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Canopy chlorophyll content (CCC) indicates the photosynthetic functioning of a crop,
which is essential for the growth and development and yield increasing. Accurate
estimation of CCC from remote-sensing data benefits from including information on leaf
chlorophyll and canopy structures. However, conventional nadir reflectance is usually
subject to the lack of an adequate expression on the geometric structures and shaded
parts of vegetation canopy, and the derived vegetation indices (VIs) are prone to be
saturated at high CCC level. Using 3-year field experiments with different wheat cultivars,
leaf colors, structural types, and growth stages, and integrated with PROSPECT+SAILh
model simulation, we studied the potential of multi-angle reflectance data for the
improved estimation of CCC. The characteristics of angular anisotropy in spectral
reflectance were investigated. Analyses based on both simulated and experimental
multi-angle hyperspectral data were carried out to compare performances of 20 existing
VIs at different viewing angles, and to propose an algorithm to develop novel biangular-
combined vegetation indices (BCVIs) for tracking CCC dynamics in wheat. The results
indicated that spectral reflectance values, as well as the coefficient of determination
(R2) between mono-angular VIs and CCC, at back-scattering directions, were mostly
higher than those at forward-scattering directions. Mono-angular VIs at +30◦ angle,
were closest to the hot-spot position in our case, achieved the highest R2 among 13
viewing angles including the nadir observation. The general formulation for the newly
developed BCVIs was BCVIVI = f × VI(θ1) − (1 − f) × VI(θ2), in which the VI was
used to characterize chlorophyll status, while the subtraction of VI at θ1 and θ2 viewing
angles in a proportion was used to highlight the canopy structural information. From our
result, the values of the θ1 and θ2 around hot-spot and dark-spot positions, and the f
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of 0.6 or 0.7 were found as the optimized values. Through comparisons revealed that
large improvements on CCC modeling could be obtained by the BCVIs, especially for
the experimental data, indicated by the increase in R2 by 25.1–51.4%, as compared to
the corresponding mono-angular VIs at +30◦ angle. The BCVIMCARI[705,750] was proved
to greatly undermine the saturation effect of mono-angular MCARI[705,750], expressing
the best linearity and the most sensitive to CCC, with R2 of 0.98 and 0.72 for simulated
and experimental data, respectively. Our study will eventually have extensive prospects
in monitoring crop phenotype dynamics in for example large breeding trials.

Keywords: winter wheat, multi-angle hyperspectral remote sensing, canopy chlorophyll content, biangular
combination, crop phenotype

INTRODUCTION

Canopy chlorophyll content (CCC) is defined as the total amount
of chlorophyll present in the canopy per unit ground area.
The CCC, as the product of leaf chlorophyll content (LCC)
and leaf area index (LAI), is capable of indicating the overall
characteristics of plant assemblages, to avoid the deficiency
of LCC, which mainly involves the information of individual
plant conditions. It is an important phenotypic trait for crop
breeding since it can represent the plant’s capacity to intercept
and use sunlight through photosynthesis. Also, it is a key factor
influencing crop biological function with consequences on many
aspects, including crop phenotypes and plant stress, as well as
crop quality and yield (Merzlyak et al., 1999; Huang et al., 2011;
Gutierrez et al., 2015). In addition, CCC is proven to be very
sensitive to N availability in the soil (Hinzman et al., 1986), thus
precise monitoring of CCC plays an important role in optimizing
N fertilizer strategy, and consequently, obtaining a higher yield,
and at the same time, avoiding the waste of resources and the
pollution of farmland ecosystem in the context of precision
agriculture. In the past decades, the significance of CCC for crop
growth and development status and agricultural management
has motivated the interest and substantial efforts of researchers
on high-throughput determination of crop CCC using remote-
sensing data (Broge and Leblanc, 2001; Broge and Mortensen,
2002; Li et al., 2016), and has provided the rationale for improving
our capability to remotely measure it at the field or larger scales.

Conventionally, CCC estimation was mostly based on spectral
reflectance acquired from a near nadir direction. Several optical
indices have arisen in the literatures and have been proven to
be well-correlated with vegetation chlorophyll content (Daughtry
et al., 2000; Sims and Gamon, 2002; Gitelson et al., 2006;
Wu et al., 2008). As the significant relationship between leaf
nitrogen and chlorophyll (Li et al., 2013), a series of nitrogen
indices [e.g., Nitrogen Reflectance Index (NRI), Normalized
Difference of the Double-peak Areas (NDDA), Ratio Vegetation
Index (RVI), Normalized Difference Vegetation Index green-
blue (NDVIg−b)] were proposed for tracking nitrogen changes
according to spectral features of chlorophyll (Bausch and Duke,
1996; Hansen and Schjoerring, 2003; Xue et al., 2004; Feng
et al., 2014), and in turn, they have also been investigated to
assess crop chlorophyll status (Li et al., 2016). However, most
of these vegetation indices (VIs) were prone to suffering from

saturation (Sims and Gamon, 2002; Haboudane et al., 2004),
thus, reducing their sensitivity to high chlorophyll content.
Researchers have been hard at work finding ways to cope with this
issue, although quite difficult, if not impossible, to achieve. One
of the approaches is to use the red-edge bands to take the place of
red bands partly due to the unique characteristics and potential
of the red edge region for chlorophyll estimation (Blackburn,
1998). For example, Gitelson and Merzlyak (1994) focused
on improving the commonly and widely used Normalized
Difference Vegetation Index (NDVI) and Simple Ratio (SR)
and proposed the NDVI[705,750] and SR[705,750]. Wu et al.
(2008) developed the Modified Chlorophyll Absorption Ratio
Index (MCARI[705,750]) and MCARI/Optimized Soil-adjusted
Vegetation Index (MCARI/OSAVI[705,750]) based on previously
published MCARI and MCARI/OSAVI (Daughtry et al., 2000),
by taking into account the effect of quick saturation at the red
band. Ground truth validation showed an appropriate result
for high chlorophyll content estimation in winter wheat and
maize. However, these VIs were calculated from the nadir
spectral reflectance, which is mainly contributed by the upper
leaves of the canopy (Li et al., 2013), making it very difficult
to depict the chlorophyll information over the whole canopy,
especially for the complicated canopies that vary in vegetation
types, canopy structures, background contributions, etc. (Leblanc
et al., 1997). Moreover, the lack of expression of information
on the geometric structures and the shaded parts of vegetation
canopy would limit the use of nadir-based VIs for accurate
determination of chlorophyll status when upscaling to canopy
level, and then, hardly an adequate description of characteristics
of plant communities.

A possible alternative and complementary method to
minimize these limitations presented above is the exploitation
of multi-angle remote-sensing technology. Multi-angle
observations contain much more information than the simple
nadir observation since they capture the information of an
area of interest from several different angles. It is demonstrated
that multi-angle canopy reflectance has the ability of assessing
three-dimensional canopy structure that is poorly detected by the
nadir alone (Chen et al., 2003; Brown de Colstoun and Walthall,
2006), so they are expected to provide the possibility to evaluate
CCC more accurately for crops. There have been studies showing
that off-nadir spectral sensing generated more effective VIs for
monitoring leaf biological parameters when compared to the
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nadir direction (Stagakis et al., 2010; Zhang et al., 2021). Several
recent studies that used multi-angle spectral data also focused
on developing new multi-angular VIs aiming to obtain truly
better vegetation variables inversions (e.g., LAI, leaf nitrogen
content, and water use efficiency) than the conventional VIs
(Hasegawa et al., 2010; Wu et al., 2010; He et al., 2016; Zhang
et al., 2021). Indeed, these VIs have enriched the methodology
for vegetation parameters estimation with remote-sensing
technology. Nevertheless, few researchers have reported the
construction of multi-angular VIs for crop CCC retrieval.

In recent years, some multi-angle observing data are already
available from sensors mounted on different remote sensing
platforms. Compared to airborne and spaceborne platforms,
such as Multi-angle Imaging Spectroradiometer (MISR), the
Compact High-Resolution Imaging Spectrometer (CHRIS), the
ground-based goniometers, are used more extensively, since
they can measure vegetation canopy at higher spatial resolution,
as well as extremely various directions, by adjusting angular
sampling and viewing height in a very flexible way. In addition,
the PROSPECT+SAILh (PROSAIL) model describes how light
propagation within vegetation canopy and has been successfully
used before to develop and test various VIs for estimating leaf
parameters for multiple types of vegetation including wheat
(Haboudane et al., 2004; Wu et al., 2008; Zhou et al., 2019).
It allows for the simulation of reflectance at arbitrary viewing
and illumination geometries and a set of leaf and canopy
parameters, providing another convenient avenue to create
multi-angle spectral data and characterize different traits for a
wheat phenotype.

The main purpose of this study is to propose the BCVI
that includes abundant chlorophyll and structural information
of plant communities, yet, resistant to saturation limits, using
multi-angle spectral data, then, benefits the high-throughput and
nondestructive determination of crop CCC compared to the

conventional mono-angular VIs. The analyses are based on a
simulated canopy multi-angle hyperspectral reflectance dataset
produced by PROSAIL model in combination with real ground
measured data collected from 3-year field campaigns. The study
is composed of three phases: (1) to analyze the characteristics
of angular anisotropy in spectral reflectance; (2) to examine the
performances of previously published mono-angular VIs in CCC
estimation and identify the VIs that is sensitive to CCC of winter
wheat; (3) to develop the new BCVIs by coupling spectral and
angular information and compare their performances with the
corresponding mono-angular VIs, to evaluate the improvement
of CCC estimation when the multi-angle observation was used.

MATERIALS AND METHODS

Experimental Design
The experiments were conducted over 3 years (2004, 2005,
and 2007) at Xiaotangshan National Precision Agriculture
Experimental Site (116◦120′E, 40◦13.20′N), in Changping
district, Beijing, China (Figure 1). This experimental site has
been operational since 2001 and used for precision agriculture
research. The crop selected in this study was winter wheat, which
was cultivated in silty clay soil with sufficient water supply and
uniform nutrient management. The nutrients of soil in the topsoil
layer (0–.20 m depth) were as follows: 1.42–2.2% of organic
matter, 117.6–129.1 mg/kg of available potassium, and 20.1–
55.4 mg/kg of available phosphorus. Information on different
measurement times, wheat cultivars, leaf colors, leaf structural
types, and sampling dates were summarized in Table 1. All
cultivars were sown with a row space of 25 cm, each cultivar
was planted in a plot and repeated three times. A total of 60
datasets, including canopy multi-angle spectral reflectance and
corresponding CCC, were collected during the 3 years.

FIGURE 1 | The overview map of study area (cited from Kong et al., 2021).
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TABLE 1 | Different measurement times, wheat cultivars, leaf colors, leaf structural
types, and sampling dates for the experiments.

Year Wheat
cultivar

Leaf color Leaf structural
type

Sampling date

2004 Laizhou
3279

Dark green Erective Stem elongation (Z34),
booting (Z47), heading
(Z59)

Linkang 2 Dark green Loose

Jing 411 Light green Erective

9507 Light green Loose

2005 Nongda
3291

Dark green Erective Stem elongation (Z34),
booting (Z47), heading
(Z59)

Jingdong 8 Dark green Middle

Linkang 2 Dark green Loose

Lumai 21 Light green Erective

Jingwang
10

Light green Middle

9507 Light green Loose

2007 Laizhou
3279

Dark green Erective Stem elongation (Z31),
stem elongation (Z34),
booting (Z47), heading
(Z59), milk-filling (Z73)

I-93 Dark green Erective

Linkang 2 Dark green Loose

Jing 411 Light green Erective

Jing 9428 Light green Loose

9507 Light green Loose

In situ Measurements
Measurement of Canopy Multi-Angle Spectral
Reflectance
Canopy multi-angle spectral reflectance was measured in each
plot using an ASD FieldSpec 3 spectrometer (Analytical Spectral
Devices, Boulder, CO, United States), with a 25◦ field-of-view
fiber optics, under clear sky conditions between 11:00 and 13:00
(Beijing local time) when minimum variations in solar view
angle occur. The instrument records spectral radiance with a
sampling interval of 1.4 nm and a resolution of 3 nm between
350 and 1,050 nm, and a sampling interval of 2.0 nm and a
resolution of 10 nm between 1,000 and 2,500 nm. It was held on
a rotating bracket to enable spectral measurements of the same
target from different angles in a short time. Canopy multi-angle
spectral measurements were conducted in the solar principal
plane (constructed by the direction of incident direct sunlight,
and the direction of the normal to surface target) at different
viewing zenith angles (θ). A total of 13 viewing angles varied from
−60◦ to +60◦ with 10◦ incremental step (i.e., θ = 0◦,±10◦,±20◦,
±30◦,±40◦,±50◦, and±60◦), where a positive angle refers to the
back-scattering direction (the side facing away from the sun), a
negative angle refers to the forward-scattering direction (the side
facing into the sun). The nadir (i.e., θ = 0◦) spectral measurements
were made at a height of approximately 1.3 m above the canopy
top. A white Spectralon (Labsphere, Inc., NH, United States)
reference panel was used under the same illumination conditions
to convert the spectral radiance to reflectance before and after

canopy spectral measurements. Twenty scans were performed
and averaged to obtain canopy spectral reflectance per viewing
angle. More detailed information about the multi-angle spectral
measurements can be found in previous studies (Wu et al., 2010;
Huang et al., 2011).

Determination of Canopy Chlorophyll Content
Four 1-m consecutive rows of wheat in the plot, within the
footprint of canopy multi-angle reflectance acquisitions, were
harvested by cutting off the aboveground portions, then, put in
cooled black plastic bags and transported to the laboratory to
measure the biological parameters. Leaves that fully expanded
and showed homogenous color, as well as no visible sign of
damage, were sampled from top to bottom of the canopy. Two
leaf disks (about 0.25 cm2) were cut-off from each leaf sample.
One part of the disks were used for the chlorophyll extraction,
which was carried out by immersing and grinding the disk in
10 mL aqueous acetone/distilled water buffer solution (80:20,
volume proportion). After storing the solution in darkness for
more than 24 h, the absorbance was measured with a UV-VIS
spectrophotometer (Perkin-Elmer, Lambda 5, Waltham, MA,
United States) at 645 and 663 nm wavelengths. Leaf chlorophyll
a and chlorophyll b content (mg/L) were determined using
Equations 1, 2 (Lichtenthaler, 1987). Another part of leaf disks
was weighted after drying in an oven at 80◦C for 48 h to
determine leaf dry weight (DW, g), and then, used to compute leaf
mass per area (LMA, g/cm2), defined as the ratio between leaf dry
weight and leaf area (Poorter et al., 2009). The LAI measurement
was conducted by the laboratory analysis, 10% of all the sampled
leaves were taken as a subsample for leaf area measurement using
a Li-Cor 3100 area meter (Lincoln, NB, United States), and the
weight of leaves was recorded to scale up to the LAI of the 1 m2

area. The CCC (µg/cm2) was calculated as the product of LCC
(µg/cm2) and LAI, as shown in Equation 6.

LCCa
(
mg/L

)
= 12.25 A663 − 2.79 A645 (1)

LCCb
(
mg/L

)
= 21.50 A645 − 5.10 A663 (2)

LCCa
(
mg/g

)
= [LCCa

(
mg/L

)
× VT

(
ml
)
]/

[DW
(
g
)
× 1,000] (3)

LCCb
(
mg/g

)
= [LCCb (mg/L)× VT(ml)]/

[DW (g)× 1,000] (4)

LCC (µg/cm2) = [LCCa
(
mg/g

)
+ LCCb

(
mg/g

)
]

× LMA
(
g/cm2)

× 1,000 (5)

CCC (µg/cm2) = LCC (µg/cm2)× LAI (6)

where A645 and A663 are the absorbances of extract solution
at wavelength 645 and 663 nm, respectively; LCCa is leaf
chlorophyll a content, LCCb is leaf chlorophyll b content, VT(ml)
is the volume of extract solution.

PROSPECT+SAILh Model Simulation
In order to evaluate whether multi-angle observations can lead
to the improved estimation of CCC, PROSAIL radiative transfer
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model, a coupled model of the leaf optical model PROSPECT
and the canopy bidirectional reflectance model SAILh, was used
for simulation of canopy multi-angle reflectance and sensitivity
analysis of VIs. At the leaf level, PROSPECT model simulates
leaf reflectance and transmittance between 400 and 2,500 nm
at 1 nm increment, as a function of a series of biochemical
parameters, including leaf mesophyll structure parameter (N),
LCC, leaf carotenoid content (Car), leaf brown pigment content
(Cbrown), leaf equivalent water thickness (Cw), and leaf dry matter
content (Cm). The SAILh model has the capacity to simulate
canopy multi-angle spectral reflectance, which is described as a
function of LAI, average leaf angle (ALA), hot-spot parameter
(hspot), soil moisture parameter (psoil), a fraction of diffuse
incident radiation (skyl), and the parameters controlled the
view-sensor-illumination geometry, i.e., solar zenith angle, view
zenith angle, and the relative azimuth angle between the sun
and sensor. The combined PROSPECT+SAILh model has been
extensively used in a large number of studies and applications
(Jacquemoud et al., 2009).

To perform the PROSAIL simulation, we set the LCC ranged
from 25 µg/cm2 to 100 µg/cm2 in steps of 5 µg/cm2, whilst the
LAI ranged from 1 to 8 in steps of 0.5, based on the field measured
data regarding the wheat investigated in this study. The CCC
was the product of the model input parameters LCC and LAI.
The solar zenith angle was set to 30◦, the values of view zenith
angles were varied from 0◦ to 60◦ by changing the observation
angle in 10◦ increments, as well as the relative azimuth angles
between the sun and the sensor was set to 0◦ (corresponding
to the back-scattering directions) and 180◦ (corresponding to
the forward-scattering directions), which were all consistent with
the field measurements. Input parameter Cbrown was assigned
a value of 0 since there were no brown leaves observed in the
wheat canopy after visual inspection. Other input variables were
either determined at the averaged values in accordance with
the experimental plots or taken from the published literatures
(Haboudane et al., 2004; Yu et al., 2014). A dataset of 3,120
canopy multi-angle reflectance simulations was generated by
running PROSAIL model using a random combination of the
input parameters (Table 2).

Mono-Angular and Biangular-Combined
Vegetation Indices
Canopy spectral reflectance measured from different viewing
angles was processed and analyzed as an individual dataset in this
study. A total of 20 published VIs that were previously proposed
for leaf chlorophyll and nitrogen estimates were selected. They
were grouped into chlorophyll indices and nitrogen indices
(Table 3). On one hand, these VIs were calculated from spectral
reflectance obtained at a given viewing angle among 13 viewing
angles, referred to as mono-angular VIs, then were tested for the
potential of CCC estimation. On the other hand, we established a
series of BCVIs based on the VIs shown in Table 3. The formula
is given in Equation 7. The values of each VI at all the possible
two-angle observations, selected from 13 viewing zenith angles
between −60◦ and +60◦, were combined in form of subtraction,
with a parameter “f ” changing from 0 to 1 at a step of 0.1 was

TABLE 2 | Input parameters of PROSAIL model.

Parameters Units Values Steps

PROSPECT model

Leaf mesophyll structure
parameter (N)

– 1.55 –

Leaf chlorophyll content
(LCC)

µg/cm2 25–100 5

Leaf carotenoid content
(Car)

µg/cm2 10 –

Leaf brown pigment
content (Cbrown)

µg/cm2 0 –

Leaf equivalent water
thickness (Cw)

cm 0.013 –

Leaf dry matter content
(Cm)

g/cm2 0.0045 –

SAILh model

Leaf area index (LAI) m2/m2 1–8 0.5

Average leaf angle (ALA) Degree Spherical –

Hot-spot parameter (hspot) – 0.15 –

Soil moisture parameter
(psoil)

– 1 –

Fraction of diffuse incident
radiation (skyl)

– 0.23 –

Solar zenith angle Degree 30 –

View zenith angle Degree 0–60 10

Relative azimuth angle
between the sun and
sensor

Degree 0–180 180

used as an adjusting factor, resulting in 858 combinations of
viewing angles and adjusting factor values. The BCVI built by
a given VI was referred to as BCVIVI. In the selection of the
VI used in the BCVI, the VI should be highly sensitive to the
dynamics of chlorophyll. So, the VIs that achieved better results
in quantifying chlorophyll content at mono-angular observations
(shown in Figure 4 below) were chosen. Additionally, the value
of f represented the proportion of VI at one angle (referred to
as VI(θ1)), and the value of (1-f ) represented the proportion of
VI at the second angle (referred to as VI(θ2)). The difference of
VI between the two angles was used to strengthen the canopy
structural trait of the crop. As a consequence, this construction
algorithm is expected to allow the CCC estimation with high
accuracy when using the developed BCVI. All the calculations
were implemented using MATLAB 8.3 (The MathWorks, Inc.,
Natick, MA, United States).

BCVIVI = f × VI(θ1) − (1− f )× VI(θ2), f = 0.1, 0.2, · · · , 1
(7)

Data Analysis
To investigate the angular anisotropy in spectral reflectance, the
green, red, red edge, and near-infrared (NIR) bands (represent
by 550, 680, 705, and 750 nm, respectively) were chosen
because of their widespread use in deriving chlorophyll-related
indices (Daughtry et al., 2000; Wu et al., 2008). We computed
the normalized reflectance at all viewing zenith angles by
normalizing the nadir reflectance as a reference for the above
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TABLE 3 | Published vegetation indices used in the analyses.

Vegetation index Formula References

Chlorophyll indices

PSNDa (pigment specific simple ratio for chlorophyll a)
R800 − R680

R800 + R680
Blackburn, 1998

PSNDb (pigment specific simple ratio for chlorophyll b)
R800 − R635

R800 + R635
Blackburn, 1998

NDVI[705,750] (normalized difference vegetation index using 705 and
750 nm bands)

R750 − R705

R750 + R705
Gitelson and Merzlyak, 1994

SR[705,750] (simple ratio using 705 and 750 nm bands)
R750

R705
Gitelson and Merzlyak, 1994

CIgreen (chlorophyll index using green band)
R790

R550
− 1 Gitelson et al., 2006; Clevers

and Kooistra, 2012

CIrededge (chlorophyll index using red edge band)
R790

R710
− 1 Gitelson et al., 2006; Clevers

and Kooistra, 2012

MCARI (modified chlorophyll absorption ratio index) [(R700 − R670)− 0.2 (R700 − R550)]
(

R700

R670

)
Daughtry et al., 2000

MCARI[705,750] (modified chlorophyll absorption ratio index using 705
and 750 nm bands)

[(R750 − R705)− 0.2 (R750 − R550)]
(

R750

R705

)
Wu et al., 2008

MCARI/OSAVI (MCARI/optimized soil-adjusted vegetation index)
[(R700 − R670)− 0.2 (R700 − R550)]

(
R700
R670

)
(1+ 0.16) (R800 − R670)

/
(R800 + R670 + 0.16)

Rondeaux et al., 1996;
Daughtry et al., 2000

MCARI/OSAVI[705,750] (MCARI/OSAVI using 705 and 750 nm bands)
[(R750 − R705)− 0.2 (R750 − R550)]

(
R750
R705

)
(1+ 0.16) (R750 − R705)

/
(R750 + R705 + 0.16)

Wu et al., 2008

TCARI (transformed chlorophyll absorption ratio index) 3
[
(R700 − R670)− 0.2 (R700 − R550)

(
R700

R670

)]
Haboudane et al., 2002

TCARI/OSAVI (TCARI/optimized soil-adjusted vegetation index)
3
[
(R700 − R670)− 0.2 (R700 − R550)

(
R700
R670

)]
(1+ 0.16) (R800 − R670)

/
(R800 + R670 + 0.16)

Haboudane et al., 2002

TCARI/OSAVI[705,750] (TCARI/OSAVI using 705 and 750 nm bands)
3
[
(R750 − R705)− 0.2 (R750 − R550)

(
R750
R705

)]
(1+ 0.16) (R750 − R705)

/
(R750 + R705 + 0.16)

Wu et al., 2008

TVI (triangular vegetation index) 0.5 [120 (R750 − R550)− 200 (R670 − R550)] Broge and Leblanc, 2001

MTVI1 (modified TVI) 1.2 [1.2 (R800 − R550)− 2.5 (R670 − R550)] Haboudane et al., 2004

REP (red edge position) 700+ 40×
(R670 + R780)

/
2− R700

R740 − R700
Clevers and Kooistra, 2012

Nitrogen indices

NDVIg−b (normalized difference vegetation index using green and blue
bands)

R573 − R440

R573 + R440
Hansen and Schjoerring,
2003

NRI (nitrogen reflectance index)
R570 − R670

R570 + R670
Bausch and Duke, 1996

NDDA (normalized difference of the double-peak areas)
R755 + R680 − 2× R705

R755 − R680
Feng et al., 2014

RVI (ratio vegetation index for nitrogen)
R810

R560
Xue et al., 2004
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FIGURE 2 | A workflow diagram of canopy chlorophyll content estimation used in this study.

representative bands. Its formula was as follows:

Normalized reflectance =R(θ)

/
R(Nadir) (8)

where R(θ) and R(Nadir) indicate the spectral reflectance obtained
from a given viewing zenith angle among the 13 viewing angles
between−60◦ and +60◦ and the nadir observation, respectively.

The abilities of mono-angular VIs and BCVIs in assessing
CCC were evaluated using two datasets, one was a simulated
dataset produced by the PROSAIL model, another was measured
from the field campaigns. Linear regression was used to model
the relationship between CCC and the two types of indices, while
the leave-one-out cross-validation approach was used to validate
the models. The coefficient of determination (R2), p-value, and
root mean square error (RMSE) were employed as indicators
to evaluate the accuracy of estimation models. In addition, the
ratio of performance to deviation (RPD), defined as the ratio
between the standard deviations of the CCC to predict over
RMSE (Richter et al., 2012), was also computed. The prediction
ability of the model was interpreted according to the three classes
of RPD: RPD > 2 is considered as excellent model performance,
1.4 < RPD < 2 is considered as good model performance, and
RPD < 1.4 is considered as unacceptable model performance

(Shepherd and Walsh, 2002; Razakamanarivo et al., 2011). The
R2, RMSE, and RPD were calculated as Equations 9–11. For each
dataset, VIs that showed the highest R2 and RPD, and the lowest
RMSE with CCC was considered the optimal candidates for
predicting CCC. Improvement of CCC estimation was assessed
by comparing the estimations of CCC based on mono-angular
data and based on multi-angular data. Figure 2 shows the
methodology of CCC estimation used in this study.

R2
=

∑n
i=1((y

i
mea − ȳmea)(yiest − ȳest))2∑n

i=1(yimea − ȳmea)2 ∑n
i=1(y

i
est − ȳest)2

(9)

RMSE =

√√√√ n∑
i=1

(yiest − yimea)
2

/
n (10)

RPD =
SD(mea)

RMSE
(11)

where ymea is the measured CCC, ymea is the average value of
measured CCC, yest is the estimated CCC, yest is the average value
of estimated CCC, n is the number of samples, and SD (mea) is
the standard deviation of measured CCC.
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RESULTS

Results Based on Model Simulation Data
Angular Anisotropy in Spectral Reflectance
The curves of normalized reflectance at different viewing angles
for green, red, red edge, and NIR bands are shown in Figure 3.
It was observed that angular anisotropies in spectral reflectance
were pronounced. The reflectance obtained at back-scattering
directions was higher than that at the nadir and forward-
scattering directions over green to NIR bands, expressing larger
normalized reflectance values (R(θ)/R(Nadir) > 1). A dominant hot
spot with the maximum reflectance appeared at +30◦ viewing
angle at each band, which exactly matched the solar zenith
angle in the principal plane. Compared to the back-scattering
observations, changes of reflectance obtained from forward-
scattering directions tended to be relatively stable. The dark-
spot with the minimum reflectance occurred between −20◦ and
−30◦ viewing angles. Judged by the fluctuations of normalized
reflectance values, strong angular anisotropy was observed at

chlorophyll absorbance band represented by the 680 nm, whereas
weak angular anisotropy appeared in the 550 nm, the 705 nm, and
particularly in the 750 nm.

Relationship of Mono-Angular Vegetation Indices
With Canopy Chlorophyll Content
The linear regression models between the mono-angular
VIs and CCC were established, the values of coefficient of
determination (R2) at different viewing observations are shown
in Table 4. We found substantial variation in the ability of
mono-angular VIs to accurately track the CCC of wheat.
In general, the VIs that use bands in red edge and NIR
performed better than those with similar formulas, but use
bands in red and NIR across all observing angles, such
as MCARI[705,750] vs. MCARI, MCARI/OSAVI[705,750] vs.
MCARI/OSAVI, TCARI/OSAVI[705,750] vs. TCARI/OSAVI,
NDVI[705,750] vs. PSNDa, which further confirmed the
promising contribution of red edge bands in improving CCC
estimate. Some VIs, however, showed a somewhat weaker

FIGURE 3 | The curves of normalized reflectance at different viewing angles for green (550 nm), red (680 nm), red edge (705 nm), and NIR (750 nm) bands. The
viewing angles varied from –60◦ to +60◦ with 10◦ incremental steps, where a positive angle refers to the back-scattering direction, a negative angle refers to the
forward-scattering direction. The dash lines indicate normalized reflectance = 1, where the reflectance was measured from the nadir direction.

Frontiers in Plant Science | www.frontiersin.org 8 April 2022 | Volume 13 | Article 8663011112

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-866301 April 11, 2022 Time: 14:40 # 9

Kong et al. Multi-Angle Hyperspectral Sensing for CCC

TABLE 4 | The R2 values of estimation models between canopy chlorophyll content and VIs at different viewing angles.

Vegetation index −60 −50 −40 −30 −20 −10 Nadir +10 +20 +30 +40 +50 +60

PSNDa 0.34** 0.34** 0.35** 0.36** 0.37** 0.37** 0.37** 0.38** 0.38** 0.46** 0.37** 0.35** 0.35**

PSNDb 0.51** 0.49** 0.48** 0.48** 0.48** 0.49** 0.49** 0.50** 0.51** 0.60** 0.52** 0.51** 0.52**

NDVI[705,750] 0.62** 0.65** 0.67** 0.68** 0.69** 0.69** 0.69** 0.70** 0.70** 0.77** 0.67** 0.64** 0.60**

SR[705,750] 0.71** 0.78** 0.82** 0.84** 0.85** 0.86** 0.85** 0.84** 0.83** 0.91** 0.78** 0.74** 0.68**

CIgreen 0.74** 0.80** 0.84** 0.86** 0.88** 0.88** 0.88** 0.87** 0.86** 0.90** 0.81** 0.77** 0.71**

CIre 0.75** 0.81** 0.84** 0.86** 0.87** 0.88** 0.87** 0.86** 0.85** 0.90** 0.80** 0.77** 0.72**

MCARI 0.16** 0.15** 0.14** 0.14** 0.14** 0.14** 0.14** 0.14** 0.13** 0.11** 0.15** 0.17** 0.20**

MCARI[705,750] 0.82** 0.87** 0.89** 0.90** 0.91** 0.91** 0.91** 0.91** 0.91** 0.93** 0.88** 0.85** 0.81**

MCARI/OSAVI 0.20** 0.19** 0.19** 0.19** 0.19** 0.19** 0.19** 0.19** 0.18** 0.16** 0.19** 0.21** 0.23**

MCARI/OSAVI[705,750] 0.82** 0.86** 0.88** 0.89** 0.90** 0.90** 0.90** 0.90** 0.89** 0.92** 0.87** 0.85** 0.81**

TCARI 0.24** 0.23** 0.23** 0.23** 0.22** 0.22** 0.21** 0.21** 0.19** 0.16** 0.20** 0.22** 0.24**

TCARI/OSAVI 0.36** 0.38** 0.40** 0.41** 0.42** 0.41** 0.41** 0.39** 0.37** 0.37** 0.35** 0.35** 0.34**

TCARI/OSAVI[705,750] 0.74** 0.81** 0.85** 0.87** 0.88** 0.88** 0.88** 0.87** 0.85** 0.90** 0.80** 0.76** 0.70**

TVI 0.07** 0.10** 0.12** 0.13** 0.14** 0.14** 0.15** 0.15** 0.16** 0.17** 0.14** 0.11** 0.08**

MTVI1 0.32** 0.35** 0.38** 0.39** 0.39** 0.40** 0.39** 0.39** 0.38** 0.36** 0.36** 0.34** 0.30**

REP 0.77** 0.80** 0.83** 0.84** 0.85** 0.85** 0.84** 0.83** 0.81** 0.76** 0.77** 0.76** 0.73**

NDVIg−b 0.36** 0.38** 0.41** 0.43** 0.44** 0.45** 0.45** 0.44** 0.44** 0.47** 0.42** 0.40** 0.38**

NRI NS NS NS NS NS NS NS NS NS NS NS 0.02* 0.06**

NDDA 0.49** 0.52** 0.53** 0.54** 0.54** 0.54** 0.54** 0.53** 0.51** 0.49** 0.49** 0.48** 0.47**

RVI 0.74** 0.80** 0.84** 0.87** 0.88** 0.88** 0.88** 0.87** 0.86** 0.91** 0.81** 0.77** 0.71**

Colors correspond to the level of performance, the dark green for large R2 and the light green for small R2.
The symbols “**” and “*” indicate canopy chlorophyll content (CCC), and mono-angular VI were significantly correlated with p < 0.01 and p < 0.05, respectively. The NS
indicates no significant correlation was found.

FIGURE 4 | The changing curves of R2 values for VIs that performed well in canopy chlorophyll content (CCC) estimation at different viewing angles using model
simulated data.

relationship with the CCC in particular for the TVI and NRI, with
R2 ranging from 0 to 0.17.

Figure 4 shows the performances of VIs that could
explain more than 50% variations in CCC (p < 0.01) at

different viewing angles, i.e., NDVI[705,750], SR[705,750],
CIgreen, CIre, MCARI[705,750], MCARI/OSAVI[705,750],
TCARI/OSAVI[705,750], and REP and RVI, which enabled
efficient extraction of the most sensitive mono-angular VIs
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for CCC determination. We can observe that the coefficient
of determination of all VIs exhibited similar trends along
with the variety of viewing angles, except for the REP. The
higher correlation between the mono-angular VIs and CCC
occurred at −30◦ to +30◦ observations with the nadir direction
included (R2 ranged from 0.60 to 0.94), while the maximum R2

appeared at the measurement closest to the hot-spot, which is
30◦ back-scattering angle in our study. Among all VIs tested,
the MCARI[705,750] showed the greatest potential for CCC
modeling with R2 higher than 0.82 for all viewing angles. It gave
rise to the most significant correlations with CCC at +30◦ angle
with an R2 of 0.93 (p < 0.01).

The Potential of Biangular-Combined Vegetation
Indices for Canopy Chlorophyll Content Estimation
The R2 of the linear estimation model based on the newly
developed BCVIs was calculated with respect to the CCC. Table 5

TABLE 5 | The optimal two-angle combination (θ1 and θ2), the adjusting factor f
constructed in each best performing BCVI, and the corresponding maximum R2

for canopy chlorophyll content estimation using model-simulated data.

Biangular-combined
vegetation index

θ 1 θ 2 f R2

BCVINDVI[705,750] +30 −20 0.6 0.9

BCVISR[705,750] +30 −20 0.7 0.97

BCVICIgreen +30 −20 0.7 0.95

BCVICIre +30 −30 0.7 0.95

BCVIMCARI[705,750] +30 −20 0.6 0.98

BCVIMCARI/OSAVI[705,750] +30 −20 0.7 0.93

BCVITCARI/OSAVI[705,750] +40 −20 0.6 0.91

BCVIREP +30 −20 0.6 0.93

BCVIRVI +30 −30 0.7 0.96

summarized the optimal two-angle combination (i.e., θ1 and
θ2), the adjusting factor “f ” constructed in each best performing
BCVI and corresponding maximum R2 values of CCC modeling.
Results indicated that for almost all BCVIs, R2 reached the
peak when indices calculated from reflectance obtained from
+30◦ and −20◦ or +30◦ and −30◦ angle combinations, and
at the same time, f ranged from 0.6 to 0.7. As expected,
the BCVIMCARI[705,750] was found to be advantageous over all
the other BCVIs in CCC determination. The combination of
θ1 = +30◦, θ2 = −20◦, f = 0.6 was selected from hundreds of
angles and adjusting factor combinations, due to its outstanding
performance in capturing variations in CCC with R2 up to
0.98 (Figure 5). Furthermore, it should be noteworthy that
the value of f appeared to be very significant in affecting the
accuracy of CCC modeling at a given most sensitive two-angle
combination. As shown in Figure 5B, R2 of models derived
from the BCVIMCARI[705,750] tended to be a bell-shape with
increasing f values, with minimal R2 appearing around f = 0.5.
However, they achieved higher R2 when f varied from 0.6 to
1 compared to f changed from 0 to 0.4, implying that the
spectral reflectance obtained from back-scattering directions may
contribute more than that collected from forward-scattering
directions for enhancing CCC estimation in wheat.

An important piece of information revealed in Table 5
was that all BCVIs showed better correlations with CCC than
the corresponding VIs at any mono-angular observation, even
including the most sensitive 30◦ back-scattering angle, as well as
the nadir direction (Table 4). For instance, the BCVINDVI[705,750]
generated the biggest increase in R2 by 16.9% in comparison
of the mono-angular NDVI[705,750](+30). To further explore
how the biangular-combined and mono-angular VIs worked in
CCC estimation, the scatterplots of relationships between CCC
and the best performing BCVIMCARI[705,705] and mono-angular
MCARI[705,750] at the nadir, +30◦, −20◦ viewing angles were

FIGURE 5 | (A) The optimum three-dimensional slice map of the coefficients of determination (R2) for relationship between the canopy chlorophyll content and
biangular-combined vegetation indices (BCVI)MCARI[705,750] calculated by the modified chlorophyll absorption ratio index (MCARI)[705,750] at all the possible
two-angle observations selected from 13 viewing angles between –60◦ and +60◦, in which an adjusting factor f varied from 0 to 1 at a step of 0.1. (B) Changing
curve of R2 for relationship between canopy chlorophyll content and BCVIMCARI[705,750] at +30◦ and –20◦ angle combination along with variety of f values.
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FIGURE 6 | Scatterplots of relationships between canopy chlorophyll content and the MCARI[705,750](Nadir), MCARI[705,750](+30), MCARI[705,750](−20), and
BCVIMCARI[705,750] for model simulated dataset.

taken as an example, as shown in Figure 6. Results demonstrated
that on the one hand, the mono-angular MCARI[705,750] at the
three different viewing angles all behaved rather more widely
scattering against CCC compared to the BCVIMCARI[705,750]. On
the other hand, the mono-angular MCARI[705,750] reached a
saturation level asymptotically when CCC at high values, whereas
the BCVIMCARI[705,750] constructed based on +30◦ and −20◦
angular combination showed a better trend without a clear
saturation; it was strongly and linearly related to the CCC.

Results Based on Field Experimental
Data
Model Canopy Chlorophyll Content Using
Mono-Angular Vegetation Indices
Nine VI showed in Figure 4 that described the CCC better were
tested with the ground truth measurements. Figure 7 shows
the results of the relationship between VIs derived from mono-
angular spectral reflectance and ground measured CCC. Similar
to the results of simulated data, in CCC determination, the
+30◦ angle yielded greater significance than the other angles
for all mono-angular VIs, except the REP which only had little
sensitivity to the variations in CCC (R2

≤ 0.1), making it
barely suitable for CCC estimation. The model performances
based on the mono-angular MCARI[705,750] and the mono-
angular MCARI/OSAVI[705,750] were superior to the others,
with comparative and highest R2 of 0.51 and 0.50, respectively
at +30◦ viewing angle. Apart from the REP, the analogous pattern

of R2 changes for all VIs at different viewing angles was observed:
besides the +30◦ angle, the CCC also showed a better relationship
with VIs at both the nadir and +40◦ directions; interestingly, for
the forward-scattering observations, there were two weak peaks
with relative high R2, at −20◦ and −40◦ angles, predominating
in CCC estimation for most of VIs (SR[705,750], CIgreen, CIre,
MCARI[705,750], MCARI/OSAVI[705,750], and RVI).

Model Canopy Chlorophyll Content Using
Biangular-Combined Vegetation Indices
A series of BCVIs was established with field measured datasets
using the same method used in the section “The Potential of
Biangular-Combined Vegetation Indices for Canopy Chlorophyll
Content Estimation,” and were examined the linearity to CCC.
The BCVIMCARI[705,750] was chosen as an example to illustrate
the process of the selection of three parameters (θ1, θ2,
and f ) composing in the BCVI. From the slice maps shown
in Figure 8, R2 varied intensely with changing of different
combinations of MCARI[705,750] values at two viewing angles.
The BCVIMCARI[705,750] that was calculated by the subtraction of
MCARI[705,750] at +30◦ and −20◦ angular combination with
f = 0.6 as an adjusting factor stood out among all combinations,
with the soundest R2 for CCC estimation (R2 = 0.72), which
was consistent with the previous results of dataset simulated
by PROSAIL model. Meanwhile, the changing curve of R2

values exhibited a slightly different shape but a similar trend,
with the simulated BCVIMCARI[705,750] (Figure 5B), expressing
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FIGURE 7 | The R2 of relationship between better performing VIs (shown in Figure 4) and field measured canopy chlorophyll content at different viewing angles.

a more striking contrast between f of 0 to 0.3 and f of 0.6
to 1 (Figure 8D). This result put emphasis on the greater role
of spectral information extracted at back-scattering directions
than that at forward-scattering directions, in CCC determination
when using the field measured data, in comparison to the
simulated data. As for the other seven BCVIs, similar patterns
of slice maps and R2 changing curves occurred (not shown for
brevity). We found that the best BCVIs for investigating changes
in CCC was also generated at +30◦ and −20◦ or +30◦ and −30◦

angle combination, in which f was around 0.6 to 0.7, with R2 of
0.34 to 0.71 (Table 6).

Comparison of Performances of Biangular-Combined
Vegetation Indices and Mono-Angular Vegetation
Indices
To explore what degree the multi-angular viewing capability
of spectra can contribute to the improved CCC assessment
of wheat compared to the mono-angular observations, we
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FIGURE 8 | The three-dimensional slice maps of the R2 for relationship between field measured canopy chlorophyll content and BCVIMCARI[705,750] calculated by the
subtraction of MCARI[705,750] at all the possible two-angle observations selected from 13 viewing angles between –60◦ and +60◦, in which an adjusting factor f
varied from 0 to 1 at a step of 0.1: (A) slice map for the first viewing angle (θ1) selection, (B) slice map for the second viewing angle (θ2) selection, (C) slice map for
optimum two-angle and f value combination; (D) changing curve of R2 for relationship between field measured canopy chlorophyll content and BCVIMCARI[705,750] at
+30◦ and –20◦ angle combination along with variety of f values.

TABLE 6 | The optimal two-angle combination (θ1 and θ2), the adjusting factor f
constructed in each best performing biangular-combined vegetation indices
(BCVI), and the corresponding maximum R2 for CCC estimation using field
measured data.

Biangular-combined vegetation index θ 1 θ 2 f R2

BCVINDVI[705,750] +30 −30 0.6 0.41

BCVISR[705,750] +30 −30 0.7 0.42

BCVICIgreen +30 −20 0.7 0.38

BCVICIre +30 −30 0.7 0.34

BCVIMCARI[705,750] +30 −20 0.6 0.72

BCVIMCARI/OSAVI[705,750] +30 −20 0.6 0.71

BCVITCARI/OSAVI[705,750] +30 −20 0.6 0.45

BCVIRVI +30 −20 0.7 0.38

analyzed the performances of the newly developed BCVIs and
the corresponding mono-angular VIs at the most sensitive
+30◦ angle (Figure 9). The result revealed that the BCVIs
showed a clear increase in R2 by 25.1–51.4%, as compared

to the mono-angular VIs, and were proven to be more
effective and suitable in modeling CCC. The most significant
improvement was observed in the comparison between indices
of BCVINDVI[705,750] and NDVI[705,750](+30). As previously
explained, the BCVIMCARI[705,750] and MCARI[705,750](+30)

showed the strongest correlation with CCC among all BCVIs
and mono-angular VIs, respectively, but the BCVIMCARI[705,750]
further improved the CCC estimation accuracy by 41.2%.

We further plotted the scatterplots of BCVIs and mono-
angular VIs at the nadir, +30◦ and −20◦ or −30◦ viewing angles
based on the MCARI[705,750] and NDVI[705,750] against CCC
(Figure 10). For the two VIs, the BCVIs were characterized
by less scattered relationships with CCC compared to their
mono-angular counterparts derived from the nadir, +30◦ and
−20◦/−30◦ directions, in particular, for the BCVIMCARI[705,750].
In consistent with the simulated result, as illustrated in Figure 6,
BCVIMCARI[705,750] behaved linearly with CCC, with the scatter
points evenly distributed around the fitting line, clearly depicting
the dynamic changes of CCC (Figures 10A–D). As can be seen
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FIGURE 9 | Comparisons of R2 values of relationships between
biangular-combined vegetation indices (VIs) vs. canopy chlorophyll content
and mono-angular VIs at +30◦ viewing angle vs. canopy chlorophyll content.

in Figures 10E–H, the sensitivities of NDVI[705,750](Nadir) and
NDVI[705,750](+30) were most affected by high values of CCC,
showing a saturation effect when CCC exceeded 400 µg/cm2.
However, the BCVINDVI[705,750] improved the linearity and
reduced the saturation limit of mono-angular NDVI[705,750] at
the three viewing angles to a great extent.

Testing Canopy Chlorophyll Content Estimation
Models
The mono-angular MCARI[705,750] at the nadir and +30◦
viewing angles, as well as the BCVIMCARI[705,750] were chosen
to test the potential of these VIs in predicting the CCC by the
means of cross-validation since they were proven to be reliable
in CCC estimation both for simulated data and experimental
data. The predictions of the three indices against the ground
measured CCC were plotted in Figure 11. The CCC was well-
predicted by MCARI[705,750](+30) and MCARI[705,750](Nadir),
with RPDs larger than 2.12 and scattered in both plots fell into the
95% confidence intervals. The MCARI[705,750](+30) generated
relative higher accuracy than the MCARI[705,750](Nadir) and
R2 of 0.50 (p < 0.01) were observed for the measured dataset
with RMSE of 63.51. In comparison with the two mono-
angular MCARI[705,750], we found a more consistent agreement
between CCC values measured in the field and those estimated
by the new derived BCVIMCARI[705,750], with coefficient of
determination of 0.70 (p < 0.01), RMSE of 42.36, and RPD of
3.57. The results suggested that the BCVIMCARI[705,750] at +30◦
and −20◦ angle combination performed better and could be
more preferable than the conventional nadir direction approach
to remote sensing CCC in wheat.

DISCUSSION

In this study, we estimated crop CCC using simulated multi-
angle remote-sensing data produced with the PROSAIL model

and canopy multi-angle hyperspectral reflectance measured
from the field of winter wheat. We developed the BCVIs
by coupling, not only spectral but also angular information,
and compared the performances of these BCVIs with the
corresponding mono-angular VIs to evaluate whether the CCC
estimate could be improved from multi-angle observations. From
the characteristics of multi-angle spectral reflectance, angular
anisotropy was greatly different at the chlorophyll absorbance
and canopy reflective bands. This was mainly due to the
discrepancy of the contrast between shadowed and illuminated
canopy components at both two types of bands, which resulted
from viewing and illumination geometry and the sensor’s field
of view (Kollenkark et al., 1982; Galvao et al., 2009). In the
case of crop canopy, the reflectance at the green, red edge, and
particular NIR bands had low absorbance but highly reflective
values. The contrast at these bands was effectively reduced
because of multiple scattering processes (Sandmeier et al., 1998),
compared to the red absorbance band, weakening the expression
of angular anisotropy as demonstrated in Figure 3. However,
for all spectral bands tested, reflectance exhibited higher values
at back-scattering directions than forward-scattering directions
in the solar principal plane, primarily because more and more
fractions of illuminated leaf surfaces were viewed by the sensor,
along with its rotation from the side facing away from the sun
to the side facing into the sun. As confirmed by the study of
Sandmeier et al. (1998), the well-illuminated vegetation canopy
would be less vulnerable to the shadow effect, which led to
more signals from leaves that can be detected by the spectral
reflectance measured from the back-scattering directions. Indeed,
our results also indicated that almost all mono-angular VIs were
more closely related to the CCC at the back-scattering directions
than the forward-scattering directions for datasets of both model
simulation and ground measurements (Table 4 and Figure 7).

Angular effect presented in VIs can either be regarded as a
superfluous uncertainty for vegetation parameters estimation or
as a source of additional information that enhances the accuracy
of the parameter assessment at canopy scale (Verrelst et al.,
2008). In this study, the CCC estimation based on 30◦ back-
scattering spectral data led to an improvement, as compared
to the conventional nadir data. This can be attributed to the
reduction of soil background impact which is mostly contained
at the nadir observation. A similar result was also observed in
the studies of He et al. (2016), Kong et al. (2017), and Inoue
et al. (2008), who studied the improvements of physiological
parameters estimation for crops (e.g., canopy nitrogen content,
canopy carotenoid content, and photosynthetic efficiency) based
on multi-angle hyperspectral remote-sensing. However, it is
important to notice that the estimation of CCC improved even
further than mono-angular VIs at any viewing angle when the
multi-angular information was added, especially in the case of
the ground truth measurement. There are several explanations
for having excellent behavior. In this study, we developed
the BCVIs based on existing VIs proposed for vegetation
chlorophyll and nitrogen estimates, by applying an iterative
optimization approach, since it can search for the optimal
biangular combination from all the available viewing angles
and the most suitable adjusting factor value used. The result
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FIGURE 10 | Scatterplots of relationships between canopy chlorophyll content and BCVIs and the corresponding mono-angular VIs based on MCARI[705,750] and
normalized difference vegetation index (NDVI)[705,750] for filed experimental datasets. The blue points (A–D) represent the BCVINDVI[705,750], MCARI[705,750](Nadir),
MCARI[705,750](+30), and MCARI[705,750](−20), respectively; the black points (E–H) represent the BCVINDVI[705,750], NDVI[705,750](Nadir), NDVI[705,750](+30), and
NDVI[705,750](−30), respectively.
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FIGURE 11 | Scatterplots between measured canopy chlorophyll content and estimated canopy chlorophyll content based on the MCARI[705,750](Nadir),
MCARI[705,750](+30), and BCVIMCARI[705,750]. The solid lines indicate the regression fitting lines, the dash lines indicate the 95% confidence intervals of prediction,
the long and short dash lines indicate 1:1 lines.

showed that the angular combination composing of the best
BCVI came close to the positions of hot-spot and dark-spot
in the solar principal plane. For one thing, vegetation canopy
is a non-Lambert in nature, multi-angle spectral reflectance
can capture the uneven scattering of sunlight by vegetation,
reaching the maximum at the hot-spot direction, and the lower
value at the dark-spot position as suffering from the shadow
effect. Because the composition of shadowed and illuminated
canopy components is highly dependent on LAI, leaf orientation
distributions, and other structural properties (Stagakis et al.,
2010), the striking difference of VI values between hot spot and
dark spot, that adjusted by the value of “f,” not only facilitated
to provide more information on chlorophyll than the VI at the
solely mono-angle, but more importantly, made the information
on three-dimensional vegetation structures prominent when the
BCVI was used for tracking the changes of chlorophyll content
at canopy scale. Additionally, our work also put heavy emphasis
on the importance of the value of the adjusting factor “f ” in the
formula of BCVI for promoting the CCC estimation, but it has
not yet received widespread attention from researchers working
on quantifying CCC using multi-angle spectral data. We selected
the value of “f ” systematically, from 0 to 1 with a step of 0.1,
and concluded that the BCVIs performed best when f was 0.6
or 0.7, which implied that the contribution of VIs around the
hot-spot angle was greater than that of VIs around the dark-spot
angle. This allowed more signals from sunlit leaves to be included,
consequently, increasing the quality of vegetation biochemical
parameters (e.g., chlorophyll) reflectance contained. For another,
compared the reflectance spectra measured at a single viewing
angle, the BCVIs derived from multi-angle spectral data may
improve the CCC inversion by including additional information
on leaf chlorophyll at different vertical layers within canopies
(Huang et al., 2011).

A high amount of studies have demonstrated that many VIs
are prone to saturation with increasing vegetation biological
variables (Broge and Leblanc, 2001; Haboudane et al., 2004; Wu
et al., 2008). This limitation of saturation was also found in
the analysis of the relationship between mono-angular VIs and

CCC for overall datasets in our study (Figures 6, 10), including
the best performing MCARI[705,750], which may restrict the
reliability of their use in monitoring dense canopies with higher
CCC. Nevertheless, the saturation phenomenon was overcame in
large part by introducing the corresponding VI obtained from
another viewing angle to construct the BCVI; results of the newly
developed BCVI showed better linearity and higher accuracy
(e.g., R2 = 0.98 and 0.72 for BCVIMCARI[705,750] for PROSAIL-
simulated and filed experimental datasets, respectively), and
features the scattered display more intensively, along with the
changing of CCC than those for any mono-angular VI. This is
another reason why the BCVIs held more promising potential
in CCC assessment.

For the simulated and experimental datasets, the accuracy
of CCC estimation was all improved when using the BCVIs
we proposed. However, there were evident discrepancies in the
magnitude of improvement observed between both datasets. The
main possibility was that the PROSAIL model was not capable of
adequately reproducing the real physiological and morphological
conditions of the wheat canopy that we used in this study.
For instance, more and more studies have demonstrated that
the vertical distribution of leaf biochemical variables (e.g.,
chlorophyll and nitrogen) was non-uniform within plant canopy
(Ciganda et al., 2012; He et al., 2020), leading to different
contributions of the vertical layers to canopy spectra (Li et al.,
2015). Moreover, apart from leaves, the presence of other canopy
components, such as wheat spikes and plant stems, would
also have an impact on canopy reflectance (Haboudane et al.,
2004; He et al., 2019) and as a result the quality of extracted
crop CCC. But these factors are not taken into account in
the PROSAIL model. In addition, to focus on exploring the
sensitivities of different mono-angular VIs and the developed
BCVIs to CCC variation, LCC and LAI were set as free variables,
while the other vegetation parameters were set to fixed constants
at their respective mean values when conducting the canopy
multi-angled spectral reflectance simulation. Nevertheless, this
vegetation parameter setting may become a primary source
causing the differences with results of field measurements, since
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many parameters (e.g., leaf carotenoid, water, and fresh and
dry matter), besides LCC and LAI, were continually changing
with the growth of crops and the implementation of different
agricultural managements in reality. Due to large improvements
for field measurement dataset were obtained, our results establish
the confidence in the use of the BCVIs we developed for crop
CCC modeling in the future practical application. Nowadays,
some space-borne sensors have been specifically designed to
collect data from multi-angle observations (Barnsley et al.,
2004; Roosjen et al., 2018), solid coupling of radiative transfer
model, and multi-angle spectral information will be key to the
successful assessment of chlorophyll content at canopy scale.
Because the hot-spot reflectance is difficult to be adequately
acquired and, thus, they might be interpolated from the adjacent
measurements, future studies will be needed to further validate
whether the BCVIs derived from satellite data could provide
more accurate crop CCC estimation.

CONCLUSION

The CCC is a measure of photosynthetic potential at the canopy
level and was retrieved as the product of leaf chlorophyll and LAI.
Unlike previous analyses that mainly focused on establishing
VI from mono-angular remote sensing data, we proposed a
new method of developing the BCVIs for high-throughput
estimation of crop CCC using canopy multi-angle observations.
The BCVI was calculated by the subtraction of chlorophyll-
sensitive VI values, computing from reflectance measured around
hot-spot and dark-spot positions, with 0.6 or 0.7 as an adjusting
factor. This algorithm involved both leaf chlorophyll and canopy
structural information making the BCVIs derived from multi-
angle spectral reflectance more effective when compared to solely
using corresponding mono-angular VIs at arbitrary viewing
angle for assessing CCC across PROSAIL model-simulated
dataset and field experimental dataset. The MCARI[705,750]
was proven to be the best mono-angular VI among previously
published VIs tested, +30◦ back-scattering angle produced
better performing VI than the nadir direction. However, as they
were equally subject to the saturation limit with increasing of
CCC based on the results, we developed the BCVIMCARI[705,50]
at +30◦ and −20◦ angle combination, formulated as
0.6 × MCARI[705, 750](+30) − 0.4 × MCARI[705, 750](−20)

where +30◦ and −20◦ angles were the closest measurements
to the hot-spot and dark-spot positions in this study. We

found that the BCVIMCARI[705,750] was not only resistant to
the saturation effect, but also exhibited the highest sensitivity to
CCC variation over all datasets. Our results demonstrate that the
BCVI that taking spectral and angular information into account
could substantially improve the estimation of crop CCC, and
consequently offer more accurate information to understand
crop’s phenotypic trait across growth stages and their response to
environmental changes in agro-ecosystem.
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The genetic information and functional properties of plants have been further

identified with the completion of the whole-genome sequencing of numerous

crop species and the rapid development of high-throughput phenotyping

technologies, laying a suitable foundation for advanced precision agriculture

and enhanced genetic gains. Collecting phenotypic data from dicotyledonous

crops in the field has been identified as a key factor in the collection of

large-scale phenotypic data of crops. On the one hand, dicotyledonous

plants account for 4/5 of all angiosperm species and play a critical role in

agriculture. However, their morphology is complex, and an abundance of

dicot phenotypic information is available, which is critical for the analysis of

high-throughput phenotypic data in the field. As a result, the focus of this

paper is on the major advancements in ground-based, air-based, and space-

based field phenotyping platforms over the last few decades and the research

progress in the high-throughput phenotyping of dicotyledonous field crop

plants in terms of morphological indicators, physiological and biochemical

indicators, biotic/abiotic stress indicators, and yield indicators. Finally, the

future development of dicots in the field is explored from the perspectives

of identifying new unified phenotypic criteria, developing a high-performance

infrastructure platform, creating a phenotypic big data knowledge map, and

merging the data with those of multiomic techniques.

KEYWORDS

high-throughput phenotyping platform, dicotyledonous crops, field, research

progress, development direction

Introduction

With the increasing popularity of sequencing technology and the scale of materials

to be tested, a new issue has arisen: a lack of suitable high-throughput phenotype

acquisition technology to obtain corresponding phenotypic information. In addition,

based on a large amount of crop genome information, determining how to analyze

the interaction mechanisms of gene function, plant phenotype, and environmental

response efficiently and with a high resolution has become a new challenge (Furbank

and Tester, 2011). In this context, genomics, corresponding to the phenomics concept,

has arisen at a historic moment (Zhao et al., 2019). The essence of the phenotype is a

plant genome sequence three-dimensional expression, and its regional differentiation
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characteristics and evolution are intergenerational (Tardieu

et al., 2017; Zhao, 2019), so the plant phenotypic group contains

information with a complexity far beyond the estimates.

Therefore, the genotype–phenotype–environment relationship

can be systematically and deeply explored from an omic

perspective to reveal the response mechanism of structural and

functional characteristics of plants to genetic information and

environmental changes at multiple scales (Pan, 2015; Tardieu

et al., 2017; Zhou et al., 2018).

Currently, crop phenotype research is primarily conducted

in the United States, Germany, France, Australia, the

United Kingdom, Italy, Japan, Canada, Mexico, India, and

China (Xiao et al., 2021). Research objects have included maize

(Souza and Yang, 2021; Xie et al., 2021; Shao et al., 2022),

rice (Mishra et al., 2021; Muharam et al., 2021; Xiao et al.,

2021), wheat (Prey and Schmidhalter, 2020; Furbank et al.,

2021; Zelazny et al., 2021), and other monocotyledons. This

focus on monocotyledons probably occurred because their

morphological structure is relatively simple, and the difficulty

of image acquisition and data analysis is relatively low. Leaf

counting has been realized in maize, sorghum, and other

monocotyledons over the entire growth period (Miao et al.,

2021). However, studies on the leaves of dicotyledonous species

such as soybean and cotton have focused only on comprehensive

indicators such as canopy coverage and compactness due to

the severe occlusion between leaves and complex plant types

(Moreira et al., 2019; Li et al., 2020), which has led to the loss of

many details. Leaves are closely related to plant photosynthesis,

thus affecting biomass accumulation, which in turn is related

to yield formation, so the loss of information is not conducive

to the in-depth study of the phenotypes of dicotyledons. A

significant positive correlation exists between the panicle

number and the yield at maturity, and this number can be

identified and counted directly at a certain regional scale

in most monocotyledons. There was a significant positive

correlation between panicle number and yield at the maturity

stage, and it could be recognized and counted directly on a

certain regional scale in most monocotyledons (Jun et al., 2021;

Wanli et al., 2021). However, in many dicotyledons, researchers

Abbreviations: 3D, Three Dimensions; CNN, Convolutional Neural

Network; CSIRO, Commonwealth Scientific and Industrial Research

Organisation; CT, Computed Tomography; DCNN, Deep Convolutional

Neural Network; EB, Integrated Baggies; ETH, Ethiopia; εc, Biomass;

εe, Photochemical Energy; GWAS, Genome-Wide Association Studies;

IPPN, International Plant Phenotype Network; MRI, Magnetic Resonance

Imaging; NASA, National Aeronautics and Space Administration; OSP,

Optical Sensing-based Phenotyping; PGP, Pretty Good Privacy; PHIS,

Phenotypic mixed Information System; QTL, Quantitative Trait Loci; RGB,

An abbreviation for three primary colors; SAM, Shoot Apical Meristem;

SMAP, Soil Moisture Active Passive; SFM, Multiview Structure From

Motion; SNP, Scottish National Party; UAVs, Unmanned Aerial Vehicles;

UK, Britain.

can predict yields using only a large number of other indicators

or measure the yield by picking and laying out fruits at maturity

(Casagrande et al., 2022) or by picking and spreading out fruits

at maturity (Li et al., 2021; Xiaobin et al., 2022), which greatly

increases labor costs and is not beneficial to the development of

high-throughput phenotypes.

Branching is an important common feature of dicotyledons.

The quantity of branches and their position influence yields and

are connected to the lodging resistance. Studies have shown that

by reducing the position of branches and increasing the number

of effective branches in oilseed rape, the lodging resistance

can be improved, and the yield per plant can be increased

(Fan et al., 2021; Amoo et al., 2022). The branching ability

guarantees the yield formation in soybean (Xiaobo et al., 2012;

Yu-Shan et al., 2015). The major goal of breeders is to increase

upland cotton yields by controlling the branch type and using

appropriate mechanical picking methods. Therefore, Wu et al.

(Wu et al., 2021; Zhan et al., 2021; Sun et al., 2022) carried

out a series of studies on branching development. These studies

have contributed to improved breeding by providing great

genes for improving plant accessions. However, few studies

involving the use of high-throughput phenotyping platforms

have been conducted, which has severely slowed the breeding of

dicotyledonous plants.

Dicotyledons account for 4/5 of the total number of

angiosperms and play an important role in agricultural

production (Chuanji, 1982). Soybean, broad bean, rape, cotton,

and other dicotyledonous species are commonly cultivated and

are all directly tied to human existence. According to imprecise

statistics, the global demand for soybeans is ≈388 million

tons per year. With an annual consumption of almost 600

million tons (searched in the U.S. Department of Agriculture

data), rapeseed is the world’s second-largest oil crop species.

Therefore, high-throughput phenotypic studies on dicotyledons

are highly important.

The current high-throughput phenotyping research

environment mainly includes indoor potted plants (Bodner

et al., 2021; Zea et al., 2022) because indoor imagining, which

can swiftly and accurately obtain a large number of phenotype

inages for later analysis and verification, faces fewer restrictive

factors. Thousands of phenotypic experiments carried out

in environmentally controlled growth facilities or fields each

year can provide a vast amount of phenotypic data. Due to

the impact of environmental variations, the replication of

results by the same researcher and the repeatability of results in

separate tests by other laboratories are frequently unsatisfactory

(Poorter et al., 2012). Environmental aspects are critical and

should be given at least as much attention as the characteristics

being assessed, which leads to the next question: how does one

quantify all environmental impacts? The phenotyping platform

is systematically presented in this paper, and the determination

of the phenotype of dicotyledons against the backdrop of

the rapid development of the field phenotyping platform is
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discussed. This paper guides investigating high-throughput

phenotypic application technology for dicotyledons in the field,

enhancing precision agriculture and increasing genetic gains.

Overview of high-throughput
phenotyping of dicotyledonous
crops in the field

We collected statistics on field phenotyping facilities and the

number of publications since 2010 to better understand how

the high-throughput phenotyping of field dicot crops should be

developed. In 2016,according to statistics from the International

Plant Phenotype Network (IPPN), the phenotyping platform

is used in the United States, Australia, China, Germany,

and other countries. Nearly 200 large-scale phenotyping

facilities are in operation around the world (the most notable

being the Australian National Plant Phenotyping Facility

“Plant Accelerator,” the British National Plant Phenotyping

Center, the German Julich Phenotyping Research Center,

the Netherlands Plant Eco-phenotyping Centre, and the

German IPK Greenhouse Automation). There are ≈82 indoor

mechanized phenotyping platforms and 81 European field

mechanized phenotyping platforms (including 26 intensive and

55 barren types). Asian field mechanized phenotyping platforms

are yet to be counted. However, over the last 5 years, many

countries, led by the United States and China, have increased

their investments in field mechanization platforms.

The development of phenotyping platforms has provided

a solid foundation for crop phenotyping research. Only 25%

of all global high-throughput phenotyping platforms are used

for field research, and only 49% of the platforms are actually

used to obtain high-throughput phenotyping information in

the field (Figure 1A). The number of papers published on crop

phenotypes has increased annually; in 2019, the number of

papers published each year had surpassed 300. Additionally,

among many countries and regions that are involved in high-

throughput phenotyping studies of plants, the United States

is ahead in terms of research results. We list only the top 10

countries or regions in Figure 1B. Dicotyledonous crops account

for only 23% of the research results, which is substantially lower

than monocotyledons. Arabidopsis is the most studied dicot

crop, most likely because it is a commonly used model crop

and using it to analyze new phenotypes can greatly decrease the

difficulty of research. Furthermore, soybeans, cotton, tobacco,

peanuts, rape, and other crops have gradually entered the

academic research field. Finally, we compiled statistics on

dicotyledonous crop research topics. According to the statistical

findings, dicotyledonous plant research topics mainly focus on

six aspects: yields, physiology and biochemistry, genes, biotic

stress, abiotic stress, and growth dynamics. Genes were the

most studied topic, followed by yield (Figure 1C). These research

topics are covered in the following chapter.

Research progress of field
high-throughput phenotypic
information platforms

Platforms are generally classified into three types based

on the different spatial areas in which they operate: ground-

based platforms, air-based platforms, and space-based platforms

(Huichun et al., 2020). Ground-based platforms encompass all

plant phenotyping platforms that are in contact with the ground

while being built or used. Based on their loading modes, sensors

are classified into conveyor belt types, gantry types, suspension

cable types, vehicle types, and self-propelled plant phenotyping

platforms (Figure 2A). Air-based platforms include all platforms

that collect phenotypic data in the air, which are classified as

unmanned aerial vehicles (UAVs) or manned aircraft depending

on whether or not a human pilot is present (Figure 2B). Space-

based platforms collect phenotypic data using satellite remote

sensing (Figure 2C).

Ground-based platforms

Research has been conducted on ground-based platforms,

with Crop Design in Belgium being the first company in the

world to develop a commercialized large-scale phenotyping

measurement platform (Reuzeau et al., 2006). Foundation

platforms have advantages and disadvantages in their use

(Table 1). The conveyor belt-type foundation platform can

detect plant phenotypic indicators in real time, and the

detection objects can be flexibly replaced based on individual

needs. However, this device is better suited for indoor use.

The gantry-type platform has a walking device, an automatic

control module for mechanical motion, and a high-precision

sensor array. It is not affected by the environment, has a

low impact, and can take measurements repeatedly every day.

However, the cost is high, and only a fixed area can be

observed. Suspension-type platforms have the advantages of

not requiring guards, continuous operation (such as at night),

good repeatability, and high measurement accuracy, but they

are typically expensive and can detect only a limited number

of areas. Vehicle-mounted platforms are typically agricultural

machinery platforms, such as tractors, that are outfitted with

various sensors to form phenotype platforms. They can meet

the application requirements of most researchers and small

businesses to the greatest extent possible due to their low cost,

constant perspective, easy installation, and simple operation.

However, due to the wide wheel, low body height, and high

vibration, agricultural machinery is primarily suitable for short

plants and is limited by row spacing and plant space. Currently,

the vehicle-borne phenotypic platform is being used to collect

biomass (Busemeyer et al., 2013), plant height (Comar et al.,

2012), leaf area, stem diameter, canopy temperature, and other
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FIGURE 1

Overview of high-throughput phenotyping research. (A) The proportion of di�erent phenotypic platforms and the composition of phenotypic

platforms in the field (searched in IPPN, https://www.plant-phenotyping.org/ippn-survey_2016). (B) Ranking and annual number of phenotypic

papers published by countries in the world (2010–2021) (searched in Web of Science). (C) Proportion of high-throughput phenotypes studied in

monocotyledons and dicotyledons and the main subjects studied in dicotyledons (searched in Web of Science).

phenotypic data for wheat (Andrade-Sanchez et al., 2013),

cotton (Sun et al., 2018), and other crops. Researchers should

examine the impact of the weight of agricultural machinery on

the soil structure and the root system of plants. An increasing

number of researchers are experimenting with compact self-

propelled groundmobile platforms to carry phenotyping sensors

to minimize costs, increase the measurement accuracy, and

reduce environmental side effects (Bai et al., 2016; Young

et al., 2018). Nonetheless, business solutions are lacking, making

promotion extremely difficult. Furthermore, by using the chassis

of commercial self-propelled ground rovers, several researchers

have created phenotypic platforms for various applications

(Shafiekhani et al., 2017), offering a novel approach to the

creation of self-propelled phenotyping platforms.

Li et al. (2020) identified new I-trait indicators (plant

density, relative frequencies, and entropy, among others)

that accurately reflect the response of cotton to drought

stress at the seedling stage. By merging high-throughput

phenome, genome, and transcriptome data, researchers found

that two unannotated genes, GhA040377 and GhA040378, were

considerably upregulated in response to drought. Finally, this

study advocated the use of phenomics to improve the genetics

of cotton and was the first phenomics research publication on

drought resilience in cotton.

Air-based platforms

Air-based platform research is still in its early stages,

but it is progressing quickly. This type of platform has

the advantage of scanning a large area of land in a short

period of time, but there are also some drawbacks such as

a low information accuracy, an insufficient payload, limited

endurance, and weather vulnerability. Currently, air-based

phenotyping platforms primarily include UAVs and manned

helicopters. When compared to manned helicopters, UAVs have

lower costs, lower flying altitudes, and superior information

acquisition precision. As a result, numerous studies have been

conducted on the acquisition of field phenotypic information

via UAVs. The number of sensors that a UAV can carry is

limited due to its low payload capacity compared to ground-

based platforms. Remote sensing analysis of crop phenotypes

(Liu et al., 2016) and maturity evaluation (Malambo et al.,

2018) is performed using RGB cameras, infrared imaging,

Frontiers in Plant Science 04 frontiersin.org

2627

https://doi.org/10.3389/fpls.2022.935748
https://www.plant-phenotyping.org/ippn-survey_2016
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2022.935748

FIGURE 2

Field high-throughput phenotypic information platform. (A) Ground-based platforms include conveyor belt types, gantry types, suspension

cable types, vehicle types, and self-propelled types. (B) Air-based platforms include UAVs or manned aircraft. (C) Space-based platforms include

satellite remote sensing.

multispectral/hyperspectral cameras, and other sensors. Disease

diagnosis (Sugiura et al., 2016), yield estimation (Chang et al.,

2021), growth state monitoring and evaluation (Jin et al., 2017;

Hu et al., 2018), and analysis of critical phenotypic features have

been performed using this type of platform (Ding et al., 2019).

Trevisan et al. (2020) used a 3D point cloud derived from UAV

images to develop a method for detecting sorghum spikes. The

correlation coefficients between the average panicle length and

width assessed by UAVs and those measured on the ground

were 0.61 and 0.83, respectively. Karthikeyan et al. (2020)

used a space-based platform to collect images twice a week

and then employed two complimentary convolutional neural

networks (CNNs) to forecast soybeanmaturity. This method can

detect the sources of mistakes in maturity forecasting, and its

architecture overcomes earlier research limitations and can be

used in large-scale commercial breeding initiatives.

When UAVs are employed, it is also important to consider

its stability, safety, and controllability.

Space-based platforms

Satellite platforms for monitoring the status of large areas

of crops are referred to as a “space-based platforms.” Because

they have the highest data flux and lowest accuracy, space-based

phenotyping platforms are suited only for a wide spectrum of

detection. On the one hand, satellites have a massive payload,

and onboard sensors can cover optical, thermal, microwave,

and fluorescence frequencies, allowing for the collection of

large amounts of data in a short period of time. On the

other hand, satellites can provide recurrent information on

agricultural conditions at different scales throughout the season

(including yield forecasting, field preparation, crop health

monitoring, irrigation, and site-specific management) (Zhang

et al., 2020). Furthermore, improvements in the spatial (Weiss

et al., 2020), spectral, and temporal resolutions of satellite

measurements have increased their use in plant breeding (Prey

et al., 2020; Weiss et al., 2020). Space-based platforms have

become increasingly popular in recent years, and despite their

high cost, they are being used in a limited number of agricultural

applications. For example, NASA has created the Space Test

Station for Thermal Radiation of Ecological Systems, which

can be used to monitor the soil moisture content (Entekhabi

et al., 2010), drought warnings, and water usage efficiency

(Reynolds et al., 2019b). Soil Moisture Active Passive (SMAP)

observations of soil moisture and freeze/thaw timing can

reduce a major uncertainty in quantifying the global carbon

balance by helping to resolve an apparent missing carbon sink

on land over the boreal latitudes (Entekhabi et al., 2010).

Pleiades-1a and World View-3 have been utilized to detect

disease and agricultural water stress (Navrozidis et al., 2018;

Salgadoe et al., 2018), promoting the advancement of precision

agriculture. On the practical side, Jain and Balwinder-Singh

(2019) demonstrated how microsatellite data management can
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TABLE 1 Performance comparison of plant phenotypic information collection platforms.

Phenotypic

platform

Platform

name

Research and

development unit

Platform

type

Advantages Limitations Scanning

scale

Practical application

Ground-based

Platform

Crop Observer PhenoVation,

Netherlands company

Conveyor belt Real-time measurement of photosynthetic

efficiency, estimation of soil coverage by

plant leaves

More suitable for indoor work 1–10 m2 Experiments in a test field at

Wageningen University in the

Netherlands

Field Scan PhenoVation, Pheno

Spex company

Gantry type Not affected by the environment, the

efficiency can reach 5,000 plants/h, and the

measurement can be repeated every day

High cost, only a fixed area can be

observed

10–50 m2 Applied to the field phenotyping

platform built by Nanjing

Agricultural University in 2018

Field

Scanalyzer

Germany, Lemna Tec

company

Gantry type With walking device, automatic control

module of mechanical movement,

high-precision sensor array, supporting data

acquisition and analysis software

High cost, only a fixed area can be

observed

Procurement by scientific research

institutions such as French

Academy of Agricultural Sciences,

Chinese Academy of Sciences and

DuPont Pioneer (Virlet et al., 2016)

Breed Vision University of Applied

Technology, Osnabruck,

Germany

Gantry type Mobile darkroom (moving speed 0.5 m/s),

equipped with 3D depth camera, color

camera, laser ranging sensor, light screen

imaging Settings and other optical equipment

High cost, only a fixed area can be

observed

1–10 m2 University of Applied Technology,

Osnabruck (Busemeyer et al., 2013)

Spidercam University of

Nebraska-Lincoln

Suspended

cable

Covering a field of 4,000 m2 , a variety of

sensors can be mounted on the suspension

cable platform

High cost, only a fixed area can be

observed

50–100 m2 Test field use at the University of

Nebraska-Lincoln in 2017 (Ge

et al., 2019)

ETH Swiss ETH Field

Phenotyping Platform

Suspended

cable

Suspended various sensors High cost, only a fixed area can be

observed

100–1,000

m2

ETH plant research station

Lindau-Eschikon (Kirchgessner

et al., 2016)

Field

Scanalyzer

UK, Rothamsted

Research Centre

Suspended

cable

Equipped with a variety of sensors, the

applicability is strong, the system runs

smoothly, and is less affected by external

interference

High investment cost, high

operation and maintenance costs,

not suitable for large breeding areas

50–100 m2 /

Phenotyping

Robot

USA, Iowa State

University

Self-propelled Multiple stereo cameras trigger

synchronously, and multiple sets of stereo

lenses are superimposed to ensure

phenotypic analysis of tall crops

No commercial solution, need to

design independently

1–10 m2 Used in the experimental field of

Iowa State University in 2014

GPheno

Vision

University of Georgia Vehicle Low cost, can be equipped with a variety of

sensors

Fuel power, larger vibration, wider

tires, and requirements for row

spacing

In 2017, it was used in the

experimental field of the University

of Georgia, USA (Jiang et al., 2018)

(Continued)
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have a substantial impact on agricultural sustainability in

underdeveloped nations.

In summary, many crop phenotyping platforms in the field

have distinct properties. Ground-based platforms can analyze

the largest number of species and are well-established. Their

price is reasonable; however, the vision height is limited, and

the data throughput is modest. Two types of space-based

platforms are available: manned and unmanned. Unmanned

platforms can quickly acquire macrolevel information in a

specific area, with broad vision and enormous data throughput,

but their cost is significant. Space-based platforms, which offer

the widest observation area, mostly rely on satellite remote

sensing. However, they cannot perform small-scale or refined

crop detection and are infrequently employed in agriculture

due to their high cost. The use of space-based platforms in

agriculture is projected to become more common as science

and technology advance. The properties of many types of field

phenotyping platforms are shown in Table 1. When employing

phenotyping platforms, platforms that are reasonable for the

circumstances must be chosen and developed, taking into

account actual requirements such as mobility, ease of operation,

data flux and accuracy, and costs (Lee et al., 2015).

Research status of high-throughput
phenotypic information of dicots in
the field

Morphological indicators

Plant morphology has essential biological implications

in agricultural production, and it is a key component of

plant science research. Traditional plant identification and

classification approaches rely on professional experience, which

is subjective and inaccurate, to examine plant morphological

traits such as appearance, shape, texture, and color (Liu et al.,

2016). Using machine vision, picture segmentation, and big data

processing technologies to reliably gather and analyze crucial

plant traits is an important technical means for the development

of contemporary agriculture, with significant guiding value for

crop management and genetic breeding (Granier and Vile, 2014;

Li et al., 2021). Scholars have conducted field studies on the

morphological indicators of dicotyledonous crops, including

stem height (Paproki et al., 2012), plant height (Sun et al., 2017),

leaf width (Paproki et al., 2012), leaf length (Paproki et al.,

2012), number of leaves (Dobrescu et al., 2020), canopy coverage

(Kirchgessner et al., 2016; Borra-Serrano et al., 2020; Wan et al.,

2021; Xu et al., 2021), canopy height (Kirchgessner et al., 2016;

Borra-Serrano et al., 2020), canopy roughness (Herrero-Huerta

et al., 2020), and flowers (Xu et al., 2017; Jiang et al., 2020).

Stems and leaves are the most frequently utilized factors for

crop morphological indication, and RGB values are commonly

used by researchers to extract these parameters. For example,
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TABLE 2 Statistics of field phenotype research on dicotyledonous crops.

Classification of

indicators

Crop

category

Type of

data

Phenotypic

analysis method

Phenotypic parameters Accuracy

%

R
2 Shooting

scale

Year Author

Morphological

indicators

Cotton RGB 3D reconstruction Stem height, leaf width, leaf length 91.66, 94.25,

91.22

– Single 2012 Paproki et al., 2012

Soybean Thermal,

Multispectral

Machine learning Canopy coverage, canopy height – 0.86, 0.99 Single 2016 Kirchgessner et al., 2016

Cotton RGB CNN Number of flowers Error=−4∼3 – Single 2017 Xu et al., 2017

Rapeseed Multispectral,

RGB

Machine learning Canopy coverage – 0.79 Group 2021 Wan et al., 2021

Soybean RGB Machine learning Canopy coverage, canopy height 90.4, 99.4 – Group 2020 Borra-Serrano et al., 2020

Cotton RGB CNN Flowering patterns – 0.88 Single Jiang et al., 2020

Soybean RGB SFM Canopy roughness – >0.5 Group Herrero-Huerta et al., 2020

Cotton RGB Metashape, Python Canopy coverage 93.4 – Group 2021 Xu et al., 2021

Arabidopsis RGB CNN Number of leaves – 0.92 2020 Dobrescu et al., 2020

Cotton Lidar 3D point cloud Plant height – 1 Single 2017 Sun et al., 2017

Physiological and

biochemical indicators

Soybean RGB Machine learning Leaf iron deficiency chlorosis >81, 96 – Regional 2018 Bai et al., 2018

2017 Naik et al., 2017

Cotton Near Infrared

Spectroscopy

/ Leaf macro and micronutrients 87.3, 86.6 – Organ 2021 Prananto et al., 2021

Soybean Hyperspectral DNN Fresh biomass of above ground – 0.91 Group 2021 Yoosefzadeh-Najafabadi et al., 2021

Cotton Hyperspectral / Coverage, water use efficiency – – Group 2018 Thorp et al., 2018

Soybean Spectral

Scanner

Modeling εe, εc – 0.68 Organ 2021 Keller et al., 2021

Biotic/Abiotic Stress Rapeseed RGB CNN Oilseed rape pests 77.14 Regional 2019 He et al., 2019

Rapeseed RGB Machine learning Fruiting bodies of Leptosphaeria

maculans

– 0.87 Regional 2019 Bousset et al., 2019

Soybean RGB DCNN Nonbiological – – Regional 2018 Ghosal et al., 2018

Soybean RGB Machine learning Leaf iron deficiency chlorosis 96% – Single 2018 Naik et al., 2017

Soybean Multispectral,

Infrared

Machine learning Flood – 0.9 Organ 2021 Zhou et al., 2021

Yield Soybean RGB / Canopy coverage – 0.4–0.7 Regional 2016 Bai et al., 2016

Soybean RGB Machine learning Yield and maturity – 0.51, 0.82 Group 2020 Borra-Serrano et al., 2020

Soybean RGB / Yield/canopy cover – 0.75 Group 2019 Moreira et al., 2019

Soybean Hyperspectral DNN (EB) Yield – 0.76, 0.77 Group 2021 Yoosefzadeh-Najafabadi et al., 2021

RGB, an abbreviation for the three primary colors; CNN, convolutional neural network; DCNN, deep convolutional neural network; SFM, multiview structure from motion; EB, integrated baggies εe, photochemical energy; εc, biomass.

The slash (/) indicates the ratio.

The short line (–) indicates that it is not mentioned in the article.
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Paproki et al. (2012) created a cotton plant model by capturing

RGB images of cotton plants and extracting indicators such

as the cotton stem height, leaf width, and leaf length. When

compared to manual measurements, the average absolute error

was 9.34, 5.75, and 8.78%, respectively, while the correlation

coefficients were 0.88, 0.96, and 0.95, respectively. Dobrescu

et al. (2020) used deep learning to analyze the number of

Arabidopsis leaves in RGB photos, and the R2 = 0.92 when

compared to manual measurements. The approach of collecting

crop morphological data from RGB images is quite accurate.

The extraction of crop canopy information is useful in the

study of crop data. Previous research has demonstrated that

thermal imaging, multispectral imaging, and RGB imaging can

be utilized to monitor soybean canopy coverage and canopy

height with an accuracy of>90% (Sun et al., 2017; Borra-Serrano

et al., 2020), and an R2 > 0.5 was found after linear fitting using

the values measured in the field (Herrero-Huerta et al., 2020).

Moreover, similar research has been conducted on cotton, rape,

and other crops. Xu et al. (2021) created a UAV systemwith three

cameras (RGB, multispectral, and thermal) and a lidar sensor

to identify cotton canopy coverage and canopy height, with an

average relative error of only 6.6%. The approach of collecting

crop morphological data from RGB images is quite accurate.

Using a UAV platform fitted with an RGB and multispectral

camera, Wan et al. (2021) obtained rape canopy images. The

PROSAIL-GP model was used to invert rapeseed vegetation

coverage and the R2 = 0.79. The resilience of the proposed

method was confirmed in cotton (Gossypium hirsutum L.), and

a better retrieval accuracy was obtained.

Many experiments have been conducted to analyze cotton

flowering utilizing high-throughput phenotyping approaches.

Color RGB images obtained by a UAV system and a CNN were

used to detect the number of cotton blossoms in the original

image, with an error of just −4∼3 (Xu et al., 2017). Scanning

cotton with a tractor-mounted lidar had an R2 = 0.98 compared

with that of manual measurements (Sun et al., 2017). Moreover,

cotton flowering status can be recognized using multiview color

imaging and deep learning, with an R2 = 0.88 and an RMSE =

0.79 (Jiang et al., 2020).

Previous research has indicated that the use of a high-

throughput phenotyping platform to obtain crop morphological

indicators is nearing maturity. Researchers are more likely to

use a ground-based platform equipped with an RGB camera

as the primary research tool in the study of crop leaves

and stalks. Canopy information can be extracted using UAVs

equipped with RGB, hyperspectral, and radar sensors, but

the accuracy is slightly lower than that obtained in leaf and

stem studies. In terms of flower counting, UAVs and vehicle-

mounted platforms outfitted with RGB cameras and lidar

are commonly used, and the accuracy is acceptable. Thus,

it is not surprising that the choice of a high-throughput

phenotyping platform is closely related to the specific indicators

being studied.

Physiological and biochemical indicators

Crop physiological and biochemical indices include

chlorophyll, photosynthetic rate, water stress, biomass, salt

tolerance, and leaf water content. These indices can accurately

reflect crop growth, health, and resistance. Crop physiology and

biochemistry studies involving the use of a high-throughput

phenotyping platform have primarily focused on the leaf color

(Bai et al., 2018), element content (Naik et al., 2017; Prananto

et al., 2021), biomass (Yoosefzadeh-Najafabadi et al., 2021), and

water use efficiency (Thorp et al., 2018).

To score iron deficiency chlorosis, RGB images of soybean

plants in the field were collected, which revealed an overall

accuracy of >81% (Naik et al., 2017; Bai et al., 2018). Prananto

et al. (2021) used a ground-based platform equipped with a

near-infrared spectrometer (wavelength range 1,350–2,500 nm)

to estimate different macro- and micro-elements in cotton leaf

tissues, with accuracies of 87.3 and 86.6%, respectively. The

fitting degree of aboveground fresh biomass can be as high

as 0.91 (Yoosefzadeh-Najafabadi et al., 2021) when combining

hyperspectral photography with deep neural network (DNN)

analysis for biomass acquisition and water use efficiency.

Multispectral images can be used to determine the crop canopy

coverage, which is then used to estimate the coefficient of basic

crops to improve the crop water use efficiency (Thorp et al.,

2018). Previous studies have shown that by acquiring high-

throughput phenotypes, crop nutrients can be estimated in the

field, farmers can proactively manage nutrition to avoid yield

losses or environmental impacts, and evidence is provided for

crop selection.

In short, physiological and biochemical indices have

received less attention than morphological indices have. The

platforms are mainly based on the ground and in space, and the

sensor types are more complicated and varied. This research will

help with nutrient decisions and the breeding of new varieties.

Biotic/abiotic stress indicators

Pests and diseases are the primary causes of crop yield

reductions in terms of biological stress. Abiotic stress refers to all

the factors that negatively affect crop growth and development

as a result of an unsuitable external environment, which mainly

includes light, temperature, water, and fertilizer. Crops are

increasingly subjected to biotic/abiotic stress during growth as

the global climate changes. The goal of smart agricultural plant

protection is to locate the type of stress and determine the degree

of stress through accurate identification before crops are stressed

and irreparable damage is caused to protect plant operations.

The traditional method for evaluating the tolerance of crops

to external stress in terms of the field conditions is to judge

the damage level visually, but this method is labor intensive

and susceptible to subjective error. This problem can be
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FIGURE 3

High-throughput phenotype workflow flowchart.

effectively resolved by utilizing high-throughput phenotyping.

He et al. (2019) used RGB images of rapeseed to judge

rapeseed insect pests with an accuracy of 77.14% using CNN

processing and analysis. Naik et al. (2017) and Ghosal et al.

(2018) used high-throughput phenotypes to evaluate soybean

under abiotic stress and obtained promising results. Soybean

field images were captured using a UAV equipped with a

multispectral and infrared thermal imager, and five image

features were extracted, including the canopy temperature,

normalized difference vegetation index, canopy area, canopy

width, and canopy length. The damage level was evaluated by

a deep learning model, with an accuracy of 0.9 based on these

features. The method proposed in this paper appears to be very

promising for soybean breeding, and it is expected to replace

an abundance of manual operations and more efficiently assess

the level of waterlogging disasters (Zhou et al., 2021). High-

throughput phenotypes have enormous potential for measuring

crop traits and detecting crop responses to biological or

nonbiological stresses.

Yield indicators

Crop yield estimation in the field is regarded as the

foundation of food security. In recent years, remote sensing

information and crop growth models have been coupled to

resolve a variety of agricultural problems, such as crop growth

detection and yield prediction.

Bai et al. (2016) collected soybean field traits via a

self-propelled platform outfitted with five sensor modules

(ultrasonic distance sensor, thermal infrared radiometer,

normalized difference vegetation index (NDVI) sensor, portable

spectrometer, and RGB network camera). The results of the

analysis and processing revealed that the traits obtained by the

sensors were highly correlated with the final grain yield in both

the early and late seasons (r = 0.41–0.55, and r = 0.55–0.70).

For example, Moreira et al. (2019) attached an RGB camera

to a UAV to collect soybean production and canopy coverage

data and continued the analysis to yield | ACC with an actual

output correlation of 0.75. Yoosefzadeh-Najafabadi et al. (2021)

used the hyperspectral vegetation index (HVI) collected by a

UAV equipped with hyperspectral sensors to predict soybean

yields in conjunction with two artificial intelligence algorithms

integrated baggies (EB) and DNN and obtained determination

coefficients (R2) of 0.76 and 0.77, respectively.

We suggest that to acquire a yield index, we must first

acquire multi-index information. Because different researchers

utilize different predictors, different high-throughput

phenotypic platforms and sensors can be used. In general,

the use of UAVs equipped with RGB cameras is the most

common method. Yield prediction is beneficial for shortening

the breeding time of varieties, reducing the cost of yield

measurements, and enhancing the yield measurement efficiency,

all of which are vital in crop research and development. Table 2

provides statistics on the field phenotypic information

of dicotyledons.
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High-throughput phenotyping and
genetic breeding of dicotyledonous
crops in the field

Crop breeding has gone through three generations, with

the first being artificial screening as the primary method,

the second being hybridization as the primary method,

and the third being molecular markers and genome-wide

association analysis as the primary and auxiliary methods.

The fourth generation of intelligent-assisted breeding with big

data, supported by multidisciplinary and multiomics data, is

currently underway (Wallace et al., 2018). The incorporation

of phenotypic and genomic data, as well as proteome,

transcriptome, metabolome, and other omics data, is required

for the fourth generation. Utilizing genome-wide association

studies (GWASs), quantitative trait loci (QTL) analysis,

and other technical methods, a large number of candidate

genes and candidate molecular markers have been identified.

Models, such as breeding information simulation, parental

selection recommendation, breeding path recommendation, and

breeding variety prediction, have been established to form the

ultimate intelligent breeding decision system (Wang and Xu,

2019).

The high-throughput phenotyping platform, which enables

the accurate assessment of a large number of field plots with

a variety of measures in a short period of time, simplifies

the routine quantification of crop development, physiology,

and phenological characteristics (White et al., 2012; Araus

and Cairns, 2014). These data provide a useful framework for

addressing phenotypic bottlenecks in plant breeding (Furbank

and Tester, 2011; Araus and Cairns, 2014; Kumar et al., 2015).

Crop dwarfing has contributed to the growth of yields in the

Green Revolution (Hammer et al., 2009; Swaminathan, 2014),

and the fourth generation of intelligent-assisted breeding with

big data could be the next breakthrough in accelerating the

genetic harvest of crops in the field. Heritability and genetic

gain potential will improve with high-throughput and precise

phenotypes (Araus et al., 2018). Numerous successful results

have been obtained in many crops by incorporating genomic

and phenotypic data. The function of a large number of

unknown genes, for example, has been quickly decoded, thereby

improving the understanding of G-P maps (Raman, 2017).

The water conditions of soybeans with different genotypes

have been isolated (Braga et al., 2020), mutant and wild types

have been effectively classified (Dobrescu et al., 2020), and

flowering patterns in plants with complex canopy structures

(such as cotton) have been identified (Jiang et al., 2020).

Phenotypic indicators with strongly inherited traits are being

investigated. Furthermore, phenotypic and genetic variation can

be interpreted using optical sensing-based phenotyping (OSP)

data analysis (Xavier et al., 2017; Sun et al., 2021).

High-throughput phenotyping and
precise management of dicotyledonous
crops in the field

Because agriculture is currently facing resource

shortages and serious farmland environmental pollution,

the implementation of precision agriculture demonstrations

and research is critical. High-throughput phenotyping

platforms can be used to obtain crop image traits and conduct

modeling to estimate the yield and quality of a crop (Xu et al.,

2021) and to analyze the relationship between crop growth

and environmental factors, thereby enabling more precise

management (Maimaitijiang et al., 2019).

In particular, high-throughput phenotypic data can be used

to analyze the factors influencing yield differences among plots,

treat different plots differently, and implement “prescription

farming” based on positions, regulations, and needs. Making

full use of information acquisition means analyzing the crop

nutrition status and the spatial and temporal changes in pests

and diseases to make tillage and field management decisions,

as well as investing in agricultural resources such as water and

fertilizer based on local conditions. This approach can ensure

that the crop production potential is fully realized and avoid

the serious consequences of the overuse of chemical fertilizers

and pesticides, such as increased production costs, the pollution

of farmland soil and water environments, and a decline in

the quality of agricultural products. To achieve the best effect

and the lowest cost, agricultural outputs can be increased, the

quality can be enhanced, costs can be decreased, resources can

be conserved, pollution can be reduced, and the environment

can be protected. As a result, precision agriculture can produce

significant economic and ecological benefits, which are vital

for maximizing the production potential of cultivated land,

efficiently using agricultural production factors, and preserving

the farmland environment.

Development direction of
high-throughput phenotypic
information research on
dicotyledonous field crops

The development of a high-throughput phenotype must

follow a certain workflow. As shown in Figure 3, from the

determination of phenotypic concepts to the establishment of

phenotypic platforms, the acquisition of original information,

the extraction of phenotypic parameters, the analysis, processing

and mining of big data, and joint analysis with multiple

omics, practical problems can finally be solved. In fact,

industry experts must decide on new phenotypic criteria
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because the step of “determination of unified new phenotypic

criteria” is a premise for high-throughput phenotypic work;

the demands of researchers for high-quality data, particularly

in terms of resolution and accuracy, vary depending on the

distinct objective features they are pursuing. Therefore, the

key to collecting original information is to “develop a high-

performance infrastructure platform,” but doing so is difficult.

For better trait selection in breeding programs, more effective

field management in agricultural operations, and the eventual

augmentation of the germplasm of grain, the “construction of a

knowledge map of phenotypic big data” stage is crucial but also

difficult. The process of “combining with multiomics” is critical

for finding functional genes and speeding up breeding.

Determination of new unified phenotypic
criteria

Healthy, sustainable development must be based on

consistent standards. Mendel, the father of genetics, began to

define and evaluate phenotypes as early as 1866. He described

seven pairs of relative characteristics of peas in his famous

paper “Plant Hybridization Experiments,” including round

and wrinkled seeds, tall stems vs. short stems, green pods

vs. yellow pods, and so on. In 1911, Wilhelm Johannsen,

a Danish geneticist, established the concept of a biological

phenotype, claiming that an organism’s phenotype was the

consequence of a complex interaction between the genotype and

environmental circumstances (Johannsen, 1911). In the 1990s,

Nicholas Schoork, an epidemiology and biostatistics expert at

Case Western Reserve University, was the first to propose the

concept of physics as a counterpart to genomics (Zhao et al.,

2019). Since then, studies on single phenotypes or series of

phenotypes of humans, animals, and plants have piqued public

interest (Siebner et al., 2009), and such studies have gradually

evolved into an important branch of biology (Bilder et al.,

2009; Houle et al., 2010; Tester and Langridge, 2010). Plant

phenotyping research began at the end of the 20th century with

the goals of obtaining high-quality and repeatable shape data

and quantitatively analyzing the interactions between genotypes

and environmental types and the effects on yields, quality,

stress tolerance, and other related main traits (Ribaut et al.,

2010). Fiorani and Schurr (2013) proposed a new definition of

the plant phenotype in 2013, describing it as a collection of

methods and protocols for accurately measuring the growth,

structure, and composition of plants at various scales. In Zhao

(2019) updated the definition of a phenotype, stating that

it is a physical, physiological, and biochemical mechanism

that can reflect the structural and functional characteristics of

plant cells, tissues, organs, plants, and populations. In essence,

a phenotype is the three-dimensional sequential expression

of plant gene maps, regional differentiation characteristics,

and intergenerational evolution. The phenotype concept is

constantly being redefined. As a result, in the context of the rapid

development of phenotyping platforms, the definition of new

phenotypic concepts must be determined as soon as possible,

and a consistent standard is necessary for correct phenotypic

research by scientists.

Development of a high-performance
infrastructure platform

With the widespread adoption of sequencing technology,

an increasing number of plant genome sequences have been

released, but few functional genes have been identified due

to a lack of phenotypic data. Because of leaf occlusion, a

substantial amount of information (such as the leaf number,

main stem morphology, branch number, branch morphology,

fruit number, and fruit morphology) has not been collected

during the late growth stage of dicotyledons. The first step in

achieving the comprehensive acquisition of high-throughput

phenotypic information is to address the loss of original

information, which is also the core challenge faced by the

high-throughput phenotyping platform. How do you address

the issue of lost data? Due to the nature of high-throughput

phenotypic information gathering, all of the information that

can be extracted is displayed in the original image. Some

medical techniques, including computed tomography (CT),

magnetic resonance imaging (MRI), and ultrasound, can be

used to recover information that has been lost due to leaf

occlusion. Unfortunately, because these technologies are both

environmentally and financially demanding, they are rarely

applied in agriculture.

After more than 10 years of development, crop phenotyping

systems have the following characteristics: a high information

acquisition efficiency, the use of non-invasive sensors, high-

latitude information acquisition, and a resolution that decreases

as the information acquisition area expands. As science

and technology advance, future high-throughput phenotyping

platforms will be able to combine the flux, resolution,

dimension, load, robustness, and working height to obtain a

large amount of original information efficiently and quickly.

Resolution includes both temporal (from seconds to days to

months) and spatial (very small, such as for cells, to large, such

as for fields and natural environments) dimensions, denoting

the variety of phenotypic features acquired by phenotyping

systems under various time, space, and scale conditions. The

load refers to the maximum weight that a phenotyping platform

can carry; notably, in air-based platforms, the load capacity

severely restricts the number and variety of sensors that can

be used. Therefore, appropriately enhancing the load capacity

of a phenotyping platform can promote the diversification of

phenotypic data acquisition. The adaptability of phenotyping
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platforms to work in the field is referred to as robustness.

Harsh field conditions pose significant challenges to the

normal operation of phenotyping platforms, and enhancing the

robustness of a platform can ensure that the platform operates

properly. The working height is vital in obtaining phenotypic

regions; the obtained regions increase as the working height

increases, while the resolution decreases. The key issue for

researchers to overcome is how to organically combine the

aforementioned factors.

Furthermore, cost control is a critical link, and scientists

have been working to determine how to achieve high

performance at a low cost. Existing field phenotyping

platforms are frequently unable to combine low cost and high

performance, failing to meet the needs of most plant phenotype

research institutes. As a result, obtaining fast and precise field

phenotypic information at a low cost is a bottleneck in the

development of a high-throughput phenotyping platform.

This necessitates the gathering of talent from various fields,

such as machinery, network communication, and sensors,

to cross disciplines and contribute to the development of a

high-throughput phenotyping platform in the field.

Construction of a knowledge map of
phenotypic big data

Plants are dynamic, complex systems. Plant phenotypes,

such as shape, size, color, posture, and texture, will change

as they grow. Plants of different varieties have a wide range

of appearances at the same time, resulting in the typical 3V

characteristics of traditional big data in plant genome big data,

that is, data volume, variety, and velocity. A large amount of data

is mainly due to the rapid increase in phenotypic data obtained

by advanced technology phenotyping equipment based on

intelligent equipment and artificial intelligence technology. The

diversity and heterogeneity of plant individuals and data types

determine data polymorphism. The data are timely because of

the dynamic and swift generation of large phenotypic data in the

form of data flow.

At the same time, big plant phenomics data exhibit 3H

characteristics: high dimension, high complexity, and high

uncertainty primarily because plant genomic big data include

text data and a large number of images, spectra, and cloud point

data, resulting in a wide range of data. The high complexity

of phenotypic information is determined by the diversity of

genetic information and environmental differences. Phenotypic

data have low repeatability and uncertainty because they are

affected by many factors, and data acquisition criteria are not

uniform. Dicotyledons have more complex plant types and

higher 3V and 3H characteristics as a result of genetic diversity

and geographical environmental resources, making dicotyledon

phenotypic data analysis more difficult. How does one screen for

key features under this premise? Big data analysis and in-depth

mining must be improved.

After overcoming numerous obstacles to obtain phenotypic

data, we are unable to extract such data in depth, resulting

in a massive waste of data resources. Phenomic studies

are more akin to point-like studies. On the one hand,

phenotypic studies are carried out by organizations all over

the world, but there is little cooperation between nations and

institutions. Currently, only two national-level collaborations

(with the US as the sole center and Germany, France, and the

United Kingdom as common centers) and four institutional-

level collaborations exist (with the United States Department

of Agriculture and Cornell University as the centers; China

Agricultural University, University of Queensland, Chinese

Academy of Sciences, and Chinese Academy of Agricultural

Sciences; University of Nottingham and University of Bonn;

Wageningen University, French Agricultural Research Institute,

and French Scientific Research Center). On the other hand,

plant phenotypic databases are limited, and the main data

contents vary greatly. For example, the Distributed Phenotypic

Data Acquisition and Information Management System (Crop

Sight), which primarily includes plant phenotypic data and

environmental data (Reynolds et al., 2019a), the phenotypic

mixed information system (PHIS), which primarily includes

multisource and multiscale information in plant phenomics

(Neveu et al., 2019), and the plant genome and phenotypic data

sharing platform, primarily consists of data information on plant

traits, phenotypes, gene functions, and gene expression of 95

plant taxa (Cooper et al., 2018); the Crop Phenotyping Center

of Huazhong Agricultural University, which primarily consists

of phenotype data and QTL data (Zhang et al., 2017); and the

plant phenotype and genomics data publishing platform. Plant

phenotypic data, genome data, mass spectrometry data, and data

visualization and analysis software data are mainly included in

the PGP Repository (Arend et al., 2016). This phenomenon

will result in complex and variable phenotypic data formats,

a lack of unified standards, and a significant reduction in the

role of data. As a result, we urge countries and institutions to

work together to strengthen collaborations, establish phenotype

databases, share information, and hold joint discussions.

Combining with multiomics

The rapid development of high-throughput sequencing,

mass spectrometry, and chromatography has facilitated

the study of genomics, transcriptomics, proteomics, and

metabolomics. Dicotyledons are characterized by complex plant

types and a wealth of phenotypic data. When combined with

multimers, dicotyledons can unlock more functional genes

and facilitate plant genomics research. In breeding practice,

high-throughput phenotyping combined with a variety of other

omic techniques can be applied to crops in different growth
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periods and at different scales (cells, tissues, organs, groups)

in research on the comprehensive analysis of the calculated

crop regulation network of life activity, revealing the biological

characteristics of crops. Certain studies on monocotyledons

have been conducted in conjunction with multiple omics, such

as the study by Leiboff et al. (2015), who used high-throughput

image processing technology to determine the size of the shoot

apical meristem (SAM) in a natural population of maize and

discovered some new candidate genes controlling the SAM

size through GWAS analysis. The link between the SAM

morphology and trait-related SNP variants was verified after

researchers looked into possible genes involved in hormone

transport, cell division, and cell size. Xin et al. (2021) employed

wild populations of 384 significant wheat varieties (lines) as

the basis for a genome-wide association analysis that included

phenotypes from three settings and 55K SNP chip typing data.

The findings revealed that 142 SNPs were strongly related to the

number of spikelets, with phenotypic variance ranging from 3.27

to 6.09%. Using the same strategy, Guo et al. (2018) discovered

a novel drought tolerance gene in rice. For dicotyledons, few

relevant studies have been conducted: Bac-Molenaar et al.

(2015) used the PHENOPSIS phenotype platform to analyze

high-throughput images of 324 Arabidopsis cultivars from the

top view and, combined with genome-wide association analysis,

identified some QTLs related to specific periods and growth

rates, revealing a new perspective on the genetic structure of

Arabidopsis dynamic development.

The ability to integrate metabolomics approaches into the

current HTP phenotypic platform has significant potential

to add value (Hall et al., 2022). Metabolites can be divided

into volatile and nonvolatile categories, but they all play

multiple roles in the plant life cycle. For example, they can

be continuously present, having a protective function through

antiinsect or antimicrobial activity (Lubes and Goodarzi, 2017;

Maurya, 2020). The nonvolatile metabolome represents rich

information reflecting past (e.g., slow turnover metabolites

accumulated in response to past stress), present (e.g., high

turnover metabolic intermediates), and future (e.g., precursors

of biomass under construction) events. Accordingly, a growing

number of top-down studies have shown that this metabolome

can be correlated with performance in panels of genetic diversity

(Meyer et al., 2007; Riedelsheimer et al., 2012). Until recently,

cost issues have limited metabolomics applications in large-scale

phenotyping. However, using high-resolution MS [TOF-MS,

Orbitrap, and Fourier transform ion cyclotron resonance mass

spectrometry (FT-ICR-MS)] to distinguish different structures

with the same nominal mass alongside ultrafast chromatography

now makes it possible to combine HTP with a high resolution

(Fekete et al., 2014). Systems biology approaches and the

use of large numbers of samples have become possible,

and increased observations will enable the development

of new prebreeding strategies based on predictive models

(Fernandez et al., 2021).

We have reason to believe that plant genomics will advance

faster with the establishment of relevant research institutions,

the improvement of research facilities, the development of

software, the convening of international academic conferences,

and the formation of relevant academic teams.

The workflow of the high-throughput phenotyping platform

is divided into seven steps. The first step is to determine

the new phenotypic criteria. The second step is to build

a phenotyping platform, including ground-based platforms,

air-based platforms, and space-based platforms. The third

step is to obtain raw information using visible and invisible

sensors. The fourth and fifth steps are the extraction, analysis,

and mining of phenotypic information. The next step is to

combine phenotypic information with multi-omics. Finally, we

aim to solve real problems (including genetic breeding and

precision management).
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The OMICAS alliance is part of the Colombian government’s Scientific

Ecosystem, established between 2017-2018 to promote world-class

research, technological advancement and improved competency of higher

education across the nation. Since the program’s kick-off, OMICAS has focused

on consolidating and validating a multi-scale, multi-institutional, multi-

disciplinary strategy and infrastructure to advance discoveries in plant

science and the development of new technological solutions for improving

agricultural productivity and sustainability. The strategy andmethods described

in this article, involve the characterization of different crop models, using high-

throughput, real-time phenotyping technologies as well as experimental tissue

characterization at different levels of the omics hierarchy and under contrasting

conditions, to elucidate epigenome-, genome-, proteome- and metabolome-

phenome relationships. The massive data sets are used to derive in-silico

models, methods and tools to discover complex underlying structure-
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function associations, which are then carried over to the production of new

germplasm with improved agricultural traits. Here, we describe OMICAS’ R&D

trans-disciplinary multi-project architecture, explain the overall strategy and

methods for crop-breeding, recent progress and results, and the overarching

challenges that lay ahead in the field.
KEYWORDS

Multi-omics, crops breeding, foodomics, nanotechnology, rice and sugarcane,
in-silico optimization
1 Introduction

According to the United Nations (UN, 2019), global

population will continue to grow throughout the 21st century,

to an estimated 10.9 billion by 2100. As a result, food production

rates will have to double, which require an unprecedented

increase in agricultural productivity, at a rate that has not

been seen over the past five decades. Figure 1 illustrates the

scenario for the case of grains, which constitutes more than 40%

of the daily protein intake and diet of the global population.

Both biotic and abiotic stresses have altered the production

of sustainable crops, in some cases critically. Global food security

is permanently challenged by different phenomena including

climate change, population growth, human conflict, the
02
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reduction of the arable land, and the increased livestock area

requirements among several others. From this perspective, it is

mandatory for plant breeders worldwide to develop new

strategies to deliver crop varieties at a faster rate, i.e., increase

the genetic gain for each crop.

Here, we describe the OMICAS alliance and its commitment

to the design, development, validation and deployment of an

interdisciplinary panomics strategy and tool set to address the

sustainability of productive agricultural systems and global food

security. OMICAS was selected in 2018, as the sole program in

the Food category of the Scientific Colombia ecosystem. Its

name, was inspired from the Spanish acronym for

Optimizacioń Multiescala In-Silico de Cultivos Agrıćolas

Sostenibles that translates into English as In-Silico Driven
FIGURE 1

Observed area-weighted global yield 1961–2008 shown using closed circles and projections to 2050 using solid lines for maize, rice, wheat,
and soybean. Shading shows the 90% confidence region derived from 99 bootstrapped samples. The dashed line shows the yield trend from
2008 needs to double production, on average, for these crops by 2050, without bringing additional land under cultivation starting in the base
year of 2008. The dotted lines from 2020 to 2050 show the yield trend needs to increase by more than 2.3 times with respect to 2008.
Adapted from (Ray et al., 2013).
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Multiscale Optimization of Sustainable Agricultural Crops, also

corresponds to the suffix ‘omics’ in spanish.

A review from different sources, including the United

Nations Development Program (UNDP) (UNDP, 2012), the

Food and Agriculture Organization of the United Nations

(FAO, 2013), and the Organization for Economic Cooperation

and Development (OECD) (OECD, 2015), reveals that over the

years Colombia’s agricultural sector has evolved with critical

limitations in terms of production, innovation, and technology

implementation. In Colombia, agriculture is the primary

economic activity of rural territories, and it has experienced

multiple structural crisis, which have resulted in a significant

reduction of its contribution to the Gross National Product

(GNP) from 27% to 5.4% between 1965 and 2013 (Figure 2.

After hitting an inflection minima in 2013, the sector has shown

a recovery in GNP participation up until 2020, when the COVID

pandemic hit the world.

In 2017, the Colombian Strategic Plan for Science,

Technology, and Innovation of the Agricultural Sector (in

Spanish PECTIA) (PEC, 2016) was set in motion in an

attempt to consolidate the country’s National System for

Agricultural Innovation (SNIA), in Colombia’s post-conflict

era. The PECTIA takes into consideration the 3866 Productive

Development policy documents from the CONPES (Consejo

Nacional de Polıt́ica Económica y Social, or National Council for

Economic and Social Policy) approved in late 2016 (CON, 2015),

the recommendations from the Colombian Mission for Rural
Frontiers in Plant Science 03
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Transformations, and general orientations provided by the

OECD prior to country’s admission as a member in 2018. The

PECTIA addresses current societal challenges associated to

‘best-practices’ in agriculture through governance and policy

making investment in infrastructure and human resources, as

well as financing, planning, tracking, and evaluating strategic

projects needed to promote increased productivity and a value-

added economy capable of competing in a global market.

The same year PECTIA was unveiled, the Colombian

government, through its Ministries of Education, Industry and

Tourism, the Colombian Institute of Educational Credit and

Technical Studies Abroad (ICETEX), and the Colombian

Administrative Department of Science, Technology and

Innovation (Colciencias) – now morphed into the Ministry of

Science, Technology and Innovation (Minciencias) – created the

Colombian Scientific Ecosystem as a two-pronged effort to: 1)

promote scientific research and technological development

(under the Scientific Colombia program); and 2) graduate-

level education abroad (Passport to Science program). Both

programs were conceived to prioritize five strategic

development areas: Food (Agriculture), Renewable Energy,

Health, Society, and Bio-economy, out of which eight

international, multi-institutional R&D programs were

competitively established. These programs were leveraged by

the World Bank through the “Access and Quality in Higher

Education Project” (or PACES) program, and anchored at top

accredited Colombian Universities.
FIGURE 2

Agricultural sector contribution to Colombia’s and World’s GNP shows a steady decline (faster for the former) in percent contribution since
1965. Includes forestry, hunting and fishing, in addition to growing crops and raising animals. Value added is the net production of the sector,
after adding all the products and subtracting the intermediate inputs. It is calculated without making deductions for depreciation of
manufactured goods or for depletion and degradation of natural resources. For the countries that count on a value added basis, including
Colombia, the gross value added at factor cost is used as the denominator. Source: World Bank National Accounts Data and OECD National
Accounts Data Files.
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The application of omics technologies for the improvement

of plant traits has enabled significant advances in recent years, as

summarized in different reviews; (Großkinsky et al., 2017;

Zander et al., 2020; Jamil et al., 2020; Yang et al., 2021) which

describe, for the most part, partial integrative approaches, the

application of different omics levels to address specific plant

models and traits (Rasheed et al., 2013; Singh et al., 2020; Yadav

et al., 2022), or the use of modeling and simulation to drive

discovery and optimization (Matthews and Marshall-Colón,

2021; Marshall-Colon, 2022). The creation of global networks,

such as the International Plant Phenotyping Network (IPPN),

(IPPN, 2022) is also contributing to the visibility, information

sharing, and application of omics science and technology

in agriculture.

OMICAS contributes a unique panomics strategy that

couples quantifiable parameters and data, from genome to

crop, into functional models for multi-objective optimization

of agronomic traits . It not only leverages existing

characterization resources, but the development of new sensor

and phenotyping technologies for real-time non-invasive

characterization of analytes in plants, soils, and atmospheres,

and of novel computational methods to elucidate complex inter-

omics correlations that become the control knobs to reduce the

time and costs in plant breeding. It is a holistic approach, being

validated on rice and sugarcane models, whilst extensible to any

other crop.

The program brings together leading experts from 17

institutions across the globe, including from four world-class

foreign universities (California Institute of Technology,

University of Illinois at Urbana Champaign, Ghent University,

and Tokyo University), 3 world-class agricultural research

institutions (NIAB in Cambridge, UK, the International

Center of Tropical Agriculture - CIAT [member of the CGIAR

global partnership that unites international organizations

engaged in research about food security, located in Colombia],

and the Colombian Sugar Cane Research Center - Cenicaña],

five major private and public Colombian Universities (Pontificia

Universidad Javeriana, Universidad de los Andes, Universidad

ICESI, Universidad de Ibague, Universidad del Quindio, and

Universidad de los Llanos), and three industrial partners (the

Federation of Rice Growers - Fedearroz, Intelecto, and Hi-Tech

Automation). The team includes professors, scientific

researchers, students and technical staff from a variety of

disciplines, including molecular and nano-scale science,

‘omics ’ sciences (primarily epigenomics, genomics,

transcriptomics, metabolomics, proteomics and phenomics),

biology and biotechnology, chemistry, physics, nutrition,

computer science, and others, to address the trans-disciplinary

challenges associated with sustainable agricultural productivity

and food security. This paper presents an outline of OMICAS’

multiscale plant breeding optimization strategy, and describes

early results and achievements from the alliance members,

primarily validated on two crop models - rice and sugarcane
Frontiers in Plant Science 04
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(albeit the strategy, methods and tools are extensible to any other

crops). Rice was chosen because it is a major global food source,

because it the largest cultivated cereal by surface area in

Colombia, and because it has an extensively studied genome.

On the other hand, we chose sugarcane, because it is third most

cultivated crop by surface area in Colombia, after coffee and oil

palm, because it is one of the most efficient plants for

photosynthesis, and because it has one of the most complex

genomes in crop plants due to the extreme level of polyploidy.
2 ÓMICAS R&D architecture

The alliance’s multi-disciplinary research plan involves basic

science, as well as the design, implementation, validation, and

knowledge transfer in the form of technological solutions aimed

at contributing to sustainable agricultural productivity and food

security. The main thrusts focus on the omics-level

characterization of our two model crops to: establish new

breeding strategies, methods, and tools; produce plant varieties

with increased tolerance to biotic and abiotic stresses, and with

improved resource use efficiency; and reduce the overall

environmental footprint of agriculture through updated

agronomic practices (specifically greenhouse gas emissions).

OMICAS is composed of seven interrelated macro projects,

identified in Figure 3 as P1 through P7 and coupled as shown in

Figure 4. These projects contribute to the overarching goals of

the program, as follows:
1. Development and implementation of an experimental

and computational platform for genomic, transcriptomic,

and epigenomic plant processing and analysis, and of

bioinformatic tools for the analysis and integration of

molecular scale data associated with crop productivity,

2. Design, characterization, and fabrication of prototype

nanodevices for the detection and measurement of ultra

low-concentrations of tissue biomarkers (specifically,

primary and secondary metabolites, and aluminum

metal Al3+ ions in soils), in order to enable early, fast,

and high-resolution identification of plant response to

stress,

3. Profiling of metabolic pathways for simple sugars,

organic acids, phenolics, flavonoids, and dextrans in

crops, using targeted and non-targeted metabolomic

methods and the high-resolution phenotyping

technologies derived from P1, and elucidation of key

cell signaling mechanisms from plant cell-membrane

receptors, specifically GCR1, to establish their role in

stress response,

4. Development and implementation of an integrated low-

cost, high-throughput, geographically-distributed

multimodal phenotyping platform (fixed, mobile and

aerial) that integrates soil-plant-atmosphere variables
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during meristematic, elongation, and maturation phases

of plant growth,

5. Development of computational models and data

visualization tools for in-si l ico analysis and

optimization of crops, based on graph theory and big
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data analytics algorithms, aimed at gene annotation,

identification of gene and metabolic circuits associated

with productivity and tolerance to stress conditions.

6. Applying the methods and tools developed by P1-P5 to

the identification and annotation of genes, the
FIGURE 3

The OMICAS program consists of seven highly-coupled projects, each identified in the figure with a number, the first four build the omics
characterization layer of the program, the fifth integrates the characterization data through in-silico models for systematic big data analysis, and
projects six and seven use the structure-function relationships obtained from the rest of the projects to develop new varieties with improved
traits (validated on rice and sugar-cane models).
FIGURE 4

OMICAS program architecture, its macroprojects and their parameter-driven couplings. This figure depicts a sub-set of the basic data couplings
in the OMICAS strategy. For example, P1 receives plant tissues from P6 and P7, and outputs DNA/RNA sequences for the modeling efforts in P5;
P2 validates sensor technologies on metabolomics and ionomics characterized in P3; P3, in turn, contributes metabolomic and ionomic data for
the high-throughput phenotyping effort in P4, and for the development of predictive models in P5; P4 uses molecular and elemental
information from P2 and P3, and produces continuum-level phenotypic data for the models and codes developed in P5; while P5, integrates the
experimental (physical and computational) multi-omics characterizations from P1-P4 into complex models derived from graph- and network
theory, machine learning, and other mathematical and computer science methods to produce predictive tools for in-silico analysis and breeding
optimization; P6 and P7 contribute breeding of new plant varieties with improved agronomic traits, based on the in-silico results from P5, and
feeds tissues, soil and other environmental samples into the characterization and modeling that occur within P1-P5.
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development and selection of promising germplasm,

and the design of new plant varieties with greater

performance in productivity and stability in the

presence of diseases (e.g. rice hoja blanca virus),

climate changes (i.e. low or high temperatures and

radiation), heavy metal soil toxicity (e.g. Al3+), and

optimal resource use efficiency (e.g. non-structural

carbohydrates).

7. Applying the methods and tools developed by P1-P5 to

identify and select plant varieties with reduced

greenhouse gas emissions (specifically N2O and CH4)

that favor soil conservation and minimal environmental

footprint.
This alliance is committed to contributing basic, measurable,

and transferable solutions to these problems, including but not

limited to: new omics characterization and analysis techniques

and tools, candidate genome sequences, candidate quantitative

trait locus (QTLs) and genes, and optimized germplasm. A key

element in OMICAS is the integration of an in-silico and

physical experimental optimization cycle, based on

epigenomic, genomic, metabolomic, and proteomic data and

its correlation with phenomic expression to enable elucidation of

complex genotype-phenotype relationships. The in-silico

components are meant to improve breeding throughput, and

to reduce the cost and time involved in traditional methods. The

‘omic’ characterization layer allows for multiobjective

optimization of agricultural traits, such as, resource use

efficiency, nutrient sink-source translocation efficiency,

resistance to different biotic and abiotic stresses, and

minimization of the environmental footprint. This multiscale

characterization approach is essential to elucidate molecular-

level structure-function relationships that affect gene expression,

metabolic regulation, and an organism’s response to

its environment.
3 Results and discussion

The use of whole-genome data, derived from high-

throughput sequencing technologies, in association with

accurate crop phenotyping, has allowed the discovery of

genetic traits that control phenotypic variations in crops.
3.1 Epigenetic and genetic
characterization of crops

In P1, we have advanced in the implementation of an

experimental and computational platform for storage,

processing, analysis, and biological interpretation of epigenetic

(methylation profiles) and genetic crop data. We have

established an epigenomic analysis strategy supported by
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computational models and experimental methods to

characterize yield and differential responses to biotic and

abiotic factors in the target crops of rice and sugar-cane.

Furthermore, we are developing and validating novel

bioinformatics strategies and flows for analysis and

visualization of structural and functional genomics.

The focus is placed on the dynamic epigenetic processes that

modulate access to DNA in response to upstream signals

including DNA methylation, covalent modification of histones,

nucleosome remodeling, chromatin interaction with regulatory

long noncoding RNAs. These are critical to ultimately

understand gene expression.

P1 has established an experimental platform supported by

the implementation of computational tools for the analysis of

massive omics characterization data. The project integrates a

physical layer for handling and processing experimental tissue

samples, and a complementary computational high-

performance computing (HPC) infrastructure (a GPGPU

cluster set up at the alliance’s anchor institution) for the

storage and analysis of omics data generated. This data will be

released to the public domain as the infrastructure grows. Three

major computational-experimental efforts are under way

between P1 and other projects in OMICAS, one (with P6)

meant to identify epigenetic cues associated to reducing the

effect of abiotic stresses (specific case of Al3+ toxicity from acid

soils), a second (again with P6) meant to uncover the genotypic

and phenotypic variations underlying sucrose production, and a

third (with P5) meant to systematically annotate genes from

genome-phenome data using machine learning methods.

For the first case, we are progressing in an epigenomic study

to characterize the methylation patterns in four commercial rice

cultivars (Oryza sativa L. and two accessions of wild rice (Oryza

glumaepatula Steud , through whole genome bisulfite

sequencing. Differential epigenetic marks will be evaluated

between rice genotypes with a contrasting response to

aluminum stress under controlled conditions. By using this

strategy, epigenetic changes will be considered as fixed

epigenetic marks. Likewise, the changes in the methylation

patterns between the aluminum tolerant and susceptible rice

genotypes will be evaluated after being subjected to Al3+ toxicity

conditions, and the epigenetic changes identified will be

considered rapid epigenetic marks in response to aluminum

stress. Once the specific differential methylation patterns have

been identified, expression levels of genes that had been found to

be differentially methylated, between tolerant and susceptible

genotypes, will be evaluated by qPCR. With all the epigenetic

and transcriptional information, functional enrichment analyzes

will be carried and a functional response model to aluminum

stress will be developed. This will represent a significant advance

in understanding the epigenetic mechanisms in the response to

abiotic stresses in plants, in particular to understand the key

mechanism in the regulatory response of rice crops to aluminum

toxicity. This information will be transferred to different
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breeding programs worldwide. Our early findings, based on

methylation analysis from Nipponbare cultivar (highly tolerant

to Al toxicity) and IR64 and Pokkali varieties (susceptible to Al

toxicity) indicate that Nipponbare exhibited more methylated

sites than the other two varieties (p≤0.01 in an FDR analysis),

while IR64 and Pokkali did not show differences in methylation -

see Figure 5. These results are particularly interesting, given

Nipponbare has been extensively reported as a highly tolerant

cultivar to aluminum (Gallo-Franco et al., 2020).

For the second case there were two approaches implemented

to identify variations underlying sucrose production. The first

one consists of performing the identification of molecular DNA

markers throughout the implementation of a genome-wide

association analysis (GWAS). To do so, a core collection of

220 sugarcane genotypes, which covers the genetic and

commercial diversity from Cenicaña’s germplasm bank, were

phenotyped during two crop cycles at a field representative from

the humid environment of the valle del rıó Cauca, Colombia.

Similarly, each one of the 220 genotypes were sequenced with a

high-throughput whole genome sequencing strategy, in order to

massively identify Single Nucleotide Polymorphisms (SNPs).

Finally, both phenotypic and genotypic information were

combined through the QK-mixed linear model (Yu et al.,

2006) to find SNPs associated with sucrose production.

Preliminary findings indicates the presence of 28 SNPs

associated with sucrose content at 13 months after planting,

from which only 4 explains between 5 and 10% (R2>5%) of the

total phenotypic variation observed in the 220 genotypes. These

results suggest that sucruse production is a quatitative trait that

is highly influenced by environmental effects, with several minor

QTLs that control its production. To validate the association of
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each one of the 28 SNPs, we planted a population of 150

sugarcane genotypes, with sucrose production between 5 and

18% in a humid environment. This population will be

phenotyped for sucrose production and, at the same time,

sequenced with targeted sequencing technologies to look for

the allele dossage for each SNP and to confirm the overall impact

on sucrose production. The second approach, consists of the

quantitative evaluation of the analyzed genotypes by means of

the multiscale phenotyping strategy in OMICAS. This involved

identifying a set of 4 genotypes with more than 16% sucrose-

producing accessions, as high-producing, and with less than 7%,

as low-producing. These genotypes were planted in fields from a

sugarcane mill in the Valle del Cauca, in Colombia. We will now

perform an epigenetic study aimed at finding epi-alleles that

could assist the breeding scheme at Cenicaña. Therefore, at

harvest time (around 13 months after planting), tissue from the

low and high-sucrose-producing genotypes will be collected and

sequenced through whole genome bisulfite sequencing. Finally,

differentially expressed markers will be evaluated against sucrose

production and considered as fixed epigenetic marks or epi-

alleles. In this way, not only the genome structural variation will

be taken into account to establish direct genotype-phenotype

associations with evaluated traits, but also, significant differential

epigenetic marks will corroborate and help us elucidate those

defined associations.

A major challenge in agriculture is incorporating genomic

information into functional plant breeding. A holistic approach

is mandatory to directly apply genomics-derived knowledge into

agronomy, both at the molecular (genomic through

metabolomic) and macroscopic (phenotypic) levels, and for

deriving a plant’s response under contrasting conditions (i.e.
FIGURE 5

Boxplots showing methylated cytosine frequency in three sequence contexts: CG (blue), CHG (red), and CHH (green) among three different rice
varieties with contrast responses to aluminum exposure: Nipponbare (Tolerant), Pokkali, and IR64 (Susceptible). The results are discriminated
according to the location of the epigenetic mark, either inside the gene body region (GB), the promoter (PR), or both the promoter and inside
the gene body region of analyzed genes (PR + GB). From (Gallo-Franco et al., 2020).
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normal and stressed). With this goal in mind, we are performing

specific phenotype-genotype associations for different

agronomic traits, and have developed strategies for the analysis

and integration of complex data using comparative genomics

approaches, bioinformatics and big data analysis tools. This will

generate new pipelines for our model crops and for others. For

example, we have now developed a new method for in-silico

prediction of functional gene annotations in rice. This approach

uses gene annotations from existing knowledge of a given

genome in combination with topological properties of its gene

co-expression network, to train a supervised machine learning

model that is designed to discover unknown annotations. The

approach was validated to functionally annotate the Oryza Sativa
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Japonica genome. It uses any existing body of knowledge about

gene annotations for a given genome, and the topological

properties of its gene co-expression network, to train a

supervised machine learning model that is designed to

discover unknown annotations. These results, sumarized in

Table 1, revealed that the topological properties derived from

co-expression networks improve our predictions for annotating

genes (Romero et al., 2020).

We expect that the combined use of traditional genomic and

epigenomic characterization strategies, coupled with the use of

novel techniques based on holistic analysis, will lead the

identification of novel gene/molecular mechanisms aimed at

reducing the times to develop agronomically improved varieties.
TABLE 1 Number of genes most frequently annotated as false positives for the 32 annotations by our model, trained from topological metrics
extracted from an Oryza Sativa Japonica genome.

ID Biological process # Genes Max FP # FP

0006807 Nitrogen compound metabolic process 15 41 1

0006289 Nucleotide-excision repair 20 46 1

0006397 mRNA processing 17 48 1

0007017 Microtubule-based process 18 49 1

0070588 Calcium ion transmembrane transport 10 36 1

0006184 GTP catabolic process 49 47 1

0044267 Cellular protein metabolic process 25 49 1

0007186 G-protein coupled receptor protein signaling 11 50 1

0006281 DNA repair 62 50 2

0006754 ATP biosynthetic process 24 49 3

0006904 Vesicle docking involved in exocytosis 11 50 4

0055114 Oxidation-reduction process 870 47 5

0006886 Intracellular protein transport 135 50 19

0006855 Drug transmembrane transport 32 50 21

0006662 Glycerol ether metabolic process 28 50 27

0006888 ER to Golgi vesicle-mediated transport 16 50 29

0006259 DNA metabolic process 15 50 32

0007067 Mitosis 11 48 33

0008652 Cellular amino acid biosynthetic process 18 50 52

0030244 Cellulose biosynthetic process 23 50 64

0034968 Histone lysine methylation 11 50 93

0006812 Cation transport 62 50 96

0045454 Cell redox homeostasis 83 49 103

0006506 GPI anchor biosynthetic process 12 50 284

0007165 Signal transduction 104 50 370

0071805 Potassium ion transmembrane transport 24 50 570

0006357 Regulation of transcription from RNA polymera 12 50 1199

0006396 RNA processing 58 50 1212

0044237 Cellular metabolic process 75 50 1318

0006457 Protein folding 162 50 2358

0006952 Defense response 133 50 2679

0006096 Glycolysis 50 50 2875
frontiers
The ‘Max FP’ column summarizes the number of times (out of a total of 50) such an annotation is suggested for a gene, while the ‘FP’ column identifies the number of genes that are
consistently given such an annotation. From (Romero et al., 2020).
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3.2 Characterization of plant biomarkers

In P2 we are developing nanoscale sensors for the detection

and measurement of bio-markers (primary and secondary

metabolites, including non-structural carbohydrates and

organic acids) in plants and toxins in soils (Al3+). A plant’s

response to biotic and abiotic stresses has an early molecular-

level expression in the organism’s metabolome, which is prior to

any phenotypic variations, that can signal proliferation of

diseases, compromised productivity, etc. Metabolites provide a

direct window into the phenotype, to the physiological state of

the plant. These fuel cell signaling and regulate metabolic activity

in the plant, so characterizing and associating their

concentrations in time with cellular processes, can further our

understanding of genome-phenome relationships.

Identifying metabolite-mediated signaling pathways, in real-

time, in-vivo, selectively (targeted metabolomics), at ultra-low

concentrations (pico Moles, pM, or lower), cheaply and without

harming the host organism is not only of fundamental

importance, but a practical necessity for agriculture.

Unfortunately, current technologies for measuring metabolites,

such as nuclear magnetic resonance spectroscopy (NMR), high-

performance liquid chromatography (HPLC), alone or in

tandem with mass spectrometry (HPLC-MS), inductively

coupled plasma mass spectrometry (ICP-MS), and enzyme-

based methods, fall short of meeting these needs. These lack

portability, and tend to be expensive to acquire and operate.

Phenotypic changes in response to biotic and abiotic stresses

are reflected early on in an organism’s metabolome, hence the

need to measure key metabolites for improving early detection of

stresses and breeding stress-tolerant species. In our design

process, we include both first-principles based in silico

screening and experimental prototyping. Our focus is placed

on three different sensing platforms:
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• Electronic field effect devices (FED): Back-gated

transistor devices that translate electronic field effect

variations proportional to an analyte’s concentration

on a functionalized semiconducting channel’s surface

into changes in transconductance/voltage/current across

two or more terminals,

• Colorimetric/optical devices or assays (OD):

Functionalized metal nanoparticle systems that

fluoresce under UV excitation to produce an intensity

signal response proportional, or inversely proportional,

to an analyte’s concentration in solution, and

• Electrochemical devices (ECD): Functionalized nano-

structured electrodes that produce distinguishable

voltammetric, impedanciometric or amperometric

signals as a function of an analyte’s concentration on

the electrode’s surface (electrochemical sensors).
In our FED designs, the semiconducting channel surface is

modified with molecular receptors that are selective to the

analyte of interest. The attachment of target analytes to the

receptors, result in the depletion or accumulation of charge

carriers in the semiconducting channel, analogous to the effect of

a transistor base/gate terminal. In (Jaramillo-Botero and

Marmolejo-Tejada, 2019), Jaramillo-Botero and Marmolejo

demonstrated a low-voltage solution- and back–gated

graphene nanoribbon (GNR) field–effect transistor (GFET)

sensor design, for the detection and measurement of low-

concentration (pM) uridine diphosphate glucose (UDP-

glucose), a precursor to sucrose synthesis in a plant cell’s

cytoplasm and an extracellular signaling molecule capable of

activating downstream defense mechanisms, see Figure 6. A self-

assembled monolayer (SAM) of 1-pyrenebutyric acid (PyBA)

was used to noncovalently functionalize the graphene surface on

one end, and to covalently ligate UDP-glucose on its open end,
FIGURE 6

(Left) Isometric view of graphene-based FED sensor with solvent box, 3 PyBA SAM molecules, and 1 bound UDP-glucose molecule. A metallic
back-gate, with an 8 nm thick separating region with relative dielectric constant of 3.9 (i.e. SiO2), lay under the semiconducting junction; (right)
Transconductance shows p-doping effect of increasing UDP-glucose concentration (at VDS=0.1 V). Figures from (Jaramillo-Botero and
Marmolejo-Tejada, 2019).
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whilst providing mechanical, chemical and electronic signal

sensing stability. The device has a predicted limit of detection

(LOD) of 0.997/n mM/L (where n is the number of sensor units

in an array configuration), with high transconductance

sensitivity, 0.75-1.5 mS for 1-3 UDP-glucose molecules, at low

input (VG=0.9V) and output voltages VDS=0.1V. Thus, a

1000x1000 nanoarray sensor would yield a LOD of 0.997 nM/

L. See Figure 6. This low-power, all-armchair g-FET sensor with

SAM ligands that may be chosen to bind different biomarkers,

provides a unique opportunity for high throughput, real-time,

low-cost, high-mobility, and minimal-calibration sensing

applications for in-field phenotyping.

Nanoparticle-based fluorescent probes offer an alternative

solution to quantify plant analytes directly from exudates or by

direct absorption into the tissues. Nanoparticles (NPs) with the

proper size (<100nm), composition and surface modifications

can be absorbed onto the cell membrane and subsequently

internalized into the cytoplasm. Detailed information about

the analyte’s concentration can be retrieved wirelessly, by

modifying the NP’s surface with analyte-selective moieties and

small molecular weight fluorophores/chromophores to signal

the presence or absence of targeted analytes on these sites. The

use of NPs has the added benefit of increasing the total surface

area available for binding analytes, when compared to a flat

electrode surface. We demonstrated a fluorophore-

functionalized gold nanoparticles (AuNP) systems for

colorimetric detection and quantification of sucrose and other

plant analytes as described in (Jaramillo-Botero et al., 2019).

Absorption of radiation (typically in the UV spectrum, i.e.

relatively high hv) promotes an electron from its electronic

ground state to an excited state. During the lifetime of the

excited electronic state, part of the energy is lost through internal

molecular vibration, leading to a longer wavelength of the

released/emitted light (Stokes shift). When the fluorophores

emit part of this light as radiation, the AuNPs act as a

collisional quenchers of the excited state thereby reducing the

fluorescence intensity. The fluorophore then returns to the

ground state without light emission. The fluorescence

wavelength and distribution of the emitting fluorophore is

chosen to overlap the absorption spectra of the AuNP, and the

length (R1) of the mercapto-oligomers that connect the

fluorophore to the AuNP is chosen to maximize quenching at

such a distance. The analyte concentration is therefore inversely

proportional to a differential fluorescent signal, with respect to

the amount of fluorophores content.

Last, but not least, we have developed disposable carbon-

based electrochemical sensors for the detection and

quantification of different metabolites in plants, metals in soils,

and greenhouse gases. These can be used in the field with a

portable instrument or as part of a phenotyping platform, in

real-time, and with minimal cost. We are now able to selectively

quantify the presence of Al3+ ions in dry and acidic soils, as an

indicator of its bioavailability. We expect to use the same
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technology to quantify it in different tissues, in order to study

and understand its effect on plant metabolism. Aluminum ion

uptake impairs synthesis, cell expansion, and nutrient transfer

from plant roots to main stems, affecting their overall

metabolism (Barceló and Poschenrieder, 1990). In Camila

Ayala et al. (2022), we demonstrate and validated a glassy

carbon electrode modified by the electrochemical reduction of

bismuth in an acetate buffer, for the detection of Al3+ in a

cupferron solution, using double-potential pulse chrono-

amperometry. The sensor has a linear response in the

concentration range of 1.85x1010 to 3.70x106 mol/L and a

detection limit of 0.025ppb. Our current technology, uses

laser-scribed graphene electrodes, which enable scaling

production and tuning the sensor’s sensitivity range.

In general, nanostructured electrodes or assays can provide

the resolution and accuracy required for detecting and

quantifying ultra-low analyte concentrations, from samples

captured via iontophoresis, natural exudation or gutation

processes directly from a plant’s leaf, stem or root. Sensors can

be tattooed onto the plant surface of interest, in a ‘wearable’

device configuration, or they can be embedded into other fixed

or mobile instruments. These technologies are amenable to

industrial scaling and production and are key to improving

agroindustrial productivity and safety.
3.3 Characterizing stress signaling
through membrane protein complexes

In P3 we are studying G-protein signaling in plants, using a

combination of first-principles based membrane protein-

structure prediction and experiments on mutants. Stress

signalling across the cell membrane remains a fundamental

biological question in plant science. Although G protein-

coupled receptor (GPCR) analogs in plants have not yet been

conclusively determined, we believe G proteins transmit signals

by atypical mechanisms in plants (when compared to humans

and animals) while effector proteins control growth, cell

proliferation, defense, stomatal movements, channel

regulation, sugar sensing and some hormone-mediated

responses, as shown by Murano et al (Urano et al., 2013)

using Arabidopsis thaliana and rice (Oryza sativa) models.

Genome analysis identified 56 putative GPCRs, including G

protein-coupled receptor1 (GCR1), which is reportedly a remote

homologue to human class A, B, and E GPCRs (Taddese et al.,

2014). Taddesse et al (Taddese et al., 2014). addressed the

disparity between genome analysis and biological evidence

through a structural bioinformatics study, involving fold

recognition methods, from which only GCR1 emerged as a

strong candidate. The activation of GPCR analogs in plants

defines their function, and it involves multiple distinct

conformations that do not follow in step with animal G

signalling, as described by Apone et al (Apone et al., 2003).
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Moreover, since some G protein components are capable of

activating more than one intracellular (IC) signaling pathway, it

is essential to identify the multiple active conformations that

may be involved with different functions.

To understand the GCR1 activation mechanisms using

modeling, accurate three-dimensional (3D) structures are

required. However, these are not currently available from

crystallographic or NMR experiments, therefore we are

leveraging on the first-principles based approach from

Goddard et al (Vaidehi et al., 2002; Goddard et al., 2010) to

predict and validate the tertiary GCR1 structure from its primary

sequence. The predicted structure (see Figure 7 are used in nano-

to-micro second molecular dynamics (MD) simulations to

determine the potential activation mechanisms and signalling

pathways. We are currently supplementing Simulation results

using stress-response characterization of Arabidopsis thaliana

ecotypes and knock-out mutants, and performing gene

annotation and analysis to determine stress responses, before

moving to a functional validation of a high-performing rice

haploid (haplotypes) for particular agronomical traits of interest.

As depicted in Figure 4, P3 is also focused on the

characterization of non-structural carbohydrates (NSC),

secondary metabolites (e.g. flavonoids), and Al3+ ions in acid

soils. One major objective was to identify the role of NSC

(specifically, sucrose and starch) and secondary metabolites

(i.e., phenols and flavonoids) as signaling elements that
Frontiers in Plant Science 11

5051
regulate a plant’s performance under biotic and abiotic

stresses. On the other hand, toxicity from Al3+ affects the

absorption ofessential nutrients (such as Ca2+) and restricts

the normal growth of its roots. This alters essential

physiological processes of a plant, and quenches plant

productivity. The phytotoxic effects of aluminium are highly-

dependent on the concentration of Al3+ and the plant’s genotype

ability to translocate the metal from source to sink. With P2, we

have now demonstrated a rapid, real-time electrochemical

sensor for measuring ppm-levels of Al3+ in soils; a tool that

will undoubtedly contribute to the development of plant

varieties with improved tolerance to metal toxicity, accurate

selection of crops for acid soils, and to soil remediation strategies

(Ayala et al., 2022).
3.4 Phenotypic characterization of crops

Increased productivity in agriculture will lead to greater

availability and lower costs for both food and non-food

products derived from agronomic practices. The efficiency of

resource allocation among farmers needs to be characterized

through sustainable agriculture. High-performance phenotyping

(HTP) strategies and platforms are necessary to optimize the

acquisition of data from individual plants and large crop plots.

These techniques allow farmers and breeders to access real time

data on the status of their crops, improved crop management,

and proper selection and optimization of species as a function of

microclimate and soil conditions. This involves new sensing

technologies capable of resolutions beyond the continuous

variables at the macroscopic scale, down to the level of

molecules, integrated within low-cost, low-power, massively

distributed HTP and new ontologies to facilitate data

integration and analysis.

In P4 we are developing a new HTP platform capable of

measuring in real-time, among other variables: (i) soil nutrients

(K+, NO3-) and gases (CO2, N2O), (ii) vegetative indices from

individual plant architecture models, and (iii) above-ground

biomass (AGB) and leaf nitrogen (N) estimation at crop

canopy level (See Figure 8. At the ground-level, a central unit

called PhenoAgro, integrates communication through a peer-to-

peer wireless LoRa network, wifi communications to data-

collecting and processing servers in a cloud configuration, and

custom-designed sensors to determine the spatio-temporal

evolution of ground, plant, and atmospheric variables.

Furthermore, we have own developed our own image-

processing and trajectory-control algorithms for commercial

unmanned aerial vehicles (UAV), to estimate AGB and N

content from canopy-level multispectral imagery.

We have demostrated the UAV platform in spatio-temporal

characterization of different morphological and physiological

variables in rice crops, specifically leaf nitrogen (N) and biomass

production, both of which are good predictors of crop yield and
FIGURE 7

Predicted GCR1 3D atomic structure and composition
embedded in a bi-lipid cell membrane and in explicit water. The
structure was obtained from the primary of Arabidopsis Thaliana
using a hybrid approach based on homology and our first-
principles methods (Hernandez et al. (2022).
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plant health. Our above-ground methods to capture canopy

traits, overcome the limitations of traditional destructive

methods for biomass sampling, or the use of time-demanding

soil plant analysis development chlorophyll meters (SPAD) for

the estimation of leaf N. Most of the existing body of work uses

multispectral aerial images for the calculation of canopy light

reflectances at different wavelengths (Mishra et al., 2017; Yue

et al., 2019; Maimaitijiang et al., 2019; Zhang et al., 2019b).

Several features can be extracted from the aerial imagery to

calculate vegetation index (VI) formulas, by associating specific

reflectance bandwidths that are highly related to variations in

leaf chemical components, leading to a proper estimation of

biomass dynamics (Liu et al., 2017; Zhang et al., 2019a) and leaf

N (Sun et al., 2017; Nigon et al., 2020).

Our UAV systems are equipped with a multispectral sensors

(depicted in Figure 8 to capture canopy imagery in the red,

green, near-infrared (NIR) and red-edge bands. Images are

collected through the entire phenological cycle of the crop,

specifically during the vegetative, reproductive, and ripening

stages of plant growth. In previous work (Correa et al., 2020), we

presented a novel multispectral image segmentation method

called GFKuts. The acquired aerial imagery is segmented by

optimizing an energy fitness function that enables the proper

labeling of texture in the red, green, and near-infrared space

(RGN). The resultant RGN image-mask only includes pixel

information that accurately represents the vegetation canopy,

allowing for the proper extraction of VI-based features.

Several VIs have been proposed to associate specific spectral

wavelengths with different crop variables (Lu et al., 2020).

Nonetheless, no single set of VIs had been demonstrated

across all crop stages and plant varieties, until our recent work
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(Devia et al., 2019), which identified and characterized a set of

VIs suitable for the estimation of both AGB and leaf N, namely:
• Normalized Difference Vegetation Index (Kanke et al.,

2016)

• Green Normalized Difference Vegetation Index

(Prabhakara et al., 2015)

• Difference Vegetation Index (Naito et al., 2017)

• Corrected Transformed Vegetation Index (Naito et al.,

2017)

• Soil-Adjusted Vegetation Index (Arroyo et al., 2017)

• Modified SAVI (Gnyp et al., 2014)

• Simple Ratio (Kanke et al., 2016)
The selected VIs exhibit a strong dependence on the NIR

reflectance due to leaf chlorophyll absorption, providing an

accurate approach for training machine learning models to

estimate the accumulated canopy biomass and leaf nitrogen at

each crop stage. Figure 8 shows estimation results reported in

(Colorado et al., 2020a; Colorado et al., 2020b). Artificial Neural

Networks (ANN) are trained with the selected VIs to predict both

AGB dynamics and N-to-SPAD correlations during the entire

crop phenological stages. Correlations are obtained by comparing

the estimations against an assembled ground-truth dataset with

biomass and SPAD readings directly measured at ground-level.

On average, we have obtained biomass correlations of r=0.9568

with R2=0.9154, whereas r=0.986 with R2=0.97 for leaf nitrogen.

These are promising results towards the autonomous estimation

of rice canopy AGB and N, with the aim of enabling high-

resolution genome trait mapping for genomic selection models

for plant improvement against abiotic stresses.
FIGURE 8

The OMICAS alliance has developed, validated and is currently deploying three High-Throughput Phenotyping (HTP) strategies and integrated
platforms: aereal, terrestrial-fixed and terrestrial-mobile. From the aereal, drone-based, multispectral imaging platform we are now able to
predict leaf-N, NDVI, and other crop data; from the fixed ground-based systems we obtain soil-based nutrients, plant indices (including
metabolite profiles) and atmospheric state variables (including greenhouse gas footprints from crops, primarily N2O and CH4).
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3.5 In-silico strategies for improved
crop breeding

Plant breeding efforts generally require intensive labor as

well as long optimization cycles that can last up to 12 years.

Figure 9 illustrates how the in-silico approach strategy in the

OMICAS program accelerates traditional approaches, by

narrowing down potential candidate species from a large set,

based on fitness functions associated to one or more agronomic

trait. This reduces the time and cost of experimental breeding

and selection. Different components that may complement

traditional approaches to plant breeding are grouped together

inside the blue box in Figure 9. They take into account omic data

representations, mathematical models and optimization

algorithms to facilitate the identification of critical features

that are present in populations with one (or more) desirable

traits. Our goal in OMICAS has been to apply big data and

machine learning algorithms on omics data characterized over

multiple scales, in order to explore and ultimately uncover the

key variables that intervene in stress-response and productivity.

For example, an in silico approach may implement a

computational environment to simulate critical optimization

routes and explore a more ample and complete state/search

space at a fraction of the time and cost. In P5, genetic, metabolic,

protein, and cellular networks are used to supplement

phenotypic traits associated to stress response, and to

understand complex interactions and correlations upon which

predictions can be based.

Our in-silico approach in OMICAS builds on epigenetic,

genetic, metabolic and cellular regulation network models,

characterized via results from P1-P4 to elucidate some of these
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complex interactions and correlations. Data analytics algorithms

are used to identify and annotate genes associated to phenotypic

traits. This in silico optimization cycle reduces the time and costs

to breeding optimized agricultural plant varieties. It offers a

significant advantages over the traditional labor-intensive

scheme, among them:
• Discovering hidden relationships in large collections of

data associated with crop productivity traits,

• Understanding the processes underlying the formation

of these patterns,

• Quantifying productivity gain traits and their

determinants, and

• Minimizing the genetic mutation and crossover space to

optimize traits.
One particular path we have taken, addresses a common

challenge in deploying new crop varieties, namely gene

annotations and correlations. A variety of approaches to

identify gene function/s have been proposed over the past

years, including Weighted Gene Co-expression Network

Analysis (WGCNA) (Langfelder and Horvath, 2008; Wang

et al., 2020; Riccio et al., 2020). In (Riccio et al., 2020), for

example, we proposed both a generalization and an extension of

the original WGCNA, which is applied to rice (Oryza sativa. The

proposed in silico approach identifies a group of 19 genes which

are relevant in the response to salt stress. Such genes are

considered target genes for experimental efforts to improve

salinity tolerance in rice.

To identify the target genes, the approach relies on the idea

of defining specific overlapping network ‘communities’ of
FIGURE 9

In-silico characterization strategy in OMICAS.
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genes, which are assumed to underlie the co-expression gene

network. In other words, a key hypothesis of the proposed

approach is that the overlapping nature of the systems’

regulatory domains that generate co-expression can be

identified by applying an algorithm that detects modules of

overlapping network communities. More specifically, module

detection is achieved by using machine learning techniques of

hierarchical link clustering. To analyze the phenotypic

responses of each gene modules to salt stress, statistical

regression analysis based on least absolute shrinkage and

selection operator (LASSO) is employed. It is interesting to

note that the identified target group is distributed across six

classes: three that group together three genes associated to

shoot K content; two that group three genes associated to shoot

biomass; and finally, there one that groups four genes

associated to root biomass. The proposed approach offers a

framework to reduce the search-space for target genes that

respond to salt stress. It facilitates experimental validation by

reducing the number of relevant genes.

Leveraging on the tools, methods and technologies

developed in P1 through P5, P6 focuses on optimizing crops

through accurate and high-throughput phenotyping, gene and

quantitative trait loci (QTL) discovery, molecular marker-

assisted elite lines construction via, genomic selection (GS)

and QTL-based marker-aided selection (MAS). P6 focuses on

traits of high importance for the Colombian agricultural sector,

and validates these on rice and sugarcane models. The traits are:

(1) a biotic stress: Rice hoja blanca virus (RHBV) resistance, (2)

three abiotic stresses: low radiation, high night temperatures

and aluminum toxicity in rice, and (3) two physiological traits:

sugar accumulation and nitrogen efficiency in sugarcane. These

traits are highly relevant to crops in the region (e.g. RHBV

resistance) and to crops worldwide (i.e. abiotic stresses and

physiological traits).
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3.6 Tolerance to Rice Hoja Blanca virus

The rice hoja blanca (RHB) disease is due to the Rice hoja

blanca virus (RHBV), which is transmitted by a planthopper

insect (see Figure 10, Tagasodes oryzicolus. RHB is among the

most severe impediments to rice productivity in tropical

Americas and the Caribbean Islands (Morales and Jennings,

2010). In Colombia it is the second threat for rice production

after rice blast. There is no chemical or biological treatment

available to fight the RHB disease, apart from devastating

insecticides against its vector. Thus, tapping into diversity of

genetic resistance to RHBV is key for a durable, successful,

environment- and consumers health-friendly, integrated crop

management. In P6 we take advantage of an extensive screening

of rice germplasm to map QTLs that control the incidence and

the severity of the disease in four diverse resistance donors

selected amongst the best performers against the disease (Cruz-

Gallego et al., 2018). We also search for possible interactions

(epistasis) between the QTLs. And finally we identify candidate

genes underlying the QTLs and attempt to validate them using a

CRISPR-Cas9-based knock-out approach. The knowledge

produced on genes and QTL represents the basis for a modern

approach of marker-aided breeding of elite rice lines resistant

to RHBV.

Our main result so far is the discovery of a major QTL for

resistance to the virus in two Colombian cultivars, FD 50 and FD

2000, as well as two QTLs that control the damages caused by the

insect vector (Romero et al., 2014). This QTL for RHBV

resistance, renamed as qHBV4.1, controls RHBV incidence,

which is simply the percentage of plants that show symptoms

of viral infection, no matter the extent or severity of the

symptoms. A local ancestry analysis in the qHBV4.1 region

showed that both resistant cultivars share the same temperate

Japonica origin, although FD 50 and FD 2000 are mostly Indica
FIGURE 10

(left) Infected rice panicle showing planthopper insect and larvae, which transmits RHBV, and (right) physically damaged rice leaves.
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germplasm. Thus, there is a high risk of resistance breakdown by

a mutation in the virus RNA, due to a very poor diversity in

resistant alleles in the cultivated germplasm. Recent observations

of RHBV outbreaks even in the resistant FD 2000 near Cúcuta

(Colombia) in FEDEARROZ plots tend to confirm the

imminence of the threat. Other QTLs have been discovered by

Genome-Wide Association Study (GWAS) but still need to be

confirmed by bi-parental mapping (Cruz-Gallego et al., 2018).

Incidence is the primary parameter to look at for the epidemics

of a disease. Yet, its severity is certainly as important as

incidence: if severity is low, a high incidence might have no

significant impact on plant viability, panicle development, or

grain yield. Additional to RHBV incidence, we thus designed

new experiments to decipher the genetic control of RHBV

resistance seen as symptoms severity. Through meta-QTL

analysis using MapDisto v2 (Lorieux 2012; Heffelfinger et al.,

2017) we found a new QTL, qHBV11.1, that controls HBV

severity in three of the four crosses analyzed. Looking at the rice

genome annotation (RAP-DB IRGSP v1) we also found an

interesting candidate gene in the QTL region. This gene,

STV11, was found to bring resistance to a cousin virus, the

Rice stripe virus (Wang et al., 2014). We are currently

investigating if STV11 in underlying the qHBV11.1 QTL using

stv11 mutants created by CRISPR-Cas9 knock-out.

Using joint- and meta-QTL approaches, we could refine the

qHBV4.1 position. In the narrowed region of qHBV4.1 we found

a putative gene that encodes for the AGO-4 Argonaute protein

(LOC-Os04g06770). Argonaute proteins, in addition to

participating in the regulation of endogenous gene expression,

also play a critical role in the defense against viruses through

small interference RNA of viral origin which bind to Argonaute

and serve as a guide for it to cut new viral RNA particles

(Mallory and Vaucheret, 2010). This system is a common

defense mechanism against pathogens, so AGO-4 may also be

associated with resistance to RHBV. We investigated the action

of qHBV4.1 using stv11 mutants created by CRISPR-Cas9

knock-out in the resistant genetic background FD-2000. We

found a mutant that showed higher RHB incidence than the wild

FD-2000, indicating that AGO-4 is a major factor of resistance

to RHBV.
3.7 Low radiation and high noctural
temperature tolerance in rice crops

Studies on climate variability impact on rice yield showed

that low radiation is an important yield limiting factor (Sheehy

et al., 2006; Yang et al., 2014). Low radiation constrained yield

with about 40 to 50% yield loss in rice grown in India and south

east asia countries (Viji et al., 1997; Sekhar et al., 2019) and

Colombia (Delerce et al., 2016). Furthermore, the lack of optimal

windows for farmers to sow either due to climatic or

management constrains increases the probability of rice crops
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to find low radiation conditions at the end of the cycle. Plant

traits related to source: sink interaction as carbon partition to

grains rather than plant traits related to source activity

(photosynthesis) are related to rice plant tolerance to low

radiation during grain filling conditions (Shao et al., 2019;

Shao et al., 2021). Our project, will look for traits and genes

that allow to discriminate low radiation tolerant plants. Field

phenotyping in two sites in Colombia of two populations

(MAGIC indica and Diversity indica panel) and GBS

genotyping will allow us to find out stable QTLs confering

tolerance to low radiation to rice.

Despite being a mainly tropical crop, rice is heat sensitive but

avoids daytime heat stress via transpirational cooling. This

works less well at night, resulting in yield reductions through

reduced grain filling rates and duration, smaller endosperm cell

number and loosely stacked starch. The latter causes chalkiness,

an important parameter for grain quality. These High Night

Temperature (HNT) effects result from impeded grain

development (sink formation) and ‘starvation’ (source

limitation). Possibly, massive increases in panicle respiration

are insufficiently offset by increased photosynthesis and reserve

mobilization. Evidence is building that HNT causes significant

yield reductions in some tropical environments, and this is

expected to be aggravated by global warming: Night

temperatures rise faster than day temperatures (Davy et al.,

2017). Late-season HNT caused 40% yield loss locally in LA and

the Caribbean (Delerce et al., 2016) and Asia (Welch et al.,

2010). Tolerance to HNT is uncommon among high-yielding

rices and has not been explicitly bred for. New phenotyping

platforms and the search for traits, tolerant genotypes and

favorable alleles in heat stress responsive genes during

OMICAS will provide opportunities to develop cultivars

tolerant to heat. Tolerant varieties as N22, the most heat

tolerant genotype known (Jagadish et al., 2015), is a poor trait

donor due to undesirable agronomic traits and genetic distance

to the genetic background of high-yielding cultivars. New

sources of tolerance are needed. Donors for HNT tolerance

may also be sought in distant genomes. A major QTL for

thermotolerance was identified and cloned in African rice

(Oryza glaberrima). Thermo-tolerance 1 (TT1) encodes an a2
subunit of the 26S proteasome involved in the degradation of

ubiquitinated proteins. The OgTT1 allele of heat-tolerant cv.

CG14, expressed in a sensitive cultivar, eliminated cytotoxic

denatured proteins. Overexpression of OgTT1 was associated

with enhanced thermotolerance in rice, A. thaliana and Festuca

(Li et al., 2015), although effects on grain quality remain

unknown. Some genetic variation for HNT tolerance exists

within sativa rice. Some QTLs and genes associated with HNT

tolerance were characterized but have not yet been field-

validated and introduced to breeding (Janni et al., 2020). More

multidisciplinary translational research is needed to develop

high-yielding varieties adapted to HNT tolerance and climate

change. The grain filling stage in rice is the most sensitive stage
frontiersin.org

https://doi.org/10.3389/fpls.2022.992663
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jaramillo-Botero et al. 10.3389/fpls.2022.992663
to a reduction in radiation. From a physiological angle low

radiation can reduce the source of carbon (Wang et al., 2015) but

can also affect sink number and activity (Cantagallo et al., 2004).

The impact on sink, has not been demonstrated in rice and

deserves further studies. The difficulty to find a relevant trait

related to low radiation tolerance during grain filling in previous

studies generates also on the lack of genetic diversity studied and

the difficulty to phenotype large and diverse panels for a stress

during a specific phonological phase (Wang et al., 2015).

For low radiation tolerance during grain filling, we carried

out phenotype-genotype evaluation on a rice diversity panel

using whole genome association studies (GWAS). An Indica

panel (300 accessions) was evaluated in the field, during two

consecutive years. Grain yield, fertility, 1000 Grain weight, stem-

leaf ratio, source:sink relation (SSR) and the number of filled

grains per panicle were significantly reduced by low radiation

and significantly different across genotypes. A total of 108 QTLs

(Quantitative trait loci) with a log 10-4 significance, were

associated with 20 variables evaluated in the high and low

radiation treatments. For low radiation conditions, two

common QTLs were found. The OSGRAS19 gene associated

in previous studies with grain size (Sink size) and light

interception (Source activity) was identified in the LD region

of the QTL associated for a proxy trait measured in plants as an

indicator of the ability of the plant source organs to fill the

grains. A validation of the candidate gene in a MAGIC indica

population and the introgration into elite breeding material is

ongoing. Concurrently, we will perform a functional analysis of

the QTL using tools from P1. During the first two years of the

project we have evaluated a set of 30 heat temperature genotypes

in a hot spot for hight temperatures in Colombia (Saldaña).

However, due to la Niña, we only got one year with real HNT.

Hot spot sites are relevant to screen materials, however the

stresses are difficult to control and need multi-year trials to find

out trend similarities. In order to impose HNT treatment at key

developmental stages, we installed controlled heat tents at CIAT

to maintain an elevated temperature only through the night.

Currently, we are evaluating 140 genotypes (with the 30

genotypes evaluated at Saldaña). This evaluation will allow us

to validate the platform for HNT and to suggest candidate

parental lines to the breeding program. Along with P4, we are

adapting phenotypic tools to continuously sense plants

temperature at night within this platform.
3.8 Al3+ plant toxicity in acid soils

High concentrations of free aluminum (Al3+) and drought

are the main constraints to rice productivity in the Llanos

Orientales of Colombia, the most important rice-producing

area in the country, in terms of extension. The genetic

improvement of drought and aluminum toxicity tolerance has

been intensively studied worldwide, with major advances in
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identifying the genes that regulate these responses and even

with the release of rice varieties with high tolerance to these

stresses. However, few studies address the impact of the

simultaneous occurrence of drought and aluminum toxicity on

rice yield, and even fewer focus on identifying the best gene/

allele combinations to increase tolerance to these stresses. In the

Omicas program, we study these stresses by focusing on: 1)

identifying genes/alleles associated with increased cross-

tolerance, 2) establishing the regulatory mechanisms, including

epigenetics, that determine the difference in tolerance between

rice genotypes, and 3) supporting the release of rice varieties

adapted to the conditions of the Llanos Orientales of Colombia.

For the discovery of genes and allelic variants, we are exploiting

the robustness of a synthetic population developed by CIRAD

and CIAT for the upland rice-breeding program for Latin

America and the Caribbean. Gene discovery is based on GBS-

GWAS over the entire synthetic population (some 300 lines). To

accelerate the release of tolerant rice varieties, we have selected

advanced lines from this synthetic population, which have

already been evaluated under the environmental conditions

prevailing in the Llanos Orientales and exhibited variability in

grain yield and root system characteristics. These advanced lines

will be used to identify allelic variants through targeted

sequencing of genes with a major influence on the response to

aluminum and drought (Nrat1, STAR1, STAR2, FRDL4, ARS5,

ART1, Dro1, qQTY 2.2, 4.1). If stable favorable haplotypes are

identified through these approaches, molecular markers will be

developed for use in marker-assisted selection (MAS) and

introgression into elite varieties via marker-assisted

backcrossing (MABC). Epigenetic regulation will be evaluated

by sequencing the methylomes of genotypes with contrasting

tolerance levels.
3.9 Greenhouse gas emissions from
agricultural crops

Nitrogen comprises 78% of the earth’s atmosphere and its

oxides (nitrous and nitric oxide, N20 and NO, respectively) play

an important role in the biogeochemical cycle of N but its

emission from the ground also has a great environmental

impact. Nitrous oxide is not only a powerful greenhouse gas, it

is the most depleting substance in stratospheric ozone.

According to the Fif th Assessment Report of the

Intergovernmental Panel on Climate Change (IPCC, 2013),

cultivated soils and natural vegetation contribute 5.0–13.8 Tg

N2O-N annually (Yao et al, 2020). In soils, N2O emissions are

closely linked to the microbial processes of nitrification and

denitrification, but nitrification rarely produces more than 1% of

the N2O emission from agricultural soils, leaving denitrification,

especially in soils with high moisture content, as the major

source of N2O in agricultural soils (SYL, 1999). The knowledge

of the emission rate from different agricultural production
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systems will allow to fine-tune their management in order to

minimize the emission of N2O.

Brazil, followed by Australia, are the countries where the

largest number of studies have been carried out to evaluate the

emission of N2O from sugarcane. In other countries of Central

and South America, including Colombia, these studies have been

very scarce (Valencia et al, in preparation). In recent years,

according to the Third National Communication on Climate

Change, Colombia went from emitting 0.37% of global emissions

to 0.46% (11 metric tons of CO2), ranking 5th out of32 countries

in Latin America and the Caribbean. Sugarcane is one of the

most important agro-industrial crops in Colombia, but

unfortunately there is not enough information about the

emission of GHG from this production system, so our work in

the Omicas program will provide a first quantitative view of N2O

emissions from this crop under agroindustrial production

conditions in the Cauca river valley.

In P7, we implemented a study to quantify the emission of

N2O in fields of commercial sugarcane production in two

contrasting environments in terms of soil moisture, humid

environment, where evapotranspiration is less than precipitation,

and a dry environment, where evapotranspiration is greater than

precipitation. Our preliminary results show that, in consistency

with similar studies in other countries, soil moisture and nitrogen

fertilization are the main factors that determine the intensity of

N2O emission. After nitrogen fertilization, an increase in the

emission of N2O is observed, while the emission decreases over

time, after fertilization increases.
3.10 Convergence and future prospects

The OMICAS program brings a trans-disciplinary approach

into crops breeding. It couples theory, lab, field and

computational experiments within a multiscale omics

characterization strategy that enables breeding and validation

of new varieties with improved agronomical traits; with higher

precision, and in a cost-effective and timely manner. Within

three years of its launch, the OMICAS team has, among others:
Fron
• uncovered epigenetic differences from four commercial

rice cultivars and two accessions of wild rice associated

to Al3+ toxicity tolerance,

• developed and validated novel graph-theory and

machine learning tools to annotate genes using

topological properties from co-expression networks,

Identified 13 SNP biomarkers and 20 candidate genes

associated to sucrose production in sucarcane,

• designed, developed and validated new nano-sensors for

the detection and quantification of biomarkers (primary

and secondary metabolites) related to a plant organism’s

health, heavy metals (Al3+) that compromise nutrient
tiers in Plant Science 17
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absorption, and gases (methane and nitrous oxide) that

contribute to the greenhouse footprint of agriculture,

• predicted the tertiary structure of a key membrane

protein for stress signaling in plants, from which we

are currently studying the plausible signaling pathways

through two plant hormones (Abscisic acid [ABA] and

gibberellins [GA1]),

• designed, developed and validated a high-throughput

phenotyping platform that integrates real-time data

from fixed, mobile terrestrial with aerial devices to

characterize soil, plant, atmosphere and crop variables,

• identified different rice genes that confer tolerance to

RHBV, high nocturnal temperatures, low-radiation, and

to aluminum toxicity,

• applied gene-editing technologies (mainly site-specific

nuclease (SSN) with CRISPR/Cas) to produce

experimental rice crops with enhanced stress response

to RHBV, and improved resource use efficiency

(Nitrogen and water) and higher yields for both rice

and sugarcane, and

• quantified and mapped the emission of nitrous oxide,

methane and carbon dioxide from commercial

sugarcane production in contrasting environments in

Colombia.
We expect the OMICAS strategy, methods and tools will

continue to have an incremental impact on breeding of new

varieties, beyond rice and sugarcane, and on general agricultural

practices. As epigenome and genome-wide characterizations

studies lead to function discovery, and our understanding of

stress signaling pathways and identification of response

mechanisms progresses, we expect a move from editing single

or a few nucleotides, to full allele replacement, and ultimately

new functional gene insertions.

Such a broad and in-depth characterization effort poses

enormous challenges, in terms of the combinatorial explosion

of datum, the inherent complexity of deep/hidden

interrelationships, and of the non-deterministic nature of

multi-objective optimizations will require new processing and

interpretation capabilities that are discipline-agnostic.

Notwithstanding, this strategy will lead, not only to crops that

can resist pests and thrive in difficult climates, but to significant

nutritional value improvements, all of which contributes to food

security, sustainable productivity, and to the democratization of

food production, which disproportionately affects the poorest

and most vulnerable people today.
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Prediction of heading date,
culm length, and biomass from
canopy-height-related
parameters derived from time-
series UAV observations of rice

Shoji Taniguchi1,2, Toshihiro Sakamoto3, Ryoji Imase2,
Yasunori Nonoue2, Hiroshi Tsunematsu2, Akitoshi Goto1,2,
Kei Matsushita2, Sinnosuke Ohmori2, Hideo Maeda2,
Yoshinobu Takeuchi2, Takuro Ishii2, Jun-ichi Yonemaru1,2

and Daisuke Ogawa2*

1Research Center for Agricultural Information Technology, National Agricultural and Food Research
Organization (NARO), Tsukuba, Japan, 2Institute of Crop Science, National Agricultural and Food
Research Organization (NARO), Tsukuba, Japan, 3Institute for Agro-Environmental Sciences,
National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
Unmanned aerial vehicles (UAVs) are powerful tools for monitoring crops for

high-throughput phenotyping. Time-series aerial photography of fields can

record the whole process of crop growth. Canopy height (CH), which is vertical

plant growth, has been used as an indicator for the evaluation of lodging

tolerance and the prediction of biomass and yield. However, there have been

few attempts to use UAV-derived time-series CH data for field testing of crop

lines. Here we provide a novel framework for trait prediction using CH data in

rice. We generated UAV-based digital surface models of crops to extract CH

data of 30 Japanese rice cultivars in 2019, 2020, and 2021. CH-related

parameters were calculated in a non-linear time-series model as an S-

shaped plant growth curve. The maximum saturation CH value was the most

important predictor for culm length. The time point at the maximum CH

contributed to the prediction of days to heading, and was able to predict

stem and leaf weight and aboveground weight, possibly reflecting the

association of biomass with duration of vegetative growth. These results

indicate that the CH-related parameters acquired by UAV can be useful as

predictors of traits typically measured by hand.
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Introduction

Phenotyping is a fundamental procedure in field testing of

crops and is typically done laboriously by hand. To make

phenotyping more effective, various methods using unmanned

aerial vehicles (UAVs) have been developed for measuring crop

physical parameters, especially in the field (Furbank and Tester,

2011; Ninomiya, 2022). UAVs can carry several types of

cameras, including RGB (red–green–blue), multispectral, and

thermal infrared, to take images of crops (Yang et al., 2017;

Sakamoto et al., 2022). From RGB images, the 2D vegetation

fraction and vertical canopy height (CH) can be extracted

(Ogawa et al., 2021a; Ogawa et al., 2021b). Vegetation indices,

obtained by spectral analysis, such as the Normalized Difference

Vegetation Index (NDVI), have been used for estimating

nitrogen use efficiency (Liang et al., 2021), drought resistance

(Jiang et al., 2021), and lodging (Yadav et al., 2017; Singh et al.,

2019), and for predicting biomass and yield (Yue et al., 2017;

Gong et al., 2018; Di Gennaro et al., 2019; Duan et al., 2019;

Wang et al., 2019a). These attempts indicate the usefulness of

UAVs for high-throughput phenotyping of crops in the field.

Rice is a staple food, especially in Asia (Muthayya et al.,

2014). Crucial to increased and sustainable rice production, yield

and biomass are complex traits affected by plant shape and size

(Peng et al., 2008; Xing and Zhang, 2010; Ikeda et al., 2013).

Culm length (CL), panicle length (PL), and panicle number

(PN), values of which reflect the genetic architecture of rice, are

roughly related to yield and biomass (Zhao et al., 2011).

Breeding for longer culms led to the selection of a rice line

with higher grain yield and plant weight (Nomura et al., 2019). A

rice line carrying OsglHAT1, which encodes a new-type GNAT-

like protein that harbors intrinsic histone acetyltransferase

activity, had increased plant size and grain length and width,

with increased yield and biomass (Song et al., 2015). Panicle

length (PL) and panicle number (PN) are strongly related to rice

yield (Agata et al., 2020; Liu et al., 2022). Growth period also

influences rice yield and biomass (Endo-Higashi and Izawa,

2011; Gao et al., 2014), and days to heading (DTH) is generally

used to evaluate the transition from vegetative to reproductive

stage. Conventionally, CL, PL, PN, and DTH are measured by

hand at high cost. For rice breeding and examining the

cultivation competence of cultivars at lower cost, a practical

high-throughput phenotyping system to estimate these traits in

the field is required.

In our previous study, rice CH estimated from UAV images

was highly correlated with CL (Ogawa et al., 2021b), making it a

potential predictor of yield and biomass. A promising approach

to make the most of UAV-based CH data for rice phenotyping is

time-series monitoring, in which remote sensing has an

advantage by being non-invasive and non-destructive.

Estimation of plant height in maize inbred lines at four growth

stages by UAV showed that temperate lines grew faster at early

growth stages, but tropical lines grew faster at later growth stages
Frontiers in Plant Science 02
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(Wang et al., 2019b). Time-series observations of rice CH with

UAV correlated highly with CHmeasured by hand, and revealed

growth patterns and differences in functional stages of

quantitative trait loci for CH (Ogawa et al., 2021b). Use of a

cable-suspended phenotyping platform allowed the temperature

response of CH in wheat lines to be clarified (Kronenberg et al.,

2021). These studies revealed time-series CH dynamism as a new

feature different from one-off CH measurement and led to the

hypothesis that time-series CH analysis could reveal genetic and

phenological characteristics of rice cultivars and predict yield-

related traits usually measured by hand.

One of the important challenges in time-series data analysis is

handling time-series changes to allow comparison (Giorgino, 2009;

Sugihara et al., 2012; Maziarz, 2015). Many time-series models have

been proposed for analyzing crop phenology. Such models include

shape-model fitting (Sakamoto et al., 2013; Zhou et al., 2020),

random regression with the Legendre polynomial (Campbell et al.,

2018; Campbell et al., 2019), segmented linear regression (Toda

et al., 2021), and non-linear growth curves (Chang et al., 2017;

Grados et al., 2020; Poudel et al., 2022). Anderson et al. (2019)

applied a three-parameter logistic model (S-shape non-linear curve)

to maize CH time-series data measured by UAV over 1 year,

applied a linear mixed effects (LME) model to the logistic

parameters, decomposed the parameter variance into genetic and

environmental effects: they showed that some of the parameters

could be used as predictors of grain yield. Borra-Serrano et al.

(2020) and Chang et al. (2017) applied similar S-shape non-linear

curves to, respectively, soybean and sorghum CH time-series data

measured by UAV. In contrast to these crops, in which CH

increases with plant growth, rice CH decreases in the

reproductive stage. Therefore, it is necessary to develop a new

model to incorporate the effects of the CH decrease and its timing,

and to apply it to CH time-series data covering various rice lines.

In this study, we aimed at revealing how UAV-derived time-

series CH data are useful for predicting yield and biomass and

related traits such as DTH, CL, PL and PN. We developed a

novel time-series model incorporating both CH increase and

decrease during the growth period, unlike previous models

developed for maize, soybean, and sorghum. To develop our

model, we used data covering 3 years and 30 cultivars, enabling

us to evaluate its robustness and to analyze the cultivar effects by

LME models. Through this analysis, we developed a practical

and high-throughput method for the prediction of rice traits

from CH-related parameters.
Materials and methods

Growing of rice cultivars

Seeds of 30 rice cultivars in Japan, including those developed

for high grain yield, lodging resistance, disease resistance, and

brown rice quality (Supplementary Table 1), were sown in
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seedling medium on 17 April 2019, 20 April 2020, and 20 April

2021. We transplanted 3 seedlings per hill at a density of 22.2

plants/m2 into a paddy field in Tsukubamirai city (36°00′33″N,
140°01′20″E), Japan, on 17 May 2019, 15 May 2020, and 13 May

2021. The paddy field was divided into 60 plots, two per cultivar

(Figure 1). The size of each plot was 2.7 m2. The plants were

grown in the field for about 5 months.
UAV-based aerial photography

Aerial observations were made about once a week as in our

previous studies (Ogawa et al., 2019; Ogawa et al., 2021a; Ogawa

et al., 2021b). We used a Phantom 4 Pro UAV (P4P; DJI,

Shenzhen, China) to capture RGB images with an onboard 20-

megapixel camera that flew automatically at 1.0 m/s over the

paddy field at an altitude of 10.3 m. DJI GS Pro software

controlled the flight path and set the following photogrammetry

conditions: capture mode, time interval; front overlap ratio, 80%;

side overlap ratio, 80%; gimbal pitch angle, −90°, white balance,

cloudy; aperture, auto; shutter, auto. Each flight took 150–200

images covering the field, each measuring 5472 × 3648 pixels. To

set the focus, the P4P was manually raised to 10.3 m, the camera

was focused automatically on a region of the canopy, and then the

focus mode was changed to manual. We placed seven ground

control point (GCP) markers on the ground around the test field.
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We obtained the altitude, longitude, and latitude of each GCP by

real-time kinematic positioning using a DG-PRO1RWS receiver

(BizStation Corp., Matsumoto, Japan).
Generation of digital surface model and
quantification of CH

As previously, Agisoft MetaShape Professional v. 1.6.5

software (Agisoft, St. Petersburg, Russia) generated a digital

surface model (DSM) from each image set (150–200 images

per set) by the date of photogrammetry in the following

procedure: (1) align photos (high accuracy), (2) import GCPs,

(3) optimize camera, (4) build dense cloud, (5) build digital

elevation model (source data to be dense cloud), and (6) export

the digital elevation model. The coordinate system was set to

UTM zone 54N (WGS-84) and the resolution to 2 mm/pixel.

Next, QGIS (3.20.0) software (QGIS Development Team) cut

out the area of the paddy field from each DSM image and

identified the position of each plot to create shape files. Finally, a

script written in Python (3.9.7: Python Software Foundation) cut

out the portion in the DSM images corresponding to each plot in

reference to the shape files. The computer was an AMD Ryzen

Threadripper 2990WX (32-Core Processor, 3.00 GHz, 128 GB

RAM, GeForce RTX 2080 Ti GPU) running the 64-bit Windows

10 Pro operating system.
FIGURE 1

Framework of our analysis for the traits prediction from CH-related parameters. Thirty rice cultivars including AKT and TKA were grown with 2
replicates in 2019, 2020, and 2021. Aerial photogrammetry was conducted weekly. CH time-series data were obtained by generating a DSM and
CH-related parameters were calculated. Several traits were measured by hand. Statistical analysis included linear regression for the traits
prediction and linear mixed effects modeling for the variance decomposition of the traits and CH-related parameters.
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We defined the canopy position as the 95th percentile in the

cut-out DSMs corresponding to each plot. CH was defined as the

difference between canopy position and ground level. We

defined ground level as the 2nd percentile just after

transplanting in the cut-out DSMs corresponding to each plot.
Fitting time-series model to the CH data

For the statistical modeling of the CH time-series data, we

adopted a three-parameter logistic as the typical model for the S-

shape plant growth (Paine et al., 2012). Since the logistic

asymptotically approaches the maximum saturation value K,

we modified it to incorporate the CH decrease in the late growth

phase to develop the following time-series model:

CH =

K
1+exp r d0−xð Þð Þ   when   x ≤ d1ð Þ,

K
1+exp r d0−xð Þð Þ − a x − d1ð Þ2  (when   x > d1),

8<
: (1)

where x is days after sowing, d0 is the time point at the highest

growth rate, d1 is the time point at the maximum CH, r is the

growth rate, and a is the CH decrease rate from the logistic

S-shape curve in the late growth phase (Figure 2).

For parameter estimation, we used a two-step procedure to

prevent false convergence in the estimation algorithm. First, we

calculated K and d1, taking the maximum value in each CH time-

series data set as K. We fitted a cubic polynomial to each data set

and obtained d1 as the time point when the cubic polynomial

was at its maximum.We applied the following cubic polynomial:

CH = b0 + b1x + b2x2 + b3x3 : (2)

Second, we fitted equation 1 given the values of K and d1. Except

for K, all parameters were obtained by means of the nonlinear

least squares method implemented in R (R Core Team, 2021).

For parameter estimation for equation 1, we used the R function

nls, adopting the nl2sol algorithm and setting the initial values to

d0=50 , r=0.05 , and a=1.0 × 10−4 .
Manual measurement of traits related
to yield

Heading date was defined as the date when panicles emerged

from about half of the stems in each plot. DTH (days) was the

period from the sowing date to the heading date. CL (m) and PL

(cm) of the longest culm of each plant were measured and PN

was counted once from 2 to 4 weeks after heading. CL was

defined as the length from the ground to the panicle base, and PL

was defined as the length from there to the tip of the spikelet.

Mean values from 10 plants per cultivar were used for CL, PL,

and PN. For aboveground dry weight (ADW; g), 50 plants per

plot at maturity were harvested from the ground and air-dried
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for more than 2 weeks before the measurement. Stem and leaf

weight (SLW; g) was obtained as ADW − grain weight (GW; g).

These traits were measured in each plot. All trait names are listed

in Table 1.
Statistical analysis of traits and parameters

To decompose the traits and CH-related parameters into

cultivar, year, and cultivar × year interaction effects, we applied

the linear mixed effects (LME) model:

Xlyb = mX + Xl + Xy + Xly + ϵ, (3)

where Xlyb is a parameter or trait of cultivar l in year y and plot b;

μX is the fixed effect for the average value; Xl eN(0,s 2
l ), Xy eN

(0,s 2
y ), and Xly eN(0,s 2

ly) are random effects of cultivar, year,

and cultivar × year interaction, respectively; and ϵ eN(0,s 2
ϵ ) is

the residual. We defined heritability as the ratio of cultivar

variance to the total variance:

h2 = s 2
l

s 2
l +s

2
y +s 2

ly+s
2
ϵ
: (4)

The R package lme4 (Bates et al., 2015) estimated the

parameters and the best linear unbiased predictors (BLUPs) of

the LME model by the REML method. Total variance was

calculated as follows:

s 2
All = s2

l + s 2
y + s 2

ly + s2
ϵ

We used the linear regression model to predict the yields from

the CH-related parameters and evaluated whether the phenology
FIGURE 2

Fitting time-series model to CH time-series data. Red points are
CH data obtained by UAV. The time-series model applied to the
data is the red S-shaped curve. The model was prescribed by 5
parameters: K, the maximum saturation value; r, growth rate; a,
CH decrease in the late growth phase; d0, time point at the
highest growth rate; d1, time point at maximum CH. This curve
was described in equation (1).
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data contained enough information about yield. To reveal what

CH-related parameters are useful for the prediction of traits, we

examined Pearson’s correlations (cor). Since multicollinearity

impairs the accuracy of regression coefficients, we used backward
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variable selection to prevent it. We calculated the variance inflation

factor in the R package car (Fox and Weisberg, 2019) for variable

selection and adopted four parameters as predictors without

multicollinearity (variance inflation factor< 5): K, d0, d1, and r

(Supplementary Table 2). All four predictors were standardized to

have a mean of 0 and standard deviation of 1. Next, we constructed

linear regression models by the ordinary least squares method to

predict CL, DTH, ADW, GW, and SLW. The prediction accuracies

were evaluated by cross-validation (CV), splitting data by year and

by cultivar (Figure 3). Finally, the regression coefficients were

estimated from all data (n = 180). As measures of accuracy, we

used cor and root-mean-square error (RMSE) between observed

and predicted values of test data. RMSE evaluates the accuracy of

predicting the exact values, and cor evaluates the accuracy of

predicting the magnitude of correlation.
TABLE 1 Traits and their abbreviations.

Abbreviation Trait
ADW Aboveground dry weight

CL Culm length

DTH Days to heading

GW Grain weight

PL Panicle length

PN Panicle number

SLW Stem and leaf weight
B

A

FIGURE 3

Schemes of CV to predict manually measured traits. (A) Threefold CV, where data were split by year: two years were used for training data and
the other as test data. (B) Tenfold CV, where data were split by cultivar: 27 cultivars as training data and the other 3 as test data.
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Influence of accumulated daily mean
temperature on CH-related parameters
d0 and d1

We transformed d0 and d1 values to accumulated

temperature d0
temp and d1

temp, starting from the planting date

to the date of d0 or d1:

dtemp
0 = o

d0

d=dp+1

Td

dtemp
1 = o

d1

d=dp+1

Td

where Td is the mean temperature of day d and dp is the date of

planting. The base temperature was set to 0°C. We used the LME

model in equation 2. Daily mean temperature (°C) in the paddy

field is shown in Supplementary Data 1-3.
Results

Relationships between manually
measured traits and CH-related
parameters in 30 rice cultivars

We characterized phenotype data of 30 Japanese rice

cultivars (Supplementary Table 1) in 2019, 2020, and 2021

from the aspect of genetics and examined how to use the CH

data for the prediction of traits usually measured by

hand (Figure 1).

The sizes of interannual differences in phenotypic distribution

depended on trait (Figure 4; Table 2; Supplementary Table 3).

Distributions of DTH, CL, PL, and PN were highly overlapped

among years, and heritability was high: that of DTH was 0.80, CL

0.81, PL 0.90, and PN 0.63 (Table 2). On the other hand, the

phenotypic distribution of GW was wider than that of SLW,

especially between 2021 and the other 2 years (Figure 4).

Consistent with this, heritability of GW was 0.29, much lower

than that of SLW at 0.77. Therefore, GW was more susceptible to

year effect than SLW (Table 2). ADW is SLW + GW, and its

heritability (0.70) was positioned between theirs.

We collected 2834 CH data of the 30 Japanese cultivars over

the 3 years (Supplementary Table 4). Given the huge size of the

dataset, we obtained CH-related parameters by applying time-

series curves to the CH data by plot (Supplementary Figure 1).

The range of phenotypic distributions tended to differ by year

(Figure 4; Supplementary Table 3). Heritabilities of K (0.54) and

d1 (0.63) were higher than those of r (0.21) and d0 (0.29),

suggesting that r and d0, parameters of vegetative growth,

might also be more susceptible to year effects than K and d1,

parameters of the reproductive stage (Table 2).
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We obtained correlation plots between the parameters and

traits (Figure 5; Supplementary Figure 2). K was positively

correlated with CL. This result is consistent with our previous

data showing high correlation between CH and CL in several rice

lines (Ogawa et al., 2021b). d1 was positively correlated with

DTH, ADW, and SLW. These results motivated us to use K and

d1 to predict traits.
Prediction of CL and DTH from CH-
related parameters

CV indicated the accuracy of predicting CL and DTH from

CH-related parameters (Table 3). In predicting the magnitudes of

CL, coryear = 0.82 and corcultivar = 0.68; and of DTH, coryear = 0.89

and corcultivar = 0.85. The scatter plots between observed and

predicted CL and DTH were highly correlated (Figure 6). In

predicting the exact values of CL, RMSEyear = 0.05 m and

RMSEcultivar = 0.04 m; and of DTH, RMSEyear = 5.2 days and

RMSEcultivar = 4.2 days (Table 3). These RMSE values were smaller

than the total standard deviations, the square root of the total

variances (Table 2). These results indicate that the CH-related

parameters had information that could be used to predict CL

and DTH.

We calculated the regression coefficients in the regression

models. Since all predictors were standardized, the importance

of each parameter in the model was quantified as the absolute

value of each coefficient. The regression model to predict CL was

CL = 0:84 + 0:06K + 0:01d0 + 0:01d1 + 0:01r (5)

and the coefficient of determination was R2=0.684. The model to

predict DTH was

DTH = 108:6 + 0:1K + 1:3d0 + 6:8d1 + 1:1r (6)

and R2 = 0:794

In predicting CL, the coefficient of K (0.06, significant by t-test

at 0.1%; Supplementary Table 5) had the largest absolute value,

more than 4× the second largest one, that of d0 (0.01). In predicting

DTH, the coefficient of d1 (6.82, significant by t-test at 0.1%;

Supplementary Table 5) had the largest absolute value, more than

5× the second largest one, that of d0 (1.34). Therefore, in the linear

regressionmodel,Kwas the most important predictor of CL, and d1
was the most important predictor of DTH.

The linear regression models based on CH-related

parameters explained the total variances of the manually

measured traits, but it was still uncertain whether the relations

between the two were derived from the characteristics of each

cultivar. The LME model, which decomposed the total variance

into cultivar, year, cultivar × year interactions, and residual,

extracted the cultivar effects as the BLUPs from the whole data.

First, the high heritabilities of CL (0.81) and DTH (0.80) imply

that a large proportion of the total variance derived from cultivar
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FIGURE 4

Frequency distributions of manually measured traits and CH-related parameters, shown as histograms.
TABLE 2 Summary statistics of CH-related parameters and traits obtained by the linear mixed effects model.

Trait Heritability Mean sAll2 a sl2 b sy2 c sly2 d sϵ2 e

DTH 0.80 108.6 7.3 × 10 5.9 × 10 1.2 × 10 1.8 2.6 × 10−1

CL 0.81 840.3 × 10−3 5.2 × 10−3 4.3 × 10−3 2.0 × 10−4 1.8 × 10−4 5.9 × 10−4

PL 0.90 200.4 × 10−1 3.7 3.4 1.0 × 10−1 5.1 × 10−2 2.2 × 10−1

PN f 0.63 173.2 × 10−1 8.2 5.2 6.5 × 10−1 0.0 2.4

GW 0.29 173.0 × 10 6.5 × 104 1.9 × 104 2.3 × 104 1.2 × 104 1.2 × 104

SLW 0.77 252.4 × 10 2.7 × 105 2.1 × 105 2.3 × 104 1.3 × 104 2.7 × 104

ADW 0.70 425.4 × 10 3.3 × 105 2.3 × 105 5.2 × 104 5.5 × 103 4.2 × 104

K 0.54 103.5 × 10−2 8.0 ×10−3 4.3 ×10−3 2.3 ×10−3 8.1 ×10−4 6.1 ×10−4

d1 0.63 122.8 7.6 × 10 4.8 × 10 1.5 × 10 1.2 × 10 7.4 × 10−1

r 0.21 617.2 × 10−4 3.7 × 10−5 7.7 × 10−6 8.9 × 10−6 1.8 × 10−5 2.4 × 10−6

d0 0.29 737.3 × 10−1 2.3 × 10 6.8 1.4 × 10 1.7 4.8 × 10−1

a 0.61 385.6 × 10−6 3.1 ×10−8 1.9 ×10−8 1.4 ×10−9 9.7 ×10−9 1.1 ×10−9
Frontiers in Plan
t Science
 07

6667
front
aTotal variance.
bVariance of cultivars.
cVariance of years.
dVariance of cultivar × year interaction.
eVariance of residuals.
fNote that the result of PN was singular.
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effects. Note that heritability is the ratio of cultivar effect to the

total variance. Second, the cultivar effects of CL, DTH, K, and d1,

quantified as the BLUPs of each cultivar, showed a clear

tendency that the cultivars with smaller K had a smaller CL,

and those with smaller d1 had a smaller DTH (Figure 7). The

correlation of cultivar BLUPs between K and CL was cor = 0.89,

and that of d1 and DTH was cor = 0.94. These results indicate

that the total variances of CL and DTH were largely prescribed

by the cultivar effects of K and d1, respectively.
Prediction of ADW, GW, and SLW from
CH-related parameters

As it did for DTH and CL, our CV method gave the accuracy

of prediction of ADW, GW, and SLW (Table 3). In predicting

the magnitudes of ADW, coryear = 0.72 and corcultivar = 0.62 and

of SLW, coryear = 0.81 and corcultivar = 0.74 (Figure 6). These
Frontiers in Plant Science 08
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values were better than predicting the magnitude of GW: coryear
= 0.00 and corcultivar = 0.31. The scatter plots between observed

and predicted SLW and ADW were highly correlated. In

predicting the exact values of ADW, cross-validation by year

(RMSEyear = 406.7 g) had better accuracy than that by cultivar

(RMSEcultivar = 638.6 g), as had that of SLW (Table 3). The CH-

related parameters contained information with which to predict

ADW and SLW, but yearly fluctuations could increase RMSE. By

contrast, as shown in the scatter plot between observed and

predicted GW (Figure 6), the slopes were almost flat and the

model explained little of the GW variance. Therefore, CH-

related parameters held little information with which to

predict GW, at least under our linear regression model.

The regression coefficients indicated the importance of each

parameter in our regression models. (All predictors were

standardized.) The regression model to predict ADW was

ADW = 4254 + 176K − 242d0 + 518d1 + 132r (7)

and R2=0.475 . The model to predict SLW was

SLW = 2524 + 165K − 199d0 + 541d1 + 105r (8)

and R2=0.684 . In predicting ADW and SLW, all four parameters

were significant by t-test at 0.1%, and d1 had the largest absolute

values (Supplementary Table 5). For ADW, the coefficient of d1
was 518, more than 2× the absolute value of d0 (−242), the

second largest. Similarly, for SLW, the coefficient of d1 was 540,

more than 2× the absolute value of d0 (−198). Therefore, d1 was

the most important predictor of ADW and SLW.

The results of the LME model uncovered the effect of each

cultivar on the total variance of ADW and SLW. The high

heritabilities of ADW (0.70) and SLW (0.77) imply that a large

proportion of total variance derived from cultivar effects. The

cultivar effects of ADW, SLW, and d1, quantified as the BLUPs of

each cultivar, showed a clear tendency in which cultivars with

smaller d1 had smaller ADW and SLW (Figure 7C). On the other

hand, the cultivar BLUPs of GW had little relation with those of

d1. The correlations of cultivar BLUPs of d1 with SLW (cor =

0.93) and ADW (cor = 0.87) were higher than that with GW (cor

= −0.05). The cultivar effects of d1 clearly reflected those of SLW.

As ADW = SLW + GW, since the low correlation indicates that

the cultivar effects of d1 and GW were almost independent, the
TABLE 3 Prediction accuracy of five traits evaluated by CV by year and by cultivar.

CV by year CV by cultivar

coryear RMSEyear corcultivar RMSEcultivar
CL 0.823 522.9 × 10−4 0.682 442.3 × 10−4

DTH 0.890 515.1 × 10−2 0.851 420.6 × 10−2

ADW 0.716 638.6 0.620 406.7

GW 0.003 294.6 0.312 232.6

SLW 0.808 437.0 0.743 291.9
cor, Pearson’s correlation coefficient; RMSE, root mean square error.
FIGURE 5

Correlation plot of parameters and traits in 2019. Values are
correlation coefficients (cor); circles present them by color and
size.
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result that the cultivar effects of d1 corresponded to those of

ADW derives from the relation of the cultivar effects of d1 and

SLW (Figure 7C; Supplementary Figures 3-5).
Frontiers in Plant Science 09
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Sensitivity of accumulated daily mean
temperature to CH data

The frequency distributions of the CH-related parameters

differed among years (Figure 4), indicating that those may be

influenced by environmental factors. In the developmental rate

model, which is well known for the prediction of DTH in rice,

daylength and daily mean temperature are explanatory variables

(Horie et al., 1995). We asked whether the change of CH is

affected by accumulated daily mean temperature instead of

daylength, because the former varied among years

(Supplementary Data 1-3), whereas daylength was almost

constant owing to the similar planting dates. CH-related

parameters d0 and d1 are based on time-series data, but d0
temp

and d1
temp are based on accumulated daily mean temperature.

Transforming d0 into d0
temp increased heritability from 0.29 to

0.58 (Supplementary Table 6) and decreased the year effect from

61% to 21% (Figure 8), meaning that the year effect on d0 was

explained mostly by the accumulated temperature. On the other

hand, the heritability of d1
temp (0.62) was almost the same as that

of d1 (Supplementary Table 6; Supplementary Figure 6). These

results indicate that the time point at the maximum CH (d1),

which is linked to heading date, is insensitive to accumulated

daily mean temperature, but that at the highest CH growth rate

(d0) is sensitive to it.
Discussion

We constructed a time-series model and applied it to the

data of 30 rice cultivars in 2019, 2020, and 2021, which were

derived from UAV-based time-series aerial photography. In

the case of maize (Anderson et al., 2019), soybean (Borra-

Serrano et al., 2020) and sorghum (Chang et al., 2017), CH

continues to increase, and there is little need to consider the

difference of CH growth in between vegetative and

reproductive stages. On the other hand, the CH decrease in

the reproductive stage is distinct in rice. In our model, we

introduced the parameters d1, the time point at the maximum

CH; and a, the rate of CH decrease in the late growth phase, in

addition to K, the maximum saturation value; d0, the time

point at the highest growth rate; and r, the growth rate. Our

model proved suitable for predicting CL, DTH, SLW, and

ADW. The highly heritable CH-related parameters d1 and K

contributed to the prediction of DTH and CL. Notably, d1 also

contributed to the prediction of SLW and ADW, possibly

reflecting the association of biomass with duration of

vegetative growth. The cultivar effects of traits measured by
FIGURE 6

Observed and predicted values of CL, DTH, ADW, SLW, and GW.
Plots show the results of CV by (left) year and (right) cultivar. The
points plot datasets of predicted and observed values, colored
by year; the lines are linear regressions applied to them.
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hand (CL, DTH, SLW, and ADW) and their corresponding

CH-related parameters were highly correlated. These results

indicate that CH-related parameters are useful for the

prediction of traits usually measured by hand, reinforcing the
Frontiers in Plant Science 10
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significance of time-series monitoring by UAV in high-

throughput phenotyping.

Desai et al. (2019) proposed a method to precisely estimate

heading date by detecting flowering panicles in RGB images
B

C

A

FIGURE 7

Scatter plots of cultivar effects between CH-related parameters and manually measured traits. (A) Flow chart of the process to generate scatter
plots. The cultivar effect (Xl) on traits and parameters was extracted from the linear mixed effects model as BLUPs from the 3-year experiment.
(B, C) Plots of cultivar effects showing correlations between (B) K and CL and between (C) d1 and DTH, ADW, SLW, or GW. Correlation
coefficients (cor) are shown in plots. Cultivar name codes are shown in red.
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taken with a fixed camera every 5 min. Their method has the

advantage of directly detecting panicles but is unsuitable for use

by UAV because it requires a higher shooting frequency and a

lower shooting altitude. On the other hand, our UAV method
Frontiers in Plant Science 11
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enabled us to predict DTH by focusing on the features of time-

series CH changes in images taken weekly. Similarly, Zhao et al.

(2021) proposed a method to predict wheat heading date by

applying a logistic curve to growth data obtained by UAV,
B

A

FIGURE 8

Visualization of the linear mixed effects model for (A) d0 and (B) d0
temp. Left, proportions of 4 variance components; right top, BLUPs of cultivar

and cultivar × year interactions of 30 cultivars; right bottom, BLUPs of 3 years. Cultivars are sorted by d1. The numbers in cultivar components
indicate percentage heritability.
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extracting the date when the second derivative is minimum. Our

and their studies indicate that time-series models derived from

UAV data can reveal developmental changes in crops in the field.

Our approach relies on applying a time-series model to CH

data spanning crop growth from the vegetative stage to the

reproductive stage in the field, and uses CH-related parameters

as summary statistics of each trajectory. Time-series or

longitudinal trait data have been modeled in several ways,

including random regression with the Legendre polynomial.

Although this polynomial can be incorporated into the

expectation-maximization algorithm (Yang et al., 2006) and

kernel methods (Campbell et al., 2018; Campbell et al., 2019),

it is difficult to interpret the coefficients in the models. The

coefficients of our CH-related parameters, on the other hand,

have explicit meaning in the context of phenology and allow

better interpretability.

The LME models decomposed each CH-related parameter

into cultivar, year, and cultivar × year interaction effects. We

considered year effect as an environmental effect and examined

the influence of accumulated daily mean temperature on CH

data. Our results indicate that d0, a CH-related parameter in the

vegetative stage, is sensitive to the accumulated daily mean

temperature, but d1, in the reproductive stage, is not. It is

possible that DTH, associated with d1, is regulated by

daylength, but growth is affected by temperature. In terms of

cultivar effect, we showed strong correlations between K and CL,

and between d1 and DTH, ADW, or SLW, suggesting the high

contribution of these CH-related parameters to the prediction of

each trait. This analysis can be useful in cultivar characterization.

For example, in the case of cultivars “HKR” and “TYM”, the

BLUPs of ADW with d1 deviated from linear (Figure 7C),

probably reflecting their high yield and biomass.

CV by using cor and RMSE evaluated the robustness of the

regression models to predict CL, DTH, ADW, GW, and SLW in

an untested year and in untested cultivars. CV using cor estimates

the magnitude of the correlation. In predicting CL, DTH, ADW,

and SLW, values of cor by both CV methods were high. CV using

RMSEs, which estimates the accuracy at predicting exact values of

test data, can evaluate model robustness from the viewpoint of

model variance, the phenomenon by which the prediction

fluctuates with the training data, which results in variance of the

predicted values (Bishop, 2006; Hastie et al., 2009). In predicting

CL and DTH, RMSEs were similar by both types of CV methods.

However, in predicting ADW and SLW, RMSEs of CV by year

were about 1.5 times higher than those of CV by cultivar.

Therefore, the prediction of ADW and SLW had model

variance derived from year.

This study provides a novel method to predict traits that

would usually be measured by hand from CH-related parameters

extracted from aerial time-series data. The parameters did not

prove useful in the prediction of GW, which manually measured

data showed was not heritable. This indicates that GW is more

sensitive to environment, suggesting the necessity of
Frontiers in Plant Science 12
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environmental data for the prediction of GW. We will

examine new models for GW prediction from environmental

data and other UAV-derived time-series data.
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SUPPLEMENTARY FIGURE 1

Trajectory of each CH time-series curve. The LME model calculated the
cultivar effects of each CH-related parameter, which generated the

cultivar-specific time-series curve (“Cultivar E”).

SUPPLEMENTARY FIGURE 2

Correlation plot of parameters and traits in (A) 2020 and (B) 2021.

Values are correlation coefficients (cor); circles present them by color
and size.

SUPPLEMENTARY FIGURE 3

Visualization of the LME model for GW. Left, proportion of 4

variance components; right top, BLUPs of cultivar and cultivar × year
interactions of 30 cultivars; right bottom, BLUPs of 3 years. Cultivars are

sorted by d1.
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SUPPLEMENTARY FIGURE 4

Visualization of the LME model for ADW. Left, proportion of 4 variance
components; right top, BLUPs of cultivar and cultivar × year interactions

of 30 cultivars; right bottom, BLUPs of 3 years. Cultivars are sorted by d1.

SUPPLEMENTARY FIGURE 5

Visualization of the LME model for SLW. Left, proportion of 4 variance

components; right top, BLUPs of cultivar and cultivar × year interactions
of 30 cultivars; right bottom, BLUPs of 3 years. Cultivars are sorted by d1.

SUPPLEMENTARY FIGURE 6

Visualization of the linear mixed effects model for (A) d1 and (B) d1
temp.

Left, proportion of 4 variance components; right top, BLUPs of cultivar
and cultivar × year interactions of 30 cultivars; right bottom, BLUPs of 3

years. Cultivars are sorted by d1.
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PhytoOracle: Scalable,
modular phenomics data
processing pipelines

Emmanuel M. Gonzalez1, Ariyan Zarei2, Nathanial Hendler1,
Travis Simmons1, Arman Zarei3, Jeffrey Demieville1,
Robert Strand1, Bruno Rozzi1, Sebastian Calleja1,
Holly Ellingson4, Michele Cosi1,5, Sean Davey6,
Dean O. Lavelle7, Maria José Truco7, Tyson L. Swetnam5,8,
Nirav Merchant4,5, Richard W. Michelmore7,9,
Eric Lyons1,4,5 and Duke Pauli1,4*

1School of Plant Sciences, University of Arizona, Tucson, AZ, United States, 2Department of Computer
Science, University of Arizona, Tucson, AZ, United States, 3Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran, 4Data Science Institute, University of Arizona, Tucson,
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Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States, 8School of
Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States,
9Department of Plant Sciences, University of California, Davis, Davis, CA, United States
As phenomics data volume and dimensionality increase due to advancements in

sensor technology, there is an urgent need to develop and implement scalable

data processing pipelines. Current phenomics data processing pipelines lack

modularity, extensibility, and processing distribution across sensor modalities

and phenotyping platforms. To address these challenges, we developed

PhytoOracle (PO), a suite of modular, scalable pipelines for processing large

volumes of field phenomics RGB, thermal, PSII chlorophyll fluorescence 2D

images, and 3D point clouds. PhytoOracle aims to (i) improve data processing

efficiency; (ii) provide an extensible, reproducible computing framework; and (iii)

enable data fusion of multi-modal phenomics data. PhytoOracle integrates

open-source distributed computing frameworks for parallel processing on

high-performance computing, cloud, and local computing environments. Each

pipeline component is available as a standalone container, providing

transferability, extensibility, and reproducibility. The PO pipeline extracts and

associates individual plant traits across sensor modalities and collection time

points, representing a unique multi-system approach to addressing the

genotype-phenotype gap. To date, PO supports lettuce and sorghum

phenotypic trait extraction, with a goal of widening the range of supported

species in the future. At the maximum number of cores tested in this study (1,024

cores), PO processing times were: 235 minutes for 9,270 RGB images (140.7 GB),

235 minutes for 9,270 thermal images (5.4 GB), and 13 minutes for 39,678 PSII

images (86.2 GB). These processing times represent end-to-end processing,

from raw data to fully processed numerical phenotypic trait data. Repeatability

values of 0.39-0.95 (bounding area), 0.81-0.95 (axis-aligned bounding volume),

0.79-0.94 (oriented bounding volume), 0.83-0.95 (plant height), and 0.81-0.95
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(number of points) were observed in Field Scanalyzer data. We also show the

ability of PO to process drone data with a repeatability of 0.55-0.95

(bounding area).
KEYWORDS

phenomics, morphological phenotyping, physiological phenotyping, distributed
computing, high performance computing, image analysis, point cloud analysis,
data management
1 Introduction

The world population is expected to reach 10 billion people by

2050 with a projected 50% decrease in global freshwater resources

(Searchinger et al., 2019; Gupta et al., 2020). Although existing crop

improvement methods have maintained stable increases in crop

yields, a continuation of these trends is not sustainable (Grassini

et al., 2013). Crop improvement methods continue to rely on

subjective, manually collected phenotype data. However, advances

in sensor technology have contributed to the emergence of plant

phenomics, the study of plant phenotypes, over the last decade

(Andrade-Sanchez et al., 2014; Araus and Cairns, 2014; Pauli et al.,

2016). Low-cost, user-friendly sensors now enable the collection of

objective data at high throughput. The resulting data volumes are

substantial and reveal bottlenecks in data processing, data

management, and data storage. To date, a variety of phenomics

bottlenecks related to data collection have been resolved, but

computational bottlenecks related to data volume and velocity

have been largely overlooked (Furbank and Tester, 2011). The

volume and velocity of plant phenomics data collection makes it

difficult to extract phenotypic trait data using existing software at

the scale required for breeding programs and basic research.

Therefore, addressing bottlenecks in computational throughput

would enable the efficient processing of data and, as a result, the

study of variation and plasticity of fine-scale traits at high temporal

resolution. These high-resolution datasets may improve the

elucidation of genetic components controlling agronomic and

functional traits (Furbank and Tester, 2011).

Phenotyping, various marker technologies, and statistical

methods have enabled the prediction of genotypic values and

genetic mapping (Bernardo, 2020). The application of these

methods allows for the dissection of the genetic and

environmental components of phenotypic trait variance. Such

studies require the measurement of quantitative traits that are

often collected visually, in the case of observational data, and

manually using handheld devices such as PAM fluorometers for

chlorophyll fluorescence measurements, spectroradiometers for

UV-VIS-NIR, protractors for leaf angle, rulers for plant height,

and weight scales for yield. Visual and manual phenotyping are

common due to having low initial investment costs, but these

approaches lack throughput and reproducibility due to the labor

required and subjectivity of measurements (Reynolds et al., 2019).

Emerging technologies, such as automated high-throughput plant
02
7576
phenotyping platforms, often have higher initial investment costs

compared to traditional phenotype collection, but this is quickly

changing. High-throughput platforms are diverse, including robots,

drones, phones, and carts (White and Conley, 2013; Bai et al., 2016;

Thompson et al., 2018; Thorp et al., 2018; Yuan et al., 2018; Guo

et al., 2020; Roth et al., 2020). Compared with traditional methods,

these platforms improve data collection throughput, reduce

subjectivity through varying levels of automation, and enable

higher phenotyping resolution, referred to here as fine-scale

phenotyping (Reynolds et al., 2019). The resolution provided by

fine-scale phenotyping has enabled studies revealing genetic loci

associated with drought resistance (Li et al., 2020), stomatal

conductance (Prado et al., 2018), temporal salinity responses

(Campbell et al., 2015), and panicle architecture (Rebolledo et al.,

2016). Other studies have captured natural variation in

photosynthetic efficiency (van Bezouw et al., 2019; Khan et al.,

2020) as well as highlighted the feasibility of phenomics selection

(Rincent et al., 2018; Parmley et al., 2019; Zhu et al., 2021) based on

traits such as stay-green (Rebetzke et al., 2016) and spectral

reflectance (Aguate et al., 2017; Lane et al., 2020).

The high temporal and spatial resolution of fine-scale

phenotyping using automated plant phenotyping platforms

provide new opportunities to study dynamic patterns in

phenotype expression in response to varying conditions. For

example, the phenotypic effects of induced variation can be

assessed in mutant populations and natural variation in diversity

panels (Khan et al., 2020), allowing for the detection of temporal

fluctuations in trait expression and associations between

morphological and physiological phenotypic traits. Future

research and development in computational plant phenomics

could help improve selection accuracy due, in part, to

increasingly precise extraction of fine-scale phenotypes enabled by

complementary analytical methods and algorithms. In plant

phenomics, the level of extraction required to dissect agronomic

and functional traits would involve processing large volumes of

image, spectral, and point cloud raw data across thousands of plants

and time points to identify unique, obscure patterns of

morphophysiological responses to various environments. The

integration of these fine scale phenomics datasets within and

across projects would further expand our knowledge of traits and

aid in hypothesis generation (Coppens et al., 2017).

The data volumes generated by biological sciences research outpace

existing computing infrastructure (Chen et al., 2013; Qin et al., 2015;
frontiersin.org
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Stephens et al., 2015; Sivarajah et al., 2017). Additionally, data variety

within biological sciences research is widening due to the emergence of

phenomics, particularly in plant science research (Furbank and Tester,

2011; Furbank et al., 2019; Harfouche et al., 2019). The increasing

availability and diversity of modular, high-quality sensors mounted on

automated phenotyping platforms has led to the collection of large

volumes of various data types, including morphological and

physiological traits (Coppens et al., 2017). These expanding data

volumes pose new challenges related to computation, data

integration, and data management – a problem that is likely to be

exacerbated by continued improvements and widespread use of sensor

technology (Kim et al., 2017). In information science, it has long been

recognized that existing computational techniques are inadequate in

dealing with big data, primarily due to bottlenecks in the extraction of

information from large volumes of data and the associated bottlenecks

of scalability and data management. The bottleneck in information

extraction is actively being addressed through the development of

methods including machine learning (ML) and artificial intelligence

(AI), while parallel processing is addressing scalability (Chen et al.,

2013; Jukić et al., 2015; Sivarajah et al., 2017). Although these methods

improve scalability and information extraction, they do not address

data management. Parallel computing systems (PCSs) are

characterized by the co-location of input data and processing code,

representation of processing in terms of data flows and

transformations, and scalability. Collectively, these characteristics

facilitate the processing of datasets once considered intractable due to

previous limitations in computing (Kale, 2020). The required

computational resources in PCSs are commonly data-dependent,

meaning that each dataset requires a different set of computational

resources. To increase processing efficiency and reduce computing

costs, PCSs could allow users to tailor CPU/GPU, high-memory/high-

processor nodes, and other computational resources to specific

datasets. This capability may become increasingly important as

expanding data volumes pose a higher cost if computational

resources are used inefficiently.

For phenomics data to provide actionable genome-phenome

insights in combination with other -omics data, large scale

phenomics data must be processed in a scalable and reproducible

manner, stored in publicly accessible data stores, and be

interoperable with other data types (Coppens et al., 2017; Kim

et al., 2017). To address these requisites, a variety of established

resources can be leveraged. For example, data management systems

such as the CyVerse Data Store, a cloud-based data management

system built on the Integrated Rule-Oriented Data System (iRODS),

provides storage and cross-platform command line interface (CLI)

access to data (Goff et al., 2011; Merchant et al., 2016). Container

technologies, such as Docker and Singularity, serve as stand-alone

environments with required dependencies pre-installed by software

developers for increased extensibility (Kurtzer et al., 2017). High

performance computers (HPCs) supply numerous processors, dual

in-line memory modules (DIMMs), internal disk, and networking

ports to scale up processing tasks. Container technology and data

management systems coupled with HPCs provide reproducible and
Frontiers in Plant Science 03
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scalable environments, respectively (Devisetty et al., 2016; Kurtzer

et al., 2017). Large volume datasets further require advanced PCSs

capable of leveraging thousands of computers or cluster nodes for

parallel processing on local, cloud, and/or HPC compute resources.

A suite of computing tools for deploying scalable applications

known as the Cooperative Computing Tools (CCTools) consists

of Makeflow and Work Queue, a language and computational

resource management framework for distributed computing,

respectively (Albrecht et al., 2012). When coordinated, the above-

mentioned computational resources can improve the processing

and management of raw data and enable large scale analyses of

extracted phenomics data.

Several image analysis pipelines exist for morphological and

physiological phenotype trait extraction including: ImageHarvest

(Knecht et al., 2016); Greenotyper (Tausen et al., 2020); and

PlantCV (Fahlgren et al., 2015; Gehan et al., 2017). Most of

these software were developed for automated phenotyping

platforms in controlled greenhouse environments and would

require significant modification for processing field phenomics

data due to variations in image illumination and the lack of

spacing between plants in field settings. Although some

pipelines integrate multi-processing or distributed computing

capabilities, there is currently no published pipeline that

integrates data management systems, container technologies,

PCSs, and multi-system deployment within a single framework.

Importantly, many existing image analysis software were not

designed to enable customization of computational resources, a

critical component for efficiently processing phenomics’

expanding data volumes (Kale, 2020).

Here, we present PhytoOracle (PO), a suite of data processing

pipelines for phenomics data processing. PhytoOracle combines

data management systems, container technologies, distributed

computing, and multi-system deployment into a single

framework capable of processing phenomics data collected with

RGB cameras (RGB), photosystem II chlorophyll fluorescence

imagers (PSII), thermal cameras (thermal), structured-light laser

scanners (3D). Each pipeline component is containerized and can

be removed, replaced, rearranged, or deployed in isolation.

PhytoOracle provides advanced PCS and automation capabilities

for processing large phenomics datasets across HPC, cloud, and/or

local computing environments. The PO suite organizes all

processing tasks and computational resource specifications within

a single YAML file, which enables customization of computational

resources, processing modules, and data management systems.

Users can target pipelines to the optimal computational resources

whether that be high-memory, high-processor, and/or GPU nodes.

The modularity and distributed computing capabilities of PO

enable the efficient extraction of time series, individual plant

phenotypic trait data from large, multi-modal phenomics

datasets. The PCSs like PO improve data analysis and

information processing, providing large scale data that can help

answer questions that were previously intractable due to data

volumes outpacing computing systems’ capacities.
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2 Materials and methods

2.1 Plant material

For this study, a panel of 241 lettuce genotypes were evaluated

at the University of Arizona’s Maricopa Agricultural Center (MAC)

in Maricopa, Arizona (33°04’24.8”N 111°58’25.7”W). The soil type

is a Casa Grande sandy loam (fine-loamy, mixed, superactive,

hyperthermic Typic Natrargids). The panel consisted of two

subpopulations of lettuce, a diversity panel (147 genotypes) that

represented all major market classes of lettuce and a recombinant

inbred line (RIL) mapping population (94 genotypes) developed

from a cross of the cultivars “Iceberg” and “Grand Rapids.” The

population was organized in a randomized incomplete block design

with three replications of both lettuce panels per irrigation

treatment level with common checks used throughout the field.

The borders around each irrigation treatment were of the cultivar

“Green Towers.” The three irrigation treatments were: well-watered

(WW), level 1 drought (D1), and level 2 drought (D2)

(Supplementary Figure 1). The WW treatment was defined as

24% volumetric soil water content (VSWC) which represents field

capacity. To achieve the D1 and D2 conditions, 75% and 50% of the

WW irrigation amounts were applied to the plots, respectively.

Raised vegetable beds on 1.02 m row spacing were shaped to have a

surface width of 0.56 m with two seed lines per bed spaced at

0.31 m; plots were 4.00 m in length. Experimental plots consisted of

one of the individual seed lines per raised bed so that two genotypes

were planted per raised bed.

The crop was established using sprinkler irrigation for the first

35 days before switching to subsurface drip irrigation. Buried within

each bed, at a depth of 0.20 m, was pressure compensated drip tape

(Model 06D63613.16-12, Netafim, Tel Aviv, Israel) supplying a

constant 0.38 liters per hour of water. Soil moisture conditions were

recorded using a neutron probe (Model 503, Campbell Pacific

Nuclear, CPN, Martinez, CA, USA) with readings taken at depths

of 10, 30, 50, 70, and 90 cm on a weekly basis. Neutron probe access

tubes were distributed throughout the field to capture the VSWC

across the different irrigation treatments over the growing period.

Once plants were established and being irrigated with subsurface

irrigation, plots were thinned to a density of 10 equidistant plants to

facilitate individual plant phenotyping. After thinning,

approximately 26,000 plants were present in the field, with each

treatment containing approximately 9,000 plants. Standard

cultivation practices and agronomic management for lettuce

production in the Southwest were followed. A total of 1,472

plants, one from each plot within the WW and D2 treatments,

were harvested and their fresh weights were recorded at the end of

the growing period (2020-03-03).
2.2 Phenotyping platforms

The Field Scanalyzer (FS) is a ground-based, automated

phenotyping platform that moves along rails that are 394.1 m in

length running North-South with 28 m separation between the rails;
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the area covered by the FS is approximately 1.11 hectares. This area

is split into two fields with scannable areas of 0.37 hectare for the

north field and 0.46 hectare for the south field; for the purposes of

the present research, only the south field was used (Figure 1A). The

FS is equipped with a ventilated sensor box that holds multiple

imagers and cameras including the following: Allied Vision

Prosilica GT3300C stereo RGB cameras (RGB), LemnaTec

photosystem II chlorophyll fluorescence prototype imager (PSII),

FLIR A615 thermal camera (Thermal), pair of Fraunhofer

structured-light laser scanners (3D), and two Headwall

HyperSpec Inspector pushbroom hyperspectral imagers (visible to

near infrared [VNIR] and short-wave infrared [SWIR]) (Figure 1B

and Supplementary Table 1). The sensor box can move vertically

from 0.43 to 6.26 m above ground level to accommodate varying

scanning distance requirements for each sensor and to maintain a

consistent distance from the instrument to plant canopy throughout

the growing season.

The FS scanning scheme is controlled by custom operating

scripts that specify the scan area, pattern, and scheduling for data

collection of each sensor. These operating scripts are set to collect

data on specific regions of the field, agricultural plots, or the entire

field by the FS operator. The RGB, thermal, and PSII sensors collect

binary (BIN) format images, while the 3D laser scanners collect

depth and reflectance imagery from which point clouds are

generated using manufacturer-provided software (Table 1). Each

data collection is accompanied by metadata files in JavaScript

Object Notation (JSON) format containing FS variable position,

sensor fixed position (location of sensors within sensor box), preset

scanning area, and timestamps. Positioning information is collected

by a series of barcodes along the rails (X and Y axes) and a string

encoder (Z axis) using a right-handed coordinate system (+X

South-to-North, +Y East-to-West, and +Z 0.76 cm above soil

upwards). Additionally, environmental sensors collect and log

information on downwelling irradiance, photosynthetically active

radiation, air temperature, relative humidity, brightness, ambient

air carbon dioxide concentration, precipitation, and wind velocity

and direction all at 5-second intervals in JSON format.
2.2.1 Data collection and management
For this study, the FS scanned the south field during the day and

night throughout a growing season, collecting high-resolution, time-

series images and point cloud data. The total number of RGB, thermal,

PSII, and 3D data collections were 36, 36, 13, and 46, respectively. The

RGB, thermal, and 3D laser scanner data collections covered the entire

field while PSII data collections covered the center of each bed within a

single treatment (Table 1). The FS total raw data sizes for each sensor

were as follows: 0.12 terabytes (TBs) for thermal, 1.19 TBs for PSII, 3.20

TBs for RGB, and 8.77 TBs for 3D. Altogether, the FS data collections

resulted in 13.36 TBs of raw data for the lettuce trial

(Supplementary Figure 2).

In addition to FS data, drone (DR) flights were conducted over

the same 0.46-hectare south field on a weekly basis using a DJI

Phantom 4 Pro V2 (DJI, Nanshan, Shenzhen, China) and

DroneDeploy software (v. 4.2.1; DroneDeploy, San Francisco, CA,

USA) installed on an Apple iPad Mini 4 (Model #MK9P2LL/A;
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Apple, Cupertino, CA, USA) (Figure 1). The flight mission settings

were as follows: 15 m altitude, 80% front - 80% side overlaps, 0.41

cm/pixel ground sample distance, resulting in approximately 450

images per flight. In total, the DR collections resulted in 0.08 TBs of

raw image data for the lettuce trial (Supplementary Figure 2). For a

complete list of FS and DR data collection dates, refer to

Supplementary Table 2.

2.2.2 Data management
The FS data collections were temporarily stored on a platform-

mounted server and transferred to a cache server located at MAC.

After a three-day retention period, each data collection was

programmatically archived, producing a single “.tar.gz” archive
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file per data collection (one sensor’s scan), and programmatically

transferred to the CyVerse Data Store servers located in Tucson, AZ

using Internet2. Each DR data collection was uploaded to the

CyVerse Data Store manually. The DR and FS archives were

placed in a publicly available location in the CyVerse Data Store

for general use and CLI access during data processing (Goff et al.,

2011) (see Data Availability Statement).
2.3 Parallel computing system

The PO pipelines require ML models for object detection and

point cloud segmentation during data processing. Data must be
TABLE 1 Data collection summary for Field Scanalyzer (FS) and drone (DR) phenotyping platforms of data types supported by PhytoOracle.

Data Collection time Concurrent scan Scanning area Data type Benchmark data size Total scans Total size

RGB-FS 5 Thermal-FS Full field BIN 140 36 2.91

Thermal-FS 5 RGB-FS Full field BIN 5 36 0.10

PSII-FS 5 – Paired-plot center BIN 80 18 1.00

3D-FS 9 – Full field PLY 350 32 8.37

RGB-DR 0.5 – Full field JPEG 3 19 0.059
fr
The scanning area listed as full field encompassed the south portion of the field (0.63 hectare). Benchmark data size, gigabytes; total size, terabytes.
Collection duration (hours) represents the time from first data capture to final data capture.
B C

A

FIGURE 1

Overview of the Field Scanalyzer (FS) and DJI Phantom 4 Pro V2 drone (DR) phenotyping platforms, the components that make up each platform’s
sensor array and resulting data types. (A) An aerial photograph showing the area scanned by the FS which totals 0.63 hectare. Orange dots indicate
the ground control point (GCPs) configuration, consisting of five sets of four GCPs running east to west for a total of 20 GCPs. (Top B) The FS sensor
box contains a photosystem II (PSII) chlorophyll fluorescence imager, stereo RGB cameras, a thermal camera, two pushbroom hyperspectral imagers
(visible near-infrared [VNIR] and shortwave near-infrared [SWIR]), a pair of structured-light laser scanners, and environmental sensors. (Botton B)
Collected data included RGB, thermal, and PSII 2D image data and 3D point cloud data. (Top C) The DJI Phantom 4 Pro V2 drone (DR) was
equipped with a 20-megapixel RGB camera and flown with automated flight mapping software at an altitude of 15 meters. (Bottom C) Collected
data included RGB 2D image data.
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annotated, models trained, and performance assessed before data

processing can be performed. As such, a description of model

training is presented before describing PO processing pipelines in

detail. Together with a season-specific GeoJSON containing plot

boundaries, a YAML file specifying processing tasks, and

computational resources, PO can distribute tasks across

processing nodes of an HPC.

2.3.1 Training and assessing performance of
machine learning models
2.3.1.1 2D object detection

To prepare image data for manual annotation, RGB and

thermal data collections were processed up to the plot clip step to

produce plot clipped orthomosaics (Figure 2A, Steps 1-4). Thermal

and RGB plot clipped orthomosaics were converted from

georeferenced Tag Image File Format (GeoTIFF) to PNG format

(GeoTIFFs are not supported by annotation tools). Thermal image
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pixel values were normalized to the range of 0 to 255 to enhance

visible features for manual annotation. Heat map images, with each

pixel representing height, were generated from 3D point cloud data.

The scripts for each of these steps is publicly accessible (see Code

Availability Statement).

To train object detection ML models for RGB and thermal

imagery, a total of 2,000 images per sensor type were randomly

selected for developing training data (see Code Availability

Statement). A total of 200 3D-derived heatmap images were

randomly generated to train object detection ML models. The

RGB, thermal, and 3D-derived heatmap image datasets were

uploaded to Labelbox (http://labelbox.com; Labelbox, San

Francisco, CA, USA) and manually labeled with a single

bounding box around each plant. All images were manually

reviewed to ensure label quality. A JSON file containing label

bounding box coordinates for all images in a dataset was

programmatically converted to XML files, resulting in one XML
B

C

D

E

A

FIGURE 2

PhytoOracle two-dimensional (2D) image processing workflow. (A) The 2D pre-processing steps include the conversion of binary (BIN) files (RGB,
thermal, PSII chlorophyll fluorescence) to GeoTIFF files, correction of georeferencing information within each GeoTIFF metadata using Megastitch
for RGB and thermal data, clipping corrected GeoTIFF images to plots using a GeoJSON file with plot boundary information, and generation of plot
level orthomosaics (Zarei et al., 2022). (B) RGB & thermal plot level orthomosaics are run through a Faster R-CNN detection model for plant
detection and phenotype extraction; PSII images are run through FLIP for extraction of minimum (F0) and maximum (FM) fluorescence values,
variable fluorescence (FV), and maximum yield of primary photochemical efficiency (FV/FM). (C) Upon completion of data processing for a single
experiment, individual plant detections from RGB and thermal data are associated over time using agglomerative clustering. Agglomerative clustering
uses longitude and latitude to associate multiple plant observations, giving them a shared, unique plant identifier. (D) The growth and temperature of
individual plants can be tracked and visualized using the unique plant identifier. A merged, full season RGB and thermal data file can then be
combined with PSII (plot level) and 3D laser phenotype data using the unique plant/plot identifiers. (E) The results of PhytoOracle are time series
datasets with plant geographical coordinates of the bounding box predictions and plant centers; bounding area (BA); median and mean canopy
temperatures (MEDT and MEAT, respectively); plant height (PH), axis-aligned and oriented bounding box volumes (AABV and OBV, respectively), and
convex hull volume (CHV); and plot level F0, FV, FM, and FV/FM for each detected plant.
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file per image (see Code Availability Statement). The RGB and

thermal datasets were each randomly split into training, validation,

and test sets (80%, 10%, and 10%, respectively). Transfer learning

was employed to train a Faster R-CNN (region-based convolutional

neural network) ResNet-50 FPN pre-trained model for RGB,

thermal, and 3D-derived image datasets, separately, using the

Detecto Python package (v. 1.2.1, http://github.com/alankbi/

detecto) (Ren et al., 2017). The models for all data types were

trained on a single label (“plant”). Training was performed on a

HPC compute node with two AMD Zen2 48-core processors

(AMD, Santa Clara, CA, USA), 512 GB of RAM, sixteen 32 GB

memory DIMM, 2 TB SSD disk, and a V100S graphics processing

unit (GPU) (NVIDIA, Santa Clara, CA, USA) with 32 GB memory.

The selected setting of training parameters was 10 epochs, batch

size of one, learning rate of 5 x 10-3, 5 x 10-4 weight decay (L2

regularization), and step size of three.

Model performance was assessed by calculating Intersection

over Union (IoU), recall, precision, and F1 scores for RGB, thermal,

and 3D-derived test datasets. To determine model performance

more finely across the developmental stages of lettuce, we

assessed IoU of randomly selected plots over the course of the

season for RGB and thermal models. The IoU values were

calculated as follows:

IoU =
A ∩ Bj j
A ∪ Bj j (1)

where A is the area of the predicted bounding box, B is the area

of the ground truth bounding box, and ∩ is the intersection and ∪ is

the union of predicted and ground truth boxes. Detections with an

IoU ≥ 0.5 were classified as true positives (TP, correctly detected

plant), those with an IoU< 0.5 were classified as false positives (FP,

plant is not present but detected), and detections with an IoU = 0

were classified as false negative (FN, plant is present but not

detected). Recall, precision, and F1-score were calculated as follows:

Recall  =  
TP

TP + FN
(2)

Precision  =  
TP

TP + FP
(3)

F1  =  2 ·  
Precision · Recall
Precision + Recall

(4)
2.3.1.2 3D segmentation

To train segmentation ML models, a random sample of

individual plant point clouds were collected and labeled using a

model-assisted labeling (MAL) approach (Model-assisted labeling

(MAL); Huxohl and Kummert, 2021). The MAL script fit a plane to

each point cloud and resulted in the labeling of two classes: plant

and soil (see Code Availability Statement). The results were

visualized, and segmentation errors were manually corrected,

resulting in a total of 160 annotated individual plant point clouds;

plant point clouds were randomly split into train, validation, and

test sets (80%, 10%, and 10%, respectively). A Dynamic Graph CNN

(DGCNN) was trained on a server with four AMD EPYC 7702 64-
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Core processors (AMD, Santa Clara, CA, USA), 1 TB of RAM, and

three NVIDIA Tesla T4 GPUs (NVIDIA, Santa Clara, CA, USA)

(Wang et al., 2019). The following training parameters were

selected: 30 epochs, learning rate of 0.01, 1 x 10-4, momentum of

0.9, and batch size of 32. The classes predicted by the DGCNN

model for each point were compared with manually annotated data

to collect TP, FP, TN, FN values, which were used to calculate the

point-wise accuracy as follows:

Point  −  wise accuracy   =   
TP + TN

TP + FP + TN + FN
(5)
2.3.2 Multimodal pipeline deployment
The processing instructions for PO data processing are defined in

a Yet Another Markup Language (YAML) file (Ben-Kiki and Evans,

2001). The PO YAML template consists of four sections: “tags”,

“modules”, “workload_manager”, and “paths”. The “tags” section

allows users to define season-specific metadata for documentation

purposes. The “modules” section is where users define their processing

tasks by specifying the container to be used, the command to be run

within the container, and the inputs and outputs. The user can select

to run the workflow locally or remotely, that is using existing local

cores or remote worker cores. The “workload_manager” key defines

computational resource specifications required by pipeline worker

nodes including the cores per worker, number of workers, and

memory per core. The information provided within the

“workload_manager” key is used to request jobs using the Slurm

workload manager. Importantly, this allows users to customize the

computing system to accommodate datasets of varying levels of

processing scales and computational complexities. The “paths”

section defines CyVerse Data Store paths for raw data download,

including ML models to be used within the processing steps, and

output data uploads. At the moment, only CyVerse Data Store paths

are supported, but other storage providers can be supported with a few

changes to the code. Users can specify their project-specific CyVerse

Data Store paths or keep data locally without uploading it onto a data

store. Users can select to use data transfer nodes, if running PO on

HPC systems. Examples of YAML files for data processing of RGB,

PSII, thermal, and 3D phenomics data of lettuce and sorghum are

publicly available (see Code Availability Statement).
2.3.2.1 RGB processing pipeline

The full field RGB-FS datasets each consisted of 9,270 BIN files.

Each image capture collected two BIN files, one from each RGB

camera, and an associated JSON metadata file. Due to the physical

arrangement of the stereo RGB cameras and the resulting high image

overlap, only one image of each capture was used in this study. The

RGB pipeline consisted of four containerized components

(Supplementary Table 3 and Supplementary Figure 3). The first

container converted BIN files to GeoTIFF images with approximate

GPS bounding coordinates calculated from barcode positioning

information contained within the JSON metadata file generated by

the FS. The second container deployedMegaStitch, which is a software

for efficient image stitching of large-scale image datasets (Zarei et al.,

2022). Megastitch was run in a non-distributed manner as all images
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are required for the global optimization stitching method, which

generated geometrically corrected GeoTIFFs. The third container

clipped GeoTIFFs to plot boundaries using a GeoJSON file that

delimits plots within the field. The fourth container deployed a

Faster R-CNN model to detect individual plants within each plot-

clipped orthomosaic, which output bounding box coordinates.

Bounding box coordinates were converted from pixel coordinates to

geographic coordinates using the geotransform information of each

plot-clipped orthomosaic. All georeferencing was calculated in the

World Geodetic System (WGS84) coordinate reference system

(Lohmar, 1988). Longitude was calculated as follows:

Longitude  =  a · x + b · y + a · 0:5 + b · 0:5 + c (6)

where c is the upper left Easting coordinate of the image, a is the

E-W pixel spacing, c is the rotation, and x and y are the bounding

box image coordinates. Latitude was calculated as follows:

Latitude  =  d · x + e · y + d · 0:5 + e · 0:5 + f (7)

where d is the rotation, e is the N-S pixel spacing, f is the upper

left Northing coordinate, and x and y are the bounding box image

coordinates. The four geographical corner coordinates were

converted to UTM coordinates and used to calculate plant

bounding area (BA) as follows:

Plant bounding area  =   SEe �  NWeð Þ · SEn �  NWnð Þ (8)

where SEe is the southeast corner Easting coordinate of the

image, NWe is the northwest corner Easting coordinate, SEn is the

southeast corner Northing coordinate, and NWn is the northwest

corner Northing coordinate.

The RGB drone (RGB-DR) images from each data collection

were processed using Pix4DMapper software (Pix4D S.A., Prilly,

Switzerland). For each collection date, the “3D Maps” processing

template was used, which generated an orthomosaic, point cloud,

and depth maps. The “GCP/MTP Manager” interface was used to

load GCP coordinates, co-align GCPs within images to known GCP

coordinates, and confirm adequate placement of GCPs within the

generated ray cloud. The resulting orthomosaics were processed

using PO containers described above starting with the third

container that clipped GeoTIFFs to plot boundaries.

2.3.2.2 Thermal processing pipeline

The full field thermal-FS datasets each consisted of 9,270 BIN

files. Each image capture collected one BIN file and an associated

JSON metadata file. Each pixel within a thermal-FS image

represents an uncalibrated digital number (DN), a dimensionless

value corresponding to the output of the detector’s analog-digital

conversion. The thermal pipeline consisted of four components

(Supplementary Table 3 and Supplementary Figure 3). The first

container converted BIN files to GeoTIFFs with approximate GPS

bounding coordinates calculated from barcode positioning

information contained within the JSON metadata file. Thermal

calibration measurements were applied to each pixel, converting the

DN value to Celsius. The second container deployed MegaStitch

(Zarei et al., 2022) in a non-distributed manner, which generated

geometrically corrected GeoTIFFs. The third container clipped
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GeoTIFFs to plot boundaries specified within a GeoJSON file.

The fourth container deployed a Faster R-CNN model to detect

individual plants within each plot clipped GeoTIFF, which

outputted bounding box coordinates. To collect individual plant

canopy temperatures, each predicted bounding box, representing a

single plant, was programmatically cropped from plot level

GeoTIFF orthomosaics and K-means clustering was used with

K = 3 (MacQueen, 1967; Poblete-Echeverrıá et al., 2017). The

median and mean canopy temperatures (MEDT and MEAT,

respectively) were collected from the plant pixel clusters for each

plant along with corresponding distribution statistics. A 10x10 pixel

region of interest (ROI) centered within each plant detection was

analyzed for median temperature, referred to as the ROI

temperature. The longitude and latitude for each plant detection

were calculated using Equations 6, 7 respectively for subsequent

plant tracking and multi-modal data association.

2.3.2.3 PSII chlorophyll fluorescence processing pipeline

The PSII-FS datasets each consisted of 39,678 BIN files. Each data

capture resulted in a 101-image stack over a 2-second interval along

with an associated JSON metadata using a validated chlorophyll

fluorescence imaging sensor (Herritt et al., 2020). Unlike RGB and

thermal, these images captured the center of each plot instead of the

full field. One image was captured shortly before LED light saturation,

50 images during the one-second saturating pulse of light, and 50

images after the pulse of light. The illuminating LED flash has a

dominant wavelength in the range of 620-630 nm with an intensity of

up to 7,000 mmol photosynthetically active radiation (PAR) at 70 cm

from plant canopies. A modified version of the FLuorescence Imaging

Pipeline (FLIP) software was used to extract plot level minimum

fluorescence (F0), variable fluorescence (FV), maximum fluorescence

(FM), and maximum yield of primary photochemical efficiency (FV/

FM) (Herritt et al., 2021). Modifications included two containers that

converted BIN files to GeoTIFF images and clipped GeoTIFF images

to plot boundaries using a GeoJSON file. The modification facilitated

multi-modal data merging by acquiring geographical coordinates

instead of pixel coordinates and enabled the integration of the

software into the distributed computing framework. The PSII

chlorophyll fluorescence pipeline consists of four components

(Supplementary Table 3 and Supplementary Figure 3). The first

container converted 101 BIN files to 101 GeoTIFFs with

approximate GPS bounding coordinates calculated from barcode

positioning information contained within the associated JSON

metadata file. The second container clipped GeoTIFFs to plot

boundaries specified within a GeoJSON file. The third container

segmented each pixel within an image into one of five FM
experimentally derived contribution thresholds (Herritt et al., 2021).

The fourth container applied the contribution thresholds to extract F0
and FM values for each image pixel, which were used to calculate FV
and FV/FM for each stack of 101 images were calculated as follows:

FV   = FM − F0 (9)

FV=FM   =  
(FM − F0)

FM
(10)
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2.3.2.4 3D laser scanner processing pipeline

The 3D-FS datasets consist of 320 pairs of PLY files. A pair of

structured-light laser scanners captured depth and reflectance

imagery for preprocessing to point clouds, resulting in two PLY

files per data capture (640 total PLY files). Pre-processing of image

data to point clouds was performed by the manufacturer-provided

software PlyWorker before the data was transmitted offsite. The

pair of scanners captured the 3D structure of plants from east and

west directions, thereby minimizing occlusions. Each pair of PLY

files had an associated JSON metadata file. The 3D laser scanner

pipeline, utilizing the output of the PlyWorker software as an input,

consisted of six components (Supplementary Table 3 and

Supplementary Figure 3). The first container corrected the

orientation and scale of the point cloud tiles and applied the

RANSAC algorithm implemented in the Open3D Python package

(v. 0.11.2) to find a simple translation (X and Y axes) to reduce

misalignment (Fischler and Bolles, 1981; Choi et al., 2015; Zhou

et al., 2018; Zhou et al., 2018) (Figure 3A). The second step co-

aligned 3D point clouds to RGB-derived plant detections. A custom

graphical user interface (GUI) was developed to download and

visualize 3D point cloud data and RGB orthomosaic data on local

computers after selecting a scan date to manually georeference (see

Code Availability Statement). The purpose of this tool was to co-

align 3D and RGB by identifying shared landmark features between

3D point clouds and RGB data. This co-alignment allows for

individual plant clipping using RGB-derived plant detections

(Figure 3B). Selected features included plot stakes, ground control

point (GCP) lids, or distinguishable plants in the field. The GUI (i)

shows the RGB orthomosaic region, (ii) prompts the user to select a

landmark feature, (iii) displays the point cloud tile region that

neighbors the selected landmark feature, (iv) prompts the user to

select the corresponding landmark feature within the point cloud

tile. This process is repeated until an adequate number of landmark

features are selected (Figure 3C). After RGB and 3D data are co-

registered by the user, an affine transformation is calculated from

the correspondences between the selected landmark features. This

transformation maps a point in the original space of the 3D point

cloud into the space of the georeferenced RGB orthomosaic. This

transformation was then saved to a JSON file. The third container

applied the calculated transformation to the point cloud tiles,

resulting in co-aligned, georeferenced point cloud tiles (Figure

3D). The fourth container used RGB-derived plant detections to

clip individual plants from large point clouds tiles (Figure 3E). The

fifth container merged multiple tiles containing the same plant

using the iterative closest point (ICP) method implemented in the

Open3D Python package (v. 0.11.2) (Besl and McKay, 1992; Zhou

et al., 2018) (Figure 3F). The sixth container deployed a Faster R-

CNN model to localize the focal plant on 3D-derived heat map

images (Figure 3G). The seventh container segmented soil and plant

points, which allowed for the isolation of plant points within each

point cloud (Figure 3H). The eighth container removed any residual

neighbor plant points using the DBSCAN clustering algorithm

implemented in the Open3D Python package (v. 0.11.2) (Ester

et al., 1996; Zhou et al., 2018) (Figure 3I). Lastly, the ninth container
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created persistence diagrams for a single plant point cloud using the

Giotto-tda Python package (v. 0.5.1) (Tauzin et al., 2021), from

which the following topological data analysis (TDA) values were

collected: persistence entropy and amplitude (with distance

functions of landscape, bottleneck, Wasserstein, Betti, silhouette,

heat, and persistence image). Plant height (PH) was calculated

as follows:

Plant height  =  Zmax   −  Zmin (11)

Where Zmax is the maximum Z-axis plant point value and Zmin

is the minimum Z-axis plant point value. In addition, the oriented

bounding box volume (OBV), axis-aligned bounding box volume

(AABV), and number of points (NP) were calculated using the

Open3D Python package (v. 0.11.2) (Zhou et al., 2018) (Figure 3J).

2.3.3 Pipeline benchmarking
The RGB, thermal, and PSII pipelines were benchmarked using

a single data collection for each sensor (Table 2). Benchmarking

consisted of manager and worker compute nodes using CCTools

Makeflow and Work Queue (Albrecht et al., 2012). A single HPC

compute node equipped with two AMD Zen2 processors x 48 cores

(94 total cores), 512 GB of RAM, sixteen 32 GB memory DIMM,

and 2 TB SSD disk served as the manager node. Worker nodes, with

the same computational resources mentioned above, were requested

on which the command work_queue_factory (CCTools v. 7.1.12)

was run to request one worker per core, resulting in a total of 94

Work Queue workers per node each with 5 GB of RAM. A

Makeflow file containing information for each data input file was

created programmatically using the PO automation script, which

allowed for parallel distribution of tasks. In addition, this

automation script provided a detailed workflow to each worker,

specifying the processing step to be performed on each input file

using Singularity v3.6 for running containers (Hunt and Larus,

2007; Kurtzer et al., 2017). A single task was performed per worker

to allow for maximum distribution of tasks. Importantly, each

pipeline differs in its definition of a single task input: RGB and

thermal consist of one BIN file; 3D of two PLY files; and PSII of 101

BIN files, each with an associated metadata JSON file. Upon

completion of assigned tasks, the manager compute node

assigned additional tasks in queue to available workers. The

benchmark dataset for RGB, thermal, and PSII sensors was

processed over the following range of available workers: 1, 4, 8,

16, 32, 64, 128, 256, 512, and 1024. Each configuration was

replicated three times, for a total of 30 benchmark data points per

sensor. A log file with information on processing times and number

of workers during processing was collected during processing.

2.3.4 Multi-modal data merging and association
To allow for identification of single plants throughout the

growing period and across sensor modalities, individual plant

detections from each collection date need to be grouped. Two

phases were carried out to accomplish this: (i) data cleaning to

remove any outliers and (ii) a series of sequential clustering steps to

combine multi-modal datasets and enable individual plant tracking.
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2.3.4.1 Removal of outlier plants

The first phase involved the removal of overlapping plants,

hereafter termed outliers, which were the result of two or more

plants growing in proximity andmerging into what appeared to be a

single plant. These outliers resulted in a single plant detection for

this pair of plants, leading to errors in subsequent analyses. To

remove these outliers, the field was manually assessed at the end of
Frontiers in Plant Science 10
8384
the season for outliers, which were manually marked with spray

paint for easy visual identification in imagery collected right before

harvesting. A GeoJSON vector layer containing a point for each

outlier was manually created on QGIS (www.qgis.org) and the end-

of-season orthomosaic containing the marked outlier canopies,

which were used to identify these outliers in the multi-

modal dataset.
B

C

D

E F G

H I J

A

FIGURE 3

PhytoOracle 3D point cloud processing workflow. (A) Two raw point cloudscollected simultaneously were rotated, scaled, and georeferenced using
positioning information from the Field Scanalyzer (FS) metadata file. (B) Time series plant detection from RGB data processing were coregistered
with 3D point clouds by landmark selection. (C) Landmark selection involved selecting landmark features in point clouds and selecting the same
landmark feature in RGB images. This step resulted in the co-registration of 3D point clouds with RGB data types. (D) Co-registered point clouds
and plant detections were visualized by painting each plant detection with a green dot and ground control points (GCPs) with a blue dot. (E) Large
point cloud tiles were clipped to known plant locations and (F) merged using the iterative closest point (ICP) algorithm. (G) Focal plants were further
isolated by deploying a trained Faster R-CNN detection model to form a tight bounding box around the focal plant, eliminating neighboring plants.
(H) Plant and soil points were segmented by deploying a trained DGCNN model on focal plant clips, resulting in a point cloud containing only plant
points. (I) Residual neighbor plant points were removed by using the DBSCAN unsupervised clustering algorithm, resulting in a point cloud
containing only focal plant points. (J) Focal plant point clouds were analyzed for morphometric phenotypes such as axis-aligned and oriented
bounding box volumes (AABV and OBV, respectively) and convex hull volume (CHV), plant height (PH), and number of points (NP) as well as
topological data analysis values calculated from persistence diagrams.
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2.3.4.2 Grouping plant phenotypes for individual
plant tracking

The second phase involved the sequential clustering of

phenotypic trait data from various sensor modalities. First, the

full season RGB dataset was combined with the GeoJSON file

containing manually marked outlier plant points generated in the

first phase. Individual plant detections throughout the season were

then clustered using agglomerative clustering, a form of hierarchical

clustering algorithm implemented in the scikit-learn Python

package v0.24.2 (Cox, 1957; Fisher, 1958; Ward, 1963; Pedregosa

et al., 2011). Agglomerative clustering requires a threshold value,

which was empirically derived based on having the lowest number

of outliers grouped into a cluster and reduced fluctuations in growth

curves. The optimal threshold value of 6 x 10-7 was used to

maximize the number of clustered observations of a single plant

and minimize the clustering of weeds and/or neighboring plants.

The full season RGB plant detections were clustered using the

empirically derived threshold value and results were assessed in

QGIS. Each cluster, representing a single plant time series, was

given a unique identifier denoting the plant’s genotype and the

clustering number (“genotype”_”cluster number”). All clusters

containing an outlier point were given the label ‘double’ for the

identification and exclusion of these data points from subsequent

analyses (Supplementary Figure 4). Second, the resulting grouped

RGB dataset was then clustered with the full season thermal data.

Full season RGB and thermal outputs were merged using the same

technique used during clustering of the full season RGB data. This

clustering step resulted in a single dataset containing RGB and

thermal data with a shared unique plant identified. Third, the

merged dataset, containing clustered RGB and thermal

phenotypic trait data, was combined with PSII chlorophyll

fluorescence and 3D laser full season files using plot numbers and

unique plant identifiers, respectively. The final output was a time-

series, multi-modal phenotypic trait dataset at the individual plant

level for RGB, thermal, and 3D phenotype data and plot level for

PSII chlorophyll fluorescence phenotype data.

2.3.5 Analysis of extracted phenotypes
2.3.5.1 Assessing accuracy of plant detection across
growing period

To assess plant detection performance, the median IoU

throughout various time points were quantified for RGB and

thermal image data. Canopy temperature extraction performance

was assessed by manually extracting median canopy temperature

across all time points of a random sample of 200 selected plots, with
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each plot containing a minimum of five plants across 19 collection

dates resulting in 1,481 data points. We examined the correlation

between manually extracted canopy temperature and pipeline

extracted MEDT over an entire season for these selected plots.

The BA extraction performance was evaluated by assessing its

Pearson correlation with harvested, fresh weight biomass for each

plot in the field trial. The median individual plant BA was used for

correlation assessments. A similar assessment of correlation was

conducted for AABV extraction.

2.3.5.2 Assessing grouping of plant
phenotypes performance

The results from the proposed clustering association method

were visualized across 200 plots as a vector layer overlaid on an end-

of-season orthomosaic in which the outliers were marked. Each plot

was imaged over 19 time points, resulting in a total of 3,800 images.

If an identification was marked and the overlaid detection was

identified as an outlier by the clustering algorithm, then the

identification was classified as a true positive (TP). If the plant

was marked and the overlaid detection was not determined to be an

outlier by the clustering script, then the identification was classified

as a false negative (FN). If the plant was not marked and the

overlaid detection was determined to be an outlier by the clustering

script, then the overlaid identification was classified as a false

positive (FP). If the plant was not marked and the overlaid

detection was determined to not be an outlier by the clustering

script, then the overlaid identification was classified as a true

negative (TN).

2.3.5.3 Statistical analysis and data visualization

The BA, NP, OBV, AABV, and PH phenotype trait data were

analyzed after first checking for residual normality and error

variance homogeneity at each collection event. For each trait,

collection time points were analyzed separately using the lme4

package (Bates et al., 2015) in the R programming language (R Core

Team, 2022). Spatial effects were modeled on a row and column

basis. The following linear mixed model was fitted to trait data for

the estimation of variance components:

yijk  =  m  +  gi  +  irgj +  g �  irgij  +  rep(irg)kj  +  row(rep

� irg)lkj  +  col(rep� irr)mkj  +  ϵijklm (12)

where yijk is an individual phenotypic observation; m is the

overall mean; gi is the effect of the i-th genotype; irgj is the effect of

the j-th irrigation treatment which was either WW, D1 or D2; g ×
TABLE 2 Information on each benchmarking dataset’s collection date, size, and number of images.

Sensor Date Start time End time Elapsed time Total size Image count

RGB 03/03/2020 08:45 13:27 04:42 140.7 9270

Thermal 03/03/2020 08:45 13:27 04:42 5.4 9270

PSII 02/27/2020 19:58 00:37 04:39 86.2 39678

3D laser 03/01/2020 18:59 03:54 08:55 308.5 640
Elapsed time, HH : MM; total size, gigabytes.
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irgij is the interaction effect between the i-th genotype and the j-th

irrigation treatment; rep(irg)kj is the effect of the k-th replication

nested within the j-th irrigation treatment; row(rep × irg)lkj is the

effect of the l-th plot grid row nested with k-th replication within the

j-th irrigation treatment; col(rep × irr)mkj is the effect of the m-th

plot grid column nested within the k-th replication within the j-th

irrigation treatment; and eijklm is the residual effect. The variance

component estimates from the full model were used to estimate

repeatability (r) as follows:

r  =  
s 2
g

s 2
g   +  

s 2
gi

nirg
  +   s 2

∈
nplot

(13)

where s 2
g is the genotypic variance due to genotypes, s 2

gi is the

estimated variance with the genotype-by-irrigation treatment

variation, and s 2
∈ and residual variances, respectively. The

variable nirg is the number of irrigation treatments in which each

genotype was observed and nplot is the number of plots in which the

genotype was observed.

All plots presented in this study were generated using the

Seaborn, Matplotlib, and Plotly Python packages using Python

v3.9 (Hunter, 2007; Hossain, 2019; Waskom, 2021). Pearson

correlations presented in the plots were calculated using the SciPy

Python package (v0.15.1) (Virtanen et al., 2020).
3 Results

3.1 Environmental conditions during
growing period

Weather data mean values for the growing season between

2019-11-13 and 2020-03-03 were: 10.72 °C air temperature, 61.88%

relative humidity, 0.62 kPa vapor pressure deficit, and 0.55 MJ/m2

solar radiation (Supplementary Figure 5). The irrigation treatments

resulted in contrasting VSWC, with minimum values at 10 cm of

19.2, 14.7, and 12.8 in irrigation treatments WW, D1, and D2,

respectively. At 30 cm, minimum values were 21.3, 21.5, and 17.2

for WW, D1, and D2, respectively (Supplementary Figure 1).
3.2 Model performance metrics

Faster R-CNN models were separately trained to identify single

plants in RGB and thermal imagery, each trained and evaluated

with 2,000 and 250 images, respectively. Performance was assessed

without any prediction confidence threshold, resulting in 2,752 and

1,450 ‘plant’ class detections for RGB and thermal, respectively. The

RGB detection model detected plants with a 0.98 recall, 0.93

precision, 0.96 F1-score, and 0.96 overall accuracy when tested on

FS (RGB-FS) image data. The RGB detection model performance

was further evaluated with a 400-image RGB-DR test dataset and

resulted in 0.98 recall, 0.96 precision, 0.97 F1-score, and 0.97 overall

accuracy. The thermal detection model performed better than the
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RGB detection model with a 0.98 recall, 0.99 precision, 0.98 F1-

score, and 0.98 overall accuracy. A single DGCNN model was

trained to segment points corresponding to plant and soil classes in

point clouds containing a single plant. The model was trained and

evaluated with 128 point clouds and 16 point clouds, respectively.

The DGCNN model was assessed for point-wise accuracy using the

test set, which was calculated at 0.98 (Table 3).

The median IoU was calculated separately for each distinct

collection time point represented in a 250-image test set to assess

temporal effects on bounding box accuracy. Overall, the median

IoU was 0.84, 0.84, and 0.88 for RGB-FS, RGB-DR, and thermal-FS,

respectively. The median IoU differed between dates, with an

increasing trend as time progressed (Figure 4). This trend was

stronger in the RGB-FS and RGB-DR data as these data were

collected earlier in the season when plants were small with fewer

distinguishable features as compared to thermal scans.
3.3 Validation of pipeline-extracted
phenotypes and multimodal data
association

Across the entire time series clustering test set, the

agglomerative clustering method grouped plant detections into

individual plant, time-series data with 0.99 recall, 0.93 precision,

0.96 F1-score, and 0.96 overall accuracy. The observed coefficient of

determination (r2) between individual plant fresh weight collected

at harvest and pipeline-extracted 3D-FS AABV were 0.29 for

Batavia (p< 0.01), 0.36 for Butterhead (p< 0.0001), 0.55

for Cutting/Crisp (p< 0.0001), 0.59 for Iceberg (p< 0.0001), 0.61

for Leaf (p< 0.0001), and 0.48 for Romaine (p< 0.0001)

(Supplementary Figure 6). The observed coefficient of

determination (r2) between individual plant fresh weight and

pipeline-extracted RGB-FS BA were 0.21 for Batavia (p< 0.01),

0.39 for Butterhead (p< 0.0001), 0.56 for Cutting/Crisp (p< 0.0001),

0.62 for Iceberg (p< 0.0001), 0.61 for Leaf (p< 0.0001), and 0.29 for

Romaine (p< 0.0001) (Figure 5). The observed range of r2 values

between manually extracted and pipeline-extracted median canopy

temperatures (MEDT) over 12 unique collection dates was 0.43-

0.94 (Supplementary Figure 7). The overall observed r2 was 0.95

when considering all dates (p< 0.0001) (Figure 6).
3.4 Collection and processing benchmarks

3.4.1 Field scanalyzer data collection
Benchmark datasets were collected using the FS, with varying

operation times depending on the sensor. The file size of benchmark

datasets ranged from 5.4 GB to 308.5 GB in size and consisted of

640 to 39,678 files. The data collection of RGB and thermal image

data, which occurs simultaneously, took a total of 4 hours and 42

minutes to complete resulting in 9,270 raw images per sensor. The

PSII data collection took 4 hours and 39 minutes, resulting in the

largest raw file count (39, 678 images).
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3.4.2 PhytoOracle data processing
The RGB and PSII processing times saw the largest reduction

from computational parallelization, at 61% and 95% respectively, at

the maximum number of 1024 workers. Thermal processing time

saw the smallest reduction of 22% at the maximum number of 1024

workers. At the maximum number of workers tested in this study,

RGB and thermal each processed in 235 minutes and PSII in 13

minutes (Figure 7).
3.5 Phenotypic repeatability estimates at
individual sampling events

The mean repeatability values for each pipeline are as follows:

0.86 (RGB-DR BA), 0.81 (RGB-FS BA), 0.90 (3D-FS AABV), 0.90

(3D-FS OBV), 0.90 (3D-FS PH), and 0.89 (3D-FS NP) (Table 4). In

general, the repeatability of RGB and 3D phenotypic trait data had

increasing trends over the growing season (Figure 8).
4 Discussion

The proliferation of phenomics technology has led to large data

volumes that need to be processed. Challenges related to

computation of phenomics big data reduce its full application and

efficacy in providing actionable genome-phenome insights into

plant morphophysiological traits. Among the significant

bottlenecks in plant phenomics, we address the lack of scalable,
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modular processing pipelines capable of processing expanding data

volumes to extract morphological and physiological phenotypic

trait data. Although other pipelines, such as Image Harvest and

Greenotyper, have considered and implemented distributed

computing systems, these capabilities have not been fully

developed for general use on HPC clusters or multiple node

deployment. Instead, it is left to the user to undertake that

implementation (Knecht et al., 2016; Tausen et al., 2020). The

PhytoOracle suite of scalable, modular data processing pipelines

addresses critical bottlenecks within plant phenomics including

data diversity, scalability, reproducibility, and extensibility.

PhytoOracle accomplishes this by integrating distributed

computing, container technology, data management systems, and

machine learning into a single suite of phenomics data

processing pipelines.
4.1 PhytoOracle addresses neglected
bottlenecks in phenomics data processing

The PO suite can process data from multiple sensors including

RGB, thermal, and PSII chlorophyll fluorescence 2D image data and

3D point cloud data. Except for PSII chlorophyll fluorescence, PO

data processing pipelines result in individual plant phenotypic trait

data that can be associated using our agglomerative clustering

approach (Figure 2 and Supplementary Figure 5). To date, the

only other published pipeline capable of handling such diverse data

types is PlantCV. However, PlantCV’s approach to individual plant
TABLE 3 Performance metrics for Faster R-CNN detection models for image processing of Field Scanalyzer RGB (RGB-FS), drone RGB (RGB-DR), and
Field Scanalyzer thermal (Thermal-FS).

Model Data Type Detections TP FP FN Recall Precision F1-score Accuracy

A RGB - DR Detection 4356 4097 182 77 0.98 0.96 0.97 0.97

A RGB - FS Detection 2752 2519 178 54 0.98 0.93 0.96 0.96

B Thermal - FS Detection 1450 1404 10 36 0.98 0.99 0.98 0.98

C 3D - FS Segmentation – – – – – – – 0.98
fr
FS, Field Scanalyzer; DR, drone; TP, true positive; FP, false positive; and FN, false negative. For the 3D-FS model, the accuracy reported is a point-wise accuracy collected across points within the
test dataset, as such values for columns Total detections through F1-score are not presented.
FIGURE 4

Change in median Intersection over Union (IoU) across the collection dates represented in RGB and thermal test data sets for the Field Scanalizer
(FS) and Drone (DR) systems. Both RGB Field Scanalyzer scans (RGB-FS) and drone flights (RGB-DR), began earlier than thermal, allowing to capture
the temporal effect of collection date, a proxy to plant size, on the median IoU. Error bands represent 95% confidence intervals around the median.
ontiersin.org

https://doi.org/10.3389/fpls.2023.1112973
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gonzalez et al. 10.3389/fpls.2023.1112973
phenotyping does not translate well to field phenomics data

(Fahlgren et al., 2015; Gehan et al., 2017). In field phenomics

data, plant spacing creates challenges for individual plant

phenotype extraction. The threshold-based contour approach

used by much software, including PlantCV, works well in

controlled environments, however, most imaging approaches
Frontiers in Plant Science 14
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outside of controlled environments often capture multiple

overlapping plants under highly variable lighting conditions.

These variable conditions make threshold-based contour

approaches difficult to implement in processing field phenomics

data. For this reason, PO leverages MLmodels that are better able to

handle overlapping plants and variable lighting conditions.

To resolve time series, multi-plant measurements to the

individual plant level, PO leverages ML approaches, such as

Faster R-CNN for object detection and DGCNN for point cloud

segmentation. These ML models make PO robust and generalizable

to other crops. For instance, if a user wants to process a new crop

species, a model could be trained and deployed within PO, requiring

little to no code development. Furthermore, the ML models

presented here can be used by other researchers and/or new

models can be trained using our labeled data and existing

containers. PO also provides a general use solution to training of

Faster R-CNN object detection models.

The PO suite provides scalability through a distributed

computing framework leveraging the open-source CCTools’

Makeflow and Work Queue software (Albrecht et al., 2012),

which provides the language and computational resource

management necessary to scale tasks beyond traditional job

arrays and local computing resources. Importantly, this enables

users to leverage dataset-specific resources across multiple

computing environments during data processing, providing a

path to maximize and optimize computational resource use. For

example, the manager can be launched on an HPC cluster to ensure

adequate storage space while workers could be launched on a lab

workstation. The benefit of this approach is that computational

resources beyond one computer or even one cluster can be

leveraged to process thousands of tasks in parallel. Data
FIGURE 5

Correlation between individual plant fresh weight and pipeline-extracted bounding area (RGB-FS BA, m2) for all plots in the field trial. Genotypes were
grouped by horticultural type, resulting in 6 groups which are Batavia, Butterhead, Cutting/crisp, Iceberg, Leaf, and Romaine. *** = P value ≤ 0.001.
FIGURE 6

Correlation between validation and pipeline-extracted median
canopy temperatures (MEDT). Each point represents an individual
plant temperature collected at a single time point, with the
complete dataset consisting of 12 distinct collection dates.
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processing on a single computer or server constrains users to locally

available memory and processors, preventing scalability. On the

other hand, distributed computing systems allow users to access

processors and memory on remote nodes, allowing the system to, in

theory, linearly scale the processing task at hand. The PO

benchmarking focused on HPC nodes instead of local nodes and

cloud-native options, such as XSEDE, due to those resources not

having the storage space required to store raw and intermediate

data. This is important, as it highlights that computational

resources must consider not only CPU/GPU availability but also

storage space capabilities as large-scale phenomics data processing

results in many intermediate outputs that must be temporarily

stored to serve as input to subsequent steps. In the end, these

intermediate data can be deleted, but they must be able to be

temporarily stored during data processing.

As data volumes increase, scalability will become a higher

priority within research fields aimed at extracting relevant

insights from big data (Chen et al., 2013; Sivarajah et al., 2017).

However, this is likely to exacerbate existing network IO

bottlenecks, which prevent linear scaling (Zhang et al., 2020). For
Frontiers in Plant Science 15
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example, the presented benchmarking information shows that

although the average number of tasks completed continued to

increase, the total processing time remained relatively stable after

32 workers. These results highlight limitations in scaling likely

associated with network and data transfer bottlenecks. Improving

the utilization of local, cloud, or HPC systems is a major concern

and area of active research (Tanash et al., 2019). Generally, there are

seemingly two options for further improvements to computational

throughput: (i) identifying the optimal worker configurations per

pipeline and/or (ii) moving pipelines closer to where the data are

collected. An analysis of big data environments using Docker

containers found that adding nodes (workers) beyond a certain

threshold decreased performance due to an increase in the time for

a network request to be sent and received (round trip time), which is

similar to the results presented here (China Venkanna Varma et al.,

2016). Moving pipelines closer to the data seems more feasible than

finding optimal worker configurations as there may not be an

optimal worker configuration to mitigate scaling plateaus until

network bottlenecks are resolved. Network bandwidth is

commonly associated with a lack of linear scaling; oftentimes, the
FIGURE 7

Average tasks process per minute and processing times for each PhytoOracle pipeline. (Top) Average tasks processed (tasks/minute) as a function of
the number of worker cores. (Bottom) Total processing time (minutes) as a function of the number of workers (one CPU core per work). Available
workers ranged from 1 to 1024 and the values represent the average of three runs with the same configuration. Error bars represent 95% confidence
intervals.
TABLE 4 Repeatability of pipeline extracted phenotypes collected from Field Scanalyzer (FS) and drone (DR) platforms.

Data Trait Min. Mean Max.

RGB-DR Bounding area 0.55 0.86 0.95

RGB-FS Bounding area 0.39 0.81 0.95

3D-FS Axis-aligned bounding volume 0.81 0.90 0.95

3D-FS Oriented bounding volume 0.79 0.90 0.94

3D-FS Plant height 0.83 0.90 0.95

3D-FS Number of points 0.81 0.89 0.95
Minimum, Min.; Max., Maximum.
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processing phase is efficient and would theoretically allow for linear

scaling, but the communication phase creates a bottleneck

preventing linear scaling (Zhang et al., 2020). In our case, raw

data is stored on the CyVerse Data Store due to its volume, velocity,

and variety–making it intractable to keep these data on local servers

for processing. This results in data being located “far” (CyVerse

Data Store servers) from the processing pipeline (HPC), resulting in

significant network requests that negatively impact data processing

throughput. In the future, improvements to network capabilities

may help to further improve processing efficiency.

The PO suite leverages container technology to ensure

consistent, immutable data processing. Each PO processing step is

containerized using Docker and deployable on HPC, cloud, and

local computers on which either Docker or Singularity is installed.

As opposed to running non-containerized processing code,

containers ensure that each processing step is reproducible by

controlling code versions and processing environments. Instead of

users having to install over 40 Python packages to run PO, we

provide containers that contain these libraries, significantly

reducing the barrier to entry (Supplementary Table 4).

Additionally, the PO automation script automatically downloads

and configures CCTools, and requires no additional third-party

Python packages. The only requirements for running PO are

Singularity or Docker, iRODS, and Python. These tools are

generally found on HPC clusters, except for iRODS which can be

installed by system administrators.

The PO suite provides a general use framework through our

automation script. Together with our suite of processing containers,

this automation script automates the complexity of developing a

PCSs, allowing users with little computer programming experience

to leverage PO for processing their own phenomics data. The PO

suite has four existing YAML files that can be customized by other

researchers to process their own data. Users with advanced

programming and command line experience can develop their

own containers for data processing and integrate them into PO

by including each container as a module within the YAML file,

specifying the location of raw data on the CyVerse Data Store or

local storage, and outlining the expected output files. The use of a
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generalizable automation script and a customizable YAML file

makes it possible for users to run PO on various datasets,

allowing researchers to spend more time on analysis than

software development and data processing.
4.2 PhytoOracle extracts repeatable
phenotypes from distinct platforms

The phenotypic trait data extracted from the FS and DR

platforms align with values reported in the literature.

Morphological trait repeatability values collected by the 3D-FS

sensor align with the range of values reported in wheat (Deery et

al., 2019; Walter et al., 2019; Deery et al., 2020). Similar values for

3D-FS phenotypes are reported here: 0.81-0.95 (AABV), 0.79-0.94

(OBV), 0.83-0.95 (PH), and 0.81-0.95 (NP). These values highlight

the usefulness and applicability of PO for phenotype extraction,

particularly morphological phenotypes. Additionally, similar trends

of repeatability values were found across two distinct datasets: 0.55-

0.95 and 0.39-0.95 for RGB-DR and RGB-FS platforms,

respectively. These overlapping repeatability values demonstrate

the applicability of PO to multiple platforms. The lower limit for

repeatability for bounding area is an artifact of varying data

collection start dates: 2019-12-10 for RGB-FS, 2019-12-12 for

RGB-DR, and 2020-01-21 for 3D-FS. These earlier dates had a

greater number of plants per plot, lowering the ability to accurately

extract individual plant phenotypes due to overlap between plants.

The number of plants per plot was reduced to approximately ten on

2020-01-16. Notably, all 3D-FS scans were collected after this date,

resulting in a narrower range of repeatability values due to all scans

being collected on well-spaced, lower overlap conditions.

Repeatability is dependent on data and algorithms, meaning

that any system could result in similar repeatability values as PO.

However, an important difference is the ease at which these other

systems handle and process large volumes of data to extract those

repeatable phenotypic trait values. The PO system addresses this

issue by allowing the extraction of highly repeatable traits in a few

hours. Furthermore, the PO system also provides extensibility. Each
FIGURE 8

Repeatability estimates for pipeline-extracted phenotypes collected during a single year trial. Bounding area, BA; axis-aligned bounding box volume,
AABV; number of points, NP; oriented bounding box volume, OBV; plant height, PH; Field Scanalyzer, FS; drone, DR.
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module within PO collectively results in highly repeatable

phenotypic traits across sensor data types. Even in cases where

scalability is not necessary, such as small volumes of drone data,

these repeatability values across sensors and phenotyping platforms

highlight PO’s wide range of applications. The PO system,

therefore, accelerates data processing of diverse data types from

across phenotyping platforms, enabling the extraction of highly

repeatable phenotypic traits that would otherwise have to be

extracted using various, disparate systems or software that make

it difficult to analyze, interpret, or combine resulting outputs.
4.3 PO enables deployment of future
algorithms across species

The PO suite addresses challenges in scalability and modularity

to improve plant phenomics data processing. This was

accomplished by leveraging existing and emerging technologies to

process large volumes of phenomics data in a scalable, modular

manner. Existing technologies include container technology,

distributed computing frameworks, and data management

systems, while emerging technologies include ML models for trait

extraction. By coordinating this combination of technologies, PO

processes data in an automated, efficient manner across platforms

and sensors. The PO suite serves as a tool for others in plant

phenomics to leverage within their research groups. This is made

possible by the diverse availability of processing containers which

can be deployed on any system on which Docker, Singularity,

iRODS, and CCTools are installed. The phenotypic data

processed by PO show high repeatability values across platforms,

indicating PO’s utility within plant science and plant breeding

programs. Importantly, the PO suite provides large volumes of

phenotypic trait data that can be combined with other -omics data

for applications in selection, dissection of functional and adaptive

traits, and characterization of temporal patterns in trait expression

(Supplementary Figure 8).

As ML methods mature, new models can be implemented within

PO due to its customizable YAML configuration file. For example,

models for leaf segmentation and extraction of traits such as leaf

curling at scale, are the next steps of PO development. Furthermore,

the training of these models is possible due to the large volume of

intermediate data generated by pipelines like PO, which can serve as

(i) training data for these next-generation models and (ii) as samples

for model-generated data to further increase training data sizes.

Containers that deploy these next-generation ML models could

then be added to existing PO pipelines to provide organ-level

phenotypic trait data that complements existing whole plant

phenotypic trait data. This volume and diversity of phenomics data

would enable fine-scale phenotyping at scale, which may uncover

details on the temporal patterns in trait expression.

PhytoOracle addresses many phenomics bottlenecks, but there

are outstanding bottlenecks such as enviromic capabilities and multi-

species support. Enviromic capabilities are limited within PO, which

are important to account for the environmental noise encountered in

field phenomics data. In the future, PO pipelines will be further
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developed to output environmental data directly from the Field

Scanalyzer and neighboring weather stations alongside phenotypic

trait data. As this would be difficult to generalize across users, we

decided not to provide this capability at present. However, the

authors understand that these complementing data would enhance

interpretability and interoperability of processed phenotypic trait

data, therefore, we plan to support these capabilities in the future.

Although the present study focuses on lettuce, PO has been refactored

to process sorghum phenomics data with the same containers used to

process lettuce phenomics data (Supplementary Figure 9). Further

research and development will lead to the extraction of species-

specific traits, and it is our goal to publish updates on these

added functionalities.
5 Conclusion

The scalable, modular PhytoOracle data processing pipelines

enable the extraction of large, time-series phenotypic trait data in an

automated and reproducible manner, key factors required to

process projected data volumes. The resulting traits extracted by

PO from both FS and DR platforms show high repeatability,

highlighting the usefulness of PO across phenotyping platforms.

The intermediate processed data, such as individual plant point

clouds, extracted by PO opens new opportunities to extract fine-

scale phenotypes at multiple resolutions (plot, plant, and organ

levels). Importantly, the PO pipelines can be refactored to process

phenomics data from other crops species, as discussed here with

sorghum phenomics data. In the future, these time-series datasets

may provide biological insight into morphological and

physiological responses to drought conditions at the individual

plant level across multiple crop species. This information could

enable new species-specific targets for genetic improvement based

on time-series, fine-scale phenotypic trait data.
Code availability statement

The Python scripts used to prepare RGB training data can be

accessed here: http://github.com/phytooracle/automation/blob/main/

ml/collect_rgb_data.py. The Python script used to prepare thermal

training data can be accessed here: http://github.com/phytooracle/

automation/blob/main/ml/collect_flir_data.py. The Python script

used to prepare 3D-derived images can be found here: http://

github.com/phytooracle/3d_heat_map/blob/main/3d_heat_map.py.

The code used to train object detection models can be found here:

http://github.com/phytooracle/ezobde. Examples of YAML files used

for data processing can be accessed here: http://github.com/

phytooracle/automation/tree/main/yaml_files. The automation

script and data processing repositories can be accessed at: http://

github.com/phytooracle. Each PhytoOracle container built from data

processing repositories can be accessed at: http://hub.docker.com/

orgs/phytooracle. For a detailed description of each data

processing3repository and associated container, refer to the

Supplementary Material.
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warehouses with big data. Inf. Syst. Manage. 32, 200–209. doi: 10.1080/
10580530.2015.1044338

Kale, V. (2020). Parallel computing architectures and APIs: IoT big data stream
processing (New York: CRC Press). doi: 10.1201/9781351029223

Khan, N., Essemine, J., Hamdani, S., Qu, M., Lyu, M.-J. A., Perveen, S., et al. (2020).
Natural variation in the fast phase of chlorophyll a fluorescence induction curve (OJIP) in a
global rice minicore panel. Photosynth. Res 150, 137-158. doi: 10.1007/s11120-020-00794-z

Kim, S.-L., Solehati, N., Choi, I.-C., Kim, K.-H., and Kwon, T.-R. (2017). Data
management for plant phenomics. J. Plant Biol. 60, 285–297. doi: 10.1007/s12374-017-
0027-x

Knecht, A. C., Campbell, M. T., Caprez, A., Swanson, D. R., and Walia, H. (2016).
Image harvest: An open-source platform for high-throughput plant image processing
and analysis. J. Exp. Bot. 67, 3587–3599. doi: 10.1093/jxb/erw176

Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singularity: Scientific
containers for mobility of compute. PloS One 12, e0177459. doi: 10.1371/
journal.pone.0177459

Lane, H. M., Murray, S. C., Montesinos-López, O. A., Montesinos-López, A., Crossa,
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Wheat is one of the most widely consumed grains in the world and improving its

yield, especially under severe climate conditions, is of great importance to world

food security. Phenotyping methods can evaluate plants according to their

different traits, such as yield and growth characteristics. Assessing the vertical

stand structure of plants can provide valuable information about plant

productivity and processes, mainly if this trait can be tracked throughout the

plant’s growth. Light Detection And Ranging (LiDAR) is a method capable of

gathering three-dimensional data from wheat field trials and is potentially

suitable for providing non-destructive, high-throughput estimations of the

vertical stand structure of plants. The current study considers LiDAR and

focuses on investigating the effects of sub-sampling plot data and data

collection parameters on the canopy vertical profile (CVP). The CVP is a

normalized, ground-referenced histogram of LiDAR point cloud data

representing a plot or other spatial domain. The effects of sub-sampling of

plot data, the angular field of view (FOV) of the LiDAR and LiDAR scan line

orientation on the CVP were investigated. Analysis of spatial sub-sampling effects

on CVP showed that at least 144000 random points (600 scan lines) or an area

equivalent to three plants along the row were adequate to characterize the

overall CVP of the aggregate plot. A comparison of CVPs obtained from LiDAR

data for different FOV showed that CVPs varied with the angular range of the

LiDAR data, with narrow ranges having a larger proportion of returns in the upper

canopy and a lower proportion of returns in the lower part of the canopy. These

findings will be necessary to establish minimum plot and sample sizes

and compare data from studies where scan direction or field of view differ.

These advancements will aid in making comparisons and inform best practices

for using close-range LiDAR in phenotypic studies in crop breeding and

physiology research.
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1 Introduction

With an increasing global population, providing enough food to

satisfy needs is a big challenge. Plant breeding has effectively

increased agricultural productivity over the past century (Evenson

and Golin, 2003). Connecting genotypes with their phenotypes and

selecting high-yield and stress-tolerant plants can help crop

breeders keep pace with population growth (Rahaman et al., 2015).

High-quality phenotypic data are vital to plant breeders’ decision-

making process to realize genetic improvements (Chapman et al.,

2014; Bai et al., 2016). Phenotyping methods are able to evaluate

plants according to their different traits, such as physiology, yield,

development, and tolerance to environmental stresses (Li et al., 2014;

Rahaman et al., 2015). Some morphological traits that are often used

to evaluate plant growth and characterize the canopy structure

include canopy biomass (Hansen and Schjoerring, 2003; Ehlert

et al., 2009), height (Zhang and Grift, 2012; Bendig, 2015), and leaf

area index (LAI) (Baret et al., 2010; Béland et al., 2011; Béland et al.,

2014; Verger et al., 2014; Zhao et al., 2015). Studies have shown that

these morphological traits have a strong relationship with plant

genotype, cultivars, growth rate and yield (Sharma and Ritchie,

2015; Friedli et al., 2016; Sun et al., 2018).

Biomass measurement is a good indicator of crop growth and

growth rate, leaf area, organ size and partitioning and

morphological characteristics. These data can be used to calculate

radiation use efficiency and metabolite analysis (Pask et al., 2012).

Biomass production can be reduced dramatically by stresses,

resulting in a reduced ability of the crop to intercept solar

radiation and a decrease in the photosynthesis rate and/or

radiation use efficiency. Identifying genotypes that are able to

maintain their biomass production during stress conditions is an

essential key to finding the better-adapted lines (Pask et al., 2012).

Plant height has been used as a proxy for plant biomass (Madec

et al., 2017) and can be a trait for phenotyping. Studies showed

stress conditions affect the stem height that defines plant height

(Ota et al., 2015; Tilly et al., 2015). Some individual traits, such as

plant height and stem solidness, both have a beneficial relationship

with plant yield and harvest index. (Pask et al., 2012). Blonquist

et al. (2009) used height as one of the model’s inputs to evaluate the

water stress condition in plants. These traits are good for breeders to

screen large plant populations (Pask et al., 2012).

Traditional methods to measure such phenotypic traits are

focused on single time points and therefore do not consider the

developmental dynamics of these traits. The limited sampling possible

for human evaluators is insufficient to capture the variation within

plots (Guan et al., 2018). Using modern technologies to develop high-

throughput phenotyping methods is a way to overcome traditional

manual methods’ temporal and sampling limitations.

One technology that can provide 3D canopy data for estimating

plant traits is LiDAR. LiDAR uses the phase shift between an

emitted signal and the reflected return signal (or signals) to

estimate the distance between the instrument (zero point) and a

target. While the application of LiDAR for estimation of height and

above-ground biomass has been well-established in forestry (Lucas

et al., 2008; Eitel et al., 2013; Kankare et al., 2013; Greaves et al.,
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2015), the use of this technology in field crops is much less mature.

Recent studies established the LiDAR scanning approach to

estimate the number of spikes and crop density (Saeys et al.,

2009). In most studies, LiDAR data are often presented in the

form of a meshed, 3D reconstruction of the scanned surface. They

have focused on extracting and estimating a variety of canopy

information such as height, canopy biomass, leaf area, leaf shape,

leaf inclination angle, leaf area index (LAI) and leaf area density

(LAD) from these data (Ehlert et al., 2010; Gebbers et al., 2011; Tilly

et al., 2014; Jimenez-Berni et al., 2018; Qiu et al., 2019; Su et al.,

2019; Walter et al., 2019; Maesano et al., 2020).

However, some work has represented plot data using relatively

simple histograms, representing the canopy vertical profile (CVP)

(Jimenez-Berni et al., 2018; Furbank et al., 2019). To determine the

histogram of the vertical height of points with respect to the ground,

the distance between the ground and the LiDAR sensor must first be

determined. One approach is to consider the peak of the histogram

(i.e., mode) as the ground elevation for a given plot, assuming that

some ground is visible through the canopy or at the plot edge

(Jimenez-Berni et al., 2018). Evaluating the CVP of crop plots is a

promising approach for providing information about plant

processes and development, especially if these traits can be

tracked throughout the growing season. In this study, LiDAR data

from a canopy were height corrected, combined across an area of

interest (plot), and presented as a CVP plot of height versus a

normalized number of returns. One of the main questions here is

how CVP or LiDAR histogram data can be affected by instrumental

adjustments and data acquisition approach.

The main objective of this study was to evaluate factors that

could impact the consistency of LiDAR data for creating repeatable

CVPs for wheat. The particular objectives were completed as

described below.
1) Find the minimum sample size to consistently capture the

CVP characteristics of a wheat genotype per plot.

2) Ascertain the effect of the angular FOV of LiDAR on the

resulting CVP, and

3) Determine the impact of scan line orientation with respect

to the row direction.
2 Methodology

This study was conducted in two parts. Part one was a field

experiment (2019) to investigate the spatial sampling and FOV

effects on LiDAR data. Part two was a container experiment (2020)

to investigate the repeatability and effect of direction of travel on

LiDAR data.
2.1 Area of study

This study was carried out in Saskatoon, Saskatchewan. Data

were collected in separate experiments in 2019 and 2020. The 2019
frontiersin.org
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experiment included four wheat varieties (Stettler, Superb, AC

Sadash and Acadia) planted on May 24, 2019, in well-watered

and drought treatment blocks with three replicate plots of each

variety (24 plots total). Due to rainfall patterns, these treatments

were not substantially different. The plots were 2.5 m long and 1 m

wide, and each plot contained five rows of wheat plants with a row

spacing of 0.2 m.

The 2020 experiment consisted of a single replicate of two wheat

varieties (Stettler and Superb) planted in three rows on July 26,

2020, under two irrigation treatments (well-watered and drought).

These varieties were planted at the same time in 45-litre containers

56 cm long × 41 cm wide × 33 cm deep.
2.2 Data acquisition

In the 2019 experiment, the LiDAR scanner was mounted in the

instrument payload on a two-wheeled cart consisting of a

lightweight extruded aluminium frame that was pushed by an

operator, manually (Figures 1A, C, E). In this experiment, the

distance between the LiDAR scanner and the ground was

inconsistent during data acquisition due to instabilities in the

two-wheeled cart used. The 2019 experimental plots were

organized in field layouts of columns and rows. Each data

acquisition experiment included six scanning passes in the
Frontiers in Plant Science 03
9697
planting direction. Data were acquired in a single direction of

travel. In this experiment, LiDAR scanning was conducted on 53

and 83 days after planting (DAP) when wheat varieties were at

anthesis -Zadoks growth scale 61 [ZGS 61 (Zadoks et al., 1974)]-

and ripening -ZGS 91-, respectively.

In the 2020 experiment, the instrument payload was mounted

on the University of Saskatchewan Field Phenotyping System

(UFPS) which is a portable cart consisting of a lightweight

extruded aluminium frame with four wheels that was better able

to maintain a consistent distance above the plants (Figures 1B, D,

F). In this experiment, UFPS was pushed manually by the operator.

Three data acquisition passes (replicates) were conducted for each

canopy orientation (rows parallel and rows perpendicular to the

direction of travel) on September 9, 10 and 11, 2020 (45, 46 and 47

DAP, respectively) when wheat varieties were at anthesis (ZGS 61).

In both the 2019 and 2020 experiments, the operator pushed

the cart.

The LiDAR sensor used (model SICK LMS 400-1000, SICK AG,

Waldkrich, Germany) was a line scanning type. In this study, the

FOV of the LiDAR was adjusted to 60°, and the scanning rate was

360 Hz with an angular resolution of 0.1°. The LiDAR working

range was from 0.7 to 3 meters. The average speed of the cart

carrying the LiDAR sensor was 0.23 m/s, resulting in an average

interval between each scan line of 0.6 mm. The UFPS PhenoDAQ

software was used for data acquisition.
B

C D

E F

A

FIGURE 1

Data acquisition platform. Left column (A, C, E) shows the system used in 2019 experiment, right column (B, D, F) shows the 2020 system. Top row:
photographs of the systems in use. Middle row: a top view diagram of data acquisition for the year. Bottom row: Front view showing the plane of
the LiDAR scan.
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2.3 Pre-processing

Raw data from the LiDAR were stored in HDF5 format on the

payload computer. LiDAR scans contain information on range and

return intensity (remittance) with 240 data points per scan line. The

number of scan lines for each plot varied with the speed of travel

and small variances in the lengths of plots.

The processing code was written inMATLAB (MATLAB R2018a).

In the first step, raw LiDAR data were transformed from polar

coordinates into Cartesian coordinates. In this step, each point

comprises X, Y and Z coordinates, where X is the position along the

direction of travel, Y is the position across the plot width (scan line

orientation), and Z is the vertical position of each point.

The LiDAR data were collected in the LiDAR frame of reference;

part of pre-processing is to convert data to a ground frame of reference.

When the variation in the distance between the instrument and the

ground was slight, the ground elevation for a given plot was considered

the histogram mode (Jimenez-Berni et al., 2018). Subtracting the mode

from the histogram data (and multiplying by -1), the histogram is

transformed into a ground, rather than instrument, frame of reference.

This step was called height correction pre-processing, and the resulting

graph was the histogram of distances from the ground. To make this

histogram comparable between different sample size, normalization

with the number of return points were conducted, and the resulting

graph was named CVP.

When the distance between the ground and the instrument is

inconsistent, the peak at the ground distance is less distinct when data

are observed in aggregate for a plot. This issue was corrected by

applying the height correction pre-processing to small numbers of

contiguous scan lines at a time and aggregating them post-correction.

This process was called ground correction pre-processing. In this pre-

processing, it was assumed that variation of payload height with
Frontiers in Plant Science 04
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respect to the ground was negligible over a time of 1 second. The data

collection frequency in this study was 360 Hz which means 360 lines

were scanned with the LiDAR sensor within each second. Figure 2

shows the effect of the different numbers of contiguous scan lines for

applying height correction pre-processing on appearing ground peak

elevation on CVP data compared with uncorrected CVP data. As can

be seen in Figure 2, the raw height corrected aggregate CVP data

ground peak is broad, having been spread out by variations in

instrument height. Applying the height correction pre-processing

on every 360 contiguous scan lines and then aggregating these post-

correction resulted in a more distinct ground peak. Applying the

same process on a larger number of contiguous lines did not produce

the sharp ground peak seen in the ground correction using 360-scan

line blocks. As it takes several seconds to collect 1000 scan lines, there

may be more variation in instrument height over that more

prolonged time, resulting in a less defined peak. Negative height

values in these CVP graphs were created due to the instrument

uncertainty and the variation in the surface profile and instrument

height (Figure 2).
2.4 Impacts of LiDAR spatial sampling

The number of LiDAR data points is influenced by the size of the

plot, LiDAR scan rate, angular resolution, and travel speed. A practical

question for high-throughput phenotyping with LiDAR is how large a

sample (both in terms of data points and area) is required to

consistently capture the CVP characteristics of a larger plot. These

sampling questions were studied using LiDAR data from the 2019

field data.

In the 2019 experiment, each treatment was planted in

triplicate with a plot size of 2.5 m2. Plant growth in these plots
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The effect of the different number of contiguous scan lines for applying height correction pre-processing on ground peak elevation on CVP.
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was observed to be relatively uniform. Thus, the data were

combined for each variety yielding four aggregate plots per

treatment. Each aggregate plot was equivalent to 7.5 m2

containing roughly 375 wheat plants in five rows with

approximately 12,000×240 LiDAR points. The CVP obtained

from this aggregate plot was considered the reference CVP for

the variety. Each wheat plant in these aggregate plots occupied an

average of 0.02 m2 of space. These data were subsampled in two

ways: random points and contiguous blocks.

To find the minimum number of randomly sampled points

required to accurately estimate the CVP of an entire plot, random

subsamples were taken, and CVP’s compared to the CVP from the

entire plot. Subsamples were taken using numbers of points

ranging from 24×103 (equal to 100 scan lines) to 24×105 (equal

to 10000 scan lines) and CVPs were constructed. This was

repeated three times for each number of points. The resulting

CVPs were normalized with the number of points, and then their

standard deviations across the canopy height were investigated. In

the next step, each CVP was compared to that made by using the

entire population in terms of the root mean squared

error (RMSE).

For the spatially contiguous subsets, blocks of scan lines were

selected from the total population based on the nominal in-row

space required for between one and 12 plants along the rows. Like

the random selection case, the resulting CVPs were visually

compared to the aggregate plot CVP and used the root mean

squared error (RMSE).
Frontiers in Plant Science 05
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2.5 Field of view in LiDAR and its effect
on CVP

It was hypothesized that the angular FOV of the LiDAR

influences the resulting CVP of a scanned canopy. In the 2019

experiment, each plot contained five rows of wheat scanned with the

LiDAR FOV of 60° (Figure 3). These data were used to create three

FOV scenarios: 12°, 36°, and the entire 60° FOV. These roughly

equated to scanning only the middle row of the plot, the centre three

rows, and the whole plot, respectively (Figure 3). The resulting data

were processed for each of the 24 plots, and then compared.
2.6 Repeatability and Orientation

To investigate the repeatability of the CVP of the scanned

canopy, an experiment was conducted with four containers of

wheat planted in rows. Two containers were planted with

“Superb” and the other two with “Stettler”. One container of

each variety was designated as a well-watered treatment and the

other as a water-stressed (deficiency) treatment. Plants in the

well-watered group were regularly watered in the days prior to

measurements, while the water-stressed group was allowed to dry

out. The containers were placed in a line with their rows aligned

and scanned with the LiDAR scanner. Then each container was

turned 90°, so their rows were perpendicular to the cart’s travel

direction, and they were scanned again. Rotating the containers
B

A

FIGURE 3

(A) the LiDAR images obtained from a typical plot on 15/08/2019, highlighting the scanned region covered by different angular FOV. (B) a
representation of the FOV geometry viewed perpendicularly from the scanning plane.
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90° and scanning them was repeated six times. In total, three

passes of LiDAR measurements were made for the rows aligned

with the cart’s travel direction and three passes were made for the

rows perpendicular to the cart’s travel direction. This experiment

was repeated on September 9, 10 and 11, 2020, with both

treatments being thoroughly watered following scanning on

September 9. The CVP of each container and measurement

replication was obtained from the LiDAR data and compared

to observe the repeatability of LiDAR canopy measurements and

the effect of row orientation on the CVP data.
Frontiers in Plant Science 06
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3 Results and discussion

3.1 Pre-processing

After converting the LiDAR data from polar coordinates to

Cartesian coordinates, the histogram of distance from the LiDAR

sensor was provided (Figure 4). One typical result on 15/08/2019 for

one Acadia wheat plot (Figure 4A) showed that, in this plot where

payload height with respect to the ground was consistent, the ground

elevation peak could be clearly seen in the histogram of distance from
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FIGURE 4

Determination of ground elevation from LiDAR data on 15/08/2019. Histogram of distance from the LiDAR and CVP after distance correction and
height correction pre-processing were applied for a typical plot (A) (Acadia) when the distance between LiDAR and ground was consistent and (B)
(Stettler) when there was variation in payload height with respect to the ground.
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the LiDAR (Jimenez-Berni et al., 2018). Figure 4A shows that in this

typical case, the ground correction process did not affect the shape of

the histogram, but height correction pre-processing corrected the

height of points in the histogram of distance from the ground.

In contrast, results on the same date but for a typical Stettler

wheat plot lacked a distinct ground peak, indicating an

inconsistent distance between the LiDAR and the ground

(Figure 4B). In this case, the ground correction process’s effect

can be observed in Figure 4B. In general, results showed that after

this pre-processing, the ground elevation peak was significant and

sharp on the histogram of distance from the ground (Figure 4B).

Overall, after doing ground correction pre-processing, height

correction pre-processing was conducted, and CVP for the plots

was determined.
3.2 Impacts of LiDAR spatial sampling

A comparison of CVP graphs obtained from different numbers

of random points showed a lot of variation around the ground peak

area. Figure 5 is one case that shows the standard variation of the

normalized number of points for an average of 10 CVPs obtained

from 192000-point random samples (equal to 800 scanlines). The

most considerable standard deviations in the CVP graphs were

related to the ground peak, and its neighborhood (-10 to +10 cm)

shows the variations of obtained CVPs around the ground peak are

much larger than those across the canopy height. This might

happen due to the uneven ground surface or the existence of

dead leaves or litter on the ground surface. Including or

excluding data from the ground peak region on the overall RMSE

when comparing a subsampled CVP to a reference may be critical to

evaluating subsampling performance. This was assessed as part of

the determination of minimum subsample size.
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Figure 6 shows the calculated RMSEs between each CVP graph

and the reference CVP made using the entire population. With the

majority of subsample variance occurring in the region of the

ground peak, this analysis was conducted both including and

excluding the ground-peak region ( ± 10cm). A stronger

relationship between RMSE and the number of random

subsample points was found for CVP’s with the ground peak

excluded (R2 = 0.95) than with these data included (R2 = 0.87). In

addition, Figure 6 shows that most outlier points disappeared by

removing the ground peak neighborhood points from the RMSE

calculation process. Figure 6 illustrates the RMSE decreased with a

power relationship with an increasing number of random points in

the subsample. The incremental improvement in CVP

representation with increasing subsample size decreases rapidly.

Comparisons of selected subsample CVPs with the whole-plot

reference are shown in Figure 7.

As seen in Figure 6, RMSE related to the 144000 random points

(equal to 600 scan lines) is near the shoulder in the curve, and below

this amount of random points, RMSE increased rapidly. Figure 7

shows that the CVP obtained from 144000 random points was very

similar to that obtained from the whole plot area. In contrast, the

CVP obtained from 48000 random points (equal to 200 scan lines)

had lots of variation and could not follow the reference CVP. For

this reason, 144000 random points were selected as the minimum

random subsample points to capture the CVP characteristics of a

larger plot.

Similarly, Figure 8 shows that with increasing the number of

plants per row scanned by the LiDAR scanner, RMSE also

decreased with a power relationship. Reducing the number of

plants below three, RMSE changed dramatically from 0.0015 to

0.003, suggesting three plants as the minimum sample extent for

predicting changes in the CVP of the whole population scanned

by LiDAR. In addition, Figure 9 shows that the CVP of scanned
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The average of 10 CVPs obtained from 800×240 random points and the standard deviation of these CPV graphs- in different canopy heights.
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data with three plants per row could follow the shape of the CVP

provided by the whole plot data. The average number of

normalized points on each height for the area with the entire

population, three-plant length section and one plant length

section was 0.006. It was concluded that the area containing

three or more plants per row was adequate to characterize the

overall CVP of the aggregate plots.
Frontiers in Plant Science 08
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3.3 The effect of LiDAR field of view
on CVP

A comparison of the CVPs for three FOVs of 12, 36 and 60°

showed changes in the shapes of CVPs with FOV (Figure 10). It was

observed that responses varied with the angular range of the LiDAR

data, with narrow ranges having a more significant proportion of
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FIGURE 6

The relationship between the number of random points used and RMSE compared to using the whole area points, including and excluding the
ground-peak region.
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The CVP obtained from LiDAR data provided with 48000, 144000 and whole plot data.
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The CVP obtained from LiDAR data provided with three different numbers of plants per row.
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returns in the upper canopy and a lower proportion of returns in the

lower part of the canopy.

This difference in normalized CVPs with the number of points at

different FOV might be due to the direction of LiDAR’s rays hitting

the canopy. As shown in Figure 3, at the narrow 12° FOV, the LiDAR

was more-or-less directly over the middle row of the plot, so the

middle 12° of the scan primarily sees the top of the row. In this case,

the upper parts of the canopy block the path of the rays and prevent

them from penetrating the lower parts of the canopy. Therefore, the

proportion of points related to the upper levels of the canopy is

greater at this FOV and lower in the bottom half of the canopy

(Figures 10A, B). With a wider 60° FOV, the inter-row space helps

make a gap in the canopy allowing off-nadir rays to penetrate deeper
Frontiers in Plant Science 10
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into the canopy (Figure 3). This results in more information being

collected from the sides of the plants compared to a narrower FOV.

This increases the proportion of the CVP area lower in the canopy

(Figures 10A, B). The 36° FOV acted more like a narrow FOV, and

the proportion of points related to the upper levels of the canopy was

greater at this FOV and lower in the bottom half of the canopy

(Figures 10A, B).
3.4 Repeatability results

Figure 11 shows the variation in CVPs obtained by LiDAR from

well-watered Superb wheat grown in a container and scanned with
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CVPs for FOV of 12, 36 and 60° for wheat genotype Superb (A) and for the wheat genotype of Stettler (B) on 15/08/2019 and the difference in the
proportion of areas for FOV 12 and 60° for height greater than 40 cm.
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the direction of travel parallel to the rows (Figure 11A) and

direction of travel perpendicular to the rows (Figure 11B). Both

directions of travel (parallel to and perpendicular to the rows)

showed a similar amount of CVP variation. Similar results were

observed in CVPs obtained from other containers on September 9,

10 and 11, 2020.

Figure 12A shows the comparison of three scans, obtained

from travelling parallel to the rows (parallel 1, 2 and 3), and

Figure 12B shows the comparison of orthogonal scans, one with a

travel direction parallel to the rows (parallel 1) and the other two

with travel direction perpendicular to the rows (perpendicular 1

and 2). Results showed that CVPs obtained from parallel

directions of travel (Figure 12A) and perpendicular directions

of travel, were followed each other in peaks and height. Similar

results were observed in other containers on consecutive days

(September 9, 10 and 11). These results showed the repeatability
Frontiers in Plant Science 11
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of LiDAR data in two perpendicular directions of travel for the

same containers.

Figures 13A, B show the repeatability of CVPs on consecutive

days (September 9, 10 and 11) again for the well-watered Superb

container by plotting CVP pairs against each other. Comparing the

same travel direction (with respect to the rows), the linear

regression slope coefficients were near one, and the intercepts

were near zero (Figure 13A). However, comparing orthogonal

travel directions (parallel 1 and perpendicular 1) in Figure 13B,

scanned data showed much greater variation with a lower linear

regression coefficient than the same directions. Similar results were

observed for the other three containers on September 9, 10 and 11.

Walter et al. (2019) conducted an experiment to investigate the

repeatability of LiDARmeasurements. Their results showed that the

repeatability of LiDAR measurements was higher in the same

directions of travel than in opposite directions of travel.
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Variation of normalized CVP for two directions of travel (A) parallel to (or with) the rows and (B) perpendicular to (across) the rows.
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4 Conclusion

In this study a ground-based LiDAR system was used to collect

data from wheat plots, from which histograms of height vs

normalized number of points were constructed and referred to as

the canopy vertical profile (CVP). Height correction pre-processing

and normalization with a number of return points were two main

steps to convert histogram data to CVP and make them ready and

comparable for the subsequent analysis. However, when the

distance between the ground and the instrument was inconsistent,

applying ground correction pre-processing to small numbers of

contiguous lines (360) at a time and aggregating them post-

correction was a solution to convert the LiDAR data from an

unsteady sensor to the ground frame of reference.
Frontiers in Plant Science 12
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This study showed that the CVP of a scanned, uniform plot

could be represented by a subset of at least 144000 random points

(600 scan lines). In addition, analysis of the impact of LiDAR spatial

sampling showed that areas containing at least three plants per row

are needed to consistently capture the CVP characteristics of wheat

genotype per plot.

Investigating the impact of LiDAR FOV \ on CVP graphs

showed differences between narrow and wide fields of view. The

narrow 12° FOV of the scan rays primarily sees the top of the

canopy in a row directly below, preferentially returning top-of-

canopy points. In wider FOVs, the off-nadir rays can penetrate

deeper into the canopy profile and provide more information from

the lower parts of the canopy due to the inter-row space and the

gaps that happened in the canopy. This observation confirms that
0 0.01 0.02 0.03

Normalized number of points

0

20

40

60

80

H
ei

gh
t (

cm
)

Parallel 1
Parallel 2
Parallel 3

0 0.01 0.02 0.03

Normalized number of points

0

20

40

60

80

H
ei

gh
t (

cm
)

Parallel 1
Perpendicular 1
Perpendicular 2

B

A Parallel directions of travel

Perpendicular directions of travel

FIGURE 12

Comparing the CVP obtained from (A) the same directions of travel and (B) the perpendicular directions of travel from one container on 09/09/2020.
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LiDAR FOV influenced the CVP graph and should be considered

during data acquisition and comparing results from different

instruments or scan settings.

Multiple measurements of CVP of the same canopy were shown

to be repeatable when collected from the parallel or perpendicular

travel directions with respect to the rows. These advancements may

help plant breeders to compare data from studies where scan

direction, FOV, or sample sizes differ. This combination of findings

demonstrates the ability of LiDAR to provide repeatable information

about the vertical profile of wheat plants in field conditions. In future

studies, the ability of CVP as a phenotypic trait can be investigated by

comparing the relationship between the CVPs obtained from

different plant genotypes with other plant traits.
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Improving in-season wheat yield
prediction using remote sensing
and additional agronomic traits
as predictors

Adrian Gracia-Romero1, Rubén Rufo1, David Gómez-Candón2,
José Miguel Soriano1, Joaquim Bellvert2,
Venkata Rami Reddy Yannam1, Davide Gulino1

and Marta S. Lopes1*

1Field Crops Program, Institute for Food and Agricultural Research and Technology (IRTA),
Lleida, Spain, 2Efficient Use of Water in Agriculture Program, Institute for Food and Agricultural
Research and Technology (IRTA), Lleida, Spain
The development of accurate grain yield (GY) multivariate models using

normalized difference vegetation index (NDVI) assessments obtained from

aerial vehicles and additional agronomic traits is a promising option to assist,

or even substitute, laborious agronomic in-field evaluations for wheat variety

trials. This study proposed improved GY prediction models for wheat

experimental trials. Calibration models were developed using all possible

combinations of aerial NDVI, plant height, phenology, and ear density from

experimental trials of three crop seasons. First, models were developed using 20,

50 and 100 plots in training sets and GY predictions were only moderately

improved by increasing the size of the training set. Then, the best models

predicting GY were defined in terms of the lowest Bayesian information

criterion (BIC) and the inclusion of days to heading, ear density or plant height

together with NDVI in most cases were better (lower BIC) than NDVI alone. This

was particularly evident when NDVI saturates (with yields above 8 t ha-1) with

models including NDVI and days to heading providing a 50% increase in the

prediction accuracy and a 10% decrease in the root mean square error. These

results showed an improvement of NDVI prediction models by the addition of

other agronomic traits. Moreover, NDVI and additional agronomic traits were

unreliable predictors of grain yield in wheat landraces and conventional yield

quantification methods must be used in this case. Saturation and

underestimation of productivity may be explained by differences in other yield

components that NDVI alone cannot detect (e.g. differences in grain size

and number).
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1 Introduction

Wheat yield progress has been achieved at more than 1% p. a. in

Europe and other parts of the world (Fischer et al., 2022; Lopes,

2022). Yield progress depends on direct experimental testing of

novel agronomic practices and improved germplasm. Moreover,

efficient research and innovation require modern, fast, accurate, and

cost-effective tools to identify the most productive and sustainable

wheat production strategies using large sets of experimental trials

(several thousand plots) that can be readily transferred and adopted

by producers as quickly as possible. For field evaluations, it is

prevalent to find applications of high-throughput methodologies

based on remote sensing; in particular, the use of unmanned aerial

vehicles has become a popular topic for supporting crop breeding

(Yang et al., 2017) owing to its high capacity for screening large

populations rapidly and the moderate costs in comparison to

traditional phenotyping procedures (Araus and Cairns, 2014).

Among all the indices used, the versatility and simplicity of the

normalized difference vegetation index (NDVI) across crop species

(Gao et al., 2020; Tenreiro et al., 2021) and the possibility of

measurement across a variety of platforms (Araus et al., 2021)

have prompted the widespread use of NDVI for phenotyping

purposes. However, even if a close relationship between grain

yield and vegetation indices has been demonstrated under a wide

range of growing conditions, these approximations are not

considered universal solutions, as some limitations have been

reported. Challenges are mainly attributed to the saturation effect

during dense canopy assessment (Duan et al., 2017). In contrast to

NDVI, LiDAR is not affected by saturation at high ground cover

and might be an alternative for biomass (Jimenez-Berni et al., 2018);

however, these models still have limitations in predicting grain

yield, and alternatives are necessary to increase the accuracy and

precision of vegetation indices.

Alternative models have been explored and reported in the

literature using plant height (PH) together with NDVI in

herbaceous crops, such as perennial ryegrass, to estimate biomass

(Gebremedhin et al., 2019). Other candidate traits, such as

phenology, may provide important information regarding how

wheat genotypes perform in a given environment (Lafitte et al.,

2003) and can assist in-season selection. The measurement of wheat

PH (Rebetzke and Richards, 2000) and phenology (Lopes et al.,

2018) helps in understanding the sensitivity of crop production to

fluctuating seasonal conditions, as the duration of developmental

phases is a key determinant of genetic adaptation to the

environment. Among the wheat yield components, ear density

per unit of ground area has been considered an important

agronomic trait (Pask et al., 2012) that can be easily measured

with image analysis (Fernandez-Gallego et al., 2018) and may

improve the accuracy of yield prediction models. The

development of new grain yield (GY) prediction models,

including NDVI together with additional easy-to-measure

agronomic traits, has the potential to address the NDVI

saturation issues described, and eventually improve yield

predictions. To explore this hypothesis, two case studies were

used and carefully selected to demonstrate and investigate the
Frontiers in Plant Science 02
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mechanisms associated with NDVI saturation. The first case

study consisted of a set of data obtained from landraces and

modern varieties, whereas the second case study was

characterized by trials under various agronomic testing conditions

and a wide range of GY variation. For these two case studies,

calibration curves or training sets were developed using various

model combinations of GY, NDVI, and other easy-to-measure

traits, including phenology, PH, and ear density (EARS), using a

reduced number of plots. These calibrations were then used to

predict the yield of the remaining plots (validation sets) and the

correlations between the predicted and observed yields obtained for

the various sets to select the best and most universal model.
2 Materials and methods

2.1 Site description, plant material, and
experimental design

2.1.1 Case study 1
Field experiments were conducted at an experimental station in

Gimenells, Lleida, Spain 41°38′N, 00°22′E, 260 m a.s.l) in 2017 and

2018 under rainfed conditions. The environmental conditions of

the study area are characterized by a temperate semi-arid climate

with cool, wet winters, and dry and hot spring to summer seasons.

The average annual precipitation is approximately 370 mm. The

month with the lowest precipitation on average is July, with an

average of 12.7 mm. The trials were sown on 21/11/2016 and 15/11/

2017. In 2017 trial, after soil analysis, N, P and K were applied (pre-

planting) to reach 50 kg of N/ha, 98 kg P/ha and 108 kg K/ha in the

form of Calcium nitrate (NAC 27%), KCl and Ca(H2PO4)2. At

tillering, 150 kg N/ha in the form of Calcium nitrate (NAC 27%)

were additionally applied. In 2018 trial, N content in the soil was

more than 200 kg/ha and only P and K were applied at the same

rates used in 2017. The experiments followed a non-replicated

augmented design with two replicated checks (‘Anza’ and

‘Soissons’) and plots of 3.6 m2 (1.2 m wide and 3 m long) with

eight rows spaced 0.15 m apart. The seed rate was adjusted to 250

seeds per m2 and the plots were kept free of weeds and diseases. The

germplasm assessed in Case Study 1 comprised 365 bread wheat

(Triticum aestivum L.) genotypes from a diverse panel of landraces

and modern wheat varieties (Rufo et al., 2019). This dataset

obtained from landraces was of particular interest in this study to

determine the limitations and challenges in predicting yield using

the NDVI; Wheat landraces have high biomass (similar or even

higher than that of modern wheat varieties), and consequently, high

NDVI; however, this type of plant material has low GY and low

harvest index, creating a bias towards yield predictions when using

NDVI and additional agronomic traits (see Supplementary

Figure 1). The GY ranges for each germplasm and the growing

season are listed in Table 1.
2.1.2 Case study 2
Field experiments were conducted at the experimental stations

in Sucs, Lleida, Spain (41°38′N 00°22′E, 260 m a.s.l) in 2021, which
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is very close to the experimental station where Case Study 1 was

conducted. A set of seven wheat experimental trials (with a total of

300 plots) conducted under rainfed and well-irrigated conditions

with variable sowing dates and a diverse set of 39 modern wheat

varieties were used to determine yield predictions. In all trials, after

soil analysis, nitrogen contents in the soil were above 200 kg N/ha

with no additional N requirements for optimal crop growth.

Moreover, P and K were applied (pre-planting) to reach 98 kg P/

ha and 108 kg K/ha with the same formulations used in case study 1.

The experiments followed a replicated alpha-lattice design and plots

of 9.6 m2 with eight rows spaced 0.15 m apart. The seed rate was

adjusted to 250 seeds per m2, and the plots were kept free of weeds

and diseases, as appropriate. This dataset is characterized by a wide

range of GY variations retrieved from plots grown under various

agronomic test conditions and sets of germplasm (all containing

modern cultivated wheat varieties). This helped explore one of the

limiting factors to NDVI prediction ability due to saturation. The

GY ranges for each germplasm set and the growing season aspects

are listed in Table 1.
2.2 Data acquisition and processing

In 2017 and 2018, remote sensing image acquisition was

performed using a Parrot Sequoia multispectral camera onboard a

hexacopter unmanned aerial vehicle. The Parrot Sequoia (Parrot,

Paris, France) has a 1.2 mega-pixel sensor, yielding a resolution of

1280 × 960 pixels. The camera included four individual image

sensors with filters centered at wavelengths and full-width half-
Frontiers in Plant Science 03
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maximum bandwidths (FWHM) of 550 ± 40 (green), 660 ± 40

(red), 735 ± 10 (red edge), and 790 ± 40 nm (near infrared). A

Micasense RedEdge-M multispectral camera (Micasense, Seattle,

Washington, USA) was used in 2021. This camera captured images

at five spectral bands located at wavelengths of 475 ± 20 nm (blue),

560 ± 20 nm (green), 668 ± 10 nm (red), 717 ± 10 nm (red edge),

and 840 ± 40 nm (near-infrared), and a field of view (FOV) of 47.2°.

Image acquisition for all years was performed coinciding with the

crop developmental stages of anthesis the 21/04/2017, 17/04/2018

and the 19/04/2021 (when more than 90% of the varieties reached

anthesis). All flights were conducted at ~12:00 h solar time and at

40–50 m above ground level (agl), capturing images ground

sampling distance of 50 m. The flight plan had an 80/60 frontal

and side overlap. During image acquisition, in situ measurements

were conducted for different targets to correct for atmospheric

contributions to the signal. Radiometric calibration of the

multispectral sensor was conducted using an external incident

light sensor that measured the irradiance levels of light at the

same bands as those of the camera. In addition to the radiometric

corrections made by the internal solar irradiance sensor, corrections

were conducted through in situ spectral measurements with black-

and-white ground calibration targets, bare soil, and wheat plots

using a JAZ-3 Ocean Optics STS VIS spectrometer (Ocean Optics,

Inc., Dunedin, FL) with a wavelength response from 350 to 800 nm

and an optical resolution of 0.3 to 10.0 nm. During spectral data

collection, spectrometer calibration measurements were recorded

with a reference panel (white color Spectralon™) and dark current

before and after taking readings from the radiometric calibration

targets. Geometric correction was conducted using ground control
TABLE 1 Grain yield (GY, t ha-1) means and standard deviation, number of plots, the minimum and maximum GY, and heritability (calculated only in
replicated trials, H2) evaluated for each germplasm set, group of varieties, and growing conditions.

Case Study Year Exp. Water treat-
ment Date of sowing Gen. N Mean GY Lowest GY Highest GY H2

1

2017 1 Rainfed 21/11/2016 354

Landrace,
170

5.10 ± 0.91 2.97 8.48

Modern, 184 9.48 ± 1.01 6.54 11.80

2018 1 Rainfed 15/11/2017 354

Landrace,
170

5.63 ± 0.82 3.65 8.99

Modern, 184 9.94 ± 0.98 6.93 12.40

2 2021

1 Rainfed 27/12/2020 10 30 5.33 ± 1.61 1.87 9.00 0.688

2 Irrigated 27/12/2020 10 30 8.87 ± 1.77 5.41 12.70 0.885

3 Rainfed 03/12/2020 10 30 7.86 ± 2.17 3.77 11.83 0.776

4 Irrigated 03/12/2020 10 30
10.32 ±
1.90

6.20 13.44 0.903

5 Irrigated 03/12/2020 22 66
11.87 ±
1.54

8.05 14.64 0.678

6 Irrigated 03/12/2020 22 66
10.55 ±
1.02

7.62 12.83 0.664

7 Rainfed 03/12/2020 16 96 4.14 ± 1.09 2.17 7.18 0.697
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points. The position of each ground control point was acquired

using a handheld global positioning system (Geo7x, Trimble

GeoExplorer series, Sunnyvale, CA). All images were mosaicked

using Agisoft Photoscan Professional version 1.6.2 (Agisoft LLC., St.

Petersburg, Russia) software and geometric and radiometric terrain

correction was performed using QGIS 3.4.15 (QGIS Development

Team, Gossau, Switzerland). The NDVI values from each plot were

calculated according to the equation shown below [1]:

NDVI =
(R790 − R660)
(R790 + R660)

½1�

The following agronomic traits were measured: phenology

(days to heading, DH), plant height (PH), ear density (EARS),

and GY (t ha−1). Days to heading was measured as the number of

days between sowing and the day when 50% of spikes emerged in a

plot (Zadoks Stage 59, Zadoks et al., 1974). Plant height was

measured near maturity in 10 main stems per plot from the

tillering node to the top of the spike, excluding the awns. The

EARS was measured by counting the number of ears in one linear

meter in the middle of each plot and calculating the number of ears

per unit area (1 m2). Plots were mechanically harvested at ripening,

and grain yield was calculated at 12% moisture.
2.3 Statistical analysis

Statistical analysis was performed using the open-source

software R and RStudio 1.0.44 (R Foundation for Statistical

Computing, Vienna, Austria), and all statistical analyses were
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equally applied in case studies 1 and 2. The strength of the

relationships between the individual parameters DH, PH, EARS,

NDVI and GY was examined using the Pearson correlation test.

Broad sense heritability (H2) was estimated for each trait

individually in each environment (only for replicated trials) as:

H2 =
s 2
g

s 2
g + s 2

r

� �� �

where r=number of repetitions, s2=error variance and

s2g =genotypic variance.

A multivariate approach was used to develop yield predicting

models and procedures are illustrated in the flowchart shown in

Figure 1. Multivariate ridge regression was selected as a model-

tuning method to overcome multicollinearity among traits (Hoerl

and Kennard, 2000). More complex models as Artificial Neural

Networks were also considered, reporting very similar prediction

accuracies (data not shown). However, we decided to perform the

data analysis with Ridge Regression as is less likely to overfit the

data and it provides a direct interpretation of feature importance.

To perform the Ridge Regression, we used the functions from the

glmnet package (Friedman et al., 2010). First, the lambda value that

produces the lowest test mean squared error (MSE) was identified

by k-fold cross validation using k = 10 folds.
2.4 Calibration of the yield
prediction models

In order to find the best parameter combination, all possible 15

different models were developed to predict yield, including: (i)

NDVI, PH, DH and EARS, (ii) NDVI, PH and DH, (iii) NDVI,

PH and EARS, (iv) NDVI, DH and EARS, (v) NDVI and PH, (vi)

NDVI and DH, (vii) NDVI and EARS, (viii) PH, DH and EARS, (ix)

PH and DH, (x) PH and EARS, (xi) DH and EARS, (xii) NDVI,

(xiii) PH, (xiv) DH and (xv) EARS.

First, data was split into training data sets, used to build the

models, and validation data sets, not included in the training data

set to evaluate model accuracy. In Case Study 1, for each of the two

growing seasons evaluated, a total of 40 plots (20 landraces and 20

modern varieties) were randomly selected for the validation set. In

Case Study 2, the validation data sets were comprised by the

experimental conditions 2, 3 and 4 (Table 1); and the other two

were used as two independent validations set: the experimental

condition 1 (rainfed and late-planting) as low yielding plots and the

experimental condition 5 (irrigation and normal planting) as high

yielding plots (Table 1). For Case Study 1, multiple and simple

regression models were constructed using 50 randomly selected

plots from the training data sets, whereas for Case Study 2, models

were constructed using 20, 50 and 100 randomly selected plots from

the training data sets. For each model, 100 iterations were

performed and, in each iteration, random plots were used to

develop models. The best performing models were selected based

on the lowest Bayesian information criterion (BIC) in each

calibration subset. The best multiple regression model together

with the best simple NDVI regression was used to directly predict

yield of the validation data sets. The coefficients of determination
FIGURE 1

Flowchart of data acquisition and model elaboration. DH, days to
heading; PH, plant height; NDVI, normalized difference vegetation
index; EARS, ear density; UAV, unmanned aerial vehicle.
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(R2), equation parameters, and associated probabilities were

calculated for each yield multiple and simple regression models.
3 Results
3.1 Grain yield correlations with NDVI, PH,
DH, and EARS

To assess the correlation between NDVI and grain yield (GY),

Pearson correlation coefficients were calculated (Figure 2).

Significant correlations were reported across the complete set of

plots (R2 = 0.259, R2 = 0.239, and R2 = 0.795; p< 0.0001), for the

2017, 2018 and 2021 growing seasons, respectively. For Case Study

1, significant correlations were only reported for modern varieties

(R2 = 0.116, and R2 = 0.212; p< 0.0001) but not in landraces. For

Case Study 2, these correlations were also significant, however,

NDVI saturated and did not change when plots showed yields

above 8 t ha-1 (Figure 2C). When NDVI-GY correlation was tested

for the two groups (below and above 8 t ha-1), regressions using data

from plots with yields below 8 t ha-1 showed higher R2 (R2 = 0.548;

p< 0.0001) than regression obtained from plots with yields above 8 t

ha-1 (R2 = 0.152; p< 0.0001). To determine if yield prediction

models would improve with the inclusion of additional agronomic

traits when NDVI saturates, modelling and validations were

calculated in the two groups of plots separately (below and above

8 t ha-1).

Likewise, correlations between plant height (PH), phenology (DH),

and ear density (EARS) and grain yield (GY) were calculated (Figure 3).

Significant correlations were reported between DH–GY (R2 = 0.228, R2

= 0.261, and R2 = 0.356; p< 0.0001), and PH–GY (R2 = 0.719, R2 =
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0.600, and R2 = 0.510; p< 0.0001) across the complete set of plots for

the 2017, 2018, and 2021 growing seasons, respectively. The correlation

between EARS and GY was also significant in 2017 (R2 = 0.055, p<

0.0001) and in 2021 (R2 = 0.49, p< 0.0001) (Figure 3).
3.2 Development and validation of simple
and multiple regression models to predict
grain yield

The objective of this step was to determine the minimum number

of plots required for accurate grain-yield predictions. Data from Case

Study 2 was used in this step and models were built within the groups

set in the Results section 3.1 of plots yielding over and below 8 t ha-1

(threshold yield for NDVI saturation). For the models developed using

plots with yields over 8 t ha-1, the best combination with the lowest

Bayesian information criterion (BIC) was NDVI+DH (Supplementary

Table 1). When models were trained using yields below 8 t ha-1, the

best model was the combination of NDVI+PH+DH+EARS when 20

data points were used as training sets and the combination of NDVI

+DH+EARS with the 50 data point training sets. In that case, R2 was

improved and the RMSE reduced as the training sets were increased

(Supplementary Table 1).
3.3 Development and validation of models
to predict grain yield in various wheat
genetic resources (landraces and modern
varieties): Case study 1

Prediction models using all possible trait combinations were

constructed with data from Case Study 1 within landraces, within
FIGURE 2

Linear relationships between grain yield (GY, t ha-1) with the normalized difference vegetation index (NDVI) measured at anthesis in Case Study 1
(A, 2017; B, 2018) and 2 (C, 2021). In case study 1 correlations were calculated separately in modern wheat varieties and landraces. In case study 2,
correlations were also calculated separately in plots with yields below and above 8 t ha-1. Coefficients of determination (R2) and associated
probabilities are shown. Dashed line represents the GY after which NDVI saturates. R2 within experimental conditions from case study 2 were 0.581
for Exp.1, 0.563 for Exp.2, 0.493 for Exp.3, 0.030 for Exp.4, 0.076 for Exp.5, 0.226 for Exp.6 and 0.549 for Exp.7.
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modern varieties and across the combination of both

(Supplementary table 2). Yield prediction models obtained from

modern varieties were significant, however in Landraces neither

multiple nor single regressions were significant (Supplementary

Table 2). The best yield prediction models obtained from modern

wheat varieties with the lowest BIC included NDVI+DH (R2 =0.24

and RMSE=0.86) in 2017 and NDVI in 2018 (R2 =0.20 and

RMSE=0.88). When GY predictions were modeled using both

landraces and modern varieties, best model with the lowest BIC

included single regression with PH (R2 =0.71) in 2017 and multiple
Frontiers in Plant Science 06
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regression of NDVI+PH+EARS (R2 =0.69) in 2018, reporting the

highest model accuracies in terms of R2 but the highest RMSE

(RMSE=1.29 and RMSE=1.31, respectively).

Given the challenge of predicting landrace yields with the

proposed parameters (with non- significant regressions), only

models developed using modern varieties were validated. For the

validation, the best model with the lowest BIC (using 50 data

points) was selected and its accuracy to predict yield was

compared with the accuracy of the NDVI simple regression

(Figure 4), considered herein the benchmark model. For each
FIGURE 3

Linear relationships between grain yield (GY, t ha-1) and the number of days to heading (DH) (A, 2017; B, 2018; C, 2021), plant height (PH, cm)
(D, 2017; E, 2018; F, 2021), and ear density (EARS, ears m-2) (G, 2017; H, 2018; I, 2021). Coefficients of determination (R2) and associated
probabilities are shown.
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validation, one model from all the 100 runs calculated was selected

by sorting all the BIC values and selecting a model with the median

BIC. For both growing seasons, the addition of agronomic

parameters together with NDVI, to predict yield improved the

prediction accuracies in comparison to simple NDVI models

(Figures 4A, B).
3.4 Development and validation of models
to predict grain yield of wheat variety
testing trials with yield below and above 8
t ha-1: Case study 2

Following the same procedure as in Case Study 1, best

parameter combination was assessed to predict GY in the

validation sets while comparing its accuracy with simple NDVI

models (Figure 5). When plots with yields over 8 t ha-1 were

evaluated, the model combining NDVI with DH significantly

improved the yield prediction (R2 =0.595, p<0.05) compared to

the model using solely NDVI (R2 =0.150, ns). For the selection of

plots with yields under 8 t ha-1, even if the NDVI model reported a

significant yield prediction (R2 =0.536), the addition of DH and

EARS improved yield predictions to R2 =0.651 (Figure 5).
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4 Discussion

4.1 Contributions of additional agronomic
traits to improve remote sensing-based
yield prediction models

Originally, NDVI was found to be an adequate indicator of

plant biomass, chlorophyll content and N content (Stone et al.,

1996; Babar et al., 2006; Tremblay et al., 2009; Hassan et al., 2019).

Moreover, dynamic monitoring of NDVI in wheat trials to predict

yield was later confirmed by direct correlations between NDVI and

yield particularly at anthesis (Duan et al., 2017; Goodwin et al.,

2018). Biomass, chlorophyll and Nitrogen content are physiological

components of yield, however, biomass partition to yield may vary

and higher biomass, chlorophyll and N may not result in higher

yields. Herein, two case studies were used to determine the accuracy

and reliability of the yield prediction ability of NDVI with

agronomic traits such as DH, PH, and EARS. Overall, in both

case studies, NDVI was, at least in plots with yields below 8 T ha-1

and using cultivated modern wheat varieties, an adequate predictor

of yield (with prediction accuracies of up to R2 =0.536; Figure 5B).

The addition of agronomic traits such as DH to NDVI, in multiple

regression models to predict yield improved prediction accuracies

by up to 75% in plots with yields above 8 T ha-1 as compared to

simple regression NDVI models. However, the accuracy obtained

from multiple regression models (NDVI+DH+EARS was the best

model with lowest BIC) to predict yields below 8 t ha-1 was 18%

higher than simple regression models using NDVI. These results,

support the hypothesis that the addition of simple to measure

additional agronomic traits to NDVI in yield prediction models

increased prediction acuracy. Moreover, phenology, i.e. (days to

heading, DH), plant height (PH), ear density (EARS) are agronomic

traits which all have the potential to be measured non-destructively

in high throughput using proximal and aerial sensing devices.

Potentially, in the future, yields will be accurately predicted using

functions that model contributions of these various traits reducing

harvest costs of breeding programs.
4.2 Mechanisms of NDVI saturation and
underestimation of productivity

The assumptions of a linear relationship between GY and NDVI

are not always fulfilled because of the reduced sensitivity of this

vegetation index to large biomass (Huete et al., 1985). One of the

most prominent and discussed limitations of remote-sensing-based

studies is the saturation found with dense canopies, which

underestimates productivity (Chen et al., 2006; Gu et al., 2013).

Herein, saturation at high NDVI values is clearly demonstrated in

case studies 1 and 2. In Case Study 1, yield in wheat landraces was

weakly correlated with NDVI and additional easy-to-measure

agronomic traits, such as DH, PH, and EARS. Moreover, yield

prediction models using these traits in landraces were never

adequate showing non-significant R2. Compared to semi-dwarf
B

A

FIGURE 4

Prediction accuracies (coefficients of determination, R2), root means
square root (RMSE) and probability of models developed with 50
data points from Case Study 1 using modern varieties in 2017 (A)
and 2018 (B). Predicted yield values were calculated in 20 plots not
used in the development of models (irrigated and optimal sowing
date). Dashed line indicates a 1:1 correlation.
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cultivars with a high harvest index, landraces show relatively high

biomass and high or similar NDVI (see Figures 2A, B), whereas

yields and harvest index are low (Jaradat, 2013; Lopes et al., 2015

and Supplementary Figure 1) resulting in poor correlation and

prediction ability. It has been previously reported that reductions in

plant height and biomass associated with the Rht-B1b (formerly

Rht1) and Rht-D1b (formerly Rht2) alleles in modern varieties

increased grain yield, spike dry matter, grains m−2 and harvest

index (Gale and Youssefian, 1985; Flintham et al., 1997) at the

expense of stem dry matter (Fischer, 1985). The mechanisms

underlying this trade-off are yet to be discovered, however, the

results observed by Fischer (1985) and Flintham et al. (1997)

support our observations that biomass in tall landraces (and high

NDVI) is increased at the expense of yield loss. As such, higher

biomass and NDVI in the landraces did not result in higher yields in

this set of germplasm. It is concluded that the yield of landraces

must be assessed directly and traditionally harvested and weighted

due to a lack of yield prediction accuracy from models developed

with NDVI and additional agronomic traits.

Further evidence of productivity saturation underestimation

was observed in Case Study 2, where NDVI and yield prediction

models were less robust, at yields above 8 t ha-1 and NDVI above

0.75. This can be explained by differences in grain yield components

in high-yielding plots, including grain number and size (Sukumaran
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et al., 2018) which NDVI alone cannot detect. However, when DH

was included in the prediction models, the accuracies were

considerably improved (to R2 =0.595). These results highlight the

importance of developing new and more sensitive indices (Huete

et al., 2002; Gracia-Romero et al., 2019) to improve performance

predictions under high-yielding conditions together with the

inclusion of easy to measure additional agronomic traits in

prediction models.
4.3 Can NDVI measurements replace
machine-harvested and seed-weighted
yield determination in experimental wheat
field trials?

The development of accurate yield prediction models is of key

importance to facilitate the adoption of new wheat varieties and best

agronomic practices. If sufficiently solid algorithms with reduced

error in assessing GY are achieved, it might be possible to avoid the

harvest of the whole panel of experimental plots, reducing the costs

and efforts of the selection process. The actual replacement of labor-

intensive harvested yields determined by machine harvest and seed

weight in the field with yields predicted from NDVI and agronomic

trait based models would be particularly useful for multi-location

trials where seed recovery is not essential. Most countries worldwide

perform regional evaluations of value for cultivation and use testing,

and these networks would benefit from accurate yield

prediction models.

The methodology proposed in this study suggests using a

reduced number of wheat plots in experimental field trials to

calibrate an optimized model to predict the yield of the remaining

plots. A similar evaluation of the calibration and training size was

presented by Tehseen et al. (2021), who demonstrated the effect of

different population sizes of landraces in developing genome

prediction methods and assisting the selection of rust-resistant

wheat genotypes. Herein, the larger the training sets were, the

more robust the models were, however, mean accuracies were very

similar among the dataset sizes evaluated as the loss of predictive

accuracy was reasonably small when the number of replicates

sampled for the training set was reduced to 20 in comparison to

the sets with 100 plots. Thus, following a plot selection criterion

based on NDVI and additional agronomic traits, could help reduce

the number of field plots to be machine harvested for calibration of

the model. Moreover, to avoid NDVI saturation at high yielding

growth conditions, calibration models must be developed separately

according to data obtained from different treatments either with

optimal crop management or with yield limiting factors (e.g.

drought, heat or others) requiring separate model training.

To date, many studies have used different empirical models

developed using NDVI to successfully predict wheat GY. However,

most of the highest predictions are based on using accumulated

NDVI values across crop development stages and collecting data

across different years (as Aranguren et al. (2020) with R2 = 0.89 and

n = 204) or combining information from different study sites and

using satellite information (as Lopresti et al. (2015) with R2 = 0.56

and n = 90). In similar evaluations (data across a single growing
B

A

FIGURE 5

Prediction accuracies (coefficients of determination, R2), root means
square root (RMSE) and probability of models developed with 50
data points from Case Study 2 using plots with yields over and
below 8 t ha-1 (A, B), respectively. Predicted yield values were
calculated in 10 plots not used in the development of models
(rainfed and late sowing). Dashed line indicates a 1:1 correlation.
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season and from a unique experimental field) when GY differences

are evaluated among genotypes grown under irrigated (i.e., high-

yielding conditions), prediction accuracies are limited (as Naser

et al. (2020) r = 0.47 and n = 72). Given the reported improvements

achieved with the addition of DH, PH, and EARS to the models,

opportunities to find proxies capable of evaluating those parameters

directly from NDVI and high-throughput platforms will help to

better select varieties in a cost-effective manner.
5 Conclusions

The proposed models combining NDVI with additional

agronomic traits improved GY prediction of wheat varieties

compared to models using NDVI as the sole predictor. These

demonstrations will benefit the application of remote sensing in

breeding programs, thereby providing more confidence in the

selection of varieties using proxies. Remote sensing-based models

showed a high potential to discriminate between wheat genotypes

within a field, but only at GY lower than 8 t·ha-1, after which the GY

prediction models were less robust. Similarly, the accuracy was

reduced when landraces were assessed. Accuracy reduction was

associated with NDVI saturation owing to (i) high biomass and low

harvest index in landraces and (ii) under high yielding conditions

when wheat varieties share high biomass but differ in other yield

components (grain size and number). Therefore, using

conventional harvest is advisable when testing landraces and

adaptation to yield potential conditions (high yield with optimal

agronomic management), at least until novel or improved models

are available.
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Advances in breeding efforts to increase the rate of genetic gains and enhance

crop resilience to climate change have been limited by the procedure and costs

of phenotyping methods. The recent rapid development of sensors, image-

processing technology, and data-analysis has provided opportunities for multiple

scales phenotyping methods and systems, including satellite imagery. Among

these platforms, satellite imagery may represent one of the ultimate approaches

to remotely monitor trials and nurseries planted in multiple locations while

standardizing protocols and reducing costs. However, the deployment of

satellite-based phenotyping in breeding trials has largely been limited by low

spatial resolution of satellite images. The advent of a new generation of high-

resolution satellites may finally overcome these limitations. The SkySat

constellation started offering multispectral images at a 0.5 m resolution since

2020. In this communication we present a case study on the use of time series

SkySat images to estimate NDVI from wheat and maize breeding plots

encompassing different sizes and spacing. We evaluated the reliability of the

calculated NDVI and tested its capacity to detect seasonal changes and

genotypic differences. We discuss the advantages, limitations, and perspectives

of this approach for high-throughput phenotyping in breeding programs.

KEYWORDS

high-throughput phenotyping, satellite, wheat, maize, breeding, normalized difference
vegetation index, optimized soil adjusted vegetation index
1 Introduction

Climate change causes widespread changes in weather patterns and therefore poses

new challenges for plant breeders (Stamp and Visser, 2012; Xiong et al., 2022). To

strategically plan for future crop genetics, plant breeders must consider how to assess

germplasm performance in locations that better represent their future environments – i.e.

climate analogue sites – which are likely further from their research stations and possibly in

another country or continent, where frequent data collection may be challenged by the
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availability of trained personnel, travel, logistics and equipment. In

addition, multi-environment trials (METs) are needed to enable

prediction of genotype reaction-norms (van Eeuwijk et al., 2019;

Cooper and Messina, 2021). These prediction models tend to be

based on markers, big data and machine learning approaches, and

they strongly rely on a standardized, quality-controlled set of data

from many different environments. Since the contribution of a gene

to a trait can vary depending on environmental conditions, the

results of genomic selection, genome wide association studies

(GWAS) and other genomics-driven breeding and research

methods will be more precise and relevant if run using phenomic

data from numerous locations representing the diversity among

growing environments (Korte and Ashley, 2013; Jarquı ́n
et al., 2014).

Accurately linking genotypes to phenotypes requires large

populations of replicated genotypes, which can be costly to

evaluate, especially at multiple locations (Furbank and Tester,

2011). Furthermore, bias due to differences in specifications of

instruments or their handling, human error, as well as poor plot

quality due to irregular emergence and soil heterogeneity can render

big data analyses useless. These challenges limit the scalability of

current phenotyping techniques across diverse environments,

especially when linking the phenomic data to genomic data.

Genetics-based breeding technologies, such as genomic selection,

speed breeding and gene editing (CRISPR/CAS), offer ways to

accelerate breeding, but their value is limited by the quality and

relevance of phenotypic data. Consequently, standardized

phenotyping of experiments or nurseries grown at different

locations has remained a bottleneck for the use of phenomic data

in genomic analyses (Crossa et al., 2021).

High resolution satellites may contribute to address this

bottleneck, and have been recently tested for monitoring small

plots (Tattaris et al., 2016; Sankaran et al., 2020; Sankaran et al.,

2021). However, apart from being relatively costly, the resolution of

the multispectral bands used to be coarser than 1 m. This changed

with the launch of the Pleiades (Airbus, 2022) and SkySat (Planet,

2022a) constellations. The fleet of 21 high resolution (0.5 m) SkySat

satellites became fully operational in the fall of 2020. Daily

acquisitions attempts are now guaranteed, resulting in at least one

cloud free image every 7 to 10 days for most regions on Earth. This

opens up the opportunity to monitor and phenotype breeding plots

across diverse environments over an entire growing season with

identical measurement protocols.
2 Perspective: harnessing multi-
temporal high resolution satellite
images for monitoring breeding plots
in diverse environments

Many of the variables collected in crop phenotyping can

potentially be generated from satellite images. The SkySat sensors

have 4 spectral bands: blue, green, red and infrared. They can be

used to calculate the normalized difference vegetation index

(NDVI), which is a measure of the amount of vegetation and its
Frontiers in Plant Science 02
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greenness, and other bio-physical parameters, including plot

establishment, and various canopy traits, such as ground cover

(fCover), leaf area and chlorosis (Jin et al., 2021). Using a time series

of standardized images, date of emergence, end of leaf growth

(which is an approximation of heading or tasseling date), and

senescence or maturity can also be estimated (Jönsson and

Eklundh, 2004; Pérez-Valencia et al., 2022). From a series of

images covering the entire growing period, the performance of

selected lines can be evaluated under specific weather conditions

around the time that they occur, such as cold or dry spells and heat

waves. In this context, satellite-generated phenotypic data from

METs can be easily complemented with information on the

dynamics of the environments retrieved from weather station

networks or the global ECMWF Reanalysis products AgERA5

(Boogaard et al., 2020) and ERA5 (Hersbach et al., 2018). These

products provide daily or hourly weather data at a resolution of

either 10 or 30 km in close to real time, allowing better enviromics

for the optimization of prediction models within the framework of

the modern plant breeding triangle (Crossa et al., 2021; Resende

et al., 2021).

Satellite images would enable breeders and researchers to

monitor their field-plots in a single time-point (for each image),

across a time-span (multiple images), and collect performance data

on germplasm throughout a season at locations around the globe. In

addition, since each satellite image covers an entire research field,

genotypes across a field trial can be effectively compared without the

potentially confounding effect of time (compared to physically

carrying a hand-held tool to each plot in the field while ambient

conditions are drifting). Plot level data collected by satellites can

also be used to compare plot quality and to perform statistical

correction for spatial heterogeneity in the field that can otherwise

confound the expression of yield and other traits. They also allow

for quality control and verification of reported data, such as date of

sowing and management of the plots according to protocol. The use

of satellite data will ultimately allow for the inclusion of larger

nurseries (more lines) and more locations. Biases due to differences

in instruments, human or other experimental errors will be reduced,

resulting in standardized, multi-temporal data sets that allow for

comparisons among sites in close to real time.

However, nursery plots for wheat and maize, as well as for other

crops, tend to be relatively small. Plots tend to measure 2 or more

meters in length, but plot width might be a bottleneck for the use of

satellite images. For maize, breeders plant 1 or 2 rows, whereas for

wheat, plots usually consist of 2 to 6 rows. This results in plots that

tend to be between 0.7 m (one row of maize) to 1.2 to 1.6 m wide,

which may pose some challenges for the use of 0.5 m satellite data to

capture pure vegetation pixels and avoid mixed pixels affected by

the signal from soil surfaces or neighboring plots. The native

resolution, or ground sampling distance (GSD) of SkySat images

depends on the view angle of the satellite among others. The

resolution of the multispectral bands at nadir is 0.81 m for

SkySat-3 to 15 and 0.72 m for SkySat-16 to 21 (Planet, 2022b).

To align the satellite images with each other, they need to be

orthorectified (Leprince et al., 2007). During the orthorectification

process, the images are being resampled to a standard resolution of

0.5 m. Thus, a SkySat, or any other pixel of a satellite image, is not
frontiersin.org

https://doi.org/10.3389/fpls.2023.1114670
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pinto et al. 10.3389/fpls.2023.1114670
an exact representation of the area it covers on the ground (Saunier

et al., 2022). Other technical factors such as radiometric calibration,

atmospheric correction and the point spread function of the sensor

can also affect the quality of the data, being especially relevant when

using time series and multi-environment comparisons. To assess

the potential and limitations of the use of SkySat images for

phenotyping, we conducted separate field campaigns in Mexico

and Zimbabwe.
3 Case study

We used time series of SkySat imagery to estimate the NDVI

(NDVISAT) from wheat breeding plots. The NDVISAT values were

evaluated in terms of their reliability—i.e. capacity to detect

genotypic differences, and how observed seasonal changes were

related to crop phenology—and how they are affected by the plot

size and spacing; all this while comparing NDVISAT to NDVI

calculated from a UAV (NDVIUAV) at different moments during

the growing cycle in wheat and maize, respectively.

A dedicated wheat experiment for assessing the effect of plot

size and spacing in NDVISAT was planted at CIMMYT

headquarters, Texcoco, Mexico (19.5338° N, 98.8428° W, 2,278

masl), under optimal growing conditions. A spring wheat panel

comprising 10 genotypes from the Roots Anatomy panel was

planted in six treatments resulting from the combination of two

plot widths of 0.8 and 1.6 m (referred as small and big plots) and

three spacings between plots of 0.5, 0.75 and 1.5 m in all directions

(Figures 1A, B). The small and big plots had two and six rows of

plants, respectively, and the same plot length of 2.5 m. Each

treatment had an a-lattice design with two replicates, resulting in

twenty plots per treatment. This experimental design is commonly

used in breeding trials. The experiment was sown on 27 May and

harvested on 5 October 2021. Aerial high-resolution multispectral

images (GSD ~ 0.017 m) were collected at 25 m altitude using a

RedEdge (Micasense, USA) multispectral camera mounted on a

UAV (Matrice 100, DJI, China). The images were georeferenced

using ground control points distributed along the field, and the

spectral reflectance was calculated using a calibration target

(Micasense, USA). A commercial software (Pix4D, Switzerland)

was used to mosaic the images from which NDVIUAV was extracted

for each plot. The UAV images were collected across the cycle as

close as possible to the satellite acquisitions (Supplementary

Table S1).

Time series of SkySat multispectral images were collected over

the wheat experiments starting from canopy closure. The

acquisitions targeted a revisit frequency of 7 to 10 days. In order

to limit BRDF effects (Royer et al., 1985) and distortion in GSD,

maximum view angle was restricted to 16°. NDVISAT was calculated

using the RED and NIR bands from the SkySat surface reflectance

product (Planet, 2022b). Additionally, the Optimized Soil Adjusted

Vegetation Index (OSAVI, Rondeaux et al., 1996) was calculated to

mitigate the potential impact that soil brightness can have on

NDVI, especially with larger plot spacing. A total of six satellite

acquisitions were obtained during the cycle (Supplementary Table

S1). For the extraction of NDVI and OSAVI, we first manually drew
Frontiers in Plant Science 03
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the plot boundaries based on an accurately geo-referenced UAV

image. Using ArcGIS georeferencing tool, we then shifted the

satellite images so that they would align with the plot boundaries.

For this we employed sharp edges in the scenery as references, such

as road corners and trial boundaries. After applying a 15 cm in-side

buffer to the plot boundaries, we extracted the NDVI values with the

R-library raster v3.6.3 using the normalizeWeights option, which

accounts for the proportion of each pixel that falls in a polygon. The

best linear unbiased estimators (BLUEs; Bernal-Vasquez et al.,

2016) of the remote sensing data were calculated for each

genotype using the R-package “asreml-R” version 4.1.0.160.

We also collected satellite images over maize breeding nurseries

located in Muzarabani, Zimbabwe (16.3972° S, 31.0160° E, 498 masl).

Three images were collected over the cycle starting frommid vegetative

stage. However, UAV measurements were not available on site and

satellite data could only be compared toNDVI readingsmeasuredwith

a hand-held optical sensor with adjustable arm (GreenSeeker, Trimble,

USA). Therefore, details on the maize experiment and results are

presented as supplementary material (Supplementary Figure S1).

A visual assessment of satellite images indicates that

individualization of plots represents one of the challenges for

extracting quality phenotypic data. Wheat plot boundaries were

visually evident only for plots with a spacing of 0.75 m and 1.5 m

(Figure 1B). In general, the increase of plot size and plot spacing

resulted in higher and more significant correlations between

sate l l i te and UAV data , poss ibly due to better plot

individualization (Figures 1C, D). In maize, plots were sown

without spacing in between, hindering the visualization of plot

boundaries. But the ranges as well as the edges of the experiment

were clearly visible (Supplementary Figure S1B).

Given the satellite resolution and plot size, NDVISAT is expected

to be affected by mixed pixels. The values of NDVISAT were much

lower and showed a larger range between treatments in comparison

to NDVIUAV in all the dates (Figure 1C). While NDVIUAV showed

values close to saturation after canopy closure, NDVISAT ranged

between 0.45 and 0.65, suggesting a degradation of the signal due to

contamination from the neighboring bare soil. The OSAVISAT also

showed lower values than OSAVIUAV, except for the treatments

with 0.5 inter-plot spacing where values were within the same range

(Figure 1D). When plot spacing was increased, OSAVISAT
decreased considerably to values much lower than those

calculated from the UAV. A small inter-plot spacing facilitates

the pollution of pixels by neighboring plots in the satellite data,

which could explain the higher NDVISAT and OSAVISAT in plots

with 0.5 m distance compared to wider plot spacing. In contrast,

adding space between plots may imply a larger mixing of vegetation

and bare soil spectra, decreasing the NDVISAT and OSAVISAT.

Conversely, the higher resolution of the UAV imagery can help

avoid the effect of mixed pixels. However, increasing the plot

spacing also decreased the values of both NDVIUAV and

OSAVIUAV (although to a lesser extent than for NDVISAT and

OSAVISAT, respectively; Figures 1C, D). This suggests that mixed

pixels may not be the only factor affecting the spectral signature

when increasing the distance between plots. One possibility is that

the larger spacing changes the illumination conditions within the

plot due to more lateral light penetration.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1114670
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pinto et al. 10.3389/fpls.2023.1114670
Mixed pixels may also limit the capability of NDVI and other

spectral indices to detect phenotypic variability from satellite

imagery. In the small plots, the reduction of plot spacing resulted

in lower average heritability values for NDVISAT and OSAVISAT
(Table 1). In larger plots, the heritability values were higher than in

small plots but there was not an evident effect of the plot spacing.

This suggests that genotypic variability detected in larger plots may

be affected by other factors such as heterogeneity within the plots,

and that differences in heritability between treatments may be more

related to weather and field conditions during data collection. In the

UAV data, the heritability values were much higher than those from

satellite data. However, the plot size and distance did not show a

clear effect across dates. Instead, differences in UAV-based

heritability between treatments and dates may be better

explained by changes in environmental and operating conditions.
Frontiers in Plant Science 04
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Slight variations in factors such as illumination conditions,

wind or view angle, among others, can affect the accuracy of

the spectral measurements causing great impact in the

calculated heritability.

The time series of satellite images collected over the wheat

experiment also depicted the influence of phenological stage on

NDVISAT and its variability within each treatment. The phenotypic

variability of NDVI and OSAVI from both platforms, and the

correlations between them, were lower or not significant during the

first two measuring dates (Figure 1C), coinciding with a time of

highest biomass development during stem elongation. The

correlations and variability increased later, from booting and

during the grain filling, when decreases in green biomass and the

onset of senescence may have maximized the differences in the

spectral signature between genotypes. These phenological changes
B

C

D

A

FIGURE 1

Assessment of SkySat images for the estimation of NDVI in wheat breeding plots with different size and spacing. (A) High-resolution RGB
orthomosaic of the plot size and spacing experiment in wheat obtained from a UAV and boundaries of the different treatments. (B) RGB composite
obtained from a SkySat image with a GSD of 0.5 m. (C) Correlations between NDVISAT and NDVIUAV measured at different dates over the different
treatments. (D) Correlations between OSAVISAT and OSAVIUAV measured at different dates over the different treatments. NDVI and OSAVI values
represent the best linear unbiased estimator (BLUE) computed individually at each measuring date for a given treatment based on a a-lattice design.
Treatment description in the legend: “plot width/plot spacing”. The corresponding growth stage for each measuring date is indicated on top of
Figure 1C.
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were more contrasting when plot spacing was larger, with the bigger

plots always showing the highest heritability and the best

correlations between both platforms on all dates.
4 Discussion

The consolidation of satellite platforms as tools for high-

throughput phenotyping in breeding trials relies on many factors,

among which the spatial resolution plays an important role. As

expected, for plots with widths close to the sensor GSD low

accuracies were observed. However, the results indicate that high

resolution satellites hold promise for phenotyping plots commonly

used in wheat (1.2 m) and maize (1.5 m) breeding.

In addition to the spatial resolution, other sensor specifications

can have great impact in the usability of this data for plot

phenotyping, and should be considered carefully for interpretation.

Saunier et al. (2022) performed a deep analysis on the performance of

the SkySat constellation, revealing a high signal-to-noise ratio, high
Frontiers in Plant Science 05
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geometric accuracy, and confirming that the spectral and spatial

resolutions were compliant with the specification of Planet.

Nevertheless, the same study detected some sources of

uncertainties, such as variations in the quality of the data coming

from different sensors and changes in the spectral signature due to

resampling. This has implications for the interpretation and

comparison of time series data or data collected from different

locations, especially for small plots, as images may be collected from

different satellites and from a different view angle (i.e. differences in

native spatial resolution). In this sense, the implementation of plot-

level models to characterize trait changes over time, such as the ones

suggested by Roth et al. (2021) and Pérez-Valencia et al. (2022), can

be used to smooth time series of data, helping to reduce noise

coming for systematic or random errors while improving the

genotypic variability at key phenological stages. The atmospheric

correction of SkySat imagery also presents limitations that can affect

the quality of the data (Planet, 2022b; Saunier et al., 2022).

Modifying the plot spacing helped us realize the extent to which

neighboring surfaces affect the plot spectral signature. We
TABLE 1 Changes in broad sense heritability related to plot size, spacing, and measuring date in days after emergence (DAE) for NDVI and OSAVI
calculated from satellite (SAT) and UAV imagery.

DAE 39 DAE 47 DAE 60 DAE 66 DAE 71 DAE 102 Average

NDVI

NDVISAT

0.8 m / 0.5 m 0.00 0.04 0.00 0.00 0.00 0.00 0.01

0.8 m / 0.75 m 0.23 0.00 0.00 0.52 0.44 0.56 0.29

0.8 m / 1.5 m 0.33 0.33 0.48 0.86 0.63 0.50 0.52

1.6 m / 0.5 m 0.00 0.00 0.25 0.75 0.75 0.90 0.44

1.6 m / 0.75 m 0.25 0.31 0.38 0.00 0.15 0.82 0.32

1.6 m / 1.5 m 0.52 0.00 0.00 0.63 0.41 0.81 0.40

NDVIUAV

0.8 m / 0.5 m 0.87 0.81 0.95 0.97 0.82 0.89 0.88

0.8 m / 0.75 m 0.79 0.73 0.83 0.84 0.81 0.82 0.81

0.8 m / 1.5 m 0.93 0.83 0.95 0.91 0.87 0.82 0.88

1.6 m / 0.5 m 0.91 0.85 0.96 0.98 0.97 0.96 0.94

1.6 m / 0.75 m 0.58 0.15 0.72 0.86 0.47 0.76 0.59

1.6 m / 1.5 m 0.65 0.50 0.92 0.87 0.84 0.93 0.79

OSAVI

OSAVISAT

0.8 m / 0.5 m 0.12 0.41 0.00 0.43 0.00 0.00 0.16

0.8 m / 0.75 m 0.28 0.00 0.00 0.59 0.51 0.62 0.33

0.8 m / 1.5 m 0.31 0.24 0.52 0.00 0.64 0.47 0.36

1.6 m / 0.5 m 0.00 0.00 0.29 0.77 0.84 0.86 0.46

1.6 m / 0.75 m 0.37 0.36 0.53 0.00 0.14 0.86 0.37

1.6 m / 1.5 m 0.57 0.00 0.00 0.72 0.60 0.89 0.46

OSAVIUAV

0.8 m / 0.5 m 0.62 0.82 0.94 0.85 0.77 0.72 0.79

0.8 m / 0.75 m 0.73 0.84 0.81 0.77 0.92 0.87 0.83

0.8 m / 1.5 m 0.91 0.87 0.96 0.89 0.75 0.61 0.83

1.6 m / 0.5 m 0.84 0.89 0.97 0.90 0.92 0.93 0.91

1.6 m / 0.75 m 0.63 0.42 0.71 0.62 0.58 0.67 0.60

1.6 m / 1.5 m 0.69 0.84 0.88 0.82 0.85 0.87 0.82
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demonstrated that increasing plot spacing helps with the identification

of individual plots and improves apparent heritability. Similarly,

working with larger plots improved the accuracies. However, these

solutions are not suitable for breeding programs, which tend to

comprise several hundred plots. Pleiades Neo (Airbus, 2022), as well

as the upcoming Pelican fleet of satellites (Planet, 2022a) will offer

multispectral data acquired at a resolution close to 0.3 m. Hence,

limitations set by the resolution are likely to become less of an issue. A

remaining challenge will be the accurate delineation of the plot

boundaries. This can be achieved with high-resolution UAV

imagery, although a UAV may not always be available, especially in

under-resourced programs or in remote regions. An accurate

geometric layout of the plots, possibly with the help of an RTK GPS,

together with placing fixed ground control points that can be identified

in the satellite images, will facilitate the image-to-image registration

and lining up with the plot boundaries. Nursery trials are generally

sown in flat areas; hence a perfect alignment can be achieved by a

simple shifting of the images, a process that can be automated.

The SkySat images were able to capture spatial heterogeneity in the

small areas covered by our trials. Similarly, the temporal changes in the

spectra agreed with the phenology of the crops. This, together with the

possibility of capturing images on demand, opens the possibility of

using the satellite information to characterize the field level spatial

variability in models for prediction of genetic value (Araus and Cairns,

2014; Smith et al., 2021), and to remotely monitor the development

and management of the trials for quality control at a low cost.

The successful collection of six satellite images during the rainy

season in Central Mexico, while monitoring in parallel a maize trial

in Zimbabwe, amply demonstrate the flexibility of this tool. With

the imminent improvement of the spatial resolution, a remaining

challenge will be the development and fine-tuning of operational

procedures that ensure high quality, standardized data that will

enable us to harness the benefits of the modern breeding triangle.
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Shota Gugushvili 1, Ryan McCormick2,3†, Daniela Bustos Korts1,4†,
Carlos D. Messina2,5 and Fred A. van Eeuwijk1
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2Research & Development, Corteva Agriscience, Johnston, IA, United States, 3Gro Intelligence, New
York, NY, United States, 4Institute of Plant Production and Protection, Faculty of Agricultural Sciences,
Universidad Austral de Chile, Valdivia, Chile, 5Department of Horticultural Sciences, University of
Florida, Gainesville, FL, United States
Introduction: Dynamic crop growth models are an important tool to predict

complex traits, like crop yield, for modern and future genotypes in their current

and evolving environments, as those occurring under climate change.

Phenotypic traits are the result of interactions between genetic, environmental,

and management factors, and dynamic models are designed to generate the

interactions producing phenotypic changes over the growing season. Crop

phenotype data are becoming increasingly available at various levels of

granularity, both spatially (landscape) and temporally (longitudinal, time-series)

from proximal and remote sensing technologies.

Methods: Here we propose four phenomenological process models of limited

complexity based on differential equations for a coarse description of focal crop

traits and environmental conditions during the growing season. Each of these

models defines interactions between environmental drivers and crop growth

(logistic growth, with implicit growth restriction, or explicit restriction by

irradiance, temperature, or water availability) as a minimal set of constraints

without resorting to strongly mechanistic interpretations of the parameters.

Differences between individual genotypes are conceptualized as differences in

crop growth parameter values.

Results: We demonstrate the utility of such low-complexity models with few

parameters by fitting them to longitudinal datasets from the simulation platform

APSIM-Wheat involving in silico biomass development of 199 genotypes and

data of environmental variables over the course of the growing season at four

Australian locations over 31 years. While each of the four models fits well to

particular combinations of genotype and trial, none of them provides the best fit
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across the full set of genotypes by trials because different environmental drivers

will limit crop growth in different trials and genotypes in any specific trial will not

necessarily experience the same environmental limitation.

Discussion: A combination of low-complexity phenomenological models

covering a small set of major limiting environmental factors may be a useful

forecasting tool for crop growth under genotypic and environmental variation.
KEYWORDS

crop growth model, ordinary differential equation, dynamic model, genotype by
environment by management interactions, model selection, phenomenological
model, phenotyping, process-based model
1 Introduction

The prediction of crop yield remains a critical challenge (Peng

et al., 2020). Yield is a complex trait, resulting from the interplay

between many genes with relatively small contributions,

environmental inputs, and management regimes (GxExM)

integrated over the growing season (Van Eeuwijk et al., 2019).

Crudely speaking, two major methodological approaches can be

distinguished to decompose yield into genetic and environmental

factors. The first approach is mainly statistical, where the underlying

goal is yield improvement by the identification of superior genotypes

through the use of relatively simple models in which genotypes differ

from each other in mean performance across the range of included

conditions and in sensitivities to either a small (Millet et al., 2019) or

large number of environmental drivers (Jarquıń et al., 2014; Van

Eeuwijk et al., 2016). The second approach involves the use of

process-based models, which typically relate yield to underlying

processes that are affected by the environment and that are

governed by genotype-dependent parameters that are expected to

vary little across environments. The use of such models is more

common in integrated assessments, such as implemented in AgMIP

(Ruane et al., 2017), where the goal is to assess the effects of

management and stress factors on yield, such as those resulting

from climate change. Yield can also be disentangled following a prior

dissection of yield into ‘lower-level’ yield components that are

physiologically simpler than yield and that can be measured at

multiple moments during the growing season, for example, with

High Throughput Phenotyping platforms. Static yield dissection

models may be applied that can better address equifinality issues,

i.e., the same yield end point is achieved via different development

paths, by allowing for the possible improvement of yield along

multiple paths via different underlying components (Tsutsumi-

Morita et al., 2021). Longitudinal data series of yield components

allow dynamic modelling in the form of smoothed growth curves on

P-spline bases in combination with extraction of growth

characteristics that can be used to predict end point traits like yield

(Roth et al., 2021; Pérez-Valencia et al., 2022). The disadvantage of

such models is that they do not explicitly couple mechanistic

descriptions of the underlying dynamic processes driving crop
02
127128
growth to genetic effects. Vice versa, crop simulation platforms

integrate environmental factors over the growing season to forecast

yield as an emergent end point. While mechanistic in nature, these

models do not usually involve genetic differences, and the inclusion of

such effects is far from trivial, as it is not obvious which crop growth

parameters to choose to be genotype dependent and how to account

for stochasticity in genetic effects. Moreover, despite the increasing

availability of spatio-temporal information from non-destructive,

cost-effective, and time-efficient methods (Shammi & Meng, 2021),

such as longitudinal drone imagery (Panday et al., 2020) and earth

observations freely available at relevant scales (Kasampalis et al.,

2018; Huang et al., 2019), considerable limitations exist with

respect to the availability of data, models, and algorithms to

adequately handle GxExM in crop growth descriptions (Stöckle &

Kemanian, 2020).

The generalization of crop growth models to contain genotype-

dependent parameters is relevant for increasing the accuracy of

predictions regarding the performance of genotypes in new

environments (Technow et al., 2015). With thousands of

genotype-by-environment combinations involved in modern

breeding, there is a need for crop models that can cover the

broad spectrum of GxExM interactions and make optimal use of

the data that are becoming available. On the other hand, these

models should also be sufficiently simple and parsimonious to aid

human interpretation (Hammer et al., 2019). While many current

crop simulation platforms are physically consistent (e.g., containing

conservation of mass and energy) and are capable of simulating

crop growth and development in great detail, crop model results are

sensitive to calibration, i.e. estimation of crop growth parameters in

the light of empirical data is cumbersome (Grassini et al., 2015). The

number of parameters in a model can quickly outpace the ability to

fully identify and/or estimate all parameters well from available data

when considering a single calibration objective only (Wagener et al.,

2003). Crop models currently may be too complex for proper

calibration so that many uncertainties remain regarding their

parameterization (Dokoohaki et al., 2021). Parameters are

commonly correlated in such a way that their effects on the

model output are indistinguishable, leading to what is termed

unidentifiability (Cole et al., 2010). Modelling efforts also suffer
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from the existence of multiple candidate model parameterizations

and model structures that can describe or explain the data equally

well (Beven & Freer, 2001), yet suggest contradictory assessments

when focused on practical problems such as yield gap estimates

(Schils et al., 2022). High parameter correlations and equifinality are

issues that can easily disrupt attempts at an accurate estimation of

parameters and thus should be addressed to avoid a reduction in the

utility of crop models (Lamsal et al., 2018). Given the right tools, the

availability of high-resolution time series data can help in

addressing these issues.

The burden of complexity in data-driven modeling calls for the

periodic reassessment of simpler approaches to identify necessary

and sufficient levels of detail, or granularity, to capture the essential

GxExM interactions and utilize increasingly available data streams,

while also being sufficiently realistic in the sense of trying to

minimize issues around model structure identification and model

calibration. In this paper and a follow-up paper the over-arching

aim is the development of a modelling framework for describing the

essential dynamical growth patterns of genotypes that lead to

GxExM interactions, which should allow for the prediction of

yield for existing and new genotypes across a wide range of

management and environmental conditions, i.e. it is minimalistic

yet sufficiently capable of allowing for genotype-dependent

parameterizations. Model complexity should be balanced in terms

of what is required by the application, the important characteristics

of the system – those addressing essential GxExM interactions –

and the support following from data (Wagener et al., 2001).

We present a small library consisting of four crop growth

models based on differential equations for the dynamical

description of biomass growth during the growing season and the

interaction of biomass with important environmental drivers. For

simplicity, we assume that biomass is proportional to the whole

crop biomass, though only above-ground biomass is measured.

Furthermore we assume that the end-of-season biomass is an

approximation to yield. The proposed models each focus on one

particular crop growth limitation. They omit phenological stages

and thereby avoid the need for stage-specific parameterization.

Differential equations typically have no closed-form solutions,

which prohibits the use of regular statistical methods for data

fitting or model analysis. In the current paper, we demonstrate

the utility of the different models from the library by fitting them to

longitudinal data of individual genotypes in individual

environments, using established fitting procedures for ordinary

differential equations. In a follow-up paper we will develop a

hierarchical Bayesian framework to fit the models within our

library to longitudinal data for populations or panels of genotypes

with the hope of identifying genotype-dependent parameters that

do show variation across genotypes while varying little across

environments. Various options exist for combining the different

models in our library to arrive at a prediction model for yield, an

attractive one consisting in an ensemble model (Hoeting et al., 1999;

McCormick et al., 2021) that encloses the fits of the member models

of the library for the time series data of individual genotypes.

In this paper, we will fit our models to simulated, i.e., in silico

generated and noise-free longitudinal data of daily biomass

measurements for different wheat genotypes in different
Frontiers in Plant Science 03
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Australian environments. The advantage of using simulated data

is that we have practically unlimited data available for model

testing, and we can – for now – ignore uncertainty resulting from

noise and poor temporal coverage. Genetic effects will occur as

differences in the estimated values for the parameters. We

acknowledge that parameters that show genetic variation in our

model fits are not necessarily immediately useful for prediction of

yield under all conditions. It is obvious that we will need to verify

that parameters with genetic variation are not subject to genotype-

by-environment interaction themselves (Lamsal et al., 2018).

Hammer et al. (2006) state that fundamental physiological

parameters should have fixed values. For our low-complexity

models we do not necessarily expect that parameters are stable,

because the modelled processes are high-level, and parameter values

may be the net result of multiple underlying processes. Still, we

believe that even when our dynamic parameters show some

sensitivity to the environmental conditions, our models can be

useful for yield prediction as long as this sensitivity can be modelled

itself as a simple function of the environmental conditions.
2 Materials and methods

2.1 Proposed phenomenological models

Below we introduce four dynamic models, all containing some

essential first principles of crop growth. The models we develop are

extensions of general continuous model frameworks presented in the

literature suitable for describing the growth of plants in an ecological

context (Paine et al., 2012) or the within-season accumulation of crop

biomass (Poudel et al., 2022). Though simple and largely

phenomenological, the models are dynamic and therefore offer a

biological interpretation of the parameters as well as the ability to

produce varied output depending on environmental or management

inputs. Variations in genotypic background can be conceptualized as

differences in the values of these parameters, where we do not exclude

that the values of these parameters may still be subject to some

genotype by environment interaction, especially in situations where

multiple limiting factors influence our phenotype biomass. The

models we present are smooth in that they lack pre-determined

non-linearities, such as imposed jumps, switches, and thresholds, that

are often encountered in crop simulation platforms that contain

connected sub-modules for different crop processes. As such,

differential equation-based models can capture the dynamic nature

of crop growth in explicit descriptions. An additional advantage of

this smoothness is the access to higher-order derivatives with respect

to time that can be used to calculate genotype-dependent sensitivities

of growth to environmental inputs as function of time as well as the

timing of critical developmental events. This also conceptually

facilitates the extrapolation to other genotypes and environments,

assuming that the base model is valid. In addition, smoothmodels are

easier to fit.

2.1.1 Model #1: The logistic model
Model #1 – commonly referred to as the logistic model – is

often used for the coupling of growth rate to biomass (Richards,
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1959). For example, this model was already used more than a

century ago to describe sunflower (Helianthus) growth (Reed and

Holland, 1919). The model description is as follows:

dM(t)
dt

= r  M(t)   1 −
M(t)
Mmax

� �
Eq: (1)

With explicit solution:

M(t) =
Mmax

1 + Mmax
M0

− 1
� �

expð�rtÞ

The model symbols are given in Table 1. HereM(t) indicates the

total biomass at time t. The parameter r is an intrinsic growth rate

(with a positive value), and Mmax is an intrinsic (implicit) growth

limitation (also with a positive value), i.e., the crop cannot grow

larger than a maximum size. The initial condition M0 (with a

positive value) can be interpreted as seed weight or the biomass at

the starting day of measurement (depending on the context); in the

data we use, it is the biomass at the first day at which biomass can

clearly be observed. Genotypic variation can be represented as

variation in the parameters r, Mmax, and possibly the initial

condition M0 – in which case it would represent genotypic

differences in seed size and reserve content, and hence all three

parameters/initial conditions are candidates for genotype-

dependent parameters that require estimation for each included

genotype. The logistic model has an explicit solution (given in Eq. 1)

that can be used to verify the numerical implementation of the

model. An important ramification of this property is that the

biomass development for the growing season is fixed by the initial

biomassM0 together with the parameter values, in other words, the

explicit solution means that no modifications of the growth rate

during the growing season are accounted for in the forecasting by

the model, and thus the end-of-season biomass is ‘fixed’. This is

likely unrealistic, as in reality the crop growth rate may be modified

by externally imposed limitations occurring during the growing

season. The logistic model cannot reproduce mid-season biomass

loss that can occur, for instance, when resource acquisition falls

short of maintenance respiration needs (Cannell and Thornley,

2000). Additionally, logistic growth has also been shown to violate

mass balance assumptions (Kooi et al., 1998).

2.1.2 Model #2: The irradiance model
Model #2 – the irradiance model – assumes sunlight is the

limiting factor during the growing season. The model description is
Frontiers in Plant Science 04
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as follows:

dM(t)
dt

= r + A   sin
2p
365

t + jð Þ
� �� �

 M(t) 1 −
M(t)
Mmax

� �
Eq: (2)

The newly introduced symbols in this model are given in Table

2. The base intrinsic growth rate r is now modified by the sinusoidal

driver function with amplitude A and phase shift j. This function
links the level of irradiance to the yearly earth’s orbit around the

sun. This implies that the parameters A and j may vary across

environments but also may be genotype-dependent, as different

genotypes may respond differently to the same environmental

input. The advantage of this formulation is that no input is

needed and hence no additional equations are needed for

translating such input. This comes at the cost of ignoring day-to-

day variations in the irradiance, e.g., resulting from clouds. Instead

it assumes the generic seasonal pattern of increasing and decreasing

day length and changing angle of sunlight reception. In principle

one could opt for the inclusion of day-to-day irradiance

measurements, in which case a data smoothing and translation

function is needed similar to what we use for smoothing and

translating temperature (see model #3). By selecting the correct

phase shift, the growth rate can increase and decrease following

seasonal effects. Parameters A and j can both have positive and

negative values, depending on location and timing; care should be

taken that the total term does not become smaller than r to avoid

negative growth, though a negative growth can occur for a small

amount of time as long as biomass remains positive. In case A=0,

the model collapses to the logistic model. The other parameters

have the same meaning as in the logistic model (Eq. 1).

2.1.3 Model #3: The temperature model
Model #3 – the temperature model – includes an explicit effect

of temperature on the growth rate. The model description is as

follows:

dM(t)
dt

= rfT (t)M(t) 1 −
M(t)
Mmax

� �
Eq: (3a)

fT (t) = 1 + exp
TAL

T(t)
−
TAL

TL

� �
+ exp

TAH

TH
−
TAH

T(t)

� �� �−1

Eq: (3b)

The base growth rate r in Eq. (3a) is modified by a function fT
that depends on the actual ambient temperature T(t), which is a

variable given by the data. The temperature response description
TABLE 1 Symbols introduced in the logistic model (Eq. 1), alphabetically ordered.

Symbol Meaning Units Type of parameter

t Time day Autonomous state variable

M(t) Crop biomass kg m-2 Non-negative state variable

M(0) Initial crop biomass kg m-2 Non-negative initial condition
M(t)=M0 at t=0

Mmax Natural crop biomass limitation kg m-2 Non-negative parameter

r Crop intrinsic growth rate day-1 Non-negative parameter
Parameters and initial conditions are included in the fitting procedure, unless stated otherwise.
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has been identified as a major source of uncertainty in simulation

models used for crop growth predictions (Wang et al., 2017; Roth

et al., 2022). The temperature response curve is often included in

crop models as either a linear increase in the development rate from

a given base temperature (usually zero degrees Celsius), and a linear

decline in biomass growth beyond a certain maximum temperature,

without assuming any optimal growth temperature, or a function

that includes a minimum and an optimal temperature but without a

maximum temperature, thus ignoring any effects of heat stress and

senescence (Wang et al., 2017; see their Figure 1 for the different

types of temperature response curves). Both response curves are

unlikely, as crops have three cardinal temperatures. Wheat, for

example, is sensitive to high temperatures during several

developmental phases, while optimal temperatures for anthesis

and grain filling are given around 12 to 22°C (Djanaguiraman

et al., 2018) or up to 25°C for optimal growth in general, and with

minimum and maximum growth temperatures of 3–4°C and 30–

32°C, respectively (Porter and Gawith, 1999; Curtis, 2002).

The exact formulation of the temperature response is debatable.

Different models with unimodal temperature dependence are reviewed

by DeLong et al. (2017), who alternatively consider enzyme-assisted

Arrhenius temperature responses. Arroyo et al. (2022) propose a general

theory for temperature dependence based on Eyring-Evans-Polanyi’s

theory for chemical reaction rates. Here, we use the temperature response

curve Eq. (3b) proposed by Sharpe and DeMichele (1977) and later

Kooijman (2010). This formulation is based on the concept that enzymes

become inactive at temperatures that are too high or too low. The

reaction rate is multiplied by the active enzyme fraction, which is

assumed to be in equilibrium. This formulation gives a smooth,

nonlinear function that is based on three cardinal temperatures. Its

parameters are given in Table 3. TL and TH represent the lower and

upper boundary of the tolerance range, respectively, while TAL and TAH
give the Arrhenius temperatures for the rate of decrease at these

respective boundaries. The parameters for temperature response in Eq.

(3b) were kept fixed at TL=292K, TH=303K, TAL=20,000K, and
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TAH=60,000K to generate a response curve that approximates the

reported cardinal temperatures for wheat (Parent and Tardieu, 2012).

2.1.4 Model #4: The soil water model
Model #4 – the water model – involves water limitation, taking

into account that many crop-growing environments are water-

limited. The model description is as follows:

dW(t)
dt

= p
M(t) + Kq
M(t) + K

� �
P tð Þ − c

W(t)
W(t) + n

� �
M(t)v

− RW(t) Eq: (4a)

dM(t)
dt

= gc
W(t)

W(t) + n

� �
M(t)v −mM(t) Eq: (4b)

The symbols used in this model are given in Table 4. Contrary

to temperature and irradiance, which are exogenous inputs for crop

growth, there is a feedback between soil water and the crop, as one

affects the other. The water model therefore includes a second

differential equation that describes a soil water variable, W(t), as

well as a function that couples soil water to crop biomass growth.

The water model is based on a formulation proposed for simulating

plant growth in semi-arid areas (Van de Koppel and Rietkerk, 2004)

with some modifications.

The first nonlinear term in Eq. (4a) represents the uptake of

precipitation by the soil, which has limited uptake capability. The

uptake increases with biomass, representing an increasing

infiltration because of larger root structures. However, the uptake

fraction remains small and under zero biomass, this term reduces to

pqP(t), representing the infiltration of precipitation in barren soil.

Parameters p and q depend on environmental conditions and are

expected to vary across environments but not across genotypes.

Parameter K represents infiltration of water into the soil, which is

affected by the root structure of the crop, and this parameter is

therefore expected to depend on genotype and environment.
TABLE 2 Symbols introduced in the irradiance model (Eq. 2), alphabetically ordered.

Symbol Meaning Units Type of parameter

A Amplitude of time-dependent driver day-1 Parameter, genotype and environment-dependent

j Phase shift of driver day Parameter, genotype and environment-dependent
TABLE 3 Symbols introduced in the temperature model (Eq. 3), alphabetically ordered.

Symbol Meaning Units Type of parameter

T(t) Ambient temperature K Spline-smoothened input from daily
measurements

TAH Arrhenius temperature for the rate of decrease at the upper boundary of the temperature
tolerance range

K Kept constant at 6·104

TAL Arrhenius temperature for the rate of decrease at the lower boundary of the temperature
tolerance range

K Kept constant at 2·104

TH Upper boundary of the temperature tolerance range K Kept constant at 303

TL Lower boundary of the temperature tolerance range K Kept constant at 292
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The second nonlinear term in Eq. (4a) represents the uptake of

water from the soil by the crop, which is limited by aquaporin

(enzyme) activity and diffusion rates and thus described by a

Michaelis-Menten function, with a half-rate parameter, n. This

function mimics satiation, as the response is near-linear for small

values of W(t), but gradually approaches 1 as W(t) continues to

increase. Parameter v represents a scaling between the uptake

surface of the crop and the volume over which maintenance is

paid (Kooijman, 2010, Figure 4.14), where v is typically smaller than

1. Parameters c, n and v are involved in the uptake of soil water by

the crop and are hence expected to be genotype-dependent.

Conceptually, in this model the crop ‘competes’ with the soil for

water, and water is taken up from the soil either by the crop, or

water disappears via the third term in Eq. (4a), RW(t). This is a

generic term that conceptually considers the soil to be a ‘leaky

bucket’, where the drying out rate depends on soil water content. If

unused, water will also disappear from the soil. Parameter R is

therefore assumed to be environment-dependent. The de facto

standard for evapotranspiration in crops for the EU and US is the

Penman-Monteith method, covered by the FAO56 method (Pereira

et al., 2015), which includes effects of temperature and wind speed

on how fast water disappears from the soil. Evaporation from

barren soil is the largest contributing factor for water loss from

the soil early in the growth season. If biomass M(t)=0 and under

constant precipitation – and implicitly assuming a constant

temperature, wind speed, etc. – Eq. (4a) will eventually reach a

steady state, i.e. the same amount of water will enter and leave the

soil in a given time interval. If there is no precipitation, the leaky

bucket formulation ensures the model will eventually approach the

limit W(t)=0. In reality, the soil will never fully dry out because

some water is retained through gravitational and capillary forces,

but this water would also not be available to crops, so we ignore this

feature. Moreover, the drying and re-wetting curves of soil moisture
Frontiers in Plant Science 06
131132
content as functions of water pressure differ (Shein & Mady, 2018)

which is also ignored in the water model. Finally, we assume there is

no measurable effect of temperature, wind speed, etc. on the rates at

which water leaves the soil. Note, that in our fitting procedure we

not only compare the predicted biomass M(t) to the APSIM

simulated biomass, but we also compare the variable W(t) to the

soil water output of the APSIM SoilWat module (Holzworth et al.,

2018). This makes use of real-life environmental data like rainfall

and temperature, but simulates soil water in time. Hence, this

implies we have a considerable reduction in model complexity.

The first term in Eq. (4b) gives the conversion from taken up

water from to soil to crop biomass, i.e. water is used in the creation

of carbohydrates (photosynthesis). We consider this conversion to

follow a fixed ratio, and hence the parameter g is also fixed. Part of

the taken up water will also disappear again through

evapotranspiration, but we assume this ratio now to be fixed as

well. The negative density-term in the second term of Eq. (4b)

represents maintenance respiration, which is considered to be

proportional to biomass volume (Kooijman, 2010). This term

allows for a temporary decrease in biomass (rate).
2.2 Data description and software
implementation

To assess the suitability of our four minimalistic crop growth

models in capturing biomass growth in real-life situations, we used

simulated longitudinal biomass data for an Australian diversity

panel with 199 genotypes in wheat (Bustos-Korts et al., 2019a;

Bustos-Korts et al., 2019b). These data were generated with the crop

growth simulation platform APSIM-Wheat (Keating et al., 2003;

Holzworth et al., 2018). Environmental inputs were observed soil

and meteorological data for 31 years (1993 through 2013) at four
TABLE 4 Symbols introduced in the water model (Eq. 4), alphabetically ordered.

Symbol Meaning Units Type of parameter

c Soil water uptake capacity of crop (cmax in KR2004) kg-1 ml m-1

day-1
Non-negative genotype-dependent parameter

g Soil water to crop biomass conversion factor (comparable to gmax in KR2004, but
note the difference to our gc)

kg ml-1 m Non-negative genotype-dependent parameter

K Infiltration constant related to crop (k in KR2004) kg m-2 Non-negative parameter that depends on genotype
and environment

n Half-rate parameter of Michaelis-Menten function (k1 in KR2004) ml m-3 Non-negative genotype-dependent parameter

m Density-dependent maintenance rate (comparable but not similar to (d+dP) in
KR2004)

day-1 Non-negative genotype-dependent parameter

P(t) Precipitation (observed) (PPT in KR2004) ml m-2 day-1 Spline-smoothed input from daily measurements

p Conversion constant from precipitation P(t) to soil water W(t) (missing in KR2004) m-1 Estimated environment-dependent parameter

q Fraction of precipitation that infiltrates in soil (W0 in KR2004) – Estimated environment-dependent parameter

R Soil drying rate (rw in KR2004) day-1 Estimated environment-dependent parameter

v Parameter relating uptake volume to biomass (missing in KR2004) – Genotype-dependent parameter with range 0 < v ≤ 1

W(t) Soil water ml m-3 Non-negative state variable
For easy comparison, we also list the symbols used in the original model by Van de Koppel & Rietkerk (2004) – abbreviated as KR2004 – but note there is not a one-to-one match to the model in
that paper.
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different locations in Australia – Emerald (–23.53 lat, 148.16 long),

Merredin (–31.50 lat, 118.22 long), Narrabri (–30.32 lat, 149.78

long), and Yanco (–34.61 lat, 146.42 long) (Bustos-Korts et al.,

2019b). The overall data set consisted of 23,880 output series of

daily observations on simulated biomass and other traits. Genotypic

specifications of crop growth parameters were chosen to mimic

realistic genetic variation for Australian environmental conditions

(Bustos-Korts et al., 2019a; Bustos-Korts et al., 2019b). We

preferred to use simulated wheat data over data from field trials,

because for our simulated data we could infer to a certain extent

what the major stress had been to which the wheat genotypes were

exposed in a particular simulated experiment. The latter

information helped us to assess the appropriateness of our

candidate minimalistic models when fitted to the simulated

longitudinal biomass data for an individual genotype in a

simulated experiment. We did not add noise to the APSIM

simulated data because we wanted to establish the performance of

our minimalistic models under the most discriminatory conditions.

The simulated data covered multiple types of environments with

different limitations (Bustos-Korts et al., 2019a; Bustos-Korts

et al., 2019b).

Typically observations on biomass consist of measurements of

the state variable biomass at specific time points, and not the rate

parameters that determine biomass change. We therefore need to fit

solutions of our candidate minimalistic crop growth models to the

simulated wheat data to obtain estimates for the rate parameters

and predictions for the state variables by numerical integration. The

models were implemented in R version 4.1.0 (R Core Team, 2021).

Parameter estimation methods for differential equations are

discussed, for instance, by Ashyraliyev et al. (2009). For model

fitting we used the R package ‘FME’ (Soetaert and Petzoldt, 2010), in

combination with the R package ‘deSolve’ (Soetaert et al., 2010).

This combination is tailored at fitting differential equations. The

default solving option we used is ‘Marq’ (short for Levenberg-

Marquardt), which is a gradient-based method that minimizes the

sum of squared residuals. This method is fast, but it is known to be

sensitive to the initial parameter vector, because by following the

steepest descending gradient it can easily end up in a local

minimum. We also used the alternative methods ‘Nelder-Mead’

and ‘Pseudo’ for crude-but-fast convergence to approximate

solutions in cases where ‘Marq’ did not immediately provide

satisfactory solutions. Other alternatives in the FME package

include SANN (simulated annealing) and bobyqa; alternative

fitting packages in R include Particle Swarm Optimization

(Bendtsen, 2022) and Differential Evolution (Ardia et al., 2010;

Mullen et al., 2011). As the focus in this paper is not on the

parameter estimation per se, we selected the default option in FME,

which is Marq (but note that we will focus on parameter estimation

in the next paper). To enhance estimation procedures, biomass was

rescaled by division by 1000.

The quality of the fits was evaluated by the inspection of the

plots of the weighted residuals against time, which are defined as

ri = f (xi) − yi Eq: (5)
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Here yi is the observation at index i, and f(xi) is the model

predicted value. To compare the quality of the fits between models

to the APSIM data, we heuristically looked at Akaike’s Information

Criterion, AIC (Akaike, 1974)

AIC = −2(LL) + 2   #(q) Eq: (6)

Here LL is the log-likelihood, taken as the sum of squared errors

which is given by the FME package, and #(q) is the total number of

parameters. Note, that the models are not nested – with the

exception of model #2 that can be collapsed into model #1 under

the conditions stated earlier. The calculated AICs should therefore

be interpreted as an assessment of the ability of the models to

capture the crude patterns in the data rather than a quantitative

model selection criterion. For real dynamic data, residuals will show

various forms of autocorrelation. Such autocorrelations can be

inspected by plots of partial autocorrelation functions, or PACFs

(Hyndman and Khandakar, 2008; Hyndman et al., 2023) and tested

by Durbin-Watson statistics (Fox & Weisberg, 2019). For our

APSIM wheat data we did not add independent errors, and

therefore the utility of inspections of residuals on autocorrelation

is limited. In our follow-up paper, these issues will be revisited in the

context of a hierarchical Bayesian framework for fitting the

dynamics of a collection of genotypes across a series of trials and

environmental conditions.

The parameters for temperature response in Eq. (3b) were kept

constant across genotypes implying there is no genetic variation for

these parameters. The fitting of the temperature model involved the

use of penalized splines (R package ‘pspline’; Ramsay and Ripley,

2022) to smooth and interpolate daily temperatures for input to Eq.

(3b). Daily rainfall was similarly smoothed before fitting Eq. (4a).
3 Results

We report some selected results of fits of the four models to the

data for demonstrative purposes, that is, we select biomass time

series of specific genotypes in specific trials to demonstrate the

fitting of our minimalistic crop growth models. In all Figures, black

indicates the noise-free APSIM biomass data, and green indicates

the fit of our minimalistic crop growth model to the biomass data.

Figure 1 shows two examples of a fit of the logistic model

(model #1). The top row shows the fit for one genotype (g006), and

this particular fit is visually satisfactory. It will be no surprise that

the weighted residuals (see top middle panel) are judged as not

being i.d.d. according to the Durbin-Watson statistic, and they are

clearly autocorrelated, as can be seen from the PACF (see top right

panel). However, the autocorrelation is not an obvious reason to

reject this model, and the fit suggests that a logistic model would be

adequate for prediction purposes. At this point, one may argue the

need for the inclusion of any additional explanatory factor.

However, repeating an earlier point, the logistic model is fixed by

the initial condition and does not allow for modifications in the

growth rate by external inputs during the growing season. This

would present a more pressing reason for any rejection of the
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model. In the bottom row, we fit the same model to the

same environment but for a different genotype (g001); note that

this genotype also takes fewer days to get to end-of-season. This fit

is less satisfactory and the residuals plotted in time make

larger excursions.

Figure 2 gives an example of how the fit to the data may be

improved by the irradiance model (model #2). The fit for g001 with

the irradiance model is considerably better than that with the

logistic model: the AIC score is much lower, the residuals are

smaller and even close to zero in the early and late parts of the

growing season, and the initial condition M(0) is much smaller.

This suggests that the addition of two parameters for the seasonality

is an improvement, and also suggests that the inclusion of day

length as approximation of irradiance is worthwhile.
Frontiers in Plant Science 08
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The temperature model exhibited more dynamic changes to

within-season conditions for growth because it involves an

exogenous variable (temperature). For comparison, Figure 3

shows a fit for genotype g001 in the same environment as the

previous two models (upper left panel). It captures modifications to

biomass growth rate that are relatively small and that took place on

the scale of a couple of days (see Figure 3, upper right panel),

producing realistic end-of-season biomass predictions. Figure 3,

lower left panel shows the temperature response curve using Eq.

(3b) and the parameter values given in Table 3. For many of our

genotype by environment combinations, this model did not

improve the fit in comparison to the fits by the logistic model or

irradiance model, e.g., consider the plot of the residuals (Figure 3,

lower right panel). Note, that the parameters in Eq. (3b) were kept
FIGURE 2

Left panel: A fit with the irradiance model to the same data set used to fit the logistic model in Figure 1, lower row. Middle panel: The residuals and
AIC suggest that the irradiance model is a considerable improvement over the logistic model in this particular case. Right panel: Day length, taken
from the APSIM model.
FIGURE 1

Top row: An example fit of the logistic model, with Emerald, 1985, g006. Fitted parameter values are displayed. Visually, the fit (in green) matches
nicely with the daily biomass series (in black). Bottom row: An example of the same model and same environment, but genotype g001. The fit is
visually less satisfactory than the fit for genotype g006.
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constant across genotypes and environments, and that different

results may be obtained when the temperature response is adjusted.

Also, in most of our simulated data, temperatures varied mildly

within the (sub) optimal range for wheat growth, so it is perhaps not

surprising that the temperature model did not translate to a

considerable improvement in describing biomass development

compared to the fits of the logistic model and the irradiance model.

None of the three models above, logistic, irradiance, or

temperature, produced adequate fits for the biomass longitudinal

data of genotype by environment combinations in which a ‘bump’

occurred near the end of the growing season (Figure 4, the top three

rows, for an example involving g007, growing in Emerald, 2002). In

this subset of genotype by environment combinations, there was a

considerable biomass increase before the usual levelling-off at the

end of the growing season, which seemed to coincide with changes

in water availability. Figure 4, fourth row gives the biomass fit of the

water model (Eq. 4b), including the (PACF of the) residuals of the

biomass, while the bottom row gives the fit of the soil water (Eq. 4a),

including residuals. In this set, the ‘bump’ started around day 92.

The temperature remained approximately stationary for several

days around day 92, while soil water levels were increased by

precipitation around days 90-95 (Figure 4, lower left panel),

suggesting that a depletion of soil water was the main driver
Frontiers in Plant Science 09
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responsible for the levelling off of the growth rate, at least

towards the second half of the growing season. The water model

qualitatively shows the same development in biomass and soil water

as the data, though the residuals indicate that the fit is not perfect.

This could be the result of an overestimated maintenance, the main

term for biomass loss in the model, which was assumed to be scaling

linearly with biomass. Also, growth in the first half of the growing

season may have been limited not by soil water but by

another factor.
4 Discussion

In this paper we considered parsimonious crop growth models

consisting of differential equations with few parameters and

variables that couple the rate of change in biomass to its own

state. The aim was to present a modelling framework of limited

complexity for genotype-dependent trait prediction involving

essential GxExM interactions and that can respond to changes

during the growing season as measured by proximal and remote

sensing. The four presented models each had a different limiting

environmental factor: a generic limitation described by logistic

growth, irradiance via day length, temperature response, or soil
FIGURE 3

Upper left panel: A fit with the temperature model for Emerald, 1985, g001. Upper right panel: Red indicates maximum daily temperature, blue
minimum, green the average temperature, and black the smoothened curve. Lower left panel: The temperature response curve, which was fixed in
all simulations with the temperature model. Lower right panel: The fit mostly follows the biomass data during the growing season, but in particular in
the period between day 25 through 50 the residuals are far off. This may be an indication that the temperature response curve should be adjusted,
or that temperature is not the main factor that affects growth at this stage of the growing season.].
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water availability, respectively. The models were fitted to in silico

longitudinal data of 199 genotypes generated with APSIM-Wheat to

demonstrate their performance. In many cases the logistic model

gave already quite an adequate fit, but for many genotype by

environment combinations there was at least one alternative

model that matched the data convincingly better. This implies

that for such genotype by environment combinations a

specifically identified environmental limitation was dominant.

Depending on the specific combination of genotype and

environment, where an environment refers to a trial simulated for

a combination of year and location, one model may fit better than

another. The calibration procedure may be limiting as well. In those

situations in which we judged the logistic model to be adequate, we

found that fitting this model by FME – deSolve was unproblematic,

and often a single attempt at fitting this model sufficed. Fitting of the

temperature model was more problematic and required the

temperature response parameters in Eq. (3b) to be fixed, as

leaving one or more of these parameters free in fitting in many

cases led to temperature response curves that were unrealistic, as

assessed by visual inspection. The water model proved most
Frontiers in Plant Science 10
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challenging in fitting and usually required several fitting attempts.

The first term in Eq. (4a) involving the infiltration of precipitation

in the soil turned out to be an essential part, as replacing the term

with a linear response function of precipitation resulted in suspect

and unrealistic fits (not shown). Note, that when we are fitting each

combination of genotype and environment separately – like we did

in this paper – then there are nine parameters and two initial

conditions to fit. This makes it likely there are multiple local fitting

optima, which may lead to spurious results. The use of alternative

fitting approaches may produce better results. In a hierarchical

approach to fitting we can divide the parameters into two groups

that can be fitted separately: one group of parameters that vary

across environments – and that hence should be approximately

constant across genotypes grown in the same environment – and

one group of parameters that mainly vary across genotypes.

While there is a decades-long history of developing crop

simulation platforms (Jin et al., 2018), it remains challenging to

balance a broad application range with model parsimony. The

limited complexity of the proposed models in this paper hampers

a more general application. In these models only one limitation is
FIGURE 4

Fits to data set Emerald, 2002, g007. The biomass data (in black) shows a ‘bump’ around days 90-95. Left panels: Optimized fit of the model to the
data. Middle panels: Residuals of the optimized fit. Right panels: PACF. Top row: A fit with the logistic model. Second row: The irradiance model.
Third row: The temperature model. None of the models show a satisfactory fit. Fourth row: A fit of biomass with the water model, using Nelder-
Mead, with resulting parameter values p=1.061, K=3.618·102, q=5.521·10–2, c=7.824·10–2, n=1.095, v=5.318·10–1, R=1.320·10–3, g=1.108,
m=1.150·10–2, W(0)=1.880, and M(0)=5.584·10–3. Lower row: The fit of the soil water (in blue). Precipitation is plotted in yellow. Note the decrease
in biomass near the end of the growing season in the water model fit, which is likely the result of an overestimated maintenance, the main term in
the model that can lead to biomass reduction.
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included. In reality, it is likely that two or more limitations occur

during a growing season, and the particular limiting factor may

change during the growing season: important limiting factors like

irradiance, atmospheric carbon dioxide, soil water, and nutrients

may operate at different moments and scales. Also, multiple

limitations may occur at the same time. As an example of this

phenomenon, Zhao et al. (2022) attributed considerable losses of

winter wheat to the co-occurring extreme events of high

temperatures, dryness and hard winds compared to events in

which a single limiting factor occurred. Additionally, what

parsimony offers in terms of elegance and statistical ease may

come at the cost of fewer points of entry for discriminating

among genotypes. In particular, the models proposed in this

paper ignore phenology. Yet, the examples shown in this paper

suggest one can already explain much of the crop growth in some

situations with low-complexity models that ignore phenology.

Some dynamic crop models have been proposed that include

essential processes and that try to balance limited model complexity

with a broad application range. For example, the SIMPLE model

consists of 13 parameters, involving cumulative temperature for

phenological development and a multiplicative function including

daily temperature, heat stress, drought stress, atmospheric carbon

dioxide concentration, radiation use efficiency, and irradiance

interception, and has been parameterized for 14 different crop

species (Zhao et al., 2019).

A second step in modelling involves the introduction of functions

that can smoothly and dynamically describe multiple resource

limitations that occur during the growing season, i.e., that involve

multiple co-limitations at different points in time and space. Arguably

the best known multiple limitation description is Liebig’s law of the

minimum, where it is assumed there is only a single resource

limitation at any given time, while any switch to another limitation

is instantaneous (Cossani and Sadras, 2018). Functions that allow for

a smoother transition to another limiting factor or that allow for

multiple co-limiting factors have also been proposed in ecological

models (Dutta et al., 2014). One example is the Synthesizing Unit

(SU; Kooijman, 2010), which is a functional response comparable to

the Michaelis-Menten (MM) functional response. Like the MM

functional response, the SU is derived from law of mass action

kinetics and includes multiple factors that are unique or mutually

exchangeable in a smooth and continuous model formulation (Dutta

et al., 2014). The SU has, for instance, been used to capture the co-

limitation of light and nitrogen in the growth of heather shrubs and

wavy hair-grass (Van Voorn et al., 2016). Another example is the

description of the co-limitation of light, carbon dioxide, nitrogen, and

phosphorus in the growth of cyanobacteria that were grown in a set of

experiments across which these environmental factors were

simultaneously varied in different combinations of higher and

lower concentrations (Grossowicz et al., 2017).

With the inclusion of multiple limitations for the description of

GxExM interactions comes the need for stronger data requirements

for model fitting and reduction of uncertainties. In particular, the

water model consisted of several parameters, initial conditions, and

one explicit exogeneous input (precipitation). This model turned

out to be more difficult to fit, even to the noise free data we had

available. Furthermore, despite increasing data availability,
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proximal sensing data are still relatively rare and expensive. The

fitting of the water model was further complicated by a conceptual

mismatch between the soil water variable in our crop growth model

(where it is an independent state variable interacting with the crop

biomass) and the soil water supply variable in the APSIM simulated

data (where it is calculated based on precipitation and available soil

water following a submodule). Also, uncertainties remain that

negatively affect forecasting. For instance, imprecision in soil,

canopy state, and meteorological data propagate to uncertainty in

model predictions (Hansen & Jones, 2000; Grassini et al., 2015),

while various random events occur during the growing season, such

as changes in irradiance due to clouds, irregular precipitation, or

temperature changes.

In the current paper, we fitted dynamic models to longitudinal

biomass data consisting of time series data corresponding to a single

genotype in a single environment (year by location). We used an

approach especially developed for fitting differential equations,

focussing on the estimation of rates of change and initial

conditions (Soetaert and Petzoldt, 2010; Soetaert et al., 2010). We

concluded that the four minimalistic models may be useful to

describe biomass dynamics in wheat. However, our ultimate aim

goes far beyond the fitting of dynamical models for individual

genotypes in individual environments. In the end, the goal is to

develop a modelling framework for describing dynamical

phenotypic behaviour of genotypes as functions of genetic (QTLs,

SNPs in genomic prediction), management and environmental

inputs. Such a modelling framework should allow us to predict

yield and other traits for existing and new genotypes across a wide

range of management and environmental conditions, and produce

GxExM interactions in an emergent way. Leading contributions to

the creation of such a modelling and prediction framework include

papers by Technow et al. (2015), Cooper et al. (2016), and Messina

et al. (2018). The starting point for these papers were existing crop

growth models in which a small number of crop growth parameters

were made genotype-dependent by regressing them on marker

profiles inside a hierarchical Bayesian model. In the current

paper, we intend to simplify the extensive dynamical crop growth

model that was used in the papers mentioned above and reduce it to

a small number of differential equations with a limited number of

parameters. The challenge that we need to address is to identify a

suitable dynamic model for each combination of genotype and

environment and estimate genotype-dependent dynamic

parameters, with little or no genotype by environment

interaction, that can be made functions of marker profiles. Our

hope is firstly that we will be able to model the dynamic behaviour

of longitudinal traits as produced by especially proximal sensing

devices by simple differential equations in a data driven way.

Secondly, because the proposed differential equations have a

limited number of parameters, we should be able to estimate

genetic variation in the rate parameters. Of course, when explicit

solutions exist to the differential equation system, a statistical

approach to our problem could be found in the application of

non-linear mixed models (Pinheiro and Bates, 2000). Without such

explicit solutions, Bayesian hierarchical approaches may offer the

best perspectives (Poudel et al., 2022), which is the route we will

explore in a follow-up paper.
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With dynamic models that incorporate data assimilation, the

forecasting solution by the model may be adapted during the

growing season. Remote and proximal sensing methodologies can

provide actual state estimations at different scales, that can be used

to update the state estimations by the crop model and thus steer

forecasting by the model. Different assimilation approaches,

including Particle Filter and Hierarchical Bayesian Method, have

been proposed (Jin et al., 2018). For example, an Ensemble Kalman

filter (EnKF) was used to assimilate sensor data of soil moisture to

correct errors in the water balance of the WOFOST crop model (De

Wit & Van Diepen, 2007). A similar approach was followed for

constraining uncertainty in an upstream process in the model

APSIM, with the goal of reducing uncertainty in the downstream

processes (Kivi et al., 2022). Data assimilation for prediction

updating also is a method for including exogenous input changes

in ‘static’ models, such as the logistic growth.

Crop modelling has a critical role in forecasting crop growth of

existing and new genotypes in existing and new environments.

Future efforts for crop growth prediction should aim at a strategy of

balancing crop model complexity: on the one hand, these models

need to be process-based and describe multiple essential GxExM

interactions to predict crop growth across a large genetic spectrum

and multiple environments, while on the other hand they have to

remain parsimonious to constrict issues around parameter fitting

and uncertainty. This requires large-scale longitudinal data, that

may become available with the increased remote and proximal

sensing. More advanced fitting approaches should be tailored to

support this strategy, while data assimilation can be used to reduce

prediction uncertainty.
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Multi temporal multispectral
UAV remote sensing allows for
yield assessment across
European wheat varieties already
before flowering

Moritz Paul Camenzind1* and Kang Yu1,2*

1Precision Agriculture Lab, School of Life Sciences, Technical University of Munich, Freising, Germany,
2World Agricultural Systems Center (Hans Eisenmann-Forum for Agricultural Sciences – HEF),
Technical University of Munich, Freising, Germany
High throughput field phenotyping techniques employing multispectral

cameras allow extracting a variety of variables and features to predict yield

and yield related traits, but little is known about which types of multispectral

features are optimal to forecast yield potential in the early growth phase. In

this study, we aim to identify multispectral features that are able to accurately

predict yield and aid in variety classification at different growth stages

throughout the season. Furthermore, we hypothesize that texture features

(TFs) are more suitable for variety classification than for yield prediction.

Throughout 2021 and 2022, a trial involving 19 and 18 European wheat

varieties, respectively, was conducted. Multispectral images, encompassing

visible, Red-edge, and near-infrared (NIR) bands, were captured at 19 and 22

time points from tillering to harvest using an unmanned aerial vehicle (UAV) in

the first and second year of trial. Subsequently, orthomosaic images were

generated, and various features were extracted, including single-band

reflectances, vegetation indices (VI), and TFs derived from a gray level

correlation matrix (GLCM). The performance of these features in predicting

yield and classifying varieties at different growth stages was assessed using

random forest models. Measurements during the flowering stage

demonstrated superior performance for most features. Specifically, Red

reflectance achieved a root mean square error (RMSE) of 52.4 g m-2 in the

first year and 64.4 g m-2 in the second year. The NDRE VI yielded the most

accurate predictions with an RMSE of 49.1 g m-2 and 60.6 g m-2, respectively.

Moreover, TFs such as CONTRAST and DISSIMILARITY displayed the best

performance in predicting yield, with RMSE values of 55.5 g m-2 and 66.3 g m-2

across the two years of trial. Combining data from different dates enhanced

yield prediction and stabilized predictions across dates. TFs exhibited high

accuracy in classifying low and high-yielding varieties. The CORRELATION

feature achieved an accuracy of 88% in the first year, while the

HOMOGENEITY feature reached 92% accuracy in the second year. This study
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confirms the hypothesis that TFs are more suitable for variety classification than

for yield prediction. The results underscore the potential of TFs derived from

multispectral images in early yield prediction and varietal classification, offering

insights for HTP and precision agriculture alike.
KEYWORDS

wheat variety testing, yield prediction, UAV remote sensing, image texture features,
machine learning, phenology
1 Introduction

Yield improvements are currently estimated to average less than

1% annually in Europe and are even decreasing in some European

countries (Ray et al., 2013). One of the reasons for this stagnation

are low breeding gains which are estimated to be only 0.45%

(Cormier et al., 2013) per year. Grain yield is the product of the

number of grains per area and the weight of a single grain, which are

both controlled by a variety of genes. New molecular tools have

emerged to advance breeding for such quantitative traits but their

potential is still not exploited, partly due to our ability to phenotype

(Araus and Cairns, 2014). Traditional methods for phenotyping of

yield and yield related traits often require manual labor and are thus

slow, expensive and subjective. Faster, cheaper and standardizable

alternatives have emerged quickly in recent years and are referred to

as high-throughput phenotyping (HTP) (Cabrera-Bosquet et al.,

2012; Hund et al., 2019; Watt et al., 2020).

HTP employs a variety of advanced technologies such as digital

imaging, remote sensing and artificial intelligence but to assess

grain yield directly remains infeasible under field conditions. Major

advances have been achieved in counting the number of spikes

(David et al., 2020; David et al., 2021) and first attempts have been

made to count the number of grains per spike (Xu et al., 2023). To

our knowledge, grain weight has not been directly assessed under

field conditions using remote sensing. Although these techniques

are promising, they are based on computer vision and require

images that show a high level of detail, resulting in a low throughput

of the technology (Eskandari et al., 2020). To overcome this

limitation, yield assessment often focuses on the estimation of

secondary traits that are related to yield formation (Li et al., 2019a).

To identify suitable secondary traits, yield formation has to be well

understood. With an average precipitation between 2010 and 2020 of

741 mm (Climate Data Center of the German Weather Service), the

agricultural systems in the Freising District, Bavaria, Germany can be

classified as radiation limited (Patrignani et al., 2014), although lack of

precipitation and high temperatures can lead to yield losses in this

region as well (Heil et al., 2023). Therefore, yield formation in this

region can very broadly be described as a function of the incident

radiation per day during the growing season, the intercepted radiation

over the canopy life cycle, the green leaf duration, the radiation use

efficiency as well as the harvest index (Araus et al., 2008). This indicates

that a single time point may not be sufficient for an accurate yield

assessment. Furthermore, yield formation is influenced by an interplay
02
141142
of sources and sinks. The sinks can be seen as the potential yield and

sources as the actual supply of assimilates (Fischer, 2011). This

interplay starts with the transition of the plants from the vegetative

to the reproductive stage and continues during anthesis until the grain

filling stage (Slafer and Rawson, 1994). Still, some stages are more

critical for yield formation than others are. Fischer (1985) found that a

relatively short period before flowering is critical for yield formation

due to the source driven survival of floret primordia at the stem

elongation stage (González et al., 2005) and is linked to the spike

biomass (Slafer et al., 1996). Breeders however are interested in the

yield potential as early as possible in the growing season in order to be

able to focus their phenotyping efforts on well performing genotypes

(Garriga et al., 2017). At the germination stage, the maximum number

of plants and at the tillering stage, the maximum number of tillers is

being formed which are all linked to the final number of grains

harvested. However, the tillering potential is highly dependent on the

environment and under high yielding environments no differences in

yield were found between varieties with a low and such with a high

tillering potential (Bastos et al., 2020). Furthermore, the sinks at these

early stages are microscopically small and hidden in the developing

stems, making their detection impossible by remote sensing

technologies. Therefore, predicting yield at the tillering stage is difficult.

Secondary traits related to the sources such as leaf area index

(LAI) (Bukowiecki et al., 2020), chlorophyll content (Pan et al., 2023)

and finally biomass (Yue et al., 2019) have been phenotyped using a

variety of techniques. Primary traits such as grain yield and quality

have been assessed by estimating the mentioned secondary traits

during the growth season (Duan et al., 2017; Hassan et al., 2019;

Vatter et al., 2022). A variety of sensors have been employed such as

RGB cameras (Fernandez-Gallego et al., 2019), multispectral

cameras (Prey et al., 2022), hyperspectral sensors (Bowman et al.,

2015), thermal cameras (Elsayed et al., 2017) and active sensors such

as Lidar (Li et al., 2022) to mention a few. Among these technologies,

multispectral cameras offer a high work efficiency for a relatively low

cost. Along with the reflectance, multispectral cameras are imaging

sensors and therefore have the advantage of capturing the structure

or texture of an object. As a result, they allow for extracting a unique

variety of features to assess yield in wheat. Generally, these features

can be grouped into three categories. First, single-band reflectance in

specific wavelengths can be directly extracted from multispectral

data. Vatter et al. (2022) fed single band reflectances to a neural

network and predicted durum wheat quality and yield before the

harvest. Second, the reflectance of single bands can be combined to
frontiersin.org

https://doi.org/10.3389/fpls.2023.1214931
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Camenzind and Yu 10.3389/fpls.2023.1214931
calculate vegetation indices (VIs), which are often more sensitive to

specific traits and less affected by environmental conditions during

measurement (Tucker, 1979). This approach has been used by

several studies for yield prediction (Duan et al., 2017; Hassan

et al., 2019; Prey et al., 2022). However, single-band reflectance

and VIs may suffer from saturation, particularly when the canopies

are closed (Rischbeck et al., 2016). Third, texture features (TFs) can

be extracted to describe the distribution of pixels within a region of

interest (ROI). TFs were originally designed for image classification

(Haralick et al., 1973) and have since been used for classification of

forest stands (Coburn and Roberts, 2004), wheat phenology (Zhou

et al., 2023) and wheat seeds (Khojastehnazhand and Roostaei,

2022). Therefore, they might also be beneficial when identifying

elite wheat varieties directly as suggested by Garriga et al. (2017).

Several studies employed TFs for yield prediction in explorative

studies and found that they often perform less effectively than single-

band reflectance or VIs (Li et al., 2019b; Yue et al., 2019; Zhang et al.,

2021) but can improve the prediction of leaf area and biomass when

combined with VIs (Yue et al., 2019; Zhang et al., 2021).

Accurately predicting yield or identifying elite wheat varieties using

multispectral reflectance further requires careful consideration of the

phenological stage of the canopy. Late stages such as the anthesis stage

and the grain filling stage are often identified as the most suitable stages

for yield prediction in wheat when using VIs (Bowman et al., 2015;

Duan et al., 2017; Hassan et al., 2019). Earlier stages such the tillering

stage are generally and naturally performing worse (Prey et al., 2022).

Still, Walsh et al. (2022) successfully predicted yield at the tillering stage

and Marti et al. (2007) at the stem elongation stage, both using the

normalized difference vegetation index (NDVI). To date, most studies

focus on only one measurement date during a given phenological stage

or test only one feature or feature class. A more detailed study is

therefore needed to better understand the interaction of phenology

stages and features for yield prediction. Particularly, phenology showed

to have a big influence on the relationship between biomass and TFs (Li

et al., 2019c). However, the performance of TFs at different phenological

stages has been reported in a few studies only (Zhang et al., 2021).

Multispectral cameras mounted on unmanned aerial vehicles (UAVs)

further enable breeders and researchers to assess the aforementioned

spectral and TFs at a high temporal frequency and precision. Within a

proper time-window, using a time series for yield prediction allows for

the extraction of dynamic canopy traits that could potentially be useful

for yield prediction. For instance, Pinter et al. (1981) suggested summing

measurement dates after heading to improve yield prediction in wheat

and barley whereas Raun et al. (2001) suggested taking two spectral

measurements after dormancy. Prey et al. (2022) showed that models

containing data frommultiple dates could improve yield predictions and

compensate if data could not be collected on the optimal date due to

practical reasons and phenological shifts between years.

Collectively, despite these successes, little is known about which

traits determine yield nor which types of multispectral features may

allow us to forecast yield potential in a variety testing trial in the early

growth phase. Therefore, this study aims (1) to identify the best

performing multispectral traits for yield prediction and classification

in wheat (2) to investigate, if yield types can be classified in relatively

early stages and finally (3) to investigate, how traits measured at

different time points can be combined to predict yield more accurately.
Frontiers in Plant Science 03
142143
2 Methods

2.1 Field trials

Field trials were conducted at the research station of the Technical

University ofMunich in Dürnast, Freising (48.40630° N, 11.69535° E)

in the growing seasons of 2020/2021 and 2021/2022 further referred to

as seasons 2021 and 2022. The soil at this location can be characterized

by a homogeneous Cambisol with 20.8% clay, 61.5% silt and 16.6%

sand. Precipitation during this periodwas 595mmand 415mm in the

first and the second season, respectively. The average temperature was

7.2°C in the first and 8.0°C in the second season (Supplementary

Figure 1). A lot of precipitation around flowering characterized season

2021whereas the season 2022 suffered too little precipitation at the end

of the tillering stage. Climate datawas collected from aweather station

(Station id 5404) operated by the Climate Data Center of the German

Weather Service located a few hundred meters from the trials. The

temperature was aggregated to phenologically meaningful growing

degree-days (GDD) (Equation 1) (Bonhomme, 2000):

GDD =  o
n

d=1

Tmeand (1)

Tmeand =  o
​ maxTd,h+minTd,h

2 − baseT

24
(2)

where Tmeandis the mean temperature for day d after sowing as

determined by Equation 2, maxTd,h and minTd,h are hourly

maximum and minimum temperatures for day d and baseT is the

base temperature, which was set to 0°C.

A panel consisting of 19 diverse European winter wheat elite

varieties (Triticum aestivum) in 2021 and 18 varieties in 2022 was

grown in plots with a size of 10 m x 1.85 m. All varieties grown in

2022 were grown in 2021 as well (Table 1). The plots were arranged

in a randomized complete block design with four replicates,

resulting in 76 plots in 2021. In 2022, the 72 plots were part of a

bigger trial, which was arranged as a randomized strip-plot design

with four replicates as well. Orthophotos of the trials can be found

in Supplementary Figure 2 in the appendix. All plots used for this

study were fertilized by applying 180 kg N ha-1 in three equal splits

at BBCH 25, 32 and 65. Plant protection was carried out according

to local practice. Sowing took place on the 10.11.2020 and the

20.10.2021 and all plots were harvested at full maturity on the

03.08.2021 and the 26.07.2022, respectively.
2.2 Grain yield, phenology assessment and
Leaf area index measurements

The entire plots were harvested using a combine harvester. The

water content of the grains was determined by weighing the grains

after harvest, drying them at 65°C until constant weight was reached

and weighing them again. The final yield was normalized to a

moisture content of 14%. In each year, the three varieties with the

lowest average yield were classified as low yielding and the three

varieties with the highest average yield as high yielding. The
frontiersin.org

https://doi.org/10.3389/fpls.2023.1214931
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


TABLE 1 Grain yield, yield group and phenology of the single varieties.

lowering Early Grain Filling
Late

Grain Filling

2022 2021 2022 2021 2022

1273.3
(16.1)

1397.0
(59.2)

1404.5
(26.0)

1653.3
(79.2)

NA

1229.3
(34.2)

1368.8
(62.5)

1360.8
(26.9)

1673.3
(63.9)

NA

1289.8
(80.2)

1350.0
(51.8)

1422.5
(71.8)

1636.5
(57.7)

NA

1311.5
(14.5)

1434.8
(27.3)

1460 (14.0) 1684.8
(93.6)

NA

1271.8
(85.3)

1363.0
(69.7)

1408.3
(68.4)

1651.5
(64.4)

NA

1283 (38.1) 1356.3
(47.8)

1405.8
(41.1)

1601.5
(23.7)

NA

1283.3
(45.3)

1358.3
(45.9)

1446 (26.8) 1579.3
(13.0)

NA

1338 (9.9) 1411.8
(39.7)

1477.7
(21.4)

1739.8 (2.5) NA

1311 (67.5) 1345.3
(53.3)

1447.6
(81.6)

1653.5
(74.5)

NA

1290.3
(57.4)

1444.0
(20.8)

1436.5
(61.0)

1742.0 (5.8) NA

1299.3
(19.1)

1418.5
(23.7)

1438.8
(40.1)

1756.0
(119.6)

NA

1253.5
(59.1)

1347.3
(44.6)

1383.5
(39.0)

1648.5
(65.7)

NA

1366.8
(32.9)

1442.8
(28.5)

1475.6
(17.1)

1782.0
(62.2)

NA

1284 (43.9) 1428.0
(18.9)

1392.8
(21.5)

1720.5
(78.5)

NA

1238.8
(43.8)

1343.8
(47.7)

1399.8
(53.7)

1624.5
(74.4)

NA

1197.8
(12.7)

1281.5
(26.4)

1331.3
(13.4)

1602.0
(16.9)

NA
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Variety Grain Yield
Yield
group Stem Elongation Booting Heading F

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

Absalon
532.0
(32.8)

700.8
(47.6)

635.0
(27.7)

749.8 (7.2) 917.5
(37.3)

1061.8
(18.5)

1046.5
(23.6)

1172 (9.3) 1153.3
(38.7)

Aurelius
541.9
(56.4)

759.7
(76.5) H

609.3 (3.5) 762 (12) 963.5
(52.6)

1037.8
(75.0)

1069.3
(17.6)

1132.5 (51) 1109.0
(0.0)

Axioma
473.0
(41.8)

631.0
(32.9) L

607.5 (4.0) 765.3 (17) 950.3
(31.7)

1102.3
(59.7)

1042.8
(23.8)

1195.5
(66.9)

1121.5
(11.2)

Bernstein
522.3
(33.7)

625.0
(102.2)

626.8
(16.6)

773.3 (17) 981.5 (6.9) 1145 (0.0) 1091.0
(30.2)

1225.8
(13.8)

1201.0
(70.6)

Bologna
490.7
(33.3)

660.7
(29.0)

625.5
(16.7)

751.8
(32.4)

926.8
(61.1)

1081 (84.5) 1038.5
(30.0)

1178 (88.1) 1109.0
(0.0)

CH-Nara
559.4
(30.2)

683.2
(108.0)

635.0
(27.7)

757.5 (9.9) 921.3
(16.7)

1126.5
(37.0)

1042.0
(16.2)

1208 (37.4) 1137.0
(30.9)

Chevignon
598.5
(63.5)

672.5
(43.9) H

615.5
(30.6)

776.5
(39.8)

911.8
(17.7)

1082 (44.3) 1050.8
(25.4)

1200 (46.2) 1144.8
(21.1)

Costello
478.6
(38.8)

589.0
(52.8) L

635.5
(22.3)

786.0
(32.0)

959.0
(31.2)

1145 (0.0) 1103.0
(38.0)

1256.5 (8.2) 1207.8
(67.8)

Dagmar
617.1
(45.4)

725.2
(65.1) H H

611.0 (0.0) 803.3
(32.1)

969.0
(41.6)

1108.8
(82.1)

1052.0
(22.3)

1210.5
(77.2)

1114.0
(16.0)

Elixer
540.4
(76.2)

721.3
(93.3)

643.0
(27.7)

768.5 (8.2) 953.0
(43.2)

1086.8
(75.7)

1118.3
(34.7)

1180.3
(60.5)

1219.5
(87.4)

Hyvento
576.2
(51.1)

685.3
(128.0)

641.3
(21.0)

775.3
(29.3)

956.0
(34.8)

1126.5
(37.0)

1121.8
(6.0)

1220.3
(30.8)

1181.8
(41.7)

Julie
544.2
(95.9)

661.8
(94.6)

635.0
(27.7)

754.0
(19.6)

915.3
(21.8)

1059 (67.1) 1057.3
(15.8)

1155 (58.7) 1142.8
(16.8)

Julius
443.3
(14.6)

544.0
(25.5) L L

639.0
(17.3)

827.8
(45.9)

962.0
(26.9)

1157.8
(25.5)

1092.0
(40.1)

1277.3
(41.4)

1201.3
(65.4)

Montalbano
584.1
(68.8)

681.1
(33.3)

612.8 (3.5) 768.8
(14.2)

954.0
(29.5)

1086.8
(75.7)

1104.0
(14.6)

1183.3
(55.7)

1192.0
(24.0)

Mv Nador
552.4
(45.0)

591.9
(53.0)

643.0
(27.7)

751.0
(11.8)

962.3
(62.6)

1077.5
(80.4)

1084.3
(40.4)

1156.8
(59.8)

1157.3
(76.5)

Nogal
504.2
(81.6)

557.8
(59.2) L

633.3
(29.9)

751.0
(11.8)

972.8
(51.7)

1010 (27.7) 1058.8
(27.3)

1104.3
(19.1)

1084.0
(7.7)
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phenology of each plot was visually rated using the BBCH scale

(Meier et al., 2009) on a plot level. Leaf area index (LAI) was

measured using a Licor 2000 leaf area meter (LI-COR Biosciences,

Lincoln, USA.) with a 45° view cap to minimize operator influence.

One measurements was taken at the top of the canopy and four

measurements were taken under the canopy at three different

locations per plot, which were then averaged.
2.3 Multispectral image acquisition
and processing

Spectral measurements were acquired using a Phantom 4

Multispectral RTK (DJI, Shenzhen, China) unmanned aerial vehicle

(UAV) in the first year. The UAV captures reflectance in wavelengths

of 450, 560, 650, 730 and 840 nm andmeasures the incoming sunlight

by a sensor on top of the UAV. Flight height was set to 10 m above

ground level (AGL) resulting in a ground sampling distance (GSD) of

0.7 cm. In the second year, images were acquired using a MicaSense

Dual Camera Kit (AgEagle Aerial Systems Inc., Wichita, USA)

capturing reflectance in wavelengths of 444, 560, 650, 717, 842 nm.

The camera was mounted to a DJI Matrice M300 RTK UAV (DJI,

Shenzhen, China). Flight height was set to 30 m AGL resulting in a

GSD of 2.5 cm. In both years, overlap in both directions was set to

90%. Before and after each flight, images of a panel with a known

reflectance were taken. Flights were carried out twice per week during

heading and flowering stages and once per week at other stages. First

flight was carried out on the 25.03.2021 and the 24.02.2022 and the

last flight on the 20.07.2021 and the 27.07.2022 when the canopies

were fully senescent. This resulted totally in 19 flights in 2021 and 22

flights in 2022. Images were taken around the solar noon and under

sunny conditions, if possible. The images from each flight were

mosaicked using the Agisoft Metashape Professional 1.8.4 (Agisoft,

St. Petersburg, Russia) structure-from-motion software and were

radiometrically calibrated using the reflectance panels on the

ground and the incident light sensor on the UAV. The processing

parameters used for all flight dates were similar (Figure 1). The point

cloud was georeferenced using the real-time kinetic global positioning

system (RTK-GPS) integrated into the UAS, with the RTK correction

signal provided by SAPOS (Deutsche Landesvermessung, 2023) in

2021 and ground control points were used in 2022. Orthomosaics

acquired in 2021 were resampled to the same GSD as in 2022 by the

average method implemented in gdal (Gdal/Ogr Contributors, 2023).

Reflectance of individual bands was extracted by calculating the

median of a specific region of interest (ROI) representing a plot

using a custom Python 3.7 script (Python Software Foundation,

https://www.python.org/).
2.3.1 Selection and calculation of spectral indices
To compare our approach across a range of vegetation indices

(VIs), we classified them into five main groups based on their

calculation method and selected a representative VI for each group.

The five groups were differential-type, simple-ratio type,

normalized differential type, three-band type, and combination of

two spectral indices type (Table 2). We calculated the indices using
T
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a custom Python 3.7 script (Python Software Foundation, https://

www.python.org/) and computed the median value for each index

over the regions of interest (ROIs) corresponding to the plots.

2.3.2 Selection and calculation of texture features
Texture features (TFs) can be calculated on any data in a raster

format, on single band reflectances andVIs likewise. In order to reduce

the number of features to be tested, we focused on single band

reflectances only. Hall-Beyer (2017) suggests to calculate TFs on the

band showing the highest contrast and therefore we calculated the

coefficient of variation (CV) for each plot and band. Over all dates, the

RED band showed on average the highest CV in 2021 (0.324) and the

secondhighest in 2022 (0.180) after BLUE(0.187). TheCVof all bands

and dates can be found in Supplementary Figure 3 in the appendix.

Furthermore, Zhang et al. (2021) found that TFs calculated on RED

bandswere correlatedwithLAI aswell as leaf drymatter.Therefore,we

chose the RED band as a base for the calculation of all TFs included in

this study. A 5 x 5 kernel size was used to calculate the GLCM features

over the entire raster. This small kernel size was chosen because wheat

leaf sizes are relatively small compared to our GSD. A quantization

level of 32 was used, with the lowest level corresponding to the first

percentile of the respective raster and the highest level corresponding

to the 99th percentile. This ensured that we could still capture the

variation in the image. GLCMs were constructed with a moving
Frontiers in Plant Science 06
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distance of 1 pixel and moving directions of 0°, 45° and 90° to

eliminate possible effects of direction. The CONTRAST,

CORRELAT ION , D I S S IM ILAR ITY , ENERGY , a nd

HOMOGENEITY features were extracted from each GLCM

(Haralick et al., 1973) and saved as the center pixel in a raster. From

these rasters, the final value per plot was extracted by averaging all

values within the ROI. All calculationswere performed using a custom

Python 3.7 script (Python Software Foundation, https://

www.python.org/). The extracted features are listed in Table 3.

2.3.3 Temporal processing of the
extracted features

Temporal feature selection was carried out in R (R Core Team,

2021). Three temporal feature selection strategies were evaluated

(Figure 1). The first strategy involved selecting data from individual

dates, resulting in one feature per observation. The second strategy

involved smoothing the values per plot using splines, implemented

in the package statgenHTP (Millet et al., 2022), with the default

settings applied. Summed GDD from harvest were used as the time

axis. Finally, features were selected using a moving time window

with a width of 3. For each recorded date, the model included

features from the current date and the previous as well as the

following date, resulting in a total of three features per observation.

This strategy is referred to as the moving window model.
FIGURE 1

Workflow applied.
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2.4 Yield prediction model and yield
potential classification model

To predict yield on a plot level and classify yield performance

groups, we employed Random Forest (RF) machine learning models

in R 4.2 (R Core Team, 2021). We optimized the number of trees per

forest to 500 and used the R package caret (Kuhn, 2008). The number

of trees per forest was set to 500 and the number of features per node

was optimized by minimizing the root mean square error (RMSE) for

the regression models and the accuracy for the classification models if

more than one feature was available as in the moving window model.
2.5 Statistical analysis

Pearson correlation coefficient between yield and spectral

features was calculated using measurements taken during tillering

and flowering. At this date, most varieties were in the mid to end

flowering and the correlation of VIs and yield was maximal for most

VIs. The performances of the regression RF models were assessed
Frontiers in Plant Science 07
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by the coefficient of determination (R2) (Equation 3) as well as the

RMSE (Equation 4) using a 10-fold cross validation that was

repeated 3 times and averaged:

R2 =   on
i=1(xi −   �xi)

2
*   (yi −  �yi)

2

on
i=1(xi −   �xi)

2
*  on

i=1(yi −  �yi)
2 (3)

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(xi −   yi)

2

n

s

(4)

Where xi and yi represent the observed and the predicted yield,
�xi and �yi represent the mean of the observed and the predicted yield,

respectively. n represents the number of samples. The performances

of the classification RF models were assessed by the accuracy

(Equation 5) of the prediction using a 10-fold cross validation

that was repeated 3 times and averaged:

Accuracy =  
True   positive + True   negative

Total   number   of   classified   objects
(5)
TABLE 2 Vegetation indices (VIs) calculated.

Index type Index Formula Reference

Difference DVI Nir − Red (Shibayama et al., 1999)

Ratio RVI Nir
Red

(Shibayama et al., 1999)

Normalized NDRE Nir − Rededge
Nir + Rededge

(Barnes et al., 2000)

Three Band MCARI
((Rededge − Red) − 0:2*   (Rededge − Green))*

Rededge
Red

� �
(Daughtry et al., 2000)

Combination of indices CCII TCARI
OSAVI

(Haboudane et al., 2002)
TCARI

3* (Rededge − Red) − 0:2*(Rededge − Green)*
Rededge
Red

� �� �

OSAVI
(1 + 1:16)*

(Nir − Red)
Nir + Rededge + 0:16

� �
Green corresponds to 560 nm, the Red to 650 nm, Rededge to 730 and 717 and Nir to 840 and 842 nm wavelength in the first and the second year, respectively.
TABLE 3 Calculation of grey correlation matrix features according to Haralick et al. (1973).

Texture feature calculated on RED raster Formula Explanation

Contrast oN−1
i,j=0Pij(i − j)2 Amount of local variation in pixel values

Correlation
oN−1

i,j=0Pij
(i −  m)(j − m)

s 2

Linear dependency of grey level values in the GLCM

Dissimilarity oN−1
i,j=0Pi,j i − jj j Local roughness of the pixel values

Energy oN−1
i,j=0(Pij)

2 Local steadiness of the gray levels

Homogeneity

oN−1
i,j=0

Pij
1 + (i − j)2

Homogeneity of the pixel values
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3 Results

3.1 Yield, LAI and phenology

Substantial grain yield variation was observed between

experimental plots, with the season 2021 yielding about 128 g

m-2 less than the second season (Table 1). Variety Julius was

classified into the low yielding group in both years, while Skyfall

and Dagmar were classified as high yielding in both years. The

temperature sum to achieve a specific growth stage did not show

significant differences between the yield groups. However, in both

years a tendency towards an advanced phenology in the low

yielding varieties could be observed (Figure 2). The Leaf Area

Index (LAI) was notably higher in the first year of the trial

compared to the second. In 2021, the high-yielding varieties

showed a significantly higher LAI during the stem elongation,

the booting and the late grain filling stage than the low-yielding
Frontiers in Plant Science 08
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varieties. This difference could not be observed in the second

year (Figure 2).
3.2 Correlations between grain yield, the
UAV-based reflectance, vegetation indices
and texture features at tillering
and flowering

Figures 3A–D show the Pearson correlation coefficient

examining the relationship between reflectance, vegetation indices

and TFs for the two years of trial at the end of the tillering and end

of the flowering stages for the two years of trial. The analysis reveals

that most features exhibit high correlations with one another during

the tillering stage in both years, with few exceptions. Exceptions are

the REDEDGE band in 2021, the REDEDGE and NIR bands in

2022 and the CORRELATION TF in both years. Correlation to
A B

DC

FIGURE 2

Subfigures (A, B) display the phenologies of the low and high yielding varieties during the two seasons of trial. Subfigures (C, D) display the LAI at
different time points during the growth season. Numbers next or above the boxplot pairs show the p-value of a t-test.
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yield at the tillering stage is high for all features in 2021 with a

maximal R of 0.61 for the NIR band (Figure 3A). In 2022,

correlations to yield are generally low, the highest correlation was

found for the CORRELATION TF (R = 0.38) (Figure 3B).

At the flowering stage, correlation coefficients among features tend

to decrease, especially between features of distinct feature groups. For

instance, VIs are strongly correlated among themselves, while TFs

similarly demonstrate robust correlations within their group. However,

features belonging to the VI group are weakly with features belonging to

the TF group. The absolute correlation of the features to yield generally

decreases for TFs, increases for VIs and single band reflectances show

few differences. In 2022, the absolute correlations increase towards the

flowering stage, except for the REDEGE reflectance. For both years, the
Frontiers in Plant Science 09
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NDREwas the feature showing the highest correlation to yield, whereas

the REDEDGE reflectance was not correlated to yield.
3.3 Time series of UAV-based reflectance,
vegetative indices, texture features

Reflectance of the GREEN and the RED band decreased with

plant growth during the tillering and stem elongation stages followed

by an increased with the onset of the grain filling stage. This trend

resulted in a minimal reflectance around booting and flowering stages

(Figure 4). In 2021, the high yielding group consistently displayed

significantly lower GREEN and RED reflectances across various stages
A B

DC

FIGURE 3

Correlation matrices of all features extracted for a single date and yield. Subfigures (A, B) display measurements that were taken at tillering,
(C, D) measurements taken at flowering. Subfigures (A, C) belong to the first, (B, D) to the second year of trial.
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ranging from tillering to late grain filling. However, in the subsequent

season, these marked differences between yield groups only emerged

from the latter half of the stem elongation stage onward.

Both the RVI and NDRE indices showed significant disparities

between the low and high yielding groups in 2021 at all recorded

dates, except for the first one. In 2022, these distinctions were

noticeable from the flowering stage to the initial segment of the

stem elongation stage. Particularly, NDRE exhibited differences

from the conclusion of the stem elongation stage onward

(Figure 4). The TF CORRELATION decreased until booting and

increased towards the end of grain filling in 2021.The feature does

not show a clear development with time in 2022. The

DISSIMILARITY TF decreases from the tillering until the booting

stage and slight increases until harvest in both years. Significant
Frontiers in Plant Science 10
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differences between the two yield groups were found in 2021 for

stages ranging from tillering to the end of flowering. In 2022,

differences were found on few dates after flowering only (Figure 4).
3.4 RF regression model for yield
prediction using individual flights and time
series of UAV traits

The performance of the yield prediction models depends highly on

the features and the time point selected. Overall, the 2021 season

demonstrated superior results, exhibiting lower average RMSE in

contrast to the 2022 season. Generally, predictions improve from the

tillering to the booting stage and deteriorate after flowering (Figure 5).
FIGURE 4

Dynamics of single band reflectances (left), vegetation indices (middle) and texture features (right) for different dates. The solid line shows the high yield
group, the dashed line the mean value for the low yield group. The asterisks display significant differences after a t-test (p < 0.05) in the respective values
and dates between the two yield groups. The plots are grouped into the first year of trial (top) and the second year of trial (bottom). Asterisks may
overlap but only one significance level is given.
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In 2021, the most successful feature was the Normalized Difference Red

Edge (NDRE) index at the booting stage, displaying an RMSE of 49.1 g

m-2. In 2022, the Difference Vegetation Index (DVI) at the grain filling

stage showed the best performance (RMSE = 60.6 g m-2). Individual

bands, such as the RED band, produced good results, particularly in the

2021 season. However, on average they were outperformed by the VIs

in both seasons (Table 4). The TFs were the feature group that led to

regression models with the highest RMSE. On average, the RMSE was

10.3 g m-2 higher for the TFs than the VIs in 2021.

Although data smoothing had a marginal influence the seasonal

average RMSE, but worsened a few minimal RMSE. Additionally,

smoothing altered the phenological stage at which the minimal

RMSE was attained, illustrating shifts in the optimal time points for

yield prediction. For instance, after smoothing, the NDRE feature in

2021 displayed an optimal time point for yield prediction during the

early grain filling stage as opposed to the unsmoothed time points,

which indicated the booting stage as optimal (Table 4).

Combining features from three adjacent time points notably

enhanced the average RMSE models by approximately 10 g m-2 and

reduced the minimal RMSE by 5 g m-2 for both years across all
Frontiers in Plant Science 11
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feature groups. Employing the moving window method revealed

that the lowest RMSE of 45.0 g m-2 was achieved using the RED

reflectance band at the flowering stage, while in 2022, the

Vegetation Index (VI) CCII reached an RMSE of 50.8 g m-2. The

combination of TFs from various dates yielded models that were

comparable to models constructed with a single reflectance band or

VI. Specifically, the DISSIMILARITY feature reached a minimal

RMSE of 57.4 g m-2 at the booting stage in 2021, and the

HOMOGENEITY feature achieved an RMSE of 56.9 g m-2 at the

flowering stage in 2022 (Table 4).
3.5 RF classification model for classifying
the high and low yielding varieties using
individual flights and time series of
UAV traits

The efficacy of classification models depends on the chosen

features and time points, paralleling the observation in regression

models. On average, the models in the first season exhibited higher
FIGURE 5

Root mean square errors of yield prediction models built using single dates (top), smoothed dates (middle) and combining adjacent dates (bottom).
The figures on the right display models built for the first, the ones on the left for the second year of trial.
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TABLE 4 Display of the time points yielding the lowest RMSE for yield prediction for all reflectance bands, vegetation indices and texture features.

PS TF Mean RMSE Min RMSE PS

2022 2021 2022 2021 2022 2021 2022

GF CON 79.5 94.1 59.7 68.7 SE HE

GF COR 77.6 92.1 62.2 67.7 FL TI

BO DIS 78.4 94.5 57.7 66.3 FL HE

GF ENE 76.4 94.6 55.5 71.2 SE GF

GF HOM 77.0 93.7 59.4 68.7 FL FL

77.8 93.8 58.9 68.5

2022 2021 2022 2021 2022 2021 2022

GF CON 77.4 95.8 68.2 79.0 SE BO

GF COR 75.6 87.6 68.5 74.1 FL GF

GF DIS 74.5 91.6 61.3 72.7 SE BO

GF ENE 76.4 91.6 63.5 74.9 FL GF

GF HOM 76.1 90.7 62.6 74.4 TI BO

76.0 91.5 64.8 75.0

2022 2021 2022 2021 2022 2021 2022

GF CON 66.4 82.4 58.8 62.8 SE FL

GF COR 66.4 80.6 60.8 62.4 SE GF

GF DIS 66.1 82.6 57.4 63.3 BO FL

GF ENE 65.9 82.9 58.6 63.1 SE GF

GF HOM 65.4 81.3 57.6 56.9 BO FL

66.0 82.0 58.6 61.7

hich the min RMSE was recorded.
when the minimal RMSE value was recorded.
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Raster Mean RMSE Min RMSE PS VI Mean RMSE Min RMSE

Single time points

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

BLUE 76.8 95.2 58.7 80.4 BO SE DVI 70.6 86.7 61.6 64.4 SE

GREEN 71.3 88.5 53.0 68.0 FL HE RVI 64.7 85.6 52.3 60.6 EF

RED 65.1 87.5 52.4 66.5 FL HE NDRE 61.8 83.5 49.1 61.5 BO

REDEDGE 77.6 87.6 56.0 64.4 LF SE MCARI 72.4 93.5 61.7 67.2 BO

NIR 71.9 87.1 64.8 68.7 SE GF CCII 67.9 86.7 57.0 66.3 SE

Mean 72.5 89.2 57.0 69.6 67.5 87.2 56.3 64.0

Smoothed time points

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

BLUE 76.6 96.3 67.1 86.4 SE GF DVI 69.3 84.7 63.7 65.9 EF

GREEN 70.7 92.0 56.4 82.0 FL GF RVI 65.4 82.0 52.3 68.0 FL

RED 64.9 90.9 50.2 75.1 FL FL NDRE 60.1 82.0 49.6 64.3 EF

REDEDGE 78.1 93.9 65.8 83.8 SE GF MCARI 70.8 91.9 60.2 70.7 FL

NIR 69.9 90.8 62.9 72.7 EF GF CCII 68.0 84.0 56.0 61.4 EF

Mean 72.0 92.8 60.5 80.0 66.7 84.9 56.4 66.1

Moving time window

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

BLUE 65.1 83.0 52.7 76.5 BO GF DVI 62.8 76.6 58.1 62.7 EF

GREEN 60.4 72.0 53.9 56.1 SE GF RVI 57.2 74.6 48.1 58.7 FL

RED 55.3 72.1 45.0 61.4 FL GF NDRE 54.0 71.5 45.8 58.9 BO

REDEDGE 66.1 74.5 57.5 61.1 SE GF MCARI 62.8 84.1 54.9 65.4 FL

NIR 62.3 76.8 56.7 66.2 SE GF CCII 59.4 72.7 53.8 50.8 BO

Mean 61.8 75.7 53.2 64.3 59.2 75.9 52.1 59.3

Mean RMSE are all RMSE values averaged over the whole season. Min RMSE values show the lowest RMSE of a season. The phenology stages (PS) are reported at w
Bold values indicate minimal Mean and Min RMSE values for a respective feature, featue selection and year combination. Phenology stages in bold indicate the stage
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accuracy compared to those in the subsequent season. However, the

maximum accuracies achieved in both years were similar. Notably,

in 2021, an accuracy of 0.938 was attained using the BLUE band

during the late grain filling stage, while the HOMOGENEITY TF in

2022 achieved the maximum accuracy of 0.915 during the grain

filling stage. In 2021, VIs generally outperformed single-band

reflectances and TFs for yield predictions, whereas in 2022, TFs

slightly surpassed the other two groups. The model performances in

both years exhibited substantial variability across different dates.

Although data smoothing mitigated some fluctuations, significant

differences between adjacent dates persisted. Similar to the

regression models, the average and maximum performance of the

models remained largely consistent after the smoothing of

data points.

Incorporating more than one date into the models generally

yielded a slightly higher average accuracy for all features in both

years. On average, the best-performing feature was the RED band

with an accuracy of 0.758 in 2021 and the Modified Chlorophyll

Absorption Ratio Index (MCARI) in 2022, displaying an average

accuracy of 0.615. However, the maximal accuracies remained

largely unaltered compared to those achieved using single dates

(Table 5). Despite this, fluctuations between individual dates were

reduced (Figure 6). A trend towards increased accuracy with time

was evident in 2021, particularly notable with the RED band,

consistently yielding high accuracies after heading. In the second

year, accuracies improved and were higher than 0.5 for all features

at the end of the heading stage. Moreover, fluctuations between

dates were notably reduced in this subsequent year (Figure 6).
4 Discussion

4.1 Dynamic responses of individual bands

Rededge bands have been widely studied for assessing crop

performance and yield in various crops, including wheat (Horler

et al., 1983; Pavuluri et al., 2015). Canopy reflectance in the red,

rededge and near-infrared (NIR) wavelength range is influenced by

two primary optical properties of canopies: chlorophyll absorption

in the red region and multiple scattering effects on the NIR due to

canopy structural properties. The red-edge region is more sensitive

to chlorophyll content than to leaf area (Xie et al., 2018). Hence, the

variability in LAI might have been bigger or more important for

yield formation compared to the chlorophyll content in our specific

panel. Moreover, the correlation of reflectance in the red-edge

region with yield is known to change quickly with the exact

wavelength measured (Pavuluri et al., 2015), making the selection

of the exact wavelength difficult and leading to inconsistent results.

In contrast, visible bands (Blue, Green and Red) can be more

sensitive to yield-related variations in chlorophyll, and biomass

accumulation during the tillering and the stem elongation stage

until the beginning of the booting stage. They are known to be

correlated to a certain extent to both, chlorophyll concentration and

LAI (Daughtry et al., 2000). Accordingly, our results showed that

the RED, GREEN, and BLUE bands were among the most effective

spectral features for yield prediction, exhibiting significant
Frontiers in Plant Science 13
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differences between high- and low-yielding varieties at almost all

measurement dates in the first year of trial and during several in the

second year. Their reflectances decrease during the transition from

the stem elongation to the beginning of the booting stage when LAI

and chlorophyll density is known to be maximal (Hinzman et al.,

1984; Hinzman et al., 1986) due to the optical properties of

chlorophyll. From heading until harvest the reflectances in these

bands increase due to senescence when chlorophyll degradation

takes place (Spano et al., 2003).

The NIR region is known to be sensitive to leaf area and

especially ground cover (Korobov and Railyan, 1993), making it a

useful band for predicting biomass and therefore yield. Our results

indicate that the NIR band performed best during the stem

elongation stage for yield prediction and at the booting stage

when there were significant differences in (LAI) between the two

yield groups. In the second season, the differences in the reflectances

were significantly different only once before booting in the second

season possibly due to a lack of differences in LAI between the two

yield groups. This aligns with the findings by Korobov and Railyan

(1993), who reported a higher correlation of NIR reflectance with

dry matter and ground cover the during booting stage compared to

later stages. Thus, normalizing the difference of the NIR and the

REDEDGE reflectance in the form of the NDRE index, showed a

good performance for chlorophyll estimation (Barnes et al., 2000).

Usually, VIs containing information from the rededge region of

the spectrum are considered being more sensitive to chlorophyll

absorption in dense canopies (Nguy-Robertson et al., 2012). It is

expected that combining the highly LAI-sensitive NIR band with

the rededge band that contains more information about leaf

pigments in the canopy and therefore improves the performance

of our yield prediction model at the flowering to early grain

filling stages.
4.2 The influence of growth stages on yield
prediction and classification

The performance of yield prediction and classification depends

highly on the phenological stage of the crop. Our study found that

the flowering stage and early grain filling stage allowed for the best

predictions of yield and classification of varieties in winter wheat,

which is consistent with the findings of several other studies

(Hassan et al., 2019; Prey et al., 2020; Prey et al., 2022). From a

physiological stand point of view, at the time around flowering the

crop has to provide enough assimilates in order to maximize the

number of fertile florets per spike, leading to a higher number of

kernels per spike and finally a higher yield (Fischer, 1985).

Therefore, estimating biomass and chlorophyll content at these

stages is optimal for yield estimation. Unfortunately, the spectral

signal often saturates at these stages making the estimation

challenging, especially in high yielding years (Prey et al., 2020).

Early differences in biomass and LAI dynamics between wheat

genotypes are well-documented (Pang et al., 2014; Grieder et al.,

2015) and Raun et al. (2001) proposed to follow the biomass

formation after dormancy for yield prediction. Marti et al. (2007)

hypothesized that a high biomass at the end of the tillering stage
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TABLE 5 Display of the time points yielding the lowest RMSE for yield prediction for all reflectance bands, vegetation indices and texture features.

TF
Mean

Accuracy
Max

Accuracy PS

2022 2021 2022 2021 2022 2021 2022

GF CON 0.594 0.526 0.800 0.832 SE GF

GF COR 0.588 0.516 0.877 0.835 TI HE

GF DIS 0.564 0.538 0.852 0.778 SE GF

GF ENE 0.533 0.527 0.790 0.787 FL SE

GF HOM 0.575 0.532 0.867 0.915 FL GF

0.571 0.528 0.837 0.829

2022 2021 2022 2021 2022 2021 2022

GF CON 0.546 0.463 0.875 0.750 EF GF

GF COR 0.612 0.524 0.793 0.750 TI GF

GF DIS 0.605 0.534 0.830 0.720 HE GF

GF ENE 0.547 0.506 0.830 0.840 TI GF

GF HOM 0.601 0.537 0.782 0.840 FL BO

0.582 0.513 0.822 0.780

2022 2021 2022 2021 2022 2021 2022

GF CON 0.617 0.572 0.903 0.813 SE GF

GF COR 0.652 0.567 0.867 0.833 TI GF

GF DIS 0.602 0.584 0.840 0.793 EF GF

GF ENE 0.634 0.558 0.918 0.852 SE GF

GF HOM 0.638 0.553 0.882 0.815 SE GF

0.629 0.567 0.882 0.821

the min RMSE was recorded.
when the Maximal RMSE value was recorded.
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Raster
Mean

Accuracy
Max

Accuracy PS VI
Mean

Accuracy
Max

Accuracy PS

Single time points

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

BLUE 0.609 0.501 0.938 0.693 LF GF DVI 0.640 0.502 0.825 0.838 EF

GREEN 0.643 0.488 0.833 0.772 FL GF RVI 0.595 0.504 0.880 0.745 EF

RED 0.673 0.506 0.817 0.783 EF GF NDRE 0.632 0.533 0.877 0.718 LF

REDEDGE 0.584 0.545 0.798 0.707 LF TI MCARI 0.637 0.567 0.823 0.795 EF

NIR 0.620 0.493 0.912 0.768 TI BO CCII 0.673 0.491 0.885 0.735 FL

Mean 0.625 0.507 0.860 0.745 0.635 0.519 0.858 0.766

Smoothed time points

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

BLUE 0.674 0.551 0.853 0.813 LF GF DVI 0.600 0.521 0.815 0.860 TI

GREEN 0.640 0.538 0.880 0.873 HE GF RVI 0.609 0.535 0.810 0.747 FL

RED 0.676 0.580 0.963 0.790 EF GF NDRE 0.625 0.556 0.828 0.735 LF

REDEDGE 0.594 0.553 0.830 0.813 HE GF MCARI 0.647 0.586 0.755 0.868 FL

NIR 0.573 0.512 0.802 0.832 TI GF CCII 0.630 0.512 0.858 0.835 FL

Mean 0.6314 0.547 0.866 0.824 0.622 0.542 0.813 0.809

Moving time window

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

BLUE 0.697 0.535 0.884 0.712 LF GF DVI 0.684 0.499 0.833 0.815 TI

GREEN 0.712 0.604 0.814 0.757 FL GF RVI 0.674 0.581 0.758 0.863 EF

RED 0.758 0.598 0.853 0.764 FL GF NDRE 0.630 0.573 0.722 0.828 LF

REDEDGE 0.659 0.577 0.800 0.777 HE GF MCARI 0.719 0.615 0.795 0.783 TI

NIR 0.668 0.578 0.788 0.868 TI GF CCII 0.708 0.559 0.827 0.900 HE

Mean 0.698 0.578 0.828 0.776 0.683 0.565 0.787 0.838

Mean RMSE are all RMSE values averaged over the whole season. Min RMSE values show the lowest RMSE of a season. The phenology stages (PS) are reported at whic
Bold values indicate maximal Mean and Max Accuracy values for a respective feature, featue selection and year combination. Phenology stages in bold indicate the stage
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detected by NDVI estimates the growth during the stem elongation

stage which in turn is crucial for the number of kernels per area

produced (González et al., 2005). Yield prediction at tillering

therefore already yielded some success especially in the first year

of the trial. From tillering to harvest, wheat is known to compensate

for, as an example, a low stand count by altering the number of yield

components (Holen et al., 2001), therefore predictions at these early

stages are prone to changes later in the season, subsequently leading

to prediction errors.

After flowering, the RMSE of the models for prediction

increases again in the first year whereas they start to increase

later during grain filling in the second year. The flowering stage is

longer in the first compared to the second year of trial (232 GDD

and 134.4 GDD). The reason for this difference is unclear, the end of

flowering is generally difficult to rate, since the dry anthers tend to

fall to the ground or are washed of by rain. Therefore, the end of

flowering might have been later in the second year as well.

Differences in stay-green characteristics can influence yield,

especially by influencing the weight of single grains (Wu et al.,

2012) which were higher in the high yielding varieties compare to
Frontiers in Plant Science 15
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the lower yielding ones. A further indication of this difference is the

slightly advanced phenology of the lower yielding varieties in both

years and the higher LAI measured in the first year of the trial.

The classification models showed a less clear trend during the

season and fluctuations between dates are more severe than for the

regression models. Garriga et al. (2017) did not find a difference in

classification model performance between the anthesis and the

grain filling stages. Successful classification in our case can be

achieved directly by identifying high yielding plots or indirectly

by identifying varieties. The algorithm learns either to recognize

high yield or to classify a certain variety, regardless of their yield

potential. Wheat variety classification for yield classification for

breeding purposes other than by Garriga et al. (2017) is scarce.

Works often focus on the classification of kernels (Porker et al.,

2017; Khojastehnazhand and Roostaei, 2022), which is done under

laboratory environments and therefore less prone to errors induced

by the measurement conditions. Still, if the optimal feature at the

optimal time point is selected, classification of low and high yielding

varieties can be a promising tool for plant breeding applications

(Garriga et al., 2017).
FIGURE 6

Accuracy of variety classification models built using single dates (top), smoothed dates (middle) and combining adjacent dates (bottom). The figures
on the right display models built for the first, the ones on the left for the second year of trial.
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4.3 Comparison of variable- and feature
types for yield prediction and classification

Our study found that single-band reflectance, such as the RED band,

was as effective as or evenmore effective than vegetation indices (VIs) for

predicting yield, especially in the first year of trial. The RED band is

known to be related to leaf area index (LAI), although this relationship is

often non-linear (Hinzman et al., 1984) and therefore requires non-

linear methods such as RF to perform well for yield prediction. Pavuluri

et al. (2015) found a saturation of RED reflectance when predicting yield,

which can also be found in our prediction models. In contrast, VIs

typically show good linear correlations with grain yield, with NDVI

being widely used for yield prediction (Duan et al., 2017; Hassan et al.,

2019). Furthermore, the VIs show a more consistent performance

between dates compared to the single band reflectances. The NDRE

was the best performing feature for yield assessment, which is in

accordance with other studies (Prey et al., 2022) possibly due to its

strong correlation to biomass (Argento et al., 2021).ManyVIs have been

screened by Prey et al. (2020) and few have been showing a consistent

performance over the years, which makes a general selection difficult,

similar to our study. Further, VIs narrow down the information that is

accessible and Vatter et al. (2022) found good performances for yield

prediction when using 11 wavebands from a multispectral camera that

were fed to a deep learning model. This might be good strategy to obtain

the optimal prediction model from multispectral cameras without any

prior knowledge and the need for feature selection.

TFs are complex in their calculation and they offer a variety of

possible ways of calculation, possible combinations with underlying

rasters and ways to be calculated. Detailed information on how TFs are

calculated is often lacking (Zheng et al., 2019; Wang et al., 2021; Zhang

et al., 2021). Therefore, TFs still have to be examined in detail and their

parameters optimized under different experimental conditions and

scenarios of sensing data collection. We calculated TFs in a

standardized way, but still found a high variability between dates.

They are further known to be highly dependent on the GSD and

therefore, the flight height (Zheng et al., 2019). In our study smoothing

aided in enhancing the stability of the yield predictionmodels, although

it did not improve their performances. A novel approach was presented

by Herrero-Huerta et al. (2020) who calculated so-called canopy

roughness directly on the point cloud from the structure from

motion processing and showed its correlation to biomass. Often, the

TFs are difficult to interpret and their link to yield relevant canopy traits

is often unclear. Originally, the TFs were developed for classification

(Haralick et al., 1973) and therefore classifying varieties corresponds

more to their intended purpose than yield prediction. TFs are further

often used in combination because there might be additional

information (Wang et al., 2021; Liu et al., 2022), especially in the

later stage, when they are not strongly correlated to single band

reflectances and VIs anymore, as indicated by our results.
4.4 Effects of temporal feature selection
for yield prediction and classification

Models using individual dates showed generally a worse

performance than models containing three adjacent dates.
Frontiers in Plant Science 16
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Furthermore, the performance between different dates is

fluctuating strongly, even if the phenological stage is similar.

Prey et al. (2022) found combining data from multiple dates to

yield more improved predictions especially if the features used

were performing poorly. In our case, the improvement for the

yield prediction was in a similar range, regardless of the initial

performance of the feature. In rice, Zhou et al. (2017) found that

combining data from different growth stages by a multilinear

regression model, can improve the estimation accuracy. For

practical applications, finding the optimal date might be

difficult and requires very close monitoring of the phenology,

which can be very diverse among varieties as in our variety-

testing panel. Therefore combining multiple dates might be

especially performant, if features are used that show a high

fluctuation between dates such as the TFs. The RF algorithm

however is capable of dealing with different suitability of dates

and therefore neglect the ones that do not perform well by

attributing different importance to the features. The downside

of the method is that, obtaining the additional measurements

requires substantial work. Therefore, the number and time

points measured should be considered carefully and be

optimized in future studies.
4.5 Limitations and outlook

The red-edge position and its shape is often used to estimate

the stress status of field crops (Guyot et al., 1988; Boochs et al.,

1990). However, it is obvious that the dynamics (time series) of the

Red-edge band is difficult to interpret compared to the visible

bands. During the early stages of tillering, the red-edge reflectance

increased, possibly due to an increase of ground cover, whereas

later it decreased again, when the canopy height increased during

the SE stage. At the beginning of the heading stage, another

increase in the red-edge reflectance could be observed,

accompanied with the increase of reflectance in the visible

bands. However, in contrast to other bands, the Red-edge

reflectance decreases with the onset of senescence at the early

grain-filling stage, possibly due to a reduction in chlorophyll and a

shrinking canopy structure (Wang et al., 2022). However,

fluctuation also occurs during the mentioned stable period

running from the beginning of booting to the end of flowering.

These fluctuations can be of various origins. For instance, the

appearance of the canopy might change significantly due to the

emergence of the spikes. Although this study was unable to exploit

the entire shape of the red-edge reflectance, due to limitations in

our multispectral camera having one band in the red-edge region,

future work should further advance the understanding of the

dynamics of red-edge reflectance and responsible canopy

characteristics. Also, features should, in addition to their

performance for yield prediction be assessed regarding their

heritability (H2) since breeders are interested in knowing the

genetic variation underlying a trait or in our case a spectral

feature. Generally, this study shows that a trait time series

followed by smoothing and a moving window allows for more

stable predictions when also not better predictions.
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5 Conclusions

Most spectral and TFs derived from the canopy multispectral

images were related to variations in yield and delivered the best

predictions of yield between booting and the beginning of senescence.

Still, predictions before and after this stages yielded respectable results

as well. Vegetation indices (VIs) generally outperformed single

indices in assessing yield and in classifying varieties. Particularly

the Normalized Difference Red Edge (NDRE) index performed well

in both years and at several phenology stages. Single bands, especially

the RED band showed a comparable performance but with more

fluctuations between dates. In contrast, the REDEDGE reflectance

showed poorer performance in yield and variety classification. TFs

generally performed poorly for yield prediction, and their

performances were inconsistent across dates in this study. TFs

showed a good performance when classifying varieties. Further

research is still needed to better understand the applicability of

different TFs for yield- and traits predictions. Smoothing or

combining data across a time series can enhance the performance

of yield prediction and classification models, particularly in the early

growth stages. Future studies should combine different feature types

to leverage complementary information captured by different types of

multispectral features and variables.
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