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Editorial on the Research Topic

Evaluation of quality and safety of agricultural products by non-
destructive sensing technology
Quality assessment is an essential task in post-harvest processing of agricultural

products and important for improving their economic value. Advanced non-destructive

sensing technologies, in conjunction with data analytics and control and automation

technology, have evolved as a potent means for augmenting food quality control efforts.

This research topic covers the latest applications of various sensing technologies, including

machine vision, near-infrared spectroscopy, hyperspectral imaging, spatial-frequency

domain imaging and ultrasound technology, in the quality assessment of fruits,

vegetables, edible oils and seeds as well as the analysis of crop phenotypes.

Fruits are important agricultural products. Rapid, non-destructive, and accurate quality

evaluation and grading can add value to the commodities when delivered to the

marketplace. The soluble solids content (SSC) is one of the key internal quality

characteristics of fruits. Yang et al. used the visible and near-infrared spectroscopy to

assess SSC in Korla fragrant pears. A combination of bootstrapping soft shrinkage (BOSS)

and successive projections algorithm (SPA) was used to extract important wavelengths

from full-spectrum data. The partial least squares (PLS), least squares support vector

machine (LS-SVM) and multiple linear regression (MLR) models were built for SSC

predictions. The study showed that the PLS model based on 17 wavelengths selected by

BOSS-SPA obtained the best prediction with rp of 0.94 and RMSEP (root mean square

error of prediction) of 0.27%. In fruit quality prediction, the model robustness is crucial for

practical implementation. Traditional near-infrared spectroscopy that performs aggregated

measurements is limited in decoupling absorption and scattering effects of biological

tissues. Spatial-frequency domain imaging (SFDI) has emerged as a means for quantifying

and mapping tissues optical properties, which can be useful for fruit quality assessment. By

demodulating the reflectance images under structured illuminations with changed
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frequencies and phases, the absorption coefficient and reduced

scattering coefficients of biological samples can be estimated by

an inversion algorithm based on appropriate light transfer models.

Peng et al. reported on the measurement of optical properties of

apples at the wavelengths of 460, 527, 630 and 710 nm using the

SFDI technique, for assessing the SSC, firmness, and color

parameters. The resultant absorption coefficient and reduced

scattering coefficients were utilized for building models of SVM,

MLR and PLS to predict apple quality attributes. The monitoring of

quality changes during postharvest is important to quality control.

Fruit usually undergoes certain periods of storage and

transportation after harvest and before sale, in which they may be

susceptible to spoilage and quality deterioration. The rapid, in situ

identification of fruit spoilage is beneficial for minimizing product

and financial losses. The volatile compounds (e.g., alcohols, esters,

terpenes, and ethylene) released from fruit reflect fruit quality status

during storage. The qualitative and quantitative analyses of these

volatile compounds provide valuable insights into fruit quality.

Zhou et al. used a spiral silver halide fiber optic evanescent wave

spectroscopy (FOEW) sensor to explore the feasibility of identifying

volatile compounds released from grapes in situ. The absorption

peaks of ethanol in the volatile compounds were found in the

FOEW spectra and their intensity gradually increased as the storage

time of the grapes increased. Principal component analysis (PCA)

of the spectra showed the clustering at different storage times,

revealing that the concentration of the ethanol released from the

grapes changed significantly with time. They built PLS discriminant

analysis model for classifying grape samples as “fresh”, “slight

spoilage” or “severe spoilage”, achieving the validation accuracy of

100%. This study can provide a reference for rapid identification of

fruit deterioration.

In vegetable quality testing, cabbage is one of the economically

important vegetable products worldwide. The dents and cracks of

cabbage caused by extrusion and collection during transportation

negatively impact both the commercial value and storage time of the

commodity. Consumer-grade RGB-D (red-green-blue-depth)

cameras are being increasingly used in the agriculture and food

domain, which integrate the functionality of color (RGB) and depth

(or range) sensing to provide richer information, and particularly

the 3D point cloud from depth channel data enables the

reconstruction of object surface geometry and shape, which can

be useful for quality assessment of agricultural produce. Curvature

is an important feature in shape analysis and can be used for the

detection of shape defects. Gu et al. used an Intel RealSense-D455

depth camera to obtain the 3D point cloud cabbage segmented from

the background noise through preprocessing and region of interest

extraction. The normal vector was estimated based on a least-

squares plane fitting method, and the curvature threshold was

defined in agreement with the curvature character parameters.

The surface defect detection was realized according to the

curvature difference between the normal area and the defective

area on the cabbage surface.

Seed quality is crucial for the productivity and eventual

products quality of crops. Aged seeds generally have low plant

vigor and growth, which need to be identified and segregated out.

Wang et al. employed short wave-near infrared hyperspectral
Frontiers in Plant Science 025
reflectance imaging to identify aged maize seeds. ANOVA was

used to reduce data dimensionality. The band ratio (1987 nm/

1079 nm) selected by ANOVA from embryo-side spectra achieved

95% classification accuracy. The image texture features, including

histogram statistics and gray-level co-occurrence matrix, were

extracted from the band ratio image to establish fusion models,

yielding the accuracy of 97.5%. This study indicated that imaging

at two wavelengths combined with the extraction and modeling of

image textural features could detect aged maize seeds effectively.

Cracks of cottonseeds negatively influence the germination rate of

the crop. It can be a challenging task for techniques such as

machine vision, spectroscopy, and thermal imaging, to detect

slight cracks in the cottonseeds. An acoustic method is

potentially sensitive to localizing fine structure defects. Zhang

et al. presented a novel methodology to detect slightly cracked

cottonseed using air-coupled ultrasound with a lightweight vision

transformer and a sound-to-image encoding method. The echo

signal of air-coupled ultrasound from cottonseeds was obtained in

a non-contact way. The intrinsic mode functions of the ultrasound

signal were obtained as the sound features through variational

mode decomposition, which were further converted into color

images by a color encoding method. A lightweight MobileViT

model was trained with the resultant color image to discriminate

between the slightly cracked and normal cottonseeds, resultant in

an overall recognition accuracy of 90.7%.

In addition to quality assessment of raw or fresh-market

commodities, the non-destructive sensing technology can also be

applied to processed products. Pomegranate kernel oil has gained

global attention due to the health benefits associated with its

consumption, especially fatty acid composition. Various analytical

methods have been used for quality control of edible fats and oils.

However, these methods are expensive, labor-intensive, and often

require specialized sample preparation, restricting their

applicability on a commercial scale. Okere et al. used Fourier

transform near-infrared and mid-infrared spectroscopy to

qualitatively and quantitatively predict quality attributes of the

pomegranate kernel oil. PCA and orthogonal partial least squares

discriminant analysis were applied for qualitative analysis, and PLS

regression was used for developing quantitative models. Their

results demonstrated the potential of near- and mid-infrared

spectroscopy for rapid screening of pomegranate oil quality.

In addition to aforementioned studies, this research topic also

includes two articles pertaining to crop phenotypic analysis.

Watermelon is a widely consumed and nutritious fruit with rich

sugars. Abiotic stresses caused by changes in temperature, moisture,

etc., pose a threat to crop production and product quality. Stress

diagnosis based on monitoring plant morphological features (e.g.,

shape, color, and texture) is important for optimizing management

practices for yield and quality protection. Nabwire et al. classified

watermelon plants exposed to low-temperature stress conditions

from the normal ones using features extracted by image analysis,

which achieved 100% accuracy in discriminating between normal

and low-temperature stressed watermelon plants. They also built

models for estimating the number of leaves and plant age using the

extracted features, resulting in R2, RMSE and mean absolute

difference (MAD) of 0.94, 0.87 and 0.88, respectively for the
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number of leaves and the R2 and RMSE of 0.92 and 0.29 (weeks),

respectively, for estimating the plant age. The models developed can

be utilized for monitoring and analysis of phenotypic traits during

watermelon growth. The segregation of plug seedlings by quality is

important for planting high-quality seedlings for wide-scale

production. Du et al. used a color vision system to acquire images

of the tops of pepper plug seedlings and built an EfficientNet based

convolutional neural network (CNN) model for classifying the plug

seedlings into three classes (strong seedlings, week seedlings, and

empty plug cells). The CCN model, structured by adding a

convolutional block attention module (CBAM) to EfficientNet-B7,

alongside transfer learning and Adam optimization, achieved an

accuracy of about 98%. The proposed method had high accuracy for

the plug seedling quality classification task.

Non-destructive sensing technologies reported in the above

studies provide useful tools for the assessment of agricultural

product quality and analysis of crop phenotypes. These studies

provide valuable references for further research and developments

of advanced sensing technologies for enhanced quality assessment

and control. Based on these technologies, the advanced detection

and monitoring equipment for real-time, high-volume application

has been and is being developed to propel the production of smart

agriculture-food systems.
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Estimation of Cold Stress, Plant Age,
and Number of Leaves in
Watermelon Plants Using Image
Analysis
Shona Nabwire1, Collins Wakholi1, Mohammad Akbar Faqeerzada1,
Muhammad Akbar Andi Arief2, Moon S. Kim3, Insuck Baek3 and Byoung-Kwan Cho1,2*

1 Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon, South Korea, 2 Department
of Smart Agriculture Systems, Chungnam National University, Daejeon, South Korea, 3 Environmental Microbial and Food
Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States

Watermelon (Citrullus lanatus) is a widely consumed, nutritious fruit, rich in water and
sugars. In most crops, abiotic stresses caused by changes in temperature, moisture,
etc., are a significant challenge during production. Due to the temperature sensitivity of
watermelon plants, temperatures must be closely monitored and controlled when the
crop is cultivated in controlled environments. Studies have found direct responses to
these stresses include reductions in leaf size, number of leaves, and plant size. Stress
diagnosis based on plant morphological features (e.g., shape, color, and texture) is
important for phenomics studies. The purpose of this study is to classify watermelon
plants exposed to low-temperature stress conditions from the normal ones using
features extracted using image analysis. In addition, an attempt was made to develop a
model for estimating the number of leaves and plant age (in weeks) using the extracted
features. A model was developed that can classify normal and low-temperature stress
watermelon plants with 100% accuracy. The R2, RMSE, and mean absolute difference
(MAD) of the predictive model for the number of leaves were 0.94, 0.87, and 0.88,
respectively, and the R2 and RMSE of the model for estimating the plant age were 0.92
and 0.29 weeks, respectively. The models developed in this study can be utilized in
high-throughput phenotyping systems for growth monitoring and analysis of phenotypic
traits during watermelon cultivation.

Keywords: chilling stress, phenomics, image processing, morphological traits, leaf count, plant age

INTRODUCTION

Watermelon (Citrullus lanatus) is a highly nutritious fruit comprised of 93% water with small
quantities of protein, fat, minerals, and vitamins. It is widely considered a functional food, thus
contributing to its widespread consumption around the world (Assefa et al., 2020). Watermelon is
a member of the cucurbit family (Curcurbitaceae), which are chill-sensitive plants that are native to
subtropical and tropical regions around the world. There are four main cucurbit crops, namely
cucumber, watermelon, melon, and squash. Of these main crops, watermelon has the highest
worldwide consumption (Wehner et al., 2020).

Watermelon plants are characterized by big leaves, long, and thin hairy stems that can grow up
to 10 m long with branched coiled tendrils at the nodes and yellow flowers. Its leaves are green,
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with blades of about 20 × 20 cm, pinnately lobed, and usually
divided into three to five pairs of lobes. Its growth habit is a long
trailing vine, due to which the plants are usually grown at a wide
spacing (Aruna et al., 2016). Watermelons are mainly grown in
tropical and subtropical climates and require a warm growing
season of 75–95 days from planting to harvesting. While the
optimum growth temperature for watermelons ranges from 21
to 29◦C, they can tolerate a minimum of 18◦C and a maximum
of 32◦C (Noh et al., 2013; Shirani Bidabadi and Mehralian,
2020). Watermelons are highly temperature sensitive depending
on the growth stage. In the early stages of plant growth, 25◦C is
optimal and growth has been observed to stop at 10◦C. Below
temperatures of 13◦C, flowering does not occur and above 45◦C
only mature plants can survive (Noh et al., 2013).

Plants are vulnerable to a wide range of physical and chemical
variables, including low and high temperatures, insufficient or
excessive water, high salinity, heavy metals, and ultraviolet (UV)
exposure, among others. These stresses, known collectively as
abiotic stresses, pose a danger to agriculture and the ecosystem,
accounting for significant crop production loss. In watermelon
plants, abiotic stresses caused by temperature extremes (Rivero
et al., 2001; Shirani Bidabadi and Mehralian, 2020), water stress
(Yoosefzadeh Najafabadi et al., 2018), salinity stress (Yetişir
and Uygur, 2009; Li et al., 2017), etc., are the most prevalent.
In the watermelon plant life cycle, both reproductive and
vegetative stages are negatively affected by low temperature
stress (Nishiyama, 1970; Shirani Bidabadi and Mehralian, 2020).
During reproductive development, low temperature stress can
delay flowering and induce flower abscission, pollen sterility,
pollen tube shortening and distortion, and reduced fruit set,
which lowers yield (Waraich et al., 2012). The effects of cold stress
on the reproductive stage have important economic and social
effects since the products of this stage are the source of food
supply (Thakur et al., 2010; Zinn et al., 2010). At the vegetative
development stage, low temperatures can cause a reduction in
stomatal conductance and leaf water content, therefore resulting
in smaller leaves and shoots (Rodríguez et al., 2015). Collectively,
these stress responses reduce fruit yield and quality, which has
negative economic and nutritional impacts (Lu et al., 2003;
Taylor et al., 2003).

In climates with short warm seasons, seeds are sown in
growth chambers and transplanted into the field or protective
structures after 3–4 weeks (Wehner et al., 2020). The largest
protective structures for commercial watermelon production
in non-tropical climates are glasshouses (greenhouses). These
have systems that control lighting, shading, heating and cooling,
ventilation, humidity, and carbon dioxide concentration.
Due to the temperature sensitivity of the watermelon plants,
temperatures must be closely monitored in the controlled
environments. It is necessary to understand plant responses
to temperature stresses to improve management within the
controlled environments. Studies have found that immediate
plant morphological responses to these stresses include
reductions in leaf size, number of leaves, and plant size
(Bismillah Khan et al., 2015; Fahad et al., 2017).

Plant morphological studies involve a detailed study of
vegetative and reproductive plant structures that can be used

to make comparisons between species, identify different
varieties, or study plant responses to stimuli (Wyatt, 2016).
Some of the key morphological features relevant to plant
morphological studies are leaf shape, size, color, texture,
angle, and volume. In the shoot system, leaves experience
significant changes in morphology in response to the
environment that can be easily observed (Yang et al., 2015).
Leaf morphological features can be important determinants
of plant performance because leaf size and shape influence
key plant productivity processes such as photosynthesis,
stomatal conductance, and transpiration efficiency (An et al.,
2017). In studies involving morphological feature analysis
of plants, some key features measured include plant leaf
length, width, angle, diameter, perimeter area, and volume
(Harish et al., 2013). Leaf morphological features are useful
for plant recognition, identification, classification, and disease
identification and classification (Aptoula and Yanikoglu,
2013; Ramcharan et al., 2017, 2019; Kumar et al., 2019;
Tan et al., 2020).

Image analysis has found wide application in various domains
of science. The image analysis workflow consists of image
capture, preprocessing, feature extraction, and analysis. In plant
studies, imaging techniques and analysis have the advantage of
being non-destructive and able to extract intricate information
that can be used to analyze biological patterns of plant growth
(Nabwire et al., 2021). The application of image analysis
in morphological studies has been done to automate plant
recognition tasks (Aptoula and Yanikoglu, 2013; Kumar et al.,
2019), classification of plant leaves using leaf shape feature
extraction techniques (Manik et al., 2016), automation of plant
classification systems (Harish et al., 2013), and development
of leaf disease detection and diagnosis systems (Jagtap and
Hambarde, 2014). Specifically, image analysis has been applied
in cold stress response classification in maize plants (Enders
et al., 2019), drought and heat stress tolerance screening in wheat
(Schmidt et al., 2020), weed growth stage estimation (Teimouri
et al., 2018), and leaf counting in Arabidopsis using deep learning
(Aich and Stavness, 2017). These studies achieved acceptable
results, however there have been no studies that have applied
image analysis to identify cold stress plants, estimate leaf count,
and plant age in watermelon plants.

High throughput plant phenotyping (HTPP) systems are
useful for quantifying/estimating the effects of exposure to sub
optimal conditions (temperature, water, etc.) on individual plant
through estimating various plant characteristics. The data from
such systems is useful for making comparisons between plant
species, identifying varieties, or study plant responses to stimuli.
This information is useful for research and in decision making.
Therefore, the objective of this study was to extract and analyze
the morphological features (relating to form, structure, texture,
and color) of watermelon plants using image analysis. The
features were used to develop a model for prediction of cold stress
condition of the plants and determination of the number of leaves
and plant age. The models developed in this study can be utilized
in high-throughput phenotyping systems for growth monitoring
and analysis of phenotypic characteristics (such as number of
leaves, plant age) during watermelon cultivation.
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MATERIALS AND METHODS

Dataset
The watermelon seed samples were acquired from Partner seed
(Gimje, Jeollabuk-do, South Korea). Four test varieties, namely,
DAPCT, PI482261, DAP, and 45NC, as defined by the seed
company, were used for this study. A total of 128 seeds were
used, including 12 from the PI482261, 16 from the 45NC, 52
from the DAP, and 48 from the DAPCT variety. The seeds were
planted in a container in individual cells and placed in a growing
chamber maintained at 28◦C and 70% relative humidity to ensure
germination. After 2 weeks, the seedlings were transplanted
into individual cylindrical pots (12 cm diameter, 11 cm height)
with porous bases and transferred to the growing chamber that
was reserved for this experiment. A nutrient mixture called
“Mulfuresiriz” from Daeyu company limited (Seoul, Gyeonggi-
do, South Korea) used in hydroponics was applied equally
(concentration of 4 ml of nutrient mixture per liter of water) to
all the pots at the start of the experiment.

Experiment Design
The experiment design for this study was based on the growth
stages of watermelon plants. Data collection was done weekly
between the 2nd and 5th week (seedling to flowering stage of
watermelon plants) at total of 4 weeks (week 2, 3, 4 and 5). This
is because at less than 13◦C flowering will not occur; however,
after flowering and fruit set, temperatures greater than 14◦C have
no significant effect on plant growth (Noh et al., 2013). The
watermelon plants were separated in two groups, the normal
group (plants grown in optimum growth conditions), and the
stressed group (plants grown in cold stress conditions). A total of
10% of the plants from each variety were stressed each week. The
plants to be considered for the stress group were selected using
random numbers to eliminate bias. The growth temperature
considered for the control (normal) and the stressed group in
this study were as detailed in Table 1. The plants in each group
were grown in separate chambers that were both maintained
at a relative humidity of 70% for the entire growth period.
The lighting used for both growth chambers was 15,000 lux
intensity, 6,500K color temperature for the simulated day hours
and no lights for the simulated night hours. The concentration of
carbon dioxide gas was maintained at 700 ppm for both growth
chambers. Both the normal and stressed group plants followed
the same watering regime, which was done after every 2 days.
During watering, the plant pots were soaked in 2 cm deep pure
water for 4 h to allow time for water to percolate into the soil.

Data Collection
Image data collection was done using a multi-camera system
(Figure 1). The system specifications are detailed in Table 2. The
reason for the multiple camera setup was to capture more views
of the plant from which to choose when extracting consistent
and representative morphological features. The target field of
view (FOV) for the cameras was 32 × 27 cm (enough to cover
the entire watermelon plant), therefore the camera-to-sample
distance for the system was 60 cm to accommodate the FOV. The

cameras were set up with the same angle, distance, aperture, and
exposure time (10,000 µs). Color calibration was done during
data collection to compensate for variations in color channel
values, aperture opening, and manufacturing tolerances that
can result in varying camera color signatures. Color calibration
was done by taking images of the standard X-Rite color chart,
extracting the color values of the patches, and finding the best
transform matrix that maps the resultant color values with their
respective reference values. The resultant color correction matrix
was then used to transform the images taken from the cameras to
their true color (Sunoj et al., 2018).

One camera was set up at the top of the system to capture the
top view image of the plant, while the other six cameras were set
up to capture the side view of the plant at 60 degree intervals
from each other.

Reference data, which include number of leaves, plant age
(weeks), and stress condition (control or stressed), were recorded
for each plant every week after image data collection.

Thresholding/Background Removal
For the analysis, three images were selected from the top view
camera and cameras at 0 and 60 degrees. The image views were
labeled image 1, image 2, and image 3, corresponding to the 0-
degree, 60-degree, and top view image, respectively. A summary
of the data analysis workflow for this study is shown in Figure 2.

Background removal was carried out using two methods to
define the region of interest (the plant) for further processing.
Initially, it was carried out using conventional image processing.
This involved conversion of the image from RGB to the CIELAB
color space. An analysis of the histograms of each channel
resulted in a necessity to keep all pixels below the local minima
in the “a” channel and above the local minima in the “b” channel
(Figure 3). Since these local minima (for both channels) varied
for each image, a search algorithm that automatically determines
the position of the local minima in a predefined range was used.
The determined position values were used as thresholds to make
two binary images, which were then combined to create the
watermelon plant mask.

Deep learning was also applied for background removal using
U-Net, a network commonly used for image segmentation.
It can work with few images and give accurate segmentation
results. The network does not have fully connected layers
and uses the pixels in the segmentation map whose full
context is available in the input image. It uses successive
layers with pooling layers replaced by upsampling layers
therefore increasing the output resolution. The upsampling
section of the network has many feature channels that enable
the network to propagate context information into the higher
resolution layers. This makes the expansive path symmetric
with the contracting path and gives the architecture its
characteristic U-shape (Ronneberger et al., 2015). Although
U-Net was originally developed for application to biomedical
images, it has been applied in various domains of science,
including audio signal source separation and satellite imagery
(Stephan and Santra, 2019).

The network was trained on 830 images with a ratio of 7:2:1
for the training, validation, and test datasets, respectively. The
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TABLE 1 | Plant growth conditions and weekly stress plan.

Plant condition Number of plants Optimal temperature Growth temperature

Week 2 Week 3 Week 4 Week 5 Day (16 h) Night (8 h)

Control group 128 116 104 92 20–30◦C 28◦C 21◦C

Stress group 0 12 24 36 ≤15◦C 15◦C 10◦C

FIGURE 1 | System for data collection.

input image size for the network was 512 × 512 × 3 and the
output image size was 512 × 512. The network was trained for
100 epochs using Adam optimizer, mini-batch size of 8, learning
rate of 0.001, drop factor of 0.9, and drop period of 5.

Feature Extraction
Color Feature Extraction
The color features considered for this study were extracted
from four color spaces (RGB, HSV, CIELAB, and YCbCr).
The color space suitable for an application is selected based
on the acquisition setup. While HSV and CIELAB represent
colors in a format closer to human vision, CIELAB has the
advantage of being able to detect small differences in color
and is device independent. YCbCr is suitable for image/video
data compression. The color components are represented by
coefficients of the three colors depending on the selected
color space. They are extracted by conversion of the image
to the desired color space and averaging the color values in
each component (Kavitha and Suruliandi, 2016). Color feature
extraction was done by conversion of the images from RGB
to the major color spaces: HSV, LAB, and YCbCr. The average
value of the color channels in each of the color spaces was
computed to extract the color features – in total 12 feature
values for each image.

Shape-Based Feature Extraction
Shape-based feature extraction is carried out to extract features
that describe the shape and size of a region of interest in an
image. Shape and size parameters, sometimes referred to as
region properties, quantify the shape of the region depending
on the requirements of the image processing task (Mingqiang
et al., 2008). The region properties of the region of interest

(Table 3) were extracted from the resultant mask from the image
segmentation process. These amounted to a total of 30 feature
values for each image.

Texture Feature Extraction
Texture can be defined as the surface quality of a region of
interest. In image processing, texture is analyzed based on the
variations in the gray tone values extracted from an image
(Metre and Ghorpade, 2013). Texture features are commonly
extracted using Gray Level Co-occurrence Matrix (GLCM) to
find symmetry in the texture in an image (Hu and Ensor, 2019).
It is based on the occurrence of the gray level configuration and
measures the spatial relationships between pixels to infer texture
information (Ehsanirad and Sharath, 2010). Haralick texture
features are derived from the GLCM (Haralick et al., 1973). They
consist of 14 statistical features, which include autocorrelation,
contrast, cluster prominence, cluster shade, correlation, etc.
For this analysis, four properties were extracted using the
GLCM, namely contrast, correlation, energy, and homogeneity.

TABLE 2 | System specifications.

System dimensions Camera specifications Lights

Width: 160 cm
Length: 168 cm
Height: 107 cm

Name: HIKVISION
MV-CA050-20UC

Type: 5MP 1” CMOS
USB3.0

Resolution: 2592 × 2048
Lens: 25 mm lens

Variable aperture: f/1.4 to
f/16 (fixed to f/8)

Number: 7 cameras

Type: D65 White LED
Power: 15W

Quantity: 6 lights
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FIGURE 2 | Data analysis workflow.

FIGURE 3 | Summary of conventional image processing background removal algorithm.

Using a Haralick distance of 3, 28 texture feature values were
extracted for each image.

Additionally, other texture feature extraction methods,
including local binary patterns (LBP), discrete cosine transform
(DCT), Fourier descriptors, and Gabor features, were used. These
features were extracted using the BALU toolbox in MATLAB
(Mery, 2011).

Local binary patterns (LBP) are generated by the best
matching pattern in the image and are responsive to edges,
lines, spots, and flat areas, whose distribution is estimated
by the occurrence histogram. They are key texture properties
and provide most patterns in observed textures. LBP features
derive their name from the functionality of the LBP operator
LBPP,R, whereby the threshold of the local neighborhood is
determined at the gray value of the center pixel in a binary
pattern (Ojala et al., 2002). LBP features address the challenge
of non-uniformity of textures due to variations in orientation,
scale, or resolution of an image. For each image, a uniform LBP
operator was applied with eight neighborhood pixels and one

vertical and horizontal division. This resulted in 59 LBP feature
values for each image.

Discrete Cosine Transform (DCT) is a unitary image
transform that transforms the image from the spatial domain
to the frequency domain. Unitary transformations are useful in
image processing in that they preserve the length of the vector
and pack a large fraction of the mean energy of an image into
a few transform coefficients, allowing for the preservation of
feature information (Jain, 1989; Kumar and Bhatia, 2014). DCT
separates the image into parts of varying importance depending
on the image visual quality. It gives coefficients that are both
local and global features. DCT is a popular feature extraction
transform in terms of its compact feature representation and
computational complexity arising from its data independent
nature (Chadha et al., 2011). For this study, a vertical and
horizontal resize of 64 and frequency of 2 were applied to each
image to extract four DCT coefficients.

Fourier-based feature extraction involves the transformation
of the image from the spatial to the frequency domain and has the
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TABLE 3 | Region properties used for shape-based feature extraction.

Parameter Description

Area The number of pixels in the selected region of the
image.

Bounding box The rectangle that contains every point in the selected
region.

Major axis length The length of the line connecting the base point to the
tip of the leaf.

Minor axis length The length of the line perpendicular to the major axis.

Centroid The center of mass of the region being analyzed.

Solidity The ratio of the leaf area to the area of the convex hull.
This is useful for measuring the density of the region.

Perimeter The length of the external shape of the region being
analyzed.

Circularity A measure that describes the roundness of an object.

Convex hull This is the smallest convex polygon that contains the
selected region.

Equivalent diameter A measure of the diameter of a circle that has the same
area as the region of interest.

Eccentricity The ratio of the distance between the foci of an ellipse
that has the same second-moment as the region of

interest and the length of its major axis.

Maximum Feret diameter The maximum distance between two boundary points
on the antipodal vertices of the convex hull.

Minimum Feret diameter The smallest distance between two boundary points on
the antipodal vertices of the convex hull.

Extent The ratio of pixels in the region of interest to the pixels
in the bounding box.

advantage of eliminating noise that occurs at higher frequencies.
Using this technique, a spectrum of texture is obtained using a
Fourier transform. Local and global texture feature descriptors
are obtained from the spectrum. Fourier spectrum descriptors
describe the direction and formation of texture patterns (Hu and
Ensor, 2019). For this study, a frequency of 2 was applied to each
image to generate 8 spectral peaks and 16 texture descriptors.

Gabor feature extraction method extracts the Gabor features
of an image using a Gabor filter function. The Gabor filter
function is useful in texture analysis where texture is non-
uniform (Kumar and Pang, 2002). They extract local pieces
of information that are combined to recognize the object of
interest, making this method one of the superior methods
for complex tasks such as facial recognition (Kamarainen,
2012). Eight rotations and dilations were applied to each
image with a frequency ranging from 0.1 to 2 to generate 19
Gabor feature values.

Intensity-Based Feature Extraction
Other features extracted include intensity and contrast features.
Intensity-based feature extraction extracts the color intensity
values for each pixel (Sabrol and Kumar, 2016). Contrast
measures the differences in brightness levels between the light
and dark areas of an image (Chen et al., 2019). The parameters
extracted in this feature extraction method include, but are
not limited to, maximum intensity – the intensity value of the
pixel with the greatest intensity in the region of interest, mean
intensity – the average intensity of all the intensity values in the

TABLE 4 | Total number of features extracted for each watermelon plant.

Feature type Number of features Remarks

Region properties 30 Extracted from mask image

Color features 12 Average color values

Texture features 138 Sum of all the texture features

Other features 11 Including contrast and intensity
features

Total for each image 191 Number of features extracted
per image

Total for three images 573 Total number of features
extracted per plant

region of interest, minimum intensity – the intensity value of the
pixel with the lowest intensity in the region of interest, and the
weighted centroid – the center of the region of interest based on
intensity values. Intensity features were extracted from the green
channel – a total of six feature values from each image. Contrast
features were similarly extracted from the green channel image
resulting in five feature values. Both functions were inherited
from the MATLAB BALU toolbox (Mery, 2011).

The resultant features (Table 4) were concatenated
horizontally for each watermelon plant sample. The resulting
features from each plant were concatenated vertically, resulting
in a data matrix (rows = sample, columns = features), which was
used for modeling the phenotypic traits.

Data Analysis and Model Development
Feature Preprocessing
Feature extraction methods use different formulae and
conventions and therefore output feature values are of varying
magnitudes. Preprocessing of the features is necessary before
data analysis to enhance the features, remove noise that may
result from intensity variations in the image, and standardize the
ranges of feature values. For this reason, a normalization vector
was applied using min–max normalization (Patro and Sahu,
2015), which resulted in values ranging between 1 and 0.

Outlier Detection
Outliers are extreme data points that deviate from other
observations of the data and may indicate experimental errors,
data processing errors, or variability in measurements (Wang
et al., 2019). The outliers in the extracted dataset were likely
caused by misdetections during feature extraction. Outliers are
bound to exist and can influence the model development process
and overall model performance.

To remove outliers from the data, two steps were followed:
(1) Computation of principal component analysis (PCA) of

the data, followed by extraction scores of the first five PC
(representing more than 90% of variance in the data);

(2) Use of robust multivariate dispersion algorithm (Olive
and Hawkins, 2010) on the extracted scores to determine which
samples are outliers and which are inliers.

Feature Cleaning and Selection
Feature selection is usually done to select a group of features from
the original set that contain accurate distinguishing information
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of one object from another for accurate predictions in the model
(Kumar and Bhatia, 2014). It may consist of feature cleaning,
where features that are redundant and those that contain little or
no information are removed from the feature set. The decision to
remove some features is subjective depending on the parameters
being predicted by the model. The removal of some features
that contain noise may compromise prediction accuracy in cases
where they contain valuable information for the prediction of
some parameters (Tallón-Ballesteros and Riquelme, 2015).

Due to the many features extracted from the image data, it
is likely that the data contained irrelevant features possibly due
to noise or redundancy/collinearity in the data. To reduce the
effects of these irrelevant features, feature cleaning and a feature
selection algorithm called sequential feature selection (SFS) were
used to find relevant features. The feature cleaning algorithm
was used to eliminate constant and correlated features. The SFS
algorithm searches for the linear combinations of features that
best correlate with the responses (Pudil et al., 1994). Both the
feature cleaning and SFS algorithms used are available in the
MATLAB BALU toolbox (Mery, 2011). The resultant few features
were used to develop the final models.

Model Development
After the feature cleaning and selection process, a few important
features were retained. Depending on the phenotypic trait, a
classification or regression model was developed. In the model
development process, 70% of the data were used for model
calibration (implemented with fivefold, k-fold cross validation)
and 30% were used to test the resultant models.

Linear discriminant analysis (LDA), a commonly used
technique for classification and dimensionality reduction
(Varmuza and Filzmoser, 2009), was used to develop a model
for discriminating between normal (control) and cold-stressed
watermelon plants. Plants that belong to the control group were
labeled 1 while all stressed plants (1, 2, and 3-week stressed
plants) were labeled 2.

Multiple linear regression (MLR) is known for its simplicity in
finding correlations between multiple variables and responses (in
this case number of leaves and plant age). The MLR algorithm is
known to fail with high-dimensional data and highly correlated
data (Marill, 2004). However, due to the reduced number of
variables after SFS variable selection (reduction to less than 40
features), applying MLR was sufficient for this study to develop
models for prediction of number of leaves and plant age.

Model Evaluation
The performance of the LDA model(s) developed for
classifying normal from cold-stressed plants was evaluated
using classification accuracy and confusion matrix (which shows
the specificity and precision of the model) for both the calibration
and prediction sets (Visa et al., 2011; Raschka, 2018).

The performance of the MLR models developed for predicting
number of leaves and plant age was tested using the goodness
of fit criteria, including root-mean-square error (RMSE) and
coefficient of determination (R2) for the calibration and
prediction sets (Zhou and Bovik, 2009; Chai and Draxler, 2014).

The best models should have R2 values close to 1, and RMSE
values close to zero.

Finally, tests were carried out on the results to evaluate and
find optimum conditions. These tests include:

(1) Analysis of the composition of the selected features to
determine the most relevant and abundant features and image
view from whence most features are extracted;

(2) Testing the results using 1, 2, and 3 image views to
determine the most suitable number of images to be used for
predicting the phenotypic traits.

RESULTS

Image Data
Using the data collection system setup, the seven cameras each
captured one image for each watermelon plant sample placed
at the center of the system. The captured images (Figure 4)
were then saved in a specified directory in a portable network
graphics (PNG) format. The images were later fed into an
image analysis pipeline to estimate the phenotypic traits of the
watermelon plants.

Background Detection
The results of the two methods used for background removal
showed that U-Net performed better than the conventional
image processing algorithm (Figure 5). The less-than-pristine
performance of the conventional image processing-based
algorithm was due to of the poorly handled variances that existed
in the data caused by inter-image intensity differences due to
sample color/intensity variances. From these results, U-Net
background removal was used for segmenting the watermelon
plant from the background scene.

Discrimination of Stressed and
Non-stressed Plants
Results of the LDA classifier for classification between normal and
cold-stressed plants resulted in 100% classification accuracy both
on the calibration and test data set (Figure 6).

The reason for the clear discrimination is because of the clear
differences (in size, texture, and color) between the normal and
stressed plants (Figure 7). An analysis of the features selected
for classifying normal and cold-stressed plants revealed that
68.2, 18.2, 4.5, and 9.1% belonged to texture, region properties,
color, and other features, respectively (Table 5). Texture features
(describe plant texture) and region properties (describe plant
shape and size) constituted more than 86% of the selected features
and thus contributed more to the classification between normal
and stressed watermelon plants.

The predominant texture features in the analysis were the
DCT, LBP, Haralick, Gabor, and Fourier descriptor features.
Further analysis established that features from image 2 (60-degree
view image, 50% of the selected features) were more abundant,
followed by those from image 3 (top view image, 27.3% of the
selected features) and image 1 (0-degree view image, 22.7% of the
selected features).
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FIGURE 4 | Watermelon plant images captured using the data collection setup.

FIGURE 5 | Comparison of watermelon plant background segmentation using (A) U-Net and (B) a conventional image processing algorithm.

FIGURE 6 | Classification results for normal and stressed plants using three images.
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FIGURE 7 | (A) Textural difference between a normal (top) and stressed (bottom) plant at week 4. (B) Size difference between a normal (top) and stressed (bottom)
plant at week 5. (C) Color difference between a normal (top) and stressed (bottom) plant at week 3.

The classification model development was repeated using
features extracted from two images and one image, and a
comparison was made to find out which number of image views
is most suitable. The results show a slight reduction in model
precision and accuracy as the number of images is reduced
(Table 6), though not significantly different when using two
or three images. However, the smaller the number of images
used, the more complex the resultant classification, requiring
more features to make a reliable classification. These results
show that a minimum of two images are required for 100%
classification accuracy.

Leaf Counting
Of the 573 features from the feature extraction process, 21
features were selected using the SFS algorithm and were used to
estimate the leaf count of the watermelon plants. The number of
leaves detected using the morphological features was correlated
with the real number of leaves in the corresponding plants.
The R2, RMSE, and mean absolute difference (MAD) values

TABLE 5 | Selected features for classification of plant stress condition.

Features Number of features Percentage

Texture LBP features 5 68.2%

Haralick features 2

Fourier features 3

DCT coefficients 2

Gabor features 2

Region properties Feret properties 2 18.2%

Euler Number 1

Orientation 1

Color 1 4.5%

Others Contrast 2 9.1%

Total 21

achieved during prediction were 0.94, 0.97 leaves, and 0.88 leaves,
respectively (Figure 8).

Plant Age Estimation
For plant age estimation, number of weeks was used as the
reference information since image data was collected every week
for 4 weeks. Using the extracted features, 15 features were selected
using the SFS feature selection algorithm and a regression model
using MLR was developed to find a correlation between the
selected features and the normal/control plant age in weeks. The
performance of the model for predicting watermelon plant age
was found to have R2 and RMSE values of 0.92 and 0.29 weeks,
respectively (Figure 8). This model was developed for all four
watermelon varieties. However, using data from the individual
watermelon varieties resulted in higher model performance in
prediction (Table 7).

DISCUSSION

Discrimination Between Stressed and
Non-stressed Plants
Temperature stress is a significant challenge to agricultural
production. Extreme changes in temperature that deviate from
a plant’s optimal growth temperature range restrict plant
metabolism, growth, and development (Yadav, 2010; Ding
et al., 2019). In non-tropical climates, watermelon plants are
cultivated in controlled environments where the plants are closely
monitored to prevent the effects adverse temperature changes.
Plants that are exposed to cold stress show symptoms including
retarded growth, yellowing of leaves (chlorosis), wilting and
reduced leaf expansion after 48 h of exposure (Yadav, 2010).
Previous studies that used image analysis to assess cold stress
in plants focused on variety performance comparison (Enders
et al., 2019), and chilling stress injury classes (Dong et al., 2019).
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TABLE 6 | Comparison of classification results for normal and stressed watermelon plants using features from three-view, two-view, and one-view images.

Number of Images Calibration Test Selected features Outliers

TP FP TN FN Acc. (%) TP FP TN FN Acc. (%)

3 images 62 0 23 0 100 27 0 9 0 100 21 1

2 images 61 0 23 0 100 27 0 9 0 100 22 2

1 image 61 0 22 0 100 24 1 9 0 98 26 4

FIGURE 8 | Regression plot from model for estimating number of leaves of watermelon plant (A,B) watermelon plant age for all varieties estimated using 21 selected
features.

However, none of these studies attempt to classify cold stressed
plants from normal ones.

This study results demonstrated the possibility of classification
of cold-stressed watermelon plants from normal plants and
determination of some phenotypic traits based on image analysis.
The classification model was able to distinguish the stressed
plants after 1 week of exposure to stress conditions from the
normal plants. Analysis of the selected features showed that
texture was most important for the classification (Table 5). This is
because during cold stress, the leaf shape of the plants is shriveled
at the edges, causing a change from a smooth hairy texture to a
coarser rough texture (Figure 7).

Similarly, the stressed plants were smaller in size than normal
plants because plant growth is stunted during the cold stress spell

TABLE 7 | Multiple linear regression model performance based on all and
individual watermelon varieties.

Varieties Calibration Test Selected features Outliers

R2 RMSE R2 RMSE

All varieties 0.93 0.28 0.92 0.29 15 5

DAP 0.98 0.15 0.98 0.15 18 2

DAPCT 0.98 0.12 0.97 0.17 18 5

PI482261 1.00 0.02 0.99 0.04 14 1

45NC 1.00 0.03 1.00 0.05 18 1

(Figure 7). This was clearly seen in the plant image data resulting
in a high feature importance for the shape-based features (region
properties). This is because cold stress disrupts bio-energetic
processes, causes changes in metabolism, and contributes to
damage to cellular structures, hence the stunted growth and
shriveled leaves (Korkmaz and Dufault, 2001; Staniak et al., 2021).

These clear differences in the image data resulted in a
distinct classification between cold-stressed watermelon plants
from normal ones regardless of the age and variety. A further
analysis into the number of image views required for extraction
of morphological features resulted in a minimum requirement
of two image views (Table 6). Using one image-view to extract
morphological features required a larger feature set of 26 features
and achieved a lower classification accuracy. This is because of
occlusion of plant leaves using one image view that was alleviated
by using multiple views.

Leaf Counting
Over the duration of the data collection period, it was noted that
the watermelon plants exposed to stress were stunted and had a
lower leaf count compared to the normal plants. This signifies
the importance of counting the number of leaves as a phenotypic
trait in plant monitoring to determine plant health alongside
other traits. The leaf counting task is specialized and requires
a new model to be developed for each plant due to variations
among species. Similar to this study, Pape and Klukas (2015)
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used a few geometric features to carry out the leaf counting
task for Arabidopsis thaliana and tobacco plants. This study
achieved comparable results to theirs using geometric as well
as texture features to carry out leaf counting for watermelon
plants which, to the best of our knowledge, has not been done
in previous studies.

Similar results to ours have been obtained in previous studies
using DL algorithms for the leaf counting task (Aich and Stavness,
2017; Ubbens and Stavness, 2017). However, the use of deep
learning requires the annotation of each leaf in a plant image
to generate a training dataset from which the algorithm learns
and can then make accurate predictions of leaf counts from
new images. This requires precise delineations, the acquisition
of which is time-consuming and sensitive to the arrangement of
leaves (Giuffrida et al., 2018). The model in this study attempted
to overcome this challenge with the extraction and application of
morphological features from images, which resulted in superior
results for leaf counting that are comparable to previous studies
that have used DL algorithms.

Plant Age Estimation
The sensitivity of watermelon plants to temperature stress varies
depending on the age of the plant. The adverse effects of
temperatures below 13◦C can be seen before the flowering stage
and plants that are subject to temperatures greater than 14◦C
beyond the flowering stage do not experience significant cold
stress effects. This was the basis for the experimental design of
this study. Estimation of the plant age can be done based on the
number of leaves and tillers (Girma et al., 2007; Teimouri et al.,
2018). For this study, the plant age was determined based on the
number of weeks from the 2nd week (seedling stage) to the 5th
week (flowering stage) i.e., for week 2, 3, 4, and 5.

The regression results (Table 7) showed distinct predictions
of the age of the plants from all four varieties. A further
analysis of plant age prediction for individual varieties resulted
in better prediction performance. Because of the differences
between the watermelon varieties, data from a single variety
is more homogenous and subject to less variation compared
to data from all the watermelon varieties, resulting in better
model performance. This is consistent with the phenomenon
of intraspecific variation that accounts for the phenotypic and
genotypic variation within a species (des Roches et al., 2018). This
phenomenon influences models that are used for estimating the
watermelon plant age.

In summary, a simple plant-to-sensor system was developed
that can identify cold stressed watermelon plants and additionally
estimate plant characteristics including leaf count and plant age.
This study applies an image analysis pipeline (image processing,
feature detection, extraction, and selection) on the captured
watermelon plant images to identify cold stressed plants and
estimate leaf count and plant age.

The movement of plants to the data collection system disturbs
the growth conditions, may induce mechanical damage, and
is limited by the size of the plants. This method works well
for small plants and becomes increasingly troublesome, as the
plants grow. Similarly, since color information is employed in the
image analysis pipeline, stable lighting conditions during image

acquisition are required. Because of inconsistent lighting in fields
or growth chambers, in situ measurements are not possible.

For this study, approximately 120 watermelon samples from
four varieties were used. To develop more robust classification
and regression models, more varieties are needed.

CONCLUSION

This study established that it is possible to classify cold-stressed
watermelon plants from normal ones and predict phenotypic
traits such as the number of leaves and plant age using selected
morphological features from image analysis. The classification
model achieved a test accuracy of 100% while using features
from two and three different view images, indicating a minimum
requirement of two images for 100% classification. An analysis of
the few select features used for model development established
that texture features and region properties (related to shape and
size) were the most important features for classifying normal
from stressed watermelon plants.

The models developed for additional phenotypic traits, i.e.,
plant age and number of leaves, achieved good prediction
performance. Overall, this study was able to determine that
it is possible to use image analysis to extract morphological
features and accurately predict the stress condition and some
key phenotypic traits for watermelon plants. This study can
serve as a basis for the development of a real-time system
for monitoring watermelon plants in high-throughput plant
phenotyping facilities. Further studies can be carried out to
develop wide-range models for the prediction of multiple
phenotypic traits, which would be advantageous for high-
throughput phenotyping systems.
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This paper reports on the measurement of optical property mapping of apples at the
wavelengths of 460, 527, 630, and 710 nm using spatial-frequency domain imaging
(SFDI) technique, for assessing the soluble solid content (SSC), firmness, and color
parameters. A laboratory-based multispectral SFDI system was developed for acquiring
SFDI of 140 “Golden Delicious” apples, from which absorption coefficient (µa) and
reduced scattering coefficient (µs

′) mappings were quantitatively determined using the
three-phase demodulation coupled with curve-fitting method. There was no noticeable
spatial variation in the optical property mapping based on the resulting effect of different
sizes of the region of interest (ROI) on the average optical properties. Support vector
machine (SVM), multiple linear regression (MLR), and partial least square (PLS) models
were developed based on µa, µs

′ and their combinations (µa × µs
′ and µeff ) for

predicting apple qualities, among which SVM outperformed the best. Better prediction
results for quality parameters based on the µa were observed than those based on the
µs
′, and the combinations further improved the prediction performance, compared to

the individual µa or µs
′. The best prediction models for SSC and firmness parameters

[slope, flesh firmness (FF), and maximum force (Max.F)] were achieved based on the
µa × µs

′, whereas those for color parameters of b∗ and C∗ were based on the µeff ,
with the correlation coefficients of prediction as 0.66, 0.68, 0.73, 0.79, 0.86, and
0.86, respectively.

Keywords: optical property mapping, spatial-frequency domain imaging, apple, quality, correlation, prediction

INTRODUCTION

The apple, famous for its rich vitamin and mineral with high-nutritional value, is one of the most
consumed fruits worldwide. Apples are available throughout the year due to the advanced and
strict storage control. After harvesting, apples are transported immediately from the orchard to
the shed storage. Alternatively, apples are graded and sorted first in the warehouse, after which
they are directly moved to the cold shed storage (Zhang et al., 2020, 2021). The latter case is more
popular because it can meet the increasing and diverse demands of consumers for apple quality.
Quality evaluation on intact apple fruit, which is the key step in the process of grading and sorting,
is gaining tremendous interest and attention in the field of non-destructive inspection. In the past
decades, visible and near-infrared (Vis/NIR) spectroscopy has been widely developed and adopted
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for quality assessment of plant and food products (Zhao et al.,
2020; Daniels et al., 2021; Li and Zhang, 2021; van Wyngaard
et al., 2021; Wan et al., 2021), thanks to its rapid and non-
invasive character. A large number of statistical models based on
Vis/NIR spectroscopy have been built for predicting apple quality
properties, such as firmness, crispness, soluble solid content
(SSC), and acidity (Gao et al., 2016; Fan et al., 2020; Huang
et al., 2020; Tian et al., 2020). However, these models are often
valid for the conditions under which they were trained and are
not applicable under very variable conditions, such as different
cultivars, batches, and places of origin. The main reason causing
the weak robustness and applicability of the statistical models
is that conventional Vis/NIR spectroscopy typically relates the
spectra to the chemical and/or physical properties using a “black-
box” method directly and it cannot offer separate information
on the absorption and scattering properties of plant and food
tissues. It is thus desirable to reveal the insight into light-tissue
interaction (mainly absorption and multiple scattering), which is
expected to provide more reliable prediction of quality properties
under very variable conditions.

In the last decade, optical properties of fruits and vegetables,
mainly referring to absorption coefficient (µa, mm−1) and
reduced scattering coefficient (µs

′, mm−1), have been measured
by different researchers using diverse optical sensing techniques
(Hu et al., 2015; Lu et al., 2020), such as integrating sphere (IS),
time-resolved (TR), spatially resolved (SR) and spatial-frequency
domain imaging (SFDI). Sun C. et al. (2020) used IS coupled with
inverse adding-doubling algorithm for extracting the µa and µs

′

of citrus fruit. Huang et al. (2018) measured the µa and µs
′ of

tomatoes at six maturity stages from multichannel hyperspectral
imaging-based SR spectra. Vanoli et al. (2020) applied TR and SR
spectroscopy to determine the µa and µs

′ of apples after ripening
in shelf life. The measured optical properties were used for
evaluating the physiochemical properties, such as water content,
oil gland size, total soluble solids, titratable acidity, and firmness.
All these studies are limited to point measurement, which means
the measured optical property is from single point (usually one
pixel), and it cannot attain the spatial distribution of optical
properties through single measurement. Since plant and food
tissues present heterogeneity to some extent, some researchers
measured several tissue points and took the average value as
the optical property (He et al., 2016). This attempt might partly
weaken the effect of measurement location on the intrinsic optical
property, but it could not address the issue fundamentally.

Spatial-frequency domain imaging, as an emerging modality
for measuring optical properties, is capable of mapping µa and
µs
′ on a pixel-by-pixel fashion, which enables to attain 2-D

optical property distribution through single measurement. By
demodulating the emitted images under structured illuminations
with changed frequencies and phases, the µa and µs

′ can be
estimated using inverse algorithm based on appropriate light
transfer models (Hu et al., 2016). Owing to the capabilities
of wide-field and non-contact imaging, and depth-varying and
signal-enhanced characterization (Gigan, 2017), SFDI has been
applied for measuring the optical property mappings of apple,
kiwi, mango, and pear (Hu et al., 2020a; He et al., 2021; Lohner
et al., 2021; Sun et al., 2021). However, no reports were found

on the prediction of apple quality properties based on the
measured optical property mappings. In addition, in the SFDI,
one can extract the optical property of single pixel, as well as do
the measurements of multiple pixels in a preselected ROI, but
the results would present difference to some extent. It is thus
necessary to quantify the effect of ROI size (i.e., number of pixels)
on optical property measurement. Therefore, the objectives of
this research were as (1) to measure the optical property (µa
and µs

′) mappings of apples and compare the optical property
difference among different sizes of ROI; (2) to relate the average
optical properties to apple SSC, firmness, and color parameters;
and (3) to evaluate prediction performance of apple quality
properties based on the optical properties using different models.

MATERIALS AND METHODS

Apple Preparation
A total of 140 “Golden Delicious” apples with similar size and
being free of visible defects were purchased from a local fruit
supermarket at the city of Hangzhou. Physical properties (i.e.,
weight, diameter, and height) of the apples are measured and
summarized in Table 1. To complete the acquisition of SFDI
and the measurement of quality attributes for all the apples, the
experiments were designed and conducted, with the flowchart
shown in Figure 1. The intact apples were cut lengthwise to
generate a slice with the thickness of about 15 mm. The slice
(left in Figure 1) was used for juicing measurement to get the
corresponding SSC value, while the other part (right in Figure 1)
was subjected to the color measurement, SFDI measurement,
and puncture test, respectively, from which the color parameters
(L∗, a∗, b∗, C∗, and H◦), optical property mapping, and firmness
parameters [slope, flesh firmness (FF), and maximum force
(Max.F)] were obtained. The measured optical property mapping
was then used for data interpretation, correlation analysis, and
quality prediction. During the experiment, apples were kept at
room temperature (∼22◦C) with no humidity control and the
experiment was completed within 5 days.

Acquisition of Spatial-Frequency Domain
Imaging and Optical Property Mapping
Spatial-frequency domain imaging of the apples was acquired
using a laboratory-developed SFDI system, as shown in Figure 2.
A detailed description of the SFDI system and its calibration
procedure were given in our previous study (Hu et al., 2016).
The SFDI system mainly consists of a light source, a digital
projector, and a color camera. The light source, combined with
the DLP-based projector, is used to generate structured patterns
for illuminating the apples. The reflected light is received by the
camera, which produces SFDI under different frequencies and
phases. The neutral density filter mounted with the projector
could reduce light intensity uniformly to avoid burning on the
apples, while the bandpass filter placed in front of the camera is
used for wavelength dispersion, constituting a multispectral SFDI
system. A number of two crossed linear polarizers are mounted
in the projection and detection arms to reduce specular reflection
from the apple surface. In this study, four wavelengths of 460,
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TABLE 1 | Statistics of physical and quality parameters for 140 “Golden
Delicious” apples.

Test method Parameter Mean SD Max Min CV (%)

Auncel Weight (g) 226.8 17.9 270.0 190 7.9

Vernier caliper Diameter (mm) 80.4 2.4 84.9 74.9 2.9

Height (mm) 68.0 3.7 77.4 59.4 5.4

Slice thickness (mm) 14.8 0.9 17.2 12.1 5.6

Refractometer SSC (%) 15.0 1.3 18.6 11.5 8.5

Puncture Slope (N/mm) 7.3 1.7 11.1 3.4 22.9

FF (N) 14.0 1.6 17.4 9.5 11.4

Max.F (N) 16.7 1.2 19.8 13.6 17.5

Colorimeter L* 76.8 1.1 79.2 74.1 1.4

a* −2.9 0.8 −1.1 −5.0 −7.8

b* 27.3 1.8 34.3 22.6 10.2

C* 27.4 1.8 34.6 22.8 10.2

H◦ 96.1 1.7 100.0 92.4 1.7

SD, standard deviation; CV, coefficient of variation; FF, flesh firmness; Max.F,
maximum force.

527, 630, and 710 nm are used. When spatial frequency of the
structured illumination is 0.20 mm−1, the light penetration depth
within apple tissue is approaching 1 mm (Hu et al., 2021). High-
frequency illumination has a relatively shallow light penetration
depth, which could be interpreted by the depth-varying feature
(Hayakawa et al., 2018; Lu and Lu, 2019). To remove the effect of
apple peel (with the thickness about 1 mm) on optical property
mapping, six spatial frequencies with the values of 0, 0.04, 0.08,
0.12, 0.16, and 0.20 mm−1 were utilized in this study.

The captured SFDI of apples was processed using appropriate
algorithms for extracting optical property mapping, among
which image demodulation and inverse estimation are the two
key steps (Figure 3A). Great efforts have been made to develop

FIGURE 2 | Schematic of a multispectral spatial-frequency domain imaging
system for measuring optical property mappings of apples.

and improve the demodulation and inverse estimation methods
(Lu et al., 2016; Hu et al., 2018, 2019; Sun et al., 2022). In
this study, the conventional three-phase demodulation coupled
with non-linear curve-fitting (TP-CF) method was applied for
extracting optical property mapping of apples due to its high
accuracy. To implement the TP-CF method, three-phase images
at the same frequency were first demodulated to generate one
alternative component (AC) image. Then, the non-linear curve-
fitting method was used to extract the optical property (µa and
µs
′) mappings of apples on a pixel-by-pixel fashion. It should be

noted that two AC images are at least needed for curve fitting.
The essential nature of the curve fitting is continuously iterative
computing until the difference between the measured reflectance
from the AC image and the computed reflectance based on the
initially guessed optical properties is within the preset threshold

FIGURE 1 | Schematic overview of the experimental and analytical procedures. SSC denotes soluble solid content.
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FIGURE 3 | Schematic of optical property mapping using three-phase demodulation coupled with curve fitting (A) and flowchart of the curve-fitting algorithm (B). AC
and OP denote alternative component and optical property, respectively.

(Figure 3B). In this occasion, dynamic adjustment is carried
out to update the initial optical properties until the reflectance
present a convergent pattern. To investigate the effect of ROI size
on the optical property measurement, four ROIs with different
sizes (i.e., 10 × 10, 30 × 30, 60 × 60, and 100 × 100 pixels,
corresponding to 3 × 3 mm2, 9 × 9 mm2, 18 × 18 mm2, and
30× 30 mm2 approximately) were selected, and the average value
was taken as the optical property.

Measurement of Apple Quality Attributes
All the 140 apples were subjected to the measurement for
different quality attributes. Juice of apple fruit was extracted
from the apple slice (left in Figure 1), and SSC was measured
using a handheld digital refractometer (model PR-101, Atago
Co., Tokyo, Japan). Apple color was measured from the other
part (right in Figure 1) using a colorimeter (CR-400, Konica
Minolta Sensing, Inc., Tokyo, Japan) for the L∗, a∗, b∗, C∗, and H◦
values in triplicate, and average values were recorded for further
analysis. As shown in Figure 1, apple firmness was measured
from the surface area in quadruplicate with the distance between
the center of puncture points and the external contour of apple
about 10 mm, and the average values were recorded. Puncture
tests were carried out using the texture analyzer (Model TA.XT
plus, Stable Micro System, United Kingdom) equipped with a 5-
mm cylindrical Magness-Taylor probe at a test speed of 4 mm/s
and the penetration depth was set as 8 mm. A number of
three parameters related to the firmness, which include slope in
N/mm, FF in N, and Max.F in N, were then determined from
the force–displacement curve. The slope was measured between
the point of initial displacement and the point corresponding to
the Max.F, while the FF was defined as the average force over
the puncture distances between the rupture point and maximum
puncture depth (8 mm).

Correlation Analysis and Prediction
Modeling
Pearson’s linear correlation analysis was performed on the
relationship among all quality parameters and the absorption
and reduced scattering coefficients as well as their combinations
(i.e., µa, µs

′, µa × µs
′, and µeff = [3µa (µa + µs

′)]1/2)
using the software of IBM SPSS Statistics 25. µa × µs

′ is the
multiplication of µa and µs

′, and it was reported to be more
effective for predicting quality of tomatoes than using individual
µa and µs

′ (Huang et al., 2018). µeff is a useful parameter
for comparing light transmittance characteristics of different
tissues and their wavelength dependence (Flock et al., 1987).
To further explore the relationship between optical properties
and quality parameters of apples (i.e., SSC, firmness and color),
prediction models were established based on µa, µs

′, µa × µs
′,

and µeff using support vector machine (SVM), multiple linear
regression (MLR), and partial least squares (PLS) at the four
wavelengths. The models of SVM, MLR, and PLS were developed
by the Unscrambler X 10.4 software. All the 140 apple samples
were randomly divided with 75% for the calibration set and the
remaining 25% for the validation set. The performance of the
prediction models was evaluated using the statistic parameters of
correlation coefficient of prediction (rp) and root mean square
error of prediction (RMSEP).

RESULTS AND DISCUSSION

Statistics of Measured Quality
Parameters
The statistical data of SSC, firmness (slope, FF, Max.F), and color
(L∗, a∗, b∗, C∗, and H◦) for all tested apples are summarized
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in Table 1. There was no relatively large variation for all the
nine quality indexes based on the standard deviation (SD) and
coefficient of variation (CV), since all the 140 apples were
purchased from the same batch with similar properties. It was
observed that the distributions of apple SSC and color were
relatively narrow than the firmness, with the CV values close to
or smaller than 10%. This observation brought great challenges
for predicting SSC and color parameters, which will be discussed
in the following section.

Correlations among the SSC, firmness, and color parameters
for all apples are summarized in Table 2. It was observed that
the overall correlation among these quality parameters was not
strong, with most of the coefficients smaller than 0.50. This might
be due to the fact that the apples used in this study were similar
in appearance and had no difference in maturation stage or
shelf life, thus causing narrow distribution of quality attributes.
It should be noted that the correlation coefficient between the
Max.F and FF was as high as 0.80, because the FF was defined as
the average force over the puncture distances between the rupture
point (Max.F) and puncture depth. This phenomenon was also
reported by Huang et al. (2018) when studying tomato fruit based
on spatially resolved spectroscopy. The correlation coefficient
between b∗ and C∗ was 1.00, because the two parameters were
very close to each other.

Optical Property Mappings of Apples
To determine the optical property mappings of apples, the TP-
CF method was carried out, and the resulting absorption and
scattering properties are displayed in Figures 4A,B, respectively.
The numbers labeled below the sub-pictures are the average
values of µa or µs

′ for the marked ROI with the size of 30 × 30
pixels. It should be noted that the circular part is sliced apple
tissue with relatively flat surface, while the surrounding part,
which has a more uniform color distribution, is the sample
holder made of aluminum material with blackening treatment.
There was a decreased tendency of the µa and µs

′ along the
four wavelengths. Comparing the scattering properties at a
wavelength, like 527 nm in Figure 4B, a spatial variation of µs

′

for the apple tissue between 0.996 and 1.152 mm−1 was noticed.
The complex apple tissue formed by different components with

TABLE 2 | Pearson’s linear correlation coefficients among apple
quality parameters.

Parameter SSC Slope FF Max.F L* a* b* C* H◦

SSC 1.00

Slope 0.46 1.00

FF 0.51 0.38 1.00

Max.F 0.69 0.51 0.80 1.00

L* 0.32 0.36 0.36 0.36 1.00

a* 0.77 −0.45 −0.32 0.31 −0.48 1.00

b* 0.51 0.48 0.42 0.53 −0.50 −0.50 1.00

C* 0.49 0.48 0.42 0.52 −0.49 −0.52 1.00 1.00

H◦ −0.86 0.38 −0.34 −0.40 0.57 −0.91 −0.49 −0.46 1.00

Significant correlations are in bold (n = 140, r ≥ 0.5, p-value ≤ 0.05).
SSC, soluble solid content; FF, flesh firmness; Max.F, maximum force.

different physicochemical characteristics and the performance of
structured illumination (e.g., non-uniformity), as well as data
processing algorithm for optical property estimation, are the
potential factors that cause the variation. A similar variation
also occurs for the µa mappings in Figure 4A. It was observed
that the spatial variation of optical properties at 710 nm
was less pronounced than the other three wavelengths, which
demonstrates that wavelength plays a non-negligible role when
estimating apple optical properties.

Figure 5 shows the average optical properties of four different
ROI with the sizes of 10 × 10, 30 × 30, 60 × 60, and 100 × 100
along the four wavelengths. The µa and µs

′ for different sizes of
ROI are quite similar, but still, a difference can be observed. In
general, the optical property value in small size ROI (10 × 10)
was slightly different from the value in large size ROI, which
might be caused by the spatial variation mentioned above. For
the three larger ROIs, the average optical properties were close
to each other, with the differences of 6.94–19.0% and 1.56–3.51%
for µa and µs

′, respectively. Considering the fact that larger-size
ROI means more cost of time, the ROI with the size of 30 × 30
was chosen for averaging theµa andµs

′ and would be used in the
following sections.

To our knowledge, this is the first time that the optical
properties of apple tissue were determined from different sizes of
ROI. Based on SFDI measurements of “Braeburn” apples, Lohner
et al. (2021) recently observed thatµa was about 0.01–0.04 mm−1

for the cortex tissue at 656 nm, which covers the µa range at
630 nm in this study (0.021–0.024 mm−1), if the value from the
ROI of 10 × 10 is excluded. As known from the previous work,
the wavelength of 656 nm is mainly related to the presence of
chlorophyll b (Merzlyak and Solovchenko, 2002), and it is thus
reasonable that the µa value is larger than the present results.
Our results are also comparable to the published integrating
sphere measurements by other researchers. For example, Wei
et al. (2020) measured the optical properties of cold-stored “Fuji”
apples over 400–1,100 nm and reported that the µa was in the
range of about 0.02–0.13 mm−1, whereas the µs

′ was between 1.0
and 1.75 mm−1 for the flesh tissue, which are comparable with
the present results.

Correlations Between Optical Properties
and Apple Quality Attributes
Table 3 presents the relationships between the average optical
properties and apple quality parameters. The correlations
between the optical properties and their combinations at 527
and 630 nm measured by SFDI and apple quality parameters
are not reported as non-significant. Better correlations were
observed between µa and quality parameters, compared with
µs
′, which is in general agreement with the previous studies for

apples, tomatoes, and peaches (Do Trong et al., 2014; Huang
et al., 2018; Sun Y. et al., 2020). The µa_460 was negatively
related to a∗ and C∗ and positively related to b∗, slope, FF,
and Max.F, whereas µa_710 was only positively related to b∗
and negatively related to a∗, C∗, slope, FF, and Max.F. As
for scattering, no significant correlations were found between
µs
′
_460 and quality parameters, whereas µs

′
_710 was positively
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FIGURE 4 | Absorption coefficient (A) and reduced scattering coefficient (B) mappings of a representative apple at the wavelengths of 460, 527, 630, and 710 nm.

FIGURE 5 | Average absorption coefficient (A) and reduced scattering coefficient (B) of a representative apple with different sizes of ROI at the wavelengths of 460,
527, 630, and 710 nm.

and negatively related to b∗ and C∗, respectively. It was observed
that the combinations of µa × µs

′
_460, µa × µs

′
_710, µeff _460,

and µeff _710 resulted in better correlation results, compared
with the individual optical properties. This is especially true
for the correlations between the color parameters of a∗, b∗,
C∗, and µa × µs

′
_460, µa × µs

′
_710. For example, using

µa × µs
′
_710 improved correlation coefficients of a∗, b∗, and C∗

by 14.8, 25.4, and 25.4%, compared with the correlation analysis
based on the µa_710. Moreover, a noticeable improvement
was found for SSC when using the combinations of optical

properties (Table 3). These results demonstrated that optical
property measurement can provide useful information about
the apple quality.

Prediction for Apple Quality Attributes
The resulting rp and RMSEP from SVM, MLR, and PLS based on
µa, µs

′, µa × µs
′, and µeff are summarized in Table 4. Overall,

the prediction result performs not well with the rp-values of 0.24–
0.86 and 0.19–0.82 for the SVM and MLR, respectively. The
result predicted by PLS is worse and not reported. It could be
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TABLE 3 | Pearson’s linear correlation coefficients between optical properties and apple quality parameters.

µa_460 µa_710 µs
′
_460 µs

′
_710 µa × µs

′
_460 µa × µs

′
_710 µeff _460 µeff _710

SSC −0.42 −0.45 −0.31 −0.39 −0.61 −0.65 −0.61 −0.64

Slope 0.64 −0.55 0.40 0.45 0.63 −0.52 0.64 −0.53

FF 0.61 −0.56 0.33 0.34 0.69 −0.65 0.69 −0.65

Max.F 0.62 −0.59 0.40 0.38 0.62 −0.60 0.63 −0.59

L* 0.39 0.32 0.21 0.32 0.49 0.37 0.30 0.28

a* −0.57 −0.54 −0.23 −0.20 −0.65 −0.62 −0.57 −0.61

b* 0.59 0.59 0.32 0.52 0.67 0.74 0.60 0.67

C* −0.59 −0.59 −0.32 −0.52 −0.67 −0.74 −0.60 −0.66

H◦ 0.36 0.26 0.15 0.11 0.45 0.50 0.26 0.28

Significant correlations are in bold (n = 140, r ≥ 0.5, p-value ≤ 0.05).
SSC, soluble solid content; FF, flesh firmness; Max.F, maximum force.

observed that color parameters of b∗ and C∗ achieved the best
prediction performance (rp = 0.86), followed by the firmness
parameters with the rp-values of 0.68, 0.73, and 0.79 for slope,
FF, and Max.F, and finally, SSC was the most challenging for
the prediction (rp = 0.66). The prediction results for all the
apple quality parameters based on µa were far better than that
based on µs

′, which is consistent with the findings of Pearson’s
correlation analysis above. The combinations of µa × µs

′ and
µeff gave better prediction results, compared to the individual µa
or µs

′. For example, using µa × µs
′ for predicting the parameter

of slope by the SVM resulted in rp of 0.68, which represents
17.2% improvement, compared with the individual µa. It should
be mentioned that the combinations improved the prediction
of SSC significantly (> 34.0%), which also agrees well with the
correlation analysis.

DISCUSSION

Optical property measurement, as a powerful tool for
interpreting light-tissue interaction, as well as an alternative
solution for quality assessment of plant and food products by
quantitatively separating absorption and scattering information
from spectroscopic and/or image signals, has received increasing
interests. Many fruits and vegetables, such as apple, pear, peach,
citrus fruit, tomato, onion, and sweet potato, have been tested
using diverse optical measurement techniques (Hu et al., 2015,
2020b; Lu et al., 2020). However, most of the efforts were made
to obtain the optical property of single point (usually one pixel in
the tissue). To our knowledge, SFDI is the sole technique which
is capable of measuring the optical property mappings (in the
axial and transverse directions), and till now, only apple and pear
fruit have been studied (Hu et al., 2020a; He et al., 2021; Lohner
et al., 2021). The apple flesh, as a relatively uniform tissue, should
present homogeneous optical property mapping, which was
confirmed by the results observed in this paper. For non-uniform
samples, such as apple with peel, optical property mapping is
critical to elaborate the spatial distribution of optical properties,
which, in turn, would help to select the optimal location in
optical inspection for quality evaluation.

It is well known that there are several peaks in apple
absorbance spectra, which can be attributed to carotenoids

around 500 nm, chlorophyll around 670 nm, and water around
980 nm (Vanoli et al., 2020). The wavelengths of 460 and 710 nm,
under which better correlations between the optical properties
and apple quality parameters were obtained, are close to the
absorption peaks of carotenoids and chlorophyll, respectively.
However, apple preparation in this study is destructive by
removing a slice of about 15 mm, and the color parameters
are all measured from the flesh tissues. Though pigments could
contribute to flesh coloration, the amounts of carotenoids and
chlorophylls in the flesh are very low (Delgado-Pelayo et al.,
2014), which could partly explain why the correlations between
optical property and color parameters were not high enough.

TABLE 4 | SVM and MLR prediction results for apple quality parameters based on
absorption coefficient (µa), reduced scattering coefficient (µs

′), and
their combinations.

Quality
parameter

Statistic
parameter

SVM prediction MLR prediction

µa µs
′ µa ×

µs
′

µeff µa µs
′ µa ×

µs
′

µeff

SSC rp 0.47 0.30 0.66 0.63 0.40 0.31 0.59 0.60

RMSEP 1.28 1.27 1.28 1.28 1.32 1.34 1.32 1.32

Slope rp 0.58 0.32 0.68 0.67 0.54 0.27 0.60 0.61

RMSEP 1.65 1.63 1.66 1.66 1.70 1.72 1.71 1.71

FF rp 0.64 0.24 0.73 0.72 0.53 0.20 0.63 0.62

RMSEP 2.24 2.29 2.24 2.25 2.25 2.29 2.25 2.25

Max.F rp 0.72 0.25 0.79 0.78 0.56 0.21 0.64 0.64

RMSEP 1.20 1.27 1.21 1.22 1.28 1.31 1.29 1.29

L* rp 0.34 0.35 0.41 0.42 0.31 0.33 0.38 0.40

RMSEP 1.06 1.01 1.07 1.07 1.09 1.09 1.10 1.10

a* rp 0.57 0.35 0.66 0.57 0.52 0.28 0.58 0.50

RMSEP 0.84 0.82 0.84 0.84 0.86 0.85 0.87 0.87

b* rp 0.80 0.61 0.85 0.86 0.75 0.57 0.78 0.82

RMSEP 2.32 2.42 2.16 2.28 2.52 2.53 2.35 2.44

C* rp 0.81 0.61 0.85 0.86 0.75 0.58 0.77 0.82

RMSEP 2.32 2.42 2.16 2.28 2.53 2.53 2.35 2.44

H◦ rp 0.33 0.26 0.38 0.37 0.31 0.19 0.33 0.32

RMSEP 1.73 1.71 1.70 1.71 1.76 1.78 1.75 1.76

SSC, soluble solid content; FF, flesh firmness; Max.F, maximum force; rp,
correlation coefficient of prediction; RMSEP, root mean square error of prediction.
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This study showed that absorption properties provided useful
information for apple SSC, firmness, and color prediction, while
the prediction performance based on the scattering properties
was much worse. This observation is general agreement with the
previous studies for apple, peach, and tomato using the spatially
resolved technique (Do Trong et al., 2014; Huang et al., 2018; Sun
Y. et al., 2020). For SSC and color parameters, they are closely
related to the chemical compositions and pigment contents
in apples, which have direct relationships with the absorption
properties. On the other hand, and surprisingly enough, the
prediction of firmness parameters based on the absorption
properties was far better than that based on the scattering
properties. This unexpected outcome could be attributed to
the fact that SFDI is limited to light penetration depth (2–
3 mm) (Lu and Lu, 2019; Hu et al., 2021), while the firmness
measurement by the texture analyzer probed the flesh much
deeper (8 mm). In addition, the wavelengths used in this
study are near to the characteristic wavelengths with absorption
peaks, while the scattering properties have no features in those
wavelengths. This may also explain why absorption properties
performed better correlations with apple quality parameters than
scattering properties. Since the apple quality is accompanied
with both chemical compositions and tissue microstructures, the
combinations of optical properties could improve the prediction
performance.

The prediction models based on SVM were superior to the
models established by MLR and PLS. This may be attributed
to the fact that four wavelengths are not adequate to establish
the stable and adaptable MLR and PLS models, while SVM is
one of machine-learning methods, which is more powerful in
dealing with this issue. This observation suggests that other
machine-learning and deep learning methods, such as artificial
neural network and convolutional neural network, can be tested
for quality prediction based on optical properties in the future.
Overall, the correlation and prediction performance between the
optical properties and quality parameters were comparable to the
results of some published work. For instance, He et al. (2016)
and Sun C. et al. (2020) showed that the prediction models for
SSC of pear and citrus fruit based on the µa spectra measured
by integrating sphere technique gave the rp-values of 0.63 and
0.67, respectively, while the rp for SSC of tomato fruit based
on the absorption properties estimated from spatially resolved
diffuse reflectance was 0.62 (Huang et al., 2018), which are all
comparable to the rp of 0.66 in this study. As for the firmness
prediction, He et al. (2016) reported that the PLS model gave rp-
value of 0.66, which was less satisfied than the results of Do Trong
et al. (2014) (rp = 0.84). The apple color prediction in this study
was much better than the result reported by Vanoli et al. (2020)
based on time- and spatially resolved techniques. Though the
prediction performance of these results showed great differences,
which may be in part caused by the factors of cultivar, growing,
maturity and storage conditions, and measuring technique, they
all demonstrated that there was a great potential for quality
prediction based on the measured optical properties. However, in
this paper, the results are still far away from practical application
in the field of non-destructive inspection. Very few samples and

characteristic wavelengths, as well as the narrow distribution
of quality attributes (SSC, firmness, and color) for the apple
samples used in this study, are the critical factors that result in
low rp-values. Furthermore, relatively low correlation for SSC
could also be caused by the different locations (i.e., the left and
right pieces in Figure 1) for juicing and SFDI measurements.
Apples were cut into two parts in the sample preparation to
generate a relatively smooth surface, which is critical to keep
the distance between camera and sample surface consistent
during SFDI measurement. However, this operation could not
meet the requirement of non-destructive inspection in practical
applications. Apple contour has non-negligible effect on optical
property mapping, and thus, the contour correction is worth
studying in the future research.

CONCLUSION

The optical property mappings of “Golden Delicious” apples
were measured using the SFDI technique at the wavelengths of
460, 527, 630, and 710 nm. Spatial variations in the absorption
coefficient (µa) and reduced scattering coefficient (µs

′) mappings
for the sliced flesh tissue were noticed, but overall, the µa and
µs
′ distributions were relatively uniform. Different sizes of ROI

(10 × 10, 30 × 30, 60 × 60, and 100 × 100 pixels) had less
effect on the average µa and µs

′, except for the 10 × 10 that
was too small. The average µa and µs

′ showed a decreased
tendency along the four wavelengths. Correlations between apple
quality parameters and µa and µs

′, as well as their combinations
(µa × µs

′ and µeff ) at 460 and 710 nm, were superior to
those at 527 and 630 nm, since the former two wavelengths
were close to the absorption peaks. The prediction for quality
parameters (SSC, firmness, and color) based on the µa was
far better than that based on the µs

′, and the combinations
of µa × µs

′ and µeff improved the prediction performance,
compared to the individual µa or µs

′. The prediction models
established based on SVM outperformed those by MLR and PLS.
The best prediction models for SSC, slope, FF, and Max.F were all
achieved based on the µa × µs

′, with the correlation coefficients
of prediction (rp) of 0.66, 0.68, 0.73, and 0.79, respectively,
whereas the µeff gave the best prediction for most of the color
parameters, with the rp-value of 0.86 for both of the parameters
of b∗ and C∗.
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The aged seeds have a significant influence on seed vigor and corn growth. Therefore,
it is vital for the planting industry to identify aged seeds. In this study, hyperspectral
reflectance imaging (1,000–2,000 nm) was employed for identifying aged maize seeds
using seeds harvested in different years. The average spectra of the embryo side,
endosperm side, and both sides were extracted. The support vector machine (SVM)
algorithm was used to develop classification models based on full spectra to evaluate
the potential of hyperspectral imaging for maize seed detection and using the principal
component analysis (PCA) and ANOVA to reduce data dimensionality and extract feature
wavelengths. The classification models achieved perfect performance using full spectra
with an accuracy of 100% for the prediction set. The performance of models established
with the first three principal components was similar to full spectrum models, but
that of PCA loading models was worse. Compared to other spectra, the two-band
ratio (1,987 nm/1,079 nm) selected by ANOVA from embryo-side spectra achieved a
better classification accuracy of 95% for the prediction set. The image texture features,
including histogram statistics (HS) and gray-level co-occurrence matrix (GLCM), were
extracted from the two-band ratio image to establish fusion models. The results
demonstrated that the two-band ratio selected from embryo-side spectra combined
with image texture features achieved the classification of maize seeds harvested in
different years with an accuracy of 97.5% for the prediction set. The overall results
indicated that combining the two wavelengths with image texture features could detect
aged maize seeds effectively. The proposed method was conducive to the development
of multi-spectral detection equipment.

Keywords: maize seeds, hyperspectral imaging, ANOVA, classification, SVM - support vector machine

INTRODUCTION

Maize, regarded as a primary source of food, feeds, fuel, and industrial materials, is one of
the most extensively cultivated cereal crops worldwide (Guo et al., 2017). Seed is the key to
agriculture production. High-quality maize seeds will increase the yield and ensure consistency
of plant growth. It will be conducive to using drones to spray pesticides, emasculation, and other
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mechanized operations (Feng et al., 2019). Seed quality can be
determined by its germinability or physicochemical attributes.
Due to the storage time and storage method, the aged maize seeds
greatly influence the germination rate and corn growth. New
maize seeds show a high germination rate, and the seedlings will
grow strong and healthy. On the contrary, the germination rate
of aged maize seeds is low, and the seedlings tend to be thin and
weak because their nutrition is lost with long storage time.

Generally, the freshness of maize seeds can be judged by
manual observation. The aged maize seeds are stored in a dry
environment and consume their nutrients during storage, due to
which the surface of the seeds lose luster, but the new maize seeds
will appear brighter and fresher. In addition, chemical principles
can be used to identify whether the maize seeds are new or old.
The maize seeds are soaked in the red ink solution for 15 min,
and the embryo of the maize seed is stained for different periods
of time for aged and new seeds. However, these methods are
time consuming and require experienced operators, and farmers
cannot master this skill well. These methods are also inapplicable
for the online detection of a single seed. In order to meet the
requirement of consumers, it is necessary to develop a rapid,
accurate, and non-destructive method for classifying aged maize
seeds for the maize seed industry.

Currently, machine vision and near-infrared (NIR)
spectroscopy have been applied widely for the detection of
seed quality, such as variety (Tu et al., 2021; Xu et al., 2021),
vigor (Wang et al., 2020), and defect (Huang et al., 2019). Ali
et al. (2021) applied a machine vision approach combined
with a support vector machine (SVM) classifier to achieve the
classification of maize seed varieties, and the obtained accuracy
on six varieties was over 99%. Lin et al. (2018) used the NIR
spectroscopy to identify the maize haploid seeds. The results
indicated that the average accuracy of the back-propagation
neural network (BPNN) classifier is 96.16%. However, machine
vision employs only phenotypic characteristics, such as color,
size, shape, and surface texture, but it is unsuitable for predicting
the chemical composition of samples (Huang and Chien, 2017).
Thus, machine vision is not suitable to detect maize seeds
harvested in different years because the chemical composition,
such as starch and protein, will be changed by storage time. NIR
spectroscopy can be used to assess the chemical composition of
samples, but it is only used to obtain spectral information by
using a single spot and is always influenced by the uniformity of
sample distribution (ElMasry et al., 2019). Single-seed detection
equipment using NIR spectroscopy is usually specially designed
according to the different shapes and sizes of samples. Therefore,
NIR spectroscopy is not the best choice for developing a
single-seed detection system.

Hyperspectral imaging, as a non-destructive and reliable
technique, has been widely used in different fields. This
technology combines the advantages of machine vision and
NIR spectroscopy (Chen et al., 2021). It obtains both image
and spectral information, and collects spectral information not
only from a single point but also at each pixel of an image,
thereby overcoming the limitations of machine vision and NIR
spectroscopy technology (Gabrielli et al., 2021). In recent years,
several studies have used hyperspectral imaging as a powerful

tool for the classification and identification of seed quality
(Zhang et al., 2020a; Zhou et al., 2020). Wakholi et al. (2018)
used a shortwave infrared hyperspectral imaging system with
a range of 1,000–2,500 nm to assess the viability of maize
seeds, and the result indicated the SVM model obtained the
highest classification of 100%. Cui et al. (2020) employed the
hyperspectral imaging system to predict the root and seeding
length of sweet corn seed for the assessment of germination.
The results demonstrated that the kernel principal component
regression (KPCR) combined with several feature wavelengths
can predict the root and seeding length with a correlation
coefficient of 0.7805 and 0.6074, respectively. Ma et al. (2020)
demonstrated that NIR-HSI, combined with the CNN approach
using PC images and SVM mapping, is an effective method
for classifying the naturally aged Japanese mustard spinach
seeds, with the seed viability classification accuracies for the
training set and the test set of approximately 90% and 83%,
respectively. In addition, hyperspectral imaging is also used
to detect variety (Xia et al., 2019; Liu et al., 2022), frostbite,
heat damage (Zhang et al., 2020b,c), and fungal infection
(Alisaac et al., 2019).

Previous research has demonstrated the potential of
hyperspectral imaging and provided good references in the
field of seed quality detection. However, the detection models
still need to be established with several feature wavelengths. In
the development of detection equipment, the fewer the number
of feature wavelengths used for the model establishment, the
lower the difficulty and cost of development. For instance,
Qiao et al. (2022) applied the partial least squares regression
(PLSR) and successive projection algorithm (SPA) to detect the
hardness of maize kernels. Although this method used only six
feature wavelengths for modeling, it is still not easy to develop
online detection equipment using these wavelengths because
the multiband camera of six wavelengths should be designed.
Hence, a more convenient method should be proposed to
identify the aged maize seeds to reduce the cost of equipment
development and improve detection efficiency. In addition, some
studies demonstrated the potential of using image textures to
detect the seed quality (Lurstwut and Pornpanomchai, 2017;
Long et al., 2022). Thus, several image textures, including
histogram statistics (HS) and gray-level co-occurrence matrix
(GLCM) based on feature wavelength images, were extracted for
modeling in this study. Therefore, it is necessary to establish data
fusion models based on spectral and image texture features to
improve accuracy.

The overall goal of this study was to examine the potential
of hyperspectral imaging for the detection of aged maize seeds
using samples harvested in different years. Specific objectives
were to (1) establish classification models for maize seed
detection based on full spectra; (2) identify and evaluate
optimal feature wavelengths and two-band ratio for maize
seed detection; (3) extract the image texture features based
on feature images; and (4) develop a simple model based
on using spectral and image texture features. The ultimate
purpose was to develop a faster and more efficient multi-spectral
method for real-time inspection of maize seeds harvested in
different years.
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MATERIALS AND METHODS

Sample Preparation
JINGKE 968 is one of the typical varieties of maize seeds in
China. In this study, a total of 360 samples of this variety with
uniform sizes and without apparent defects were utilized. The
samples (120 maize seeds from each year) were harvested in
three different years (2018, 2019, and 2020). All the seeds were
provided by a seed company in Gansu Province, China. The
germination percentages were 85.5, 87.6, and 98% for the maize
seeds harvested in 2018, 2019, and 2020. A subset of 240 kernels
was selected randomly as the calibration set for training models,
and the remaining 120 single maize seeds were used as the
prediction set for testing.

Hyperspectral Image Collection and
Processing
Hyperspectral Image Collection and Calibration
A line-scan reflectance hyperspectral imaging system with a near-
infrared range (930–2,548 nm) was employed to acquire images
of maize seeds. The system comprises an imaging spectrograph
(ImSpector N25E, Spectral Imaging Ltd., Oulu, Finland) with
a spectral range of 930–2,548 nm and a 6.2–6.5 nm slit, 150
Watt (W) halogen lamp with two-line lighting fibers (3900-
ER, Illumination Technologies, Inc., United States) providing
uniform lighting conditions for samples in the field of view
(FOV), a 14-bit NIR charge-coupled device (CCD) camera
(Xeva-2.5-320, Xenics Ltd., Belgium) with the spatial resolution
of 320 × 256 pixels, a control platform moving horizontally
(EZHR17EN, AllMotion, Inc., United States) driven by a stepping
motor, and a computer (Dell OPTIPLEX 990, Intel (R) Core
(TM) i5-2400 CPU at 3.10 GHZ) with specialized software
programs, such as spectral data acquisition software and platform
control software (Isuzu Optics Corp., Taiwan). Before collecting
the hypercube of maize seed, the time of exposure of the
spectrograph, the speed of the platform, and the object distance
should be confirmed to avoid image distortion. Thus, the final
guaranteed exposure, speed, and distance parameters were 3 ms,
25 mm/s, and 365 mm, respectively. The system was placed in
a metal box painted with black matte ink, thus reducing the
influence of stray light from outside.

In order to enhance the collection efficiency, every 60 maize
seeds from the same year were placed on a dark-background
sampling plate for the collection of hyperspectral images. First,
the embryo side of the seed faced the camera, and hyperspectral
images of the embryo side were collected; then, the seeds were
flipped one by one so that the images of the endosperm side of
the seeds were acquired. Because of the low single-noise ratio
at the edges of the spectral region of 930–2,548 nm caused by
the lower CCD response efficiency, the spectra within 1,000–
2,000 nm (159 bands) were employed for further analysis. The
uneven intensity of the light source in different bands and
the dark current in the CCD camera could lead to increased
noise of some bands. Therefore, the raw hyperspectral images
should be corrected with white and dark references. The white
reference image was collected with a white Teflon board (99%

reflection efficiency) (Spectralon SRT-99-100, Labsphere Inc.,
North Sutton, NH, United States). The dark reference image was
obtained by turning off the light sources and covering the lens
with a black cap (99% reflection efficiency), thus removing the
dark current influence in the CCD camera. The corrected image
(Rc) is calculated using the following equation:

Rc =
Rraw − Rdark
Rwhite − Rdark

where Rc indicates the corrected hyperspectral image and
Rraw means the original hyperspectral image. Rwhite and Rdark
represent the white and dark reference images, respectively.

Spectral Data Extraction
The corrected image was used to extract the average spectra of the
single maize seed. The background segmentation is the critical
step for extracting multi-spectral images. First, the gray-scale
image at 1,098 nm, which can show the highest contrast between
seeds and background among all the band images, was selected
to be the mask. Then, the background data can be removed by
applying the mask image in all band images, and the data of
regions of all single seeds were retained. The spectra of each pixel
in the regions of a single seed were averaged, and finally, 360
averaged spectra were acquired for future analysis.

In order to compare the performance of different spectral
types extracted from a single maize seed for modeling, the
average reflectance spectra of embryo and endosperm sides were
extracted, respectively. Then, the average spectra of both sides
were calculated by averaging the spectra of the embryo and
endosperm sides.

Principal Component Analysis
Principal component analysis (PCA) is the classical method
to reduce dimensionality and select feature in hyperspectral
data. PCA could synthesize and simplify the multiple data
(Yang et al., 2018). In the premise of keeping the vital spectral
information, it uses a few new variables to replace the original
data to eliminate overlapping information coexisting in the
vast information (Dong et al., 2017). After PCA with original
spectra, every sample could obtain a few new variables called
PCs (principal components) by the linear combination of the
original spectra, indicating the similarity and otherness between
different samples (Wu et al., 2016). Since each PC is the linear
sum of original spectra at individual wavelengths multiplied by
the corresponding waveband weight coefficient, the wavelengths
corresponding to the peak and valley of the curve of weight
coefficient represent the feature wavelengths (Huang et al., 2015).
In this study, PCs and weight coefficients of PCs were used to
analyze the average spectral data for dimensionality reduction
and feature selection.

ANOVA for Two-Band Ratio
This study used a two-band ratio method to exploit a detection
algorithm for a low-cost and real-time system. A one-way
ANOVA test was employed to determine the optimal two-band
ratio combination. The ANOVA is one of the most robust and
frequently used statistical comparison methods to analyze the
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differences between groups (Lee et al., 2017; Torres et al., 2019).
It was utilized to select the optimal two-band combination for
seed classification between different harvested years. The F-values
of a one-way ANOVA were used to select feature wavelengths
representing statistically significant differences for three groups.
The two-band ratio with the highest F-values indicated that the
differences between different groups are the most significant
under this two-band ratio (Tian et al., 2021). The optimal
threshold was determined based on the highest classification
accuracy. The data in the calibration set was used to select the
optimal two-band ratio and threshold for identifying single maize
seed harvested in different years.

Image Texture Extraction From Optimal
Two-Band Ratio Images
Image texture plays a critical role in contributing to the
classification system. In this study, the optimal two-band ratio
image selected by the ANOVA test based on F-value was applied
to extract the information about the texture of the hidden image.
Two representative types of statistical image texture features were
extracted in this study. One was histogram statistics (HS) and the
other was gray-level co-occurrence matrix (GLCM).

Histogram statistics is a frequently used method in image
processing. In HS, the number of pixels at each different gray
intensity value is calculated, which could reflect the statistical
feature of gray intensity value in an image (Hu et al., 2012; Pu
et al., 2015). The difference in HS of different images can be used
as a basis for recognition. In this study, the statistical features
of histograms, including mean intensity, mean consistency,
skewness, kurtosis, mean contrast, and entropy, were employed
as one of the texture features of images and denoted as Hintensity,
Hconsistency, Hskewness, Hkurtosis, Hcontrast , and Hentropy, respectively.
The above-mentioned parameters can be calculated as follows:

Mean intensity

Hintensity =

L−1∑
i=0

zip(zi)

Mean consistency

Hconsistency =

L−1∑
i=0

p2(zi)

Skewness

Hskewness =
1

H3
contrast

L−1∑
i=0

(zi −Hintensity)
3p(zi)

Kurtosis

Hkurtosis =
1

H4
contrast

L−1∑
i=0

(zi −Hintensity)
4p(zi)

Mean contrast

Hcontrast =

√√√√L−1∑
i=0

(zi −Hintensity)2p(zi)

Entropy

Hentropy =

L−1∑
i=0

p(zi) log2 p(zi)

where zi is the random variable of gray level i and L is the largest
gray level in images. The term p(zi) represents the probability of
zi in an image.

The gray-level co-occurrence matrix is a classical statistical
texture analysis tool in which image texture features can be
extracted by means of statistical approaches from the co-
occurrence matrix (Khodabakhshian and Emadi, 2018; Ren
et al., 2021). The GLCM measures the probability that a
pixel of a particular gray level occurs at a specified direction
and a distance from its neighboring pixels. In this study,
image texture features were calculated from the gray co-
occurrence matrix with 0 angles, and the distance between pixels
was 1 pixel. Four image texture features, including contrast,
correlation, energy, and homogeneity, were extracted for future
research studies and denoted as Gcontrast , Gcorrelation, Genergy, and
Ghomogeneity, respectively.

Contrast

Gcontrast =

X∑
i=0

Y∑
i=0

∣∣i− j
∣∣2 p(i, j)

Correlation

Gcorrelation =

X∑
i=0

Y∑
j=0

(i− µii)(j− µjj)p(i, j)
σiσj

Energy

Genergy =

X∑
i=0

Y∑
j=0

p(i, j)2

Homogeneity

Ghomogeneity =

X∑
i=0

Y∑
i=0

p(i, j)
1+

∣∣i− j
∣∣

µi =

X∑
i=0

i
Y∑
j=0

p(i, j)

µj =

X∑
j=0

j
Y∑
i=0

p(i, j)

σi =

√√√√ X∑
i=0

(i− µi)2
Y∑
j=0

p(i, j)

σj =

√√√√ Y∑
j=0

(j− µj)2
X∑
i=0

p(i, j)

where X is the column number of GLCM, Y is the row number of
GLCM, and p (i, j) is the gray-level co-occurrence matrix.
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Supervised Classification Method
The classification of the hyperspectral image can be divided into
two main categories. One is the spectral-based classification,
where the mean spectra derived by averaging reflectance or
transmittance values of all pixels at different wavelengths could
be regarded as spectral features (Shrestha et al., 2016). The other
one is image-based classification, and it could employ the image
texture features for the quality assessment of agriculture products
(He et al., 2021). In this study, both spectral features and image
texture features were used for the three-class classification. The
widely used supervised classification algorithm, support vector
machine (SVM), was employed for distinguishing the single
maize seed harvested in different years. SVM can deal with linear
and nonlinear problems by enabling an implicit mapping to
transform inseparable linear data into a linear separable space
(Gopinath et al., 2020; Li et al., 2021). The kernel function
and parameters of SVM play an essential role in modeling. In
this study, the radial basis function (RBF), the most commonly
used kernel, was used as the kernel function of SVM. The
penalty parameters (c) and kernel function parameters (g) were
optimized by a grid search procedure in the range of 2−10–210

through five-fold cross-validation.

Software Tools
MATLAB R2016b (The math-Works, Natick, MA, United States)
was used to extract the average spectra, select the spectral and
image features, and establish classification models. Origin 2018
(Origin Lab Corporation, Northampton, MA, United States)
was applied to construct the graphs. The Win 10 64-bit

operating system, with Inter (R) Core (TM) i5-8300H CPU,
2.30 GHz, and 8G RAM as the software platform, carried out all
software operations.

RESULTS AND DISCUSSION

Spectra Analysis
The raw average reflectance spectra with standard deviation (SD)
of maize seeds harvested in three different years are shown in
Figure 1. Figures 1A–C represent the spectra of the embryo,
endosperm, and both sides, respectively. A similar trend is
observed for different curves, but some differences still exist.
The obvious peak and valley appeared at around 1,110 nm,
1,200 nm, 1,300 nm, and 1,467 nm. The peak and valley around
1,110 nm and 1,200 nm are caused by the second overtone of C–
H stretching vibrations of carbohydrates (Marques et al., 2016;
Alhamdan and Atia, 2018). The peak at around 1,300 nm mainly
results from the combination of the first overtone of Amide B and
the fundamental amid vibrations (Wu et al., 2019). The valley at
around 1,467 nm is connected with the stretching vibration of
the first overtone of the N–H contained in protein (Zhao et al.,
2018). As shown in Figure 1, the overlap of embryo-side spectra
of different year seeds is the lowest, followed by the spectra
of both sides and the endosperm side. Complex changes might
have occurred in maize seeds stored for different time periods,
which is further reflected by the average spectra of seeds obtained
from different years. It can be seen in Figures 1A,C that the
spectra reflectance increases with the storage time of maize seeds.
However, the spectral curves of maize seeds harvested in different

FIGURE 1 | The original reflectance spectra of different sides of single maize seed. (A) Embryo side, (B) endosperm side, and (C) both sides.
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TABLE 1 | The classification results based on original spectra
using SVM algorithm.

Spectral type Parameters Classification accuracy

Calibration set Prediction set

Embryo side c 0.5 g 4 100 100

Endosperm side c 128 g 8 100 100

Both sides c 0.25 g 64 100 100

Abbreviations: PCs: principal components. c: the penalty coefficient. g: the kernel
function parameter.

years overlap sufficiently in Figure 1B, but they start to separate
after around 1,400 nm. All these findings lay the foundation for
the theoretical basis of the classification of the maize seeds of
different years using spectral data. However, the classification
of the maize seeds harvested from different years based on the
difference in spectral curves is unreliable owing to the overlap
problem. Thus, it is necessary to establish classification models
to effectively extract and use features in hyperspectral images to
classify new and aged maize seeds.

Classification Results Based on Full
Spectra
The classification of harvested years was performed using SVM
models based on the three types of spectra (embryo side,
endosperm side, and both sides) acquired in the wavelength
range of 1,000–2,000 nm. Table 1 presents the performance of
classification models built with different types of spectra. It can
be seen clearly in the table that all the spectra achieved the perfect
classification performance. The classification accuracy of the
calibration and prediction set was 100%, respectively. This might
be caused by the significant difference in the spectra of maize
seeds harvested in different years after around 1,400 nm. These
results demonstrated that hyperspectral imaging technology
could classify new and aged maize seeds. However, the full

TABLE 2 | The results of feature wavelength selection from different spectral types
based on loading of PC3.

Spectral type Feature wavelengths

Embryo side 1111 nm 1198 nm 1310 nm 1151 nm

Endosperm side 1104 nm 1197 nm 1304 nm 1518 nm

Both sides 1111 nm 1198 nm 1310 nm 1151 nm

spectrum models are unsuitable for developing online detection
instruments due to the vast and high-dimensional data. Hence,
selecting the optimal feature information from hyperspectral
images is necessary to simplify the models for future study.

Feature Selection and Classification
Results Based on Principal Component
Analysis
In this study, PCA was used as one of the data dimension
reduction methods for raw spectra. In the process of PCA, a few
numbers of PCs could be used to replace the full spectra, or the
loading of PCs can be applied to select feature wavelengths (Dong
et al., 2017; He et al., 2019). The PCA results of the endosperm-
side and both-side spectra are similar to that of the embryo-side
spectra. Figure 2 only shows the PCA results of embryo-side
original reflectance spectra. It is clear from Figure 2A that the
first three PCs explained the most of the variance in this situation
(PC1 = 88.4%, PC2 = 9.2%, and PC3 = 1.9%). It can also be
seen that there was a lot of overlap among sample points in the
projections of the scatter plot in different directions, and a better
classification can be obtained when the PC1, PC2, and PC3 work
together. Thus, the first three PCs were applied to replace full
spectra to build identification models.

The loading plots of the first three PCs are shown in Figure 2B.
The peaks and valleys offer the dominant wavelengths. The
loading plot of PC1 is flat, meaning the feature wavelengths
could not be obtained from that of PC1. The loading plot of

FIGURE 2 | The results of PCA analysis of embryo-side original reflectance spectra. (A) Scatter plot of first three principal components, and (B) loading plots for the
first three principal components. Abbreviations: PC1: the first principal component. PC2: the second principal component. PC3: the third principal component. FWs:
the feature wavelengths.
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TABLE 3 | The classification results based on the first three PCs and the loading
of PC3 using SVM algorithm.

Spectral type Model Parameters Classification accuracy (%)

Calibration set Prediction set

Embryo side PCs c 0.5 g 4 100 100

Loading c 1024 g 4 85.83 85.83

Endosperm side PCs c 512 g 0.5 99.17 99.17

Loading c 16 g 64 68.75 71.67

Both sides PCs c 0.5 g 16 100 100

Loading c 512 g 4 72.50 80.83

Abbreviations: PCs: principal components. c: the penalty coefficient. g: the kernel
function parameter.
The above-mentioned results indicated that SVM combined with the first three PCs
based on the embryo-side and both-side spectra could establish perfect classifiers
to classify maize seeds harvested in different years. However, PCs are a linear
combination of the full spectra. In terms of rapid detection equipment development,
this method still needs to extract the full spectra to establish a classification model,
which cannot effectively reduce the development cost and model complexity.
Therefore, it is necessary to find a more effective data dimension reduction method
for further study.

PC2 fluctuates gently, and the positions of peaks and valleys
which have a value not equal to zero are similar to that of PC3.
It can be seen clearly that the loading plot of PC3 fluctuates
sharply, and the peaks and valleys can be observed at 1,111,
1,198, 1,310, and 1,511 nm. Thus, from the loading plot of PC3,

these wavelengths (corresponding to peaks and valleys) were
selected as feature wavelengths related to C–H, O–H, and N–
H, respectively. The feature wavelengths selected from different
spectral types based on the loading plot of PC3 are summarized
in Table 2.

The first three PCs (PC model) and feature wavelengths
selected from the loading of PC3 (loading model) were employed
to build SVM classification models instead of full spectra,
respectively. The performance of developed SVM models is
presented in Table 3, indicating that the PC models performed
better than the loading models. All PC models achieved perfect
performance. The results indicated that PCA is an effective
method for data dimension reduction, and the first three PCs
could explain the most information and replace full spectra
for identification in this study. The performance of loading
models decreased sharply compared to the PC models, with
a classification accuracy of prediction set of 85.83%, 71.67%,
and 80.83%, respectively. The results indicated that the feature
wavelengths selected from the loading of PC3 could be used to
identify the maize seeds harvested in different years, but other
critical wavelengths in spectra were ignored. It is interesting to
observe that the peaks and valleys of the loading curve of PC3
are similar to the original spectra. The original spectra began to
separate significantly after 1,400 nm (Figure 1). However, the
feature wavelengths selected by the loading curve of PC3 only
included one wavelength in the spectral range of 1,400–2,000 nm,

FIGURE 3 | The contour plots of F-value calculated from different waveband ratio combinations. The color change from blue to red represents the F-value increases
from low to high. (A) Embryo side, (B) endosperm side, and (C) both sides.
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FIGURE 4 | The distribution of two-band ratio for different samples. (A) Embryo side, (B) endosperm side, and (C) both sides.

TABLE 4 | The classification results using threshold values based on the two-band ratio values.

Spectral type Two-band ratio Threshold Classification accuracy (%)

Calibration set Prediction set

Embryo side 1987 nm/1079 nm t1 0.8046 t2 0.8784 95.83 95.00

Endosperm side 1011 nm/1987 nm t1 1.0140 t2 1.0550 76.67 72.50

Both sides 1980 nm/1048 nm t1 0.8631 t2 0.9174 91.67 89.17

Abbreviations: t1: the first threshold value; t2: the second threshold value.
Compared to the classification results obtained by PCA-SVM models, the number of wavelengths selected by ANOVA was significantly lower. The result provides a more
efficient and cost-effective solution for the development of a maize seed classification approach based on hyperspectral imaging technology. However, a two-band ratio
alone may not provide sufficient information, and it is necessary to explore more features to improve the classification accuracy.

which could explain why the performance of the loading model
was not as good as expected.

Optimal Two-Band Ratio Selection From
ANOVA
The F-values of ANOVA for all the two-band ratios of three
classes were calculated, and the contour plots of F-values
are shown in Figure 3. The ratio of 1,987 nm/1,079 nm,
1,011 nm/1,987 nm, and 1,980 nm/1,048 nm obtained the largest
F-values in embryo-side, endosperm-side, and both-side spectra,
respectively. The results indicated that three sets of samples at
these band ratios demonstrated the most difference. It can be
seen clearly that the wavelengths selected based on F-value are

different from feature wavelengths selected from the loading
curve of PC3. Obviously, the wavelengths selected by the two-
band ratio were distributed around the beginning or end of
the spectral range, and the spectra of maize seeds harvested in
different years showed apparent differences in that range.

Classification Results Based on ANOVA
Classification Results Based on Optimal Two-Band
Ratio Value
Figure 4 shows the distribution of two-band ratios for
new and aged seeds. The overlap among the three classes
could result in misclassification between different classes.
Thus, a proper threshold value is required for discrimination.
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FIGURE 5 | Comparison of the images obtained by using the hyperspectral image.

TABLE 5 | The classification results based on various feature variables using SVM algorithm.

Spectral type Two-band ratio Model Variable number Classification accuracy (%)

Calibration set Prediction set

Embryo side 1987 nm/1079 nm Two-band ratio 1 96.67 95

Image textures 10 65 59.17

Data fusion 11 98.75 97.5

Endosperm side 1011 nm/1987 nm Two-band ratio 1 75.83 73.33

Image textures 10 58.33 44.17

Data fusion 11 79.17 80

The above-mentioned results showed that the proposed method can be used to classify the maize seeds harvested in different years. However, only the new and aged
seeds need to be identified for general production requirements. Therefore, the maize seeds harvested in 2020 were defined as new seeds, and the remaining were
classified as aged seeds. Then, the classification model was built according to the proposed method. This model showed better performance with an accuracy of 99.17%
in the prediction set. It is also clear from Figure 6B that only one seed was misclassified. In brief, the SVM model combined with the two-band ratio and image textures
extracted from the two-band ratio image of 1,987 nm/1,079 nm showed excellent performance for classifying new and aged maize seeds. It also demonstrated that
ANOVA, HS, and GLCM algorithms were suitable for selecting the feature variables.

The threshold values can be easily calculated based on the
two-band ratios. Table 4 shows the classification results using
threshold values based on the two-band ratio values. The two-
band ratio method based on embryo-side spectra (the first
threshold value (t1) = 0.8046 and the second threshold value
(t2) = 0.8784) obtained the best classification performance with
the classification accuracy of 95.00%. The classification accuracy
based on both-side spectra (t1 = 0.8631 and t2 = 0.9174) was
less than that obtained by embryo-side spectra with 89.17% for
prediction set. Due to the considerable overlap in the band
ratio distribution among the three classes for the endosperm-side
spectra, the two-band ratio based on endosperm-side spectra had
a huge error in classifying the seeds of different harvest years.

Classification Results Based on Multiple Features
The advantage of hyperspectral imaging technology is that it
combines both image features and spectral information. Thus, the

band ratio images can be obtained according to the optimal two-
band ratio selected by the largest F-values. Figure 5 shows the
color images of the maize seeds harvested in different years. It is
clear from the figure that the maize seeds cannot be distinguished
visually by using band ratio images of embryo and endosperm
sides. Thus, 10 image textures, including mean intensity,
mean consistency, skewness, kurtosis, mean contrast, entropy,
contrast, correlation, energy, and homogeneity, were selected and
extracted from band ratio images for seed identification. In order
to standardize the image texture data, standard normalization
was employed for each image texture.

In order to explore the robustness and reliability of prediction
models, two-band ratio and information about image textures
and their combination (two-band ratio and image textures were
concatenated to create a single matrix) were used to establish
SVM classification models, respectively. Table 5 shows the
classification results based on various feature variables by using
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FIGURE 6 | The confusion matrix of the data fusion model based on embryo side spectra. (A) is the classification results of maize seed harvested in 2018, 2019 and
2020. (B) is the classification results of new (2020) and aged (2018 and 2019) maize seed.

the SVM algorithm. As for embryo-side spectra, the band ratio
model obtained 95% classification accuracy for the prediction
set, while the image texture model only yielded the classification
accuracy of 59.17% for the prediction set. The fusion of band
ratio and image features enhanced the model performance with
98.75% and 97.5% accuracy for calibration and prediction set,
respectively. Figure 6A shows the confusion matrix of the
data fusion model based on embryo-side spectra. In terms of
the endosperm side, the image texture model obtained poor
performance with the lowest classification accuracy of 44.17%.
The performance of the band ratio model was a bit better
than the image texture model with an accuracy of 73.33%. The
data fusion model also obtained the best classification result
with an accuracy of 80%, which also proved that the combined
features improved the classification ability. However, it can be
seen clearly that models built with embryo-side spectra presented
better calibration and prediction accuracy than endosperm-
side spectra, irrespective of the feature used to establish the
identification model. The reason may be that the embryo side
contains both embryo and endosperm structures, which could
be used to extract more useful information. In addition, it
also can be illustrated from the table that band ratio data
provided more useful information than image texture data, and
the band ratio had a higher contribution than the image texture
in building SVM models. In particular, fusion information was
more effective than the single feature for establishing SVM
models, thus providing a more comprehensive understanding
of the changes in components and textures and enhancing
the model accuracy and reliability. The above results showed
that the proposed method can be used to classify the maize
seeds which were harvested in different years. However, only
the new and aged seeds need to be identified for general
production requirements. Therefore, the maize seeds harvested
in 2020 were defined as new seeds, and the rest were aged
seeds. Then, the classification model was built according to
the proposed method. This model showed better performance
with an accuracy of 99.17% in the prediction set. It is also
clear from Figure 6B that only one seed was misclassified.

In brief, the SVM model combined with the two-band ratio
and image textures extracted from two-band ratio image of
1987 nm/1079 nm showed excellent performance for classifying
new and aged maize seeds. It also demonstrated that ANOVA,
HS, and GLCM algorithms were suitable for selecting the feature
variables.

CONCLUSION

This study successfully applied a hyperspectral reflectance
imaging system with the spectral range of 1,000–2,000 nm
for rapid and non-destructive classification of maize seeds
harvested in different years. In consideration of the issues
caused by the discrepancies between the different sides of the
maize seeds, the spectra of the different sides were analyzed.
SVM algorithm was adopted for establishing classification
models for maize seeds. PCA and ANOVA were used for the
selection of feature variables to reduce redundant data and
identify important information. The image texture features,
including HS and GLCM, were applied to extract 10 texture
features from two-band ratio images for data fusion. The
results indicated that ANOVA was more suitable for data
dimension reduction, where only two wavelengths were selected
for modeling. Compared with the models using the single
feature, the two-band ratio of 1,987 nm/1,079 nm combined
with image texture features obtained the best classification
accuracy with 97.5% for the prediction set. The results indicated
that data fusion models were more advantageous than single
feature models in maize seed classification. Moreover, the
proposed two-band ratio (1,987 nm/1,079 nm) from the embryo
side of maize seed has excellent potential for maize seed
classification, which could be used to develop an imaging
system for quality detection in the packing line. Further
studies should be carried out to improve the classification
capabilities of this technique at an industrial scale so that
this proposed method can be used in the online evaluation of
maize seed qualities.
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The non-destructive detection of soluble solids content (SSC) in fruit by near-infrared
(NIR) spectroscopy has a good application prospect. At present, the application
of portable devices is more common. The construction of an accurate and stable
prediction model is the key for the successful application of the device. In this study,
the visible and near-infrared (Vis/NIR) spectra of Korla fragrant pears were collected
by a commercial portable measurement device. Different pretreatment methods were
used to preprocess the raw spectra, and the partial least squares (PLS) model was
constructed to predict the SSC of pears for the determination of the appropriate
pretreatment method. Subsequently, PLS and least squares support vector machine
(LS-SVM) models were constructed based on the preprocessed full spectra. A new
combination (BOSS-SPA) of bootstrapping soft shrinkage (BOSS) and successive
projections algorithm (SPA) was used for variable selection. For comparison, single
BOSS and SPA were also used for variable selection. Finally, three types of models,
namely, PLS, LS-SVM, and multiple linear regression (MLR), were constructed based
on different input variables. Comparing the prediction performance of all models, it
showed that the BOSS-SPA-PLS model based on 17 variables obtained the best SSC
assessment ability with rp of 0.94 and RMSEP of 0.27 ◦Brix. The overall result indicated
that portable measurement with Vis/NIR spectroscopy can be used for the detection of
SSC in Korla fragrant pears.

Keywords: portable spectral measurement, internal attribute evaluation, Korla fragrant pear, variable selection,
quantitative analysis model

INTRODUCTION

Fruit is one of the most important foods in people’s daily life. Fruit industry is a pillar industry
in many countries and regions. The post-harvest quality detection and grading can realize the
graded sales of fruit in the market, which not only greatly increases the profits but also improves the
market competitiveness (Londhe et al., 2013). At present, many grading equipment manufacturers
have successfully developed commercial systems for the quality detection of fruit. Fruit quality
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includes external and internal qualities. Compared with external
quality, such as size, color, and shape, consumers prefer fruits
with good internal quality, because it is directly related to taste.
Soluble solids content (SSC) is an important internal quality
attribute that affects consumers’ acceptance and price of fresh
fruit. It is also an important index for determining fruit maturity
and harvest time, as well as for evaluating and grading fruit post-
harvest quality (Antonucci et al., 2011; Rajkumar et al., 2012).
Non-destructive testing of SSC in fruit by refractometer is a
standard detection way, which is destructive, cumbersome, and
time-consuming (Li and Chen, 2017). This way is only suitable
for detecting a small amount of fruit in specific circumstances,
such as sampling inspection. However, for quality assessment
of a large number of fruit, the rapid and non-destructive
measurement techniques are more attractive.

In the past three decades, many technologies have been
applied to detecting the SSC in fruits (Li et al., 2016; Walsh et al.,
2020). Among them, the visible and near-infrared (Vis/NIR)
spectroscopy is the most widely used technology. The detected
fruits include apple (Ma et al., 2021), orange (Jamshidi et al.,
2012), pear (Li et al., 2013), jujube (Wang et al., 2011),
watermelon (Ali et al., 2017), melon (Zhang et al., 2019), banana
(Zude, 2003), etc. For the detection of SSC in fruits by Vis/NIR
spectroscopy, the way of measurement can be divided into static,
online, and portable detection. In the early stage, the static
detection was the most commonly used way using expensive
testing instrument, which was mainly aimed at verifying the
feasibility of Vis/NIR spectroscopy to detect the SSC of fruit and
constructing appropriate prediction models. On this basis, many
studies have proved that Vis/NIR spectroscopy was an effective
technology for the SSC analysis of fruits (Walsh et al., 2020).
Therefore, this study mainly focuses on the online SSC detection
for developing a suitable prediction model for processing large
quantities of fruit (Xia et al., 2020; Zhang et al., 2021). Different
from the static and online detections, the portable detection is
a rapid detection technique for assessing the internal quality
of fruits based on portable measuring instruments (Neto et al.,
2017). This way of detection has the unique advantages of
convenient carrying and flexible use. This way is more suitable
for the SSC inspection of fruit at anytime and anywhere in the
process of storage and transportation and is also suitable for
the detection of fruit maturity on trees and so on. In terms of
these three ways of detection, no matter which way needs to
build a special prediction model for different varieties of fruits
to accurately predict the SSC, because of still many problems
in the model transfer between different ways of detection
and between prediction models of different varieties of fruits
(Mishra et al., 2021).

The prediction model of SSC based on Vis/NIR spectroscopy
contains linear [such as partial least squares (PLS) and multiple
linear regression (MLR)] and non-linear [least squares-support
vector machine (LS-SVM) and artificial neural network (ANN)]
models, which can achieve the successful prediction of SSC in
fruits (Walsh et al., 2020). Due to the different application objects
and conditions, it is difficult to directly determine which model
is better without actual verification. Generally, compared with
non-linear models, the linear models are easier to explain and

are simpler. However, the non-linear models may be more robust
because they can deal with the linear and non-linear relationship
between spectral data and prediction attributes at the same time
(Li et al., 2013). However, this cannot be the judgment basis for
using linear and non-linear models in actual SSC prediction. To
find the best prediction model, it is necessary to build different
models for analysis.

In the process of development, model optimization is the key
to build a more efficient prediction model. Variable selection is a
common model optimization strategy (Zou et al., 2010; Yun et al.,
2019). By using appropriate variable selection methods, those
uninformative variables and redundant variables are eliminated,
and a small number of variables related to SSC prediction
can be extracted, so as to achieve the purpose of model
optimization. The variable selection can make the model simpler
and improve the interpretation, modeling, and prediction rate
of the model. For model optimization, many variable selection
methods [such as successive projections algorithm (Araújo et al.,
2001), competitive adaptive reweighted sampling (Li et al.,
2009), and Monte Carlo uninformative variable elimination (Cai
et al., 2008)] have been successfully applied. Compared with
the variable selection using single method, some studies in fruit
quality detection indicated that two complementary wavelength
selection strategies may achieve a superimposed effect when
combined together (Li et al., 2014). Therefore, in this study, a new
combination (BOSS-SPA) of bootstrapping soft shrinkage (BOSS)
and successive projections algorithm (SPA) will be applied to
select the effective variables from full spectral data.

Pear is among the economically most important fruit in the
world. The main objective of this study was to determine the
best model for SSC prediction of Korla fragrant pears based
on portable spectral detection technology. The specific purposes
were given as follows: (1) To collect Vis/NIR spectral data
of all pear samples using a commercially available portable
spectroscopic device; (2) To establish the linear PLS and non-
linear LS-SVM calibration models based on full-spectrum data
and compare the performance of models; (3) To extract the
effective variables that were most informative for SSC detection
of Korla fragrant pears by using BOSS-SPA combination variable
selection method; and (4) To determine the optimal predictive
model, combined with prediction accuracy and stability, by
comparing the performance of models established based on full
spectra and effective variables.

MATERIALS AND METHODS

Fruit Samples
Korla fragrant pear, a unique variety in Xinjiang, China, was
used in this study. A total of 120 intact pears were purchased
from a grocery store. All samples were returned to the laboratory
and stored at room temperature (20◦C, relative humidity 60%)
for 24 h, to avoid the influence of sample temperature on the
accuracy of the prediction model (Xia et al., 2020). In this study,
all samples were divided into calibration set and prediction set
on the basis of Kennard-Stone (KS) sampling method (Galvão
et al., 2005). The calibration set contained 80 samples, which were
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mainly used for the construction of models. The prediction set
contained 40 samples, which were mainly used to evaluate the
performance of models. In the whole process of data analysis, the
samples of calibration set and prediction set remain unchanged.

Portable Measurement Device for
Spectral Data Acquisition
A commercial portable spectrometer (K-BA100R; Kubota Co.,
Osaka, Japan) was used to collect Vis/NIR spectral data of
samples. This portable measurement device mainly contains
halogen lamp light source, ring detection probe, optical fiber,
display screen, processor, etc. The detection probe consists of two
groups of ring optical fibers. One is the transmitting optical fiber,
which is mainly used to transmit Vis/NIR light to the sample;
and the other is the receiving optical fiber, which is mainly
used to receive the diffuse reflectance light with fruit component
information. Spectral data were acquired based on interactive
mode. During spectral data collection, each sample was placed
on the detection probe with its stem-calyx axis being horizontal.
The collected spectral range was 500–1,010 nm with an interval
of 2 nm. The integration time of spectrum acquisition was set to
300 ms for each sample. The final spectrum (Rc) was calculated
automatically by using the raw sample spectrum (R), the dark
reference spectrum (D), and the white reference spectrum (W),
according to Rc = [(R – D)/(W – D)]. The dark spectrum and the
white spectrum were obtained by turning off and turning on light
sources (no sample information), respectively. Due to the noise at
both ends of the original spectrum, only spectral data in the range
of 550–1,000 nm were used.

Real Soluble Solids Content
Measurement
After the spectral data of all samples were collected, the actual
SSC was measured immediately. A commercial refractometer
(Model: PR-101α, Atago Co., Ltd., Tokyo, Japan) with a refractive
index accuracy of±0.1 and the range of 0–45% with temperature
correction was used for destructive measurement. For each
sample, the whole fruit was juiced, and the SSC value of
the juice was measured three times. The mean values of
three measurements were recorded as the actual SSC value of
the tested sample.

Wavelength Selection Methods
The original spectrum contains over 200 wavelengths (variables),
not all of which are related to the prediction of SSC in pears,
and moreover, too many wavelengths are not conducive to
the construction of robust model. This study used the BOSS-
SPA combination to extract the effective wavelengths from full
spectral data. In terms of the BOSS-SPA combination, BOSS was
first used to extract a set of effective wavelengths, and SPA was
then used to optimize the extracted wavelengths. BOSS method,
originally proposed by Deng et al. (2016), takes advantage
of bootstrap sampling (BSS) and weighted bootstrap sampling
(WBS) to generate random variable subsets for the construction
of partial least squares regression (PLSR) sub-models. The
regression coefficients of sub-models were analyzed, and the

weights of variables were determined according to the absolute
values of the regression coefficients. The informative variables
with higher weights have a higher selection probability. Model
population analysis (MPA), proposed by Deng et al. (2015),
was used to analyze the sub-models to update the weight of
variables. Variables were optimized according to the principle of
soft shrinkage; in other words, less important variables were not
eliminated directly, but assigned smaller weights. The algorithm
iterates until the number of variables reaches 1. The subset with
the lowest root mean square error of cross validation (RMSECV)
was finally selected as the optimal variable set. SPA proposed by
Araújo et al. (2001) is a forward wavelength selection algorithm,
which aims to minimize the collinearity problem in variables.
SPA uses a simple projection operation in a vector space to
obtain a subset of wavelengths with minimal collinearity. The
final selected variable set corresponds to the smallest root mean
square error of prediction (RMSEP) in MLR analysis.

Modeling Algorithms
The PLS has become the most commonly used multivariate
linear analysis method in spectral modeling and analysis. In the
process of modeling, PLS can consider the target value matrix
Y (SSC value in this study) and spectral matrix X at the same
time and establish the basic relationship between X and Y. For
the development of a PLS model, the spectral matrix X and
the concentration matrix Y were first decomposed to obtain the
corresponding score matrices T and U:

X = TP + E, Y = UQ + F (1)

where P and Q are the loading matrices of X matrix and Y matrix,
and E and F are the errors that come from the process of PLS.
Then, MLR based on score matrix T and U was performed as
follows:

U = BT + E (2)

where B is the regression coefficient matrix of PLS. In linear
regression, it is necessary to consider how many columns of
data in the T matrix, i.e., the best factor or later variables (LVs),
were used for modeling. In this study, the leave-one-out cross
validation was used to determine the number of optimal LV.

The LS-SVM is an advanced statistical learning method, which
can deal with linear and non-linear multivariate analysis and
solve these problems in a relatively fast way. The LS-SVM
regression model can be expressed as follows:

y (x) =
N∑
k=1

αkK (x, xk)+ b (3)

where K(x, xk), xk, αk, and b are the kernel function, input vector,
support value, and bias, respectively. The radial basis function
(RBF) was used as kernel function K(x, xk) in this study and
defined as follows:

K(x, xk) = exp(−||xk − x||2/(2σ2)) (4)
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where ||xk-x|| represents the distance between the input vector
and the threshold vector, and σ is a width vector.

The MLR is also a common calibration method for spectral
quantitative analysis, which is easy to calculate and explain
compared with PLS. The general form of the model is:

y = βx + b (5)

where y represents an unknown concentration value (here, it
was the SSC value), β represents a set of regression coefficients,
x represents the spectral vector of a sample, and b is a
constant. MLR is suitable for a simple system with good linear
relationship. However, MLR also has the limitation. This method
requires more samples than variables for modeling. In practical
applications, the raw spectral variables obtained by spectrometers
are often numerous. Therefore, before constructing MLR models,
it is usually necessary to use the wavelength selection method
to optimize the variables to meet the prerequisite condition
of MLR modeling.

Model Evaluation
Four parameters, including calibration correlation coefficient
(rc) and root mean square error of calibration (RMSEC), and
prediction correlation coefficient (rp) and root mean square error
of prediction (RMSEP), were used to assess the performance
of models. The first two parameters were used to evaluate
the prediction performance of models on the samples in the
calibration set, and the last two parameters were used to evaluate
the prediction performance of models on the samples in the
prediction set. A good model usually has high rc and rp, low
RMSEC and RMSEP, and a small difference between RMSEC and
RMSEP. All parameters were calculated as follows:

r =

√√√√1−
∑n

i=1
(
yi,actual − yi,predicted

)2∑n
i=1
(
yi,actual − ȳi,actual

)2 (6)

RMSEC =

√√√√ 1
nc

nc∑
i=1

(
yi,predicted − yi,actual

)2 (7)

RMSEP =

√√√√ 1
np

np∑
i=1

(
yi,predicted − yi,actual

)2 (8)

where yi,predicted and yi,actual are the predictive SSC value and the
real SSC value of the ith sample in the calibration set or prediction
set, respectively. ȳi,actual is the average SSC value of samples in
the calibration or prediction set. nc, np, and n correspond to
the number of calibration samples, prediction samples, and all
samples, respectively.

RESULTS AND DISCUSSION

Analysis of Soluble Solids Content
Values of All Samples
Table 1 shows the statistical results of SSC values (◦Brix) of all
samples. It can be seen that the maximum, minimum, mean,

TABLE 1 | The statistics of SSC (◦Brix) of all samples.

Data set No. of samples Min. Max. Mean S.D.

Total 120 11.0 14.5 12.6 0.8

Calibration set 90 11.0 14.5 12.6 0.8

Prediction set 30 11.2 14.3 12.5 0.6

TABLE 2 | Prediction results of SSC by PLS models combined with different
preprocessing methods.

Preprocessing methods LVs Calibration set Prediction set

rc RMSEC rp RMSEP

None 7 0.97 0.19 0.86 0.32

SG 10 0.97 0.20 0.91 0.27

SG-MSC 11 0.97 0.20 0.92 0.25

SG-SNV 10 0.96 0.22 0.89 0.29

First derivative-SG-MSC 11 0.96 0.21 0.92 0.25

Second derivative-SG-MSC 12 0.93 0.25 0.90 0.27

and standard deviation (S.D.) of SSC values for 90 samples of
calibration set were 14.5, 11.0, 12.6, and 0.6 ◦Brix, respectively,
and for 30 samples of prediction set, these four values were 14.3,
11.2, 12.5, and 0.8 ◦Brix, respectively. The SSC range of the
calibration set covers that of the prediction set, which is helpful
to build a more robust prediction model.

Spectral Pretreatment and Spectral
Features
The difference of sample size leads to large scattering in the
original spectra, and the original spectra can also contain random
noise, which negatively affects the prediction performance of the
model. Therefore, the original spectrum was preprocessed before
model construction. The pretreatments, including Savitzky-
Golay smoothing (SG), first derivative and second derivative,
combination of SG and standard normal variables (SG-SNV),
combination of SG and multivariate scattering correction (SG-
MSC), and combination of derivative and SG-MSC, were used
for spectral pretreatment. Table 2 shows the prediction results
of SSC by PLS models combined with preprocessing and raw
spectra. It can be seen that the prediction accuracy of all PLS
models based on the preprocessed spectra was better than that
of the PLS model based on the original spectra, indicating
that the spectrum preprocessing can improve the prediction
performance of the model. PLS models combined with SG-MSC
and the first derivative-SG-MSC preprocessing achieved the best
prediction results. Compared with the second derivative-SG-
MSC preprocessing, the performance of the first derivative-SG-
MSC is better, probably because the second derivative processing
amplifies the noise in the original spectrum. For samples of the
prediction set, the optimal rp and RMSEP were 0.92 and 0.25,
respectively. Considering that SG-MSC pretreatment is simpler
than the first derivative-SG-MSC, the pretreatment spectra by
SG-MSC were used for the subsequent analysis.

The preprocessed spectral curves of samples by SG-MSC are
shown in Figure 1. It can be seen that all samples have a similar
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FIGURE 1 | Preprocessed spectral curves by SG-MSC.

TABLE 3 | Prediction results of SSC by PLS and LS-SVM with full spectral
data, respectively.

Modeling
methods

LVs/(γ/σ2) Calibration
set

Prediction
set

rc RMSEC rp RMSEP

PLS 11 0.97 0.20 0.92 0.25

LS-SVM γ = 2.1 × 105; σ2 = 2.5 × 104 0.95 0.24 0.88 0.32

spectral trend in the Vis-NIR spectral region of 550–1,000 nm,
and there are no abnormal samples. The spectral curve shows
some obvious absorption and reflection peaks, which may be
related to the internal chemical components of Korla fragrant
pears. The first obvious absorption peak is about 680 nm, which
is a typical chlorophyll absorption band. The central band of the
second absorption peak is about 750 nm, which is a relatively
wide absorption band associated with the fourth overtone of band
C–H. The small absorption band around at 950 nm might be
associated with the second overtone of band O–H. These results
were similar to those of Li et al. (2018). In addition to the typical
absorption characteristics, the spectral intensities of different
samples were different, indicating that there were differences
between chemical components, which was conducive to construct
the SSC quantitative analysis model.

Full Spectra Models for Soluble Solids
Content Prediction
In this study, two kinds of full-spectrum models, namely, linear
PLS and non-linear LS-SVM were constructed to predict the SSC
of pears. Prediction results are shown in Table 3. It can be seen
that the prediction accuracy of PLS model was obviously better
than that of LS-SVM model. For samples in the prediction set, the
rp and RMSEP of the latter were 0.92 and 0.25, respectively. The
relatively high prediction accuracy indicated that the PLS model
seems to be more suitable for the non-destructive evaluation
of SSC of Korla fragrant pears, which may be due to the main
linear relationship between the original spectral data and SSC
of fragrant pears. For the PLS model, the optimal number

of potential variables (LVs) was 11. Nevertheless, full variable
modeling negatively influences the fast construction of the model
and also reduces the prediction efficiency of the model.

Wavelength Selection by Bootstrapping
Soft Shrinkage and Successive
Projections Algorithm
The BOSS-SPA combination algorithm was used to select the
most important wavelengths from all 450 spectral variables to
build a more efficient SSC prediction model. The process of
wavelength selection by the BOSS algorithm is shown in Figure 2.
The evolution of wavelength number (nVAR), RMSECV, and
weights in sub-models in each iteration of BOSS are shown
in Figures 2A–C, respectively. As shown in Figure 2A, the
number of variables shows a downward trend from fast to slow
with the increase in the number of iterations. However, it is
impossible to know how many variables are finally selected.
It can be seen from Figure 2B that the number of the
selected variables is directly related to the RMSECV value of
the models. Observing the RMSECV curve, combined with
Figure 2A, indicates that the prediction performance of the
model gradually improves with the decrease in the number of
selected variables. When the number of selected variables reaches
40 (the corresponding number of iterations is 13), the lowest
RMSECV value was obtained. Afterward, the RMSECV value of
the model begins to increase rapidly with the increase in the
number of selected variables, indicating that the performance
of the model gradually deteriorates. Therefore, the 40 variables
corresponding to the lowest RMSECV value were considered
as the most important wavelengths, which were selected by the
BOSS algorithm. Figure 2C shows the change of each wavelength
weight in different iterations. It can be seen that the extracted
40 wavelengths were distributed in the Vis/NIR spectrum region.
This showed that the tissue color of Korla fragrant pears,
especially the skin color, may have a certain correlation with SSC.

Although the selected 40 wavelengths account for only 8.9%
of the full spectrum variable information, it can be seen from
the weight figure that there is obvious collinearity between
wavelengths, that is, there are more redundant variables in the
selected variables. Thus, based on the selected 40 wavelengths,
SPA was further used to optimize variables. During variable
selection by SPA, the variation of RMSEP of the MLR model
with the used variable number is shown in Figure 3A. The red
solid block in the figure indicates the optimal number of the
selected variables by SPA. It indicates that only 17 wavelengths
are selected from 40 spectral variables. The number of variables
is further reduced. The selected 17 wavelengths include 550,
565, 577, 636, 653, 664, 730, 739, 744, 765, 819, 854, 880, 902,
932, 966, and 997 nm, as shown in Figure 3B. In Figure 3B,
the vertical line represents the positions of the corresponding
17 wavelengths. For these selected wavelengths, the first nine
wavelengths are located in the visible spectrum region, which are
mainly related to the color characteristics of the pear surface. The
other eight wavelengths are located in the NIR spectral region of
750–1,000 nm. The absorbance of this region was related to the
second and third overtones of oxygen–hydrogen (O–H) stretches
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FIGURE 2 | The change of nVAR (A), RMSECV (B), and weights for variables (C) in each iteration of the BOSS algorithm.

FIGURE 3 | The change of RMSEP with the selected variables by SPA (A) and distribution of 17 variables (B).

and the third and fourth overtones of carbon–hydrogen (C—H)
stretches of the organic molecules such as SSC (Liu et al., 2010; Jie
et al., 2013; Li and Chen, 2017).

Effective Variable Models for Soluble
Solids Content Prediction
Three kinds of models, namely, PLS, LS-SVM, and MLR, were
established based on selected variables by BOSS-SPA for SSC

prediction of Korla fragrant pears. For comparison, three types
of models were also constructed based on those variables selected
by only using BOSS or SPA method. Note that because the SPA
variable selection process based on full spectrum is similar to
SPA in the BOSS-SPA combination variable selection method,
it is further introduced in this study; 24 variables were selected
by only using SPA. Prediction results of all models are shown
in Table 4. It can be seen that all models can effectively predict
the SSC of pears, and the rp and RMSEP ranges of models
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TABLE 4 | Prediction results of SSC by PLS, LS-SVM, and MLR models with different effective wavelengths.

Models Variable selection methods LVs/(γ/σ2) No. of variables Calibration set Prediction set

rc RMSEC rp RMSEP

PLS BOSS-SPA 8 17 0.94 0.27 0.92 0.25

BOSS 9 40 0.96 0.23 0.93 0.23

SPA 14 24 0.92 0.28 0.90 0.27

LS-SVM BOSS-SPA γ = 2.6 × 104; σ2 = 4.6 × 103 17 0.96 0.21 0.91 0.28

BOSS γ = 5.3 × 104; σ2 = 5.1 × 103 40 0.98 0.17 0.92 0.26

SPA γ = 7.3 × 105; σ2 = 8.6 × 104 24 0.90 0.35 0.89 0.29

MLR BOSS-SPA — 17 0.94 0.25 0.92 0.25

BOSS — 40 0.94 0.25 0.92 0.23

SPA — 24 0.92 0.24 0.89 0.32

FIGURE 4 | Results of 20 predictions for BOSS-SPA-PLS,
BOSS-SPA-LS-SVM, and BOSS-SPA-MLR models.

were 0.89–0.93 and 0.23–0.32 ◦Brix, respectively. Compared with
full-spectrum PLS and LS-SVM models in Table 3, the models
based on effective variables obtained similar or even better

prediction performance. The results showed that the appropriate
variable selection method can optimize the model. Comparing
the three types of models (PLS, LS-SVM, and MLR) in Table 4,
it can be found that the prediction accuracy of the two types
of linear models for SSC was slightly better than that of the
LS-SVM model based on the same inputs, indicating that the
linear model was a better choice when a portable instrument
was used to measure SSC of Korla fragrant pears. In terms of
PLS and MLR models, the prediction accuracy of the two models
was similar. For each type of model in PLS, MLR, and LS-SVM
shown in Table 4, the models (i.e., BOSS-PLS, BOSS-LS-SVM,
and BOSS-MLR) developed based on the variables selected by
BOSS were the best, followed by the models (i.e., BOSS-SPA-PLS,
BOSS-SPA-LS-SVM, and BOSS-SPA-MLR) developed based on
the variables selected by BOSS-SPA. The prediction ability of the
models (i.e., SPA-PLS, SPA-LS-SVM, and SPA-MLR) developed
based on the variables extracted by the SPA algorithm was the
worst, which may be because SPA can effectively reduce the
collinearity between variables, but it is weak in the elimination of
uninformative variables. Therefore, there may be uninformative
variables in those variables selected by SPA. In contrast, the BOSS
algorithm can effectively eliminate those uninformative variables.

FIGURE 5 | Measured vs. predicted values for SSC prediction of Korla fragrant pears by BOSS-SPA-PLS models. (A) Samples in the calibration set and (B) samples
in the prediction set.
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The BOSS-SPA combination variable selection method takes into
account the advantages of both BOSS and SPA. Based on BOSS-
SPA, only 17 variables were selected, and the models based on
these selected variables achieved high prediction accuracy for
the SSC prediction of Korla fragrant pears. For samples in the
calibration set, the rc and RMSEC of BOSS-SPA-PLS, BOSS-
SPA-LS-SVM, and BOSS-SPA-MLR models were 0.94 and 0.27
◦Brix, 0.96 and 0.21 ◦Brix, and 0.94 and 0.25 ◦Brix, respectively.
For samples in the prediction set, the rp and RMSEP were 0.92
and 0.25 ◦Brix, 0.91 and 0.28 ◦Brix, and 0.92 and 0.25 ◦Brix,
respectively, for the three models.

Determination of the Optimal Model
The analysis in the Section “Effective Variable Models for Soluble
Solids Content Prediction” shows that BOSS-SPA-PLS, BOSS-
SPA-LS-SVM, and BOSS-SPA-MLR models have high prediction
accuracy and few input variables, which can be used for the
SSC evaluation of Korla fragrant pears. To further compare the
prediction performance of the three models, the stability of the
models was analyzed. Specifically, all 120 samples were randomly
divided into calibration set and prediction set according to the
ratio of 3:1, and then, BOSS-SPA-PLS, BOSS-SPA-LS-SVM, and
BOSS-SPA-MLR models were constructed, respectively, based on
the new sample set to predict SSC. The sample set was divided 20
times, and accordingly, each type of model was also constructed
20 times. Figure 4 shows the prediction results of 20 model
calculations for the three types of models. For each type of model,
the bar graph represents the average of the 20 predictions, and
error bars from the 20 calculations were also shown on the bar
graph. It can be observed from the figure that the BOSS-SPA-
PLS model was optimal with the highest rc/rp average and the
lowest RMSEC/RMSEP. Moreover, the correlation coefficient and
root mean square error (RMSE) of the BOSS-SPA-PLS model
have the smallest change of error bar, indicating that this model
has the highest stability for the SSC prediction. Therefore, the
BOSS-SPA-PLS model was finally confirmed as the optimal model
for predicting the SSC of Korla fragrant pears based on portable
Vis/NIR spectroscopy.

Figure 5 shows the scatterplots of the predicted vs. measured
SSC values for calibration samples (Figure 5A) and prediction
samples (Figure 5B) by the BOSS-SPA-PLS model. The red
solid line is the regression line corresponding to the ideal
prediction result. It can be observed that the samples were closely
distributed around the regression line. The prediction accuracy
of the model was 0.95 for rc and 0.23 for RMSEC for samples
in the calibration set and 0.94 for rp and 0.27 for RMSEP for
samples in the prediction set. Both RMSEC and RMSEP were
low, and the difference between them was small, indicating that
the BOSS-SPA-PLS model has a good prediction accuracy and
stability, and it can be used to effectively predict the SSC of
Korla fragrant pears.

Some similar studies have been carried out using portable
Vis-NIR or NIR instruments. Sun et al. (2009) developed a
portable NIR system to detect SSC of Nanfeng mandarin. The best
results were obtained by the support vector machine model. The
correlation coefficient (R) and RMSEP were 0.93 and 0.65 ◦Brix,
respectively. Wang et al. (2017) achieved a prediction accuracy of

0.46 ◦Brix (RMSEP) for SSC analysis of the European pear based
on the MLR model with 9 wavelengths. Fan et al. (2017) used
Vis-NIR portable instrument to measure the SSC of apple and
constructed a PLS model based on 50 wavelengths to obtain the
best prediction performance, with rp and RMSEP being 0.96 and
0.40 ◦Brix, respectively. Compared with these studies, satisfactory
results were obtained in this study.

CONCLUSION

In this study, the portable Vis/NIR device was successfully
used to evaluate the SSC of Korla fragrant pears. It was found
that SGS-SNV spectral preprocessing can obviously improve
the prediction performance of models developed using the raw
spectra. The PLS and LS-SVM models with full spectra were
constructed. For samples in the prediction set, the rp and
RMSEP of the two models were 0.92, 0.25 ◦Brix and 0.88,
0.32 ◦Brix, respectively. Furthermore, to reduce the number
of variables involved in modeling, the BOSS-SPA combination
method selected 17 optimal variables, which were used to
develop BOSS-SPA-PLS, BOSS-SPA-LS-SVM, and BOSS-SPA-
MLR models. Moreover, PLS, LS-SVM and MLR models were
also constructed based on the variables selected by the only BOSS
and SPA. The results showed that the prediction accuracy of
models with effective variables was similar or better than that of
the full-spectrum models, and the ranges of rp and RMSEP of
models were 0.89–0.93 and 0.23–0.32 ◦Brix, respectively, for SSC
prediction. For each model of PLS, LS-SVM, and MLR established
based on the selected variables, BOSS-SPA-PLS, BOSS-SPA-LS-
SVM, and BOSS-SPA-MLR were optimal by considering the
complexity and accuracy of the models. The RMSEP values of the
three models for SSC prediction of Korla fragrant pears were 0.25,
0.28, and 0.25 ◦Brix, respectively. The stability of the three models
was further compared based on 20 modeling calculations, which
showed that BOSS-SPA-PLS was superior to BOSS-SPA-LS-SVM
and BOSS-SPA-MLR models. Finally, the BOSS-SPA-PLS was
determined to be the best model, and the BOSS-SPA combination
method was proved to be an effective variable selection method.
The model developed in this study, combined with portable
measurement technology, has the potential to be used for the
non-destructive evaluation of SSC in Korla fragrant pears.
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The pomegranate kernel oil has gained global awareness due to the health benefits 
associated with its consumption; these benefits have been attributed to its unique fatty 
acid composition. For quality control of edible fats and oils, various analytical and 
calorimetric methods are often used, however, these methods are expensive, labor-
intensive, and often require specialized sample preparation making them impractical on 
a commercial scale. Therefore, objective, rapid, accurate, and cost-effective methods are 
required. In this study, Fourier transformed near-infrared (FT-NIR) and mid-infrared (FT-MIR) 
spectroscopy as a fast non-destructive technique was investigated and compared to 
qualitatively and quantitatively predict the quality attributes of pomegranate kernel oil (cv. 
Wonderful, Acco, Herskawitz). For qualitative analysis, principal component analysis (PCA) 
and orthogonal partial least squares discriminant analysis (OPLS-DA) was applied. Based 
on OPLS-DA, FT-MIR spectroscopy resulted in 100% discrimination between oil samples 
extracted from different cultivars. For quantitative analysis, partial least squares regression 
was used for model development over the NIR region of 7,498–940 and 6,102–5,774 cm−1 
and provided the best prediction statistics for total carotenoid content (R2, coefficient of 
determination; RMSEP, root mean square error of prediction; RPD, residual prediction 
deviation; R2 = 0.843, RMSEP = 0.019 g β-carotene/kg, RPD = 2.28). In the MIR region of 
3,996–1,118 cm−1, models developed using FT-MIR spectroscopy gave the best prediction 
statistics for peroxide value (R2 = 0.919, RMSEP = 1.05 meq, RPD = 3.54) and refractive 
index (R2 = 0.912, RMSEP = 0.0002, RPD = 3.43). These results demonstrate the potential 
of infrared spectroscopy combined with chemometric analysis for rapid screening of 
pomegranate oil quality attributes.

Keywords: Punica granatum L., oil quality, partial least squares regression, discriminant analysis, infrared 
spectroscopy

52

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.867555﻿&domain=pdf&date_stamp=2022-07-07
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/: 10.3389/fpls.2022.867555
https://creativecommons.org/licenses/by/4.0/
mailto:opara@sun.ac.za
mailto:unesco.icb.nigeria@gmail.com
https://doi.org/10.3389/fpls.2022.867555
https://www.frontiersin.org/articles/10.3389/fpls.2022.867555/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.867555/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.867555/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.867555/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.867555/full


Frontiers in Plant Science | www.frontiersin.org 2 July 2022 | Volume 13 | Article 867555

Okere et al. Non-destructive Evaluation of Pomegranate Kernel Oil

INTRODUCTION

Pomegranate and its co-products have gained traction in research 
and application for their nutraceutical and medicinal properties 
(Seeram et  al., 2006; Opara et  al., 2009). Pomegranate fruit 
can be divided into two fractions: edible and non-edible fractions. 
The edible portion contains arils and each aril contains a kernel 
(woody portion; O’Grady et  al., 2014; Arendse et  al., 2016). 
Pomegranate oil is derived from the kernel of the fruit and 
studies over the years have reported that the oil derived from 
the kernels have radical scavenging activity, anti-inflammatory, 
anti-tumoral and anti-diabetic properties (Lansky et  al., 2005; 
Lansky and Newman, 2007; Jing et  al., 2012; Fernandes et  al., 
2015; De Melo et  al., 2016). These properties have been linked 
to its unique phenolic and fatty acid composition (Seeram 
et  al., 2006; Khoddami et  al., 2014; Fernandes et  al., 2015). 
Pomegranate oil carries a higher premium compared to other 
oils such as olive and avocado oil, the premium may be  due 
to its unique fatty acid composition only found within 
pomegranates as well as its high phytochemical composition. 
Thus pomegranate oil, among others is highly susceptible to 
adulteration with cheaper alternatives (Uncu et  al., 2020).

To evaluate the chemical constituents in oil products, standard 
analytical methods such as high-performance liquid 
chromatography and various colorimetric methods are used 
(Dieffenbacher and Pocklington, 1991; Aluyor et al., 2009). These 
methods are used to provide precise and accurate measurements 
of quality attributes. However, their approach is often time-
consuming, expensive, and not always practical for large-scale 
commercial applications as it involves the use of trained sensory 
panelists or individuals. These drawbacks have promoted research 
interest in developing objective and non-invasive techniques 
for faster and less expensive assessment of oil quality attributes.

Due to its rapid, accurate, simple, and cost-effective way 
to evaluate chemical constituents, infrared (IR) spectroscopy 
in combination with chemometrics is one of the widely used 
non-destructive tools used by the food and beverage industry 
for quality testing and analysis (Sinelli et  al., 2010; Becker 
and Yu, 2013; Shi and Yu, 2017). IR spectroscopy is appropriate 
for predicting compounds containing polar functional groups 
such as –OH, C–O, and N–H. In the agricultural industry, 
IR spectroscopy in the near-infrared (NIR, 12,500–4,000 cm−1) 
and the mid-infrared (MIR, 4,000–400 cm−1) spectral region 
has been applied as a non-destructive analytical tool. Fourier 
transform infrared spectroscopy (FT-IR) uses the mathematical 
process (Fourier transform) to translate the raw data 
(interferogram) into the actual spectrum. FT-IR spectrometers 
have recently replaced dispersive instruments, due to their 
superior speed and sensitivity. FT-IR spectrometers have several 
prominent advantages over dispersive IR spectrometers. A better 
signal-to-noise ratio of the spectrum compared to the previous 
generation infrared spectrometers. FT-IR spectrometers have 
a higher wavenumber accuracy and low error range (±0.01 cm−1). 
Their scan time is short (approximately 1 s) and has a high 
resolution (0.1–0.005 cm−1; Hsu, 1997).

In combination with chemometric tools, both Fourier 
transform near-infrared spectroscopy (FT-NIRs) and Fourier 

transform mid-infrared spectroscopy (FT-MIRs) has several 
advantages and limitations. For instance, FT-NIRs has 
inexpensive components due to low-cost materials such as 
glass and quartz compared to FT-MIRs. FT-NIRs also use 
more robust components, and it is easier to manufacture 
rugged instruments, involving no moving parts. FT-MIRs in 
contrast contain more spectral information due to the higher 
resolution of the fundamental vibrational absorption bands 
and can identify very complex or similar structures compared 
to the broad overtone and combination absorption bands in 
the NIR region (Socaciu et  al., 2009; Manley, 2014; Shi and 
Yu, 2017). Another advantage of FT-MIRs includes fundamental 
vibrations of molecular bonds within a sample that occur in 
the “fingerprint” region, making the spectral profiles very 
sensitive; even very similar molecules can produce quite distinct 
spectral bands. Compared to FT-NIRs, the absorption bands 
of the spectra are very broad and overlapped as a result of 
many chemically different samples which give rise to almost 
indistinguishable spectral profiles. A detailed description of 
their advantages and limitations has been reviewed by Arendse 
et  al. (2020).

FT-IR spectroscopy has been successfully used to classify 
geographical locations to classify geographical sources of oils 
(Lin et  al., 2012) and detect adulteration in a variety of oil 
products (Yang et al., 2005; Gurdeniz and Ozen, 2009). Several 
studies have highlighted the application of IR spectroscopy 
for varying analytical quality attributes evaluation for a variety 
of oil products. Some of the major attributes accessed using 
IR spectroscopy include phenolic content, carotenoid content, 
peroxide value, refractive index, yellowness index, and fatty 
acids composition. These have been carried out for different 
oil products like olive oil (Inarejos-García et  al., 2013; Cayuela 
and García, 2017), palm oil (Mba et  al., 2014), maize oil 
(Kahrıman et  al., 2019) and vegetable oil (Pereira et  al., 2008).

Considering that the chemical composition of pomegranate 
oil may differ depending on the cultivar or growing region. 
To our knowledge, limited studies for the application of both 
FT-NIRs and FT-MIRs for evaluating quality attributes of 
pomegranate kernel oil, but also limited studies involved testing 
the robustness of PLS calibration models. The robustness of 
calibration models has become a critical issue in the application 
of vibrational spectroscopic techniques and an active area of 
research (Nicolaï et al., 2007; Magwaza et al., 2014). Our study 
attempts to evaluate the effects of cultivar differences on the 
robustness of calibration models and the ability of both FT-NIRs 
and FT-MIRs to qualitatively classify pomegranate oil based 
on different cultivars. The development of methods that combines 
FT-IR spectroscopy and chemometrics has the potential of 
providing novel input into non-destructive oil quality prediction 
for both authentication and adulteration application. Therefore, 
this study is aimed at investigating the feasibility of Fourier 
transform near-infrared and mid-infrared spectroscopy in 
evaluating pomegranate kernel oil quality both qualitatively 
[using principal component analysis (PCA) and orthogonal 
partial least squares discriminant analysis (OPLS-DA)] and 
quantitatively [via partial least squares regression (PLSr)]. 
However, very few studies on Vis/NIRS applications in fruit.
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MATERIALS AND METHODS

Fruit Supply and Processing
Three different pomegranate cultivars (cv. Wonderful, Acco, 
Herskawitz) were procured from Sonlia pack-house, Wellington, 
Western Cape region. A total of 180 fruit or 60 fruit per 
cultivar was used for this study. At the research laboratory, 
fruit without any physical defects was sorted and manually 
cut open for the edible aril portion at ambient conditions 
(21°C ± 65% RH). Cheesecloth was employed to separate kernels 
from the arils. Kernels were extracted from arils and then 
washed with distilled water to eliminate the residual aril sacs 
before being dried at a temperature of 60°C for 24 h in a hot 
air oven (PROLAB, South  Africa). Pomegranate kernels were 
dried to a moisture content of 1.7 wt. % (dry basis). After 
drying the seed the final seed weight averaged 12 ± 2.5 g per 
fruit. Dried pomegranate kernels were then packed in a 
polyethylene bag and stored at −20°C until further processing.

Oil Extraction and Yield
In this study, pomegranate oil was extracted using the solvent 
extraction method as described by Ampem (2017). Dried kernels 
were grinded into a powder with a particle size of 0.25 mm 
using a Sunbeam coffee grinder (Model SCG-250, 60 g capacity, 
South  Africa) in preparation for oil extraction (Eikani et  al., 
2012). Hexane solvent was used to extract oil from the kernel 
powder. Pomegranate kernel powder (30 g) was weighed into 
a glass flask and extracted twice, respectively, with 300 ml of 
hexane solvent at a time, reaching a total volume of 600 ml 
solvent solution for each sample. The mixture (600 ml) was 
sonicated in an ultrasonic bath (Model DC 400H, Haifa, Israel) 
which was operated at 40°C for 40 min. The oil filtrates from 
repeated extractions were pooled and recovered through 
distillation using a rotary evaporator (Heidolph Instruments 
GmbH & Co. KG, Germany). Thereafter, samples were placed 
within a vacuum oven at 60°C for 1.5 h to remove any remaining 
hexane solution (Parashar et  al., 2009). A total of 6 ml oil was 
obtained from each fruit and transferred into a 9 ml glass 
tube and stored in a dark environment at room temperature 
until further analysis. A total of 45 oil samples composed of 
15 samples each from three different cultivars (Acco, Wonderful, 
Herskawitz) were used for this study.

Spectral Acquisition
The Alpha-P ATR FT-IR spectrometer (Bruker Optics, Ettlingen, 
Germany) and the Multi-purpose analyser (MPA) spectrometer 
(MPA, Bruker Optics, Ettlingen, Germany) were used for spectral 
data acquisition. Samples were kept in 8 mm glass vials, and 
sample temperature was maintained at ±50°C using a heating 
block before spectra recording. This was to ensure that sample 
temperature was stable as studies have shown temperature to 
impact the intensity of the bands (Jiang et  al., 2008; Cayuela 
and García, 2017; Özdemir et  al., 2018). The temperature of 
50°C was chosen through preliminary trials and consultation 
with Bruker Optics, South  Africa. For the MPA spectrometer, 
the spectral data were acquired over the range of 12,500 to 

4,000 cm−1 (scanning resolution 4 cm−1; scanner frequency 10 kHz; 
background with air, 128 scans). The spectral acquisition occurred 
almost immediately for the Multi-purpose analyser (MPA) 
spectrometer since the instrument does not have a temperature 
control system. For the Alpha-P ATR FT-IR spectrometer, 
sample spectral data were acquired over the range of 4,000–
400 cm−1. The Alpha-P spectrometer was equipped with a 
diamond crystal plate (area 2 mm2) that maintained the sample 
temperature at 50°C. The temperature was monitored using 
OPUS software and spectral acquisition would only occur when 
the diamond crystal plate and sample reached a temperature 
of 50°C. The average time taken to acquire spectral data for 
one sample was 120 s using the following instrument settings: 
4 cm−1 resolution scan, 10 kHz scanner frequency and 128 
averaged scans per spectrum. The sample stage was cleaned 
in-between measurements with soft paper and undiluted methanol 
to avoid cross-contamination (Foudjo et  al., 2013).

Reference Measurements
Refractive Index
The refractive index of pomegranate oil was measured at ambient 
temperature (21 ± 3°C) with a calibrated Abbé refractometer, 
Model 302 (ATAGO Co. Ltd., Japan). Three drops of pomegranate 
oil were loaded onto the refractometer prism, and refractive 
index values were reported as mean ± standard error (SE, n = 3) 
for each sample. After each measurement, the prism was cleaned 
with petroleum ether followed by distilled H2O and dried with 
tissue paper.

Yellowness Index
Yellowness index indicates the degree of yellowness associated 
with scorching, soiling, and general product degradation by 
light, chemical exposure, and processing. The yellowness index 
of pomegranate oil was evaluated based on the CIE L*a*b* 
coordinates from a calibrated Minolta Chroma Meter, Model 
CR-400 (Japan). The yellowness index was calculated as described 
by Pathare et  al. (2013).

 
YI b

L
=

∗ ∗

∗
142 86.

 
(1)

Total Phenolic Content
Total phenolic content was measured using the Folin–Ciocalteau 
(Folin C) assay as reported by Makkar et  al. (2007) with 
modification, according to Fawole et  al. (2012). Briefly, 
pomegranate oil (0.5 ml) was dissolved in 14.5 ml of 50% 
aqueous methanol. An aliquot of 50 μl was diluted with 450 μl 
of 50% methanol (v/v) before the addition of 1 N Folin C 
(500 ml) and 2% sodium carbonate (2.5 ml). The mixture was 
vortexed and stored in a dark environment for 30 min before 
the absorbance was recorded at 760 nm against blank aqueous 
methanol. The total phenolic content of pomegranate kernel 
oil was extrapolated and reported as milligram gallic acid 
equivalent (mg GAE/g oil). The results for each sample were 
presented as mean ± SE (n = 3).
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Total Carotenoid Content
Total carotenoid content was evaluated as decribed by Biehler 
et  al. (2010) and Siano et  al. (2015) with modification. In 
brief, pomegranate oil (0.1 ml) was dissolved in 10 ml dimethyl 
sulfoxide (DMSO). The total carotenoid content of the resulting 
mixture was recorded at 440 nm and 460 nm, against a blank 
DMSO solvent. A standard curve consisting of 0.02–0.15 mg/ml  
DMSO solution was prepared following the same procedure. 
The results for total carotenoid content were expressed as gram 
(g β-carotene/kg) of pomegranate oil, and the results for each 
sample were presented as mean ± SE (n = 3).

Peroxide Value
Peroxide value was performed as described by Ampem (2017). 
Briefly, pomegranate oil (0.2 ml) was dissolved in 9 ml of 
chloroform: methanol mixture (7:3 ratio) in screw-capped vials. 
The resultant solution was mixed with 50 μl of 10 Mm xylenol 
orange methanol solution and 50 μl of 36 Mm iron (II) chloride 
solution and vortexed, respectively. The peroxide value of the 
resulting mixture was estimated following absorbance reading 
at 560 nm. Peroxide value was expressed in milli-equivalents 
(meq) of active oxygen per kilogram of oil and calculated 
using the following equation:

 

( )
55.84 2
− ×

=
× ×

S BA A mi
PV

W  
(2)

Where
PV = peroxide value.
AB = absorbance of the blank.
AS = absorbance of the sample.
mi = the inverse of the slope (Obtained from calibration curve).
W = weight of the sample (g). 55.84 is the atomic weight 

of iron.

Chemicals and Reagents
All chemical reagents were obtained from Sigma–Aldrich–Fluka 
Co. Ltd. (South Africa) unless otherwise stated.

Chemometric Data Analysis
The spectral acquisition occurred with OPUS software (version 
7.0), while data processing and analysis were achieved with 
SIMCA and OPUS software. Qualitative analysis (modeling of 
cultivar difference) was carried out using PCA and OPLS-DA 
using SIMCA software, and quantitative analysis (developing 
calibration models) was carried out with PLSr using OPUS 
software. For this study, several preprocessing methods were 
evaluated, baseline correction spectra were subjected to several 
filtering techniques, which included Savitzky–Golay 
transformation (first derivative), multiplicative scattering 
correction (MSC), and standard normal variate (SNV) correction. 
Separate OPLS-DA models were built for both NIR and MIR 
spectral data, each pair of two successive stages by using a 
dummy variable with a value of 1 assigned to samples that 
belonged to a specific group and a value of 0 to samples that 
did not belong to that group.

Partial Least Square (PLS) Regression Analysis of 
Spectral Data
For the quantitative analysis of spectral data, the spectral 
parameters used for multivariate analysis were optimized by 
subjecting spectral data to the software’s “Optimise” function. 
This function provides a combination of parameters such as 
different pre-processing methods and wavenumber regions and 
ranks results based on the number of latent variables and 
root-mean-square error of cross-validation (RMSECV) values.

The development of calibration models for the infrared (NIR 
and MIR) spectra was performed by applying partial least squares 
regression analysis (including mean centering). Spectral outliers 
were identified as having high residual variance from the zero 
line. Concentration outliers present in the dataset were removed 
and successive rounds of PLSr were done with the reduced 
dataset. A total of three outliers were removed, and the resultant 
calibration models were validated with the test dataset. For PLSr 
analysis, cross-validation was applied by the Leave-one-out method, 
which calculates potential models excluding one observation at 
a time. Calibration models was developed by combining all 
three cultivars and then randomly splitting the dataset into 2:1 
subsets, i.e., calibration (70%) and prediction (30%) sets, each 
subset containing sufficient samples of each cultivar.

The performance of PLS models was evaluated according 
to the following prediction statistics: coefficient of determination 
[R2; Eq. (3)], root mean square error of validation [RMSEV; 
Eq. (4)] and root mean square error of prediction [RMSEP; 
Eq. (5)]. Other statistical indicators for this study include 
models bias [Eq. (6); which gives an indication of the systematic 
error in the predicted values and its calculated values] and 
the residual prediction deviation [RPD; Eq. (7)] value, which 
is defined as the ratio of the standard deviation of the reference 
data of the validation set to the RMSEP value (which indicates 
the efficiency of calibration models). RPD values can be  used 
to evaluate the performance of the developed models (Williams, 
2014). According to Nicolaï et  al. (2007), models with RPD 
values below 1.5 is unreliable, while values between 1.5 and 
2.0 indicate models can be  used for rough prediction, while 
RPD values between 2.0 and 2.5 can be  used for quantitative 
predictions, any values above 3 are considered satisfactory. 
The best-performing models were selected based on the best 
overall performance (low RMSEP, low RMSEV, high R2, and 
higher RPD, and low bias).
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Where n is number of spectra, yact is actual value, ymean is 
mean value, ycal is calculated value, ypred is the predicted value 
of the attribute, M is the number of calibration samples, R is 
the rank, SSE is the sum of squared error, SD is the standard 
deviation of reference values.

Statistical Analysis
To demonstrate that the prediction of the different selected 
quality parameters is from the actual IR spectra and not due 
to possible correlations with the other measured parameters, 
the reference data was subjected to Pearson’s correlation test 
using Statistica software (Statistica 16.0, StatSoft Inc., Tulsa, 
OK, United  States).

RESULTS AND DISCUSSION

Distribution of Calibration and Validation 
Reference Data
For this study, reference data for the different parameters were 
normally distributed around the mean (Table  1). According 
to Lu et  al. (2006), the accuracy and validation of calibration 
models normally depend on large variation in the present 
within the sample set in the physical and biochemical reference 
data. However, reports have indicated superior model accuracies 
using NIR spectroscopy when data with a large sample variation 
within the calibration and validation set is being considered 
(Magwaza et  al., 2013, 2014). Table  2 presents the standard 
deviation, minimum-to-maximum range, and CV% statistics 
of most of the parameters. Most parameters had high CV% 
values of up to 43% for both calibration and validation data 
sets covering a wide range of values, aside from the refractive 
index. Pearson correlation was applied to investigate the 
interrelationships between selected reference data of pomegranate 
oil. From the result, it can be  deduced that the prediction of 
these quality parameters (phenolics, carotenoids), and their 
concentrations should not correlate with one another. Correlation 

tests indicate that no correlation was observed between chemical 
indices such as phenolic and carotenoid content (0.227). Similarly, 
phenolic and carotenoid content showed no correlation with 
peroxide value (−0.009, 0.334) refractive index (0.260, 0.176) 
or oil yellowness index (0.172, 0.215). These results suggest 
that the prediction of the different studied parameters is actually 
from the IR spectra.

FT-NIR and FT-MIR Spectral 
Characteristics of Pomegranate Oil
NIR spectroscopy is a powerful non-destructive technique used 
for the detection of various compounds, the NIR spectrum 
provides information on the vibrational absorption of hydroxyl 
(O–H), amido (N–H), and C–H bonds. The average for both 
NIR and MIR spectra of pomegranate oil is presented in 
Figure  1. Pomegranate is highly abundant in punicic acid 
(C18:3-9c), linoleic acid (C18:2), and oleic acid (C18:1). Band 
assignment was done according to the literature (Foudjo et  al., 
2013; Inarejos-García et  al., 2013; Özdemir et  al., 2018). In 
the NIR region, bands around 8,451 cm−1 arise from second 
overtones of C–H stretching vibrations, while those at 7,502 
and 7,498 cm−1 are due to the combination bands of C–H in 
fatty acids. The bands at 5,774 and 5,450 cm−1 can be  ascribed, 
according to literature, from the first overtone of C–H stretching 
vibrations of methyl, methylene, and ethylene groups (Sinelli 
et  al., 2011; Özdemir et  al., 2018). Small bands at 4,659 and 
4,597 cm−1 are associated with combination bands of C–H and 
C–O stretching vibration. Several bands dominate the MIR 
spectra at 2,918, 2,556, 1,837, 1,463, 1,377, 1,238, 1,163, 1,114, 
1,099, and 721 cm−1. The absorbance band at 3,013 cm−1 has 
been associated with the stretching of the functional group 
=C-H (cis-) found in unsaturated fatty acids such as punicic 
acid (Guillén and Cabo, 1997). Absorbance at 2,924 and 
2,852 cm−1 are due to bands from asymmetric CH2 stretching 
vibration of acyl chains and methylene chains in fatty acids 
(punicic acid, linoleic acid, and oleic acid; Guillén and Cabo, 
1997; Sun, 2009). The major band at 1,743 cm−1 arises from 
C=O stretching vibrations of ν(C=O) ester in fatty acids (Guillén 
and Cabo, 1997, Sun, 2009). The band at 1,238, 1,163 and 
1,114 cm−1 has been associated with C-O or CH2 stretching 
or bending vibration out-of-plane of functional groups from 
fatty acids (Guillén and Cabo, 1997; Rohman and Che, 2011). 
The band at 721 cm−1 corresponds to the CH2 rocking mode 
(Yang et  al., 2005; Sinelli et  al., 2010). The spectral profile for 
pomegranate oil is comparable to those reported for other oil 

TABLE 1 | Mean, standard deviation (SD), range, and coefficient of variation (CV) for calibration and validation subsets for selected parameters of pomegranate kernel 
oil (sample number = 42).

Parameters Calibration set Validation set Overall 
CV%

Mean SD Min Max Mean SD Min Max

Peroxide value 7.311 4.219 1.745 16.342 7.478 3.873 1.943 13.517 54.758
Refractive index 1.520 0.0008 1.517 1.523 1.521 0.0010 1.519 1.522 0.0628
Total carotenoid content (g β-carotene/kg) 0.0977 0.0418 0.0640 0.270 0.100 0.0436 0.0650 0.232 43.158
Total phenolic content (mg GAE/g oil) 3.987 0.745 3.113 5.221 3.702 0.436 3.223 4.343 15.247
Yellowness index 54.226 18.540 23.141 97.280 55.690 21.842 23.946 96.416 36.706
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A B

FIGURE 1 | Representative absorbance spectra for ATR-FT-MIR (A) and FT-NIR (B) of pomegranate kernel oil.

samples like avocado oil (Foudjo et  al., 2013), virgin olive oil 
(Dupuy et  al., 2010; Sinelli et  al., 2010), rapeseed oil blend 
(Ma et  al., 2014), and palm oil (Mba et  al., 2014).

Qualitative Analysis of Pomegranate Oil 
Using PCA and OPLS-DA
Unsupervised Clustering (PCA)
PCA is, arguably, one of the most useful and widespread 
unsupervised methods used in chemometrics for its exploratory 
data analyses (Cozzolino et al., 2011; Jolliffe and Cadima, 2016). 
PCA was carried out to explore the possible clustering of 
samples and evaluate the influence of cultivar on oil quality. 

PCA is a statistical technique that is used to investigate the 
structure of a data set and attempts to model the total variance 
of the original data set via the uncorrelated principal components 
(Filzmoser and Todorov, 2011; Gautam et  al., 2015). PCA 
maximizes the variation in the data set projects the main 
variation onto a few latent variables and presents sample 
groupings as clusters in PCA score plots with the corresponding 
loadings plots (Wold et  al., 1987).

Preliminary assessment of both NIR and MIR spectra was 
performed using PCA, to examine the effects of cultivar differences 
on pomegranate oil quality. For NIR baseline-corrected 
spectra, the first two principal components (PC) were used in 

TABLE 2 | Model evaluation statistics for quality parameters of pomegranate kernel oil as determined from FT-NIR and FT-MIR spectroscopy (sample number = 42).

Parameter Acquisition 
mode

Pre-processing Wavenumbers 
range (cm−1)

Calibration Validation

LV R2 RMSEV R2 RMSEP RPD Bias Slope Corr.

Peroxide value FT-NIRs 1st + MSC 7,500–6,098, 
5,450–4,597

3 0.833 1.68 0.833 1.78 2.80 −0.866 0.823 0.935

FT-MIRs 2nd 3,996–2,556 3 0.959 0.99 0.919 1.05 3.54 −0.036 0.829 0.965
Refractive 
index

FT-NIRs 2nd 9,400–6,098, 
5,450–4,597

4 0.904 0.0003 0.863 0.0003 3.44 −0.000 0.906 0.956

FT-MIRs 2nd 3,996–1,118 4 0.960 0.0002 0.912 0.0002 3.43 0.000 0.867 0.958
Total 
carotenoid 
content

FT-NIRs SLS 7,498–940, 
6,102–5,774

5 0.892 0.015 0.843 0.019 2.28 −0.003 0.893 0.944

FT-MIRs 2nd 3,996–3,635, 
2,558–1837, 

760–399

3 0.958 0.002 0.632 0.007 1.72 0.002 0.543 0.836

Total phenolic 
content

FT-NIRs SLS 7,502–4,597 2 0.332 0.85 0.185 1.39 1.26 0.657 0.226 0.774

FT-MIRs 1st 3,996–3,965, 
1,479–758

2 0.635 0.47 0.568 0.37 1.57 −0.066 0.879 0.814

Yellowness 
index

FT-NIRs 2nd 8,451–7,498, 
6,102–4,597

5 0.556 13.60 0.531 14.30 1.49 2.64 0.543 0.740

FT-MIRs 2nd 2,918–2,556, 
1,120–758

1 0.307 11.90 0.205 15.00 1.15 −3.10 0.267 0.491

R2, coefficient of determination; RMSEV, root mean square error of validation; RMSEP, root mean square error of prediction; RPD, residual predictive deviation; LV, latent variable; 
Corr., correlation coefficient; 1st, first derivative; 2nd, second derivative; MSC, multiplicative scattering correction; SLS, straight line subtraction.
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relation to the chemical variation within the sample sets 
(Supplementary Table  1). By plotting all 45 data points, scores 
from the first two PC explained 100% (PC1 = 99.97%, PC2 = 0.0026%) 
of the total variation within the dataset. One dispersed group 
(cv. Herskawitz) was observed, which revealed that the first PC 
contributed most to the sample distribution, where samples were 
mainly stretched along the PC1 region (Figure  2A). However, 
the PCA plot revealed no clear groupings according to chemical 
variation within the data set, with cultivar Acco co-clustering 
with cultivar Wonderful. The score plots from the FT-MIR spectra 
for oil samples showed that the first two PC explained a total 
of 91.38% (PC1 = 91%, PC2 = 0.38%) of the variation 
(Supplementary Table  2). Examination of the PCA scores plot 
generated from three cultivars showed well-defined sample clusters 
for both Acco and Wonderful cultivars with both co-clustered 
with cv. Herskawitz (Figure  2B). This observation showed that 
despite its simplified approach, IR spectroscopy could be  used 
to differentiate between different cultivars based on spectral data.

Supervised Clustering/Discriminant Analysis 
(OPLS-DA)
Orthogonal projections to latent structures discriminant analysis 
(OPLS-DA) is a supervised classification technique that isolates 

a predictive component and integrates an orthogonal correction 
filter, to differentiate the variation within the dataset (Bylesjö 
et  al., 2006). OPLS-DA is often used as an alternative method, 
where PCA cannot show clear clustering. OPLS-DA works 
through the projection of data and is guided by known class 
information, thus offering increased separation projection in 
comparison to PCA (Trygg et  al., 2007). This is because 
OPLS-DA score plots are rotated so that between-class variation 
is projected on the predictive component, while within-class 
variation, is projected on the first y-orthogonal component 
(Wiklund et  al., 2008). Therefore, several authors classify that 
OPLS-DA models are easier to interpret than PLS-DA models, 
although both methods have the same predictive power (Trygg 
and Wold, 2002; Trygg et al., 2007; Musingarabwi et al., 2016).

To see the effects of cultivar differences on the quality 
characteristics of pomegranate oil, OPLS-DA was performed 
on both FT-NIR and FT-MIR spectra (Figure 3). For FT-NIRs, 
the application of OPLS-DA showed two well-clustered groups 
(cv. Wonderful and Acco), while pomegranate cultivar 
Herskawitz remained dispersed and co-clustered with cultivar 
Wonderful (Figure 3A). Whereas, for FT-MIRs, the application 
of OPLS-DA successfully discriminated and separated all 
three cultivars into well-defined cluster groups (Figure  3B). 

A B C

FIGURE 3 | OPLS-DA scores plots for NIR baseline-corrected spectra (A), MIR baseline-corrected spectra (B), and reference data plot (C). The colour in (A) and 
(B) represents different cultivars (Acco, Wonderful, Herskawitz) of extracted pomegranate oil (sample number = 42).

A B

FIGURE 2 | PCA score plots for NIR spectral data (A) and MIR spectral data (B). The colour represents different cultivars of extracted pomegranate oil, green 
(Acco), blue (Herskawitz), and red (Wonderful) (sample number = 42).
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A B

C D

FIGURE 4 | Scatter plots of FT-NIR/FT-MIR predicted (A), refractive index (B), total carotenoid content (C), and total phenolic content (D), plotted against 
destructively acquired reference data (sample number = 42).

A similar approach to qualitatively evaluate the quality of 
grape berries was performed by Musingarabwi et  al. (2016). 
These authors reported that the application of PCA and 
OPLS-DA successfully discriminated against and separated 
different developmental stages of grape berries into well-
defined cluster groups. The ability to successfully discriminate 
between different cultivars by both PCA and OPLS-DA using 
IR spectra has the potential for the application of authentication 
and adulteration assessment of pomegranate oil.

Interestingly, when plotting the reference data for each 
cultivar that is based on the reference measurements, the 
cultivar Herskawitz was highly associated with peroxide value 
and total carotenoid content (Figure  3C). The Wonderful 
cultivar has been grouped with total phenolic content and 
refractive index. While cv. Acco has shown an association 
with the yellowness index. These results suggest that the 
Wonderful cultivar has the highest concentration of 
unsaturation fatty acids since fatty acids are directly 
proportional to the refractive index of the oil. Similarly, 
pomegranate (cv. Wonderful) has the highest phenolic content, 
suggesting that fruit consumption for this particular cultivar, 
increases the intake of phenolic compounds which have been 
linked to antioxidant compounds. For color attributes, 
pomegranate oil obtained from Acco cultivar was the most 
suitable to assess the characteristic yellow coloration. While 
the cultivar Herskawitz has a high peroxide value suggesting 
that oil obtained from Herskawitz cultivar is more susceptible 

to oxidation. The differentiation between cultivars may be due 
to cultivar differences or fruit maturity status.

Quantitative Analysis of Pomegranate Oil 
Using PLS Regression
The best FT-NIRs and FT-MIRs models were developed using 
17 points, first derivative, second derivative, and straight-line 
subtraction, respectively. The model for each parameter was 
selected based on the evaluation of statistical parameters that 
gave higher R2, high RPD values, lowest RMSEV and RMSEP, 
and lowest number of latent variables. The overall performance 
of the developed models for all quality parameters is represented 
in Table  2. Scatter plots of FT-NIR and FT-MIR spectroscopy 
for predicted data plotted against measured reference data are 
presented in Figure  4. Models developed in the NIR and MIR 
spectral regions had a major influence on the regression statistics. 
All three cultivars were combined to create models with high 
robustness and variability.

The refractive index is an intrinsic property of oil measured 
based on light penetration through an oil sample (Aydeniz 
et  al., 2014; Khoddami et  al., 2014). Oil refractive index has 
been reported to be  directly proportional to the degree of 
unsaturation of fatty acids and inversely related to its viscosity 
and can, therefore, be  used to quantify the double bonds of 
fatty acids (Aydeniz et  al., 2014; Khoddami et  al., 2014). The 
statistical indicators for model fitness showed that both NIR 
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and MIR spectra yielded relatively accurate PLS models for 
refractive index. PLS model development in the FT-MIRs 
provided slightly better prediction statistics (R2 = 0.912, 
RMSEP = 0.0002, and RPD = 3.43) compared to the FT-NIRs 
(R2 = 0.863, RMSEP = 0.0003, and RPD = 3.44; Table  2). The 
wavenumber range used during the development of the PLSr 
model for the refractive index was between 3,996 and 1,118 cm−1, 
which is within the range reported by Yang and Irudayaraj 
(2001) for olive oil. The RPD value suggests the model developed 
can provide a satisfactory prediction for refractive index, while 
the low bias (<0.0002) of the developed model suggests that 
the model was stable and non-sensitive to factors such as cultivar.

For quality control in edible fats and oils, oxidation is one 
of the main parameters used for oil products. Oxidation of 
fats and oils produces either primary (peroxides) or secondary 
oxidation products. The PLSr models developed for peroxide 
value has shown that the FT-MIRs provided better prediction 
statistics (R2 = 0.919, RMSEP = 1.05 meq, and RPD = 3.54) 
compared to the FT-NIRs (R2 = 0.833, RMSEP = 1.78 meq, and 
RPD = 2.80; Table 2). Similar values were observed for RMSEV 
and RMSEP, suggesting that the developed models were not 
overfitted. Furthermore, the developed models had low bias 
values (0.036–0.86) indicating robust fitting and stability. This 
indicates that the models were not sensitive to external factors 
such as different cultivars. The RPD value (3.54) for the 
developed model suggests that satisfactory predictions can 
be  made with FT-MIRs.

FT-MIR spectroscopy has been used to evaluate the peroxide 
value of coconut oil, where the authors reported a high 
coefficient of determination (R2 = 0.982) and low RMSEP 
values (0.4978 meq; Marina et  al., 2013). The wavenumber 
range reported in this study for peroxide value is similar 
to those reported for the development of models for various 
oil products (Liang et  al., 2013; Marina et  al., 2015; Zahir 
et  al., 2017). For total carotenoid content, the NIR region 
of 7,498–940 and 6,102–5,774 cm−1 provided better prediction 
statistics (R2 = 0.843, RMSEP = 0.019 g β-carotene/kg) compared 
to FT-MIRs (R2 = 0.632, RMSEP = 0.007 g β-carotene/kg), with 
RPD value of 2.28 suggesting that the model is fit for 
quantitative predictions. Similar prediction results for total 
carotenoid content were reported by Schulz et  al. (1998) in 
essential oils, within the spectral region of 10,100 and 
5,150 cm−1. For total phenolic content, FT-MIRs in the region 
of 3,996 and 758 cm−1, have been shown to provide rough 
predictions (RPD = 1.57), while those developed in the NIR 
region were shown to be  unreliable (RPD = 1.26). Contrary 
to our results, Trapani et  al. (2016) reported that the NIR 
spectral region of 12,500 to 4,000 cm−1 provided relatively 
good prediction statistics (R2 = 0.71, RMSEP = 0.08 mg/kg dm) 
for total phenolic content in olive oil. Model development 
for the yellowness index gave relatively poor prediction 
statistics for both FT-NIRs and FT-MIRs (Table  2). Low 
RPD values and high bias characterized these models, 
suggesting that the developed models were unreliable, and 
overestimation may have occurred for these quality attributes. 
The developed calibration models were only performed using 
internal cross-validation and thus only applicable to the three 

selected cultivars. It is well known that the real challenge 
with calibration models is that their predictive performance 
almost always reduces when tested on unknown sources such 
as fruit maturity, seasonality, and growing regions. Thus 
future research should include more variability (growing 
regions and seasonality) to improve the model’s robustness.

For this study, FT-MIRs were shown to be  better suited for 
both qualitative and quantitative applications. The regression models 
developed within the MIR spectral region performed better than 
those developed within NIR spectral region. This can be  because 
the mid-infrared spectrum contains wavenumbers for fundamental 
rotational molecular vibration, which is highly sensitive to specific 
chemical compositions. In contrast, the near-infrared spectrum 
is associated mainly with overtone and combination bands of 
fundamental transition, making it less reproducible and specific. 
Another advantage of ATR FT-MIR spectroscopy is temperature 
control via the ATR crystal, which reduces potential variation 
by maintaining constant sample temperature (Smyth and Cozzolino, 
2011). However, FT-NIRS is more applicable to practical usage 
for online or inline implementation or the development of portable 
devices due to their relatively inexpensive instrumentation costs, 
more robust components, and it is easier to manufacture rugged 
instruments, involving no moving parts.

CONCLUSION

Classification of pomegranate oil quality according to their 
respective cultivars was possible with FT-IR spectroscopy. 
FT-MIRs spectra resulted in 100% discrimination between 
oil samples extracted from different cultivars using 
OPLS-DA. For quantitative prediction of various quality 
attributes, FT-MIRs predicted were able to predict three 
parameters (refractive index, peroxide value, total phenolic 
content) compared to FT-NIRS (refractive index, total 
carotenoid content). This study also revealed that pomegranate 
oil (cv. Wonderful) has been associated with a higher refractive 
index (indirect correlation with unsaturation fatty acids) and 
phenolic content compared to “Acco” and “Herskawitz.” This 
studThe measurement of additional quality characteristics 
such as individual fatty acids will foreseeably improve the 
discrimination and prediction accuracy. Future research is 
required to improve the robustness of calibration models 
for both NIR and MIR spectroscopy by either increasing 
the sample size, including different growing locations and 
seasonality or by applying different chemometric techniques. 
The current knowledge obtained from this study has shown 
that chemical indices of pomegranate kernel oil differ even 
amongst cultivars and are detectable with both FT-NIR and 
FT-MIR spectroscopy. These chemical indices can not be used 
for quality evaluation but can be applied to effectively classify 
or discriminate between oil samples that have even slightly 
different chemical characteristics, making it a highly effective 
tool within the processing industry for authenticity and 
adulteration testing. The approach provides a powerful way 
to rapidly extract qualitative and quantitative information 
emanating from multiple spectral variables.
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The dents and cracks of cabbage caused by mechanical damage during transportation
have a direct impact on both commercial value and storage time. In this study, a method
for surface defect detection of cabbage is proposed based on the curvature feature
of the 3D point cloud. First, the red-green-blue (RGB) images and depth images are
collected using a RealSense-D455 depth camera for 3D point cloud reconstruction.
Then, the region of interest (ROI) is extracted by statistical filtering and Euclidean
clustering segmentation algorithm, and the 3D point cloud of cabbage is segmented
from background noise. Then, the curvature features of the 3D point cloud are calculated
using the estimated normal vector based on the least square plane fitting method.
Finally, the curvature threshold is determined according to the curvature characteristic
parameters, and the surface defect type and area can be detected. The flat-headed
cabbage and round-headed cabbage are selected to test the surface damage of dents
and cracks. The test results show that the average detection accuracy of this proposed
method is 96.25%, in which, the average detection accuracy of dents is 93.3% and the
average detection accuracy of cracks is 96.67%, suggesting high detection accuracy
and good adaptability for various cabbages. This study provides important technical
support for automatic and non-destructive detection of cabbage surface defects.

Keywords: defect detection, cabbage, curvature features, 3D point cloud, depth camera

INTRODUCTION

As one of the economically important vegetable products, cabbage occupies a crucial position in
agricultural products. The dents and cracks of cabbage caused by extrusion and collection during
transportation have a direct impact both on the commercial value and storage time (Li and Thomas,
2014). The vegetable non-destructive system is a recent trend for quality evaluation, post-harvest
classification, and grading (Fathizadeh et al., 2020; Zhang et al., 2021).

The non-destructive testing means mainly include near-infrared spectroscopy and machine
vision. The near-infrared spectroscopy-based non-destructive testing is an advanced method, and
hyperspectral reflectance imaging can be used to detect the quality of fresh-cut lettuce (Mo et al.,
2017). However, it is limited in engineering applications due to the high cost of equipment and slow
data processing process (Lu and Lu, 2017; Chen et al., 2021). Machine vision-based non-destructive
testing is fast and of low cost, and it identifies the dents and cracks of vegetables according to
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the color features, texture features, and geometric features. It
has achieved good results in tomato defect detection (da Costa
et al., 2020), apple defect detection (Zhang et al., 2017), and
litchi surface micro-damage detection (Wang et al., 2016). The
machine vision algorithm combined with the deep learning
model has predominant robustness in carrot defect detection (Xie
et al., 2021). Choosing the appropriate learning algorithm for a
specific problem is crucial for vegetable defect detection based
on the deep learning algorithm. This particularity makes the
deep learning technology can only build a standardized detection
system for specific targets (Nturambirwe and Opara, 2020). In
recent years, the RGB-D depth cameras represented by Intel
RealSense series have developed rapidly. It integrates the RGB
images and depth images to provide richer information. On this
basis, a 3D point cloud based on destructive testing technology
provides a fast, convenient, and applicable solution for target
detection and surface 3D reconstruction (Jiang et al., 2018; Wu
et al., 2019; Das Choudhury et al., 2020). It has been successfully
used to detail road surface defects, composite wrinkle defects,
and seamless steel pipe wear defects (Zhang et al., 2018; Hu
and Furukawa, 2020; Zong et al., 2021). The 3D point cloud
technology has an excellent performance in object detection
(Ying et al., 2013). Therefore, it is meaningful to build a cabbage
surface defect detection system based on 3D point cloud for
presale testing applications.

Curvature is an important basis for feature recognition. The
variation of edge curvature of dents and cracks usually fluctuates
obviously. In this study, we took the RealSense-D455 depth
camera as the sensor to rebuild the 3D point cloud of the image,
and the target 3D point cloud of cabbage is segmented from the
background noise through preprocessing and region of interest
(ROI) extraction. The normal vector is estimated based on the
least-squares plane fitting method, and the curvature threshold
is defined in agreement with the curvature character parameters.
The surface defect detection is realized according to the curvature
difference between the normal area and the defective area on the
cabbage surface.

MATERIALS AND METHODS

3D Point Cloud Reconstruction System
The 3D point cloud reconstruction system was built using
a RealSense-D455 depth camera, a rotating platform, and a
computer, as shown in Figure 1. The RealSense-D455 depth
camera was used as a sensor to get a 3D point cloud of the cabbage

TABLE 1 | Parameters of the D455 depth camera.

Parameters Values

RGB frame resolution/(pixels) 1280 × 800

Depth output resolution/(pixels) 1280 × 720

RGB frame rate/(frame/s) 30

Depth field of view/(◦) 87 × 58

Ideal range/(m) 0.6 ∼ 6

Depth Accuracy <2% at 4 m

surface, and its parameters are shown in Table 1. The rotating
platform rotated at 45◦ intervals to record the images from
different angles; therefore, for each cabbage, 8 frames of point
clouds could be obtained. The computer was used for collecting
and analyzing the RGB images and depth images from the camera
and reconstructing the 3D point clouds. As the most common
cabbage, the flat-headed cabbage and round-headed cabbage were
selected to conduct experiments.

To ensure the consistency of cabbage samples, the diameter
of the cabbage was in the range of 150–200 mm, and the
mass of the cabbage was in the range of 0.8–1.2 kg. The two
varieties of cabbage samples contain three types, namely, intact
cabbage, crack cabbage, and dent cabbage, as shown in Figure 2.
In experiments, the cabbage was placed in the center of the
rotating platform. The distance between the camera and the top
of the rotating platform was 0.4 m, and the height between the
camera and the center of the rotating platform was 0.24 m. The
computer is configured as Intel (R) Core (TM) i5-8265 CPU @
1.6 GHz, 8 GB RAM, NVIDIA GeForce MX150 graphics card.
All algorithms of surface defect detection method were written in
C++, using RealSense SDK 2.0 provided by Intel Corporation and
open source library PCL 1.8.1.

Point Cloud Denoising
The camera fuses the collected RGB images with the depth
images to obtain the point cloud data in the view (Condotta
et al., 2020). Figure 3 shows the RGB image of the cabbage
in one view, the corresponding depth image, and the 3D point
cloud image after aligning and fusing the RGB image with
the depth image.

The original point cloud contains a large number of
background noises and redundant outliers, which affects the
processing effect of subsequent clustering segmentation. In this
study, statistical filters were used to remove outliers with sparse
edge distribution of point cloud. The principle of statistical
filtering is to calculate the average value of the distances from
each point to the points in the neighbor according to the sparse
degree of points in space. Then, the points whose average distance
is outside the standard range are removed. Figure 4 shows the
point cloud statistical filtering process.

First, the average value of distances from each point to i points
in the neighbor was calculated. The average values constituted
a Gaussian distribution, and its shape was determined by mean
value µ and standard deviation σ. The coordinate of one point
was removed Pn (Xn,Yn,Zn). The distance from the point
Pn (Xn,Yn,Zn) to the other point Pm (Xm,Ym,Zm) could be
calculated as follows:

Si =
√

(Xn − Xm)2
+ (Yn − Ym)2

+ (Zn − Zm)2 (1)

The average value of the distances between all the points could be
calculated as follows:

µ =
1
n

n∑
i=1

Si (2)
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FIGURE 1 | 3D point cloud reconstruction system.

FIGURE 2 | Image of cabbage samples.

The standard deviation of distance could be calculated as follows:

σ =

√√√√ 1
n

n∑
i=1

(Si − µ)2 (3)

When the average value of distances was beyond the range
(µ− σ, µ+ σ), this point is regarded as an outlier. In this
algorithm, i was set to the threshold. When i = 50, the point
cloud after statistical filtering is shown in Figure 5. The points in
blue circles are outliers. The outliers were effectively eliminated
from the origin point cloud after statistical filtering.

Extract the Region of Interest
To extract the point cloud of target cabbage from the point
cloud containing background information, it is necessary to
segment the point cloud data to extract the ROI. The principle
of point cloud clustering segmentation is to classify the point
cloud according to geometric and texture features. The point
clouds with similar features are clustered into one class.
Common point cloud segmentation methods are the Random

Sampling Consistency (RANSAC) algorithm, region growing
algorithm, and Euclidean clustering segmentation algorithm (Xu
et al., 2015; Wu et al., 2020; Luo et al., 2021). Considering
processing time and segmentation effect, the Euclidean clustering
segmentation algorithm was used to extract the ROI of
the point cloud.

The Euclidean clustering segmentation algorithm is a distance
measure clustering algorithm based on k-dimensional (KD)-tree
nearest neighbor search, which takes Euclidean distance as the
judgment criterion (Li et al., 2021).

Step 1: For a point p, the n points of the nearest neighbor by
KD-tree were searched, and the distances between the points to
the point p were calculated, respectively.

di
(
p, qi

)
=

√√√√ n∑
i=1

(
p− qi

)2 (4)

Step 2: The threshold was set to r. If the distance di was less than
the set threshold r, the point qi was clustered in the database Q.
Until the number of points in Q no longer increased, indicating
that the clustering of points in this category is completed.

Step 3: Continue to select another point in the space and repeat
the above operation, until the number of point cloud category sets
was no longer increasing.

Figure 6A shows the point cloud clustering results using the
European clustering segmentation algorithm. Figure 6B shows
the target cabbage point cloud. It can be seen that the target
cabbage is effectively clustered from the background noises, and
the processing time of this algorithm was 3.648 s.

Point Cloud Subsampling
The point cloud after clustering segmentation extraction
contained a mass of data. To speed up the subsequent processing,
it was necessary to minimize the amount of data without losing
point cloud features. In this study, a voxel filter was used to
subsample the point cloud of cabbage.
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FIGURE 3 | Image fusion.

FIGURE 4 | Flowchart of statistical filtering.

The principle of the algorithm for the voxel filter was to create
tiny three-dimensional cubes in space, namely, voxel grid, and
divide the point cloud using the voxel grid (Xiong et al., 2021).
In each voxel, the centroid of all the points was used to replace
all the points to minimize the amount of point cloud. The size of
the three-dimensional voxel grid was set to 1 mm. Figure 7 shows
the point distribution histogram of a frame of cabbage before and
after subsampling.

Figure 7A shows the point cloud before subsampling, which
contains 16,484 points in total. The distribution on the Z-axis
of all the points is expressed as Gaussian distribution, with
the mean value of µ1 = 0.371 and the standard deviation of
σ1 = 0.013. Figure 7B shows the point cloud after subsampling,

and the number of points drops to 9,396. The distribution
on the Z-axis of all the points is expressed as the Gaussian
distribution, with the mean value of µ2 = 0.374 and the standard
deviation of σ2 = 0.015 after subsampling. From Gaussian
distributions, it can be seen that the rate of changes in mean
value and the standard deviation are less than 2% when the
number of point clouds decreases by 42.9%. It shows that
the spatial distribution characteristics of point clouds before
and after subsampling are very similar. Therefore, it can be
concluded that the selection of the voxel filter grid size is
relatively accurate.

Cabbage Surface Defect Detection
Method
Normal Vector Estimation and Curvature Calculation
Surface curvature describes the change degree of point cloud
by the eigenvalue. The curvature at a certain point can be
obtained by estimating the normal vector of each point in
the point cloud. The normal vector can be calculated using
the normal of the tangent line of the surface at that point.
According to the least square method (LSM), the quadratic
surface can be used to characterize the local region, and
the normal vector can be estimated using the local region
surface fitting method.

Each point in the point cloud has a neighborhood point cloud,
which is approached using a certain surface. The curvature of
a certain point can be expressed by the curvature of the local
surface fitted by the point and its neighborhood points. By taking
the point Pi as a central point, k points were uniformly selected in
the neighborhood of point Pi.

The quadratic surface equation can be expressed as follows:

z
(
x, y

)
= ax2

+ bxy+ cy2 (5)

According to the principle of least squares, the sum of the squares
of zi can be expressed as follows:

Q2
=

∑
i

(
ax2

i + bxiyi + cy2
i = zi

)2
, j ∈

(
0, k

)
(6)
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FIGURE 5 | Statistical filtering result of the point cloud.

FIGURE 6 | Clustering segmentation extraction result: (A) result of the
European clustering segmentation algorithm and (B) the target cabbage point
cloud.

where, xi, yi, and zi are points in the neighbor of point Pi. The
derivative of the coefficient is obtained in Eq. 6.

∂Q2

∂a =
∑

i 2x2
i
(
ax2

i + bxiyi + cy2
i − zi

)
= 0

∂Q2

∂b =
∑

i 2xiyi
(
ax2

i + bxiyi + cy2
i − zi

)
= 0

∂Q2

∂c =
∑

i 2y2
i
(
ax2

i + bxiyi + cy2
i − zi

)
= 0

, i ∈
(
0, k

)
(7)

From this, the values of the coefficients a, b, and c of the quadratic
surface equation can be solved. Equation 6 is expressed as a
parametric form.

r
(
x, y

)
=


X
(
x, y

)
= x

Y
(
x, y

)
= y

Z
(
x, y

)
= ax2

+ bxy+ cy2
(8)

Then, a curve on the surface can be expressed as follows:

r = r
(
x (t) , y (t)

)
(9)

The arc length differential equation of the curve can be obtained
by derivation.(

ds
)2
= r2

x
(
dx
)2
+ 2rxrydxdy+ r2

y
(
dy
)2 (10)

The unit normal vector at point Pi can be expressed as follows:

ni =
rx × ry∣∣rx × ry

∣∣ (11)

Considering the normal vector at the point Pi as the normal
vector of the local surface in the neighborhood, then the
covariance matrix of the points in the neighborhood was as
follows:

C =
1
k

k∑
i=1

(Pi − P0) (Pi − P0)
T (12)

C · Xj = λj · Xj, j = 1, 2, 3 (13)

where P0 is the centroid of points in the neighborhood, k is the
number of points in the neighborhood, and λj and Xj represent
the eigenvalue and eigenvector of C, respectively.

The eigenvector corresponding to the smallest eigenvalue of
matrix C was the normal vector of point Pi. The covariance
matrix was constructed, and the eigenvalues of the matrix were
calculated by eigenvalue decomposition.

If the eigenvalues satisfied the condition λ0 ≤ λ1 ≤ λ2, the
curvature of the neighborhood points can be expressed as follows:

κi =
λ0

λ0 + λ1 + λ2
(14)
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Neighborhood curvature represents the degree of curvature of
the neighborhood surface. The curvature values of all points in
the point cloud are calculated. The curvature features were used
to determine the surface concavity of the cabbage point cloud to
improve the accuracy of damage detection.

Cabbage Defect Detection Algorithm Based on
Curvature
Cabbage surface damage generally manifests itself in the form of
dents and cracks. The dent damage is mainly due to extrusion
or falling, and the edges are generally round or oval with
shallow internal depressions. The crack damage is mainly due
to growth cracking or scratching by sharp objects, which leads
to multilayered fracture of cabbage. The edges are generally
narrow-shaped and have deep internal depressions. Since the
curvature of the edges of the damaged area would change
significantly compared with the normal area, the damaged area
could be extracted according to the surface type represented by
different curvatures.

Taking one frame of cabbage point clouds as an example,
Figure 8 shows the extraction process of cabbage surface defective
area. It can be seen from the curvature image that the curvature
of the edge of the damaged area is significantly higher than that of
the normal area of cabbage, so the defective area can be extracted
by setting the curvature threshold and segmenting the curvature
of the point cloud according to the threshold.

From the curvature calculation results, it can be seen that
although the cabbage curvature image shows the surface damaged
area, it is mistakenly segmented as a damaged area due to the
curvature gradient at the edge of the point cloud. However, the
curvature change caused by the protrusion of cabbage leaf stalk
and cabbage itself dents will also interfere with the detection
results. To solve these problems, the defect extraction results can
be segmented twice by optimizing the curvature threshold.

According to the definition proposed by Chen and Bhanu
(2007), the point with the largest curvature change on the surface
of the point cloud is considered the feature point. Whether the
current pointPi is a feature point should be checked. The formula
for the curvature characteristic parameter can be expressed as
follows:

S (Pi) =
1
2
−

1
π

arctan
k1 (Pi)+ k2 (Pi)
k1 (Pi)− k2 (Pi)

(15)

where k1 and k2 are the maximum principal curvature and
the minimum principal curvature, respectively, which can be
obtained by calculating the two roots of normal curvature
according to the second basic formula of the surface.

The criteria to determine whether the current
sampling point is a feature point is as follows: if
S (Pi) > max

(
S (Pi1) , S (Pi2) , . . . , S

(
Pik
))

, the point Pi is
a curvature feature point.

The curvature parameter at the feature points was taken as
the threshold value, and the final point cloud that satisfies the
conditions was extracted as the correct damaged area. It can
be seen from the extracted image of the cabbage damaged area
that this method effectively eliminates the influence of curvature

change caused by the shape of the cabbage surface on the test
results and accurately extracts the damaged area of the cabbage.

RESULTS AND DISCUSSION

Accuracy Analysis of Point Cloud
Detection Methods
The detection effect of this algorithm was evaluated by selecting
different varieties and different defect types of cabbage samples.
Figure 9 shows four visualization results of this method,
including round-headed cabbage dent damage, round-headed
cabbage crack damage, flat-headed cabbage dent damage, and
flat-headed cabbage crack damage. The original cabbage image,
the point cloud image including the defects’ part, the curvature
threshold calculation result, and the defect point cloud extraction
result are, respectively, shown in the figure. Based on the
curvature statistics of the point cloud samples, the curvature
threshold was determined as 0.08. The point cloud area of
cracking damage is larger than that of denting damage, but the
curvature mutation of denting damage is more obvious. It shows
that the algorithm has good adaptability to two varieties and two
damaged types of cabbage.

To evaluate the performance of the proposed algorithm in
detecting different types of cabbage damage, 80 cabbage point
cloud samples collected were tested for detection. It includes 30
samples of dent damage (15 samples per variety), 30 samples of
crack damage (15 samples per variety), and 20 intact samples
(10 samples per variety). The correct classification accuracies
were calculated and evaluated for dent damaged samples, crack
damaged samples, and intact samples of different varieties of
cabbage, respectively, and the results are shown in Table 2.

Table 2 shows the test results of all samples. In terms
of dent damage detection, the accuracy of the point cloud
detection method for round-headed cabbage and flat-headed
cabbage is 93.3%. In terms of crack damage detection, the
detection accuracy of the point cloud detection method for
round-headed cabbage is 100%, that of flat-headed cabbage is
93.3%, and the average detection accuracy of the two varieties is
96.67%. The detection accuracy of cracked damaged samples is
higher than that of dented damaged samples. From the overall
test results, the average detection accuracy of the point cloud
detection method is 96.25%, and it appears that this method
could effectively detect dent-damaged cabbage, crack-damaged
cabbage, and intact cabbage samples. The detection accuracy of

TABLE 2 | Detection results of point cloud defect detection method.

Samples Types Number Correct detection Accuracy (%)

Denting cabbages Round-headed 15 14 93.3

Flat-headed 15 14 93.3

Cracking cabbages Round-headed 15 15 100

Flat-headed 15 14 93.3

Intact cabbages Round-headed 10 10 100

Flat-headed 10 10 100

Total 6 80 77 96.25
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FIGURE 7 | The point distribution histogram before and after subsampling: (A) the point cloud before subsampling and (B) the point cloud after subsampling.

FIGURE 8 | Defective area extraction process.
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FIGURE 9 | Defective area extraction results.

the intact cabbages is 100%, indicating that the detection method
can distinguish the cabbage itself dents from other defects, and
the detection error of intact cabbage is low. The detection error
in the test mainly occurs in the detection of defective samples, and
the detection accuracy of the defect cabbages is 95%. It indicates
that this method has good detection performance.

Misjudgment Analysis of Detection
Results
To further analyze the reasons for the higher misjudgment rate of
dent samples, the curvature calculation results of representative

cabbage sample point clouds were extracted and represented
as curvature curves according to the point cloud index values.
Figure 10 shows the comparison results.

Figure 10A shows the curvature curve of a correctly detected
dent sample, and Figure 10B shows the curvature curve of a
dent sample misjudged as non-damaging. It can be seen that
the curvature of the defective area varies less due to the smaller
area and shallow depth of the depressed area of the sample in
Figure 10B. The extreme value of curvature is 0.043, which is
very close to the curvature size of interference regions such as
leaf stems, and it is difficult to be accurately segmented by a
single curvature threshold so the correct detection rate is low.
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FIGURE 10 | Curvature curves of dent detection of cabbage: (A) the
curvature curve of a correctly detected dent sample and (B) the curvature
curve of a dent sample misjudged as non-maging.

In contrast, the area of damage in the depressed sample in
Figure 10A is larger, the abrupt change of edge curvature is
more obvious, the extreme value of curvature in the defective
area reaches 0.167, and the surface curvature distribution of other
parts is relatively uniform except for the defective area. The
curvature fluctuation mainly appears at the leaf stem position,
in which the maximum value of curvature is 0.059, much lower
than that in the defective area. Therefore, the defective area can
be easily extracted by curvature threshold segmentation.

It is also found that different varieties of cabbage had
differences in detection accuracy in this study. According to
the point cloud detection results of all defect types, the average
detection accuracy of round-headed cabbage is 97.5%, and
that of flat-headed cabbage is 95%. It is inferred that the
cabbage type may be one of the reasons affecting the detection

FIGURE 11 | Curvature curves of different variables of cabbage: (A) the
curvature curve of the cracked sample of round-headed cabbage and (B) the
curvature curve of the cracked sample of flat-headed cabbage.

accuracy. To further analyze the reasons for the misjudgment,
the curvature calculation results of representative cabbage sample
point clouds were extracted and represented as curvature curves
according to the point cloud index values. Figure 11 shows the
comparison results.

Figure 11A shows the curvature curve of the cracked sample
of round-headed cabbage, and Figure 11B shows the curvature
curve of the cracked sample of flat-headed cabbage. By analyzing
the point cloud curvature curve of the two varieties of cabbage,
it was concluded that the difference in detection accuracy was
caused by the difference in the surface shape of the cabbage.
From Figure 11A, it can be seen that the curvature fluctuation
is smaller in the undamaged area due to the tighter wrapping
of round-headed cabbage, while the cracked area usually has
a more pronounced edge curvature mutation. The curvature
extreme value of the selected sample in the cracked area is 0.227,
which is much higher than that in the undamaged area. As
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for Figure 11B, the curvature of flat-headed cabbage fluctuates
greatly as a whole, mainly because there are many leaf edge
bulges forming curvature mutation, which makes the curvature
value of these areas close to the defective area, making the
detection algorithm easy to misjudge and causing the recognition
rate to decrease.

CONCLUSION

To provide an effective means of detecting mechanical damages
such as dents and cracks on the surface of cabbage, this study
proposes a method for surface defect detection of cabbage
that is proposed based on the curvature feature of the 3D
point cloud. The experimental results show that this method
has high accuracy and good robustness in detecting surface
depression damage and cracking damage of flat-headed cabbage
and round-headed cabbage. The conclusion of this study were as
follows:

1. The cabbage point cloud collection platform was built based
on the D455 depth camera. The ROI of cabbage samples was
extracted by statistical filtering and the European clustering
segmentation method, and the invalid information of the
point cloud was removed. The data amount of point cloud
was reduced by voxel down sampling. Based on the least
square plane method, the normal vector was estimated, and
the curvature of the point cloud was calculated. According
to the curvature characteristic parameters, the curvature
threshold was determined, and the interference factors on the
surface of the cabbage were eliminated to accurately obtain
the defective area.

2. In total, 80 point cloud samples of cabbage (including flat-
headed cabbage and round-headed cabbage) were tested in the
laboratory. It includes 30 samples of dent damage, 30 samples
of crack damage, and 20 intact samples. The experimental
results show that the average detection accuracy of the
point cloud detection method for 80 samples was 96.25%.
The average detection accuracy was 93.3% for dent cabbage
samples and 96.67% for crack cabbage samples. In terms of
the detection effect of two varieties of cabbage, the average
detection accuracy of this method for round-headed cabbage
was 97.5%, and the average detection accuracy of flat-headed
cabbage was 95%. The results showed that the method had

an excellent detection effect on two varieties and two defect
types of cabbage.

3. In this study, a consumer-grade D455 depth camera was
used to detect the defective area of cabbage, which provided
an inexpensive automatic solution for the cabbage quality
screening. In some cases, the detection accuracy decreased
when the leaf edge bumps and dents were shallow. It is difficult
to completely solve the problem by a single detection means.
In the future, the detection accuracy and robustness can be
improved by enhancing the hardware acquisition accuracy
and developing the fusion of multiple detection means and
multi-threshold discrimination.
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The classification of plug seedling quality plays an active role in enhancing

the quality of seedlings. The EfficientNet-B7-CBAM model, an improved

convolutional neural network (CNN) model, was proposed to improve

classification efficiency and reduce high cost. To ensure that the EfficientNet-

B7 model simultaneously learns crucial channel and spatial location

information, the convolutional block attention module (CBAM) has been

incorporated. To improve the model’s ability to generalize, a transfer learning

strategy and Adam optimization algorithm were introduced. A system for

image acquisition collected 8,109 images of pepper plug seedlings, and data

augmentation techniques improved the resulting data set. The proposed

EfficientNet-B7-CBAM model achieved an average accuracy of 97.99% on

the test set, 7.32% higher than before the improvement. Under the same

experimental conditions, the classification accuracy increased by 8.88–

20.05% to classical network models such as AlexNet, VGG16, InceptionV3,

ResNet50, and DenseNet121. The proposed method had high accuracy in the

plug seedling quality classification task. It was well-adapted to numerous types

of plug seedlings, providing a reference for developing a fast and accurate

algorithm for plug seedling quality classification.

KEYWORDS

plug seedlings, convolutional neural network, EfficientNet-B7-CBAM model, transfer
learning, quality classification

Introduction

China is the world’s leading producer of vegetables. China’s vegetable cultivated area
sowing area in 2020 was 2148.54 × 104 hm2, and its production was 74912.90 × 104

t (Meng et al., 2021; Zhang et al., 2022). In order to meet the increasing demand
for vegetable planting and ensure a safe and efficient supply of seedlings, vegetable
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seedling production has adopted an intensive plug seedling
cultivation method which is characterized by a high survival
rate, low labor costs, and convenient transportation.
Approximately 60% of the world’s vegetable varieties currently
use plug seedling technology (Li et al., 2021; Shao et al., 2021;
Han et al., 2022). The plug seedlings enhanced the quality of
vegetable seedlings as a whole. However, due to the sowing
accuracy, seed quality, and seedling environment, the nursery
tray contained empty plug cells, seedlings with poor growing
conditions, and dead seedlings. About 5–10% of the total
number of seedlings were comprised of these empty plug cells
and weak seedlings. If they are not eradicated, they will not
only cause economic losses but also hinder future machine
transplantation operations. For the quality of plug seedlings,
it is necessary to remove empty plug cells and weak seedlings
from the tray cells and replant them with strong seedlings (Jin
et al., 2020; Wen et al., 2021; Yang et al., 2021).

In intensive plug seedlings, classification of seedling quality
is necessary to ensure overall seedling quality. Currently, this
process relies heavily on manual labor. Manual classification
is time-consuming, laborious, inefficient, and prone to error,
making it challenging to meet the demands of large-scale
seedling production. Consequently, it is essential to investigate
the automated plug seedling quality classification technology,
and machine vision is a crucial component of this technology
(He et al., 2019; Yang et al., 2020; Tong et al., 2021). Early
identification of plug seedlings using machine vision and
conventional image processing techniques. Tong et al. (2018)
presented a skewness correction algorithm for images of plug
seedlings based on the canny operator and hough transform.
The method is based on the watershed algorithm and the
center of gravity method to extract leaf area and seedling leaf
number from images of plug seedlings for quality evaluation;
the results showed that the average accuracy of empty plug
cells and weak seedlings reached 98%. Wang et al. (2018)
developed a device for automatically supplementing vegetable
plug seedlings to obtain accurate information about plug
seedlings. By obtaining information on the vegetation statistics
values of each cell, the method achieved a 100% accurate
classification of plug cells and seedling cells. Jin et al. (2021)
proposed a computer vision-based architecture to identify
seedlings accurately. The method extracts leaf area information
from plug seedlings using a genetic algorithm and a three-
dimensional block matching algorithm with optimal threshold
segmentation. Based on the results, the detection accuracy for
healthy seedlings reached 94.33%. Wang et al. (2021) proposed
a non-destructive monitoring method for the growth process
of plug seedlings based on a Kinect camera, which determines
the germination rate in trays by reconstructing leaf area analysis
with an error of less than 1.56%. To determine the growth status
of plug seedlings, the primary research used the threshold pre-
processing method for threshold segmentation and statistical
pixel value information. The technology is relatively mature.

Nonetheless, the following problems remain. (1) Following
segmentation, seedling growth data is lost. (2) To obtain the
proper segmentation threshold, a large number of human tuning
parameters are required. (3) More complex algorithms must be
developed to increase the precision of leaf area segmentation.

The application of deep CNN models in agriculture has
achieved significant results in recent years, including disease
detection (Sharma et al., 2022), weed identification (Wang
et al., 2022), and crop condition monitoring (Zhao L. et al.,
2021; Tan et al., 2022). Using deep learning techniques to
classify the quality of plug seedlings can better meet the
development requirements of seedling production. Namin et al.
(2018) proposed a robust AlexNet-CNN-LSTM architecture for
classifying the various growth states of plants. This method
improved model performance by embedding long short-term
memory network (LSTM) units and achieved 93% recognition
accuracy by reducing model parameters. Xiao et al. (2019)
developed a transfer learning CNN for the plug seedling
classification model. Based on a limited sample of empty plug
cells, weak seedlings, and strong seedlings, the final classification
accuracy was 95.50%. Perugachi-Diaz et al. (2021) used an
AlexNet network to predict the growth of cabbage seedlings.
According to the results, the method provided a reliable and
effective classification of cabbage seedlings with an optimal
recognition accuracy of 94%. Garbouge et al. (2021) proposed a
method for tracking the growth of seedlings that combines RGB
with deep learning. As a result of the method, seedlings grown
in plug cells, seedlings at the cotyledon stage, and seedlings
at the true leaf stage performed with an average classification
accuracy of 94%. Compared to other models discussed in the
paper, Kolhar and Jagtap (2021) proposed a CNN-ConvLSTM-
based model for seedling quality classification of Arabidopsis
thaliana that achieved 97.97% classification accuracy with
very few trainable parameters. According to the appeal study,
CNNs had a higher accuracy rate and more excellent stability
than conventional image processing methods without requiring
threshold segmentation. However, the following issues persist:
(1) The majority of current CNN have high computational
complexity and a large number of parameters, making it difficult
to directly deploy and apply them in this paper’s quality
classification of plug seedlings. (2) Due to the variability between
different task goals, CNN models required a certain amount of
target data for adaptive learning. Constructing the desired data
set required much human time and effort.

Using pepper plug seedlings as the research object, a new
and more effective CNN model, EfficientNet-B7-CBAM, is
presented for seedling quality classification. Following is a
summary of the main contributions and innovations.

1. A classification standard for various qualities of plug
seedlings is developed. On the basis of this standard, an
8109-image dataset of plug seedlings is compiled to aid in
developing a plug seedling quality classification model.
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2. A novel attention-based recognition model for plug
seedling quality classification, the EfficientNet-B7-CBAM
model, is proposed. By deeply integrating the CBAM
module and the EfficientNet-B7 model, the model can
simultaneously acquire feature channel information and
spatial information attention and enhance the model’s
ability to learn important information about the plug
seedling region.

3. The lightweight and high-performance EfficientNet-
B7-CBAM model can provide technical support for
developing the automated classification of plug seedling
quality equipment.

Experimental data

Data acquisition

Pepper plug seedlings were grown from Oct to Nov 2021 in
a multi-span seedling nursery at the Academy of Agricultural
Sciences, Luoyang City, Henan Province, China (34◦39′55′′N,
112◦21′58′′E), as shown in Figure 1. The temperature in the
greenhouse was kept between 20–25◦C during the day and
10–15◦C at night. The chosen pepper variety was the stress-
resistant Luo Jiao 308 variety. The seeds were sterilized before
being sown with a single hole and seed. Approximately 9,000
pepper seeds were planted in 540 mm× 280 mm, 32-cell nursery
trays that contained a mixture of peat, vermiculite, and perlite
(at a 3:1:1 ratio).

Image the tops of pepper plug seedlings using the selected
data acquisition equipment Hikvision MV-CE200-10UC color
sensor camera with a frame rate of 14 fps and a resolution of
5472 × 3648 pixels. The USB3.0 port connects the camera to
the computer. The lens was the MVL-HF1224M-10MP model
with a focal length of 12 mm. When shooting, the camera was
mounted vertically above the nursery trays at the height of
H = 545.4 mm, effectively encompassing the standard nursery
trays area. Three light-emitting diodes (LED) with a power of
5.76 W/m were installed on the inner wall of the lightbox to
supplement the light during image capture, thereby enabling the
camera to capture the fine details of the seedlings in the nursery
trays. The image capture system is shown in Figure 2.

Data preprocessing

Pepper seedlings at approximately 21 days after emergence
are shown in Figure 3. Within the same batch of pepper plug
seedlings, there are empty plug cells caused by non-germinating
seeds, weak seedlings with slow growth, and strong seedlings for
transplantation due to biological differences between individual
seedlings. Leaf area characteristics were obtained to classify

three distinct types of plug seedlings with varying qualities to
construct image data sets of empty plug cells, weak seedlings,
and strong seedlings.

Leaf area is a popular gauge employed in agricultural
cultivation and breeding techniques, and it is one of the most
important indicators for determining crop yield and quality.
For the purpose of categorizing the quality of pepper seedlings,
leaf area parameters were extracted from pepper seedlings. The
leaf area extraction procedure for pepper seedlings is shown in
Figure 4.

The distribution of pixel values for the leaf area of 21-day-
old pepper plug seedlings is shown in Figure 5. Leaf areas were 0
in empty plug cells, less than 100 in weak seedlings, and at least
100 in strong seedlings.

In order to construct training data set, empty plug cells,
weak seedlings, and strong seedlings were extracted from the
original RGB image based on their pixel value distributions.
Pepper plug seedlings of differing qualities are shown in
Figure 6. After the reduction, 2,210 empty plug cells, 3,381
weak seedlings, and 2,518 strong seedlings were obtained. Using
the Albumentations library to expand data, the original data
for pepper plug seedlings were enhanced to include additional
image data. The data were clipped, rotated, and inverted to
generate a data set containing 19,603 images, as shown in
Table 1.

Methodology

This study chose the lightweight, high-precision, and
simple-to-deploy EfficientNet-B7 model as the benchmark
network for the application of intelligent recognition algorithms
to images of plug seedlings in agriculture. To increase the
network model’s recognition accuracy, the CBAM module was
introduced to optimize and enhance the EfficientNet-B7 model,
which was then renamed EfficientNet-B7-CBAM.

Efficientnet-B7 network structure

To improve the performance of the CNN model, we
increased the input image’s resolution as well as the network’s
depth and width. However, the concurrent use of the three
methods may result in severe issues, such as the loss of
model gradients and the degradation of models. The emergence
of EfficientNet is characterized by a balance between depth,
width, and resolution. There were B0-B7 EfficientNet versions.
Mobile Inverted Bottleneck Convolution (MBConv) was the
core structure of the network (Zhang et al., 2020; Liu et al., 2021;
Bhupendra et al., 2022). This module introduces the Squeeze-
and-Excitation Network (SE)’s core concept to optimize the
Network’s structure, as shown in Figure 7. The MBConv module
first uses 1 × 1 convolutions to up-dimension the feature
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FIGURE 1

Location of data collecting and multi-span seedling greenhouses.

FIGURE 2

Picture capture system.

map, followed by k × k depthwise convolutions. After that,
SE modules adjust the feature map matrix, and eventually,
1 × 1 convolutions to down-dimension the feature map.
When the input and output feature maps have the same
shape, the MBConv module is also capable of performing

short-cut concatenation. This structure reduces model training
time. A typical Efficientnet-B7 model consists of 55 layers of
MBConvs modules, 2 layers of Convs modules, 1 layer of global
average pool, and 1 layer of FC classification. The network
architecture of EfficientNet-B7 is shown in Figure 8.
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FIGURE 3

Sample of pepper seedlings growing for 21 days.

Convolutional block attention module
model

This section will provide an overview of the CBAM attention
mechanism. Woo proposed CBAM, which would be comprised
of two modules: the channel attention module and the space
attention module (Bao et al., 2021; Gao et al., 2021; Zhao Y.
et al., 2021). The CBAM module is shown in Figure 9. The
CBAM module first generates the feature map F′ via the channel
attention module, then the feature map F′′ via the spatial
attention module, given a middle layer feature map F as input, as
shown in Figure 9A. The process of calculation can be expressed
as Equation 1. {

F′ = Mc(F)⊗ F
F′′ = Ms(F′)⊗ F′

(1)

where ⊗ represents the multiplication operation between the
corresponding elements. F (∈ RC×H×W) represents the input
feature map. Mc (∈ RC×1×1) represents the output weight of F′

through the channel attention. Ms (∈ R1×H×W) represents the
output weight of F′′ through the spatial attention.

The module of the channel attention mechanism is shown in
Figure 9B. In the first step of the channel attention mechanism,
the average pooling and maximum pooling operations are
performed based on width and height to generate two layers of
C × 1 × 1 feature maps. Then, they are fed to the shared MLP
layer for summation and activated by the sigmoid to produce
the final channel attention feature weights Mc. The channel
attention calculation procedure can be expressed as Equation 2.

Mc(F) = σ[MLP(AvgPool(F)] +MLP[MaxPool(F)] (2)

where σ represents a sigmoid function; MLP represents a
multilayer perceptron.

The module of the spatial attention mechanism is shown
in Figure 9C. As input to the spatial attention mechanism is
the feature map F′. First, the average pooling and maximum

pooling operations are performed on the channel to generate
a two-layer 1 × H × W feature map, which is then subject to
the Concatenate operation. The dimension of the feature map is
then reduced using a 7× 7 convolution kernel, and the Sigmoid
function is used to generate the spatial attention weights Ms.
The spatial attention calculation procedure can be expressed as
Equation 3.

Ms(F) = σ{f 7×7
[AvgPool(Mc);MaxPool(Mac)]} (3)

Where f 7×7 is the convolution operation with a convolution
kernel size of 7 × 7, which is used to extract the spatial
features of the target.

EfficientNet-B7-CBAM model

EfficientNet-B7 is composed of the MBConv stack, with
each MBConv module containing a SE module. The SE
module controls the focus or gating of channel dimensions.
The model can emphasize the channel characteristics that
contain the most information while ignoring the channel
characteristics that are unimportant. However, this operation
only considered the information of the channels and lost the
spatial information, which played a crucial role in the visual
recognition task of seedlings, which negatively impacted the
classification performance of seedlings. CBAM was added to
Efficientnet-B7 in this study to improve the model’s ability to
extract features. The improved EfficientNet-B7-CBAM network
structure is shown in Figure 10. The following enhancements
have been made relative to the original Efficientnet-B7 network
model:

(1) The SE module within each MBConv module of the
original EfficientNet-B7 model was replaced with a CBAM
module. This allowed the network to acquire channel
information without losing crucial spatial information
regarding the pepper plug seedlings.
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FIGURE 4

The image processing flow of the leaf area of pepper seedlings.
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FIGURE 5

Pixel statistical scatter plot of seedling leaf area.

FIGURE 6

Plug seedlings of different qualities. (A) Empty plug cells.
(B) Weak seedlings. (C) Strong seedlings.

(2) The CBAM module was embedded in the EfficientNet-
B7-CBAM model after the second convolutional layer. It
improved the model’s ability to classify different quality
plug seedlings by refining the extracted feature information
and enhancing the model’s classification capability.

Adam optimization algorithm

A classical optimization algorithm is used to optimize the
EfficientNet-B7 model: Stochastic Gradient Descent (SGD). Due
to the same learning rate for each parameter, it was difficult

TABLE 1 The sample size of the training set and validation set.

Class Training dataset Validation dataset Total

Strong seedlings 5,042 843 5,885

Weak seedlings 6,230 1,037 7,267

Empty plug cells 5,480 971 6,451

to obtain a suitable learning rate for the SGD algorithm. In
addition, the SGD optimization algorithm converges rapidly to
a local optimum when training the model, which causes the
model to be unable to obtain an optimal training model when
performing different quality pepper plug seedling classification
tasks. In order to solve the above problem, this paper
employed the Adam optimization algorithm. Each parameter
of the Adam algorithm maintained a learning rate and was
adjusted individually as a result of training. Additionally,
each learning rate adjustment was bias-corrected in order to
reduce the fluctuations in parameter updates and enhance
the smoothness of the model convergence. In the Adam
optimization algorithm, momentum updates are combined
with learning rate adjustments, and the learning rates of each
parameter are dynamically adjusted by the first and second
moments of the gradient (Yu and Liu, 2019; Ilboudo et al., 2020;
Cheng et al., 2021). The calculation process can be expressed as
Equation 4.



θt = θt−1 − α · m̂t√
v̂t+ε

m̂t =
mt

1−βt1
v̂t = vt

1−βt2
mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β2) · g2

t

gt = ∇θ ft (θt−1)

(4)
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FIGURE 7

Mobile inverted bottleneck convolution.

FIGURE 8

The network structure of EfficientNet-B7.

where θt and θt−1 represents the parameter values of the tth and
t-1th updates. mt represents the exponentially shifted mean of
the gradient. vt represents the squared gradient. m̂t represents
the updated value of mt . v̂t represents the updated value of vt . β1

and β2 represent the constants used to control the exponential
decay. gt represents th first-order derivative. The default values
for each of the parameters are: α = 0.001,β1 = 0.9, β2 = 0.999,
and ε = 10−8.

Transfer learning

Given that images from different domains contain
common underlying features among them, transfer

learning makes the training more stable by transferring
knowledge of common features in the convolutional
layer, thus improving the training efficiency (Espejo-
Garcia et al., 2022; Zhao X. et al., 2022). Inspired by
this, this study is based on transfer learning to train the
EfficientNet-B7-CBAM network.

All models utilized in this study were pretrained on the
ImageNet dataset. The pre-trained weights were used only
for initialization. All models were fully trained using the
previously created plug seedling data. Due to the fact that
there were only three types of plug seedlings, the final fully
connected layer in each network was reduced from 1,000 to 3.
SoftMax activation was implemented in the final layer. Using
the Adam optimization algorithm and categorical cross-entropy
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FIGURE 9

CBAM attention module. (A) Convolutional block attention module (CBAM) structure. (B) Channel attention module. (C) Spatial attention
module. Where W is the width of the feature map, H is the height of the feature map, and C is the number of channels of the feature map.

FIGURE 10

EfficientNet-B7-CBAM model.
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TABLE 2 Results of ablation experiment.

No. Average
Acc/%

Average
Pr/%

Average
Re/%

Average
F1/%

Times of
training
(min)

1 90.67 91.03 90.66 90.84 96.7

2 94.66 94.82 94.67 94.75 73.2

3 95.33 95.41 95.33 95.37 52.5

4 96.66 96.76 96.67 96.72 40.9

5 97.99 98.01 98.00 98.01 36.5

as a loss, the models were trained. The Adam optimization
algorithm’s parameters were as described as: α = 0.001, β1

= 0.9, β2 = 0.999, and ε = 10−8. There was a maximum
of 300 iterations. The initial learning was set to 0.001, and
the learning rate decayed to the original 0.8 for every 10
training epochs. The batch size was limited to 16 due to
hardware limitations. We used dropout before the last layer
of each model. A dropout rate of 0.45 was observed in
this paper’s model.

Experimental results and analysis

Experimental configuration

Configuration of the hardware: GPU: GeForce GTX 1080Ti
with 12 GB of video memory. The NVIDIA graphics drivers
installed were CUDA 10.1 and CUDNNV7.6. It was NVIDIA’s
GPU parallel computing framework that enabled users to solve
complex computing problems using GPUs. CuDNN was a GPU
accelerator developed by NVIDIA for deep neural networks.
Windows 10 was the operating system of the software, and
Python 3.8.5 was used to create the Pytorch deep learning
framework and Opencv open-source visual library.

Model evaluation index

The confusion matrix is an effective tool for evaluating
the classification model’s merit and performance (Gajjar et al.,
2022; Zhao Y. et al., 2022). Typically, the measures of model
performance in the confusion matrix are Recall (Re), F1-Score
(F1), Precision (Pr), and Accuracy (Acc). The above formula for
the four indexes can be expressed as Equations 5, 8.

Re =
TP

TP + FN
(5)

Pr =
TP

TP + FP
(6)

F1 = 2 ·
Precision× Recall
Precision+ Recall

(7)

Acc =
TP + TN

TP + TN + FP + FN
(8)

where TP represents the number of samples predicted by the
model to be in a positive class that were actually in a positive
class, whereas FP represents the number of samples predicted
to be in a positive class that were actually in a negative class.
TN is the number of samples predicted by the model to be in
the negative class that are in the negative class. FN indicates the
number of samples that the model predicted to be in a negative
class but were actually in a positive class.

Results and analysis

In this section, all models were validated on the re-collected
data set of 450 unlabeled images of pepper plug seedlings (150
images of each plug seedling type). Concurrently, the evaluation
index was the proposed confusion matrix from Section “Model
evaluation index.”

FIGURE 11

The training curves of the models.
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TABLE 3 Performance of the model before and after data
augmentation.

Data set Class Pr/% Re/% F1/% Acc/%

Original Empty plug cells 95.45 98.00 96.71 96.45

Weak seedlings 95.36 95.33 95.01

Strong seedlings 94.70 96.00 97.63

Data augmentation Empty plug cells 97.40 100.00 98.68 97.99

Weak seedlings 97.31 96.67 96.99

Strong seedlings 99.32 97.33 98.31

TABLE 4 Performance comparison with other models.

Model Average
Acc/%

Average
Pr/%

Average
Re/%

Average
F1/%

Times of
training
(min)

AlexNet 77.94 78.92 78.67 78.79 80.9

VGG16 81.98 82.75 81.78 82.27 220.9

InceptionV3 85.60 86.24 85.55 85.89 60.3

ResNet50 88.92 82.93 88.89 85.91 48.5

DenseNet121 89.11 89.56 89.11 89.34 42.2

EfficientNet-B7-CBAM 97.99 98.01 98.00 98.01 36.5

Ablation experiments
In order to verify the effectiveness of the EfficientNet-

B7-CBAM model, the following five abatement experiments
were set up. (1) The original EfficientNet-B7 model. (2) In
scheme 1 based on EfficientNet-B7 model trained using transfer
learning, which constructed TL-EfficientNet-B7 model. (3) Used

Adam’s optimization algorithm to train the TL-EfficientNet-
B7 model, which constructed the TL-EfficientNet-B7-Adam
model. (4) Replaced the SE module with the CBAM module
in the TL-EfficientNet-B7-Adam model, which constructed
the TL-EfficientNet-B7-Adam+SE- > CBAM model. (5) The
EfficientNet-B7-CBAM model in this paper.

The training results of the models for the five schemes
described above are shown in Table 2. Compared to the
experimental results of schemes 1 and 2, the average
classification accuracy of the TL-EfficientNet-B7 model for plug
seedlings reached 94.66%, which was 3.99% higher than that
of the model in scheme 1. Additionally, the model’s training
time was reduced by 23.5 min, and the transfer learning
method effectively enhanced the model’s generalization ability.
Compared to the experimental results of schemes 2 and 3, the
average classification accuracy of the TL-EfficientNet-B7-Adam
model was 95.33%, a 0.67% improvement over the scheme
2 models, and its training time was reduced by 20.7 min.
The Adam optimization algorithm could hasten the model’s
convergence and enhance its performance. The effectiveness of
the scheme improvement was demonstrated by the fact that
the overall accuracy of the TL-EfficientNet-B7-Adam model
increased by 4.66%, and the training time was reduced by
44.2 min using both transfer learning and Adam optimization
algorithms. In addition, experiments comparing schemes 3 and
4 demonstrated that the CBAM module possessed superior
attention learning capability to the SE module. Compared to
the experimental results of schemes 4 and 5, the addition of the
CBAM module after the second convolutional layer improves
the model’s ability to extract information. The experimental

FIGURE 12

The EfficientNet-B7-CBAM model confusion matrix.
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results shown in Table 2 demonstrated that the enhanced
EfficientNet-B7-CBAM model achieved a classification accuracy
of 97.99% on the previously constructed plug seedling dataset,
which was 7.32% better than before the enhancement, and that
the model training time was reduced by 60.2 min. The training
curves of the models proposed by the five schemes are shown
in Figure 11. According to Figure 11, the EfficientNet-B7-
CBAM model converged around the 40th iteration, which was
the quickest convergence speed of all models.

In combination with the above findings, the model
training scheme’s feasibility and effectiveness could be
determined. The improved EfficientNet-B7-CBAM model
performed the classification of plug seedling quality with high
accuracy and robustness.

The impact of data enhancement on model
performance

Data augmentation was performed on the plug seedling
images to increase the EfficientNet-B7-CBAM model’s
resistance to interference in complex environments and
prevent overfitting issues. A series of comparison experiments
were designed to demonstrate the effect of data augmentation
on model performance improvement in order to verify the
effect of data augmentation. The experimental results before
and after model data enhancement is shown in Table 3. By
comparing the model’s Acc, Re, Pr , and F1 performance metrics
for each category on the plug seedling test set. On the test set,
the classification recognition accuracy of the model trained
on the original plug seedling data was 96.45%, which was
1.54% than the classification accuracy of the model after data
enhancement. The experimental results demonstrated that data
augmentation can improve model performance and contribute
to the classification of plug seedlings.

The performance comparison of different
convolutional neural network model

Several classical CNN models AlexNet, VGG16,
InceptionV3, ResNet50, and DenseNet121 were used
to classify datasets of different quality cavity seedlings
in order to demonstrate the efficacy of EfficientNet-
B7-CBAM Mode. In addition, the performance was
compared to the EfficientNet-B7-CBAM model. To
ensure the fairness of the experiment, the above CNN
models and EfficientNet-B7-CBAM Mode were trained
using the same strategy and hardware configuration. The
classification performance of several models is shown in
Table 4.

As shown in Table 4, the EfficientNet-B7-CBAM model
had the highest average classification accuracy of 97.99%
on the test set of different quality pepper plug seedlings,
which was 20.05, 16.01, 12.39, 9.07, and 8.88% higher
than the average classification accuracy of a number of

other models, respectively. Additionally, the EfficientNet-
B7-CBAM model’s training time was only 36.5 min. In
summary, the EfficientNet-B7-CBAM model had a significant
advantage in terms of accuracy and training time, and was
better able to meet the classification requirements for plug
seedling quality.

Confusion matrix of the model
The confusion matrix of the EfficientNet-B7-CBAM model

applied to the test set of plug seedlings, as shown in Figure 12.
The average classification accuracy of the EfficientNet-B7-
CBAM model for the three types of plug seedlings was
97.99%, the average Pr was 98.01%, the average Re was
98.00%, and the overall index F1 was 98.01%, as determined
by the confusion matrix. From the confusion matrix, it
was evident that empty plug cells, weak seedlings, and
Strong seedlings were misclassified as one another. Empty
plug cells were misclassified as weak seedlings due to the
presence of shed leaves; weak seedlings were misclassified as
strong seedlings due to the interference of leaves protruding
from seedlings in adjacent cells; and strong seedlings were
misclassified as weak seedlings due to the incorrect angle
of the plug seedlings and the low resolution of the images
in this category.

Conclusion

In order to support effective management of seedlings,
an improved convolutional neural network with an attention
mechanism was proposed in this work. The device acquisition
system was used to collect a total of 8,109 images of plug
seedlings for the model training process. Image augmentation
was used to expand the dataset during the data preparation
stage. The original EfficientNet-B7 model and the CBAM
module were thoroughly integrated to acquire feature channels
and spatial location data simultaneously. To hasten the
model’s convergence, a transfer learning technique and
the Adam optimization algorithm were also applied. The
suggested model underwent extensive training, testing, and
comparative experimentation. The proposed method in
this study reaches recognition accuracy of 97.99%, which
is better than other deep learning techniques currently
in use, according to experimental results. The method’s
competitive performance on the task of classifying the
quality of plug seedlings served as a benchmark for the use
of deep learning techniques in plug seedling classification.
Our follow-up studies aim to expand the dataset and
enhance the model’s ability to generalize in challenging
situations. Additionally, by quantizing and pruning the
model to reduce the number of parameters, and speed up the
model convergence.
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Slight crack of cottonseed is a critical factor influencing the germination

rate of cotton due to foamed acid or water entering cottonseed through

testa. However, it is very di�cult to detect cottonseed with slight crack

using common non-destructive detection methods, such as machine vision,

optical spectroscopy, and thermal imaging, because slight crack has little

e�ect on morphology, chemical substances or temperature. By contrast, the

acousticmethod shows a sensitivity to fine structure defects and demonstrates

potential application in seed detection. This paper presents a novel method

to detect slightly cracked cottonseed using air-coupled ultrasound with a

light-weight vision transformer (ViT) and a sound-to-image encodingmethod.

The echo signal of air-coupled ultrasound from cottonseed is obtained by

non-contact and non-destructive methods. The intrinsic mode functions

(IMFs) of ultrasound signal are obtained as the sound features using variational

mode decomposition (VMD) approach. Then the sound features are converted

into colorful images by a color encoding method. This method uses di�erent

colored lines to represent the changes of di�erent values of IMFs according

to the specified encoding period. A light-weight MobileViT method is utilized

to identify the slightly cracked cottonseeds using encoding colorful images

corresponding to cottonseeds. The experimental results show an average

overall recognition accuracy of 90.7% for slightly cracked cottonseed from

normal cottonseed, which indicates that the proposed method is reliable to

applications in detection task of cottonseed with slight crack.

KEYWORDS

crack cottonseed identification, variational mode decomposition, sound to image

encoding, vision transformer, deep learning, air-coupled ultrasound

Introduction

Cotton is an important economic crop throughout the world. The quality of

cottonseed is an important factor in determining the yield and quality of cotton. Cotton

seed will go through a series of processes such as ginning and stripping, which will cause

a lot of damage to cotton seed. However, in the process of removing excess linters of
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cottonseed, the foamed acid will enter the cottonseed through

the cracks and diminish the germination of the cotton seed. After

sowing, water will also enter cottonseed through cracks, further

reducing the germination of cottonseed. Therefore, cracked

cottonseeds will decrease cotton yield.

To reduce the amount of cottonseed wasted, the automation

system of cotton precision seeding is often applied in practical

production. After precision seeding, there is no need for

thinning seedlings or avoiding inconsistency of individual

growth and development in cotton field. Therefore, cotton

precision seeding can significantly decrease the production

cost of cotton, improve the efficiency of field management,

and consequently, realize standardized planting. However, this

technology puts forward higher requirements for the quality of

cottonseeds, which makes the quality detection of cottonseeds

crucial. The traditional seed detection method is destructive,

inefficient, time-consuming, and non-automated. Developing

fast and high-throughput non-destructive detection methods

for seed quality is urgently needed for agricultural production.

In recent years, non-destructive detection technologies, such

as machine vision, optical spectroscopy, thermal imaging,

and acoustics, have gradually become new ways to detect

seed quality.

Machine vision is a rapid and non-destructive technology

and has been applied to detect the quality and safety of seed.

Based on morphological and color features extracted from

images acquired by camera with high resolution, morphology

(Rodríguez-Pulido et al., 2012), color (Tu et al., 2018), shape

(Li et al., 2016), size, texture, and exterior defects (Huang

et al., 2019) of seed can be evaluated. Severely damaged

and broken cottonseeds can also be identified effectively by

extracting morphological characteristics from image (Bai et al.,

2018). However, injuries recognition and location are still major

difficulties in using machine vision for seed surface defect

detection (Huang et al., 2015). Slight injuries such as small cracks

in cottonseed are hardly distinguished by vision. Moreover, it is

particularly difficult for imaging the injuries on the edge and the

back side of seed that are hidden from the camera’s field of view.

Optical spectroscopy is also a powerful tool to inspect

seed, especially in characterizing internal quality. Based on the

interactions between light and material molecular groups, the

information of corresponding chemical compositions can be

extracted from the changes of optical spectra. According to

the form of interaction, spectroscopic techniques are mainly

based on light absorption (e.g., near-infrared spectroscopy),

light scattering (e.g., Raman spectroscopy) and light emission

(e.g., fluorescence spectroscopy). Most of them have been

used to determine seed quality and safety, including internal

compositions (Sunoj et al., 2016), moisture (Zhang and Guo,

2020), germination (Fan Y. et al., 2020) and infection (Tao

et al., 2019). Hyperspectral imaging technique incorporates

optical spectroscopy and imaging technology to obtain spatial

and spectroscopic information simultaneously. Combined

with machine learning methods, such as linear discriminant

analysis (LDA), partial least-squares discriminant analysis (PLS-

DA), support vector machine (SVM), and artificial neural

networks (ANN), a hyperspectral imaging data cube can

provide the information of chemical compositions and their

distributions, which makes this a potential technology in the

seed industry, especially in variety identification (Zhou et al.,

2020), classification (Barboza da Silva et al., 2021) and chemical

composition determination (Yang et al., 2018; Hu et al., 2021).

Spectroscopic technology also does a good job in damage

detection of seed, such as insect damage (Chelladurai et al.,

2014), fungi damage (Baek et al., 2019), frost damage, and

sprout damage, because all these types of damage can lead

to the change of chemical compositions of seed, which could

change the spectral features. Nevertheless, it is still challenging

to distinguish pure physical damage with little chemical change,

such as slight crack in cottonseed.

Thermal imaging is a non-destructive technique for

converting the invisible infrared radiation pattern of an object

into visible images for feature extraction and analysis (Rahman

and Cho, 2016). Based on the changes of surface temperature,

the infrared radiation profile of seed can be mapped and

analyzed. Unlike above-mentioned methods, no illumination

sources are required in this system, and a thermal imaging

camera along with its data acquisition system is enough to

provide information of object. Thermal imaging technology

has found its way in estimating seed quality, including

determination of morphological features, detection of diseases

and insect infestation, evaluation of viability (Belin et al., 2018)

and germination performance (Fang et al., 2016), distinguishing

aged or dead seeds from healthy ones (Kim et al., 2014), and

monitoring seed quality during storage (Xia et al., 2019). In

addition, thermal imaging has the capability of sensing all

possible physical damage of seed, since there is a significant

relationship between seed temperature and degree of damage

(ElMasry et al., 2020). But the difficulties of detecting slight

physical injuries, which are hard to recognize by machine

vision and even human vision, still exist for the thermal

imaging method.

An acoustic method is also developed for non-destructive

detection of agricultural products. Among acoustic technology,

ultrasonic testing is an important method. With the advantages

of short wavelength, high frequency, and good directional

property, ultrasound possesses better penetrability than audible

sound and subsonic wave, and consequently becomes a powerful

tool in non-destructive testing of seed. Ultrasound signal

produced by impacting seed can be used to evaluate seed quality.

When crack appears on seed testa, the structural strength and

damping coefficient of the seed will change, which leads to

the variations of frequency and intensity of the impacting

ultrasound signal. Depending on the differences in echo signals

between healthy seed and defective seed, the acoustic method

shows more superiority in recognizing fine surface crack than
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common non-destructive detection methods. The approach was

first proposed to distinguish pistachio nuts with open shells

from those with closed shells (Pearson, 2001), and the results

showed that the detection accuracy of pistachio nuts was∼97%.

Combined with signal processing and identifying algorithm, the

acoustic method is applied to detect insect damage (Pearson

et al., 2007; Yanyun et al., 2016) and mildew damage (Sun

et al., 2018) of seed. The potential to identify fine defects

with this method is expected and verified. However, detecting

light crack of cottonseed with smaller size than most seeds is

rarely reported.

In this paper, a non-destructive detection method based

on an air-coupled ultrasonic inspection system is developed

to distinguish cottonseed with slight crack from intact kernel.

VMD is utilized to decompose an ultrasonic signal into band-

limited multiple IMFs. These IMFs are used to construct the

feature matrix of ultrasonic signal. Then the feature matrix

is converted into the colorful image using a color encoding

method. A deep learning-basedmethod combining Transformer

model with CNN model is used to classify the color images

generated from air-coupled ultrasonic cottonseeds. Finally, the

performance of the proposed method is compared with other

detection methods.

Materials and methods

Samples

A total of 600 cottonseeds named Xinluzhong52 are

used in this study. The total cottonseeds consisted of 296

intact kernels and 304 kernels with slight crack. Cracked

cottonseed is damaged cottonseed showing the obvious

white endosperm inside. For slightly cracked cottonseed, it

is difficult to detect the endosperm inside, but there is

crack on testa of cottonseed. Physical images of cottonseed

are shown in Figure 1. The cottonseed with severe crack

that shows the white endosperm can be identified by

machine vision method. This research focuses on the method

of distinguishing cottonseed with slight crack from intact

cottonseed. Therefore, the samples only include the two classes

of cottonseeds.

Detection system based on air-coupled
ultrasound

To maintain sufficient energy transmission, liquid couplant,

such as water, oil etc. is used to immerse samples in a

traditional ultrasonic technique. The mode of contact coupling

may cause damage or pollution on the surface of sample. The

air-coupled ultrasonic technique emerges as a novel approach

for non-destructive, non-contact, and rapid inspection (Fang

et al., 2017). The surrounding air is used as the couplant between

transmitting transducer and materials or between receiving

transducer and materials in air-coupled ultrasonic techniques.

The significant advantage of an air-coupled ultrasonic technique

is avoiding the use of traditional couplant. Therefore, it

becomes a reliable and effective non-destructive detection

method. The air-coupled ultrasonic technique is suitable

for industrial detection applications, such as the natural

defects in wood (Tiitta et al., 2020), corn seed with hole

(Yanyun et al., 2016) and food engineering (Fariñas et al.,

2021a,b).

The air-coupled ultrasonic detection system is used to

obtain the ultrasonic echo signal. The inspection system is

shown in Figure 2. The signal acquisition system consists of

a pair of transducers (400K-20N-R50-T and 400K-20N-R50-

R, PR, China), a preamplifier (400K, PR, China), an air-

coupled ultrasonic inspection instrument (PRACUT-111, PR,

China), and an industrial computer. The center frequency of

the transducer is 400 kHz. The diameter of the piezoelectric

ceramic disc is 20mm. The focal length of the transducer is

50mm. The normal through-transmission mode is applied to

two transducers. In order to obtain accurate ultrasonic signals,

the two transducers need to be strictly aligned. The cottonseed

is placed as the focus between transmitting transducer and

receiving transducer. To meet the requirement of cottonseed

placement, an aluminum plate with a thickness of 0.2mm as

a holder is fixed in the middle of two transducers. The thin

aluminum plate can guarantee that the air-coupled ultrasonic

signal transmitted by the transmitting transducer can be

received by the receiving transducer as much as possible. The

preamplifier with the amplification factor of 60 dB is used

to amplify and filter the ultrasonic signal received by the air-

coupling receiver transducer (400K-20N-R50-R), and then input

the processed ultrasonic signal to the air-coupled ultrasonic

inspection instrument. The ultrasonic inspection instrument

outputs 400V excitation signal to drive the transmitting

transducer and converts the received ultrasonic signal into

digital signal. The industrial computer mainly consists of

Intel i7-6700 CPU @3.4 GHz, 512G SSD hard drive, 16 GB

RAM and a GPU (Geforce RTX 2080 WindForce OC 8G,

GIGABYTE). The computer sends the control command to the

ultrasonic inspection instrument through the USB interface, and

receives the ultrasonic data sent by the ultrasonic inspection

instrument through a LAN interface. The ultrasonic data are

stored in the computer using PRACUT software (Suzhou

Phaserise Technology Co., Ltd., China). Although Python

language and Pytorch deep learning framework are used to

realize the signal processing and the identification of cottonseed

with slight crack, real-time detection can be realized by C++

language with the standard dynamic link library provided by

PRACUT software.
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FIGURE 1

Cottonseed kernels. (A) Intact cottonseeds. (B) Cottonseeds with severe cracks. (C) Cottonseeds with slight cracks.

Ultrasonic signal acquisition

A-scan mode of the air-coupled ultrasonic inspection

instrument is used to identify cottonseed with slight crack.

In A-scan mode, damaged cottonseeds are detected through

changes in air-coupled ultrasonic signal passing through them.

In order to generate the ultrasonic signal data set, first, the

cottonseed sample is placed on the aluminum plate so that it
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FIGURE 2

Scheme of air-coupled ultrasonic inspection system set-up.

coincides with the focus position of the transducers. Then the

ultrasonic signal is obtained after the ultrasonic signal passes

through the cottonseed. The ultrasonic signal data is exported

and saved as a CSV format file. Finally, the category label (1

or 0) corresponding to each sample is appended to the end

of CSV file, where “1” represents the normal cottonseed and

“0” represents the cottonseed with slight crack. Each cottonseed

sample corresponds to a CSV file, and all CSV files constitute the

data set used in this study. The typical ultrasonic signals from

intact cottonseed and cottonseed with slight crack are shown

in Figure 3 respectively. The amplitude fluctuations of the two

types of ultrasonic signals are very similar, so it is very important

to extract effective features for classification from these signals.

Identification of slight crack cottonseed

Variational mode decomposition method

Variational mode decomposition (VMD) (Dragomiretskiy

and Zosso, 2013) is one of novel non-stationary signal

decomposition techniques and has been recently applied in

wind speed forecasting and many other fields (Dibaj et al.,

2021; Yildiz et al., 2021). The original non-stationary signal

can be decomposed into different band-limited intrinsic mode

functions (IMFs) using VMD, similar to empirical mode

decomposition (EMD). A non-recursive method is used to

decompose original signal X(t) into M modes or subsequences

um(m = 1, 2, ..., M). These IMFs have different central

frequencies with finite bandwidths. The purpose of the

transformation is to minimize the sum of the estimated

frequency bandwidth of each IMF, and the constraint condition

is that the sum of each IMF is equal to the input signal X(t).

The objective function and constraint condition corresponding

to the variational constraint model can be represented by the

following Equation 1:






min
{um},{ωm}

∑M
m=1

∥

∥

∥
á

[(

δ (t) +
j

πt

)

∗um(t)e
−jωkt

]
∥

∥

∥

2

2
s.t. X (t) =

∑M
m=1 um

(1)

where δ(t) is Dirac function; ∗ denotes the convolution

operation in signal processing; j is an imaginary number; || · ||

denotes the L2- norm; {um} = {u1, u2, ..., uM} is the set of all

IMFs; {ωm} = {ω1, ω2, ..., ωM} is the set of central frequencies

corresponding to all IMFs.

In order to resolve the constrained variational optimization

problem, quadratic penalty factor term α and Lagrange

multipliers λ(t) are defined, so the optimization problem can

be transformed into an unconstrained variational problem. The

constructed unconstrained form can be presented in Equation 2.
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∥

∥

∥
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∥

∥

∥

2

2

+

〈

{λ (t)} ,X (t) −

M
∑

m=1

um

〉

(2)

Frontiers in Plant Science 05 frontiersin.org

93

https://doi.org/10.3389/fpls.2022.956636
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.956636

FIGURE 3

Examples of the original ultrasonic signals of cottonseed. (A) Intact cottonseed. (B) Cottonseed with slight crack.

where α is used to ensure high reconstruction fidelity even in the

presence of additive Gaussian white noise; λ(t) is used to strictly

ensure the constraints.

To solve the unconstrained optimization problem in

Equation 2, the alternating direction multiplier method

(ADMM) (Hong and Luo, 2017) is used to find the

saddle point of the optimization problem. The minimax

point of the augmented Lagrangian function L can be

obtained by updating um, ωm and λ alternately. The

iteration process of um, ωm and λ are as following

Equation 3, 4, 5:

ûn+1
m (ω) =

f̂ (ω) −
∑

i6=m ûi (ω) +
λ̂(ω)
2

1+ 2α(ω− ωm)
2

(3)

ωn+1
m =

∫ ∞
0 ω

∣

∣ûm(ω)
∣

∣

2
dω

∫ ∞
0

∣

∣ûm(ω)
∣

∣

2
dω

(4)

λ̂n+1 (ω) = λ̂n (ω) + τ (X̂ (ω) −
∑

m

ûn+1
m (ω )) (5)
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where n is the number of iterations; X̂ (ω), ûn+1
m (ω), ûi (ω)

and λ̂ (ω) can be obtained from X(t), un+1
m (t), ui(t) and λ(t)

by the Fourier transforms. If the convergence condition shown

in Equation 6 is satisfied, the iteration will be terminated.

Finally, through the inverse Fourier transform of ûn+1
m (t),

the real part of the result is taken as the mode functions

un+1
m (t ).

M
∑

m=1

∥

∥

∥
ûn+1
m − ûnm

∥

∥

∥

2

2
∥

∥ûnm
∥

∥

2
2

< ǫ (6)

The optimization process for VMD is as follows:

Step 1: Initialize u1m, ω
1
m, λ

1 and n, where n= 1.

Step 2: Set n to n+ 1 and update ûn+1
m (ω), ωn+1

m and λ̂n+1

according to Equation 3, 4, 5.

Step 3: Repeat step 2 until the iteration convergence

condition in Equation 6 is satisfied. M narrowband

IMF un+1
m (t) can be obtained by using inverse

Fourier transform.

The air-coupled ultrasonic signal of a cottonseed with

slight crack is used as the examples for VMD decomposition.

The results of VMD decomposition are shown in Figure 4.

Because of the similarity between air-coupled ultrasonic signal

of intact cottonseed and that of cottonseed with slight crack, it

is important to extract the air-coupled ultrasonic signal features

from these intrinsic mode functions.

Encoding from ultrasound to image

The ultrasonic signal X(n) acquired from air-coupled

ultrasonic detection system are decomposed toM intrinsicmode

functions um, m ǫ {1, 2, ..., M} using VMD transformation. M

IMFs are stacked to generate the intrinsic mode functionsmatrix

S of air-coupled ultrasonic signal X(n) according to Equation 7:

S =













u1

u2
...

uM













= [s1, s2, · · · , sL ] (7)

where S ∈ R
M×L and L is the length of the air-coupled

ultrasonic signal X(n). um is composed of L discrete values

with the same length as the ultrasonic signal, which can be

represented as um ∈ R
1×L. Vector sl is composed ofM discrete

values in the column direction of the matrix S which can be

represented as sl ∈ R
M×1. In order to convert the ultrasonic

signalX(n) into a color-coded image IC , the color setC is defined

for color coding, C = {c1, c2, · · · , cB}, where ci represents

different colors and B is the number of different colors in the

color set C. First, vector s1 at the first column of the intrinsic

mode functions matrix S is selected and converted into a part

of colorful image IC . Here, s1 = {u11, u12, · · · , u1M}. Color c1
in set C is chosen and used to draw a polyline in the image IC
according to the value of s1. Then vector s2 at the second column

of matrix S and color c2 are selected to draw the second polyline

in the image IC to represent s2. According to this method, color

c1 is used to draw the next polyline again after completing the

drawing of B colorful polylines. Finally, B is considered as the

cycle to complete the drawing of L colorful polylines. Image IC
is generated from the air-coupled ultrasonic signal X(n) using

the above color encoding method.

In order to accurately convert the ultrasonic signal into a

colorful image, first, the drawing rangesWS,HS in image IC and

the coordinates
(

xOS , yOS

)

of the image origin OS are defined.

Then the coordinates required to draw polylines are calculated

according to Equation 8:
{

xslm = xOS +
(m−1)WS
M−1 m ∈ {1, 2, · · · ,M}

yslm = yOS +
(HS−yOS )(Smax−Slm)

(Smax−Smin)
l ∈ {1, 2, · · · , L}

(8)

where Smax and Smin are respectively the maximum and

minimum values in the matrix S composed ofM intrinsic mode

functions after VMD decomposition of each ultrasonic signal.

The position of each column vector of matrix S in the image

IC is determined by Equation 8, and then the corresponding

position is connected with the same color to complete the

drawing of polylines. For each vector sl, M – 1 colorful lines

need to be drawn. In this study, let M = 3, L = 450, B = 10,

the size of the generated image IC is 1,800 × 1,200 and the

origin coordinate of the encoding image part on image IC is

(288,1010). The process of generating images from the ultrasonic

signals of intact cottonseed and slight cracked cottonseed is

shown in Figure 5. As seen in Figure 5, the coding representation

of ultrasonic signals from one-dimensional ultrasonic signal

to two-dimensional images can be realized by polylines with

different colors according to the results of VMD decomposition

of ultrasonic signals.

In practical application, in order to obtain the optimal

detection effect, the air-coupled ultrasonic data of 30 intact

cottonseeds and 30 cottonseeds with slight crack are randomly

selected from the air-coupled ultrasonic data set, the background

image is generated according to the above method, and then the

air-coupled ultrasonic data of the remaining 540 cottonseeds are

used to generate colorful encoding images on the background

image. So, the conversion from sound to image is completed.

Finally, the image data set including 266 images generated

from intact kernels and 274 images generated from slight crack

kernels is obtained. In this study, 80% of the data set is used

to train the model and 20% is used to test the effect of the

training model.

MobileVIT vision transformer model

The ransformer-based model achieves great success in the

natural language processing (NLP) field (Vaswani et al., 2017).
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FIGURE 4

The VMD decomposition from the air-coupled ultrasonic signal of a cottonseed with slight crack. (A) Original signal. (B) IMF1. (C) IMF2. (D) IMF3.
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FIGURE 5

Colorful images generated from the ultrasonic signals. (A) The process of generating image from the ultrasonic signal of intact cottonseed. (B)

The process of generating image from the ultrasonic signal of slightly cracked cottonseed.
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Transformer has a layer stacking architecture, which only uses

the multi-Head self-attention mechanism without convolution

and recursion. Inspired by the successful application of

transformer in NLP field, Dosovitskiy et al. (2020) propose

Vision Transformer (ViT) model which employed a standard

Transformer directly to visual tasks. In this method, the image

is divided into a sequence of patches, and the linear embedding

sequence of these image patches are taken as the input of the

Transformer. The processing method of image patches is the

same as that of tokens in NLP application, and excellent results

are achieved on massive data sets. Liu et al. (2021), proposed the

Swin Transformer (Shifted Window Transformer) model that

could replace the classic convolutional neural network (CNN)

architecture and become a general backbone in the field of

computer vision. This model is based on the idea of ViT model

and shows the effectiveness on different vision problems using

patch merging and the shifted window with self-attention.

Although Vision Transformer-based model can be an

alternative to CNNs in computer vision field, the large model

size, high requirement for training data, and latency of

Vision Transformer limits its practice application, especially

for resource constrained equipment. In order to obtain a

lightweight and efficient architecture of Vision Transformer

model, MobileViT (Mehta and Rastegari, 2021) is proposed

for mobile vision applications. MobileViT combines the

advantages of transformers and convolutions, so it can

encode the local information obtained from convolutions

and global information obtained from transformers in

tensors without lacking in inductive bias. The model

structure of MobileViT is shown in Figure 6, where MV2

block represents MobileNetV2 block with inverted residual

structure. ↓2 refers to down-sampling operation. A standard

3 × 3 convolution operation is represented by Conv-3 ×

3 block in MobileViT model. MobileViT block combines

convolutions with transformers to learn the global and

local information from input tensor respectively. Tensor

XT ∈ R
H×W×Dpasses through a series of convolution

operations and tensor XLT ∈ R
H×W×d is obtained.

Then tensor XLT is divided into N patches with width

w and height h and XUT ∈ R
P×N×d can be obtained

by unfolding XLT . For example, the XLT in Figure 6

is equally divided into 4 × 4 small patches, then a d-

dimensional vector is extracted at the same position of

each patch. The corresponding vectors from the same

position p ∈ {1, · · · , P}are combined and used to generate

tokens. The inter-path relationships XGT ∈ R
P×N×d can

be obtained by encoding operation with Transformers as

Equation 9:

XGT = Transformer
(

XUT

(

p
))

, 1 ≤ p ≤ P (9)

where local information can be encoded by

XUT (p) and global information passing through

p-th position in P patches can be encoded

by XUG (p). The output YT of MobileViT

block can be obtained after convolution and

concatenation operations.

The computation of self-attention in above Transformer

is realized using scale dot-product attention according to

Equation 10:

Attention (Q,K,V) = SoftMax(
QKT

√

dk
)V (10)

where Q, K and V represent the query, key, and value matrices

respectively. dk refers to the dimension ofQ and K. The SoftMax

function is used to obtain the weights ofV. Spatial order of pixels

will be ignored in standard ViTs. But both the spatial order of

pixels and the path order will be obtained in MobileViT model.

Results and discussion

Cottonseed germination test

It is important to guarantee the safety of air-coupled

ultrasonic detection for cottonseed. In order to verify

the safety of ultrasonic detection, the germination test

of cottonseeds is used as the verification method. First,

two batches of intact cottonseeds are randomly selected,

then the cottonseeds are divided into two groups. One

group is not used to ultrasonic testing, and the other

group is passed through air-coupled ultrasonic at the

same frequency and intensity in detection experiment. For

each germination test, 1,000 cottonseeds after ultrasonic

testing and 1,000 cottonseeds without ultrasonic testing are

selected respectively. Then the two groups of cottonseeds

are used in cottonseed germination tests at the same time. It

is determined whether air-coupled ultrasonic detection will

cause damage to the cottonseeds by the comparison of the

germination rates.

Table 1 shows the comparative results of the cottonseed

germination rate. By comparing the results in Table 1, it

can be seen that air-coupled ultrasonic detection does not

affect the germination rate of cottonseeds. At the same

time, the germination rate of seeds tends to decrease with

the increase of time. This trend may be due to the

storage environment of cottonseeds not in accordance with

the storage standards, which affects the germination rate

of cottonseeds. Therefore, in this study, the air-coupled

ultrasound with frequency of 400 kHz and voltage of 200V

is used to detect the slight crack of cottonseed, which

will not damage the cottonseeds or reduce the germination

rate of cottonseeds. This is a safe non-destructive detection

method.
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FIGURE 6

The architecture of Mobile ViT network.

TABLE 1 The results of cottonseeds germination test.

Cottonseed Storage for Storage

category 2 months 1 year

Cottonseeds after ultrasonic testing 83.5% 72.2%

Cottonseeds without ultrasonic testing 86.1% 70.6%

Determination of decomposition number
M using sample entropy

The ultrasonic signal X(n) is decomposed to M intrinsic

mode functions using VMD decomposition. The number M

of intrinsic mode functions needs to be determined artificially.

Sample entropy is proposed to measure the complexity of time

series by Richman and Moorman (2000). Complex time series

signals have large sample entropy, while time series signals with

strong selfsimilarity have small sample entropy. Zhang et al.

(2020) proposed a method to select the number M of intrinsic

mode functions by computing the sample entropy of time series.

For an appropriateM value of VMDdecomposition operation, it

will correspond to smaller sample entropy of the time sequence

signal. Therefore, on the condition of effectively limiting the

computational complexity, the M value is determined by

calculating the sample entropy of the intrinsic mode functions.

For one-dimensional time series signal {XSE(i), i = 1, 2, . . . ,

L}, z-dimensional vector is reconstructed and represented by

{YSE(i), i= 1, 2, . . . , Z, Z = L – z+ 1} according to Equation 11:

YSE (i) = {XSE (i) ,XSE (i+ 1) ,XSE (i+ 2) , · · · ,

XSE (i+m− 1)} (11)

Then themaximum value of Euclidean distance between any

component of vectors YSE(i) and YSE(j) is calculated according

to Equation 12 and represented as DSE(YSE(i), YSE(j)).

DSE
(

YSE (i) ,YSE
(

j
))

= max
[
∣

∣YSE
(

i+ k
)

− YSE
(

j+ k
)
∣

∣

]

(12)

where i, j ǫ {1, 2, . . . , Z – z+ 1} and k ǫ {0, 1, . . . , z – 1}. Then

Az
i (r) is calculated according to Equation 13, where r is tolerance

threshold andAz
i is the number that the distance between YSE (i)

and YSE(i) is not greater than r.

A
z
i (r) =

1

L− z + 1
Az
i (13)

Then Az
i (r) is used to calculate A

z
i (r) · A

z
i (r) =

1
L−z

∑L−z
i=1 Az

i (r). Finally, the sample entropy of time series

signal is calculated according to the following to Equation 14:

SampleEn (m, r) = − ln
Az+1
i (r)

Az
i (r )

(14)

The original air-coupled ultrasonic signal is decomposed

using VMD with different parameter M. Then the sample

entropy corresponding to each M is calculated accordance to

Equation 14. In order to obtain an appropriate detection speed,

M is set to 2, 3, 4, 5, 6 in the experiment respectively. It can be

seen from Figure 7 that the sample entropy has the smallest value

when M is equal to 3. Therefore, M = 3 is determined as the

number of intrinsic mode functions of VMD decomposition in

this study.

Influence of the number of encoding
colors

The conversion from air-coupled ultrasonic data to image

data is realized through a specific number of color encoding

sets. In order to determine the optimal number of encoding
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FIGURE 7

The value of the sample entropy with di�erent numbers M of

IMFs.

colors for ultrasound to image conversion, a color set for

encoding including 12 colors is constructed. The air-coupled

ultrasonic signal decomposed by VMD method is encoded

by two to 12 colors respectively. Eleven image data sets are

constructed using the original air-coupled ultrasonic data. The

MobileViT model is trained by using each image data set.

The training data sets and test data sets from 11 image

data sets are divided in the same proportion respectively.

The initialization parameters of MobileViT in this study are

shown in Table 2. These initialization parameters are mainly

determined according to GPU performance and characteristics

of encoding image. The comparison results of the MobileViT

model obtained on the test sets of colorful images generated by

different numbers of encoding colors are shown in Figure 8. The

colorful image sets for tests come from the same air-coupled

ultrasonic data test set, but different test sets are generated

according to the corresponding color encoding method. It

can be seen from Figure 8 that with the increase of encoding

colors, the classification accuracy increases gradually. When the

number of encoding colors is equal to 10, the classification

accuracy reaches the maximum. Then the classification accuracy

decreases with the increase of the encoding color number. This

is mainly because, with the increase of the encoding colors

number and the types of colors, the image generated from the

air-coupled ultrasound becomes more complex. It is difficult for

the classification algorithm to extract effective features from the

complex image. Therefore, to realize the conversion from sound

to image, 10 colors are selected to encode the intrinsic mode

functions of the original air-coupled ultrasonic signal.

Comparison of di�erent methods

In order to compare the detection effects of the method

proposed in this study with those of other methods, eight

TABLE 2 Parameters of MobileViT for cottonseed with slight crack.

Parameters Value

Input size 256× 256

Classes 2

Batch size 16

Learning rate 1.0×10−3

Iterations 10

FIGURE 8

Accuracy of slight crack detection of cottonseed with di�erent

numbers of encoding colors.

detectionmethods are proposed for the comparison experiment.

The long short-term memory (LSTM) network is a special

kind of recurrent neural network that can store and retrieve

information from sequence data by memory cells (Hochreiter

and Schmidhuber, 1997). LSTM network is an effective classifier

for dealing with one-dimensional time-series and sequential

data. The original air-coupled ultrasonic signal, wavelet features,

and the results of VMD decomposition are used as input data

respectively, and then combined with LSTM classifier to obtain

four methods for the comparison. The wavelet transformer can

be used to obtain the time-frequency domain features of original

air-coupled ultrasonic signal.

The color images used to train deep learning classifiers

are shown in Figure 9. For the data set obtained by the color

encoding (CE) method from sound to image, different classifiers

are used to compare the detection of cottonseed with slight

crack. The traditional convolutional neural network (CNN) (Fan

S. et al., 2020), residual network (ResNet18) (He et al., 2016) and

Swin Transformer (Liu et al., 2021) are chosen as the classifier

for the comparison respectively. The shortcut connections in

ResNet18 make deeper neural networks to realize complex

classification tasks. Thesemodels use a cross-entropy function as

a loss function. Meanwhile, the training iterations of all models

is set to 10.
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FIGURE 9

Color images generated from air-coupled ultrasound of cottonseeds. (A) Intact cottonseeds. (B) Cottonseeds with slight cracks.

TABLE 3 The comparison of di�erent methods for the detection of

cottonseed with slight crack.

Method Precision Recall F1 score Accuracy

1D raw data - LSTM 80% 65.5% 72% 74%

Wavelet - LSTM 64.1% 92.6% 78.5% 70.4%

VMD- LSTM 75.5% 68.5% 71.8% 73.1%

VMD- CE - CNN 94.4% 61.8% 74.7% 78.7%

VMD- CE -

ResNet18

82.8% 96.4% 89.1% 88%

VMD- CE – Swin

Transformer

73.1% 89.1% 80.3% 77.8%

VMD- CE –

MobileViT

(proposed method)

86.9% 96.4% 91.4% 90.7%

The experimental results are shown in Table 3. From the

experimental results, it can be seen that the two-dimensional

image can better reflect the features of air-coupled ultrasonic

signal than the features of one-dimensional signal. Because the

MobileVIT model can combine the local analysis ability of

convolutional neural network with the global analysis ability

of Transformer, the classification performance of MobileViT

is better than that of convolutional neural network and Swin

Transformer model. Due to the vast amount of parameters in

the Swin Transformer model and the requirement for a large

number of training data, the training and learning of non-large

data sets can’t show the advantages of the Swin Transformer

model. Therefore, VMD-CE–MobileViT approach proposed in

this study can distinguish normal cottonseed from cottonseed

with slight crack effectively.

Conclusion

In this paper, a detection method based on air-coupled

ultrasound and sound to image encoding is proposed for slight

crack identification of cottonseed. The traditional ultrasound

detection method is not suitable for the requirements of non-

destructive detection of cottonseed quality, and it is very difficult

to detect cottonseed with slight crack using machine vision and

other non-destructive detection technologies. To distinguish

kernels with slight crack from intact kernels, a non-destructive,

non-contact detection method based on air-coupled ultrasound

is developed. VMD decomposition is used to obtain the IMFs of

air-coupled ultrasonic signal. Then the feature matrix from the

IMFs is applied to generate colorful image by a color encoding

method. This method of converting sound into image can help
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theMobileViT classifier to obtain higher detection accuracy. The

experimental results show that slightly cracked cottonseed can

be distinguished from normal cottonseed precisely. The average

accuracy of slightly cracked cottonseed identification test is

90.7%. The presented method can be extended to other signal

recognition domain, such as distinguishing premature heartbeat

signal from normal heartbeat signal in electrocardiogram (ECG)

domain. In the future, we will combine the method proposed

in this study with hyperspectral image processing technology to

improve the detection accuracy further.
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In situ detection of fruit
spoilage based on volatile
compounds using the mid-
infrared fiber-optic evanescent
wave spectroscopy

Yunhai Zhou1,2, Yifan Gu2, Rui Guo2, Leizi Jiao1,2*, Ke Wang2,
Qingzhen Zhu1 and Daming Dong1,2

1School of Agricultural Engineering, Jiangsu University, Zhenjiang, China, 2National Research Center
of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences,
Beijing, China
Volatile compounds such as ethanol released from fruit can be rapidly detected

using Fourier Transform Infrared spectroscopy based on a long-path gas cell.

However, this method relies on a long optical path length and requires

pumping fruit volatiles into the gas cell. This can lead to the volatile

compounds being contaminated and not detectable in situ. Fiber optic

evanescent wave spectroscopy (FOEW) is not influenced by the path length

so can detect materials (solid, liquid and gas phase) rapidly in situ, using only a

few millimeters of optical fiber. In the present study, a spiral silver halide FOEW

sensor with a length of approximately 21 mm was used to replace a long-path

gas cell to explore the feasibility of identifying volatile compounds released

from grapes in situ. The absorption peaks of ethanol in the volatile compounds

were clearly found in the FOEW spectra and their intensity gradually increased

as the storage time of the grapes increased. PCA analysis of these spectra

showed clear clustering at different storage times (1-3, 4-5 and 6-7 d), revealing

that the concentration of the ethanol released from the grapes changed

significantly with time. The qualitative model established by PLS-DA

algorithm could accurately classify grape samples as “Fresh,” “Slight spoilage,”

or “Severe spoilage”. The accuracy of the calibration and validation sets both

were 100.00%. These changes can therefore be used for rapidly identifying fruit

deterioration. Compared with the method used in a previous study by the

authors, this method avoids using a pumping process and can thus identify

volatile compounds and hence monitor deterioration in situ and on-line by

placing a very short optical fiber near the fruit.

KEYWORDS

in situ detection, fruit spoilage, volatile compounds, ethanol, FOEW
spectroscopy, FTIR
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GRAPHICAL ABSTRACT
Highlights
Fron
• Sensitive detection of volatile compounds using a FOEW

sensor to replace a long-path gas cell.

• Sensitive detection of volatile compounds can be

achieved independently of long optic path.

• In situ and on-line detection of ethanol by placing a

short FOEW sensor near the fruits.

• Fruit spoilage can be identified in situ by a FOEW sensor

and FTIR spectrometer.
1 Introduction

Fruit is essential for human health with its high contents of

vitamins, minerals, antioxidants and many phytonutrients

(Rice-Evans and Miller, 1995). However, fruit is frequently

transported over long distances, allowing time for it to spoil
tiers in Plant Science 02
105
easily, with the consequent food safety concerns and heavy

economic losses. It has been estimated that approximately 20%

of all fruit produced for human consumption is lost each year

because of spoilage (Jahun et al., 2021). Therefore, the rapid

identification of fruit spoilage in situ is of great significance for

ensuring food safety, reducing economic losses and improving

human living standards. The volatile compounds released from

fruit reflect their particular status during storage. Several studies

have reported that the concentrations of volatile compounds

emitted from fruit, such as alcohols, esters, terpenes and

ethylene, are closely related to their quality (Zhu et al., 2018a;

Cai et al., 2019; Wu et al., 2020). Thus, the qualitative and

quantitative analyses of these volatile compounds are critical for

rapidly assessing the quality of fruit.

Gas Chromatography (GC) and Gas Chromatography Mass

Spectrometry (GC-MS) are commonly used in most research
frontiersin.org
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studies for accurately detecting volatiles released from fruit

(Sánchez-Palomo et al., 2005; Giannetti et al., 2017; Zhu et al.,

2018b). These methods detect differences in the adsorption

capacity of adsorbents in the chromatographic column for the

qualitative and quantitative detection of fruit volatiles. Although

these laboratory physical and chemical analysis methods are

sensitive and accurate, they require complex sampling,

preparation and analysis processes. This method requires time

and effort compared to spectroscopy, which does not necessitate

sample preparation. For fruit volatiles, a rapid detection method

is required. Stimulated by this demand, Proton Transfer

Reaction Mass Spectrometry (PTR-MS) (Hewitt et al., 2003;

Franke and Beauchamp, 2016), which can be linked to a

quadrupole (PTR-(Quad)MS) or time-of-fl ight mass

spectrometer (PTR-TOF-MS) (Liu et al., 2018), has been used

to detect fruit volatiles on-line (Cappellin et al., 2012; Li et al.,

2021). However, the equipment must be calibrated with a

standard gas for quantitative analysis, and requires several

minutes to stabilize for reagent ion switching. It is also

important to note that PTR-MS only provides molecular

weight information (mass-to-charge ratio) on the volatile

compounds and cannot be used for the qualitative analysis of

isomers. It can not achieve the recognition accurate of

spectroscopy. Compared with these complex laboratory

analysis methods, an electronic nose (E-nose) based on

electrochemical reactions has the advantages of low cost,

portability and ease of use. It can quickly generate a

superimposed signal response of the volatile compounds

almost in real time. Some studies have used the E-nose to

determine the stages of fruit spoilage and assess the physical

and chemical properties of fruit (Chen et al., 2018; Tatli et al.,

2021). However, the data generated by the E-nose is complex

and must be processed by multivariate statistical methods for

their accurate interpretation, compared with spectroscopy, its

reproducibility, resolution and robustness still needing to

be resolved.

Based on the specific excitation of rotation and vibrational

transitions of most molecular compounds, mid-infrared (MIR)

spectroscopy provides quantitative information on the unique

chemical and structural properties of molecules and has been

widely used in medicine (Tiernan et al., 2020), agriculture

(Volkov et al., 2021) and general industry as a rapid and

sensitive technique for obtaining molecular fingerprints (Ke

et al., 2018). Most volatile compounds released from food have

specific infrared absorption characteristics and can be analyzed

qualitatively and quantitatively using these specific infrared

absorption peaks, with many studies demonstrating the

feasibility of this technique (Cubero-Leon et al., 2014; Jahromi

et al., 2021). Since 2013, this research group has been studying

MIR spectroscopy methods to detect the volatile compounds

released from food during storage as it matures and spoils (Dong

et al., 2019). The volatile compounds released from fruit, such as

grapes, strawberries and mangoes, have been measured using
Frontiers in Plant Science 03
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Fourier Transform Infrared (FTIR) spectrometry using a long-

path gas cell for predicting the stages of fruit spoilage and

ripeness (Dong et al., 2013; Jiao et al., 2017; Jiao et al., 2019).

This method is clearly useful but depends on the optical path

length. A large long-path gas cell (up to 20 m) was necessary for

the sensitive detection of volatile compounds. This method

required a blower to pump the volatile compounds into the

gas cell, leading to their possible contamination and thus not

detectable in situ.

Fiber optic evanescent wave (FOEW) sensing technology

was first developed by Paul and Kychakoff (Paul and Kychakoff,

1987). Its mode of detection is based on the interaction between

evanescent waves and the absorbing medium surrounding the

fiber core (Alvarez-ordóñez et al., 2011; Blum and John, 2012;

Sharma et al., 2019). Using only a few centimeters of optical

fiber, it can detect volatile compounds in solution (Lu et al.,

2016; Memon et al., 2017; Dettenrieder et al., 2019; Jiao et al.,

2020), in situ and on-line, and also where limited space is

available. However, the density of gas is low compared with

that of a liquid, meaning that the number of molecules on the

optical fiber core surface is low at any given time. Therefore,

detecting volatile compounds in air using MIR FOEW

spectroscopy is not common and remains a challenging

technique. Recently, using a single mode chalcogenide glass

optical waveguide, Jin et al. (2019) have verified the feasibility

of using evanescent wave spectroscopy for selectively detecting

ethanol in air (Jin et al., 2019), which provided a basis for

detecting fruit volatiles in air based on FOEW spectroscopy as

used in the present study. To the best of our knowledge, there

have been no reports on using FOEW spectroscopy to detect

fruit volatiles, and its feasibility needs to be verified.

The present study, based on previous studies, aims to use a

spiral silver halide FOEW sensor with a length of approximately

21 mm to replace the long-path gas cell to check the feasibility of

identifying the ethanol in volatile compounds released from fruit

in situ. The major advantages and innovations of the proposed

method are that it requires no sample pretreatment, the

identification in situ does not require the volatile compounds

to be pumped into the gas cell so does not rely on a long optical

path length, thus allowing it to be used in practical food

storage situations.
2 Materials and methods

2.1 Materials

Fresh grapes (Kyoho, Tianjin, China) were purchased from a

local supermarket in Beijing, China. These grapes were carefully

separated one by one to ensure that their surfaces were free of

mechanical damage. The experiment used 5 independent

samples of grapes, each consisting of 150 g. Five glass bottles

were cleaned and pasteurized to store the grape samples to
frontiersin.org
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collect their volatile compounds during storage. The same glass

bottles were later used to hold different concentrations of

ethanol standard gases. Plastic wrap was used to seal these

bottles and contain the volatiles. Plastic tubes with a volume of

60 ml were used to store ethanol and deionized solutions to

produce the headspace volatile compounds for analysis.
2.2 Instruments

The schematic diagram for detecting the volatile compounds

of grapes based on the FOEW sensor is shown in Figure 1. The

FTIR spectrometer (Vertex 70, Bruker Ltd., Karlsruhe,

Germany) was equipped with a MIR source, an interferometer

and an infrared (IR) detector. It could obtain infrared spectra in

the range of 4000–600 cm-1 with high levels of stability and

sensitivity by cooling the detector with liquid nitrogen. The

spectral resolution, diaphragm and sampling frequency of the

FTIR spectrometer were set to 4 cm-1, 8 mm and 20 Hz,

respectively. The time to acquire an infrared spectrum was

approximately 1 s under these parameters. A silver halide

FOEW sensor (Fiber Optic ATR Loop Probe, Flexispec@ Art

Photonics, Berlin, Germany) consisted of a transmission fiber

optic with a length of 1000 mm and a spiral FOEW tip with a
Frontiers in Plant Science 04
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length of approximately 21 mm. This tip could easily be replaced

and connected to the transmission fiber optic when needed. The

light beam between the silver halide FOEW sensor and the FTIR

spectrometer was connected using a fiber optic coupler

(Universal Fiber Probe Coupler, Flexispec@ Art Photonics).

This coupler could be directly mounted on a pedestal in the

sample chamber of the FTIR spectrometer. The silver halide

FOEW sensor was then connected to the coupler using two

SMA905 interfaces. The IR spectra of the volatile compounds

were collected using OPUS 7.0 software (Bruker Ltd.) by

connecting a computer (PC) to the FTIR spectrometer with a

data cable.
2.3 Methods

2.3.1 Feasibility of detecting volatile ethanol in
air using an FOEW sensor

Detecting volatile compounds in air using MIR FOEW

spectroscopy is challenging (Dong et al., 2019). Therefore, an

experiment to verify the feasibility of our proposed method was

first carried out. First, the FTIR spectrometer was set to the

single measurement mode to acquire the FOEW infrared spectra

of the air and headspace volatiles of 10% and 30% ethanol
FIGURE 1

Schematic diagram for detecting volatile compounds released from grapes in situ based on the MIR FOEW spectrum.
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solutions. In this mode, a FOEW infrared spectrum was

obtained by averaging 16 spectra. The FTIR spectrometer was

then set to the repeated measurement mode to continuously

acquire the FOEW infrared spectra alternately between the air

and headspace volatiles of the 30% ethanol solution. Three

consecutive measurements between air and volatiles were

made alternately. The infrared spectra of water and ethanol in

the National Institute of Standards and Technology (NIST)

Reference Database were used for a comparative analysis with

those of air and headspace volatiles. The dynamic response

characteristics of the detection system are very important

during the on-line measurement of fruit volatiles. Therefore,

the absorbance of the ethanol at the 1045 cm-1 peak was

extracted from the obtained spectra to analyze the response

and recovery times of the FOEW sensor.

2.3.2 Quantitation of ethanol in air based on
the FOEW spectra

To quantify the concentration of ethanol released from

grapes during storage, we acquired the FOEW spectra of

standard gas of ethanol at different concentrations in nitrogen

using the FTIR spectrometer in the single measurement mode.

In this mode, a FOEW infrared spectrum was obtained from the

average of 16 spectra. A calibration curve between the

absorbance at 1045 cm-1 was then extracted from these FOEW

spectra and the ethanol concentrations were established based

on a chemometrics method. The analytical curves were

performed using standard gas of ethanol at 12 different

concentrations. Standard gas was analyzed in triplicate by

FOEW spectra, and the intensity of characteristic absorption

peak for each replica of standard gas were observed and averaged

to obtain the calibration curves. We could then quantitatively

analyze the concentration of ethanol released from the grapes

from this curve.
2.3.3 Analysis of FOEW spectra of grape
volatiles and identification of grape spoilage

When detecting the grape volatiles, the FTIR spectrometer

was set to the single measurement mode. In this mode, an

FOEW infrared spectrum was obtained from the average of 16

spectra. To allow the grapes to decay gradually, five glass bottles

containing samples of fresh grapes were stored for 8 d at 22°C

and 50% relative humidity. The bottles were sealed for 5 hours

from 9 a.m. every day. An infrared background spectrum of the

indoor air was acquired as a reference spectrum before opening

these bottles. The bottles were then opened in sequence at 2 p.m.

every day and immediately placed under the spiral silver halide

FOEW sensor to obtain the infrared spectra of the volatile

compounds from the grapes. Forty FOEW infrared spectra of

the grape volatiles were obtained during the whole experiment.

To take account of the strong absorption interference of water in

the MIR spectral region (Raichlin and Katzir, 2008), the infrared
Frontiers in Plant Science 05
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spectra of the headspace volatiles of deionized water in air were

obtained and used as reference spectra for the differential

spectral treatment for the grapes. Using the mathematical

difference between the absorbance at 1045 cm-1 from the

ethanol standard gases concentration, the ethanol contained in

the grape volatiles was quantified. From the visible light images

of the grapes during storage and an analysis of changes in the

absorption peak intensity and concentration of ethanol,

principal component analysis (PCA) of the infrared spectra of

the grape volatiles was used to identify grape spoilage using

Unscrambler X software (CAMO Software AS, Oslo, Norway).

Partial least squares discriminant analysis (PLS-DA) was used to

predict the process of grape spoilage using Matlab (Matlab2019a,

MathWorks, Natick, USA), among which the Kennard-Stone

sampling algorithm was used to divide the data matrices of grape

samples into the calibration and prediction sets and applied

using Matlab.
3 Results and discussion

3.1 Detection of ethanol in air by the MIR
FOEW spectrum

In this study, the FOEW spectra of the headspace volatiles of

30 mL 10% and 30% ethanol solutions in plastic tubes were

obtained in air (Figure 2C). By comparison with the infrared

absorption spectra of gaseous and aqueous ethanol in the NIST

Reference Database (Figure 2B), the absorption peaks of aqueous

ethanol at 880, 1045 and 1088 cm-1 were clearly detected in our

experiments (Figure 2C). A similar comparison (Figure 2A) also

revealed a distinct absorption peak of aqueous water at 1640

cm-1, with a strong absorption band from 1000 to 750 cm-1 in

Figure 2C. However, in previous studies on the detection of food

volatiles based on a long-path gas cell, the absorption spectra of

water and ethanol exhibited gaseous absorption peaks (Dong

et al., 2013; Dong et al., 2014b; Jiao et al., 2017), possibly because

of the interaction of the water and ethanol molecules

surrounding the fiber core surface thus forming aqueous

ethanol. Generally, the penetration depth of evanescent field

region is very small (Sharma et al., 2019). Over such a small

range of action, the ethanol molecules surrounding the core

surface and the water volatilized by the ethanol solution formed

aqueous ethanol which absorbed the evanescent waves on the

core surface of the optical fiber. Therefore, the sensor developed

based on FOEW was able to detect volatile compounds in air.

As well as verifying the sensor sensitivity, other performance

characteristics such as dynamic response, are very important. To

demonstrate the reversibility of the sensor’s response, we

conducted time-dependent measurements by repeatedly

exposing the sensor to indoor air and the headspace volatiles

of the 30% ethanol solution. Figure 2D shows the absorbance of

ethanol at 1045 cm-1 when switching from indoor air to the
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headspace volatiles of the 30% ethanol solution three times. It

can be seen that the absorbance signal returned to the original

baseline level, meaning that the sensor exhibited good

reversibility. The dynamic response characteristics showed a

response time of approximately 3 s and a recovery time of

approximately 2 s. These advantages lead to the possibility of its

use for detecting ethanol in fruit volatiles in situ and on-line,

which are urgently demanded in today’s industry (Xia

et al., 2016).
3.2 Quantitative analysis by the MIR
FOEW spectrum

The absorbance of ethanol increased with increasing

concentration of the ethanol standard gases (Figure 2C). This

indicated the potential for using the FOEW sensor for the

quantitative detection of the concentration of ethanol by

the absorbance of the ethanol volatiles. To quantify the

concentration of ethanol volatiles, we acquired the FOEW

spectra of standard gases of ethanol at different concentrations
Frontiers in Plant Science 06
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in nitrogen. The relationship between the absorbance of the

ethanol volatiles in the glass bottle and the concentrations of

ethanol standard gases was then calculated. The absorbance at

1045 cm-1 extracted from these FOEW spectra could then be

used to determine the concentration of ethanol. The calibration

curve analyzed using linear regression (y = 0.1062x - 0.0017) was

developed (Figure 3), exhibited a good linearity (R2 = 0.9854).
3.3 Detection of ethanol of grapes in air
by the MIR FOEW spectrum

The FOEW infrared spectra of the grape volatiles during

storage are shown in Figure 4B. In the first three days, we

observed the weak absorption peaks of aqueous water at 1640

and 900–750 cm-1 in the grape volatiles. Figure 4A also showed

that there were no changes in the grape skin during the first three

days, with the grapes appearing fresh. On the fourth day, a weak

absorption peak was detected at 1045 cm-1, indicating that there

was a small amount of ethanol in the grape volatiles. The water

absorbed in the grape volatiles also increased greatly. These
B

C D

A

FIGURE 2

(A) Infrared spectra of gaseous and aqueous water from the NIST standard reference database; (B) Infrared spectra of gaseous and aqueous
ethanol from the NIST standard reference database; (C) FOEW infrared spectra of headspace volatiles from 10% and 30% ethanol solutions in
test tubes; (D) Changes in absorbance at 1045 cm-1 peak with time when FOEW sensor was alternately placed in the air and headspace volatiles
of the 30% ethanol solution.
frontiersin.org

https://doi.org/10.3389/fpls.2022.991883
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2022.991883
trends in the amounts of ethanol and water in the grape volatiles

agreed with previous results (Dong et al., 2014a; Ding et al.,

2017; Jiao et al., 2019). Figure 4A also showed that some slightly

white hyphae appeared on the grape surface on the fourth day.

This became more apparent on the eighth day, possibly

indicating a large change in the physiological activity of the

grapes (Ding et al., 2017). On the fourth day and on every day

thereafter, the absorbance of aqueous water and ethanol both

gradually increased, which was entirely consistent with the

previous results (Dong et al., 2014a; Ding et al., 2017; Jiao

et al., 2019). This indicated that the grape volatiles contained

greater amounts of water and ethanol and that the deterioration

of the grapes had increased.

In previous studies using methods based on MIR

spectroscopy, one of the major difficulties for detecting

volatiles released from fruits is the high-water content

(Raichlin and Katzir, 2008; Dong et al., 2019). Water has

strong absorption in the MIR FOEW (Raichlin and Katzir,

2008). Therefore, it is difficult to measure the absorbance of

samples that contain water, a problem confirmed in this study.

In the present study, there was serious interference in the

detection of ethanol in the range of 900–750 cm-1 when a

large amount of water was present in the volatiles (Figure 2C).

This is the reason for the absorption peaks at 880 cm-1 showing

unobvious changes (Figure 4B). To reduce the strong

interference due to water absorption, previous studies collected

data using deionized water as the background spectrum or used

the difference spectroscopy method to mitigate the effects of

moisture on the FOEW sensors (Lu et al., 2016; Bančič, et al.,

2018; Zhang et al., 2018). In the present study, the infrared
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spectra of the headspace volatiles of deionized water in air were

obtained then used as reference spectra to be subtracted from

those of the grape volatiles (Figure 5A). In comparison with

Figure 4B, the characteristic absorption peak at 880 cm-1 was

clearly present after the difference spectra and showed a similar

pattern of change to that at 1045 cm-1 (Figure 5C). Therefore,

the strong interference from water absorption could be

effectively reduced and the signal-to-noise of this system could

also be increased (Jahromi et al., 2021).

Using this method, 40 sets of spectra from grape volatiles

obtained during the 8 days of storage (5 sets of spectra per day)

were processed. The absorbances at 1088, 1045 and 881 cm-1

were extracted from these spectra. The curves of those

absorbances with error bands are shown in Figure 5B. The

overall pattern of change of the absorbance for the three peaks

was basically the same. The slope of these curves began to

increase during the 3rd and 4th days, indicating that the

grapes had begun to emit ethanol during this period. The

maximum slopes were observed between the 4th and 6th days

of storage, implying that the rate of ethanol release increased as

the grapes deteriorated, which agreed with the previous results

(Dong et al., 2014a; Ding et al., 2017; Jiao et al., 2019). The

decrease in the slope between the 6th and 8th days was caused by

the loss of water from the grapes. This might have arisen from

poor physiological activity in the grapes or the dissolution of

ethanol in the juice at the bottom of the bottle as shown in the

visible light image of the grape on the 8th day (Figure 4A). The

greatest error band appeared between the 3th and 5th days,

particularly on the 4th day, indicating that the rate of ethanol

release was unstable during this period. This could therefore
FIGURE 3

FOEW calibration curve of absorption at 1045 cm-1 corresponding to different concentrations of ethanol standard gases.
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suggest that during the transition period from fresh to spoiled

grapes, the physiological activity of the grapes or of the

microorganisms was highly variable, which was consistent

with our previous study (Dong et al., 2014a). Subsequently, in

combination with quantification from the FOEW sensor

calibration curve of the absorption at 1045 cm-1, the ethanol

concentration in volatiles released from the grapes were analyzed

quantitatively (Figure 6A).
3.4 Analyzing spoilage of grapes by the
MIR FOEW spectrum

Grapes are one of the most perishable fruits (Shen and Yang,

2017), with post-harvest losses caused by decay and from water

loss after harvest and during storage (Leng et al., 2022). Previous

study found that ‘Kyoho’ grapes began to spoil at the room
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temperature at approximately the 4th day and defined three

freshness categories: “Fresh,” “Slight spoilage,” and “Severe

spoilage” (Dong et al., 2014a; Ding et al., 2017; Jiao et al.,

2019). After observing the visible light images of the grapes in

Figure 4A and the analysis of the infrared spectra of the grape

volatiles, we suggest that the grapes were fresh between the 1st

and 3rd days of storage, with the FOEW sensor not detecting

obvious ethanol volatiles during this period; slight spoilage

between the 4th and 5th days, at which point the sensor

detected between 0.088 and 0.252 mg ethanol per g of grape

volatiles; then severe spoilage after 6th to 8th days, at which time

the sensor detected between 0.471 and 0.591 mg ethanol per g of

grape volatiles. The data obtained from the ethanol

concentration of grape volatiles provided crucial criteria for

distinguishing the three stages of grape spoilage.

Principal component analysis (PCA) can be performed as an

unsupervised classification method to visualize the resemblances
B

A

FIGURE 4

(A) Visible light images of grapes at different storage times; (B) FOEW infrared absorption spectrum of the grape volatiles at different storage times.
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and differences between different measurements. After

subtracting the interference from water absorption, 40 infrared

spectra of grape volatiles corresponding to different storage

times were used for PCA analysis (Figure 6B). PCA analysis
Frontiers in Plant Science 09
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used data from the 1800–750 cm-1 wavelength bands, with

contributions of 92% and 4% from PC1 and PC2, respectively.

The grape samples were separated along the first PC which

described 92% of the peak variation and showed three defined
BA

FIGURE 6

(A) The ethanol concentration in volatiles released from grapes during storage; (B) PCA analysis of 40 infrared spectra of grape volatiles
corresponding to different storage times.
B

C

A

FIGURE 5

(A) Reducing the interference of water absorption by the difference spectra; (B) The curves of the absorbance with an error band at absorption
peaks of 1088, 1045 and 881 cm-1 of 40 infrared spectra of grape volatiles after reducing the interference from water absorption; (C) Infrared
spectra of grape volatiles after subtracting the interference from water absorption.
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groups. Along the PC1 axis, the storage times of grapes showed

obvious clustering at 1-3, 4-5 and 6-8 days of storage. The

analysis of the infrared spectra of the grape volatiles suggested

that the grapes were fresh between the 1st and 3rd days of

storage, slightly spoiled at between the 4th and 5th days then

severely spoiled after 6 to 8 days of storage. This was basically

consistent with the PCA analysis, indicating that this method

based on the FOEW sensor can be used to accurately detect

grape spoilage by monitoring the spoilage odors from the volatile

substances when the grapes were stored.

The results of PCA cluster analysis served as a reference for

establishing a qualitative model based on FOEW spectral data

sets combined with a PLS-DA algorithm. The data matrices

produced for the grape samples during storage were divided into

the calibration and prediction sets in a ratio of 3–1, using the

Kennard-Stone method. Of the 40 spectral data from grape

samples used for classification, 30 samples were in the

calibration set, and 10 samples in the validation set. The

accuracies of the calibration and validation sets both were

100%, which indicated that the model had good stability and

predictability. It therefore appears that FOEW spectra could

reliably predict the process of grape spoilage.
4 Conclusions

This study has used a method based on the FOEW sensor

and FTIR spectrometer to detect grape volatiles in air in situ and

has identified a marker volatile compound (ethanol) that

indicates grape spoilage. When combined with chemometric

analysis, grape spoilage could be accurately identified. Compared

with the method used in previous study based on the long-path

gas cell, this method uses a miniature FOEW sensor placed

directly near the fruit without the need to sample the fruit itself.

This not only eliminates the potential pollution of the gas source

used for injection into the FTIR spectrometer, but also achieves a

practical method for detecting the volatile compounds released

by fruit in situ. Fiber optic sensing technology is not affected by

electromagnetic interference and can be distributed over long

distances for on-line measurement. The proposed technique is

expected to provide a new method for the long-distance, in situ

and on-line detection of the volatile compounds released from

fruit. This will allow the rapid identification of fruit

deterioration. In addition, the sensitivity and specificity of the

FOEW sensor could be greatly improved by coating a thin film

(nanoparticles, metal-organic frameworks and so on) on the

fiber core to accumulate the volatiles, which will be applied in

our future work.
Frontiers in Plant Science 10
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Bančič, T., Bitenc, J., Pirnat, K., Lautar, A. K., Grdadolnik, J., Vitanova, A. R.,
et al. (2018). Electrochemical performance and redox mechanism of naphthalene-
hydrazine diimide polymer as a cathode in magnesium battery. J. Power Sources
395, 25–30. doi: 10.1016/j.jpowsour.2018.05.051

Blum, M. M., and John, H. (2012). Historical perspective and modern
applications of attenuated total reflectance-Fourier transform infrared
spectroscopy (ATR-FTIR). Drug test. Anal. 4 (3-4), 298–302. doi: 10.1002/dta.374

Cai, H., Han, S., Jiang, L., Yu, M., Ma, R., and Yu, Z. (2019). 1-MCP treatment
affects peach fruit aroma metabolism as revealed by transcriptomics and metabolite
analyses. Food Res. Int. 122, 573–584. doi: 10.1016/j.foodres.2019.01.026

Cappellin, L., Soukoulis, C., Aprea, E., Granitto, P., Dallabetta, N., Costa, F., et al.
(2012). PTR-ToF-MS and data mining methods: A new tool for fruit
metabolomics. Metabolomics 8 (5), 761–770. doi: 10.1007/s11306-012-0405-9

Chen, Q., Song, J., Bi, J., Meng, X., and Wu, X. (2018). Characterization of
volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC-MS
coupled with e-nose. Food Res. Int . 105, 605–615. doi : 10.1016/
j.foodres.2017.11.054

Cubero-Leon, E., Peñalver, R., and Maquet, A. (2014). Review on metabolomics
for food authentication. Food Res. Int. 60, 95–107. doi: 10.1016/
j.foodres.2013.11.041

Dettenrieder, C., Raichlin, Y., Katzir, A., and Mizaikoff, B. (2019). Toward the
required detection limits for volatile organic constituents in marine environments
with infrared evanescent field chemical sensors. Sens. (Basel) 19 (17), 3644.
doi: 10.3390/s19173644

Ding, L., Dong, D., Jiao, L., and Zheng, W. (2017). Potential using of infrared
thermal imaging to detect volatile compounds released from decayed grapes. PloS
One 12 (6), e0180649. doi: 10.1371/journal.pone.0180649

Dong, D., Jiao, L., Li, C., and Zhao, C. (2019). Rapid and real-time analysis
of volatile compounds released from food using infrared and laser
spectroscopy. TrAC Trends Anal. Chem. 110, 410–416. doi: 10.1016/
j.trac.2018.11.039

Dong, D., Zhao, C., Zheng, W., Wang, W., Zhao, X., and Jiao, L. (2013).
Analyzing strawberry spoilage via its volatile compounds using longpath Fourier
transform infrared spectroscopy. Sci. Rep. 3, 2585. doi: 10.1038/srep02585

Dong, D., Zheng, W., Wang, W., Zhao, X., Jiao, L. , and Zhao, C. (2014a).
Analysis and discrimination of grape spoilage via volatiles: a comparison between
long optical path Fourier-transform-infrared spectroscopy and sensor arrays.
Analyst 139 (19), 5028–5034. doi: 10.1039/c4an00586d

Dong, D., Zheng, W., Wang, W., Zhao, X., Jiao, L. , and Zhao, C. (2014b). A
new volatiles-based differentiation method of Chinese spirits using longpath gas-
phase infrared spectroscopy. Food Chem. 155, 45–49. doi: 10.1016/
j.foodchem.2014.01.025

Franke, C., and Beauchamp, J. (2016). Real-time detection of volatiles released
during meat spoilage: a case study of modified atmosphere-packaged chicken
breast fillets inoculated with br. thermosphacta. Food Anal. Methods 10 (2), 310–
319. doi: 10.1007/s12161-016-0585-4

Giannetti, V., Boccacci Mariani, M., Mannino, P., and Marini, F. (2017). Volatile
fraction analysis by HS-SPME/GC-MS and chemometric modeling for traceability
of apples cultivated in the northeast Italy. Food Control 78, 215–221. doi: 10.1016/
j.foodcont.2017.02.036

Hewitt, C. N., Hayward, S., and Tani, A. (2003). The application of proton
transfer reaction-mass spectrometry (PTR-MS) to the monitoring and analysis of
volatile organic compounds in the atmosphere. J. Environ. Monit. 5 (1), 1–7.
doi: 10.1039/b204712h

Jahromi, K. E., Nematollahi, M., Krebbers, R., Abbas, M. A., Khodabakhsh, A.,
and Harren, F. J. M. (2021). Fourier Transform and grating-based spectroscopy
with a mid-infrared supercontinuum source for trace gas detection in fruit quality
monitoring. Opt. Express 29 (8), 12381–12397. doi: 10.1364/OE.418072

Jahun, B. M., Ilu, K. J., Yahaya, S. M., Ahmed, B., and Salami, K. D. (2021). Fungi
causing post-harvest spoilage carica papaya Linn fruits of two selected markets in
Kano state, Nigeria. J. Appl. Sci. Environ. Manage. 25 (5), 727–731. doi: 10.4314/
jasem.v25i5.6

Jiao, L., Dong, D., Han, P., Zhao, X., and Du, X. (2017). Identification of the
mango maturity level by the analysis of volatiles based on long optical-path FTIR
Frontiers in Plant Science 11
114
spectroscopy and a molecular sieve. Anal. Methods 9 (16), 2458–2463. doi: 10.1039/
c7ay00149e

Jiao, L., Guo, Y., Chen, J., Zhao, X., and Dong, D. (2019). Detecting volatile
compounds in food by open-path Fourier-transform infrared spectroscopy. Food
Res. Int. 119, 968–973. doi: 10.1016/j.foodres.2018.11.042

Jiao, L., Zhong, N., Zhao, X., Ma, S., Fu, X., and Dong, D. (2020). Recent
advances in fiber-optic evanescent wave sensors for monitoring organic and
inorganic pollutants in water. TrAC Trends Anal. Chem. 127, 115892.
doi: 10.1016/j.trac.2020.115892

Jin, T., Zhou, J., Lin, H. G., and Lin, P. T. (2019). Mid-infrared chalcogenide
waveguides for real-time and nondestructive volatile organic compound detection.
Anal. Chem. 91 (1), 817–822. doi: 10.1021/acs.analchem.8b03004

Ke, Z.-J., Tang, D.-L., Lai, X., Dai, Z.-Y., and Zhang, Q. (2018). Optical fiber
evanescent-wave sensing technology of hydrogen sulfide gas concentration in oil
and gas fields. Optik 157, 1094–1100. doi: 10.1016/j.ijleo.2017.11.130

Leng, F., Wang, C., Sun, L., Li, P., Cao, J., Wang, Y., et al. (2022). Effects of
different treatments on physicochemical characteristics of ‘Kyoho’ grapes during
storage at low temperature. Horticulturae 8 (2), 94. doi: 10.3390/
horticulturae8020094

Li, H., Brouwer, B., Oud, N., Verdonk, J. C., Tikunov, Y., Woltering, E., et al.
(2021). Sensory, GC-MS and PTR-ToF-MS profiling of strawberries varying in
maturity at harvest with subsequent cold storage. Postharvest Biol. Technol. 182,
111719. doi: 10.1016/j.postharvbio.2021.111719

Liu, N., Koot, A., Hettinga, K., De Jong, J., and van Ruth, S. M. (2018).
Portraying and tracing the impact of different production systems on the volatile
organic compound composition of milk by PTR-(Quad)MS and PTR-(ToF)MS.
Food Chem. 239, 201–207. doi: 10.1016/j.foodchem.2017.06.099

Lu, R., Li, W. W., Mizaikoff, B., Katzir, A., Raichlin, Y., Sheng, G. P., et al. (2016).
High-sensitivity infrared attenuated total reflectance sensors for in situ
multicomponent detection of volatile organic compounds in water. Nat. Protoc.
11 (2), 377–386. doi: 10.1038/nprot.2016.013

Memon, S. F., Lewis, E., Ali, M. M., Pembroke, J. T., and Chowdhry, B. S. (2017).
“U-Bend evanescent wave plastic optical fibre sensor for minute level concentration
detection of ethanol corresponding to biofuel production rate,” in 2017 IEEE
Sensors Applications Symposium (SAS). (Glassboro, NJ: IEEE) 1-5 . doi: 10.1109/
SAS.2017.7894101

Paul, P. H., and Kychakoff, G. (1987). Fiber-optic evanescent field absorption
sensor. Appl. Phys. Lett. 51 (1), 12–14. doi: 10.1063/1.98888

Raichlin, Y., and Katzir, A. (2008). Fiber-optic evanescent wave spectroscopy in
the middle infrared. applied spectroscopy. Appl. Spectrosc. 62 (2), 55A–72A.
doi: 10.1366/000370208783575456

Rice-Evans, C., and Miller, N. J. (1995). Antioxidants – the case for fruit and
vegetables in the diet. Br. Food J. 97 (9), 35–40. doi: 10.1108/00070709510100163

Sánchez-Palomo, E., Diaz-Maroto, M. C., and Perez-Coello, M. S. (2005). Rapid
determination of volatile compounds in grapes by HS-SPME coupled with GC-MS.
Talanta 66 (5), 1152–1157. doi: 10.1016/j.talanta.2005.01.015

Sharma, A. K., Gupta, J. , and Sharma, I. (2019). Fiber optic evanescent wave
absorption-based sensors: A detailed review of advancements in the last
decaddecade, (2007–18). Optik 183, 1008–1025. doi: 10.1016/j.ijleo.2019.02.104

Shen, Y., and Yang, H. (2017). Effect of preharvest chitosan- g -salicylic acid
treatment on postharvest table grape quality, shelf life, and resistance to botrytis
cinerea -induced spoilage. Sci. Hortic. 224, 367–373. doi: 10.1016/
j.scienta.2017.06.046

Tatli, S., Mirzaee-Ghaleh, E., Rabbani, H., Karami, H., and Wilson, A. D. (2021).
Rapid detection of urea fertilizer effects on VOC emissions from cucumber fruits
using a MOS e-nose sensor array. Agronomy 12 (1), 35. doi: 10.3390/
agronomy12010035

Tiernan, H., Byrne, B., and Kazarian, S. G. (2020). ). ATR-FTIR spectroscopy
and spectroscopic imaging for the analysis of biopharmaceuticals. spectrochimica
acta part a. Mol. Biomol. Spectrosc. 241, 118636. doi: 10.1016/j.saa.2020.118636

Volkov, D., Rogova, O., and Proskurnin, M. (2021). Organic matter and mineral
composition of silicate soils: FTIR comparison study by photoacoustic, diffuse
reflectance, and attenuated total reflection modalities. Agronomy 11 (9), 1879.
doi: 10.3390/agronomy11091879

Wu, Y., Zhang, W., Song, S., Xu, W., Zhang, C., Ma, C., et al. (2020). Evolution of
volatile compounds during the development of Muscat grape ‘Shine muscat’ (Vitis
l abruscaxV . v in i f e ra ) . Food Chem. 309 , 125778 . do i : 10 . 1016 /
j.foodchem.2019.125778
frontiersin.org

https://doi.org/10.1016/j.mimet.2011.01.009
https://doi.org/10.1016/j.jpowsour.2018.05.051
https://doi.org/10.1002/dta.374
https://doi.org/10.1016/j.foodres.2019.01.026
https://doi.org/10.1007/s11306-012-0405-9
https://doi.org/10.1016/j.foodres.2017.11.054
https://doi.org/10.1016/j.foodres.2017.11.054
https://doi.org/10.1016/j.foodres.2013.11.041
https://doi.org/10.1016/j.foodres.2013.11.041
https://doi.org/10.3390/s19173644
https://doi.org/10.1371/journal.pone.0180649
https://doi.org/10.1016/j.trac.2018.11.039
https://doi.org/10.1016/j.trac.2018.11.039
https://doi.org/10.1038/srep02585
https://doi.org/10.1039/c4an00586d
https://doi.org/10.1016/j.foodchem.2014.01.025
https://doi.org/10.1016/j.foodchem.2014.01.025
https://doi.org/10.1007/s12161-016-0585-4
https://doi.org/10.1016/j.foodcont.2017.02.036
https://doi.org/10.1016/j.foodcont.2017.02.036
https://doi.org/10.1039/b204712h
https://doi.org/10.1364/OE.418072
https://doi.org/10.4314/jasem.v25i5.6
https://doi.org/10.4314/jasem.v25i5.6
https://doi.org/10.1039/c7ay00149e
https://doi.org/10.1039/c7ay00149e
https://doi.org/10.1016/j.foodres.2018.11.042
https://doi.org/10.1016/j.trac.2020.115892
https://doi.org/10.1021/acs.analchem.8b03004
https://doi.org/10.1016/j.ijleo.2017.11.130
https://doi.org/10.3390/horticulturae8020094
https://doi.org/10.3390/horticulturae8020094
https://doi.org/10.1016/j.postharvbio.2021.111719
https://doi.org/10.1016/j.foodchem.2017.06.099
https://doi.org/10.1038/nprot.2016.013
https://doi.org/10.1109/SAS.2017.7894101
https://doi.org/10.1109/SAS.2017.7894101
https://doi.org/10.1063/1.98888
https://doi.org/10.1366/000370208783575456
https://doi.org/10.1108/00070709510100163
https://doi.org/10.1016/j.talanta.2005.01.015
https://doi.org/10.1016/j.ijleo.2019.02.104
https://doi.org/10.1016/j.scienta.2017.06.046
https://doi.org/10.1016/j.scienta.2017.06.046
https://doi.org/10.3390/agronomy12010035
https://doi.org/10.3390/agronomy12010035
https://doi.org/10.1016/j.saa.2020.118636
https://doi.org/10.3390/agronomy11091879
https://doi.org/10.1016/j.foodchem.2019.125778
https://doi.org/10.1016/j.foodchem.2019.125778
https://doi.org/10.3389/fpls.2022.991883
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2022.991883
Xia, X., Wu, W., Wang, Z., Bao, Y., Huang, Z., and Gao, Y. (2016). A hydrogen
sensor based on orientation aligned TiO2 thin films with low concentration
detecting limit and short response time. sensors and actuators b. Chemical 234,
192–200. doi: 10.1016/j.snb.2016.04.110

Zhang, S. Y., Jensen, S., Tan, K., Wojtas, L., Roveto, M., Cure, J., et al. (2018).
Modulation of water vapor sorption by a fourth-generation metal-organic material
with a rigid framework and self-switching pores. J. Am. Chem. Soc. 140 (39),
12545–12552. doi: 10.1021/jacs.8b07290
Frontiers in Plant Science 12
115
Zhu, X., Li, Q., Li, J., Luo, J., Chen, W., and Li, X. (2018a). Comparative study of
volatile compounds in the fruit of two banana cultivars at different ripening stages.
Molecules 23 (10), 2456. doi: 10.3390/molecules23102456

Zhu, J., Wang, L., Xiao, Z., and Niu, Y. (2018b). Characterization of the key
aroma compounds in mulberry fruits by application of gas chromatography-
olfactometry (GC-O), odor activity value (OAV), gas chromatography-mass
spectrometry (GC-MS) and flame photometric detection (FPD). Food Chem.
245, 775–785. doi: 10.1016/j.foodchem.2017.11.112
frontiersin.org

https://doi.org/10.1016/j.snb.2016.04.110
https://doi.org/10.1021/jacs.8b07290
https://doi.org/10.3390/molecules23102456
https://doi.org/10.1016/j.foodchem.2017.11.112
https://doi.org/10.3389/fpls.2022.991883
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Cultivates the science of plant biology and its 

applications

The most cited plant science journal, which 

advances our understanding of plant biology for 

sustainable food security, functional ecosystems 

and human health.

Discover the latest 
Research Topics

See more 

Frontiers in
Plant Science

https://www.frontiersin.org/journals/plant-science/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Evaluation of quality and safety of agricultural products by non-destructive sensing technology

	Table of contents

	Editorial: Evaluation of quality and safety of agricultural products by non-destructive sensing technology
	Author contributions
	Acknowledgments

	Estimation of Cold Stress, Plant Age, and Number of Leaves in Watermelon Plants Using Image Analysis
	Introduction
	Materials and Methods
	Dataset
	Experiment Design
	Data Collection
	Thresholding/Background Removal
	Feature Extraction
	Color Feature Extraction
	Shape-Based Feature Extraction
	Texture Feature Extraction
	Intensity-Based Feature Extraction

	Data Analysis and Model Development
	Feature Preprocessing
	Outlier Detection
	Feature Cleaning and Selection
	Model Development
	Model Evaluation


	Results
	Image Data
	Background Detection
	Discrimination of Stressed and Non-stressed Plants
	Leaf Counting
	Plant Age Estimation

	Discussion
	Discrimination Between Stressed and Non-stressed Plants
	Leaf Counting
	Plant Age Estimation

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Optical Property Mapping of Apples and the Relationship With Quality Properties
	Introduction
	Materials and Methods
	Apple Preparation
	Acquisition of Spatial-Frequency Domain Imaging and Optical Property Mapping
	Measurement of Apple Quality Attributes
	Correlation Analysis and Prediction Modeling

	Results and Discussion
	Statistics of Measured Quality Parameters
	Optical Property Mappings of Apples
	Correlations Between Optical Properties and Apple Quality Attributes
	Prediction for Apple Quality Attributes

	DISCUSSION
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Rapid and Non-destructive Classification of New and Aged Maize Seeds Using Hyperspectral Image and Chemometric Methods
	Introduction
	Materials and Methods
	Sample Preparation
	Hyperspectral Image Collection and Processing
	Hyperspectral Image Collection and Calibration
	Spectral Data Extraction

	Principal Component Analysis
	ANOVA for Two-Band Ratio
	Image Texture Extraction From Optimal Two-Band Ratio Images
	Supervised Classification Method
	Software Tools

	Results and Discussion
	Spectra Analysis
	Classification Results Based on Full Spectra
	Feature Selection and Classification Results Based on Principal Component Analysis
	Optimal Two-Band Ratio Selection From ANOVA
	Classification Results Based on ANOVA
	Classification Results Based on Optimal Two-Band Ratio Value
	Classification Results Based on Multiple Features


	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Determination of the Soluble Solids Content in Korla Fragrant Pears Based on Visible and Near-Infrared Spectroscopy Combined With Model Analysis and Variable Selection
	Introduction
	Materials and Methods
	Fruit Samples
	Portable Measurement Device for Spectral Data Acquisition
	Real Soluble Solids Content Measurement
	Wavelength Selection Methods
	Modeling Algorithms
	Model Evaluation

	Results and Discussion
	Analysis of Soluble Solids Content Values of All Samples
	Spectral Pretreatment and Spectral Features
	Full Spectra Models for Soluble Solids Content Prediction
	Wavelength Selection by Bootstrapping Soft Shrinkage and Successive Projections Algorithm
	Effective Variable Models for Soluble Solids Content Prediction
	Determination of the Optimal Model

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Non-destructive Evaluation of the Quality Characteristics of Pomegranate Kernel Oil by Fourier Transform Near-Infrared and Mid-Infrared Spectroscopy
	Introduction
	Materials and Methods
	Fruit Supply and Processing
	Oil Extraction and Yield
	Spectral Acquisition
	Reference Measurements
	Refractive Index
	Yellowness Index
	Total Phenolic Content
	Total Carotenoid Content
	Peroxide Value
	Chemicals and Reagents
	Chemometric Data Analysis
	Partial Least Square (PLS) Regression Analysis of Spectral Data
	Statistical Analysis

	Results and Discussion
	Distribution of Calibration and Validation Reference Data
	FT-NIR and FT-MIR Spectral Characteristics of Pomegranate Oil
	Qualitative Analysis of Pomegranate Oil Using PCA and OPLS-DA
	Unsupervised Clustering (PCA)
	Supervised Clustering/Discriminant Analysis (OPLS-DA)
	Quantitative Analysis of Pomegranate Oil Using PLS Regression

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Surface Defect Detection of Cabbage Based on Curvature Features of 3D Point Cloud
	Introduction
	Materials and Methods
	3D Point Cloud Reconstruction System
	Point Cloud Denoising
	Extract the Region of Interest
	Point Cloud Subsampling
	Cabbage Surface Defect Detection Method
	Normal Vector Estimation and Curvature Calculation
	Cabbage Defect Detection Algorithm Based on Curvature


	Results and Discussion
	Accuracy Analysis of Point Cloud Detection Methods
	Misjudgment Analysis of Detection Results

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Classification of plug seedling quality by improved convolutional neural network with an attention mechanism
	Introduction
	Experimental data
	Data acquisition
	Data preprocessing

	Methodology
	Efficientnet-B7 network structure
	Convolutional block attention module model
	 EfficientNet-B7-CBAM model
	Adam optimization algorithm
	Transfer learning

	Experimental results and analysis
	Experimental configuration
	Model evaluation index
	Results and analysis
	Ablation experiments
	The impact of data enhancement on model performance
	The performance comparison of different convolutional neural network model
	Confusion matrix of the model


	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Slight crack identification of cottonseed using air-coupled ultrasound with sound to image encoding
	Introduction
	Materials and methods
	Samples
	Detection system based on air-coupled ultrasound
	Ultrasonic signal acquisition
	Identification of slight crack cottonseed
	Variational mode decomposition method
	Encoding from ultrasound to image
	MobileVIT vision transformer model


	Results and discussion
	Cottonseed germination test
	Determination of decomposition number M using sample entropy
	Influence of the number of encoding colors
	Comparison of different methods

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	In situ detection of fruit &#146;spoilage based on volatile compounds using the mid-infrared fiber-optic evanescent wave spectroscopy
	Highlights
	1 Introduction
	2 Materials and methods
	2.1 Materials
	2.2 Instruments
	2.3 Methods
	2.3.1 Feasibility of detecting volatile ethanol in air using an FOEW sensor
	2.3.2 Quantitation of ethanol in air based on the FOEW spectra
	2.3.3 Analysis of FOEW spectra of grape volatiles and identification of grape spoilage


	3 Results and discussion
	3.1 Detection of ethanol in air by the MIR FOEW spectrum
	3.2 Quantitative analysis by the MIR  FOEW spectrum
	3.3 Detection of ethanol of grapes in air by the MIR FOEW spectrum
	3.4 Analyzing spoilage of grapes by the MIR FOEW spectrum

	4 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




