
typically comparable to differences resulting from varying ZΩ (see Ref.
[8], supplemental material). Specifically, for the example of NNLOopt,
we report in Table 1 excitation energies, point-proton rms radii,
electric quadrupole moments, and B (E2 ↑) transition strengths
between the two lowest energy states of 6Li and 12C. We also show
that for the SA spaces used to train the emulators all of the above
observables are converged with Nmax (Figure 2).

Thus, for example, as shown in Table 1, collectivity-driven
observables agree within 0.3%–2.9%, and radii agree at the sub-
percent level. The largest deviation is observed for the 6Li 1+

quadrupole moment, however, it is important that its sign and very
small magnitude are reproduced in both calculations. Furthermore,
such differences are expected to decrease in richer model spaces;
indeed, in a series of benchmark studies for light nuclei such as 4He,
6Li, 12C, and 16O (reviewed in Ref. [9]), we have shown that the SA-
NCSM uses significantly smaller model spaces in comparison to the
corresponding large complete Nmax model spaces without
compromising the accuracy for various observables (including
electron scattering form factors [39] and sum rules [35]), as well as
for effective inter-cluster potentials [31]. Reference [9] has also shown
that for light nuclei, the SA-NCSM is in reasonable agreement with
other ab initio approaches, such as hyperspherical harmonics [40, 41],
the NCSM [17, 18], and quantum Monte Carlo [42].

Collectivity and clustering of training wave
functions

An important feature of the training wave functions is that the
dominant deformed configurations, or the SU(3) content of the states

TABLE 1Model space dimensions (labeled as “Dim”), excitation energy EX, point-proton rms radius rrms, electric quadrupole momentQ, and B (E2 ↑) transition strengths
from the ground state (g.s.) to the first excited state of 6Li and12C, calculated with NNLOopt and -Ω = 15 MeV in SA and complete model spaces. 〈2All〉813 denotes an
Nmax = 2 model space with all symplectic irreps (complete), 13 Sp (3,R) irreps of which extend to Nmax = 8; 63 denotes 3 Sp (3,R) irreps up to Nmax = 6.

Jπ SA Complete

Nucleus Nmax Dim EX
[MeV]

rrms

[fm]
Q

[e fm2]
B (E2 ↑)
[e2 fm4]

Nmax Dim EX
[MeV]

rrms

[fm]
Q

[e fm2]
B (E2 ↑)
[e2 fm4]

6Li 1+g.s. 〈2All〉813 4,898 – 2.20 −0.25 9.75 8 2 × 105 – 2.22 −0.028 10.04

6Li 3+1 〈2All〉813 9,108 2.20 2.20 −4.12 – 8 3 × 105 2.65 2.22 −4.21 –

12C 0+g.s. 63 552 – 2.41 0 35.31 6 1 × 106 – 2.43 0 35.22

12C 2+1 63 238 5.73 2.41 +5.67 – 6 5 × 106 3.38 2.43 +5.56 –
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under consideration, remain practically the same for all of the training
wave functions (Figure 3). In addition, the SU(3) content agrees with
the probabilities obtained with NNLOopt in the corresponding Nmax

complete model space, also shown in Figure 3. This ensures that the
same static and dynamical deformed modes govern the physics for all
LECs sets under considerations, thereby justifying the use of the same
SA selection for all the training wave functions.

Specifically, we find that one SU(3) irrep dominates the dynamics
of each state at the 50%–60% level, with several additional
configurations each contributing from 1% to 20% depending on
the LECs set. Moreover, when the basis states are further organized
into Sp(3,R) irreps, we find that a single symplectic irrep—which
contains the dominant SU(3) configurations—contributes at
practically the same level from one training wave function to
another. For example, the (2 0) symplectic irrep in 6Li accounts for
83%–88% of each 1+ training wave function, whereas the (2 0)
contributes at the 85%–88% level in the case of the 3+, out of
thirteen available different irreps. Similarly, the probability of the
(0 4) irrep in each of the 12C training ground states is between 80%–

88%, and between 82%–94% for the first 2+ states. This is a strong

indicator that the emulators are trained on wave functions that retain
the symmetry-preserving and symmetry-breaking patterns that are
observed in nuclei [8] and that the SA model spaces used in this study
are sufficient to capture nuclear collectivity. Indeed, the fact that the
Sp(3,R) symmetry remains a near perfect symmetry for each of the
training wave functions, retaining the same shape from one wave
function to another, further supports the use of SA selections in the
EVC method, or otherwise, the SA model spaces would need to be re-
examined.

Another important feature of the training wave functions is that
cluster formation is largely unaffected by the choice of interaction
parameters. To study this, we project the 6Li states onto the α + d
system, following Ref. [43]: we use a ground state for each cluster that
is renormalized to the most dominant SU(3) configuration, and we
adopt R-matrix theory to match the amplitude of the cluster wave
function and its derivative to those of the exact Coulomb
eigenfunctions at large distances. We note that we are primarily
interested in the effect of the LECs on the correlations in the
training wave functions; hence, we fix the threshold energy to the
experimental one. For the 3S1 partial wave, we observe about 20%

FIGURE 2
Convergence with Nmax of the quadrupole moments Q(J), point-proton rms radii rrms(J), excitation energies EX, and B (E2 ↑) transition strengths for the
two lowest-lying states in (A) 6Li and (B) 12C. Observables are computed with the NNLOopt parameterization for ZΩ = 15 MeV in SA model spaces reported in
Table 1.

FIGURE 3
The largest SU (3) probability amplitudes (solid lines) as a function of emulator training LECs sets for (A) 6Li 1+ ground state and (B) 6Li 3+1 state in Nmax =
〈2All〉813model space [all SU(3) states have {Sp , Sn , S} � {12, 12, 1}], as well as for (C) 12C 0+ ground state and (D) 12C 2+1 state inNmax = 63 [all SU(3) states have {Sp, Sn,
S} = {0, 0, 0} except for 0 (1 2) with {Sp, Sn, S} = {0, 1, 1} (orange) and {1, 0, 1} (green)]. Results are also shown for the NNLOopt parameterization in the
corresponding Nmax complete model space (labeled as “opt”).
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variations in the calculated asymptotic normalization coefficients
(C0 = 1.45–2.07 fm−1/2) around their average value and 10%
variations in the spectroscopic factor, namely, SF = 0.75–0.90
(Figure 4A). This tracks with the ±10% variation in the LECs. For
comparison, the NNLOopt ANC for this particular channel is C0 =
1.77 fm−1/2 with SF = 0.87. Interestingly, the height of the second peak,
which is located near the nuclear surface and informs the probability
of cluster formation, remains fixed for all the parameterizations and
coincides with the one for the NNLOopt case, only its position slightly
varies with the LECs.

While the 3D3 spectroscopic factors (SF = 0.73–0.92, with 0.90 for
NNLOopt) vary approximately at the 15% level (Figure 4B), which
is practically the same as for the 3S1 partial wave, α widths of the
3+ state range from Γα = 6.34 keV–14.05 keV, which is about ±40%
from Γα = 9.81 keV calculated for this particular channel with
NNLOopt (similarly to the ANCs, we use the experimental
threshold energy). We note that the NNLOopt values for C0

and Γα are reported for a single channel without taking
excitations of the clusters into account (e.g., see Ref. [44]) and
should not be compared directly to experiment. Of particular
interest for this study is that the LECs sets induce a change in both
the location and magnitude of the peak, to which the probability
for alpha decay is typically sensitive to.

To summarize, the behavior of the surface peaks in both
channels and the nuclear shapes of the 1+ and 3+ states in 6Li
(as well as the shapes of the 0+ and 2+ states in 12C) are relatively
consistent. This suggests that the terms of the nuclear potential
that are independent of the LECs, including parts of the long-
range interaction, are largely responsible for cluster formation,
along with the development of the nuclear shape [equivalently,
almost perfect Sp(3,R) symmetry]. In contrast, the LECs, which
capture the unresolved short-ranged interactions between
nucleons, fine-tune collective and clustering features, and
affect the associated observables by only a factor, namely,
1.4 for the 1+g.s. ANCs, 2.2 for the 3+1 alpha width, and 1.4 for
the 3+1 quadrupole moment in 6Li. Similarly, the quadrupole
moment for the 2+1 in 12C is affected by a factor of 2.1. While
the clustering features are explored in this study for the training
points only, the SA-EVC approach—the validation of which is
discussed next—enables uncertainty quantification of such
collective and reaction observables if the probability
distributions for the LECs are available.

Validation of the symmetry-adapted
eigenvector continuation

To validate the SA-EVC approach, we show that for the
quadrupole moments of the 6Li 1+ ground state and first excited 3+

state, as well as for the 3+ excitation energy, the emulators provide very
accurate results compared to the exact outcomes (Figure 5). The
average relative errors over all 256 validation LECs sets are
respectively 6.91 × 10−2, 7.70 × 10−4, and 1.20 × 10−4. It is clear
that any deviations of the emulators from the expected values are
negligible, especially considering that, as mentioned above, the SA
selection reduces the Hamiltonian dimension by more than 97%, and
the EVC projection by an additional 99% or more.

It is worth noting that the average error for the ground state
quadrupole moment is two orders of magnitude larger than that
of the 3+ state. We note that Q(1+) of 6Li is very similar in nature
to the deuteron quadrupole moment. The extremely small value
in both nuclei results from a small mixing of an L = 2 component
into the ground state of 6Li (and of the deuteron), which is not
collective in essence like, e.g., the quadrupole moments of the 3+

state in 6Li or the 2+ state in 12C (discussed below). Indeed, the
results of Figure 5A reflect the high sensitivity of the underlying
NN interaction (and likely 3N forces [46]) to the L = 2 mixing in
the ground state wave function.

Similar to 6Li, the SA-EVC emulated 2+1 quadrupole moment and
excitation energy for 12C are in very close agreement to the exact
results (Figure 6). Namely, the average relative errors are given by
1.02 × 10−4 and 6.72 × 10−5, respectively. Compared to the average
errors reported above for the 3+1 quadrupole moment and
excitation energy for 6Li, we find eight and two times
improvement in the emulator’s predictions for 12C,
respectively. The reason is likely related to the much smaller
SA selection in 12C and the stronger collective nature observed in
the low-lying states of 12C. Specifically, in 6Li the SA-EVC uses
thousands of basis states, whereas in 12C only hundreds of basis
states (see Table 1). We therefore expect the mixing of
configurations to exert a more noticeable effect on 6Li than on
12C. The result is that the eigenvectors of 12C vary in fewer
directions than those of 6Li, suggesting that more training
points for 6Li may be beneficial to improve errors. While this
warrants further study, this speaks to an advantage of merging the
SA and EVC frameworks.

FIGURE 4
α+ d (A) 3S1-wave and (B) 3D3-wave as functions of the relative distance r, computed from the 6Li training wave functions for SAmodel spaces reported in
Table 1. The spread of the curves is given by the ± 10% variation in the LECs. The case for NNLOopt is shown in black.
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Conclusion

We have for the first time combined the framework of the SA-
NCSM with the EVC procedure into the SA-EVC method for studies
of collective and clustering observables. This builds upon earlier SA-
NCSM explorations that have shown that an Sp(3,R)-adapted model
space selection can successfully capture nuclear collectivity while
significantly reducing the sizes of Hamiltonian matrices [8]. Here,
we show that excitation energies, point-proton rms radii, electric
quadrupole moments and E2 transitions in the two lowest-lying
states of 6Li and 12C calculated with the specific parameterization
NNLOopt for ZΩ = 15 MeV in SA model spaces are in reasonable
agreement with those calculated in the corresponding Nmax complete
model space (or equally, to NCSM outcomes). We also show that these
observables are converged with Nmax for the SA selections under
consideration.

Further, we demonstrate that SA-EVC emulators trained on SA
model spaces are capable of accurately predicting such observables as
the LECs are varied, while further reducing the dimensions of operator
matrices by an additional 2-3 orders of magnitude. Combined with the
initial reduction provided by the SA-NCSM, the emulator matrices
have a dimension as much as 10–5 times smaller than the
corresponding Nmax complete model spaces. They are small enough

to perform linear algebra operations using a single CPU thread on a
standard laptop without difficulty. Moreover, the SA-EVC
approach will be critical for nuclei beyond the lightest systems;
thus, e.g. in 20Ne, the complete Nmax = 8 model space has
dimension of 1.52 × 1011, while the ab initio SA-NCSM
solutions are achieved when using 112 million basis states for
Jπ = 0+, 2+, 4+. This can be further reduced to emulators of
dimension 102 especially given the predominance of a single
symplectic irrep in the ground-state rotational band of this
nucleus. Comparing the emulator results to exact calculations
performed in the same SA spaces, we find that the average relative
errors are typically 10–4. A larger error (~ 10−2) is found for the
quadrupole moment of the 6Li ground state, which is highly
sensitive to the L = 2 admixture and hence to the underlying
nuclear force, as discussed in the text. A future study that utilizes
larger training sets may provide further insight.

In addition to validating the SA-EVC procedure, we show that the
symmetry patterns and clustering features in the emulator training
wave functions do not respond strongly to variations in the LECs.
Across all of the training wave functions, there is a single nuclear shape
(approximate symplectic symmetry) that accounts for 81%–94% of the
total probability. Furthermore, the dominance of important SU(3)
configurations is preserved from one training wave function to

FIGURE 5
Exact vs. SA-EVC observables in 6Li (blue circles) for the quadrupolemomentQ of (A) the 1+ ground state and (B) the first excited 3+ state, as well as (C) for
the excitation energy EX of the 3

+ state, in 〈2All〉813 SAmodel spaces and for ZΩ= 15 MeV. Also shown is the agreement between the exact and emulated values
to guide the eye (red line), and experimental results (vertical green line) where available. Insets show 5%-regions surrounding reported experimental data [45]
or the NNLOopt result where data is not available [a 50%-region is used for the very small Q in (A)].

FIGURE 6
The same as in Figure 5 but for (A) the quadrupolemomentQ and (B) the excitation energy of the first 2+ state in 12C, calculated in 63 SAmodel spaces and
for ZΩ = 15 MeV. Insets show 5%-regions surrounding reported experimental data [47].
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another. Projecting the training wave functions for 6Li onto the α + d
system, we find that the likelihood of cluster formation in both the
3S1- and

3D3-wave channels is largely unaffected by the choice of
LECs. Spectroscopic factors, ANCs and α-widths extracted from
the cluster wave functions all vary within relatively narrow ranges
around their average values, ranges that track reasonably well
with the 10% variation of the LECs. This suggests that the part of
the nuclear potential that is independent of the LECs and is
practically the same for all chiral potentials (up to the
regularization and related cutoffs employed) provides the
dominant features of the wave function, such as Sp(3,R)
symmetry patterns and clustering formation, while varying the
LECs and associated unresolved short-range interactions has an
effect on, e.g., collective quadrupole moments, asymptotic
normalization coefficients (ANCs), and alpha partial widths up
to a factor of two.

In order to better understand the relationships between
collectivity and clustering explored in this study, and how
both relate to the underlying nuclear forces, sensitivity
analyses are required. As we enter the era of high-precision
nuclear physics, this is also an important step towards
constructing accurate interactions, with quantified
uncertainties. We note that properly accounting for clustering
features is important for the ab initio modeling of nuclear
reactions, and related processes from fusion to fission. The
SA-EVC method provides a clear and now verified framework
for generating the huge number of chiral parameterizations
required for such analyses. Hence, the door is now open to
perform ab initio calculations with quantified uncertainties that
emerge from the interaction and the controlled many-body
approximations, from exotic light nuclei up to medium-mass
isotopes, as well from spherical to highly enhanced collective
and clustering modes.
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We present theoretical ground state energies and their uncertainties for p-shell
nuclei obtained from chiral effective field theory internucleon interactions as a
function of chiral order, fitted to two- and three-body data only. We apply a
Similary Renormalization Group transformation to improve the numerical
convergence of the many-body calculations, and discuss both the numerical
uncertainties arising from basis truncations and those from omitted induced
many-body forces, as well as chiral truncation uncertainties. With complete
Next-to-Next-to-Leading (N2LO) order two- and three-body interactions, we
find significant overbinding for the ground states in the upper p-shell, but using
higher-order two-body potentials, in combination with N2LO three-body forces,
our predictions agree with experiment throughout the p-shell to within our
combined estimated uncertainties. The uncertainties due to chiral order
truncation are noticeably larger than the numerical uncertainties, but they are
expected to become comparable to the numerical uncertainties at
complete N3LO.

KEYWORDS

chiral effective field theory, nucleon-nucleon interactions, three-nucleon interactions,
yakubovsky, no-core shell model, uncertainty quantification

1 Introduction

An atomic nucleus, consisting of Z protons and N neutrons, is a self-bound quantum
many-body system with A = N + Z strongly interacting nucleons. The interactions between
these nucleons are in principle governed by QCD–but it is impractical to describe nuclei in
terms of quarks and gluons, except for the very lightest systems. Even a microscopic
description of nuclei using realistic two-body (NN), three-body (3N) and possibly higher n-
body interactions between point-like nucleons remains a formidable task, both in terms of
high-performance computing, and in terms of determining realistic nuclear interactions in
tractable terms. In order to confront such a description with experimental data, one needs
honest assessments of all uncertainties, both those arising from the numerical solution of a
many-body problem, and those arising from a necessarily approximate theory of the effective
interactions between nucleons.

Any ab initio theory of nuclei in terms of interacting nucleons requires a high-quality
NN potential providing an accurate description of NN scattering data. Highly accurate NN
potentials have been in existence for several decades now, all incorporating one-pion
exchange, and often inspired by one-boson-exchange (OBE) models, adjusted and
augmented by phenomenological terms as necessary to fit the available NN data, such as
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the Argonne [1], (CD)-Bonn [2, 3], and Nijmegen [4] potentials.
Although there exist highly accurate NN potentials in terms of
describing the NN phase-shift data, that at the same time accurately
describe the spectra of light nuclei [5], most realistic NN potentials
require more or less phenomenological 3N forces (3NFs) [6–8] for a
good description of nuclei in the p-shell and beyond. However, in
order to quantify any uncertainties associated with the choice of the
NN potential (and 3NFs), we need a more systematic method of
arriving at the potential.

Chiral Effective Field Theory (χEFT) allows us to derive nuclear
interactions in a systematic way, in terms of an expansion in the pion
mass (or the relevant nucleon momentum) over the hadronic or
breakdown scale [9–12]; and in principle, it also allows for a
quantification of the uncertainties arising from truncating this
expansion. However, this chiral expansion is by no means
unique, and different choices for e.g., the degrees of freedom to
include in the χEFT can lead to very different χEFT interactions,
with a different ordering of various types of diagrams, and indeed
different orders at which higher n-body forces have to be included.
Furthermore, different choices on e.g., how to regulate the various
expressions for loop integrals lead to different versions of the NN
potentials (and 3NFs) at any given order, even if the ordering of the
various diagrams is the same. Each of these different versions of
χEFT comes with its own parameters (Low-Energy Constants or
LECs) that need to be fitted to data (or, eventually, calculated from
e.g., lattice QCD), and with its own uncertainty quantification.

Just like there are different ways to obtain (effective) nuclear
interactions, there are different quantummany-body methods being
used for ab initio nuclear structure calculations. For up to four
nucleons, one can use the Faddeev–Yakubovsky method (the 3- and
4-body reformulation of the Schrödinger equation that permits the
incorporation of the appropriate boundary condition for 3- and 4-
body systems that are asymptotically clustered), but this has not
been extended to A = 6 or beyond. Broadly speaking, the
computational methods applicable to nuclei beyond 4He, fall into
one of three categories: Quantum Monte Carlo simulations (both
variational, VMC [13], and Green’s function, GFMC [13]), non-
relativistic lattice simulations with nucleons (Nuclear Lattice
Effective Field Theory, NLEFT [14, 15]), and Configuration
Interaction (CI) methods (No-Core Shell Model (NCSM) [16],
Coupled-Cluster (CC) [17], In-Medium Similarity
Renormalization Group (IM-SRG) [18]), which are based on an
expansion of the many-body wave-functions in terms of basis
functions (configurations). Each of these methods has their own
uncertainties: Monte Carlo simulations are typically dominated by
statistical uncertainties, though there is also a dependence on the
variational wave function; lattice simulations have both statistical
and systematic (lattice size and lattice spacing) uncertainties; and CI
methods are generally dominated by systematic uncertainties due to
the truncation of the many-body basis, though one can make use of
statistical sampling of the many-body basis [19]. Because each of
these methods have different sources of uncertainties, and they are
not always easy to identify and quantify, it is very valuable to use two
or more of these many-body methods for the same nucleus, using
the same interactions.

In this paper we use the NCSM to perform ab initio nuclear
structure calculations for the ground state energies of nearly all
stable p-shell nuclei (excluding mirror nuclei) from A = 4 to A = 16

using the χEFT interactions from Ref. [20]. We perform a systematic
set of order-by-order calculations in the chiral expansion to
determine the uncertainties associated with the truncation of the
chiral expansion; more details about the χEFT and how we estimate
the truncation uncertainty can be found in Section 2. In order to
assess the numerical uncertainties in our NCSM calculations, we
make a detailed comparison with Faddeev–Yakubovsky calculations
for 3H and 4He using the same interactions; this is described in
Section 3, together with details about the NCSM. Our results for the
binding energies of p-shell nuclei are presented in Section 4. Finally,
we give some concluding remarks in Section 5.

2 Nuclear interactions from chiral
effective field theory

In recent years two different formulations of χEFT have emerged
that are being used in ab initio nuclear structure calculations. The
most commonly used χEFT is based on only pions and nucleon
degrees of freedom [10, 11], for which the Leading Order (LO) and
Next-to-Leading Order (NLO) terms consists of just two-body
interactions; three-body interactions first appear at Next-to-Next-
to-Leading order (N2LO). Alternatively, one can include Δ degrees
of freedom into the EFT, in which case three-body interactions
appear already at NLO [21, 22]; see Refs. [23, 24] for nuclear
structure calculations with these NN plus 3N interactions. The
reordering of contributions possibly speeds up the convergence
of the chiral expansion.

Here we use the formulation of χEFT based on only pion and
nucleon degrees of freedom since high order potentials have already
been developed for this approach. This implies that we work with the
conventional power-counting scheme, and with only NN potentials
at LO and NLO, while 3N interactions arise at N2LO. Specifically,
within the Low-Energy Nuclear Physics International Collaboration
(LENPIC) we use the semilocal momentum-space (SMS) regulated
NN potentials from Ref. [20], which have been developed
completely up through N4LO; and the most accurate LENPIC-
SMS NN potential, referred to as N4LO+, including some
contributions from the 6th order in the chiral expansion. The
N4LO+ potential gives a near-perfect description of the mutually
compatible neutron-proton and proton-proton scattering data
below E lab = 300 MeV with a χ2datum � 1.01. At the moment, the
accompanying higher n-body forces have not yet been developed to
the same chiral order.

Right now, consistent N2LO 3NFs exist, implying that the
regularization of the 3N interactions is consistent with that of the
NN potential, all relevant symmetries are respected, and the same
LEC values are used in the NN and 3N interactions. The strength of
the 2π exchange in the N2LO 3NFs (c1, c3, and c4) has been
determined from πN scattering, see Table 1 of Ref. [20]. (Note
that, for the 3NF, these values need to be shifted as given in Eq. (2.8)
of Ref. [25]). We have not taken uncertainties of these ci’s into
account; this should be part of the N3LO uncertainty estimate given
below. These 3NFs have already been used for nucleon-deuteron
scattering [26], as well as select light nuclei [27, 28]. Consistent
N3LO 3NFs are being developed and tested, and are expected to be
available for use in many-body calculations soon; similarly,
consistent electroweak operators are also under development.
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The 3NFs at N2LO depend on two LECs, generally referred to as
cD and cE; these two LECs have been determined in Ref. [28] by
fitting the 3H binding energy (using the Faddeev approach), as well
as the experimental proton-deuteron scattering data [29] for the
differential cross-section minimum at the proton beam energy of E =
70 MeV. Note that for the determination of cD and cE it is important
to identify observables that a) provide sufficiently independent
constraints, i.e., are sensitive to the 3NFs and are sufficiently
uncorrelated; b) can be predicted accurately at N2LO; and c) are
measured experimentally with sufficiently high accuracy. This can
be achieved by e.g., incorporating properties of 4He (and other
nuclei), in addition to A = 3 observables, in the fitting of cD and cE
[30]. However, here we prefer to only use A = 3 data for the
determination of cD and cE in order to obtain parameter-free
predictions for A > 3, and to avoid interference of 4N (and
higher-body) interactions at N3LO and higher. In Ref. [31], it has
been observed that the triton binding energy and the proton-
deuteron scattering cross section minimum at 70 MeV are
fulfilling these requirements.

Note that we keep all LECs in the NN potentials fixed at their
values determined from NN scattering; and we do not propagate
any uncertainties in these LECs through the many-body
calculations. Similarly, we have not explicitly propagated
uncertainties in the LECs cD and cE for the 3NFs through the
many-body calculations. In Ref. [31] we did vary cD and cE while
keeping the 3H binding energy fixed with the LENPIC Semilocal
Coordinate Space interaction at N2LO, and the resulting
variation in the 4He and 12C binding energies, while not
negligible and in opposite directions, stayed within the chiral
truncation uncertainty estimate for a variation of cD between
6 and 8, the preferred range based on Nd scattering data for that
interaction. Furthermore, in Ref. [32] it was shown that the
uncertainties in many-body observables of 4He and 16O due to
propagation of the uncertainties in determining the LECs at
N2LO are much smaller than the chiral truncation errors in
those many-body observables at N2LO. We therefore assume
here that any variation of the LECs of the NN and 3N interaction
is an effect that is of higher order than N2LO and thus those
uncertainties are included in the uncertainty due to missing
higher chiral orders.

2.1 Chiral truncation uncertainty estimates

Assuming that the chiral expansion of the nuclear interactions
translates into a similar expansion for the physical observables, one
expects that an observable X follows a similar expansion pattern.
Consider therefore an observable X, and write it as

X � X 0( ) + ΔX 2( ) + ΔX 3( ) + . . . , (1)
whereX(0) is the LO term,ΔX(2) =X(2) −X(0) andΔX(3) =X(3) −X(2) are
the NLO and N2LO correction terms, respectively, and the dots
represent higher-order corrections. If this observable indeed follows
the same expansion pattern as the nuclear interaction itself, then the
correction terms ΔX(i) behave like Qi for increasing i, where Q =
max(p, Mπ)/ΛB is the chiral expansion parameter (typically the
maximum of the relevant momentum p and the pion mass Mπ over

the breakdown scale ΛB). Note that there is no term linear in Q in
this expansion: the first correction, at NLO, is quadratic in the
expansion parameter Q, at least for observables governed solely by
the strong interaction. For electroweak observables, the power-
counting is different.

For the purpose of a Bayesian analysis, it is more convenient to
rewrite this in terms of dimensionless expansion coefficient ci, with
the scale set by an overall reference value Xref. Thus we can rewrite
the expansion for X as

X � Xref c0 + c2Q
2 + c3Q

3 + . . .( ). (2)
Now we can use Bayesian analysis on the coefficients ci to estimate
the chiral truncation uncertainties. Here we follow the Bayesian
model of Ref. [33] for pointwise truncation errors with
hyperparameters ]0 = 1.5 and τ0 = 1.5 [28]. We apply this to the
ground state energy of the p-shell nuclei, with the experimental value
as our reference value Xref. Furthermore, we use an effective pion
mass of M eff

π ≈ 200 MeV and a breakdown scale of ΛB ≈ 650 MeV
[27, 28], and therefore a dimensionless expansion parameter Q ≈
0.31. Note that in Ref. [34] it was observed that the average
momentum of the nucleons inside a nucleus increases with A,
and one might therefore have to increase Q with A as well; but
up to 16O this average momentum remains below 200 MeV so we use
the same value for Q throughout the p-shell. Nevertheless, a
Bayesian analysis of correlated uncertainties for ground states
and excited states of a subset of p-shell nuclei does suggest a
slightly larger value of Q for the upper p-shell [25].

Finally, although we use the LENPIC-SMS NN potentials from
LO up to N4LO+, we only have the corresponding 3NFs at N2LO.We
therefore perform our chiral truncation uncertainty analysis for the
N2LO through N4LO+ NN potentials, all in combination with the
N2LO 3NFs, as if they were all N2LO interactions; that is, we include
only the coefficients c0, c2, and c3 in Eq. 2 (and again, there is no term
linear in Q).

3 No-core shell model

3.1 Numerical method

In the No-Core Shell Model (NCSM) [16], the wavefunction Ψ
of a nucleus consisting of Z protons andN neutrons is expanded in a
finite A = Z + N-body basis of Slater determinants Φk of single-
particle wavefunctions ϕnljm( �r)

Ψ �r1, . . . , �rA( ) � ∑ akΦk
�r1, . . . , �rA( ). (3)

With such an expansion, the many-body Schrödinger equation

Ĥ Ψ �r1, . . . , �rA( ) � E Ψ �r1, . . . , �rA( ) (4)
becomes an eigenvalue problem

Hik ak � E ai, (5)
for the coefficients ak of the expansion in Eq. 3. The matrixHik consists
of matrix elementsΦiĤΦk (where integration over all spatial degrees of
freedom is understood) of the many-body hamiltonian

Ĥ � T̂ rel + V̂NN + V̂3N +/ (6)
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consisting of the relative kinetic-energy operator, a two-body
potential, and, in general three-body and higher n-body
interaction terms. If the interaction is limited to n-body terms,
the matrix Hik for a nucleus with A > n becomes a sparse matrix; in
practice, the NCSM is generally applied with up to three-body
interactions, and the corresponding Hamiltonian matrices are
extremely sparse for A ≥ 6. For any finite basis expansion, the
obtained eigenvalue E gives a strict upper bound for the energy in the
complete (though infinitely large) basis, at least for the lowest states
of a given Z, N, and spin-parity quantum numbers JP; and the
corresponding eigenvector �a gives an approximation to the A-body
wavefunction Ψ( �r1, . . . , �rA). As one increases the basis size, the
obtained eigenvalues E of the matrix Hik approach the exact
eigenvalues for a given Hamiltonian Ĥ.

In the conventional NCSM one uses a harmonic oscillator (HO)
basis for the single-particle wavefunctions ϕnljm( �r), characterised by
its scale parameter Zω. One particular advantage of a HO basis is
that one can treat the center-of-mass motion exactly: the
Talmi–Moshinksy brackets [35, 36] can be used to convert
between HO matrix elements in single-particle coordinates and
relative plus center-of-mass coordinates; furthermore, with a
many-body truncation on the total number of oscillator quanta
in themany-body basis, the obtained wavefunctions factorize exactly
into a center-of-mass wavefunction and a relative wavefunction [37,
38]. The single-particle wavefunctions ϕnljm( �r) are labelled by their
radial quantum number n, orbital motion quantum number l, total
single-particle spin j � l ± 1

2, and magnetic projection m which
satisfies −j ≤ m ≤ j. In a HO basis, the combination (2n + l)
gives the number of HO quanta for each state; thus, in a HO
basis with a truncation on ∑i(2ni + li) over all A nucleons, the
factorization of the center-of-mass wavefunction is guaranteed. We
add a Lagrange multiplier acting on the center-of-mass coordinates
of the many-body system to the Hamiltonian Ĥ to remove center-of-
mass excited states from the low-lying spectrum [37, 38]; thus all
low-lying states will have a 0s HO center-of-mass wavefunction.
Note that this does not alter the eigenvalues nor the eigenvectors for
these states, it merely separates the center-of-mass excited states
from the states with the lowest center-of-mass motion.

All NCSM calculations presented here were performed using the
code Many-Fermion Dynamics–nuclear physics [39–41]. It solves
the eigenvalue problem Eq. (5) for the lowest eigenvalues, starting
from two- and three-body matrix elements in a HO basis. MFDn is a
platform-independent Fortran 90 code using a hybrid
MPI+OpenMP programming model. The actual calculations have
been performed on Theta at the Argonne Leadership Computing
Facility (ALCF) and Cori at the National Energy Research Scientific
Computing center (NERSC). For each nucleus and interaction, we
performed a series of calculations, using a range of different values of
Zω and the truncation parameter Nmax, which is defined as the
number of HO quanta above the minimal number of HO quanta in
the many-body basis for that nucleus. That is, an Nmax = 0
calculation corresponds to a calculation in the lowest oscillator
configuration. Here we are only interested in the normal or
natural parity states (the parity of the Nmax = 0 space), and we
increase Nmax in steps of 2 starting from Nmax = 0 up to at least
Nmax = 8. Some of the largest calculations for this study were for 14N
and 15N at Nmax = 8, both with dimensions of over one billion, and
about 76 × 1012 nonzero matrix elements, i.e., less than 1 in

10,000 matrix elements is nonzero with three-body interactions
for these largest computations.

Of course, for two- and three-body systems it is more
efficient and straightforward to work with wavefunctions in
relative coordinates, rather than in single-particle
wavefunctions. However, beyond four nucleons, the necessary
anti-symmetrization becomes increasingly cumbersome in
relative coordinates, whereas the NCSM in single-particle
coordinates is straightforward to implement for an arbitrarily
large number of nucleons; however, the size of the matrix does
grow dramatically with the number of nucleons. Nevertheless, in
recent years the NCSM has been implemented in Jacobi
coordinates (J-NCSM) [42] and applied to (hyper)nuclei with
up to eight (hyper)nucleons [43]. The codes MFDn and J-NCSM
have been benchmarked against each other, and generally agree
to within 10–20 keV for A = 3 and 4, and to within about 30 keV
for A = 6, i.e., to within 0.1% of the obtained eigenvalues. The
differences of up to about 0.1% have been attributed to
differences in the implementations of transforming the three-
body forces from their momentum-space expressions to HO
matrix elements, including differences in the implementations
of the Similarity Renormalization Group (SRG) transformations
discussed next.

3.2 Convergence and similarity
renormalization group evolution

In the left panel of Figure 1 we show the obtained ground state
energy of 4He at NLO and N2LO for two different values of the
regulator Λ as a function of Nmax at Zω = 24 MeV; as illustration of
the effect of the 3NFs, we also include results using only the NN
potential at N2LO, without the 3NFs (while at NLO, there are no
3NFs, so there is only the NN potential). Even at Nmax = 16, the
NCSM results are still several MeV above the corresponding
Yakubovsky results, and far from being converged with Nmax;
and for the upper half of the p-shell nuclei, for A ≥ 10 we are
restricted to Nmax = 8 in the presence of 3NFs due to computational
limitations. Clearly, we have to improve the numerical convergence
while keeping the computational needs under control in order to
obtain meaningful results for the ground state energies and other
observables. There are several methods to do so, which generally fall
into four categories (and of course one can also use a combination of
these techniques!)

• modify the underlying single-particle wavefunctions to
improve the numerical convergence, e.g., start with a
Hartree–Fock basis, and/or use natural orbitals [44–46];

• modify the truncation scheme, e.g., select only the most
important basis states at each step in Nmax (importance-
truncated NCSM) [47], or use symmetries to reduce the
number of basis states as Nmax increases (symmetry-
adapted NCSM) [48–50];

• reduce the 3N interaction to an effective NN interaction by
normal-ordering the 3N interaction, which typically gains one
step in Nmax in terms of computational needs [51, 52];

• apply a unitary transformation on the Hamiltonian to improve
the convergence at (relatively) small values of Nmax [53, 54].

Frontiers in Physics frontiersin.org04

Maris et al. 10.3389/fphy.2023.1098262

206

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1098262


Each of these methods has its advantages and drawbacks; and
each of them is likely to obfuscate any uncertainty quantification of
the numerical results; furthermore, with the first two methods listed
above one might lose the exact factorization of the center-of-mass
motion. Here we choose to improve the numerical convergence in
finite bases by applying a suitable SRG transformation on the
Hamiltonian.

The SRG approach [54–57] provides a robust framework for
consistently evolving (softening) the Hamiltonian, including three-
body terms [58–61], as well as operators for other observables, by
applying a unitary transformation on the operator(s) of interest.
This unitary transformation is formulated in terms of a flow
equation

d

dα
Ĥα � ηα, Ĥα[ ], (7)

with a continuous flow parameter α. The physics of the SRG
evolution is governed by the anti-hermitian generator ηα. A
specific form widely used in nuclear physics [54] is given by

ηα � m2
N T̂rel, Ĥα[ ], (8)

where mN is the (average) nucleon mass and T̂rel is the relative
kinetic-energy operator. This generator drives the Hamiltonian
towards a diagonal form in a basis of eigenstates of the intrinsic
kinetic energy, i.e., towards a diagonal in momentum space. The
initial (or ‘bare’) Hamiltonian provides the initial condition at α = 0
for this flow equation; at NLO, this is just an NN-potential, but at
N2LO (and higher orders) it also includes the explicit 3NFs. The
width of the diagonal of the potential matrix elements in momentum
space is proportional to λ SRG = 1/α4 [62]. For a typical value of α =
0.04 fm4, λ SRG ≈ 2.24 fm−1, which can be considered as an effective
cutoff in momentum space; lowering this cutoff improves the
convergence of NCSM calculations.

Along with a decoupling of low-momentum and high-
momentum components, this SRG induces many-body operators
beyond the rank of the initial Hamiltonian. In principle, all induced
terms up to the A-body level should be retained to ensure that the
transformation is a unitary transformation, such that the spectrum
of the Hamiltonian is independent of the flow parameter α. In
practice however, one has to truncate these many-body forces
induced by the SRG evolution; here we follow the common
practice of truncating the SRG evolution at the 3N level, omitting
induced four-nucleon (and higher) induced interactions. Of course,
this violates unitarity, and therefore introduces a fictitious
dependence on the SRG parameter α for A ≥ 4 which we have to
monitor, and include in our uncertainty budget. Unfortunately, it is
as of yet unclear how to identify an expansion parameter that allows
for an estimate of uncertainties due to missing higher-body induced
interactions in A ≥ 4 nuclei.

The flow equation for the three-nucleon system is solved
numerically using a HO basis in Jacobi-coordinates [60] at a
fixed HO basis parameter of Zω = 36 MeV. The intermediate
sums in this three-body Jacobi basis are truncated at Nmax = 40
for channels with J < 9/2, Nmax = 38 for J = 9/2, and Nmax = 36 for all
J > 9/2. (Note that the flow equation at the two-nucleon level is
solved numerically to a much higher numerical accuracy.) The SRG
evolution and transformations first from Zω = 36 MeV to the desired

Zω value in the range from 14 to 32 MeV, and subsequently from
Jacobi coordinates to single-particle coordinates, were all performed
on a single multicore CPU node using an efficient OpenMP
parallelized code.

In the right panel of Figure 1 we show the ground state energy
of 4He for the same initial interactions, and the same Zω = 24 MeV,
as in the left panel, but after first performing an SRG evolution of
the Hamiltonian to α = 0.04 fm4, and including induced 3N
interactions, but omitting any induced 4N interactions.
Comparing these two panels it is immediately evident that the
SRG evolution has indeed dramatically improved the convergence:
after the SRG evolution to α = 0.04 fm4, the obtained ground state
energies at Nmax = 4 are already closer to the Yakubovsky results
than the ground states energies at Nmax = 16 without any SRG
evolution, and at Nmax = 14 they appear to be almost converged
and in agreement with the Yakubovsky results to within a fraction
of an MeV. Empirically, α in the range of 0.04 ≤ α ≤ 0.08 fm4

appears to be a good compromise between the convergence of the
NCSM calculations and minimizing the contributions of the SRG-
induced four- and higher-body forces.

3.3 Extrapolating to the complete basis

Although the right-hand panel of Figure 1 looks converged to
well within 100 keV, it is not completely converged; furthermore, in
the upper half of the p-shell we are limited to at most Nmax = 8, at
which point the results are clearly not yet converged. However, the
approach to convergence appears to be smooth, and if we plot the
difference between our results at successive Nmax values, at fixed Zω

values near the variational minimum in the largest basis, see
Figure 2, it is evident that these differences decrease almost
exponentially with increasing Nmax. Inspired by this behavior, we
therefore use exponential extrapolation in Nmax at fixed Zω,

EZω Nmax( )≈EZω
∞ + a e −bNmax( ) (9)

based on three consecutive values of Nmax at or slightly above the
variational minimum in Zω to extract binding energies in the
complete (but infinitely large) basis. Indeed, such an empirical
exponential has been widely used for a range of different
interactions [63–65], and appears to be reasonably reliable and
accurate, at least for true bound states. Furthermore, an
exponential approach to convergence for the binding energy is
also suggested by various analytic investigations into the
asymptotic behavior [66–69]. Insights into the approach to
convergence allows one to improve the extrapolation [70], but
these analytic expressions generally depend on the underlying
structure of the state. Here, we restrict ourselves to the simple
ansatz Eq. (9) since it works well for all ground state energies
considered, without the need to adapt the extrapolation to the
specific structure of each nucleus.

Following Refs. [25, 28, 34], we take as our best estimate for E∞
in the complete basis the value of EZω

∞ near the variational minimum
in Zω for which |EZω

∞ − EZω(Nmax)| is minimal. Of course, this
extrapolation is not exact, and will depend (slightly) on the Zω

value; furthermore, we have to include an extrapolation uncertainty
in our uncertainty budget. Again, we resort to an empirical estimate
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FIGURE 1
Convergence of NCSM calculations for 4He without (A) and with (B) SRG evolution of the interactions. Induced 3NFs are included in the calculations
in the right-hand panel; for comparison results obtained with Yakubovsky calculations in momentum space are shown for the same interactions as well.

TABLE 1 SRG dependence of ground state energies in MeV for A = 3 and 4, compared to Faddeev–Yakubovsky calculations [25]. Explicit N2LO 3NFs are included in
the N2LO through N4LO+ calculations. Quoted uncertainties are the estimated NCSM extrapolation uncertainties only.

NLO N2LO N3LO N4LO N4LO+

3H Λ = 450 MeV

Faddeev −8.515(.001) −8.483(.001) −8.483(.001) −8.483(.001) −8.483(.001)

α = 0.04 fm4 −8.54(.04) −8.51(.06) −8.50(.05) −8.51(.06) −8.50(.05)

α = 0.08 fm4 −8.517(.008) −8.489(.017) −8.483(.010) −8.484(.010) −8.488(.016)

3H Λ = 500 MeV

Faddeev −8.325(.001) −8.482(.001) −8.483(.001) −8.483(.001) −8.484(.001)

α = 0.04 fm4 −8.39(.10) −8.52(.08) −8.51(.06) −8.51(.06) −8.51(.06)

α = 0.08 fm4 −8.327(.012) −8.489(.019) −8.485(.013) −8.485(.011) −8.491(.020)

4He Λ = 450 MeV

Yakubovsky −29.36(.01) −28.61(.01) −28.35(.01) −28.29(.01) −28.31(.01)

α = 0.04 fm4 −29.339(.003) −28.447(.004) −28.284(.006) −28.190(.004) −28.195(.004)

α = 0.08 fm4 −29.365(.001) −28.527(.001) −28.376(.002) −28.285(.002) −28.289(.002)

|E(α = 0.04) − E(0)| 0.02 0.16 0.07 0.10 0.12

|E(α = 0.08) − E(0)| 0.01 0.08 0.03 0.01 0.02

|E(0.04) − E(0.08)| 0.01 0.08 0.04 0.09 0.10

4He Λ = 500 MeV

Yakubovsky −28.15(.01) −28.71(.01) −28.56(.01) −28.48(.01) −28.52(.01)

α = 0.04 fm4 −28.087(.003) −28.585(.005) −28.365(.003) −28.236(.003) −28.227(.003)

α = 0.08 fm4 −28.122(.001) −28.631(.003) −28.447(.002) −28.312(.002) −28.301(.002)

|E(α = 0.04) − E(0)| 0.06 0.13 0.20 0.24 0.29

|E(α = 0.08) − E(0)| 0.03 0.08 0.11 0.17 0.22

|E(0.04) − E(0.08)| 0.03 0.05 0.08 0.07 0.07
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of this uncertainty based on the variation with Zω andNmax, and our
estimate of the corresponding extrapolation uncertainty is the
maximum of

• the difference in EZω
∞ for two successive extrapolations using

data for (Nmax − 6, Nmax − 4, Nmax − 2) and (Nmax − 4, Nmax −
2, Nmax) respectively;

• half the variation in EZω
∞ over a 8 MeV interval in Zω around

the variational minimum;
• 20% of |EZω

∞ − EZω(Nmax)|.

Note that this empirical uncertainty estimate is a conservative
estimate, based on calculations with several different interactions
[65, 71], and has been shown to give decreasing uncertainties with
increasing Nmax, with the higher-Nmax results generally within the
uncertainty estimates of the lower-Nmax results. However, these
uncertainty estimates cannot be interpreted statistically; for that
one should use e.g., the Bayesian analysis of [72].

3.4 Combined numerical uncertainties

In Table 1 we give our extrapolated NCSM ground state energies
for 3H and 4He, with our extrapolation uncertainty estimates,
together with results obtained in momentum space with the
Faddeev–Yakubovsky equations [25]. For 3H the NCSM and
Faddeev results agree very well, comfortably within the estimated
extrapolation uncertainties of the NCSM calculations; and the
results obtained with SRG α = 0.08 fm4 are more precise than
those obtained with α = 0.04 fm4, judging by their smaller
uncertainties. For the ground state energy of 4He we do see
differences between the NCSM results and the Yakubovsky
calculations, beyond the 10 keV uncertainty in the Yakubovsky
calculations and the estimated NCSM uncertainties. These
differences can be attributed to the omitted induced 4NFs. They
are generally larger with the Λ = 500 MeV regulator than with the

Λ = 450 MeV regulator, as one might expect, given that the Λ =
500 MeV interactions are converging slower than the Λ = 450 MeV
interactions (see Figure 1); and it may be counter-intuitive that the
effects of omitted 4NFs are larger for α = 0.04 fm4 than for α =
0.08 fm4, but this accidental, as can be seen from Figure 3. This figure
also shows good agreement between the Yakubovsky and NCSM
calculations.

For A ≥ 6 we do not have any calculations without SRG
evolution for comparisons–or rather, NCSM calculations for
these interactions without SRG evolution are so far from
convergence for A ≥ 6 that they are not very useful for
comparison. However, we can gain insight in effects of omitted
induced many-body forces by comparing results obtained with
different values for the SRG parameter α, see Tables 2, 3. Table 2
shows a differences of about 0.2 MeV in the binding energies due to
the two different SRG parameters α, both for 6He and 6Li, and almost
independent of the chiral order of the NN potential; though at NLO
the difference is somewhat smaller, probably due to the lack of an
explicit 3N interaction at NLO. However, this difference of about
0.2 MeV is the same order of magnitude as our estimated
extrapolation uncertainties at α = 0.04 fm4, which prevents one
from making firm conclusions.

Note that the extrapolation uncertainties for 6He and 6Li at α =
0.08 fm4 are a factor of two to three smaller than those obtained with
α = 0.04 fm 4, clearly indicating the improved convergence as the
interaction is further evolved with SRG. The exception are the results
for A = 6 at NLO; this is most likely caused by the fact that the
obtained binding energies at NLO are actually above threshold for
6He, and right around threshold for 6Li, as was already observed in
Ref. [28]. Indeed, for states above threshold, the simple exponential
extrapolation may not be very reliable since neglected continuum
effects could be significant.

In Table 3 we show the ground state energies for selected stable
nuclei with 6 < A < 16 using the N2LO interaction (including
3NFs), SRG evolved to α = 0.04 fm4 and α = 0.08 fm4. As is the
case for A = 6, the convergence improves with the SRG evolution:

FIGURE 2
Convergence of NCSM calculations for 4He (A) and 6Li (B): Difference in obtained ground energies for successive Nmax values for different SRG
evolution parameters α.
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the extrapolation uncertainty estimates are a factor of 3–8 smaller
at α = 0.08 fm4 than at α = 0.04 fm4. This effect of improved
convergence becomes more pronounced as A increases, and is
consistent with what we saw for A = 6 in Table 2. Furthermore, at

α = 0.04 fm4, starting from A = 10, the Λ = 450 MeV interaction
converges noticeably better than the Λ = 500 MeV interaction; in
qualitative agreement with the picture for 4He (see Figure 2);
however, at α = 0.08 fm4 this difference has washed away, and

FIGURE 3
SRG depenence of the ground state energy of 4He, with the N4LO+ NN potentials plus the N2LO 3NFs and Λ = 450 MeV.

TABLE 2 SRG dependence for A = 6 ground state energies in MeV for SRG parameter α = 0.04 fm4 and α = 0.08 fm4, together with their difference. Quoted
uncertainties are the estimated NCSM extrapolation uncertainties only.

NLO N2LO N3LO N4LO N4LO+

6He Λ = 450 MeV

α = 0.04 fm4 −28.73(.16) −28.84(.17) −28.16(.16) −28.06(.16) −28.11(.16)

α = 0.08 fm4 −28.86(.14) −29.05(.06) −28.39(.07) −28.28(.07) −28.33(.07)

Δ 0.13 0.21 0.23 0.22 0.22

6He Λ = 500 MeV

α = 0.04 fm4 −27.27(.15) −29.08(.17) −28.35(.17) −28.19(.17) −28.23(.16)

α = 0.08 fm4 −27.39(.10) −29.21(.06) −28.54(.06) −28.37(.06) −28.41(.07)

Δ 0.12 0.13 0.23 0.22 0.22

6Li Λ = 450 MeV

α = 0.04 fm4 −31.79(.11) −31.85(.15) −31.18(.14) −31.07(.14) −31.10(.14)

α = 0.08 fm4 −31.93(.09) −32.04(.05) −31.41(.06) −31.28(.06) −31.32(.06)

Δ 0.14 0.19 0.23 0.21 0.22

6Li Λ = 500 MeV

α = 0.04 fm4 −30.33(.12) −32.17(.16) −31.42(.15) −31.24(.15) −31.26(.15)

α = 0.08 fm4 −30.45(.06) −32.29(.05) −31.60(.06) −31.41(.05) −31.43(.05)

Δ 0.12 0.12 0.18 0.17 0.17
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both regulators give a similar level of convergence for the ground
state energies.

Somewhat surprisingly, the difference in ground state energies
between the two SRG values, α = 0.04 fm4 and α = 0.08 fm4, remains
almost constant, at around 0.5 MeV, from A = 10 to A = 15, at least
for the nuclei considered in Table 3, with only a slight tendency to
increase with A, and with similar tendencies for both regulator
values. Furthermore, this difference is similar to the estimated
NCSM uncertainty at α = 0.08 fm4 (which also increases slowly
with A), but a factor of 3–8 smaller than the NCSM uncertainty at
α = 0.04 fm4, which makes it hard to draw a firm conclusion.
Nevertheless, based on these observations, we conclude that, for
the calculations described here, it is realistic to include an SRG
uncertainty that is equal to the NCSM extrapolation uncertainty
estimate for stable A = 10 to A = 16 p-shell nuclei.

On the other hand, for A = 6 and 8Li the difference in ground
state energies between the two SRG values is noticeably larger than
the NCSM extrapolation uncertainty for α = 0.08 fm4: for 8Li it is a
factor of two larger; and for A = 6 it is approximately a factor of three
larger. Note that this coincides with a larger Nmax value used for the
lower half of the p-shell: for A = 6 and 7 we can perform our
calculations up toNmax = 12 (and are in fact limited by the size of the
input files with three-body HO matrix elements) and the
calculations for A = 8 and 9 extend up to Nmax = 10, whereas for
A ≥ 10 we are limited to Nmax = 8. Of course this upper limit in Nmax

also determines the level of numerical convergence that can be
achieved, and hence the order of magnitude of the NCSM
extrapolation uncertainty. Again, based on these observations we
estimate the SRG uncertainty in the binding energy to be about
0.2 MeV for A = 6 and 7, and about 0.3 MeV for A = 8 and 9.

4 Ground state energies of p-shell
nuclei

In Tables 4–8 we present our results for the ground state energies
of most stable p-shell nuclei, excluding mirror nuclei. We also
include 8Be, despite it being above the 2α threshold. All
calculations were done in the NCSM approach, extrapolated to
the (infinitely-large) complete basis, using NN (and 3N) potentials,
SRG evolved to α = 0.08 fm4, including induced 3N interactions, but

omitting higher-body induced interactions. The first set of
uncertainties in these tables is our estimate of the combined
numerical uncertainties; the second is our estimate of the chiral
truncation uncertainty; both as described in the previous section.
The numerical uncertainty is estimated strictly based on the
numerical convergence pattern and the SRG dependence, and
cannot be interpreted statistically. The chiral truncation
uncertainty is based on a Bayesian model. We give here the 68%
degree of belief (DoB) values.

The NCSM calculations for the nuclei presented in Table 4 were
performed up to Nmax = 14 for 4He, and up to Nmax = 12 for A = 6
and 7, which is generally sufficient to reach convergence for the
ground state energies to within 0.1% (or even better) for a given set
of input HO two- and three-body matrix elements, thanks to the
interaction being SRG evolved to α = 0.08 fm4. Therefore, the
numerical uncertainties (the first set of quoted uncertainties in
Table 4) are dominated by the uncertainties in the SRG
evolution, which is mostly coming from the omission of induced
4-body forces (as well as higher-body forces for A > 4), as well as
from the numerical implementation of the SRG evolution and
transformations from momentum space expressions to HO
matrix elements.

The exceptions are the A = 6 and 7 ground state energies at LO,
because it turns out that at LO, these states are not bound, as
indicated by the * in the tables: they are all above threshold for
decays into α plus two neutrons, or plus a deuteron or a triton,
respectively. Hence the numerical convergence of the NCSM
calculations is poor (at best it would converge to a quasi-bound
state), and neither the extrapolation to the complete basis (nor its
uncertainty estimate) is likely to be accurate, which is why the
extrapolation uncertainties at LO are noticeably higher than at
higher chiral orders. Since we only include the LO results to
improve our estimate of the chiral truncation uncertainties, an
approximate bound state, or rather, resonance energy is sufficient
for our purpose. Similarly, 6He appears to be unbound at NLO; but
again, for estimating the chiral uncertainty at N2LO that is not a real
problem.

The estimated chiral truncation uncertainties are significantly
larger than any of the numerical uncertainty estimates. At NLO,
these uncertainties are too large to draw any meaningful
conclusions, but at N2LO they are, as expected, more than a

TABLE 3 SRG dependence for select 6 < A < 16 ground state energies inMeV at N2LO for SRG parameter α = 0.04 fm4 and α = 0.08 fm4, together with their difference.
Quoted uncertainties are the estimated NCSM extrapolation uncertainties only.

8Li 10Be 11B 12C 14C 15N

α Λ = 450 MeV

0.04 −40.9(0.4) −66.1(1.2) −79.3(1.1) −98.3(1.8) −119.9(1.9) −134.4(2.4)

0.08 −41.23(0.16) −66.5(0.5) −79.8(0.4) −98.7(0.4) −120.1(0.4) −135.1(0.5)

Δ 0.3 0.4 0.5 0.4 0.2 0.7

α Λ = 500 MeV

0.04 −41.6(0.4) −67.0(1.5) −82.1(2.0) −101.8(2.8) −123.3(2.5) −138.3(4.2)

0.08 −41.85(0.15) −67.5(0.4) −82.3(0.4) −101.9(0.4) −123.9(0.4) −138.9(0.5)

Δ 0.3 0.5 0.2 0.1 0.6 0.6
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factor of three smaller. Remember that we use N2LO 3NFs in
combination with the higher-order NN potentials, and we
therefore apply the N2LO power-counting rules for estimating

the chiral uncertainties for these higher-order NN potentials. It
should therefore not be surprising that the obtained chiral
uncertainty estimates are the same at these higher order as those

TABLE 4 Ground state energies in MeV of 4He, 6He, 6Li, and 7Li, for LO through N4LO+ NN potentials, with 3NFs at N2LO, for N2LO through N4LO+, for Λ = 450 MeV
(top) and Λ = 500 MeV (bottom). Both our estimated numerical uncertainties (first set of uncertainties) and chiral truncation uncertainty estimates (second set of
uncertainties, not available for LO) are given. Entries with an * indicate energies above threshold, indicating a resonance, rather than a bound state.

VNN 4He(0+) 6He(0+) 6Li(1+) 7Li(12−)
Λ = 450 MeV

LO −49.73(0.20)(−) −46.7*(0.4)(−) −50.4*(0.4)(−) −61.35*(0.25)(−)

NLO −29.37(0.20)(4.3) −28.86*(0.24)(3.9) −31.93(0.22)(4.0) −38.72(0.22)(4.9)

N2LO −28.53(0.20)(1.2) −29.04(0.21)(1.0) −32.04(0.21)(1.1) −39.39(0.21)(1.3)

N3LO −28.38(0.20)(1.2) −28.39(0.21)(1.0) −31.41(0.21)(1.1) −38.43(0.21)(1.3)

N4LO −28.29(0.20)(1.2) −28.28*(0.21)(1.0) −31.28(0.21)(1.1) −38.25(0.21)(1.3)

N4LO+ −28.29(0.20)(1.2) −28.33(0.21)(1.0) −31.32(0.21)(1.1) −38.28(0.21)(1.3)

Λ = 500 MeV

LO −51.17(0.20)(−) −47.6*(0.5)(−) −51.1*(0.4)(−) −62.1*(0.3)(−)

NLO −28.12(0.20)(4.9) −27.39*(0.21)(4.3) −31.45(0.21)(4.2) −36.82(0.23)(5.4)

N2LO −28.63(0.20)(1.3) −29.21(0.21)(1.2) −32.29(0.20)(1.1) −39.73(0.21)(1.5)

N3LO −28.45(0.20)(1.3) −28.54(0.21)(1.2) −31.61(0.21)(1.1) −38.72(0.21)(1.5)

N4LO −28.31(0.20)(1.3) −28.37(0.21)(1.2) −31.41(0.21)(1.1) −38.42(0.21)(1.5)

N4LO+ −28.30(0.20)(1.3) −28.41(0.21)(1.2) −31.43(0.21)(1.1) −38.43(0.21)(1.5)

Expt. −28.30 −29.27 −31.99 −39.24

TABLE 5 Ground state energies in MeV of A = 8 and 9Li, for LO through N4LO+ NN potentials, with 3NFs at N2LO, for N2LO through N4LO+, for Λ = 450 MeV (top) and
Λ = 500 MeV (bottom). Both our estimated numerical (first) and chiral truncation (second) uncertainties are given; and an * indicates ground states with energies
above threshold.

VNN 8He(0+) 8Li(2+) 8Be(0+) 9Li(32−)
Λ = 450 MeV

LO −41.6*(0.9)(−) −59.5*(0.4)(−) −95.7*(0.7)(−) −60.0*(0.4)(−)

NLO −28.2*(0.7)(3.0) −39.44(0.36)(4.5) −56.70*(0.36)(8.3) −41.55(0.45)(4.2)

N2LO −30.42(0.36)(0.9) −41.23(0.34)(1.2) −56.48*(0.38)(2.2) −45.14(0.34)(1.3)

N3LO −28.69(0.38)(0.8) −39.62(0.34)(1.2) −55.31*(0.42)(2.2) −42.27(0.37)(1.1)

N4LO −28.62(0.38)(0.8) −39.45(0.34)(1.2) −54.95*(0.42)(2.2) −42.11(0.36)(1.1)

N4LO+ −28.75(0.38)(0.8) −39.53(0.34)(1.2) −54.98*(0.42)(2.2) −42.24(0.37)(1.1)

Λ = 500 MeV

LO −41.6*(1.0)(−) −59.6*(0.4)(−) −97.7*(0.7)(−) −59.8*(0.5)(−)

NLO −26.3*(0.6)(3.4) −37.24(0.34)(4.9) −53.77*(0.36)(9.4) −38.94(0.38)(4.7)

N2LO −30.92(0.34)(1.2) −41.85(0.34)(1.5) −56.96*(0.37)(2.5) −46.18(0.33)(1.8)

N3LO −29.06(0.36)(1.0) −39.94(0.36)(1.4) −55.70*(0.38)(2.5) −43.06(0.36)(1.4)

N4LO −28.91(0.35)(1.0) −39.65(0.36)(1.4) −55.10*(0.38)(2.5) −42.80(0.36)(1.4)

N4LO+ −29.04(0.34)(1.0) −39.72(0.36)(1.4) −55.09*(0.42)(2.5) −42.91(0.36)(1.4)

Expt. −31.41 −41.28 −56.50 −45.32
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with the N2LO NN potential. The central values however do change:
all of the A = 4, 6, and 7 nuclei become less bound when using NN
potentials beyond N2LO in combination with the N2LO 3NFs. This
brings the ground state energy of 4He in closer agreement with
experiment, whereas the ground state energies of 6He, 6Li, and 7Li
are reasonably close to experiment with the N2LONN potential, and
move away from their experimental values when including higher-
order for the NN potential, to the point that 6He appears to be barely
bound, or maybe even slightly unbound, with these higher-order
NN potentials. However, they all still agree with their corresponding
experimental values, to within our combined numerical and chiral
uncertainty estimates, and it is therefore too early to draw firm
conclusions.

Finally, it is interesting to note that the estimated chiral
truncation uncertainties are very similar for each of the four
nuclei in Table 4. This can be easily understood in terms of their
structure: 6He, 6Li, and 7Li can be described as bound states of an α

plus two neutrons, an α plus a deuteron, and an α plus a triton,
respectively. It is therefore not surprising that the chiral
uncertainties of these states follow that of the 4He ground state
energy (remember, the deuteron binding energy is fitted exactly, and
the triton binding energies is fitted at N2LO and up). However, there
are subtle but important details that can make a difference: whereas
the ground state energy of 4He changes only by about 150–200 keV
going from the N2LO to the N3LO NN potential, the difference
between these two potentials for the A = 6 ground state energies is
about 600–700 keV, and that for the 7Li ground state is about 1 MeV,
for both regulators.

In Table 5 we give our results the ground state energies of 8He,
8Li, 8Be, and 9Li. The NCSM calculations for these nuclei were
performed up to Nmax = 10, making the extrapolation uncertainties

for these nuclei somewhat larger than those in Table 4, and they
become of the same order as the estimated numerical uncertainties
coming from the SRG evolution. This increased numerical
uncertainty is reflected in the first set of error estimates in
Table 5. And just as for the A = 6 and 7 nuclei, at LO none of
these nuclei are actually bound–leading to larger extrapolation
uncertainties. Again, the main purpose for the LO calculations is
to set the scale for the estimate of the chiral truncation uncertainties;
and for that purpose, an approximate ground state energy is
sufficient. Furthermore, 8Be is unbound at all chiral orders
considered here, in agreement with experiment.

As for the A = 4, 6, and 7 nuclei, the estimated chiral
truncation uncertainties for these A = 8 and 9 nuclei is
significantly larger than the estimated numerical uncertainties.
Again, at NLO, these uncertainties are too large to draw any
meaningful conclusions, but at N2LO they are about a factor of
three smaller. The agreement with experiment is best with the
N2LO NN plus 3N interaction; moving to higher orders for the
NN potential while retaining the N2LO 3NFs leads to significant
underbinding for 8He, 8Li, and 9Li, with the experimental values
outside combined numerical and chiral uncertainty estimates for
the N3LO and higher NN potentials. It will be very interesting to
see whether or not consistent 3NFs at N3LO can restore or
improve on the level of agreement for these ground state
energies obtained with N2LO NN plus 3N interactions.

Beryllium-8 remains unbound according to our calculations,
for all of these interactions, in qualitative agreement with
experiment; and the extracted ground state energies may
therefore be not as precise as for the other three nuclei in
Table 5. Still, given the combined numerical and chiral
uncertainty estimates, our results for the 8Be ground state

TABLE 6 Ground state energies in MeV of 9Be, 10Be, 10B, and 11B, for LO through N4LO+ NN potentials, with 3NFs at N2LO, for N2LO through N4LO+, for Λ = 450 MeV
(top) and Λ = 500 MeV (bottom). Both our estimated numerical (first) and chiral truncation (second) uncertainties are given; and an * indicates ground states with
energies above threshold.

VNN 9Be(32−) 10Be(0+) 10B(3+) 11B(32−)
Λ = 450 MeV

LO −91.83*(0.8)(−) −97.7*(2.1)(−) −92.8*(2.3)(−) −112.6(1.7)(−)

NLO −56.97*(0.36)(7.5) −61.9(0.8)(7.8) −61.1(0.8)(7.0) −72.2(0.8)(8.9)

N2LO −58.82(0.37)(2.0) −66.5(0.7)(2.2) −66.4(0.6)(2.1) −79.8(0.6)(2.7)

N3LO −56.50*(0.40)(2.0) −62.4(0.8)(2.1) −62.5(0.7)(1.9) −73.8(0.8)(2.4)

N4LO −56.12*(0.41)(2.0) −62.0(0.8)(2.1) −62.1(0.7)(1.9) −73.4(0.8)(2.3)

N4LO+ −56.18*(0.41)(2.0) −62.1(0.8)(2.1) −62.2(0.8)(1.9) −73.4(0.8)(2.3)

Λ = 500 MeV

LO −93.00*(0.7)(−) −98.1*(2.4)(−) −92.5*(2.8)(−) −112.0*(2.1)(−)

NLO −53.68*(0.37)(8.4) −57.9(0.8)(8.6) −57.0*(0.7)(7.7) −67.2(0.8)(9.7)

N2LO −59.73(0.36)(2.4) −67.5(0.6)(2.8) −68.4(0.6)(2.8) −82.3(0.6)(3.6)

N3LO −57.20(0.40)(2.3) −63.6(0.8)(2.5) −64.1(0.7)(2.4) −75.8(0.8)(3.0)

N4LO −56.59*(0.40)(2.3) −62.9(0.8)(2.4) −63.4(0.8)(2.3) −74.7(0.7)(2.9)

N4LO+ −56.61(0.40)(2.3) −63.0(0.8)(2.4) −63.4(0.8)(2.3) −74.6(0.8)(2.9)

Expt. −58.16 −64.98 −64.75 −76.21
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energy are in good agreement with experiment. Furthermore it is
interesting to note that the chiral uncertainty estimates for 8Be
are approximately twice that of 4He, whereas the other three
nuclei have chiral uncertainty estimates that are quite similar to
those in Table 4. This can be easily understood by realizing that

8Be is a loosely bound state, or rather, slightly unbound state, of
two α particles, so the uncertainty is simply twice that of one α

particle. It may be more surprising that the chiral uncertainties of
8Li and 9Li, neither of which are α-cluster states, are qualitatively
similar to that of the A = 4, 6, and 7; and it is also surprising that

TABLE 8 Ground state energies in MeV of 14C, 14N, 15N, and 16O, for LO through N4LO+ NN potentials, with 3NFs at N2LO, for N2LO through N4LO+, for Λ = 450 MeV
(top) and Λ = 500 MeV (bottom). Both our estimated numerical (first) and chiral truncation (second) uncertainties are given.

VNN 14C(0+) 14N(1+) 15N(12−) 16O(0+)

Λ = 450 MeV

LO −160.2(0.7)(−) −160.1(0.8)(−) −182.1(0.6)(−) −218.3(0.3)(−)

NLO −104.9(0.8)(12.2) −104.2(0.6)(12.3) −119.4(0.8)(13.8) −135.1(0.8)(17.9)

N2LO −120.1(0.6)(4.1) −121.4(0.6)(4.4) −135.1(0.5)(4.5) −149.1(1.0)(5.3)

N3LO −106.3(0.8)(3.2) −106.9(0.7)(3.3) −118.8(0.8)(3.6) −131.7(1.3)(4.8)

N4LO −105.5(0.8)(3.2) −106.2(0.8)(3.3) −117.8(0.8)(3.6) −130.2(1.3)(4.8)

N4LO+ −105.7(0.8)(3.2) −106.4(0.8)(3.3) −118.0(0.8)(3.6) −130.4(1.3)(4.8)

Λ = 500 MeV

LO −156.1(1.1)(−) −155.4(1.3)(−) −175.5(0.8)(−) −209.2(0.6)(−)

NLO −96.2(0.7)(13.0) −95.5(0.6)(13.0) −109.3(1.0)(14.4) −123.5(1.0)(18.3)

N2LO −123.9(0.6)(5.9) −125.6(0.6)(6.2) −138.9(0.7)(6.3) −153.2(1.4)(7.0)

N3LO −109.8(0.8)(4.1) −110.8(0.8)(4.3) −122.5(1.0)(4.4) −135.4(1.4)(5.2)

N4LO −108.5(0.8)(4.0) −109.5(0.8)(4.2) −120.8(1.0)(4.3) −133.0(1.7)(5.1)

N4LO+ −108.5(0.8)(4.0) −109.4(0.8)(4.2) −120.7(1.0)(4.3) −132.8(1.8)(5.1)

Expt. −105.28 −104.66 −115.49 −127.62

TABLE 7 Ground state energies inMeV of A = 12 and A = 13 nuclei, for LO through N4LO+ NN potentials, with 3NFs at N2LO, for N2LO throughN4LO+, forΛ = 450 MeV
(top) and Λ = 500 MeV (bottom). Both our estimated numerical (first) and chiral truncation (second) uncertainties are given; and an * indicates ground states with
energies above threshold.

VNN 12B(1+) 12C(0+) 13B(32−) 13C(12−)
Λ = 450 MeV

LO −113.7(1.8)(−) −145.0*(1.3)(−) −120.8*(1.7)(−) −146.4*(1.1)(−)

NLO −76.0(1.0)(8.4) −89.7(0.7)(12.0) −82.5(1.3)(8.6) −94.3(0.7)(11.4)

N2LO −84.8(0.6)(2.7) −98.7(0.6)(3.5) −93.2(0.8)(2.9) −108.3(0.6)(3.9)

N3LO −77.3(0.8)(2.2) −90.6(0.8)(3.2) −83.2(1.0)(2.3) −96.7(0.8)(3.0)

N4LO −76.8(0.8)(2.2) −89.9(0.8)(3.2) −82.6(1.0)(2.3) −96.2(0.8)(3.0)

N4LO+ −77.0(1.0)(2.2) −90.0(1.0)(3.2) −82.7(1.0)(2.3) −96.3(0.8)(3.0)

Λ = 500 MeV

LO −111.7*(2.3)(−) −144.6*(1.8)(−) −117.4*(2.1)(−) −143.8*(1.6)(−)

NLO −70.4(0.8)(9.1) −83.3*(0.7)(13.1) −76.1(1.1)(9.1) −87.0(0.7)(12.3)

N2LO −87.5(0.6)(3.8) −101.8(0.6)(4.7) −95.8(1.0)(4.2) −112.2(0.6)(5.4)

N3LO −79.5(0.8)(2.9) −92.7(0.8)(3.8) −85.5(1.0)(2.9) −99.8(0.7)(3.9)

N4LO −78.8(0.8)(2.8) −91.6(0.8)(3.7) −84.6(1.0)(2.8) −98.8(0.7)(3.8)

N4LO+ −78.8(1.0)(2.9) −91.5(0.8)(3.7) −84.6(1.0)(2.8) −98.7(0.7)(3.8)

Expt. −79.58 −92.16 −84.45 −97.11
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the estimated chiral uncertainties of 8He is smaller than that of
any of the other p-shell nuclei.

Moving to the middle of the p-shell, in Table 6 we have our results
for the ground state energies of 9He, 10Be, 10B, and 11B. Starting from A =
10, the NCSM calculations are limited to Nmax = 8, and therefore the
extrapolation uncertainties become a significant factor in the uncertainty
budget. Nevertheless, qualitatively, the overall picture remains the same:
at LO all nuclei are unbound, but at NLO and beyond, they are generally
bound, with the exception of 9Be. Also, the estimated chiral truncation
uncertainties for these nuclei remains significantly larger than the
estimated numerical uncertainties; at NLO, these uncertainties are too
large to draw anymeaningful conclusions, but at N2LO and beyond they
are about a factor of three smaller. Here, we also start to see significant
differences between the chiral uncertainties with the N2LO NN plus 3N
interaction, vs. using an NN potential at N3LO or higher in combination
with the N2LO 3NFs (and remember, we are using the N2LO counting
rules for all these calculations with higher-order NN potential)—the
effect of the higher-order NN potentials is becoming more pronounced
with increasing A, and more so with Λ = 500MeV than with Λ =
450MeV. (This trend is already noticeable for e.g., 9Li, see Table 5.).

Around A = 10, the agreement with experiment is no longer
uniformly better with the N2LO NN plus 3N interaction than with
the higher-order NN potentials. The N2LO NN plus 3N interaction
is the only combination for which 9Be is truly bound with respect to
two α particles plus a neutron, for both regulator values, whereas
with the higher-order NN potentials 9Be becomes unbound or right
at threshold in contrast with experiment where it is bound by about
1.6 MeV. Within the combined uncertainty estimates however, it is
still in agreement with experiment for all of these interactions. For
the A = 10 ground state energies the situation is different: at Λ =
450 MeV, the N2LO NN plus 3N interaction gives slightly better
agreement with experiment than the higher-order NN potentials,
but at Λ = 500 MeV, it is the N3LO NN plus N2LO 3N interaction
that gives the best agreement with experiment. In fact, the 10B
ground state energy with the N2LO NN plus 3N potential is just
outside the combined uncertainty estimates. Furthermore, the N2LO
NN potential plus 3NFs give a ground state energy for 11B that is just
outside the combined uncertainty estimates with both the Λ =
450 MeV and Λ = 500 MeV regulators.

This trend becomesmore pronounced forA≥ 12, see Tables 7, 8. At
LO, the ground states are still unbound, except for 12B at Λ = 450MeV;
at NLO they are bound and in agreement with experiment, given the
(granted, rather large) uncertainty estimates; and at N2LO they are all
significantly overbound, with the experimental values outside the
combined numerical and chiral uncertainty estimates. Increasing the
chiral order of the NN potential improves the agreement with
experiment again: for A = 12 and 13 our results with the N3LO and
higher NN potentials, in combination with the N2LO 3NFs, agree with
experiment, well within our uncertainty estimates, with both the Λ =
450MeV and Λ = 500MeV regulators. For A = 14 this is also the case
with Λ = 450MeV, but Λ = 500MeV leads to modest overbinding,
though still within our uncertainty estimates. Also for 15N and 16O the
ground state energies agree with experiment with Λ = 450MeV, but
with Λ = 500MeV there is significant overbinding, with the
experimental values just at the edge of our uncertainty intervals.

We have visually summarized our findings in Figure 4, which
clearly shows that with the N2LO NN plus 3N interaction one finds
good agreement with experiment for the ground state energies of

nuclei up to about A = 9, but significant overbinding starting from
about A = 11, more than the estimated uncertainties for A = 13 and
beyond. On the other hand, using higher-order NN potentials, in
combination with N2LO 3NFs, reduces this overbinding in the upper
half of the p-shell, while maintaining reasonable agreement, taking
into account both numerical and chiral truncation uncertainties, in
the lower half of the p-shell, with only a few exceptions, out of the
20 nuclei considered here.

Clearly, for A > 12 our uncertainty estimates for the N2LO NN plus
3N interaction are noticeably smaller than the deviation from both the
experimental data and from the calculations with higher-order NN
potentials. We speculate that this may be caused by the N2LO fit to the
NN scattering data not being sufficiently accurate, and that discrepancies
between the N2LO fit and NN data should be taken into account as
uncertainties in the LECs, whereas at higher orders in the NN potential,
the NN scattering data are described much more accurately, and this is
therefore not necessary. (Note that the N2LO NN potential was fitted
only up to Elab = 125MeV, whereas the N4LO+ potential was fitted to
260MeV in Ref. [20].) Of course, one should then also incorporate the
uncertainties in the 3NFs, cD and cE [30], and propagate all these
uncertainties through the many-body bound state calculations [32, 72].

Another possible explanation could be that NN (and 3N) systems
cannot sufficiently constrain the LECs–in which case one necessarily
has to include properties of A ≥ 4 nuclei for fitting some (or even all) of

FIGURE 4
Comparison of ground state energies of p-shell nuclei between
chiral EFT calculations at N2LO and N4LO+, each for two values of the
regulator Λ, and experiment. Both numerical uncertainty estimates
(dark colored) and chiral truncation uncertainties (light colored,
corresponding to 68% DoB) are shown.
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the LECs. Indeed, impressive progress has been made in recent years
along this way, extending ab initio calculations all the way to 208Pb [73],
but one loses some of the predictive power of χEFT by incorporating
select many-body observables in the fitting procedures, and the results
will depend on exactly which observables are included in the fitting. Yet
another cause could be that the actual expansion parameter increases
with A, as suggested in Ref. [34]. Calculations with consistent 3NFs at
N3LO, propagation of the uncertainties in the LECs through the many-
body calculations, and Bayesian inference for both the chiral truncation
uncertainties and the numerical uncertainties should help to resolve this
issue.

Besides this general trend of increasing deviations with increasingA
at N2LO, 8He and 9Li clearly stand out among the N4LO+ results in
Figure 4; and also our predictions for 8Li do not agree, to within their
estimated uncertainties, with experiment. Interestingly, 8He and 9Li are
two of the most neutron-rich nuclei, out of the 20 nuclei shown in
Figure 4, with N − Z = 4 and 3, respectively; and also 8Li is a neutron-
rich nucleus. This could be an indication of some deficiencies in the
neutron-neutron (or three-neutron) part of the interactions.
Unfortunately, there are no accurate neutron-neutron data, let alone
three-neutron data, to constrain the LECs; the LECs of the interactions
were all fitted to 2- and 3-body data involving at least one proton.

5 Concluding remarks and outlook

We have performed systematic calculations for the binding
energies of p-shell nuclei using LENPIC-SMS χEFT NN and 3N
interactions complete up through N2LO, and with NN potentials
up to N4LO+ in combination with N2LO 3NFs. We have made a
careful analysis of all sources of uncertainties, and incorporated
our best estimates of these uncertainties in our comprehensive
tables with order-by-order results and in Figure 4. Note that all
LECs in the χEFT had been fitted to A = 2 and A = 3 data prior to
these many-body calculations, and the obtained binding energies
are therefore parameter-free predictions. Although our results
with the N2LO NN plus 3N interaction do not agree with the
experimental binding energies for the upper p-shell, our results
with the N4LO+ NN potential plus N2LO 3NFs do agree with
experiment throughout the p-shell within the combined
numerical uncertainty estimates and the chiral truncation
uncertainty estimates at the 68% DoB.

In future work we plan to extend these calculations to include
consistent N3LO 3NFs, which should bring the chiral truncation
uncertainties down, and they may become comparable to the
estimated numerical uncertainties. We therefore also intend to
further reduce our numerical uncertainties; promising new
developments include, among others, the use of Artificial Neural
Networks [74–76] and Bayesian inference [72] for extrapolating
NCSM binding energies to the complete basis. The latter is
particularly interesting, since with Bayesian methods for both the
numerical and the chiral truncation uncertainties one can consider
correlated uncertainties of different states. This naturally leads to
reduced uncertainties for excitation energies (compared to the
uncertainties on the binding energies themselves), as well as e.g.,
neutron separation energies and various cluster thresholds.

Last but not least, we plan to use the obtained wavefunctions, in
combination with consistent χEFT operators, to evaluate other

observables, in particular radii, charge densities, magnetic and
quadrupole moments, and electroweak transitions.
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The nucleon-induced deuteron
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for chiral dynamics
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The nucleon-induced deuteron breakup reaction is studied within the Faddeev
approach at incoming nucleon laboratory energies of 135 and 200 MeV. The chiral
semilocal momentum-space (SMS) potential developed up to N4LO+,
supplemented by the N2LO three-nucleon interaction, is used. Our
investigation is focused on the determination of theoretical uncertainties in a
predicted cross section related to its dependence on the value of the cutoff
parameter of the regulator. We also compare predictions based on the complete
N2LO potential with those based on the two-nucleon force upgraded to the N4LO+

order and augmented with the N2LO three-nucleon force. In addition, we study the
three-nucleon forceeffectspredictedby thismodel of interaction.Our systematic study
covers the entire kinematically allowed phase space; however, our main results are
obtainedwhen additional restrictions onenergies and cross section values are imposed.
In such a case, we observe that the dependenceof the differential cross sections on the
regulator cutoff is moderate at 135MeV and much stronger at 200MeV. For the latter
energy, it can amount to up to 45% in specific kinematic configurations. Taking into
account termsbeyond,N2LO in a two-body interaction changes the cross sectionup to
20% (27%) atE=135(200) MeV. The inclusionof the three-nucleon force leads toeffects
of approximately 27% at both energies. We illustrate these dependencies with a few
examples of the exclusive cross section as a function of the arc length of the S-curve.

KEYWORDS

deuteron breakup, nuclear forces, three-nucleon interaction, theoretical uncertainty,
Faddeev approach

1 Introduction

The precise determination of the nature of interactions between nucleons is a long-
standing problem of nuclear physics. H. Yukawa’s meson exchange theory in 1935 was the
catalyst for the first attempts to solve this problem [1]. Over time, it was understood that
nuclear forces are residual interactions stemming from those between quarks and gluons,
and therefore, the theory of nuclear forces, dealing with nucleons and mesons, should
have an effective character. This idea was further developed by S. Weinberg, who in
seminal papers [2, 3] showed how to derive nuclear interactions from the effective chiral
Lagrangian. This gave a new impetus to the development of the modern theory of nuclear
forces and current operators. Soon after the pioneering work by S. Weinberg, C. Ordóñez,
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et al. presented the first applications of the proposed formalism to
nucleon–nucleon scattering using time-ordered perturbation
theory [4]. These important steps laid the foundations on
which D. R. Entem and R. Machleidt [5], and later E.
Epelbaum, W. Glöckle, and Ulf-G. Meißner [6–8] built the
chiral effective field theory (EFT) of nuclear forces, developing
the first generation of the chiral two-nucleon (NN) interactions up
to N3LO. The N3LO NN potential of [8] provided a good
description of the NN data, but it was clear that to obtain
results of quality that surpass the predictions of non-chiral
phenomenological models, such as the AV18 [9] or CD-Bonn
[10] potentials, it was necessary to take into account contributions
from higher orders in the chiral expansion.

A number of attempts have been made to improve various
aspects of these chiral interactions, resulting in the development of
new potentials by several groups, for example, [11–14]. These
interactions differ from the first generation of chiral NN
potentials and each other in many ways, including but not
limited to different regularization approaches, fitting
strategies, values of the pion-nucleon low-energy constants
(LECs), and treatment of the Δ(1232) degrees of freedom. In
[12, 14, 15], the chiral EFT expansion for NN potentials was
pushed to the fifth order of the chiral expansion (N4LO). The
N4LO potentials of [12, 14] benefit from using the most reliable
determination of the pion-nucleon LECs by matching the chiral
perturbation theory to the solution of the Roy–Steiner equation
at the subthreshold kinematic point [16]. The latest version of
the potentials developed by the Bochum group [12] employs
semi-local momentum-space (SMS) regularization, which
reduces the amount of cutoff artifacts. At the highest order
considered, N4LO+, the four N5LO contact interactions in
F-waves are taken into account. These additional contact
terms are needed from a partial wave analysis point of view
to describe certain very precise proton–proton scattering data at
intermediate and higher energies. The same N5LO contact
interactions are also included in the N4LO version of the
non-locally regularized potentials in [14]. Finally, the SMS
potentials of [12] have been updated in [17] to take into
account isospin-breaking interactions up to N4LO.

The leading contributions of the three-nucleon force (3NF) at
N2LO were derived using the chiral EFT [18, 19]. In [20–22], the
sub-leading 3NF contributions were worked out using dimensional
regularization in the calculation of loop integrals. The first
application of the leading chiral 3NF to Nd scattering is shown
in [19], while the first results for the triton using the non-locally
regularized N3LO 3NF are presented in [23], based on the previous
generation of NN chiral potentials [8]. An efficient algorithm for
performing partial wave decomposition of the 3NF was developed
in [24]. Notably, while the expressions for the 3NF are available for
N4LO [20, 21, 25–28] (except for one topology), their application
to few- and many-nucleon systems requires additional effort.
Specifically, it was shown that the use of dimensional
regularization in the derivation of the 3NF in combination with
cutoff regulators in the Schrödinger equation leads to inconsistent
results that violate chiral symmetry [29, 30]. Consequently, the
3NF and current operators beyond N2LO need to be rederived
using a symmetry-preserving cutoff regularization consistent with
the SMS NN potentials of [12, 17].

In the meantime, exploratory studies on the role of higher-order
short-range 3NF terms in the 3N continuum have been carried out
[31–33], showing very promising results. These terms were, in
particular, found to be important for solving the nucleon-
analyzing power puzzle at low energies [31, 33]. However,
complete calculations beyond the NN system are currently only
available at N2LO. In particular, the application of the SMS NN force
along with the N2LO 3NF regularized in the same way to 3N
scattering observables and high- and medium-mass nuclei has
been carried out [34]. For more details on the aforementioned
applications and related topics, see the review articles [29, 30, 35,
36] and the references therein. In [37], the discussion of a
simultaneous determination of the free parameters entering the
NN and 3N forces can be found.

The functional form of the regulator and the choice of the
cutoff values have attracted considerable attention in the
community, both in connection with conceptual issues related
to a proper renormalization of the Schrödinger equation in chiral
EFT and in the context of an efficient treatment of the nuclear
many-body problem. For a collection of different views on these
and related topics, see [38] and the references therein. The most
recent SMS potentials developed by the Bochum group in [12, 17]
are available for the cutoff values in the range of Λ = 400 −
550 MeV, with Λ = 450 MeV giving the best description of the NN
data. Smaller cutoff values were shown in [12] to introduce
significant cutoff artifacts and degrade the description of NN
scattering data. On the other hand, cutoff values larger than
Λ = 550 MeV were found to lead to spurious deeply bound
states, resulting in strongly non-perturbative interactions that
are difficult to apply beyond the NN system. Clearly, the
calculated observables show some residual dependence on the
regulator value, which can be used to perform a posteriori
consistency checks by confronting it with the estimated
truncation uncertainty [39–41] (see [32, 34, 42] for some
examples).

While in [43] we showed examples of our predictions for
differential cross sections, for the nucleon analyzing power
AY(N), and for the deuteron analyzing power AXX at a few
chosen kinematic configurations, in this work we present more
systematic studies. Therefore, we performed a search over the whole
kinematically available phase space at two reaction energies: E =
135 MeV and E = 200 MeV. This phase space is spanned by five
independent kinematic variables, which can be chosen as four angles
defining the directions of the momenta of two outgoing nucleons
and the energy of one of the nucleons. Our study allows us to identify
regions where predictions based on different cutoff values differ
substantially.

This approach can also be applied to other features of the
potential. In the following, in addition to the cutoff dependence,
we also examine how the predictions change with the chiral order
and discuss the role played by the three-nucleon force. Performing
calculations at two energies (135 and 200 MeV) gives additional
information on how the quality of predictions based on the chiral
SMS potential depends on the reaction energy. This, in turn, allows
us to specify the applicability range of the chiral expansion.

Of particular interest is the possible existence of kinematic
configurations for which the observables show an enhanced
dependence on the chiral order or the sensitivity to the value of
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the regulator. Such configurations provide an opportunity to test the
theory by comparing theoretical predictions with experimental data
and validating the estimated truncation uncertainties. Thus, in this
work, we not only show the uncertainties associated with the cutoff
values and the chiral order but also give details of the most
interesting configurations. This establishes a guide for
experimental groups interested in the nucleon-induced deuteron
breakup process.

Our article is organized as follows. In the next section, we discuss
the formalism used to obtain the breakup observables. Section 3
covers the results for the differential cross section, first for E =
200 MeV and then for E = 135 MeV. We summarize the
aforementioned results in Section 4.

2 Formalism

The framework of the Faddeev equation has proven to be a
precise method for solving the 3N problem with all realistic
interactions, including the chiral ones. Since we are working in
momentum space, the SMS interaction can be immediately
incorporated into our codes. In the following, we provide the
most fundamental steps of our approach (for details, see, e.g.,
[44–46]).

In this approach, the Faddeev equation for an auxiliary state,
T|ψ〉, plays a key role. It reads

T|ψ〉 � tP|ψ〉 + tPG0T|ψ〉 + 1 + tG0( )V 1( )
4 1 + P( )|ψ〉

+ 1 + tG0( )V 1( )
4 1 + P( )T|ψ〉, (1)

where the initial state |ψ〉consists of a deuteron and the relative
momentum eigenstate of the projectile neutron, V(1)

4 is part of a 3N
force that is symmetric under an exchange of particles 2 and 3, P is a
permutation operator that takes into account the identity of the
nucleons, and G0 is the free 3N propagator. The 2N t-matrix is, for a
given 2N interaction V, a solution of the Lippmann–Schwinger
equation,

t � V + V ~G0t, (2)
where ~G0 is the 2N free propagator. Once Eq. 1 is solved, the
transition amplitude U0 to the final three-body scattering state |ψ′〉
is calculated as

〈ψ′|U0|ψ〉 � 〈ψ′| 1 + P( )T|ψ〉 (3)
and used to find observables [45].

We solve Eq. 1 in the momentum space partial wave scheme.We
work with the |p, q, α〉 states, with p � | �p| and q � | �q| being the
magnitudes of the relative Jacobi momenta �p and �q. Furthermore, α
represents a set of discrete quantum numbers for the 3N system in
the jI-coupling

α � l, s( )j; λ,
1
2

( )I; j, I( )JMJ; t
1
2

( )TMT( ). (4)

Here, l, s, j, and t denote the orbital angular momentum, total spin,
total angular momentum, and total isospin of the 2–3 subsystem,
respectively. Furthermore, λ and I are the orbital and total angular
momenta of spectator nucleon 1, with respect to the center of mass of
the 2–3 subsystem. Finally, J, MJ, T, and MT are the total angular

momentum of the 3N system, its projection on the quantization axis,
the total 3N isospin, and its projection, respectively.

We solve Eq. 1 by generating its Neumann series and summing it
up by using the Pade method [45]. For the results presented here, we
use all partial waves with j ≤ 5 and J≤ 25

2 , including the three-nucleon
interaction up to J � 7

2. More details about our numerical
performance are shown in [45].

The unambiguous definition of the kinematic configuration of
three free nucleons requires a priori knowledge of nine kinematic
variables, which can be reduced to five using the conservation laws.
We follow a common choice and use four angular variables: θ1, ϕ1,
θ2, and ϕ2 to define the directions of the momenta of nucleons 1 and
2. As the fifth variable, we chose the position on the S-curve, that is,
curves located in the E1–E2 plane and defined by kinematically
allowed (E1 and E2) pairs. The possible positions of the S-curve in
the E1–E2 plane and a convention for the location of its starting point
(S = 0) are discussed, e.g., in [45]. Some points on the curve
correspond to particularly interesting kinematic configurations.
The final-state interaction (FSI) configuration is the one in which
the momenta of two nucleons are equal, leading to vanishing relative
energy. This makes the cross section for this configuration sensitive
to the 1S0 interaction, which results in an enhancement of the cross
section referred to as the FSI peaks. The QFS configuration, in which
one of the nucleons serves as a spectator particle, is also noteworthy.
The quasi-free scattering mechanism also increases the cross section;
however, here different partial waves contribute.

In the following section, we show the results of our search over the
entire kinematically available phase space for the nucleon-deuteron
breakup process. We use the same grid for θ1, θ2, and ϕ2 values taken
in the range [2.5°, 177.5°] and with a step of 5°, assuming that ϕ1 = 0 since
the unpolarized observables only depend on ϕ12 = ϕ1 − ϕ2. For the
energies studied here, the S-curve length is typically in the range of
50–200MeV. We have checked that the observables are accurately
described when we use a step of 0.5MeV along each S-curve.

3 Results for the differential cross
section

3.1 E = 200MeV: Cutoff dependence

To study the dependence of our predictions on the regulator
value Λ, we choose the five-fold differential cross sections
( d5σ
dΩ1dΩ2dS

)400 and ( d5σ
dΩ1dΩ2dS

)550 obtained with Λ = 400 MeV and
Λ = 550 MeV, respectively. Having them at our disposal, we
construct (ϕ1 = 0°)

δ400−550 θ1, θ2, ϕ2, S( ) ≡ d5σ
dΩ1dΩ2dS
( )400 − d5σ

dΩ1dΩ2dS
( )550

1
2

d5σ
dΩ1dΩ2dS
( )400 + d5σ

dΩ1dΩ2dS
( )550( ) (5)

and then, for given θ1 and θ2, we find its maximum over the
remaining variables

Δ400−550 ≡ Δ400−550 θ1, θ2( ) ≡ max
ϕ2 ,S{ } δ

400−550 θ1, θ2, ϕ2, S( ). (6)

Here and in the following, the calculations are performed with the
NN interaction at the highest available order, that is, at N4LO+,
supplemented by the 3NF at N2LO.
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The resulting Δ400−550 at E = 200 MeV is shown in Figure 1A. The
white area shows the kinematically forbidden region. The symmetry
with respect to the diagonal, as shown in Figure 1, reflects the fact
that two nucleons (1 and 2) are indistinguishable. Some small
deviations from symmetry seen in the figure are due to the finite
grid of points on the S-curves used in the calculations. When
interpreting the results obtained for Δ400−550, it is important to
keep in mind that the differences have already been maximized
with respect to the not explicitly shown kinematic variables ϕ2 and S.
This implies that the actual residual cutoff dependence of the
calculated cross sections, encoded in the quantity δ400−550, is on
average much smaller than the deviations shown in Figure 1 for
Δ400−550. The same comment applies to the results shown for the
dependence on the chiral order and the effects of the 3NF.

We observe that Δ400−550 is spread over the range (−0.440, 0.260),
so the two regulator values can yield predictions that diverge by
more than 30%. In the majority of the available area in the (θ1 and
θ2) subspace Δ400−550 ∈ (−30% − 5%), the maximal Δ400−550 values are
concentrated at small θ1 and θ2 angles. It is interesting to note that
the lowest Δ400−550 values also occur at relatively small polar angles.
The particular configurations with extreme Δ400−550 in these regions
are related to the FSI.

Among the configurations leading to Δ400−550 shown in
Figure 1A, there are very likely some with very small cross
sections, which can result in large Δ400−550. Such configurations
are not of interest when planning feasible measurements. Thus,
in Figure 1B, we show the sameΔ400−550 but after imposing additional
conditions on the cross sections: ( d5σ

dΩ1dΩ2dS
)400 > 0.01 [mb

sr−2 MeV−1] and ( d5σ
dΩ1dΩ2dS

)550 > 0.01 [mb sr−2 MeV−1] and on the
energies: E1 > 10 MeV and E2 > 10 MeV. Notably, these conditions
remove many configurations, producing more white space in the
graph, and Δ400−550 decreases on average. While the spread of the
Δ400−550 variation remains nearly unchanged, the distribution of the
Δ400−550 values changes, resulting in, on average, smaller in
magnitude values of Δ400−550. In particular, the configurations
with |Δ400−550| ≥ 0.289 occupy less than 1% of the θ1–θ2 phase
space shown.

To display the full information on the specific configurations
leading to the Δ400−550 values shown in Figure 1B, Figure 2 shows the
corresponding energy E1 and the relative azimuthal angle ϕ12, which
by our choice of ϕ1 = 0° is equivalent to ϕ2, as functions of the polar
angles θ1 and θ2. The analogous figure not shown for E2 is a mirror
image of that for E1 with respect to the diagonal θ1 = θ2. In most
cases, E1 takes on small (below approximately 30 MeV) or large
(above approximately 160 MeV) values, and only in about a quarter
of configurations, do the largest Δ400−550 occur at intermediate E1
energies. The ϕ12 angles corresponding to the most pronounced
Δ400−550 are usually above approximately 130°; however, for some
combinations (θ1 and θ2), the smallest ϕ12 is preferred.

Figure 3 shows the differential cross section d5σ
dΩ1dΩ2dS

as a function
of the arc-length S for three configurations thatmaximizeΔ400−550 at one
S point. The left panel shows a configuration where both θi are small
(θ1 = 12.5° and θ2 = 7.5°), while the central panel shows the case where
θ1 = θ2 = 27.5°. For the first configuration, themaximal δ400−550(θ1, θ2, ϕ2,
S) occurs in the maximum of the FSI peak at S ≈ 134MeV. In this case,
the softer interaction yields a larger cross section. On the contrary, in
the case of the configuration shown in Figure 3B, predictions based on
the SMS potential with Λ = 400MeV are smaller around S = 111MeV
than those with the cutoff Λ = 550MeV. Finally, in Figure 3C, we give
an example of the configuration from a different position in the θ1 − θ2
plane, namely, for large θ1 and small θ2. Here, again, the cross section
resulting from the interaction atΛ = 400MeV exceeds the one obtained
atΛ = 550MeV, leading to δ400−550(172.5°, 2.5°, 177.5°, 92 MeV) = 0.128.

3.2 E = 200MeV: Changes with the chiral
order

Similar to the previously defined Δ400−550, we also studied

ΔN2LO−N4LO+ ≡ ΔN2LO−N4LO+ θ1, θ2( ) ≡ max
ϕ2 ,S{ } δ

N2LO−N4LO+ θ1, θ2, ϕ2, S( )
(7)

with

FIGURE 1
Δ400−550 in the incoming nucleon lab. Kinetic energy Elab = 200 MeV. (A) shows predictions based on all the configurations studied, while for (B),
additional thresholds for the energies of the detected neutrons and themagnitude of the cross sections have been imposed: E1 > 10 MeV and E2 > 10 MeV,
( d5σ
dΩ1dΩ2dS

)400 >0.01 [mb sr−2 MeV−1], and ( d5σ
dΩ1dΩ2dS

)550 >0.01 [mb sr−2 MeV−1].
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δN2LO−N4LO+ θ1, θ2,ϕ2, S( ) ≡ d5σ
dΩ1dΩ2dS
( )N2LO − d5σ

dΩ1dΩ2dS
( )N4LO+

1
2

d5σ
dΩ1dΩ2dS
( )N2LO + d5σ

dΩ1dΩ2dS
( )N4LO+( ))

(8)

and where ( d5σ
dΩ1dΩ2dS

)N2LO ( ( d5σ
dΩ1dΩ2dS

)N4LO+) are the differential

cross sections obtained with the NN force at N2LO (N4LO+)

supplemented in both cases by the 3NF at N2LO. The regulator

value Λ = 450 MeV is used. The free parameters of the 3NF, cD and

FIGURE 2
Values of nucleon 1 energy E1 (left) and the azimuthal angle ϕ2 (right) in the θ1–θ2 plane corresponding to the kinematic configurations from the right
panel of Figure 1.

FIGURE 3
Differential cross sectionsmaximizing Δ400−550 at three selected kinematic configurations defined by (A) θ1 = 12.5°, θ2 = 7.5°, ϕ12 = 2.5°, (B) θ1 = 27.5°, θ2
= 27.5°, ϕ12 = 2.5°, and (C) θ1 = 172.5°, θ2 = 2.5°, ϕ12 = 177.5°. The dashed black (solid red) curve represents the N4LO+ results at Λ = 400(550) MeV.

FIGURE 4
ΔN2LO−N4LO+ in the incoming nucleon lab. Kinetic energy Elab = 200 MeV. (A) shows predictions based on all the configurations studied, while for (B),
additional thresholds for the energies of the detected neutrons and the magnitude of the cross sections have been imposed: E1 > 10 MeV, E2 > 10 MeV,
( d5σ
dΩ1dΩ2dS

)N2LO >0.01 [mb sr−2 MeV−1], and ( d5σ
dΩ1dΩ2dS

)N4LO+ >0.01 [mb sr−2 MeV−1].
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cE, were determined separately when the 3NF was combined with
the N2LO or N4LO+ NN force, in such a way that the 3H binding
energy [47] and the differential cross section for the neutron-
deuteron elastic scattering data [48] are properly described. The
definition (8) shows that both δN2LO−N4LO+(θ1, θ2, ϕ2, E1) and
subsequently ΔN2LO−N4LO+ carry partial information about the
convergence of the results to the chiral order.

Figure 4A shows that there are big differences between the
predictions based on both combinations of two- and three-nucleon
forces in the whole available kinematic area when no additional
constraints are imposed on the cross sections and nucleon energies.
ΔN2LO−N4LO+ varies in the range (−200%, 200%). The picture is not as
symmetric as in Figure 1A. This shows that in many cases, the
magnitude of ΔN2LO−N4LO+ depends on a very precise position on the
S-curve, which is understandable when we deal with small values of
the cross sections. In fact, once the additional conditions on the cross
sections and energies are applied, the symmetry is restored, as shown
in Figure 4B. The values of ΔN2LO−N4LO+ are now substantially smaller
and range approximately from −30%, 30%. The inclusion of the
higher chiral order contributions in the NN interaction decreases the
breakup cross section, which leads to positive ΔN2LO−N4LO+, in
configurations where one of the θi is small (below 20°) and the
second θj takes intermediate values in the range θi ∈ (60°, 120°). In
the other parts of the allowed θ1 and θ2 space, the negative
ΔN2LO−N4LO+ values prevail. Specifically, for one of the θi in the
range (30°, 60°) and another one in the range (30°, 90°),
ΔN2LO−N4LO+ takes the smallest values corresponding to
( d5σ
dΩ1dΩ2dS

)N4LO+ > ( d5σ
dΩ1dΩ2dS

)N2LO.
Figure 5 shows E1 and ϕ12 for configurations maximizing

ΔN2LO−N4LO+ for given θ1 and θ2. The picture is similar to that of
Figure 2—again, the energy of the first nucleon takes the largest
possible values, while the energy of the second nucleon remains
small. ϕ12 is above 150° for most of the configurations; however,
there are also configurations, clustered around the diagonal or
around a straight line intersecting the diagonal at θ1 = θ2 = 60°

with ϕ12 below 20°.
A few examples of d5σ

dΩ1dΩ2dS
with large |ΔN2LO−N4LO+| are shown in

Figure 6. In all the cases, a clear difference between N2LO + N2LO

and N4LO++N2LO predictions is observed in one of the maxima of
the cross section; however, for the configuration shown in the central
panel, the largest (negative) δN2LO−N4LO+(θ1, θ2, ϕ2, S) occurs at the
slope of the cross section around S = 160 MeV. A relatively large
spread of cross sections and the angles defining this configuration
make it, in our opinion, an encouraging case for experimental
efforts. In the future, it would be interesting to investigate the
origin of the enhanced sensitivity of these configurations to the
details of the nuclear Hamiltonian and to study the effects of the
isospin-breaking corrections to the NN force considered in ref. [17].

3.3 E = 200MeV: 3NF effects

Finally, for the predictions at Λ = 450 MeV, we define
accordingly

δ3NF θ1, θ2, ϕ2, S( ) ≡ d5σ
dΩ1dΩ2dS
( )NN − d5σ

dΩ1dΩ2dS
( )NN+3NF

1
2

d5σ
dΩ1dΩ2dS
( )NN + d5σ

dΩ1dΩ2dS
( )NN+3NF( )) (9)

and

Δ3NF ≡ Δ3NF θ1, θ2( ) ≡ max
ϕ2 ,S{ } δ

3NF θ1, θ2, ϕ2, S( ). (10)

In Eq. 9, the two cross sections are obtained at Λ = 450 MeV, with
the N4LO+ NN force alone or combined with the N2LO 3NF.

Our results for Δ3NF are shown in Figures 7, 8. The Δ3NF values
are in the range (−0.378, 0.386) without constraints on the cross
sections and energies and in the range (−0.270, 0.386) when these
restrictions are taken into account. Initially, in most of the θ1 − θ2
regions, Δ3NF is negative or close to zero. For almost half of the θ1 −
θ2 combinations, we observe the importance of the 3NF as Δ3NF is
in the range (−0.378, − 0.150). Only for both polar angles below
≈ 25° Δ3NF becomes positive. If configurations with small cross
sections and energies are neglected, we find in the most typical case
−0.14 < Δ3NF < − 0.07. The largest positive Δ3NF value occurs either
when both polar angles are small or when one of them is small and
the other one is very large. The distribution of nucleon energies in

FIGURE 5
Values of nucleon 1 energy E1 (left) and the azimuthal angle ϕ2 (right) in the θ1–θ2 plane corresponding to the kinematic configurations from the right
panel of Figure 4.
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the configurations contributing to Figure 7B reveals that the largest
|Δ3NF| is observed when one of the observed nucleons absorbs
nearly all of the kinetic energy, while the energy of the remaining

observed nucleon becomes close to the imposed threshold of
10 MeV. For most of the configurations, ϕ12 is large, and only
for configurations close to this diagonal θ1 = θ2 or close to the line

FIGURE 6
Differential cross sections at three selected kinematic configurations with maximal ΔN2LO−N4LO+ values. The dashed black (solid red) curve represents
predictions based on the N2LO (N4LO+) NN force supplemented in both cases by the N2LO 3NF. Λ = 450 MeV was used.

FIGURE 7
Δ3NF in the incoming nucleon lab. Kinetic energy Elab = 200 MeV. (A) shows predictions based on all the configurations studied, while for (B),
additional thresholds for the energies of the detected neutrons and the magnitude of the cross sections have been imposed: E1 > 10 MeV, E2 > 10 MeV,
( d5σ
dΩ1dΩ2dS

)400 >0.01 [mb sr−2 MeV−1], and ( d5σ
dΩ1dΩ2dS

)550 >0.01 [mb sr−2 MeV−1].

FIGURE 8
Values of nucleon 1 energy E1 (left) and the azimuthal angle ϕ2 (right) in the θ1–θ2 plane corresponding to the kinematic configurations from the right
panel of Figure 7.

Frontiers in Physics frontiersin.org07

Skibiński et al. 10.3389/fphy.2023.1084040

225

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1084040


perpendicular to that diagonal at θ1 = 60°small relative azimuthal
angles are preferred.

Figure 9 shows the differential cross section at three
configurations selected from those that maximize Δ3NF. Figure 9A
shows a case where 3NF lowers the cross section by about 39% at S =
128 MeV. In the two remaining configurations, 3NF increases the
cross section by 22% at S = 71 MeV (Figure 9B) and by 23% at S =
187.5 MeV (Figure 9C).

This concludes our discussion of the cross section at E =
200 MeV, and in the remaining part of Section 3, we present
similar maps as above, but for the deuteron breakup reaction
induced by nucleons with a lower kinetic energy of E = 135 MeV.

3.4 E = 135MeV: Cutoff dependence

Figure 10 shows Δ400−550, both before and after implementing
the cutoff conditions on the energies E1 and E2 and the exclusive
cross sections, obtained with Λ = 400 MeV or Λ = 550 MeV. As in
the case of E = 200 MeV, the N4LO+ NN interaction is used,
complemented by the N2LO 3NF. We also maintain the same

thresholds for energies and the same cross sections as were used at
E = 200 MeV.

Initially, Δ400−550 varies between −24%, 17% but most often
remains in the (−12%, 4%) intervals. The interesting
configurations with Δ400−550 < −20% are typically those with one
of the θi below at approximately 30° and another θi in the (45°, 100°)
range. The maximal positive Δ400−550 occurs only in the part of the
θ1 − θ2 plane where both θi are small. After reducing the number of
allowed configurations by applying the threshold conditions, Δ400−550

is found in the (−19%, 12%) range. Maximal values, around
Δ400−550 = 10%, survive at both θi small. On the contrary, regions
with large negative Δ400−550 are significantly shrunk. In most of the
phase space, Δ400−550 belongs to (−10%, 0%). Comparing the
resulting picture and numbers with those at E = 200 MeV, there
is a significant increase in the magnitude of Δ400−550 when moving to
higher energies, on average by a factor of two. This is, of course,
perfectly in line with the expectations based on the fact that the
truncation uncertainty of the chiral EFT grows with energy.

The pattern of E1 for configurations leading to maximal
Δ400−550 at E = 135 MeV is similar to that at E = 200 MeV, as
shown in Figure 11. Of course, the lower reaction energy results in

FIGURE 9
Differential cross sectionsmaximizing Δ3NF at three selected kinematic configurations defined by (A) θ1 = 17.5°, θ2 = 17.5°, ϕ12 = 2.5°, (B) θ1 = 42.5°, θ2 =
42.5°, ϕ12 = 7.5°, and (C) θ1 = 42.5°, θ2 = 67.5°, ϕ12 = 177.5°. The dashed black curve represents predictions based on the N4LO+ NN force only. The red solid
curve stands for predictions based on the N4LO+ NN force supplemented by the N2LO 3NF. Λ = 450 MeV was used.

FIGURE 10
Δ400−550 in the incoming nucleon lab. Kinetic energy Elab = 135 MeV. The left panel shows predictions based on all the configurations studied, while
for the right panel, additional thresholds for the energies of the detected neutrons and the magnitude of the cross sections have been imposed: E1 >
10 MeV, E2 > 10 MeV, ( d5σ

dΩ1dΩ2dS
)400 >0.01 [mb sr−2 MeV−1], and ( d5σ

dΩ1dΩ2dS
)550 >0.01 [mb sr−2 MeV−1].
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lower final state nucleon energies, but again, in some θ1 − θ2
regions, we obtain combinations of small E1 and medium or large
E2 values, or vice versa, or both energies are about half of the
maximal available energy. The pattern for ϕ12 is even more similar
to that for E = 200 MeV—large relative angles dominate the
picture, and only for θ1 ≈ θ2)60° ϕ12 is small. These
similarities and the similar patterns shown in Figures 4B, 12B
suggest that the considered observables at these two energies may
exhibit sizeable correlations.

3.5 E = 135MeV: Changes with the chiral
order

Next, Figures 12, 13 show the analysis of ΔN2LO−N4LO+ and the
corresponding kinematic configurations maximizing it. Similar
to the case of E = 200 MeV, ΔN2LO−N4LO+ is huge: ΔN2LO−N4LO+ ∈

(−2.5, 2) for E = 135 MeV if no additional conditions are
imposed on the energies and the cross sections. For most of
θ1 − θ2 pairs, we find configurations where ΔN2LO−N4LO+ takes
values above 80%. Imposing the threshold conditions used here,
which limits the possible number of configurations, leads to a
much smaller ΔN2LO−N4LO+ between −20% and +15%. For a
significant part of the phase space, the N4LO+ NN force
increases the cross sections, which results in negative
ΔN2LO−N4LO+. Similar to the results at E = 200 MeV, the
highest values of ΔN2LO−N4LO+ appear at one of the small
azimuthal angles, below approximately 20°, and another one
in the range of (70°, 180°). Configurations with the largest
negative ΔN2LO−N4LO+ have at E = 135 MeV a slightly different
distribution than observed in Figure 4B—in addition to the
previously observed patterns, now also configurations with θ1 =
θ2 ∈ (20°, 30°) contribute. The full range for ΔN2LO−N4LO+ at E =
135 MeV is slightly narrower than that at E = 200 MeV.

FIGURE 11
Values of the nucleon 1 energy E1 (left) and the azimuthal angle ϕ2 (right) in the θ1–θ2 plane corresponding to the kinematic configurations from the
right panel of Figure 10.

FIGURE 12
ΔN2LO−N4LO+ in the incoming nucleon lab. Kinetic energy Elab = 135 MeV. (A) shows predictions based on all studied configurations, while for (B),
additional thresholds for the energies of the detected neutrons and the magnitude of the cross sections have been imposed: E1 > 10 MeV, E2 > 10 MeV,
( d5σ
dΩ1dΩ2dS

)400 >0.01 [mb sr−2 MeV−1], and ( d5σ
dΩ1dΩ2dS

)550 >0.01 [mb sr−2 MeV−1].
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The distribution of nucleon energies at E = 135 MeV is again
reminiscent of that observed at E = 200 MeV, taking into account a
different absolute energy scale. More deviations are observed for ϕ12,
as shown in Figure 13B. At E = 135 MeV, the smallest ϕ12 survives
only in one of the two large regions observed for higher energies in
Figure 5. Also, for the smallest θ1 and θ2 medium values of ϕ12 are
now preferred instead of small ϕ12.

3.6 E = 135MeV: 3NF effects

The effects of the 3N interaction at E = 135 MeV are shown in
Figure 14. With no additional constraints on energies and cross
sections, we find |Δ3NF| up to 30%. Actions of the 3NF are possible in
both directions —there are configurations where the three-body
potential decreases the cross section (positive Δ3NF) or where the
cross section is increased (negativeΔ3NF). The first configurations are
those with θ1 and θ2 below ≈ 30° but above 5°. In the other dominant

part of the θ1 − θ2 plane, Δ3NF is negative and in many cases remains
below −10%. This does not change much when only cross sections
above 0.01 [mb sr−2 MeV−1] and energies above 10 MeV are
considered. Nearly, for all the allowed configurations contributing
to Figure 14 Δ3NF < − 5%. The largest 3NF effects are clustered
around the line parallel to the diagonal in θ1 = θ2 ≈ 60°. Δ3NF above
+10% requires both θi small. Comparing the results in Figure 14 with
those in Figure 7, we observe that the maximal 3NF effects change
slightly between E = 135 MeV and E = 200 MeV but are on average
larger at higher energies.

The pattern of nucleon energies at which Δ3NF is minimized
shows that two detected nucleons have intermediate energies in the
approximate range of 30 − 70 MeV, as shown in Figure 15. The large
ϕ12 dominates almost all the configurations examined. The only
exceptions are some of the configurations on the diagonal θ1 = θ2
including those yielding the largest positive Δ3NF. The medium
nucleon’s energies and large relative azimuthal angles again
provide good opportunities for measurements.

FIGURE 13
Values of nucleon 1 energy E1 (A) and the azimuthal angle ϕ2 (B) in the θ1–θ2 plane corresponding to the kinematic configurations from the right panel
of Figure 12.

FIGURE 14
Δ3NF at the incoming nucleon lab. Kinetic energy Elab = 135 MeV. The left panel shows predictions based on all the configurations studied, while for
the right panel, additional thresholds for the energies of the detected neutrons and themagnitude of the cross sections have been imposed: E1 > 10 MeV,
E2 > 10 MeV, ( d5σ

dΩ1dΩ2dS
)400 >0.01 [mb sr−2 MeV−1], and ( d5σ

dΩ1dΩ2dS
)550 >0.01 [mb sr−2 MeV−1].
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4 Conclusions

Recent progress in the derivation of nuclear forces from the
chiral effective field theory has reduced substantially uncertainties in
model predictions. The inclusion of higher-order terms of the chiral
expansion in the NN interaction significantly improves the
description of the NN data and extends the energy range in
which chiral forces can be reliably applied. However, some
questions remain. In this article, we address the problem of the
regulator’s dependence on nucleon-deuteron predictions. More
precisely, we use the SMS interaction [12] up to N4LO+ and
supplement it with the N2LO three-nucleon interaction [34],
which is fully consistent with the SMS NN force up to this order.
Within this interaction model, we study the exclusive cross section
for the nucleon-deuteron breakup process at two energies of the
incoming nucleon: E = 135 MeV and E = 200 MeV. We do not
restrict ourselves to selected final kinematic configurations, but
perform a systematic search over the whole kinematically allowed
phase space, defining dense grids of momenta directions and
energies of two outgoing nucleons. This yields a total of 363 =
46656 combinations of (θ1, θ2, and ϕ12), and for each of them, we
have on average approximately 100 grid points on the S-curve; thus,
the total number of studied configurations amounts to five million.
Having such a rich set of predictions, we present them in the form of
maps in θ1 − θ2 planes, identifying the configurations for which there
are the largest differences between cross sections based on different
cutoff values. Keeping in mind that such maps can serve as a guide
for experimental studies, we impose additional conditions on the
magnitudes of the cross sections and energies of the detected
nucleons. We find that at E = 200(135) MeV, the cutoff
dependence can spread the resulting predictions significantly.
The most significant effects appear for configurations that appear
to be relatively easily accessible experimentally. The maps included
in the article allow one to unambiguously read out all the details of
such configurations. The observed cutoff variations should be tamed
by adding 3NFs of order N4LO. It is well known that additional 3N
contact interactions appear in this order [25, 26]. The configurations

with the largest cutoff dependence will be good candidates to
determine the corresponding low energy constants.

A similar approach allowed us to investigate the sensitivity of the cross
sections to upgrading the two-body interaction fromN2LO toN4LO+.We
observed that the inclusion of higher-order terms in the NN interaction is
necessary at the relatively high energies studied here, as it changes the
cross section by up to approximately 20% (27%) at E = 135(200)MeV.
Finally, we observed that the inclusion of the three-nucleon interaction
leads to effects of up to 27% at both energies studied.

The present work focuses on the configurations that show the
highest sensitivity to different features of the nuclear Hamiltonian.
The differences between the predictions we have found exceed
typical experimental uncertainties achievable today. Thus,
measurements of the cross section in the configurations discussed
here may help to further constrain the chiral nuclear forces. It would
also be interesting to confront the observed residual dependence of
the breakup observables on the cutoff values and the EFT expansion
order with the estimated truncation errors.
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