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Editorial on the Research Topic
Epigenetic regulation and non-histone post-translational modification in
cancer

Epigenetic changes are essentially involved in both normal organism function and
disease progression (Deans and Maggert, 2015). Epigenetic regulation includes DNA
methylation or demethylation, chromatin remodeling, histone modifications and non-
coding RNAs, which are broadly reported to dysfunction in cancer. Of noted, it is
increasingly clear that epigenetic regulation parallels with gene expression modulation.
Currently, significant progress has been made in the development of drugs targeting key
enzymes involved in epigenetic regulation and post-translational modification without
histone. Several drugs have been approved for therapeutic application, and many more
are in clinical and preclinical testing (Ferreira and Esteller, 2018; Lu et al., 2020). The aim of
this Research Topic is to provide an overview of the current understanding and fundamental
findings in the field of epigenetic regulation and non-histone post-translational
modifications in cancer. We collected 14 articles including the effects of m6A
modifications, non-coding RNAs and SELENBP1 in cancer progression.

DNA methylation is strongly associated with cancer, and hypermethylation of some
genes in the promoter region interferes with the reading of DNA information thereby
altering epigenetics, thus it has the potential to be a promising target for cancer therapy
(Smith and Meissner, 2013). Liexi Xu et al. used the methylation and clinical data of lung
adenocarcinoma (LUAD) patients from TCGA. They found 11 differential methylation
genes and established a methylation scoring model to assess prognosis, suggesting that these
genes could be used as biomarkers of methylation in LUAD. Dong-Mei Hu et al. focused on
the relationship between Forkhead box P (FOXP) family DNA methylation and immune-
related factors in non-small cell lung cancer (NSCLC) patients. FOXP family is widely
involved in regulating immune molecules and influencing immune infiltration in NSCLC,
and FOXP family DNAmethylation is associated with NSCLC prognosis. In addition to lung
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cancer, immunosuppression and immune cells dysfunction are
critical to the development of colonic adenocarcinoma (COAD)
(Gatenbee et al., 2022). Salem Baldi et al. analyzed the relationship
between ARID1B expression, DNA methylation and prognosis in
COAD patients based on TCGA, and found that differences in
immune cell infiltration were associated with ARID1B expression,
and that ARID1B was hypermethylated in COAD tissues. Since the
ARID1B methylation levels were negatively associated with mRNA
levels, low ARID1B expression was an important indicator of poor
prognosis, and ARID1B hypermethylation could be an early
diagnostic biomarker in COAD. Furthermore, Xingyu Liu et al.
obtained 4 alcohol-related cancer samples from TCGA and GEO
databases, and identified a total of 193 differentially methylated
probes. By enrichment analysis of differential genes, they concluded
that the alcohol might facilitate transcriptional dysfunction via
inducing the methylation status of transcriptional regulators,
leading to tumor development. They also identified the
hypermethylated CpG island (chr19:58220189-58220517), which
regulated the transcriptional activity of zinc-finger protein 154 as
a potential therapeutic biomarker.

In addition to DNA modifications, RNA modifications are
prevalent in mammalian cells, and provide a new dimension to
regulate gene expression. Among them, N6-methyladenosine
(m6A) modifications are the most common in eukaryotic
mRNA. Shaojie Li et al. obtained sample data of head and
neck squamous cell carcinoma (HNSCC) from TCGA and
GEO databases. Via analyzing the correlation between m6A
regulator expression and immune scores, they found that the
HNSCC patients could be divided into 2 groups based on m6A
reader genes (IGF2BP2 and YTHDF1). Low YTHDF1 and
IGF2BP2 expressing patients have more immune cells
enriched in TME and better prognosis. Mengying Zhou et al.
reviewed the role of different m6A-related enzymes in breast
cancer, and concluded that m6A-related genes could be used as
not only markers for diagnosis and prognosis prediction, but
also effective targets for breast cancer treatment.

Moreover, non-coding RNA transcriptional modifications
are also crucial (Yao et al., 2022). With the continuous
researches on long non-coding RNA (lncRNA), it was found
that lncRNA play important roles in various biological regulatory
processes. Jing Huang et al. downloaded mRNA expression data
from the TCGA database of HNSCC patients, identified
1,117 lncRNAs associated with necrosis, of which 55 ones
were associated with patient survival. They selected 24 genes
that positively regulated necroptosis to establish a new risk
scoring model for assessing HNSCC patient prognosis. Jing
Hu et al. obtained information about autophagy-related genes
in NSCLC patients from TCGA and HADb, and identified
7 autophagy-related lncRNAs whose composition of risk
models could accurately predict the prognosis of NSCLC
patients. ABALON deficiency in A549 and NCI-H292
significantly inhibited the proliferation and metastasis of
NSCLC cells and promoted autophagy. Wei Yu et al. identified
298 lncRNAs associated with cuproptosis using TCGA data of
gastric adenocarcinoma patients, including 13 lncRNAs
associated with survival, and further identified 9 lncRNAs by
LASSO regression method. Based on these 9 lncRNAs, they

established a risk assessment model to evaluate the prognosis
and sensitivity of patients to therapeutic drugs.

Immunotherapy combined with radiotherapy is one of the best
combinations for oncotherapy. Increasing researches suggested that
lncRNA might be associated with the responses to immunotherapy
and radiotherapy. Chuanhao Zhang et al. acquired RNA-seq data and
clinical characteristics of 594 LUAD patients from TCGA, identified
2,093 N7-methylguanosine related lncRNAs, and finally constructed a
risk-prognosis model via screening 6 prognosis-related lncRNAs, which
not only accurately predicted the patient survival, but also reflected the
immune characteristics of LUAD patients and provided better guidance
for individualized patient treatment. Jianqing Zheng et al. screened
26 immune-related lncRNAs (ir-lncRNAs) differentially expressed in
radiation-resistant esophageal squamous cell carcinoma by the GEO
database and paired the differentially expressed lncRNA with each other
in the GSE45670 dataset to construct 325 ir-lncRNA pairs, they
established a prognostic risk model based on 3 pairs of ir-lncRNA,
and suggested that macrophage infiltration and differential expression of
ir-lncRNA are potential mechanisms of resistance to radiotherapy.
Moreover, Linghui Jia et al. collected 58 patients with oral squamous
cell carcinoma, and found that the expression of CircPUM1 (a circular
RNA) was significantly increased in oral squamous cell carcinoma.
CircPUM1 downregulation induced mir-580, which inhibited
STAT3 expression, induced apoptosis and enhanced radiosensitivity.

Histones, as essential components of nucleosomes, play an
important role in the structure of chromosomes. Histone
modifications are considered important epigenetic mechanisms
for gene expression regulation, and small molecule inhibitors
have been developed to detect the effects of these modifications
on cellular proteins (Buuh et al., 2018). SETD2 is the major
methyltransferase catalyzing histone H3K36. Zihang Zeng et al.
collected data on LUAD patients from GEO and TCGA, and
through multi-omics analysis identified that SETD2 was
associated with radiosensitivity. SETD2 downregulation
attenuated proliferation and migration, and enhanced the
apoptosis and radiosensitivity of LUAD cells. They also found
that reducing m6A-related genes (RBM2 or YTHDF15) could
enhance the protective effect of SETD2 on patient prognosis. Yue
Zhang et al. reviewed the function and regulatory mechanisms of
SELENBP1 (a selenium-binding protein) during cancer progression,
and also discussed potential cancer treatment strategies targeting
SELENBP1 epigenetic modifications.

Cancer is not only a genetic disease, but also an epigenetic
disease. Epigenetic mechanisms are engaged in the regulation of
many aspects of cancer biology (Garcia-Martinez et al., 2021).
With the development of mass spectrometry-based proteomics
technologies, some non-histone modifications (e.g., lysine
acetylation, lactylation) also play key roles in cell growth,
metabolism, and signal transduction (Narita et al., 2019; Yang
et al., 2023). This Research Topic focused on the regulation of
epigenetic and non-histone post-translational modifications, as
well as their impacts on cancer development and progression.
Patterns of epigenetic regulation and non-histone modifications
may be potential predictors of cancer patient prognosis and
survival, providing novel insights into the oncotherapy. We
hope more researches devote to this field in the future and
look forward to their early translation into clinical treatments.
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Identification of Two m6A Readers
YTHDF1 and IGF2BP2 as Immune
Biomarkers in Head and Neck
Squamous Cell Carcinoma
Shaojie Li†, Qiuji Wu†, Jia Liu and Yahua Zhong*

Hubei Key Laboratory of Tumor Biological Behaviors, Department of Radiation and Medical Oncology, Hubei Cancer Clinical
Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China

Background: N6-methyladenosine (m6A) is the most abundant internal modification
pattern in mammals that a plays critical role in tumorigenesis and immune regulations.
However, the effect of m6A modification on head and neck squamous cell carcinoma
(HNSCC) has not been clearly studied.

Methods: We screened m6A regulators that were significantly correlated with tumor
immune status indicated by ImmuneScore using The Cancer Genome Atlas (TCGA)
dataset and obtained distinct patient clusters based on the expression of these m6A
regulators with the R package “CensusClusterPlus.” We then performed gene set
enrichment analysis (GSEA), CIBERSORT, and single-sample gene set enrichment
analysis (ssGSEA) to assess the differences in gene function enrichment and tumor
immune microenvironment (TIME) among these clusters. We further conducted
differently expressed gene (DEG) analysis and weighted gene co-expression network
analysis (WGCNA) and constructed a protein–protein interaction (PPI) network to
determine hub genes among these clusters. Finally, we used the GSE65858 dataset
as an external validation cohort to confirm the immune profiles related to the expression of
m6A regulators.

Results: Two m6A readers, YTHDF1 and IGF2BP2, were found to be significantly
associated with distinct immune status in HNSCC. Accordingly, patients were divided
into two clusters with Cluster 1 showing high expression of YTHDF1 and IGF2BP2 and
Cluster 2 showing low expression levels of both genes. Clinicopathologically, patients from
Cluster 1 had more advanced T stage and pathological grades than those from Cluster 2.
GSEA showed that Cluster 1 was closely related to the RNA modification process and
Cluster 2 was significantly correlated with immune regulations. Cluster 2 had a more active
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TIME characterized by a more relative abundance of CD8+ T cells and CD4+ T cells and
higher levels of MHC I and MHC II molecules. We constructed a PPI network composed of
16 hub genes between the two clusters, which participated in the T-cell receptor signaling
pathway. These results were externally validated in the GSE65858 dataset.

Conclusions: The m6A readers, YTHDF1 and IGF2BP2, were potential immune
biomarkers in HNSCC and could be potential treatment targets for cancer immunotherapy.

Keywords: YTHDF1, IGF2BP2, HNSCC, m6A modification, immune microenvironment, immunotherapy

INTRODUCTION

M6A is a critical and abundant internal epigenetic modification
on both messenger RNA (mRNA) and non-coding RNAs in
mammals. M6A modification is mainly found in the 3′
untranslated regions of the RNA. The reversible and dynamic
regulation of m6A is mainly mediated by three different kinds of
regulators, namely, writers, erasers, and readers (Roundtree et al.,
2017; Nombela et al., 2021). Writers and erasers are
methyltransferases (such as METTL3, METTL16, and WTAP)
and demethylases (such as ALKBH5 and FTO) that methylate
and demethylate RNA adenosine at specific N6 positions,
respectively. Readers are a group of RNA binding proteins
that recognize m6A sites and initiate downstream events such
as RNA splicing, maturation, degradation, and translation (Li Y
et al., 2019; Zaccara et al., 2019). These proteins include members
of the EIF3, IGF2BP family and YTH family. By modulating RNA
export, RNA stability, protein expression, and other biological
activities, m6A modification plays an essential role in cancer
development. In line with these findings, emerging drugs
targeting m6A modification, such as a selective inhibitor of
FTO, METTL3, and YTHDF2 have shown promising anti-
cancer effects (Huang et al., 2015; Visvanathan et al., 2018;
Dixit et al., 2021).

The detailed mechanism by which m6A modification impacts
cancer pathogenesis remains unclear. A recent study indicated
that m6A also has a dual role in tumorigenesis. Liu et al. reported
that YTHDF1 promoted ovarian cancer progression via
augmenting EIF3C translation (Liu et al., 2020). Li et al.
reported that IGF2BP2 prevented SOX2 degradation, leading
to colorectal cancer pathogenesis and progression (Li T et al.,
2019). Meanwhile, Zhong et al. reported that m6A helped
suppress hepatocellular carcinoma through YTHDF2-directed
degradation of EGFR (Zhong et al., 2019). Importantly, m6A
modification also has a nonnegligible impact on anti-tumor
immunity. Overexpression of YTHDF1 enhanced the stability
of RNA lysosomal proteases, which led to the degradation of
tumor antigens in dendritic cells, disabled CD8+ T cells to bring
about immunosurveillance and abolished the effect of immune
checkpoint inhibitors (ICIs) (Han et al., 2019). Suppression of
METTL3 and METTL14 increased infiltration of CD8+ T cells
and secretion of IFN-γ, CXCL9, and CXCL10 in TIME and
promoted the response to ICIs in melanoma and pMMR-
MSIlow colorectal cancer (Wang et al., 2020). However,
research aiming to explore the effect of m6A modification on
immune profiles in HNSCC is inadequate.

HNSCC is the sixth most common malignant tumor
worldwide. Its occurrence is closely linked to carcinogen
exposure and viral infection, especially human papillomavirus
(HPV) and Epstein–Barr virus (EBV) (Siegel et al., 2021).
HNSCC is a group of heterogeneous cancers, and the majority
of patients are presented with locally advanced or metastatic
stage, leading to poor prognosis (Argiris et al., 2008; Chow, 2020).
ICIs-based immunotherapy has prominently improved the
efficacy and survival of advanced HNSCC. However, only a
small subset of patients could benefit from immunotherapy.
Although a combined positive score (CPS) of PD-L1
expression is mostly used to guide immunotherapy, currently
no satisfactory predictive biomarker is available for HNSCC.

Here, we attempted to explore the role of m6A regulators in
the immunemodulation of HNSCC and tried to identify potential
m6A-associated biomarkers of immunotherapy in HNSCC. This
study might provide a new way to improve the effect of
immunotherapy in HNSCC.

METHODS AND MATERIALS

Data Sources and Processing
We downloaded the transcriptomic data (HTSeq-FPKM and
HTSeq-Counts) and clinical information of an HNSCC cohort
from the TCGA-database (https://portal.gdc.cancer.gov/).
Data of HTSeq-Counts was used to analyze DEGs, and
HTSeq-FPKM was used to conduct ESTIMATE, clustering,
CIBERSORT, ssGSEA, and WGCNA. Mann-Whitney U test
was performed to compare age and gene expression between
two groups. Chi-square test was utilized to compare gender, T
stage, N stage, and pathologic stage. Spearman’s coefficient
was used to conduct correlation analysis. And a p-value < 0.05
(two-sided) was considered statistically significant.
Meanwhile, we conducted an external validation dataset by
downloading the expression profiling data of the GSE65858
array from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/).

Estimation of Stromal and Immune Cells
We employed the ESTIMATE tool embedded in the R package
“estimate” that used gene expression signatures to infer the
fraction of stromal and immune cells in the tumor samples
and to estimate the elements of tumor microenvironment
(TME), including StromalScore, ImmuneScore,
ESTIMATEScore, and TumorPurity (Yoshihara et al., 2013).
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Consensus Clustering
To explore the influence of m6A modification on immune
profiles of HNSCC, we calculated the correlation between the
expression of m6A modification regulators and ESTIMATE
results with Spearman’s coefficient. And then we performed
consensus clustering of tumor samples based on the expression
of YTHDF1 and IGF2BP2. We accomplished consensus
clustering and result visualization with the R package
“ConsensusClusterPlus” (Wilkerson and Hayes, 2010). And
we examined the efficacy of the above consensus clustering by
principal component analysis (PCA) with the R package
“factoextra.” The Kaplan–Meier method and log-rank test

were utilized to compare overall survival between the two
clusters.

Gene Set Enrichment Analysis
We employed the software GSEA (https://www.gsea-msigdb.org/
gsea/) to determine different pathways enriched in the two
clusters based on the default defined set of genes (Mootha
et al., 2003; Subramanian et al., 2005). We selected “c5.go.cc.
v7.4.symbols.gmt” from MSigDB Collection as pre-defined
ontology gene set, and considered a pathway as significantly
enriched pathway with the absolute normalized enrichment
score > 1 (|NES| >1) and p value < 0.05.

TABLE 1 | Summary of common m6A regulators.

Type Regulator Function

Writer CBLL1 Stabilizes several subunits of the methyltransferase complex
METTL3 Catalyzes m6A modification
METTL14 Provides help of target recognition for METTL3
METTL16 Catalyzes m6A modification
RBM15/RBM15B Binds the m6A methylation complex and recruit it to specific sites in RNA
WTAP Helps localization of METTL3-METTL14 into nuclear speckles
ZC3H13 Anchors WTAP, Virilizer, and Hakai in the nucleus to facilitate m6A methylation and regulate mESC self-renewal
ZCCHC4 Catalyzes m6A modification of 28S ribosomal RNA

Eraser ALKBH5 Removes m6A modification
FTO Removes m6A modification

Reader EIF3 Promotes mRNA translation
HNRNPA2B1 Mediates effects of m6A modification on primary microRNA processing and alternative splicing
HNRNPC Affects mRNA abundance and alternative splicing
IGF2BPs Enhances mRNA stability
YTHDC1 Enhances RNA splicing and export
YTHDC2 Promotes the translation of target RNA and reduce its abundance
YTHDF1 Promotes mRNA translation
YTHDF2 Promotes mRNA degradation
YTHDF3 Interacts with YTHDF1 and YTHDF2 to enhance their effect

FIGURE 1 | The correlation of m6A regulators with the results of ESTIMATE and CIBERSORT.
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Immune Microenvironment Analysis
CIBERSORT, amethod excelling in decreasing noise and unknown
mixtures and identifying similar cell types, was conducted to
recognize the cell composition of solid tumors by using gene
expression profiles (Newman et al., 2015). ssGSEA, an extension
of GSEA, was used to calculate separate enrichment scores for each
pairing of a sample and gene set (Hänzelmann et al., 2013). We
applied both strategies to explore the difference and relation of
TIME among the clusters of patients with HNSCC.

DEGs and Weighted Gene Co-Expression
Network Analysis
In order to explore the hub genes that contributed to biological
divergences among different patient clusters, we performed an analysis
of DEGs and WGCNA successively. First, the R package “limma”
enabled us to compare transcriptome data (HTSeq-Counts) to locate
DEGs. The screening thresholds were set as |log2FoldChange | > 0.6
and p-value of < 0.05, and the results were visualized by volcano plot

and heatmap. Then, we conductedWGCNAon the DEGswith the R
package “WGCNA,” which was a system biology method to gather
closely related genes in special modules and calculate the relationship
between the modules and external sample traits (Zhang and Horvath,
2005; Langfelder and Horvath, 2008). We explored the connection of
DEGs with clustering and four aspects of ESTIMATE. Finally, we
selected the module of genes tightly related to both clustering and
ImmuneScore for subsequent analysis.

Functional Enrichment and Protein–Protein
Interaction Network Analysis
In order to investigate the above module of genes ulteriorly, we
uploaded the gene list to Metascape (http://metascape.org/) for
pathway and process enrichment analysis and PPI enrichment
analysis (Zhou et al., 2019). Functional enrichment analysis was
carried out in various ontology sources, including GO Biological
Processes, Reactome Gene Sets, KEGG Pathway, Canonical
Pathways, and WikiPathways. PPI enrichment analysis was also

FIGURE 2 | Clustering of patients with HNSCC in TCGA cohort based on expression of YTHDF1 and IGF2BP2. (A) Consensus clustering matrix for k = 2. (B) The
results of PCA of clustering based on 21 m6A regulators as well as YTHDF1 and IGF2BP2. (C) Comparison the expression levels of YTHDF1 and IGF2BP2 between
Cluster 1 and Cluster 2. (D) Comparison of the expression levels of YTHDF1 and IGF2BP2 between tumor samples and normal samples. (E) Kaplan–Meier curves of the
overall survival in two clusters. ****p < 0.0001.
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performed, and if the number of proteins in the network fell between
3 and 500, the Molecular Complex Detection (MCODE) algorithm
would be carried out to separate proteins to build interaction
networks more precisely (Bader and Hogue, 2003).

RESULTS

Identification of m6A Regulators
Associated With HNSCC Immune Profiles
After excluding repeated samples and those without adequate survival
information, we got 499 patients of HNSCCwith unique samples for the
following analysis. To explore whether the expression of m6A regulators
impacted HNSCC immune profiles, we extracted the expression of 21
m6Amodification regulators (Table 1) and applied the ESTIMATE tool
and CIBERSORT algorithm to calculate the ESTIMATE scores and
immune cells infiltration of 499 HNSCC patients. By analyzing the
correlation between m6A regulators’ expression and the ImmuneScore,
we found that YTHDC2 and RBM15 were positively correlated with
ImmuneScore, while YTHDF1, YTHDC1, METTL3, METTL16,
IGF2BP1-3, HNRNPC, and HNRNPA2B1 were negatively correlated
with ImmuneScore (Figure 1). Next, we sorted the absolute values of the
ImmuneScores correlated with the 21 m6A regulators (Supplementary
Material S1). We selected the first two regulators with the highest
ImmuneScores, YTHDF1 and IGF2BP2, to construct an immune-
associated signature.

Consensus Clustering of Patients With
HNSCC Based on YTHDF1 and IGF2BP2
We extracted the expression data of YTHDF1 and IGF2BP2 of the
499 HNSCC patients and performed consensus clustering, and

obtained two clusters of patients (Figure 2A). There were 294
patients in Cluster 1 and 205 patients in Cluster 2. After excluding
106 patients without tumor stage and tumor grade information,
the clinical characteristics of the remaining 393 patients were
summarized in Table 2. PCA plot indicated the above clustering
had good efficiency of distinction (Figure 2B). Cluster 1 had
higher expression of YTHDF1 and IGF2BP2 (Figure 2C), and a
more advanced T stage and pathological grade than Cluster 2
(Table 2). Expression levels of YTHDF1 and IGF2BP2 were also
compared between tumor tissue and normal tissue, and we found
that both of them were higher expressed in tumor tissue
(Figure 2D). Kaplan–Meier curve (Figure 2E) showed that
patients in Cluster 2 had better overall survival than their
counterparts in Cluster 1 (HR = 0.65, 95%CI [0.50–0.85], p =
0.0023).

Immune Profiles of YTHDF1- and
IGF2BP2-Based Clusters
GSEA was performed to compare pathway enrichment between
the two clusters. We found that biological pathways related to
m6A modification including negative regulation of DNA repair,
regulation of mRNA catabolic progress, and nuclear export, were
enriched in Cluster 1. On the other side, immune-related
biological pathways, such as humoral immune response,
positive regulation of NK cell-mediated cytotoxicity, and
regulation of inflammatory response to an antigenic stimulus,
were more enriched in Cluster 2 (Figure 3A). These results
indicated that Cluster 2 was closely associated with immune
modulation of head and neck cancers. In order to
comprehend the difference in immune infiltration profiles
between Cluster 1 and Cluster 2, we performed CIBERSORT,

TABLE 2 | Summary of clinical characteristics of patients in the two clusters.

Cluster 1 (n = 245) Cluster 2 (n = 148) p value

Age, median (range) 60 (19–90) 61 (24–87) 0.28
Gender, n (%) 0.47
Female 63 (25.7) 43 (29.1) —

Male 182 (74.3) 105 (70.9) —

T stage, n (%) 0.0077
T1 18 (7.4) 23 (15.5) —

T2 59 (24.1) 42 (28.4) —

T3 66 (26.9) 23 (15.6) —

T4 102 (41.6) 60 (40.5) —

N stage, n (%) 0.50
N0 101 (41.2) 68 (45.9) —

N1 39 (15.9) 24 (16.2) —

N2 99 (40.4) 55 (37.2) —

N3 6 (2.4) 1 (0.7) —

Pathological stage, n (%) 0.14
Stage I 12 (4.9) 15 (10.1) —

Stage II 30 (12.2) 19 (12.8) —

Stage III 51 (20.8) 22 (14.9) —

Stage IV 152 (62.0) 92 (62.2) —

Grade, n (%) 0.029
G1 22 (9.0) 28 (18.9) —

G2 162 (66.1) 84 (56.8) —

G3 60 (24.5) 36 (24.3) —

G4 1 (0.4) 0 (0) —
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FIGURE 3 | Differences of GSEA and immune cells infiltration between two clusters. (A) The tendency of enrichment of biological pathways between two clusters.
(B) ssGSEA indicated different immune cells infiltration between two clusters. (C) Comparison of immune-related molecules between Cluster 1 and Cluster 2. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001.
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ssGSEA, and compared the expression of immune-related genes.
The results of CIBERSORT indicated that CD4+ T memory
resting cells, resting NK cells, M0 macrophages, and activated
mast cells had higher percentages in Cluster 1. Cluster 2 highly
expressed plasma cells, CD8+ T cells, regulatory T cells, and
resting mast cells (Supplementary Figure S1). Furthermore, the
results of ssGSEA were in parallel with the results of CIBERSORT
and demonstrated the majority of immune cell types, including
activated CD8+ T cells, activated CD4+ T cells, activated B cells,
and natural killer cells, were enriched in the TIME of Cluster 2.
Therefore, Cluster 2 manifested more active anti-tumor immune
cell gathering (Figure 3B). Next, we compared the expression of
critical immune-related molecules. Both MHC I and II molecules
played a central role in the adaptive immune response. MHC I
molecule were encoded byHLA-A andHLA-B genes, andMHC II
molecules were encoded by HLA-DP, HLA-DQ, and HLA-DR
genes. Cluster 2 had higher levels of MHC I and II molecules
compared with Cluster 1. TGFB1 encoded transforming growth
factor-β (TGF-β) and FAP coded fibroblast activation protein
alpha (FAP), both of which took part in disabling anti-tumor
immune cells and impeding infiltration of immune cells. Cluster 2
had lower levels of TGF-β and FAP than Cluster 1 (Figure 3C).
These results showed that Cluster 2 had a more immune-
stimulatory TIME than Cluster 1.

ASSOCIATION OF YTHDF1- AND
IGF2BP2-BASED CLUSTERING WITH
HNSCC-RELATED GENES
Several genes were known to influence biological behavior
and response to immunotherapy of HNSCC (Supplementary
Material S2). We compared their expression levels between
Cluster 1 and Cluster 2 in the TCGA cohort (Figure 4A) and
the GEO cohort (Figure 4B). PDCD1, CTLA4, and TNFRSF4
(encoding OX40) were higher expressed in Cluster 2, while
the expression of CD276 and EGFR were higher in Cluster 1.
But there was no significant difference in the expression of
CD274 (encoding PD-L1) between the two clusters. The
higher expression of CD276 and EGFR suggested that the
HNSCC of Cluster 1 might connect with worse biological
behavior.

Identifying Hub Genes by DEG Analysis and
WGCNA
After removing duplicated samples and extracting mRNA
expression from original transcriptome data (HTSeq-Counts),
we got a matrix of 499 tumor patients with a unique sample and
18,192 gene expression data. We performed DEG analysis

FIGURE 4 | Expression level comparison of HNSCC-related genes. (A) TCGA cohort and (B) GEO cohort. ***p < 0.001, ****p < 0.0001.
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FIGURE 5 | Screening of hub genes related to clustering and ImmuneScore in two clusters. (A) The volcano plot for results of differentially expressed genes. (B) The
heatmap of differentially expressed genes. (C) Correlation of gene modules with results of clustering and ESTIMATE.

FIGURE 6 | Analysis of functional enrichment and construction of PPI network. (A) Selected enriched terms for a network, colored by cluster group ID. (B)
Functional enrichment analysis in various ontology sources. (C) Protein-protein interaction network analysis for whole selected genes and two highlighted MCODE
components.
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FIGURE 7 | Validation of clustering based on YTHDF1 and IGF2BP2 in GSE65858. (A) Consensus clustering matrix for k = 2. (B) The results of PCA of clustering
based on 21 m6A regulators as well as YTHDF1 and IGF2BP2. (C) Comparison of expression level of YTHDF1 and IGF2BP2 between Cluster 1 and Cluster 2. (D)
ssGSEA indicated different immune cells infiltration between two clusters. (E)Comparison of immune-relatedmolecules between Cluster 1 and Cluster 2. *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001.
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between the two clusters and obtained 1127 DEGs (671
upregulated and 456 downregulated). A volcano plot and
heatmap were used to visualize the DEG results (Figures
5A,B). We set 3 as the soft power (Supplementary Figure S2)
and then divided the 1127 DEGs into 11 modules by conducting
WGCNA (Supplementary Figure S3), and we found that the
turquoise module, containing 416 genes, was the most relevant
with both clustering (R = 0.38, P = 7e−19) and ImmuneScore (R =
0.86, P = 1e−146) (Figure 5C). These results suggested that DEGs
of the turquoise modules played an important role in influencing
clustering and immune profiles.

Functional Enrichment Analysis and PPI
Network Analysis of Hub Genes
In order to better understand genes in the turquoise model, we
uploaded them to Metascape for functional enrichment analysis
and constructed the PPI network. The most significant
pathways in the functional enrichment analysis were related
to immune modulation, including lymphocyte activation,
positive regulation of immune response, regulation of
immune effector process, and B cell activation (Figures
6A,B). In the PPI network analysis, the MCODE algorithm
further divided the whole PPI network into two major
MCODEs. The MCODE 1 was related to G alpha (i)
signaling events and GPCR ligand binding. The MCODE2
contained 16 genes (PDCD1, CD28, CD247, CD3D, CD3E,
CD3G, CD8A, CD8B, HLA-DPB1, HLA-DQA2, HLA-DQB2,
GRAP2, TRAT1, SKAP1, ZAP70, and ITK) was tightly
correlated with the generation of second messenger
molecules and T-cell receptor signaling pathway (Figure 6C).

Verification of Immune Characteristics of
Clustering Based on YTHDF1 and IGF2BP2
in the GEO Database
To externally validate the significance of the m6A reader-
based clustering, we obtained the expression profiling data of
the GSE65858 array from the GEO database. The GSE65858
array involved 270 patients with HNSCC. Similarly, we
performed consensus clustering in the 270 patients using
the R package “ConsensusClusterPlus,” and found that the
optimal number of clustering was 2 (Figure 7A). PCA plot
indicated the above clustering had good efficiency of
distinction (Figure 7B). There were 137 patients in Cluster
1 and 133 patients in Cluster 2, and the latter had significantly
lower expression of YTHDF1 and IGF2BP2 (Figure 7C). We
also performed CIBERSORT and ssGSEA to estimate TME
composition. The results of CIBERSORT showed that,
compared with Cluster 1, Cluster 2 had significantly more
plasma cells, CD8+ T cells, regulatory T cells, gamma delta
T cells, and less activated dendritic cells and activated mast
cells (Supplementary Figure S4). In addition, results obtained
from ssGSEA indicated that Cluster 2 highly expressed
activated CD8+ T cells, activated CD4+ T cells, T helper
cells (Type 1 and 17), and activated B cells, indicating that
Cluster 2 had a more favorable TIME than Cluster 1

(Figure 7D). A comparison of immune-related molecules
was also performed, and we found Cluster 2 had higher
expression of MHC II molecule and lower levels of TGF-β
and FAP (Figure 7E). The above results from the GEO
database confirmed that YTHDF1- and IGF2BP2-based
patient clustering showed distinct immune profiles.

DISCUSSION

m6A methylation on mRNA is an abundant internal epigenetic
modification that has attracted great attention in recent decades,
especially in the tumor research area. Exiting research studies
had revealed the complex roles of m6A in cancer by regulating
the expression of oncogenes and tumor suppressor genes. This
effect was cancer-dependent and also varied among different
types of m6A regulators. For instance, the m6A writer, METTL3
was found to promote the translation of c-MYC and BCL2 to
accelerate leukemia progression by suppressing differentiation
and apoptosis in acute myelocytic leukemia (Vu et al., 2017). On
the other hand, the m6A eraser, FTO was found to promote the
degradation of BNIP3 and inhibited the proliferation and
invasion of breast cancer cells (Niu et al., 2019). And the
readers, including EIF3, YTH family, and IGF2BP family,
mainly regulated the translation and degradation of targeted
RNA to participate in m6A modification. Recent studies
demonstrated that m6A modification played an important
role in regulating the immune response. Targeting and
disabling IGF2BPs through circNDUFB2 could prevent the
progression of non-small cell lung cancer and activate anti-
tumor immunity (Li et al., 2021). YTHDF1 mediated the
increase of lysosomal proteases and tumor antigen
degradation in dendritic cells and could weaken anti-tumor
response and disable CD8+ T cells (Han et al., 2019). However,
research about the effect of m6A modification on HNSCC was
inadequate.

We utilized transcriptomic data from the TCGA dataset and
GEO dataset to establish an m6A regulator-based immune
phenotype of HNSCC. Specifically, we found that two readers
of m6A, IGF2BP2, and YTHDF1 could effectively indicate
immune-stimulatory and immune-suppressive HNSCC. To
this end, we scored every patient in the TCGA cohort with
the ESTIMATE tool and CIBERSORT algorithm to calculate the
correlation of m6A regulators with ESTIMATE scores and
immune cells infiltration. The absolute Spearman’s coefficient
of ImmuneScore of IGF2BP1, IGF2BP2, IGF2BP3 and YTHDF1
were above 0.2. We selected two with the highest absolute
coefficients, IGF2BP2, and YTHDF1 for the following
analysis. We found patients with HNSCC could be divided
into two clusters with different immune profiles based on the
expression of IGF2BP2 and YTHDF1. TME was roughly
categorized into three types, namely “infiltrated,” “excluded”
and “desert” (Hegde and Chen, 2020). The infiltrated type was
characterized by sufficient infiltration of CD8+ T cells and a high
level of MHC I molecule. Desert type was featured by the
absence of CD8+ T cell infiltration, low level of MHC I
molecule, and high level of FAP. According to the expression
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profiles of immune cells and immune molecules, we tended to
consider Cluster 1 as excluded or desert type and Cluster 2 as
infiltrated type. In addition, GSEA demonstrated that a number
of signal pathways related to immune response were enriched in
Cluster 2. Therefore, it was speculated that the TME of Cluster 2
was more favorable for ICIs-based immunotherapy.

Overexpression of EGFR could be detected in over 90% of
HNSCC, which was an important signal receptor that brings
about tumorigenesis, proliferation, and metastasis through
downstream pathways, including PI3K/AKT and MAPK
(Nicholson et al., 2001; Citri and Yarden, 2006). CD276,
also named B7-H3, was one of the immune checkpoint
molecules, which was upregulated in HNSCC and helped
tumor cells evade immunological surveillance. High
expression of CD276 was related to the occurrence,
progression, and metastasis of HNSCC(Wang et al., 2021).
Both EGFR and CD276 were found highly expressed in Cluster
1, indicating that HNSCC of Cluster 1 were more likely to
correlate with worse biological behavior, poorer clinical result,
and insensitivity to ICIs-based immunotherapy. However,
EGFR antibodies or CD276 blockade could be considered
for HNSCC of Cluster 1.

To further investigate internal influencing factors between
the two clusters, we screened DEGs and performed WGCNA to
find the module closely related to clustering and ImmuneScores.
Successively, we constructed a PPI network, we finally obtained
16 genes (PDCD1, CD28, CD247, CD3D, CD3E, CD3G, CD8A,
CD8B, HLA-DPB1, HLA-DQA2, HLA-DQB2, GRAP2, TRAT1,
SKAP1, ZAP70, and ITK). These 16 hub genes were all
upregulated in Cluster 2. PDCD1 was a receptor of
immunosuppression usually expressed in activated T cells.
CD28 played an essential role in T cells proliferation, and
survival, and provided the second signal for T cell activation
(Esensten et al., 2016). CD247, CD3D, CD3E, and CD3G
participated in constituting T-cell receptor-CD3 complex
(TCR-CD3) to recognize antigens and deliver the first signal
for T cell activation (Kuhns et al., 2006). CD8A and CD8B acted
as co-receptors for TCR (Rudolph et al., 2006). MHC II
molecule was encoded by HLA-DPB1, HLA-DQA2, and HLA-
DQB2 and played an important role in antigens binding and
cross-presentation. Proteins encoded by ZAP70 and ITK
belonged to the tyrosine kinase family, which were critical
for signal transduction in T cells (Berg, 2007; Au-Yeung
et al., 2018). And proteins encoded by GRAP2, TRAT1, and
SKAP1 also played an important role in signal transduction
(Raab et al., 2010). It was, therefore, suggested that most of these
DEGs were highly relevant to immune response and might
contribute to different immune profiles between the two
clusters.

There were several limitations in our study. We performed
the study based on TCGA and GEO databases without
verification using a clinical dataset. Only correlation analysis
on phenotype level was conducted. There lacked a
demonstration on the protein level. Last but not least, there
was a lack of mechanistic study.

In conclusion, our study divided HNSCC into two clusters
based on IGF2BP2 and YTHDF1, which provided a simple and

feasible tool to identify HNSCC with different immune
profiles and helped estimate sensitivity to ICIs-based
immunotherapy. We preliminarily explore the possible
mechanisms, combined with the previous research works
about IGF2BP2 and YTHDF1, and we speculated that they
might hamper the expression of specific genes, which were
related to antigen recognition, signal transduction,
proliferation, and activation of effector T cells. Meanwhile,
they might increase the stability of tumorigenic genes, such as
EGFR and CD276, and excessively activated downstream
signal pathways. The joint effect led to different biologic
behavior and immune profiles in the two clusters. The
existing study had found knocking down YTHDF1 could
enhance the therapeutic efficiency of ICIs in mice (Han
et al., 2019). It would be important to determine whether
suppressing the expressions of IGF2BP2 and YTHDF1 could
modulate the sensitivity to ICI-based immunotherapy.
Specific molecular mechanisms awaited further exploration.
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Lung cancer is a major cause of cancer-related deaths globally, with a dismal prognosis.
N7-methylguanosine (m7G) is essential for the transcriptional phenotypic modification of
messenger RNA (mRNA) and long noncoding RNA (lncRNA). However, research on m7G-
related lncRNAs involved in lung adenocarcinoma (LUAD) regulation is still limited. Herein,
we aim to establish a prognostic model of m7G-related lncRNAs and investigate their
immune properties. Eight prognostic m7G-related lncRNAswere identified using univariate
Cox analysis. Six m7G-related lncRNAs were identified using LASSO-Cox regression
analysis to construct risk models, and all LUAD patients in The Cancer Genome Atlas
(TCGA) cohort was divided into low-risk and high-risk subgroups. The accuracy of the
model was verified by Kaplan-Meier analysis, time-dependent receiver operating
characteristic, principal component analysis, independent prognostic analysis,
nomogram, and calibration curve. Further studies were conducted on the gene set
enrichment and disease ontology enrichment analyses. The gene set enrichment
analysis (GSEA) revealed that the high-risk group enriched for cancer proliferation
pathways, and the enrichment analysis of disease ontology (DO) revealed that lung
disease was enriched, rationally explaining the superiority of the risk model. Finally, we
found that the low-risk group had higher immune infiltration and checkpoint expression. It
can be speculated that the low-risk group has a better effect on immunotherapy.
Susceptibility to antitumor drugs in different risk subgroups was assessed, and it
found that the high-risk group showed high sensitivity to first-line treatment drugs for
non-small cell lung cancer. In conclusion, a risk model based on 6 m7G-related lncRNAs
can not only predict the overall survival (OS) rate of LUAD patients but also guide
individualized treatment for these patients.

Keywords: lung adenocarcinoma (AC), m7G, lncRNA, model, immune signature, treatment

INTRODUCTION

Lung cancer is the second most common type of cancer worldwide and the leading cause of
cancer mortality, accounting for approximately 11.4% of diagnosed cancers and 18.0% of deaths
(Sung et al., 2021). Currently, the 5-years survival rate for lung cancer is still very low, only
10–20% in most countries (Allemani et al., 2018). Lung adenocarcinoma (LUAD) is the most
commonly diagnosed subtype of lung cancer, accounting for approximately 40% of all cases
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(Travis et al., 2015). With the development of surgery,
radiotherapy, chemotherapy, targeted therapy, and
immunotherapy, the 5-years survival rate of lung cancer has
improved, but the performance remains unsatisfactory. There
is an urgent need to develop a convenient and fast prognostic
model that can accurately judge patient prognosis and guide
individualized treatment, which could be very useful for both
patients and clinicians.

In humans, the methyltransferase like 1 (METTL1)/WD
repeat domain 4 (WDR4) complex catalyzes N7-
methylguanosine, one of the most common tRNA
modifications in the tRNA variable loop (Alexandrov et al.,
2005; Lin et al., 2018). METTL1 is an m7G catalytic enzyme
and WDR4 is important in the methyltransferase complex
stabilization (Alexandrov et al., 2002). Recently, it was found
that METTL1 and WDR4 were significantly up-regulated in
lung cancer tissues and played an oncogenic role in lung cancer
via mediating m7G tRNA modification and modulated the
translation of mRNAs, especially METTL1-mediated m7G
tRNA modification and m7G codon usage promoted mRNA
translation and lung cancer progression (Ma et al., 2021). This
suggests that METTL1 and WDR4 may play a significant role
in tumor progression. Therefore, screening m7G-related genes
is essential.

Long non-coding RNAs (lncRNAs) are defined as non-coding
RNAs of more than 200 nucleotides in length. They are not generally
considered to encode proteins but are involved in the regulation of
different levels (epigenetic regulation, transcriptional regulation, and
post-transcriptional regulation) of genes encoding proteins in the
form of RNA (Juhling et al., 2009; Spizzo et al., 2012). Several
lncRNAs, including ferroptosis-related lncRNAs (Chen et al., 2022),
pyroptosis-related lncRNAs (Xu et al., 2022), and autophagy-related
lncRNAs (Luo et al., 2022), have recently been implicated in
prognosis in cancer patients, while m7G-related lncRNAs have
rarely been reported.

Herein, we identified 6 prognostic risk models of m7G-related
lncRNAs and the correlation between the risk model and immune
characteristics. As expected, our model well predicted survival in
LUAD patients and showed greater efficacy in terms of immune cell
invasion and immune checkpoint expression.

MATERIALS AND METHODS

Data Set
RNA sequencing data and associated clinical characteristics of
594 LUAD patients were extracted from The Cancer Genome
Atlas (TCGA) database, including 59 normal tissues and 535
LUAD tissues. Forty m7G-related genes were obtained from the
gene set enrichment analysis (GSEA) website (http://www.gsea-
msigdb.org/gsea/login.jsp) and published articles. Patients
lacking clinical information were deleted from subsequent
analyses.

Selection of m7G-Related lncRNAs
LncRNAs were screened from 594 patients with LUAD using
Strawberry Perl (version 5.30.0). A total of 2093 m7G-related

lncRNAs were identified using the limma R package with the
following criteria: Pearson correlation coefficient >0.4 and p <
0.001. A total of 990 differentially expressed lncRNAs (DELs)
were identified in normal lung tissues and LUAD tissues with the
following criteria: log2 fold change (FC) > 1 and false discovery
rate <0.05.

Development and Validation of
m7G-Related lncRNA Prognostic Model
To rigorously screen out prognostic lncRNAs, the p-value was set
to 0.01 and univariate Cox analysis was used to identify
prognostic lncRNAs. Next, the TCGA cohort was randomly
divided into a training and a validation group, each
accounting for 50%. Based on these prognostic lncRNAs,
Lasso-Cox regression analysis was used to select genes to
minimize the risk of overfitting and a risk prediction model
was constructed. The risk score was calculated using the following
formula:

risk score � ∑
n

i�1
(coefip expri) (1)

where coefi represents the coefficients of each lncRNA and expri
represents the expression level of each lncRNA. Based on the
median value of the risk score, patients were divided into low-risk
and high-risk groups. Survival curves were drawn between low-
risk and high-risk groups using the survival and survminer
packages of the R software. The stability of the risk score was
performed using the validation group. Clinical information
(including age, gender, and stage) of TCGA-LUAD patients
was extracted and combined with the risk score for univariate
and multivariate Cox regression analysis to evaluate whether the
risk score is an independent prognostic factor for overall survival
(OS), and compared predictive results of different factors using
receiver operating characteristic (ROC) curve analysis.

Nomogram and Calibration
The rms R package was utilized to construct nomograms.
Calibration curves were used to quantify the agreement
between the predicted and the actual results for 1-, 3-, and 5-
years survival rates.

Gene Set Enrichment Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis was performed, and significantly enriched pathways in
different risk subgroups were identified using GSEA software (p <
0.05 and FDR <0.25).

Assessment of Immune Cell Infiltration and
Immune Checkpoints
All TCGA tumor immune cell infiltration files were downloaded
from TIMER 2.0 and the correlation between the explored
immune infiltrating cells and the risk score was analyzed using
limma, scales, ggplot2 and ggtext R packages. Additionally,
immune cell infiltration, immune-related signaling pathways,
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tumor microenvironment (TME) scores, and immune
checkpoints were compared between low-risk and high-risk
groups using the ggpubr package.

Prediction of Drug Susceptibility
The pRRophetic R package was utilized to predict the half-maximal
inhibitory concentration (IC50) value of cancer drugs in different risk
subgroups, which represents the effectiveness of a substance in
inhibiting a specific biological or biochemical process.

Statistical Analysis
All statistical analyses were performed using R software (version
4.0.4). The Wilcoxon signed-rank test was used to investigate
differences in the composition of immune infiltrating cells. The
correlation between m7G-related genes and m7G-related lncRNAs
was investigated using Spearman correlation analysis. Kaplan-Meier
analysis was used to estimate survival curves. p values <0.05 (p), 0.01
(pp), and 0.001 (ppp) were considered statistically significant.

RESULTS

Workflow of Study
The study flowchart is shown in Figure 1. The precise procedure is
as follows: First, we obtained RNA sequencing from the TCGA
database for 594 lung adenocarcinoma patients, as well as 40 m7G-
associated genes from the GSEA database and relevant literature.
Furthermore, a 6-lncRNA prognostic model was developed, and its
stability was validated using multiple techniques. Finally, GSEA and

DO enrichment analysis validated the superiority of themodel, while
immunological correlation analysis and drug sensitivity analysis
extended on the idea of clinical treatment.

Identification of Differentially Expressed
m7G-Related lncRNAs
Data for 594 LUAD samples were obtained from the TCGA
database, and 14,056 lncRNAs and 19,573 mRNAs were detected.
Forty m7G-related genes were obtained from published articles and
the GSEA website (Letoquart et al., 2014; Trotman and Schoenberg,
2019; Galloway et al., 2021; Ma et al., 2021). The co-expression
network between m7G-related genes and lncRNAs is shown in
Figure 2A. A total of 990 DELs were screened from 59 normal
tissues and 535 LUAD tissues (|Log2 FC| > 1 and p < 0.05). Of these,
903 lncRNAs were up-regulated and 87 were down-regulated
(Figure 2B).

Development and Validation of Prognostic
Gene Models
Patients from the TCGA-LUAD database were randomly split into
two groups: a training set and a validation set. To strictly screen
prognosis-related DELs, the p-value was set to 0.01, and performed
univariate Cox regression analysis was performed on the training
group. Eight prognosis-related lncRNAs met the conditions,
including AC092718.3, LINC01352, AP000695.1, AC018647.1,
AL355472.3, AC026355.2, SALRNA1 and AL157895.1 (Figure
3A). These prognosis-related lncRNAs are shown in Figure 3B.

FIGURE 1 | Workflow of this study. The TCGA database was utilized to screen 990 differentially expressed lncRNAs (DELs) in LUAD, which were analyzed with
LASSO-COX regression to develop a prognostic model for m7G-related lncRNAs. The prognostic model had been validated in multiple ways and proved to be stable
and reliable. Therefore, based on this model, we also performed disease ontology enrichment analysis (DO), gene set enrichment analysis (GSEA), immune-related
analysis and drug sensitivity analysis to determine the potential function of prognostic signatures.
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Furthermore, these lncRNAs were positively regulated by
corresponding genes in the Sankey diagram (Figure 3E). LASSO
regression analysis was then performed on these prognosis-
associated lncRNAs. Cross-validation was also performed to
obtain the best λ value from the smallest partial likelihood bias
(Figures 3C,D), to further identify lncRNAs significantly associated
with prognosis in LUAD patients. Moreover, multivariate Cox
regression analysis was used to screen six prognosis-related
lncRNAs and calculate the respective coefficients of these
lncRNAs. Finally, six candidates, including LINC01352,
AP000695.1, AC018647.1, AL355472.3, AC026355.2, SALRNA1,
were selected to construct a risk model. The risk score was
calculated using the following formula: LINC01352p(-1.42486) +
AP000695.1p(0.37854) + AC018647.1p(-2.19905) +
AL355472.3p(1.05547) + AC026355.2p(-0.38520) + SALRNA1p(-
1.39428).

The median score was calculated based on the above
formula, and the TCGA-LUAD cohort, training group, and
validation group were classified into low-risk and high-risk
subgroups, and the principal component analysis, risk score
distribution, and survival status distribution were visualized,
respectively (Figures 4A–C). The results revealed that the
sample distribution of the two risk groups was reasonable.
Kaplan-Meier survival analysis showed that the OS was shorter
in the high-risk group than in the low-risk group
(Figures 4D–F).

Independent Prognostic Value of Risk
Models
Univariate and multivariate Cox regression analyses were
performed on the TCGA-LUAD cohort to evaluate the
accuracy of the risk model and determine whether risk
score could serve as an independent prognostic factor for
patient survival. Univariate Cox regression analysis showed
that both the risk score and the stage were significantly related
to the prognosis of the patient (Figure 5A). After controlling
for other confounding factors, multivariate analysis revealed

that risk score and stage were independent prognostic factors
(Figure 5B). To expand the applicability of the risk model, the
stage was divided into two subgroups: early-stage (Stage I and
Stage II) and late-stage (Stage III and Stage IV). The survival
curves are shown in Figures 5C,D. Patients with advanced
Stage had a very poor prognosis, which is completely
consistent with the clinical data.

A time-dependent ROC curve was generated in the TCGA-
LUAD cohort, and the area under the curve (AUC) reached
0.705, 0.686, and 0.723 at 1, 3, and 5 years, respectively
(Figure 4I). In addition, ROC curves confirmed that the
risk signature had better prognostic accuracy compared
with other clinicopathological features (Figure 5F). Time-
dependent ROC curves also showed excellent predictive
power in both the training and validation sets (Figures 4G,H).

Construction of Nomogram
Based on the TCGA-LUAD cohort, risk scores and clinical
factors were integrated to create a nomogram (Figure 5E) to
improve the predictive power of survival in LUAD patients.
Calibration plots for 1-, 3- and 5-years OS revealed good
agreement between nomogram prediction and actual
observations (Figure 5G).

GSEA and DO
GSEA software was used to explore KEGG pathways in the
entire collection to investigate differences in signaling
pathways in different risk subgroups. It was found that
pathways related to cancer proliferation, such as cell cycle,
DNA replication, mismatch repair, proteasome, homologous
recombination, etc., were enriched in the high-risk groups. In
addition, the low-risk group was mainly enriched in pathways
such as autoimmune thyroid disease, asthma, primary bile acid
biosynthesis, arachidonic acid metabolism, and alpha linolenic
acid metabolism (Figure 6A). The majority of enriched
pathways in the high-risk group were closely related to
radiotherapy (Azzam et al., 2012; Haro et al., 2012). Hence,
we speculate that radiotherapy may have unexpected effects on

FIGURE 2 | Identification of m7G-related lncRNAs in LUAD patients. (A) Co-expression network of m7G-related lncRNAs and mRNAs. (B) 990 differentially
expressed lncRNAs.
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FIGURE 3 | Development of a new prognostic model for m7G-related lncRNAs in LUAD. (A) 8 prognosis-related lncRNAs screened by univariate Cox regression
analysis (p < 0.01). (B) Differential expression of prognosis-related lncRNAs in lung normal tissues and adenocarcinoma tissues. (C) LASSO coefficient distribution of
8 m7G-related lncRNAs. (D) The tuning parameter (λ) in the LASSOmodel is chosen by the minimum criterion. (E) The Sankey diagram depicts the detailed connections
between eight prognosis-related lncRNAs and m7G-related genes. *p < 0.05, **p < 0.01, ***p < 0.001.
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patients in the high-risk group, providing foundations for
future research directions. Immune-related pathways were
enriched in the low-risk group, implying that the low-risk
group may be closely related to immune characteristics.
Disease differences of differentially expressed genes (DEGs)
between the two risk subgroups were further investigated.
First, DEGs (|Log2 FC| > 1 and p < 0.05) between the two

risk subgroups were screened, followed by enrichment analysis
of disease ontology (DO). DEGs were enriched in lung
diseases, adenoma, coronary artery disease, and myocardial
infarction (Yu et al., 2012; Yu et al., 2015). This confirms once
again that our risk model is very superior. Surprisingly, DEGs
are also involved in coronary artery disease and myocardial
infarction (Figures 6B,C).

FIGURE 4 | Validation of prognostic models for six m7G-related lncRNAs. (A–C) Principal component analysis, risk score distribution, and survival status
distribution for training, validation, and TCGA-LUAD. (D–F) Kaplan-Meier curves of training group, validation group and TCGA-LUAD at different risk groups. (G–I) ROC
curves for 1 year, 3 years and 5 years.
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FIGURE 5 | Clinical value of risk characteristics in TCGA-LUAD. (A) Univariate Cox regression analysis of risk scores and clinical factors. (B) Multivariate Cox
regression analysis of risk scores and clinical factors. (C,D) Pathological stage was stratified between low- and high-risk groups in the entire collection. (E) Nomogram
combining gender, age, stage, and risk score predicts 1-, 3-, and 5-years overall survival. (F) Clinicopathological features and the predictive accuracy of risk models. (G)
Calibration curves test the agreement between actual and predicted results at 1, 3, and 5 years. *p < 0.05, **p < 0.01, ***p < 0.001.
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Relationship Between Risk Model and
Immune Characteristics
Because GSEA revealed that the low-risk group was enriched in
immune-related pathways, we hypothesized that the m7G-related
lncRNA-based risk model was strongly tied to immunity. Therefore,
the relationship between the risk model and the immunological
signature was investigated further. The relationship between
immune cells and the risk score is shown in the bubble diagram.
The majority of immune cells were negatively correlated with the
risk score, especially hematopoietic stem cells of XCELL, tumor-
related fibroblasts, stroma score, granulocyte-monocyte progenitor
cells, and activated mast cells of CIBERSORT-ABS, resting memory
CD4+T cells,M2macrophages, and Treg cells of QUANTISEQ and
myeloid dendritic cells and endothelial cells of MCPCOUNTER
(Figure 7A). Moreover, single sample gene set enrichment analysis
(ssGSEA) was used to examine the enrichment fraction of 16
different types of immune cells as well as the activity of 13
different immune-related pathways. Interestingly, the low-risk
group had more immune cell infiltration, particularly activated

dendritic cells, B cells, immature dendritic cells, mast cells,
neutrophils, T helper cells, and tumor-infiltrating lymphocytes
(Figure 7C). The activity of type 2 interferon signaling pathway
and human leukocyte antigen was higher in the low-risk group than
in the high-risk group (Figure 7D). Differential analysis was used to
detect differences in the tumormicroenvironment between the high-
risk and low-risk groups, and the results showed that the low-risk
group had higher immune, stromal, and estimate scores (Figure 7B).
It is possible to conclude that the low-risk group had greater immune
cell infiltration and lower tumor purity. Furthermore, most immune
checkpoints were highly expressed in low-risk groups (Figure 7E).
Therefore, low-risk patients may benefit more from immune
checkpoint inhibitor therapy in our risk model.

Clinical Application of Risk Model
Differences in drug sensitivity of different risk subgroups were
analyzed to investigate the clinical application value of the risk
model. Results showed that docetaxel, paclitaxel, etoposide,
gemcitabine, erlotinib, and crizotinib had good effects on patients
in high-risk groups (Figures 8A–E). Patients in low-risk groups were

FIGURE 6 | Enrichment analysis of different risk subgroups. (A) Five pathways were significantly enriched in each of the high-risk and low-risk groups. (B,C) DO
enrichment analysis of DEGs based on different risk subgroups.
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more susceptible to drugs such as CDK4/6 inhibitors (PD.0332,991)
and PI3K inhibitors (GDC0941); however, these drugs are currently
used only for scientific research and may be promising in the future
(Figures 8F,G). Reviewing theGSEA andDO enrichment analysis, it
was found that the high-risk group in the TCGA-LUAD cohort had
pathway enrichment such as cell cycle and DNA replication. The

sensitive medications in the high-risk group are all first-line anti-
tumor drugs for non-small cell lung cancer, among which
chemotherapy drugs include docetaxel, paclitaxel, etoposide and
gemcitabine, and their anti-tumor mechanisms are mainly directed
against cell cycle and DNA replication. Erlotinib and crizotinib are
two targeted medications, with erlotinib acting as an Epidermal

FIGURE 7 | Immune signatures of different risk groups. (A) Correlation between risk scores and immune cells. (B) Comparison of immune-related scores between
low-risk and high-risk groups. (C,D) Enrichment scores for 16 immune cells and 13 immune-related pathways. (E) Differences in the expression of 22 checkpoints in
different risk groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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Growth Factor Receptor (EGFR) inhibitor and crizotinib acting as an
Anaplastic lymphoma kinase (ALK) inhibitor. Both EGFR and ALK
targets are crucial for cancer proliferation. Presumably this is why the
high-risk group is susceptible to the six antitumor drugs. The

sensitive medications in the low-risk group have not been utilized
in clinical practice. Fortunately, we discovered that the low-risk
group had stronger immune infiltration and immune checkpoint
expression, and it is expected that immunotherapy will be effective.

FIGURE 8 | Prediction of drug susceptibility in different risk groups. (A–F) Sensitive drugs in high-risk groups. (G,H) Sensitive drugs in low-risk groups.
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DISCUSSION

Numerous studies have recently revealed that m7G-related genes are
closely linked to the development of cancer (Dai et al., 2021; Ma
et al., 2021). A new class of lncRNAs has gradually become a research
hotspot in various cancer fields in recent years. Some studies have
found that abnormal expression of lncRNAs is associated with the
occurrence and progression of LUAD and some lncRNAs may be
highly correlated with prognosis (Spizzo et al., 2012; Cao et al., 2022;
Xia et al., 2022). However, studies on m7G-related lncRNA
predicting LUAD survival are scanty. The present study
attempted to build a prognostic model of lncRNA in LUAD
patients to test its clinical utility, and systematically explored the
differences of risk models in immune cell infiltration, immune
checkpoints, and drug sensitivity.

Forty publicly reported m7G-related genes were collected. First,
lncRNAs that were differentially expressed in normal and LUAD
tissues were explored. Univariate Cox regression was used to analyze
the DELs, and 8 prognostic-related lncRNAs were screened out.
Lasso-Cox regression analysis was then performed on these
lncRNAs, and 6 prognosis-related lncRNAs (LINC01352,
AP000695.1, AC018647.1, AL355472.3, AC026355.2, and
SALRNA1) were finally identified and a risk prognosis model
was constructed. The Sankey diagram showed that AC018647.1,
AL355472.3, and SALRNA1 are related to DCP2. DCP2 is a
decapping enzyme that plays a significant role in the regulation
of the cell cycle and proliferation (Mugridge andGross, 2018). DCP2
was found to promote lung cancer proliferation (Zhang et al., 2021).
Our data also showed that AC026355.2 was highly correlated with
four mRNAs (ACO2, DCP2, EIF4E, and NCBP1). Although
AC026355.2 is rarely reported, we speculate that it plays a
significant role in tumor development, but its precise role
requires further investigation. EIF4E3 can promote translation,
mRNA export, proliferation, and oncogenic transformation, and
its related lncRNA LINC01352 was found to affect the growth and
metastasis of hepatoma cells (Osborne et al., 2013). Bioinformatics
analysis showed that AP000695.1 is closely related to immunity, and
its related gene NUDT10, could be a potential immunotherapy
target for LUAD in addition to promoting cell proliferation,
inhibiting apoptosis, and causing tumor suppressor gene loss (Jin
et al., 2020; Chen et al., 2021).

GSEA was performed on patients in both risk subgroups to reveal
differences in biological function. Immune-related pathway
enrichment was discovered in the low-risk group but not in the
high-risk group. Immune cell bubble plots showed that low-risk
groups had higher levels of immune infiltration. It has been reported
that the high immune infiltration state tends to have a better
immunotherapeutic effect (Guo et al., 2022; Luo et al., 2022).
Interestingly, immune scores and immune checkpoint expression
levels were also higher in the low-risk group, which is consistent with
the results of Yu et al. (2021). Furthermore, susceptibility to antitumor
drugs in different risk subgroups was assessed, and it found that the
high-risk group showed high sensitivity to first-line treatment drugs
for non-small cell lung cancer (including docetaxel, paclitaxel,

etoposide, gemcitabine, erlotinib, and crizotinib) (Schiller et al.,
2002; Zhou et al., 2011; Liang et al., 2017; Wu et al., 2018a; Wu
et al., 2018b). Collectively, these results suggest that patients in the
low-risk group will respond better to immunotherapy, while those in
the high-risk group will respond better to chemotherapy and targeted
drugs, which has important implications for individualized tumor
therapy.

Although we verified the stability of the risk model frommultiple
aspects, there are still some limitations. First, the model was not
externally validated because other databases lacked lncRNA
information; thus, it was only be validated internally by TCGA.
Further studies with a large sample size are required to draw
definitive conclusions. Future studies will further explore the six
lncRNAs.

CONCLUSION

In summary, this study conducted a comprehensive bioinformatics
analysis and developed a risk model for six m7G-related lncRNAs,
which not only accurately predicts patient survival but also reflects
the immune characteristics of LUAD patients. This may provide
important clues for the development of clinical individualized
treatments and promote the progress of immunotherapy.
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Purpose: The prognosis of head and neck squamous cell carcinoma (HNSCC) is poor.
Necroptosis is a novel programmed form of necrotic cell death. The prognostic value of
necroptosis-associated lncRNAs expression in HNSCC has not been explored.

Methods: We downloaded mRNA expression data of HNSCC patients from TCGA
databases. Prognostic lncRNAs were identified by univariate Cox regression. LASSO
was used to establish a model with necroptosis-related lncRNAs. Kaplan-Meier analysis
and ROC were applied to verify the model. Finally, functional studies including gene set
enrichment analyses, immunemicroenvironment analysis, and anti-tumor compound IC50
prediction were performed.

Results: We identified 1,117 necroptosis-related lncRNAs. The Cox regression showed
55 lncRNAswere associated with patient survival (p < 0.05). The risk model of 24- lncRNAs
signature categorized patients into high and low risk groups. The patients in the low-risk
group survived longer than the high-risk group (p < 0.001). Validation assays including
ROC curve, nomogram and correction curves confirmed the prediction capability of the
24-lncRNA risk mode. Functional studies showed the two patient groups had distinct
immunity conditions and IC50.

Conclusion: The 24-lncRNA model has potential to guide treatment of HNSCC. Future
clinical studies are needed to verify the model.

Keywords: risk score, prognosis, squamous cell carcinoma, necroptosis, immune, tumor

INTRODUCTION

Head and neck squamous cell carcinomas (HNSCCs) arise from squamous cells in the oral
cavity, pharynx and larynx. The most common risk factors for HNSCC include alcohol
drinking, smoking and HPV infection (Fakhry et al., 2008). Athough HNSCC can be
treated with surgery, radiotherapy and chemotherapy, patients with HNSCCs still suffer
from poor survival. To improve patient survival, novel therapeutic targets and effective
prognostic tools are needed.
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Necroptosis is another mode of regulated cell death mimicking
apoptosis and necrosis. Necroptosis is associated with a range of
pathological conditions and diseases, including cancer. It is mediated
by Fas, TNF, LPS, and death receptors (Vanden Berghe et al., 2014).
Binding of ligands and receptors activates RIP3, which
phosphorylates MLKL (Sun et al., 1999). Phosphorylated MLKL
then translocates to and ruptures cellular membranes, leading to cell
swelling and release of intracellular components (Dondelinger et al.,
2014; Hildebrand et al., 2014; Wang et al., 2014).

A plethora of evidence shows necroptosis of tumor cells is often
associated with tumor aggressiveness andmetastasis. RIP3, amolecular
marker of necroptosis, is an independent factor associatedwith survival
in breast cancer (Koo et al., 2015). RIP3 expression was also decreased
in colorectal cancer and was an independent prognostic factor of
survival (Feng et al., 2015). In acutemyeloid leukemia, RIP3 expression
was reduced in most samples and overexpression of RIP3 in DA1-3b
leukemia cells induced necroptosis (Nugues et al., 2014). Li et al.
reported that necroptosis was associated with survival of HNSCC
patients (Li et al., 2020).

Long non-coding RNAs (lncRNAs) regulate gene expression
and are involved in tumorogenesis (Kumar and Goyal, 2017; Peng
et al., 2017). Specially, Jiang et al. reported dysregulation of
lncRNAs was involved in HNSCC(Jiang et al., 2019). Although
necroptosis plays an important role in patient survival of a variety

of tumors, the role of necroptosis-related lncRNAs in HNSCC has
not been reported.

We thus explored the potential roles of different necroptosis-
related lncRNAs on the survival of HNSCC patients. We
developed a novel risk-score model with necroptosis-related
lncRNAs according to their expression levels. The results
might further our understanding of necroptosis in HNSCC.

MATERIALS AND METHODS

TCGA Data Acquisition
The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/
repository) has transcriptomic data of more than 20,000 cancer and
normal samples. In the present study RNA sequencing (RNA-seq) data
of tumor tissues of 487HNSCCpatients and 42matchednormal tissues
was downloaded from TCGA database. Our study was conducted by
reviewing public database and ethical approval was not required.

Identification of Necroptosis-Related
lncRNAs
The expression data of 67 necroptosis-associated genes was
used for analysis (Supplementary Table S1). Correlation

FIGURE 1 | Workflow diagram of data analysis.
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analysis was performed among 67 necroptosis-related genes
and differentially expressed lncRNAs in the combined
matrices. 1,117 lncRNAs with Pearson correlation coeffi-
cients >0.4 and p < 0.001 were identified to be
necroptosis-related lncRNAs.

Establishment and Validation of the Risk
Signature
The clinical data of HNSCC patients was downloaded from TCGA
data portal. The univariate Cox proportional hazard regression
analysis was used to screen prognostic genes. Least absolute

FIGURE 2 | Necroptosis-related lncRNA prognostic signature identified in HNSCC. (A) Correlation network of necroptosis-related genes and necroptosis-related
lncRNAs. (B) The volcano plot of 717 lncRNAs. Red dots represented upregulated lncRNAs and black dots represented down-regulated lncRNAs. (C,D) The expression
and univariate Cox regression of 55 prognostic lncRNAs. *p < 0.05; **p < 0.01; ***p < 0.001.
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shrinkage and selection operator (Lasso) regression was conducted
with 10-fold cross-validation and a p value of 0.05. After identification
of the prognostic lncRNAs, the risk scores were determined as follow
(X: coefficients, Y: expression level of lncRNAs):

risk score � ∑
n

i

XipYi

HNSCC patients were allocated into either low- or high-risk
groups according to the median risk score (Meng et al., 2019;
Hong et al., 2020). The Chi-square test was used to determine the
prognostic significance value of the risk model, and overall survival
(OS) time was compared between the two groups via Kaplan-Meier

analysis. The “survival”, “survminer” and “timeROC” R packages
were used to plot the 1-, 3-, and 5-years receiver operating
characteristics (ROC) curves. The risk scores were also evaluated
as an independent risk factor with other clinical parameters by Cox
regression with rms R package. Then a nomogram for prediction of
the 1-, 3-, and 5-years OS was set up using risk score and clinical
parameters. The ROC, calibration curves and Hosmer-Lemeshow
test of the nomogram were assessed in the validation set.

GSEA
To explore the biological pathways that might be responsible for
poor patient survival, we employed R (Bioconductor package

FIGURE 3 | Construction of prognostic signature in HNSCC. (A) LASSOwith 10-fold cross-validation. (B) Coefficient profile plots. (C) The Sankey diagram shows
the connection degree between the 24 prognostic lncRNAs and the necroptosis-related genes.
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gsea) to perform gene set enrichment analyses (GSEA). Potential
biological mechanisms of the prognostic model were also
explored. KEGG gene sets in the GSEA database were
downloaded. We chose gene sets with a FDR value < 0.05 and
a FDR <0.25.

The Investigation of the TME and Immune
Checkpoints
CIBERSORT, EPIC, MCPcounter, QUANTISEQ, TIMER, and
XCELL were used to evaluate cells in the tumor

microenvironment (TME) (http://timer.cistrome.org/). ggplot2,
ggtext, limma, and scales R packages and Wilcoxon signed-rank
test were performed to analyze cell types in TME (Hong et al.,
2020). TME scores and immune checkpoint were compared
between the two groups with ggpubr R package.

Prediction of Clinical Treatment Response
Topredict therapeutic response, theRpackage pRRopheticwas utilized
to measure the half-maximal inhibitory concentrations (IC50) of each
HNSCC sample on Genomics of Drug Sensitivity in Cancer (GDSC)
(https://www.cancerrxgene.org/) (Geeleher et al., 2014).

FIGURE 4 | The prognosis analysis of the three sets (training set: A, D, G, J; test set: B, E, H, K; entire set: C, F, I, L). (A–C) Risk scores of the high-risk and low-risk
groups in the respective three sets. (D–F) Comparison of survival between the two groups in the respective three sets. (G–I) The heat maps of 24 lncRNAs. (J–L)
Kaplan–Meier survival curves of patients in the two groups in the respective three sets. (M) Kaplan–Meier survival curves of OS stratified by clinicopathologic parameters
between the two groups.
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RESULTS

Extraction of lncRNAs
Figure 1 shows the flow diagram depicting the present study. We
compared the expression levels of 67 necroptosis-associated
genes (Supplementary Table S1) between 42 healthy samples
and 487 HNSCC cancer samples from the TCGA data and
identified 14,086 lncRNAs. Among these lncRNAs, 1,117
lncRNAs met the criteria (Pearson correlation coefficients >0.4
and p values <0.001) (Figure 2A). We identified 717 differentially
expressed necroptosis-related lncRNAs (|Log2FC| > 1 and p <
0.05) (Figure 2B); 697 were upregulated and 20 were
downregulated. Univariate Cox regression showed 55 lncRNAs

were significantly correlated with OS (p < 0.05 for all)
(Figures 2C,D).

Risk Model Construction and Verification
To avoid overfitting and to quantify the impact of necroptosis-
related lncRNAs on the prognosis of each HNSCC patient, we
constructed a 24 lncRNAs prognostic signature by LASSO
regression analysis (Figures 3A,B). All 24 lncRNAs positively
regulated necroptosis genes in the Sankey diagram (Figure 3C).

We established the following formula to calculate the risk
score of every HNSCC patient.

Risk score = AC008764.8×(-0.2393)+AC104083.1×(-
0.0743)+AC127521.1×(-0.9739)+LINC00539×(-

FIGURE 4 | Continued.
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1.2625)+AC243829.2×(-0.4868)+AL121845.4×(-
0.2809)+AC020911.1×(-
0.6943)+AC007347.1×(0.4674)+ALMS1-IT1×(0.6387)+PLS3-
AS1×(0.3155)+ZNF197-AS1×(0.4949)+LINC00942×(0.0017)+
AC068790.2×(0.3482)+AC139256.3×(-0.9441)+LINC00861×(-
0.8428)+WDFY3-
AS2×(1.1448)+AC116025.2×(1.0996)+AC007128.1×(0.0713)+
RAB11B-AS1×(-0.0588)+AC009121.3× (-1.6935)+POLH-

AS1×(0.4292)+AC021016.1×(-0.0412)+CDKN2A-DT×(-
0.2129)+PCED1B-AS1×(0.1493) (Meng et al., 2019).

In the training set, test set and entire set, the distribution of
risk scores and survival times were compared between the high-
risk group and the low-risk group (Figures 4A–C). More patients
died in the high-risk group (Figures 4D–F). The heat maps of 24
lncRNAs are shown in Figures 4G–I. Survival curves show the
high-risk groups of the three sets had poor prognoses (Figures

FIGURE 5 | Nomogram of the model. (A,B) Tumor stage and risk score were risk factors in the training set. (C,D)Only risk score was risk factor in the test sets. (E)
The nomogram that integrated the risk score, age, and tumor stage to predict OS. (F) The calibration curves for OS. (G–I)ROC curves of the three sets (training set: A, C,
G; test set: B, D, H; entire set: I).
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4J–L). Besides, some typical clinicopathologic parameters were
identified to be prognostic factors (Figure 4M).

Nomogram
In both the training set and the test set, risk score, age and tumor
stage were identified to be independent prognostic factors. The
hazard ratios (HR) of these factors are shown in Figures 5A–D).
A nomogram was established to predict the 1-, 3-, and 5-years OS
(Figure 5E). The predicted survival showed close agreement with
observed actual survival (Figure 5F).

Assessment of the Risk Model
The ROC curves showed the sensitivity and specificity of the
model were high (Figures 5G–I).

GSEA
GSEA results showed that nine of top ten pathways were involved
in carcinogenesis. For example, pentose and glucuronate
interconversions, aldarate metabolism, and starch and sucrose
metabolism were significantly enriched in the high-risk group.
On the other hand, eight pathways enriched in the low-risk group
were related to immunity (p < 0.05; FDR <0.25; |NES| > 1.9), such
as T cell receptor signaling pathway and natural killer (NK) cell-
mediated cytotoxicity (Figure 6A; Supplementary Table S2).
Therefore, the low-risk group had a favorable TME. On the
contrary, the high-risk group had an unfavorable TME.

Cold and Hot Tumors
Single sample GSEA (ssGSEA) was performed to calculate numbers
for different types of immune cells. Tumors of the low-risk group
were infiltrated by more immune cells as exhibited in the heatmap
(p< 0.05 for all) (Figure 6B; Supplementary Table S3). Correlations
between risk scores and activities of immune cell types are shown in
Figure 6C. All of the 13 immune-related pathways had higher
activity in the low-risk group (Figure 6D).

ESTIMATE was used to generate immune scores and stromal
scores. Figure 6E shows both immune scores and stromal scores
(microenvironment) were higher in the low-risk group. Besides,
the immune checkpoint expression was lower in the low-risk
group (Figure 6F).

Finally, we found IC50 of the anti-tumor compounds, such as
AKT inhibitors, JNK inhibitor and sunitinib, was usually lower in
the low-risk group (Figure 6G).

DISCUSSION

The human genome produces a large amount of RNA transcripts
that do not encode for proteins (Djebali et al., 2012). lncRNAs are
among those transcripts. They are usually longer than 200
nucleotides and have many functions, including regulating
cancer development (Huarte, 2015; Marchese et al., 2017;
Mattick, 2018).

Necroptosis is mediated by RIP1 and RIP3 (Chan and
Baehrecke, 2012; Pasparakis and Vandenabeele, 2015). RIP1
phosphorylates RIP3, which phosphorylates MLKL. In
necrosomes phosphorylation of MLKL leads to MLKL
oligomerization. Oligomerized MLKL causes cell death by
breaking down cell membranes (Sun et al., 2012; Guicciardi
et al., 2013). Although necroptosis may cause cancer cell
death, cell death may inhibit immune response (Pasparakis
and Vandenabeele, 2015; Wang et al., 2017). Necroptosis may
elicit necrosis-associated inflammation. Inflammation could
contribute to progression of cancer and promote resistance to
anticancer treatments. In addition necroptosis may also fail to
elicit strong immunogenic reactions.

Massively parallel RNA sequencing has identified large
amounts of novel lncRNAs. However, functional annotation of
lncRNAs is lagging behind. In the present study, we explored the
prognostic values of necroptosis-related lncRNAs in HNSCC.We
found that several necroptosis-related lncRNAs were closely
related to HNSCC prognosis. More specifically, AC007347.1,
ALMS1-IT1, PLS3-AS1, ZNF197-AS1, AC068790.2, WDFY3-
AS2, AC116025.2, POLH-AS1, and PCED1B-AS1 were risk
factors. On the other hand, AC008764.8, AC127521.1,
LINC00539, AC243829.2, AL121845.4, AC020911.1,
AC139256.3, LINC00861, AC009121.3 and CDKN2A-DT were
protective factors for HNSCC patients.

Further analysis showed that AC007347.1, ALMS1-IT1,
PLS3-AS1, ZNF197-AS1, AC068790.2, WDFY3-AS2,

FIGURE 5 | Continued.
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AC116025.2, POLH-AS1, and PCED1B-AS1 are positive
regulators of BRAF, SIRT1, FLT3, FASLG, TRAF2, ATRX,
TERT, SPATA2, and TNFRSF1B. BRAF is a proto-oncogene
that encodes for the B-Raf protein, a kinase of the RAF protein
family (Rebocho and Marais, 2013). The Ras/Raf/MAPK
pathway regulates cell growth, differentiation, cell motility
and apoptosis (Rebocho and Marais, 2013; Schettini et al.,
2018). Abnormal activation of the pathway is responsible for
many tumors (Bouchè et al., 2021).

SIRT1 is a member of the HDAC family. Aberrant SIRT1
expression has been found in many tumors (Bradbury et al., 2005;
Hida et al., 2007; Stünkel et al., 2007; Chen et al., 2014). ATRX is a
member of the SWI-SNF protein family (Stayton et al., 1994;
Picketts et al., 1996; Argentaro et al., 2007). SWI-SNF proteins are
involved in DNA recombination and repair (Picketts et al., 1996),
which are crucial for both development and cancer (Watson et al.,
2015). SPATA2 is a TNF receptor modulator. TNF-α pathway
modulates immune responses (Swann et al., 2008). TNF-α and

FIGURE 6 | TME and immunotherapy. (A) Top 10 pathways identified by GSEA (B)The heat maps of immune cells. (C) Risk scores were corrected with immune
cells. (D) ssGSEA scores of immune functions. (E) Comparison of immune-related scores between the two groups. (F) The expression of 34 checkpoints. (G)Twelve
targeted and immunotherapeutic drugs with different IC50 between the low-risk group (green) and the high-risk group (red).
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IL-1β induced SPATA2 expression in ovarian cancer cells and
that increased SPATA2 expression was associated with poor
prognosis of ovarian cancer patients (Wieser et al., 2019). Our
study suggested SPATA2 expression is also associated with poor
prognosis of HNSCC patients. ZBP1 is expressed in many tissues
(Fu et al., 1999; Rothenburg et al., 2002) and is a interferon
stimulated gene (Fu et al., 1999; Kuriakose and Kanneganti,
2018). ZBP1 expression in tumors is elevated. ZBP1 deletion
blocks tumor necroptosis during tumor development and inhibits
tumor metastasis (Baik et al., 2021). TNF-α is a pro-inflammatory
cytokine mainly secreted by macrophages. There are two
receptors for TNF-α, i.e., TNFRSF1A and TNFRSF1B.
Although TNF can kill tumor cells, it also contribute to
tumorigenesis (Aggarwal, 2003).

On the other hand, AC008764.8, AC127521.1, LINC00539,
AC243829.2, AL121845.4, AC020911.1, AC139256.3, LINC00861,
AC009121.3 and CDKN2A-DT were protective factors for HNSCC
patients. Further analysis showed these lncRNAs were positive
regulators of p16INK4a, SPATA2, FLT3, FASLG, TRAF2, ATRX,
TERT, BRAF, SIRT1, TNFRSF1B, and BCL2L11. p16INK4a is a
tumor suppressor protein encoded by CDKN2A (Witcher and
Emerson, 2009). p16INK4a is a negative regulator of cell cycle
(Serrano et al., 1993). CDKN2A also encodes for another tumor
suppressor protein, which interacts with p53 (Pomerantz et al.,
1998). Inactivation of p16INK4a has been observed in various
cancers via various mechanisms (Zhao et al., 2016). FLT3 is a
receptor tyrosine kinase that is expressed in hematopoietic cells.
Activation of FLT3 leads to autophosphorylation and mediates

FIGURE 6 | Continued.
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proliferation and differentiation of hematopoietic progenitor cells.
However its role in tumorogenesis has not been reported. FASLG is
a tumor suppressor and a member of the tumor necrosis factor
superfamily (Magerus et al., 2021). FASLG/FAS signaling could
induce apoptosis in various cancers (Liu et al., 2009; Kadam and
Abhang, 2016; Magerus et al., 2021). TRAFs are intracellular adaptor
signaling molecules of immune cells (Rothe et al., 1995; Ye et al., 2002;
Park, 2018). TRAF2 promotes p53-dependent apoptosis by activating
the JNK signaling cascade in cancer cells (Tsuchida et al., 2020).
BCL2L11 is a member of BCL-2 family and regulates function of
mitochondria (Concannon et al., 2010; Kilbride et al., 2010). BCL2L11
deletion/downregulation is found in many neoplasms and contribute
to acquired drug resistance (Zhang et al., 2016).

By our model, we found pathways such as TNF, RAF and BCL-2
and FASLG/FAS are closely related to HNSCC. Although the
protective lncRNAs are positive regulators of several tumor
suppressors, they are also associated with several oncogenes. We
propose that the prognostic value of a specific lncRNA is
determined by the net effect of its multiple target genes.

Tumors have been described as “hot” or “cold” according to
infiltration degree by T cells rushing to fight the cancerous cells.
Hot tumors typically respond well to immunotherapy treatment
using checkpoint inhibitors. Checkpoint inhibitors block
signalling through checkpoint receptors to prevent the loss of
T cell response to tumors. In contrast, nonimmunogenic “cold”
tumors have not yet been infiltrated with T cells. The lack of
T cells makes it difficult to provoke an immune response with
immunotherapy drugs. IN addition, the microenvironment
surrounding cold tumors contains myeloid-derived suppressor
cells and T regulatory cells, which are known to dampen the
immune response. In our model the patients in the high-risk
group were more likely to have cold tumors, which may partially
explain why the patients in the high-risk group had poor
prognosis.

There were some limitations of our model. As a retrospective
study, inherent biases might affect the model. We had performed
internal validation by the test set, but we did not perform external
validation.

FIGURE 6 | Continued.
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In conclusion, we established a novel necroptosis-associated
lncRNA signature for the prognosis of HNSCC. The established
signatures suggest that lncRNAs might be associated with
responses to targeted therapy and immunotherapy of HNSCC.
The potential of this signature in predicting patient survival and
treatment responses need to be validated in future tests.
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Breast cancer (BC) has continued to be the leading cause of cancer deaths in

women, accompanied by highly molecular heterogeneity. N6-

methyladenosine (m6A), a methylation that happens on adenosine N6, is the

most abundant internal mRNA modification type in eukaryotic cells.

Functionally, m6A methylation is a reversible modification process and is

regulated by 3 enzymes with different functions, namely “writer”, “reader”,

and “eraser”. Abnormal m6A modifications trigger the expression, activation,

or inhibition of key signaling molecules in critical signaling pathways and the

regulatory factors acting on them in BC. These m6A-related enzymes can not

only be used asmarkers for accurate diagnosis, prediction of prognosis, and risk

model construction, but also as effective targets for BC treatment. Here, we

have emphasized the roles of different types of m6A-related enzymes reported

in BC proliferation, invasion, and metastasis, as well as immune regulation. The

comprehensive and in-depth exploration of the molecular mechanisms related

to m6A will benefit in finding effective potential targets and effective stratified

management of BC.
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1 Introduction

Breast cancer (BC) has continued to be the leading cause of

cancer deaths in women, and its incidence rates are still

increasing globally (Sung et al., 2021). BC is a highly

molecularly heterogeneous tumor type and is continually

associated with headaches, such as recurrence, metastasis, and

drug resistance (Yau et al., 2022) (Derose et al., 2011). These

features cause certain bottlenecks in the diagnosis and treatment

of BC. Therefore, exploring the molecular mechanism of the

occurrence and development of BC, as well as the capability for

the early diagnosis of BC, treatment monitoring, or the search for

effective potential targets, is of great significance for the effective

stratified management of BC and the development of new

diagnosis and treatment methods (Ellis and Perou, 2013).

Epigenetic regulation, represented by N6-methyladenosine

(m6A) modification, histone modification, DNA methylation,

chromatin remodeling, and non-coding RNA (ncRNA)

regulation, plays an overwhelming role in almost all biological

behaviors, including cell differentiation and tissue development,

and tumor progression (Wiener and Schwartz, 2021). M6A, a

methylation that happens on adenosine N6, is the most abundant

internal mRNA modification type in eukaryotic cells (Hu et al.,

2022). There is a lot of evidence that m6A modification is an

emerging important molecular modulation for tumors. In

mammals, m6A modifications are known as a reversible

dynamic process to influence different dimensions of RNA

expression, including regulation of mRNA stability, splicing,

translation efficiency, nuclear export, and degradation (Dierks

et al., 2021). Functionally, this reversible m6A methylation

modification is regulated by 3 enzymes with different

functions, namely “writer”, “reader”, and “eraser” (Uddin

et al., 2021). Among them, m6A can be installed by the

methyltransferase complex, namely, writers, which include

METTL3, METTL14, WTAP, RBM15/RBM15B, HAKAI,

ZC3H13, and VIRMA/KIAA1429 (Huang et al., 2020). M6A

eraser is able to remove methylation from m6A-modified RNA,

mainly including FTO, ALKHB5, and ALKHB3 (Zhou et al.,

2020). M6A reader is a selective RNA-binding protein that is

responsible for catalyzing for recognizing m6A to activate

downstream pathways, including YTH domain family 1-3

(YTHDF1, YTHDF1-2, YTHDF1), eIF3, IGF2BP1-3, hnRNPC,

and hnRNPA2B1 (Dai et al., 2021) (Figure 1).

The enzymes involved in m6A modifications have been

implicated in the regulation of gene expression and tumor

evolution, including carcinogenesis, metastasis, and

progression, especially in BC. For example,

YTHDF1 overexpression is a not desirable signature for BC

patients and is linked to lower immune infiltrate and poor

clinical outcomes, while YTHDF1 inhibition promotes the

FIGURE 1
Overview of the classification and molecular mechanisms of m6A methylation. m6A RNA methylation is regulated by 3 different key enzymes,
correspondingwriters, erasers, and readers, which perform the functions of adding, deleting, or recognizingm6A, respectively. The consequences of
m6A methylation lead to multiple processes in RNA metabolism and expression, including RNA splicing, miRNA processing, nuclear export,
translation, stability, and RNA decay.
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proliferation, migration, and invasion in BC cell lines (Li et al.,

2022). The results of sequencing data mining showed that m6A

and its target genes have corresponding changes at the gene and

protein levels in tumors, endowing the potential to indicate the

prognosis of BC. In a bioinformatics analysis, high expression of

IGF2BP1, a key m6A regulator, was often associated with shorter

overall survival (OS) in BC patients. This suggests that

IGF2BP1 is an independent prognostic factor in BC (Zhong

et al., 2021). Besides, Chen et al. confirmed that

METTL3 methylation is involved in KRT7-mediated m6A-

induced BC lung metastasis (Chen et al., 2021). Furthermore,

the expression profile of m6A regulators in BC is also

prominently related to tumor malignancy, tumor immune

score, anti-tumor immune response, and therapeutic effect

(He et al., 2021). Gong et al. reported that METTL14 and

ZC3H13 were positively correlated with the abundance of

CD8+ T cells, neutrophils, macrophages, and dendritic cells

(DCs) in BC.

Therefore, the systematic elucidation of the exact molecular

mechanisms of m6A epigenetic regulation in BC progression is

highly warranted. Here, we have reviewed and highlighted the

roles of different types of m6A-related enzymes reported in BC

proliferation, invasion, and metastasis, as well as immune

regulation. Continued focus on the molecular mechanisms

associated with m6A will benefit in finding effective potential

targets and effective stratified management of BC.

2 The role of N6-methyladenosine
modification in breast cancer
progression

2.1 N6-methyladenosine writer in breast
cancer progression

2.1.1 METTL3
At present, METTL3 is the most studied methylation-

modified protein that plays a broad regulatory role in BC

progression. METTL3 mainly participates in the biogenesis,

decay, and translation control of mRNA through m6A

modification (Lin et al., 2016). Both METTL3 and

METTL14 have methyltransferase activity, and the

methyltransferase complex formed by the two performs

catalytic function during the m6A process (Yankova et al., 2021).

In TNBC, METTL3 is an important collaborator in

regulating metastasis, and low expression of METTL3 is

implicated in the poor prognosis of triple-negative breast

cancer (TNBC) (Shi et al., 2020). As Shi et al. confirmed, this

metastasis-suppressing function of METTL3 was achieved by

suppressing the expression of COL3A1 and its m6A function (Shi

et al., 2020). METTL3 could accelerate the protein levels of SOX2,

CD133, and CD44 to maintain or promote BC cell stemness,

which was triggered by the m6Amodification of SOX2mRNA by

METTL3, ultimately leading to the alteration in enhanced BC

invasion and migration capabilities (Xie et al., 2021). In BC lung

metastasis cell lines, m6A and methyltransferase

METTL3 expression was enhanced, while the expression level

of demethylase FTO was reduced (Chen et al., 2021). M6A was

capable of regulating lung metastasis in BC cells by regulating

m6A/KRT7/KRT7-AS. The study by Wang et al. revealed a

similar conclusion that METTL3 was a tumor promoter and

its knockdown could inhibit tumor progression by reducing

methylation levels (Wang H. et al., 2020). This mechanism of

action was achieved through the Bcl-2 pathway targeted by

METTL3. In addition, hepatitis B X-interacting protein

(HBXIP) was identified to promote METTL3 expression by

repressing miRNA let-7g, while METTL3 was simultaneously

able to induce HBXIP expression (Cai et al., 2018). This

mechanism caused a positive correlation between the

expression of METTL3 and HBXIP in BC tissues and a

positive feedback regulation phenomenon.

In the process of BC cell behavior, ncRNAs represented by

miRNAs, lncRNAs, and circRNAs have been identified as very

important direct regulators of METTL3. Therefore, interactions

mediated byMETTL3 and ncRNAs regulate the expression levels

of post-transcriptionally regulated genes that determine tumor

fate. METTL3 was capable of influencing the malignant behavior

of BC EMT. Specifically, inhibition of METTL3 diminished the

m6A modification of MALAT1, subsequently downregulated the

MALAT1 expression to suppress EMT in BC by sponging miR-

26b to reduce the expression of HMGA2 (Zhao et al., 2021). Fan

et al. demonstrated that LINC00675 was a tumor protective

factor, and its low expression was associated with higher

tumor grade, lymphovascular invasion, and shorter survival

(Fan and Wang, 2021). Furthermore, in vitro studies indicated

that LINC00675 inhibited BC progression by suppressing miR-

513b-5p in a METTL3-related m6A-dependent manner. From

clinical, cellular, and tumor-bearing mouse levels, Xu et al.

demonstrated that zinc finger protein 217 (ZNF217) silencing

or miR-135 elevation inhibited BC cell migration, invasion, and

EMT initiation (Xu et al., 2022). This was mediated by a

mechanism that, ZNF217 could upregulate NANOG by

reducing m6A levels through METTL3, thereby forming a

miR-135/ZNF217/METTL3/NANOG axis.

LINC00958 was an overexpressed lncRNA that promoted the

malignant progression of BC tumors (Rong et al., 2021). And,

LINC00958 bound to miR-378a-3p to regulate YY1 expression,

on the other hand, METTL3-mediated m6A modification

promoted LINC00958 expression upregulation. In TNBC cell

lines, the overexpressed METTL3 was an accelerator to suppress

the proliferation and invasion (Ruan et al., 2021). Further

validation showed that circMETTL3 served as a sponge for

miR-34c-3p and exerted tumor-promoting functions by

upregulating the expression of METTL3. METTL3-derived

circRNAs contributed to the proliferation and invasion of BC

cells, through the competitive endogenous RNA (ceRNA) effect
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of miR-31–5p with upregulated CDK1 (Li et al., 2021). This

function was also affected by the m6A modification mechanism

of circMETTL3, which included METTL3.

2.1.2 METTL14
METTL14 is an important RNA methyltransferase that

serves an essential and significant role in the growth of

tumors by regulating RNA expression. METTL14 has been

demonstrated to be a core component of the m6A

methyltransferase complex and is implicated in the dynamic

and reversible process of m6A modification (Zhu X. et al., 2021).

LINC00942 (LNC942) might function as an oncogene that

promotes BC cell proliferation, and colony formation and

inhibits apoptosis (Sun et al., 2020). In BC cells,

LINC00942 increased the METTL14-mediated m6A

methylation and its associated mRNA stability, as well as the

CXCR4 and CYP1B1 expression of CXCR4 and CYP1B1,

revealing a novel LNC942-METTL14-CXCR4/

CYP1B1 regulatory axis. Zhao et al. demonstrated that

silencing of lncRNA UCA1 suppressed DNA methylation of

RNAmethyltransferase METTL14 (Zhao et al., 2022). This event

promoted m6A modification of miR-375, leading to reduced

SOX12 expression and eventually restrained BC proliferation and

invasion. METTL14 is also an m6A methyltransferase that is

significantly elevated in BC tissues. When METTL14 was

overexpressed or its activity was inhibited, the invasive ability

of tumor cells becomes enhanced or weakened, accordingly (Yi

et al., 2020). The abnormal expression of

METTL14 reconstructed the miRNA expression profile of BC

cells, and mainly regulated the cell adhesion and invasion ability

by regulating the expression of Hsa-miR-146A-5p.

2.1.3 methyltransferase-like 5
Methyltransferase-like 5 (METTL5), can catalyze mA

modification of 18S rRNA at adenosine 1832 (mA) in a

critical position in the decoding center, possing the ability in

regulating mRNA translation for impacting on cell growth

(Sepich-Poore et al., 2022). In BC, METTL5 also exhibited a

pattern of elevated expression and was required for the

maintenance of BC cell lineage growth, reproduction, and S6K

activation (Rong et al., 2020). The study by Rong et al.

demonstrated that METTL5 was an 18S rRNA A1832-specific

methyltransferase and was capable of regulating ribosome

function via multiple models.

2.1.4 KIAA1429
KIAA1429, also known as VIRMA, is recognized as the

largest m6A methyltransferase and is employed as a scaffold

for the catalytic core component of the bridging m6A

methyltransferase complex (Lan et al., 2019).

KIAA1429 plays an instrumental function in m6A

modification and has previously been found to be

dysregulated in a variety of cancer types. KIAA1429 is

considered to be involved in BC carcinogenesis and

progression. Zhang et al. showed that KIAA1429 was a

significant promoter of tumor invasion and metastasis

in vitro and in vivo, and affected the course of BC in a

non-m6A-regulated manner (Zhang et al., 2022).

KIAA1429 failed to interfere with m6A levels of SMC1A

mRNA, implying that m6A modifications did not affect the

interplay between KIAA1429 and SMC1A mRNA.

KIAA1429 directly bound to the 3′-UTR of SMC1A

mRNA, leading to the stability enhancement of SMC1A

mRNA. KIAA1429 showed an interesting expression

pattern with high expression in tumor entities but low

expression in nontumorous tissues (Qian et al., 2019). In

terms of prognosis, the high expression of KIAA1429 was

often associated with a lower OS. Mechanistically,

KIAA1429 plays a carcinogenic role in BC progression by

regulating CDK1 in an m6A-independent manner. The

detailed mechanisms of m6A writer in regulating BC

progression could be seen in Table 1.

2.2 N6-methyladenosine Eraser in breast
cancer progression

2.2.1 Fat mass and obesity-associated
The fat mass and obesity-associated (FTO) gene is a well-known

prominent factor in predicting obesity and is the first m6A eraser to

be discovered in eukaryotic cells. FTO is responsible for controlling

fatty acid transport, adipogenesis, fat metabolism, and obesity

susceptibility. Single nucleotide polymorphisms (SNPs) of the

FTO gene might be associated with various functions in different

BC subtypes (Montazeri et al., 2022). It has been demonstrated that

FTO expression is deregulated in a variety of tumors, including acute

myeloid leukemia (AML), gastric cancer (GC), cervical squamous

cell carcinoma (CSCC), ovarian cancer (OC), and BC (Deng et al.,

2018).

As a key m6A demethylase, FTO is usually and aberrantly

expressed up-regulated in BC tissues. High expression of FTO

implies poor BC patient prognosis. Niu et al. determined that

FTO remarkably contributed to BC cell proliferation and

metastasis via the downregulation of tumor suppressor

BNIP3, which involved FTO-mediated m6A demethylation

in the 3′UTR of BNIP3 mRNA. Xu et al. demonstrated that in

HER2-positive BC, the high FTO expression was linked to

tumor progression, lymph node metastasis, TNM staging, and

poor prognosis (Xu et al., 2020). In vitro experiments have

similarly shown that FTO is a tumor-promoting factor that

activates miR-181b-3p/ARL5B signaling leading to tumor

migration.

2.2.2 AlkB homolog 5
AlkB homolog 5 (ALKBH5) is another key m6A demethylase

for gene transcription, translation, and metabolism, and is
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regarded as an effective biomarker for various diseases, especially

cancers (Zhang et al., 2017). ALKBH3 preferentially acts on m6A

in tRNA sites.

For instance, Wang et al. have previously reported that

ALKBH5 could specifically regulate the function of AML

leukemia stem cells without affecting normal hematopoietic

stem cells (HSCs) (Wang J. et al., 2020). This highlighted the

crucial role of ALKBH5 in maintaining cancer stem cell (CSC)

renewal and cancer occurrence and development through the

KDM4C-ALKBH5-AXL Signaling Axis. Hypoxia induces a series

of stress changes to support the stable viability of cells, including

changes in cytokine secretion profiles, and post-transcriptional

and translational regulation. Reprogramming of the mA

epitranscriptome is vital for the formation of the

transcriptome and proteome in the setting of hypoxia (Wang

et al., 2021). Similarly, Zhang et al. showed that hypoxia-induced

an enhancement of NANOG mRNA and protein expression and

breast CSC phenotype in a HIF- and ALKBH5-dependent

manner, and that ALKBH5 deficiency was a debilitating factor

for the hypoxia-induced BC CSC enrichment (Zhang et al.,

2016).

2.3 N6-methyladenosine Reader in breast
cancer progression

2.3.1 YTHDF1
YTHDF1-3 are the three major m6A binding proteins and

the most widely studied and versatile m6A readers (Chen et al.,

2019). YTHDF1-3, containing special YTH domains, possess the

capabilities of targeting and recognizing m6A-modified RNAs

and mediating their degradation. YTHDF1 is a typical and highly

expressed m6A reader protein in BC tissues and cell lines, and its

high expression status is thought to be indicative of tumor size,

metastasis, poor prognosis, and chemotherapy resistance (Anita

et al., 2020). YTHDF1 is involved in almost the whole process of

tumor biological behavior, and plays an important role in

regulating transcription, translation, protein synthesis,

TABLE 1 The mechanisms of m6A writer in regulating BC progression.

Regulators Expression pattern Functions and mechanisms Ref

METTL3 Low expression in TNBC the low expression of METTL3-reduced m6A modification could promote TNBC
metastasis by up-regulating COL3A1

(18)

METTL3 Upregulation in BC tissue, especially in T3-T4 or those
accompanied with lymphatic metastasis

METTL3 promoted the stemness and malignant progression of BCa through
mediating m6A modification on SOX2 mRNA

(19)

METTL3 Upregulation in BC tissue and cells METTL3 knockdown could decrease the methylation level, reduce the proliferation,
accelerate the apoptosis and inhibited the tumor growth by targeting Bcl-2

(20)

METTL3 Upregulation in BC tissue HBXIP up-regulated METTL3 by suppressing let-7g, in which METTL3 increased
HBXIP expression forming a positive feedback loop of HBXIP/let-7g/METTL3/
HBXIP, leading to accelerated cell proliferation in BC

(21)

METTL3 Upregulation in BC tissue and cells Silencing METTL3 down-regulated MALAT1 and HMGA2 by sponging miR-26b,
and finally inhibited EMT, migration and invasion in BC

(22)

METTL3 −/− METTL3 increased the m6A methylation of LINC00675, which enhanced the
association between LINC00675 and miR-513b-5p

(23)

METTL3 −/− MicroRNA-135 inhibited initiation of EMT in BC by targeting ZNF217 and
promoting NANOG m6A modification

(24)

METTL3 Decreased in TNBC tissues and cell lines circMETTL3 could act as a sponge for miR-34c-3p and inhibits cell proliferation,
invasion, tumor growth and metastasis by up-regulating the expression of miR-34c-
3p target gene METTL3

(26)

METTL3 −/− circMETTL3 promotes BC progression through circMETTL3/miR-31–5p/
CDK1 axis.

(27)

METTL14 Upregulation in BC cells and BC cohorts LNC942 promoted METTL14-mediated m6A methylation in BC cell proliferation
and progression

(29)

METTL14 Low expression in BC LncRNA UCA1 promoted SOX12 expression by regulating m6A modification of
miR-375 by METTL14 through DNA methylation

(30)

METTL14 Upregulation in BC tissue METTL14 modulated m6A modification and hsa-miR-146a-5p expression, thereby
promoting the migration and invasion of BC cells

(31)

METTL5 Elevated expression in BC tissue and cell lines Ribosome 18Sm6AmethyltransferaseMETTL5 promotes translation initiation and
BC cell growth, uncovering critical and conserved roles of METTL5 in the
regulation of translation

(33)

KIAA1429 Overexpression in BC KIAA1429/SMC1A/SNAIL axis in promoting EMT progress and metastasis in BC (35)

KIAA1429 Highly expressed in BC tissues KIAA1429 promoted BC progression and was correlated with pathogenesis by
associating with CDK1 mRNA in an m6A-independent manner.

(36)
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angiogenesis, and EMT. Intriguingly, YTHDF1 as a target of

tumor immune regulation has also attracted much attention.

Chen et al. showed that YTHDF1 promoted YTHDF1/

FOXM1 to enhance FOXM1 expression, which in turn

intensified the proliferation, invasion, and EMT phenotype of

BC cells (Chen et al., 2022). Another 2022 similar study showed

that a series of cascade reactions triggered by YTHDF1 were

important molecular events in driving BC. Specifically, HIF1α
expression could be induced and miR-16-5p levels were

suppressed in a hypoxic microenvironment, resulting in

upregulated YTHDF1 expression (Yao et al., 2022). Also,

inhibition of YTHDF1 was able to promote the down-

regulation of the glycolytic gene PKM2 to reduce BC

glycolytic activity and lead to tumorigenicity and metastasis

inhibition. These studies suggest that YTHDF1 can be used in

a variety of regulatory pathways tomodulate BC progression, and

that depletion or targeted inhibition of YTHDF1 is a potentially

efficient BC therapeutic strategy.

2.3.2 YTHDF2
YTHDF2 is an N-methyladenosine-binding protein and

can modulate mRNA stability, thus impacting central nervous

system responses, embryonic development, and tumor

evolution. Tumor biology studies have shown that

YTHDF2 can modulate m6A modification to regulate

downstream signaling molecules to regulate tumor cell

proliferation, invasion, and migration (Shen et al., 2021).

For instance, SUMOylation of YTHDF2 promotes mRNA

degradation and cancer progression by increasing its

binding affinity to m6A-modified mRNA (Hou et al., 2021).

Einstein et al. uncovered a mechanism associated with RNA-

binding proteins (RBPs), that the suppression of

YTHDF2 initiated proteotoxic cell death pattern in MYC-

driven TNBC (Einstein et al., 2021). This work not only

demonstrated that YTHDF2, aberrantly expressed RBP and

its mode of interaction with RNA were essential for BC cell

growth, but that targeting YTHDF2 and specific RBP

possessed outstanding BC therapeutic potential. The

important mechanism of post-translational protein

modification of YTHDF2, fully confirmed that

YTHDF2 has a delicate manipulation between the

regulation of protein post-translational modification and

RNA chemical modification.

2.3.3 YTHDF3
YTHDF3, in combination with YTHDF1 and YTHDF2, has a

crucial effect in enhancing the synthesis of m6A-modified

mRNAs in the cytoplasm (Shi et al., 2017). In TNBC

subtypes, YTHDF3 expression was associated with poorer

disease-free survival (DFS) and overall survival (OS) in

patients (Lin et al., 2022). YTHDF3 could intensify the

ZEB1 mRNA stability in an m6A-dependent manner,

consequently leading to BC cell growth and EMT (Lin et al.,

2022).

Intriguingly, the high expression level of YTHDF3 was also

closely related to the prognosis of patients with breast cancer

brain metastases (BCBMs). By enhancing the translation of

m6A-enriched transcripts of ST6GALNAC5, GJA1, and

EGFR, YTHDF3 promoted the communication between BC

cells, endothelial cells, astrocytes, and tumor metastasis

phenotypes represented by angiogenesis (Chang et al., 2020).

Therefore, YTHDF3 could affect cascade steps in the BCBM, and

then domesticate the evolution of BC cell changes in TME toward

inducing brain metastatic polarity.

Totally, different binding proteins selectively recognize m6A-

modified RNAs for achieving gene expression regulation.

YTHDF1 is conducive to the enhanced mRNA translation,

YTHDF2 is responsible for mRNA degradation, and

YTHDF3 precipitates in the translation and degradation via

the reciprocity actions with YTHDF1 and YTHDF2. This

means that YTHDF3 can both collaborate with YTHDF1 to

catalyze the translation of methylated RNAs, or directly engage

with YTHDF2 to accelerate the decay of mRNAs. Thus,

YTHDF1, YTHDF2, and YTHDF3 exert irreplaceable

functions to foster BC progression and potentially even

become robust therapeutic targets for prognostic stratification

and effective treatment of BC.

2.3.4 IGF2BP1
As a post-transcriptional fine regulator, IGF2BP1 plays a role

in remodeling tumor growth, chemotherapy resistance, and

macroscopically, OS and recurrence of tumor patients.

GF2BP1 potentiates tumor malignant progression in a variety

of solid tumors and exhibits a poor prognostic indicative value

(Glaß et al., 2021). The principal action of IGF2BP1 in oncogenic

cells is to stabilize mRNA encoding oncogenic factors. In pan-

cancer studies, the high expression and tumor-promoting

characteristics of IGF2BP1 in specific tumors make it a

promising therapeutic target, but it is also inhibitory in some

tumors (Huang et al., 2018).

Zhu et al. identified a hypoxia-induced lncRNA KB-

1980E6.3, that exhibited abnormal BC tissue upregulation

and was associated with a poor prognosis (Zhu P. et al.,

2021). LncRNA KB-1980E6.3 increased the stability of

c-Myc mRNAs by binding to m6A reader IGF2BP1 and

consequently maintained the stemness of BCSCs.

Interrupting this mechanism was of the potential to

provide a therapeutic strategy for hypoxic tumors.

MIR210HG acts as an oncogenic lncRNA highly expressed

in BC tissue, and could promote BC metastasis, by inhibiting

its encoded miR-210 (Shi et al., 2022). Moreover, MYCN

directly activated IGF2BP1, and both IGF2BP1 and

ELAVL1 strengthened the MIR210HG stability, resulting in

a MYCN/IGF2BP1/MIR210HG regulatory axis.
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3 N6-methyladenosine modification
in immune regulation

Immune cells, secreted factors, and the tumor immune

microenvironment in which they are intertwined are

indispensable key links in the anti-tumor response (Liu et al.,

2021). Considerable evidence suggests that m6A is involved in

processes that regulate innate and adaptive immune cells, which

in turn have been assigned roles in anti-inflammatory, anti-

infective, and anti-tumor immunity (Ma et al., 2021). There is

also much literature based on the existing reported m6A

regulators, mining the correlation and prognostic scoring

model of m6A regulators and immune infiltrating cells, for

providing a novel evaluation tool for the diagnosis, prognosis,

and immune status of BC (Yuan et al., 2022).

The immunomodulatory role of METTL3 in BC has been

frequently reported. Yin et al. found that knockdown of

METTL3 in bone marrow cells triggered malignant tumor

proliferation and metastasis and exhibited an elevated

abundance of M1/M2-like tumor-associated macrophages

(TAMs) and Treg infiltration (Yin et al., 2021).

Mechanistic studies suggested that deletion of

METTL3 disrupted YTHDF1-mediated

SPRED2 translation, thereby enhancing NF-kB and

STAT3 activation via the ERK pathway, leading to tumor

progression. Meanwhile, as the therapeutic benefit of

programmed cell death receptor 1 (PD-1) inhibitor was

weakened in Mettl3−/− mice, METTL3 could be a

potential target for tumor immunotherapy. In addition, it

has been reported that the expression of programmed cell

death 1 ligand (PD-L1) was positively linked to the expression

of METTL3 and IGF2BP3 in BC tissues (Wan et al., 2022).

Since METTL3-mediated m6A modification could enhance

PD-L1 mRNA stability through the METTL3-IGF2BP3 axis,

tumor immune cell infiltrations and CD8+ T cell functions

were enhanced forcefully when METTL3 or IGF2BP3 is

inhibited. Ou et al. identified a specific C5aR1+ neutrophil

subpopulation that potentiated BC cell glycolysis through

ERK1/2-WTAP-ENO1 signaling, indicating that C5aR1+

neutrophils and the associated WTAP-ENO1 axis

contribute to potential BC therapeutic target (Yin et al.,

2021).

Another study reported that the co-expression network of

YTHDF1 is critical in shaping immune responses, including

antigen processing and presentation (Hu et al., 2021).

YTHDF1 may act as a hopeful pan-cancer immune

biomarker, as well as a novel promising marker for tumor

immunotherapy. These results provide strong evidence that

m6A modification is involved in the complex immune

regulation of BC. M6A modifications can reshape antitumor

immune responses by affecting immune cell state and function,

and post-transcriptional regulation of specific cytokines and

proteins.

4 Discussion

Based on these current developments, it is evident that m6A

plays a dual role in shaping tumor progression. Specifically, m6A

regulates the expression of its target genes to influence tumor

progression, and whether the target genes act as tumor promoters

or tumor suppressors determines the tumor-promoting or

tumor-suppressing function of m6A. The presence of m6A

modifications contributes to the promotion/suppression of

various cellular functions, such as precursor mRNA splicing,

nuclear translocation, stability, translation, and microRNA

biogenesis, as the modification represented by tumor cells and

immune cells, thus remodeling the BC progression.

In terms of BC diagnosis, m6A enzymes have also

demonstrated good predictive efficacy. This is due to the fact

that m6A enzymes show a characteristic pattern of differential

expression in different BC subtypes and BC staging

classifications. There have been more than 20 risk models

based on these screened m6A regulators in BC research. For

example, the overexpression of YTHDF1, YTHDF3, and

KIAA1429 predicted a poor prognosis in terms of overall

survival (OS), and the upregulation of YTHDF3 was an

independent prognostic factor for OS in BR patients (Liu

et al., 2019). There is even a strong performance of m6A

enzymes in the treatment efficacy and recurrent metastasis of BC.

Aberrant expression of m6A regulators, are potential

indicators for BC prediction, individually or synergistically.

Other reported factor-based (such as ferroptosis, autophagy,

lncRNA, m6A regulator-mediated immune Genes) models are

also of huge value that have been confirmed in multiple studies.

He et al. constructed an m6A regulator pattern, which could be

effective for predicting malignancy, outcomes, and antitumor

immune response (He et al., 2021). Moreover, the established

models based on both m6A and other factors are attracting more

and more attention. For instance, we previously constructed a

risk signature based on 6 screened m6A-related lncRNAs,

including Z68871.1, AL122010.1, OTUD6B-AS1, AC090948.3,

AL138724.1, EGOT (Lv et al., 2021). This model could identify

the prognosis and immune state in BC. Zhang et al. also adopt

21 m6A-related lncRNAs to establish a predictive model for

predicting prognostic situations and BC subtypes with different

immunogenicity (Zhang et al., 2021). Most of these models tend

to build more accurate and extensive prediction models based on

the inclusion of M6A-related indicators, thus providing rich

information on tumor malignancy, tumor metastasis and

recurrence, immune microenvironment, efficacy monitoring,

and drug resistance evaluation.

Moreover, m6A-relatedmodels may have superior diagnostic

value by associating with other models, including death

(necroptosis, autophagy, and ferroptosis) genes, immune

genes, glycosylation genes, and so on. However, since most of

these are studies based on database excavation, they are

retrospective studies. There are still relatively few prospective
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studies that can actually be performed in a large sample of

realistic cohorts, and need to be further corroborated in actual

clinical practice to prove their credibility. Overall, as a single

regulator included in the model can offer many disease

information, more gene combination models potentially

provide a more comprehensive for breast cancer diagnosis and

therapeutic outcomes. We must first admit that the reported

single or the risk models based on these screened m6A regulators,

is not the replacement for traditional and classical methods such

as serology, pathology, and imaging. To be more precise, the

traditional multi-method routine is the gold standard for

diagnosis and prediction, while the risk models based on these

screened m6A regulators are potential multifactorial predictors,

which can be used as a useful supplement to clinical routine

evaluation methods.

In terms of m6A-targeted BC tumor therapy, the following

points still deserve in-depth consideration. First, m6A can

regulate tumor progression through multiple mechanisms,

which has been confirmed in BC. How m6A modification

dysregulation is regulated by affecting tumor stem cells,

immune environment, tumor cell fate, and other multiple

ways is an important theoretical basis for strengthening m6A

as tumor therapy. However, the role of m6A is dual in tumors,

and a comprehensive assessment of how to regulate m6A-related

enzymes by inhibition or activation requires specific BC

subtypes, tumor microenvironment, and other underlying

diseases. Moreover, ncRNA is an important player involved in

tumor regulation, and how m6A RNA modification affects

ncRNA function deserves further exploration.

Secondly, the primary prerequisite for targeting m6A-

modified enzymes is the resolution of the protein crystal

complexes of these enzymes in order to mine and design

docked high-affinity small molecules and antibodies by

conformational relationships (Oerum et al., 2021). These

inhibitors and antibodies, in turn, will be considered to

provide a good pre-requisite for clinical targeting only after

effective validation in cellular and animal experiments (You

et al., 2022). Finally, numerous studies have explained the

critical role of m6A recognition proteins in BC, but a

considerable number of m6A regulators have not been fully

validated, including RBM15/RBM15B, HAKAI, ZC3H13,

ALKBH3, eIF3, hnRNPC, and hnRNPA2B1. Multi-omics

information mining based on single-cell sequencing,

proteomics, RNA-seq, and m6A methylation sequencing will

provide comprehensive information mining for BC tumor sites

and cellular models. This unreported regulator in BC is a research

gap and therefore has considerable research value, including the

relationship between expression abundance and prognosis,

diagnostic and therapeutic potential. These can provide a

more profound complement to the discovery of new

molecules or previous regulatory networks. Thus, continued

research is still needed to fully elucidate the role of m6A

regulators in mRNA and ncRNA biology.

Finally, aberrant regulation of m6A regulatory proteins is

involved in BC drug resistance and tumor immune response.

Targeted m6A-based therapies will contribute to the oncological

treatment of BC. However, it is worth mentioning that because

the regulatory network of m6A modifications is complex and

involves multiple signaling molecules and pathways, inhibition of

a single molecule may lead to unintended responses. Therefore,

for targeted therapies of m6A, or combination strategies with

other tumor-targeting drugs, the optimal combination will lead

to the best efficacy.

5 Conclusion

Overall, m6A is an important mechanism for epigenetic

modifications that regulate BC progression. Abnormal m6A

modifications trigger the expression, activation, or inhibition

of key signaling molecules in critical signaling pathways and the

regulatory factors acting on them in BC. M6A-related proteins

and their targets show differentially expressed patterns in BC

tissue and blood. These m6A-related genes can not only be used

as markers for accurate diagnosis, prediction of prognosis, and

risk model construction, but also as effective targets for BC

treatment.
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Lung adenocarcinoma (LUAD) has high morbidity and mortality worldwide, and its

prognosis remains unsatisfactory. Identification of epigenetic biomarkers

associated with radiosensitivity is beneficial for precision medicine in LUAD

patients. SETD2 is important in repairing DNA double-strand breaks and

maintaining chromatin integrity. Our studies established a comprehensive

analysis pipeline, which identified SETD2 as a radiosensitivity signature. Multi-

omics analysis revealed enhanced chromatin accessibility and gene transcription

by SETD2. In both LUAD bulk RNA sequencing (RNA-seq) and single-cell RNA

sequencing (scRNA-seq), we found that SETD2-associated positive transcription

patterns were associated with DNA damage responses. SETD2 knockdown

significantly upregulated tumor cell apoptosis, attenuated proliferation and

migration of LUAD tumor cells, and enhanced radiosensitivity in vitro. Moreover,

SETD2 was a favorably prognostic factor whose effects were antagonized by the

m6A-related genes RBM15 and YTHDF3 in LUAD. In brief, SETD2 was a promising

epigenetic biomarker in LUAD patients.

KEYWORDS

lung adenocarcinoma, radiosensitivity, SETD2, DNA damage response, multi-omics,
prognosis, epigenetic

1 Introduction

Lung cancer is one of the main causes of cancer-related deaths worldwide (Ferlay et al.,

2019; Sung et al., 2021). Approximately 85% of lung cancers are non-small cell lung cancers

(NSCLC), of which around half are lung adenocarcinomas (LUAD) (Behrend et al., 2021). The

prognosis of lung cancer is still unsatisfactory (Goldstraw et al., 2016). Radiotherapy has clear

benefits for patients unsuitable for surgery, and is widely used in the radical and palliative

treatment of LUAD patients (Ettinger et al., 2021). Radioresistance is a major cause of lesion
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recurrence and metastasis (Pollom et al., 2016). In the era of

precision medicine, research is gradually shifting from the

population level to the individual level. Radiosensitivity is not

only determined by tumor histology, but also affected by gene

pathways (Césaire et al., 2022).

With the development of sequencing technology, a large amount

of omics sequencing data have been documented (Hanash et al.,

2002). Multi-omics data provided unparalleled dimensions of

information and reflected the inherent features of individuals (Xu

et al., 2021). Previous studies have successfully developed a genome-

based model for adjusting radiotherapy dose (GARD) (Scott et al.,

2017). Therefore, the identification of potential biomarkers is

conducive to the development of precision radiotherapy.

Epigenetic regulation affects tumor heterogeneity, and is involved

in radiosensitivity (Peng et al., 2021). On the post-transcriptional

level, N6-methyladenosine (m6A) modification transferase

METTL3 increases radioresistance via promoting the stability of

target RNAs in multiple cancers (Huang et al., 2021). For histone

modifications, histone deacetylase (HDAC) inhibitors demonstrate

radiosensitization of various cancers in preclinical studies via

targeting DNA damage responses (DDR) (Shirbhate et al., 2020).

Moreover, Xue et al. (2015);Wu et al. (2020) found upregulatedDNA

methyl-transferase DNMT3B in radioresistant nasopharyngeal and

prostate cancer cells. However, the impact of epigenetics on

radiosensitivity is still not well understood, and the identification

of novel epigenetic markers has a substantial clinical interest.

SETD2 is the sole transferase of histone H3 trimethylation on

lysine 36 (H3K36me3) in humans. SETD2 is involved in DNA

repair and maintaining chromatin integrity (Carvalho et al., 2014;

Pfister et al., 2014). SETD2 is necessary to recruit DDR factors

53BP1 and RAD51 (Carvalho et al., 2014). In theMayo cohort, renal

carcinoma patients without H3K36me3 had worse cancer-specific

survival (Ho et al., 2016). Moreover, SETD2 mutation promotes

MLL-AF9-induced leukemia progression and chemoresistance (Mar

et al., 2017). Our previous studies found that SETD2 knockdown

triggers DNA double-strand breaks (DSB) and activates the cGAS-

STING pathway (Zeng et al., Forthcoming 2022). On the other

hand, SETD2-mediated H3K36me3 guides m6A modifications on

nascent RNA transcripts (Kumari and Muthusamy, 2020).

However, studies on the roles of SETD2 in LUAD are still

lacking. Therapeutical values and possible mechanisms of

SETD2 remain to be investigated in LUAD.

Here, we utilized comprehensive omics-data analysis to

determine that SETD2 was a key radiosensitivity-related

signature. Our results indicated that SETD2 enhanced

chromatin opening and transcription, especially in the

DDR-related pathways. In vitro experiments indicated that

SETD2 knockdown upregulated tumor cell apoptosis,

attenuated proliferation and migration of LUAD cells, and

enhanced their radiosensitivity. Furthermore, SETD2 was a

prognostic protection factor whose effect interacted with

m6A-related genes. Our finding suggested SETD2 as a

potential epigenetic marker in LUAD patients.

2 Materials and methods

2.1 Collection and processing of omics
data

A total of 11 datasets were included in this study (Supplementary

Table S1). The survival fraction at 2 Gy (SF2) was a common index to

describe cellular radiosensitivity. In this study, the determination of

SF2 was based on previous studies, which reported colony formation

with irradiation (Supplementary Table S2) (Torres-Roca et al., 2005;

Eschrich et al., 2009; Gao et al., 2012;Oleinick et al., 2016; Zhong et al.,

2016). For Microarray data, GEO datasets were standardized by the

default method. When multiple probes corresponded to the same

gene, the maximum value of the probes was selected.

GSE20549 contained 42 samples of H460 and H1299 cells at six

time points (0, 2, 4, 8, 12, and 24 h) after 2 Gy ionizing radiation (IR).

We collected 10 NSCLC cell samples fromGSE32036 and 16 samples

from GSE57083 (Byers et al., 2013), which were normalized and

integrated with Z-score. GSE5949 contained 59 pan-cancer cell

samples (Reinhold et al., 2010). We collected SETD2 expression

data for survival analysis in GSE50081 (Der et al., 2014) and

GSE3141 (Bild et al., 2006). For RNA-seq data, we collected RNA-

seq (standardized by RPKM) of the 16 HepG2 cell samples treated

with shSETD2 fromGSE121949 (Huang et al., 2019). The clinical data

of TheCancerGenomeAtlas (TCGA) cohorts were downloaded by R

TCGAbiolinks package (Colaprico et al., 2016). Xena was used to

obtain omics data of TCGA (Goldman et al., 2020). The RNA-seq

data were normalized by log2 (TPM +1). ChIP-seq data was

annotated by R ChIPseeker package (Yu et al., 2015).

H3K36me3 ChIP-seq of HepG2 cells with/without shSETD2 was

obtained from GSE110318 (Huang et al., 2019). The lung cancer

ChIP-seq data (H3K36me3, H3K27me3, H3K9me3, H3K27ac,

H3K4me3, and H3K4me1) were downloaded from Roadmap (ID:

EN96) (Kundaje et al., 2015). Moreover, we collected scRNA-seq for

43,704 cells from tumor tissues of 11 LUAD patients in GSE131907

(Kim et al., 2020). ATAC-seq data of TCGA was obtained from NCI

GDC (https://gdc.cancer.gov/about-data/publications/ATACseq-

AWG). The R ChIPseeker package was also used for annotation

(Yu et al., 2015). To compare the expression of SETD2 in different

NSCLC cell lines, we collected SETD2 RNA-seq in the Cancer Cell

Line Encyclopedia (CCLE) database (Barretina et al., 2012).

2.2 Cell culture and radiation

The Type Culture Center of the Chinese Academy of Sciences

(Shanghai, China) provided the LUAD A549 and H1299 cells,

cultivated in RPMI-1640 media (HyClone, United States)

containing 10% fetal bovine serum. The cells were grown in a

standard tissue culture incubator at 37°C, with 95% humidity and

5% CO2. Radiation was conducted using a small animal radiation

research platform (6 Gy, PXI X-RAD 225Cx, Gulmay, CT,

United States).
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2.3 Cell transfection

Small interfering RNAs (siRNAs) and negative control (NC)

were transfected at 20 nM via jetPRIME® transfection reagent.

SETD2 siRNA (siSETD2) 2 sequences were as follows: sense,

CCUUCAGGCUCAGAGUUAATT, and anti-sense, UUAACU

CUGAGCCUGAAGGTT; siSETD2 3 sequences were as follows:

sense, CCGGAAACCUGACUGCAAATT, and anti-sense, UUU

GCAGUCAGGUUUCCGGTT.

2.4 RNA isolation and quantitative real-
time PCR

Using the TRIzol reagent, total RNA was isolated from cells

(Vazyme, China). We used HiScript® Q RT SuperMix (Vazyme,

China) to transcribe RNA and ChamQTM SYBR® qPCR Master

Mix (Vazyme, China) for qRT-PCR. The relative mRNA levels were

calculated with the 2−ΔΔCt method. All experiments were performed

in triplicates.

2.5 Wound healing and colony formation
assays

For wound healing assays, we seeded the transfected cells into 6-

well plates. A straight line was scratched with a pipette tip. The

migration rate was calculated using the following formula: wound

closure rate (%) = (area of initial scratch—the area of final imaged

cell-free area)/area of initial scratch * 100. For colony formation

assays, we subjected the transfected cells to radiotherapy, and they

were seeded into 6-well plates at 1,000 cells/well 48 h later. After

2 weeks, the medium was aspirated, and 4% paraformaldehyde was

added and fixed for 30 min. Then after PBS washing, they were

stained with 0/5% crystal violet for 30 min and finally washed with

water, dried, and photographed.

2.6 Flow cytometry for cell apoptosis

After 48 h, the treated cells were collected andwashed twice with

PBS. We suspended the cells in binding buffer with Annexin

V-FITC staining solution and propidium iodide (PI) solution on

ice. The samples were detected by flow cytometry (Beckman, China).

2.7 Immunohistochemistry from the
human protein atlas database

We collected SETD2 immunohistochemistry images from the

HPA database (https://www.proteinatlas.org/) (Karlsson and Zhang,

2021), including available 5 LUAD and 3 normal lung tissues. All

images were made of antibody HPA042451. SETD2 staining score

was calculated as intensity times quantity. The intensity score

consisted of 0 (Negative), 1 (Weak), 2 (Moderate), and 3

(Strong). The quantity score consisted of 0 (None), 1 (<25%
cells), 2 (25–75% cells), and 3 (>75% cells).

2.8 Analysis of single-cell RNA sequencing

The Seurat workflow was adopted to analyze scRNA-seq

data (Satija et al., 2015). Cells with less than 200 genes

(min.features = 200) and genes with less than 3 cells

(min.cells = 3) were screened out. Only the cells with less

than 15% of mitochondrial genes were retained. A total of

2,000 hypervariable genes were selected with the vst method.

An Elbow diagram was drawn to select the best number of

principal components. The resolution parameter was set as

0.5. Uniform manifold approximation and projection were

used to visualize single-cell atlas (McInnes et al., 2018), which

was realized by Seurat DimPlot and FeaturePlot functions.

Cell types were identified using marker genes from the

previous study (Lambrechts et al., 2018). Specifically, tumor

cell markers were EPCAM and KRT19; T/NK cell markers

were NKG7, CD3E, CD3G, and CD3D; B cell markers were

CD79A and CD79B; myeloid cell marker was LYZ; mast cell

markers were TPSB2 and TPSAB1; fibroblast markers were

COL1A1 and COL1A2; endothelial cell marker was CLDN5;

normal epithelial cell marker was CAPS. GSVA was used to

calculate the gene set enrichment score of individual cells

(Hanzelmann et al., 2013).

2.9 Principal component analysis

PCA was a classic linearly dimensionality reduction

algorithm. We used the R FactoMineR package to perform

PCA (Lê et al., 2008). The first principal component was

considered to be the vector with the largest variance. In

this study, since gene clusters contained a large number of

genes, we used the first principal component as the eigenvalue

to characterize the gene clusters.

2.10 Short time-series expression miner
analysis

Short time-series expression miner analysis was an

algorithm to cluster, compare and visualize time-course

gene expression (Ernst and Bar-Joseph, 2006). Genes with

similar time expression patterns were grouped into the same

clusters. We extracted eigenvalue of time-course clusters

using PCA. Next, we performed Spearman’s correlation

between the eigenvalue of gene clusters and SF2 to

recognize SF2-related clusters.
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2.11 Random forest

The RF was the ensemble methods with multiple decision

trees. We used R randomForest packages to train RF model for

SF2 fitting (Breiman, 2001). The mean-square error was used to

calculate importance of genes.

2.12 Single-gene liner quadratic model

The Linear-Quadrac (LQ) model proposed by Kellerer and

Rossi was a classical model widely used in the field of

radiotherapy (Kellerer and Rossi, 1978). The LQ model

estimated the survival fraction (SF) of cells exposed to radiation:

SF � e−α×D−β×D2

Which e represents the natural logarithm, α and β represent

radiation-specific parameters describing the radiosensitivity of

tumor cells, D is the radiation dose.

However, the equation for fitting SF using gene expression

was still unclear. We next analyzed a gene expression data set

exposed to different doses (0, 2, 5, 6, and 7 Gy) of radiation

(GSE102971, n = 100) (Park et al., 2017). Compared with

quadratic equation and cubic equation, linear equation (dose-

gene expression) has the smallest Akaike information criterion in

the analysis of each gene, suggesting that gene expression was

linearly related to radiation dose (Supplementary Figure S1). In

order to establish a simulation model of gene expression and SF,

we constructed a single-gene linear-quadratic (SGLQ) model

inspired by the LQ model:

SF � eα×Ei−β×Ei
2

Here, α is the linear radiosensitivity parameter of a single

gene i, and β represents the quadratic radiosensitivity parameter

of gene i. Ei is the expression value of gene i. The SGLQ

contributed to modeling the relationship between gene

expression and SF in the era of omics.

2.13 The 4-omics system biological
network

Gene regulations were the complex systems biology networks.

Analysis of nodes in the network helped to identify key genes. The 4-

omics system biological networks consisted of mutation, copy

number alteration (CNA), mRNA co-expression and protein

interaction sub-networks. The gene interaction of protein

interaction sub-network was formed by STRING database

(Szklarczyk et al., 2017). The mutation and CNA sub-networks

were constructed by HotNet diffusion-oriented subnetworks

(HotNet2) algorithm, which was based on random walk with

restart (Leiserson et al., 2015). The HotNet2 included not only

the topology of gene interaction networks from STRING, but also

the heat values. Here, mutation frequency and copy number were set

as heat values of the mutation and CNA sub-networks. Finally,

HotNet2 identified sub-networks with close topology structure and

high overall thermal diffusivity. The mRNA co-expression sub-

network was formed by weight gene co-expression analysis

(WGCNA) (Langfelder and Horvath, 2008). In this study, we

used multi-omics data in TCGA pan-cancer cohorts to build the

4-omics system biological networks. Network analysis and

visualization were realized by Cytoscape (Shannon et al., 2003).

The innovation of this network was the inclusion of multi-

omics data.

2.14 The maSigPro algorithm

Differential expression analysis of time-course transcriptome

was performed by maSigPro using a 2-step regression strategy

(Conesa et al., 2006). Since GSE121949 contained gene

expression data at 4 time points (0, 1, 3, and 6 h) (Huang

et al., 2019), we constructed the cubic equation in the

maSigPro algorithm to identify treatment group related genes.

2.15 Binding and expression target analysis

BETA was a tool to integrate ChIP-seq and gene differential

expression list from transcriptome (Wang et al., 2013). In this

study, we explored the transcriptional activation or inhibition of

H3K36me3, and identified the motif of H3K36me3 and its

collaborators by combining H3K36me3 ChIP-seq

(GSE110318) and RNA-seq (GSE121949) via BETA (Huang

et al., 2019). BETA was realized by cistrome (http://cistrome.

org/ap/root) (Liu et al., 2011).

2.16 Enrichment analysis

Gene set enrichment analysis (GSEA) was used to identify

GO terms that were activated or inhibited in a predefined list of

gene differential expression via permutation test (Ashburner

et al., 2000). Over-representation analysis (ORA) was

performed to identify GO terms associated with a predefined

gene set via a hypergeometric test. GSEA and ORA were realized

by R clusterProfiler packages (Yu et al., 2012).

2.17 Weighted gene co-expression
network analysis

WGCNA clustered genes into different modules according

to expression similarity through kmeans clustering and

dynamic branch cutting (Langfelder and Horvath, 2008). In
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this study, we correlated the eigenvalues of the modules with

the SETD2 expression to identify SETD2-related modules.

2.18 Statistical analysis

Most statistical analysis was analyzed in R software 4.1.0. The

basic statistical analysis was performed by the R stats package. Cox

proportional hazards regression was realized by the R survival

package. When the survival curve crossed, landmark analysis was

used to assess the prognostic value of SETD2 at different time

periods (Der et al., 2014). The landmark analysis was realized by R

jskm package (https://rdrr.io/cran/jskm/). Gene expression plots for

TCGA data were implemented by GEPIA (Tang et al., 2017a) and

TIMER (Li et al., 2017). p values less than 0.05 were considered

statistically significant. All the p values were two-sided.

3 Results

3.1 Comprehensive analysis suggested a
critical role of SETD2 in radiosensitivity

3.1.1 Identification of radiosensitivity related
transcriptome patterns

Gene expression induced by temporal changes in radiation

may be related to radiotherapy response and sensitivity. We

collected 42 NSCLC cell samples from GSE20549 (Clough and

Barrett, 2016) with six time points (0, 2, 4, 8, 12, and 24 h) after

2 Gy IR. The ANOVA identified 3,337 genes variously expressed

at different time points (p < 0.05). We next explored IR time-

dependent gene patterns using Short Time-series Expression

Miner method (Ernst and Bar-Joseph, 2006). A total of

11 time-course gene clusters reached statistical significance

(false discovery rate, FDR q < 0.01, Supplementary Figure S2).

To determine the radiosensitivity-related time-course clusters,

we collected 26 untreated NSCLC cell samples from GSE32036 and

GSE57083 (Byers et al., 2013), whose SF2 were provided by colony

formation assays from previous studies (Supplementary Table S2,

see Methods). There were 5 first principal component of clusters

correlated with SF2 (cor >0.1, Figures 1A,B), which were considered
as SF2-related clusters. Gene ontology (GO) enrichment analysis

suggested that the 832 genes in these 5 clusters were linked to cell

cycle, DDR and histone methylation (all, FDR p < 0.05, Figure 1C).

3.1.2 SETD2 was a radiosensitivity signature at
the single-gene scale

Since the above analysis was performed at the gene cluster

level, we subsequently determined the SF2-related signatures at

the single-gene level. Here we used the RF (Breiman, 2001) and

SGLQ model to quantitate the importance of a single gene on

SF2 in GSE32036 and GSE57083. A total of 289 (34.7%) genes did

not perform well both in the RF and SGLQ models (Figures

1D,E), suggesting that these genes were unlikely to be SF2-related

signatures.

In the remaining 543 (65.3%) genes, we next identified the

hub ones. We constructed the “4-level network” (see Methods),

containing the mutation, CNA, RNA, and protein subnetworks

from TCGA pan-cancer data (Figure 1F). The 3 subnetworks

were identified in the 4-level biological network, representing

histone methylation, cell cycle, and DNA damage checkpoint

(Supplementary Figure S3). Considering the topological

structure of networks, the 280 genes were selected as

irradiation-related genes (Figure 1G) with a high degree,

betweenness, and closeness centrality (all, > median value).

The significant enrichment of histone H3K36 methylation, cell

cycle, DDR were observed in these 280 genes (Figure 1H),

containing ATM, ERCC4, H2AFX, DTX3L, CCNA2, RAD9A,

POLE3, BRSK1, CLOCK, CNOT3, CNOT4, CNOT6, BRD4,

CAMK2A, EZH2, RB1, ACTR1A, AURKB, RBX1, NSD1.

We next validated the relationship between

H3K36 methylation regulatory genes (SETD2, SETD3, NSD1,

PAXIP1, BRD4, IWS1, SETMAR, SMYD2, ASH1L) and SF2 in

the dataset GSE5949 (pan-cancer cell lines, n = 59) (Reinhold

et al., 2010). SETD2 was the only gene linked to SF2 via

Spearman correlation analysis (p = 0.04, Figure 1I).

3.2 SETD2 enhanced transcription and
chromosomal accessibility

SETD2 was the main methyltransferase that specifically

trimethylated “Lys-36” of histone H3 in mammals. The

H3K36me3 signals decreased in the whole genome after

SETD2 knockdown in GSE110318 (Huang et al., 2019)

(Figure 2A), which affected both H3K36me3 coverage and

average peak signals (Figure 2B).

GSE121949 (Huang et al., 2019) provided RNA-seq of

HepG2 cells with or without shSETD2 at 4 time points (0, 1,

3, and 6 h, Figure 2C). We performed gene differential expression

analysis between the shSETD2 and control groups using the

maSigPro algorithm (Conesa et al., 2006) (Figure 2D).

Enrichment analysis showed inhibited transcriptiona in the

shSETD2 groups (Figure 2E). Compare with the control

group, more genes were downregulated in the shSETD2 group

at all time points (Figure 2F). Furthermore, binding and

expression target analysis (BETA) (Wang et al., 2013) of

integrating H3K36me3 ChIP-seq (GSE110318) and RNA-seq

(GSE121949) demonstrated that H3K36me3 enhanced

transcription (Figure 2G). Motif analysis of H3K36me3 ChIP-

seq suggested that H3K36me3 regulated transcription factors

(NFIC, ELF2, ELF4, EHF, Figure 2H).

Open chromatin facilitates transcription. Next, we investigated

the relation between SETD2/H3K36me3 and chromosomal

accessibility. We collected ChIP-seq data for the six histone

modifications (H3K36me3, H3K27me3, H3K9me3, H3K27ac,
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H3K4me3, and H3K4me1) of lung cancer sample from Roadmap

(Sample ID: EN96) (Kundaje et al., 2015). Correlation analysis and

PCA showed that H3K36me3 had the similar patterns to open-

chromosome-related histone modifications (H3K27ac, H3K4me3),

but was distant from closed histone modifications (H3K27me3,

H3K9me3, Figures 3A,B). Figure 3C showed a specific example of

peak distributions in chromosome 17: 1-6850845. Furthermore,

ATAC-seq of TCGA cohorts demonstrated that expression and

promotermethylation of SETD2were associated with chromosomal

accessibility in TCGALUAD (Figures 3D,E). The combined analysis

FIGURE 1
SETD2 functions as a radiosensitivity signature. (A) Radiosensitivity-related time-course clusters by the short time-series expression miner
method. (B) Correlation between SF2 and the first principal component (PC1) of each time-course cluster. (C) GO enrichment analysis of the
832 genes in 5 SF2-related clusters. (D) RF analysis of single gene on SF2 in GSE32036 and GSE57083. (E) SGLQ analysis of single gene on SF2 in
GSE32036 and GSE57083. (F) The 4-omics biological networks included mutation, CNA, mRNA co-expression, and protein interaction sub-
networks. (G) Venn diagram for screening key genes. (H) GO enrichment analysis of the 280 hub genes. (I) Correlation between gene expression
and SF2.
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of ATAC-seq and RNA-seq showed that the expression of

SETD2 was positively correlated with the openness of the

promoter region of the extensive genes in TCGA NSCLC (n =

76, Figures 3F,G). These results indicated that SETD2 enhanced

transcription and chromosomal accessibility.

3.3 SETD2 positively regulated
transcriptional patterns associated with
DNA damage responses

The next question was whether the enhanced transcription

by SETD2 was gene-specific. We analyzed SETD2-related co-

expression genes in bulk RNA-seq. In the TCGA LUAD

cohort, WGCNA (Langfelder and Horvath, 2008) identified

35 co-expression modules (Figure 4A, Supplementary Figures

S4, S5). Correlation analysis of module eigenvalues with

SETD2 expression revealed the 4 SETD2 positive

correlation modules (Turquoise, Green, Midnightgreen, and

Blue modules, Figure 4B). GO enrichment analysis showed

that genes of the above 4 modules enriched in DDR, DNA

repair, RNA splicing, and histone modification signals

(Figure 4C).

In the TCGA lung squamous cell carcinoma (LUSC) cohort,

we repeated the WGCNA (Figure 4D, Supplementary Figures S6,

S7). Similarly, we identified 50 modules, the 5 of which were

positively correlated with SETD2 (Turquoise, Brown, Blue,

Darkgreen, and Royalblue Figure 4E). DNA damage repair,

cell cycle, RNA splicing, and histone modification signals were

enriched in genes of these 5 modules (Figure 4F).

FIGURE 2
SETD2 and H3K36me3 enhanced transcription. (A) The H3K36me3 signals of shSETD2 vs. control in GSE110318. (B) The quantitative
H3K36me3 signals. (C) Expression profile of GSE121949. (D)Gene different expression analysis between shSETD2 and control groups usingmaSigPro
algorithm. (E) GSEA of shSETD2 vs. control in GSE121949. (F) Gene expression of shSETD2 vs. control in GSE121949. (G) Binding and expression
target analysis (BETA) of H3K36me3 Chip-seq (GSE110318) and RNA-seq (GSE121949). (H) Motif analysis of H3K36me3 Chip-seq.
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3.4 Single-cell analysis validated the co-
expression patterns of SETD2 in lung
adenocarcinoma

We next investigated 43,704 single-cell RNA profiles of the

11 primary LUAD patients in scRNA-seq GSE131907 (Kim et al.,

2020). Through Seurat workflows, we identified the 8 cell types:

tumor cells, fibroblasts, endothelial cells, epithelial cells, T/NK

cells, B cells, myeloid cells, and mast cells (Figure 5A).

SETD2 was widely distributed in different cell types

(Figure 5B, Supplementary Figure S8). Overall, The

SETD2 positive rate in tumor cells was lower than that in

normal epithelial cells (15.2 vs. 20.2%, p = 0.2, Figure 5C), but

higher than that in immune cells, including T/NK cells (10.7%,

FIGURE 3
SETD2 and H3K36me3 enhanced chromosomal accessibility. (A)Correlation analysis of H3K36me3 and other histonemodifications. (B) PCA of
H3K36me3 and other histone modifications. (C) Peak distributions in chromosome 17: 1-6850845 of H3K36me3 and other histone modifications.
(D,E)Correlation between SETD2 and ATAC signals in TCGA LUAD. (F)Correlation between SETD2 expression and the accessibility of thewhole gene
promoters. (G) The left side shows the location of the ATAC-seq signal of genes whose promoter region accessibility is positively correlated
with SETD2 on the chromosome; The right side shows the position of the ATAC-seq signal of the negatively related gene on the chromosome.
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p < 0.0001), B cells (8.4%, p < 0.0001), and myeloid cells (12.1%,

p < 0.0001). Moreover, in log2 (TPM+1) normalized profiles, we

found that SETD2 was positively associated with the expression

of more genes (Figure 5D), especially in tumor cells (positive rate:

78.7%) and myeloid cells (positive rate: 73.7%), while the

opposite was observed in mast cells (positive rate: 46.4%) and

epithelial cells (positive rate: 44.1%). This finding was consistent

with Section 3.2. Next, we compared the gene expression of

SETD2-positive and negative tumor cells. Genes highly expressed

in SETD2-positive tumor cells were enriched in DDR, RNA

splicing, and histone modification signals (Figure 5E).

3.5 Knockdown of SETD2 upregulated
apoptosis, attenuated proliferation and
migration of tumor cells, and enhanced
the radiosensitivity in lung
adenocarcinoma

SETD2 was downregulated in TCGA LUAD and LUSC tissues

than normal ones (Supplementary Figure S9). In

immunohistochemistry of 5 LUAD and 3 normal lung tissues from

the HPA database (Karlsson and Zhang, 2021), we compared

SETD2 staining scores of tumor and alveolar cells. The results

FIGURE 4
SETD2 regulated transcriptional patterns in bulk RNA-seq. (A) Visualization of topological overlap matrix in TCGA LUAD. (B) WGCNA revealed
the gene clusters related to SETD2 in TCGA LUAD. (C) GO enrichment analysis of SETD2-related clusters in TCGA LUAD. (D) Visualization of
topological overlap matrix in TCGA LUSC. (E) WGCNA revealed the gene clusters related to SETD2 in TCGA LUSC. (F) GO enrichment analysis of
SETD2-related clusters in TCGA LUSC.
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showed that SETD2 staining scores were low but not significantly

different between tumor and alveolar cells, and that the staining was

mainly concentrated in the nuclear (Supplementary Figures S10A,B).

We next investigated the effects of SETD2 on tumor malignant

behaviors and radiosensitivity in vitro. According to our preliminary

studies (Zeng et al., Forthcoming 2022), the expression levels of

SETD2 in H1975 and A549 cells were high. In this study, we

collected RNA-seq for NSCLC cells in the CCLE dataset.

SETD2 expression remained higher in H1975 and A549 cells

than H1299, PC9, and H460 cells (Supplementary Figure S11).

FIGURE 5
Analysis of SETD2 in LUAD scRNA-seq. (A)UMAP of the 43,704 cells in LUAD scRNA-seq. (B)Marker gene expressions in scRNA-seq. (C) Positive
rate of SETD2 for each cell type. (D) The number of genes positively or negatively correlated with SETD2 expression. (E) GSEA of positive SETD2 vs.
negative cells in scRNA-seq.
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Therefore, we cultured LUAD A549 and H1975 cells and divided

them into six groups: negative control, siNC; siSETD2-2, si2;

siSETD2-3, si3; negative control plus 6 Gy IR, IR-NC; siSETD2-2

plus 6 Gy IR, IR-s2; siSETD2-3 plus 6 Gy IR, IR-s3.With or without

IR, siSETD2 showed high knockdown efficiency in A549 andH1975

(Figures 6A,B). Colony formation assays indicated attenuated tumor

proliferation after SETD2 knockdown (Figures 6C–E). Cell

proliferation was diminished after 6 Gy IR, and cells were more

sensitive to radiation upon siSETD2 treatment. Moreover,

SETD2 knockdown decreased cell migration (Figures 6F–H).

Due to the severe killing of tumor cells by IR after transfection

with siSETD2, we did not perform wound healing assays in the IR

groups. Next, we performed flow cytometry for cell apoptosis in

H1975 cells. SETD2 knockdown significantly upregulated LUAD

cell apoptosis (Figures 6I,J).

3.6 SETD2 interacted with N6-
methyladenosine-related genes RBM15 &
YTHDF3 statistically and was associated
with a favorable prognosis

Previous studies reported the possible association between

SETD2 and m6A (Kumari and Muthusamy, 2020). We

FIGURE 6
Flow cytometry, wound healing assays and clone formation experiments treated with siSETD2 or radiation. (A) The qRT-PCR of SETD2 in
A549 cells. (B) The qRT-PCR of SETD2 in H1975 cells. (C) The six well plate image of clone formation experiment. (D) Clone formation rate of
A549 cells. (E) Clone formation rate of H1975 cells. (F)Wound healing assay image. (G)Wound closure rate of A549 cells. (H)Wound closure rate of
H1975 cells. (I) Flow cytometry for cell apoptosis in H1975. (J) Quantitative results of apoptosis.
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comprehensively analyzed m6A-related genes, including

8 “writer” genes, 9 “reader” genes, and 2 “eraser” genes (Gu

et al., 2020) in TCGA LUAD dataset. SETD2 was positively

related to “writer” and “reader” genes (r > 0.4 & p < 0.01):

METTL14, ZC3H13, RBM15, YTHDF1, YTHDF2, YTHDF3,

YTHDC1, and YTHDC2 (Figure 7A, Supplementary Figure

FIGURE 7
SETD2was linked to favorable prognosis whose effect was negatively affected by the interaction of m6A-related genes RBM15 and YTHDF3. (A)
Correlations between SETD2 and m6A-related genes. (B) Kaplan-Meier survival curves of SETD2 in the Kmplot database. (C) Visualization of
interaction effect of RBM15 onCox regression coefficient of SETD2. (D) Visualization of interaction effect of YTHDF3 onCox regression coefficient of
SETD2.
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S12). SETD2 was linked to a favorable prognosis in multiple

LUAD datasets (Figure 7B). However, the landmark analysis

showed that patients with high SETD2 expression changed from

favorable prognosis to unfavorable prognosis after more than

50–80 months. We next investigated the interaction effects of

m6A-related genes with SETD2 on prognosis. Using multivariate

Cox regression with interaction terms (Survival ~ SETD2 +

SETD2 *m6A gene + age + gender + stage), we identified that

RBM15 (interaction term HR = 1.15, p = 0.02) and YTHDF3

(interaction term HR = 1.06, p = 0.18) interacted with SETD2

(Supplementary Tables S3, S4). The protective effects of

SETD2 on prognosis were enhanced with the reduction of

RBM15 or YTHDF3 (Figures 7C,D). The prognostic effects of

SETD2 may be explained with low microsatellite instability and

frequency of mutations (Liu et al., 2015; Zeng et al., Forthcoming

2022).

4 Discussion

Our work demonstrated that SETD2 as a radiosensitivity

signature positively regulated DDR-related transcriptional

patterns. Possibly due to inhibition of DDR,

SETD2 knockdown upregulated the radiosensitivity of LUAD

cells. Clinically, SETD2 was a promising epigenetic biomarker for

prognosis and radiotherapy in LUAD.

Previous studies identified radiosensitivity-related genes

based on regression. Torres-Roca et al. (2015) identified

10 genes associated with SF2 by linear regression models

(Eschrich et al., 2009). Tang et al. (2017b) identified

65 radiosensitivity-related genes by logistic regression

models in soft tissue sarcoma. In this study, we

implemented a novel gene identification pipeline. Through

pattern analysis of radiation time-associated transcriptomes,

machine learning algorithms, and 4-omics networks, we

successfully identified SETD2 as a key gene for

radiosensitivity, which was validated in other omics datasets

and cell experiments. Our novel pipeline can provide a case for

other gene identification related studies.

Poly (ADP-ribose) polymerase (PARP) inhibitors targeted

DNA damage repair, induced further DNA damage, and had a

synthetic lethal effect in DNA repair-deficient tumors (Slade,

2020). PARP inhibitors improved progression-free survival in

recurrent ovarian cancer patients with BRCA1/2 mutation and

platinum-sensitive by 13.6 months (Pujade-Lauraine et al., 2017).

PARP inhibitors also had a higher response rate in BRCAmutant

triple-negative breast cancer (Pahuja et al., 2014). In addition to

BRCA, other DNA repair-related genes also affected PARP

inhibitor responses, such as RAD51 (Liu et al., 2017). Due to

the important roles of SETD2 in homologous recombination

repair (Skucha et al., 2019), the application of PARP inhibitor in

SETD2-deficient tumors may achieve favorable curative effects,

which needed to be confirmed by further studies.

SETD2 also played important roles in m6A RNA

modification (Huang et al., 2019), which was related to

prognosis and radioresistance. Li et al. (2020) found that low

expression of FTO and METTL14 and high expression of

METTL3, HNRNPA2B1, and YTHDF3 were related to the

poor prognosis of osteosarcoma. The m6A “writer”

METTL3 was demonstrated to promote radioresistance in

pancreatic cancer (Taketo et al., 2018), hypopharyngeal

squamous cell carcinoma (Wu et al., 2021), and glioma stem-

like cells (Visvanathan et al., 2018). Radiosensitization caused by

SETD2 knockdown may be related to both DDR and m6A.

LUAD and LUSC were highly heterogeneous for radiotherapy.

Previous studies found that LUSC shrunk faster than LUAD after

stereotactic body radiotherapy (Miyakawa et al., 2013). However,

the local control rates of LUAD were not inferior to LUSC

(Miyakawa et al., 2013; Hörner-Rieber et al., 2017; McAleese

et al., 2019; Katagiri and Jingu, 2021). Moreover, LUSC was

more likely to relapse locally, while LUAD was more likely to

metastasize after radiation (McAleese et al., 2019; Katagiri and Jingu,

2021). For the overall survival of LUAD and LUSC after

radiotherapy, there was some seemingly contradictory evidence

(Nakayama et al., 1997; Holgersson et al., 2011), possibly due to

the heterogeneity of the included populations. Despite the

controversy, based on current evidence, the radiocurability of

LUAD was not inferior to that of LUSC.

In the bulk transcriptome, SETD2 was associated with a

favorable prognosis. However, it was unclear whether the

favorable prognosis of SETD2 in LUAD was determined by the

tumor or microenvironmental cells. Previous studies found that

SETD2 histological staining scores of tumor cells were linked to

good survival in gastric cancer (Chen et al., 2018) and nonmetastatic

clear-cell renal cell carcinoma (Liu et al., 2015), possibly because lack

of SETD2 increased microsatellite instability and frequency of

spontaneous mutations (Liu et al., 2015; Zeng et al., Forthcoming

2022). Moreover, we collected 7 LUAD single-cell-derived

metastasis-associated genes (PRSS3, GPI, CCL20, KRT18, TCN1,

SLCO1B3, and GNPNAT1) from a previous study (He et al., 2021).

However, in GSE131907, the results of GSVA analysis showed no

significant difference in the scores of 7 metastasis-associated genes

between SETD2-positive and negative tumor cells (Supplementary

Figure S13). We expected further clinical studies to investigate the

prognostic implications of SETD2 in cancer.

There were still some open issues. One focus was to identify

genomic signatures associated with radioresistance and explore

their mechanisms. Although acquired small deletion mutations

were suggested as possible causes of radioresistance (Kocakavuk

et al., 2021), further studies were required to investigate the

complexity of tumor heterogeneity. The landmark analysis

showed that the protective effects of SETD2 were reversed at

more than 50–80 months, however the mechanism was not clear.

Moreover, SETD2 also plays important roles in RNA splicing

(Bhattacharya et al., 2021). Other mechanisms by which

SETD2 affected therapeutic effectiveness also remained to be
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investigated. In addition, preclinical studies investigating the

toxicity and efficacy of interventions targeting SETD2 were

lacking.

In this study, we mainly analyzed various genomics data

supplemented by a limited amount of in vitro cell data. This study

had some limits: 1) Since SETD2 expression was not high in

various cells, we expected further studies to confirm the

implications of SETD2 over-expression in LUAD; 2) The role

of SETD2 regulated m6A in radiosensitivity remains unclear; 3)

More clinical evidence was needed to use SETD2 as a prognosis

and radiotherapy marker.

5 Conclusion

Our comprehensive analysis pipeline demonstrated that

SETD2 was a key radiosensitivity signature. SETD2 enhanced

chromatin accessibility and gene transcription which focused on

DDR, DNA damage repair, and histone modification.

Knockdown of SETD2 attenuated the proliferation and

migration of LUAD cells, and enhanced cell apoptosis and

radiosensitivity in vitro. Furthermore, SETD2 was a positively

prognostic factor whose effects were negatively affected by the

interaction of m6A-related genes RBM15 and YTHDF3.
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Expression of SETD2 in TCGA pan-cancer datasets.

SUPPLEMENTARY FIGURE S10
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Background: CircPUM1 acts as an oncogene in a variety of tumors, and there is no
related research on oral squamous cell carcinoma. This study aimed to evaluate the clinical
significance of CircPUM1 in oral squamous cell carcinoma radiotherapy.

Methods: Radio-resistant cell lines were established by increasing the X-ray dose.
Analysis of CircPUM1 expression in oral squamous cell carcinoma was carried out
using bioinformatics tools. Cell proliferation was analyzed with CCK-8 and colony
formation. Protein and gene expressions were detected by Western blotting and
qPCR. RNA interference inhibits endogenous gene expression. A luciferase reporter
system and immunoprecipitation were used to validate the target of CircPUM1.

Result: CircPUM1 was highly expressed in OSCC. The higher the expression level of
CircPUM1 in OSCC, the worse the clinical features and prognosis. Knockdown of
CircPUM1 enhances the sensitivity of OSCC cells to X-rays, and expression of
exogenous CircPUM1 makes OSCC cells acquire radiation resistance. The absence of
CircPUM1 blocked the cells in the G0/G1 phase and triggered apoptosis. The prediction of
mir-580-binding site, luciferase reporter system, and immunoprecipitation confirmed that
mir-580 is the binding site of CircPUM1. In addition, STAT3 was predicted and confirmed
as the binding site of mir-580. Overexpression of STAT3 partially attenuated the
radiosensitivity of OSCC cells to knockdown of CircPUM1.

Conclusion: CircPUM1 has the oncogene expression profile in oral squamous cell
carcinoma; patients with high expression of CircPUM1 have less benefit from
radiotherapy and need more frequent follow-up. In addition, CircPUM1 may be a
potential therapeutic target for oral squamous cell carcinoma. The CircPUM1/mir-580/
STAT3 axis has a certain effect on the radiosensitivity of OSCC. These results suggest that
patients with low expression of CircPUM1 may gain more benefits.
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INTRODUCTION

Oral squamous cell carcinoma is one of the most common
malignant tumors in oral and maxillofacial regions (Müller,
2017; Kennedy, 2018). Oral squamous cell carcinoma has poor
clinical prognosis and low survival rate (Al-Sarraf, 2007).
Currently, the combined treatment of surgery plus radiotherapy
and chemotherapy can significantly improve the overall survival
rate of patients with oral squamous cell carcinoma (Aslam et al.,
2012). Radiotherapy, one of the curative treatments for oral
squamous cell carcinoma, can be used with surgery,
chemotherapy, or alone (Pentenero et al., 2005). Radiotherapy,
an important part of comprehensive sequential therapy for
advanced oral squamous cell carcinoma, can improve the local
control rate (Berdugo et al., 2019). However, improving the effect
of radiotherapy for oral squamous cell carcinoma is the main
problem that we are facing currently.

Studies have shown that circular RNA (circRNA) is a kind of
non-coding RNA, which has high stability due to its closed circular
molecule (Zheng et al., 2019). Studies have shown that circRNA can
inhibit its expression by acting as a sponge molecule of microRNA
(miRNA), thus regulating the biological processes of tumor cell
proliferation, apoptosis, migration, and so on (Lee et al., 2021).
However, there are relatively few studies on circRNAs in oral
squamous cell carcinoma. Circular RNA pum1 (circular RNA
pum1) is highly expressed in lung cancer, ovarian cancer, colon
cancer, and other tumors and can promote the occurrence and
development of tumors (Jeck et al., 2013; Salzman et al., 2013;
Rybak-Wolf et al., 2015). CircPUM1 (circ_0000043) is highly
expressed in endometrial adenocarcinoma (Deng et al., 2020),
ovarian adenocarcinoma (Guan et al., 2019), and lung
adenocarcinoma (Chen et al., 2019) and plays a role as an
oncogene, but it has not been reported in oral squamous cell
carcinoma. Circinteractome predicted that CircPUM1 targeted
mir-580 (the highest predicted score was 99). starBase predicted
thatmir-580 targeted Stat3. STAT3 has been reported to be involved
in radiosensitivity of oral squamous cell carcinoma (Yu et al., 2020).

However, it is not known whether CircPUM1 affects the
malignant biological behavior of oral squamous cells by
targeting the expression of mir-580/Stat3. Therefore, this study
mainly explored the expression of CircPUM1 and mir-580/
STAT3 in oral squamous cell carcinoma and analyzed whether
CircPUM1 regulates radiosensitivity through mir-580/STAT3.
Therefore, we believe that our findings will provide a
theoretical basis for improving the radiosensitivity of OSCC.

MATERIALS AND METHODS

Patients and Sample
A total of 50 OSCC and matched normal tissues were collected.
All samples were independently confirmed by two pathologists.
Immediately after operation, the specimens were frozen in liquid
nitrogen and then stored in the refrigerator at − 80 C for future
use. Patients who received any neoadjuvant therapy and had a
history of cancer were excluded from the study. Prior to the start
of the study, informed consent was obtained from the

participants, and the study was conducted in strict accordance
with the Helsinki declaration.

Cell Culture
Human oral squamous cell carcinoma cell lines Cal-27 and
hsc3 were cultured in DMEM medium containing 10% fetal
bovine serum, 100 units/ml penicillin–streptomycin, and 100%
glucose at 37°C and 5% CO2.

Irradiation of Cells and Development of
Radio-Resistant Cell Lines
The cells were irradiated using the Faxitron cabinet X-ray system
43855d (Faxitron X-ray Company, IL, USA). Mcf-7r and mda-
mb-231r were established on their parent cell lines. In short, the
initial dose was 2 Gy, then the dose increased by 0.5 per week, and
the total radiation dose reached 57 Gy in 12 weeks. After that,
5 Gy per week was used for further maintenance.

Cell Transfection
The shRNA was synthesized and subcloned into a plko.1-trc-puro
plasmid. The sequence of shRNA is shown in Table 1. We used the
Lipofectamine 2000 system to transfect the plasmid. In short, 8 × 105
cells were seeded in a six-well dish for 24 h, and then Liposome 2000
was mixed with 5 μg plasmid. Using Opti-MEM, the mixture was
successively incubated at room temperature for 30min, then the
mixture was added to each well, supplemented with Opti-MEM to
1ml, and incubated for 6 h. After 6 h, DMEM containing 20% FBS
was added to each well and 2ml medium and then cultured for 48 h
formRNAextraction and protein collection. According to the results
predicted by Circinteractome, in order to overexpress CircPUM1,
the whole coding sequence 5 ‘GACUUUUUGACUACAAUUCUC
AA3′ of CircPUM1 was subcloned into the pZsG vector.

RNA Extraction and Quantitative Real-Time
Polymerase Chain Reaction (QRT-PCR)
Analysis
According to the manufacturer’s protocol, TRIzol reagent
(Invitrogen, Carlsbad, CA) was used to extract total RNA. The
first-strand cDNA was synthesized by a reverse transcription kit
(Takara, Dalian, China). GAPDH is used as an internal control.
PCR primers for CircPUM1 and 18S RNA were found in starBase
prediction. The relative expression of CircPUM1 was expressed
with the 2-ΔΔCT method. All samples are in triplicate.

Cell Proliferation Assay
Cell proliferation test: Cal-27 and HSC3 cells were seeded onto a
96-well plate (Müller, 2017) and cultured for 24, 48, and 72 h. The
incubation time was 37 h. μ CCK8 was injected into each well and
incubated at 37°C. The absorbance at 480 nmwas measured using
the Rayto-6000 system (Rayto, China) after 2 h of storage of C
and normalized to DMEM medium as control.

Flow Cytometry Analysis
In cell cycle analysis, the cells were harvested after 6 h of
starvation, fixed overnight with cold ethanol, and then

Frontiers in Genetics | www.frontiersin.org August 2022 | Volume 13 | Article 9072192

Jia et al. CircPUM1 Confers Radiosensitivity in OSCC

75

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


incubated in the dark with propidium iodide and ribonuclease
(BD, USA) for 15 min. In apoptosis analysis, after 6 h of
starvation, the cells were washed twice with cold PBS, stained
with FITC-binding Annexin V for 20 min, and stained with
propidium iodide for 15 min. The stained cells were detected
by flow cytometry (FACSAria III, BD, USA) and analyzed by
FlowJo vx 0.7 software.

Western Blot Analysis
Protein was extracted with RIPA lysis buffer containing protease
inhibitor (Roche). Quantitative analysis of protein was conducted
using BCA ™ protein analysis kit (Pierce, Appleton, Wisconsin,
USA). After that, protein (30 μg/sample) was transferred to a poly
(vinylidene fluoride two fluoroethylene) membrane by 10% alkyl
sulfate-polyacrylamide gel electrophoresis.

TABLE 1 | Patient information and clinicopathological characteristics of 58 patients with OSCC *P < 0.05 or **P < 0.01 was considered significant (chi-square test
between 2 groups).

Patients Low circPUM1 (n = 29) High circPUM1 (n = 29) P-value

Age(years) 0.11556
≥65 16 17
<65 13 12
Gender 0.06496
Female 14 17
Male 15 12
Remote metastasis 0.00049**
No 9 21
Yes 20 8
Lymph node metastasis 0.00025**
No 7 19
Yes 22 10
TNM satge <0.01**
I 3 6
II 5 11
III 8 8
IV 13 4
Differentiation 0.07813
Poor 12 11
Moderate 5 4
Well 13 14

FIGURE 1 | Expression of CircPUM1 in OSCC carcinoma and adjacent tissues (A); overall survival rate of low-expression group and high-expression group of
CircPUM1 (B); expression of CircPUM1 in OSCC tissues with different radiation doses (C); expression of CircPUM1 in different OSCC cells (D). p < 0.01 (pp) and p <
0.001 (ppp).
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The antibody was prepared in 5% blocking buffer with a
dilution of 1:1,000, incubated with the membrane at 4 °C
overnight, washed twice with TBST, then cultured with a
secondary antibody (1:2000), and labeled with horseradish
peroxidase for 2 h at room temperature. Immuno Western
chemiluminescence HRP substrate (Millipore) was used to
cover the film surface. Finally, the signal was captured, and
the concentration of the band was quantified by Image Lab ™
software (Bio-Rad Laboratories, Hercules, CA, USA).

Luciferase Report Analysis
Methods: circPUM1-WT and circPUM1-Mut were subcloned
into pGL3 vectors (Promega, Madison, WI) to construct
plasmids. The plasmids were further transfected with

designated mimics or siRNA for 48 h. The PCR products were
cloned into the polyclonal sites of the recombinant
pGL3 expression vector. Finally, the luciferase activity was
detected by Dual Luciferase Report Analysis kit (Promega,
Madison, Wisconsin, USA).

Statistical Analysis
All statistical analyses were performed using GraphPad
Prism version 8.0 (GraphPad Software, La Jolla, California).
The significant differences between groups were
estimated using Student’s t-test. A p-value less than 0.05 was
considered statistically significant. The results are reported as
average ± standard deviation. All experiments were carried out in
triplicate.

FIGURE 2 |QRT-PCR was used to detect the expression of CircPUM1 in Cal-27 and hsc3 cells(A); expression of CircPUM1 in different groups of OSCC cells (B);
colony survival fraction of Cal-27 and hsc3 cells in different groups under different radiation doses(C); optical absorption values of Cal-27 and hsc3 cells in different
groups at 450 nm at different time periods were measured(D); apoptosis was observed in different groups of Cal-27 and hsc3 cells(E). p < 0.01 (pp) and p < 0.001 (ppp).
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RESULTS

CircPUM1 Was Highly Expressed in OSCC
First, we analyzed the expression of CircPUM1 in patients. QRT-
PCR was used to detect the expression level of CircPUM1 in
58 pairs of OSCC cancer tissues and corresponding adjacent
tissues. It was found that the expression level of CircPUM1 in
OSCC was significantly increased (p < 0.001, Figure 1A). At the
same time, 58 OSCC patients were divided into two groups: low-
expression group (n = 29) and high-expression group (n = 29)
according to the cut-off value of median expression of
CircPUM1 in Figure 1A. Chi square test was used to analyze
the relationship between the expression of circpum1 and the
clinicopathological data of OSCC, p < 0.05, but not related to the
patient's age, gender and tumor differentiation. The Kaplan–Meier
survival curve was used to evaluate the overall survival rate of the
two groups. It was found that the prognosis of high-expression
group of CircPUM1 was poor, and the difference was statistically
significant (p = 0.0089, Figure 1B). Subsequently, the expression
levels of CircPUM1 in radiosensitive (n = 20) and radio-resistant
(n = 38) were detected by QRT-PCR. The expression of

CircPUM1 in radio-resistant OSCC was significantly increased
(p < 0.001, Figure 1C). As mentioned previously, we successfully
established the expression level of CircPUM1 in two radiation-
resistant OSCC cell lines (Cal-27, FaDu, OECM1, SAS, and HSC3)
and the human oral mucous fibroblasts (HMFs). The expression
level of CircPUM1 in OSCC cell lines was higher than that in
normal tissues (p < 0.001, Figure 1D).

Knockdown of CircPUM1 Enhances
Radiosensitivity of OSCC Cells
We transfected the CircPUM1 siRNA and expression plasmid
into Cal-27 and hsc3 cells (p < 0.005, Figures 2A,B). The cells
were exposed to different doses of ionizing radiation (0 and
4 Gy), and the expression level of CircPUM1 increased after
4 Gy; the difference was statistically significant. QRT-PCR was
used to detect the expression level of CircPUM1 in Cal-27 and
hsc3 cells of different groups (Si-nc, si-CircPUM1 # 1, si-
CircPUM1 # 2, and si-CircPUM1 # 3). Colony formation
assay was used to detect the colony survival fraction of Cal-
27 and hsc3 cells in different groups (Si-nc and si-CircPUM1 #

FIGURE 3 | Binding site of CircPUM1 and mir-580 (A); effect of mir-580 on the activity of CircPUM1 (B,C); relationship between knockdown of CircPUM1 and mir-
580 expression (D); expression level of mir-580 in the OSCC cell line (E); expression of mir-580 in OSCC cells after 4 Gy radiation (F). p < 0.01 (pp) and p < 0.001 (ppp).
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1) under different radiation doses (0, 2, 4, and 8 Gy). Compared
with the Si NC group, the colony survival fraction of si-
CircPUM1 # 1 cells gradually decreased with the gradual
increase in radiation dose Gy (p < 0.005, Figure 2C). The
results confirmed that radiosensitivity was a dose-dependent
inhibitory effect. The loss of function of CircPUM1 induced
more apoptosis when exposed to 4 Gy X-ray.

CCK8 was used to detect the light absorption values of Cal-27
and hsc3 cells in different groups (Si-nc, si-CircPUM1#1, Si-nc +
4Gy, and si-CircPUM1#1 + 4Gy) at the wavelength of 450 nm at
0h, 24h, 48h, and 72 h. Compared with the Si NC group, the light
absorption values of si-CircPUM1#1 and Si-nc + 4Gy groups
were lower at the wavelength of 450nm; compared with the Si NC

+ 4Gy group, the optical absorption value of si-CircPUM1 # 1 +
4Gy at 450 nm wavelength decreased, and the difference
was statistically significant (p < 0.01, Figure 2D). The
apoptosis level of Cal-27 and hsc3 cells in different groups
(Si NC, si-CircPUM1 # 1, Si NC + 4Gy, and si-CircPUM1 #
1 + 4Gy) was detected by flow cytometry. Compared with
the Si NC group, the apoptosis level of si-CircPUM1 #
1 and Si-nc + 4Gy groups was high; compared with the Si
NC + 4Gy group, the apoptosis level of si-CircPUM1 # 1 +
4Gy group was significantly high (p < 0.01, FIG.2E). The
results showed that the low expression of
CircPUM1 could promote the radiosensitivity and apoptosis of
OSCC tumor cells.

FIGURE 4 | Binding site of mir-580 and STAT3 (A); luciferase reporter gene assay verified the targeting relationship between mir-580 and STAT3 (B,C); protein
expression level of STAT3 after mir-580 overexpression (D); knockdown of CircPUM1 and STAT3 protein expression in the OSCC cell line (E); expression of STAT3 in
OSCC cells after 4 Gy irradiation (F). p < 0.05 (p), p < 0.01 (pp), and p < 0.001 (ppp).
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CircPUM1 Targets mir-580 and Inhibits Its
Expression in OSCC Cells
Next, we want to know how CircPUM1 plays its biological
function in radiation-resistant cells. Through the analysis of the
Circinteractome online database, we found that there was a mir-
580-binding site in CircPUM1. Luciferase reporter gene
experiments were carried out in Cal-27 and hsc3 cells,
respectively. The results showed that overexpression of mir-
580 could inhibit the luciferase activity of wild-type
CircPUM1 vector in Cal-27 and hsc3 cells, compared with
mir-nc. After mutating the predicted mir-580-binding site,
the inhibitory effect disappeared (Figures 3A,B); compared
with the NC probe, the mir-580 probe enriched more
CircPUM1 in Cal-27 and hsc3 cells (Figure 3C). QRT-PCR
was used to detect the expression level of mir-580 in Cal-27 and
hsc3 cells in different groups (Si-nc, si-CircPUM1 # 1).
Knockdown of CircPUM1 increased the level of mir-580 in
cells, and the difference was statistically significant (p < 0.01,
Figure 3D). The results showed that the activity of
CircPUM1 was negatively correlated with the expression of

mir-580. QRT-PCR was used to detect the expression of mir-
580 in OSCC cell lines (Cal-27, FaDu, OECM1, SAS, and HSC3)
and the human oral mucous fibroblasts (HMFs). The expression
of mir-580 in OSCC cell lines was low, and the difference was
statistically significant (p < 0.01, Figure 3E). QRT-PCR was
used to detect the expression level of mir-580 in Cal-27 and
hsc3 cells in different groups (0gy, 4Gy). After 4Gy radiation,
the expression level of mir-580 decreased, and the difference
was statistically significant (p < 0.001,Figure 3F).

STAT3 Is a Downstream Target Gene of
miR-580
After that, we analyze the target of CircPUM1 through starBase.
Among the targets found, STAT3 scored higher, which predicted
that mir-580 and STAT3 had binding sites, as shown in Figure 4A.
Luciferase reporter gene experiments were carried out in Cal-27
and hsc3 cells to verify the targeting relationship. Compared with
mir-nc, overexpression of mir-580 could inhibit the activity of
luciferase in cells, and the inhibition disappeared after mutating the

FIGURE 5 |Overexpression of STAT3 protein in OSCC cells (A); grouping of Cal-27 and hsc3 cells at 4Gy: the optical absorption values of Si-nc, si-CircPUM1#1,
and si-CircPUM1#1 + STAT3 at 0h, 24h, 48h, and 72 h (B,C) at 450 nmwavelength of different groups of cells under different time periods of radiation; knockdown of si-
CircPUM1#1 and cotransfection of STAT3 plasmid induced apoptosis (D). p < 0.01 (pp) and p < 0.001 (ppp).
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predicted STAT3-binding site (p < 0.001, Figures 4B,C). Our
samples showed that the mir-580 expression level was negatively
correlated with STAT3 expression. WB detected the protein
expression level of STAT3 after overexpression of mir-580 in
Cal-27 and hsc3 cells. Compared with mir-nc, mir-580
overexpression downregulated the protein expression of STAT3,
and the difference was statistically significant (p < 0.001,
Figure 4D). WB was used to detect the protein expression level
of STAT3 in Cal-27 and hsc3 cells of different groups (Si NC and
si-CircPUM1 # 1). Knockdown of CircPUM1 downregulated the
protein expression of STAT3, and the difference was statistically
significant (p< 0.01, Figure 4E).WBmethodwas used to detect the
expression level of STAT3 in Cal-27 and hsc3 cells after different
doses of ionizing radiation (0gy and 4Gy groups). The expression
level of STAT3 increased after 4Gy radiation, and the difference
was statistically significant ( p < 0.05,Figure 4F).

Overexpression of STAT3 Can Partially
Reverse the Effect of Knockdown of
CircPUM1 on Radiosensitivity of OSCC
Cells
The target of CircPUM1 is analyzed continuously by starBase. The
predicted binding sites of CircPUM1 and STAT3 are shown in
Figure 5A, p < 0.001. In addition, studies have shown that
upregulation of STAT3 can promote radiotherapy tolerance.
Therefore, this study investigated whether STAT3 affects the
stability of CircPUM1 protein by regulating the expression of
STAT3 in OSCC cells. First, we found that STAT3 was elevated
in OSCC tissues and radiation-resistant cells (p < 0.001, Figures
5B,C). As mentioned previously, CircPUM1 deficiency can make
cells sensitive to radiation. Knockdown of si-CircPUM1# 1 increased
the level of apoptosis. After cotransfection with the STAT3 plasmid,
the level of apoptosis was partially decreased (p < 0.001, Figure 5D).
Therefore, high expression of STAT3 could partially inhibit the effect
of knockdown of CircPUM1 on radiosensitivity of OSCC cells.

DISCUSSION

Recent studies have shown that lncRNA plays a key regulatory
role in the pathogenesis, progression, and phenotype
development of oral squamous cell carcinoma (Xu et al.,
2020). Accumulating data suggest that lncRNA plays a role in
oral squamous cell carcinoma (Liu et al., 2017). As mentioned
previously, CircPUM1 plays a role in the treatment of various
cancers. In our review of published articles, CircPUM1 may be
closely associated with the prognosis of colon cancer (Ju et al.,
2019), ovarian cancer (Zhang et al., 2019), and gastric cancer (Li
et al., 2019a). Scholars have expounded on the different
mechanisms of CircPUM1 in different cancers, including
regulating the mir-524-5p axis of colon cancer, circc3p1/mir-
21, tumor-suppressor gene PTEN, and NF-κB and PI3K/Akt
pathways (Zhao et al., 2016; Su et al., 2020). However, the role
of CircPUM1 in oral squamous cell carcinoma is rare.

CircRNAs are a group of non-coding RNAs with stable closed-
loop structures that prevent them from being broken down by

enzymes (Li et al., 2019b). Accumulating data suggest that
circRNAs are closely related to the progression of NSCLC (Yu
et al., 2019). For example, inhibition of circRNA VANGL1 can
inhibit bladder cancer progression (Yang et al., 2020).
Circ_000984 promotes cell proliferation and metastasis in
NSCLC by regulating the Wnt/β-catenin pathway (Li et al.,
2019c). Some researchers found that (Pang et al., 2020) the
expression of circ_0072309 was downregulated in NSCLC
tissues and cells, and the overexpression of
circ_0072309 significantly prevented the proliferation,
migration, and invasion of cells, which indicated that
circ_0072309 played a tumor-suppressor role in NSCLC.

The circular PUM1 RNA (circPUM1, has_circ_0000043) is
derived from exon backsplicing of the PUM1 gene. Recent
studies have shown that circPUM1 is highly expressed in
endometrial cancer, lung adenocarcinoma, and ovarian cancer
tissues (Chen et al., 2019; Guan et al., 2019; Zong et al., 2020).
Furthermore, circPUM1 can inhibit tumor development
through cavernous microRNAs. These studies suggest that
circPUM1 may play an important role in the development of
diseases such as tumors. Related studies have reported that
circPUM1 can promote the proliferation, invasion, and
migration of HCC in vitro, and studies have shown that
circPUM1 can act as an oncogene of HCC (Zhang et al.,
2021). In conclusion, circPUM1 may function as an oncogene
in human cancers. In our data, we found that reduction of
CircPUM1 induced apoptosis of OSCC cells and enhanced
their radiosensitivity.

Aberrant expression of miR-580 in many tumors, such as
glioma and breast cancer, has been investigated (Loberg et al.,
2006). Also, studies have shown that the level of miR-580 in
tumor tissue is significantly higher than that in adjacent normal
tissue, which can promote the proliferation, invasion, and
migration of HCC (Wang et al., 2021). Mir-580 was identified
as a potential target of CircPUM1. Among the discovered targets,
mir-580 and CircPUM1 had higher binding sites and predicted
values. Furthermore, our data suggest that CircPUM1 can
competitively adsorb mir-580 to enhance STAT3 expression in
OSCC cells. After we blocked the function of STAT3, OSCC cells
triggered the apoptotic pathway and restored their
radiosensitivity. This phenotype can be obtained by exogenous
mir-580 expression or STAT3 deletion.

Many studies have shown that constitutive STAT3 is activated
in a variety of human tumors (Grandis et al., 2000). Evidence
suggests that abnormal STAT3 signaling promotes the
occurrence and development of human cancers by inhibiting
apoptosis, inducing cell proliferation, angiogenesis, invasion, and
metastasis (Melinda et al., 2000; Leong et al., 2003; Bollrath et al.,
2009; Zhu et al., 2019; Chen et al., 2020), as well as inducing
inflammation and immunosuppression (Leaman et al., 1996;
Mohan et al., 2022; Tse et al., 2022). In OSCC studies,
STAT3 is the most common signal transducer and activator of
transcription. STAT3 plays a variety of biological effects in the
degree of invasion, lymph node metastasis, and different clinical
grades of oral squamous cell carcinoma. It is of great value for
early diagnosis and can be used as an important biological
indicator for judging prognosis.
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Background: Abnormal DNA methylation of gene promoters is an important

feature in lung adenocarcinoma (LUAD). However, the prognostic value of DNA

methylation remains to be further explored. Objectives. We sought to explore

DNA methylation characteristics and develop a quantifiable criterion related to

DNA methylation to improve survival prediction for LUAD patients.

Methods: Illumina Human Methylation450K array data, level 3 RNA-seq data

and corresponding clinical information were obtained from TCGA. Cox

regression analysis and the Akaike information criterion were used to

construct the best-prognosis methylation signature. Receiver operating

characteristic curve analysis was used to validate the prognostic ability of

the DNA methylation-related feature score. qPCR was used to measure the

transcription levels of the identified genes upon methylation.

Results:We identified a set of DNAmethylation features composed of 11 genes

(MYEOV, KCNU1, SLC27A6, NEUROD4, HMGB4, TACR3, GABRA5, TRPM8,

NLRP13, EDN3 and SLC34A1). The feature score, calculated based on DNA

methylation features, was independent of tumor recurrence and TNM stage in

predicting overall survival. Of note, the combination of this feature score and

TNM stage provided a better overall survival prediction than either of them

individually. The transcription levels of all the hypermethylated genes were

significantly increased after demethylation, and the expression levels of

3 hypomethylated proteins were significantly higher in tumor tissues than in

normal tissues, as indicated by immunohistochemistry data from the Human

Protein Atlas. Our results suggested that these identified genes with prognostic

features were regulated by DNA methylation of their promoters.

Conclusion: Our studies demonstrated the potential application of DNA

methylation markers in the prognosis of LUAD.
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1 Introduction

Lung adenocarcinoma (LUAD) is the most common

histological subtype of lung cancer, accounting for

approximately 50% of all lung cancer cases in most countries

(Goldstraw et al., 2011; Bray et al., 2018). Previous studies have

revealed that in addition to cigarette smoking, risk factors such as

age, environmental pollution, occupational exposure, race, sex,

and preexisting lung disease are also substantially involved in

lung cancer. With the development and popularization of public

databases in recent years, an increasing number of researchers

have tried to identify prognostic biomarkers for LUAD by

analyzing clinical characteristics and molecular information

(Edge and Compton, 2010). The TNM staging system of the

American Joint Commission on Cancer (AJCC) was reported to

have great value in LUAD prognosis (Folkman, 1971). Liu et al.

stated that conventional staging alone was not enough to predict

prognosis and guide treatment decisions. They analyzed large

cohorts from The Cancer Genome Atlas (TCGA) database and

developed a 4-gene feature related to glycolysis (Kaishang et al.,

2018). Su et al. identified an RNA sequencing network of 29 key

lncRNAs, 72 mRNAs and 24 miRNAs as potential biomarkers to

optimize the diagnosis and prognosis of LUAD patients by using

the TCGA database (Li et al., 2017). The findings from these

studies indicate that it is feasible to use different molecular

markers and clinical features in public databases to establish

practical models that have great application potential. Although

the effectiveness of these prediction models has not been tested in

clinical practice, it is necessary to continue to mine and improve

the gene signatures related to the prognosis of LUAD.

Epigenetic disorders, especially abnormal DNA methylation

in gene promoters, are a fundamental feature of human

malignant tumors (Liu et al., 2019). As one of the most well-

studied epigenetic modifications, DNA methylation mainly

occurs at 5′-cytosine-phosphate-guanine-3’ (CpG)

dinucleotides and is regulated by DNA methyltransferases and

DNA demethylases (Yang et al., 2022). Methylation and cancer

formation are associated in 2 main ways: one is the regulation of

tumor suppressor gene expression by gene hypermethylation in

the promoter, and the other is genome-wide hypomethylation,

which plays an important role in the stability of the

heterochromatin structure (Feinberg, 2007). In virtually every

step of tumor progression, there is abnormal promoter

methylation regulation (Sui et al., 2016). APC, CDH13, MLH1

and IRX1 have hypermethylation in promoter CpG islands

(CGIs). The hypermethylation of the APC and CDH13 genes

in LUAD is associated with cancer cell adhesion, and the loss of

MLH1 and IRX1 expression is associated with poor tumor

survival (Goto et al., 2009; Küster et al., 2020). The

hypomethylation of LINE-1 and ELF3 induces protein

overexpression in LUAD. The overexpression of ELF3 can

stimulate the carcinogenic phenotype of LUAD cells and

reduce the survival time of patients, suggesting that the

hypomethylation of LINE-1 is a prognostic marker of LUAD

development and progression (Ikeda et al., 2013; Enfield et al.,

2019).

TCGA has disclosed the clinical information of more than

10,000 patients and the molecular phenotype information of

their tumor tissues. This information covers 33 different types of

tumors and multiple data from different sources, including

transcriptomic, methylomic and proteomic sources (Mazor

et al., 2016). By integrating data from different sources, we

can identify specific events in the carcinogenic process and

identify potential biomarkers associated with patient survival.

In this study, we obtained the TCGA Illumina Human

Methylation 450K microarray data, RNA-seq data, and clinical

data of LUAD patients and performed an integrative analysis to

identify a set of DNA methylation features for 11 genes. We

performed area under the receiver operating characteristic curve

(AUC-ROC) analysis to verify the ability of the identified DNA

methylation feature to predict the survival of LUAD. In addition,

we performed qPCR, and the results suggested that these

identified genes with prognostic features were regulated by

DNA methylation in their promoters.

2 Materials and methods

2.1 Data preparation

The steps of data acquisition and analysis, as well as

methylation feature acquisition and verification, are shown in

the flow chart (Figure 1). Illumina Human Methylation 450K

array data were obtained from TCGA, and a total of 24,587 DMSs

from 478 pretreated methylation arrays were screened using the

camp and Minfi R software packages. After that, 478 samples

(449 LUAD samples and 29 normal samples) were included after

being filtered, inspected, and standardized with the ChAMP R

package. Level 3 RNA-seq data from TCGAwere normalized and

log2 transformed by the edgeR package. For the preprocessing of

clinical information corresponding to the sample, patients with

nonsurvival status or survival time less than 1 month were

excluded because of other disease-related deaths.

2.2 Differential methylation analysis and
differential expression analysis

In total, 449 LUAD samples and 29 normal samples were

subjected to differential methylation analysis with the ChAMP R

package and the Minfi R package (Li et al., 2019). Principal

component analysis was used to detect the sample quality. The

ChAMP DMP function and the Minfi R package defined the

methylation loci with an average methylation difference >0.2 and
a false discovery rate <0.05 as differentially methylated sites

(DMSs), and the final DMSs were obtained through the
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intersection of the two (Li et al., 2018). Differentially expressed

genes (DEGs) between the 526 LUAD samples and the 59 normal

samples were analyzed with the Limma R package (p < 0.05 and

|log2FC| ≥ 1). Metascape (https://metascape.org/gp/index.

html#/main/step1) was used to analyze the pathway

enrichment of the hyper-down and hypo-up methylated

related differential expression genes (mrDEGs) groups.

2.3 Survival model construction process

A prognosis prediction model was established according to

the DNA methylation β value of mrDEGs and matched

prognostic data of patients. According to the methylation β
value, univariate Cox regression analysis was used to screen

mrDEGs (p < 0.01) that were significantly associated with

overall survival (OS). Then, mrDEGs identified in the

univariate Cox regression analysis were subjected to

multivariate Cox regression analysis (Lian et al., 2019). At the

same time, the Akaike information criterion (AIC) was used to

screen out the genes with subtly individual but significantly

synergistic effects to determine the most appropriate gene

feature (Tozzi et al., 2020). A Kaplan‒Meier (K-M) curve with

a log rank test was used to validate the survival difference of

patients (Zhao et al., 2020). Harrell’s concordance index

(C-index) and the corresponding 95% confidence intervals

FIGURE 1
Flow chart for obtaining and verifying methylation feature.
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(CIs) were calculated to determine the prognostic model’s ability.

These steps were performed by R with the survival and survcomp

R packages (Schröder et al., 2011).

2.4 Consensus clustering analysis

We selected 155 LUAD samples with complete clinical

information. For our standard, we considered the standard

deviation of the β value in tumor samples to be greater than

0.2 and the average β value in normal tissues to be less than 0.05.

With this approach, we selected 641 methylation probes according

to the standard. According to the PAM algorithm and Euclidean

distance, we then performed unsupervised consistent clustering on

641 probes of 155 samples. The Consensus Cluster Plus R package

was used for the clustering analysis (Wilkerson and Hayes, 2010).

The Kruskal‒Wallis test was used to validate the significance of

clinical features among clusters.

2.5 Validation experiments in cell lines

qPCR was used to verify the changes in gene transcription

levels upon methylation. A549, PC9 and H1975 cells were

purchased from the Canadian Standards Association (CSA).

All cell lines were cultured in RPMI 1640 with 10% fetal

bovine serum. All experimental cells were treated with 5-Aza-

2′- deoxycytidine (5-aza, Aladdin) for 96 h at 1 µM. qPCR

analyses of all cell lines were repeated at least 3 times

(Christman, 2002). All primer sequences used in qPCR are

listed in Attachment 1: Table 1.

2.6 Statistical analysis

The correlation between feature scores and clinical factors

was analyzed by the chi square or Fisher exact test (Jung, 2014;

Pandis, 2016). Multivariate Cox regression combined with

hierarchical data analysis was used to evaluate the predictive

power of the clinical features, TNM stage, and methylation

feature score for prognosis. The forest map was drawn by

Prism, and other statistical tests were performed by R using

the corresponding R packages.

3 Results

3.1 Differential methylation and the
identification of mrDMGs

Illumina Human Methylation 450K array data were obtained

from TCGA. We screened a total of 24,587 DMSs from data from

478 pretreated methylation arrays using the camp and Minfi R

software packages. We then divided DMSs into

15,387 hypermethylated and 9,200 hypomethylated sites and

evaluated their distribution in the genome. Compared to 63% in

the whole genome, hypermethylated sites increased significantly in

the promoter, CGIs, and CGI promoters (71%, 96% and 99%,

respectively, Figure 2A). At the same time, most DMSs on CGIs

were hypermethylated (96%), and most DMSs on shelf CpG

positions were hypomethylated (Figure 2B). When we detected

the distribution of DMSs around the gene, we found that the

hypermethylation of CpGs was higher near the transcription start

site (TSS). For example, the proportions of hypermethylated CpGs

in the 5′UTR, tss200 and first exon were 70%, 77%, and 76%,

respectively (Figure 2C). Next, we located DMSs on the gene and

obtained 5,900 differentially methylated genes (DMGs) (Figure 2D).

Next, we identified 1,887 DEGs based on the RNA-seq data. Then,

406 mrDEGs were determined through the intersection of the

DMGs and the identified DEGs (Figure 2E). Among them,

43 mrDEGs were in the hypermethylation downregulation group

(hyper-down group), and 126 mrDEGs were in the

hypomethylation upregulation group (hypo-up group) (Figure 2F).

3.2 mrDEGs involved in biological
processes

The Metascape website was used to analyze the pathway

enrichment of the hyper-down and hypo-up mrDEGs. In the

hypo-up group, the genes showed a significant abundance in fatty

acid degradation, cyclic adenosine monophosphate (cAMP)-

mediated signaling, glycolysis/gluconeogenesis, etc.

(Figure 3A). Cancer is usually accompanied by nutritional

metabolic imbalances, such as abnormal glucose and lipid

metabolism (Li and Liao, 2021). cAMP was the first second

messenger to be discovered, and it plays key roles in physiological

defects caused by metabolic disorders (Zhang et al., 2020; Chi

et al., 2021). Interestingly, in the hyper-down group, there was

also gene enrichment related to fatty acid degradation

(Figure 3B). The effects of lipid metabolism disorders on

cancer have attracted increasing attention in recent years

(Karagiota et al., 2022). There is no doubt that to reprogram

their metabolic state and ensure cell survival, tumor cells need

TABLE 1 All primer sequences used in qPCR.

Primer name 59 Sequence 39

EDN3 Fp ATTGCCACCTGGACATCATT

EDN3 Rp GCAGGCCTTGTCATATCTCC

TACR3 Fp TTCATCCAAACCGGCAAAGC

TACR3 Rp AAACTTGGGTCTCTTGGCGT

SLC27A6 Fp AAAAAGGGGGACACGGTG

SLC27A6 Rp AGGAGGGAGTTGGAGCGA
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epigenetic modifications to regulate gene expression. For

example, brother of the regulator of imprinted sites can

mediate the Warburg effect and promote breast cancer by

regulating the methylation of pyruvate kinase M1/2 (PKM)

exons (Singh et al., 2017; Huo et al., 2021). Our results

suggest that abnormal lipid metabolism in LUAD may be

closely mediated by DNA methylation (Figure 3B).

3.3 Identification of prognostic mrDEGs

We established a prognosis prediction model according to

the methylation data of mrDEGs and the matched prognostic

data. We first analyzed 406 mrDEGs in 453 patients by univariate

Cox regression and identified 32 mrDEGs related to prognosis

(p < 0.05). Next, multivariate Cox regression analysis was

performed on the 32 mrDEGs. The AIC, as the indicator for

model fitness, determined the most suitable prognostic model.

Finally, we identified 11 mrDEGs (MYEOV, KCNU1, SLC27A6,

NEUROD4,HMGB4, TACR3,GABRA5, TRPM8,NLRP13, EDN3

and SLC34A1) to be included in a DNA methylation feature

prognostic model. There were 5 genes (MYEOV, KCNU1,

SLC27A6, NEUROD4 and HMGB4) with statistically

nonsignificant p values in multivariate Cox regression analysis

(Table 2). However, the AIC of this prognostic model was the

lowest (AIC = 1733.8, p = 2e-05), indicating that this model was

FIGURE 2
Distribution of DMSs and obtain mrDEGs of LUAD. (A) Distribution of DMSs across various genomic regions, including CpG islands (CGI),
promoters, CGI promoter, and the whole genome (all). (B) Distribution of DMSs in various areas related to CGI distance, including CpG shelves, CpG
shores and CpG islands. (C) Distribution of DMSs in gene location, including 3′ UTRs, gene bodies, first exons, 5′ UTRs, TSS200 and TSS1500. (D)
Distribution of DMGs across various genomic regions. (E) Scatter plot shows mean methylation difference versus log2 expression change, and
each point represents a pair of methylation site and gene. (F) Venn diagrams shows the intersection between DEGs and hypermethylated genes (left)
and between DEGs and hypomethylated genes (right).
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the most suitable, and the overall effect of the model was

significant. The C-index of the identified DNA methylation

feature model was 0.666 (95% CI = 0.641–0.690), indicating

great discrimination ability. The correlation betweenmethylation

level and gene expression of these 11 genes is shown in the

appendix (Supplementary Figure.S1).

3.4 DNA methylation feature model for
predicting the OS of LUAD patients

According to the correlation coefficients of the eleven

mrDEGs obtained by multivariate Cox regression analysis, we

established a feature score formula.

FIGURE 3
Pathway enrichment analysis of mrDEGs in LUAD. (A) The pathway enrichment analysis of the upregulated mrDEGs. Each node represents a
gene group. The node size is proportional to the total number of genes in each gene set. The width of the line between nodes represents the
proportion of genes shared among gene sets. (B) The pathway enrichment analysis of the downregulated mrDEGs.
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TABLE 2 Eleven mrDEGs identified as a DNA methylation signature prognostic model.

Gene symbol Full name Chr Coefficient p value

TACR3 Tachykinin receptor 3 4q24 2.513 0.049

GABRA5 Gamma-aminobutyric acid type A receptor subunit Alpha5 15q12 1.74 0.028

MYEOV Myeloma overexpressed 11q13.3 −0.752 0.147

TRPM8 Transient receptor potential cation channel subfamily M member 8 2q37.1 −1.611 0.008

NLRP13 NLR family pyrin domain containing 13 19q13.43 −2.074 0.01

KCNU1 Potassium calcium-activated channel subfamily U member 1 8p11.23 −1.158 0.072

SLC27A6 Solute carrier family 27 member 6 5q23.3 −1.694 0.398

EDN3 Endothelin 3 20q13.32 −2.059 0.01

NEUROD4 Neuronal differentiation 4 12q13.2 −1.243 0.098

SLC34A1 Solute carrier family 34 member 1 5q35.3 1.626 0.004

HMGB4 High mobility group box 4 1p35.1 0.91 0.138

FIGURE 4
The DNA methylation feature for predicting OS prediction in LUAD patients. (A) K-M assessed OS based on the DNA methylation feature. The
LUAD patients were divided into the lower-risk (n = 226) and higher-risk (n = 227) subgroups according to themedian of themethylation scores. Log
rank test was used between curves (p < 0.0001). (B) The distribution of feature scores for DNAmethylation feature of patients. (C–D) The distribution
of survival status of LUAD patients in the lower- and higher-risk groups (Chi-square test, p < 0.0001). (E) The methylation β value spectrum of
11 DNA methylation feature genes.
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feature score � (2.513 pmethylation β value of TACR3)
+ (1.740 pmethylation β value of GABRA5)
+ ( − 0.752 pmethylation β value ofMYEOV)
+ ( − 1.611 pmethylation β value of TRPM8)
+ ( − 2.074 pmethylation β value ofNLRP13)
+ ( − 1.158 pmethylation β value of KCNU1)
+ ( − 1.694 pmethylation β value of SLC27A6)
+ ( − 2.059 pmethylation β value of EDN3)
+ ( − 1.243 pmethylation β value ofNEUROD4)
+ (1.626 pmethylation β value of SLC34A1)
+ (0.910 pmethylation β value ofHMGB4)

The LUAD patients were ranked according to their

calculated methylation-related feature scores and divided into

higher-risk (n = 226) and lower-risk groups (n = 227) according

to the median. The K-M curve showed that the median OS of the

higher-risk group was significantly shorter than that of the lower-

risk group (log rank test p < 0.0001) (Figure 4A). We also

analyzed the distribution of the methylation feature scores,

patient survival statuses and methylated β values in LUAD

patients, as well as the methylation β value spectra of 11 DNA

methylation feature genes (Figures 4B–E).

3.5 DNA methylation feature model with
clinicopathological features

First, we attempted to validate the correlation between DNA

methylation levels and clinicopathological features in LUAD. We

then performed unsupervised consistent clustering of the 641most

variable DNA methylation probes in 155 samples (with complete

clinical information) into 4 clusters: CGI Methylator Phenotype

(CIMP) high, CIMPmedium high, CIMP medium low and CIMP

low (Figure 5A). The average methylation levels among the

different clusters were significant (p < 2.2e-16) (Figure 5B).

DNA methylation was significantly correlated with tumor

subtype (X-squared = 31.457, p = 2.073e-05) (Figure 5C). Most

of magnoid tumors were enriched in the CIMP low and CIMP

medium low clusters, while the CIMP high group had more

squamoid tumors Furthermore, DNA methylation showed a

trend related to tumor recurrence; however, there was no

statistical Figure 5A Significance (p = 0.2864) (Figure 5D).

Then, we analyzed the correlation between DNA methylation

feature scores and clinicopathological features. The results showed

that the methylation feature score was significantly correlated with

tumor subtype (Table 3, p = 0.032). In addition, the DNA

methylation feature score was associated with smoking history

in LUAD patients (Table 3, p = 0.004). Previous studies have

shown that smoking is associated with methylation levels. For

example, hypomethylation at cg05575921 in the aryl hydrocarbon

receptor repressor gene was strongly associated with the smoking

behavior of an individual (Jamieson et al., 2020). Therefore, the

hypothesis that prognostic signals are related to smoking is

reasonable. To delve into the effects of DNA methylation and

clinicopathological features on prognosis, 391 patients with

complete clinicopathological features were analyzed in a Cox

regression model. The forest map showed that the feature score

(HR = 1.69, 95% CI = 1.17–2.45, p = 0.006), the TNM staging

system, and tumor recurrence (HR = 2.58, 95% CI = 1.79–3.72, p <
0.0001) were independent prognostic factors for LUAD, while

smoking history and tumor subtype were not (Figure 5E). DNA

methylation is closely related to tumor immune

microenvironment (Chiappinelli and Baylin, 2022; Li et al.,

2022). We investigated the relationship between methylation

feature scores and tumor immune infiltration. In the group

with low methylation feature scores, we observed an increase in

monocyte, dendritic cell (resting) and mast cell (resting)

infiltration, as well as a decrease in macrophage (M0) cell

infiltration. However, there is no changes of immune effector

cells observed (Supplementary Figure S2).

3.6 Prognostic value of the DNA
methylation feature score is independent
of TNM stage and cancer recurrence

Since a high feature score, tumor recurrence and a high TNM

stage were independent adverse prognostic factors for LUAD

(Figure 5D), we performed a combined analysis between DNA

methylation features and the other 2 influencing factors. We found

that the prognosis of patients in the higher-feature score group was

poorer, whether in the recurrence (log rank test, p < 0.0009) or

nonrecurrence subgroup (log rank test, p = 0.02) (Figure 6A). In the

combined analysis of TNM stages and DNA methylation features,

we found that patients in the lower TNM stage (I and II) subgroups

had a notably worse prognosis when they were also in the high-

feature score subgroups (p = 2e-05) but not in the higher TNM stage

(III and IV) subgroups (p = 0.3) (Figure 6B). We further classified

patients at low TNM stages and found that the p value of the K-M

curve in the stage I subgroup (p = 9e-04) was more significant than

that in the stage II subgroup (p = 0.01) (Figures 6C,D). These results

suggested that the DNA methylation feature score was more

valuable in patients at a lower TNM stage. AUC-ROC analysis

was used to evaluate the sensitivity and specificity of the prediction

model (Figure 6E). The combination of this feature score and TNM

stage was significantly superior to that of TNM stage alone (0.697 vs

0.658, p = 0.0275) or feature score alone (0.697 vs 0.603, p = 0.0001).

These results suggested that the combination of the DNA

methylation feature score and TNM stage might help to improve

OS prediction in LUAD patients.

3.7 The expression of the eleven identified
genes

The prognostic methylation signature consists of 11 genes.

Three of them are hypermethylated in LUAD (TACR3, EDN3
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and SLC27A6). We selected the broad-spectrum demethylation

drug 5-aza-2′-deoxycytidine (5-aza) to treat LUAD cells (A549,

PC9 and H1975) and measured the mRNA levels of TACR3,

EDN3 and SLC27A6 by qPCR 4 days after treatment. The results

showed that, compared with the control group, the transcription

levels of these 3 genes were significantly increased after treatment

with 5-aza (Figures 7A–C), suggesting that the transcriptional

regulation of TACR3, EDN3 and SLC27A6 was related to

promoter methylation. The other 8 genes showed low

methylation and high mRNA expression in LUAD cells

(MYEOV, NLRP13, SLC34A1, NEUROD4, HMGB4, KCNU1,

GABRA5 and TRPM8). Since there is no broad-spectrum drug

to improve DNA methylation, we used the Human Protein Atlas

(HPA) (https://www.proteinatlas.org/) to verify the expression of

the proteins encoded by these genes in LUAD and normal tissues.

Five of them (MYEOV, NLRP13, SLC34A1, NEUROD4 and

HMGB4) had protein expression data in the database, and

MYEOV, NLRP13 and SLC34A1 were highly expressed in

tumor tissues (Figure 7D), while NEUROD4 and HMGB4

showed no significant difference (Figure 7E).

4 Discussion

DNA methylation, as one of the most studied epigenetic

alterations related to tumor phenotype, is of great significance for

FIGURE 5
The DNA methylation feature with clinicopathological features. (A) Unsupervised cluster analysis of the methylation levels in LUAD. A total of
155 samples are presented in rows, and 641 CpG loci with the largest variation (mean methylation level β < 0.05 in normal samples and standard
deviation σ > 0.20 in tumor samples) are listed. The 4 identified clusters are represented as CIMP high (n = 28), CIMP medium high (n = 45), CIMP
medium low (n = 52) and CIMP low (n = 30). (B) Significant differences (p < 0.0001) in the methylation levels of the 4 clusters. (C) The sample
distributions in terms of tumor subtype (Chi-square test, p < 0.0001). (D) The sample distributions in terms of recurrence (Chi-square test, p =
0.2864). (E) Forest map: multivariate Cox regression analysis was used to analyze the prognostic values of age, gender, smoking, tumor expression
subtype, tumor recurrence, TNM stage, feature score and other clinicopathological features in 391 cases.
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tumor research (Mazor et al., 2016; Biswas S Rao, 2017). Previous

research showed that the overall DNA methylation pattern in

tumor cell genomes is hypomethylation, while many CGIs

associated with promoters showed focal hypermethylation

(Hansen et al., 2011). Promoter hypermethylation was

associated with tumor suppressor-related gene silencing, while

the hypomethylation of the tumor cell genome could increase

genomic instability (Feinberg and Vogelstein, 1983; Goelz et al.,

1985; Pfeifer, 2018). Abnormal DNA methylation can be used

not only as a target for tumor therapy but also as a biomarker for

diagnosis and prognosis (Yamashita et al., 2018; Szejniuk et al.,

2019). With the public information provided in TCGA, we

conducted a comprehensive analysis and identified

11 methylation-related genes (TACR3, SLC27A6, EDN3,

TRPM8, MYEOV, NLRP13, KCNU1, NEUROD4, GABRA5,

SLC34A1 and HMGB4) to predict the prognosis of LUAD.

These genes not only were differentially methylated and

expressed in LUAD tumor tissues from TCGA but also were

related to the prognosis of patients. The survival curves showed

that there was a significant difference in the survival curve

between the higher-risk and lower-risk groups, especially in

patients with early LUAD. Some of the 11 identified

methylation-related genes have been shown to be abnormally

expressed and important in cancer or other diseases. For

example, TRPM8 is a calcium permeability channel

abnormally expressed in multiple malignant tumors. There is

evidence that TRPM8 plays a major role in promoting cell

invasion and preventing replicative senescence (Yee, 2016). In

the present study, TRPM8 showed hypermethylation and low

RNA expression in LUAD samples from TCGA, and the

hypermethylation and low expression of TRPM8 were

associated with long survival. Previous studies have shown

that decreased expression or inactivation of EDN3 can inhibit

the migration of cancer cells and improve survival (Wang et al.,

2013; Kim et al., 2017). Our results revealed that EDN3 was

hypermethylated and expressed at low levels in LUAD, which

was associated with longer OS. Another gene, MYEOV, is a

region of cancer-associated genomic amplification. The

amplification of this gene was reported to promote the

progression of NSCLC pancreatic ductal adenocarcinoma and

colorectal cancer (Lawlor et al., 2010; Fang et al., 2019).

Subsequent mechanistic studies showed that the

overexpression of MYEOV might be regulated by promoter

hypomethylation (Liang et al., 2020). In accordance with the

above results, our studies showed that MYEOV was

hypermethylated and expressed at low levels in LUAD and

that hypermethylation was positively correlated with survival

time. As for other genes in the DNA methylation feature.

TACR3 was found to be highly elevated in endometrial

carcinoma. Although the role of TAC1-TACR3 axis is not

clear. Haixu et al. found that highly methylated TAC1

promoted the development of endometrial carcinoma through

the deregulation of TAC (Xu et al., 2018). Kyoichi Obata et al.

found that TACR3 protein showed significant and significant

overexpression at the onset of bone matrix invasion in oral

squamous cell carcinoma (Obata et al., 2016). SLC27A6 is

used as a predictor in the genetic analysis of colorectal cancer,

prostate cancer, pancreatic cancer, and other tumors

(Mohammed et al., 2019; Uhan et al., 2020; Verma et al.,

TABLE 3 The correlation between DNAmethylation feature scores and
clinicopathological feature.

N High Low P

Age (years) 453

≥ 60 313 147 (46%) 166 (54%) 0.098

< 60 130 73 (56%) 57 (44%)

Sex 453

female 239 109 (46%) 130 (54%) 0.067

male 214 117 (55%) 97 (45%)

Tumor location 440

right 257 126 (49%) 131 (51%) 0.784

left 183 93 (51%) 90 (49%)

T stage 453

TX+T1+T2 398 200 (50%) 198 (50%) 0.787

T3+T4 55 26 (47%) 29 (53%)

N stage 452

N0 299 145 (48%) 154 (52%) 0.427

N1+N2+N3 153 81 (53%) 72 (47%)

M stage 448

M0 428 216 (50%) 212 (50%) 1

M1 20 10 (50%) 10 (50%)

TNM stage 448

I+II 350 175 (50%) 175 (50%) 0.949

III+IV 98 50 (51%) 48 (49%)

Recurrence 416

YES 162 85 (52%) 77 (48%) 0.39

NO 254 121 (48%) 133 (52%)

Subtype 193

Bronchioid 69 24 (35%) 45 (65%) 0.032

Magnoid 49 28 (57%) 21 (43%)

Squamoid 75 39 (52%) 36 (48%)

Smoke 430

Non-smoker 63 20 (32%) 43 (68%) 0.004

Current smoker 367 192 (52%) 175 (48%)

High and low groups were divided according to median of feature scores.
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2020; Zhong et al., 2021). However, basic research on this topic is

still very limited. As a neuron differentiation factor, NEUROD4

has been reported overexpressed in neuroendocrine tumors.

Studies have shown that the continuous expression of

NEUROD4 in neuronal cells may be related to the

regeneration of neural cells, and its expression level gradually

decreases with the maturation of neurons (Masserdotti et al.,

2015; Cecil et al., 2016). SLC27A1 is rarely studied in tumors, but

in recent years, some articles have pointed out that SLC27A1 is

highly expressed in melanoma and breast cancer and enhances

tumor invasion, migration, and growth (Kwaepila et al., 2006;

Zhang et al., 2018). The expression of GABRA5, which encodes

the α 5-GABAA receptor, has a synthetic lethal role in MYC-

driven medulloblastoma (Sengupta et al., 2014). NLRP13,

KCNU1, and HMGB4, although not as studied in tumors

compared to the other genes in the model, need further

FIGURE 6
The prognostic value of DNAmethylation feature score was not associated with tumor recurrence status and TNM stage. (A) K-M analysis of OS
based on the DNAmethylation feature and recurrence status. The LUAD patients were divided into the lower- and higher-risk subgroups according
to the median of the methylation feature scores, with or without recurrence. Log-rank test (p < 0.0001). (B) K-M analysis of OS based on the DNA
methylation feature and TNM stage. The LUAD patients were divided into the lower- and higher-risk subgroups according to the median of the
methylation feature scores, and divided into the low (stage I+ II, n = 350) and high (stage III+IV, n = 98) stages according to the TNM stage (Log-rank
test, p < 0.0001). (C) K-M curves for patients in the TNM stage I subgroup (n = 350). (D) K-M curves for patients in the TNM stage II subgroup (n = 98).
(E) ROC analysis assessed the sensitivity and specificity of DNA methylation feature score, TNM stage and the combination of the 2 factors in
predicting OS.
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exploration. Many articles verify the effectiveness of their own

prediction formulas by comparing themwith TNM staging (Peng

et al., 2020; Zhu et al., 2021; Qiu et al., 2022). In our research, the

DNA methylation feature score is an independent predictor and

is not associated with the TNM stage. ROC curve analysis showed

that the combination of the DNA methylation feature score and

TNM stage was better for prognosis than TNM stage alone,

suggesting that the combination of the 2 might help to improve

the prediction of OS in LUAD patients. In addition, we found

that the transcription levels of TACR3, EDN3 and SLC27A6 in

LUAD cells were significantly increased by treatment with broad-

spectrum demethylating drugs. These results suggested that the

low expression of these genes was related to promoter

hypermethylation. At the same time, the expression of some

hypomethylated genes (MYEOV, NLRP13 and SLC34A1)in

immunohistochemical sections of LUAD was significantly

stronger than that in lung tissues. These results showed that

the identified genes are worthy of further study as biomarkers of

methylation in LUAD.

Because of its noninvasive and fast characteristics, detecting

circulating tumor DNA (ctDNA) in blood to monitor epigenetic

changes in tumor DNA has become a very promising technology.

Although this technology is not sufficiently mature, blood testing

based on a single DNA methylation biomarker has been

approved (Frankell and Jamal-Hanjani, 2022). Our study

shows that the methylation signals of these 11 genes may be

used as candidate markers to detect ctDNA methylation in

LUAD patients. This model can predict the prognosis of

patients with low cost and high efficiency.

However, our research still has several limitations. First,

DNA methylation biomarkers are not effective in predicting

advanced LUAD. Considering the small sample size of the

FIGURE 7
The expression of TACR3, EDN3 and SLC27A6 is related to promoter region methylation. (A–C) qPCR was used to detect the mRNA levels of
TACR3, EDN3 and SLC27A6 in A549, PC9 and H1975 cells before and after the 5-Aza-2′-deoxycytidine treatment. (D–E) Immunohistochemistry
images obtained from the HPA database demonstrated the protein expression of the 5 hypomethylated genes.
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advanced LUAD group, the results will have a certain deviation.

Second, because it was difficult to obtain data with a sufficient

sample size and consistent methylation detection platform, we

did not use other datasets to verify the methylation formula.

However, considering the large sample size of this study, this

model was less likely to be an accidental feature of methylation

noise but more likely to be a determinant of LUAD survival.

Finally, our basic experiments were limited. We did not regulate

the specific methylation site of genes. Further experimental

studies on these genes will help to determine further their

therapeutic potential.

5 Conclusion

In conclusion, we explored the characteristics of DNA

methylation in LUAD. Furthermore, we confirmed a DNA

methylation feature consisting of 11 genes. DNA methylation

is associated with the survival of LUAD patients and can

provide a better OS predictive ability when combined with

TNM stage. Unfortunately, it was difficult for us to obtain a

sufficient sample size and consistent methylation detection

platform data to verify this methylation formula. However,

our experiments indicated that the transcription of the

hypermethylated genes was increased after demethylation

with 5-aza, suggesting the validity of these results and

indicating the potential value of these 11 genes in the study

of LUAD prognosis.
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Long non-coding RNAs (lncRNAs) can influence the proliferation, autophagy,

and apoptosis of non-small cell lung cancer (NSCLC). LncRNAs also emerge as

valuable prognostic factors for NSCLC patients. Consequently, we set out to

discover more autophagy-associated lncRNAs. We acquired autophagy-

associated genes and information on lncRNAs from The Cancer Genome

Atlas database (TCGA), and the Human Autophagy Database (HADb). Then,

the prognostic prediction signature was constructed through using co-

expression and Cox regression analysis. The signature was constructed

including 7 autophagy-associated lncRNAs (ABALON, NKILA, LINC00941,

AL161431.1, AL691432.2, AC020765.2, MMP2-AS1). After that, we used

univariate and multivariate Cox regression analysis to calculate the risk

score. The survival analysis and ROC curve analysis confirmed good

performances of the signature. GSEA indicated that the high-risk group was

principally enriched in the adherens junction pathway. In addition, biological

experiments showed that ABALON promoted the proliferation, metastasis and

autophagy levels of NSCLC cells. These findings demonstrate that the risk

signature consisting of 7 autophagy-associated lncRNAs accurately predicts the

prognosis of NSCLC patients and should be investigated for potential

therapeutic targets in clinic.
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Introduction

Lung cancer is the most common malignant disease. Among

these cases, 84% are classified as NSCLC with the remaining 16%

classified as small cell lung cancer (SCLC) (Torre et al., 2012).

Because of the advent of new targeted drugs and advances in

therapy, clinical treatment of lung cancer has made great

progress. However, the attendant problems also increased,

such as inherent resistance to both chemotherapy and

radiation therapy (Hirsch et al., 2017); (Yang et al., 2019), and

it is becoming increasingly challenging to assess the prognosis of

NSCLC patients. Therefore, it is imperative to confirm

biomarkers of prognosis in NSCLC.

As an intracellular catabolic degradation process, autophagy

contributes to normal cell physiology by eliminating damaged

proteins and other cell components (Li et al., 2020). There is a

great deal of studies showing that autophagy also participates in

various pathological processes, for example liver disorders and

infectious diseases (Ueno and Komatsu, 2017); (Levine and

Kroemer, 2019); (Choi et al., 2018). Moreover, a growing body of

research suggests autophagy plays a dual role in cancer. Autophagy

can suppress chronic tissue damage to inhibit tumorigenesis. It could

promote longevity of normal cells via regulating the quality of

proteins and organelles, promoting the stability of the genome, or

a combination of these factors (Barnard et al., 2016); (Mizushima and

Levine, 2020). However, autophagy can also maintain the function of

mitochondria and reduce DNA damage to enhance the ability to

resist stress and apoptosis in cancer cells (White et al., 2015); (Bravo-

San Pedro et al., 2017). Many studies have also shown that

modulators of autophagy can prevent NSCLC from developing

(Bai et al., 2019). However, other research shows that

upregulation of autophagy can promote tumorigenesis and

immune escape of cancer cells (Ma et al., 2020). Ma et al. (2013)

SKIL promoted tumorigenesis and immune escape of NSCLC cells

through upregulation of TAZ/autophagy axis and inhibition on

downstream STING pathway. Therefore, it is important to find

autophagy-associated transcripts which are considered as valuable

biomarkers for diagnosis and prognosis in NSCLC.

LncRNAs, more than 200 nucleotides, is a class of RNA

transcripts and does not code proteins. LncRNAs participate in

some fundamental cancer-related processes through

transcriptional for or post-transcriptional regulation, such as

proliferation, migration, survival, and metastasis (Fang and

Fullwood, 2016); (Slack and Chinnaiyan, 2019). Furthermore, a

great number of studies identified that lncRNAs regulated

autophagy (Xu et al., 2019); (Wu et al., 2021); (Kopp and

Mendell, 2018). For example, Wang et al. (2019a) proved the

lncRNA LINRIS could block the degradation of IGF2BP2 and

suppress the proliferation of CRC via the ubiquitination-

autophagy pathway. The lncRNA NBAT1 inhibits autophagy by

inhibiting ATG7 in NSCLC (Zheng et al., 2018). Hence, it is

meaningful to confirm major lncRNAs connected with autophagy

and prognosis of NSCLC.

In our study, we systematically analyzed lncRNAs data of

NSCLC patients in TCGA. We also founded an accurate

prognostic signature of 7 autophagy-associated lncRNAs and

assessed their ability to precisely predict the prognosis. It was

verified that the downregulation of ABALON affected

proliferation, metastasis, and autophagy of NSCLC cells by

experimental validation. We provide a novel prognostic

signature consisting of 7 autophagy-associated lncRNAs,

which may also be potential therapeutic targets.

Materials and methods

Patient data sets

The transcriptome profiles and corresponding clinical date of

1,145 NSCLC patients (1,037 cases NSCLC patients and 108 healthy

controls) were extracted fromTCGA (https://portal.gdc.cancer.gov/),

and all genes ID were transformed. LncRNAs and protein-coding

genes were annotated and classified via the Ensembl human genome

browser. We acquired data of autophagy-associated genes from the

HADb (https://www.autophagy.lu/). We extract potential

autophagy-associated lncRNAs via pearson correlation analysis, |

R2| > 0.3 and p-value < 0.001 were defined as thresholds.

Construction and evaluation of an
autophagy-associated long non-coding
RNAs prognostic signature

We combined the expression level of autophagy-associated

lncRNAs with the corresponding survival results in TCGA.

Autophagy-associated lncRNAs were confirmed by univariate Cox

regression analysis. The calculation formula of risk score for every

patient was: risk score = ∑n
k�1coef(k)*lncRNA(k), where coef (k)

and lncRNA (k) respectively represent the regression coefficient and

expression level of corresponding autophagy-associated lncRNA.

These lncRNAs data were divided into two groups based on the

median risk score. Then we constructed the best prognostic risk

model of autophagy-associated lncRNAs via multivariate Cox

regression analysis. Subsequently, we evaluated the survival

difference in these two groups via Kaplan-Meier (KM) survival

analysis. We explored the correlation between clinical factors and

risk score. R packages “survival” and “forestplot” were performed to

visualize the forest plot respectively. Finally, we draw ROC curves to

estimate the predictive value of different clinical pathological factors.

Establishment of the long non-coding
RNA-mRNA co-expression network

The relationship between autophagy-associated lncRNAs

and their corresponding mRNAs was explored through a co-
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expression network and Sankey diagram. We extracted the

mRNAs that were associated with autophagy-associated

lncRNAs via Pearson correlation coefficients, the absolute

threshold coefficient value >0.3. The network was visually

analyzed by cytoscape software (v 3.7.1) and ggalluvial R

package.

Estimation and construction of
nomogram

A nomogram survival prediction model of NSCLC patients

was constructed using the “survival” and “rms” packages by

combining risk score and expression of autophagy-associated

lncRNAs. We then constructed the ROC curves and calculated

the AUC values of this nomogram.

Functional enrichment analysis

Perform GSEA to find expression changes in predefined

genomes, rather than individual genes. We verified the

enrichment of differentially expressed gene sets between the

low- and high-risk groups by GSEA (v4.1.0). These two

groups were enriched in different signaling pathway.

Cell culture

Beas-2B, A549, NCI-H292, NCI-H460, and NCI-H1299 cell

lines were acquired from American Tissue Culture Collection

(Beijing, China). Beas-2B cells were cultured in Leibovitz’s L-15

medium with 10% fetal bovine serum (FBS, Corning

Incorporated) at 37°C in a 5% CO2 incubator. Other cell lines

were cultured in RPMI 1640 with 10% FBS at 37°C in 5% CO2

incubator.

RNA extraction and qRT-PCR

Total RNA was isolated from cells using the TRIzol

reagent (Beyotime, Shanghai, China). The total RNA was

reversed to cDNA by the PrimeScript RT reagent Kit (Takara,

Japan). QRT-PCR was performed to detect the expression of

ABALON using SYBR Green Mixture (Tli RNaseH Plus)

(Takara, Japan) and gene specific primers. We collected

data from a Roche LightCycler 480 PCR system. The

results were normalized with GAPDH as an internal

control. The primer sequences were as follows: GAPDH

(forward: CGGAGTCAACGGATTTGGTCGTAT; reverse:

AGCCTTCTCCATGGTGGTGAAGAC), ABALON

(forward: CTCTCTCTTGCACGCCCCTTG; reverse: CCT

GGGCTGGTGCTTAAATAGA).

Transient transfection and small
interfering RNAs

The siRNA targeting ABALON and Control were purchased

from RiboBio (Guangzhou, China). When the cell confluency

reaches 35%, we use FuGENE HD Transfection Reagent

(Promega) to transiently transfect siRNAs (100 nm) in the

cells. The medium containing 10% FBS was refreshed after 12 h.

Proliferation and metastasis assays

EDU,MTT and colony formation assays were used to detect cell

proliferation. Transwell and wound healing/scratch assays were used

to estimate cell metastasis. Detailed procedures were listed in the

Supplementary Material.

Western blot analysis

Cellular protein was extracted using RIPA lysis buffer

(Solarbio, China). Proteins were measured by the BCA

method (Thermo scientific, United States) and separated

on the SDS-PAGE gels. The protein bands were then

transferred into PVDF membranes. Then the bands were

blocked with 5% skim milk at room temperature for 1 h

and incubated with primary antibodies overnight at 4°C.

The bands were incubated with a corresponding secondary

antibody for 1 h at room temperature. The protein bands

were then detected using the ECL reagent (Millipore,

United States). The antibodies were listed in the

Supplementary Material.

Statistical analysis

Data are presented as the means ± SD. Each experiment

has a minimum of 3 replicates. Statistical analyses were

executed using R Studio (version 4.0.3) and SPSS software

(IBM Corp, United States). p-values < 0.05 were regarded as

statistically significant.

Results

Identification of prognostic autophagy-
associated long non-coding RNAs in non-
small cell lung cancer patients

The analysis framework of this research is performed in Figure 1.

We extracted 141432 lncRNAs data sets from TCGA and

232 autophagy-associated genes from HADb in NSCLC. Then, we

identified 1,496 autophagy-associated lncRNAs via conducting
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pearson correlation analysis (p < 0.001).Within them, 12 autophagy-

associated lncRNAs were closely correlated with the survival of

NSCLC patients from TCGA via univariate Cox regression

analysis (p < 0.005; Table 1). Multivariate Cox regression analysis

further revealed 7 autophagy-associated lncRNAs were good

candidates for constructing the diagnostic signature. Among these

7 autophagy-associated lncRNAs, AC020765.2, MMP2-AS1, and

AL691432.2 were regarded as protective factors [hazard ration

(HR) < 1], while the remaining 4 lncRNAs, NKILA, LINC00941,

ABALON, andAL161431.1, were considered to be risk factors (HR >
1) (Figure 2A). The relationships between these autophagy-associated

lncRNAs and mRNAs are displayed in Figures 2B,C.

Prognosis evaluation of the autophagy-
associated long non-coding RNA
signature in non-small cell lung cancer

Weused the prognostic risk scoringmethod to construct amodel

consisting of 7 autophagy-associated lncRNAs. The formula of the

risk score was as follows: risk score= (0.0674 × NKILA) + (−0.1483 ×

AC020765.2) + (−0.1896 × MMP2-AS1) + (−0.0692 × AL691432.2)

+ (0.0555 × LINC00941) + (0.3039 × ABALON) + (0.0049 ×

AL161431.1) (p < 0.05; Table 2). Subsequently, we figured out the

risk score for NSCLC patients. These samples from 1,145 NSCLC

were divided into high- and low-risk groups via this median risk

score as the cutoff. KM survival curve analysis revealed the OS of

high-risk NSCLC patients was obviously shorter than of low-risk

NSCLC patients (p< 0.001). The 3-yearOS rates of the high and low-

risk groups were 51.6% and 65.9%. Similarly, the 5-year OS rates of

these two groupswere 36.2% and 46.9% (Figure 3A), respectively.We

next evaluated the prognostic power of the autophagy-associated

lncRNAsmodel by ROC analysis. The AUC values were respectively

0.658, 0.625, and 0.581 for 1-, 3-, and 5-yearOS (Figure 3B). Thus, the

signature demonstrated a precise prognostic value. The risk curve of

the prognostic signature and scatterplot indicated that the mortality

FIGURE 1
The comprehensive prognostic analysis framework of autophagy-associated lncRNAs in NSCLC based on the TCGA database.

TABLE 1 The prognostic effect of autophagy-related lncRNAs by
univariate Cox analysis.

lncRNA HR HR.95L HR.95H p-value

AC020765.2 0.7915 0.6782 0.9238 0.003

AP000695.1 1.151 1.051 1.2605 0.0024

MMP2-AS1 0.8172 0.7124 0.9373 0.0039

AC068338.3 0.7071 0.5624 0.889 0.003

NKILA 1.0806 1.0339 1.1294 0.0006

AL691432.2 0.9098 0.8539 0.9693 0.0035

LINC00941 1.1098 1.0712 1.1499 0.0003

ABALON 1.4231 1.1691 1.7323 0.0004

AL161431.1 1.0057 1.002 1.0095 0.0025

AC135050.6 0.9733 0.9552 0.9917 0.0047

CRNDE 0.9616 0.9388 0.9849 0.0014

AC012615.1 0.8814 0.8098 0.9592 0.0035
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was correlated with the risk score. The heatmap showing the

expression of 7 autophagy-associated lncRNAs in NSCLC samples

exhibited that NKILA, LINC00941, ABALON, andAL161431.1 were

high in the high-risk group, whereas AC020765.2, MMP2-AS1, and

AL691432.2 were low in the low-risk group. The risk curve, the

scatterplot, and the heat map were shown in Figure 3C.

To establish an accurate prognosis for NSCLC patients, we

evaluated the survival rate about 7 autophagy-associated

lncRNAs at 1, 2, and 3 years via calculating a nomogram.

And the nomogram may help specialists make individualized

clinical therapy for NSCLC patients (Figure 4A).

Clinical value of the prognostic
autophagy-associated long non-coding
RNAs signature

To assess its clinical value, we calculated risk scores about

the autophagy-associated lncRNAs model and clinical data

from TCGA, including age, gender, grade, and TNM stage.

Then, we used univariate and multivariate Cox regression

analyses (Figures 4B,C, respectively). The univariate analysis

displayed that stage, T stage, N stage, M stage, and the

prognostic risk score were closely associated with OS.

Then the multivariate analysis revealed that age and risk

score were closely associated to OS. We performed multiple

ROC curve to assess the accuracy of prediction about the

signature. The results displayed that the AUC value of the

prognostic risk-related model was 0.660, which was

higher than other clinic factors (Figure 4D). In

general, the ROC curves indicated that the predictive

accuracy of the prognostic lncRNAs model in NSCLC was

acceptable.

Then, to determine the correlation between autophagy-

associated lncRNAs and OS, we drew Kaplan Meier curves.

And we identified the seven lncRNAs (AC020765.2, MMP2-

AS1, NKILA, LINC00941, ABALON, AL691432.2, and

AL161431.1). These results determined the seven

FIGURE 2
Identification of prognostic autophagy-associated lncRNAs in NSCLC patients. (A) Multivariate Cox analysis to establish the prognostic
signature. (B) Establishment of the co-expression network in NSCLC. Blue represents lncRNAs and pink represents mRNAs. (C) The Sankey diagram
shows the connection degree between 26 mRNAs and 7 autophagy-associated lncRNAs.
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autophagy-associated lncRNAs were closely related to the OS

of NSCLC patients (Figures 5A–G).

GSEA enrichment

According to the prognostic model of autophagy-

associated lncRNA, GSEA divided the gene set into high-

risk and low-risk groups (FDR q-value < 0.05). The result

displayed that the high-risk group was primarily enriched in

stromal pathways, such as ECM receptor interaction and

regulation of actin cytoskeleton. Furthermore, the

O-glycan biosynthesis pathway was also important. It is

worth noting that the adherens junction pathway was

closely associated with the autophagy-associated lncRNAs.

These results further confirmed that these autophagy-

associated lncRNAs could regulate NSCLC and autophagy

by some special pathways, which may inspire new approaches

of therapy in NSCLC (Figure 5H).

Downregulation of apoptotic BCL2L1-
antisense long non-coding RNA inhibited
proliferation and metastasis in non-small
cell lung cancer cells

Survival analysis displayed the ABALON was a risk factor

with a poor prognosis. We explored the biological signaling

pathways by GSEA, and the adherens junction pathway

showed a crucial enrichment score (NES = 2.08, FDR

q-val = 0.020). Consequently, we select ABALON for

experimental validation. Based on the result of qRT-PCR,

we chose two representative NSCLC cell lines (NCI-H292 and

A549) to carry out experiments in vitro (Figure 6A).

First, the siRNA of ABALON and Control were

transfected into NCI-H292 and A549 cells. The results of

MTT, colony formation, and EDU assays showed low-

expression of ABALON inhibited the proliferation of NCI-

H292 and A549 cells (Figures 6C–E, 7B–D). The results of

transwell and wound healing assays further displayed low

expression of ABALON inhibited the metastasis of A549 cells

(Figures 6F,G). GSEA analysis indicated that ABALON may

influence the behavior of NSCLC via the adherens junction

pathway (Figure 7E). Therefore, the results of western

blotting displayed knockdown of ABALON led to decrease

expression of ß-catenin and increase expression of

E-cadherin (Figure 7F). In summary, these results

show that depletion of ABALON can inhibit NSCLC

progression.

Downregulation of apoptotic BCL2L1-
antisense long non-coding RNA inhibits
autophagy in non-small cell lung cancer
cells

To assess changes of autophagy after depletion of ABALON,

we used western blotting and tandem mRFP-GFP fluorescence

microscopy as the most common approaches. Western blotting

was performed to evaluate protein levels of autophagy markers,

including LC3 and p62. Depletion of ABALON compared with

siControl significantly reduced the LC3-II/LC3-I ratio and

simultaneously increased the level of the autophagy substrate

p62 (p < 0.05) (Figure 7F).

However, the changes in the abundance of these proteins

as assessed by western blot analysis cannot fully reflect real

alteration of the autophagic flux alterations, which are mainly

reflected in autophagosome docking and fusion with

lysosomes. Hence, we transferred NSCLC cells with the

mRFP-GFP-LC3B plasmid to visualize phagosome-

lysosome fusion via fluorescence microscopy. Under the

acidic and/or proteolytic conditions of the lysosomal

cavity, GFP signal becomes sensitive, while mRFP becomes

more stable. Hence, when autophagosomes fuse with

TABLE 2 Correlation between autophagy genes and lncRNAs in
NSCLC.

Autophagy genes lncRNA Correlation p-value

BIRC5 AC020765.2 0.35 3.32E-31

GABARAPL2 AC020765.2 0.30 4.15E-23

ATG16L2 MMP2-AS1 0.38 1.23E-37

CTSD MMP2-AS1 0.34 6.07E-30

NLRC4 MMP2-AS1 0.37 2.17E-34

ITGB1 NKILA 0.30 4.58E-23

HDAC6 AL691432.2 0.31 8.37E-24

MAPK8IP1 AL691432.2 0.38 3.69E-36

PEX14 AL691432.2 0.39 4.15E-39

ITGB1 LINC00941 0.32 1.16E-26

ITGB4 LINC00941 0.31 1.03E-24

ATG12 ABALON 0.32 3.30E-26

ATG2B ABALON 0.39 8.16E-40

ATG7 ABALON 0.35 6.50E-31

BCL2L1 ABALON 0.33 6.61E-28

BIRC6 ABALON 0.55 2.05E-82

EIF2AK2 ABALON 0.31 5.94E-24

GOPC ABALON 0.31 2.04E-24

KIF5B ABALON 0.31 6.05E-25

MAPK8 ABALON 0.32 6.24E-26

MTOR ABALON 0.32 6.32E-27

NAF1 ABALON 0.33 4.50E-28

PIK3C3 ABALON 0.36 1.15E-32

PTEN ABALON 0.44 2.77E-50

RPS6KB1 ABALON 0.33 2.34E-28

WDFY3 ABALON 0.53 1.88E-76

IL24 AL161431.1 0.34 6.86E-29

p < 0.05 was regarded as a significant difference.
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lysosom, the index of PH in cells would down and the GFP

signal is quenched. Colocalization of GFP and mRFP

fluorescence in cells means autophagosomes have not fused

with lysosomes, indicating that autophagy is blocked.

Conversely, if only mRFP fluorescence is visible, there is

highly active autophagy. NCI-H292 and A549 cells

transfected siABALON only exhibited yellow fluorescence,

which confirmed the results of western blotting (Figures

7F,G). These results indicated that siABALON restrained

autophagy in NSCLC cells in vitro.

Discussion

Autophagy is the process in which damaged proteins and

organelles are engulfed and transported to lysosomes for

degradation and circulation. The effect of autophagy seems to

be extremely complicated and is difficult to summarize in cancer

(Mizushima, 2007; Morel et al., 2017). It can play a tumor

suppressor as well as an oncogenic effect. Through regulating

functions of proteins and organelles, autophagy can keep the

genome stable, reduce normal cell death and prevent

FIGURE 3
Risk score analysis of the prognostic model of these seven autophagy-associated lncRNAs. (A) KM survival analysis for high- and low-risk
groups. Red, high risk. Green, low-risk. (B) ROC analysis to evaluate the predictive ability of the model. (C) Risk score distribution (top), survival status
distribution (middle), and heat map of 7 autophagy-associated lncRNAs (bottom).
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tumorigenesis. For example, autophagy can remove senescent

organelles and defective proteins (Wang and Klionsky, 2011; Wu

et al., 2012). However, autophagy also maintains cancer cell

metabolism, promotes tumor genesis and development, and

resistance to therapeutic drugs (White, 2012; Poillet-Perez and

White, 2019). Hence, we consider that autophagy can improve

the therapeutic effects of tumor-targeting drugs and reduce drug

resistance.

In this study, we determined 27 autophagy-associated

mRNAs in NSCLC, which were associated with the

7 autophagy-associated lncRNAs. Among them, only ATG12,

MTOR, ATG7, and PTEN are known to be related to autophagy

in NSCLC. Autophagy-related (ATG) proteins play crucial roles

in cancer. The numerous ATG proteins and their core complexes

including the ULK/Atg1 kinase core complex, ATG9A/

Atg9 trafficking system, ATG12/Atg12-conjugation system

and LC3/Atg8-conjugation system, exert multiple activities in

the autophagy pathway and take part in all processes of

autophagy (Li et al., 2020). Among the 4 autophagy-associated

genes identified in this study, ATG7, which acts as an essential

protein to promote autophagy, was informed to attenuate the

proliferation, invasion, and metastasis of NSCLC (Zheng et al.,

2018; Cao et al., 2020). He et al. (2020) identified ATG12 was a

target of miR-372-3p. ATG12 can promote autophagy and

radiosensitivity in lung adenocarcinoma by suppressing miR-

372-3p. Furthermore, we found that PTEN and mTOR exhibited

a high correlation coefficient with autophagy. PTEN is an

important tumor suppressor and the main antagonist of PI3K,

which can promote the degradation of AKT (Lim et al., 2015;

Jamaspishvili et al., 2018). In addition, miR-181 was found to

mediate cisplatin-resistance and attenuate autophagy through

the PTEN/PI3K/AKT pathway in NSCLC (Liu et al., 2018).

FIGURE 4
Evaluation of the prognostic risk model of the 7 autophagy-associated lncRNAs in NSCLC. (A) Nomogram of the 7 autophagy-associated
lncRNAs. (B,C) The univariate (B) and multivariate (C) Cox analysis of risk score model and clinical features. (D) The ROC curve analysis displays the
prognostic accuracy of clinical features such as age, gender, T stage, M stage, N stage, and risk score.
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However, the roles of other autophagy-associated mRNAs in

NSCLC remain unclear.

Additionally, we identified 7 autophagy-associated

lncRNAs in NSCLC patients from TCGA. Notably,

lncRNAs have become a key regulatory factor in various

cellular processes. Studies show that lncRNAs can also

regulate autophagy in cancer. The specific mechanisms

through which lncRNAs regulate autophagy can be

segmented into three classes: 1) LncRNAs familiarly

modulate autophagy through regulating the expression of

ATG proteins. 2) LncRNAs regulate tumor genesis through

the AKT/mTOR signaling pathway. mTOR forms two

different signal complexes, mTOR complex 1(mTORC1)

and mTORC2, by binding to a variety of companion

proteins. mTORC1 inhibits the initiation of autophagy by

phosphorylating ATG13 and autophagy activating kinase

(ULK) (Kim and Guan, 2015). 3) LncRNAs can also act as

competing endogenous RNAs to modulate miRNAs. Many

studies investigated the effect of autophagy and lncRNAs in

other cancers, but less research has been done in NSCLC.

Further bioinformatics analysis confirmed that these

7 autophagy-associated lncRNAs were associated with the

OS of NSCLC patients. Among them, NKILA, LINC00941,

ABALON, and AL161431.1 were risk factors for prognosis of

NSCLC, and other lncRNAs (AC020765.2, MMP2-AS1, and

AL691432.2) had the opposite effect. Previous studies have

shown that LINC00941, also called MSC upregulated factor

(lncRNA-MUF), was negatively associated with OS and

phosphorylation of the PI3K/AKT signaling pathway in

lung adenocarcinoma patients (Wang et al., 2019b). Another

study also found that depletion of LINC00941 inhibited EMT

and activated Wnt/ß-catenin signaling in hepatocellular

carcinoma (Yan et al., 2017). Additionally, Ren et al.

informed that LINC00941 promoted the progression of

FIGURE 5
The KM survival curves and GSEA analysis of 7 prognostic autophagy-associated lncRNAs. (A) AL691432.2, (B) MMP2-AS1, and (C)
AC020765.2 were favorable prognostic factors. (D)NKILA, (E) ABALON, (F) AL161431.1, and (G) LINC00941 were harmful prognostic factors. (H) Top
ten primarily enriched categories of 7 autophagy-associated lncRNAs in the high-risk group by GSEA.
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NSCLC through the miR-877-3p/VEGFA axis (Ren et al.,

2021). AL161431.1 facilitated the proliferation and

metastasis by regulating miR-1252-5p in endometrial

carcinoma (Gu and Liu, 2020). Similarly, Qiang et al. found

that AL161431.1 was also negatively associated with the OS of

patients in lung squamous cell carcinoma (Ju et al., 2020).

Matrix metalloproteinases (MMPs) are a family of zinc-

dependent endopeptidases, and some studies indicated

MMP2 promotes invasion and metastasis of NSCLC cells

(Hsieh et al., 2019). Thus, we speculate that MMP2-AS1,

encoding MMP2 antisense RNA1, may restrain the function

of MMP2 in NSCLC. Consistent with our finding,

LINC00941 tended to be a high-risk factor and

AL691432.2 tended to be a low-risk factor in the

construction of a prognostic model for NSCLC.

E-cadherin is an important cyctomembrane component

and plays an important role in adherhens junction.

E-cadherin and the Catenins (β-catenin, α-catenin, p120-
catenin) are the substates of important kinases and

phosphatases for regulating adherens junction (Coopman

and Djiane, 2016). In this study, we demonstrated that

apoptotic BCL2L1-antisense LncRNA (ABALON) acts as

an oncogene in NSCLC via adherens junction pathway.

We also confirmed that ABALON promoted autophagy by

western blotting and fluorescence microscopy. However, the

mechanisms of ABALON need further study. In summary,

the results reveal the 7 identified autophagy-associated

lncRNAs have a prognostic value in NSCLC.

However, our study has certain limitations. First, we

applied traditional statistical analysis methods to establish

FIGURE 6
Downregulation of ABALON suppressed the proliferation andmetastasis in A549 cells. (A) The expression of ABALON in corresponding cell lines
identified by RT-qPCR. (B) RT-qPCR for the expression of ABALON in siControl and siABALON A549 cells. (C–E) Colony formation (C), MTT (D), and
EDU (E) assays identified proliferation was suppressed. (F,G)Cell metastasis suppressionwas identified bywound healing (F), and transwell (G) assays.
**p < 0.01, ***p < 0.001.

Frontiers in Genetics frontiersin.org10

Hu et al. 10.3389/fgene.2022.919857

108

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.919857


and evaluate prognostic risk models for 7 autophagy-

associated lncRNAs. Although these methods have been

applied and validated in many studies, we need to refine

our further studies with more advanced methods and

techniques in the future. In the study, we confirmed

ABALON promotes the proliferation, metastasis and

autophagy in NSCLC cells via biological experiments.

However, the mechanism by which ABALON regulates

NSCLC cells remains unclear. To further verify our

prediction results, in-depth studies about the molecular

mechanisms are needed.

Conclusion

In conclusion, this study identified 26 autophagy-associated

genes in NSCLC, and constructed a prognostic risk signature of

7 autophagy-associated lncRNAs. The signature was accurate to

predict prognosis of NSCLC patients with high reliability.

Moreover, experimental validation confirmed that ABALON

promotes the proliferation, metastasis, and autophagy in

NSCLC cells. This signature provides a basis for further

studies on the clinical application of these autophagy-

associated lncRNAs. In the future, with prospective validation,

FIGURE 7
Downregulation of ABALON suppressed the proliferation andmetastasis in NCI-H292 cells and promoted autophagy level. (A) RT-qPCR for the
expression of ABALON in siControl and siABALON NCI-H292 cells. (B–D) Colony formation (B), MTT (C), EDU (D) assays revealed cell proliferation
promotion via downregulation of ABALON in NCI-H292 cells. (E) A significant enrichment results between ABALON-high and ABALON-low groups
in NSCLC. (F)Western blotting to illustrate the expression levels of LC3-Ⅱ, P62, E-cadherin and β-catenin. (G) TandemmRFP-GFP fluorescence
microscopy to illustrate the levels of autophagy. **p < 0.001.
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the 7 autophagy-associated lncRNAs signature may improve

predictive accuracy and guide individualized therapy for non-

small cell lung cancer patients.
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Background and purpose: Radioresistance remains a major reason of

radiotherapeutic failure in esophageal squamous cell carcinoma (ESCC). Our

study is to screen the immune-related long non-coding RNA (ir-lncRNAs) of

radiation-resistant ESCC (rr-ESCC) via Gene Expression Omnibus (GEO)

database and to construct a prognostic risk model.

Methods: Microarray data (GSE45670) related to radioresistance of ESCC was

downloaded from GEO. Based on pathologic responses after

chemoradiotherapy, patients were divided into a non-responder (17 samples)

and responder group (11 samples), and the difference in expression profiles of

ir-lncRNAs were compared therein. Ir-lncRNA pairs were constructed for the

differentially expressed lncRNAs as prognostic variables, and the microarray

dataset (GSE53625) was downloaded fromGEO to verify the effect of ir-lncRNA

pairs on the long-term survival of ESCC. After modelling, patients are divided

into high- and low-risk groups according to prognostic risk scores, and the

outcomes were compared within groups based on the COX proportional

hazards model. The different expression of ir-lncRNAs were validated using

ECA 109 and ECA 109R cell lines via RT-qPCR.

Results: 26 ir-lncRNA genes were screened in the GSE45670 dataset with

differential expression, and 180 ir-lncRNA pairs were constructed. After

matching with ir-lncRNA pairs constructed by GSE53625, six ir-lncRNA pairs

had a significant impact on the prognosis of ESCC from univariate analysis

model, of which three ir-lncRNA pairs were significantly associated with

prognosis in multivariate COX analysis. These three lncRNA pairs were used

as prognostic indicators to construct a prognostic risk model, and the predicted

risk scores were calculated. With a median value of 2.371, the patients were
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divided into two groups. The overall survival (OS) in the high-risk group was

significantly worse than that in the low-risk group (p < 0.001). The 1-, 2-, and 3-

year prediction performance of this risk-model was 0.666, 0.702, and 0.686,

respectively. In the validation setting, three ir-lncRNAs were significantly up-

regulated, while two ir-lncRNAs were obviouly down-regulated in the

responder group.

Conclusion: Ir-lncRNAs may be involved in the biological regulation of

radioresistance in patients with ESCC; and the prognostic risk-model,

established by three ir-lncRNAs pairs has important clinical value in

predicting the prognosis of patients with rr-ESCC.

KEYWORDS

radioresistance, esophageal squamous cell carcinoma, lncRNA, prognostic model,
bioinformatics

Introduction

Esophageal cancer (EPC) is one of the most lethal tumors in

China and worldwide (Sung et al., 2021). Esophageal squamous

cell carcinoma (ESCC) is the major pathologic type in Chinese

population, accounting for more than 90% cases, and more than

45%–60% of them were diagnosed at an advanced stage (Yang

et al., 2018). In general, the prognosis of EPC is very poor, the

cancer-specific mortality rate ranks fourth, and the 5-year overall

survival rate is less than 30% (Chen et al., 2016; Zeng et al., 2018).

Radiotherapy is one of the main treatments for EPC, especially in

patients at an advanced stage. However, after radiotherapy with/

without chemotherapy, the total objective response rate (ORR) is

only 60%–76%, and radiotherapy resistance is an important

reason for the local failure of radiotherapy for EPC (Chen

et al., 2021). Although multiple factors may affect the

radiosensitivity, the specific mechanisms of long non-coding

RNA (lncRNAs) in radioresistance are still worth exploring.

The outcomes of radiotherapy are heterogeneous, and no

clinical or pathological method could predict tumor response

of radiotherapy.

LncRNA referred to a type of RNAs whose length is greater

than 200 bp and does not encode or translate proteins after

transcription. LncRNAs are involved in various physiological

and pathological processes, such as the cellular replication,

transcription, translation and so on. In the process of gene

expression and transcription, about 70% of human genes are

regulated by lncRNAs (Batista and Chang, 2013; Shi et al., 2013).

It’s reported that lncRNAs are widely involved in the biological

processes of cancer, including tumor radioresistance (Li and

Chen, 2013). Many studies believed that the prognosis of

tumors is closely related to the tumor microenvironment

(TME), and lncRNAs may participate in the regulation of

TME through molecular biological functions such as

chromatin modification, transcription, and post-transcriptional

processing (Sounni and Noel, 2013; Singh et al., 2016). In

addition, some lncRNAs are also involved in the regulation of

immune function in the TME, where may involve various types

of cells and cytokines. Such lncRNAs are often referred to as

immune-related lncRNAs (ir-lncRNAs) (Bremnes et al., 2016;

Chen M. M. et al., 2020). In order to explore whether ir-lncRNAs

are involved in the biological process of radio-resistance in

patients with ESCC, our study analyzed the differences in the

expression of ir-lncRNAs between ESCC-patients with

radioresistance and complete tumor remission based on gene

expression profiling data in the Gene Expression Omnibus

(GEO) database. Ir-lncRNA pairs, which had high correlation

with immune genes, were selected to establish a prognostic risk-

model to explore the value of ir-lncRNAs in predicting the

prognosis of ESCC patients with radioresistance, and further

to find potential biomarkers of radioresistance.

Materials and methods

Dataset collection and preparation

Using “esophageal cancer, esophagus cancer, and

radioresistance” as keywords, mRNA and lncRNA expression

profiling data related to radioresistance of esophageal cancer was

searched in the GEO database (https://www.ncbi.nlm.nih.gov/).

Two public esophageal cancer microarray profiling datasets

(GSE45670 and GSE53625) were downloaded from GEO and

were finally selected for data mining. The GSE45670 microarray

profiling datasets were provided by Wen et al., where gene

expression analyses were performed on pretreatment cancer

biopsies from 28 ESCCs who received neoadjuvant

chemoradiotherapy (CRT) and surgery and 10 normal

esophageal epithelia using Affymetrix U133 Plus 2.0 arrays

(Wen et al., 2014). After preoperative chemoradiotherapy

among 28 ESCCs, complete remission of tumor occurred in

11 patients, who were divided into responder group, while no

obvious tumor regression occurred in the other 17 patients,

who were considered to be radioresistant and divided into
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non-responder group. The average age of the patients in the non-

responder group was (55.65 ± 5.53) years old, of whom

16 patients were male (accounting for 94.11%); four patients

were in T2N1M0 stage, and 13 patients were in T3N1M0 stage;

while average age of the patients in the responder group was (57.

45 ± 6.80) years old, of whom nine patients were male (accounted

for 81.82%); four patients were in T2N1M0 stage and seven

patients were in T3N1M0 stage.

The GSE53625 microarray profiling datasets were provided

by Li et al.(Shi et al., 2016; Li et al., 2017; Liu et al., 2020),

including 179 patients with esophageal cancer. The profiling

datasets were derived from cancer tissue and adjacent normal

tissue. The dataset contained detailed clinical information of

179 ESCC patients that can be used for prognostic validation

analysis. Both datasets were annotated with the platform files

provided by GEO to obtain Ensemble ID, and then were

annotated with the “org.Hs.eg.db” package to obtain gene

symbols, thus ensuring that the two datasets have similar

annotation conditions.

Screening, differential expression analysis
and matched pairs of ir-lncRNAs

The immune gene list was download from the ImmuPORT

database (https://www.immport.org/). Subsequently, the subsets

of immune genes or lncRNAs were extracted from the

GSE45670 dataset and GSE53625, respectively. The correlation

test was performed on the immune gene expression matrix and

the lncRNA expression matrix, and the related lncRNAs were

screened as ir-lncRNAs. The screening criteria were: correlation

coefficient ρ ≥ 0.4 or ρ ≤ −0.4 and p ≤ 0.0001. Differential

expression analysis (DEA) was performed on eligible ir-lncRNAs

via the “limma” and “SVA” packages, and the expression

difference was defined as: the absolute value of the log2 value

(fold change) of the difference fold was greater than (mean ±

2 times the standard deviation of expression); p value ≤ 0.05. The

differentially expressed lncRNAs were paired for each other.

Taking the LINC01121|FAM167A-AS1 gene as an example, if

the expression of LINC01121 gene was greater than that of

FAM167A-AS1 gene, the matched index was recorded as 1,

otherwise as 0. The ir-lncRNA pairs were introduced as

independent variables into the COX prediction model to

establish a prognostic risk-model.

Construction of the predictive model

The clinical survival data of ESCC samples were extracted

from the GSE53625 dataset, and the ir-lncRNA pairs at the

common intersection between the GSE45670 dataset and the

GSE53625 dataset were considered as components of the

survival data.

Univariate and multivariate Cox regression survival

analyses were performed using the “survival” package in R

4.1.2 software to screen ir-lncRNAs with significant impact

on prognosis. The least absolute shrinkage and selection

operator (LASSO) regression analysis was carried out to

narrow down the prognostically significant ir-lncRNA

pairs. An ir-lncRNAs pairs-based risk prediction model

was established with ir-lncRNAs of statistically significant

differences in both univariate and multivariate Cox

regression survival analysis.

The model building formula is (Huang et al., 2021):

Riskscore � ∑
n

i�1(lncRNApairsi × coefi).

Where n is the counts of ir-lncRNA pairs, and lncRNApairsi

and coefi represent the related matched results (values of

1 or 0) and coefficients of modeled ir-lncRNA pairs,

respectively.

After the riskscores of all the included samples in

GSE53625 dataset were calculated, the samples were divided

into low-risk group and high-risk group according to the

median value of riskscores. Furthermore, the Kaplan-Meier

survival curve was applied to analyze the difference of survival

prognosis between the high- and low-risk groups with Survival

package. The ROC curves of 1-, 2-, and 3-year of overall survival

were plotted with ROC package. Univariate and multivariate Cox

regression survival analyses were performed with ESCC baseline

data and riskscores via the “survival” package in R 4.1.2 software,

respectively, to explore the independent prognostic factors

of ESCC.

Differential analysis of riskscore for
different clinical characteristics

The clinical characteristics such as gender, age, tumor TNM

stage, etc. of ESCC samples were extracted from

GSE53625 dataset and combined with the corresponding risk

scores. Wilcoxon rank sum test was performed via the “ggpubr”

package and the boxplots was drawn to show the correlations

between risk scores and clinical characters.

Differential expression analysis of
immune-related genes in different
radiosensitivity groups

Based on those ir-lncRNAs screened from the

GSE53625 dataset with prediction model, the immune-related

genes in the GSE45670 dataset were reversely extracted, and the

differential expression analysis of immune-related genes were

compared between the non-responder group and the responder

group. A heat map and a volcano plot were drawn.
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Gene ontology, Kyoto encyclopedia of
genes and genomes functional
enrichment analysis

For the purpose of exploring the molecular mechanism of ir-

lncRNAs and ir-genes related to radio-resistance in ESCC, we

implemented gene ontology (GO) and Kyoto encyclopedia of

genes and genomes (KEGG) functional enrichment analysis via

the “clusterProfiler” R package. In these analyses, a p value <
0.05 was considered statistically significant. GO enrichment

analysis was composed of cellular components (CC),

molecular functions (MF), and biological processes (BP),

which showed the biological functions of genes at different

levels, respectively. KEGG pathway enrichment analysis was

used to evaluate the enrichment degree of genes in different

pathways. The function of selected ir-genes whose expression

were significantly different between the non-responder group

and the responder group could indirectly speculate on the

biological roles and mechanisms of immune-related lncRNAs.

lncRNAs isolation, cDNA synthesis, and
RT-qPCR

Cellular total RNAs were isolated via TRIzol reagent

(Thermo, United States) from ECA-109 cell lines and ECA-

109R cell lines, where ECA-109R were identified as non-

responder esophageal cancer and ECA-109 was identified as

responder esophageal cancer. To increase the specificity of the

real-time quantitative PCR (RT-qPCR), first-strand cDNA

was synthesized from 1 mg total RNA via RevertAid First

Strand cDNA Synthesis Kit (Invitrogen, China). The relative

expression level of the target lncRNAs was detected by three-

step RT-qPCR via the Fast SYBR Green Master Mix (Applied

Biosystems Inc., CA, United States). The cycling conditions

were 5 min of pre-degeneration at 95°C and 30 s of

denaturation (polymerase activation) at 95°C followed by

40 cycles of annealing of primers at 95°C for 5 s and

extension of primers at 60°C for 30 s. GAPDH was applied

as an internal reference control. The relative expression

level was calculated by the relative quantification

2−ΔΔCT method. The experiment was repeated three times

and the primer sequences were listed in Supplementary

Table S1.

Statistical analysis

All statistical analyses were performed via R software

(version 4.1.2). The R packages involved the “Biobase”

package, the “GEOquery” package, the “survival” package, the

“ggpubr” package, and so on. The one-way ANOVA, Student’s

t-test (2-tailed) methods or Wilcoxon rank sum test were applied

to assess the statistical significance. Quantitative data were shown

as the mean ± SE. A p value < 0.05 was considered statistically

significant.

Results

Screening results of ir-lncRNAs in
GSE45670 and GSE53625 datasets

Flow chart of data collection and analysis is shown in

Figure 1. According to the screening criteria, a total of 681 ir-

lncRNAs were screened in the GSE45670 dataset. Further DEA

showed that 12 ir-lncRNAs were up-regulated and 14 ir-lncRNAs

were down-regulated in the non-responder group (p < 0.05). The

results are indicated in Table 1 and Figure 2.

The 26 differentially expressed ir-lncRNAs genes constituted

325 ir-lncRNA pairs, of which 180 ir-lncRNA pairs were

extracted according to the matching rate [pairRaito in the

range of (0.2–0.8)], and the data are shown in Supplementary

Table S2. Subsequently, we used the same method to construct

the ir-lncRNA pairs in the GSE53625 dataset. Finally, 74 ir-

lncRNA pairs successfully matched between the GSE45670 and

the GSE53625 dataset after intersection. The detailed

information of the 74 ir-lncRNA pairs is shown in

Supplementary Table S3.

Clinical characteristics of esophageal
squamous cell carcinoma samples in the
GSE53625 dataset

The detailed clinical characteristics of GSE53625 ESCC are

shown in Table 2.

Univariate and multivariate COX
regression analysis of differential ir-
lncRNAs

The results of univariate COX analysis showed that there

were six ir-lncRNA pairs of statistical significance associated

with survival outcomes (p < 0.05). In order to verify the

positive variables obtained by univariate COX regression,

LASSO regression (Least absolute shrinkage and selection

operator) was further used to screen significant ir-lncRNAs as

independent variables for multivariate COX analysis. As a

result, five ir-lncRNA pairs, that is, LINC01121|FAM167A-

AS1, ADAMTS9-AS2|MGC12916, MIR124-2HG|FAM167A-

AS1, LINC00942|ADAMTS9-AS2, and PURPL|FAM167A-

AS1, were the most powerful explanatory set of ir-

lncRNAs as potential independent variables in multivariate

COX model. A further multivariate COX regression was
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performed, and the results showed that three ir-lncRNA pairs

were statistically significant (p < 0.05), namely LINC01121|

FAM167A-AS1, ADAMTS9-AS2|MGC12916, and MIR124-

2HG|FAM167A-AS1. The above analysis revealed that the

three ir-lncRNA pairs could serve as independent prognostic

factors for ESCC. Since the hazard ratios of the three ir-

lncRNAs were all greater then 1, they were considered to be

risk factors for the prognosis of ESCC (as shown in Table 3

and Figure 3). Lasso regression road map and selection map

were shown in Supplementary Figures S1, S2. ROC curves

were used to assess the predictive ability and accuracy of the

predictive models based on the three ir-lncRNA pairs. The

results showed that the best cut-off point was 2.371 and the

area under the curve (AUC) at 1-, 2-, and 3-year were 0.666,

0.702, and 0.686, respectively, as shown in Figures 4A,B.

Additionally, Supplementary Figure S3 provides differential

distribution of riskscore with different clinical characters.

Construction of ir-lncRNAs-based risk
model and survival analysis of high- and
low-risk groups

The model formula obtained from multivariate COX

regression analysis was:

Riskscore � 0.687 × LINC01121|FAM167A − AS1

+ 0.863 × ADAMTS9 − AS2|MGC12916

+ 0.419 × MIR124 − 2HG|FAM167A − AS1

The median riskscore was 1.989, and according to the

median riskscore, 179 cases were divided into the high- (N =

76) and low-risk (N = 103) groups in the

GSE53625 cohort. The Kaplan-Meier survival curves shows

that patients in the high-risk group had a worse OS than

patients in the low-risk group with more death (p <
0.001, Figure 5). The 1-, 3-, and 5-year survival rates in

the low-risk group were higher than those in the high-risk

group.

Differential expression analysis of ir-
lncRNAs in high- and low-risk groups

Based on the aforementioned results, independent sample

t-test were further applied to assess the expression of ir-lncRNAs

in different riskscore groups. The distribution of risk scores is

presented in Figure 6. Among the five significant lncRNAs, only

FAM167A-AS1 had a decreased expression in the

high-risk group, suggesting that FAM167A-AS1 is a protective

factor.

FIGURE 1
Flow chart of data collection and analysis.
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Univariate and multivariate COX
regression analysis of clinical
characteristics

The clinical characteristics parameters in Table 2

combined with riskscore were selected to perform

univariate and multivariate COX regression analysis.

Univariate COX regression analysis demonstrated that age

(HR = 1.681, 95% CI = 1.147–2.463, and p = 0.008), N-stage

(Lymph node staging, N2 vs. N0, HR = 2.051, 95% CI =

1.137–3.702, and p = 0.017; N3 vs. N0, HR = 2.973, 95% CI =

1.426–6.200, and p = 0.004), TNM-stage (Stage III vs. Stage I,

HR = 3.626, 95% CI = 1.138–11.548, and p = 0.029) and risk

score (HR = 1.394, 95% CI = 1.225–1.587, and p < 0.001),

which were all negative prognostic factors of OS in the

GSE53625 cohort (Supplementary Table S4; Figure 7A).

After adjusting for age, tumor grade, N-stage and TNM-

stage, multivariate Cox analysis demonstrated that only risk

score was a negative prognostic factor of OS (HR = 1.305, 95%

CI = 1.139–1.495, and p < 0.001) (Supplementary Table S5;

Figure 7B).

CIBERSORT immune infiltration analysis

To explore the difference of tumor immunity landscape between

patients in the non-responder group and patients in the responder

group, the CIBERSORT algorithm was utilized to evaluate

immunity infiltration in the GSE 45670 dataset. The main results

are shown in Figures 8A,B. According to the 22-classification

method (Newman et al., 2019), the proportions of infiltrating

activated mast cells were significantly higher in the responder

group (p < 0.05). In addition, the proportions of infiltrating

macrophages. M0 were also increased in the responder group,

although the difference was not statistically significant (p > 0.05).

The 4-classification method showed that the infiltration level of

macrophages in the responder group was significantly higher than

that in the non-responder group (p < 0.05) (Li B. et al., 2019).

TABLE 1 Differential expression results of immune-related lncRNAs in GSE45670.

Genes log FC Ave Expr t p value adj p
value

Change

LINC01121 −1.196 3.898 −3.679 0.001 0.318 Down

LINC00592 −1.306 7.669 −2.93 0.006 0.589 Down

CTD-3080P12.3 −1.076 3.852 −2.595 0.015 0.589 Down

WAKMAR2 −1.041 7.665 −2.569 0.016 0.589 Down

H19 −1.902 8.538 −2.536 0.017 0.589 Down

DLGAP4-AS1 −0.982 5.319 −2.497 0.018 0.589 Down

SCAT1 −1.459 5.612 −2.487 0.019 0.589 Down

LOC101928557 −1.139 4.483 −2.417 0.022 0.589 Down

PURPL −1.619 3.829 −2.403 0.023 0.589 Down

IQCF5-AS1 −1.061 3.662 −2.302 0.029 0.641 Down

ELFN2 −1.126 6.26 −2.291 0.029 0.641 Down

MIR124-2HG −0.991 4.119 −2.217 0.034 0.69 Down

LINC01102 −1.018 2.774 −2.088 0.046 0.825 Down

LOC101928389 −1.09 3.768 −2.048 0.05 0.825 Down

ADAMTS9-AS2 1.714 5.225 4.129 0 0.187 Up

SOX2-OT 1.731 5.417 2.935 0.006 0.589 Up

GRK3-AS1 1.601 3.371 2.864 0.008 0.589 Up

DELEC1 1.11 3.089 2.691 0.012 0.589 Up

FAM167A-AS1 1.391 3.184 2.536 0.017 0.589 Up

ZNF503-AS1 1.112 7.336 2.532 0.017 0.589 Up

RNF217-AS1 0.984 5.366 2.486 0.019 0.589 Up

MGC12916 1.079 4.97 2.446 0.021 0.589 Up

LOC101927798 1.036 5.289 2.409 0.022 0.589 Up

LINC00551 1.432 6.052 2.391 0.023 0.589 Up

LINC00942 1.545 6.705 2.109 0.044 0.824 Up

FSIP2-AS2 1.335 5.226 2.081 0.046 0.825 Up
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Differential expression analysis of immune
genes

The correlation coefficient ρ = ±0.4 and p < 0.05 were used to

screen the immune genes related to the above five ir-lncRNAs,

and a total of 137 immune genes were screened, of which

11 genes had significant differences in expression levels

between the non-responder group and the responder group

(p < 0.05). Six genes (IL12RB2, IL32, MMP9, NGF, OASL,

and TNFRSF12A) were down-regulated and 5 genes (BMP4,

CHP2, OSGIN1, PAK5, and POMC) were up-regulated. The

distribution of immune genes expression was presented in

Figures 9 and 10. Further, we analyzed the expression

differences of 5 ir-lncRNAs from GSE45670 cohort. The

distribution of ir-lncRNAs expression was presented in

Figure 11. Among the above five ir-lncRNAs, ADAMTS9-AS2,

FIGURE 2
Differential expression results of immune-related lncRNAs in GSE45670 cohort. (A) Heatmap, (B) Volcano map.

TABLE 2 Clinical characteristics of esophageal squamous cell carcinoma samples in GSE53625.

Items Overall (n = 179, %) Items Overall (n = 179, %)

Gender Age

Female 33 (18.44) Mean (SD) 53.9 (9.03)

Male 146 (81.56) Median (min, max) 59.7 (36.0,82.0)

Tobacco Alcohol

Yes 114 (63.69) yes 106 (59.22)

T stage N stage

T1 12 (6.7) N0 83 (46.37)

T2 27 (15.08) N1 62 (34.64)

T3 110 (61.45) N2 22 (12.29)

T4 30 (16.76) N3 12 (6.7)

TNM stage Tumor grade

Stage I 10 (5.59) Poorly 49 (27.37)

Stage II 77 (43.02) Moderately 98 (54.75)

Stage III 92 (51.4) Well 32 (17.88)
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and FAM167A-AS1 were up-regulated in the non-responder

group, while LINC01121 and MIR124-2HG were down-

regulated (p < 0.05).

Functional gene ontology and Kyoto
encyclopedia of genes and genomes
enrichment analysis of immune genes

The GO and KEGG enrichment analysis results are shown in

Table 4 and Figure 12. In the GOmolecular function enrichment

analysis, the differentially expressed immune genes were mainly

enriched in receptor ligand activity, signaling receptor activator

activity, growth factor activity, and other pathways. In biological

process enrichment analysis, differential immune genes were

mainly enriched in extrinsic apoptotic signaling pathway,

regulation of apoptotic signaling pathway, regulation of

extrinsic apoptotic signaling pathway, etc. In the cellular

component enrichment analysis, the differential immune

genes were mainly enriched in endosome lumen, tertiary

granule lumen, and Golgi lumen, but the corrected p value

was not statistically significant, suggesting that these pathways

were not significant. In the KEGG enrichment analysis,

the differential immune genes were mainly enriched in

TABLE 3 Univariate and multivariate COX regression analysis of differential ir-lncRNAs.

Ir-lncRNA pairs Model β se HR HR.95L HR.95H p

LINC01121|FAM167A-AS1 Univariate 0.789 0.237 2.201 1.385 3.5 0.001

ADAMTS9-AS2|MGC12916 Univariate 0.664 0.288 1.943 1.105 3.418 0.021

MIR124-2HG|FAM167A-AS1 Univariate 0.567 0.196 1.764 1.202 2.588 0.004

LINC00942|ADAMTS9-AS2 Univariate −0.84 0.424 0.432 0.188 0.991 0.048

PURPL|FAM167A-AS1 Univariate 0.598 0.249 1.819 1.117 2.961 0.016

ZNF503-AS1|H19 Univariate 2.662 1.041 14.327 1.863 110.187 0.011

LINC01121|FAM167A-AS1 Multivariate 0.687 0.252 1.989 1.213 3.259 0.006

ADAMTS9-AS2|MGC12916 Multivariate 0.863 0.293 2.371 1.335 4.211 0.003

MIR124-2HG|FAM167A-AS1 Multivariate 0.419 0.209 1.52 1.009 2.291 0.045

Note: HR.95L: lower limit of 95% confidence interval; HR.95H: upper limit of 95% confidence interval.

FIGURE 3
Forest plots of Cox regression analysis for ir-lncRNA pairs: (A) Univariate Cox regression analysis, (B) Multivariate Cox regression analysis.
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Cytokine-cytokine receptor interaction, Estrogen signaling

pathway, Fluid shear stress and atherosclerosis. The immune

genes mainly involved in enrichment analysis included NGF,

IL32, BMP4, TNFRSF12A, and IL12RB2.

lncRNAs isolation, cDNA synthesis, and
RT-qPCR

The expression levels of ADAMTS9-AS2, FAM167A-AS1,

LINC01121, MIR124-2HG, MGC12916 and the internal

reference RNA were detected by RT-qPCR using three of the

above-mentioned cell lines. Compared with those lncRNAs in the

non-responder group, expression levels of ADAMTS9- AS2,

FAM167A-AS1, and MGC12916 lncRNA in the responder

group were significantly up-regulated, while expression levels

of LINC01121 and MIR124-2HG were down-regulated. The

results are shown in Supplementary Figure S4 and

Supplementary Table S6.

Discussion

Many recent studies have focused on establishing the

signatures of coding genes with or without non-coding RNAs

to assess prognosis in patients with malignancies (Zhu et al.,

2016; Qu et al., 2018; Hong et al., 2020). This research strategy

divides prognostic groupings based on the absolute expression

level of certain genes of interest, of which the simplicity of

operation is an important advantage, as the prognostic model

was set up on quantifying the expression levels of transcripts

(Hong et al., 2020). However, the shortcomings are also obvious,

because the expression of most genes varies greatly, especially for

non-coding RNAs. This means that some basic experiments

(such as rt-qPCR) should be used for practical verification to

ensure that the genes of interest had sufficient expression (Zhu

et al., 2021). To overcome the shortcomings of the above model,

new prognostic models based on the strategy of the relative

expression of immune-related gene pairing were proposed, which

became amainstream bioinformatics researchmethod (Sun et al.,

2020; Wu et al., 2020; Wang Y. et al., 2021). In this study, we were

inspired by the new strategy and attempted to construct a

reasonable model with ir-lncRNA pairs assess the prognostic

value of ir-lncRNAs. Therefore, we did not apply rt-qPCR to

FIGURE 4
Time ROC curves on overall survival prediction in theGSE53625 cohort (A) Time ROC curves with cutoff value, (B) Time ROC curves at one year,
two year and three year.

FIGURE 5
Kaplan-Meier curves for the overall survival of patients in the
high- and low-risk group.
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verify their exact expression levels in the signatures in our study.

To the best of our knowledge, there are no similar studies

investigating the radioresistance of esophageal cancer.

First, we explored the expression level of ir-lncRNAs between

non-responder ESCC patients and responder ESCC patients to

investigate the potential mechanism of radioresistance in ESCC

after chemoradiotherapy. We first screened 26 differentially

expressed ir-lncRNAs from the GEO45670 dataset. The

differential expression of these lncRNAs indicates that ir-

lncRNAs had played an important role in the radioresistance

of ESCC. Second, previous studies have shown that lncRNAs

achieve biological functions through a variety of target genes,

which may involve immune-related genes (Wang Y. et al., 2021).

Therefore, we further explored the differential expression of

immune genes, which were not only differentially expressed in

esophageal cancer tissues with different response characteristics

of radiotherapy, but also correlated with the expression of

immune lncRNAs, and thus could be considered as target

genes of ir-lncRNAs. Third, differential co-expression analyses

were performed to classify ir-lncRNAs and immune genes, and

the prognostic performance of ir-lncRNAs were validated via

single-pairing approach along with a 0 or 1 matrix by cyclical

calculation. Fourth, we performed univariate analysis combined

with Lasso penalized regression to identify the significant

irlncRNA pairs. Next, multivariate regression was used to

identify ir-lncRNAs with independent effects. Fifth, the best

FIGURE 6
Different expression of five ir-lncRNAs between the low- and the high-risk group.
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model was set up by calculating AUC value with ROC, where the

best cut-off point was applied to distinguish high- or low-risk

groups of EPC patients. Sixth, we further evaluated this new

model in a variety of clinical settings, including survival, clinical

or pathological characters. At last, tumor-infiltrating immune

cells between different radioresistance of esophageal cancer.

Radiotherapy is one of the main and effective treatments for

advanced EPC, but the therapeutic outcomes of which are still

unsatisfactory (Li et al., 2016; Yan et al., 2022), because the

complete response rate of radiotherapy is less than 35%–40%

(Mori et al., 2021). Radioresistance is the biggest problem and

obstacle faced by radiotherapy in esophageal cancer, as poor

FIGURE 7
Forest plots of clinical characteristics and risk score for univariate and multivariate COX regression analysis (A) Univariate Cox regression
analysis, (B) Multivariate Cox regression analysis.
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response to radiotherapy could result in local failure after

radiotherapy (Chen H. et al., 2020). Therefore, it is

particularly important to search for radioresistance-related

molecular markers and new radiosensitizers to enhance radio-

sensitivity in ESCC cells and improve the survival of ESCC

patients with radioresistance. Radioresistance is the focus and

difficulty in cancer radiobiology research, which is also a

clinically urgent issue (Wang et al., 2019; Yu et al., 2020; Sun

et al., 2021; Liu et al., 2022). Genes are an intrinsic determinant of

tumor radioresistance, and studies have shown that multiple

genes can affect the radioresistance of esophageal cancer (Huang

et al., 2019; Wang et al., 2019; Hua et al., 2020; Yu et al., 2020;

Han et al., 2021; Sun et al., 2021; Liu et al., 2022). Practice has

shown that it is common in clinical practice that even patients

FIGURE 8
Differences of infiltrating immune cell types between the non-responder group and the responder group of CIBERSORT in GSE45670 cohort.
(A) 22-classification method, (B) 4-classification method.
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with esophageal cancer of the same stage and the same

pathological type have great differences in the effect of

radiotherapy after receiving the same radiotherapy regimen.

The fundamental reason is the genetic differences between

different individuals (Huang et al., 2019; Wang et al., 2019;

Hua et al., 2020; Yu et al., 2020; Han et al., 2021; Sun et al.,

FIGURE 9
Differential expression results of immune genes in GSE45670 cohort. (A) Heatmap, (B) Volcano map.

FIGURE 10
Differential expression analysis of immune genes in GSE45670 cohort.
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2021; Liu et al., 2022). If the decisive genes of radioresistance can

be screened out, it is of great significance for the study of

radiosensitization, targeted therapy, and prediction of

radiotherapy effect to guide individualized therapy. Although

more molecular studies have been reported on the

radioresistance or radiosensitivity of ESCC, the clinical

significance of most molecular markers remains unclear and

inconsistent due to the complexity and variability of detection

methods.

Recent studies had found that a variety of lncRNAs can affect

the radiosensitivity of EPC by regulating gene expression and key

signal transduction pathways (Liu et al., 2021). Many lncRNAs

are involved in the regulation of the tumor immune

microenvironment, which are often referred to as immune-

related lncRNAs (Huang et al., 2018). However, there is few

reports on the relationship between ir-lncRNAs and

radioresistance and prognosis of ESCC. Furthermore, the

mechanism of ir-lncRNAs involved in the radioresistance is

still unclear. In recent years, the use of bioinformatics

methods for data mining at the molecular level provides new

ideas for the study of molecular pathogenesis of various diseases

including tumors (Zheng et al., 2020). Our present study used

bioinformatics methods to re-analyze the radioresistance-related

microarray data of esophageal cancer from GEO, and screened

for differentially expressed ir-lncRNA genes. Through biological

process annotation and signal pathway enrichment analysis, we

have excavated some ir-lncRNA genes and immune-genes and

potential signal pathways related to radioresistance to investigate

the mechanism of radioresistance at the molecular level in ESCC.

Zhu et al. (2021) had identified that a total of 111 immune-related

FIGURE 11
Differential expression analysis of five ir-lncRNAs in GSE45670 cohort.
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lncRNAs were different expressed in ESCC, in which,14 lncRNAs

markedly related to prognosis of ESCC were identified via

univariate analysis. Finally, a model based on the 8-lncRNA

signature was identified in the multiple regression model, which

demonstrated that the 8-lncRNA signature has certain power in

predicting the prognosis of ESCC patients (Zhu et al., 2021).

Since the expression abundance of ir-lncRNAs is extremely low,

which is different from the expression of protein genes, we used

the relative expression status between different ir-lncRNAs to

explore the biological functions of lncRNAs. Based on

26 differentially expressed ir-lncRNAs, we constructed 325 ir-

lncRNA pairs in the GSE45670 dataset, and 180 of which were

extracted to further study. As seen in our study, we found that

there were differences in gene expression between non-responder

ESCC and responder ESCC in terms of LINC01121, FAM167A-

AS1, ADAMTS9-AS2, MGC12916, MIR124-2HG. ADAMTS9-

AS2 and FAM167A-AS1 were up-regulated in the non-responder

group, while LINC01121 and MIR124-2HG were down-

regulated (p < 0.05). Among the five lncRNAs we identified;

some studies have demonstrated their prognostic effects on

malignant tumors. Shen et al. (2020) had found that a worse

5-year overall survival was detected in ESCC-patients with low-

expressed ADAMTS9-AS2. Similar results were seen in clear cell

renal cell carcinoma and bladder cancer (Song et al., 2019; Zhang

et al., 2020), which indicates that ADAMTS9-AS2 is a tumor

suppressor gene. However, the opposite results were found in

patients with tongue squamous cell carcinoma, where high-

expression of LncRNA ADAMTS9-AS2 promotes

proliferation, migration and epithelial-mesenchymal transition

(EMT) with poor prognosis, and low-expression was detected in

patient with lymph node metastasis (Li Y. et al., 2019). In our

study, the expression of ADAMTS9-AS2 was increased in non-

TABLE 4 Main results of GO and KEGG enrichment analysis for significantly expressed immune genes.

Type Description p p adjust Q value gene ID Count

GO_BP extrinsic apoptotic signaling pathway 0.0000 0.004322 0.0021 NGF/BMP4/TNFRSF12A/PAK5 4

GO_BP regulation of apoptotic signaling pathway 0.0000 0.014634 0.0071 MMP9/BMP4/TNFRSF12A/PAK5 4

GO_BP regulation of extrinsic apoptotic signaling pathway 0.0001 0.020688 0.0100 BMP4/TNFRSF12A/PAK5 3

GO_MF receptor ligand activity 0.0000 0.000115 0.0001 NGF/IL32/BMP4/OSGIN1/POMC 5

GO_MF signaling receptor activator activity 0.0000 0.000115 0.0001 NGF/IL32/BMP4/OSGIN1/POMC 5

GO_MF growth factor activity 0.0001 0.001442 0.0009 NGF/BMP4/OSGIN1 3

GO_CC endosome lumen 0.0195 0.211736 0.1932 NGF 1

GO_CC tertiary granule lumen 0.0305 0.211736 0.1932 MMP9 1

GO_CC Golgi lumen 0.0570 0.211736 0.1932 NGF 1

KEGG Cytokine-cytokine receptor interaction 0.0000 0.000317 0.0003 NGF/IL32/BMP4/TNFRSF12A/IL12RB2 5

KEGG Estrogen signaling pathway 0.0095 0.150833 0.1419 MMP9/POMC 2

KEGG Fluid shear stress and atherosclerosis 0.0096 0.150833 0.1419 MMP9/BMP4 2

FIGURE 12
Functional GO and KEGG Enrichment Analysis of Immune Genes. (A) GO biological process enrichment, (B) GO cellular component
enrichment, (C) GO molecular function enrichment, (D) KEGG pathway enrichment.
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responsive EPC patients, suggesting that ADAMTS9-AS2 was

involved in the radioresistance of EPC, but the specific

mechanism has not been reported. Some scholars have found

that ADAMTS9-AS2 have been shown to play essential

roles in temozolomide (TMZ) resistance in glioblastoma

(GBM) (Yan et al., 2019). It should be mentioned that,

although multiple lncRNAs, such as HOTAIR (Lv et al.,

2013), CCAT2 (Zhang et al., 2015) and MALAT1 (Deng

et al., 2016), have shown potential prognostic value in ESCC,

the role of immune-related lncRNA signatures in prognosis has

not been elucidated in the literature.

A few studies had addressed the role of immune-related

lncRNAs in survival and prognosis of ESCC. A previous study

had established an immune gene-based prognostic model for

ESCC and esophageal adenocarcinoma (EAC) (Fei et al., 2021).

Prognosis-related immune-gene-based model based on BMP1,

EGFR, S100A12, HLA-B, TNFSF18, IL1B, and MAPT had

proved to be useful for prognosis in ESCC (Fei et al., 2021).

To verify the relationship between ir-lncRNA pairs and survival

from ESCC, we adopted the GES53625 dataset as validation

cohort. We constructed a novel prognostic prediction model

consisting of three ir-lncRNA pairs, including LINC01121|

FAM167A-AS1, ADAMTS9-AS2|MGC12916, and MIR124-

2HG|FAM167A-AS1, which involved five ir-lncRNAs. We

further confirmed by Wilcoxon rank sum test that there were

significant differences in the expression levels of the above ir-

lncRNAs in different risk score groups in the GES53625 cohort.

In addition, the prognostic value of the novel model was

confirmed by the multivariate Cox analysis. The overall

survival in the high-risk group was significantly worse than

that in the low-risk group (p < 0.001). The 1-year, 2-year, and

3-year prediction performance of this risk-model was 0.666,

0.702, and 0.686, respectively. Univariate and multivariate Cox

analysis confirmed that prognostic riskscores based on three ir-

lncRNA pairs were important prognostic factors for ESCC.

Univariate and multivariate COX regression analysis indicated

that the three ir-lncRNA pairs were associated with the prognosis

of ESCC, and in the high-risk group ADAMTS9-AS2,

LINC01121, MGC12916, and MIR124-2HG was up-regulated,

FAM167A-AS1 was up-regulated. All the three ir-lncRNA pairs

were markers of poor prognosis with worse overall survival for

ESCC. A previous research showed that ADAMTS9-AS2 is a

prognostic biomarker correlated with immune infiltrates and

predicted a poorer overall survival when it was low expressed in

lung adenocarcinoma (Lin et al., 2021). Li W. et al. (2020) had

identified the expression levels of eight lncRNAs to establish a

signature for predicting the survival of patients with ESCC. Li Z.

Y. et al. (2020) found that the expression of lncRNA Rpph1 in

patients with EPC was significantly higher than that in healthy

participants (p < 0.05), and was positively correlated with cancer

tissues (r = 0.681, p < 0.05). In vitro experiments confirmed that

silencing lncRNARpph1 could up-regulate radio-induced pro-

apoptotic-related proteins such as Bax, down-regulate anti-

apoptotic-related proteins such as Bcl-2, thereby increasing

radiotherapy-induced apoptosis of EPC cells. In addition,

silencing lncRNA Rpph1 can also improve the radiosensitivity

of EPC cells by reducing radiation-induced G2/M phase arrest

and epithelial-mesenchymal transition (EMT) (Li Z. Y. et al.,

2020). Wang et al. found that lncRNA CCAT2 was highly

expressed in EPC cells, which can negatively regulate the

expression of miR-145 and inhibit the phosphorylation of

Akt, ERK, and p70 s6K1 to increase radioresistance. In vitro

experiments confirmed that knockout of lncRNA CCAT2 can

significantly increase radiation-induced apoptosis, thereby

increasing radiosensitivity in EPC (Wang et al., 2020). In

addition to mediating radioresistance, some lncRNAs also

have radiosensitizing effects. Lin et al. reported that compared

with the radioresistant ESCC cell line TE-1-R, the expression of

lncRNA GAS5, and RECK was higher in the radiosensitive cell

line TE-1, while the expression of miR-21 was lower in cell line

TE-1 (Lin et al., 2020). Further research found that up-regulation

of lncRNA GAS5 can increase the expression of RECK by

inhibiting miR-21, reduce the viability and colony formation

ability of EPC cells under radiation exposure, and increase

radiation-induced apoptosis of cancer cells (Lin et al., 2020).

All these evidences had suggested that lncRNAs play an

important role in radioresistance or radiosensitivity of ESCC.

In general, high-abundance lncRNAs have significant biological

functions, especially lncRNAs with significant differences in

expression (Yan et al., 2021). Different from the above studies,

we focused on the ir-lncRNAs related to the immune

environment or immune regulation of radioresistance. As

expected, we found that ir-lncRNAs are involved in the

bidirectional regulation of radiosensitivity, that is, some

lncRNAs could promote radioresistance, while others may

increase radiosensitivity.

In recent years, the study of the tumor immune

microenvironment has taken a leading role in field of

cancer research (Wang et al., 2022). The differential

expression of immune genes is an important molecular

mechanism leading to changes in the tumor immune

microenvironment (Anderson, 2020; Peña-Romero and

Orenes-Piñero, 2022). Several previous studies reported the

prognostic value of a single immune-related gene in EPC or

lung cancer, such as FGFR1, TNFRSF10B, and IL1B (Schabath

et al., 2013; Takase et al., 2016; Zhang Y. et al., 2021).

However, the study focused on the prognostic role of the

ir-lncRNAs with microenvironment and immune cells in

ESCC is lacking, especially for ESCC with radioresistance.

Identification of prognostic value of the tumor

microenvironment in esophageal cancer is necessary (Tan

et al., 2021). In our study, we identified 11 immune genes

with differential expression in the GSE 45670 cohort, and our

findings further confirmed the involvement of immune

alterations in the biological process of radiation resistance

in ESCC. To further explore the changes and biological
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pathways in the immune microenvironment between patients

in the non-responder group and patients in the responder

group, CIBERSORT was carried out in this study as well,

which was an analytical tool developed by Newman et al.

(2015) to provide an estimation of the abundances of member

cell types in a mixed cell population via gene expression data,

and provided the possibility of identifying immune

biomarkers for diagnosis and prognosis. The GSE

45670 dataset was utilized to evaluate immunity infiltration

via the CIBERSORT algorithm. Growing evidence pointed to

the underlying mechanisms by which the local immune

microenvironment and immune cells drive tumorigenesis in

many cancers (Greten and Grivennikov, 2019; Wang Q. et al.,

2021; Kumar et al., 2022). Previous studies have shown that

DNA damage repair-related genes, apoptosis-related genes,

cellular hypoxia-related genes, cell cycle-related genes, and

autophagy genes play important roles in radiosensitivity by

changing the microenvironment (Chen et al., 2017; Tang et al.,

2018; Zhang H. et al., 2021). Tumor-infiltrating immune cells

(TIICs) in esophageal cancer tissue may be an important

determinant of prognosis and therapy response (Lu et al.,

2020). In our study, we found that there were some differences

in infiltrating immune cells between the non-responder group

and the responder group, which mainly manifested in

differences in infiltration of activated mast cell and

macrophage. Mast cells are an important member of innate

immune cells. Circulating mast cells contribute to the growth

and metastasis of many tumors, while mast cell infiltration in

tumor tissue is closely related to tumor survival in some

cancer (Welsh et al., 2005). In a study of lung cancer, it

has been shown that more human mast cells infiltrated in

cancer tissue improved the survival of cancer, suggesting that

mast cells can participate in the antitumor immune process

(Welsh et al., 2005). In ESCC cases with tumor complete

remission, the number of mast cells infiltrated was higher,

indicating that mast cells were involved in the therapeutic

effect of radiotherapy.

There are a large number of tumor-associated

macrophages (TAMs) in the tumor microenvironment,

which have a high degree of interaction with tumor cells,

tumor stem cells, epidermal cells, fibroblasts, T/B cells, and

NK cells (Welsh et al., 2005). Although macrophages

theoretically have the ability to destroy tumors, there is

growing experimental evidence that TAMs promote tumor

progression (Mantovani and Allavena, 2015). Resilience and

diversity are two characteristics of macrophages, which means

that macrophages have dual effects in tumor development

(Cassetta and Pollard, 2020). According to the activation type

of macrophages and their different roles in the tumor

microenvironment, TAMs are generally classified into two

functionally opposite subtypes, classically activated

M1 macrophages and alternately activated

M2 macrophages, both of which represent one of the main

tumor-infiltrating immune cell types (Cassetta and Pollard,

2020). Basic research has found that a large number of TAMs

proliferate after radiation, and at the same time release a large

number of inflammatory signals (IL-1) and

immunosuppressive signals (TGF-b). Unfortunately, the

massive accumulation of macrophages can lead to tumor

recurrence, which is very similar to TAMs-guided tissue

damage repair after chemotherapy. M1 macrophages have

antitumor effects, while M2 macrophages mainly play a

role in promoting tumor growth, invasion and metastasis.

Our study found that macrophages infiltrated more in

esophageal cancer tissues in responder group, among which

M0 macrophages were the main infiltrating cells. The

infiltrating number of M2 macrophages was more often in

the non-responder group, although there was no statistical

difference compared with that in responder group. It is worth

noting that both M1 and M2 macrophages have high degree of

plasticity, which makes it possible to design appropriate

methods to re-induce and re-educate them, thereby

becoming an effective weapon against tumors. Different

types of macrophages can be converted into each other

upon tumor microenvironment changes or therapeutic

interventions. In view of the important role of

macrophages in tumor radioresistance, it needs to do in-

depth research on the realization of their functions and

their regulatory mechanisms, in order to find new anti-

tumor targets.

Some limitations should be mentioned in our study. First, the

prognostic model based on ir-lncRNA pairs was established

through bioinformatics analyses from data available in the

GEO databases. Hence, some further prospective trials or

experimental data should be performed to validate the

findings of this study. Second, our study found that most of

clinical characters were not correlated with the riskscore, and

tumor grade had a weak correlation with the riskscore. We

speculate that preoperative adjuvant therapy altered gene

expression status, resulting in clinical factors not correlated

with gene expression. In addition, insufficient sample size may

also be an important reason. Third, our study only initially

explored the potential relationship between ir-lncRNAs risk

signatures and immune cell infiltration, so further studies are

needed to reveal the underlying mechanisms. Fourth, the effect of

ir-lncRNAs on the immune microenvironment was indirectly

speculated through immune genes, and there is currently a lack of

direct evidence. More experiments are needed to confirm the

impact of ir-lncRNAs on the radioresistance-related

microenvironment of ESCC. Finally, as a preliminary

exploratory study, it only has a qualitative role in the

identification of ir-lncRNAs and the prognosis risk of ESCC

patients. The relationship between ir-lncRNAs and the prognosis

of ESCC patients has not been accurately quantified, which still

needs to be further verified by multicenter studies with large

samples.
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In conclusion, ir-lncRNAs may be involved in the

biological regulation of radioresistance in patients with

ESCC. Changes in macrophage infiltration and immune

gene expression are potential mechanisms of radiotherapy

resistance, which are worthy of further study. This study had

successfully established a prognostic risk model based on

three ir-lncRNAs pairs, which is an important attempt to

identify and predict the prognosis of ESCC. More importantly,

it is a useful supplementary method to predict the prognosis of

patients with esophageal squamous cell carcinoma based on

TNM staging.
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Purpose: Stomach adenocarcinoma (STAD) is one of the common cancers

globally. Cuproptosis is a newly identified cell death pattern. The role of

cuproptosis-associated lncRNAs in STAD is unknown.

Methods: STAD patient data from TCGA were used to identify prognostic

lncRNAs by Cox regression and LASSO. A nomogram was constructed to

predict patient survival. The biological profiles were evaluated through GO

and KEGG.

Results: We identified 298 cuproptosis-related lncRNAs and 13 survival-related

lncRNAs. Patients could be categorized into either high risk group or low risk

group with 9-lncRNA risk model with significantly different survival time (p <
0.001). ROC curve and nomogram confirmed the 9-lncRNA risk mode had good

prediction capability. Patients in the lower risk score had high gene mutation

burden. We also found that patients in the two groups might respond differently

to immune checkpoint inhibitors and some anti-tumor compounds.

Conclusion: The nomogramwith 9-lncRNAmay help guide treatment of STAD.

Future clinical studies are necessary to verify the nomogram.

KEYWORDS

risk score, prognosis, cuproptosis, immune, tumor

1 Introduction

Stomach adenocarcinoma (STAD) is frequently found in the digestive tract (Bray et al.,

2018). It is mostly reported in eastern Asia and South America. There are several risk factors

for STAD, including Helicobacter pylori infection, adenomatous gastric polyps, diet low in

fruits and vegetables and diet high in cured or smoked foods (Wroblewski et al., 2010; Rawla
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and Barsouk, 2019; Akshatha et al., 2021). Although STAD is

treatable surgically in its early stages, advanced STAD has a poor

prognosis. Innovative therapeutics and prognostic models are both

needed to improve prognosis of advanced STAD (Ajani et al., 2017;

Ivey et al., 2022).

Metal micronutrients, especially iron (Fe), zinc (Zn), and

copper (Cu), are essential for life. For example, Zn is involved in

regulation of gene expression, and approximately 2,800 proteins

may bind Zn in vivo (Andreini et al., 2006). Cu is catalyst or

structural cofactor in many cellular activities, including

mitochondrial respiration, immune function, and free radical

scavenging (Festa and Thiele, 2011; Cobine et al., 2021). Despite

its role for normal life, high serum copper level has been linked to

increased risk of cancer (Brady et al., 2014; Tsang et al., 2020) and

atherosclerotic diseases (Reunanen et al., 1992; Ford, 2000; Chen

et al., 2015).

Mostly recently Tsvetkov et al. (2022) demonstrated a novel

mechanism of Cu-induced cell death that is related to mitochondria

dysfunction. This novel form of regulated cell death was termed

“cuproptosis”. Cuproptosis may happen when mitochondrial

enzymes aggregate and leads to mitochondrial stress. Cuproptosis

is different from apoptosis, ferroptosis, or necroptosis. This

discovery suggests mitochondrial Cu homeostasis may be

exploited for cancer therapy.

Here we explored whether cuproptosis-related lncRNAs may

be involved in STAD patient prognosis. The results might help

understand the roles of cuproptosis in the development and

progression of STAD.

2 Materials and methods

2.1 TCGA data

We downloaded RNA sequencing (RNA-seq) and expression

files and mutation files from the Cancer Genome Atlas (TCGA)

database (https://portal.gdc.cancer.gov/repository). The data

included tumor tissues of 343 STAD patients and 30 matched

normal tissues. Data were downloaded and handled according to

TCGA guidelines.

2.2 Identification of cuproptosis-related
lncRNAs

According to the study by Tsvetkov et al. (2022),

19 cuproptosis-associated genes were evaluated

(Supplementary Table S1). Correlation between cuproptosis-

related genes and differentially expressed lncRNAs was

evaluated. Pearson’s correlation coefficients (R) of gene

expression patterns were used as a measure of gene

coexpression. The PCC threshold to retrieve cuproptosis-

related lncRNAs was 0.4 (|R| > 0.4), with a p value < 0.001.

2.3 Cuproptosis-related lncRNAs
signature for STAD prognosis

The downloaded clinical and demographic data of STAD

patients were analyzed with univariate Cox regression analysis to

identify lncRNAs associated with patient overall survival (OS)

and those associated with cuproptosis were further identified as

candidate lncRNAs for the construction of prognostic signature.

Lasso regression was performed to screen lncRNAs that were

truly correlated with a patient’s survival on the basis of 10-fold

cross-validation. Based on the nine optimal lncRNAs identified,

the risk scores of patients were calculated according to the

following formula:

risk score � ∑
n

i

Xi*Yi

Where X was regression coefficient and Y was expression level of

cuproptosis-related lncRNAs.

A total of 343 STAD patients were allocated to either the

training cohort or the test cohort randomly in a 1:1 ratio for

constructing and validating the cuproptosis-related lncRNAs

signature. Patients in each cohort were classified into either

low--risk group or high-risk group according to the cut-off

value, which was the median risk score (Meng et al., 2019;

Hong et al., 2020). The Chi-square test and the receiver

operating characteristics (ROC) curves were used to help

determine if observed OS was in line with expected OS, and

the 1-year, 3-years, and 5-years OS rates were compared between

the low-risk group and the high-risk group by Kaplan–Meier

analysis. We further constructed a nomogram with cuproptosis-

related lncRNA risk score and established clinical risk factors to

calculated patient survival time. Then concordance index

(C-index) and calibration curves were used to evaluate the

prediction power of the nomogram. Finally, stratified analysis

was used to assess whether the signature retained its predictive

ability in subgroups of patients (stages I–II and stages III–IV).

The “survival”, “rms”, “survminer” and “timeROC” R packages

were used.

2.4 Principal component analysis, gene
ontology and gene set enrichment
analysis

We used principal component analysis (PCA) to characterize

cuproptosis-related lncRNAs expression patterns. PCA is a common

unsupervised method for the analysis of gene expression data. 3D

scatter plots were used to visualize the relationship between the three

variables of samples. The analysis of differentially expressed genes

(DEGs) was performed with the glm method of the “edgeR” R

package. We set the threshold value of log fold change (log2FC) at |

log2FC| ≥ 1, with a false discovery rate (FDR) < 0.05, to identify

important DEGs. Gene Ontology (GO) was used to interpret DEGs
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for the relevant cellular components, biological processes, and

molecular functions. Differential Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways between the high-risk group

and the low-risk group were screened using Gene Set

Enrichment Analysis (GSEA), with a FDR <0.25.

2.5 Immune function

Single-sample GSEA (ssGSEA), an extension of GSEA, was

used to calculate separate enrichment scores for

immunological pathways by the normalized enrichment

score (NES) (Subramanian et al., 2005). Each ssGSEA

enrichment score represents the degree to which the genes

are coordinately upregulated or downregulated within a

sample.

2.6 Tumor mutation burden

We downloaded the somatic mutation file and calculated

each patient’s tumor mutation burden (TMB) score. The

influence of TMB on patient OS was evaluated by

Kaplan–Meier analysis and compared between the high- and

low-risk groups by t-test. Maftools R package was used.

2.7 Tumor immune dysfunction and
exclusion score and drug sensitivity
prediction

To predict treatment response of immune checkpoint blockades

(ICBs), tumor immune dysfunction and exclusion (TIDE) algorithm

was used to identify signatures of T cell dysfunction and signatures

that exclude T cell infiltration into tumors (Jiang et al., 2018). To

predict treatment response of the most important groups of drugs

again STAD, the half-maximal inhibitory concentrations (IC50) were

calculated using pRRophetic as described in Genomics of Drug

Sensitivity in Cancer (GDSC) (Geeleher et al., 2014).

3 Results

3.1 lncRNAs data

Figure 1 illustrates the results of the search and the process of

screening. A total of 16,773 lncRNAs that may be associated with

19 cuproptosis-associated genes were found. Among these lncRNAs,

298 lncRNAsmet the pre-defined criteria ((|R|> 0.4). All 298 lncRNAs
upregulated the expression of cuproptosis genes in the Sankey diagram

(Figure 2A. Univariate Cox regression analysis found that 13 lncRNAs

were prognostic factors of patient survival (Figure 2B).

FIGURE 1
The process of the study.
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3.2 Risk model

To construct a risk model with cuproptosis-related

lncRNAs in STAD, we randomly allocated 343 STAD cases

into the training set and the test set at 1:1 ratio. The chi-square

test showed that the two groups were comparable in terms of

both clinicopathologic and demographic parameters

(Table 1).

To avoid overfitting, nine lncRNAs were further

identified by LASSO regression method (Figures 2C,D. A

formula was established with the expression levels of nine

lncRNAs:

FIGURE 2
Identification of prognostic cuproptosis-related lncRNAs in STAD. (A) The Sankey diagram demonstrates correlation between cuproptosis-
related lncRNAs and cuproptosis-related genes. (B) The prognostic lncRNAs identified by uni-Cox regression analysis. (C) LASSO model, with a 10-
fold cross-validation. (D) The coefficient profile of nine lncRNAs screened by the LASSO model. (E) Correlations between lncRNAs in the risk model
and cuproptosis-related genes.
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Risk score = LINC01094 × (0.5250) +AC022182.1 × (2.02146) +

AC011747.1 × (0.1655) + LINC02476 × (0.1295) + AC005014.2 ×

(−0.6903) + AC090809.1 × (0.2959) + AC084781.2 × (0.3942) +

SENCR × (0.6958) + AC010422.4 × (−0.8166) (Meng et al., 2019).

As expected, the high-risk group had worse survival in each

sample set (Figure 3).

3.3 Assessment of the risk model

The areas under the l-, 3- and 5-years ROC curves (AUC) were

0.719, 0.773, and 0.755 respectively (Figure 4A). The AUC of risk score

was 0.719 and theC-index in the riskmodelwas 0.726, indicting aperfect

predictive ability (Figures 4B,C). In the uni-Cox regression, the hazard

ratios (HR) of the risk scorewas 1.0726 (p< 0.001), and in themulti-Cox

regression, HR of the risk score was 1.092 (p < 0.001) (Figures 4D,E).

3.4 Nomogram

A nomogram model was drawn to predict OS of patients

(Figure 5A). The calibration plots showed the predicted l-, 3-

and 5-years OS was consistent with the actual OS (Figure 5B).

Thus the nomogram was well calibrated, with good prediction

of patient survival. The high value of C index (0.726)

indicated that the nomogram has excellent discriminative

ability.

The results of decision curve analyses to compare the performance

of the nomogram are shown in Figure 5C. The nomogram has greater

net benefit than other clinical parameters in all patients.

3.4 PCA and biological pathways analyses

The 3D scatter diagram showed the low-risk group and the

high-risk group had distinct aggregation features of PCA

(Figures 6A–C). GO analysis indicated related biological

processes included B cell activation signaling pathway,

antigen receptor−mediated signaling pathway, and immune

response−regulating signaling pathway; related cellular

components included immunological synapse, endocytic

vesicle membrane, endocytic vesicle, T cell receptor

complex, and immunoglobulin complex, and related

molecular functions included immune receptor activity,

TABLE 1 Clinicopathologic and demographic characteristics of STAD patients in the training and test cohorts.

Variable Total Training cohort Test cohort p value

≤65 72 (42.6%) 38 (44.71%) 34 (40.48%) 0.6889

>65 97 (57.4%) 47 (55.29%) 50 (59.52%)

Female 69 (40.83%) 30 (35.29%) 39 (46.43%) 0.1882

Male 100 (59.17%) 55 (64.71%) 45 (53.57%)

G1 3 (1.78%) 2 (2.35%) 1 (1.19%) 0.5907

G2 71 (42.01%) 33 (38.82%) 38 (45.24%)

G3 92 (54.44%) 49 (57.65%) 43 (51.19%)

Unknown 3 (1.78%) 1 (1.18%) 2 (2.38%)

Stage I 24 (14.2%) 10 (11.76%) 14 (16.67%) 0.8193

Stage II 46 (27.22%) 23 (27.06%) 23 (27.38%)

Stage III 68 (40.24%) 35 (41.18%) 33 (39.29%)

Stage IV 20 (11.83%) 11 (12.94%) 9 (10.71%)

Unknown 11 (6.51%) 6 (7.06%) 5 (5.95%)

T1 13 (7.69%) 8 (9.41%) 5 (5.95%) 0.1533

T2 29 (17.16%) 9 (10.59%) 20 (23.81%)

T3 74 (43.79%) 39 (45.88%) 35 (41.67%)

T4 47 (27.81%) 25 (29.41%) 22 (26.19%)

Unknown 6 (3.55%) 4 (4.71%) 2 (2.38%)

N0 50 (29.59%) 20 (23.53%) 30 (35.71%) 0.0402

N1 45 (26.63%) 27 (31.76%) 18 (21.43%)

N2 31 (18.34%) 12 (14.12%) 19 (22.62%)

N3 34 (20.12%) 22 (25.88%) 12 (14.29%)

Unknown 9 (5.33%) 4 (4.71%) 5 (5.95%)

M0 148 (87.57%) 75 (88.24%) 73 (86.9%) 1

M1 14 (8.28%) 7 (8.24%) 7 (8.33%)

Unknown 7 (4.14%) 3 (3.53%) 4 (4.76%)
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heparin binding, glycosaminoglycan binding, sulfur compound

binding, immunoglobulin receptor binding, and antigen binding

(Figures 6D,E). GSEA identified genes involved in PI3K−Akt

signaling pathway, cell adhesion, cytokine−cytokine receptor

interaction and chemokine signaling pathway were differentially

expressed between the low--risk group and high-risk group

(Figures 6F,G).

3.5 Correlation analysis between risk
scores and gene mutations

Somatic mutations between the two groups were compared.

The ten most mutated genes were TP53, TTN, PCLO, ZFHX4,

CSMD3, SYNE1, ARID1A, LRP18, MUC16, and ACVR2A. The

high-risk group had more frequent TP53 mutation (Figures

FIGURE 3
Prognosis capability of the model in the three patient sets. (A–C) Distribution of patient with different scores. (D–F) Distribution of patient
survival time. (G–I) The heatmap of nine lncRNAs expression. (J–L) Comparison of OS curves of patients between the two groups of each set. (M,N)
OS curves of stratified by clinicopathologic characteristics in the entire set.
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7A,B) but overall lower TMB (Figure 7C). Patients with higher

scores and lower TMB had the worst prognosis among the four

groups (Figures 7D,E).

3.6 TIDE, immune functions and
prediction of clinical treatment response

The TIDE scores were significantly higher in the high-risk

group compared to the low-risk group. This indicated that TIDE

could be used to evaluate sensitivity to ICB therapy for STAD

patients (Figure 8A). Indeed, several immune-related pathways

had different activities between the two groups. Patients in the

high-risk group had higher activities in terms of T cell

co−inhibition and check−point (Figure 8B). Drug sensitivity

comparison showed most drugs have similar IC50 between the

two groups, and there were eight drugs that had lower IC50 in the

high-risk group: PD−173,074, AZD8055, BEZ235, CGP-60474,

Dasatinib, Pazopanib, TGX221, and HG-6-64-1 (Figure 8C).

4 Discussion

STAD is a common malignancy worldwide. Although the

mortality of STAD has declined due to earlier detection and

treatment advancement including targeted therapy, the OS of

STAD patients remains low due to delayed diagnoses that makes

tumor unresectable. The copper level has been reported to be

increased in cancer patients, which could promote tumor

angiogenesis, progression and metastasis. Recently Tsvetkov

et al. reported cuproptosis, a novel form of regulated cell

death (Tsvetkov et al., 2022). Investigation of cuproptosis-

related genes in cancer could help understand mechanisms of

tumor development. The identification of cuproptosis may also

promote innovations in the development new anti-cancer agents.

Biomarkers, including genetic and epigenetic ones, are

playing a crucial role in cancer treatment and prognosis

(Mishra and Verma, 2010). For example, the TCGA project

classify STAD into four major subtypes with different

genomic profiles to guide targeted therapy (2014). Non-

FIGURE 4
Validation of the model. (A) Time-dependent ROC curve analyses for survival of all patients based on the risk score model. (B) Comparision of
the ROC curves of risk score, patient age, patient gender, tumor grade and tumor stage. (C) The C-index curves of risk score, patient age, patient
gender, tumor grade and tumor stage. (D,E) Uni-Cox and multi-Cox analyses of overall survival for risk score, patient age, patient gender, tumor
grade and tumor stage.
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coding RNA transcripts, such as lncRNAs, can also be used as

biomarkers because lncRNAs might regulate cancer

development (Djebali et al., 2012; Lee, 2012; Huarte, 2015;

Marchese et al., 2017; Mattick, 2018). With the abundant

novel lncRNAs identified recently, the annotation of these

lncRNAs is urgently needed. We found that nine cuproptosis-

related lncRNAs were related to survival of STAD patients. On

one hand, LINC01094, AC022182.1, AC011747.1,

LINC02476, AC090809.1, AC084781.2, and SENCR were

risk factors for STAD patients. On the other hand,

AC010422.4 and AC005014.2 were protective factors for

STAD patients. The underlying mechanisms for the

relationship between STAD prognosis and expression levels

of LINC01094, AC022182.1, AC011747.1, LINC02476,

AC090809.1, AC084781.2, SENCR, AC010422.4 and

AC005014.2 are unknown presently.

Several studies have reported that LINC01094 was associated

with diverse tumors. Jiang et al. (2020) found that

LINC01094 expression was upregulated in clear cell renal cell

carcinoma (ccRCC) in the TCGA database and ccRCC cell lines.

LINC01094 knockdown inhibited ccRCC cell growth and

metastasis via binding miR-224-5p. Increased expression of

LINC01094 was also found in glioma, and was associated with

glioma grade. LINC01094 bound to miR-330-3p in glioma (Zhu

et al., 2020). In ovarian cancer, LINC01094 expression was

elevated and was related to FIGO stage and lymph node

metastasis. LINC01094 expression was also a risk factor for

ovarian cancer patient survival. In ovarian cancer cells,

LINC01094 bound to miR-577 and increased cell

proliferation, migration, and the expressions of β-catenin,
c-Myc and cyclin D1 (Xu et al., 2020). In colorectal cancer,

LINC01094 was also highly expressed and correlated with lymph

node metastasis and TNM stage. LINC01094 promoted

proliferation, invasion, and migration of colorectal cancer cells

by sponging miR-1266-5p (Zhang et al., 2022). Thus

LINC01094 is an oncogene in an array of tumors.

SENCR (Smooth Muscle And Endothelial Cell Enriched

Migration/Differentiation-Associated LncRNA) is a super

enhancer lncRNA originally reported to be overexpressed in

smooth muscle cells and endothelial cells. SENCR promoted

proliferation, differentiation, and migration of endothelial cells

(Bell et al., 2014; Boulberdaa et al., 2016; Sun et al., 2018). Studies

have found that SENCR is closely related to the progress of

several human cancers. Non-small cell lung cancer (NSCLC) had

higher expression of SENCR. Knockdown of SENCR inhibited

the growth and metastasis of NSCLC through miR-1-3p. SENCR

increased CDK4 and CDK6 expression by binding to miR-1-3p

(Cheng et al., 2021). Knockdown of SENCR in cisplatin-resistant

FIGURE 5
Nomogram for survival prediction (A), the calibration curves (B) and the decision curves (C).

Frontiers in Genetics frontiersin.org08

Yu et al. 10.3389/fgene.2022.982888

139

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.982888


A549 cell reduced cell proliferation, accompanied by decreased

levels of proteins PCNA, MDMX, and P-gp and increased

apoptosis. Overexpressing SENCR could increase

FLI1 expression (Shen et al., 2022).

When we compared somatic mutations between the two

groups, we found mutations were more frequent in the high-

risk group. TP53mutations are very common in cancers, ranging

from 38% to 50% in a variety of solid tumors and in about 5% of

FIGURE 6
PCA, GO, and KEGG analyses. (A–C) 3D scatter plots of sample distribution. (D,E)GO analysis of biological processes, cellular components and
molecular functions. (F,G) KEGG analysis of PI3K−Akt signaling pathway, cell adhesion, cytokine−cytokine receptor interaction and chemokine
signaling pathway.
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primary leukemia. Germline mutations of TP53 are the

underlying cause of Li-Fraumeni syndrome with early-onset

cancers. TP53 (Correa, 2016) mutations may caused by

chemical damage induced by particular mutagens, including

environmental agents. We propose that higher level of Cu in

cancer patients may induce TP53 mutations, which may related

to cuproptosis.

GSEA identified genes of PI3K−Akt signaling pathway might

be differentially expressed between the low-risk group and the

high-risk group. The PI3K/AKT signaling pathway regulates cell

survival and proliferation. Aberrant activation of the pathway is

often associated with tumor progression and resistance to cancer

therapies (LoRusso, 2016). Thus the relationship between

PI3K−Akt signaling pathway and cuproptosis deserves further

studies.

We predicted treatment response of the drugs again STAD

using pRRophetic (Geeleher et al., 2014) and found that

cuproptosis may be related to drug sensitivity. Indeed, Tsvetkov

et al. (2022) reported the hydrophilic antioxidant glutathione

(GSH) blocked the toxicity of elesclomol (ES)-Cu by chelating

intracellular Cu. They also found that NCIH2030 lung cancer cells

that rely on galactose-mediated mitochondrial respiration were

much more sensitive to ES-Cu-induced growth inhibition than

cells that rely on glucose-induced glycolysis. The depletion of GSH

by buthionine sulfoximine also increased susceptibility to

cuproptosis in A549 lung cancer cells. Thus it is reasonable to

expect that drugs involved in galactose regulation pathways may

have different effects on cancer cells with different expression of

cuproptosis-related genes.

To conclude, we constructed a nomogram exploiting

cuproptosis-associated lncRNA expression to predict

survival of patients with STAD. Cu is a crucial metal with

redox properties. Depending on it’s concentration in cells,

Cu may be either beneficial or toxic to the cell. Further

studies of the roles of Cu in cancer development will lead to

more innovative therapies (Ge et al., 2022). The usefulness of

FIGURE 7
Tumor mutation burden (TMB). (A,B) The waterfall plots illustrates the frequencies of mutations of genes with different colors representing
different types of mutations. (C) There were significantly higher TMB in the low-risk group compared to the high-risk group. (D) K-M survival curves
show similar patient survival between the high- and the low-TMB groups. (E) K-M survival curves show different patient survival among the four
groups.
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FIGURE 8
Immune functions and prediction of clinical treatment response. (A)TIDE scores. (B) Immune function heat maps. (C) IC50 of eight drugs.
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this nomogram in predicting patient survival and in

treatment decision-making need to be explored in the

future studies.
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FOXP family DNA methylation
correlates with immune
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in NSCLC
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Background: Forkhead box P (FOXP) family was introduced as a double-edged

sword in tumorigenesis and influenced immunotherapy response by

modulating host immunity. This study aimed to summarize the involvement

of the FOXP family in non-small cell lung cancer (NSCLC).

Methods: The UALCAN, Gene Expression Profiling Interactive Analysis (GEPIA),

and Reverse transcription-quantitative polymerase chain reaction (RT‒qPCR)

were used to analyse the expression levels of the FOXP family in NSCLC. The

prognostic impact was evaluated using Kaplan-Meier Plotter. MethSurv,

UALCAN, and cBioPortal were applied to analyse the DNA methylation and

mutation status of the FOXP family respectively. COEXPEDIA, STRING, and

GeneMANIA were used to explore the interaction mechanism. Finally, TISIDB

was used to investigate all of the immune-related characteristics regulated by

the FOXP family.

Results: The expression levels of FOXP1/3/4 were dysregulated in NSCLC

tissues than that in normal tissues. Groups with low expression levels of

FOXP1/4 and high expression levels of FOXP2/3 were associated with poor

prognosis in NSCLC. The transcriptional levels of FOXP2/3/4 were correlated

with DNA methylation in NSCLC. FOXP1/3/4 DNA methylation were correlated

with prognosis. Pathway enrichment analysis indicated the FOXP family was
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mainly related to immune-related pathways. After DNA methylation, the

correlations between FOXP family and immune factors were opposite to

that before alteration in NSCLC.

Conclusion: This study elucidated FOXP family could serve as vital diagnostic

and prognostic biomarkers in NSCLC. Our study highlighted novel potential

functions of FOXP family DNA methylation in regulation of immune-related

signatures in NSCLC.

KEYWORDS

non-small cell lung cancer, FOXP family, prognostic value, immune infiltration, DNA
methylation

Introduction

Lung cancer accounts for a large proportion of malignant

tumours in the world, of which non-small cell lung cancer

(NSCLC) accounts for approximately 85% (Hirsch et al., 2017).

According to diverse histological subtypes, NSCLC can be divided

into lung adenocarcinoma (LUAD) and lung squamous cell

carcinoma (LUSC) (Ruiz-Cordero and Devine, 2020). At

present, surgery, cisplatin-based therapy, stereotactic body

radiation therapy, definitive concurrent chemotherapy, and

radiation therapy have significantly reduced the risk of death in

NSCLC. However, these treatments are only suitable for a very

small proportion of NSCLC patients.Meanwhile, according to data

from recent years, the long-term survival rate of NSCLC patients is

still very poor (Evison and AstraZeneca, 2020). Most recently,

immune checkpoint inhibitors (ICIs), including inhibitors of the

programmed cell death receptor 1 (PD-1) axis, have apparently

altered the NSCLC management landscape (Camidge et al., 2019).

However, effective biomarkers for guiding NSCLC patients to use

ICI drugs are still lacking (Zhang et al., 2021). Therefore,

investigating the molecular mechanisms that drive NSCLC

initiation and progression, searching for more sensitive

biomarkers, and identifying biomarkers for ICI efficacy are the

current research hotspots. The forkhead box P (FOXP) family

consists of four members, including FOXP1, FOXP2, FOXP3, and

FOXP4 (Kim et al., 2019). The FOXP family is responsible for the

occurrence of many tumours. For example, FOXP1 is related to the

occurrence of drug resistance in patients with ovarian cancer

during treatment (Hu et al., 2020). FOXP1 also has a function

in the occurrence of cancer cachexia that causes weakness

(Neyroud et al., 2021). FOXP2 promotes tumour progression in

triple-negative breast cancer through the mechanisms of targeting

specific molecules (Wu et al., 2018). FOXP3 is involved in the

regulation of autophagy-related proteins in gastric cancer (Li et al.,

2020a). Overexpression of FOXP4 is closely implicated in the

malignant prognosis of breast cancer by promoting the biological

process of EMT (Ma and Zhang, 2019). Therefore, we know that

the FOXP family plays a role in tumour suppressor genes and

oncogenes in tumours (Kim et al., 2019). However, the roles of the

FOXP family in the effect and mechanism of immune infiltration

have not yet been determined. In this article, we comprehensively

analysed FOXP family mRNA expression/DNA methylation

signatures, mutations, functional pathways of coexpression

networks, survival value, epigenetic alterations, and

relationships with immune-related factors. Furthermore, we

performed real-time quantitative PCR (RT‒qPCR) to detect the

expression levels of the FOXP family.

Materials and methods

UALCAN

UALCAN (http://ualcan.path.uab.edu/), an online website

was used to compare the difference in the mRNA expression

levels of the FOXP family between NSCLC tissues and normal

tissues obtained from The Cancer Genome Atlas (TCGA)

(Chandrashekar et al., 2017). Then, we explored the changes

in FOXP family expression levels in different pathological stages

with this tools. In addition, we used UALCAN to analyse the

effect of DNA methylation on the translational levels of the

FOXP family.

Gene expression profiling interactive
analysis

GEPIA (http://gepia.cancer-pku.cn) was used to analyse the

mRNA levels of the FOXP family in NSCLC tissues compared to

normal tissues using the open public data from TCGA (Tang

et al., 2017). Under the condition of selecting the corresponding

cancer species, the website can automatically output the

corresponding scatter diagrams, bar charts, and box plots

according to the input gene name.

Kaplan–Meier plotter

Kaplan‒Meier plotter (http://kmplot.com/analysis/)

provided data and algorithms for analysing the prognostic
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significance of patients with expression imbalances of

the FOXP family (Peng et al., 2017). All the patients

were divided into two groups according to the median

expression levels of FOXP family genes to measure

the difference in survival time between the above

two groups. Kaplan‒Meier curves were plotted to

explore the overall survival (OS) analysis by the log-

rank test. p values < 0.05 were defined as statistically

significant.

MethSurv database

The MethSurv database (https://biit.cs.ut.ee/methsurv/)

was used to perform survival analysis of DNA methylation

of the FOXP family in NSCLC by selecting a specific

gene name and cancer type using the TCGA dataset.

The “Region-based analysis” module was used by

choosing “LUAD TCGA March 2017” and “LUSC TCGA

March 2017”.

R/Bioconductor package

We visualized the Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

analysis results of coexpressed genes of the FOXP

family using R/Bioconductor packages (“BiocManager,”

“DOSE,” “cluster Profiler,” “org.Hs.eg.db,” “enrichplot”

and “ggplot2”) which were downloaded from

Bioconductor (http://www.bioconductor.org/packages/

release/bioc/html/). The enrichment analysis results

with a p value < 0.05 were demonstrated to have great

significance.

TISIDB

TISIDB (http://cis.hku.hk/TISIDB/index.php) was applied to

infer the relative abundance of immune-related characteristics of

28 tumour-infiltrating lymphocyte (TIL) types,

immunomodulators, chemokines, and receptors regulated by

the FOXP family in NSCLC tissues. On the foundation of the

mRNA expression of the FOXP family profiles, gene set variation

analysis (GSVA) examined which types of immune-related

characteristics were regulated by the current genes with

epigenetic alterations (copy number alteration and DNA

methylation). In addition, TISIDB provided data on the

degree of infiltration of immune-related characteristics in

NSCLC tissues to infer the regulatory effect of the FOXP

family. Finally, TISIDB was applied to explore the expression

of the FOXP family in different immune subtypes (Ru et al.,

2019).

Cancer single-cell state atlas

Cancer single-cell state atlas (CancerSEA) (http://biocc.

hrbmu.edu.cn/CancerSEA/) provided datasets that was

applied to assess the functional roles of the FOXP family in

NSCLC. The CancerSEA supported the evaluation of

14 functional states at the single-cell level using public

datasets including epithelial-mesenchymal transition

(EMT), DNA damage, and so on.

COEXPEDIA

COEXPEDIA (https://www.coexpedia.org) is an online

database. The corresponding predicted target genes were

obtained according to the coexpression trend of consistency

and the common pathways involved in the regulation of the

occurrence and development of disease. COEXPEDIA offered a

network reflecting clear interactions between the members of the

FOXP family and the corresponding coexpressed genes.

cBioPortal

cBioPortal (https://www.cbioportal.org/) was used to

ascertain the consequence of alteration frequency and

mutation type of the FOXP family in NSCLC (Gao et al.,

2013). cBioPortal precisely presented the details of all forms

of mRNA dysregulation, gene amplification, and deep deletion

with the FOXP family in NSCLC patients by the OncoPrint

module.

STRING

STRING (https://string-db.org) was used to construct a

protein‒protein interaction (PPI) network for the retrieval of

interacting genes (Szklarczyk et al., 2017). In this article, STRING

was used to examine the interactions among the FOXP family

and determine the hub regulatory genes. The genes not only

required a minimum interaction score ≥ 0.4, but were also

imported into Cytoscape (version 3.7.2) with the cytoHubba

app to screen the modules of the top 10 hub genes.

GeneMANIA

GeneMANIA (http://www.genemania.org) administers data

on protein and genetic interactions, pathways, and coexpression

to predict gene clusters with similar functions (Warde-Farley

et al., 2010). This site relies on credible evidence sources of

literature to forecast functionally identical genes of the FOXP

family to clarify the interaction mechanism of the FOXP family.
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Cell lines and culture conditions and
reverse transcription-quantitative
polymerase chain reaction

A human lung epithelial cell line (BEAS-2B Cell Article: No.

CL-0496), LUAD cell lines (A549 Cell Article: No. CL-0016,

NCI-H1299 Cell Article: No. CL-0165, and PC9 Cell Article: No.

CL-0298), and LUSC cell line (NCI-H226 Cell Article: SNL-388)

were purchased from Procell Life Science & Technology Co. Ltd.

(Wuhan, China) on 10 December 2021. All cell lines were

identified by short tandem repeat (STR) analysis. The human

lung epithelial cell line BEAS-2B and the LUAD cell line

PC9 were cultured in Dulbecco’s modified Eagle’s medium

(DMEM, Gibco). NSCLC cell lines (A549, NCI-H1299, and

NCI-H226) were cultured in RPMI 1640. The two types of

culture media both contain 10% heat-inactivated foetal bovine

serum (FBS). The gas concentration in the incubator was set to

5% CO2, and the temperature was set to 37°C. The method of

evaluating the gene expression was RT‒qPCR. TRIzol reagent

(Invitrogen) was applied to extract total RNA. After the

concentration of extracted RNA reached the appropriate

standard, we used miRNA reverse transcription and

complementary DNA (cDNA) reverse transcription kits to

carry out reverse transcription. Then, RT‒qPCR was

performed on a Bio-Rad after the corresponding steps were

executed according to the manufacturer’s instructions for TB

Green Premix Ex Taq II (Takara). Finally, we used the 2−ΔΔCt

method to calculate relative mRNA expression. The reference

gene was glyceraldehyde 3-phosphate dehydrogenase (GAPDH),

and the sequences of the primers for the GAPDH and FOXP

family are listed in Supplementary Table S1.

Statistical analysis

The statistical data were analysed using GraphPad Prism

9.3.1 by Student’s test and ordinary one-way ANOVA to evaluate

the differential expression. The statistical data are presented as

the mean ± SEM. Kaplan‒Meier Plotter was used to explore the

overall survival (OS) analysis by the log-rank test. The prognostic

values of single CpGs in DNAmethylation analysis were assessed

via the likelihood-ratio test. p values < 0.05 obtained from all the

above analyses were defined as statistically significant.

Results

The mRNA expression levels of the
forkhead box P family in NSCLC

A flowchart was created to illustrate our study (Figure 1A).

UALCAN was used to compare the difference in the mRNA

expression levels of the FOXP family between normal samples

and NSCLC samples. The summary of the transcriptional levels

of the FOXP family is shown in the form of heatmaps (Figures

2A,B). Moreover, the GEPIA database was applied to verify the

expression of the FOXP family between NSCLC tissues and

normal tissues (Figures 2C–J). Compared to normal tissues,

there were lower expression levels of FOXP1 in LUAD and

LUSC, a lower expression level of FOXP2 in LUAD, higher

expression levels of FOXP3 in LUAD and LUSC, a higher

expression level of FOXP4 in LUAD, and a lower expression

level of FOXP4 in LUSC. In addition, the expression level of

FOXP2 was not significantly different in LUSC.We examined the

mRNA expression levels of the FOXP family in cell lines (BEAS-

2B, A549, NCI-H1299, PC9, and NCI-H226) (Figures 2K–N).

The outcomes of RT-qPCR showed that the mRNA expression

levels of FOXP1, FOXP3, FOXP4 did have statistical differences

between LUSC cell line (NCI-H226) and normal human lung

epithelial cell line (BEAS-2B). However, when tested individually

to verify the differential expression levels of FOXP family

between LUAD cell lines and normal control, we found that

only two members (FOXP1 and FOXP3) were statistically

significant between LUAD cell lines (A549, PC9, and NCI-

H1299) and normal human lung epithelial cell line (BEAS-

2B), which were consistent with analysis of GEPIA database.

In order to find the source of this difference, we conducted meta-

analysis to explore the expression difference of FOXP family

from different database using LUNG CANCER EXPLORER

(https://lce.biohpc.swmed.edu/lungcancer/index.php#page-top)

database. The results showed that the different expression trends

of FOXP2 and FOXP4 objectively existed in LUAD among

different data sets. After meta-analysis, it was more likely that

the expression of FOXP2 was no statistically significant, and the

expression of FOXP4 was upregulated in LUAD patients

compared with normal controls (Supplementary Figure S1).

Therefore, we concluded that FOXP1 was downregulated, and

FOXP3 was upregulated between LUAD patients compared with

normal controls, while the expression levels of FOXP2 and

FOXP4 in LUAD compared with normal controls need to be

verified by more clinical samples. Besides, FOXP1 and

FOXP4 were downregulated, FOXP3 was upregulated, and

FOXP2 was not statistically significant between LUSC patients

with normal controls.

Relationship between the transcriptional
levels of the forkhead box P family and
clinicopathological stages in non-small
cell lung cancer

Next, the inconsistency of the transcriptional expression

levels of the FOXP family members among the

clinicopathological parameters of NSCLC patients was

analysed by UALCAN (Supplementary Figures S2–S5). The

clinicopathological parameters included histological subtypes,
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individual cancer stages, patient age, patient smoking habits,

nodal metastasis status, and TP53 mutation status. As shown

in the histograms in Figures 3A,B, the transcriptional levels of

FOXP1/3/4 were basically markedly correlated with the above

six clinicopathological stages in LUAD. However, there was no

discernible difference in the relationship between the

transcriptional level of FOXP2 and the six

clinicopathological stages in LUAD (Figure 3A). The

transcriptional levels of FOXP1/2/3 were markedly

correlated with the above six clinicopathological stages in

LUSC, while the difference in FOXP4 was unremarkable

(Figure 3B). In brief, the above results preliminarily

suggested that the FOXP family was involved in

characteristics that included age factors, inducements,

progression, metastasis, and mutation types in NSCLC

patients.

Prognostic features of the forkhead box P
family in non-small cell lung cancer
patients

In this step, Kaplan‒Meier Plotter was used to explore the

prognostic value of the FOXP family in NSCLC. Survival curves

were generated to present the association between the overall

survival (OS) rate of NSCLC patients and the corresponding

gene expression levels of the FOXP family. All results are shown

in Figures 4A–H; Supplementary Figure S6. Upon stratification

FIGURE 1
Analysis explanationwith a detailed flowdiagram of this study. (A) The study comprised eight parts: Ⅰ ThemRNA expression levels of FOXP family
in NSCLC; Ⅱ The relationship between the transcriptional levels of FOXP family and clinicopathological stages in NSCLC;Ⅲ The prognostic features of
FOXP family in NSCLC patients; Ⅳ The coexpression networks of the FOXP family and GO and KEGG pathway analyses of coexpressed genes; V
Analysing the functional states of the FOXP family at single-cell level; VI The degree of immune factors infiltration regulated by FOXP family in
NSCLC; VII Genetic alteration and interaction analyses of FOXP family in NSCLC; VIII DNA methylation analysis of FOXP family.
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according to the median expression level, higher

FOXP1 expression was correlated with better prognosis of

LUAD (Figure 4A, n = 336, hazard ratio (HR) = 0.66, 95%

CI 0.52–0.84, log-rank p = 0.00075). Higher FOXP1 expression

was correlated with better prognosis of NSCLC (Figure 4B, n =

572, HR = 0.69, 95% CI 0.58–0.81, log-rank p = 9e-06). Lower

FIGURE 2
The differential expression of FOXP family in NSCLC. (A) The heatmap represented the transcriptional levels of FOXP family in patients with
LUAD compared with normal samples using UALCAN. (B) The heatmap represented the transcriptional levels of FOXP family in patients with LUSC
compared with normal samples using UALCAN. (C–J) The compare the mRNA expression of FOXP1/2/3/4 between LUAD/LUSC and normal tissue
samples by using GEPIA dataset; The box plot showed the relative expression levels of family in normal tissue and NSCLC tissue. p < 0.05 was
defined as statistically significant. (K–N) The mRNA levels of FOXP family between LUAD cell lines (A549, NCI-H1299, and PC9)/LUSC cell line (NCI-
H226) and normal human lung epithelial cell line (BEAS-2B) by RT-qPCR. (Legend: ***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05; ns. p > 0.05; LUAD, Lung
adenocarcinoma; LUSC, Squamous cell carcinoma of lung; FOXP, Forkhead box P; RT-qPCR, Reverse transcription-quantitative polymerase chain
reaction).
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FOXP2 expression was correlated with better prognosis of

LUAD (Figure 4C, n = 348, HR = 1.31, 95% CI 1.03–1.67,

log-rank p = 0.027). Lower FOXP2 expression was correlated

with better prognosis of NSCLC (Figure 4D, n = 596, HR = 1.38,

95% CI 1.17–1.63, log-rank p = 0.00012). Lower

FOXP3 expression was correlated with better prognosis of

LUAD (Figure 4E, n = 372, HR = 1.37, 95% CI 1.09–1.73,

log-rank p = 0.0072). Lower FOXP3 expression was correlated

with better prognosis of NSCLC (Figure 4F, n = 984, HR = 1.25,

95% CI 1.1–1.41, log-rank p = 0.00065). Higher

FOXP4 expression was correlated with better prognosis of

LUAD (Figure 4G, n = 336, HR = 0.71, 95% CI 0.56–0.9,

log-rank p = 0.0053). Higher FOXP4 expression was

correlated with better prognosis of NSCLC (Figure 4H, n =

569, HR = 0.77, 95% CI 0.65–0.91, log-rank p = 0.0017). Groups

with FOXP1/2/3/4 expression were not associated with

FIGURE 3
The relationship between the expression levels of FOXP family and clinicopathological stages. (A) The Bar graphs showing the expression of
FOXP family differences between the clinicopathological stages of LUAD and normal tissues. (B) The Bar graphs showing the expression of FOXP
family differences between the clinicopathological stages of LUSC and normal tissues.
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prognosis in LUSC patients (Supplementary Figure S6). Overall,

groups with low FOXP1/4 and high FOXP2/3 expression were

associated with poor prognosis (p value < 0.005). Both the high

mRNA expression of FOXP1/4 and the low mRNA expression

of FOXP2/3 were related to improved prognosis (p value < 0.05)

in NSCLC patients.

FIGURE 4
The relationship between the expression of FOXP family and survival. (A) The survival curves reflected the relationship between the patients’
overall survival (OS) rate and the corresponding gene expression levels of FOXP1 in LUAD. (B) he survival curves reflected the relationship between
the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP1 in NSCLC. (C) The survival curves reflected the
relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP2 in LUAD. (D) The survival
curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP2 in NSCLC. (E)
The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of
FOXP3 in LUAD. (F) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene
expression levels of FOXP3 in NSCLC. (G) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the
corresponding gene expression levels of FOXP4 in LUAD. (H) The survival curves reflected the relationship between the patients’ overall survival (OS)
rate and the corresponding gene expression levels of FOXP3 in NSCLC.
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Coexpression networks of the forkhead
box P family and gene ontology and kyoto
encyclopedia of genes and genomes
pathway analyses of coexpressed genes

Genes coexpressed with the FOXP family were

investigated by the COEXPEDIA website. The coexpression

networks of the FOXP family are displayed in Figures 5A–D.

The log-likelihood score (LLS score) was used to evaluate the

correlations between the FOXP family and its linked genes.

The larger the LLS score, the more relevant the coexpression

trend of the FOXP family member and its linked genes. The

LLS scores of all coexpressed genes are summarized in

Supplementary Table S2. GO and KEGG enrichment

analyses for coexpressed genes related to the FOXP family

were implemented to analyse biological functions and

pathways associated with the FOXP family. The biological

process (BP), molecular function (MF), and cellular

FIGURE 5
The coexpression network of FOXP family. (A) The coexpression network presented the coexpressed genes of FOXP1. (B) The coexpression
network presented the coexpressed genes of FOXP2. (C) The coexpression network presented the coexpressed genes of FOXP3. (D) The
coexpression network presented the coexpressed genes of FOXP4.
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component (CC) of GO enrichment analysis are displayed in

Figures 6A,C, 7A,C. In addition, the 20 most relevant KEGG

pathways for coexpressed genes are presented in Figures 6B,D,

7B,D. Notably, GO enrichment results showed that the

coexpressed genes of the FOXP family mainly acted on the

immune process in MF, such as differentiation of immune cells

FIGURE 6
GO functional and KEGG pathway enrichment analyses were performed on the coexpressed genes. (A) The GO functional enrichment analysis
result on the coexpressed genes of FOXP1 using three annotation systems (BP; CC; MF). (B) The KEGG pathway enrichment analysis result on the
coexpressed genes of FOXP1. (C) The GO functional enrichment analysis result on the coexpressed genes of FOXP2. (D) The KEGG pathway
enrichment analysis result on the coexpressed genes of FOXP2. (BP, Biological process; MF, Molecular function; CC, Cellular component).
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(lymphoid, monocyte, and T cell), fucosyltransferase activity,

phosphatidylinositol phosphate kinase activity, transcription

coactivator activity, and transcription costimulatory factor

regulation. KEGG pathway analysis results showed that

coexpressed genes clusters of the FOXP family acted on

typical cancer- and immune-related signalling pathways

including the T cell receptor, sphingolipid, cGMP-PKG,and

phospholipase D signalling pathway. These results strongly

implied that the FOXP family was involved in the process of

immune regulation in NSCLC.

FIGURE 7
GO functional enrichment analysis and KEGG pathway enrichment analysis are performed on the coexpressed genes. (A) The result of GO
functional enrichment analysis on the coexpressed genes of FOXP3. (B) The result of KEGG pathway enrichment analysis on the coexpressed genes
of FOXP3. (C) The result of GO functional enrichment analysis on the coexpressed genes of FOXP4. (D) The result of KEGG pathway enrichment
analysis on the coexpressed genes of FOXP4.
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Analysing the functional states of the
forkhead box P family at the single-cell
level

Enrichment analysis results showed that coexpressed gene

clusters of the FOXP family acted on several typical cancer

pathways. To better understand the relevance and underlying

mechanisms of the FOXP family in NSCLC, we investigated the

14 functional states of the FOXP family at the single-cell level via

the CancerSEA database (Figure 8). The results indicated that

FOXP1 was mainly positively correlated with differentiation and

hypoxia, FOXP2 was mainly negatively correlated with cell cycle,

FIGURE 8
The correlation between the FOXP family and 14 functional states at single-cell level. (A) The result of the correlation between expression of the
FOXP1/2/4 with functional states (including angiogenesis, apoptosis, invasion, EMT, differentiation, proliferation, DNA damage, metastasis, hypoxia,
inflammation, cell cycle, DNA repair, stemness, and quiescence). (B) The sample Kim (Exp0068) showed the result of the correlation between the
FOXP1 with functional states. (C) The sample Kim (Exp0066) showed the result of the correlation between the FOXP2 with functional states. (D)
The sample Kim (Exp0068) showed the result of the correlation between the FOXP4with functional states. (EMT, epithelial-mesenchymal transition).
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DNA damage, DNA repair, invasion, metastasis, proliferation,

and FOXP4 was mainly positively correlated with hypoxia,

invasion, stemness (Figure 8A). Besides, the single-cell analysis

result related to FOXP3 were not stated here for the CancerSEA

database lacked the FOXP3 data at the single-cell level. we need

to supplement this part in the future. In terms of functional

relevance in different T cell groups, Kim (Exp0068) showed that

FOXP1 had positive correlations with angiogenesis, apoptosis,

metastasis, and stemness (Spearman’s coefficients, 0.74, 0.91,

0.34, and 0.36 respectively; p value < 0.05) and a negative

correlation with EMT (−0.88, p value < 0.01) in NSCLC. Kim

(Exp0066) showed that FOXP2 had negative correlations with

cell cycle, DNA damage, proliferation, DNA repair, metastasis,

and invasion(Spearman’s

coefficients, −0.53, −0.53, −0.52, −0.48 and −0.41 respectively;

p value < 0.05) in NSCLC. Kim (Exp0068) reported that high

FOXP4 expression was positively correlated with

metastasis, angiogenesis, inflammation, stemness and

hypoxia, (Spearman’s coefficients, 0.71, 0.64, 0.59, 0.59,

and 0.25 respectively; p value < 0.05) and negatively

associated with cell cycle (Spearman’s coefficients, −0.65, p

value < 0.01) in NSCLC. These discoveries indicate that the

FOXP family may crucially affect the tumour progression of

NSCLC.

The degree of immune factor infiltration
regulated by the forkhead box P family in
non-small cell lung cancer

To augment the understanding of the relationship between

the FOXP family and immune infiltration, the connection

between the FOXP family and various immune signatures,

which included the immune-related characteristics of 28 TIL

types, immunomodulators (immunoinhibitor,

immunostimulator, and MHC molecules), chemokines and

receptors, was investigated. All the heatmaps showing the

correlation results are presented in Figures 9, 10;

Supplementary Figure S7. It was obvious from the

heatmaps that the FOXP family was related to immune

signatures. To further analyse the relevant mechanisms of

the FOXP family in regulating immunity, we selected two

modules, the one with the most relevant expression and the

other with the most relevant infiltration after copy number

alteration and DNA methylation as representatives (the rho of

the Spearman correlations test was the highest). When

different immune molecules showed upregulation and

downregulation trends under the same conditions, two

modules were chosen to represent the upregulation and

downregulation molecular clusters. The representative

immune signatures regulated by FOXP1 were Act CD4 and

Tem CD8 in LUAD, NK cells, and neutrophils in LUSC. The

infiltration abundances of Act CD4 and Tem CD8 in LUAD

tumour tissue were negatively correlated with the expression

of FOXP1, and FOXP1 was low in LUAD tissue. That is, the

abundances of Act CD4 and Tem CD8 infiltration increased in

LUAD tissue. The correlation scores of the two

were −0.258 and −0.042, respectively, and there were

positive correlations due to copy number alteration and

DNA methylation of FOXP1. The representative

lymphocytes regulated by FOXP1 in LUSC were NK cells

and neutrophils. As we confirmed above, FOXP1 was

expressed at low levels in LUSC tissues and was positively

correlated with the abundance of NK cells and neutrophil

infiltration. The relative rho scores were 0.526 and 0.312,

respectively, so NK cells and Neutrophil infiltration were

abundant. The degree of decrease in LUSC and was

negatively correlated due to the variations in copy number

alteration and DNAmethylation. By analogy, the regulation of

copy number alteration and DNA methylation is shown in the

Figures 11A–F. The downregulation of FOXP1 affected the

results, including ActCD4, TemCD8, TGFBR1, TIGIT,

TNFRSF25, ICOS, TAP1, TAP2, CCL14, CXCL10, CCL5,

CX3CR1, CCR5, NK, neutrophils, KDR, ADORA2A,

ENTPD1, TMEM1730, HLA-DOA, TAPBP, CCL12, CCL28,

CCL26, CXCR4, and CXCR1. The immune infiltration

coefficient of FOXP2 in NSCLC tissue was less than those

of FOXP1/3/4. The upregulation of FOXP3 mainly affected

TemCD8, ActCD4, TIGIT, CTLA4, ICOS, IL2RA, HLA-B,

HLA-DPB1, HLA-DOB, CCL19, CCL11, CCR8, ImmB,

ActB, TIGIT, IDO1, ICOS, CD27, HLA-DPB1, CCL5,

CCL19, CCR8, and CCR7. The downregulation of

FOXP4 was mainly associated with ActCD4, Th1,

PDCD1LG2, HAVCR-2, TNFSF4, CD40, B2 M, HLA-B,

CCL26, CCL14, CCR1, CD56bright, Eosinophil, PVRL2,

ADORA2A, ICOSLG, CXCR4, TAPBP, HLA-DOA, CCL26,

CCL28, CCR10, and CCR6. We also constructed rate scores to

compare the influence of copy number alteration and DNA

methylation on the FOXP family (Figures 11G–L). The results

presented that both copy number alteration and DNA

methylation on the FOXP family play effects on the

infiltration correlation results of immune factors in NSCLC,

and it was obvious that the changes of immune infiltration

correlation after DNA methylation on the FOXP family were

significant than those after FOXP family copy number

alteration. The multiple influences were different due to

different pathological types of NSCLC. Therefore, we could

infer that the corresponding conclusion that copy number

alteration and DNA methylation regulated the infiltration of

corresponding immune factors by the FOXP family. In

addition, except for FOXP2 in LUAD and FOXP4 in LUSC,

the remaining FOXP family members had significantly

different effects on immunophenotyping C1-C6 in NSCLC

(Figure 12). Therefore, it was confirmed that the FOXP family

participated widely in modulating various immune molecules

to affect immune infiltration in NSCLC progression.
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Genetic alteration and interaction
analyses of the forkhead box P family in
non-small cell lung cancer

Upon analysis of the FOXP family in the OncoPrint

module on cBioPortal, the results revealed that gene

alterations in FOXP1/2/3/4 occurred in 3%, 3%, 2.2%, and

2.7% of the NSCLC samples, respectively (Figure 13A). The

genetic alterations of structural variants, mutations,

amplifications, deep deletions, and copy number alterations

of the FOXP family all occurred in NSCLC (Figure 13B). The

details of all mutations in NSCLC are summarized in

Supplement Figure 6. FOXP1 had 15 missense mutations,

3 splice mutations, and one fusion mutation. FOXP2 had

FIGURE 9
The relationship between the degree of immune factors infiltration in NSCLC and the expression of FOXP family. (A) The hotmap presented the
correlations between the FOXP family and immune-related characteristics of 28 TIL types. (B) The hotmap presents the correlations between the
FOXP family and immunoinhibitor.
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one missense mutation and one Fusion mutation. FOXP3 had

one missense mutation. FOXP4 had no mutation. Only

FOXP1 had domain mutations (Figure 13C), while the

remaining FOXP2/3/4 had no domain mutations

(Figure 13D). The abovementioned multiple alterations of

the FOXP family might partially explain the mechanism of

occurrence and progression in NSCLC. In addition, we

conducted a PPI network analysis of the FOXP family by

STRING to investigate the feasible interactions in their

internal and related genes. Multiple nodes (34) and edges

(212) are shown in the PPI network (Figure 13E). The STRING

results mainly displayed the functions connected with

FIGURE 10
The relationship between the degree of immune factors infiltration in NSCLC and the expression of the FOXP family. (A) The heatmap presented
the correlations between the FOXP family and immunostimulator. (B) The heatmap presented the correlations between the FOXP family and MHC
molecule.
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immunity, including regulation of T cell homeostatic

proliferation, the activity of T-helper 17 cells, the signalling

pathway mediated by interleukin-2, and the adjustment of

regulatory T cell differentiation. We further investigated the

results of STRING in Cytoscape and then curtained and locked

out 10 hub genes (IL2, IFNG, FOXP3, CTLA4, STAT3, IRF4,

FIGURE 11
The effects of FOXP family expression, copy number alteration, and DNA methylation on immune factors. (A–F) These histograms present the
correlation scores of the top two most relevant immune infiltration module and correlation scores modified by copy number alteration and DNA
methylation. (G–L) These histograms present the fold relationship between copy number alteration and DNA methylation correlation scores of the
FOXP family in NSCLC. (CNA, Copy number alteration; MET, DNA Methylation).
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FIGURE 12
The relationship between immune types and the FOXP family. (A) The violins plot showed statistical relationships between FOXP1 and immune
types C1–C6 in LUAD. (B) The violins plot showed statistical relationships between FOXP1 and immune types C1–C6 in LUSC. (C) The violins plot
showed statistical relationships between FOXP2 and immune types C1–C6 in LUAD. (D) The violins plot showed statistical relationships between
FOXP2 and immune types C1–C6 in LUSC. (E) The violins plot showed statistical relationships between FOXP3 and immune types C1–C6 in
LUAD. (F) The violins plot showed statistical relationships between FOXP3 and immune types C1–C6 in LUSC. (G) The violins plot showed statistical
relationships between FOXP4 and immune types C1–C6 in LUAD. (H) The violins plot showed statistical relationships between FOXP4 and immune
types C1–C6 in LUSC. [C1 (wound healing); C2 (IFN-gamma dominant); C3 (inflammatory); C4 (lymphocyte depleted); C5 (immunologically quiet);
C6 (TGF-b dominant)].
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FIGURE 13
Genetic alteration, and interaction analyses of the FOXP family in NSCLC patients. (A) The heatmap showed the respective frequencies of Gene
alterations occurring in the sequenced cases by the FOXP family in the data obtained from the OncoPrint schematic of cBioPortal. (B) The mutation
types of NSCLC in three datasets. (C) The chromosomal structure of FOXP1 with domain mutations. (D) The chromosomal structure of FOXP2/3/
4 without domainmutation. (E) The protein-protein interaction PPI network analysis of the FOXP family using STRING. (F) The top 10 hub genes
were exported by Cytoscape (version 3.7.2) with the cytoHubba app. (G) The result of GeneMANIA reveals functionally similar genes of the FOXP
family.
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JUN, SMAD3, FOS, TP53), as shown in Figure 13F. The FOXP

family was input to the GeneMANIA website to link genes

with similar functions. Functionally similar genes surrounded

the outside of the FOXP family in the presentation

(Figure 13G). The GeneMANIA results affirmed that the

functions of the FOXP family and their related clusters

were chiefly related to the differentiation of lymphocytes

and T cells and the regulation of leukocytes. The above

results support that the FOXP family participates in the

immune process of NSCLC under the condition of interaction.

FIGURE 14
The DNA methylation analysis of FOXP family in NSCLC. (A–H) the promoter methylation levels of the FOXP family in LUAD/LUSC compared
with normal samples.
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DNA methylation analysis of the forkhead
box P family

In the process of using TISIDB to study the effect of the

FOXP family on immune infiltration, we found that the FOXP

family significantly changed the correlation degrees between

immune signatures after undergoing epigenetic alterations of

copy number alteration and DNAmethylation. These cBioPortal

findings suggested that copy number alteration of the FOXP

family played a role in the progression of NSCLC. Therefore, we

used DNA methylation as a representative epigenetic alteration

to evaluate its effect on the expression levels of the FOXP family

and patients prognosis. We first applied the UALCAN database

to determine the relationship between DNAmethylation and the

expression of the FOXP family in NSCLC. The DNAmethylation

level of FOXP1 was no statistically significant in NSCLC than

those in normal samples (Figures 14A,E). The DNA methylation

level of FOXP2 was higher in LUAD but lower in LUSC (Figures

14B,F). The DNAmethylation levels of FOXP3/4 in NSCLC were

lower than those in normal samples (Figures 14C,D,G,H).

According to these data, the expression levels of FOXP2/3/

4 were significantly associated with DNA methylation in

TABLE 1 The prognostic value of single CpG of FOXP family in NSCLC by MethSurv (p < 0.05).

Gene Tissue CpG RefGene group Relation to
CpG island

HR p-value

FOXP1 LUAD cg00201568 Body Open_Sea 1.097 0.0026

cg00707452 TSS1500 S_Shore 0.839 0.0043

cg01173432 5′UTR Open_Sea 1.308 0.0066

cg01186551 5′UTR Open_Sea 0.923 0.0068

cg01189917 TSS1500 S_Shore 0.965 0.0076

cg01232145 Body Open_Sea 0.746 0.015

cg01331540 Body Open_Sea 1.095 0.015

cg01534217 5′UTR Island 1.111 0.019

cg02002523 Body Open_Sea 0.847 0.02

cg02220284 Body Open_Sea 1.318 0.02

cg02336104 5′UTR Open_Sea 1.133 0.022

cg02520804 5′UTR N_Shore 1.101 0.027

cg02862354 Body Island 0.886 0.036

LUSC cg22798400 Body Open_Sea 0.638 0.006

cg02520804 5′UTR N_Shore 0.682 0.02

cg00052246 Body Open_Sea 1.46 0.034

cg01173432 5′UTR Open_Sea 1.564 0.038

cg00201568 Body Open_Sea 1.409 0.046

cg01189917 TSS1500 S_Shore 1.474 0.049

cg25481160 Body N_Shelf 0.673 0.05

FOXP2 LUAD —

LUSC —

FOXP3 LUAD —

LUSC cg04920616 TSS200 Open_Sea 0.684 0.032

FOXP4 LUAD cg12911122 5′UTR S_Shore 1.759 0.00058

cg26432961 5′UTR S_Shore 1.891 0.0035

cg08696640 5′UTR S_Shelf 1.558 0.0068

cg05734456 5′UTR Island 1.489 0.014

cg04617914 TSS1500 N_Shore 1.45 0.024

cg17620505 5′UTR N_Shelf 1.574 0.028

cg01508045 5′UTR Island 1.558 0.029

LUSC cg03442064 5′UTR Island 1.568 0.0057

cg00806680 Body N_Shore 0.688 0.022

cg08727957 TSS1500 Island 0.696 0.026

cg05140895 TSS200 Island 0.644 0.038

Notes: HR, hazard ratio.

Frontiers in Genetics frontiersin.org20

Hu et al. 10.3389/fgene.2022.937069

164

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.937069


NSCLC. In addition, the results showed that 20 CpGs of FOXP1,

1 CpGs of FOXP3, and 12 CpGs of FOXP4 presented important

statistical significance related to prognosis. Moreover, with the

occurrence of different CPG sites, FOXP family members’ DNA

methylation statuses were related to different prognoses. Specific

details of the results including the types of CpG, RefGene groups,

relationship to CpG islands, HRs, and p values, are listed in

Table 1.

Discussion

The treatment of NCSLC with immunotherapy including

ICIs, has improved the clinical benefits for patients and greatly

innovated the traditional chemotherapy regimen (Cogdill

et al., 2017). Nonetheless, many patients are still rejected

for immunotherapy due to not meeting the inclusion

criteria. As a result, research on advanced and effective

modulators at immune-related critical points is in full

swing. To further understand the molecular regulatory

mechanism of the immune system in the management of

NSCLC. Our article elaborates on the specific regulatory

details of specific immune molecules from the perspective

of the FOXP family.

At present, the FOXP family is observed to play negative

or positive roles in particular cancers. For example,

FOXP1 drives the occurrence of malignant behaviour by

dominating the expression level of PKLR in gallbladder

cancer (Wang et al., 2019). FOXP2 participates in the

process of invasion and metastasis of breast cancer via the

TGFβ/SMAD pathway (Chen et al., 2018). Aberrant

expression of FOXP3 in colorectal cancer is related to

immune overdrive in a high-risk subpopulation (Cui et al.,

2021). FOXP4 directly acts on LEF-1 and gives impetus to the

occurrence of laryngeal squamous cell carcinoma (Shi et al.,

2021). At the same time, many recently published works in

the literature show that the FOXP family participates in the

process of immune system reconstruction of tumour tissue

by activating or inhibiting the specific function of immune

molecules (Fleskens and van Boxtel, 2014). The FOXP

family, as a major contributor, can regulate tumour-

associated inflammation and immune responses in tumour

progression. For example, FOXP1 inhibits the behaviour of

immune activation and the expression of MHC class II in

diffuse large B-cell lymphomas (Brown et al., 2016).

FOXP3 is defined as a manager to administer the

immunosuppressive response of T cells (Klimenko, 2011).

FOXP3 directly restrains CD44 breast cancer by

participating in the corresponding regulatory role (Zhang

et al., 2015). Furthermore, increasing evidence

unambiguously confirms that epigenetic alteration plays a

role in the process of cancer, and various epigenetic

alterations can be used as maker molecules to evaluate the

risk of tumour prognosis (Richardson et al., 2018; Zhang and

Zhang, 2020). For instance, the regulation of immune cells is

closely related to the copy number alteration of TRPV1 in

renal cell carcinoma (Zheng et al., 2020). Abnormal DNA

methylation impacts gene expression and survival time in

breast cancer patients (Gyorffy et al., 2016). Therefore, the

underlying mechanism of FOXP family expression/copy

number alteration/DNA methylation in the regulation of

immune-related signatures was initially elucidated in this

paper.

Previous studies have shown that FOXP3 is overexpressed to

facilitate the invasion and metastasis of NSCLC (Li et al., 2021).

Our results showed there were different expression levels of the

FOXP family according to different pathological types in NSCLC

compared with normal tissue. UALCAN presented that the

expression levels of the FOXP family had significant effects on

the clinical parameters, including patient age, smoking habits,

histological subtypes, individual cancer stages, nodal metastasis

status, and TP53 mutation status. The Kaplan‒Meier Plotter

showed that the overexpression levels of FOXP1/4 were involved

in the better prognosis, and the overexpression levels of FOXP2/

3 were associated with poor prognosis of NSCLC. It may be an

option to analyse the mRNA expression levels of the FOXP

family members in NSCLC patients to provide powerful markers

to define prognosis.

GO and KEGG pathway analyses of coexpressed genes of

the FOXP family indicated that the FOXP family possessed

roles in activating the Wnt, PI3K/AKT/mTOR, and FOCAD-

FAK pathways to regulate tumourigenesis and the

progression of relevant immune responses in NSCLC.

Combined with previous research, the above typical

pathways were associated with NSCLC progression

(Heavey et al., 2014; Stewart, 2014; Liu et al., 2020). Our

study further clarified the role of the FOXP family in the

development of NSCLC. Likewise, CancerSEA showed the

functional states of the FOXP family have a necessary

relationship with the activity of the cell cycle,

differentiation, apoptosis, angiogenesis, invasion, EMT,

proliferation, hypoxia, inflammation, and stemness at the

single-cell level. The results validated previous evidence that

the FOXP family was involved in the progression of a variety

of cancers. For example, the FOXP family regulates β cell

proliferation in concert with NFATC2 (Simonett et al.,

2021). Furthermore, FOXP2 targets GRP78 in breast

cancer to promote tumour proliferation and metastasis

(Wu et al., 2018). In addition, FOXP1 inhibits guidance

proteins to promote angiogenesis in cell activity

(Grundmann et al., 2013). Taken together, the functional

states of the FOXP family accurately revealed that the FOXP

family might crucially affect the progression of NSCLC. The

results of PPI interaction and GeneMANIA analyses further

demonstrated the occurrence of cooperation and interaction

between FOXP members. These results implied that FOXP
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members could function through alliance mechanisms in

NSCLC. Our study showed that the FOXP family was

prominently dysregulated in NSCLC, and we then carried

out the an analysis of genetic alterations. Unsurprisingly,

there was the evidence of fusion, mutation, and amplification

of the FOXP family in NSCLC. These genetic alterations were

undoubtedly involved in the molecular malignant behaviour

of NSCLC.

The DNA methylation process of specific genes mediates

different biological results of cancer. For example, DNA

methylation is related to the occurrence of drug resistance in

patients with glioblastoma during treatment (Lu et al., 2020). In

addition, the absence of DNA methylation can cause immune

evasion in various cancers (Jung et al., 2019). To explore the

particular mechanism of the FOXP family in NSCLC, we

investigated the connection between the promoter methylation

levels and the expression levels of the FOXP family using

UALCAN databases. The outcomes showed that the

expression levels of FOXP2/3/4 were correlated with their

promoter methylation levels in NSCLC. In addition, we

analysed the relationship between DNA methylation

modification behaviour at different sites of the FOXP family

and patient survival time. Significant prognostic values (p value <
0.05) were observed for FOXP1/3/4. In short, analysis of FOXP

family DNA methylation provides a new approach to the

prognosis of NSCLC.

Data from recent years have shown that the combined use

of ICIs has improved the survival time of NSCLC patients by

blocking the checkpoint inhibition process. Our study

presented the correlations between FOXP family expression/

copy number alteration/DNA methylation and immune

signatures. The results showed that the FOXP family without

epigenetic alterations mainly controlled the degrees of

infiltration of immune-related factors (Tem CD8, TXNDC5,

TAP1, TAP2, CCL5, NK, KDR, ENTPD1, and HLA-DOA) in

NSCLC. Previous studies have confirmed that Tem

CD8 inhibits tumour growth in mouse models and plays a

vital role in cancer immune surveillance and treatment (Wang

et al., 2020). TXNDC5 promotes pulmonary fibrosis by

augmenting TGFβ signalling through TGFBR1 stabilization

(Lee et al., 2020). TAP1 and TAP2 are typical tumour

predictors (Gostout et al., 2003; Henle et al., 2017). CCL5, as

a receptor antagonist, plays a positive role in the process of

tumour progression by attracting macrophages (Van Damme

et al., 2004). The activation of NK cells is related to immune

dysfunction and a harmful tumour microenvironment (Li et al.,

2020b). There is currently a small-molecule tyrosine kinase

inhibitor (Moulder, #137) for KDR that is effective for lung

cancer (Dai et al., 2019; Song et al., 2020). FOXP3 regulates the

expression and infiltration of ENTPD1 to promote the

occurrence of tumours (Sun et al., 2010). HLA-DOA has

confirmed that the degree of infiltration in the tissue is

directly proportional to the degree of inflammation (Okada

et al., 2016). After copy number alteration and DNA

methylation, our results revealed that the correlations

between the FOXP family and immune parameters were

opposite to those before alteration in NSCLC. In addition,

the influence of DNA methylation was stronger than that of

copy number alteration. In addition, due to the different

pathological types of NSCLC, the multiples of the influence

intensity were also different. Altogether, our results partly

showed that FOXP family expression/copy number

alteration/DNA methylation regulated the infiltration of

corresponding immunity in NSCLC. This paper provided

more detailed molecular mechanisms for the development of

new immune checkpoints from the perspective of FOXP family.

Our research has many details that need to be

further verified. The data required for the content of

bioinformatics analysis in this paper are from public

databases. Further basic and clinical trials are still required

to explore the detailed molecular mechanism of the FOXP

family in NSCLC.

Conclusion

This paper systematically analysed molecular mechanism of

FOXP family member regulation, including the expression levels,

correlation with clinicopathological stages, DNA methylation

levels, epigenetics alterations, prognostic values, relationship

with immune regulation and functional analysis based on

coexpression in NSCLC. Activation of FOXP family-related

pathways could significantly change the patient’s response to

tumour immunity. Our article showed that the FOXP family

members, as diagnostic and prognostic biomarkers, provide new

information for the development of ICI drugs for patients with

NSCLC.
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SUPPLEMENTARY FIGURE S1
The meta-analysis results of the expression difference of FOXP family
from different data sets using LUNG CANCER EXPLORER database. The
meta-analysis result of the expression level of FOXP1 from different
LUAD/LUSC data sets. (B,F) The meta-analysis result of the expression
level of FOXP2 from different LUAD/LUSC data sets. (C,G) The meta-
analysis result of the expression level of FOXP3 from different LUAD and
LUSC data sets. (D,H) The meta-analysis result of the expression level of
FOXP4 from different LUAD and LUSC data sets.

SUPPLEMENTARY FIGURE S2
The relationship between the expression levels of FOXP family and
clinicopathological stages. (A-L) AuthorAnonymous, The Box plots show
the differential expression of FOXP1 between different staged tissues of
LUAD/ LUSC and normal tissues.

SUPPLEMENTARY FIGURE S3
The relationship between the expression levels of FOXP family and
clinicopathological stages. AuthorAnonymous, (A-L) The Box plots show
the differential expression of FOXP2 between different staged tissues of
LUAD/ LUSC and normal tissues.

SUPPLEMENTARY FIGURE S4
The relationship between the expression levels of FOXP family and
clinicopathological stages. AuthorAnonymous,(A-L) The Box plots show
the differential expression of FOXP3 between different staged tissues of
LUAD/ LUSC and normal tissues.

SUPPLEMENTARY FIGURE S5
The relationship between the expression levels of FOXP family and
clinicopathological stages. AuthorAnonymous,(A-L) The Box plots show
the differential expression of FOXP4 between different staged tissues of
LUAD/ LUSC and normal tissues.

SUPPLEMENTARY FIGURE S6
The relationship between the expression of FOXP family and survival in
LUSC.(A) The survival curves reflected the relationship between the
patients’ overall survival (OS) rate and the corresponding gene
expression levels of FOXP1 in LUSC. (B) The survival curves reflected the
relationship between the patients’ overall survival (OS) rate and the
corresponding gene expression levels of FOXP2 in LUSC. (C) The
survival curves reflected the relationship between the patients’ overall
survival (OS) rate and the corresponding gene expression levels of
FOXP3 in LUSC. (D) The survival curves reflected the relationship
between the patients’ overall survival (OS) rate and the corresponding
gene expression levels of FOXP4 in LUSC.

SUPPLEMENTARY FIGURE S7
The relationship between the degree of immune factor infiltration in
NSCLC and the expression of FOXP family.(A) The hotmap presented the
correlations between FOXP family and chemokine. (B) The hotmap
presented the correlations between FOXP family and receptor.
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Background and Objective: Understanding the tumor microenvironment

(TME) and immune cell infiltration (ICI) may help guide immunotherapy

efforts for colon cancer (COAD). However, whether ARID1B is truly

regulated by hypermethylation or linked to immune infiltration remains

unknown. The current work focused on the ARID1B gene expression and

methylation in COAD, as well as its relation with ICI.

Methods and Results: Multiple tools based on TCGA were used to analyze the

differences in the expression of the ARID1B gene, DNA methylation, and its

association with various clinicopathological features, somatic mutations, copy

number variation, and the prognosis of patients with COAD. According to the

analysis results, patients with high mRNA, lowmethylation levels showed better

overall survival than patients with low mRNA, high methylation levels. The

correlation analysis of immune cell infiltration and immune checkpoint gene

expression showed that the infiltration rates of the main ICI subtypes, cancer-

associated fibroblast, and myeloid cells were significantly enriched and

correlated with ARID1B in COAD. An association between ARID1B expression

and immune infiltration in COAD was found by correlating ICI indicators with

ARID1B expression in the immune cell composition of the COAD

microenvironment. Notably, M2 chemokines were related to ARID1B

expression, while M1 chemokines were not.

Conclusion: This study provided evidence that ARID1B may have a role in the

pathogenesis of COAD. The specific underlying mechanisms that could be

responsible for ARID1B’s downregulation in COAD will need to be investigated

in the future.
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Introduction

Colon cancer is a prevalent andworldwidemalignant tumour due

to the late diagnosis (Wang et al., 2020; Siegel et al., 2022). Colon

adenocarcinoma (COAD) is also one of the most cancers that are

affected by intertumoral heterogeneity due to immunosuppression

factors, and, immune cell subset dysfunction such as M2 macrophage

polarization, CD8+ T cells, B cells, and natural killer cells (Zhang et al.,

2020a). The main epigenetic modifications of gene expression include

DNA methylation, histone modification, chromatin remodelling, and

RNA regulation that can influence gene transcription processes related

to cell activity, which ultimately produce tumours (Han and Yoon,

2012; Cheng et al., 2021; Zebley et al., 2021).DNAmethylation leads to

changes in chromatin structure, DNA conformation, DNA stability,

and the way that DNA interacts with proteins, thereby controlling

gene expression and cause cancer (Li et al., 2014) Asmentioned in the

literature review, colon cancer is diagnosed in the middle or late stage

and an effective early diagnosis of COAD is limited, therefore, it

represents amajor cause of deathworldwide (Li et al., 2014; Zhou et al.,

2019). The important analysis of DNA aberrant methylation comes

from its frequent and early occurrence during the initial stage of the

tumour that can be used as a potential biomarker for cancer detection,

monitoring, and timed treatment (Watts et al., 2008; Salta et al., 2018).

The tumor microenvironment (TME) is mainly composed of tumour

cells, tumour-infiltrating immune cells, and matrix components

(Trikha et al., 2016; Jiang et al., 2020). Based on recent studies,

tumour immune cell infiltration (ICI) is related to the sensitivity of

immunotherapy and the prognosis of cancers including colon cancer

(Oda et al., 2018; Zhang et al., 2020b; Sato et al., 2020). Defects in the

chromatin remodelling factor, ARID1B, cause extensive dysregulation

across different cancer types (Kadoch et al., 2013; Aso et al., 2015;

Tessier-Cloutier et al., 2020). However, the prognosis significance of

ARID1B and its methylation in colon cancer need to be clarified.

Multiple tools based onTCGAwere used, and correlation analysis was

performed to assess ARID1B expression, CpG methylation, and its

association with various clinicopathological features, somatic

mutation, copy number variation, and the prognosis of patients

with COAD. The correlation analysis was also carried out between

ARID1B and the tumour immune infiltration level in COAD.

Materials and methods

ARID1B gene expression and its DNA
methylation analysis

The expression level of ARID1B mRNA and protein in

normal and tumor COAD tissues was first estimated using the

TNMplot online database (https://www.tnmplot.com/) and The

Human Protein Atlas (https://www.proteinatlas.org/),

respectively (Á and Győrffy, 2021; Uhlen et al., 2017).

UALCAN provides promoter DNA methylation data from the

TCGA for most of the genes http://ualcan.path.uab.edu/.

UALCAN was also used to determine the association between

ARID1B methylation and clinicopathological variables in COAD

patients, including age, gender, tumor stage, and lymph

metastasis (Chandrashekar et al., 2017). MethSurv (https://biit.

cs.ut.ee/methsurv/), the third online way, is a web tool to perform

multivariable survival analysis using DNA methylation data

(Modhukur et al., 2018). Subsequently, the significantly

identified probes were tested by univariate and multivariate

analysis-based on clinical variables. Additionally, we also

explored the expression of DNA methyl transferases

(DNMT1and DNMT3A) between ARID1B high and ARID1B

low based on TCGA database.

Cell culture and qPCR analysis

Human colonic epithelial cells (HCoEpiC) and colon

adenocarcinoma cell lines (HCT116 and LoVo) were cultured,

supplied with 5% CO2, and incubated at 37°C. Extraction of total

RNA, synthesis of cDNA, and qPCR conditions using SYPR

green analysis reagent were previously published (Baldi et al.,

2021). ARID1B forward (CAATGCCACAGGAAAGAGGTTT)

and reverse (CTGTCTGTTGAGGTCCATACTGA) primers

were utilized.

Survival analysis and clinical value of
ARID1B methylation

CanEvolve is a public online tool used to analyze and

visualize TCGA clinical and phenotype data. Three gene

expression TCGA COAD datasets, including overall survival

(OS), disease-free survival (DFS), and disease-specific survival

(DSS) were selected from the CanEvolve online tool (http://www.

canevolve.org/) (Samur et al., 2013). According to the median

cut-off, patients in each dataset were divided into high and low

expression groups to reveal the correlation between ARID1B

expression and overall survival (OS). Whereas the clinical role of

ARID1B methylation in COAD and the relationship between

ARID1B methylation and the above-mentioned clinical elements

were estimated using UALCAN. Besides, MethSurv [MethSurv-

A web tool to perform multivariable survival analysis using DNA

methylation data (ut.ee)] also contributed to the connection

between position distribution around CpG islands and the

prognosis of COAD patients.
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Epigenetic analysis of gene promotor
regions of ARID1B

SMART tools were used to explore the relationship between

ARID1B methylated sites, somatic mutation and copy number

variation (Li et al., 2019).

TIMER analysis

The reliability and validity of TIMER2 website in the study of

immune cell infiltration are supported by previous researches enabled

us to estimate the correlation between ARID1B expression and

immune subset infiltration levels in the COAD microenvironment

(http://timer.cistrome.org/) (Li et al., 2017). TIMER2 was also

conducted to determine the power of correlation between

ARID1B and immune cell markers, chemokines, and

immunomodulator levels in the TCGA COAD microenvironment.

ARID1B related pathway analysis

GSCAlite using TCGA data was conducted to identify

ARID1B pathways in COAD tumor http://bioinfo.life.hust.edu.

cn/web/GSCALite/(Liu et al., 2018). On the other hand,

UALCAN identified potentially associated and co-expressed

genes of ARID1B in the TCGA COAD. The heat map of the

top 50 upregulated and downregulated genes was created. To

identify ARID1B-associated functions in COAD, we performed

Gene Set Enrichment Analysis (GSEA) for each set using

OmicBeans tool, (http://www.omicsbean.cn/).

Results

TCGA analysis of the clinical prognostic
value of ARID1B

The first set of questions aimed to measure ARID1B

expression levels from the TCGA database. Differential

analysis of total of 82 RNA-Seq data using TNMplot database

showed that ARID1B had a lower mRNA level in tumor COAD

tissues (41 patient) compared to normal tissues (41 patient)

(Figure 1A). Furthermore, the HPA tool was used for protein

expression analysis and ARID1B protein was decreased in colon

tumor cells than endothelial cells and glandular cells (Figure 1B).

ARID1B is associated with poor prognosis
in colon adenocarcinoma

The next question we asked whether ARID1B low

expression has a clinical value for COAD patients. The

significance of ARID1B gene expression in determining the

overall survival (OS), disease-free survival (DFS), and disease-

specific survival (DSS) of COAD patients were assessed, and a

low level of ARID1B expression was associated with poor

prognosis in all three survival analysis datasets (Figures

1C–E). Colon cancer cell lines showed a low mRNA

ARID1B expression compared to colon normal cell line

(Figure 1F).

ARID1B is hypermethylated in colon
cancer

To explore the reasons for the low expression of ARID1B in

colon cancer, the methylation level of the ARID1B gene was

analyzed with UALCANweb tool. The expression of the ARID1B

gene in colon cancer was hypermethylated in cancer samples

(313) than normal samples (Mu et al., 2018) (Figure 2A).

Differentially methylated regions were identified and a heat

map was created (Figure 2B). Interestingly, hypermethylation

of ARID1B was correlated with the downregulation of ARID1B

expression. Additionally, the expression of ARID1B was

positively correlated with the expression of three methyl

transferases (DNMT1, DNMT3A, and DNMT3L) in colon

cancer, although the difference was not significant

(Figures 2C–E).

ARID1B methylation is related to the
clinicopathological variables and
prognosis of COAD

We analyzed the differences in DNAmethylation levels in the

TCGA COAD cohort and determined the association between

ARID1B methylation and clinicopathological variables,

including age, gender, tumor stage, lymph metastasis, distant

metastasis, and clinical stage. Compared with the normal group,

ARID1B was hypermethylated and was associated with all

indicated variables as well as clinical with each stage

(Figure 3). Significantly, the hypermethylation of ARID1B

predicted a shorter overall survival, thus hypomethylation of

the ARID1B gene is conducive to survival (Figure 4). This is an

interesting consistent result. Univariate and multivariate Cox

regression was performed and the data presented in Tables 1, 2

showed that the prognostic significance of hypermethylation was

an independent factor of clinicopathological characteristics

including age, gender, race, and stage.

Functional enrichment and PPI analysis

Based on the functional enrichment and correlation analysis

with the representative molecules of the pathway, the expression
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of the ARID1B gene was related to the PI3k/AKT, RTK, NA

damage response, Hormone AR, RAS/MAPK, and TSC/mTOR

pathways while it was inhibited in apoptosis, cell cycle, and EMT

pathways (Figure 5A). Furthermore, the ARID1B gene exhibits

high expression when the driving genes (APC and FBXW7) are

mutated (Figure 5B). Contrary, there was a list of mutated gene

decreased ARID1B expression in COAD (Figure 5C).

ARID1B methylated sites are associated
with somatic variations

The association was evaluated between somatic mutation,

CNV, and DNA methylation. Results showed a number of CpG

sites associated with somatic mutation and copy number

variations (Figure 6A,B).

FIGURE 1
ARID1B mRNA analysis results. (A) ARID1B expression from TCGA, (B) ARID1B protein expression from HPA, (C–E) Kaplan Meir blot of Overall
Survival, Disease Free Survival, and Disease Specific Survival. (F) qPCR results, ARID1B is downregulated in cancer cell line compared to normal cell
line. HPA, Human Protein Atlas; OS, overall survival; DFS, disease-free survival, DSS; disease-specific survival; Med, Medium; Mod, Moderate; Neg,
Negative; Non, None.
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FIGURE 2
ARID1B methylation level analysis. (A) ARID1B methylation level from UALCAN (B) Different CpG probs of ARID1B from Methsurv (C–E) The
positive correlation of ARID1B andmethyltransferases. N, Normal; T, Tumor; S, Stage; Cau, Caucasian; Afr-Amr, African, American; Asi, Asian; M,Male,
F, Female; y, year; N-W, Normal Wight; E-W, Extreme Wight; Ob, Obese; E-B, Extreme Obese; Ad, Adenocarcinoma; Muc, Mucinous
Adenocarcinoma.

FIGURE 3
The methylation level of ARID1B across different clinicopathological parameters in COD patients. There is a significant difference between the
defined subgroups containing gender, age, race, histological subtype, tumor grade, and nodal metastasis status of patients.
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T lymphocyte infiltrates are associated
with ARID1B expression

Surprisingly, as presented in Figure 7, there was a negative

correlation of immune cells through TIMER analysis, including

T cell, CD8+, T cell, CD4+, and NK cells and a positive correlation

with B cells, macrophages, and neutrophils as well as tumor-

associated fibroblast, dendritic cells, and cell regulatory cell in

COAD. These data indicate that T cells CD8+ tend to be depleted

in the COADmicroenvironment and that ARID1Bmay play a role

in the COAD microenvironment. To verify these results, we

performed a Pearson correlation between markers and ARID1B

expression. Strong evidence of correlation analysis was found

between a variety of the biomarkers and ARID1B expression in

the COAD microenvironment (Table 3). These findings

emphasized that ARID1B may regulate immune cell infiltration

in COAD. Dendritic cells (DCS) are key participants in the

antigen-specific immune response. Two different DC subsets

(XCR1, CADM1, cDC1, and CD1A) and (CD172A+ cDC2)

have been identified, which interact with CD8+ and CD4+

T cells, respectively. The current study detected evidence for

some DCs including XCR1, CADM1, and CD1A in COAD.

FIGURE 4
ARID1B hypermethylation impacts the prognosis of COAD patients.

TABLE 1 Univariate analysis.

Overall survival

Probe Hazards. Ratio CI.Lower CI.Upper p.value Z

cg07107055 2.423 0.2873 20.432 0.4159 0.8136

cg07577837 18.6585 0.96 362.6319 0.0532 1.933

cg08484668 17109.36 4.00E-04 7.13E+11 0.2762 1.0888

cg08783584 11971363 4.4493 3.22E+13 0.031 2.1576

cg14476331 253056 0.9222 6.94E+10 0.0515 1.9473

cg17719099 3.4216 0.6514 17.9708 0.1461 1.4536

cg19343518 2.7602 0.7027 10.8419 0.1458 1.4545

cg21793517 181.0568 8.2055 3995.068 0.001 3.2933

cg23603995 1.2343 0.4007 3.8022 0.7138 0.3667
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ARID1B is associated with
M2 macrophages, chemokines

Since the positive correlation was found between ARID1B

and TAMs biomarkers, particularly M2-macrophages, and

verified these findings, we immediately studied the

correlation between ARID1B and the classical chemokines

of both M1-macrophages (IL-12, IL-23, TNF, IFNG) and

M2 macrophages (IL-10, TGF-b, IL-4, IL-13). The analysis

whose reported positive results also reported a significant

TABLE 2 Multivariate analysis.

Variable Coef H Z 95%CI lower 95%CI upper p.value

Age 0.027525 1.027907 2.228524 1.003323 1.053095 0.025846

GenderMALE 0.178965 1.195979 0.586209 0.657443 2.175651 0.557735

RaceBLACK OR AFRICAN AMERICAN 0.252757 1.28757 0.281233 0.221186 7.495211 0.778531

RaceWHITE −0.15422 0.857081 −0.18606 0.16884 4.350798 0.852397

StageStage II 0.75889 2.135903 1.185325 0.60899 7.491226 0.235889

StageStage III 0.971959 2.643117 1.517938 0.753493 9.271579 0.12903

StageStage IV 2.550279 12.81068 3.915276 3.573783 45.92153 9.03E-05

cg07107055 −2.70048 0.067173 −1.92926 0.004322 1.043918 0.053699

cg07577837 0.921898 2.514057 0.448105 0.044584 141.766 0.654077

cg08484668 0.227981 1.256061 0.023353 6.16E-09 2.56E+08 0.981368

cg08783584 6.649516 772.4103 0.694165 5.42E-06 1.1E+11 0.487579

cg14476331 9.892837 19788.12 1.269733 0.004618 8.48E+10 0.20418

cg17719099 0.271772 1.312288 0.244605 0.148692 11.58163 0.806762

cg19343518 1.370621 3.937793 1.528212 0.678936 22.83901 0.12646

cg21793517 3.309323 27.36659 1.517419 0.380929 1966.063 0.129161

cg23603995 0.059191 1.060978 0.087332 0.281051 4.00523 0.930408

FIGURE 5
Enrichment pathways of ARID1B. (A) ARID1B is inhibited and activated in pathways indicated with green and red colors, respectively (B) A
permutation test p-value of ARID1B between driver mutated and non-mutated samples (C) Analysis correlation between ARID1B expression and
some mutated genes that cause a low level of ARID1B was explored.
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positive correlation with M2 chemokines (TGF-B1, TGF-

B3). Whereas none of the M1 macrophage chemokines were

associated with ARID1B expression in the COAD

microenvironment (Table 3). Therefore, these results

support that ARID1B is closely related to M2-

macrophages in the microenvironment of COAD.

FIGURE 6
A number of CpGs are associate with ARID1B alterations (A) CpGs associated with somatic mutation, (B) CpGs associate with CNA.
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Checkpoint inhibitors are significantly
correlated with ARID1B in the colon
adenocarcinoma tumor
microenvironment

A previous study reported that tumors may achieve immune

escape by inhibiting the activity of CTLs. This is achieved by

immunoinhibitory molecules that bind T cell surface ligands and

inactivate its function. Therefore, we evaluated the

immunomodulators level related to ARID1B expression in

COAD and found a positive correlation of different

immunosuppressors, including HAVCR2 (TIM3), LAG3,

PDCD1 (PD-1), TIGIT, CD27, CTLA-4, and TNFRSF9

(markers of T cell failure) (Table 3). These results indicate

that T cells may tend to be inactivated in the COAD

microenvironment.

ARID1B is related to the signal pathway
that regulates immune cells

To better understand the transcriptomic phenotype associated

with infiltrated COAD tumors, ARID1B gene expression data were

obtained via UALCAN online tool and applied gene set

enrichment analysis of positive and negative correlated genes.

Interestingly, RNA-seq data validated that ARID1B upregulated

several immune pathways in colon cancer tissue. The enrichment

results show that in ARID1B positively correlated genes, the main

enrichment pathways are: (Wang et al., 2020) NF-κB signaling

pathway; (Siegel et al., 2022) TNF signaling pathway; (Zhang et al.,

2020a) TGF-beta signaling pathway; (Cheng et al., 2021) VEGF

signaling pathway; (Han and Yoon, 2012) Wnt signaling pathway;

(Zebley et al., 2021) Rap-1 signaling pathway; (Li et al., 2014)

PI3K-Akt signaling pathway; (Zhou et al., 2019) mTOR signaling

pathway; (Watts et al., 2008) JAK-STAT signaling pathway innate

immune response; (Salta et al., 2018) ECM receptor interaction.

The main enrichment pathways in ARID1B negatively associated

genes were: (Wang et al., 2020) metabolic pathway; (Siegel et al.,

2022) RNA polymerase, Huntington disease, Parkinson disease,

Alzheimer disease; (Zhang et al., 2020a) Thermogenesis; (Cheng

et al., 2021) non-alcoholic fatty liver disease; (Han andYoon, 2012)

spliceosome; (Zebley et al., 2021) oxidative phosphorylation; (Li

et al., 2014) retrograde endocannabinoid signaling; (Zhou et al.,

2019) oxidative phosphorylation (Figures 8A–D).

Discussion

Among the different types of molecule abnormalities, mRNA

changes and DNA methylation, which are reported widely in

FIGURE 7
The correlation between ARID1B and immune cell infiltration. The significant negative-positive correlation between ARID1B and immune cell
subtypes.
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TABLE 3 Correlation between ARID1B and immune cell biomarkers in COAD.

Infiltrates type Biomarker rho P value
adj.p

T cell general CD2 0.113171833 0.022569163 0.052159843

CD3E 0.168758263 0.000639177 0.002480389

T cell CD8+ CD8A 0.079836038 0.108217539 0.191405171

B cell CD19 0.185617928 0.000169031 0.000796579

Treg cell CD79A 0.233264327 2.02E-06 1.40E-05

FOXP3 0.333580951 5.22E-12 3.29E-11

STAT5B 0.641711169 1.72E-48 8.58E-47

TGFB1 0.226418058 4.06E-06 1.37E-05

CCR8 0.390194392 3.25E-16 2.98E-15

Natural killer cell KIR3DL2 0.108363891 0.029023119 0.071883887

Neutrophils CCR7 0.299913922 6.96E-10 1.05E-08

ITGAM 0.292339406 1.93E-09 2.41E-08

Tumor asoociated macrohage (TAM) CCL2 0.164064315 0.000906246 0.004096026

CD68 0.25002831 3.33E-07 2.93E-06

IL10 0.087827792 0.07712079 0.159422822

M1 macrophage IRF5 0.175941418 0.000368018 0.001840091

M2 macrophage CD163 0.299282134 7.59E-10 1.10E-08

Monocyte MS4A1 0.22754202 3.63E-06 2.62E-05

VSIG4 0.134237336 0.006753968 0.022053772

VEGFA 0.349636033 4.06E-13 6.50E-12

CD86 0.197668751 6.06E-05 0.000362082

CSF1R 0.35744943 1.11E-13 3.70E-12

Dendiritic cell HLA-DPA1 0.144785374 0.003458199 0.010703949

HLA-DPB1 0.130777417 0.008332108 0.022218954

TGAX 0.313424074 1.05E-10 1.89E-09

NRP1 0.438944503 1.50E-20 7.09E-19

CD1C 0.217792469 9.51E-06 5.49E-05

ITGAX 0.313424074 1.05E-10 3.13E-09

T cell exhaustion GZMB 0.033038754 0.506791971 0.599753812

HAVCR2 0.160201284 0.001199674 0.002864894

CTLA4 0.19495873 7.68E-05 0.000220185

PDCD1 0.130017099 0.00872011 0.017353452

CD27 0.183807214 0.000196114 0.00130743

Th 1 STAT1 0.279103955 1.06E-08 4.72E-08

STAT4 0.167092289 0.000724253 0.001788279

TNF 0.085459081 0.085470431 0.134599104

IFNG 0.010326018 0.835675989 0.886658875

TBX21 0.228770674 3.20E-06 1.10E-05

Th 2 GATA3 0.295890265 1.20E-09 5.96E-09

STAT5A 0.357832565 1.04E-13 7.79E-13

STAT6 0.42689993 2.06E-19 2.46E-18

Th 17 STAT3 0.520078905 1.63E-29 3.63E-28

Tfh BCL6 0.465387725 3.26E-23 4.74E-22

Fibroblast COL1A1 0.366780269 2.25E-14 6.01E-13

FABP5 -0.383429108 1.14E-15 3.43E-14

NNMT 0.133761138 0.006953953 0.017754774

PDGFB 0.424214929 3.64E-19 2.91E-17

(Continued on following page)
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almost all cancers. The main purpose of this study was to

analyse the promotor methylation of ARID1B through

preliminary difference analysis, correlation analysis, and

prognosis analysis. Despite very little was found in the

literature on the analysis of ARID1B expression and its

DNA methylation in cancer, none of these studies was

related to colon cancer (Aso et al., 2015; Cui et al., 2019;

Tessier-Cloutier et al., 2020). Previous studies observed an

increased expression of ARID1B in triple-negative breast

cancer and breast invasive ductal carcinoma (Shao et al.,

2015; Cui et al., 2019). In the current study, we evaluated

DNA methylation and gene expression profiles of ARID1B in

colon cancer samples from TCGA. The expression of ARID1B

in TCGA COAD and normal tissues were first analysed using

the TNMplot platform. To confirm the observed results

experimentally, RNA from the colon cell line was extracted

and detected by qPCR analysis. This method was repeated

three times to ensure reliable results. Consistent with the

significant downregulation of ARID1B expression in colon

cell lines and TCGA tissues, ARID1B was hypermethylated in

COAD tissues. Comparison of these findings with those of

previous studies confirmed silenced expression of genes,

especially ARID1B by aberrant methylation of DNA in

cancer (Chuang and Jones, 2007; Khursheed et al., 2013;

Liu et al., 2020; Tan et al., 2020). AKR1C2 mRNA, a gene

previously identified as a Nrf2-target, was not found in

HCT116 cells (Ebert et al., 2011). Importantly, survival

analysis showed that the overall survival rate of patients in

the low mRNA expression group was significantly shorter

than that in the low-level group. ARID1B methylation level

was related to clinicopathological characteristics and showed a

significant negative correlation with its mRNA level in COAD.

Besides, the prognostic analysis of a number of methylated

sites was significantly associated with the patients’ outcome in

COAD patients. These consistent results of aberrantly

silenced ARID1B provide strong evidence that low ARID1B

expression is an important indicator of the poor prognosis of

COAD and the epigenetic changes might be a potentially

increased risk of colon cancer-related death. Knowing that

DNMTs enzymes are responsible for establishing,

maintaining, and mediating DNA methylation, we

performed correlation analysis, and ARID1B was positively

correlated with DNMTS in COAD (Chuang and Jones, 2007).

The third question in this research aimed to determine the

pathways of ARID1B expression on the basis of TCGA

database. GSEA revealed that ARID1B is involved in

multiple cancer-related pathways, among others PI3K-AKT

and mTOR pathways, suggesting that ARID1B regulates these

pathways and functions as a tumour suppressor in COAD.

Tumour infiltrates immune cells are an important immune

cell type in the tumor microenvironment and have been

reported to affect patients’ overall survival (Kryczek et al.,

2016; Yang et al., 2018). For this and to further determine the

association between ARID1B and COAD, we used TIMER

database to analyse the correlation between the expression of

ARIDIB and immune cell infiltration. Immune cells and

fibroblast infiltration demonstrated a link with ARID1B in

the COAD microenvironment. Consistent with the obtained

results, ARID1B showed a positive correlation with immune

cell markers. It was reported that CD8+ T cells could be

inhibited by immunoinhibitory molecules via binding to

the receptor PD-1 on the surface of CD8+ T cells (Yang

et al., 2018). TIMER analysis revealed a positive correlation

between ARID1B and T-exhausted cell immunoinhibitory

TABLE 3 (Continued) Correlation between ARID1B and immune cell biomarkers in COAD.

Infiltrates type Biomarker rho P value
adj.p

M2 motif BACH1 0.516162622 5.04E-29 3.25E-28
MAF 0.423837711 3.94E-19 1.41E-18

MAFG 0.521972992 9.41E-30 6.72E-29

NFE2L2 0.517550043 3.39E-29 2.34E-28

STAT2 0.461586024 8.14E-23 3.46E-22

Myloid cell AREG 0.01689488 0.734310642 0.803393173

CCL4 0.007207503 0.884883559 0.909905973

CXCL2 -0.15809741 0.001394077 0.003620979

CXCR4 0.244853698 5.89E-07 2.62E-06

EGR1 0.304975 3.47E-10 2.24E-09

IL1B-0.028009173 0.573612239 0.670891508

NFKB1 0.51420058 8.83E-29 2.35E-27

NFKB2 0.334349845 4.64E-12 3.79E-11

NFKBIA 0.16438705 0.000885009 0.002391917

NLRP3 0.344254286 9.72E-13 8.45E-12

Frontiers in Genetics frontiersin.org11

Baldi et al. 10.3389/fgene.2022.914354

179

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.914354


molecules. The positive correlation of ARID1B and

macrophages and depleted CD8+ markers indicates the

contribution of macrophages to the formation of the

immunosuppressive microenvironment in COAD. Recently,

The M2-polarization of TAMs was recognized as an

immunosuppressive phenotype (Mu et al., 2018). Moreover,

scientists found that monocytes recruited to tumour regions

are reprogrammed to become tumour-associated

macrophages. And the activity of motifs MAF, STAT1,

STAT2 leads to M2 polarization, which provides potential

targets for inhibiting or reversing the information of the

immunosuppressive microenvironment (Zheng et al., 2021).

In addition to TILs, ARID1B was positively correlated with

TIM, including LAMP3, cDCs, LYVE1, resident tissue

macrophages (RTMs), and FOLR2, TAM. In accordance

with this result, recent work reported multiple tumour

types of TIM cell subpopulations across the pan-cancer

analysis (Cheng et al., 2021).

Finally, we explored the signal pathways that might regulate

the immune cell infiltration and polarization of M2 macrophages

in COAD. TGF-β signalling pathway is a cytokine signalling

pathway involved in the development and progression of

COAD. Hu et al. found that the transcription factors STAT3,

HIVEP, NFAT, and other regulated genes are upregulated in

depleted CD8+ T cells. This result provides clues for identifying

new candidate transcription factors for T cell dysfunction.

Furthermore, STAT3 not only participates in the polarization of

macrophages toM2 but also participates in the depletion of T cells,

suggesting that STAT3 inhibition can be used as a new therapeutic

strategy for the treatment of cancer (Hu et al., 2020). A pathway

enrichment analysis of ARID1B-correlated genes also indicated the

involvement of the STAT-JAK signalling pathway, which suggest

that the TGF-β1/STAT-JAK pathways are associated with

aggressive pathological features and poor clinical outcomes in

COAD.While this report describes the function of ARID1B and its

methylation in COAD, it also provides preliminary evidence about

the role of ARID1B in the microenvironment of COAD immune

cell infiltration, and M2 polarization and suggests that ARID1B

may influence COAD immunotherapy. Our study has some

limitation. The involvement of ARID1B in COAD was

identified via bioinformatics. Even though the association

between ARID1B and DNMTS expressions in COAD was not

statistically significant, it remained unknown whether ARID1B

was regulated by DNTMs enzymes. However, future experimental

studies on the current topic are therefore recommended. In

conclusion, the article comprehensively analysed ARID1B

abnormalities (mRNA changes, DNA aberrant methylation)

and its association with the immune cell infiltration of COAD.

FIGURE 8
Shows gene set enrichment analysis of cooccurred genes. (A) Positively correlated genes (B)Negatively regulated genes (C) KEGG pathway (D)
GO analysis.
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The analysis revealed that ARID1B hypermethylation could serve

as an early diagnostic biomarker for COAD treatment, and the

difference in immune cell infiltration was found to be related to the

ARID1B expression of the COAD tumour. In conclusion, the

article comprehensively analysed ARID1B abnormalities (mRNA

changes, DNA aberrant methylation) and its association with the

immune cell infiltration of COAD. The analysis revealed that

ARID1B hypermethylation could serve as an early diagnostic

biomarker for COAD treatment, and the difference in immune

cell infiltration was found to be related to the ARID1B expression

of the COAD tumour.
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The role of SELENBP1 and its
epigenetic regulation in
carcinogenic progression
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The initiation and progression of cancer is modulated through diverse genetic

and epigenetic modifications. The epigenetic machinery regulates gene

expression through intertwined DNA methylation, histone modifications, and

miRNAs without affecting their genome sequences. SELENBP1 belongs to

selenium-binding proteins and functions as a tumor suppressor. Its

expression is significantly downregulated and correlates with carcinogenic

progression and poor survival in various cancers. The role of SELENBP1 in

carcinogenesis has not been fully elucidated, and its epigenetic regulation

remains poorly understood. In this review, we summarize recent findings on

the function and regulatory mechanisms of SELENBP1 during carcinogenic

progression, with an emphasis on epigenetic mechanisms. We also discuss the

potential cancer treatment targeting epigenetic modification of SELENBP1,

either alone or in combination with selenium-containing compounds or

dietary selenium.

KEYWORDS

SELENBP1, carcinogenesis, epigenetic modification, post-translational modification,
therapeutical target

Introduction

Cancer incidence and mortality rate are increasing at an alarming rate worldwide,

with an estimated 19.3 million new cases and almost 10.0 million deaths having occurred

in 2020 (Sung et al., 2021). Both genetic and epigenetic modifications contribute to

carcinogenic progression. Epigenetics refers to heritable changes in the chromatin

structure and gene expression during post-transcriptional and translational stages

without DNA sequence alterations, including DNA methylation, histone modification,

and RNA-based mechanism, which lead to silencing or enhanced expression of the gene

or protein (Haig, 2004; Waddington et al., 2012; Zhang et al., 2021; Hussain et al., 2022;

Zaib, 2022). DNA methylation that occurs in cytosine–guanine (CpG) islands of the gene

promoter regions is associated with gene silencing (Jones and Baylin, 2002; Feinberg,

2018). Histone post-translational modifications (PTMs) include methylation,

phosphorylation, acetylation, ubiquitination, glycosylation, and chromatin remodeling,

and also could be regulated by non-coding RNAs such as microRNAs (miRNAs), siRNAs,

and long-non-coding RNAs (lncRNAs). (Hussain et al., 2022; Zhang et al., 2021; Millan-
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Zambrano et al., 2022). Epigenetic changes are closely associated

with regulation of tumor suppressors and/or oncogenes viaDNA

hypermethylation, histone modification, and non-coding RNAs

(Jones and Baylin, 2002; Hussain et al., 2022).

The study of epigenetics in cancer epidemiology is emerging

in the recent 2 decades, and its role in oncogene/tumor

suppressor regulation and cancer progression is being

emphasized increasingly. Epigenetic changes have opened the

way to innovative diagnostic and treatment strategies for a

variety of cancers in clinics (Laird, 2003). Epigenetic drugs

targeting to inhibit epigenetic modifiers, such as DNA

methyltransferase and histone deacetylase (DNMTi and

HDACi), have been approved to treat different malignant

cancers and showed promising outcomes (Hussain et al., 2022).

Structural and biochemical
characteristics of SELENBP1

Mammalian selenium-containing proteins can be divided

into three groups: specific selenium-binding proteins, specific

incorporation proteins (also called selenoproteins), and non-

specific incorporation proteins (Behne and Kyriakopoulos, 2001;

Kryukov et al., 2003). The human SELENBP1 (also known as

Sbp1, human 56 kDa selenium-binding protein/hSP56, EHMTO,

HEL-S-134P, LPSB, MTO, and SBP56 or hSBP) belonging to the

specific selenium-binding protein is located at chromosome

1q21–22. The neighbor-joining phylogenetic tree of

SELENBP1 has been reported in a previous study (Pol et al.,

2018). Its mouse homolog is the SP56 gene (also known as SLP-

56, Lp56, Lpsb, MTO, or SBP56) (Bansal et al., 1990; Lanfear

et al., 1993; Chang et al., 1997; Porat et al., 2000). The gene

sequences of mouse and human SELENBP1 are shown in

Figure 1 (A, B) using GSDS2.0 (Hu et al., 2015). The degree

of homology between mouse and human SELENBP1 is 86%

(Flemetakis et al., 2002), which means many mechanisms apply

to both. Selenbp2, as a highly homologous isoform of

Selenbp1 differing by only 14 residues, exists in mice but not

in humans (Lanfear et al., 1993). Both Selenbp1 and

Selenbp2 mRNA levels are downregulated in liver cell lines

but remain high in diethylnitrosamine (DEN)-induced mouse

liver tumors in vivo (Lanfear et al., 1993). This may be due to the

redundant role of each other. However, the expressions or

functions of Selenbp2 in cancers are scarcely published yet.

Both mouse and human SELENBP1 are ubiquitously

expressed in the colon, lung, and 17 other tissues (Fagerberg

et al., 2014; Yue et al., 2014). Selenium (Se), as the sixth main

group of the periodic table of elements, displays bothmetallic and

non-metallic properties (Minich, 2022) and has been widely

reported to possess antitumor effects and exert its inhibitory

effects (Bansal et al., 1990). SELENBP1 is also implied in cancer

prevention. The downregulation and anti-carcinogenic effects of

SELENBP1 are assessed in numerous cancers, including kidney/

lung/thyroid/stomach/esophagus/liver/breast/prostate/colon/

pancreatic/head and neck/skin/bladder/uterine/nerve and ovary

cancer. SELENBP1 is highly expressed in the brain (Pol et al.,

2018) and is also associated with inflammatory/degenerative

central nervous system (CNS) diseases (neuromyelitis optical

spectrum and Alzheimer’s disease) and schizophrenia (Scz)

(Elkjaer et al., 2021; Seelig et al., 2021). In addition,

SELENBP1 also plays a role in multiple sclerosis (MS)

subtypes, corona virus disease 2019 (COVID-19), extraoral

halitosis, and so on (Adam et al., 2011; Pol et al., 2018;

Stukalov et al., 2021).

The Search Tool for the Retrieval of Interacting Genes/

Proteins (STRING) database was used to identify the

interaction partners of human SELENBP1, as shown in

Figure 2. One of the interactors of SELENBP1 is ubiquitin-

specific peptidase 33 (USP33), also known as von

Hippel–Lindau protein (pVHL)-interacting deubiquitinating

enzyme 1 (VDU1), which is a deubiquitinating enzyme. The

interaction between USP33 and SELENBP1 was detected by a

two-hybrid assay in human prostate cancer cells (Jeong et al.,

2009), indicating SELENBP1 may play a role in epigenetics

regulation. The other mammalian selenium-containing

proteins, such as selenium-binding protein and glutathione

peroxidase 1 (GPX1), also play important roles in cancers.

SELENBP1 regulates GPX1 expression in hepatocellular

carcinoma (HCC) (Huang et al., 2012), breast cancer (Fang

et al., 2010), colon cancer (Fang et al., 2010), and skin cancer

(Schott et al., 2018). In addition, SELENBP1 was identified to

interact with tandem BRCA1 carboxyl-terminal (BRCT)

domain–mediated proteins, which is frequently present in

proteins involved in the damage response (DDR), and bind to

phosphorylated peptides. Defects in this network can lead to

cancer, while the mechanism of SELENBP1 in DDR during

cancer was still unknown (Woods et al., 2012).

Expressions and functions of
SELENBP1 in varieties of cancers

Kidney cancer: SELENBP1 could be a useful prognostic

factor in renal cell carcinoma (RCC). Using 139 specimens of

primary RCC and 59 specimens of control kidney tissues, the

mRNA level of SELENBP1 is significantly downregulated in the

RCC tissues than in normal adjacent kidney tissues (p < 0.001)

and is correlated with pathologic (T-stage and Fuhrman grade),

prognostic variables (progression and cancer-specific death) as

well as cancer-specific death (log-rank test, p = 0.014) (Ha et al.,

2014). SELENBP1 is downregulated by hepatocyte nuclear factor

4 alpha (HNF4alpha), a tissue-specific transcription factor in

RCC microarray studies (Lucas et al., 2005). However, the exact

mechanism of SELENBP1 still needs to be elucidated.

Lung cancer: SELENBP1 is downregulated in basaloid

carcinoma, large cell carcinoma, lung squamous cell
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carcinoma (LSCC), and adenocarcinoma (Li et al., 2004). Using

quantitative two-dimensional polyacrylamide gel electrophoresis

(2-D PAGE), two isoforms of SELENBP1 are significantly

decreased in lung adenocarcinomas at both mRNA and

protein levels. Its expression correlates with poor survival, and

downregulation of SELENBP1 may increase cell proliferation

and decreased differentiation (Chen et al., 2004). The protein

level of SELENBP1 is significantly lower in LSCC tissues than in

the corresponding normal bronchial epithelium (NBE) tissues

(p = 0.000) and is associated with higher lymph node metastasis

and lower overall survival rate (p < 0.05) (Tan et al., 2016).

Knockdown of SELENBP1 can increase benzo(a)pyrene (B[a]p)-

induced human NBE cell transformation to participate in NBE

carcinogenesis (Zeng et al., 2013).

Thyroid cancer: Proteomic analysis of papillary thyroid

carcinoma (PTC) compared with normal thyroid tissue using

difference gel electrophoresis (DIGE), and mass spectrometry

confirmed lower expression of SELENBP1 (p = 0.00097) (Brown

et al., 2006). More studies are needed to examine its function in

thyroid tissue and thyroid cancer progression.

Stomach cancer: SELENBP1 was significantly decreased in a

proteomic analysis of gastric cancer specimens. Its expression is

correlated with differentiation, TNM stage, and lymph node

metastasis (p < 0.05). It can serve as a potential novel

prognostic biomarker (He et al., 2004; Zhang et al., 2011a; Xia

et al., 2011), and its level is associated with a poor survival rate in

gastric carcinoma (Zhang et al., 2011b). SELENBP1 promotes

proliferation, colony formation, and senescence in vitro and in

vivo. In addition, it suppresses tumor growth and metastasis and

increases the chemoresistance of gastric cancer cells via apoptotic

signaling pathways (Zhang C. et al., 2013). The exact mechanism

is not known yet.

Esophagus cancer: SELENBP1 is decreased significantly in

esophageal adenocarcinoma (EAC) tissues. Downregulation of

SELENBP1 in Barrett’s esophagus to adenocarcinoma

progression could enhance apoptosis, cellular senescence, and

cisplatin cytotoxicity in EAC cells (Silvers et al., 2010).

Liver cancer: The protein level of SELENBP1 is decreased in

HCC (Raucci et al., 2011). Decreased expression of

SELENBP1 could promote tumor invasiveness by increasing

GPX1 activity and diminishing hypoxia-inducible protein-

FIGURE 1
Schematic diagram of the SELENBP1 gene. (A) Nucleic acid sequences of mouse SELENBP1. (B) Nucleic acid sequences of human SELENBP1.
Boxes and intervening lines represent exons and introns, respectively. Several CpG sites were found in the 5′-untranslated region and promoter.
Methylation occurred at −95 to +90, the 5′-UTR, 3′-UTR, enhancer, promoter as well as in the gene body. The histone acetylation also exists with
unknown sites. 5’ flanking promoter is repressed by HBx. Nkx2-1 binds to the enhancer and promoter regions of Selenbp1 through methylation
and acetylation. miR-4786-3p targets at the 3′ UTR of SELENBP1.

FIGURE 2
Involvement of human SELENBP1 in protein–protein
interaction (PPI) databases. SELENBP1, highlighted in red, is shown
in the standard human protein–protein association network in
STRING 11.5 (https://string-db.org/). The network includes
11 nodes and 25 edges, and the average node degree was 4.55,
with a PPI enrichment P-value of 9.81e-05. Nodes represent
proteins. Edges represent PPIs.
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1alpha (HIF-1α, a tumor suppressor) expression in HCC;

SELENBP1 could be a novel biomarker for predicting

prognosis and guiding personalized therapeutic strategies,

especially in patients with advanced HCC (Huang et al.,

2012). However, in another study, SELENBP1 mRNA is

downregulated in liver cell lines in vitro but upregulated in

DEN-induced mouse liver tumors compared with the normal

tissues in vivo, though the function is not known for certain at

present. They hypothesized that binding of selenium or

acetaminophen metabolites in hepatoxicity might play a role

in the processes (Lanfear et al., 1993). Downregulation of

SELENBP1 could increase C-X-C motif chemokine receptor 4

(CXCR4) expression and results in epithelial–mesenchymal

transition (EMT) of HCC cells (Gao et al., 2018). The 3D

model of human protein SELENBP1 was reported to have one

cysteine residue, which binds the selenium in HCC and can be

used as a therapeutic target (Raucci et al., 2011).

Breast cancer: SELENBP1 remains low in mammary

carcinoma (Lanfear et al., 1993). Lower SELENBP1 expression

in breast cancer tissues compared to normal control is

significantly associated with poor survival (p < 0.01).

SELENBP1 expression is regulated by estrogen in vitro.

Supplemental dietary selenium could inhibit cell proliferation

in cells expressing high level of SELENBP1 (Zhang S. et al., 2013).

SELENBP1 is likely to play roles in modulating selenite-mediated

cytotoxicity and the extracellular microenvironment by

regulating the levels of extracellular glutathione (GSH) (Wang

et al., 2015). The interaction between SELENBP1 and GPX1 is

found in MCF-7 breast carcinoma cells (Fang et al., 2010).

SELENBP1 can also interact with the retinoid-receptor RARα
in the nuclear material, whose interaction is reduced by all trans-

retinoic acid (ATRA, a cancer drug) in the breast cancer cell line

(Gianni et al., 2019). SELENBP1 interacts with the nuclear

receptor estrogen receptor 2 (ESR2, ERβ) to modulate cell

proliferation and tumor growth in breast cancer (Giurato

et al., 2018).

Prostate cancer: SELENBP1 is observed to be at lower levels

in prostate cancer (Yang and Sytkowski, 1998; Ansong et al.,

2015). As to energy metabolism, SELENBP1 produces H2O2 and

H2S and consequential activation of AMP-activated protein

kinase (AMPK), a major regulator of energy homeostasis as

well as inhibited oxidative phosphorylation (OXPHOS) in

prostate cancer cells. In addition, HNF4 alpha, a novel

transcriptional inhibitor of SELENBP1, plays a role in prostate

cancer by binding to the SELENBP1 promoter region (Elhodaky

et al., 2020). SELENBP1 may influence the plasma selenium

levels and may be associated with the risk of advanced prostate

cancer (Xie et al., 2016). GPx enzyme activity is inversely

correlated with SELENBP1 levels in prostate cancer tissue

(Jerome-Morais et al., 2012). SELENBP1 is found to

coprecipitate with the androgen receptor (AR) in prostate

tumor cells (Veldscholte et al., 1992). In prostate cancer,

expressed prostatic secretions (EPS), proximal fluids of the

prostate, can be utilized for diagnostic and prognostic assays.

SELENBP1 is found in the EPS according to a shotgun

proteomics (Principe et al., 2013).

Colon cancer: SELENBP1 is downregulated in the proteomic

analysis of colorectal cancer (CRC) (Wang et al., 2012). Both

mRNA and protein levels of SELENBP1 are downregulated in

CRC, which are correlated with the degree of differentiation, and

its levels are higher in benign polyps than in CRC tissues (Kim

et al., 2006; Li et al., 2008; Wang et al., 2014). SELENBP1 induces

H2O2-mediated apoptosis in colon cancer cells and inhibits

cancer cell migration in vitro and tumor growth in vivo (Pohl

et al., 2009). SELENBP1 can also inhibit CRC through lipid/

glucose metabolic signaling pathways (Ying et al., 2015a) and

participate in mitochondrial function in the HCT116 human

colorectal carcinoma cell line through cysteine 57 in SELENBP1

(Ying et al., 2015b). The interaction between SELENBP1 and

GPX1 is found in colon-derived HCT116 cells (Fang et al., 2010).

Pancreatic cancer: SELENBP1 is downregulated in pancreatic

ductal adenocarcinoma (PDAC) patients with skin rash (SR)

treated with erlotinib, an epidermal growth factor receptor

(EGFR) tyrosine kinase inhibitor (Caba et al., 2016).

SELENBP1 interacted with anterior gradient 2 (AGR2), with

the latter promoting phosphorylation of RICTOR (T1135),

leading to pancreatic tumor metastasis (Tiemann et al., 2019).

Head and neck cancer: SELENBP1 is downregulated in head

and neck squamous cell carcinoma (HNSCC) including

nasopharyngeal carcinoma (NPC), laryngeal cancer (LC), oral

cancer (OC), tonsil cancer (TC), and hypopharyngeal cancer

(HPC), which have no association with tumor T-stage, N-stage,

and tumor grade. NPC patients with low expression of

SELENBP1 have a poor survival rate. Therefore,

SELENBP1 could be a novel biomarker for predicting NPC

prognosis (Chen et al., 2016). SELENBP1 downregulation in

both mRNA and protein levels is also positively correlated with

poor prognosis for oral squamous cell carcinoma (OSCC)

patients.

Skin cancer: SELENBP1 concentration remains low in skin

carcinoma (Lanfear et al., 1993). SELENBP1 is identified to be

downregulated in cutaneous melanoma influenced by

glutathione peroxidase 1 (GPX1) to regulate proliferation and

tumor microenvironment (Schott et al., 2018). An in vivo mouse

study shows that HIF-1α can transactivate SELENBP1 during

murine skin chemical carcinogenesis (Scortegagna et al., 2009).

Bladder cancer: SELENBP1 is significantly downregulated in

bladder cancer (Wang et al., 2020).

Uterine cancer: Decreased protein expression of

SELENBP1 is found in uterine leiomyoma than in normal

myometrium (Zhang C. et al., 2010).

Nerve cancer: SELENBP1 is found at the growing tips of the

neurites in SH-SY5Y neuroblastoma cells/T98G glioma cells

involved in the initial sequential events in rapid cell

outgrowth; however, the exact expression change is still

unknown (Miyaguchi, 2004).
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Malignant pleural mesothelioma (MPM): Gene expression

analyses from MPM patients show that SELENBP1 might be

associated with the risk of having MPM (Pass et al., 2004).

Uveal melanoma tumor: SELENBP1 expression is induced in

uveal melanomas that subsequently develop distant metastases

compared with those that do not (Linge et al., 2012).

Ovary cancer: In a membrane proteome profiling analysis,

SELENBP1 is decreased in ovary cancer through the selenium/

androgen pathway (Huang et al., 2006). In addition, high anti-

SELENBP1 levels are also observed in patients with serous ovary

cancer, which suggests SELENBP1 participates in an

autoimmune process during ovary cancer development (Yu-

Rice et al., 2017). Downregulation of SELENBP1 also increases

epithelial proliferation and papillary complexity in tumorigenesis

of ovarian serous borderline tumor, micropapillary serous

borderline tumor, and low-grade serous carcinoma (Zhang P.

et al., 2010). SELENBP1 is identified as one of the candidate

stromal epithelial cross-talk genes by analyzing common single-

nucleotide polymorphisms (SNPs) for their association between

the risk of serous ovarian cancer and telomerase reverse

transcriptase (TERT), a cancer susceptibility “hot-spot”

(Johnatty et al., 2010).

SELENBP1 also displays high expression in other tissues,

such as the fetal and adult heart, spleen, thymus, and other tissues

(Pol et al., 2018); however, no studies have been reported whether

SELENBP1 also participates in their carcinogenesis.

Epigenetic mechanisms of SELENBP1

The expression of SELENBP1 is downregulated in almost all

cancers, indicating some suppressing functions of SELENBP1 in

cancers. Epigenetic changes are likely to account for reduction of

SELENBP1 expression.

Epigenetic modification of SELENBP1 through promoter

methylation in cancer has been demonstrated in many studies:

DNA methylation at CpG islands in promoter regions is

regulated by the DNA methyltransferase (DNMT) enzyme.

This phenomenon often occurs at an early stage and is a

common mechanism of gene silencing during carcinogenesis

(Jones and Baylin, 2002; Laird, 2003; Nazemalhosseini et al.,

2013; Huss+6ain et al., 2022). Several CpG sites were found in the

5′-untranslated region of SELENBP1 (Pohl et al., 2009; Silvers

et al., 2010). Gene hypermethylation in the “epidermal

differentiation complex” is located within 700 kb of the

SELENBP1 locus (Marenholz et al., 2001; Elder and Zhao,

2002). So, it is possible that the SELENBP1 promoter may be

methylated in tumors and results in low expression levels of

SELENBP1. Deubiquitinating enzymes (Dubs) function to

remove covalently attached ubiquitin from proteins to control

substrate activity and/or abundance. SELENBP1 is the bait of

USP15 (ubiquitin-specific proteases 15, a Dub) in a global

proteomic analysis of Dubs and their associated protein

complexes in 293T cells, indicating SELENBP1 levels might

also be regulated by USP15 (Sowa et al., 2009).

PLEKHA4 sequester E3 ubiquitin ligase adapter controls

disheveled polyubiquitination at the plasma membrane to

tune sensitivities of cells. SELENBP1 interacts with

PLEKHA4 in HEK293 cells, which further directs the crucial

function of epigenetic modification in modulating

SELENBP1 expression (Shami et al., 2019).

Lung cancer: Nkx2-1 is a transcription factor that suppresses

malignant progression of lung adenocarcinoma. SELENBP1 is

regulated by Nkx2-1 in lung adenocarcinoma in both the human

lung adenocarcinoma and mouse lung cancer model. Nkx2-1

binds to the promoter regions of SELENBP1, which are

associated with H3K4me3 and H3K27ac; Nkx2-1 binds to the

enhancer regions at H3K4me1 and H3K27ac, which collectively

indicate that Nkx2-1 likely regulates the expression of

SELENBP1 through epigenetics regulation. In addition, they

function in a positive feedback loop during the suppression of

malignant progression of lung adenocarcinoma (Caswell et al.,

2018).

Esophageal adenocarcinoma: Several CpG sites are found

near the predicted promoter region of SELENBP1, where

hypermethylation occurred at −95 to +90 and in the 5′-
untranslated region of SELENBP1 (Silvers et al., 2010). A

histone deacetylase inhibitor trichostatin A (TSA)/valproic

acid (VPA) alone and/or the demethylating agent 5-Aza could

increase SELENBP1 mRNA expression but not the protein level

in EAC cell line Flo-1 cells. In addition, demethylating and

acetylase-enhancing agents increased sensitivity of Flo-1 cells

to apoptosis with cisplatin, which all indicate that inducible

SELENBP1 expression may be regulated at the epigenetic level

and play an important role during drug resistance in EAC (Silvers

et al., 2010). However, the histone acetylation sites remain

unknown.

Liver cancer: Human hepatitis B virus (HBV) is a leading

cause of HCC (Beasley et al., 1981). SELENBP1 is decreased in

HCC cells expressing the HBV X protein (HBx), and the

SELENBP1 promoter is repressed by HBx. In addition, the

stepwise deletion of 5′ flanking promoter sequences resulted

in a gradual decrease in basal promoter activity and inhibition of

SELENBP1 expression by HBx (Lee et al., 2020), which indicates

the potential epigenetic regulation of SELENBP1 by HBx;

however, whether the promoter hypermethylation exists has

not been confirmed yet.

Prostate cancer: SELENBP1 could induce phosphorylation of

the p53 tumor suppressor at serine 15 to suppress carcinogenesis

(Ansong et al., 2015). In human prostate cancer cells,

SELENBP1 interacts with von Hippel–Lindau protein

(pVHL)-interacting deubiquitinating enzyme 1 (VDU1), and

VUD1 incorporates selenium into SELENBP1. These findings

imply the role of SELENBP1 in ubiquitination/de-

ubiquitination-mediated protein degradation pathways

dependent of selenium. However, the specific mechanism has
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not been elucidated (Jeong et al., 2009). SELENBP1 also

interacted with VDU2, a closely related isoform of VDU1

(Jeong et al., 2014). VDU2 can interact with HIF-1α, a tumor

suppressor, to deubiquitinate and stabilize HIF-1α (Li et al.,

2005). SELENBP1 inhibits HIF-1α protein levels and

downregulates its stabilization in prostate cells without

affecting the mRNA levels of HIF-1α, which indicates

SELENBP1 may affect epigenetic regulation of other genes.

Whether HIF-1α is regulated by the interaction between

SELENBP1 with VDU 1 and/or 2 is unknown (Jeong et al.,

2014). SELENBP1 can downregulate HIF-1α protein levels

without altering mRNA levels in the human lung carcinoma

cell line as well (Jeong et al., 2014). The downregulation of HIF-

1α by SELENBP1 also exists in liver cancer (Huang et al., 2012);

however, the mechanism is not quite clear yet. SELENBP1 serves

as the target gene of HIF-1α in skin squamous carcinogenesis

(Scortegagna et al., 2009). SELENBP1 interacts with embryonic

ectoderm development (EED), a core component of polycomb

group proteins in the nuclear material of VCaP (vertebral cancer

of the prostate) cells, a prostate cancer cell line (Cao et al., 2014).

EED is a core component of polycomb repressive complexes 2

(PRC2) and is critical for PRC2 to methylate histone H3 at lysine

27 (H3K27me3). Then, EED recruits polycomb repressive

complexes 1 (PRC1) directly to the tri-methylated H3K27 loci

and enhances PRC1-mediated H2A ubiquitin E3 ligase activity,

indicating a potential role for SELENBP1 as an epigenetic

exchange factor in prostate cancer (Cao et al., 2014).

Colon cancer: In colon cancer, the promoter of

SELENBP1 was methylated in both human colon tissues and

cell lines (HCT116, SW480, Caco-2, and HT-29 cells), while it

was mostly unmethylated in LS174T cells (Pohl et al., 2009).

Treating HCT116 with 5-Aza-dC (5′-Aza-2′-deoxycytidine), a
DNA methylation inhibitor (DNMTi), could decrease

methylation of the SELENBP1 promoter, increase

SELENBP1 promoter activity, and rescue SELENBP1 mRNA

and protein expression levels (Pohl et al., 2009). However, very

little methylation in the SELENBP1 promoter was detected in the

colon cancer cell line SW480 in another study (Silvers et al.,

2010). Treating SW480, SW620, and HT-29 cells with 5-Aza-dC

alone did not significantly alter SELENBP1 protein and mRNA

levels (Wang et al., 2014). However, TSA alone or in combination

with 5-Aza-dC could upregulate SELENBP1 expression in the

SW480 and SW620 cells, indicating its regulation by histone

modification, while no significant change was observed in HT-29

cells (Wang et al., 2014). There are no consistent results about the

DNA methylation in colon cancer. NACHT, LRR, and PYD

domain-containing protein 7 (NLRP7) are potential biomarkers

of CRC. NLRP7 is deubiquitinated by ubiquitin-specific protease

10 (USP10), leading to increased NLRP7 protein stability (Li

et al., 2021). SELENBP1 physically interacts with NLRP7,

indicating the potential impact of SELENBP1 in epigenetic

regulation; however, the specific mechanism remains

unknown (Li et al., 2021).

Head and neck cancer: miRNA belongs to the non-coding

RNAs (Hussain et al., 2022). SELENBP1 can be epigenetically

modified through miRNA in cancer. SELENBP1 downregulation

in OSCC is induced by miR-4786-3p binding to the 3′
untranslated region (UTR) of SELENBP1. Nuclear factor

erythroid 2-related factor 2 (NRF2, an oncogenic transcription

factor) is a downstream responder upon

SELENBP1 downregulation. SELENBP1 reduces NRF2 protein

levels by promoting its polyubiquitination and degradation.

Kelch-like ECH-associated protein 1 (KEAP1) binds to

NRF2 to promote ubiquitin–proteasomal degradation of NRF2

(Itoh et al., 1999; Adam et al., 2011). SELENBP1 also acts as a

transcriptional factor to induce KEAP1 transcription by binding

the KEAP1 promoter (Zeng et al., 2021). Targeting at the miR-

4786-3p–SELENBP1–KEAP1–NRF2 signaling axis may enhance

the efficacy of chemotherapy for OSCC (Zeng et al., 2021).

Bladder cancer: By using the MEXPRESS tool (http://

mexpress.be/), SELENBP1 expression in bladder cancer was

found to relate to DNA hypermethylation in its promoter

region located close to the transcription start site (TSS) and

the first exon. Gene body methylation is negatively associated

with SELENBP1 expression; however, DNA methylation in its

3′UTR was positively associated with SELENBP1 expression,

which highlights that multiple DNA methylation sites may be

differentially involved in regulating SELENBP1 expression. DNA

hypermethylation, especially in the gene body, accounts for the

reduction of SELENBP1 expression in bladder cancer. While

p53-responsive elements are located in − 1,394 bp and − 2,285 bp

regions of cyclin-dependent kinase inhibitor 1A (CDKN1A; also

known as p21) promoter, SELENBP1-responsive elements are

located within approximately ~ 1,300 bp to ~ 200 bp region of the

p21 upstream promoter, and SELENBP1 upregulates

p21 expression through a p53-independent mechanism

transcriptionally and through phosphorylation attenuation of

c-Jun and STAT1, leading to the G0/G1 phase cell cycle arrest,

thereby inducing attenuation of cancer cell growth (Wang et al.,

2020).

The epigenetic regulation of SELENBP1 during

carcinogenesis is listed in Table 1 and described in Figure 3.

In esophageal adenocarcinoma and colon cancer, histone

deacetylase inhibitors or demethylating agents could target

SELENBP1 expression (Pohl et al., 2009; Silvers et al., 2010).

This leads to the usage of DNA methyltransferase and histone

deacetylase to treat cancers targeting SELENBP1.

Selenium and treatment strategies

Se has been widely known to play a role in tumor prevention

(Bansal et al., 1990). Studies regarding effects of Se on DNA

methylation, DNMT expression or activity, and histone

acetylation have been reported in various tissues and cells

(Speckmann and Grune, 2015; Jablonska and Reszka, 2017).

Frontiers in Genetics frontiersin.org06

Zhang and He 10.3389/fgene.2022.1027726

188

http://mexpress.be/
http://mexpress.be/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1027726


FIGURE 3
Different SELENBP1 epigenetic functions during carcinogenesis. (A) Lung cancer: Nkx2-1 binds to the promoter and enhancer regions of
SELENBP1 through methylation and acetylation. They also function in a positive feedback loop. SELENBP1 can downregulate HIF-1α protein levels.
(B) Esophageal adenocarcinoma, methylation occurred at −95 to +90 as well as in the 5′-untranslated region of SELENBP1. The histone acetylation
also exists with unknown sites. (C) Liver cancer: SELENBP1 is decreased in HCC and the SELENBP1 5’ flanking promoter is repressed by HBx. (D)
Prostate cancer: SELENBP1 inducts phosphorylation of p53. SELENBP1 interacted with VDU1 and VDU2. VDU2 can deubiquitinate HIF-1α. Sub,
potential substrates of VDU1. SELENBP1 inhibits HIF-1α protein levels. SELENBP1 interacts with EED. EED is critical for downstream methylation and
ubiquitinoylation. (E)Colon cancer: whether SELENBP1 promoter hypermethylation or histone acetylation exists in human colon cancer cells remain
controversial. NLRP7 is deubiquitinated by USP10 in colon cancer. SELENBP1 interacted with NLRP7. The specific mechanism between
SELENBP1 andNLRP7 remains unclear. (F)Head and neck cancer: downregulation of SELENBP1 is induced bymiR-4786-3p targeting at the 3′UTRof
SELENBP1. SELENBP1 reduces NRF2 protein levels by promoting its polyubiquitination and degradation. SELENBP1 induces KEAP1 transcription by
binding to KEAP1 promoter. (G) Bladder cancer: SELENBP1 expression was inversely associated with DNA methylation in the promoter and gene
body, but positively correlates with DNA methylation in the 3′-UTR region. SELENBP1-responsive elements located in the upper region of the
p21 upstream promoter than p53’s to increase p21 expression. SELENBP1-mediated transcriptional induction of p21 protein through combined
phosphorylation suppression of c-Jun and STAT1. Ub, ubiquitin; P, phosphorylation; Ac, acetylation.

TABLE 1 List of SELENBP1 regulated by epigenetic modifications during carcinogenesis.

Cancer type Epigenetic modification Reference

Lung cancer Histone modification (H3K4me3, H3K4me1, and H3K27ac) Caswell et al. (2018)

Esophageal adenocarcinoma (EAC) Promoter hypermethylation Silvers et al. (2010)

Histone modification (acetylation)

Liver cancer Potential promoter modification Lee et al. (2020)

Prostate cancer Inducting phosphorylation of the p53 (serine 15) Ansong et al. (2015)

Histone modification (ubiquitination) Jeong et al. (2009)

Potential promoter modification Jeong et al. (2014)

Potential promoter modification Elhodaky et al. (2020)

Potential histone modification (H3K27me3 and ubiquitination) Cao et al. (2014)

Colon cancer Promoter hypermethylation Pohl et al. (2009)

Histone modification (acetylation) and promoter hypermethylation Wang et al. (2014)

Potential histone modification (ubiquitination) Li et al. (2021)

Head and neck cancer miR-4786-3p and histone modification (ubiquitination) Zeng et al. (2021)

Bladder cancer DNA hypermethylation and histone modification (phosphorylation) Wang et al. (2020)
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TABLE 2 List of differentially expressed SELENBP1 during carcinogenesis and their functions.

Cancer type Variation
trend

Level Functional
classification

Roles in
cancer

Reference

Kidney cancer Downregulation mRNA Potential prognostic factor Specific mechanism remains unknown Ha et al. (2014)

mRNA Regulated by HNF4alpha Lucas et al. (2005)

Lung cancer Downregulation Protein Decreased inactivation of carcinogens Positive feedback loop with Nkx2-1 Caswell et al. (2018)

Protein Potential prognostic factor of LSCC Specific mechanism remains unknown Tan et al. (2016)

mRNA and
protein

Poor survival Proliferation and differentiation Chen et al. (2004)

mRNA and
protein

Potential biomarker for early detection of
LSCC

Cell transformation Zeng et al. (2013)

Thyroid cancer Downregulation Protein Unknown Unknown Brown et al. (2006)

Stomach cancer Downregulation Protein Potential suppression target, impact on drug
efficacy, and toxicity

Inhibit proliferation and migration Zhang et al. (2013a)

Protein Diagnostic marker Unknown (Zhang et al., 2011a; Xia
et al., 2011)

Esophageal
adenocarcinoma (EAC)

Downregulation Protein Predictor of response to chemoprevention
or chemosensitization

Epigenetic and posttranscriptional
mechanisms

Silvers et al. (2010)

Liver cancer Downregulation Protein Prognosis biomarker Increasing GPX1 activity and
diminishing HIF-1α expression

Huang et al. (2012)

EMT Gao et al. (2018)

Upregulation
in vivo

Potential biomarkers and therapeutic
targets

Epigenetic regulation Lee et al. (2020)

Downregulation
in vitro

Unknown Selenium or acetaminophen
metabolites

Lanfear et al. (1993)

Breast cancer Downregulation Potential biomarker predicting survival and
effectiveness of selenium supplementation

Regulated via estrogen (Lanfear et al., 1993;
Zhang et al., 2013b)

Environment Wang et al. (2015)

GPX1 Fang et al. (2010)

RARα Gianni et al. (2019)

ESR2 Giurato et al. (2018)

Prostate cancer Downregulation Distinguishing indolent from aggressive
disease

Inducting phosphorylation of the p53 Ansong et al. (2015)

Epigenetic regulation Jeong et al. (2009)

Candidate anti-oncogene product Inhibited HIF-1α protein levels Jeong et al. (2014)

Energy metabolism Elhodaky et al. (2020)

Potential biomarker of tumor progression Selenium levels in plasma Xie et al. (2016)

GPx enzyme activity Jerome-Morais et al.
(2012)

Potential biomarker of tumor progression AR Veldscholte et al. (1992)

Potential epigenetic regulation Cao et al. (2014)

Colon cancer Downregulation Protein Potential pharmacological target Epigenetic regulation (Pohl et al., 2009; Wang
et al., 2014)

Epithelial differentiation (Li et al., 2008 )

Lipid/glucose metabolic signaling
pathways;

Ying et al. (2015a)

Protein Positive prognostic factor Mitochondrial function Fang et al. (2010)

GPX1 Li et al. (2021)

Potential epigenetic regulation

Pancreatic cancer Downregulation Unknown Unknown Caba et al., (2016)

(Continued on following page)
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High Se exposure leads to inhibition of DNMT expression/

activity in prostate cancer (Xiang et al., 2008; Lee et al., 2009),

breast carcinoma (de Miranda et al., 2014), and human colon

cancer (Uthus et al., 2011). In addition, Se causes demethylation

in LNCaP prostate cancer cells (Xiang et al., 2008) and human

colon cancer Caco-2 cells (Uthus et al., 2011) and HDAC

inhibition in prostate (Xiang et al., 2008; Lee et al., 2009),

lymphoma (Kassam et al., 2011), and skin melanoma (Gowda

et al., 2012). The epigenome changes influenced by Se may

provide potential disease therapies and prevention strategies in

cancers (Jablonska and Reszka, 2017).

Since SELENBP1 belongs to specific selenium-binding

protein and its potential regulation in epigenetics during

carcinogenesis, combined treatment targeting SELENBP1 and

selenium might be a potential treatment strategy. In prostate

cancer, SELENBP1 may play a role in controlling plasma

selenium levels (Xie et al., 2016). For diseases such as prostate

cancer, both SELENBP1 and selenium levels should be further

examined for better treatment outcomes. The 3D model of

human protein SELENBP1 with four cysteine residues was

reported to have an alpha–beta structure characterized by four

short alpha-helices, one 310 helix (residues 207–210), and

30 antiparallel beta-strands. Only one cysteine (Cys57) is able

to bind the selenium in hepatocellular carcinoma, which may

serve as a treatment target too (Raucci et al., 2011). The selenium-

containing HDAC inhibitor or organic selenium compound

TABLE 2 (Continued) List of differentially expressed SELENBP1 during carcinogenesis and their functions.

Cancer type Variation
trend

Level Functional
classification

Roles in
cancer

Reference

Head and neck cancer Downregulation Novel prognostic biomarker Unknown Chen et al. (2016)
Epigenetic regulation, transcriptional
factors, and miRNA in oral cancer

Zeng et al. (2021)

Skin cancer Downregulation Unknown Proliferation and tumor
microenvironment

(Lanfear et al., 1993;
Schott et al., 2018)

HIF-1α Scortegagna et al. (2009)

Bladder cancer Downregulation Potential prognostic biomarker and
therapeutic target

Epigenetic regulation Wang et al., (2020)

Uterine cancer Downregulation Protein Unknown Unknown Zhang et al. (2010a)

Nerve cancer Unknown / Unknown Cell outgrowth Wang et al. (2015)

Malignant pleural
mesothelioma

Unknown / Risk Proliferation and transformation Pass et al. (2004)

Uveal melanoma tumor Upregulation Metastatic prediction Unknown Linge et al. (2012)

Ovary cancer Downregulation Protein Potential prognostic indicator Selenium/androgen pathways Huang et al. (2006)

Epithelial proliferation and papillary
complexity

Zhang et al. (2010b)

Risk Stromal epithelial cross-talk Johnatty et al. (2010)

TABLE 3 List of Se regulated by epigenetic modifications during carcinogenesis.

Cancer Type Cell type Epigenetic modifications Reference

Prostate cancer LNCaP cells Demethylation; Xiang et al. (2008)

DNMT1 inhibition;

LNCaP cells HDAC inhibition Lee et al. (2009)

Breast cancer MCF-7 DNMT1 inhibition de Miranda et al. (2014)

Colon cancer Human colonic epithelial Caco-2 cell Demethylation Uthus et al. (2011)

Diffuse large B-cell lymphoma Lymphoma cell lines HDAC inhibition Kassam et al. (2011)

Cervical carcinoma Hela cells HDAC inhibition Desai et al. (2010)

Skin melanoma Hela cells and melanoma cell line HDAC inhibition Gowda et al. (2012)
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becomes the novel inhibitor for cancer treatment (Lee et al., 2009;

Desai et al., 2010; Kassam et al., 2011), which merits favorable

outcomes in vitro and in vivo.

There is no evidence of a dose–response relation between

selenium status and cancer risk (Vinceti et al., 2018). Whether

supplemental dietary selenium should be considered as an

adjuvant therapy for cancers still lacks certainty of evidence.

Epigenetic drugs such as DNMTi and HDACi targeting

SELENBP1 need further investigation before approval to treat

different cancers clinically. In addition, microRNA has been

reported for years as a potential target in cancers, such as

lung, breast, prostate, colon, and liver carcinomas (Szczepanek

et al., 2022). In OSCC, SELENBP1 is downregulated by miR-

4786-3p through binding to the 3′UTR of SELENBP1 (Zeng

et al., 2021). The antagomir of miR-4786-3p implies a potential

treatment target of SELENBP1 in OSCC. Since the the number of

studies about microRNAs’ role in regulating SELENBP1 in other

cancers is still limited, more studies should be performed to

discover the role of microRNAs on SELENBP1 and develop

potential treatment strategies.

Conclusion and future prospects

The expression of SELENBP1 is significantly

downregulated in various cancers, which means

SELENBP1 plays an important role in cancer progression.

Although the molecular aspect of epigenetic changes of

SELENBP1 in cancer remains largely unexplored and has

not been used clinically in the diagnosis and treatments of

patients with cancer yet, the prospects of novel discoveries and

potential application of SELENBP1 are promising. Ongoing

studies and tremendous progresses in the field of epigenetics

have been made through transcriptome analysis and in vitro/in

vivo experiments to unravel the potential epigenetic markers

for future cancer therapeutics and prognosis. So, with the

limited published articles, we summarize recent findings on

the function and regulatory mechanisms of SELENBP1 during

carcinogenic progression, with emphasis on epigenetic

mechanisms.

There are still some crucial questions that should be

addressed but can be easily neglected. 1) Whether the

epigenetics change of SELENBP1 is one of the most important

mechanisms for its expression and function during

carcinogenesis. Many other mechanisms, such as metabolic

signaling pathways (Ying et al., 2015a; Elhodaky et al., 2020),

estrogen (Lanfear et al., 1993; Zhang C. et al., 2013), also effect the

role of SELENBP1 in carcinogenesis. 2) If targeting only one

specific epigenetic change at individual loci of SELENBP1 is

enough to rescue its levels and activity during carcinogenesis,

such as DNA methylation and protein ubiquitination. 3) Could

the regulatory role of SELENBP1 epigenetic modification lead to

therapy or prognosis? Further investigation is needed to identify

novel epigenetic modifications of SELENBP1 through new

technologies and dissect out the fundamental roles of these

modifications on SELENBP1 expression and activities.

Pharmacologic inhibition of epigenetic modifications could be

key to reducing carcinogenic progression. Using specific

inhibitors to target SELENBP1 might serve as therapeutic

targets and lead to the desired clinical outcome (Table 2,

Table 3) (Waddington, 1942; Porat et al., 2000; Haig, 2004;

Feinberg, 2018; Millan-Zambrano et al., 2022).
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Glossary

RCC Renal cell carcinoma

LSCC Lung squamous cell carcinoma

NBE Bronchial epithelium

PTC Papillary thyroid carcinoma

DIGE Difference gel electrophoresis

HCC Hepatocellular carcinoma

VDU1 Hippel–Lindau protein (pVHL)-interacting

deubiquitinating enzyme 1

HIF-1α Hypoxia-inducible protein-1alpha

OXPHOS Oxidative phosphorylation

AMPK AMP-activated protein kinase

CRC Colorectal cancer

TSA Trichostatin A

VPA Valproic acid

5-Aza-dC 5′-Aza-2′-deoxycytidine
2-D PAGE Two-dimensional polyacrylamide gel electrophoresis

Se Selenium

hSP56 Human 56 kDa selenium-binding protein

DEN Diethylnitrosamine

OSCC Oral squamous cell carcinoma

UTR Untranslated region

NRF2 Nuclear factor erythroid 2-related factor 2

KEAP1 Kelch-like ECH-associated protein 1

GPX1 Glutathione peroxidase 1

HNSCC Head and neck squamous cell carcinoma

NPC Nasopharyngeal carcinoma

LC Laryngeal cancer

OC Oral cancer

TC Tonsil cancer

HPC Hypopharyngeal cancer

EAC Esophageal adenocarcinoma

USP33 Ubiquitin-Specific Peptidase 33

STRING Search Tool for the Retrieval of Interacting Genes/

Proteins

PPI Protein–protein interaction

CXCR4 C-X-C motif chemokine receptor 4

EMT Epithelial–mesenchymal transition

B[a]P Benzo(a)pyrene

GSH Glutathione

PDAC Pancreatic ductal adenocarcinoma

SR Skin rash

HNF4alpha Hepatocyte nuclear factor 4 alpha

HBx Hepatitis B virus-X

CpG Cytosine–guanine

MPM Malignant pleural mesothelioma

AR Androgen receptor

ATRA All trans-retinoic acid

NLRP7 NACHT, LRR, and PYD domain-containing protein 7

TERT Telomerase reverse transcriptase

BRCT BRCA1 carboxyl-terminal

DDR Damage response

AGR2 Anterior gradient 2

Dubs Deubiquitinating enzymes

USP15 Ubiquitin-specific proteases 15

EPS Expressed prostatic secretions

ESR2 Estrogen receptor 2

EED Embryonic ectoderm development

PRC2 Polycomb repressive complexes 2

H3K27me3 Histone H3 at lysine 27

PRC1 Polycomb repressive complexes 1

VCaP Vertebral Cancer of the prostate

DNMTi DNA methylation inhibitor

DNMTs DNA methyltransferase

HDACi Histone deacetylase inhibitor

MDS Myelodysplastic syndromes

AML Acute myeloid leukemia

PTMs Post-translational modifications

miRNAs MicroRNAs

lncRNAs Long-non-coding RNAs

MS Multiple sclerosis

Scz Schizophrenia

COVID-19 Corona virus disease 2019

CNS Central nervous system

TSS Transcription start site

CDKN1A Cyclin-dependent kinase inhibitor 1A

USP10 Ubiquitin-specific protease 10
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Integrated analysis reveals
common DNA methylation
patterns of alcohol-associated
cancers: A pan-cancer analysis

Xingyu Liu1†, Jiarui Chen1†, Jiali Li1, Zihang Zeng1, Xueping Jiang1,
Yanping Gao1, Zhengrong Huang2,3, Qiuji Wu1,4,5, Yan Gong2,3*
and Conghua Xie1,4,5*
1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China,
2Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China, 3Tumor
Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research
Center, Zhongnan Hospital of Wuhan University, Wuhan, China, 4Hubei Key Laboratory of Tumor
Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China, 5Hubei Cancer Clinical
Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China

Background: The role of alcohol in carcinogenesis has received increasing
attention in recent years. Evidence shows its impacts on various aspects,
including epigenetics alteration. The DNA methylation patterns underlying
alcohol-associated cancers are not fully understood.

Methods:We investigated the aberrant DNAmethylation patterns in four alcohol-
associated cancers based on the Illumina
HumanMethylation450 BeadChip. Pearson coefficient correlations were
identified between differential methylated CpG probes and annotated genes.
Transcriptional factor motifs were enriched and clustered using MEME Suite,
and a regulatory network was constructed.

Results: In each cancer, differential methylated probes (DMPs) were identified,
and 172 hypermethylated and 21 hypomethylated pan-cancer DMPs (PDMPs)
were examined further. Annotated genes significantly regulated by PDMPs were
investigated and enriched in transcriptional misregulation in cancers. The CpG
island chr19:58220189–58220517 was hypermethylated in all four cancers and
silenced in the transcription factor ZNF154. Various biological effects were exerted
by 33 hypermethylated and seven hypomethylated transcriptional factor motifs
grouped into five clusters. Eleven pan-cancer DMPs were identified to be
associated with clinical outcomes in the four alcohol-associated cancers,
which might provide a potential point of view for clinical outcome prediction.

Conclusion: This study provides an integrated insight into DNA methylation
patterns in alcohol-associated cancers and reveals the corresponding features,
influences, and potential mechanisms.
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1 Introduction

A strong association has been established between alcohol
consumption and carcinogenesis in multiple cancers, including
head and neck squamous carcinoma, esophageal squamous
carcinoma, hepatocellular carcinoma, breast cancer, and
colorectal cancer (Scoccianti et al., 2015). Alcohol consumption is
also suspected to associate with pancreatic and lung cancers
(Boffetta and Hashibe, 2006). Previous studies have demonstrated
a dose-dependent effect of alcohol consumption on survival in head,
neck (Lee et al., 2019), and colorectal cancer patients (Cai et al.,
2014) and have also demonstrated that alcohol affected tumor
development during gene-encoding enzyme alterations for
alcohol metabolism, folate metabolism, DNA repair, and
oxidative stress (Boffetta and Hashibe, 2006; Seitz and Stickel,
2007). Relationships between alcohol and cancers deserved
extensive investigations.

DNA methylation alterations are one of the most frequently
identified events in various malignant tumors (Kodach et al., 2010;
Lee et al., 2013; Dong et al., 2019) and play important roles in cancer
initialization, progression, and recurrence (Ehrlich, 2006; Pellacani
et al., 2014; Tahara and Arisawa, 2015; Chen et al., 2016; Das et al.,
2019). A group of enzymes known as DNA methyltransferases
(DNMTs) are the key regulators that catalyze the methylation
process. DNMT1 functions as the maintenance DNMT
completing the methylation of the partially methylated DNA,
while DNMT3A and DNMT3B catalyze de novo methylation.
The abnormal expression of DNMTs can silence numerous
tumor suppressor genes and affect important biological functions
in multiple cancers (Sharma et al., 2010; Fattahi et al., 2018; Zhang
et al., 2020). Accumulating evidence has shown that alcohol
consumption may cause epigenetic changes, particularly
abnormal DNA methylation, which could be important
contributory factors to alcohol-induced carcinogenesis
(Schernhammer et al., 2010; Boycott et al., 2022; Zhao et al.,
2022; Zhou et al., 2022). Alcohol could regulate the expression of
DNMTs in mouse models (Mukhopadhyay et al., 2013; Miozzo
et al., 2018) and affect DNA methylation-associated pathways via
reprogramming S-adenosylmethionine (SAMe) metabolism or
disturbing the intake of vitamins B6 and B12 (Voigt, 2005;
Varela-Rey et al., 2013; Na and Lee, 2017). According to several
methylome-wide analyses, a robust association was established
between the methylation of specific sites and the clinical
outcomes of cancer patients with alcohol consumption
(Villanueva et al., 2015; Zhou et al., 2019). Nonetheless, most
studies focused on a limited number of CpG sites or genes in a
single cancer type, and few analyses rely on the common patterns of
alcohol-induced methylome changes. The underlying molecular
mechanisms of these aberrant alterations remain elusive, and
further explorations are required to uncover their possible effects
on tumor biological behaviors.

In this study, we investigated whether a common methylation
pattern existed in alcohol-associated neoplasms. The methylome,
transcriptome, and clinical information on four alcohol-associated

tumors, including esophageal carcinoma (ESCA), head and neck
squamous cell carcinoma (HNSCC), liver hepatocellular carcinoma
(LIHC), and pancreatic adenocarcinoma (PAAD), was downloaded
from The Cancer Genome Atlas (TCGA) portal. The differentially
methylated probes (DMPs) were identified between tumors
developed due to alcohol consumption and normal tissues. A
total of 172 hypermethylated and 21 hypomethylated pan-cancer
DMPs (PDMPs) were extracted. The PDMP-annotated genes were
investigated and mostly enriched in transcriptional misregulation of
cancer pathways. A CpG island chr19:58220189–58220517 was
significantly hypermethylated in all four cancer types and
strongly correlated with the downregulation of transcription
regulator zinc finger protein 154 (ZNF154), which could serve as
a potential epigenetic therapeutic biomarker. Transcription factor
(TF) motifs enriched in PDMP regions were clustered into five
groups and were significantly associated with multiple tumor
hallmarks, on which a TF network was constructed. Furthermore,
our studies also identified 11 hypermethylated PDMPs that may be
used to predict the overall survival of alcohol-associated cancer
patients.

2 Methods

2.1 Data acquisition

The clinical and transcriptome data on ESCA, HNSCC, LIHC,
and PAAD were obtained from TCGA data portal (https://portal.
gdc.cancer.gov/). The methylome data were downloaded from the
UCSC Xena browser (https://xenabrowser.net/datapages/), which
was based on the Illumina HumanMethylation450 BeadChip.
GSE123781 is a dataset of oral squamous cell carcinoma patients
under alcohol consumption documented in clinical information
(Nemeth et al., 2019). The methylation data and clinical data
were downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/).

2.2 Data preprocessing

We extracted 129 ESCA, 352 HNSCC, 118 LIHC, and
102 PAAD patients with a clear alcohol consumption history.
After samples with no methylation data or gene expression data
were excluded, 102 ESCA, 328 HNSCC, 117 LIHC, and 101 PAAD
patients were finally applied for further investigation.

Several criteria were used to filter out inappropriate DNA
methylation data in this study, including 1) probes having a ‘Not
Applicable’ (NA) beta value in more than 50% samples; 2) probes
containing no greater than three beads in a minimum of 5% samples;
3) probes with a detection p-value ≥ 0.01; 4) multiple-location-hitting
probes; 5) probes that are non-CpG; 6) probes associated with single
nucleotide polymorphism (SNP) sites; and 7) sex chromosome-
specific probes. The k-nearest neighbors (KNNs) method was then
applied to estimate the missing value, followed by type II probe
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normalization using the BMIQmethod (Fortin et al., 2017). Using the
ChAMP package, the aforementioned steps were performed to
preprocess raw methylation data (Morris et al., 2014).

2.3 DMP and PDMP definitions

The Limmamethod in the ChAMP package was applied to identify
DMPs in each cancer. The threshold of a significant probe is the fold
change (FC) of a beta value > 1.2 and p-value < 0.05. A DMP with a
higher methylation level (beta value) in the tumor sample was defined

as hypermethylated DMP, while a DMP with a lower methylation level
was defined as hypomethylated DMP. A probe is defined as PDMP if it
can be identified as DMP in all four cancer types and has the same
methylation status (hypermethylated or hypomethylated).

2.4 Regional methylation status assessment

Using probe beta values for one cancer type in a specific region,
we investigated the methylation status of various chromosomes and
functional CpG regions. The formula is as follows:

FIGURE 1
DMPswere investigated in four alcohol-associated cancers. (A)Combined plot showed the number of DMPs in each cancer type and that ofmultiple
cancer types. The number of the same DMPs between different cancer types was calculated and shown as the intersection size. (B). Proportion of
hypermethylated and hypomethylated DMPs located in chromosomes of each cancer type. The proportion was determined as the ratio of the number of
identified DMPs to the total number of CpG probes on each chromosome.
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MS � median ∑Mp,r
i,T( ) −median ∑Mp,r

j,N( ).

For a given cancer type, the median beta value M of probe p in
region r of all tumor samples T or normal samples N was calculated.
A hypermethylated region was defined as having a p-value <
0.05 and MS > 0, while a hypomethylated region was defined as
having a p-value < 0.05 and MS < 0.

2.5 Correlation between PDMPs and gene
expression

We calculated the Pearson coefficient correlations (PCCs)
between PDMPs and their annotated genes. A significant
correlation was defined as having |PCC| > 0.2 and p-value <
0.05. Because the positions of CpG probes in different regions
may have a different effect on genes (Yang et al., 2015), probe
regions were divided into two groups: a) the promotor region,
consisting of TSS200, TSS1500, 5′UTR, and 1stExon, and b) the
body region, consisting of Body, 3′UTR, and IGR. Upstream and
downstream genes that may potentially be regulated by enhancers
located on specific probes were investigated using the ELMER
package (Silva et al., 2019). A significant correlation was defined
as having |PCC| > 0.1 and p-value < 0.05.

2.6 Motif enrichment analysis

As a measurement of TF-binding motifs enriched in PDMP
regions, we generated sequences of 500 bp between 250 bp upstream
and 250 bp downstream of each probe and divided them into
hypermethylated and hypomethylated groups, followed by motif

enrichment analysis using the AME function on the MEME website
(http://meme-suite.org/tools/ame) (Buske et al., 2010; Bailey et al.,
2009; Kulakovskiy et al., 2018). The TF-enriched motif was obtained
with a E-value < 10−5, which was subsequently clustered using
STAMP (http://www.benoslab.pitt.edu/stamp/index.php)
(Mahony and Benos, 2007). clusterProfiler was used to explore
pathways enriched in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Yu et al., 2012).

2.7 Construction of the TF-regulated
network

The TRRUST database (https://www.grnpedia.org/trrust/) is a
practical website for TF-gene interaction prediction, collecting
8,444 TF-target regulatory relationships derived from
11,237 experiment-based articles (Han et al., 2018), which was
used to screen and filter high-reliability TF-gene pairs.
Subsequently, 40 TFs and their target genes were selected to
construct a TF-regulated network in each cancer based on the
adjacent matrix created by the weighted method (Langfelder and
Horvath, 2008). Each cancer regulatory network’s top 10% weighted
edges, which represent TF-gene interaction intensity, were
combined into one pan-cancer regulatory network (Yu, 2020).
Genes were clustered based on the greedy algorithm (Girvan and
Newman, 2002).

2.8 Survival analysis

To evaluate the prognostic ability of PDMPs for each cancer
type, a univariate Cox regression model was applied. Probes with

FIGURE 2
Heatmap showed the methylation status of chromosomes (A), feature regions (B), and CpG regions (C) in four alcohol-associated cancers.
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p-value < 0.1 in at least three cancer types were extracted and
considered prognosis-related PDMPs, followed by multivariate Cox
analysis. For each cancer, we evaluated the methylation prognosis
index (MPI) of each sample and divided them into high- and low-
risk groups by the following formula:

MPIi � ∑
n

p

βp,iIp.

For a given sample i, the beta value of prognosis-related PDMP p
to the index coefficient p was summed. To evaluate the survival
difference between two groups of patients, Kaplan–Meier survival
analysis was performed. AUC was calculated using the timeROC
package of R software to validate the predictive ability of the MPI
model (Blanche et al., 2013).

2.9 Statistical analysis

The statistical significance of continuous variables was estimated
using the Wilcoxon rank-sum test. Univariate and multivariate Cox
regression analyses were performed to construct the MPI model
using the survival package (Holleczek and Brenner, 2013). All the
aforementioned statistics were analyzed by R software
(version 4.0.2).

3 Results

3.1 Characteristics of alcohol-associated
DNA methylation patterns

The clinical information on each alcohol-associated
aforementioned cancer was downloaded from TCGA database.
ESCA, HNSCC, LIHC, and PAAD were included in further
studies, and other alcohol-related cancer types, such as lung and
colon cancer, were excluded due to the absence of a documented
history of alcohol consumption. We identified a set of DMPs in four
cancers, with 6,436 in ESCA, 10,891 in HNSCC, 31,620 in LIHC, and
3,592 in PAAD patients (Figure 1A), and the proportion of
hypermethylated or hypomethylated DMPs distributed on each
normal chromosome to all probes in that region was measured
(Figure 1B). Given the number of DMPs in each cancer, DNA
methylation alterations in pancreatic cancer might be affected
slightly by alcohol consumption, whereas liver cancer was more
affected. The methylation status of chromosomes in ESCA and
PAAD separately was more hypermethylated or hypomethylated
and that of HNSCC and LIHC was in an intermediate status
(Figure 2A). Most DMPs tended to be located in non-promotor
regions (Supplementary Figure S1A, S1B) and an approximately
equal percentage of the CpG island and open-sea regions
(Supplementary Figure S1C, S1D). Functional regions were

FIGURE 3
Proportion of hypermethylated (A) and hypomethylated (B) PDMPs located in chromosomes. The proportion was determined as the ratio of the
number of identified PDMPs to the total number of CpG probes on each chromosome.
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categorized based on the methylation status into two groups,
namely, the promotor (TSS200, TSS1500, 5′UTR, and 1stExon)
and body region (Body, 3′UTR, and IGR) or CGI (CpG island),
and non-CGI region (CpG shore, shelf, and opensea) (Figures 2B,C),
each of which was annotated with biological functions.

We computed DMPs with the same methylation status in all
four types of cancers and obtained 172 hypermethylated and
21 hypomethylated PDMPs (Supplementary Figure S2A, S2B).
The highest proportion of hypermethylated PDMPs was found
on chromosome 19, while the highest proportion of
hypomethylated PDMPs was found on chromosome 8.
(Figure 3). Interestingly, there was no PDMP located in
chromosomes 9, 21, and 22. One of the possible explanations
could be that DMPs in these chromosomes exhibit biological
behaviors that are specific to cancer. Compared with distribution
of the functional region of DMPs, PDMPs located in promotor or
body regions showed an almost equal percentage distribution
(46.7% and 53.3%) (Supplementary Figure S3A, S3B). In
addition, 72% of PDMPs were located in the CGI region
(Supplementary Figure S3C, S3D). We also validated the PDMPs
in GSE123781, and 182 of 193 probes were found significantly

differentially methylated (Supplementary Table S1). Taken together,
alcohol-associated aberrant pan-cancer methylation changes were
more likely to exert biological effects in promotor and CGI regions.

Aging was suggested to be associated with the increase of
methylation at a global level (Maegawa et al., 2017). To identify
whether aging contributed to the alcohol-associated methylation
alterations in our study, we investigated the DMPs between the
young group (<65 years old) and the old group (≥65 years old). We
found that there was only a total of 26 CpG probes with an adjusted
p-value < 0.05, with 21 in ESCA, 1 in HNSCC, 4 in LIHC, and none
in PAAD patients (Supplementary Table S2). Interestingly, none of
these probes reached the DMP-defined threshold of fold change >
1.2. These results suggest that aging has a very slight impact on our
findings.

3.2 PDMPs regulated the expression of
annotated genes

To better understand the potential biological effect of these
PDMPs, PCCs were used to evaluate the correlation between

FIGURE 4
Exploration of the PDMP-annotated genes. (A) Heatmap revealed the Pearson coefficient correlations between PDMPs and annotated genes.
PDMPs were defined into four groups: HeP, hypermethylated probe in the promotor region; HeB, hypermethylated probe in the body region; HoP,
hypomethylated probe in the promotor region; HoB, hypomethylated probe in the body region. (B). KEGG enrichment analysis of 33 PDMP-annotated
genes.
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PDMPs and their annotated downstream genes. Since probes
with different relative locations may have a different regulatory
effect on expression, 193 PDMPs were defined into four groups:
HeP = hypermethylated probe in the promotor region, HeB =
hypermethylated probe in the body region, HoP =
hypomethylated probe in the promotor region, and HoB =
hypomethylated probe in the body region. Thirty-seven
PDMP–gene pairs were identified in at least three cancer
types, and nine PDMP–gene pairs were found in all cancers
(Figure 4A; Supplementary Table S3). These 37 PDMP-annotated
genes were enriched in several cancer hallmarks, among which
transcriptional misregulation in cancer (q-value = 5.35e−3) stood
out as the most significant one (Figure 4B). There was a
surprising outcome that four of nine aforementioned PDMPs
(cg01268824, cg11294513, cg21790626, and cg27049766) belonged
to the same CpG island chr19:58220189-58220517 and correlated
with the same gene ZNF154. The role of this CpG island required
further exploration.

3.3 Hypermethylated CpG island chr19:
58220189-58220517 silenced downstream
gene expression

We checked all probes in chr19:58220189–58220517 and found a
total set of 11 probes, among which six probes were PDMPs
(cg11294513, cg05661282, cg21790626, cg27049766, cg08668790, and
cg01268824). cg03142586 was excluded from further analysis since its
beta value was NA in most samples. Probes in this region were
remarkably hypermethylated (Figure 5A; Supplementary Figure S4),
which were validated in GSE123781 (Supplementary Figure S5). It has
been shown that exposure to alcohol increases methylation levels at
certain loci in normal tissues (Lee et al., 2011). To obtain an overall
view of the methylation status of the region, we investigated the beta
values of samples exposed or not exposed to alcohol. Significant
differences were observed between alcohol-associated tumor samples
and non-alcohol-associated tumor samples (Supplementary Figure
S6). A strong negative correlation was found between the beta values

FIGURE 5
Exploration of the CpG island chr19:58220189–58220517. (A) Whole view of CpG probes in the CpG island chr19:58220189–58220517
demonstrated its hypermethylation status. The bottom dot plots from left to right represent the beta values of cg1129451, cg0566128, cg21790626,
cg27049766, cg03234186, cg08668790, cg12506930, cg26465391, cg01268824, and cg27324426, respectively. cg03142586 was excluded from
further analysis since its beta value was NA in most samples. (B) Heatmap revealed the correlation between the beta value of six PDMPs and the
expression of ZNF154, ZIK1, and ZNF418 in four cancer types.

Frontiers in Genetics frontiersin.org07

Liu et al. 10.3389/fgene.2023.1032683

203

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1032683


of these PDMPs and the expression of ZNF154 (Figure 5B), suggesting
a potential silence effect. Recently, the methylome and transcriptome-
based algorithm has been developed to identify cancer-specific
enhancers (Yao et al., 2015). The CpG probes located on these
enhancers possess the potential ability to regulate the expression of
upstream and downstream genes. We then applied this method and
explored the relationship between these PDMPs and the closest
10 upstream and downstream genes (Supplementary Figure S7).
Together with ZNF154, zinc finger protein interacting with K
protein 1 (ZIK1, the seventh closest upstream gene) and ZNF418
(the ninth closest downstream gene) was also found to have a negative
correlation with six PDMPs (Figure 5B), suggesting the
hypermethylation status of the CpG island chr19:
58220189–58220517 could potentially mediate transcription activity
of these three genes. All three genes were associated with DNA-
binding activity, suggesting that the disorder of DNA recognition
might be involved in alcohol-associated tumor behaviors.

3.4 Different pathways are correlated with
TF motifs in PDMP regions

Based on 500-bp sequences generated from PDMPs, possible
TF-binding motifs were scanned, enriched, and divided into

hypermethylated and hypomethylated groups. Thirty-three and
seven motifs located in hypermethylated and hypomethylated
regions, respectively, were identified, followed by the grouping of
these motifs into five clusters with STAMP. (Figure 6A;
Supplementary Table S4). POZ/BTB and AT-hook-containing
zinc finger protein 1 (PATZ1) showed the most significant
enrichment in the hypermethylated group (E-value = 3.36e−17),
and among hypomethylated groups, JUN was identified as the
most significant motif (E-value = 6.47e−17). All seven
hypomethylated motifs shared a close relatedness and were
clustered into one group, suggesting a similar regulatory
mechanism among them. The motif clusters exhibited distinct
biological pathways, and several pathways appeared to be
involved in the development and differentiation of cancers.
(Figure 6B). Cluster I was significantly enriched in the cell cycle
(q-value = 2.80e−2), and Cluster IV was associated with signaling
pathways regulating the pluripotency of stem cells (q = 7.00e−3).
Additionally, Cluster IV was associated with the IL-17 signaling
pathway (q-value = 1.10e−7) and TNF signaling pathway (q-value =
7.28e−4), which is possibly involved in modulation of the immune
response. According to the TRRUST database, we further explored
the target genes associated with the aforementioned TF motifs and
constructed a transcriptional regulatory network, which was
recognized as six distinct modules (Figure 7).

FIGURE 6
TFmotifs enriched in hypermethylated and hypomethylated PDMPs. (A) TFmotifs were divided into five clusters based on the sequence similarity. (B)
KEGG enrichment analysis of five clusters. The top two enriched pathways of each cluster were visualized.
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3.5 The prognostic potential of PDMPs

To evaluate the prognostic value of specific PDMPs, we
performed univariate Cox regression analyses in each cancer
separately (Figure 8A). We screened 11 PDMPs as they were
associated with prognosis in at least three types of cancer, and
these PDMPs were all hypermethylated (Figure 8B; Supplementary
Table S5). Seven out of 11 PDMPs (63.6%) were found in promoter
regions, while 10 out of 11 (90.1%) were found in CGI regions, which
confirmed the aforementioned findings that alcohol-associated
PDMPs were more likely to exert biological effects on these
regions. Patients were classified into low- and high-MPI groups
in each cancer based on the MPIs. High-MPI groups were
significantly associated with a worse outcome than low-MPI
groups by Kaplan–Meier survival analysis (Figure 8C). The ROC
curves were obtained, and the AUC of 3-year OS (range from

0.705 to 0.859) and 5-year OS (range from 0.621 to 0.881) was
calculated separately, revealing the reliability of MPIs (Figure 8D).

4 Discussion

The purpose of this study was to investigate PDMPs in four
cancers that were associated with alcohol consumption and the
distribution of PDMPs within these cancers. Promotor and CGI
regions were the two main regions that PDMPs were more likely to
enrich. Thirty-seven PDMPs were found to show a close regulatory
relationship with annotated genes and correlate with transcriptional
misregulation. Furthermore, we observed a hypermethylated CpG
island chr19:58220189–58220517, showing a strong correlation with
transcription regulatory genes. Thirty-three hypermethylated and
seven hypomethylated TF motifs were clustered into five groups and

FIGURE 7
Construction of the combined TF-gene regulatory network. For each cancer, a regulatory network was constructed from the adjacent matrix. The
top 10% of TF-gene interactions were considered significant and combined into one network.
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exerted various biological effects. Finally, 11 PDMPs were reported
to be associated with overall survival, providing valuable prediction
of clinical outcomes.

Many DMPs were found in each of the four alcohol-associated
cancers, and only a small percentage of DMPs were shared,
suggesting the presence of cancer-specific methylation patterns. A
study by Fan et al., for instance, revealed that preferred genomic
DNA sequence patterns were observed between different DNMTs in
hepatocellular carcinoma cells, which might promote to the
formation of a hepatocellular carcinoma-specific methylation
landscape (Fan et al., 2016). Cancer-specific methylation patterns
have not been explored here due to the limited scope of our studies
on common patterns of altered DNA methylation, which requires
further study.

The genome methylation landscape is wholly poor of CpG and
locally rich (in CpG islands). CGIs could be found in more than half

of the genes in the vertebrate genome and commonly maintain a low
methylated level (Jones, 2012). We reported a hypermethylated CpG
island chr19:58220189–58220517 in all four alcohol-associated
cancers, and this finding is consistent with that of Ruike Y et al.,
who also found that CGI regions tend to be hypermethylated in
cancers (Ruike et al., 2010). The expression of ZNF154 was
significantly downregulated by the CpG island chr19:
58220189–58220517, which has been partially demonstrated by
previous studies. Based on a computational algorithm, we also
found that the transcription activity of ZIK1 and ZNF418 might
be regulated by hypermethylation of the CpG island chr19:
58220189–58220517. According to a blood-based diagnostic
model, hypermethylation of the ZNF154 CpG island was
identified as a relevant biomarker for detecting circulating solid
tumor DNA (Margolin et al., 2016). Epigenetic silencing of ZNF154
was associated with multiple cancers and could serve as a biomarker

FIGURE 8
Survival analysis of PDMPs. (A) Volcano plot showing the survival-related PDMPs in each cancer. (B). Characteristics of 11 survival-related PDMPs. (C)
Kaplan–Meier analysis of high- and low-MPI group patients in each cancer type. (D). ROC curve validating the predictive ability of MPIs.
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predicting the recurrence of alcohol-associated pancreatic cancer
(Yamada et al., 2016; Mishra et al., 2019;Wiesmueller et al., 2019), as
well as non-alcohol-associated prostate cancer (Nahar et al., 2018)
and bladder cancer (Reinert et al., 2012). Hu et al. showed that
ZNF154 might serve as a tumor suppressor, and overexpression of
ZNF154 significantly inhibited cell migration and invasion in vivo, as
well as lung nodule formation in vitro, via suppressing Wnt/β-
catenin signaling pathway activation (Hu et al., 2017). ZIK1 was
identified as a transcriptional repressor blocking a gene promotor
bearing Gal4-binding elements via interacting with heterogeneous
nuclear ribonucleoprotein particle K protein (Denisenko et al.,
1996). Silenced ZIK1 was observed in noncancerous esophageal
mucosae (Oka et al., 2009), suggesting low expression of ZIK1
occurred at the early stages of cancer. Only a few studies
documented that ZNF418 negatively regulated transcription and
the MAPK signaling pathway (Li et al., 2008) and that lower
expression of ZNF418 was associated with poorer prognosis in
gastric cancer (Hui et al., 2018). As our scope was limited to
methylation alterations, the role of associated genes was not
identified, which required further investigation.

Thirty-three and seven TF motifs located in hypermethylated and
hypomethylated PDMP regions, respectively, were identified as
transcription regulators in alcohol-associated cancers, of which
PATZ1 and JUN were most notable. PATZ1, containing an A–T
hook DNA-binding motif, binds to other DNA-binding structures
to participate in chromatin modeling and transcription regulation.
PATZ1 is involved in the inhibition of the mesenchymal-to-
epithelial transition via disturbing the combination between
p53 gene and its response elements (Chiappetta et al., 2015; Keskin
et al., 2015) and could be an independent prognostic factor in multiple
cancers (Guadagno et al., 2017; Zhao et al., 2018; Passariello et al., 2019).
Junwas involved in a number of biological processes that were triggered
by oxidants and toxic stimuli when combined with other members of
the Fos family (Angel and Karin, 1991; Shaulian and Karin, 2002). An
in vitro experiment showed that alcohol promotes the direct
recruitment of c-Jun to TATA-binding protein, Brf1, and tRNA
gene promotors, inducing RNA polymerase III-dependent
transcription, thus contributing to liver tumor development (Zhong
et al., 2011). We established a TF-gene regulatory network in our article
that might assist in understanding the regulatory functions and
mechanisms of alcohol and carcinogenesis.

Aging may also contribute to methylation changes. Several studies
indicated that aging was closely linked to global hypermethylation. In
normal breast tissues, age acceleration was observed (Hofstatter et al.,
2018).Themethylation level of highly variable sites increased from amean
of 3% in the newborn to 20% in the old, and these age-related
hypermethylation cases were found to be enriched in the CGI region
(Maegawa et al., 2017). A large-scale methylation study revealed that
cancer risks andmortality increasedwith aging epigenetic changes, ranging
from 4% to 9% and 2% to 6%, respectively, with 5 years of age acceleration
(Dugue et al., 2018). According to Zheng et al., most epigenetic drifts were
nonfunctional, while some might randomly affect TF expression or the
binding affinity, resulting in an abnormality in tissue homeostasis (Zheng
et al., 2016). In light of the complex function and mechanism
underpinning aging and tumor epigenetics, the effect of aging on
PDMPs identified in this article has been difficult to estimate and remove.

This study only examined a small part of methylation sites.
Although the Illumina HumanMethylation450 array provided

coverage of 98.9% UCSC RefGenes, the coverage rate of total
genome CpG sites was only 2% (Bibikova et al., 2011;
Plongthongkum et al., 2014), leading to incomplete exploration of
alcohol-associated genome-aberrant CpG patterns. Non-coding
RNAs also play significant roles in cancer initiation, progression,
and metastasis (Gupta et al., 2010; Li et al., 2015; Ferreira and Esteller,
2018). The function and correlation of CpG sites annotated in these
regions were not explored. Due to a lack of alcohol consumption
documents in TCGA database, other alcohol-associated cancers such
as colorectal and lung cancers were not included in this study.

5 Conclusion

Based on multi-omics data on pan-cancer, this study explored the
global DNA methylation alterations of ESCA, HNSCC, LIHC, and
PAAD patients with alcohol consumption documents from TCGA
database. A total of 193 PDMPs were identified, and the preference
patterns of alcohol-associated DNAmethylation changes were located
in promotor and CGI regions. PDMP-annotated genes were enriched
in multiple pathways, especially transcriptional misregulation in
cancer, demonstrating that alcohol might contribute to
transcriptional disorder by inducing the methylation status of
transcription regulators, thus leading to tumor development. A
hypermethylated CpG island chr19:58220189–58220517 was
identified, and it regulated the transcription activity of downstream
genes, serving as a potential therapeutic biomarker. Five sets of
enriched TF motifs were involved in numerous cancer hallmarks
including tumorigenesis and immunoregulation, and a TF-gene
regulatory network was constructed for a better understanding of
potential regulation mechanisms. Additionally, 11 PDMPs were
reported to be associated with the overall survival of patients.
Estimated MPIs are reliable and provide a potential point of view
for clinical outcome prediction.
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