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Editorial on the Research Topic
Simultaneous multiparametric and multidimensional cardiovascular
magnetic resonance imaging
Multiparametric quantitative cardiovascular magnetic resonance (CMR) imaging is a

powerful tool for evaluating myocardial morphology, function, and tissue status. It

provides objective, reproducible measurements appropriate for diagnosing and

longitudinally monitoring both focal and diffuse cardiovascular diseases. CMR has

unparalleled flexibility: it is sensitive to a wide range of physical and physiological

processes such as motion, T1 and T2 relaxation (biomarkers for e.g., fibrosis, edema, and

inflammation), blood flow, diffusion, and more. However, the multiparameter sensitivity

of CMR is also its weakness, as sequentially targeting each of these individual processes

requires an inefficient combination of electrocardiogram (ECG) triggering, respiratory

control, and precise pulse sequence timing. This complicated, disjointed imaging

paradigm has limited the adoption of multiparametric quantitative CMR to only

specialized imaging centers, preventing it from reaching its full potential.

In this article collection, we showcase the results of ongoing research in Simultaneous

Multiparameter Acquisition and Reconstruction Techniques (SMART) for CMR (1),

which will facilitate the transition from the current sequential MR imaging model into a

new, single push-button MRI model. This new model is capable of simultaneously

capturing multiple types of contrast and quantitative maps of tissue properties from one

comprehensive, continuous dataset (Figure 1).

This transition is analogous to moving from sequential “single color” imaging to

simultaneous “prismatic” imaging. It has the potential to revolutionize all branches of

diagnostic MRI, but its impact will undoubtedly be most profound in the cardiovascular

domain. Here, it can eliminate the need for respiratory or ECG triggering or gating,

making CMR accessible to patient groups who currently cannot benefit from its full

diagnostic potential.

So far, multidimensionality has been used to achieve a better workflow with equivalent

results. This in itself can increase access to CMR for patients suffering from various types of

arrhythmia, breathing difficulties, and in low- to middle-income countries where
01 frontiersin.org4
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FIGURE 1

Multidimensional imaging example. (A) Continuous data acquisition without electrocardiography (ECG) triggering during free-breathing results in
overlapped cardiovascular dynamics. This example shows cardiac motion, respiratory motion, T1 recovery, and T2 decay. (B) Multidimensional
approaches consider each dynamic as a separate time dimension, disentangling the different dynamics. (C,D), The resulting multidimensional dataset
enables the visualization of arbitrary combinations of time points (C) and can provide co-registered quantitative maps for each cardiac or respiratory
motion state (D). Figure adapted from Otazo 2018 (2).
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technologist training is a burden or scanner throughput is at a

premium due to scarce imaging resources. Looking even farther

ahead: in addition to improving workflow and access,

multidimensional imaging may provide additional value through

novel time-resolved quantification and study of interactions

between dimensions. Furthermore, the rich multiparametric

information in multidimensional CMR images is

spatiotemporally co-registered, and therefore ready-made for the

development of artificial intelligence tools for diagnosis, risk

prediction, therapy monitoring and more.

Another advantage of SMART CMR is its potential to address

the issue of reproducibility, another significant barrier to wide

adoption for quantitative mapping techniques. Although

quantitative maps are ideally absolute biomarkers, differences in

cut-off values for healthy and pathological tissues exist across

imaging centers. This inconsistency stems from factors like

incomplete modeling and variable segmentation, limiting the

adoption of these techniques by those not directly involved in

their development (Ogier et al.). SMART CMR can potentially

improve reproducibility in several ways. For instance, it can

provide standardized timing not reliant on patients’ ECG signals,

use co-registered parameter maps to improve region drawing and

segmentation, and employ multiparameter mapping to model

confounding factors that affect repeatability, such as B1 + and
Frontiers in Cardiovascular Medicine 025
magnetization transfer. These improvements may lead to more

consistent results across imaging centers, ultimately enhancing

the clinical utility of these techniques.

This collection of articles contains reports on existing research

that is already producing tangible, peer-reviewed scientific results

in this emerging field while also offering a projection of what lies

in the future, just beyond the horizon.

An overview of simultaneous multiparametric acquisition and

reconstruction techniques (SMART) in CMR was provided by

Eyre et al. They discuss the theory of SMART CMR, its clinical

testing, validation, and examples of how it improves clinical

workflows. A further policy and practices review by Fotaki and

Velasco et al. (2) highlights the cardiac–liver axis, discussing

quantitative MRI methods for non-invasive myocardial and liver

tissue characterization in cardiometabolic diseases. It covers

current approaches, technical developments, limitations,

challenges, and recommendations for clinical validation.

In the realm of cardiac MR fingerprinting (MRF) (3, 4),

Hamilton presents deep image prior MRF, a novel reconstruction

approach that shortens breathhold and diastolic acquisition

window in cardiac MRF, thereby improving scan efficiency and

reducing motion artifacts. Liu et al. extend cardiac MRF to

simultaneous T1, T2, and proton density fat fraction mapping in

the heart through the use of rosette k-space trajectories.
frontiersin.org
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Velasco and Fletcher et al. review the latest developments in

applying artificial intelligence (AI) to cardiac MRF, discussing

how AI optimizes sequences, reduces memory demand, and

minimizes computational time for image reconstruction and

post-processing.

Expanding the MR Multitasking framework (5), Mao et al.

present a simultaneous multi-slice (SMS) technique for motion-

resolved, non-ECG, free-breathing T1-T2 mapping, demonstrating

its potential for reducing three-slice mapping time without ECG or

breath-holds. Building on the TOPAZ technique (6), Weingartner

et al. introduce a three-step approach for cardiac phase-resolved

LGE imaging, allowing assessment of scar motility and cross-

comparison between multiple phases, overcoming limitations of

single-phase LGE techniques. Moving to clinical validation,

Jarkman et al. evaluate the Multimapping framework (7) for

simultaneous myocardial T1 and T2 mapping in patients with a

range of cardiovascular diseases, showing high correlation with

reference techniques and better image quality in a short breath-hold.

Finally, Axel et al. discuss challenges and opportunities in

visualizing and analyzing multidimensional cardiovascular

magnetic resonance imaging data, addressing new computational

methods, limitations of human perception, and conventional

display devices. They suggest that significant breakthroughs in

this field may result from exploiting advances in other areas of

applied science and technology, such as hyperspectral remote

sensing of environment or astronomy.

The articles in this collection present a convincing case that the

transition to continuous, multiparametric and multidimensional
Frontiers in Cardiovascular Medicine 036
MRI is within our reach. The question is not if, but when this

will happen.
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Simultaneous Multi-Slice Cardiac MR
Multitasking for Motion-Resolved,
Non-ECG, Free-Breathing T1–T2
Mapping

Xianglun Mao 1, Hsu-Lei Lee 1, Zhehao Hu 2,3, Tianle Cao 1,2, Fei Han 4, Sen Ma 1,

Fardad M. Serry 1, Zhaoyang Fan 3, Yibin Xie 1, Debiao Li 1,2 and

Anthony G. Christodoulou 1,2*

1 Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States, 2Department of

Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States, 3Department of Radiology, University

of Southern California, Los Angeles, CA, United States, 4 Siemens Medical Solutions, Inc., Los Angeles, CA, United States

The aim of this study is to simultaneously quantify T1/T2 across three slices of

the left-ventricular myocardium without breath-holds or ECG monitoring, all within a

3min scan. Radial simultaneous multi-slice (SMS) encoding, self-gating, and image

reconstruction was incorporated into the cardiovascular magnetic resonance (CMR)

Multitasking framework to simultaneously image three short-axis slices. A T2prep-IR

FLASH sequence with two flip angles was designed and implemented to allow

B1+-robust T1 and T2 mapping. The proposed Multitasking-SMS method was

validated in a standardized phantom and 10 healthy volunteers, comparing T1 and T2

measurements and scan-rescan repeatability against corresponding reference methods

in one layer of phantom vials and in 16 American Heart Association (AHA) myocardial

segments. In phantom, Multitasking-SMS T1/T2 measurements showed substantial

correlation (R2 > 0.996) and excellent agreement [intraclass correlation coefficients

(ICC) ≥ 0.999)] with reference measurements. In healthy volunteers, Multitasking-SMS

T1/T2 maps reported similar myocardial T1/T2 values (1,215 ± 91.0/41.5 ± 6.3ms)

to the reference myocardial T1/T2 values (1,239 ± 67.5/42.7 ± 4.1ms), with P

= 0.347 and P = 0.296, respectively. Bland–Altman analyses also demonstrated

good in vivo repeatability in both the multitasking and references, with segment-wise

coefficients of variation of 4.7% (multitasking T1), 8.9% (multitasking T2), 2.4% [modified

look-locker inversion recovery (MOLLI)], and 4.6% (T2-prep FLASH), respectively. In

summary, multitasking-SMS is feasible for free-breathing, non-ECG, myocardial T1/T2

quantification in 16 AHA segments over 3 short-axis slices in 3min. The method

shows the great potential for reducing exam time for quantitative CMR without ECG

or breath-holds.

Keywords: multiparametric magnetic resonance imaging, simultaneous multi slice, cardiovascular imaging, free

breathing cardiac MR, non-ECG gated, low rank tensor completion
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Mao et al. Multitasking SMS Multi-Parametric Mapping

INTRODUCTION

Cardiac magnetic resonance (CMR) imaging is rapidly
evolving toward quantitative multiparameter measurement
for myocardial tissue characterization (1–6). Quantitative
myocardial T1 and T2 mapping techniques are especially
useful for tissue characterization, clinical diagnosis, and disease
monitoring (7–19). For example, T1 is sensitive to amyloidosis
(11–13), fibrosis (15, 17), and inflammation (20); T2 is sensitive
to water content in tissue, characterizing myocardial edema
(16, 21), ischemia (21), inflammation (14), sarcoidosis (22), and
more. Quantitative imaging techniques also enable comparison
between patients scanned with differing scanners or timepoints
and are therefore promising imaging biomarkers for multi-center
or longitudinal studies (23).

Conventional cardiac T1 (24–27) and T2 (28) mapping
techniques are inherently inefficient because (1) they rely
on breath-holds (often one per slice, with pauses between
acquisitions for patients to recover before the next breath-
hold) and pauses in acquisition (via ECG triggering) to
avoid respiratory and cardiac motion; and (2) are performed
in series (slice-by-slice, biomarker-by-biomarker) instead of
simultaneously. This approach becomes impractical for patients
having difficulty holding their breath or for whom ECG
triggering fails. Respiratory gating (29) is an alternative to breath-
holding, but typically comes with low scan efficiency as well.

Multidimensional continuous-acquisition methods, such as
MR Multitasking (5), have shown promise for free-breathing,
non-ECG, simultaneous parameter mapping by simultaneously
resolving the overlapping dynamics (i.e., cardiac/respiratory
motions, relaxations, etc.) involved in quantitative CMR.
Multitasking uses a low-rank tensor (LRT) imaging approach
with subspace modeling to address the curse of dimensionality
associated with imaging multiple motions and relaxations. This
approach removes the conventional inefficiencies of scan pauses
and serial biomarker acquisition; however, 2D multitasking
still uses serial slice acquisition, and so has the same slice
coverage inefficiencies as conventional scans. Clinical protocols
for quantitative CMR typically include T1 and T2 maps in mid,
basal, and apical short-axis slices. Therefore, slice-by-slice 2D
multitasking is not fully efficient for the simultaneous acquisition
of all biomarkers at all slices. Volumetric 3D Multitasking (30,
31) has been preliminarily demonstrated over 14 short-axis
slices (whole ventricle coverage) with 1.4 mm × 1.4 mm × 8
mm resolution in 9:14min, but provides more slice coverage
than is currently used in clinical protocols, at the expense of
scan time.

Simultaneous multislice (SMS) imaging (32, 33) has
the potential to address the slice inefficiencies of 2D
Multitasking without the scan time extension required
by full 3D coverage. Here, we redesign MR Multitasking
sampling and reconstruction to incorporate SMS imaging,
performing three-slice myocardial T1/T2 mapping in a
3min, non-ECG, free-breathing MRI scan. The repeatability
of quantitative measurements and the agreement with
reference approaches were evaluated in phantom and in
healthy volunteers.

MATERIALS AND METHODS

Cardiac MR Multitasking Framework
Pulse Sequence Design With SMS Acceleration
A prototype MR pulse sequence was developed based on our
previous CMR Multitasking implementations (5). T2prep-IR
pulses were employed to generate the T1 and T2 contrasts
(as shown in Figure 1). The T2 prep-IR module was modified
from an adiabatic T2-preparation module (34) by adding one
adiabatic 180 inversion pulse after the 90 tip-up pulse in the
T2-preparation module to achieve the inversion effect. The
sequence cycled through five T2 prep-IR durations and the
special case of “0 ms” preparation duration used only the IR
pulse without any T2 preparation. A continuous-acquisition
FLASH sequence collected readouts throughout the entire T1
recovery process. Successive recovery periods alternated between
two FLASH excitation flip angles to allow B1+–and through-
plane-motion–robust T1 mapping (35). Interleaving five T2prep-
IR durations while also interleaving two flip angles produces a
cycle of 10 T2prep-IR duration/flip angle combinations, which
was repeated throughout the scan. The sequence employed radial
k-space sampling, alternating between imaging data readouts
incremented by the golden angle (111.24◦) and between training
data at a fixed radial angle (0◦). The image data target spatially
resolvable information through (0◦ and 360◦) angular coverage
of k-space, whereas the training data collect one projection line
at a high temporal sampling rate to facilitate self-gating and will
be used to define temporally resolved model parameters during
image reconstruction.

A multiband factor of three was used to acquire three slices
at the same time. The simultaneous excitation of multiple slices
was achieved by superimposing single-band excitation pulses
at equally spaced center frequencies, corresponding to equally
spaced slice locations. The phase of each band was cycled by
different increments (−2π/3, 0, and +2π/3), mimicking the
discrete Fourier transform and defining a discrete kz dimension.
This encoding scheme is a generalization of the controlled
aliasing in volumetric parallel imaging (CAIPIRINHA) technique
(36). SMS encoding was applied on every FLASH excitation pulse
to always excite three slices simultaneously. No phase cycling was
used on the mid-ventricular slice, the +2π/3 phase increment
was used on the basal slice, and the −2π/3 phase increment
on the apical slice. The phase cycle was incremented by one
step for each imaging data readout, corresponding to linear kz
encoding; no phase modulation was used for the training data,
corresponding to kz = 0. The training data contain contributions
from all 3 slices with matched phases, akin to a projection along
the slice direction.

Low-Rank Tensor Imaging Model
The images acquired in the Multitasking framework can
be represented as a 5-way tensor A (5, 37). Multitasking
conceptualizes different sources of image dynamics involved in
quantitative cardiovascular imaging as an image array/tensor
with images sorted according to different time dimensions.
These image dynamics (e.g., cardiac, respiratory motions, T1/T2
relaxations) overlap in real-time, but by organizing them
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FIGURE 1 | (A) Schematic diagram of the proposed 2D magnetic resonance (MR) Multitasking sequence with simultaneous multislice (SMS)-acceleration, where 5

different preparations (IR and T2prep-IR with 4 different preparation times) are repeated throughout the scan. Each FLASH excitation pulse can excite three slices

simultaneously. (B) k-Space sampling demonstration. Imaging data are collected with a 2D radial trajectory, and they are incremented by a golden angle (i.e., 111.24◦)

for each readout. Training data periodically sample the center k-space line every other readouts. Three short-axis slices are excited simultaneously with different phase

modulation schemes, resulting in a 2π/3, 0, –2π/3 shift in their phase increment, respectively.

into a tensor and exploiting the correlation between images,
Multitasking can simultaneously resolve all of them. As a result,
we can capture and view different image dynamics along different
time dimensions.

We model A as a LRT, leveraging image correlation laterally
along each of the N time dimensions and diagonally throughout
the multidimensional temporal space, reducing the images to the
product of a small core tensor and five factor matrices:

A = G ×1 Ux ×2 UT1 ×3 Uτ ,α ×4 Uc ×5 Ur , (1)

where Ux contains spatial basis functions with voxel location
index r = (x, y, z), UT1 contains basis functions for the T1
relaxation, Uτ ,α contains basis functions that index the 10
different recovery modules with varying T2prep-IR duration τ

and flip angle α combinations, Uc contains cardiac motion basis
functions, Ur contains respiratory motion basis functions, and
G is the core tensor governing the interaction between factor
matrices. This constrains the image tensor A to the intersection
of the five low-dimensional subspaces spanned by theUmatrices.
The factor matrices and core tensor have far fewer elements than
the full image tensor A, which reduces the degrees of freedom
for the LRT recovery problem and allowsmemory-efficient image
reconstruction. A diagram of the LRT imaging model is shown in
Figure 2.

Image Reconstruction
Image reconstruction in the CMR Multitasking framework is
divided into the following steps: (1) preliminary “real-time”
(ungated) image reconstruction; (2) predetermining the temporal
basis functions in UT1 and Uτ ,α from a training dictionary of
signal curves; (3) cardiac and respiratory binning of the real-
time images; (4) determining the motion bases and core tensor
from the training data; and finally, (5) solving for the spatial
coefficients Ux from the imaging data.

Real-Time Image Reconstruction
“Real-time” (i.e., one single time dimension representing elapsed
time) image reconstruction generates ungated images with a
low-rank matrix imaging strategy (37), to facilitate image-based
binning. The temporal basis functions are estimated from the
singular value decomposition (SVD) of the training data, and
the spatial coefficients are estimated by least-squares fitting to the
imaging data (37).

Dictionary Generation for T1 and Recovery Index

Basis Functions
We generated a training dictionary of feasible T2-IR-FLASH
signal curves governed by the Bloch equations, with a range
of variable T1/T2 values, B1 inhomogeneities, and inversion
efficiencies (30, 31). We used 21 T1 values logarithmically spaced
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FIGURE 2 | The framework of the low-rank tensor (LRT) imaging model. The underlying image can be represented as a 5-way tensor with one spatial dimension and

4 time dimensions representing 4 dynamic processes: T1 relaxation process, recovery weights with different T2prep-IR duration and flip angles, respiratory motion,

and cardiac motion. With the LRT image model, the tensor can be factorized into five factor matrices with much smaller sizes, reducing the degrees of freedom for the

LRT recovery problem.

between 100 and 3,000ms, 21 T2 values logarithmically spaced
between 10 and 3,000ms, seven B1+ efficiency values between 0
and 1.5 modulating the excitation flip angles, and seven inversion
efficiency factors controlling the effects of inversion efficiency
for the IR and T2prep-IR pulses. The T1 and recovery index
relaxation basis functions inUT1 andUτ ,α are estimated from the
SVD of this training dictionary.

Respiratory and Cardiac Motion Binning
The respiratory and cardiac motion binning algorithm is derived
from the methods described in the original MR Multitasking
work (5). Briefly, we used an unsupervised machine learning
approach to identify motion states by employing a modified
k-means clustering algorithm incorporating a low-rank NMR
relaxation model (i.e., the known UT1 and Uτ ,α) to address
the variable contrast weighting of the training data. We used 6
respiratory bins and 20 cardiac bins in the binning procedure.

Temporal Factor Estimation
Once the motion states have been identified, the training data
can be reorganized as a 5-way tensor Dtr which shares temporal
factors and core tensor with the image tensor A. These training
data will cover several—but not all—combinations of cardiac
phase, respiratory phase, recovery index, and inversion time.
To recover missing combinations, we apply an LRT completion

algorithm, solving the optimization problem below:

D̂tr = min
Dtr ,

Dtr,(2) ∈ range
(

UT1

)

Dtr,(3) ∈ range
(

Uτ ,α

)

‖dtr − �tr (Dtr)‖
2
2

+λ
∑

i=1,4,5

∥

∥Dtr,(i)

∥

∥

∗ + Rt(Dtr),

(2)

where dtr is the collected training data, �tr (·) is the sampling
operator for the training dataset, Dtr,(i) is the mode-i unfolding
of the training tensor, ‖·‖∗ denotes the matrix nuclear norm, and
Rt(·) is a temporal regularizer, which was chosen as temporal total
variation (TV) along the respiratory and cardiac dimensions in
this work (38). Rt(Dtr) in Eq. (2) can be expressed as

Rt (Dtr) = λc
∥

∥Dtr,(4)

∥

∥

1
+ λr

∥

∥Dtr,(5)

∥

∥

1
, (3)

where λc and λr are the two regularization parameters
that control the TV smoothing along the cardiac and
respiratory dimensions.

Once the training data tensor D̂tr is complete, the core tensor
G and the remaining unknown temporal factor matrices Uc and
Ur are extracted from the higher-order SVD (HOSVD) (39) of
Dtr . At this stage, the core tensor and all temporal factor matrices
are known, permitting the definition of a combined temporal
factor tensor 8 = G ×2 UT1 ×3 Uτ ,α ×4 Uc ×5 Ur .
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Spatial Factor Estimation
The spatial factor Ux was then recovered by fitting the
known 8 to the acquired imaging data d, using the following
optimization problem:

Ûx = argmin
Ux

||d− �(8×1FSUx) ||
2
2 + R(Ux), (4)

where � is the undersampling operator, F is the Fourier
transform operator comprising non-uniform in-plane Fourier
encoding and Fourier slice encoding, S is the coil sensitivity
operator, and R(·) is an optional regularization functional to
promote transform sparsity (chosen as a wavelet transform in this
implementation). R (Ux) in Eq. (4) can be expressed as

R (Ux) = λw‖WUx‖1, (5)

where W is the wavelet operator and λw is the regularization
parameter that controls the wavelet sparsity. Once 8 and Ux

have both been determined, the final reconstructed image can be
calculated asA = 8 ×1 Ux.

Multiparametric Mapping
The signal equation at the kth recovery period of the
Multitasking-SMS pulse sequence is:

s (A,B,T1, T2,β) = A
1− e−TR/T1

1− e−TR/T1 cos(βαk)

·

[

1+
(

BQke
− τ

T2 − 1
)

(

e
− TR

T1 cos (βαk)

)n]

· sin (βαk) , (6)

with amplitude factorA, IR/T2prep-IR pulse efficiency B, FLASH
readout interval TR, flip angle for the kth recovery period αk,
B1+ field weights β (to account for B1+ inhomogeneity), and
recovery time points n = 1, 2, . . . , N (where N is the total
number of excitations in each recovery period). The Qk absorbs
the effects of having inverted the magnetization from the steady-
state for the previous recovery period’s excitation flip angle.
Assuming a steady-state established at the final readout of each
recovery period, Qk is expressed as

Qk =
1− e−TR/T1 cos(βαk)

1− e−TR/T1 cos(βαk−1)
. (7)

The native T1 and T2 measurements can be estimated from
the signal model in Eqs. (6) and (7). Our previous work (35)
showed the value of a dual flip-angle signal model for B1+ robust
T1 mapping.

Phantom Study
An International Society for Magnetic Resonance in
Medicine/National Institute of Standards and Technology
(ISMRM/NIST) phantom (40) (model 130, High Precision
Devices, Boulder, Colorado) was imaged on a 3T scanner
(MAGNETOM Vida, Siemens). The layer with the vials closest
to the T1 and T2 values for myocardium (T1 ∈ [200, 2,500] ms;
T2 ∈ [20, 800] ms) was used in the study.

The proposed 2D Multitasking-SMS sequence was applied, as
well as four reference methods: modified look-locker inversion
recovery (MOLLI) 5(3)3 (41), T2-prepared fast low angle
shot (T2-prep FLASH) mapping method (common product
sequences used in the heart), and the gold standard static T1
and T2 mapping sequences inversion recovery spin echo (IRSE-
T1) for T1 mapping, and T2-weighted spin-echo (SE-T2) for
T2 mapping.

The following scan parameters were used for the proposed 2D
Multitasking-SMS sequence: Field of View (FOV) = 270 mm ×

270 mm (with 2-fold readout oversampling, the acquired FOV
= 540 mm × 540 mm); spatial resolution = 1.7 mm × 1.7
mm × 8 mm; 3 slices with a multiband factor of 3; TR/TE =

3.5/1.6ms; flip angle = 3 and 10; T2 preparation times = 0,
30, 40, 50, and 60ms (with 0 corresponding to a standard IR
pulse); recovery period = 2.5 s; scan time = 3min 3 s. The 2D
MOLLI imaging parameters were: Repetition Time/Echo Time
(TR/TE) = 2.7/1.1ms; flip angle = 35; FOV = 220 mm × 220
mm; in-plane resolution = 1.4 mm × 1.4 mm; slice thickness =
8mm. The 2D T2-prep FLASH imaging parameters were: TR/TE
= 3.3/1.4ms; flip angle = 12; FOV = 220 mm × 220 mm; in-
plane resolution = 1.4 mm2 × 1.4 mm; slice thickness = 8mm;
T2 preparation times = 0, 35, and 55ms. The IR-SE T1 protocol
parameters were: FOV= 280mm× 192mm; in-plane resolution
= 1.4 mm × 1.4 mm; slice thickness = 5mm; TI = 150, 300,
500, 800, 1,200, 1,600, 2,000, and 4,500ms. The SE-T2 protocol
parameters were: FOV= 280mm× 192mm; in-plane resolution
= 1.4 mm× 1.4 mm; slice thickness= 5mm; TE= 15, 25, 45, 70,
100, 140, 180, 250, and 350 ms.

Linear regression, the Bland–Altman analyses, and intraclass
correlation coefficients (ICC) with a two-way mixed model were
performed on the vials with relevant T1 and T2 values (T1 <

2,000ms; T2 < 120ms) to evaluate the quantitative agreement
between Multitasking and reference measurements. Pairwise t-
tests were also performed to evaluate measurement biases, with a
significance level of 0.05.

In-vivo Study
Healthy volunteer studies were approved by the institutional
review board of Cedars-Sinai Medical Center. All subjects gave
written informed consent before MRI. N = 10 human volunteers
(3 men and 7 women, age 36.7 ± 12.3) were imaged on a
3T scanner (MAGNETOM Vida, Siemens) with an 18-channel
body coil.

The 2D Multitasking-SMS pulse sequence imaged three
short-axis slices over the left-ventricle, base, mid, and apex. It
was applied twice to test scan-rescan repeatability. The scan
parameters were the same as used in the phantom study. A 2-
step fitting procedure was used to determine parameter maps.
Step 1 estimates β and T2 from Eq. (6), and Step 2 uses the
known β to fit T1 from the 3◦ recovery curve only, for which
the Look–Locker effect is reduced.

The 2D single-slice multitasking (i.e., multitasking-SS) pulse
sequence was also applied to sequentially image the same three
short-axis slices. The scan parameters were: FOV = 270 × 270
mm (with two-fold readout oversampling, the acquired FOV =

540 mm× 540 mm); spatial resolution = 1.7 mm× 1.7 mm× 8
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FIGURE 3 | T1 and T2 measurements of the ISMRM/NIST phantom using the Multitasking-SMS method and the reference methods [modified look-locker inversion

recovery (MOLLI), T2-prep FLASH methods; IRSE-T1 and SE-T2 methods]. 8 vials with T1 < 2,000ms are used for T1 analysis, and 5 vials with T2 < 120ms are used

for T2 analysis.

TABLE 1 | Intraclass correlation coefficient (ICC) and P-values of the paired t-test

for comparison analysis between cardiac mapping methods and the gold

standard and reference values across vials in the ISMRM/NIST phantom.

ICC P-value (Paired T-Test)

MOLLI T1 vs. IRSE T1 0.999 <0.001

Multitasking T1 vs. IRSE T1 0.999 0.011

T2-prep FLASH T2 vs. SE T2 0.999 0.010

Multitasking T2 vs. SE T2 0.999 0.006

mm; TR/TE= 3.5 ms/1.6ms; flip angle= 5; T2 preparation times
= 0, 30, 40, 50, and 60ms; recovery period = 2.5 s; scan time per
slice= 1min 31 s (4min 33 s for 3 slices).

Reference 2D T1maps with MOLLI and 2D T2maps with T2-
prep FLASH (1.4 mm × 1.4 mm × 8.0 mm) were acquired at
both systole and diastole during end-expiration breath-holds and
were also collected twice. The scan parameters of the reference
sequences were the same as used in the phantom study.

T1 and T2 maps were segmented at the end-expiration
respiratory and end-diastolic cardiac phases, using the AHA 16-
segment model by drawing epi- and endocardial contours in
commercially available software (CVI42; Circle Cardiovascular
Imaging, Calgary, Alberta, Canada) (42).

Measurement of global and segmental myocardial T1/T2 in
all healthy volunteers were compared between the Multitasking-
SMS approach and the reference approaches. The pairwise t-tests
were performed with a significance level of 0.05. Repeatability
was evaluated using Bland–Altman analyses and coefficients
of variation (CoVs) between the first and second scans of
the proposed method and of reference methods. Global and
segment-wise CoVs were calculated to assess repeatability. Global
CoVs were calculated as the standard deviation of average Left
Ventricle (LV) myocardial T1/T2 between two scans, divided
by the mean T1/T2 for each subject, and were root-mean-
square (RMS)-aggregated over all 10 subjects to provide an
overall summary of global repeatability. Segment-wise CoVswere
calculated as the standard deviation between two scans for each
LV myocardial segment, and were first RMS-aggregated over
segments to calculate the segment-wise CoV and divided by
the mean T1/T2 for each individual subject; segment-wise CoVs
between methods, with a significance level of 0.05. Segment-wise
CoVs were then RMS-aggregated over all 10 subjects to provide
an overall summary of segment-wise repeatability.

To determine the impact of dual-flip-angle SMS imaging

on the accuracy and precision of multitasking measurements,

pairwise t-tests were used to compare the segmental T1/T2

values, segment-wise Signal-to-noise ratio (SNR), and
segment-wise SNR efficiency between Multitasking-SS and
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FIGURE 4 | (A) Both Multitasking-SMS and MOLLI showed high R2 values against inversion recovery spin echo (IRSE)-T1 in the linear regression. The T1 bias and

limits of agreement were −46.2 ± 74.1ms for Multitasking-SMS and IRSE-T1, and −61.7 ± 41.9ms for MOLLI and IRSE-T1. (B) Both Multitasking-SMS and T2-prep

FLASH showed a high R2 value against SE-T2. The T2 bias and limits of agreement were −5.1 ± 4.1ms for the Multitasking-SMS and SE-T2, and 3.9 ± 3.7ms for

T2-prep FLASH and SE-T2.

Multitasking-SMS. The segment-wise SNR was calculated as
the mean T1/T2 within each segment divided by the voxelwise
standard deviation of T1/T2 within that segment. SNR values
were transformed into 3-slice SNR efficiency values by dividing
by the square root of the total scan time required to collect 3 slices
(4.5min for Multitasking-SS and 3min for Multitasking-SMS).

Materials and Software
All Multitasking image reconstructions were performed on a
Linux workstation with a 2.90 GHz Intel Xeon processor in
MATLAB 2018a (MathWorks, Natick, Massachusetts). Statistical
analyses were performed using IBM SPSS Statistics (Armonk,
New York, USA).

RESULTS

Phantom Results
PhantomT1 and T2maps obtained from the 2DMOLLI, T2-prep
FLASH, IRSE-T1, SE-T2, and the Multitasking-SMS approaches
are shown in Figure 3. Table 1 summarizes the ICC and Paired t-
test results between Multitasking-SMS/MOLLI/T2-prep FLASH
and gold standard IRSE/SE measurements. Multitasking-SMS
measurements and IRSE/SE measurements showed excellent
agreement with ICC = 0.999 for both T1 and T2. All pairwise
method comparisons showed statistically significant biases.

Scatter plots and Bland–Altman plots of the T1 and T2 values
in the relevant vials are shown in Figure 4. T1 measurements
from Multitasking-SMS and MOLLI were each highly correlated
(R2 > 0.996) with the reference 2D IRSE-T1 acquisition. The
95% limits of agreement of the T1 values were 46.2± 74.1ms for
Multitasking-SMS and IRSE-T1, and−61.7± 41.9ms forMOLLI
and IRSE-T1. T2 measurements fromMultitasking-SMS and T2-
prep FLASH were also each highly correlated (R2 > 0.998) with
the reference 2D SE-T2 acquisition. The 95% limits of agreement
of the T2 measurements were −5.1 ± 4.1ms for Multitasking-
SMS and SE-T2, and 3.9± 3.7ms for T2-prep FLASH and SE-T2.

In-vivo Results
Figure 5 shows the cardiac and respiratory phases detected in
the Multitasking-SMS framework in one subject. Motion videos
are provided in Supplementary Videos 1, 2. T1 and T2 mapping
results from 2D Multitasking-SMS, 2D Multitasking-SS, and
reference methods in two healthy subjects (including 3 short-
axis slices) are shown in Figure 6. Additional cardiac phases from
Multitasking-SMS are shown in Supplementary Figures 1, 2.
Example fitted B1+ field maps (β) and inversion efficiency
maps (B) obtained from Multitasking-SMS are given in
Supplementary Figure 6. Figures 7A,B show the mean T1/T2
values in each of the 16 AHA segments across all 10 healthy
subjects as a bull’s eye plot, for the Multitasking-SMS and the
reference methods. The Bland–Altman plots in Figures 7C,D
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FIGURE 5 | (A) Twenty cardiac phases are generated after the binning procedure. (B) Six respiratory phases are generated after the binning, the displayed images

show the exhalation process. The green dash line represents the distance between the liver dome and the bottom of the image. The liver dome position approaches

the bottom of the image during exhalation.

further compare the Multitasking-SMS T1 values with the
reference T1 values estimated by MOLLI, and the Multitasking-
SMS T2 values with the reference T2 values estimated by
T2-prep FLASH. Both subject-wise (averaged from whole
myocardium for each subject, 10 values) and segment-wise
(averaged from all subjects for each segment, 16 values)
T1/T2 measurements are compared between Multitasking-SMS
and references. Supplementary Figure 3 shows these plots for
all subject/segment combinations. Multitasking-SMS measured
similar global T1 (1215± 91.0ms) and T2 (41.5± 6.3ms) values
toMOLLI (1239± 67.5ms) and T2-prep FLASH (42.7± 4.1ms),
with P= 0.347 and P= 0.296, respectively.

Additionally, Multitasking-SS T1/T2 mapping results were
compared to the Multitasking-SMS measurements in Figure 8.
Supplementary Figure 4 further shows the Bland-Altman
comparisons for all subject/segment combinations. 2D single-
slice Multitasking measured similar global T1 (1,191± 106.5ms;
P = 0.323) and higher T2 (51.6 ± 7.2ms; P = 0.002) values
compared to Multitasking-SMS T1/T2. The significant bias in T2
also exists between Multitasking-SS T2 and reference T2-prep
FLASH measurements (P < 0.001).

The Bland–Altman plots in Figure 9 show the subject-wise
and segment-wise scan-rescan repeatability of multitasking-SMS
and reference T1/T2 measurements. Supplementary Figure 5

shows the Bland–Altman plots for all the subject/segment

combinations. The RMS global CoVs of subject-wise T1/T2
values were 2.3% (multitasking T1), 4.4% (multitasking T2),
0.7% (MOLLI), 2.1% (T2-prep FLASH), respectively. The RMS
segment-wise CoVs across all 16 segments’ T1/T2 values in the
10 subjects were 4.7% (multitasking T1), 8.9% (multitasking T2),
2.4% (MOLLI), and 4.6% (T2-prep FLASH). Segment-wise CoVs
were significantly larger formultitasking T1 thanMOLLI T1 (P=
0.002), and significantly larger for multitasking T2 than T2-prep
FLASH (P= 0.001).

The average SNR of multitasking measurements were
11.9 (multitasking-SMS T1), 6.2 (multitasking-SMS T2),
6.0 (multitasking-SS T1), and 6.1 (multitasking-SS T2).
The average 3-slice SNR efficiencies were 6.9 min−1/2

(multitasking-SMS T1), 3.6 min−1/2 (multitasking-SMS
T2), 2.8 min−1/2 (multitasking-SS T1), and 2.9 min−1/2

(multitasking-SS T2). The pairwise t-tests showed that
multitasking-SMS had significantly higher T1 SNR and T1/T2
SNR efficiency than multitasking-SS (P < 0.001) and similar T2
SNR (P = 0.692).

DISCUSSION

In this study, a 2D SMS-accelerated, free-breathing, non-ECG,
motion-resolved cardiac imaging method (i.e., multitasking-
SMS) was introduced for simultaneous 2D myocardial T1/T2

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 March 2022 | Volume 9 | Article 83325714

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Mao et al. Multitasking SMS Multi-Parametric Mapping

FIGURE 6 | Comparison between T1/T2 maps obtained with the proposed 2D Multitasking-SMS, the original Multitasking-SS, and the standard MOLLI/T2-prep

FLASH approaches in two healthy subjects. The acquired Multitasking T1/T2 maps were the same slice position as the reference maps acquired in the short axis.

FIGURE 7 | (A,B) The 16-segment AHA model for the proposed Multitasking-SMS T1/T2 maps and the reference T1/T2 maps in the myocardium in all 10 healthy

subjects. (C) The Bland-Altman plot compares the subject-wise global myocardium T1/T2 differences in 10 healthy subjects. (D) The Bland-Altman plot compares the

segment-wise T1/T2 differences in 10 healthy subjects. The dash lines represent 95% limits of agreement, and the solid lines represent mean bias.
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FIGURE 8 | (A) The 16-segment AHA model for the 2D single-slice Multitasking T1/T2 maps in the myocardium in all 10 healthy subjects. (B) The Bland-Altman plot

compares the subject-wise global myocardium T1/T2 differences between Multitasking-SS and Multitasking-SMS in 10 healthy subjects. (C) The Bland-Altman plot

compares the segment-wise T1/T2 differences between Multitasking-SS and Multitasking-SMS in 10 healthy subjects. The dash lines represent 95% limits of

agreement, and the solid lines represent mean bias.

FIGURE 9 | The Bland–Altman plots comparing measurements from 1st and 2nd Multitasking-SMS scans and reference scans in subject-wise T1/T2 (A–D) and

segment-wise T1/T2 (E–H). Multitasking-SMS T1/T2 repeatability analysis are shown in (A,C,E,G). Reference T1/T2 repeatability analysis are shown in (B,D,F,H). The

dash lines indicate the 95% limits of agreement and the solid line indicates mean bias.

mapping over three short-axis slices in 3min. It represents
several new developments that have not previously been a part
of T1-T2 multitasking: (1) this is the first SMS acceleration
with multitasking framework; and (2) the first use of a dual flip
angle scheme interleaved with T2prep-IR blocks for B1+-robust
T1-T2 mapping.

In the phantom study, the multitasking-SMS T1/T2
measurements and the typical cardiac mapping sequences
MOLLI and T2-prep FLASH all showed statistically significant
biases against the gold standard IRSE-T1 and SE-T2. For T1,
multitasking-SMS and MOLLI both had small negative biases;
for T2, multitasking-SMS and T2prep-FLASH had small biases
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in opposite directions (underestimation by multitasking-SMS
and overestimation by T2prep-FLASH). All the comparisons
showed ICC ≥ 0.999, reflecting high agreement with gold
standard references.

In healthy volunteers, multitasking-SMS T1/T2
measurements reported similar myocardial T1/T2 values
compared to the reference T1/T2 measurements in healthy
volunteers. The T1/T2 estimations from all methods were in the
normal range of many 3T MRI studies (43–45). Multitasking-
SMS was less repeatable than MOLLI and T2-prep FLASH in
healthy volunteers, but may be an attractive choice for mapping
in subjects who cannot comply with breath-holds or for whom
ECG triggering fails, or when co-registration between T1 and
T2 maps is desired. Multitasking-SMS underestimated T2 and
T2-prep FLASH overestimated T2 in the phantom, but they
achieved similar T2 quantification in vivo. This may be related
to the difference in T2-prep modules between multitasking-SMS
and T2prep-FLASH (T2prep-IR vs. T2prep, respectively).
These different modules may have different responses to
motion, inhomogeneity, and flow that are present in the
in vivo scans, which could change their behavior relative to the
phantom scans.

2D multitasking-SS scans from our original work (5)
were also applied sequentially on the same short-axis slice
locations. Multitasking-SS T2 values were significantly shorter
than both the Multitasking-SMS and the T2prep-FLASH
T2 values—which were not significantly different from each
other—indicating that dual-flip-angle Multitasking-SMS was
more accurate for T2 mapping in vivo. T1 values were
not significantly different, suggesting similar accuracy in T1.
Regarding precision, the combination of SMS and dual-flip
angle excitation significantly increased 3-slice SNR efficiency
for both T1 and T2 vs. multitasking-SS. When traded for a
1.5× reduction in 3-slice scan time (4.5min to 3min), this
translated to the maintenance of T2 SNR and a 2.0× boost
in T1 SNR.

Multitasking-SMS could be a potential alternative to the
conventional series of multiple T1 and T2 mapping scans in
clinical studies. Conventionally, each quantitative parameter (i.e.,
T1/T2) is typicallymapped using one breath-hold per 2D slice. As
a result, 3 slices (base, mid, apex) of native T1, and T2 at diastole
phase would require 6 breath holds. In a typical scenario, 3-slice
T1 and T2 mapping could take ∼3min assuming a ∼20 s gap
between each scan for the patient to recover from the breath-hold
while the technologist sets up the next scan. With an experienced
MR operator, the gap can often be reduced to ∼10 s and would
take a total scan time of 2min. However, shorter breath-hold
recovery times may increase the likelihood of a repeat scan due to
patients’ difficulty in complying with breath-holds, which could
then extend exam time. In our experiments, six breath-hold
scans required 4–6min. The proposed 2D CMR Multitasking-
SMS removes this variability by offering a fixed 3-min scan, with
the added benefits of push-button simplicity (no trigger delay
times or cardiac acquisition windows to set up), free-breathing
acquisition, and no ECG dependence. Further, Multitasking-
SMS may have the opportunity to be extended to collect more

slices in the heart with a multiband factor of 3 or more in
the future.

SMS acceleration techniques have been adopted in other
quantitative cardiac MRI studies (45, 46), but their data
acquisition still requires breath-holding and/or ECG triggering.
Multitasking-SMS is a promising free-breathing and non-ECG
technique, which has tremendous potential in enhancing
patient comfort, lowering technologist burden, and increasing
scanner throughput. However, Multitasking-SMS also has
some limitations. Qualitatively, T1 and T2 maps show some
blurring, which may be due to unresolved motion or over-
regularization during the reconstruction. This blurring is
especially noticeable in systolic phases, although this cardiac
phase is not standard for T1 and T2 analyses. A higher
in-plane resolution can potentially be used to reduce the
artifacts at the sacrifice of extending the scan time. Second,
the reconstruction time was 2–3 h for each data acquisition,
which is too long for online reconstruction in the clinic.
Deep neural networks have shown promise for accelerating
cardiac Multitasking reconstruction, cutting spatial factor
estimation time by several orders of magnitude (47). A similar
application of deep learning to the Multitasking-SMS sequence
could potentially bring image reconstruction times within the
clinically applicable range. Lastly, this study only evaluated
Multitasking-SMS in healthy volunteers to demonstrate
the feasibility of the technique. A larger study in patients
is warranted.

In summary, SMS Multitasking provides co-registered
T1 and T2 maps at the base, mid, and apex short-axis slices
without ECG or breath-holding, all in one 3-min scan. T1
and T2 values agreed with reference measurements in a
phantom and in vivo, and were repeatable in vivo. This
new method improved T2 accuracy and T1 precision over
the original Multitasking T1/T2 mapping method while
maintaining T1 accuracy and T2 precision. The method
shows potential for reducing exam time and setup time for
quantitative CMR.
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The aim of this study is to shorten the breathhold and diastolic acquisition window in
cardiac magnetic resonance fingerprinting (MRF) for simultaneous T1, T2, and proton
spin density (M0) mapping to improve scan efficiency and reduce motion artifacts.
To this end, a novel reconstruction was developed that combines low-rank subspace
modeling with a deep image prior, termed DIP-MRF. A system of neural networks is used
to generate spatial basis images and quantitative tissue property maps, with training
performed using only the undersampled k-space measurements from the current scan.
This approach avoids difficulties with obtaining in vivo MRF training data, as training
is performed de novo for each acquisition. Calculation of the forward model during
training is accelerated by using GRAPPA operator gridding to shift spiral k-space data
to Cartesian grid points, and by using a neural network to rapidly generate fingerprints
in place of a Bloch equation simulation. DIP-MRF was evaluated in simulations and at
1.5 T in a standardized phantom, 18 healthy subjects, and 10 patients with suspected
cardiomyopathy. In addition to conventional mapping, two cardiac MRF sequences were
acquired, one with a 15-heartbeat(HB) breathhold and 254 ms acquisition window,
and one with a 5HB breathhold and 150 ms acquisition window. In simulations, DIP-
MRF yielded decreased nRMSE compared to dictionary matching and a sparse and
locally low rank (SLLR-MRF) reconstruction. Strong correlation (R2 > 0.999) with T1 and
T2 reference values was observed in the phantom using the 5HB/150 ms scan with
DIP-MRF. DIP-MRF provided better suppression of noise and aliasing artifacts in vivo,
especially for the 5HB/150 ms scan, and lower intersubject and intrasubject variability
compared to dictionary matching and SLLR-MRF. Furthermore, it yielded a better
agreement between myocardial T1 and T2 from 15HB/254 ms and 5HB/150 ms MRF
scans, with a bias of −9 ms for T1 and 2 ms for T2. In summary, this study introduces an
extension of the deep image prior framework for cardiac MRF tissue property mapping,
which does not require pre-training with in vivo scans, and has the potential to reduce
motion artifacts by enabling a shortened breathhold and acquisition window.

Keywords: deep learning, deep image prior, cardiovascular imaging, low rank, multiparametric magnetic
resonance imaging (MRI), magnetic resonance fingerprinting (MRF), T1 mapping, T2 mapping
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INTRODUCTION

Cardiac magnetic resonance (CMR) T1 and T2 mapping are
useful for the detection of pathological changes in myocardial
tissue, including acute (1) and chronic inflammation (2, 3),
edema (4, 5), amyloid deposition (6), fatty infiltration (7),
and infarct (8). Multiparametric methods have recently been
developed to efficiently measure multiple tissue properties during
one scan (9–12). Cardiac magnetic resonance fingerprinting
(MRF) is one such technique that uses a time-varying pulse
sequence to encode several properties in magnetization signal
evolutions over time (13, 14). A time series of highly
undersampled images is acquired, typically with a single
image frame collected per repetition time (TR). Quantitative
maps are obtained using pattern recognition, where the signal
evolution (or “fingerprint”) measured at each voxel is matched
to a dictionary of fingerprints simulated for different tissue
property values.

While simultaneous T1, T2, and proton spin density (M0)
mapping using cardiac MRF has been demonstrated in healthy
subjects (15) and cardiomyopathy patients (16), respiratory
and cardiac motion present significant challenges, even when
breathholding and electrocardiogram (ECG) triggering are
employed. The highly accelerated non-Cartesian sampling used
in cardiac MRF introduces noise-like artifacts in the measured
fingerprints, and thus many image frames are collected to enable
accurate pattern recognition using the corrupted signals. Several
previous studies employed a relatively long breathhold of 15
heartbeats and diastolic acquisition window of approximately
250 ms as a result (15). However, this sequence may be susceptible
to motion if patients have difficulty holding their breath or have
elevated heart rates. While retrospective motion correction can
be used (17), an alternative strategy is to shorten the breathhold
and acquisition window to avoid the need for such corrections.

Shortening the MRF acquisition will result in fewer time
points in each fingerprint, which can impede accurate pattern
recognition. Several classes of reconstruction methods have
been developed to accelerate MRF scans, including model-
based reconstructions (18, 19), low-rank subspace techniques
(20–22), and deep learning (23). Deep learning methods have
gained particular interest for their excellent denoising capabilities
and fast computation times. While some MRF deep learning
reconstructions operate on single-voxel fingerprints (23, 24),
others use the fingerprints from many voxels within a spatial
neighborhood to estimate the tissue properties at a target voxel
(25), and thus can leverage both spatial and temporal correlations
in the MRF data to reduce noise and k-space undersampling
artifacts. Such a method was recently demonstrated for MRF
in the brain, where a convolutional neural network (CNN)
reconstruction enabled a 4-fold reduction in scan time compared
to conventional dictionary matching (25) and allowed for high-
resolution (submillimeter) mapping (26).

However, CNN reconstructions typically require training
using in vivo datasets, which presents a challenge for cardiac
MRF. It is difficult to collect ground truth tissue property maps
in the heart due physiological motion, as a scan time of several
minutes would be needed to obtain fully-sampled MRF data.

Furthermore, because the MRF scan is prospectively triggered,
the fingerprints depend on the subject’s cardiac rhythm (14), and
thus many datasets from subjects with different cardiac rhythms
(including fast or irregular rhythms commonly seen in patients)
would potentially be needed for training.

Recently, a deep image prior (DIP) technique was proposed
for image processing tasks that does not require pre-training
with ground truth datasets (27). Taking image denoising as
an example, a randomly initialized CNN learns to generate a
denoised image by minimizing the mean squared error loss
compared to a noise-corrupted image, with no requirements for
additional training data. The network architecture is typically
based on a u-net (28) and is designed so that lower spatial
frequencies are recovered before higher spatial frequencies (29).
Therefore, the network learns to generate natural images before
recovering higher frequency noise, so that training with early
stopping avoids overfitting to the noisy image. When applied to
inverse problems in medical imaging, a mathematical model of
the image acquisition can be incorporated in the loss function,
which has been applied to computed tomography (30), positron
emission tomography (31), and diffusion MRI (32).

This study introduces a self-supervised deep learning
reconstruction for cardiac MRF T1, T2, and M0 mapping for
the purpose of mitigating noise, reducing k-space undersampling
artifacts, and enabling a shortened acquisition to reduce motion
artifacts. The proposed method, termed DIP-MRF, combines
low-rank MRF subspace modeling with the denoising capabilities
of a deep image prior. A system of convolutional (u-net)
and fully-connected networks is used to generate spatial basis
images (i.e., images in a low-dimensional subspace derived from
the MRF signal evolutions) and quantitative maps, without
dictionary matching and without pre-training using in vivo data.
For each MRF acquisition, training is performed de novo using
only the undersampled k-space measurements from the current
scan by incorporating a mathematical model of the cardiac MRF
data acquisition in the loss function. DIP-MRF is shown to reduce
noise and undersampling artifacts compared to conventional
dictionary matching and low-rank subspace reconstructions.
Furthermore, DIP-MRF is leveraged to shorten the breathhold
duration from 15 to 5 heartbeats and diastolic acquisition window
from 250 to 150 ms, with results shown in healthy subjects
and cardiomyopathy patients, which has the potential to reduce
motion artifacts.

MATERIALS AND METHODS

Previous work has shown that an MRF dictionary, denoted by
D ∈ Cp × t , where p is the number of parameter combinations
and t is the number of time points, can be compressed along
time using a truncated singular value decomposition (SVD) that
retains only the first k singular values (33). The temporal basis
functions are denoted by Vk ∈ Ct × k, which is matrix whose
columns contain the first k right singular vectors. A compressed
dictionary, denoted by Dk ∈ Cp × k, can be obtained according
to Dk = DVk. Similarly, if x ∈ Cn × t denotes a time series
of MRF images with n voxels, then multiplication by Vk yields

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 June 2022 | Volume 9 | Article 92854621

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-928546 June 17, 2022 Time: 15:9 # 3

Hamilton Deep Image Prior Cardiac MRF

a set of spatial basis images in this low-dimensional subspace,
denoted by xk = xVk, where xk ∈ Cn × k. Multiplying the
spatial basis images by the complex conjugate V∗k will yield
a low-rank approximation to the original MRF image series,
x ≈ xkV∗k . Low-rank subspace reconstructions for MRF have
been proposed that iteratively remove noise and undersampling
artifacts from the spatial basis images, sometimes with additional
regularization terms using spatial sparsity and/or locally low rank
regularization, before matching to the compressed dictionary to
obtain quantitative maps (21, 22, 34, 35).

This study extends the deep image prior framework using
a low-rank cardiac MRF signal model. An overview of the
DIP-MRF reconstruction pipeline is shown in Figure 1.
A convolutional u-net generates spatial basis images, which are
input to a fully-connected network that outputs quantitative
maps, neither of which require pre-training with in vivo data.
Rather, the networks are trained in a self-supervised manner to
enforce consistency with the undersampled k-space data from a
single scan by incorporating the MRF forward encoding model
in the loss function. The forward model includes (1) simulation
of a time series of MRF images from the tissue property maps,
(2) projection of images onto the low-dimensional subspace, (3)
coil sensitivity encoding, and (4) spiral k-space undersampling.
Calculation of the forward model is accelerated by (1) a pre-
trained neural network that rapidly outputs fingerprints instead
of using a more time-consuming Bloch equation simulation
(36), and (2) preprocessing the spiral MRF k-space data with
GRAPPA operator gridding (GROG) to obtain data in Cartesian
k-space (37). The following sections will describe the DIP-MRF
pipeline in more detail.

Pre-trained Fingerprint Generator
Network
Calculating the forward model requires repeated simulations of
MRF signal evolutions at every iteration. To reduce computation
time, this step is performed using a neural network called the
Fingerprint Generator Network (FGN), which rapidly outputs
signal evolutions for arbitrary T1, T2, and cardiac rhythm timings
(Figure 2A) and has been described previously (36). The network
is fully-connected with two hidden layers and 300 nodes per layer.
The input consists of a T1 value, a T2 value, and the subject’s
cardiac rhythm timings (specifically, a vector of RR interval
times) recorded by the ECG during the scan. The output is a
vector of length 2t containing interleaved real and imaginary
parts of the fingerprint. The FGN is the only neural network
component in the DIP-MRF pipeline that requires pre-training.
The pre-training is performed only one time using fingerprints
produced by a Bloch equation simulation for different T1, T2,
and cardiac rhythm timings, after which the same network can be
applied to any subsequent scan regardless of the subject’s cardiac
rhythm. Supplementary Figure 1 gives additional details about
pre-training the FGN.

Low-Rank Signal Approximation
Although DIP-MRF does not use pattern recognition, a
dictionary of fingerprints is calculated temporarily in order to

derive the temporal basis functions Vk (33). The FGN is used to
output a dictionary of approximately 23,000 fingerprints with T1
between 50–3,000 ms and T2 between 5–1,000 ms, which takes
30 ms on a GPU. Next, the SVD of the dictionary is calculated
(taking approximately 1 s), and the temporal basis functions are
obtained from the first k right singular vectors (Figure 2B). This
study uses a rank of k = 5, which retains more than 99.9% of the
energy compared to the uncompressed fingerprints.

GRAPPA Operator Gridding
Preprocessing and Coil Sensitivity
Estimation
The forward model calculation requires repeated iterations
between image and k-space domains. To avoid time-consuming
operations using the non-uniform fast Fourier Transform
(NUFFT) (38), the MRF spiral k-space data are preprocessed
using GROG, a parallel imaging technique that shifts non-
Cartesian k-space data to unmeasured Cartesian locations using
GRAPPA weight matrices (37). The weight matrices for unit
shifts along kx and ky are calibrated using a fully-sampled
dataset; this dataset is obtained by taking the temporal average
of the multicoil MRF k-space data, gridding a time-averaged
image using the NUFFT, and performing an FFT to obtain
multicoil Cartesian k-space data. The central 48 × 48 region
of the Cartesian k-space is used for GROG calibration. Coil
sensitivity maps are estimated from the time-averaged multicoil
images using the adaptive combination method (39). The GROG
density compensation function, denoted by W, is obtained
by counting the number of spiral k-space points that are
shifted to each Cartesian coordinate. After calibration, the
GROG weights are applied to shift undersampled spiral MRF
k-space data onto a Cartesian grid, and each time frame
of the resulting Cartesian k-space dataset is multiplied by
W. A binary mask, denoted by Pi, is stored that indicates
the sampled (acquired) points on the Cartesian grid at
each time index i.

Neural Network Architectures
A convolutional u-net, which is not pre-trained, is used to
output the MRF spatial basis images. This network will be
called the image reconstruction network (IRN) and is shown
in Figure 3. Inspired by the original DIP publication (27),
the input is a tensor denoted by z ∈ Rny × nx × d of uniform
random numbers between −0.1 and 0.1, where ny and nx are
the spatial dimensions in voxels, and d is a tunable parameter
defining the number of feature channels in the first layer of
the network. This study uses d = 32 to be consistent with
the original DIP work, but this parameter was not found to
have much impact on the reconstruction. The IRN performs
a series of 2D convolutions followed by batch normalization,
leaky ReLU activation, and an optional dropout layer. The data
pass through five downsampling and upsampling paths with
multiple skip connections. Downsampling is implemented using
convolution with a 2 × 2 stride, and upsampling is performed
using nearest neighbor interpolation followed by convolution.
The network output has size ny × nx × 2k, where the channel
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FIGURE 1 | Overview of the DIP-MRF reconstruction. A system of neural networks outputs spatial basis images and T1, T2, and M0 maps, with no additional in vivo
training data needed beyond the undersampled k-space data from the current scan. (A) The image reconstruction network (IRN) is a convolutional u-net that outputs
a set of k spatial basis images. The input is a tensor of random numbers that remains fixed throughout training. Training is performed in a self-supervised manner by
simulating the cardiac MRF forward encoding model. This step includes multiplication by coil sensitivity maps, fast Fourier transformation (FFT), projection of k-space
data from the low-dimensional subspace to the time domain, and multiplication by spiral undersampling masks. The resulting k-space data are compared to the
acquired k-space measurements, after density compensation, at the sampled locations using a mean squared error loss function (Loss 1), and IRN is updated using
backpropagation. (B) A fully-connected network, referred to as the Parameter Estimation Network (PEN), uses the spatial basis images to output tissue property
maps. Specifically, it outputs T1, T2, and a complex-valued M0 scaling term. The T1 map, T2 map, and cardiac rhythm timings (RR intervals) from the ECG are input
to the fingerprint generator network, which is a pre-trained fully-connected network that can be thought of as an efficient Bloch equation simulator that rapidly
outputs cardiac MRF signal evolutions (fingerprints). The simulated fingerprints at all voxels are multiplied by the complex M0 map to yield a time series of images.
The images are projected onto the low-dimensional subspace and compared to the spatial basis images that were output by the IRN using a mean squared error
loss function, and the PEN is updated using backpropagation (Loss 2). Note that the IRN and PEN are trained in parallel.

dimension contains the interleaved real and imaginary parts of
the k spatial basis images.

A fully-connected network, which also is not pre-trained,
outputs quantitative T1, T2, and M0 maps from the spatial
basis images. This network will be called the parameter
estimation network (PEN) and is shown in Figure 4. The
PEN has two hidden layers with 300 nodes per layer. Before
being input to the network, the spatial basis images are
vectorized to have size

(
nynx

)
×

(
2k
)
, where the second

(channel) dimension contains interleaved real and imaginary
signal intensities. The network output has one channel for
each tissue property. As in previous MRF studies (13, 14),
M0 is modeled as a complex-valued scaling factor between
the measured and simulated fingerprints, so the output has
four channels for T1, T2, and the real and imaginary parts of
M0.

Self-Supervised Training
The IRN and PEN networks are trained de novo for each
reconstruction in a self-supervised manner (Figure 1). Both
networks are initialized with random weights and biases.
Additionally, the input (z) to the IRN is initialized with random
numbers and remains fixed throughout training. Both networks
are trained in parallel using a loss function with two terms, one
for updating each network. First, letting θIRN denote the network

parameters of the IRN, the spatial basis images generated by the
IRN can be written as,

xk = θIRN (z) (1)

The spatial basis images are multiplied by coil sensitivity maps
(S), transformed to k-space by performing an FFT, and multiplied
by V∗k to yield time series data. To reduce memory requirements,
a subset of time frames is selected as mini-batch at this point.
In practice, this is implemented by using V∗i,k instead of Vk,
where V∗i,k denotes the ith column vector from V∗k (note that
multiplication by V∗i,k projects data from the subspace to the time
domain and extracts only the ith time frame). The k-space data
for time frame i are multiplied by the spiral undersampling mask
for the corresponding time frame (Pi) and by the GROG density
compensation function (W). The estimated multicoil k-space
data for time frame i, denoted by ỹi, can be written as,

ỹi = WPi
(
(FSxk)V∗i,k

)
(2)

The first loss term is calculated as the mean squared error
between ỹi and the acquired multicoil k-space measurements
after density compensation, denoted by yi, at the sampled
locations, and the IRN is updated using backpropagation.

min
θIRN

∑∣∣∣∣yi−ỹi∣∣∣∣22 (3)
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FIGURE 2 | Schematic of the fingerprint generator network (FGN) and derivation of the low-dimensional subspace. (A) The FGN is a fully-connected network with
two hidden layers. The input consists of a T1 value, T2 value, and vector of RR interval times (RR1, RR2, . . ., RRHB−1) recorded by the ECG, where RRi denotes the
elapsed time (in milliseconds) between the end of the acquisition window in heartbeat i and the beginning of the acquisition window in heartbeat i + 1, and HB is the
total number of heartbeats in the scan. The output is a vector of length 2t, where t is the number of repetition times (i.e., number of time points), which contains the
interleaved real and imaginary parts of an MRF fingerprint. (B) The FGN is used to calculate a dictionary of fingerprints for different T1 and T2 combinations specific
for the patient’s cardiac rhythm timings (left panel). The SVD of the dictionary is calculated in order to derive the low-rank approximation used in the DIP-MRF forward
model calculation (right panel).

The PEN is updated in parallel using a second loss term.
The T1 and T2 maps output by the PEN, along with the
subject’s RR interval times from the ECG, are input to the FGN
to yield simulated fingerprints at each voxel location. These
fingerprints are multiplied by the complex-valued M0 map to
obtain a time series of images that are projected onto the subspace
by multiplication with Vk. Letting θPEN and θFGN denote the
network parameters of the PEN and FGN, respectively, the
second loss term is calculated as the mean squared error between
the resulting images and the spatial basis images output by the
IRN:

min
θPEN

∑
||xk − (M0θFGN (T1,T2,RR))Vk||

2
2 (4)

For all experiments, training was performed for 30,000
iterations using an Adam optimizer with learning rate 0.001. DIP-
MRF was implemented in Tensorflow (v2.8) with Keras on a
GPU (NVIDIA Tesla v100 16GB). A mini-batch size of 32 image
frames was used to calculate the loss for the IRN.

Cardiac Magnetic Resonance
Fingerprinting Acquisition Parameters
Data were collected using a fast imaging with steady state
precession (FISP) cardiac MRF sequence with a 15-heartbeat

(HB) breathhold and 254 ms ECG-triggered diastolic acquisition
(15, 40). Variable flip angles (4–25◦) and a constant TR/TE of
5.4/1.4 ms were employed. A total of 705 undersampled images
were collected (one image per TR) with 47 images acquired
every heartbeat. Magnetization preparation pulses were applied
before the acquisition window in each heartbeat according to the
following schedule, which repeated three times during the scan:
HB1—inversion (21 ms), HB2—no preparation, HB3—T2 prep
(30 ms), HB4—T2 prep (50 ms), HB5—T2 prep (80 ms).

In addition, shortened MRF acquisitions were investigated
having a five-heartbeat breathhold and progressively shorter
acquisition windows. These were based on the same sequence
structure, with the only difference being that the flip angle pattern
within each heartbeat was truncated to fit within the desired scan
window. An example of a flip angle series for a shortened scan
is shown in Supplementary Figure 2. All data were acquired
using a 48-fold undersampled spiral k-space trajectory (41) with
a readout duration of 3.4 ms, matrix size of 192 × 192, field-of-
view (FOV) of 300 × 300 mm2, and golden angle rotation of the
trajectory every TR (42).

Simulation Experiments
Simulations were performed to investigate the feasibility of
shortening the breathhold and diastolic scan window in cardiac
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FIGURE 3 | Schematic of the image reconstruction network (IRN), which outputs MRF spatial basis images. The input, z, is a tensor of uniformly distributed random
numbers between −0.1 and 0.1 that remains fixed while training the network. The network is a u-net that performs a series of 2D convolutions. It has five
downsampling and upsampling paths with multiple shortcut connections. The network outputs the MRF spatial basis images—i.e., images in a low-dimensional
subspace of rank k that was derived from a dictionary of simulated signal evolutions, as described in Figure 2. The number of 2D filters is listed above each
convolutional layer (indicated by the blue rectangles).

FIGURE 4 | Schematic of the parameter estimation network (PEN), which estimates quantitative maps from the spatial basis images. Before being input to the
network, the spatial basis images are first vectorized to have size nynx (the batch dimension) by 2k (the channel dimension), where the channel dimension contains
interleaved real and imaginary signal intensities from the k spatial basis images, and ny and nx are the spatial dimensions (number of voxels). The network has two
hidden layers with 300 nodes per layer. The output has four channels corresponding to T1, T2, and the real and imaginary parts of the M0 scaling term.

MRF. In addition to the scan with a 15HB breathhold and
254 ms acquisition window (705 total TRs), scans with a 5HB
breathhold and acquisition windows of 254 ms (235 total TRs),

200 ms (185 total TRs), 150 ms (140 total TRs), 100 ms (95
total TRs), and 50 ms (45 total TRs) were simulated. The MRF
data acquisition was simulated, including Bloch equation signal
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simulation, coil sensitivity encoding with 8-channel sensitivity
maps, and spiral k-space undersampling using the NUFFT.
Complex Gaussian noise was added to the k-space data having
a standard deviation of 0.1% of the maximum amplitude of
the direct current (DC) signal. For each sequence variant, maps
were reconstructed in three ways. In the first method (direct
matching), one undersampled image was gridded every TR
using the NUFFT, followed by dot product matching with a
dictionary generated by a Bloch equation simulation to obtain
T1, T2, and M0 maps (13). In the second method (SLLR-
MRF), a sparse and locally low rank MRF reconstruction was
performed (34), which yielded a set of k = 5 spatial basis
images that were matched to an SVD-compressed dictionary.
Locally low rank regularization with an 8 × 8 patch size and
l1-wavelet regularization were used with regularization weights
of λLLR = 0.02 and λwav = 0.005 relative to the maximum
intensity in the basis images. The reconstruction was solved
using non-linear conjugate gradient descent with 25 iterations.
The third method (DIP-MRF) consisted of GROG preprocessing
followed by the DIP-MRF reconstruction. The reconstructions
were compared using the normalized root mean square error
(nRMSE) relative to the ground truth T1 and T2 maps, computed
over all non-background voxels (i.e., all voxels where the ground
truth M0 was non-zero).

A second set of simulations evaluated the robustness of DIP-
MRF to noise. For the sequence with a 5HB breathhold and
150 ms acquisition window, complex Gaussian noise was added
to the k-space data having standard deviations (σN) of 0, 0.1, 0.2,
and 0.3% relative to the maximum amplitude of the DC signal.
Maps were reconstructed using direct matching, SLLR-MRF, and
DIP-MRF and compared in terms of nRMSE.

A third set of simulations assessed the impact of applying
dropout during training (43). For the sequence with a 5HB
breathhold and 150 ms acquisition window, the DIP-MRF
reconstruction was repeated where different levels of dropout
(0, 10, and 20%) were applied after each convolutional
layer when training the IRN, and the maps were compared
in terms of nRMSE.

Phantom Experiments
Experiments were performed using the ISMRM/NIST MRI
system phantom (44) on a 1.5T scanner (MAGNETOM Sola,
Siemens Healthineers, Erlangen, Germany). An 8 mm slice
was planned through the T2 layer of the phantom, which has
14 spheres spanning a range of physiological relaxation times
with T1 90–2,230 ms and T2 10–750 ms. An artificial heart
rate of 60 bpm was simulated on the scanner. Data were
collected using two cardiac MRF sequences: a sequence with
a 15HB breathhold and 254 ms acquisition window and a
sequence with a 5HB breathhold and 150 ms acquisition window.
Maps were reconstructed using direct matching, SLLR-MRF, and
DIP-MRF. Data were also acquired with conventional cardiac
mapping sequences using Siemens MyoMaps software (45). T1
maps were collected with 5(3)3 modified look-locker inversion
recovery (MOLLI) (46), and T2 maps were collected using
a 1(3)1(3)1 T2-prepared balanced steady state free precession
(bSSFP) sequence with T2 prep times of 0, 25, and 55 ms (5).

Conventional cardiac mapping scans used GRAPPA with an
acceleration factor of 2 and 24 autocalibration lines, 6/8 partial
Fourier, a flip angle of 35◦, and a scan window of 209 ms.
All scans were collected with a matrix size of 192 × 192
and 300 mm2 FOV. Reference T1 values were measured using
an inversion recovery spin echo sequence with TR = 10 s,
TE = 12 ms, and inversion times of 21, 100, 200, 400, 800, and
1,600 ms. Reference T2 values were measured with a single-
echo spin echo sequence with TR = 10 s and echo times of
10, 20, 40, 60, 100, 150, and 200 ms. Mean relaxation times
were measured within each vial and compared to reference
values using linear regression and Bland-Altman analyses (47).
T2 values above 200 ms were excluded from analysis because
the cardiac MRF sequence was not designed for that regime,
considering that the longest T2 prep time was 80 ms (for
completeness, measurements in all 14 vials are reported in the
Supplementary Material).

Scans in Healthy Subjects and Patients
Eighteen healthy subjects were scanned at 1.5T after obtaining
written informed consent in this IRB-approved, HIPAA-
compliant study. All scans were performed during an end-
expiratory breathhold at a mid-ventricular slice position. MOLLI
and T2-prep bSSFP mapping were performed in all subjects.
Data were also acquired using 15HB/254 ms and 5HB/150 ms
cardiac MRF acquisitions, and maps were reconstructed using
direct matching, SLLR-MRF, and DIP-MRF. To study the effects
of training with dropout and to determine the optimal dropout
percentage, the DIP-MRF reconstruction was repeated in three
subjects with 0, 5, 10, 20, and 30% dropout applied after each
convolutional layer when training the IRN. Unless otherwise
states, the DIP-MRF reconstruction used dropout levels of
10 and 20% for the 15HB/254 ms and 5HB/150 ms MRF
acquisitions, respectively.

In addition, data were collected in ten patients referred for
a clinical CMR exam due to suspected cardiomyopathy. Native
T1 and T2 maps were collected using the same protocol as in
healthy subjects. Post-contrast T1 and T2 maps were acquired
15–25 min after IV injection of 0.2 mmol/kg body weight
gadoteridol (ProHance, Bracco Diagnostics Inc., Princeton,
NJ, United States). While post-contrast MRF scans (both
15HB/254 ms and 5HB/150 ms versions) were performed in
all patients, post-contrast MOLLI and T2-prep bSSFP sequences
were only collected in nine and three patients, respectively.

In vivo data were analyzed by manually segmenting the maps
according to American Heart Association (AHA) guidelines
(48). The mean and standard deviation for T1 and T2 were
measured within each AHA segment and over all voxels in
the myocardium. Similarly, T1 and T2 values were measured
within the left (LV) and right ventricular (RV) blood pools after
manual segmentation, taking care to avoid trabeculations and
papillary muscles. Intersubject variability was quantified as the
standard deviation of the mean T1 or T2 values over all subjects.
Intrasubject variability was quantified by measuring the standard
deviation in T1 or T2 for each subject and then calculating the
mean over all subjects. T1 and T2 measurements using different
reconstruction methods within the same subject were compared
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using a within-subjects ANOVA test with a Bonferroni post-
hoc test for multiple comparisons, with p < 0.05 indicating
statistical significance, as well as Bland-Altman plots. T1 and
T2 measurements between healthy subjects and patients were
compared using a two-sample t-test.

RESULTS

Simulation Experiments
Figure 5A shows simulation results using MRF sequences with
different breathhold and acquisition window lengths. In all cases,
the nRMSE was highest with direct matching and lowest with
DIP-MRF, and this difference was more pronounced for shorter
sequence lengths. As the breathhold and acquisition window
were shortened, nRMSE increased for direct matching and SLLR-
MRF but remained consistently low for DIP-MRF. For the
15HB/254 ms sequence, the nRMSE was (T1 6.5%, T2 11.2%)
for direct matching, (T1 2.9%, T2 4.3%) for SLLR-MRF, and (T1
1.4%, T2 0.7%) for DIP-MRF. For the 5HB/150 ms sequence, the
nRMSE was (T1 13.4%, T2 20.2%) for direct matching, (T1 6.4%,
T2 9.1%) for SLLR-MRF, and (T1 1.2%, T2 0.8%) for DIP-MRF.
Supplementary Figure 3 shows examples of T1, T2, and M0 maps
from the simulation study.

Figure 5B plots the nRMSE for the 5HB/150 ms sequence
as the k-space data were corrupted with different amounts of
complex Gaussian noise. The nRMSE was highest with direct
matching and lowest with DIP-MRF at all noise levels. At the
highest noise level tested (σN = 0.3% of the DC signal), the
nRMSE was (T1 14.9%, T2 22.5%) for direct matching, (T1 10.0%,
T2 14.6%) for SLLR-MRF, and (T1 1.5%, T2 0.9%) for DIP-MRF.

Supplementary Figure 4 demonstrates the importance of
applying dropout in DIP-MRF, with simulation results shown
for the 5HB/150 ms sequence. Without dropout, the nRMSE
reached a minimum (T1 1.7%, T2 1.0%) after approximately
5,000 iterations. The nRMSE increased gradually with further
training due to overfitting to noise and undersampling artifacts,
reaching (T1 2.2%, T2 1.4%) after 30,000 iterations. Using
dropout improved the reconstruction accuracy, as the minimum
nRMSE was lower compared to the 0% dropout case, and it
reduced overfitting, allowing the network to be trained for longer
without causing the nRMSE to increase. For example, with 20%
dropout, the nRMSE reached a minimum of (T1 1.5%, T2 0.8%)
after 12,000 iterations and only increased slightly to (T1 1.7%, T2
1.0%) after 30,000 iterations.

Phantom Experiments
Bland-Altman plots showing the agreement between
15HB/254 ms MRF, 5HB/150 ms MRF, and conventional
mapping sequences relative to reference values are shown in
Figure 6; linear regression plots of the same data are shown in
Supplementary Figure 5, and T2 measurements in all 14 vials
(including vials with T2 > 200 ms) are given in Supplementary
Figures 6, 7. There were no significant differences in T1 or
T2 relative to reference values for all MRF methods. Using
DIP-MRF, the bias and 95% limits of agreement (LoA) for T1
were 4 ms (−45, 52)ms for the 15HB/254 ms sequence and

−5 ms (−61, 51) ms for the 5HB/150 ms sequence; for T2, they
were −0.9 ms (−5.5, 3.7) ms for the 15HB/254 ms sequence and
0.2 ms (−3.1, 3.4) ms for the 5HB/150 ms sequence. In general,
DIP-MRF yielded narrower limits of agreement compared to
direct matching and SLLR-MRF. MOLLI slightly underestimated
T1 with a bias of −39 ms and 95% LoA of (−86, 8) ms. T2-prep
bSSFP overestimated T2 with a bias of 35.6 ms and 95% LoA of
(−45.9, 117.2) ms. This overestimation was larger for vials with
short T2 values below approximately 100 ms, which is apparent
on the linear regression plots (Supplementary Figure 5). The
correlation coefficients were similar among all reconstructions
for the 15HB/254 ms MRF sequence, with all R2 > 0.998. For
the 5HB/150 ms sequence, the correlation was slightly higher
for DIP-MRF (R2 = 0.999 for T1, R2 = 1.000 for T2) compared
to direct matching (R2 = 0.998 for T1, R2 = 0.995 for T2) and
SLLR-MRF (R2 = 0.998 for T1, R2 = 0.999 for T2).

Scans in Healthy Subjects
Representative maps in a healthy subject using 15HB/254 ms
MRF, 5HB/150 ms MRF, and conventional mapping sequences
are shown in Figure 7. Additional examples are provided in
Supplementary Figures 8–10. Some noise enhancement was
observed with direct matching for the 15HB/254 ms MRF
sequence, with better map quality using SLLR-MRF and DIP-
MRF reconstructions. The improvement using DIP-MRF was
especially pronounced for the 5HB/150 ms sequence; direct
matching led to severe noise enhancement and aliasing artifacts,
SLLR-MRF provided only moderate noise suppression, and
DIP-MRF gave the best suppression of noise and aliasing
artifacts while preserving high resolution details, such as the
papillary muscles.

Figure 8 shows examples of spatial basis images from DIP-
MRF compared to those from conventional NUFFT gridding
and SLLR-MRF. Noise enhancement was observed with NUFFT
gridding, especially for the 4th and 5th basis images, which was
partially reduced using SLLR-MRF, with DIP-MR yielding the
best image quality.

Figure 9 demonstrates the effect of training DIP-MRF with
different levels of dropout, akin to the simulation results in
Supplementary Figure 4. From a visual inspection of the maps,
the dropout level that yielded the best noise suppression while
preserving high resolution details was 10% for the 15HB/254 ms
sequence and 20% for the 5HB/150 ms sequence, when the
number of training iterations was fixed at 30,000. Noise
enhancement and residual aliasing artifacts were observed at
lower dropout levels, whereas overly smoothed maps with loss
of fine resolution details were seen at higher dropout levels.
Results in two additional subjects are shown in Supplementary
Figures 11, 12.

Boxplots summarizing the average relaxation times over all
subjects in the myocardial septum are shown in Figure 10. T1
values reported as mean ± standard deviation were: MOLLI
(1,006 ± 28 ms); 15HB/254 ms MRF with direct matching
(1,043 ± 36 ms), SLLR-MRF (1,064 ± 42 ms), and DIP-MRF
(1,044 ± 33 ms); and 5HB/254 ms MRF with direct matching
(1,065 ± 53 ms), SLLR-MRF (1,072 ± 39 ms), and DIP-MRF
(1,035 ± 32 ms). T2 values were: T2-prep bSSFP (47.7 ± 1.6 ms);

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 June 2022 | Volume 9 | Article 92854627

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-928546 June 17, 2022 Time: 15:9 # 9

Hamilton Deep Image Prior Cardiac MRF

FIGURE 5 | Simulation results in the MRXCAT phantom comparing the deep image prior (DIP-MRF) to direct matching and a low-rank subspace reconstruction
(SLLR-MRF). (A) nRMSE plots of the T1 and T2 maps are shown for different cardiac MRF sequence lengths. Results are shown for MRF with a 15-heartbeat
breathhold and 254 ms diastolic acquisition window, as well as shortened scans with a 5-heartbeat breathhold and successively shorter acquisition windows of 254,
200, 150, 100, and 50 ms. (B) nRMSE plots of the T1 and T2 maps are shown for the 5HB/150 ms MRF scan, where different amounts of random Gaussian noise
having standard deviation σN (expressed as a percentage of the maximum DC signal level) were added to the simulated k-space data.

15HB/254 ms MRF with direct matching (40.8 ± 3.0 ms),
SLLR-MRF (42.3 ± 3.0 ms), and DIP-MRF (41.3 ± 2.9 ms);
and 5HB/254 ms MRF with direct matching (46.1 ± 9.0 ms),
SLLR-MRF (44.5 ± 3.9 ms), and DIP-MRF (43. ± 3.8 ms). T1
was significantly higher with all MRF techniques compared to
MOLLI. T2 was significantly lower with all MRF techniques
compared to T2-prep bSSFP, except for the 5HB/150 ms sequence
with direct matching. A similar analysis of relaxation times in LV
and RV blood is given in Supplementary Figure 14.

The intersubject variability, quantified as the standard
deviation of the mean T1 or T2 over all subjects, was similar
among all reconstructions for the 15HB/254 ms MRF scan. For
the 5HB/150 ms scan, DIP-MRF yielded a lower intersubject
variability (32 ms for T1, 3.8 ms for T2) compared to direct
matching (53 ms for T1, 9.0 ms for T2) and SLLR-MRF (39 ms
for T1, 3.9 ms for T2), although still higher than conventional
mapping sequences (28 ms for T1, 1.5 ms for T2).

Bland-Altman plots comparing relaxation times measured
with 15HB/254 ms vs. 5HB/150 ms MRF scans are shown
in Figure 11 (note that a positive bias indicates higher
measurements using the 5HB/150 ms scan). Both scans yielded
good agreement in T1 when using the DIP-MRF reconstruction,
with a bias of −9 ms and 95% LoA (−56, 38) ms. Similar results
were seen with SLLR-MRF, having a bias of 8 ms and 95% LoA
(−41, 58) ms, while a larger bias (22 ms) and wider limits of
agreement of (−81, 206) ms were observed with direct matching.
DIP-MRF yielded the best agreement between T2 measurements

from the 15HB/254 ms and 5HB/150 ms scans, with a bias of
2.0 ms and 95% LoA (−1.9, 6.0) ms. SLLR-MRF had a similar
bias (2.1 ms) but wider limits of agreement of (−3.4, 7.7) ms.
Direct matching had the largest bias (5.3 ms) and widest limits
of agreement (−8.7, 19.4) ms.

Figures 12A,B show the spatial distribution of T1 and T2
within individual myocardial segments and over the entire
myocardium. Both 15HB/254 ms and 5HB/150 ms MRF scans
showed some regional variability in T1 and T2, with higher values
in the septum and lower values in the inferolateral segment.
A similar but less pronounced trend was seen with MOLLI but
not with T2-prepared bSSFP. Greater regional variability was seen
with direct matching compared to SLLR-MRF and DIP-MRF.

Figures 12C,D summarize the intrasubject variability for
T1 and T2, quantified as the mean of the standard deviations
over all subjects, shown within each myocardial segment and
over the entire myocardium. Compared to MOLLI (57 ms),
the intrasubject variability in T1 over the entire myocardium
was significantly higher using the 15HB/254 ms MRF sequence
with direct matching (94 ms); this variability was reduced
with SLLR-MRF (66 ms) and DIP-MRF (57 ms) and was not
significantly different from MOLLI. For the 5HB/150 ms MRF
sequence, the intrasubject variability was significantly higher
than MOLLI when using direct matching (160 ms) and SLLR-
MRF (86 ms); DIP-MRF yielded the lowest variability (61 ms)
with no significant difference relative to MOLLI. Compared to
T2-prep bSSFP (4.2 ms), the intrasubject variability in T2 over
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FIGURE 6 | Bland-Altman plots from the phantom study. Plots are shown for T1 comparing (A) MOLLI and cardiac MRF with (B) direct matching, (C) SLLR-MRF,
and (D) DIP-MRF reconstructions relative to gold standard measurements using an inversion recovery sequence. Similarly, plots are shown for T2 comparing
(E) T2-prepared bSSFP and cardiac MRF with (F) direct matching, (G) SLLR-MRF, and (H) DIP-MRF reconstructions relative to gold standard measurements using a
single-echo spin echo sequence. Results are shown for both 15HB/254 ms and 5HB/150 ms MRF sequences. The bias is indicated by a dotted line, and the 95%
limits of agreement (LoA) are indicated by the solid colors.

FIGURE 7 | Cardiac MRF T1, T2, and M0 maps from a healthy subject. Maps reconstructed using direct matching, SLLR-MRF, and DIP-MRF are shown for (A) the
15HB/254 ms MRF sequence and (B) the 5HB/150 ms MRF sequence. (C) Conventional MOLLI and T2-prepared bSSFP maps are shown for comparison. All maps
were cropped to a 100 × 100 region centered over the heart.
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FIGURE 8 | Cardiac MRF spatial basis images from a healthy subject. Spatial basis images from (A) the 15HB/254 ms MRF scan and (B) the 5HB/150 ms MRF
scan are shown, reconstructed using (top row) NUFFT gridding, (middle row) SLLR-MRF, and (bottom row) DIP-MRF. Noise enhancement was observed with NUFFT
gridding and to a lesser extent SLLR-MRF, while DIP-MRF yielded the best image quality. Although they tend to look similar, the contrasts of the spatial basis images
in panels (A,B) are not expected to be identical, as a different subspace (derived from the SVD of a dictionary of signal evolutions) is calculated separately for each
scan. All images were cropped to a 100 × 100 region centered over the heart.

the entire myocardium using the 15HB/254 ms MRF sequence
was significantly higher using direct matching (5.6 ms), non-
significantly lower using SLLR-MRF (3.9 ms), and significantly
lower using DIP-MRF (3.3 ms). For the 5HB/150 ms MRF
sequence, the intrasubject variability was significantly higher
than T2-prep using direct matching (19.1 ms) and SLLR-MRF
(7.1 ms); DIP-MRF yielded the lowest variability (4.1 ms) with
no significant difference relative to T2-prep bSSFP.

Patient Scans
Representative maps from a cardiomyopathy patient are shown
in Figure 13, with additional patient examples provided in
Supplementary Figures 15, 16. In both native and post-contrast
maps in patients, DIP-MRF yielded the best suppression of noise
and aliasing artifacts, especially for the shortened 5HB/150 ms
acquisition, where direct matching led to severe noise and
artifacts that were only moderately improved with the SLLR-
MRF reconstruction.

Figure 14 shows one example of a patient scan where the
15HB breathhold and 254 ms acquisition window resulted in
motion artifacts. In this case, motion caused blurring of the
myocardial wall and an artifactual increase in septal relaxation
times due to partial volume effects between myocardium and
blood, with DIP-MRF yielding T1 1263 ± 48 ms and T2
55.8 ± 6.5 ms. To confirm the presence of motion, a sliding
window reconstruction was performed (window size = 48 TRs)
to visualize one image per heartbeat, shown in Supplementary
Figure 17. This analysis confirmed that the patient breathed
halfway during the scan, and residual cardiac motion was
apparent in the later heartbeats. Motion and partial volume
effects were reduced using the shorter 5HB breathhold and
150 ms acquisition window, leading to a sharper depiction of
the myocardial wall and lower septal relaxation times of T1
1130 ± 27 ms and T2 48.8 ± 4.1 ms (although T1 and T2
were still elevated compared to healthy subjects). Conventional

MOLLI and T2-prep bSSFP mapping values in this patient were
T1 = 1,122± 47 ms and T2 = 50.1± 4.1 ms.

Boxplots summarizing the distribution of native and post-
contrast relaxation times in the myocardial septum in patients
are shown in Figure 15. Using the DIP-MRF reconstruction,
both 15HB/254 ms MRF (1,079 ± 72 ms) and 5HB/150 ms
MRF (1,047 ± 46 ms) acquisitions yielded higher native T1
than MOLLI (1,033 ± 34 ms); this difference was statistically
significant for 5HB/150 ms DIP-MRF. Native T2 was non-
significantly lower with both 15HB/254 ms MRF (45.2 ± 5.8 ms)
and 5HB/150 ms MRF (45.7 ± 4.0 ms) compared to T2-prep
bSSFP (47.6 ± 3.9 ms). Patients had higher native T1 than
healthy subjects, but this trend was not significant for MOLLI,
15HB/254 ms MRF, or 5HB/150 ms MRF. Compared to healthy
subjects (45.2 ms), native T2 in patients was significantly lower
with 15HB/254 ms MRF (41.3 ms) and non-significantly lower
with 5HB/150 ms MRF (43.3 ms). No difference between patients
and healthy subjects was seen with T2-prep bSSFP (47.6 vs.
47.7 ms). There were no significant differences in post-contrast
T1 among MOLLI (417± 38), 15HB/254 ms MRF (409± 62 ms),
or 5HB/150 ms MRF (397± 51 ms). Post-contrast myocardial T2
was 37.9 ± 3.0 ms using 15HB/254 ms MRF and 38.7 ± 3.5 ms
using 5HB/150 ms MRF (Supplementary Figure 18). Post-
contrast T2 bSSFP data were only acquired in a subset of three
patients; a comparison of post-contrast T2 bSSFP and MRF in
these patients is provided in Supplementary Table 1. An analysis
of native and post-contrast relaxation times in LV and RV blood
in patients is given in Supplementary Figure 19.

DISCUSSION

This study introduced a self-supervised deep learning
reconstruction for cardiac MRF, called DIP-MRF, that
combines low-rank subspace modeling with the denoising
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FIGURE 9 | Maps from a healthy subject using DIP-MRF with different levels of dropout during training. The best dropout percentage was determined empirically to
be (A) 10% for the 15HB/254 ms MRF sequence and (B) 20% for the 5HB/150 ms MRF sequence. In all cases, the number of training iterations was fixed at
30,000. Using lower dropout led to increased noise and undersampling artifacts, while higher dropout led to overly smoothed maps with a loss of high-resolution
details. All maps were cropped to a 100 × 100 region centered over the heart.

capabilities of a deep image prior. DIP-MRF was shown to
reduce noise and aliasing artifacts in tissue property maps
compared to conventional dictionary matching and a low-rank
subspace reconstruction with spatial and locally low rank

constraints (SLLR-MRF). DIP-MRF was leveraged to shorten
the breathhold duration of cardiac MRF from 15 to 5 heartbeats
and the diastolic acquisition from 250 to 150 ms in vivo,
which can potentially reduce motion artifacts, especially for
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FIGURE 10 | Myocardial T1 and T2 in healthy subject in the left ventricular septum. The boxplots show the distribution of mean (A) T1 and (B) T2 values using
MOLLI and T2-prep bSSFP mapping sequences, as well as 15HB/254 ms and 5HB/150 ms MRF sequences with direct matching, SLLR-MRF, and DIP-MRF
reconstructions. The top of each box indicates the upper quartile, the bottom indicates the lower quartile, and the horizontal line through the middle shows the
median. The numbers above each plot indicate the mean ± standard deviation in milliseconds. Asterisks indicate a significant difference (p < 0.05) using a
within-subjects ANOVA test with a Bonferroni post-hoc test for multiple comparisons.

patients who have difficulty performing long breathholds or
who have elevated heart rates. By minimizing motion, the
shortened acquisition may also decrease partial volume artifacts
between myocardium and blood, leading to more accurate and
reproducible myocardial T1 and T2 measurements. This effect
was demonstrated in Figure 14, where motion resulted in an
artifactual increase in myocardial T1 and T2 with the longer

MRF scan that was mitigated by shortening the breathhold
and scan window.

In most deep learning reconstructions, a neural network
is pre-trained using a large number of reference images. For
MRF, such training data would consist of “ground truth” tissue
property maps (the network output) paired with a time series
of undersampled images or k-space measurements (the network
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FIGURE 11 | Bland-Altman plots comparing measurements from 15HB/254 ms MRF and 5HB/150 ms MRF scans with different reconstruction methods in healthy
subjects. Results are shown for T1 using (A) direct matching, (B) SLLR-MRF, and (C) DIP-MRF. Similar results for T2 are shown in panels (D-F). On each plot, the
bias is indicated by a dotted line, and the 95% limits of agreement are indicated by solid lines. Note that a positive bias indicates higher T1 or T2 measurements
using 5HB/150 ms MRF compared to 15HB/254 ms MRF.

FIGURE 12 | Bullseye plots showing the spatial distribution of T1 and T2 in different myocardial segments of a mid-ventricular slice in healthy subjects. (A) Mean T1

and (B) mean T2 values are shown for mid-ventricular AHA segments, with the value in the center of the bullseye indicating the average over the entire myocardium.
The spatial variability (standard deviations) for T1 and T2 within each segment and over the entire myocardium are shown in panels (C,D), respectively.

input). While it is possible to collect such training data in
stationary organs, like the brain, it is more challenging in the
heart due to physiological motion and the long scan times that

would be required to collect fully-sampled MRF data (on the
order of several minutes). Additionally, the fingerprints in cardiac
MRF are dependent on the subject’s cardiac rhythm because the
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FIGURE 13 | (A) Native and (B) post-contrast T1, T2, and M0 maps from a cardiomyopathy patient. Results are shown for conventional MOLLI and T2-prepared
bSSFP sequences, as well as 15HB/254 ms and 5HB/150 ms MRF sequences using direct matching, SLLR-MRF, and DIP-MRF reconstructions. All maps were
cropped to a 100 × 100 region centered over the heart.

scan uses prospective ECG triggering, so many datasets would
potentially be needed to ensure the network provides accurate
tissue property estimates independent of a patient’s cardiac
rhythm. DIP-MRF addresses these challenges by eliminating
the need for prior training. Instead, training is performed de
novo after each MRF acquisition, and the only requirements for
training data are the undersampled k-space measurements from
the current scan and the patient’s cardiac rhythm timings from
the ECG. The self-supervised training used in DIP-MRF ensures
that the reconstructed T1, T2, and M0 maps and spatial basis
images are consistent with the acquired k-space data and with

a mathematical model of the MRF signal generation and data
sampling process.

One limitation of this work is the long computation time
of approximately 1.1 h, since training is performed de novo
for each scan. Nevertheless, this work used strategies to
accelerate the calculation of forward model during training.
The spiral k-space data were shifted onto a Cartesian grid
using GROG, which allowed use FFT rather than more time-
consuming NUFFT operations during training. Without GROG
pre-interpolation, the DIP-MRF reconstruction took 5.3 h. A pre-
trained Fingerprint Generator Network was also used in place of
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FIGURE 14 | Example of reduced motion artifacts using the shortened 5HB/150 ms MRF acquisition in a cardiomyopathy patient. (A) The myocardial septum (white
arrow) appeared blurred using the 15HB/254 ms MRF sequence due to failed breathholding and residual cardiac motion during the acquisition window. (B) Motion
artifacts were reduced with the shortened 5HB/150 ms MRF sequence. DIP-MRF yielded improved map quality with less noise compared to the direct matching and
SLLR-MRF. (C) MOLLI and T2-prepared bSSFP maps are shown for reference. All maps were cropped to a 100 × 100 region centered over the heart.

a Bloch equation simulation to rapidly generate fingerprints for
arbitrary T1, T2, and cardiac rhythm timings. The time needed
to simulate fingerprints at 1922 voxel locations (the matrix size
used for all datasets in this work) was over 8 min using a Bloch
simulation (compiled MATLAB Mex code running on 12 parallel
CPUs) compared to 30 ms using the Fingerprint Generator
Network on a GPU. Future work will explore ways to shorten
the computation time of DIP-MRF, possibly to several minutes or
less. Transfer learning may be one solution (49), where DIP-MRF
is pre-trained using some in vivo scans, and the reconstructed
maps are fine-tuned based on the acquired k-space data from
the current scan.

In the original DIP publication, early stopping was used
to avoid overfitting to noise, and the number of training
iterations was manually tuned for each application (27).
This study uses dropout to reduce overfitting (43), which
allowed the network to be trained for longer and placed less
dependence on manually tuning the number of iterations for
early stopping. Simulation results showed that dropout improved
the reconstruction accuracy and slowed the rate at which
overfitting occurred (Supplementary Figure 4). An in vivo
dataset was also reconstructed with different dropout levels, while
keeping the number of training iterations fixed at 30,000 for
simplicity, to empirically determine which settings yielded the
best map quality. It was found that the shortened 5HB/150 ms
MRF scan benefitted from higher dropout compared to the
15HB/254 ms scan (20 vs. 10% dropout).

In the absence of motion, the 15HB/254 ms and 5HB/150 ms
MRF sequences were expected to yield equivalent T1 and T2
measurements. However, large differences were observed using
the direct matching reconstruction, which was due to the noise
enhancement and aliasing artifacts in maps using the 5HB/150 ms

sequence, resulting in the wide limits of agreement in the Bland-
Altman plots in Figure 11. Similar discrepancies were seen with
SLLR-MRF to a lesser extent. Due to the improved quality of
the maps, DIP-MRF yielded the closest agreement in T1 and T2
measured by the 15HB/254 ms and 5HB/150 ms sequences. DIP-
MRF also yielded better precision in vivo compared to direct
matching and SLLR-MRF. For T1, the intrasubject variability
in healthy subjects was similar among MOLLI, 15HB/254 ms
DIP-MRF, and 5HB/150 ms DIP-MRF. For T2, the intrasubject
variability was lowest for 15HB/254 ms DIP-MRF, and similar
between T2-prep bSSFP and 5HB/150 ms DIP-MRF. DIP-MRF
also resulted in a lower intersubject variability for T1 and T2
compared to direct matching and SLLR-MRF.

Higher native T1 and lower native T2 were observed
using MRF compared to conventional mapping sequences,
which has been reported previously (50). MOLLI is known to
underestimate T1 (51), and T2-prep bSSFP has been reported
to overestimate T2 (52), which was observed in this study
in the phantom experiment (Figure 6 and Supplementary
Figures 5–7). The signal model in cardiac MRF accounts
for slice profile imperfections and inversion pulse efficiency,
which was shown to improve accuracy and lead to higher T1
measurements (50). Lower T2 values have been reported with
FISP-based MRF sequences compared to standard techniques
in other applications, which may be related to magnetization
transfer (53), intravoxel dephasing (54), and motion sensitivity
along the direction of the unbalanced gradient moment (i.e.,
slice direction).

Increased regional variability for T1 and to a lesser degree
T2 was observed with MRF, with higher relaxation times in the
septum and lower values in the inferolateral segment. Possible
explanations may include susceptibility effects (especially in
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FIGURE 15 | Relaxation times in the myocardial septum in cardiomyopathy patients. The boxplots summarize the (A) native T1, (B) native T2, and (C) post-contrast
T1 using conventional mapping sequences, as well as 15HB/254 ms MRF and 5HB/150 ms MRF with direct matching, SLLR-MRF, and DIP-MRF reconstructions.
The top of each box indicates the upper quartile, the bottom indicates the lower quartile, and the horizontal line through the middle shows the median. The numbers
above each plot indicate the mean ± standard deviation over all patients. Asterisks indicate a significant difference (p < 0.05) using a within-subjects ANOVA test
with a Bonferroni post-hoc test for multiple comparisons. Native mapping was performed in all ten patients. Post-contrast MRF was acquired in all ten patients, while
post-contrast MOLLI was only collected in nine patients.
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the inferolateral segment); partial volume artifacts between
myocardium and epicardial fat, which could be improved
with water-fat separation techniques like Dixon cardiac MRF
(55) or MRF with rosette k-space sampling (56); and B1

+

inhomogeneities, which could be addressed using B1
+ correction

(57, 58). Blood relaxation times were reported for completeness;
however, blood flow into and out of the 2D imaging plane is not
accounted for in the MRF signal simulation and likely affects the
blood T1 and T2 estimates. Interestingly, higher T1 was measured
in the LV compared to the RV with both MOLLI and cardiac
MRF. Higher T2 was measured in the LV with T2-prep bSSFP,
which has been reported previously (59), but slightly lower T2
was measured in the LV with cardiac MRF.

In summary, a DIP-MRF reconstruction that combines low-
rank subspace modeling with a deep image prior was shown to
reduce noise and aliasing artifacts in cardiac MRF T1, T2, and
M0 mapping, which does not require pre-training with in vivo
data. This method enables a shortened breathhold duration
and cardiac acquisition window in cardiac MRF, which has the
potential to improve scan efficiency and reduce motion artifacts.
Future work will explore extensions of DIP-MRF to motion-
resolved (cine) MRF (60, 61) and 3D cardiac MRF (62).
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Recent advances in magnetic resonance imaging are enabling the efficient creation of

high-dimensional, multiparametric images, containing a wealth of potential information

about the structure and function of many organs, including the cardiovascular system.

However, the sizes of these rich data sets are so large that they are outstripping our ability

to adequately visualize and analyze them, thus limiting their clinical impact. While there

are some intrinsic limitations of human perception and of conventional display devices

which hamper our ability to effectively use these data, newer computational methods for

handling the data may aid our ability to extract and visualize the salient components of

these high-dimensional data sets.

Keywords: cardiovascular, magnetic resonance imaging, MRI, multidimensional, visualization, analysis

INTRODUCTION

While cardiovascular magnetic resonance imaging (CMR) has become a valuable clinical tool,
conventional CMR still has many limitations. Recent ongoing advances in the development of
CMR imaging methods are now making possible the acquisition and reconstruction of much more
comprehensive sets of imaging data on the cardiovascular system, including the creation of large-
scale multidimensional andmultiparametric images. However, limitations of the human perceptual
system and conventional display devices make the visualization and analysis of these large and
complex data sets challenging. We will briefly summarize some of the background related to the
creation and potential applications of these new CMR data sets, and we will discuss some of the
associated challenges involved in handling them, as well as some possible paths forward to meet
these challenges.

CONVENTIONAL CARDIOVASCULAR MRI

Magnetic resonance imaging (MRI) uses the physical phenomena of nuclear magnetic resonance
to create images that reflect multiple aspects of the state of the body, including the following
principles: (1) Certain nuclei, including hydrogen (one of the principal constituents of the body),
can become magnetized in a strong magnetic polarizing field, producing a collective bulk nuclear
magnetization. (2) The orientation of the nuclear magnetization relative to the polarizing field
can be changed (“excited”) by applying an oscillating magnetic field at a specific resonance
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frequency (proportional to the strength of the polarizing field);
if the nuclear magnetization is left at an orientation inclined
to the field direction, it will produce a weak, but detectable,
signal at the resonance frequency. (3) Position information can
be encoded in the signal, through the use of supplementary
magnetic fields which vary with position in a controlled way
(“gradients”), with associated changes in the local resonance
frequency (1); the resulting signals are equivalent to samples
of the Fourier transform of an image. A suitable set of such
encoded signals can be used to reconstruct an image (2D or
3D) of the spatial distribution of the signal sources, through
an inverse Fourier transform. Gradients can also be used
during excitation to select a desired plane to image. Serial
images over time can display motion. (4) Tissue state-dependent
“relaxation times” can affect the strength of the signal; additional
excitations can be used to change the local image contrast,
through relaxation time-dependent effects on the signal, which
can help to reveal the presence of abnormalities in the image,
or to calculate the regional relaxation times or other parameters
(“parameter mapping”), typically by measuring the difference
in image intensity produced by the additional excitations. Such
parameter mapping can potentially be used for more quantitative
characterization of disease states. Contrast agents alter the image
appearance by altering the local relaxation times; early and late
contrast enhancement patterns provide information on perfusion
and associated tissue abnormalities, which can also potentially
be quantified. (5) Additional gradients can be used to sensitize
the signal to motion effects, including velocity and diffusion,
enabling flexible measurements of blood flow and providing
an additional potential means for tissue characterization. (6)
Nuclei at different positions within a molecule may have
slightly different resonance frequencies, potentially providing
some chemical information in the signal, e.g., distinguishing fat
from water.

In applying MRI to the cardiovascular system, we have to deal
with the effects of motion on the images, related to both the
heart beat and breathing. If the heart beats are sufficiently similar,
we can pool data from multiple heart beats, to create “cine”
images at multiple relative times spanning an averaged cardiac
cycle. If data acquisition times are short enough, images can be
created during suspended respiration, to eliminate respiratory
motion effects. In conventional clinical cardiovascular MRI, sets
of relaxation time-weighted and cine images, acquired inmultiple
planes, are used to evaluate the local and global structure,
tissue properties, and function, primarily through qualitative
assessment of 2D images.

While they are clinically very useful, there are still significant
limitations of conventional CMR methods. Due to breath
hold limits, most imaging is 2D and acquired with separate
breath-holds, leading to long imaging sessions needed to cover
the heart and vessels, and potential position inconsistency
between images, due to inconsistent breath-holds. Internal
inconsistency of the acquired data, e.g., when patients
cannot suspend respiration or have arrhythmia, can lead to
image degradation. Conventional parameter mapping is time-
consuming and vulnerable tomotion and other artifacts, limiting
its clinical use.

NEWER CMR METHODS

Various approaches have enabled the use of undersampling of
the imaging data, taking advantage of the underlying correlations
between pixels in medical images (“compressed sensing”),
thus shortening imaging times. In addition to accelerating
conventional imaging, these new methods make it possible to
acquire larger image data sets in a reasonable time. In the context
of CMR, considering cardiac and respiratory cycle phases as
effectively being additional dimensions enables reconstruction
of respiratory- and cardiac-synchronized 2D and 3D image
data sets from free-breathing continuous data acquisitions (2,
3). Previously, parameter mapping required acquiring multiple
images with different degrees of “steady” sensitivity to the desired
tissue property, and then combining them to calculate the value
of the property; however, this is a time-consuming process,
and is subject to errors related to any position inconsistency
between the images. Newer mapping imaging methods have
taken a more efficient dynamic approach, directly incorporating
the “unsteady” response of the signal to transient perturbations,
such as additional excitations or contrast injections, into the data
acquisition process. The resulting mixed effects on the signals can
then be separated during the image reconstruction process, using
mathematical tools such as “low rank” decomposition of the
resulting image data set. This “multitasking” approach enables
adding parameter mapping and perfusion imaging to a combined
image reconstruction. Such combined multidimensional data
acquisition and reconstruction imaging methods can thus enable
direct joint creation of images of regional tissue properties,
together with the motion, without the conventional need to
separately reconstruct the properties from sets of sequential data
acquisitions (which are vulnerable to problems from inconsistent
tissue positions) (e.g., Figure 1). An alternative approach to
multidimensional and multiparameter imaging is to use the
evolving response of the signal to continuously varying excitation
pulses and gradients (“fingerprinting”). However, all these
approaches have previously required time-consuming associated
iterative image reconstruction methods; machine learning (ML)
methods are a promising way to speed up this up (4–10), and
ML-based methods are being rapidly developed for this and
many other image-related applications. Artificial intelligence
(AI)-based methods can be used to help suppress artifacts
that may arise from more conventional image reconstruction
methods, e.g., due to motion or data undersampling. However,
AI-based methods for image handling programs may be subject
to instabilities. These and related methods are described in more
detail and illustrated in the accompanying articles in this issue,
and will not be further discussed here. We can also potentially
acquire multinuclear imaging data, for an additional set of
“dimensions” to display and analyze.

One thing that these methods all have in common is the
ability to create very large and high-dimensional data sets; it is
very challenging to visualize and analyze the wealth of data that
they can potentially contain. The same underlying correlations
between the images across the multiple images that make it
possible to reconstruct them from undersampled data also make
it possible to represent them in a correspondingly compressed
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FIGURE 1 | Example of the use of multitasking imaging, with use of simultaneous T1- and T2-weighting (A), to generate motion-resolved multidimensional images

with parameter mapping (B–E) [(4) (by permission)].

form. This can make for a more compact way to store the data,
and the images can then be selectively re-expanded, as needed,
for displays, making for more efficient data handling. Beyond
the immediate challenge of how to adequately and interactively
survey the full extent of such large data sets, there are also
challenging quantification issues related to associated tasks in
handling the data, such as segmentation of different structures,
characterization of time evolution across multiple dimensions,
and identification/classification of abnormalities revealed by
regional alterations in different parameters. Segmentation of
cardiac structures is already challenging for conventional CMR
functional analysis; segmenting cardiac structures acrossmultiple
dimensions compounds that challenge. However, being able
to quantitatively assess the interactions between cardiac and
respiratory cycles potentially offers new ways to characterize
cardiovascular function (11, 12). One promising approach
to the challenges of multidimensional image handling is
the napari project, which aims to develop an open-source
set of high-performing multidimensional image display and
analysis tools.

HUMAN PERCEPTION LIMITATIONS

We live in a 3D dynamic world; our visual interactions with
it are mediated through images projected onto effectively flat
retinas. We infer relationships between 2D object features
that we see in an image and the corresponding underlying
3D object surface via visual cues, such as shading and
occlusions, and from stereo disparities of details between left-
and right-eye views. However, the structures captured in our

3D (or higher dimensional) MR images may not have well-
defined implicit discrete surfaces to render; this is a frequent
problem with conventional 3D medical imaging methods,
when trying to display such structures as 3D objects. We
can explore a 3D data set by interactively scrolling through
consecutive 2D sections through it, or by displaying an array
of multiple such images, but it is difficult to directly compare
different regions with such displays. One common way to
try to effectively compress 3D data of the heart into a 2D
display is to create target-like “bull’s eye” plots, e.g., with
concentric rings representing different short-axis locations in
the ventricle walls from apex to base and a color scale linked
to some mapped quantity; however, this is associated with
decreased data sampling density and geometric distortion of the
displayed structures.

Our eyes have perceptual limitations, including a limited
dynamic range and a limited ability to discriminate similar
intensities. Vision is also affected by simultaneous contrast;
that is, the subjective appearance of a region can be
significantly altered by changes in the brightness or color
of surrounding regions. We are not good at visually judging
absolute brightness. We also cannot readily attend to multiple
properties and different locations at once, and thus have
difficulty comparing corresponding regions between different
kinds of separately displayed images. These limitations are
further exacerbated when we need to compare and register
motion patterns in separately displayed images of different
locations. These perceptual limitations are already a problem
with conventional intensity-based imaging, and they become
more acute when trying to incorporate additional parameters
into the images.
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DISPLAY OPTIONS AND LIMITATIONS

Conventional computer displays use flat screens, which is
already a significant limitation for viewing 3D data. The usual
approach for interactively viewing 3D data is to use “multiplanar
reformatting” (MPR) to create a virtual view of an interactively
selected 2D plane from within the 3D volume; however, while
MPR is very useful, it can still be difficult to build up a reliable
understanding of the underlying 3D structure relationships in
the imaged volume from viewing such sampled 2D slices. An
alternative display approach is to use a “volume rendering
technique” (VRT) approach to display a shaded rendering of
implicit “surfaces” within the 3D volume; newer “cinematic”
approaches to generating the shaded surface displays can help
make the spatial relationships of the displayed structures clearer.
However, the structures of interest in the imaged volumemay not
have sufficiently sharp boundaries in the intensity data to enable
their use for such rendering. When extending these approaches
to time-varying (e.g., real or “physiologic” time) or other multi-
dimensional data, we can use interactive scrolling through or
animation of a corresponding set of such displays over time or
other dimensions. For images that evolve over time, e.g., images
of dynamic contrast enhancement, it may be more useful to
display functional images that effectively summarize the time
evolution of the signal, e.g., by calculating the temporal moments
or perfusion-related variables, rather than displaying themultiple
underlying serial images, themselves. However, when additional
dimensions are introduced into the data, we must choose which
dimension to animate, as only one dimension can be mapped
into the animation at a time, and we may still have difficulty
exploring interactions between the different dimensions. The task
of interactively exploring all potentially relevant areas of a large
multidimensional data set can be daunting (like “looking for a
needle in a haystack”).

For display of single imaged parameters, or of scalar variables
calculated from the image sets, we can use a simple color overlay
with varying opacity onto the corresponding underlying intensity
image data; we can interactively adjust the associated color
and opacity lookup tables to qualitatively bring out structures
of interest in the display. When dealing with multiparametric
image data, we must choose a given property (or combination
of properties) to map (using an associated color lookup table)
for a given display. However, things get more difficult when
we want to examine the spatial distribution of more than
one scalar property at a time. Although we can try to use
some sort of hue/saturation/value mapping to display multiple
properties at once, these effective display “dimensions” are not
very “orthogonal” to each other, and the eye’s response to
them is not very linear. An alternative approach to jointly
evaluate images of multiple parameters is to enable interactive
exploration of different combinations of the parameters. For
example, we can create synthetic images reflecting the expected
appearance of images that would have been acquired with
different relative amounts of parameter weighting; this may be of
more practical utility than simple images of the parameter values
themselves. One way to approach this would be to map up to
three different coregistered parameter values to be displayed in

separate red, green or blue overlaid colors, with the net perceived
color reflecting the relative contributions from each parameter.
Alternatively, a principal component analysis approach could
be used to look for ways to combine multiple parameters that
would best distinguish between different particular tissue states.
As an example, this approach could potentially be used to help
distinguish myocardial regions of bright appearance on T1-
weighted imaging that are due to late gadolinium enhancement,
rather than to fat or residual contrast enhancement of the
adjacent blood, which would have different chemical shift or
T2 values than enhanced myocardium. Qualitative assessment
of the spatial variation of such multiparametric-based displays
may be more clinically useful for identifying and classifying
regional abnormalities than simple local measurement of specific
numerical values of parameters.

Motion and other temporally varying properties are often not
readily summarized as simple scalars, although approaches such
as calculation of associated temporal moments can be useful.
Higher-dimensional imaged properties, such as vectors (e.g.,
velocity) and tensors (e.g., deformation or diffusion), can be
discretely represented with arrows or glyphs at sampled locations;
however, it is difficult to appreciate their 3D orientation and
scales from a flat image, although “motion parallax” effects
seen while interactively changing the view orientation can help.
The velocity fields can also be used to generate corresponding
streamlines or virtual particle traces (13). To aid the 3D
representation of such higher order variables, we can let arrows
or glyphs closer to the viewer progressively occlude those
behind them, or create an orientation-dependent appearance
for their representation, but this is inherently a difficult
task. It is already challenging to work with conventionally
acquired 4D (3D plus time) flow/motion data for display
and analysis; adding additional effective dimensions will only
compound this difficulty. While virtual reality (VR) display tools
with stereoscopic capabilities have been used to augment the
conventional visualization of 4D flow data, some users have
found them to induce nausea, and the associated available image
display resolution is still relatively limited, indicating that the
virtual display technology may still need more development
before it is ready for adoption for clinical use.

POTENTIAL WAYS FORWARD

Another area of similarly high information content imaging is
multispectral or hyperspectral imaging, e.g., used for remote
sensing of the environment or astronomy. Thus, we could
potentially adapt methods used with hyperspectral imaging
for handling multiparametric MR images; for example, we
can seek to use linear principal component analysis or,
for improved results due to the inherent non-linear nature
of the problem, use machine learning (ML) approaches to
combine data with different parameters for particular tissue
characterization purposes.

Although they are still undergoing technical development,
as described above, we can potentially adapt VR displays to
enable better understanding of 3D spatial relationships within the
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multidimensional CMR data. However, this still effectively only
incorporates one additional dimension in the display.

We will likely need to develop and apply ML-based image
analysis methods, in order to improve the automated discovery of
salient regions/manifolds of the non-linear higher-dimensional
“spaces” of multidimensional/multiparametric CMR, which can
then be used for guided exploration of the data. As we have not
previously had direct access to such kinds of high-dimensional
data, developing the initial annotated data sets needed for the
training of such methods will still be challenging. Thus, we
will need to initially acquire and analyze such multidimensional
data on a sufficient number of normal subjects to be able to
establish regional normal ranges for such data, and we will
need to be able to register individual patient image data sets to
such normal values data. After the use of the initial supervised
machine learning methods, we can use unsupervised machine
learning methods for cardiac analytics which do not require
data annotations, such as those recently developed by our group
(14, 15); this is now an area of active research by many groups.

An advantage of these newer multidimensional CMR
methods is that they can provide the data on different
parameters in mutually spatially-registered ways. However,
different components of some data sets are likely to still have
different levels of signal-to-noise ratio (SNR) or different spatial
resolutions, e.g., withmultinuclear imaging. Thus, we will need to
find effective ways to combine data derived from the higher SNR
and resolution components of the imaging, e.g., for definition
of regions of interest for quantitative analysis, with the other
lower “quality” image components, for better integrated analysis
of the data.

As with conventional parameter mapping, quality assurance
and standardization of the data resulting from multidimensional
imaging will be needed before the results can be trusted enough
to be relied upon for clinical decision making. Imaging of
phantoms containing material with calibrated parameter values
can provide a minimum standard for such evaluation, but may
not adequately test for effects on the data of in vivo imaging,
such as due to motion. The validation of data related to motion-
related analysis of multidimensional images is also necessary
but challenging. Imaging of physical or numerical phantoms
with known motion properties, while useful, may again not
adequately assess the potential effects of in vivo imaging on the
derived numbers. The wide range of potential approaches to the
display of multidimensional data is a strength, but it will make
standardization of the displays more difficult.

An “ideal” viewing/analysis user interface for the display
of multidimensional/multiparametric CMR image data would
provide a set of fast and flexible interactive tools for exploring
the data set. These could include: (1) freely “cutting into”
the different parametric components of the data with MPR,

(2) the ability to freely move along or animate different time-
related dimensions, (3) the ability to flexibly synthesize new
combined displays from the component parameter images, (4)
interactive creation of MPR and VRT images from any of
these kinds of displays, and (5) options to use VR tools for

an enhanced understanding of 3D spatial relationships of the
displayed structures.

DISCUSSION

These new multidimensional/multiparametric CMR methods
have great clinical potential, through their ability to efficiently
create spatially registered images of multiple regional structure,
function, and tissue properties. However, due to their large size
and complexity, they also present multiple challenges related
to their effective display and analysis. Limits posed by human
perception, both in viewing displays and in integrating the
multidimensional data, impede our ability to fully grasp the
high levels of information that can potentially be contained in
these new data sets. Conventional display technology methods
and visualization techniques also have many limitations that can
restrict our ability to interact with these data. ML-based methods
are undergoing rapid development in many areas; in addition
to aiding the reconstruction of these large data sets, we may be
able to incorporate some aspects of their analysis directly into
the reconstruction process, such as automated segmentation of
cardiovascular structures and recovery of functional variables, as
well as identification and classification of regional abnormalities.

There is a great potential for gaining additional clinical
value from themultidimensional/multiparametric data produced
with these new imaging methods, once we develop appropriate
methods to handle the associated challenges of visualizing and
analyzing them.
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The Multimapping technique was recently proposed for simultaneous

myocardial T1 and T2 mapping. In this study, we evaluate its correlation

with clinical reference mapping techniques in patients with a range of

cardiovascular diseases (CVDs) and compare image quality and inter- and

intra-observer repeatability. Multimapping consists of an ECG-triggered,

2D single-shot bSSFP readout with inversion recovery and T2 preparation

modules, acquired across 10 cardiac cycles. The sequence was implemented

at 1.5T and compared to clinical reference mapping techniques, modified

Look-Locker inversion recovery (MOLLI) and T2 prepared bSSFP with four

echo times (T2bSSFP), and compared in 47 patients with CVD (of which 44

were analyzed). In diseased myocardial segments (defined as the presence

of late gadolinium enhancement), there was a high correlation between

Multimapping and MOLLI for native myocardium T1 (r2 = 0.73), ECV (r2 =

0.91), and blood T1 (r2 = 0.88), and Multimapping and T2bSSFP for native

myocardial T2 (r2 = 0.80). In healthy myocardial segments, a bias for native

T1 (Multimapping = 1,116 ± 21ms, MOLLI = 1,002 ± 21, P < 0.001), post-

contrast T1 (Multimapping = 479 ± 31ms, MOLLI = 426 ± 27ms, 0.001),

ECV (Multimapping = 21.5 ± 1.9%, MOLLI = 23.7 ± 2.3%, P = 0.001), and

native T2 (Multimapping = 48.0 ± 3.0ms, T2bSSFP = 53.9 ± 3.5ms, P <

0.001) was observed. The image quality for Multimapping was scored as higher

for all mapping techniques (native T1, post-contrast T1, ECV, and T2bSSFP)

compared to the clinical reference techniques. The inter- and intra-observer

agreements were excellent (intraclass correlation coe�cient, ICC > 0.9) for

most measurements, except for inter-observer repeatability of Multimapping

native T1 (ICC = 0.87), post-contrast T1 (ICC = 0.73), and T2bSSFP native T2
(ICC = 0.88). Multimapping shows high correlations with clinical reference

mapping techniques for T1, T2, and ECV in a diverse cohort of patients with

di�erent cardiovascular diseases. Multimapping enables simultaneous T1 and

T2 mapping and can be performed in a short breath-hold, with image quality

superior to that of the clinical reference techniques.

KEYWORDS

T1 mapping, T2 mapping, ECV, quantitative CMR, simultaneous multiparametric CMR

Frontiers inCardiovascularMedicine 01 frontiersin.org

46

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.960403
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.960403&domain=pdf&date_stamp=2022-09-06
mailto:markus.henningsson@liu.se
https://doi.org/10.3389/fcvm.2022.960403
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.960403/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Jarkman et al. 10.3389/fcvm.2022.960403

Introduction

Myocardial T1 and/or T2 values are altered in many

cardiovascular diseases (1). T1 and T2 quantification, along

with disease-specific patterns of regional and global distribution,

can be captured with myocardial mapping techniques (2).

In the last 15–20 years, a number of T1 and T2 mapping

techniques have been published, with different strengths and

weaknesses in terms of quantification accuracy, precision,

scan time, spatial resolution, and coverage (3). Despite being

one of the first T1 mapping techniques, the modified Look-

Locker inversion recovery (MOLLI) remains the most clinically

used method due to its high precision and availability on

all major scanner platforms (4, 5). However, MOLLI T1

accuracy is relatively low, and the quantification is susceptible to

confounding effects from heart rate or T2-dependent variability,

magnetization transfer effects, motion artifacts, and system

imperfections (5, 6). Different T1 mapping methods have been

proposed to address these shortcomings, yet have failed to make

significant inroads in the market share of clinical use (7–11).

Myocardial T2 mapping can be performed with multi-echo

spin-echo or T2-prepared balanced steady-state free precession

(T2bSSFP) techniques (12–14). The latter approach is likely the

most widely used clinically due to its relative robustness to

physiological motion.

In recent years, there has been a growing interest in

techniques to simultaneously map T1 and T2 in a single scan

(15–21). Advantages of this approach compared to conventional

mapping, which is performed separately for T1 and T2, are

that the images are intrinsically spatially aligned, scan time is

typically shorter, and the confounding effects of T1 or T2 on

the quantification of the opposite parameter are minimized.

Despite the many theoretical advantages of simultaneous

T1 and T2 mapping, there is a paucity of translational

studies using these techniques in patients with cardiovascular

disease (22, 23). This may be due to the more sophisticated

acquisition, reconstruction, and mapping strategies necessary

for such techniques, which pose challenges for clinical

translation. Recently, a new technique for simultaneous T1

and T2 mapping, termed Multimapping, was proposed using

a standard Cartesian trajectory and evaluated (primarily) in

healthy subjects (24). Due to its simplicity, Multimapping

may be readily applied in a clinical setting to enable the

evaluation of simultaneous T1 and T2 mapping in patients with

cardiovascular disease.

The primary aim of this study is to validate Multimapping

T1 and T2 values against clinical reference techniques in

patients with different cardiovascular diseases in terms of

parameter quantification and image quality. The secondary aim

of this study is to evaluate Multimapping intra- and inter-

observer variability.

TABLE 1 Clinical characteristics.

Patients (n) 44

Age (years) 49± 20

Male sex, n (%) 28 (64)

BMI (kg/m2) 25± 4

Height (cm) 176± 10

Weight (kg) 78± 12

Heart rate (bpm) 67± 14

LVEF (%) 53± 11

LVSV (ml) 94± 18

LVEDV (ml) 186± 54

BMI, body mass index; LVEF, left ventricular ejection fraction; LVSV, left ventricular

stroke volume; LVEF, left ventricular end-diastolic volume.

Materials and methods

Study population

All patients provided written informed consent prior

to participation, and the study was approved by the local

ethics committee (Linköping Regional Ethics Committee,

2015/396–31) and conducted according to the Declaration of

Helsinki. Patients referred for CMR at Linköping University

Hospital between June and November 2021 were considered

for inclusion in this study. In total, 47 patients were

recruited. Datasets from three patients were excluded, two

because no late gadolinium enhancement (LGE) images were

acquired and one due to excessive fold-over artifacts. Clinical

characteristics of the remaining patients can be seen in

Table 1. Of the included patients, normal cardiac MRI scan

was found in 15 (34.1%) patients, myocarditis in 11 (25%)

patients, dilated cardiomyopathy (DCM) in 6 (13.6%) patients,

ventricular hypertrophy (hypertrophic cardiomyopathy or

hypertrophy of unknown origin) in 5 (11.4%) patients, ischemic

myocardial injury (acute/recent or old) in 3 (6.8%) patients,

arrhythmogenic right ventricular cardiomyopathy in 2 (4.5%)

patients, pericarditis in 1 (2.3%) patient, and congenital heart

disease in 1 (2.3%) patient.

Data acquisition and reconstruction

All scans were performed on a 1.5T Philips clinical CMR

scanner (Philips Healthcare, Best, The Netherlands) using a

28-channel torso coil. The Multimapping pulse sequence and

post-processing steps are illustrated in Figure 1. Ten single-

shot images are acquired across consecutive cardiac cycles

using balanced steady-state free precession (bSSFP) readouts,

triggered to the mid-diastolic rest period. Adiabatic inversion

radiofrequency (RF) pulses with delay times of 300ms are
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FIGURE 1

Multimapping pulse sequence (A) and post-processing (B). The pulse sequence consists of ECG-triggered 2D single-shot acquisitions in 10

consecutive cardiac cycles, preceded by inversion pulses in cycles 1 and 5, and T2prep with di�erent echo times (TE) in cycles 8, 9, and 10. The

post-processing involves first performing a phase-sensitive inversion recovery (PSIR) operation to restore the polarity of the signal, followed by

an initial dictionary matching (Dict match 1) to estimate a global B1 correction factor based on an ROI in the myocardial septum. The dictionary

matching finds the pixel-wise closest match between acquired data and the simulated acquisition (with scan-specific delays) for di�erent T1, T2,

and RF scaling factor (B1) combinations. A second dictionary matching step (Dict match 2) is then performed for only T1 and T2 with high

temporal granularity (1ms resolution) to generate the final T1 and T2 maps.

performed in the 1st and 5th cardiac cycles to improve T1

sensitization. The inversion pulse used a hyperbolic secant

shape, had a duration of 8.4ms, and a B1 amplitude of 13.5µT. A

previous study has shown that similar settings yield an inversion

efficiency of approximately 0.89 (25), which was assumed for this

study. T2 preparation modules with hard 90◦ RF pulses and four

adiabatic refocusing RF pulses are performed in the 8th, 9th, and

10th cardiac cycles to improve T2 sensitization using echo times

of 30, 50, and 70ms, respectively. The Multimapping imaging

parameters for all experiments are: field of view= 320×320mm,

spatial resolution= 2×2mm, slice thickness= 10mm, nominal

flip angle = 50◦, bandwidth = 1,076 Hz/pixel, TR = 2.3ms, TE

= 1.2ms, SENSE factor = 2, linear profile order. Ten startup

RF pulses are used with linearly increasing flip angles. The

Multimapping scan was acquired in a mid-ventricular short-axis

slice (except in one patient which was mistakenly acquired in a

four-chamber view) during a breath-hold. Native Multimapping

was acquired in all 47 patients, and post-contrast Multimapping

was performed in 31 patients approximately 15 to 20min after

contrast agent administration (0.2 mmol/kg gadobutrol). Due

to clinical prioritization, the post-contrast Multimapping was

performed after the acquisition of post-contrastMOLL and LGE.

All Multimapping source images were reconstructed on

the scanner and transferred to an offline workstation (Intel

Core i7-8565U 1.80 GHz processor with 16Gb RAM) to

generate T1 and T2 maps using MATLAB R2021b (The

MathWorks, Natick, MA). The MATLAB code used to generate

the maps, including example Multimapping source images from

one subject, is available at https://github.com/Multimapping/

Matlab_files. Since blood samples were not available for all

patients, Multimapping synthetic ECV maps were generated

using synthetic hematocrit values, based on the native MOLLI

left ventricular blood pool measurements, as previously outlined

(26). Image registration using a rigid body transformation was

applied to spatially align the native and post-contrast T1 maps

prior to ECV calculation.

MOLLI was acquired in all 47 patients and T2bSSFP was

acquired in 45 patients, in the same slice as Multimapping

and used as clinical reference techniques for T1 and T2

mapping, respectively. All imaging parameters for the reference

techniques (field of view, spatial resolution, etc.) were the same

as for Multimapping, except for the flip angle which was 35◦.

MOLLI was acquired with the 5 (3s) 3 scheme and used the

same adiabatic inversion pulse as Multimapping. T2bSSFP was

acquired with four images at different T2 preparation echo

times (0, 23, 46, and 70ms) and used 3 pause cardiac cycles

between each image. Furthermore, T2bSSFP used the same RF

pulse types for the T2 preparation module as Multimapping.

The reference maps were reconstructed on the scanner using

vendor-provided inline mapping algorithms, except for the ECV
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maps which were generated offline using MATLAB. Similar

to Multimapping, synthetic ECV maps were generated using

a synthetic hematocrit value derived from the left ventricular

blood pool T1 measured in the native MOLLI image. As for

Multimapping, image registration was applied to native and

post-contrast MOLLI T1 maps before ECV was calculated. LGE

imaging parameters were TR/TE = 5.6/2.0ms, flip angle = 25◦,

FOV= 350×350 mm2, spatial resolution= 1.8×1.8 mm2.

Image analysis

T1 (native and post-contrast), T2 (native), and ECV

measurements were made by drawing manual regions of interest

(ROIs) in all datasets. To compare Multimapping to the clinical

reference techniques, two sets of myocardial measurements

were performed, one targeting any diseased myocardium and

one targeting healthy myocardium. For the measurements of

diseased myocardium in all maps, ROIs were drawn in the area

corresponding with the most prominent positive LGE findings

of each patient. Since only a subset of patients had positive LGE

findings in the imaged slice, this resulted in 21 measurements

for native T1 and T2 and 12 measurements for post-contrast

T1 and ECV. For the measurements of healthy myocardium

in all maps, ROIs were drawn in the area remote of any LGE

abnormality and preferentially in the interventricular septum

if it was free of abnormal LGE. Patients were excluded from

this analysis if there were indications suggestive of global or

diffuse myocardial disease. The measurements in the healthy

myocardium were performed in a total of 19 patients for native

T1, 12 patients for T1 post-contrast and ECV, and 18 patients

for T2.

Measurements were performed in all patients by one

observer (CJ, 1 year of CMR experience). To allow intra-

observer variability analysis, measurements were repeated in 23

patients by the same observer 2 weeks later. For inter-observer

variability analysis, the same 23 patients were measured by two

additional observers (MH and CJC with 14 and 21 years of

CMR experience, respectively). Furthermore, to compare blood

T1 (native and post-contrast), ROIs were drawn in the left

ventricular blood pool (avoiding any papillary muscles) in the

Multimapping T1 and MOLLI images.

The image quality of the acquired maps was qualitatively

compared using a Likert scale as devised by Jaubert et al. (22)

with the following categories: 1 = uninterpretable, 2 = poor

definition of edges, significant noise and/or residual artifacts,

3 = mildly blurred edges, mild noise and/or residual artifacts,

4 = slightly blurred edges, minor residual artifacts, and 5

= negligible blurring or residual artifacts. Visual scoring was

performed for T1 (native and post-contrast), T2 (native), and

ECV separately using the different mapping techniques, and this

analysis was performed in 20 patients. The visual scoring was

performed by consensus of two blinded observers (CJ and CJC).

Statistical analysis

Continuous variables are expressed as mean ± SD.

Categorical variables are expressed as counts and percentages.

For the remote measurements, two-tailed Student’s paired t-tests

were performed to compare Multimapping to MOLLI for native

T1, post-contrast T1, and ECV, andMultimapping and T2bSSFP

for native T2. For the remote measurements, all parameters

tested positive for normality using a Shapiro–Wilk test. Bland–

Altman and correlation plots were used to evaluate the

agreement and correlation, respectively, between Multimapping

and the reference techniques of the measurements in diseased

myocardium for native T1, post-contrast T1, ECV, and native

T2. To investigate any heart rate dependency for the mapping

techniques, the measurements of the remote myocardium were

correlated with the heart rate at the time of the scan. Similarly,

dependency on T2 for T1 (and vice versa) was evaluated by

correlating remote T1 with T2 for both Multimapping and

the reference techniques, and testing for statistical significance.

To account for multiple comparisons, Bonferroni correction

was performed on the threshold for all significance tests.

Since four comparisons were performed (native and post-

contrast T1, native T2, and ECV), a threshold of 0.05/4 =

0.0125 was used. Intra-observer repeatability and inter-observer

repeatability were assessed with intraclass correlation coefficient

(ICC) analysis. ICC was calculated using absolute agreement

two-way mixed model. Statistical analysis was performed using

IBM SPSS Statistics, version 27.0.

Results

Representative parameter maps acquired with

Multimapping, reference techniques, and LGE in a patient

with no cardiovascular disease findings are shown in Figure 2.

Parameter maps from a patient with myocarditis are shown

in Figure 3, with prominently altered quantitative values seen

in both Multimapping and reference techniques. The final

example, in Figure 4, shows parameter maps from a patient

with myocardial infarction with a clearly delineated area of

infarction in the Multimaps, correlating with LGE. Multimaps

for all patients can be downloaded from https://github.com/

Multimapping/Patient_study/raw/main/MapReconstructions.

pdf.

Comparison of Multimapping and
reference techniques in remote
myocardium

The Multimapping native T1 was 1,116 ± 21ms and for

MOLLI 1,002 ± 21ms, resulting in a statistically significant

bias of 114ms (P < 0.001). Multimapping post-contrast T1
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FIGURE 2

LGE and parameter maps (native T2, native T1, post-contrast T1, and ECV) are shown for a patient with no cardiovascular disease findings. The

parameter maps were acquired using either Multimapping (top row) or reference techniques (bottom row). Septal T2 was 49.6ms and 56.7ms

for Multimapping and T2bSSFP, respectively. Septal (native/post-contrast) T1 was 1,144/422ms and 1,003/381ms for Multimapping and MOLLI,

respectively. Septal ECV was 24.9 and 23.8% for Multimapping and MOLLI, respectively.

FIGURE 3

LGE and parameter maps in a patient with myocarditis, as indicated by the increased signal in the lateral wall in the LGE and also apparent as

altered values in the parameter maps (Multimapping: top row, reference techniques: bottom row). Measurements in the area of enhancement

(lateral wall) yielded T2 of 65.7ms and 62.4.6ms for Multimapping and T2bSSFP, respectively. T1 values (native/post-contrast) in the same area

were 1,286/446ms and 1,111/423ms for Multimapping and MOLLI, respectively. ECV was 26.6 and 28.3% in the enhanced area for

Multimapping and MOLLI, respectively.
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FIGURE 4

LGE and parameter maps in a patient with myocardial infarction, clearly visualized using all techniques, both native and post-contrast.

Measurements in the area of enhancement (anterolateral segment) yielded T2 of 90.5ms and 88.6ms for Multimapping and T2bSSFP,

respectively. T1 values (native/post-contrast) in the same area were 1,516/355ms and 1,440/338ms for Multimapping and MOLLI, respectively.

ECV was 33.3% and 33% in the enhanced area for Multimapping and MOLLI, respectively.

was 479 ± 31ms and for MOLLI 426 ± 27ms, yielding

a bias of 53ms which was statistically significant (P <

0.001). Multimapping ECV was 21.5 ± 1.9%, and MOLLI

ECV was 23.7 ± 2.3%, resulting in a bias of −2.2%

which was statistically significant (P = 0.001). Multimapping

native T2 was 48.0 ± 3.0ms while T2bSSFP was 53.9 ±

3.5ms, a statistically significant bias of –.9ms (P < 0.001)

(Figure 5).

There was no correlation between native T1 and T2 for

neither Multimapping nor MOLLI and T2bSSFP. Multimapping

T1 (native and post-contrast), T2, or ECV andMOLLI T1 (native

and post-contrast) or ECV did not correlate with heart rate

either. However, T2bSSFP showed a correlation with heart rate

(P < 0.001) (Figure 5).

Comparison of Multimapping and
reference techniques for diseased
myocardium

In general, the correlation between Multimapping and the

clinical reference techniques was very strong (r2 > 0.7) for

most variables (Figure 6). A strong correlation coefficient (r2

> 0.5) was found between Multimapping and MOLLI for

myocardial T1 post-contrast (r2 = 0.66) and blood T1 post-

contrast (r2 = 0.53).

Inter- and intra-observer variability

The myocardial measurements and measurements of the left

ventricular blood pool for intra-repeatability assessment showed

excellent repeatability (myocardial ICC > 0.97, LV blood pool

ICC = 1.00) (Table 2). The myocardial measurements for inter-

repeatability showed moderate to excellent repeatability (ICC >

0.73) for all mapping techniques. The native and post-contrast

T1 measurements of the blood pool for inter-repeatability

showed good to excellent repeatability (ICC > 0.92).

Image quality assessment

The image quality was scored significantly higher for

Multimapping compared to T2bSSFP (P < 0.001), MOLLI

native T1 (P= 0.007), MOLLI post-contrast T1 (P < 0.001), and

MOLLI ECV (P < 0.001) (Figure 7).

Discussion

In this study, a new method for simultaneous T1 and

T2 mapping was compared to the clinical reference mapping

technique in a cohort of patients with cardiovascular disease.

We found a strong to very strong correlation between the

methods for all measured parameters (native T1, post-contrast
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FIGURE 5

The two top rows show the correlation analysis of heart rate dependency to T1 (native and post-contrast), ECV, and T2. The bottom row shows

the correlation analysis between native T1 and T2.

T1, ECV, and native T2), while the image quality was considered

better using the proposedMultimapping technique compared to

the reference methods. Furthermore, intra- and inter-observer

variability of Multimapping parameter measurements were in

general low and similar to those obtained with the clinical

reference techniques.

In segments of healthy/remote myocardium, we measured

a mean native T1 of 1116ms using Multimapping, more than

100ms higher than for MOLLI. However, MOLLI is known

to significantly underestimate T1 when compared to more

accurate methods such as SASHA (5), which typically yields

native T1 of around 1,200ms at 1.5T (7, 27). The native T1

Multimapping values are also in line with the previous study

using this technique in healthy volunteers which measured

1,114ms (24). For post-contrast T1 mapping, there was also a

significantly longer T1 using Multimapping (479ms) compared
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FIGURE 6

Correlation and Bland–Altman plots comparing Multimapping (MM) to MOLLI and T2bSSFP. For the correlation plots, black and gray lines indicate

line of best fit, and the dotted lines show the identity lines. The black lines indicate bias in the Bland–Altman plots. Correlation coe�cient (r2) is

reported in the correlation plots and mean di�erence, and lower and upper limits of agreement (1.96 SD) in the Bland–Altman plots.
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to MOLLI (427ms). Although post-contrast T1 values are more

difficult to compare between studies due to differences in

contrast agents and the timing of acquisition after injection,

previous studies have shown underestimation of post-contrast

T1 for MOLLI compared to more accurate techniques such

as SASHA (28, 29). The study by Nordlund et al. (29) also

demonstrated that MOLLI overestimates ECV by approximately

4% in healthy volunteers compared to SASHA, the latter

technique correlating more closely with radioisotopes in pigs.

This suggests that the significantly lower ECV measured in

this study with Multimapping (22%) may be more accurate

compared to MOLLI (24%). However, the conversion from T1

to hematocrit was based on the relationship established for

MOLLI in a previous study, which may bias measurements

if applied to Multimapping synthetic ECV. For Multimapping

synthetic ECV to be used independently of MOLLI, then the

relationship between Multimapping blood T1 and hematocrit

should be established. Alternatively, the hematocrit could be

directly measured to calculate Multimapping ECV without

the need for a MOLLI acquisition. Correlation of T1 and

T2 values with potential confounding variables such as heart

rate or the opposite (T2 or T1) parameter did not show

any particular dependency for Multimapping in this regard.

However, T2bSSFP appeared to be inversely correlated with

heart rate. This suggests additional delayed cardiac cycles may

be required to yield less biased T2 values for high heart rates.

Conversely, Multimapping may be a more robust approach

for T1 and T2 mapping at higher heart rates as no additional

modification of the pulse sequence is required.

In the measurements of myocardial segments with disease,

we found a high correlation between Multimapping and

the clinical reference techniques for native T1 (blood and

myocardium), T2, and ECV. While correlations for post-

contrast T1 (blood and myocardium) were more moderate,

this may be explained by the confounding factor of time after

injection, which affect the T1 measurements. Furthermore,

measured post-contrast T1 in this study had a narrower

range for both Multimapping and MOLLI compared to native

T1 which can contribute to a weaker correlation between

techniques. Nevertheless, a very strong correlation between

Multimapping and reference techniques for native T1, T2, and

ECV indicates that Multimapping is a useful technique that can

be used to detect disease.

Dictionary-based mapping techniques such as

Multimapping typically assume that there is no through-

plane motion, which is not the case for flowing blood.

Such through-plane motion leads to T1 overestimation as

inflowing spins have seen fewer RF pulses and are therefore

less saturated. This can explain the observed overestimation

of blood (particularly native) T1 relative to MOLLI. However,

it should also be noted that, due to the strong correlation for

native blood T1 blood between Multimapping and MOLLI, the

Multimapping technique can likely still capture variability in

blood T1 (due to, e.g., different hematocrit levels) with a similar

sensitivity as MOLLI.

The image quality was superior using Multimapping

compared to all clinical reference techniques. This could be due

to the higher flip angle of 50◦ using Multimapping, compared

to MOLLI and T2bSSFP which both use a flip angle 35◦, with

otherwise identical imaging parameters to Multimapping. A

higher flip angle for bSSFP-based mapping techniques leads

to a higher signal-to-noise ratio which typically contributes to

improved image quality. The shorter duration of Multimapping

(10 beats) compared to both MOLLI (11 beats) and T2bSSFP

(16 beats) means that Multimapping is less prone to respiratory

motion-induced misalignment, which may also contribute to

a better image quality. While the Multimapping and MOLLI

pulse sequences are very similar (both inversion recovery with

bSSFP readouts), Multimapping benefits from phase-sensitive

inversion recovery post-processing step which has been shown

to improve T1 map image quality compared to fitting with

magnitude images (30), used in the vendor-provided fitting

algorithm for MOLLI. Compared to Multimapping, T2bSSFP

uses significantly fewer source images for T2 mapping, and

while only three T2 preparation modules are included in the

Multimapping pulse sequence, the bSSFP readout is intrinsically

T2/T1 weighted which contributes to the T2 sensitivity and may

explain the improved image quality.

The intra- and inter-observer repeatability analysis showed

an excellent repeatability for most measurements using both

Multimapping and reference techniques. While Multimapping

post-contrast myocardial T1 inter-observer ICC of 0.73 was

relatively low compared to that of MOLLI (ICC = 0.95), post-

contrast T1 mapping is primarily used to generate ECV maps,

and here, Multimapping and MOLLI yielded near identical ICC

values of 0.94 and 0.93, respectively.

Comparison with other simultaneous T1
and T2 mapping techniques

Several simultaneous T1 and T2 mapping techniques have

been proposed over the last years, comparable to Multimapping.

Published studies using similar methods in healthy volunteers

are summarized in Table 3, including Multimapping (24).

Multimapping has a shorter scan duration than nearly all other

simultaneous T1 and T2 mapping techniques, requiring 10

beats, which is also shorter than both MOLLI and T2bSSFP.

As many patients with cardiovascular diseases struggle to

hold their breath for an extended period, reducing the scan

time of mapping techniques is important and has been the

focus of several studies (11, 38). This is also in line with the

endeavor of utilizing less time-consuming CMR protocols in

order to improve the adoption of CMR in routine cardiovascular

practice. Inversion recovery magnetization preparation pulses
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TABLE 2 Inter- and intra-observer ICC (95% confidence interval).

Myocardium Blood pool

Intra-repeatability Inter-repeatability Intra-repeatability Inter-repeatability

MM T1 native 0.99 (0.97–1.00) 0.87 (0.76–0.94) 1.00 (1.00–1.00) 0.92 (0.85–0.96)

MOLLI T1 native 0.99 (0.97–0.99) 0.93 (0.88–0.97) 1.00 (1.00–1.00) 0.97 (1.00–1.00)

MM T1 PC 0.99 (0.98–1.00) 0.73 (0.54–0.86) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

MOLLI T1 PC 0.97 (0.93–0.99) 0.95 (0.90–0.98) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

MM ECV 0.99 (0.98–1.00) 0.94 (0.89–0.97)

MOLLI ECV 0.99 (0.97–0.99) 0.93 (0.87–0.97)

MM T2 0.99 (0.96–0.99) 0.91 (0.82–0.95)

T2bSSFP 0.98 (0.94–0.99) 0.88 (0.78–0.95)

MM, Multimapping; ECV, extracellular volume fraction; MOLLI, modified Look-Locker inversion recovery; T2bSSFP, T2-prepared balanced steady-state free precession.

FIGURE 7

Distribution of image quality scores for Multimapping (MM) and in vivo reference techniques.

are often used for myocardial T1 mapping as they increase

quantification precision compared to saturation recovery (5),

using the full dynamic range of the longitudinal magnetization,

at the expense of accuracy as inversion pulses are more

sensitive to confounding elements such as magnetization

transfer and transverse relaxation during the pulses, which

reduce their efficiency (6, 25, 39). Therefore, saturation recovery

technique measurements are generally considered to be closer

to the “true” in vivo T1 times, typically several 100ms

higher than MOLLI on either 1.5T and 3T scanners. In

this regard, Multimapping, which uses inversion recovery,

generates T1 values in healthy/remote myocardium of 1,116ms,

which is closer to the saturation recovery-based techniques

(of approximately 1,200ms) than MOLLI (approximately

1,000ms) or the most comparable simultaneous T1 and T2

mapping studies, Blume et al. (15) and Jaubert et al. (33),

which report a myocardial T1 of 1,017ms and 1,045ms,

respectively. This may be due to the assumed lower inversion

efficiency of 0.89 for the inversion pulses, incorporated into

the Multimapping signal model, which is likely closer to

the true inversion efficiency than assuming perfect efficiency.

However, the inversion efficiency potentially varies between

field strengths and vendors, or even spatially across an image

due to B0 and B1 inhomogeneity. Furthermore, the current

Multimapping technique does not consider magnetization

transfer. To yield more accurate T1 values, reproducible across

scanner platforms, these confounding effects should be included

in the Multimapping signal model, preferably on a pixel-wise

basis, although this will likely negatively impact the precision.

It can be difficult to precisely pinpoint the sources of

differences in T1 and T2 values for the different techniques

outlined in Table 3, particularly as many techniques rely

on the unconventional acquisition, reconstruction, and

mapping strategies. These include, for example, non-Cartesian
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TABLE 3 Comparable published simultaneous T1 and T2 mapping techniques.

Study Scan time FB/BH IR/SR Readout Subjects Additional

mapping

Field

strength

Native T1

(ms)

Native

T2 (ms)

Blume et al.

(15)

Around 3min FB IR 2D cartesian

bSSFP

19 HV - 1.5T 1,017± 91 50± 4

Kvernby et al.

(17)

15 beats BH IR 3D Cartesian

GRE

10 HV - 3T 1,083± 43 50.4± 3.6

Akçakaya et al.

(18)

13 beats BH SR 2D cartesian

bSSFP

10 HV - 1.5T 1,210± 24 48.2± 2.8

Santini et al.

(31)

8 beats BH IR 2D cartesian

bSSFP

5 HV - 3T 1,227± 68 37.9± 2.4

Hamilton et al.

(32)

15 beats BH IR 2D spiral GRE 11 HV - 3T 1,235, range

1,199−1,316

38, range

32–43

Jaubert et al.

(33)

15 beats BH IR 2D radial

ME-GRE

10 HV PDFF 1.5T 1,045± 32 42.8± 2.6

Christodoulou

et al. (19)

88 s FB IR 2D radial GRE 10 HV Cardiac

motion

3T 1,216± 67 47.8± 4.9

Shao et al. (34) 11 beats BH IR 2D radial GRE 10 HV - 3T 1,366± 31 37.4± 0.9

Guo et al. (35) 1.4± 0.3min

(WH)

FB SR M2D Cartesian

bSSFP

13 HV - 3T 1,373± 50 48.7± 2.5

Hermann et al.

(36)

18.5 s (+resp

gating)

FB SR 2D cartesian

ME-GRE

10 HV T2* 3T 1,573± 86 33.2± 3.6

Chow et al.

(37)

11 beats BH SR 2D cartesian

bSSFP

10 HV - 3T 1,523± 18 36.7± 1.1

Jarkman et al. 10 beats BH IR 2D cartesian

bSSFP

Remote

myocardium

19 patients

- 1.5T 1,116± 21 48.0± 3.0

WH, whole heart; FB, free breathing; BH, breath-hold; IR, inversion recovery; SR, saturation recovery; bSSFP, balanced steady-state free precession; GRE, spoiled gradient echo; ME-GRE,

multi-echo spoiled gradient echo; M2D, multi-slice 2D; HV, healthy volunteer; PDFF, proton density fat fraction.

(radial or spiral) trajectories with iterative reconstruction

algorithm, coupled with sophisticated and advanced mapping

techniques which may be difficult to reproduce. In contrast,

the Multimapping pulse sequence consists of a MOLLI-like

acquisition scheme (inversion recovery with Cartesian single-

shot 2D bSSFP readout) which are available on all major vendor

platforms, with the addition of T2prep modules which have also

been implemented on all vendor platforms. For transparency,

the Multimapping parameter mapping method using dictionary

matching has been provided open source to enable reproduction

of this technique by other investigators which may also enable

direct comparison of Multimapping with other simultaneous

T1 and T2 mapping techniques.

Limitations

This study has several limitations: no respiratory motion

correction was performed. Correcting for respiratory-induced

image misalignment is important even for breath-held scans

and can be achieved using image registration (40). Although

image registration could be readily applied to Multimapping

source image to this end, this was not performed in order to

have a fair comparison with MOLLI and T2bSSFP maps which

were generated using inline vendor algorithm without motion

correction. A second technical limitation of Multimapping

is that manual interaction is required to define an ROI in

the myocardial septum for the B1 estimation. However, this

is a relatively simple step, comparable to the input required

to define ROIs for ECV maps. Further work is required to

automatize this step or to incorporate B1 in the high-resolution

T1 and T2 dictionary matching, which would obviate the need

for any manual interaction but with a potential penalty to

the precision. A study limitation is that the patient cohort

consisted of a small, heterogeneous population of patients

with various cardiovascular diseases and performed on a

single 1.5T Philips scanner. Further studies are required to

evaluate the performance of Multimapping at 3T and using
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other vendors. The evaluation of heart rate dependence of

the mapping techniques was limited by the relatively narrow

heart rates of nearly all patients (only one with heart rate

over 100 bpm).

Conclusions

Multimapping T1 and T2 values show high correlations

with clinical reference mapping techniques in a diverse

cohort of patients with different cardiovascular diseases.

Multimapping enables simultaneous T1 and T2 mapping and

can be performed in a short (10 cardiac beats) breath-

hold, with image quality superior to that of the clinical

reference techniques.
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Magnetic resonance fingerprinting (MRF) is a fast MRI-based technique that

allows for multiparametric quantitative characterization of the tissues of

interest in a single acquisition. In particular, it has gained attention in the

field of cardiac imaging due to its ability to provide simultaneous and

co-registered myocardial T1 and T2 mapping in a single breath-held cardiac

MRF scan, in addition to other parameters. Initial results in small healthy

subject groups and clinical studies have demonstrated the feasibility and

potential of MRF imaging. Ongoing research is being conducted to improve

the accuracy, e�ciency, and robustness of cardiac MRF. However, these

improvements usually increase the complexity of image reconstruction and

dictionary generation and introduce the need for sequence optimization. Each

of these steps increase the computational demand and processing time of

MRF. The latest advances in artificial intelligence (AI), including progress in

deep learning and the development of neural networks for MRI, now present

an opportunity to e�ciently address these issues. Artificial intelligence can

be used to optimize candidate sequences and reduce the memory demand

and computational time required for reconstruction and post-processing.

Recently, proposed machine learning-based approaches have been shown to

reduce dictionary generation and reconstruction times by several orders of

magnitude. Such applications of AI should help to remove these bottlenecks

and speed up cardiac MRF, improving its practical utility and allowing for

its potential inclusion in clinical routine. This review aims to summarize the

latest developments in artificial intelligence applied to cardiacMRF. Particularly,

we focus on the application of machine learning at di�erent steps of the

MRF process, such as sequence optimization, dictionary generation and

image reconstruction.

KEYWORDS

magnetic resonance fingerprinting (MRF), artificial intelligence (AI), cardiac MRF,

multiparametric imaging, cardiac magnetic resonance (CMR)
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Introduction

Cardiac magnetic resonance
fingerprinting

Cardiac Magnetic Resonance (CMR) imaging is widely

accepted as a key non-invasive imaging technique for the

evaluation of cardiovascular diseases (1). CMR enables

comprehensive myocardial tissue characterization, evaluating

specific parameters such as T1, T2 and T1ρ, relaxation times

and extracellular volume (2–5). Hence, quantitative mapping

of these parameters of interest has become a primary tool

for diagnosis of cardiomyopathies. Conventionally, several

MRI scans using different protocols are acquired sequentially

to provide multiparametric quantification by encoding one

parameter at a time. However, this methodology is time

consuming and leads to long scan times, patient discomfort,

and mis-registered parameter maps. In contrast, simultaneous

quantification of multiple parameters would address several

of these issues, making multiparametric quantitative CMR

appealing for widespread use in the clinical routine.

Many simultaneous multiparametric approaches have

recently been proposed to address these issues and

provide co-registered multiparametric quantification,

including Multitasking (6, 7), steady-state techniques with

multiparametric encoding (8, 9), other free-running approaches

(10, 11) and Magnetic Resonance Fingerprinting (MRF), (12).

MRF has the potential to provide not only multiple co-registered

parametric maps in a time-efficient manner but can also include

additional model corrections [e.g., B0 (12), B1 (13), slice profile

(14)]. UnderlyingMRF is the concept that each tissue has unique

properties (such as T1 and T2) and thus unique signal evolutions

for a given sequence. By varying several sequence parameters

(such as flip angle, repetition time or magnetization preparation

pulses) throughout the acquisition (see Figures 1A1,A2), unique

signal evolutions (or “fingerprints”) for each combination of

parameters of interest are created. Beforehand, a large dictionary

(lookup table) of usually 104 to 108 parameter combinations and

signal evolutions can be pre-calculated (Figure 1C), knowing

the sequence details [using, for example Bloch simulations

(15) or Extended Phase Graphs (EPG) (16)], and reutilized for

the subsequent scans provided that the acquisition parameters

remain unchanged. The measured signal evolution is then

compared against the expected signal behavior via dictionary

matching to simultaneously estimate the parametric maps in a

voxel-wise basis, [respectively Figures 1D,E, (10)].

Although the original MRF work was proposed on brain

MRI, the technique was rapidly implemented for other anatomic

regions, including cardiac MRF (17). Compared to conventional

MRF, cardiac MRF faces two main challenges derived for the

inevitable heart motion that occurs during a scan. Firstly, since

the heart is beating while the scan is being performed, the

acquisition needs to be ECG-triggered, so that the acquisition

window is always in the same cardiac phase. However, since

the cardiac wave cannot be predicted, the dictionary must be

specifically calculated for each subject once the acquisition has

been performed to include the exact cardiac rhythm measured

by the ECG. Secondly, cardiac and respiratory motions may

affect MR image quality considerably. Therefore, scans are

usually performed under breath-hold and on a short cardiac

acquisition window (usually at mid-diastole), limiting the

feasible scan time to the breath-hold duration and resulting in

very highly undersampled data.

Despite these challenges, the field of cardiac MRF has

experienced rapid growth. Many efforts have focused on

improving its diagnostic potential by; extending the number

of encoded parameters beyond just T1 and T2 [e.g., fat

fraction (18), T∗2 (19), T1ρ (20)], optimizing sequence design

(21), fast and robust dictionary generation (22–25) and

advanced undersampled image reconstruction (26–28) among

others. However, most of these techniques are computationally

expensive using conventional methods, limiting their practical

utility. There is still much room for improvement, and

the integration of state-of-the-art developments in Artificial

Intelligence (AI) and Deep Learning (DL) could help solve these

and other challenges in cardiac MRF.

Artificial intelligence and deep learning

Artificial Intelligence refers to the ability of machines or

computer algorithms to perform tasks that would typically

require human intelligence (Figure 2). Machine learning (ML)

is a subfield of AI where a model learns how to make

predictions for a specific problem using relevant training

data. In this way, the features of the model are learnt from

relevant training examples without the need of explicitly pre-

programmed rules, allowing the model to generalize and make

predictions for unseen examples. The most advanced form of

ML is DL, that uses multi-layered artificial Neural Networks

(NNs) consisting of artificial neurons, inspired by biological

neural networks. NNs are universal approximators (29), in

theory able to approximate any Borel measurable function

with a finite number of neurons. Thus, NNs can offer a

more compact representation of complicated functions allowing

for more efficient calculation. They are therefore ideal for

cardiac MRF that involves complex acquisition strategies, scan-

specific information, multi-dimensional image data dominated

by noise, complicated reconstruction steps and computationally

expensive calculations using conventional methods. Indeed,

the ability of ML and DL has already been proven to be of

great value in many domains of CMR imaging (30, 31), from

image reconstruction (32–34) to diagnosis of cardiomyopathies

(35, 36), reporting of cardiac function (37, 38), segmentation

of cardiac CINE imaging (39, 40) and quantification of tissue

parameters (41).
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FIGURE 1

An overview of cardiac MRF framework. (A1) Repetition time (TR) and variable flip angles (FA) may be pseudo-randomly varied throughout

acquisition. (A2) Magnetization preparation pulses are introduced to increment contrast weighing on the desired parameters (in this example

Inversion Recovery, (IR pulses, in red), T2 preparation, (T2 prep pulses in green) and T1ρ preparation, (T1ρ prep pulses in blue) are included to

(Continued)
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FIGURE 1 (Continued)

encode T1 and T2 contrasts before some heartbeats). (B) Highly undersampled images are obtained, and (C) a subject-specific dictionary due to

the unique cardiac rhythm during the scan is calculated in parallel. (D) Matching the temporal evolution of the signal measured with the

dictionary will provide (E) inherently co-registered parametric maps of the scanned region. The di�erent colored dots in (A1) correspond to

di�erent timepoints and contrasts (B) during the sequence.

FIGURE 2

Left: Artificial Intelligence (AI) encompasses tasks performed by machines and computers that would normally require human intelligence. A

subfield of AI is Machine Learning (ML), a technique whereby computer algorithms learn to perform a task from training data rather than

requiring explicitly pre-programmed rules, allowing them to provide predictions for unseen examples. Deep Learning (DL) is a subfield of ML

that uses artificial Neural Networks (NNs), modeled on neurons in the human brain, trained using data to provide predictions. Right: NN

architectures used in cardiac MRF. Feedforward neural networks consist of an input later which could be for example a fingerprint in MRF,

followed by a series of hidden layers, followed by a final output later that could output for example tissue parameters. RNNs are ideal for

sequence data and take an input timepoint, along with an internal hidden state that encodes information from previous data in the sequence,

thus incorporating memory of previous patterns in the sequence.

In traditional ML, measurable properties known as features

are first extracted from relevant data. These features are then

input into the model as training data, training the model

parameters so that the model can find and generate accurate

predictions of general underlying patterns using an optimization

algorithm. The optimization algorithm measures the accuracy

of these predictions using some quality measure, for example,

the mean absolute error calculating the mean difference between

predicted and ground truth values. The ability of the model

to generalize is measured on a separate validation dataset. The

accuracy of the predictions from the validation dataset are

then used to optimize model parameters and prevent over-

fitting to the training data. Finally, the model is evaluated on

a separate held-out test dataset to simulate how the model

will perform on unseen data. In medical imaging, models

are often trained using supervised learning, where data is

accompanied with ground truth labels. An example in cardiac

MRF would be predicting signal evolutions labeled with ground

truth parameter combinations and RR intervals (the time

between successive R peaks determined from ECG data which

itself is used to trigger the acquisitions in cardiac MRF).

Models can also be trained in an unsupervised manner, where

no labels are given. Autoencoders are one example, where

a sparse representation of the data is learnt from unlabeled

data and then this encoding is used to regenerate the input

data, which can be useful for denoising applications. Self-

supervised learning is a subset of unsupervised learning where

supervisory signals are obtained from the data itself. For

example, a cardiac motion algorithm can be trained without

labels by using the motion estimation predictions to warp one

cardiac phase to another and a loss term calculated between

the now-similar images. Typically, there are a large number of

features that the algorithm can use, and the accuracy of the

model increases when more relevant features are used. The

art of designing the optimal combination of features is called

feature engineering but this can be a difficult task, usually

requiring an experienced user and even so, the optimal features

for a certain dataset are unlikely to be optimal for a slightly

different one.

DL (42, 43) algorithms can learn features automatically

from the dataset by themselves, removing the need to extract

and select relevant features. NNs consist of multiple layers of

connected nodes, called neurons, mimicking the behavior of

the nervous system in humans. Each neuron is a mathematical

function that takes one or more inputs and sums them with

weights learnt during training, this is then passed through a

non-linear activation function to produce an output. The NN

is made up of layers of neurons with the outputs of one layer
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FIGURE 3

The cardiac MRF workflow from sequence design and optimization through to parameter map estimation and potential uses of cardiac MRF

data, where DL-based analyses such as Radiomics can be used to provide a diagnosis or predict outcomes. Black arrows indicate the flow of

steps taken in the cardiac MRF workflow. The red dashed arrows indicate steps where DL methods have or could be applied within this workflow.

forming the inputs for the next layer and the depth of the

network is given by the number of layers contained within

the model. Recently, rapid advances in DL have been made

due to the combination of the availability of large high-quality

training datasets and tweaks to the architecture of NNs capable

of extracting features. Alongside this, advances in GPUs for

parallel computation and open-source libraries to construct and

train DL algorithms have aided its adoption. There are a broad

range of concepts and types of models within the field of DL,

and a full description of them is outside the scope of this review.

Thus, here only a small selection of terms of interest relevant to

DL applications in CMR and more specifically in cardiac MRF

will be briefly introduced.

Deep learning in cardiac MR

In DL for medical imaging and in particular for CMR

imaging, input data is typically information obtained from the

scanner, such as signal evolutions, k-space data or reconstructed

images. The type of NN model these data are input into
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FIGURE 4

Parameter maps generated by a NN for cardiac MRF from Hamilton et al. (82) for two healthy subjects and compared to maps generated using

dictionary matching. The feedforward network with skip connections that was used takes the real and imaginary components of the fingerprint

and the RR intervals as input and outputs parameter estimates for T1 and T2 on a fingerprint-wise basis. The network produces accurate

parameter estimations for di�erent cardiac rhythms, even for subject B, with a variable heart rate and 1 missed ECG-trigger.

FIGURE 5

Spatially-regularized convolutional neural network from Balsiger et al. (90). In addition to the temporal information from each fingerprint, for

each voxel a HxWxT patch of undersampled image data is used to calculate the parameter maps [in their work, Balsiger et al. (90) employ a patch

size of H = W = 15]. The network achieves improved accuracy by incorporating spatial regularization in the map generation process from

undersampled image data.

will affect the predicted outputs and the overall accuracy

of the trained network. Hence, different types of network

architecture are more suited to different types of data and

problems. As an example, an image can be made up of

patches of highly correlated data that form specific patterns

or features such as edges, corners, ridges and blobs. A

discrete convolution, a mathematical operation, can be used

to filter these patches, hence a stack of convolutions can

extract complex information and features from an image.

Convolutional Neural Networks (CNNs) have been proven

to be a powerful tool when working with imaging data

and are widely applied in CMR. However, if the input

is a set of temporal signal evolutions measured from a

scan, a CNN may be less efficient than other types of

networks better suited for long sequential datasets. Instead,

recurrent neural networks (RNNs) such as long short-term

memory (LSTM) networks can be used. These networks can

track dependencies over a large number of time steps and

remember previous inputs, making themmore suitable for time-

series predictions.
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A good understanding of the type of input data and the

nature of the problem is important to properly exploit AI

for medical imaging. Accelerated (i.e., undersampled) CMR

acquisitions lead to ill-posed inverse reconstruction problems.

Many techniques, such as compressed sensing (44, 45) or low-

rank-based reconstructions (26, 28), have been proposed to

tackle these undersampled problems. However, the non-linear

nature of the problems to be solved leads to long reconstruction

times, in addition to the parameter tuning required for an

optimal regularization. Several DL-based alternatives have been

proposed to overcome these limitations and enable not only

highly accelerated acquisitions in short reconstruction times

(32, 33, 46–51), but also a wide range or AI-aided solutions

for CMR segmentation (40) and analysis or outcome prediction

(52, 53) among others.

Beyond quantitative CMR, many of the ideas in these studies

have been successfully applied in MRF with the potential to be

employed in cardiac MRF. Some of the most interesting ideas in

AI along with their potential use in cardiac MRF are presented

in the following sections.

Artificial intelligence in cardiac MRF

Conventional cardiac MRF is a powerful technique for

quantitative parameter estimation. However, the computational

burden of dictionary generation and pattern matching grows

exponentially with the number of parameters considered.

Dictionary generation and pattern matching is especially

challenging for cardiac MRF as it must incorporate information

about subject-specific heart rate variability throughout the

scan. In addition, the short acquisition times required for a

cardiac MRF sequence to be feasible within a breath-hold

means high acceleration factors must be used, leading to

very highly undersampled k-space that must be reconstructed.

Furthermore, since cardiac MRF sequences are frequently

designed heuristically, it may be possible to further optimize

sequence design to both shorten scan times and provide better

discrimination between the parameters of interest. ML offers

the ability to solve these problems and it has been or has the

potential to be applied to each of these problems, to both speed

up acquisition and reconstruction and optimize MRF sequences

(see Figure 3).

Dictionary generation

Dictionaries are conventionally generated using Bloch

equation simulations or EPG calculations (16). The size of a

dictionary and thus the time required to generate it scales with

the sequence length (number of TRs) and the number of unique

parameter combinations considered. Indeed, the size and thus

time taken to simulate a dictionary grows exponentially with

the number of tissue properties considered. For example, the

dictionary for a 15 heartbeat T1, T2 cardiac MRF sequence

contained 26,680 parameter combinations with 750 TRs and

took 2.2min to generate (54). However, the dictionary for a

16 heartbeat T1, T2, T1ρ cardiac MRF scan contained signal

evolutions for 253,000 parameter combinations with 480 time

points (20) and can take ∼15min to generate using EPG

simulations on a standard multicore CPU-based workstation.

As mentioned above, cardiac MRF differs from regular

MRF as it uses ECG triggering to acquire signals during

the same cardiac phase, across different heartbeats, to reduce

artifacts from cardiac motion. This introduces a dependency of

the measured signal evolutions on the subject-specific cardiac

rhythm. Unlike MRF, where the pulse sequence is fixed and

dictionaries can be generated ahead of time and used for all

future scans, dictionaries for cardiac MRFmust be calculated for

each new scan using the measured RR intervals derived from

ECG data recorded during the scan. This problem is further

complicated when a more granular dictionary is required to

reduce quantization errors, or as the number of modeled or

encoded parameters is increased. This significant bottleneck

presents a barrier to clinical adoption where long computation

times for short scans hamper online parameter map generation

in a fast-paced clinical workflow.

ML offers the promise of learning a surrogate model that can

approximate the Bloch equations, turning dictionary generation

into a straightforward pass through a NN. This provides the

possibility of rapidly generating dictionaries in real-time, crucial

for subject-specific cardiac MRF scans. Furthermore, rapid

dictionary generation using ML makes it possible to quickly

simulate dictionaries that consider larger numbers of parameters

as well as aiding in applications such as sequence optimization

where many different dictionaries must be generated. In the

following sections we will explore in more detail studies where

ML has been applied to the problem of dictionary generation in

cardiac and non-cardiac MRF.

Fully connected feedforward neural network

A fully connected neural network has been proposed for

generating dictionaries for a 16 heartbeat T1 and T2 cardiac

MRF sequence (55). The network takes as input a 17-element

vector consisting of T1 and T2 parameters plus 15 RR intervals.

The input data, passes to two fully connected layers of 300

neurons, each followed by batch normalization and a ReLU

activation function. The final output layer consists of 1,536

outputs corresponding to the real and imaginary components of

the signal evolution of 768 TRs.

Tomodel heart rate variability, the network was trained with

dictionaries corresponding to 1,020 different cardiac rhythms.

The mean of the RRs for each dictionary was varied from 40 to

120 beats per min (bpm) with a step size of 5 bpm. Noise was

added to these RRs to simulate heart rate variability, with noise
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of standard deviation ranging from 0% to 50% of the mean RRs

for a given dictionary. In total 4,392 T1 and T2 combinations

were simulated for each dictionary resulting in ∼4.5 million

signal evolutions for training. In addition, missed ECG triggers

were modeled with a 5% chance of each beat being a missed

trigger, doubling the RR.

The network provided a significant time saving, generating

a dictionary of 26,680 T1 and T2 combinations in just

0.8 s compared to 158 s using Bloch equations. Monte Carlo

simulations were performed for a range of cardiac rhythms

where for each rhythm, 500 dictionaries were generated using

the network and the best-matching entry was found for a ground

truth signal representative of healthy myocardium. The root

mean square error (RMSE) for T1 and T2 for these simulations

was found to be 2% or lower except for low heart rates with

high variability. Further simulations, modeling up to 8 ECG

missed trigger events showed the RMSE values to always be

below 3%. The NN-generated dictionaries were also validated

using phantoms and on in vivo cardiac mapping in healthy

subjects. Maps constructed using the NN generated dictionaries

appeared similar to those generated with dictionaries fromBloch

equations, and there was 6.1ms bias for T1 and 0.2ms bias

for T2.

Significantly, this network focused on cardiac MRF,

considered a wide range of cardiac rhythms, mis-triggering

events, and evaluated the generated dictionaries on phantom

and in vivo data. However, the network only considered

sequences encoding T1 and T2. Further improvements could

extend this work to sequences encoding additional parameters.

Furthermore, rather than training the network solely on

simulated data, actual ECG data could be incorporated, thus

exposing the network to cardiac rhythms and parameter

combinations that may exist in real scans but may not be fully

represented in simulated training data.

Generative adversarial networks

A different approach using generative adversarial networks

(GANs) (56) has been applied to the problem of generating T1

and T2 dictionaries for MRF in the brain (57). This approach

consists of a generative network that is given T1 and T2

tissue parameters, sequence parameters and pure random noise

signals. It consists of 3 hidden layers of 128 neurons each

followed by ReLU activation functions and an output layer

with a hyperbolic tangent activation function with 1,000 output

elements, mimicking a fingerprint. The discriminator network

takes as input MR fingerprints, either generated by Bloch

simulations or the generator network. It has a similar internal

structure as the generative network, but it has an output layer

with a sigmoid activation function, that represents a probability

that the input fingerprint was simulated by Bloch equation

simulations. The two networks are trained together, acting as

two players in a min-max game, with the generator mimicking

fingerprints to fool the discriminator and the discriminator

improving such that it can distinguish between generated and

ground truth fingerprints.

Fingerprints for a total of 5,970 T1 and T2 combinations

were calculated using Bloch equations, each with 1,000 TRs. A

60:20:20 training, validation, test split was used to train and

evaluate the model.

The GAN-MRF model introduced in Yang et al. (57)

could generate a dictionary in 0.3 seconds with Python and

Tensorflow, compared to several hours using Bloch simulations

in MATLAB. Fingerprints synthesized by the GAN-MRF model

were compared to those from Bloch equation simulations for

white and gray matter and cerebrospinal fluid and provided a

goodmatch. A dictionary generated using the GAN-MRFmodel

was used to reconstruct in vivo T1 and T2 maps and compared

to benchmarkmaps reconstructed using a dictionary from Bloch

equation simulations. The maps showed little difference, with

RMSE of 0.55 and 2.66%, respectively for T1 and T2 maps,

respectively. Additionally, the scalability of this method was

tested by using coarser and finer dictionaries, compared to the

grid of parameter combinations used in training, to reconstruct

the in vivo maps. Again, good results were found with 1.69%

and 6.39% RMSE, respectively for T1 and T2 maps for the

coarse dictionary.

While the GAN-MRF model was only evaluated on brain

MRF sequences, a similar model could be trained for cardiac

MRF. However, GANs can be difficult to train due to the non-

convex nature of the min-max problem and mode collapse,

where the generator can learn a single pattern that seems the

most plausible to the discriminator, thus fooling it. This is

especially true when GANs are required to generate a wide

variety of outputs, as is the case in MRF dictionary generation.

Yang et al. (57) use regularization and a modified loss function

to counter these affects. However, this requires a model-specific

regularization parameter to be chosen. Also, convergence of the

GAN during training will likely be more elusive for cardiac

MRF due to increased variety in the fingerprints introduced

by many additional degrees of freedom as a result of cardiac

rhythm dependence.

Invertible neural networks

Invertible neural networks (INNs) (58) have also been

employed to generate fingerprints from parameters in addition

to predicting parameters from signal evolutions (59). Truly

INNs such as NICE (60) and RealNVP (61) (the latter based

upon real valued non-volume preserving transformations) are

constructed of coupling layers, are invertible by design and

have tractable Jacobian determinants and can thus easily be

trained. Ardizzone et al. extended the RealNVP architecture to

calculate posteriors for real-world inverse problems in natural

sciences (58). Using this framework, an INN based upon a
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RealNVP (61) architecture, with two reversible blocks and two

permutation layers, was trained on a T1 and fat fraction (T1-

FF) MRF sequence (62) for diseased skeletal muscle with 175

TRs. Within each invertible block, two fully connected layers

were used with 128 neurons, each followed by a ReLU and linear

activation function. Dictionaries encoding Fat fraction, T1,H2O,

T1,fat and B1 were simulated with 396,000, 6,720 and 26,880

entries used, respectively for training, validation and testing. As

well as providing good results for parameter matching when the

INN is evaluated in the backwards direction (see Section Pattern

matching), the estimated fingerprints were very accurate, with

inner products between predicted and reference fingerprints >

0.997 for the majority of parameter combinations.

However, this INN was trained for a non-cardiac

musculoskeletal sequence. Thus, it does not encode the

additional degrees of freedom due to heart rate variability

that is seen in cardiac sequences. Additionally, as with most

inverse problems, while there is a direct mapping from physical

parameters to signal evolutions, some information is lost in

this forwards process. Thus, the backwards process (estimating

tissue parameters from MRF signals) is often ambiguous, and

a single fingerprint could correspond to a range of parameter

combinations. Due to the cyclic nature of the INN and the

fact no latent space was used to encode this information that

is lost, large errors in this often-ambiguous backwards process

can result in larger errors in the well-defined forwards process,

hampering dictionary generation for some tissue combinations.

Finally, dictionaries generated using this INN for non-cardiac

MRF were not used to reconstruct in vivo data, nor was the

parameter estimation part of the network evaluated on in

vivo data.

Recurrent neural networks

RNNs, (see Figure 2) are capable of memorizing temporal

structures within sequences and are therefore good candidates

for dictionary generation in MRF. For instance, Liu et al. (63)

propose a RNN as a surrogate model for dictionary generation

for non-cardiac MRF. A novel feature of this network is that

it is capable of modeling MRF signal evolutions resulting

from different sequence parameters, in addition to encoding

dependencies on tissue parameters. To achieve this, their RNN

takes both tissue parameters and sequence parameters (such

as repetition times, flip angles and sequence length) as inputs,

and outputs MRF signal evolutions. Their RNN architecture

consists of three stacked gated recurrent units (GRUs) and a

linear layer, to generate the transversal magnetization and its

derivates for every nth echo. This RNN can generate a dictionary

three orders of magnitude faster than the snapMRF (25) GPU-

accelerated EPG simulation package. As the RNN can rapidly

generate both signal evolutions and derivative signals with

respect to tissue parameters it is an ideal candidate for sequence

optimization based upon Cramer-Rao lower bound (CRLB, see

Section Sequence optimization). Liu et al. demonstrate that by

using their RNN to optimize an MRF sequence, they improve

the relative error in reconstructed in vivo brain T2 maps from

12.75 to 3.63%. The key advantage of this RNN is that it

can generalize to predict fingerprints and their derivatives for

different sequence parameters, compared to most networks that

are trained for a specific sequence. However, the RNN was ∼24

times slower generating dictionaries than the network proposed

by Hamilton et al. (55). Extending the RNN to encode cardiac

rhythm dependence for cardiac MRF would likely require

significantly more training data, longer training times and a

model with more layers and parameters.

Undersampled reconstruction of
time-series MRF images

The next significant step in the MRF framework is the

reconstruction of acquired undersampled data. In the case of

cardiac MRF, there is a need to execute the sequence in a short

time (so it can be run within a breath-hold) and within short

acquisition windows (so there is minimal corruption by cardiac

motion). This usually translates into elevated acceleration

factors, which leads to very highly undersampled k-space

data of the order of 10x-102x and produces severely aliased

images at each timepoint. This can be alleviated by exploiting

redundancy in the acquired data, as in Cruz et al. (64, 65),

where a regularized low-rank high-dimensional patch-based

tensor is used to improve the reconstructed image quality

noticeably despite high undersampling factors, although this

adds computational expense.

Cardiac MRF could benefit from recent advances in

Deep MR quantitative imaging where end-to-end DL-based

approaches (66–71), reconstructing images and maps from k-

space data, have been explored. Although the literature on this

topic is vast, there are reviews that summarize much of this work

(41, 72). Some of the most relevant studies are mentioned here.

For instance, Jeelani et al. (73) propose a CNN, where

spatial and temporal information is exploited for fast end-to-

end myocardial T1 mapping, using MOLLI weighted images as

the network’s input. Cheng et al. (74) propose an unsupervised

end-to-end network for T1? mapping of knee cartilage.

The network has a compressed sensing loss function and

an unrolled approach with two chained networks, one to

generate reconstructed contrast-weighted images and another

for map generation. Their approach generates both maps and

contrast-weighted images from undersampled k-space data

and incorporates data consistency, the sparse prior of the

image and prior information provided by the signal model. By

using a compressed sensing loss function and training in an

unsupervisedmanner, their network eliminates the need for fully

sampled training data needed for supervised approaches, as is
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the case for MANTIS (67). A similar approach could be used for

cardiac MRF by replacing the map generation network with one

that incorporates cardiac rhythm dependencies.

The reconstruction process within cardiac MRF could also

benefit from the advances in dynamic MR reconstruction.

For instance, Qin et al. (75) propose a 3D Convolutional

recurrent neural network (CRNN) able to faithfully produce

CINE image reconstructions from 9x undersampled data, by

learning from information propagated along time dimension

and also through iterations.

A large number of scans are usually required for

optimal training of a NN, especially in multiparametric

CMR reconstruction with its dependency on subject-specific

cardiac rhythms during acquisition. Ulyanov et al. (76) propose

Deep Image Priors, a possible solution to this drawback. In

their work, they show that the structure of deep convolutional

generator networks can sufficiently capture enough image

statistics prior to any learning. Hence, inverse problems such

as MR reconstruction can be solved by randomly initializing a

NN’s parameters and searching for the optimal parameters to

accurately reconstruct an image from a single degraded input

image on an image-by-image basis. As a result, this eliminates

the requirement for a large number of scans for training data.

This method has already been successfully applied to dynamic

MR reconstruction (77) and T2 mapping from undersampled

data (78). Recently, low-rank subspace modeling has been

combined with a deep image prior for a cardiac MRF sequence

in a self-supervised framework (79). This results in improved

quality of reconstructed maps, reduced noise and aliasing

artifacts, enabling the sequence to be modified to both improve

scan efficiency and reduce motion artifacts.

Pattern matching

Conventionally, pattern matching or template matching for

MRF involves an exhaustive search of the dictionary receiving

as input the reconstructed time-series MRF images. For a given

voxel, the dot product between the measured signal and each

of the dictionary entries is calculated. In this way, a measured

fingerprint is matched to the most similar signal evolution in the

dictionary, and the voxel is assigned the parameter combination

corresponding to that entry. While this method can find the

globally optimal match from all simulated fingerprints, in the

case of cardiac MRF it first requires a subject-specific dictionary

to be generated which can require large amounts of storage.

Also, both the dictionary generation and dot product matching

become prohibitively computationally expensive as the size of

the dictionary grows with the number of parameters encoded in

the sequence or as the sampling along each dictionary dimension

becomes more granular. Dot product matching can also result

in quantization errors as parameter estimation is limited by the

discrete step sizes used in simulating the dictionary.

Improvements to conventional pattern matching have been

proposed. One approach, tested for dictionary sizes of 104

to 105, snapMRF (25), parallelizes dictionary generation and

pattern matching on the GPU and results in 10–100 times

speed-up for pattern matching compared to other open-source

packages. Singular value decomposition (SVD), where the

dictionary and observed signals are compressed in the time

domain and matching is then performed in the compressed

space, without sacrificing signal-to-noise ratio (SNR), has been

proposed. Accelerated dictionary search methods, including fast

group matching (80) and the Fast Library for Approximate

Nearest Neighbors (FLANN) (81), first group similar dictionary

entries and compare measured signals to representative signals

for these groups, which are successively pruned. In this way

only a portion of the total dictionary entries are searched

over, and fast dictionary matching proves to be almost two

orders of magnitude faster than an exhaustive search of the

dictionary. Similarly MRF-ZOOM (23), iteratively refines its

parameter estimation by searching over a more coarse version

of the dictionary.

However, in the case of cardiac MRF, these methods still

require a subject-specific dictionary to be generated, which

itself is a significant computational bottleneck. Further to this,

SVD requires the dictionary to be compressed and accelerated

dictionary matching techniques require some grouping of

dictionary entries, both of which must be repeated with each

new scan and thus dictionary for cardiac MRF. Finally, all these

methods depend on a dictionary and as a result they are limited

by the discrete sampling used when generating the dictionary.

DL-based methods additionally offer the promise of

completely bypassing the dictionary generation step, and to

generate MRF parametric maps in real time with continuous

variables. A NN can be trained as a surrogate model to learn

the mapping from measured signals to tissue properties. These

methods can transform the pattern matching step from an

optimization-based problem, the complexity of which grows

exponentially with the number of parameters modeled, to a

much faster forward pass through a network. DL methods either

work on a fingerprint-wise basis, reconstructing individual

fingerprints, or on a spatially regularized basis, reconstructing

a small patch of data and leveraging information from

neighboring fingerprints that is likely correlated. They are

typically trained on noiseless data from dictionaries or acquired

in vivo data where it is also possible for NNs to reduce the

amount of noise and aliasing in reconstructed maps compared

to conventional dictionary matching. In the following sections

we will discuss some of these different approaches for cardiac

MRF and non-cardiac MRF.

Fully connected networks

Fully connected neural networks (FCNN) have been

proposed to perform pattern matching on a voxel-wise basis
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for cardiac MRF (82), as well as brain, liver and prostate MRF

(83, 84) for T1 and T2 mapping. The network architectures

for all these approaches have an input layer consisting of

either the magnitude fingerprints or concatenating the real and

imaginary components of the fingerprint. These are followed

by a series of hidden layers, each with activation layers and a

final output layer with sigmoid activations for the regression

outputs, corresponding to the parameter values. The DRONE

(83) network for brain MRF and the network for brain, liver

and prostate (84) (hereafter referred to FCNN2) have just 2 and

3 hidden layers, respectively (300 and 256 neurons each layer,

respectively). However, the FCNN for cardiac MRF (82) must

also take as input 10 RR intervals, to model the dependency

of the measured sequence on the subject’s cardiac rhythm

during the acquisition. As a result, the network is much deeper

consisting of 18 hidden layers (300 neurons each) with skip

connections every 4 layers, beginning after the first hidden layer,

to prevent vanishing gradients during training.

The DRONE network was trained with 69,000 EPG-

generated signals with Gaussian noise added to the simulated

signals to promote robust learning. It was evaluated on in

vivo data reconstructed using a sliding-window approach

(85), which removes most of the artifacts due to the spiral

undersampling used. Other studies focus on directly training

on signals that include artifacts due to the non-Cartesian

undersampling artifacts from spiral trajectories used in cardiac

MRF. In an attempt to make more realistic training data in

a scalable manner, without acquiring in vivo data, the cardiac

MRF FCNN (82) used pseudo-noise from a pre-computed

library generated before training. The pseudo-noise library was

generated by simulating the data acquisition of random maps

using a spiral k-space trajectory and subtracting fully sampled

reference images from the undersampled images. The noise

patterns were then randomly scaled, phase shifted and added to

the simulated signals with no noise which were also randomly

phase shifted, resulting in simulated signals with pseudo-noise.

In total, 8 million signal evolutions were simulated across 4,000

different cardiac rhythms, and these were combined with 1.8

million pseudo-noise samples. A similar approach for generating

pseudo-noise for artifact patterns was used to generate training

data for the FCNN2 (84), making it possible for both of these

networks to take MRF images with undersampling artifacts

as input.

The DRONE network achieved relative errors of< 3% when

evaluated on simulated data with no noise but this increased

significantly in Monte Carlo experiments where the SNR was

varied, climbing to∼15% and∼48%, respectively for T1 and T2

at the lowest SNR. For themodels trained on undersampled data,

FCNN2 performed much better when trained using pseudo-

noise and achieved R2 ≥ 0.98 in phantom experiments and

good results on in vivo data>200 times faster than conventional

dictionarymatching. Equally, as is shown in Figure 4, the cardiac

MRF FCNN achieved good results, with R2 = 0.93 for T1 and

R2 = 0.95 for T2 and could quantify gridded sections of images

in < 400ms compared to 10 s with conventional methods and

without the need of a subject-specific dictionary that typically

takes 4min to generate.

Convolutional neural networks

As mentioned before, CNNs are commonly used in image

and pattern recognition and work by performing convolutions

using filters learnt during training. Therefore, they are excellent

candidates forMRF pattern recognition, where fingerprints have

repeating patterns and shapes encoding tissue parameters, and

fingerprints are spatially correlated due to tissue structure and

undersampling patterns in k-space.

One-dimensional CNNs have been proposed for brain MRF

(86, 87). A 1D residual CNN (87) was proposed consisting

of two 1D convolutional layers followed by 4 residual blocks,

with 1D CNN architecture and short-cuts, followed by a

max-pooling layer and two fully connected layers to give the

parameter outputs. The advantage of this network is that the

CNN architecture can learn patterns in the input signals, while

residual blocks allow the model to avoid vanishing gradient

problems as the model becomes sufficiently deep to effectively

learn the mapping from measured signals to parameters. The

network is trained using dictionary generated sequences and

a low-rank prior is exploited for signature restoration of in

vivo data before it is input into the network. The network

outperforms dictionary matching on synthetic maps without

undersampling as well as maps with 15% undersampling,

where it provides comparable results to a conventional low-

rank method (88). Importantly, the network produces T1 and

T2 maps in 1.6 seconds, 56 times faster than dot product

dictionary matching.

A further refinement of this method, HYbrid Deep magnetic

ResonAnce fingerprinting (HYDRA) (86) inspired by self-

attention and non-local NNs, modifies the architecture of the

previous network to include non-local operations. The non-

local operations capture long-range dependencies of the signal

in the temporal dimension, thus extracting global features which

would not be captured by convolutions alone that process one

local neighborhood at a time. Importantly, parameter estimation

for HYDRA is continuous and errors for predicted T1 and T2

are as small as ∼0.2ms, compared to errors of up to 4.5ms

due to discrete sampling every 10ms in the case of dictionary

matching. Song et al. demonstrate for noise-free synthetic data

that HYDRA outperforms dictionary matching and continuous

methods including the DRONE FCNN (83) and a standard 1D

CNN, with HYDRA having the smallest deviations and bias.

When applied to in vivo data where signature restoration using

a low-rank prior is performed, HYDRA outperforms dictionary

matching and other DL based methods for fully sampled,

15% undersampled and especially for 9% undersampled data

with variable density spiral trajectories. For undersampled data,
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HYDRA is also 4.8 times faster than a competing low-rank

method for parameter map generation (88).

Spatially regularized or spatiotemporal CNNs have also

been proposed for MRF (89, 90). These networks are

motivated by noisy reconstructions arising from fingerprint-

wise reconstructions, the fact that neighboring tissue properties

are likely correlated and that undersampling in k-space leads

to the signal from one pixel being distributed to several other

pixels. To determine parameter values at each voxel, these

networks take MRF image patches as input, a square grid of

fingerprints centered on the voxel. Initially, a spatiotemporal

CNN using 5x5xT image patches (5x5 image patches in image

dimension and length T corresponding to the size of the

fingerprints in the temporal dimension) was explored for T1 and

T2 brain MRF (89). The approach in training and evaluation

of this network differed from most studies, in this case ground

truth maps derived from separate T1 and T2 scans were used

instead of deriving these maps from dictionary matching using

the MRF scans. A sliding-window reconstruction (85) was used

to partially reconstruct the data and to obtain MRF images for

input into the network. Applying this method demonstrated that

the spatiotemporal CNN outperformed the DRONE (FCNN)

(83), a 1D CNN and spatiotemporal dictionary matching (91),

achieving the lowest RMSE and producing less noisy maps than

the fingerprint-wise networks.

This spatially-regularized network was extended by Balsiger

et al. (90), this time with a HxWxT image patch (see Figure 5)

using a database of 164MRF scans for a T1-FF sequence (62) that

gives 5 parametric maps. A non-uniform fast Fourier transform

(NUFFT) (92) was used to transform the data to image space

which led to some undersampling artifacts in the input data

to the network. This CNN achieved the best reconstruction

compared to dictionary matching, a fingerprint-wise RNN (93)

and a spatially regularized network (94) without introducing

artifacts. Additionally, this method generalized to anatomical

regions not previously seen during training.

A network combining residual channel attention blocks

(RCABs) and a U-Net (RCA-U-Net) has been also investigated

for brain MRF (95). The network improves upon U-Net

architectures by including RCABs at each layer of the U-

Net. These include channel attention blocks to focus on the

most informative features for parameter quantification, and

residual skip connections to allow more efficient flows of

information within the network. The U-Net itself includes 3

down-sampling and 3 up-sampling layers to extract spatial

information at different scales. The network is trained on

undersampled in vivo brain scans. Training data input into

the network are first head-masked and then passed through a

compression network for feature extraction and dimensionality

reduction. The performance of the RCA-U-Net was compared

to conventional dictionary matching, SVD matching (22), a 1D-

CNN (96) and spatially-constrained quantification network (94).

For the high acceleration rates used (8x and 16x), the RCA-U-

Net achieves improved accuracy compared to all the other state-

of-the-art methods with relative errors of <2%. In particular,

the RCA-U-Net provides accurate T2 estimation (1.4% error) for

standard scans with an acceleration factor of 16 when compared

to conventional dictionary matching (6.2% relative error).

Recurrent neural networks

RNNs, with their ability to memorize temporal structures,

have also been employed for pattern matching for brain T1

and T2 MRF sequences (93, 97) where signal evolutions evolve

continuously, there is redundant information and patterns are

repeated. Both Oksuz et al. and Hoppe et al. use Long Short-

TermMemory (LSTM) RNNs followed by fully connected layers

which lead to outputs for the parameter values on a voxel-

wise basis. Oksuz et al. also use GRUs equivalent to RNNs. The

RNNs provided good results, with the LSTM from Hoppe et al.

(97) outperforming a comparable CNN (96) method on in vivo

data and the networks in Oksuz et al. providing lower mean

absolute errors than the DRONE FCNN (83), a 1D CNN and

conventional inner product matching on EPG generated signals.

Invertible neural networks

INNs have been proposed for a wide range of inverse

problems in natural science (58). Inverse problems, such

as cardiac MRF parametric mapping generation, typically

involve determining physical parameters (x) from a set

of measurements (y). While the forward process from

parameters to measurements (Bloch equation simulations) is

well understood, the backward process, or inverse problem, from

measurements to parameters (parametric mapping generation)

is often ambiguous. Ideally, cardiac MRF sequence design

would make the inverse problem as unambiguous as possible,

but this becomes more challenging due to artifact noise from

undersampling and as the number of encoded parameters

increases. INNs are unique in that they jointly optimize the well-

defined forward problem and the ambiguous inverse problem

using the same network and weights. During training, a latent

space (z) is introduced that encodes information lost in the

forwards process, which then aids the network in the inverse

process, where the latent space is sampled over ([[y, z] →

x]), allowing it to disentangle ambiguous cases. It has been

demonstrated by Ardizzone et al. (58) that for INNs, learning

the forwards process and latent space dramatically improves

the accuracy of parameter estimation, compared to learning the

backward process alone.

Balsiger et al. (59) implemented an INN to perform

both dictionary generation and pattern matching on a voxel-

wise basis for musculoskeletal MRF sequences. In their

implementation training data simulated using the Bloch
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equations was augmented with Gaussian noise and no latent

space was used in the network. The INN consisted of two

reversible blocks, each followed by permutation layers, with

each reversible block using fully connected layers with 128

neurons each. Their INN accurately generated fingerprints

(inner product > 0.995) and significantly outperformed non-

invertible networks (83, 86, 93, 97) for the pattern matching

step, achieving mean relative errors for parameter estimation

ranging from 2 to 8%. Inferring parameter values for 1,000

fingerprints took just 50ms with the INN, comparable to other

ML based methods.

INNs offer multiple avenues for improvement which could

aid in using them for parametric mapping generation for cardiac

MRF. Conditional INNs could be used for cardiac MRF where

both the forward and backward processes in the INN could be

conditioned on subject-specific RRs. Additionally, the invertible

blocks within INNs can consist of any network architecture

and can therefore be adapted to use convolutional networks

to operate on image patches rather than on individual voxels.

Finally, by sampling the latent space, INNs can provide marginal

posterior distributions p(x|y, z) for each parameter of interest.

This could give insight into the uncertainty of parameter

estimation for cardiac MRF, the correlation between marginal

posterior distributions across parameters and innately measure

whether the signal from certain regions is multi-modal, due to

combinations of different tissues.

Complex-valued neural networks

Typically, the real and imaginary components of complex-

valued MRF signals are concatenated or input as 2-channels

into real-valued NNs. However, this approach neglects the phase

information and may lead to poorer reconstructions had the

phase been considered. To rectify this problem, Virtue et al.

(98) proposed a complex-valued NN for parameter estimation

in MRF that includes a complex cardioid activation function

sensitive to the input phase rather than the input magnitude.

Using a numerical brain phantom, they show that complex-

valued NNs outperform 2-channel real valued networks in the

majority of their experiments, suggesting the inclusion of phase

information aids in the reconstruction. Complex-valued NNs

have not been trialed for cardiac MRF and the adaptation of

previous methods to include complex-values could lead to better

pattern matching algorithms for cardiac MRF where data is

highly undersampled.

While each of the networks architectures shown here have

promising features that could be employed in cardiac MRF

pattern matching, most of these networks, with the exception of

the work from Hamilton et al. (82), are for non-cardiac MRF

sequences. Further work is needed to extend these networks

to cardiac MRF where the additional dependence of measured

fingerprints on the subject’s cardiac rhythm during the scan

must be considered. Additionally, many studies did not evaluate

their networks on in-vivo data but instead on simulated signals

(59, 93, 98), while some networks depended upon partially

reconstructed data for their inputs (83, 86, 87, 89), others

took data corrupted by undersampling artifacts (82, 84, 90,

95). Furthermore, most networks focused on fingerprint-wise

reconstruction (59, 82–84, 86, 87, 93, 97, 98), only a few of

the studies took advantage of the fact signals from neighboring

tissues are correlated due to undersampling by using spatial-

temporal networks (89, 90, 95). These points, combined with

the fact that each study considered a different sequence, makes

it hard to compare the performance of the different networks.

Ideally a standardized MRF-specific dataset could be used for

comparison across models.

Sequence optimization

AI has already been used in different stages of sequence

optimization in MRI, such as automatic generation of sequences

(99, 100), or in the search of more efficient sampling patterns

(101–104). In the field of MRF, due to the inherent flexibility of

its sequence design, there are essentially infinite combinations

of parameters such as flip angle trains, TR, TE, number of

RF shots, position and duration of magnetization preparation

pulses, and strength and waveform of gradients. As a result,

most of the cardiac MRF sequences proposed so far have been

designed heuristically.

An MRF sequence can be optimized in search of different

goals, such as better encoding power, higher accuracy, or

shorter scan times (i.e., higher efficiency). To quantify the

performance of a certain sequence on these areas, different

specific cost functions may be employed. The goal of a sequence

optimization strategy would then be the minimization of the

chosen cost function.

Given that parametric mapping in MRF is widely achieved

by pattern matching between the undersampled fingerprint

and the predicted dictionary, most optimization strategies have

focused on the minimization of the inner product between

these two signals (i.e., maximization of the encoding capability

of the sequence). Cohen et al. (105) explore four different

optimization algorithms to optimize the pattern of short TR

and FA trains in a constrained range. Sommer et al. (106) also

investigate the encoding capability of MRF sequences by inner

product minimization and a Monte Carlo simulation that tries

to consider the aliasing noise present in pattern matching by

adding Gaussian noise to the fingerprints. Noise and aliasing

artifacts were also taken into consideration in the optimization

approach proposed by Kara et al. (107).

MRF sequence performance can be analyzed in terms of

a cost function based on CRLB. This statistical tool looks for

the lower bound of the variance of unbiased estimators and

has been already utilized by MRF community to optimize FA

and TR patterns for optimal sequence design (108–111). Apart
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from statistical-based optimizers, physics knowledge could be

also included in the model, as in Jordan et al. (112).

All these algorithms work on the premise of a cost

function or optimizer that is iteratively minimized. However,

this is a computationally expensive task, and AI offers the

ability of speeding up this process. The RNN proposed by

Liu et at. (63) for dictionary generation is also employed to

develop a computationally efficient method to solve the CRLB

optimization. In their work, they optimize a flip angle train

of an MRF sequence given two target tissues by computing

the 14,000 necessary magnetization signals and their derivatives

with their proposed RNN in ∼10s, a reduction of two orders of

magnitude in runtime. NNs and supervised learning have also

been proposed for use in the joint sequence optimization and

image reconstruction frame for MRI [Loktyushin et al. (113)].

However, most of these works have been proposed on phantom

and in vivo brain MRF studies. Although efforts have been made

to optimize a 2D cardiac MRF acquisition pattern (21) from

a large number of simulated sequences, AI is yet to be fully

exploited for sequence optimization in cardiac MRF. Particular

problems within cardiac MRF sequence optimization, like RR

interval dependance or short acquisition windows, are potential

issues to be addressed with NN-based sequence optimization

algorithms and further investigation is required for this purpose.

Discussion

Current limitations

The possibilities and promising results shown in recent

years demonstrate that current advances in AI could become

part of the cardiac MRF workflow in the near future and help

its potential clinical adoption. However, there are still several

remaining challenges and limitations that need to be addressed

and understood before widespread implementation.

Data availability

The main obstacle that DL-derived techniques face in

medical imaging in general is data availability. The accuracy

of DL alg orithms heavily relies on the amount of data used

to train and validate these algorithms. Whereas, very large

databases (in some cases, containing millions of samples) can

be generated in other fields in AI, the amount of trainable

data available in CMR is several orders of magnitude smaller.

Huge efforts are underway to generate large databases of

CMR datasets, for example UK biobank or other open-

source datasets (114). However, libraries of multiparametric co-

registered scans (including k-space data) such as those that

could be obtained with MRF are yet to be constructed, especially

since multiparametric quantitative MR is not routinely carried

out in a clinical environment and k-space data is not

conventionally stored. Still, for AI applications to be of help in

the clinical routine, training databases should include not only

healthy subject data, but also incorporate multiparametric maps

corresponding to different pathologies. Currently, most cardiac

MRF studies in the literature are evaluated against healthy

subjects or a reduced cohort of patients, althoughHamilton et al.

(115) recently presented results clinically evaluating a specific

T1 and T2 cardiac MRF sequence. Nonetheless, this study was

carried out on a relatively small number of subjects (n = 68)

within a reduced age range. Cardiac MRF is further complicated

by its dependence on subject-specific cardiac rhythms during

the scan. This introduces an additional requirement for training

data to either sample a wide range of heart rates and variabilities

or the use of methods that rely on additional simulated data

across this parameter space. Crucially, further studies are needed

to generate larger clinical datasets.

The training dataset must not only be generalizable against

different diagnoses but must also be unbiased. Recent studies

have shown that the existence of imbalanced data may lead to

inaccuracies and underperformance over different population

groups, such as gender or race (116). Future studies such

as that of Puyol-Anton et al. (117) should be conducted to

further investigate the impact of biases and potential strategies

to address this so-called “fairness”, or lack thereof, in DL.

In addition to data availability and the issue of balanced

multicenter multiparametric training data, anonymization and

data protection are required conditions for the use of medical

data in research. These necessary privacy requirements hinder

sharing of locally generated data between different medical

institutions, leading to data silos. Model-sharing alternatives like

the distributed DL techniques proposed by Chang et al. (118)

and federated learning (118, 119), where algorithms are trained

without exchanging training data from different centers, need to

be explored further.

Reconstruction quality and fidelity

Given the lack of data availability, it is currently inevitable

that many DL-MRF reconstruction approaches are based on

simulated datasets. Nevertheless, for some applications, such as

DL for dictionary generation (where data can be generated by

EPG calculations or Bloch equations) this may be adequate. In

such cases, close attention needs to be paid to the accuracy of

the generated data, and its similarity to real data. The simulated

data should ideally include all sort of possible imperfections

that could be present in a real MRF acquisition. This implies

approximations such as perfect slice profile, field homogeneity

or hard RF excitation pulse should be disregarded, and instead

all the possible corrections should be included, even at the

cost of longer simulation times. Moreover, cardiac MRF-specific

features such as cardiac and respiratory motion, mis-triggering,

and an essentially infinite number of heart rate possibilities must

be taken into account in the simulations. In any case, as in any

other AI-based solution proposed for CMR, the algorithms need
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to be generalizable in different clinical settings such as vendors

or field strengths, and for this to happen wide multi-vendor

involvement is required.

Interpretability

Although novel DL algorithms have been shown to

outperform non-AI-based techniques, and results may be more

accurate in terms of quantitative metrics, it is often difficult to

understand how these predictions have been made and where

they come from. There are efforts to improve interpretability,

such as explainable AI (120), which tries to generate solutions

that can be more easily understood by the end user. However,

this so-called black-box problem (121) still needs to be addressed

so that the community can better comprehend what factors

contribute to the decision-making of a ML model in order to

better interpret its outputs.

Future perspective

In addition to the MRF-specific solutions that the presented

NNs offer, the advances in other more “traditional” directions

need to also be integrated in the cardiac MRF framework. In

this way, DL-based approaches for motion correction or fast

CMR acquisition and reconstruction, along with the inherent

versatility of cardiac MRF, would enable the extension of cardiac

MRF in the spatial (from 2D to 3D), temporal (from ECG-

triggered to motion-corrected free-running) and contrast (other

parametric maps apart from T1 and T2) dimensions.

In addition to the usual symbiosis between cardiac MRF and

ML, where ML is used as a tool to address problems faced in

cardiac MRF, such as sequence optimization and reconstruction,

this synergy can also be flipped and cardiac MRF could be

used as a tool in a ML-based field. There has been growing

interest in the use of multiparametric MRI to generate ML-

based risk prediction or stratification. Radiomics is an example

in this field (122), an approach where a set of medical images are

used as input to extract quantitative information by means of a

set of well-defined mathematical operations that are performed

to extract information of the distribution and neighborhood

relations of each pixel in the image of interest. These relations,

or features, can be used to feed an ML algorithm and provide

a quantitative analysis. Radiomics is a well stablished technique

in some medical imaging fields like oncology, and it has started

showing its potential for MRI and particularly CMR application

in the recent years (123), however reproducibility is still limited.

Conventionally, the input datasets used for CMR radiomics

are Late-Gadolinium Enhanced (LGE), CINE or contrast-

weighted semi-quantitative images (124–128). However, in

recent years quantitative information given by parametric

maps such as T1 and T2 have been employed, showing a

great potential (129–133). In most of these studies, only one

type of relaxation parameter is used for radiomics analysis.

Nevertheless, as in conventional quantitative CMR, stacking

multiparametric information could increase the diagnostic

power of radiomics, as shown by Baessler et al. (129, 130).

However, an accurate and robust multiparametric radiomics

analysis can only be performed when the different parametric

maps are perfectly aligned. This is where the multiparametric

information provided by cardiac MRF could become a more

robust input for radiomics applications, due to its inherent

spatial and temporal co-registration. Consequently, cardiac

MRF presents the potential to generate a multidimensional

dataset that may serve as an input to improve diagnostic

capacity of radiomics or other DL approaches for diagnosis

in CMR.

Conclusion

Cardiac magnetic resonance fingerprinting is increasingly

proven in its potential as a valuable tool for multiparametric

quantification on CMR. Its scalable ability to generate several

parametric maps within the same acquisition usually comes,

however, at the cost of sequence complexity and increased

reconstruction and dictionary generation times. This is further

aggravated by the CMR-specific problems, such as unpredictable

heart rate and cardiac motion. Nevertheless, recent advances

in AI applied to medical imaging have shown that, with the

correct understanding of the type of network required for the

specific problem and a sufficient amount of training data, NNs

are capable of solving many of these problems, much more

rapidly and to comparable accuracy as conventional methods.

Thus, the field of AI, which has experienced a rapid growth

in recent years, is expected to become part of cardiac MRF at

every step of its framework (sequence optimization, dictionary

generation, image reconstruction, parametric estimation and

analysis) and greatly contribute to the potential inclusion

of cardiac MRF in the clinical routine. Nonetheless, special

care needs to be taken to overcome the limitations that may

hinder this goal; aspects such as algorithm interpretability

and most importantly data availability need to be enforced

to ensure AI is used at its full capacity in cardiac magnetic

resonance fingerprinting.
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Cardiac MRF using rosette
trajectories for simultaneous
myocardial T1, T2, and proton
density fat fraction mapping

Yuchi Liu1*, Jesse Hamilton1,2, Yun Jiang1,2 and

Nicole Seiberlich1,2

1Department of Radiology, University of Michigan, Ann Arbor, MI, United States, 2Department of

Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States

The goal of this work is to extend prior work on cardiac MR Fingerprinting

(cMRF) using rosette k-space trajectories to enable simultaneous T1, T2, and

proton density fat fraction (PDFF) mapping in the heart. A rosette trajectory

designed for water-fat separation at 1.5T was used in a 2D ECG-triggered

15-heartbeat cMRF sequence. Water and fat specific T1 and T2 maps were

generated from the cMRF data. A PDFF map was also retrieved using

Hierarchical IDEAL by segmenting the rosette cMRF data into multiple echoes.

The accuracy of rosette cMRF in T1, T2, and PDFF quantification was validated

in the ISMRM/NIST phantom and an in-house built fat fraction phantom,

respectively. The proposed method was also applied for myocardial tissue

mapping of healthy subjects and cardiac patients at 1.5T. T1, T2, and PDFF

values measured using rosette cMRF in the ISMRM/NIST phantom and the

fat fraction phantom agreed well with the reference values. In 16 healthy

subjects, rosette cMRF yielded T1 values which were 80∼90ms higher than

spiral cMRF and MOLLI. T2 values obtained using rosette cMRF were ∼3ms

higher than spiral cMRF and ∼5ms lower than conventional T2-prep bSSFP

method. Rosette cMRF was also able to detect abnormal T1 and T2 values

in cardiomyopathy patients and may provide more accurate maps due to

e�ective fat suppression. In conclusion, this study shows that rosette cMRF has

the potential for e�cient cardiac tissue characterization through simultaneous

quantification of myocardial T1, T2, and PDFF.

KEYWORDS

cardiac MRF, T1 mapping, T2 mapping, PDFF, rosette trajectory

Introduction

Quantitative cardiac MRI is a powerful tool which can enable comprehensive tissue

characterization for cardiac disease diagnosis. In particular, T1 and T2 mapping in the

heart have been shown to be more sensitive to pathological changes than traditional

T1- and T2-weighted images, including in cases of myocardial inflammation, fibrosis,

myocarditis, infarcts, and edema, etc., (1–3). In addition, elimination of fat signals can

reduce errors in these quantitative maps caused by water-fat partial volume effects,
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and quantitative proton density fat fraction (PDFF) mapping

may provide additional value in diagnosing diseases like

intramyocardial fat infiltration (4, 5). Recently, studies have

shown that epicardial adipose tissue may play a role in COVID-

19 myocardial inflammation, and quantification of epicardial

fat volume may potentially aid evaluating this risk factor for

COVID-19 complications (6).

When collected as part of the clinical routine, T1 and

T2 mapping and fat imaging in the myocardium are often

performed in separate scans and thus require long scan times

with multiple breath holds. Multi-parametric mapping methods

such as cardiac Magnetic Resonance Fingerprinting (cMRF) (7)

are potentially more efficient because they can provide multiple

quantitative measurements in a single scan. Previously, the

Dixon method has been incorporated in the cMRF framework

using multi-echo radial acquisitions to enable T1, T2, and

PDFF quantification (8). Alternatively, rosette trajectories have

also been used in the cMRF sequence to achieve water-fat

separation along with myocardial T1 and T2 mapping (9).

Rosette trajectories can be designed to sample the center of

k-space multiple times during one readout, resulting in the

suppression of signals at certain off-resonance frequencies due

to dephasing. In other words, rosette trajectories can be used

to generate a “pass band” and “null band” in the spectral

dimension. This feature has been used for water-fat separation

(10), chemical shift encoding (11, 12), and simultaneous multi-

slice imaging (13). While the previous rosette cMRF work

achieved water-fat separation, quantification of fat fraction

was found unreliable due to the nature of the proton density

estimates generated by pattern matching (9). The goal of this

work is to extend rosette cMRF to enable quantitative PDFF

measurements using Hierarchical IDEAL along with myocardial

T1 and T2 mapping from a single scan.

Materials and methods

Pulse sequence design

A rosette trajectory with eight lobes and a readout duration

of 7.7ms (Figure 1A) was designed to suppress signals at

−220Hz (the main resonance frequency of fat at 1.5T). The

time optimal gradient design software package developed by

Vaziri and Lustig (14, 15) was used for the gradient waveform

design according to the following criteria: maximum gradient

amplitude 23 mT/m, maximum slew rate 145 T/m/s, FOV

300 × 300 mm2, matrix size 192×192, in-plane resolution

1.56 × 1.56 mm2. Simulation studies show that this trajectory

suppresses 94.7% of the signal at−220Hz (Figure 1B). This

readout trajectory was incorporated into a previously reported

15-heartbeat ECG-triggered cMRF sequence structure (9) with

flip angles ranging from 4 to 25 degrees. A constant TR of

9.7ms and TE of 1.39ms were used. A total of 26 repetitions

of this acquisition were collected at late diastole during each

heartbeat, resulting in an acquisition window of ∼250ms per

heartbeat and a total of 390 highly undersampled images

(one image per TR) over 15 heartbeats. The rosette trajectory

was rotated by the golden angle (111◦) between TRs. A slice

thickness of 8mm was employed in all phantom and in vivo

experiments. All data were acquired at the resonance frequency

of water.

Dictionary generation and image
reconstruction

An individual dictionary was simulated for each subject

that models the subject’s cardiac rhythm (7) and includes

corrections for slice profile and preparation pulse efficiency

(16). The dictionary resolution, denoted by min:step:max, was

(10:10:2000, 2050:50:3000 3200:200:4000 4500 5000) ms for T1

in the heart; (10:10:90, 100:20:1000, 1040:40:2000, 2050:50:3000)

ms for T1 in phantoms; (4:2:80, 85:5:120, 130:10:300, 350:50:500)

ms for T2 in the heart; (2:2:8, 10:5:100, 110:10:300, 350:50:1100)

ms for T2 in phantoms. The dictionary was compressed along

the time dimension using singular value decomposition (SVD)

(17). A threshold was set to preserve 99.9% of the signal energy,

resulting in the first six singular values retained.

The cMRF k-space data were first compressed along the coil

dimension using SVD to preserve 98% of the signal energy.

Then the k-space data were projected to the subspace derived

from the SVD of the dictionary as described above, resulting

in six “coefficient images” by applying the NUFFT (18). These

six coefficient images correspond to the six largest singular

values and aliasing artifacts are greatly reduced in them. When

rosette data are collected at the resonance frequency of water

(as described above), water signal is preserved, but signal from

fat is suppressed, resulting in images which depict water but

not fat. As in previous work (9), fat images were generated by

demodulating the acquired data at the resonance frequency of fat

with a single-peak fat model and then reapplying the projection

and NUFFT to the k-space data.

Additionally, a B0 map was computed by generating two

images with different echo times by gridding the first and second

halves of the readout (lobes 1–4 for echo 1 and lobes 5–8 for

echo 2) and calculating the phase difference of these two images

(9). B0 correction was performed on both the water and fat

coefficient images by demodulating the k-space data at a series

of frequencies from−150Hz to 150Hz with a step size of 5Hz.

The final B0 corrected image combines pixels demodulated at

the true resonance frequency according to the B0 map. The two

sets of B0 corrected coefficient images, one for water and one

for fat, were then matched to the compressed dictionary using

direct pattern match to generate the final T1 and T2 maps, and

proton density images for water and fat, respectively. For spiral
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FIGURE 1

The designed rosette trajectory and its spectral response. (A) The rosette trajectory used in this work, where the segments used to generate

images at di�erent echo times are indicated by di�erent colors. (B) Spectral response of the trajectory. Fat signals at −220Hz are suppressed to

5.3%.

cMRF data, similar dictionary generation and pattern matching

processes were performed without B0 correction due to the lack

of a co-registered B0 map.

To generate quantitative PDFF maps, the data were

processed as multi-echo acquisitions using Hierarchical IDEAL

(19) in a separate process from MRF reconstruction (pattern

matching was not involved). The 8-lobe trajectory was divided

into nine segments (Figure 1A). The first and the last segment

were half lobes going from the center to the edge of k-

space and rewinding from the edge of k-space back to the

center, respectively. The other seven segments started and ended

at the edge of k-space with a zero-crossing in the middle.

Because the images generated from single segments were highly

undersampled, an SVDwas performed along the time dimension

to reduce aliasing artifacts. Data from each segment were

projected onto a low-dimensional subspace of rank six derived

from the SVD of the dictionary as described above. Subspace

images corresponding to the first singular value from each of

the nine rosette segments served as multi-echo images. TE of

each echo was defined as the time of the zero-crossing of each

segment; the TEs of the nine echoes were: 1.39, 2.46, 3.4, 4.34,

5.28, 6.22, 7.16, 8.1, and 9.2ms. These multi-echo images and

their corresponding TEs served as the inputs to the Hierarchical

IDEAL toolbox. Note that B0 correction was not performed on

these multi-echo images prior to the IDEAL processing because

B0 fitting was already embedded in the IDEAL algorithm. A six-

peak fat model was used in the Hierarchical IDEAL algorithm

and outputs of the toolbox were a water image and a fat image.

A PDFFmap was calculated from the water and fat images using

a noise correction method (20) to reduce bias in the regions

where either water or fat image has low SNR according to the

following equation:

PDFF =
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where Mwater
0 and M

fat
0 are pixel-wise signal intensities

of the water and fat images generated from Hierarchical

IDEAL, respectively.

Phantom experiments

All experiments were performed on a 1.5T scanner (Siemens

Sola, Erlangen, Germany). Rosette cMRF data were collected in

the T2 layer of the ISMRM/NIST MRI system phantom (21, 22)

to validate the accuracy of water T1 and T2 quantification. The

mean and standard deviation of the T1 and T2 values within a

physiological range obtained using rosette cMRFwere compared

with gold standard values measured using inversion recovery

and single echo spin echo methods.

The accuracy of rosette cMRF in PDFF quantification was

validated using an in-house developed fat fraction phantom

(23). This phantom had one vial filled with peanut oil, one vial

filled with water solution, and the rest of the five vials filled

with a mixture of peanut oil and water solution to target a

range of PDFF values from 10% to 50%. The water solution

contained 43mM sodium dodecyl sulfate, 43mM sodium
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chloride, 3.75mM sodium azide, and 0.3mM gadolinium. For

all vials except for the one with pure peanut oil, agar (2% w/v)

was added over heat and the vials formed a solid gel after cooling

to room temperature. Note that super-paramagnetic iron oxide

was not added in this phantom compared to the original recipe

in (23). Considering imperfect operations which might cause

water solution and/or peanut oil losses in transfer, the actual

PDFF values were measured using a three-point GRE sequence

with optimal echo times at 1.5T (1.9/3.4/4.9ms). The three-point

GRE data were processed using the Hierarchical IDEAL toolbox

in the same way as for rosette cMRF 9-echo data, and the results

were used as the gold-standard PDFF values.

Both phantoms were scanned in an axial orientation using

a 20-channel head coil with simulated ECG signals at 60 bpm.

For both phantoms, ROIs in each vial were drawn manually.

The mean and standard deviation in T1 and T2 values in the

ISMRM/NIST phantom and PDFF values in the fat fraction

phantom for each ROI were compared to reference values using

a linear regression test.

In vivo experiments

Sixteen healthy subjects and two patients with suspected

cardiomyopathy were scanned after written informed consent in

this IRB-approved study. Mid-ventricular level short axis slices

in the heart were acquired using the proposed rosette cMRF

sequence and the original spiral 15-heartbeat cMRF sequence

with the same flip angle pattern and acquisition window (9).

Conventional T1 and T2 maps (MOLLI and T2-prepared bSSFP)

were also collected in twelve of the healthy subjects and patients.

The conventional scans are part of the Siemens MyoMaps

product and used the following parameters: FOV 300 × 300

mm2, matrix size 192 × 192, GRAPPA R = 2 and 6/8 Partial

Fourier acquisition. The 5(3)3 version of MOLLI was used

with an acquisition window of 285.2ms. The conventional

T2 mapping scan used a 1(3)1(3)1 acquisition scheme with

T2 preparation times of 0, 25, 55ms and an acquisition

window of 242ms. Shimming was performed over the volume

of the heart instead of the entire FOV to achieve better

B0 field homogeneity. For patient scans, rosette cMRF, spiral

cMRF and MOLLI were also performed ∼10min after contrast

agent injection.

ROIs over the myocardial wall were drawn manually in

segments 7–12 of the standardized AHA model. The mean and

standard deviation in T1 and T2 values of each ROI as well as

over the entire myocardium were calculated. In healthy subjects,

a student’s t-test was used to compare T1 and T2 measurements

using rosette cMRF, spiral cMRF, and conventional T1/T2

mapping sequences. Significant difference was considered with

P < 0.05.

To further investigate the effects of fat suppression on T1

and T2 measurements using rosette cMRF in vivo, a water-fat

“unseparated” situation was mimicked by combining the water

and fat information from the rosette trajectory. To this end,

using rosette cMRF data in all healthy subjects, the k-space

data demodulated at the fat frequency (fat signals with water

suppression) were added to the original acquired k-space data

(water signals with fat suppression). Then image reconstruction

and pattern matching were performed in the same way as for

spiral cMRF data. The mean and standard deviation in T1 and

T2 values of the ROIs described above were calculated and

compared with rosette and spiral cMRF measurements.

Results

Phantom data

In the ISMRM/NIST system phantom, T1 and T2

measurements using rosette cMRF are in excellent agreement

with the reference values (Supplementary Figure 1) (slope of

best-fit line 1.02/1.01 for T1/T2, R
2

>0.99). In the fat fraction

phantom, water and fat specific T1 and T2 maps, proton density

images, and the PDFF map generated by Hierarchical IDEAL

using the rosette cMRF data are shown in Figure 2. PDFF

measurements using rosette cMRF agree well with 3-point GRE

measurements (Figure 2B) (slope of best-fit line 1.07, R2 >

0.99). The water and fat specific T1 and T2 measurements in the

fat fraction phantom are shown in Supplementary Figure 2. T1

and T2 measurements are consistent across the vials regardless

of PDFF values (except in the high/low PDFF vials which have

too little signal for either water or fat).

Healthy subjects

Representative maps and images from one healthy subject

are shown in Figure 3. The averaged T1 and T2 values of all

subjects in each segment as well as in the entire myocardium

are shown in Figure 4. Over the entire myocardium, spiral

cMRF yielded similar T1 values (1,002 ± 50.6ms) compared

with MOLLI (996.5 ± 20.1ms) while rosette cMRF generated

significantly higher T1 values (1,081.1 ± 31.8ms). Both

spiral and rosette cMRF yielded significantly lower T2 values

(spiral 37.4 ± 2.8ms; rosette 40.5 ± 1.4ms) compared

with the conventional method (45.7 ± 2.2ms) over the

entire myocardium., and rosette cMRF generated significantly

higher T2 values than spiral cMRF. Averaged PDFF over the

myocardium was 0.4% among all subjects (ranging from −4.5%

to 5.7%). Individual PDFF of the sixteen healthy subjects are

shown in Figure 5.

In most of the individual segments (AHA segments 8-12),

T1 and T2 values measured by the three methods show similar

trends as in the entire slice. Spiral cMRF generated similar

T1 values compared with MOLLI except for segment 7 and 8;
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FIGURE 2

Results in the fat fraction phantom. (A) Water and fat specific T1 and T2 maps, proton density images, and the PDFF map generated by

Hierarchical IDEAL using the rosette cMRF data. (B) PDFF measurements using rosette cMRF compared with reference values.

FIGURE 3

Representative T1 map, T2 map, water image, fat image, and PDFF maps in a healthy subject. T1 and T2 maps measured by spiral cMRF and

conventional methods are shown for comparison. The field-of-view has been cropped to 150 × 150 mm2 to better visualize the heart.

rosette cMRF generated significantly higher T1 values compared

with both MOLLI and spiral cMRF throughout all segments.

Both spiral and rosette cMRF yielded significantly lower T2

values compared with conventional method throughout all

segments. Rosette cMRF generated significantly higher T2

values than spiral cMRF in all segments except for segment
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FIGURE 4

T1 and T2 values in 16 healthy subjects measured using conventional methods, spiral cMRF, and rosette cMRF. Measurements in segment 7–12

as well as over the entire myocardium are shown. *Significant di�erence between spiral and rosette cMRF. †Significant di�erence between

conventional method and spiral cMRF. ‡Significant di�erence between conventional method and rosette cMRF.

FIGURE 5

Individual PDFF over the myocardium measured using rosette

cMRF in 16 healthy subjects.

7. A cyclic pattern was noted in T1 and T2 measurements

across the segments using all three methods, with lateral

T1 and T2 slightly lower than septal ones. Variations in

T1 and T2 across the segments are most pronounced in

spiral cMRF (T1 ∼170ms; T2 ∼6.6ms), but smaller in

rosette cMRF (T1 ∼70ms; T2 ∼4.4ms) and conventional

methods (T1 ∼38ms; T2 ∼3.2 ms).

With fat signals added back, the averaged rosette cMRF T1

measurements in segment 7 in all healthy subjects decreased

from 1033.6 ± 48.4ms to 1016 ± 85ms; averaged T2 increased

from 39.8 ± 3.6ms to 43.5 ± 4.6ms. A comparison of T1

and T2 measurements in all segments as well as the entire

slice between spiral cMRF, rosette cMRF (with fat suppression),

and rosette cMRF with fat signals added back is shown in

Supplementary Figure 3.

cMRF maps in patients

Figures 6, 7 show the pre- and post-contrast maps and

images from one patient with cardiomyopathy, respectively.

Elevated native T1 and T2 were observed using all three

methods. PDFF over the myocardium measured by rosette

cMRF pre- and post-contrast are 2.7 and 1.3%, respectively. Pre-

and post-contrast results for the second patient are shown in

Figures 8, 9. Myocardial PDFF measured by rosette cMRF pre-

and post-contrast are 4.2 and 2.9%, respectively. Spiral cMRF

maps exhibit blurring, especially in the T2 maps, caused by

epicardial fat; rosette cMRF was able to achieve much clearer

boundaries of the myocardium due to fat signal suppression.

Discussion

The current study is an extension of previous work which

used rosette cMRF for water-fat separation in addition to T1 and

T2 mapping. The rosette trajectory originally designed for water-

fat separation at 1.5T was optimized to improve off-resonance

fat signal suppression from 86.5 to 94.7%. Note that the rosette

trajectory was redesigned for PDFF measurement as compared

to the trajectory used in (9), and thus all phantom and in vivo

results presented here have no overlap with those reported in

the previous work. A segmentation strategy was used to generate

nine single echo images from each rosette readout, which could

be used in conjunction with the Hierarchical IDEAL algorithm

to enable PDFF quantification with no penalty in acquisition

time. The first SVD coefficient images were used as the inputs

to IDEAL in this work. Even though additional T1 and/or
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FIGURE 6

Pre-contrast results in the first cardiomyopathy patient acquired using rosette cMRF, spiral cMRF, and conventional methods. T1 and T2 values

over the entire myocardium are shown in the maps.

FIGURE 7

Post-contrast results in the first cardiomyopathy patient acquired using rosette cMRF, spiral cMRF, and conventional methods. T1 and T2 values

over the entire myocardium are shown in the maps.

T2 corrections to these images were not found necessary for

the specific sequence used in this study, potential T1 and T2

weighting of these images depending on the specific sequence

structure (e.g. flip angles, magnetization preparation modules)

might cause inaccuracy in PDFF quantification especially for low

or high T1 (or T2) values. In contrast, the previous work was able

to generate qualitative water and fat images but not quantitative

PDFF maps; while the attempt was made to calculate PDFF

maps from the water and fat proton density images generated

by pattern matching, these values were found to be inaccurate,
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FIGURE 8

Pre-contrast results in the second cardiomyopathy patient acquired using rosette cMRF, spiral cMRF, and conventional methods. T1 and T2

values over the entire myocardium are shown in the maps. The field-of-view has been cropped to 150 × 150 mm2 to better visualize the heart.

FIGURE 9

Post-contrast results in the second cardiomyopathy patient acquired using rosette cMRF, spiral cMRF, and conventional methods. T1 and T2

values over the entire myocardium are shown in the maps. The field-of-view has been cropped to 150 × 150 mm2 to better visualize the heart.

as these proton density images derived from the scaling factors

between the signal time courses and the dictionary entries are

not quantitative maps of proton density. In this work, a similar

calculation relying on proton density images for PDFF using the

newly designed rosette trajectory again resulted in inaccurate

values (Supplementary Figure 4).

Other studies have explored water-fat separation and PDFF

quantification using the MRF framework in static organs

(24–28) and in the heart. For example, Dixon-cMRF using

multi-echo radial readout has been proposed to quantify T1,

T2, and PDFF simultaneously in the heart (8, 29). Compared to

rosette cMRF, Dixon-cMRF generated comparable myocardial
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T1 (1032ms) and T2 (42.1ms) in healthy subjects in a similar

acquisition time (∼15 s) with slightly larger voxel size (2 ×

2 × 8 mm3 in healthy subjects and 1.8 × 1.8 × 8 mm3

in patients). While Dixon-cMRF employed a different water-

fat separation algorithm (graph cut) for PDFF quantification

compared to the current study that used Hierarchical IDEAL,

similar PDFF values were observed in healthy subjects (1.3%

in the septum). Negative PDFF values were observed in the

myocardium (Figure 5) due to the noise correction method

performed in this study (20). When used in tissues with

no fat content, this correction results in mean PDFF values

of zero (with both positive and negative values possible).

Unlike other MRF studies including Dixon-cMRF, advanced

reconstruction methods such as low-rank reconstruction were

not used in the current study to avoid long computation times

with B0 correction. In this work, direct pattern match with

SVD along the time dimension in conjunction with rosette

MRF yields good image and map quality without the need

for advanced reconstruction techniques. Incorporating low-rank

reconstruction yields slightly smaller standard deviations in the

T1 and T2 measurements with almost identical mean values and

image quality at a price of much longer computing time (data

not shown here).

T1 and T2 valuesmeasured by spiral cMRF and conventional

methods in a large cohort of healthy subjects (n = 58) at

1.5T have been reported previously (30). Over the entire mid-

ventricular slice, the current study found T1 values very close to

the previous report and T2 values slightly lower in both spiral

cMRF and conventional measurements. The trend that spiral

cMRF with confounding factor corrections yielded higher T1

values than MOLLI and lower T2 values than T2-prep bSSFP

method is also consistent with previous reports (16, 30). Similar

to the previous rosette cMRF work (9), the current study found

that rosette cMRF yielded ∼3ms higher T2 values than spiral

cMRF over the entire myocardium. However, the significant

difference between rosette and spiral cMRF T1 measurements

observed in the current study was not found previously, possibly

due to a much smaller number of subjects in the previous

work (9).

While the previous rosette cMRF work only reported T1

and T2 values over the entire myocardium, the current study

also examined each AHA segment of the mid-ventricular slice.

Interestingly, segment 7 shows more pronounced difference in

T1 measurements and an opposite trend in T2 measurements

compared to the other segments regarding the comparison

between spiral and rosette cMRF. Given that segment 7 (anterior

wall) is surrounded by more epicardial fat than the other

segments in the healthy subjects, and fat has T1 of 300∼370ms

(lower than myocardium) and T2 of ∼53ms (higher than

myocardium) at 1.5T (31), the higher T1 and lower T2 measured

by rosette cMRF are possibly due to reduced fat contamination

and may potentially be more accurate compared to spiral cMRF

measurements. This hypothesis was also verified by the fact that

T1 in segment 7 was decreased and T2 was increased when fat

signals were added back to rosette cMRF data retrospectively

(Supplementary Figure 3). The fact that rosette cMRF yielded

smaller variations in T1 and T2 across cardiac segments

compared to spiral cMRF (Figure 4) could also be evidence of

effective fat signal suppression and more reliable T1 and T2

mapping. Note that difference between spiral and rosette cMRF

measurements was still observed after fat signals were added

back to the rosette data, indicating fat is not the only factor

causing the difference. B0 field inhomogeneity, which was not

modeled in this simulation, might play a role because it causes

blurring in spiral images but signal loss in rosette images. Spiral

and rosette trajectories may also react to flow differently due

to their different gradient waveforms and gradient moments,

resulting in variations in T1 and T2 measurements.

Preliminary results from cardiomyopathy patients are

shown in this study. Both spiral and rosette cMRF were able

to detect abnormal T1 and T2 values, while rosette cMRF

potentially provided better image quality by suppressing fat

signals in the water T1 and T2 maps. Studies with a larger cohort

of cardiac patients are on-going to validate the proposedmethod

in a variety of cardiac diseases.

In addition to T1 and T2, T
∗
2 is also an important tissue

property reflecting iron load in the myocardium (32). Given

the multi-echo acquisition nature of rosette trajectories, T∗2
quantification in the heart and liver has been shown feasible

using rosette trajectories (33). Even though the current study

did not aim at T∗2 quantification and thus used a relatively

short rosette readout, future work will explore the quantification

of T1, T2, T
∗
2 and PDFF simultaneously using either a long

rosette readout (34) or multi-echo radial readout (35) in the

MRF framework.

There are a few limitations of the current study. First, even

though the accuracy of PDFF quantification was validated in fat

fraction phantoms, in vivo validation of PDFF measurements

was not performed due to unavailability of the clinical PDFF

mapping sequences. Second, repeatability of rosette cMRF was

not tested in healthy subjects. Third, the image quality in

patient data was not assessed by cardiologists using a systematic

approach such as a Likert scale. Future studies will aim to address

these aspects.

Conclusion

In conclusion, rosette cMRF is a promising method

for efficient cardiac tissue characterization through the

simultaneous quantification of myocardial T1, T2, and PDFF.
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Late gadolinium enhancement (LGE) with cardiac magnetic resonance (CMR)

imaging is the clinical reference for assessment of myocardial scar and

focal fibrosis. However, current LGE techniques are confined to imaging

of a single cardiac phase, which hampers assessment of scar motility and

does not allow cross-comparison between multiple phases. In this work,

we investigate a three step approach to obtain cardiac phase-resolved LGE

images: (1) Acquisition of cardiac phase-resolved imaging data with varying

T1 weighting. (2) Generation of semi-quantitative T*1 maps for each cardiac

phase. (3) Synthetization of LGE contrast to obtain functional LGE images. The

proposed method is evaluated in phantom imaging, six healthy subjects at

3T and 20 patients at 1.5T. Phantom imaging at 3T demonstrates consistent

contrast throughout the cardiac cycle with a coe�cient of variation of 2.55 ±

0.42%. In-vivo results show reliable LGE contrast with thorough suppression

of the myocardial tissue is healthy subjects. The contrast between blood

and myocardium showed moderate variation throughout the cardiac cycle in

healthy subjects (coe�cient of variation 18.2 ± 3.51%). Images were acquired

at 40–60 ms and 80 ms temporal resolution, at 3T and 1.5, respectively.

Functional LGE images acquired in patients with myocardial scar visualized

scar tissue throughout the cardiac cycle, albeit at noticeably lower imaging

resolution and noise resilience than the reference technique. The proposed

technique bears the promise of integrating the advantages of phase-resolved

CMR with LGE imaging, but further improvements in the acquisition quality are

warranted for clinical use.

KEYWORDS

cardiac magnetic resonance (CMR), T1 mapping, LGE imaging, myocardial tissue

characterization, magnetic resonance imaging, MRI sequence development
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1. Introduction

Late gadolinium enhancement (LGE) is the clinical gold

standard for assessment of myocardial viability (1, 2) forming

an integral part of clinical work up for a wide range of ischemic

and non-ischemic cardiomyopathies (3). LGE imaging enables

the depiction of myocardial scar by visualizing the retention of

a gadolinium based contrast agent. Imaging is performed 10-

to-20 min after contrast injection and data is typically acquired

during the diastolic quiescence to minimize motion artifacts. In

LGE imaging, an inversion recovery sequence is used, where the

inversion time is selected to null the signal from the healthy

myocardium. This facilitates high contrast of scar tissue as

hyper-enhancement against a dark background.

In addition to LGE imaging, most routine clinical cardiac

MRI protocols comprise the acquisition of CINE MRI (4, 5).

In these scans, data is sampled throughout the cardiac cycle

and either prospectively or retrospectively binned into different

cardiac phases (6). This allows for reconstruction of phase-

resolved images throughout the cardiac cycle. Thus, cine images

enable the detailed depiction of cardiac motion, allowing for the

quantification of functional parameters and visual assessment of

wall motion abnormalities (7).

Thus, LGE and CINE imaging acquisitions differ in terms of

their timing and contrast requirements. While CINE imaging is

acquired through the cardiac cycle with a steady-state contrast,

LGE imaging aims for a particular inversion contrast which

is typically specified to coincide with an imaging window in

diastole. Nonetheless, acquisition of LGE images at cardiac

phases other than end-diastole has proven to be advantageous

under certain conditions, as it offers the potential to more

clearly depict concealed scar tissue (8, 9). However, due to

the use of inversion recovery in traditional LGE imaging,

scans are restricted to a single cardiac phase to provide the

desired imaging contrast. This inherent limitation prevents

joint evaluation of scar and wall motion with traditional LGE

sequences. Thus, even though CINE and LGE imaging are

the cornerstones of CMR and routinely evaluated alongside

each other (3), separate scans are required to comprehensively

characterize the myocardium. This not only leads to long scan

protocols but also impedes evaluation: Information needs to be

fused from separate scans in order to evaluate functional and

viability information together. Obtaining phase-resolved LGE

images on the other hand has been a long standing aim in cardiac

MRI (10, 11) as it may allow for joint evaluation of wall motion

abnormalities and viability in a single scan. However, the need

for consistent LGE contrast throughout the cardiac cycle has

prevented its implementation so far.

Myocardial T1 mapping was introduced as an alternative

for myocardial tissue characterization (12, 13). While sensitivity

to ischemic scar remains a subject of ongoing debate (14),

native T1 mapping was demonstrated to provide clinical

value in numerous cardiomyopathies (15). Advanced sequence

developments have most recently enabled the quantification of

myocardial T1 throughout the cardiac cycle (16–19). Multiple

methods have been proposed, including Temporally resolved

parametric assessment of Z-magnetization recovery (TOPAZ)

(16), phase-resolved cardiac magnetic resonance fingerprinting

(MRF) (17, 19), cardiac magnetic resonance multi-tasking (20),

and multi-contrast CINE MRI (18). Furthermore, utility of

quantitative or semi-quantitative T1 relaxation information

to synthesize LGE imaging contrast has also been explored,

showing that synthetic LGE can circumvent the sensitivity to a

predefined inversion time that may lead to residual myocardial

signal and hamper identification of scar (21–24).

The aim of this study is to integrate these recent

developments and enable cardiac phase-resolved LGE

imaging with consistent contrast throughout the cardiac

cycle. Three steps are proposed to provide phase-resolved

viability information in a single scan: First, multiple images

with different T1 weighting are acquired for each cardiac phase,

extending on our previously developed TOPAZ technique.

Second, semi-quantitative phase-resolved T1 maps are obtained

from this multi-contrast CINE data. Finally, images with the

desired LGE imaging contrast are retrospectively synthesized

for each cardiac phase, in such a way that the scar is depicted

as hyper-enhancement against a dark background of healthy

myocardium. Phantommeasurements are performed to validate

the technique, and image quality is tested in several healthy

volunteers and patients at 3T and 1.5T, respectively.

2. Materials and methods

2.1. Sequence

Figure 1 depicts the sequence diagram of the proposed

acquisition scheme, which builds on our recently developed

TOPAZ technique (16). In the proposed sequence, the following

steps are implemented: (1) The magnetization is driven to

pulsed steady-state with continuous FLASH acquisitions. (2)

Magnetization inversion is performed. (3) FLASH images are

acquired continuously throughout the inversion recovery until

pulsed steady-state is re-reached. The magnetization inversion

and the imaging readout are prospectively triggered to the R-

wave of the ECG to obtain Look-Locker experiments. Low

imaging flip angles are used to ensure that the recovery to the

steady-state spans two heart beats. In turn, this leads to two

points on the inversion curve, separated by an R-R interval,

for each inversion pulse. The same Look-Locker experiment is

then repeated multiple times, to fill the acquisition k-spaces of

all cardiac phases. To ensure an uninterrupted pulsed recovery

curve, dummy pulses with no associated imaging readout are

performed after the acquisition window. The dummy pulses are

played until the R-wave is detected, to ensure there is no gap

in pulses before the acquisition window. In the presence of R-R
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FIGURE 1

Sequence diagram of the proposed functional LGE sequence. Prior to the inversion pulses shown, magnetization is driven to pulsed steady-state

via repeated FLASH pulses. Subsequently, an adiabatic pulse is performed to invert the magnetization. Then, contiguous FLASH imaging pulses

are played to read out the magnetization during its re-recovery to the pulsed-steady state. The acquisition is segmented, thus, multiple inversion

pulses are required to fill the k-space for each cardiac phase. In order to ensure a dense sampling of the inversion recovery curve for each

cardiac phase, the Look-Locker experiment is then repeated multiple times with varying inversion pulse o�set with respect to the R-wave. As the

recovery to the pulsed-steady state spans across two RR-intervals, for each cardiac phase i two inversion times TIij are acquired per inversion

pulse o�set. Thus, a total of 1 ≤ j ≤ 6 inversion times, are acquired per cardiac phase for three inversion pulse o�sets. Due to the limited number

of inversion pulse o�sets, a di�erent sampling of the inversion recovery curve is realized for each cardiac phase, as indicated in the top right

panels. Following the acquisition, a semi-quantitative inversion recovery model is fit on these multiple inversion points per cardiac phase to

synthesize LGE contrast with suppression of the healthy myocardial tissue.

variability, this leads to a variable number of dummy pulses. This

way no deviation from the pulsed recovery model occurs and

the magnetization is consistently driven to a pulsed steady state,

even in the presence of variable R-R durations. The acquisition

window, i.e., the time window during an R-R interval in which

the prospective data acquisition is performed, is specified to

a fixed duration when planning the sequence. Typically the

acquisition window duration was chosen around 90% of the R-R

interval. (4) The overall experiment is further repeated multiple

times while varying the position of the inversion pulse relative

to the R-wave. Changing this inversion pulse offset, i.e., the time

period between the detection of the R-wave and the application

of the inversion pulse, leads to a different time between any given

cardiac phase and the preceding inversion pulse. Thus, it enables

the acquisition of multiple points on the inversion recovery

curve. In the proposed sequence three inversion pulse offsets

are acquired. Sampling the inversion recovery curve for each

cardiac phase, in turn, allows for semi-quantitative assessment

of the longitudinal recovery time and generating synthetic LGE

images, as explained below.

For accurate T1 mapping in the TOPAZ sequence,

a three-parameter fit model had to be used to correct

for B+1 -dependent attenuation during the Look-Locker

readout. However, in the proposed functional LGE imaging

technique, absolute quantification of T1 or an accurate

estimation of B+1 are not required, to achieve qualitative

LGE contrast after synthetization. Thus, a two-parameter fit

model can be employed under the assumption of complete

magnetization inversion:

S(TI) = A

(

1− 2e
−

TI
T∗1

)

, (1)

where S(TI) is the voxel intensity at inversion time TI , and A

and T∗
1 are model fit parameters, with the latter denoting the

apparent T1 time. Fitting has been performed in a custom tool

implemented in C using a Levenberg-Marquardt algorithm from

the levmar toolbox for non-linear least-squares fits (25).

Following the fitting procedure, the synthetic LGE image

is then generated by applying the following equation voxel-by-

voxel:

Ssyn(Tsyn) = A

(

1− 2e
−

Tsyn

T∗1

)

, (2)

where Ssyn is the synthesized signal, and A and T∗
1 are

the parameters as obtained from the voxel-wise model fit

in Equation (1). Tsyn is the synthetic inversion time that

is retrospectively chosen to null the signal of the healthy

myocardium. A single virtual inversion time is used for all

cardiac phases in order to provide consistent LGE contrast and

enable cross comparison among the phases.
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TABLE 1 Sequence parameters of the proposed functional LGE sequence at 1.5T and 3T.

Functional LGE Conventional LGE

1.5T 3T 1.5T 3T

Sequence type FLASH FLASH FLASH bSSFP

TE (ms) 3.2 2.6 4.9 1.1

TR (ms) 6.7 5.0 10.0 2.6–2.8

Flip angle 6◦ 3◦ 30◦ 50◦

GRAPPA 2 2 1 2

Partial fourier 6/8 6/8 1 1

Averages 1 1 1 8

In-plane resolution (mm2) 2.1× 2.1 1.9× 1.9 2.1× 2.1 1.6× 1.6

Slice thickness (mm) 10.0 10.0 10 8.0

Temporal resolution (ms) 80 40–60 N/A N/A

Number of inversion times 6 6 1 1

Field of view (mm2) 225× 300 225× 300 300× 300 270× 360

Number of heart beats 18 18 12 16

Breath-hold duration (s) 15–18 17–19 10–12 14–16

Time between inversion pulses (heart beats) 2 2 2 (PSIR) 2 (PSIR)

N/A indicates not applicable.

2.2. Simulations

Numerical simulations have been performed to assess the

noise resilience at different cardiac phases acquired with the

proposed method. Noisy Bloch simulations were performed

with a simulated heart rate of 60 bpm. The post-contrast

myocardial T1 time was simulated between 350 and 650 ms.

The remaining sequence parameters were chosen to match the

phantom and in vivo experiments at 3T (Table 1). The noise level

was chosen to simulate a baseline SNR of 20 and N = 1,000

repetitions were performed. The coefficient of variability was

assessed as the standard deviation of the obtained, apparent T∗
1

over its mean.

2.3. Phantom experiments

Phantom experiments were conducted on a 3T Siemens

Magnetom Prisma (Siemens Healthcare, Erlangen, Germany)

scanner. Imaging was performed with a 30-channel receiver

array. The imaging parameters for the functional LGE sequence

are listed in Table 1. As previously proposed for TOPAZ (16),

flip-angle and TR were chosen using numerical optimizations to

obtain an ideal trade-off between signal strength and relaxation

rate of the pulsed recovery curve. Two sets of phantom

experiments were performed, to study the CNR across the

cardiac cycle, and to investigate the effect of different heart

rates, respectively.

For the first set of phantom experiments two spheres filled

with Gadolinium-doped agarose gel were used. The spheres were

constructed to be approximately representative of post-contrast

T1 times in the blood pool and the healthy myocardium [T1

= 489 ms, 910 ms, respectively, (26)]. The synthetic inversion

time was set to Tsyn = 567 ms in order to null the signal

in the sphere representative of the myocardium. Imaging was

performed with a simulated ECG at 60 bpm. Ten repetitions

of the functional LGE sequence were acquired in the phantom

setting. The contrast-to-noise ratio (CNR) was assessed between

manually drawn ROIs in the two spheres. Due to the non-linear

processing, noise was defined as pixel wise variability across

the ten repetitions. The contrast homogeneity was quantified

by analyzing the coefficient of variance (CoV) of the CNR

throughout the simulated cardiac cycle.

In the second set of experiments, a bottle phantom was

imaged at various simulated heart rates. Tsyn was chosen to

null the compartment with the longer T1 time. Heart rates

between 50 and 90 bpmwere simulated and five repetitions were

acquired for each heart rate. The signal in the other phantom

compartment was compared across the different heart rates.

2.4. In-vivo experiments

The imaging protocols were approved by the respective

local institutional review boards. Written informed consent was

obtained from each subject prior to examination.

Three in vivo cohorts have been scanned in this study.

First, six healthy subjects (4 male, 2 female, 40 ± 19 years

old) have been scanned at 3T (Magnetom Prisma, Siemens

Healthineers, Erlangen, Germany). Second, 20 patients (13male,

7 female, 50 ± 16 years old) were imaged on a 1.5T scanner

(Avanto Fit, Siemens Healthineers, Erlangen, Germany). In this
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cohort patients with suspected or confirmed coronary artery

disease who were scheduled to be scanned on one of the three

selected scan days have been included. Finally, four patients

(1 male, 4 female, 66 ± 7 years old) have been scanned at 3T

(Magnetom Prisma, Siemens Healthineers, Erlangen, Germany).

Two of those patients have been referred to CMR for potential

myocarditis, one for evaluation of coronary artery disease, and

one for follow-up of dilated cardiomyopathy.

The differences in scanner hardware, field strength and

consequently different required adoption of the imaging

parameters. The full set of imaging parameters is provided in

Table 1. Additionally, phase-sensitive inversion recovery (27)

LGE imaging was performed as reference. The corresponding

sequence parameters can be found in Table 1. All LGE imaging

was performed 10–20 min after injection of 0.2 mmol/kg

gadobutrol (Gadovist, Bayer, Leverkusen, Germany) or 0.1

mmol/kg gadoterate meglumine (Dotarem, Guerbet, Villepinte,

France) contrast agent.

Contrast was quantitatively analyzed in all healthy subjects.

ROIs were manually drawn in the septum and the left-

ventricular blood-pool. Apparent in-vivo CNR was defined

as follows:

aCNR =

∣

∣µMyo − µBlood

∣

∣

√

(

σ 2
Myo + σ 2

Blood

)

/2

, (3)

where µMyo, µBlood describe the average signal in the ROI

drawn in the myocardium and the blood pool, respectively.

σMyo and σBlood describe the spatial standard deviation across

the ROIs.

In healthy subjects ROIs were drawn for all cardiac phases

individually. As the temporal resolution was fixed, a different

number of acquisition cardiac phases is acquired for different

heart rates. In order to compare the aCNR for subjects with

different heart rates, the acquired number of cardiac phases (10–

18) was interpolated to 20 reconstruction phases, using linear

interpolation. The CoV of the aCNR was assessed throughout

the cardiac cycle as a measure of contrast homogeneity.

In the patient cohorts, ROIs were drawn for one diastolic and

one systolic phase. The aCNR was then quantitatively compared

among the cohorts for both phases. ANOVA was performed to

find statistical differences among the aCNR of the groups, and

p < 0.05 was considered significant.

3. Results

3.1. Simulations

The results of the numerical simulations are displayed in

Supplementary Figure 1. A marked difference in noise resilience

is observed across the cardiac cycle. Cardiac phases with

minimal TIs close to the nulling point of the simulated T1,

suffer from the most noise variability. Additionally, increasing

A

B

FIGURE 2

(A) T∗
1 acquired in phantom with the proposed functional LGE

sequence. The left panel shows the maps averaged across the

simulated cardiac cycle, while the right panel displays the

variability throughout the cardiac cycle. (B) Phantom functional

LGE images with the synthetic inversion time chosen to null the

myocardial (lower) sphere. The contrast to noise ratio between

the two spheres is plotted throughout the simulated cardiac

cycle. Shading indicates the spatial variability across the

manually drawn ROIs.

simulated T1 times, leads to an overall increase in noise

susceptibility, as observed in the coefficient of variability.

3.2. Phantom experiments

Semi-quantitative T∗
1 maps acquired with the proposed

functional LGE sequence are displayed in Figure 2A. The

maps display the average and variability of the T∗
1 time

throughout the cardiac cycle. The CoV of the T∗
1 time

was 1.31 ± 0.19 and 1.89 ± 0.23% for the blood and the

myocardial sphere, respectively. Figure 2B shows functional

LGE images acquired in the phantom throughout the simulated

cardiac cycle. The images depict thorough nulling of the

myocardial sphere. The CNR is largely constant throughout

the simulated cardiac cycle, resulting in a CoV of 2.55 ±

0.42%.

Additionally, only minor variation of the functional

LGE signal was observed for different heart rates

(Supplementary Figure 2). The CoV of the signal when varying

the simulated heart rate from 50 to 90 bpm, was 2.03 ± 0.81%,

with no significant trend (R2 = 0.0013, p = 0.865).
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FIGURE 3

The post-processing pipeline for generating the proposed functional LGE images from the acquired T1-weighted data. For each cardiac phase,

the proposed sequence acquires multiple images with di�erent T1 weighting, denoted as Baseline Images. A two-parameter fit is performed on

these images to obtain semi-quantitative T∗
1 maps for each cardiac phase. Finally, a virtual inversion time is retrospectively chosen to synthesize

functional LGE images for all cardiac phases.

3.3. In-vivo experiments

Figure 3 depicts an example of the processing pipeline

used to obtain functional LGE images in a healthy subject

scanned at 3T and 40 ms temporal resolution. Six baseline

images with different T1 weighting are acquired for each cardiac

cycle and used to generate the apparent T∗
1 maps. The T∗

1

maps depict visually high image quality with homogeneous T∗
1

times throughout the myocardium and across cardiac cycles.

Accordingly, the resulting synthetic functional LGE images

depict thorough suppression of the healthy myocardial signal at

each phase of the cardiac cycle. Furthermore, clear delineation

with respect to the blood pool is visually apparent.

Figure 4 depicts further examples acquired in two healthy

subjects at 3T. Consistent nulling of the myocardium is obtained

in both healthy subjects. Furthermore, homogeneous contrast

with clear depiction of the blood-myocardium contrast is visible

throughout the entire cardiac cycle (Supplementary Video 1).

Quantitative analysis of the aCNR between the myocardium and

the blood pool is depicted in Figure 4C. Moderate variation of

the aCNR across the cardiac cycle was observed, amounting to a

CoV of 18.2± 3.51%.

Patient images obtained at 1.5T are shown in Figure 5.

Both of these patients were LGE negative. Although the

myocardial signal is visually suppressed in all cardiac phases,

noise variability appears visually higher in some cardiac phases

(e.g., phase 3 for both patients). A cinematographic view of all

cardiac phases can be found in Supplementary Video 2.

Figure 6A shows images acquired in a patient with

a history of myocarditis and CAD. Antero-lateral scar is

visible in the LGE reference scan. The scar is also visually

apparent in all phases acquired with the proposed method.

Better resolution of the scar structure is achieved with

the reference method, and the reference scan appears

markedly less noisy. Two cardiac phases (3 and 6) present

patch-like artifacts in the blood pools, as a result of

the contrast synthetization. Scar motility and contrast

throughout the cardiac cycle can be visualized using a

cinematographic view of the cardiac phases, as shown in

Supplementary Video 3.

Figure 6B depicts a second CAD patient imaged at 1.5T

with 80 ms temporal resolution. Both conventional and the

proposed functional LGE methods display scar in the lateral

segment. Scar tissue can be visually discerned in all cardiac

phases of the functional LGE scan. Thus, scar motility is

captured and the displacement can be tracked throughout

the heart-beat (Supplementary Video 3). However, a noticeably

higher level of imaging noise is observed compared with the

clinical reference LGE scan. Furthermore, the noise level appears

visually exacerbated in later cardiac phases.
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A

B

C

FIGURE 4

Representative functional LGE images acquired in healthy

volunteers at 3T. (A) Subject #1 with heart rate 57 bpm, number

of acquisition phases 13, (B) subject #2 heart rate 57 bpm,

number of acquisition phases 13. Thorough suppression of the

healthy myocardial tissue with sharp delineation against the

blood pools is visible for both subjects. (C) Quantitative analysis

of aCNR throughout the cardiac cycle across the six healthy

volunteers. Moderate variation of the aCNR is obtained across

the cardiac phases.

Figure 7 shows images acquired in two patients 3T with

60 ms temporal resolution. In the first subject (Figure 7A) lateral

scar is visually apparent in functional LGE images. However,

the scar depiction in the high-resolution reference scan is

visually superior and the structure of the scar tissue can be

better delineated. Additionally, the functional LGE scan shows

elevated noise variability in some cardiac phases (6 and 11).

A two chamber view in the second patient (Figure 7A) reveals

a subendocardial scar, which is not easily discerned from the

blood pool. However, in systolic cardiac phases the scar tissue

is well-separated spatially and in terms of contrast, aiding the

identification in the functional LGE images.

Figure 8 depicts the quantitative comparison of the aCNR

across the different cohorts. No significant difference was found

for the diastolic phase among the different cohorts (p = 0.90).

However, the patient cohorts suffer from substantially lower

aCNR in the systolic phase, as compared with the healthy subject

data (p < 0.037), suggesting larger variability in the aCNR

throughout the cardiac cycle.

A

B

FIGURE 5

Functional LGE images acquired in LGE negative patients at 1.5T

with 80 ms temporal resolution. Compared with 3T visually

increased noise is depicted in the 1.5T images due to reduced

baseline SNR at this lower field strength, and later acquisition

time after contrast injection. While, consistent nulling of the

myocardium is achieved and the blood-pools remain clearly

depicted. (A) Seven cardiac phases were obtained in this patient

with a heart rate of 73 bpm. (B) Eight cardiac phases were

acquired in this subject with 77 bpm heart rate.

4. Discussion

In this study, we proposed a method for augmenting LGE

imaging with a functional acquisition. Cardiac phase-resolved

LGE images are obtained with consistent contrast throughout

the cardiac cycle. In this study, we demonstrated the feasibility

of obtaining cardiac phase-resolved images with LGE contrast.

Semi-quantitative T∗
1 maps were acquired in a cardiac phase-

resolved manner. Subsequently, synthetic image generation

was used to obtain the clinical LGE contrast that nulls the

healthy myocardium for all cardiac phases. Phantom imaging

showed consistent contrast with thorough nulling of the desired

signal using the proposed method. Initial in-vivo results at 3T

demonstrate promising image quality with a temporal resolution

of up to 40 ms in healthy subjects. However, initial clinical

data at both 1.5T and 3T shows substantially higher noise levels

and reduced imaging resolution compared to clinical reference

LGE images.

Noise susceptibility and imaging resolution remained a

challenge in the clinical cohorts in this study. The drop in image

quality in the patient cohort compared to healthy subjects was

likely primarily driven by the much later acquisition time after

contrast injection, as clinical reference LGE scans were always

acquired first. Acquisitions late after contrast injection lead to

longer post-contrast T1 times, due to contrast washout. Our

simulation results show that this leads to an overall increase in

noise variability with the proposed technique. While imaging

contrast was observed to be largely constant, noise susceptibility

showed major variations throughout the cardiac cycle. Due to
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A

B

FIGURE 6

(A) Functional LGE images acquired in a 41 year old female patient with known history of CAD and myocarditis in comparison to a reference LGE

acquisition (heart rate 80 bpm, acquisition phases 8). The patient displays a large antero-lateral scar that is visible with the proposed technique

throughout all cardiac phases. Retrospective choice of the inversion time enables bright scar hyper-enhancement delineated against the remote

myocardium. However, compared to the reference scan, decreased imaging resolution hampers depiction of the scar structure. (B) Functional

LGE images acquired in a patient su�ering from CAD and displaying scar in the lateral segment (heart rate 72 bpm, acquisition phases 9). Clear

depiction of the scar tissue is achieved in all cardiac phases, albeit at higher noise levels compared with the clinical reference scan.

A

B

FIGURE 7

Functional LGE images acquired in two patients at 3T compared to high-resolution reference LGE images. (A) Lateral scar (green arrows) is

observed in a 73 old woman (heart rate 57 bpm, acquisition phases 16), referred to CMR for evaluation of myocarditis and perfusion defects. The

scar tissue is visible in all cardiac phases of the functional LGE scan acquired at 60 ms temporal resolution, albeit variations in the noise levels

across the cardiac cycle can be observed. In comparison, the high-resolution reference LGE scan displays much better noise resilience and a

finer depiction of the scar structure. (B) Two chamber acquisition in a 58 year-old man (heart rate 64 bpm, acquisition phases 13) referred to

CMR for evaluation of coronary artery disease. The subendocardial scar (green arrows) can be seen in both the reference and the functional LGE

images. Systolic phases of the latter visualize spatially and contrast the separation of the scar tissue from the nearby blood pool.

the sequence design, each cardiac phase realizes a different

sampling of the inversion recovery curve. Simulation results

show that cardiac phases, where the minimal TI is close to

the null point of the inversion recovery curve, lead to the

highest noise variability. Accordingly, in the patient cohorts,

cardiac phases where the first point on the inversion recovery

curve is relatively late, appear visually most susceptible to

noise. In the present method, the signal polarity is restored

prior to fitting using the approach proposed by Messroghli

et al. (12). However, it has been previously reported that

this can lead to additional noise variability if an inversion

time near the zero crossing of the inversion recovery curve

is sampled (28). Accordingly, due to inadvertent sampling of

the inversion recovery curve, salt-and-pepper-like noise and

patchy appearance can be observed in these phases. Using the

signal phase to restore the polarity has been proposed as a

way to mitigate those sampling-related artifacts. Incorporating

this method into the proposed technique bears promise to
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FIGURE 8

aCNR across the di�erent cohorts, analyzed for a diastolic and

systolic phase of the functional LGE scans.

enable more homogeneous noise resilience across the cardiac

cycle and warrants further investigation. While the image

quality can still be sufficient to track large areas of hyper-

enhancement throughout the cardiac cycle, improvements in

the trade-off between spatiotemporal resolution and noise

resilience and needed to match reference LGE image quality.

An increasing number of methods have emerged that also

enable cardiac phase-resolved T1 mapping, including methods

based on cardiac MRF (29) and cardiac multi-tasking (20).

These methods attain better baseline map quality by means

of regularized or model-based reconstructions. Similarly,

regularization approaches have recently been demonstrated

to substantially improve noise resilience in TOPAZ (30, 31).

Thus, future work is warranted that integrates regularized

reconstruction schemes, as proposed for TOPAZ or other phase

resolved cardiac T1 mapping techniques, to enhance noise

resilience and spatiotemporal resolution.

Functional LGE imaging has the premise of depicting

scar at multiple cardiac phases. Thus, the images allow

for cross-comparison of scar signal throughout the cardiac

cycle. This may increase diagnostic certainty if ambiguous

enhancement is observed, for example in the vicinity of the

left-ventricular blood pool or close to fatty tissue. Furthermore,

the proposed functional LGE imaging sequence achieved

substantially higher temporal resolution than conventional LGE

imaging. In standard clinical LGE imaging, diastolic triggering

is used, requiring careful manual timing to place the acquisition

window (∼100–250 ms) into the diastolic quiescence. This

temporal resolution might not be ideal when highly mobile

structures, such as the papillary muscles, are to be assessed

(32). Functional LGE imaging can potentially improve upon

these points as a temporal resolution as low as 40–80 ms was

achieved. Additionally, since synthetic LGE images are available

throughout the cardiac cycle, potentially detrimental imaging

artifacts due to incorrect placement of the acquisition window

are eliminated. Instead phase-resolved imaging ensures that LGE

images are provided at the desired cardiac phase with no need

for manual timing. However, additional improvements in image

quality may be required to fully replace the reference LGE scan

at least at 1.5T.

The most recent recommendations for clinical CMR include

CINE MRI of the left ventricle and LGE for almost all ischemic

and non-ischemic cardiomyopathies (5). More specifically,

when revascularization is considered, for example, only the

joint evaluation of cardiac function and viability is considered

to offer sufficient information for clinical decision making (3).

Together, LGE imaging and CINE MRI, enable the assessment

of functional impairment of the scar region and potential links

to any wall motion abnormalities. However, as these scans

are commonly acquired with two separate sequences, cross

evaluation can only be performed subjectively. This hampers the

fusion of data and complicates the reading of images. Cardiac

phase-resolved LGE images on the other hand, inherently allow

for joint assessment of myocardial function and viability in

scar and surrounding tissue. Furthermore, previous studies have

indicated value of obtaining viability information in parts of

the cardiac cycle other than diastole (22, 24, 33). Specifically,

it has been shown that this may ease the assessment of scar

transmurality (21). Thus, depiction in multiple cardiac phases as

achieved with the proposed method bears promise for improved

clinical certainty in assessing myocardial scar and warrants

further investigation for its prognostic value in the clinical

setting. This, however, was beyond the scope of the current work.

Apparent CNR in functional LGE images between

myocardium and blood pool was found to be moderately

variable throughout the cardiac cycle. This is in-line with

previous reports indicating differences in T1 times at different

the cardiac phases (33, 34) and might be explained with

differences in the blood-myocardium volume fraction. Due to

the non-linear processing of the functional LGE images, noise

variability cannot be obtained from background intensity, but

was instead defined as the spatial standard deviation within

the regions of interest. Thus, variability of physiological and

system parameters within the ROI will compromise the reported

aCNR values. While the reported aCNR is useful as a metric

to compare contrast throughout the cardiac cycle, it should be

noted that this hampers comparability of the reported aCNR to

literature values of CNR.

The phase-resolved images in this study were acquired with

prospective ECG triggering. Prospective and retrospective

triggering has a different spectrum of advantages and

disadvantages for cardiac phase-resolved imaging. Prospectively

triggered image acquisitions have been recognized to be resilient

against variabilities in the RR interval, as the duration of the

systolic phase commonly remains relatively constant (35). On

the other hand, a prospectively defined acquisition window is
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commonly defined to only cover 80–90% of the cardiac cycle.

Thus, the end-diastolic phase may be partially missed, and

peak diastolic filling may be underestimated. For those reasons

retrospective CINE is commonly preferred for quantification of

cardiac function and is most commonly used in clinical practice

(5). An increasing number of techniques enabling cardiac

phase-resolved quantification of the longitudinal relaxation

time have recently been proposed (20). Those methods can

be used in combination with retrospective cardiac gating, and

may therefore warrant investigation in combination with the

proposed approach if the extraction of quantitative cardiac

function is desired.

Imaging in this study was performed in a single mid-

ventricular slice only. Thus, the functional LGE images obtained

in this study have not been evaluated for cardiac volumetry.

However, at 3T a temporal resolution up to 40 ms was obtained.

This is comparable to the temporal resolution used for 2D CINE

MRI in clinical routine (5, 36). At this temporal resolution

blurring due to cardiac motion is considered to be minimal

(37–39), making CINE MRI suitable for accurate assessment of

cardiac function. Hence, functional LGE images may be suitable

for quantification of cardiac function, albeit being subject to

the specific drawbacks of prospectively triggered CINE with

the current sequence implementation, as reported for certain

patient groups (40). Alternatively, retrospective ECG gating

can be employed in the present sequence design. However, the

inversion pulse timing would need to be adapted in real time

to ensure the desired semi-quantitative imaging information.

Thus, further improvements to tailor the proposed approach for

functional volumetry remain a subject of future work.

The proposed method synthesizes LGE contrast based on a

range of different inversion contrasts for each cardiac phase. The

fusion of multiple data points potentially makes this approach

susceptible to residual motion, for example, due to incomplete

breath-holds. While this has not been observed to be an issue

in the present data set, this issue may be exacerbated in

some clinical cohorts. Other previously proposed cardiac phase-

resolved T1 mapping techniques have been proposed as a free-

breathing acquisition based on self-gating signals (17, 18, 20).

A similar approach could be employed in this sequence to

mitigate the need for long breath-holds, avoid susceptibility

to incomplete breath-holds, and enable increased sequence

durations. Additionally, a range of motion correction techniques

has been proposed and successfully applied to quantitative

cardiac MRI (41–43). Using these techniques in the proposed

method on a phase-by-phase basis to alleviate residual motion,

warrants further investigation.

The proposed functional LGE method relies on selection of

a synthetic inversion time to achieve LGE imaging contrast. In

this study, the remote myocardium that needed to be nulled

was visually identified, from which the synthetic inversion

time was generated. Recent advances in machine learning have

enabled improved tools for automatic identification of such

tissues. Specifically for cardiac MRI, numerous methods have

been developed to achieve highly accurate segmentation of

the cardiac anatomy (44–47). Such methods can be used to

automatically delineate the tissue that is to be nulled. Thus,

future work will explore the integration of deep-learning based

segmentation to enable automatic selection of the synthetic

inversion time. This would facilitate LGE scanning without the

need for manual timing selection, neither prospectively in the

protocol nor retrospectively in the reconstruction.

Black-blood LGE imaging has recently been developed,

based on a combination of T1 and T2 contrast sensitization

(48, 49). The black-blood contrast bears promise for improved

depiction of sub-endocardial scar neighboring the blood-pool

(50). Combined methods for simultaneous quantification of

myocardial T1 and T2 times have also been explored (17, 19, 51,

52). By exploiting phase-resolved T1 and T2 quantification the

proposed method can potentially be extended for the generation

of functional black-blood LGE images. This combination

remains subject of future work.

The present study and the proposed functional LGE imaging

method are subject to several limitations. In this study, only a

small number of healthy volunteers was scanned at 3T and no

comparison to healthy subjects at 1.5T has been performed, to

minimize the use of gadolinium contrast agents in a healthy

population. Furthermore, the method was evaluated in a general

patient cohort, providing representative examples of feasibility

and image quality as encountered in clinical use. However,

more specific and larger patient cohorts with LGE need to

be assessed in order to evaluate prognostic and diagnostic

value of functional LGE as compared to conventional LGE and

CINE imaging. In this study only a single mid-ventricular slice

was acquired with proposed functional LGE method. Whole

heart coverage requires repeated breath-holds, which hampers

integration in the existing clinical workflow. Simultaneous-multi

slice (SMS) imaging has recently been evaluated for improved

spatial coverage in quantitative mapping of the heart (53–55). In

functional LGE imaging SMS can facilitate improved coverage in

fewer breath-holds for the benefit of easing clinical translation.

Future studies will evaluate the use of SMS accelerated scans to

obtain whole heart coverage in functional LGE imaging.

5. Conclusion

We have demonstrated the feasibility of generating

functional LGE imaging with temporal resolution of up to

40 ms. The proposed functional LGE images allowed consistent

contrast, nulling the healthy myocardium throughout the

cardiac cycle, as well as clear delineation of the myocardium

against the blood-pool in healthy subjects at 3T. Initial

patient images demonstrate the feasibility of our functional

LGE approach to visualize scar motility across multiple

cardiac phases. However, spatial resolution and imaging

Frontiers inCardiovascularMedicine 10 frontiersin.org

98

https://doi.org/10.3389/fcvm.2022.917180
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Weingärtner et al. 10.3389/fcvm.2022.917180

noise were markedly worse in the patient cohort, and further

improvements are warranted to match reference LGE image

quality. Nonetheless, the proposed technique bears the promise

to offer additional insights by enabling a direct depiction of scar

tissue motility.
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Simultaneous multi-parametric acquisition and reconstruction techniques

(SMART) are gaining attention for their potential to overcome some of

cardiovascular magnetic resonance imaging’s (CMR) clinical limitations.

The major advantages of SMART lie within their ability to simultaneously

capture multiple “features” such as cardiac motion, respiratory motion, T1/T2

relaxation. This review aims to summarize the overarching theory of SMART,

describing key concepts that many of these techniques share to produce co-

registered, high quality CMR images in less time and with less requirements

for specialized personnel. Further, this review provides an overview of the

recent developments in the field of SMART by describing how they work, the

parameters they can acquire, their status of clinical testing and validation,

and by providing examples for how their use can improve the current

state of clinical CMR workflows. Many of the SMART are in early phases of

development and testing, thus larger scale, controlled trials are needed to

evaluate their use in clinical setting and with different cardiac pathologies.

KEYWORDS

cardiac MRI (CMR), undersampled acquisition, fast cardiac imaging, multiparametric
cardiovascular magnetic resonance imaging, sub-Nyquist sampling

Introduction

Cardiovascular magnetic resonance imaging (CMR) is a versatile imaging modality
that allows a quantitative assessment of cardiac function, morphology, blood flow, and
tissue composition (1). A major advantage of CMR is its ability to directly characterize
myocardial tissue without the need for invasive procedures or ionizing radiation (1, 2).
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While contrast agents are still frequently used, more and
more techniques are now available that use native contrast
mechanisms. The contrast in MR images arises primarily from
variability in the proton density as well as longitudinal (T1)
and transverse (T2) magnetic relaxation times of the tissue,
which can be used to determine tissue composition based
on quantitative T1 and T2 values (2). Since T1 and T2
values differ between different tissues and change with tissue
pathologies such as inflammation or infiltration, T1 and T2
quantification strongly aids in differentiating between various
cardiomyopathies including Fabry’s disease (3), amyloidosis (4),
myocarditis (5), hypertrophic cardiomyopathy (6), takotsubo
(7), or acute versus chronic ischemic cardiomyopathy (2, 8).

Although extremely informative, CMR is limited by
its technical complexity and long acquisition times (9).
Cardiac and respiratory motion make CMR particularly
challenging. Images need to be acquired during a period
where the patient is motionless, so the exam length
heavily depends on the patients’ heart rhythm and on
compliance with breathing instructions (10). Alongside
patient compliance, scanning parameters must be carefully
chosen with respect to pulse sequence type, spatial orientation
of the imaging volume, and cardiac triggering options
(10). These complexities demand specialized training of the
medical staff and impair the clinical utility and accessibility of
CMR, despite its widely accepted role in diagnosing cardiac
disease (9).

To address these limitations, several working groups
have focused on the development of fast and user-friendly
acquisition methods (11–34). One proposed approach is the
use of “one-click” scans, where multiple cardiac parameters
(such as T1 relaxation, T2 relaxation, or cardiac motion)
are collected simultaneously with less prospective planning
(22, 23, 35, 36). These techniques have been collectively
called Simultaneous Multiparametric Acquisition and
Reconstruction Techniques (SMART) (37). SMART involves
the collective acquisition of quantitative CMR contrast
parameters (e.g., T1 and T2) which would normally be acquired
separately in a clinical CMR setting. These new methods
may increase sampling efficiency during free-breathing, ECG-
free acquisitions and focus on retrospectively recovering
data to reconstruct several cardiac contrasts at once. This
may include producing simultaneous T1 and T2 maps, cine
series or more (12, 14, 16, 18, 19, 23, 38–40). The result
is a faster CMR acquisition with less need for specialized
training, breathing instructions, or ECG setup. The goal of
this review is to: (1) summarize the theory behind SMART,
explaining how they enable the acquisition and reconstruction
of high-quality images with less scan time compared to
traditional methods; and (2) provide examples for how
these rapid sequences could be applied in clinical settings,
demonstrating how their application can improve the efficiency
of clinical CMR scanning.

Basics of multi-parametric sparse
sampling methods

Multi-parametric methods exploit the inherent redundancy
of images to reduce the required sampling rate. Since
redundant data can be compactly represented in some
transform domains, this notion is closely related to the
concept of “compressibility.” The redundancy that is present in
conventional CMR acquisitions allows for reducing sampling
rate requirements in SMART, resulting in decreased scan
time. CMR’s long acquisition times are primarily caused by
the need for several types of images−such as bright or dark
blood morphological images, cine images, parametric maps, late
gadolinium enhancement (LGE) images, perfusion images, or
more−which require different parameter settings, views, and
various contrast types (41). This limitation is worsened by the
need for repeat measurements over various cardiac cycles to
meet data sampling requirements and by the relatively short
periods during which cardiac motion is minimal (10). There
is significant redundancy with respect to anatomical regions
being repetitively scanned for various contrasts (Figure 1A).
The goal of SMART is to optimize the efficiency of CMR
scans by acquiring multiple CMR data (cardiac motion, T1
relaxation, T2 relaxation etc.) in a single acquisition that can be
reconstructed into informative images using assumptions based
on prior knowledge of the MR signal properties (Figure 1B)
(42).

Sampling less MR data per reconstructed image typically
results in reduced image quality (IQ), but this can be
mitigated with alternative sampling trajectories (Figure 2) (42).
Traditionally, MR data are acquired as signals on a Cartesian
k-space grid and then reconstructed to an image using a Fast
Fourier transformation (Figure 2) (10). When undersampled,
this method leads to fold-over artifacts that may be detrimental
to visual interpretation or quantitative analysis (Figure 2). Many
newer techniques utilize alternative sampling trajectories which
frequently sample through the center of k-space, such as radial,
rosette or spiral trajectories. These trajectories are desirable
because they allow detection and extraction of respiratory and
cardiac motion, thus enabling newer techniques to be free-
breathing or self-gated (35). This reduces scanning complexity
for the technologist, as no ECG electrodes or respiratory
navigators are required. Furthermore, it removes the need for
monitoring breathing compliance, and eliminates the potential
for cardiac mis-triggers or incomplete breath-holds. It also
benefits pediatric patients or those who have difficulty holding
their breath, and patients with abnormal cardiac rhythms.

So-called sparse reconstruction techniques can produce
higher IQ with reduced scan time and comprehensive, co-
registered images when they capture more information at once
(42). Thus, three-dimensional (3D) acquisitions or those that
simultaneously capture many features, such as varying MR
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FIGURE 1

(A) Traditional CMR scanning workflow which requires separate image acquisitions to acquire images of different contrasts. Images are planned
sequentially which requires time and specialized training to understand cardiac anatomy. ECG-triggers and breath-holding are needed to obtain
images when motion is minimal. K-space is normally fully sampled and a fast-Fourier transform is used to obtain images with high image
quality. (B) A potential new CMR workflow that is suggested by SMART-CMR. The novelty behind these SMART is to simplify CMR scanning by
taking advantage of the redundancies which exist between images of different contrasts. Some SMART allow for imaging acquisitions without
ECG-gating or breath-holding with whole-heart coverage. The acquisition planning is simplified, often simply requiring the placement of a
volumetric box over the heart. For these methods to reduce scan time, pseudo-random under-sampling is often used in combination with
alternative reconstruction approaches such as compressed-sensing (CS), low-rank tensor (LRT) methods, or high-dimensionality undersampled
Patch based Reconstruction (HD-PROST).

contrasts, blood flow, and cardiac motion are characteristic of
SMART. They effectively exploit the redundancy that exists in
traditional CMR exams to achieve an efficient and nearly “all-in-
one” image acquisition (42). This is also beneficial from a clinical
standpoint as it allows the entire structure and function of the
heart to be assessed with perfectly co-registered images across
different MR contrast types.

Three methods, which are at the forefront of SMART,
speed up MR acquisitions by undersampling (Table 1). These
methods allow for recovery of CMR image integrity from data
that were undersampled during their acquisition. The three
key approaches are: Parallel Imaging (PI), Compressed Sensing
(CS), and Low Rank Tensor (LRT) methods. These methods are
commonly implemented alone or in combination.

Parallel imaging

Parallel imaging (PI) is widely used in clinical practice. PI
allows for reduced data sampling by exploiting data redundancy

available from phased array surface coils (Figure 3) (43).
Phased array surface coils consist of several independent
receiver coils arranged close to the region of interest
(Figure 3). Each independent receiver coil is more sensitive
to an anatomical area of the region of interest which is in
closest proximity. Coil sensitivity maps are estimated and
used to separate real signals from undersampling artifacts
as the undersampled acquisition would typically lead to
incoherent images if reconstructed using traditional methods
(43).

Although PI improves the usability of CMR, scan time
remains a significant limitation (9). While PI has allowed
CMR scan time to be decreased 2- to 3-fold while maintaining
diagnostic IQ (Table 1 and Figure 3) with shorter breath-hold
times (44), it is limited by the fixed geometry of the phased
array coil elements and the loss of SNR at greater accelerations,
where less data are acquired (43). Greater field strengths and
dimensionality increase the baseline signal, allowing for more
coherent images despite acceleration (43). Thus, the benefits
of PI are appreciated in CMR using higher magnetic field
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FIGURE 2

An example of how image quality may be affected from the way
data is sampled in k-space. Traditional cartesian k-space
sampling with fully sampled data results in high image quality.
However, traditional k-space sampling with uniformly
undersampled data results in coherent fold-over artifacts.
Variable density pseudo-random undersampling allows artifacts
to be incoherent in image space, approaching noise-like
artifacts in some cases. This may allow the resulting image to
retain diagnostic integrity despite heavy under-sampling.
Oftentimes, variable density pseudo-random undersampling is
achieved with alternative trajectories such as rosette, radial or
spiral. The key benefits of these trajectories include the center of
k-space being over-sampled which allows features like motion
to be extracted and the incorporation of golden-angle sampling
which strengthens the incoherence of artifacts in image space.

strengths and in exams that require a 3D or multi-dimensional
component such as 2- or 3D cine imaging or angiography.

Compressed sensing

Compressed sensing (CS) is a reconstruction technique
that exploits the sparsity of an image to recover it from far
fewer samples than required by the Nyquist–Shannon sampling
theorem. To successfully reconstruct an image, CS requires
the image to be sparse in some domain (e.g., wavelet, finite
difference, etc.) and the undersampling artifacts to be incoherent
in the sparse domain (Figure 4) (45). CS has enabled many
applications, including removing the need for patient breath-
holding in 2D (46) or 3D cine imaging (47), accelerating
parametric mapping acquisitions (48), acquiring 3D LGE images

(49, 50), acquiring 3D MR angiography images (51–55), or
acquiring higher dimensional CMR images such as 5D cardiac
images (x, y, z spatial dimensions + respiratory motion + cardiac
motion) (30, 56–60). CS has also recently been cleared by the
United States Food and Drug Administration (FDA), allowing it
to be used and tested in larger clinical settings (61–63).

For CS to successfully reconstruct an undersampled image,
data must be sampled pseudo-randomly, and the reconstruction
process must iteratively threshold the sparse domain and
enforce data consistency with the acquired data in k-space
(the sampling domain) to separate signals from noise and
undersampling artifacts (Figure 4) (45). A sparse domain is a
domain where the image can be compressed, meaning that few
signals are representative of the whole image (Figure 4). The
undersampling artifacts must be “incoherent” in this domain,
meaning that undersampling in k-space will not affect the
detection of “real signals” in the sparse domain (45). Once an
appropriate sparse domain is selected, data is sampled pseudo-
randomly in k-space, with the sampling rate defined by a set
acceleration factor (Figure 4). After sampling, the goal of the
CS reconstruction algorithm is to recover the “true signal” and
remove the aliased signal which appears as noise (Figure 4)
(45). This is done using an iterative, non-linear reconstruction
framework (45) (Figure 4).

Certain parameters can be altered within the CS framework
to enhance the resulting IQ. Like PI, CS is more reliable when
the baseline signal is higher, e.g., with higher field strengths or
higher dimensional imaging (3D or more) (45). The choice of
the “sparse domain” and sampling trajectory also impacts the
robustness of the technique (45). An important parameter in
the CS reconstruction called regularization strength increases
image sparsity in the sparse domain and thus attenuates more
noise but also results in spatial blurring, making detection of
edges such as the myocardial blood pool border more difficult
(45). Clinical studies to date have shown that CS can reduce
scan times by up to 90% (Table 1) and increase patient comfort,
without a significant loss of diagnostic IQ or information. Before
widespread clinical adoption however, standardization of CS
techniques is required (Figure 4).

Low rank tensor methods

Low rank tensor (LRT) methods are yet another way to
exploit CMR redundancy and save scan time. This method
frames CMR as a tensor (Figure 5A) and reduces the
redundancies which exist within this tensor representation (64).
For example, CMR data is a tensor when visualized as still frame
images grouped by T1 relaxation, T2 relaxation, and cardiac
phase (Figure 5A). When visualized in this way, anatomical,
contrast, and signal overlap can be observed between frames
(Figure 5A). LRT methods use correlations between frames
to recover CMR images from undersampled data (65). In this

Frontiers in Cardiovascular Medicine 04 frontiersin.org

105

https://doi.org/10.3389/fcvm.2022.953823
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-953823 October 1, 2022 Time: 17:5 # 5

Eyre et al. 10.3389/fcvm.2022.953823

sense, many MR features, such as respiratory or cardiac motion,
can be viewed as higher dimensions within the LRT framework.
This method has been applied to accelerate cardiac cine imaging
(64, 66–71), visualization of contrast inflow (perfusion) (72),
5D flow (73), LGE (74), MR angiography (75), and parametric
mapping (19, 25, 76). Like CS, LRT methods can be applied to
remove the need for patient breath-holding or cardiac gating,
making this another potentially useful method for difficult
patient populations.

The key property that enables undersampling and scan time
reduction in LRT methods is low rankness (64). Low rankness
with respect to CMR means that along each dimension of the
tensor (spatial, respiratory, cardiac, T1 relaxation, T2 relaxation,
etc.), any datapoint can be obtained as a linear combination

of other datapoints (64). In other words, a cardiac image at a
specific cardiac phase with a specific contrast can be created
by other images in different phases with different contrast
weightings. The significance of this with respect to CMR
scanning is that only a subset of CMR data is needed to extract
higher-dimensional CMR data. However, to exploit these linear
combinations, basis functions, i.e., functions which capture the
signal behavior of each dimension (spatial, respiratory, cardiac,
T1 relaxation, T2 relaxation, etc.), must be estimated (64)
(Figure 5B). These can be estimated from the data itself or from
Bloch equation simulations using the scan parameters (35).

In LRT methods, two different perspectives can be used
separately or jointly to exploit CMR redundancy: global or
local (77). Using an example of 2D cine images, a global

TABLE 1 Comparison of acquisition and reconstruction properties of sparse sampling techniques discussed in this manuscript.

Parallel imaging Compressed
sensing

Low rank tensor
methods

HD-PROST

Trajectory Any Trajectories which allow
incoherent aliasing

(1) Trajectories which
allow incoherent aliasing
(2) Trajectories which
continuously sample
low-frequency
information (e.g., the
center of k-space)

Trajectories which allow
incoherent aliasing

Redundancy Coil domain Any sparsifying domain Tensor representation Tensor representation

Acceleration 2–3 fold 4–5 fold 4–5 fold 2.5–6.5 fold

Requirements (1) Phased-array coils
(2) Sensitivity maps

(1) Pseudo-random data
sampling
(2) Pre-selected “sparse”
domain
(3) Pre-selected number
of tuneable parameters

(1) Multi-dimensional
CMR acquisition
(2) Pseudo-random data
sampling
(3) Formation of tensor

(1) Multi-contrast CMR
acquisition
(2) Pseudo-random data
sampling
(3) Formation of tensor

Assumptions (1) Coils are most
sensitive to the
imaging-area they are
closest to
(2) Coil sensitivities vary
throughout the image

(1) CMR data is
compressible
(2) Pseudo-random data
sampling allows
undersampling artifacts
to be separated from
“true signal”
(3) Undersampled CMR
data can be recovered in
a “sparse” domain

(1) CMR data has many
spatio-temporal-contrast
correlations
(2) Pseudo-random data
sampling allows
undersampling artifacts
to be separated from
“true signal”
(3) High-dimensional
CMR data can be
expressed as a LRT
(4) Undersampled CMR
data can be recovered
from a LRT model

(1) CMR data has many
spatio-temporal-contrast
correlations
(2) Pseudo-random data
sampling allows
undersampling artifacts
to be separated from
“true signal”
(3) A multi-contrast
image can be expressed
as a LRT
(4) Joint-contrast,
undersampled CMR data
can be recovered from a
LRT model

Adjustable
parameters

(1) Acceleration factor
(limited by number of
phased-array coils)
(2) SENSE vs. GRAPPA

(1) “Sparse” domain
(2) Tuneable parameters
in the reconstruction

(1) Tensor constraints
(global vs. local)
(2) Tuneable parameters
in the reconstruction

(1) Tuneable parameters
in the reconstruction

Clinical validation
studies

(44, 112–115) (30, 49–53, 57, 116–118) (73, 84, 104) (18, 19, 75, 87, 105)

Technical literature (119–123) (45–48, 54–56, 59, 60,
124, 125)

(23, 64, 66, 69–72, 74,
76–78, 83, 85, 103, 126,
127)

(25, 36, 86)
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FIGURE 3

A pictorial example of multi-coil Parallel Imaging techniques describing both image-based SENSE (sensitivity encoding) or k-space based
GRAPPA (generalized autocalibrating partial parallel acquisition)– two differing reconstruction techniques. (A) Pictorial representation of
phased-array coils used to acquire undersampled data, and a graphical representation of undersampled k-space. The non-random
undersampling method results in artifacts that are detrimental to visual inspection, therefore must be separated from real signals. (B1) Pictorial
representation of k-space based GRAPPA. In this technique, reconstruction takes place in the k-space. The acquired MR signals fill in k-space
for each coil, though many lines of k-space are missing due to undersampling. Missing points in k-space are then estimated iteratively using
known data from the center of k-space, and local known data for each region, known as kernels. Once missing lines of k-space are filled, a
Fourier transformation is performed, creating individual coil images from which the final reconstructed image will be created. (B2) Pictorial
representation of image-based SENSE, in which reconstruction takes place in image space. A Fourier Transformation is performed which
creates a coil sensitivity map for each coil element. These sensitivities are used to sort real signals from artifacts, creating an image for each coil,
from which the final reconstructed image will be created. (C) The individual coil images are combined to create a final, reconstructed image.

approach may look at each still frame as a whole and search for
correlations between each image (Figure 6A). This will often
result in residual artifacts or spatial blurring because of the
many different contrasts (from fat, muscle, blood pool, and air)
that are present in each frame (77). Global LRT treats different
tissue types jointly, so the accuracy of defining fine details in an
image is reduced (77). A local approach may break each still
frame into smaller “patches” and search for correlations that
exist between these patches across dimensions (Figure 6B) (77,
78). This method retains more of the image detail information
because the patches are more likely to contain a single tissue type
with a single contrast (77, 78).

A major advantage of LRT methods is that they are adaptive
and versatile (35). Unlike CS, LRT methods do not require
the selection of a pre-defined sparse domain; they can look
at all the existing CMR data to find redundancy (35). The
advantage of this is less dependence on a priori decision making
and potentially a larger reduction of scan time with a greater
retention of the MR signal. In imaging tasks where precision is

important, such as with parametric mapping, LRT methods may
be better suited than CS because less signal is lost during the
reconstruction process (35, 78). Like PI and CS, LRT methods
work best with higher dimensional CMR applications (3D or
more) since more redundancy exists at higher dimensions. For
this reason, LRT methods have been successfully applied to
create joint T1-T2 or T1-T2-cine images (19, 23, 39, 79–85),
exploiting the overlap between these contrasts. The adaptive and
versatile nature of LRT methods have made them a major focus
in the development of SMART (19, 23, 25, 36, 38, 39, 75, 79–86).

High dimensionality, undersampled
patch based reconstruction

High-dimensionality, undersampled patch-based
reconstruction (HD-PROST) is a specific type of local-LRT
regularization method which uses a patch-based perspective to
exploit CMR redundancy (36) (Figure 7). Similar to local LRT
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FIGURE 4

Depiction of the compressed sensing concept. Compressed sensing requires both a pseudo-random undersampling of k-space and for a
sparse representation of the image in some transform domain (e.g., wavelet, finite difference, etc.). The pseudo-random sampling of k-space
can be achieved with a variety of sampling trajectories such as radial, rosette, spiral, or cartesian. The under-sampled data undergoes a
non-linear, iterative reconstruction to recover image integrity from the aliased image. The pseudo-random sampling of k-space allows
undersampling artifacts to appear as noise and can be removed by thresholding in a sparse domain. The final image may have reduced image
quality but should still be diagnostic.

methods, this patch-based approach breaks an image frame
into “patches,” but unlike local LRT methods, it searches for
correlations both within a given patch and between patches
(36). This allows CMR redundancy to be exploited to an even
greater extent than the aforementioned methods, translating
to both a further reduction in scan time and production of
higher-quality images (65, 74, 75).

To date, only proof-of-concept studies exist to demonstrate
the clinical potential of applying HD-PROST using an
undersampled MR acquisition (Table 2) (19, 25, 36, 38,
39, 75, 79–82, 86, 87). Recently, an HD-PROST application
which recovers 3D cine, T1, and T2, was tested in phantoms
and 10 healthy volunteers and gave comparable results for
ejection fraction (EF) as well as highly precise T1 and T2
measurements when compared to standard methods (19).
In another study, a free-breathing 3D whole-heart sequence
capable of visualizing the coronary vasculature was used
(75). Both phantom and in vivo images had an excellent
agreement in visualizing the coronary vasculature and its distal
segments when compared with the fully sampled reference
image (75). These images had a good quality despite shorter
scan times (4 min and 35 s ± 44 s vs. 22 min and
30 s ± 4 min and 54 s for fully sampled image) (75). HD-
PROST has also been applied to reconstruct water- and fat-
suppressed LGE images (87). Although this study found HD-
PROST images to be of diagnostic quality in 18/20 datasets
with strong agreement in the location of enhancement when
compared to standard LGE images, residual cardiac motion
was still present (87). This may be due to over-regularization
causing mismatches in patch-similarity, producing noisy signal
variations that are like aliasing artifacts (36). Thus, further
clinical studies are needed to help standardize the tuning of

hyper-parameters for cardiac applications that intend to use
HD-PROST or any of the sparse-sampling methods previously
described.

Simultaneous multi-parametric
acquisition and reconstruction
techniques

Here, the SMART, which allow for simultaneously acquiring
and reconstructing co-registered CMR images of different
contrast weightings, with sparse sampling principles applied
alone or in combination, are described.

3D single-parameter mapping

Some multi-parametric methods have focused on obtaining
a single quantitative image contrast as part of a 3D or
multi-cardiac-phase acquisition to increase the efficiency of
parametric mapping CMR exams. Clinical CMR parametric
mapping is limited by incomplete spatial coverage of the heart
which decreases its sensitivity to detect regional myocardial
abnormalities (37). Given the good agreement of mapping
with LGE enhancement in visualizing focal lesions (88),
complete coverage would likely increase the sensitivity of
mapping and may even allow for avoiding contrast agent
administration altogether.

In recent years, several groups have presented methods to
obtain whole-heart T1 maps during a free-breathing acquisition.
Han et al.’s (29) method exploits redundancy in the temporal
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FIGURE 5

Depiction of the low rank tensor (LRT) concept. (A) Example of CMR images represented as a tensor with cardiac phase, T1 relaxation, and T2
relaxation representing different dimensions of the tensor. Once CMR data is organized in this way, any coordinate along the tensor will obtain
an image with a various cardiac phase, T1 and T2 relaxation time. (B) Pictorial example of basis functions, which capture the signal behavior of
each dimension (cardiac, T1 relaxation or T2 relaxation). These basis functions allow CMR data to be undersampled and for missing data to be
recovered through various linear combinations of the sampled data.

domain (e.g., between image frames) to reduce scan time
and obtain 40 short-axis slices with a spatial resolution of
1.9 × 1.9 × 4.5 mm. Their method requires a fairly lengthy
imaging time of 14 min, but this time could be decreased by
decreasing the number of slices acquired or lowering the spatial
resolution (29). Nordio et al. (89) similarly developed a free-
breathing 3D T1 mapping method which obtains 11 short-axis
slices in 12 min. Their method incorporates an image-denoising
step before T1 map fitting which improved the precision of their
T1 maps when compared to Modified-Look-Locker-Inversion-
Recovery (MOLLI) (89). However, their method depends on a

1D respiratory navigator which was shown to achieve a scan
efficiency of only 36% when tested in 15 healthy subjects (89).
In 2020, Guo et al. (90) presented a free-breathing 3D T1
mapping method which obtains nine short-axis slices in only
2 min. This method achieved high precision of T1 mapping
values when compared to both Saturation recovery single-
shot acquisition (SASHA) and MOLLI methods (coefficient of
variations: 6.2 ±1.4%, 5.3 ± 1.1%, and 4.9 ± 0.8% for SASHA,
MOLLI and the proposed 3D method, respectively) (90) in a
highly accelerated scan time, demonstrating clinical feasibility
of the technique.
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FIGURE 6

(A) Pictorial example of global low rank tensor (LRT) methods. This global method looks for image redundancy between entire image frames.
This pictorial shows image frames identified across multiple image contrasts (e.g., T1, T2, etc.). Correlations are sought between the image
frames, represented by the cartesian plane. Low-rank approximation and denoising are then applied to produce a final, reconstructed image.
Spatial blurring or artifacts may be present in the resulting image due to the possibility of multiple tissue types being present in the image frame.
(B) Pictorial example of local low rank tensor methods. This method breaks an image frame into “patches” and looks for image redundancy
across image patches. The patches are unfolded in a matrix and a tensor is formed. Tensor decomposition through low-rank approximation
allows for the image to be denoised, producing a final, reconstructed image. This method retains more detail information than the global
method, as patches are more likely to contain a single tissue type, with a single contrast.

FIGURE 7

Flowchart describing the denoising HD-PROST optimization proposed by Bustin et al. (36). Multi-contrast images are denoised using 2D and 3D
block matching, respectively, grouping similar 2D and 3D patches in the multi-contrast images. In a simple 2D matrix, these patches are then
unfolded, and a third-order tensor is formed by stacking them in the contrast dimension. Through tensor decomposition, the high-order tensor
can then be compressed. This is done by truncating multilinear singular vectors corresponding to small multilinear singular values. This process
outputs denoised, multi-contrast images which are then used as prior knowledge in the joint MR reconstruction. Figure adapted from Bustin
et al. (36).
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TABLE 2 Comparison of SMART methods discussed in this manuscript.

Motion compensation
method

Parameters
acquired

Recon. schema Acquisition schema (trajectory,
prep. pulse type and readout)

Scan time Recon. rime

Akçakaya et al. (11) Breath held and ECG triggered T1, T2 Voxel-wise least squares curve fitting Cartesian trajectory with SR pulse and T2
prep pulse and a single-shot bSSFP
readout

13 heartbeats NA

Blume et al. (12) Navigator-gated and ECG
triggered

T1, T2 PI (1.6x acceleration) and least
squares curve fitting

Cartesian trajectory with IR pulse and T2
prep pulse and bSSFP readout

NA NA

Guo et al. (14) Navigator-gated and ECG
triggered

3D, T1, T2 Curve fitting by
Levenberg-Marquardt algorithms

Cartesian trajectory with SR pulse and T2
prep pulse and GRE readout

7.9 ± 1.4 min NA

Multi-mapping (15) Breath held and ECG triggered T1, T2 PI (2x acceleration) and Dictionary
generation and matching

Cartesian trajectory with IR pulse and T2
prep pulse and bSSFP readout

NA NA

SATURN (16) Navigator-gated and ECG
triggered

T1, T2, T2* PI (3 or 4x acceleration) and curve
fitting

Cartesian trajectory with SR pulse and T2
prep pulse and spoiled GRE readout

18.5 s/slice NA

3D-QALAS (17) Breath held and ECG triggered 3D, T1, T2 PI (2x acceleration) and curve fitting Cartesian trajectory with IR pulse and T2
prep pulse and GRE readout

15 heartbeats NA

Milotta et al. (18) Navigator-triggered
retrospectively and ECG triggered

3D, T1, T2, water, fat
fraction

PI (4x acceleration), HD-PROST,
motion correction, and dictionary
generation and matching

Cartesian trajectory with spiral-like profile
order, IR pulse, T2 prep pulse, Dixon GRE
acquisition

9 ± 1 min 48 s 27 min and 45 s

Qi et al. (19) Free breathing, non-ECG gated 3D, T1, T2, cine PI (2x acceleration),
cardiac/respiratory binning,
HD-PROST, dictionary generation
and matching

Radial (golden angle) trajectory with IR
pulse and T2 prep pulse and spoiled GRE
readout

11.2 min NA

CABIRIA (20) Breath held and ECG triggered T1, T2 PI (2x acceleration), and curve fitting Cartesian trajectory with IR pulse and
bSSFP readout

8 heartbeats/slice NA

Deep-BLESS (21) Breath held and ECG triggered T1, T2 DL algorithm, PI (2x acceleration), CS Radial trajectory (golden angle) with IR
pulse and T2 prep pulse and spoiled GRE
readout

11 heartbeats/slice <1 s

Finger- printing (22) Breath held and ECG triggered
(newer adaptations are
free-breathing and non-ECG
triggered) (38, 39, 101)

3D, T1, T2, T2*, ECV,
proton density, cine, fat
fraction, water, T1 rho
(22, 39, 81, 82, 95, 96)

Different frameworks have been
proposed: all use dictionary
generation and matching; some
additionally incorporate PI, CS, LRT,
HD-PROST
(38, 79–82)

Spiral trajectory with IR pulse and T2 prep
pulse (newer adaptations use radial or
rosette trajectories)

Various acquisition
times depending on
sequence (16
heartbeats/slice (22),
7 min (38),
29.4 s/slice (39)

NA

Multi-tasking (23) Free breathing and non-ECG
gated

3D, T1, T2, T2*, ECV, fat
fraction, cine

Cardiac/respiratory binning, PI, LRT Radial trajectory with a hybrid T2IR
preparatory pulse and GRE readout, and
self-navigation with adequate temporal
resolution to estimate motion
basis-functions
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Recently, Bustin et al. (25) proposed a free-breathing
technique, 3D Motion-Corrected Undersampled Signal
matched (MUST)-T2, to obtain high spatial resolution
(1.5 mm3) 3D T2 maps in 8 min. Their method, which is
similar to Ding et al.’s (26), uses a saturation pulse to reset
the magnetization after every heart beat to increase scan
efficiency and reduce the dependence on heart rate (25). When
tested in a cohort of 25 patients with myocarditis, the method
demonstrated a high sensitivity to detect edema (25). The
isotropic spatial resolution is advantageous because it allows
reformatting in any imaging view without a loss of resolution.
Van Heeswijk et al. (33) developed a similar 3D T2-mapping
approach with isotropic resolution (1.7 mm3) but their method
is slightly less efficient as a three-heartbeat waiting period is
needed between magnetization recovery (scan time ≈ 18 min)
(33). Milotta et al. (31) propose a similar technique which
can obtain whole-heart T2 maps, dark- and bright-blood
images in a free-breathing scan of 11 min with high spatial
resolution. The 3D coverage and high-spatial resolution of the
aforementioned methods may allow detection of the coronary
arteries in addition to myocardial tissue characterization and
morphological assessment, moving towards the direction of a
comprehensive CMR exam.

Joint T1–T2

In traditional T1 and T2 parametric mapping, a preparatory
pulse [inversion recovery (IR), saturation recovery (SR),
combination of IR and SR, or T2 preparatory (T2prep)] is used
before a readout with a pulse sequence to generate a single
contrast. These readouts occur at several different time points
after the preparatory pulse is applied, and later each voxel’s
signal intensity from the image series is fitted to a curve that
describes the relaxation rate of the voxel (2). The acquisition
is typically ECG-triggered with a breath-hold requirement for
each obtained 2D slice. This method is not only lengthy but
also depends on two major assumptions: (1) the voxels’ signal
intensity can be described only by the relaxation time being
measured (or that the influence of other factors are negligible),
and (2) the images in the series are co-registered (i.e., there
is no physical displacement between the voxels of images
acquired at different readout time points) (2). Since T1 and
T2 provide complementary information when characterizing
myocardial tissue (2), joint T1–T2 mapping may both overcome
lengthy acquisition times and increase the diagnostic utility of
parametric mapping by providing co-registered maps.

To simultaneously generate T1 and T2 maps, a combination
of IR or SR and T2 prep pulses are typically used to generate T1
and T2 contrasts, respectively (Table 2) (35). Blume et al. (12)
presented one of the first joint T1–T2 techniques which could
acquire joint images using IR and T2prep pulses in an ECG-
triggered, navigator-gated, free-breathing acquisition. Although

their method was shown to measure precise T1 and T2 values
in 19 healthy subjects, their method is inefficient−requiring
almost 3 min to obtain a single 2D slice−as it requires
dummy heartbeats during signal recovery (12). Guo et al. (14)
and Hermann et al. (16) also presented navigator-gated, free-
breathing approaches to obtain joint maps. Guo et al.’s (14)
method was shown to be relatively fast, acquiring 3D joint T1–
T2 maps with an average scan time of 8 min with moderate
precision (coefficient of variations: 6.0 for T1 and 10.6 for
T2). Hermann et al. (16) generated T2∗ maps in addition to
T1 and T2, using an average acquisition time of 26.5 s/slice.
Although these methods were shown to rapidly acquire joint
maps, it should be noted that their techniques were tested mainly
in a healthy subject population where breathing is relatively
consistent. Navigator-based triggering depends on a steady
breathing pattern which may not be found in all patients and
could result in increased scan times in clinical settings.

In a different approach to navigator-triggering, Milotta
et al. (18) acquired 2D low-resolution image navigators
before running their 3D sequence to retrospectively isolate
respiratory motion. The 2D image navigators are acquired
rapidly and simplify the acquisition as they remove dependence
on obtaining optimal respiratory-triggering windows, but they
neglect to consider breathing motion in the anterior-posterior
direction which may impact the robustness of the mapping
technique (18). Their method additionally incorporates the HD-
PROST framework to increase scanning efficiency, obtaining
joint T1–T2 and water-fat maps over the whole heart with
isotropic resolution in just 9 min (18). Qi et al. (19) take
this one step further by removing the need for respiratory
navigators altogether through use of a radial sampling schema.
During reconstruction, the breathing motion is estimated using
the k-space center of all radial spokes (19). Their method
obtains 3D joint T1–T2-cine maps with isotropic resolution in
11.2 min (19).

Kvernby et al. (17) present another IR and T2prep
technique, 3D-QALAS, which can acquire a stack of 13
2D short axis co-registered T1–T2 maps at end-diastole in
an ECG-triggered acquisition of 15 heartbeats. This method
was shown to detect T1 and T2 changes in a longitudinal
study of patients who underwent valve replacement surgery
(91) and was highly reproducible in a cohort of 23 patients
with mixed pathologies, although it suffers from a lower
precision compared to MOLLI and T2-Gradient-Spin-Echo
(GraSE) techniques (92). CABIRIA, which similarly acquires
joint 2D T1/T2 mapping images in a breath-hold of eight
heartbeats, achieved high precision when tested in five healthy
subjects but suffered from low repeatability (20). Their
method continuously acquires data throughout eight cardiac
cycles after a user-selectable timepoint after the R-wave in
the ECG (20). This has the advantage of increasing the
efficiency of data collection, ultimately reducing acquisition
time. In contrast to the combination of IR and T2prep
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pulses, Akçakaya et al. (11) used a combination of SR and
T2prep pulses to generate 2D joint T1–T2 maps in a breath-
hold of 13 heartbeats. Their method yielded improved T1/T2
accuracy but with lower precision compared to the IR based
methods (11).

Other joint T1–T2 mapping approaches include
Henningsson’s (15). Multimapping, deep learning (DL)
Bloch equation simulations (DeepBLESS) (21, 93), and Chow
et al.’s (13) mSASHA. Multimapping is a joint T1/T2 method
which generates a dictionary for each subject and then matches
the acquired signal to this dictionary to generate T1–T2 maps
(15). They only partially resolve these dictionaries in order to
reduce the otherwise lengthy dictionary generation process
(15). DeepBLESS is based on the Bloch equation simulations
with the slice profile correction (BLESSPC) algorithm which
was previously developed for MOLLI T1 mapping (21, 93, 94).
mSASHA uses an ECG-trigger to acquire joint T1–T2 maps in
11 heartbeats. Their method demonstrated both high accuracy
and precision when tested in 10 healthy subjects.

All aforementioned methods address key challenges of
CMR, including the complexity of CMR scanning procedures
and long scan times, but are limited to small sample sizes in
mostly healthy subjects. Thus, despite the growing body of
evidence, further clinical validation, feasibility, accuracy, and
impact-on-outcome studies are required to verify the clinical
potential of these SMART.

Cardiac magnetic resonance
fingerprinting

Cardiac magnetic resonance fingerprinting (cMRF) is a
multi-parametric, rapid acquisition sequence for simultaneous
acquisition of multiple quantitative tissue parameters. The
traditional cMRF sequence quantifies T1, T2, and proton density
(M0) using an ECG-triggered sequence with a breath-hold of
16 heartbeats (Figure 8) (22). Several variants of the sequence
have been added over time, among them modifications for
detecting and quantifying T1p, T2∗, and fat signal fraction
(81, 82, 95, 96). Other developments include correcting for the
confounding factors caused by the radiofrequency field (B1)
(97), incorporating the ability for cMRF to acquire multiple
cardiac slices at once (80), incorporating a 3D free-breathing,
non-cardiac gated sequence with an acquisition time of 7 min
(38) and more recently, incorporating a 2D joint T1–T2-cine
sequence (Table 2) (39, 98).

Cardiac magnetic resonance fingerprinting attempts to
capture the continuous and transient state of the magnetization
history using various pulse sequence modules (e.g., IR, SR,
T2prep pulses, varying flip angles and varying TR) that are
sensitized to parameters of interest (e.g., T1 and T2) (22). The
acquired signals are matched to a dictionary of possible signal
evolutions to generate quantitative maps of interest (Figure 8)

FIGURE 8

Example of the Fingerprinting workflow, including the dictionary
matching process, and images obtained using the cardiac
Fingerprinting sequence. This sequence simultaneously
quantifies T1 and T2 in the myocardium. The figure shows
acquisition of only 4-heartbeats of the 16-heartbeat acquisition
method. In each heartbeat an inversion recovery (IR), T2
preparation (T2p), or no preparation pulse is used before the
data acquisition (ACQ). Image taken from Cruz et al. (99).

(22). cMRF dictionaries are generated using Bloch equations
− a mathematical formula that calculates magnetization as a
function of time with respect to T1 and T2 relaxation rates,
and any other properties that can be modeled by the MR
physics − to predict a range of possible spin behaviors and
signal evolutions (22). In cardiac-triggered cMRF, dictionaries
are made for each patient at the time of reconstruction,
based on patient-specific patterns. They account for hardware
parameters (B1 field inhomogeneity), acquisition parameters
(pulse sequence type, echo time, flip angle, repetition time,
readout type, etc.) and heart rate (22). This is critical as
clinical parametric mapping is inherently susceptible to external
factors (2). For a more thorough overview of the cMRF
technique and its applications, the reader is directed to (98–
100).

To save acquisition time, cMRF heavily undersamples data
using radial, rosette, or spiral sampling trajectories (22). Radial
or spiral trajectories are chosen so that the undersampling
artifacts are incoherent in the spatial domain. Although each
individual image is heavily undersampled, cMRF acquires
hundreds of these poor-quality images, so that tissue signal
patterns can still be identified and matched to the ‘fingerprint’
from the dictionary. More recently, cMRF has incorporated CS,
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LRT or HD-PROST methods into its framework (39, 79–82,
98). LRT methods have been applied to the original cardiac-
gated and breath-held cMRF technique to acquire multiple
2D T1–T2 slices simultaneously and to acquire joint T2–T2-
cine images (80, 98). HD-PROST has similarly been applied
to obtain joint T1–T2-cine images and 3D free-breathing
and non-cardiac-gated cMRF images (38, 39). Recent clinical
trials have demonstrated that cMRF gives highly reproducible
T1 and T2 measurements that correlate well with standard
mapping sequences (Table 2). The main advantage of combining
undersampling methods with existing SMART methods is to
recover images with higher IQ and greater image detail due to
their effective recovery of undersampled data (98–100).

Though many studies have demonstrated the clinical
potential of cMRF (99), there is still a need for larger, prospective
clinical trials to validate the technique for clinical application.
To date, the largest study consists of 58 healthy volunteers
scanned at a single site on a 1.5T scanner (101). The aim of
this study was to test the precision, repeatability, and IQ of
cMRF maps compared to standard mapping techniques. The
authors found that though cMRF measurements were slightly
less precise than conventional sequences, they were reliable
and cMRF images showed a more consistent IQ compared to
conventional sequences (101). Recently, cMRF was also tested
in a cohort of nine patients with amyloidosis and was found
to achieve high diagnostic accuracy of amyloidosis detection
(102). This study was the first to test the technique in a
controlled clinical trial but with a small sample size. Future
trials should include different patient populations to bring the
cMRF technique into clinical practice and to help focus the
optimization of cMRF developments.

The quantitative nature of cMRF lends itself well to
CMR protocols for myocardial tissue characterization.
Parametric mapping such as T1 and T2 are important
for differentiating between edema, scar, fatty tissue, and
other abnormalities such as the deposition of amyloid
fibrils (2). The simultaneous acquisition of multiple
contrasts and maps in cMRF reduces error caused by a
mismatch of anatomical positions or the cardiac phase across
different image types.

Cardiac magnetic resonance
multitasking

Magnetic resonance multitasking is a free breathing
multi-parametric sequence that can resolve cardiac motion,
respiratory motion and myocardial relaxation properties,
without the need for ECG triggering (Figure 9) (23). Its
reconstruction framework allows for the incorporation of PI,
CS, and LRT methods to decrease scan time (23). This allows

a patient to lay-down and breath normally while the standard
acquisition of cardiac cine, T1 and T2 mapping is acquired
as opposed to the traditional breath-held and ECG triggered
methods. Different variants of Multitasking sequences exist
with varying acquisition times, but on average, Multitasking
can acquire parameters in 1.5 min/slice or 15 min for a 3D
ventricular stack, using a satisfactory in-plane spatial resolution
of 1.4 × 1.4 × 8 mm (23, 103).

A previously published Multitasking acquisition scheme
can be described as follows (23): T1 and T2 contrast data
can be acquired simultaneously with radial sampling after five
hybrid T2/IR preparation pulses, with a subset of k-space being
sampled more frequently than the rest of k-space to obtain
substantial temporal information for the retrospective cardiac
and respiratory binning and to derive respiratory and cardiac
subspaces used in the LRT reconstruction (Figure 9A). Binning
refers to the retrospective data sorting into their motion states
(respiratory and cardiac phases). The rest of the k-space is
undersampled.

In the reconstruction process, Multitasking first sorts the
motion states and then fits the dynamic image frames to T1
and T2 contrast weightings (23). The T1 and T2 maps are
generated in a similar but slightly different fashion to cMRF.
Multitasking generates a dictionary of T1 and T2 recovery
curves using Bloch equations and then determines the T1 and
T2 basis functions from this dictionary to perform a voxel-wise
fitting of the acquired imaging signals (23). CS and LRT methods
are then used to recover IQ from the undersampled dataset
(23). Since images have been sampled across the entire T1/T2
recovery period, cine images can be created using many different
variations of T1 and T2 contrast weighting. One can obtain
dark-blood, bright-blood, T1-weighted, and T2-weighted cine
series (Figure 9A) (23). If the recovery times for pericardium,
fat, scar, edema, and myocardium are known, additional images
can be created that either suppress or highlight these tissues—all
from the same acquisition. This removes the need for specialized
training by allowing a comprehensive exam to be obtained
without ECG-gating and while the patient is breathing freely.

Several proof-of-concept studies have confirmed the
versatility of the Multitasking framework (Table 2).
Multitasking has been used to measure myocardial T1 and
extracellular volumes (ECV) (104), myocardial T1 and T2
(23, 85), myocardial T1, T2, T2∗, and fat-fraction (83) and
carotid plaques and aortic strain in patients with thoracic aortic
disease (84). These studies demonstrated that the Multitasking
framework can produce high quality images with reproducible
values that are in good agreement with reference values
(Table 2). However, clinical studies with larger sample sizes are
required to confirm these findings and validate this sequence for
clinical use. While Multitasking has a strong clinical potential
and can add additional contrasts such as T2∗, its development is
still ongoing, and more pre-clinical and clinical studies have yet
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FIGURE 9

Example of the Multitasking acquisition method. (A) To capture T1 and T2 contrasts simultaneously, a hybrid T1/T2prep pulse is used in a
continuous acquisition. Training/self-gating readouts are also acquired for retrospective cardiac and respiratory binning, and to estimate basis
functions. Multi-dimensional information, namely cardiac and respiratory motion, and relaxation rate are extracted from the acquired data and
sorted into a tensor. Each dimension in the tensor depicts cardiac motion, respiratory motion, T1 relaxation or T2 relaxation. One can choose
any point within the tensor to obtain an image at a specific respiratory position, cardiac position, and relaxation position. (B) Example of the
fitted Multitasking T1 and T2 maps. These maps are fitted after data are sorted into their tensor formation.

to show its ability to reliably quantify cardiac function, or T1
and T2 values in clinical settings.

Deep learning applications to
simultaneous multi-parametric
acquisition and reconstruction
techniques

For SMART to be adopted into clinical practice, the issue of
lengthy reconstruction times must be addressed. Reconstruction
times of SMART have shown to vary from 3 min (105)
to several hours (55). However, a clinical workflow may
require even faster reconstruction speeds to troubleshoot any
potential issues with the acquisition that could arise while the
patient is still in the scanner. The speed of reconstruction for
each method depends on several factors such as acquisition
parameters [dimensionality of the acquisition (2D versus

3D), in-plane spatial resolution, undersampling factor, etc.],
reconstruction parameters (number of iterations and other
tuneable parameters), computer hardware parameters [random
access memory, processing unit (graphics processing unit
vs. central processing unit), etc.], and computing platform
(computed unified device architecture, python, MATLAB, etc.)
(55). Deep Learning (DL) may allow SMART to overcome
some of their limitations by efficiently computing complex
reconstruction tasks (Figure 10).

Deep learning has already been applied to cMRF for
optimizing the dictionary-generation, image gridding
and dictionary-signal-matching process used in cMRF’s
reconstruction of parametric maps (106, 107). Dictionary
generation is a time-consuming and computationally heavy
part of cMRF’s reconstruction (22). DL reconstructions have
been shown to speed up this process by more than sixfold
(106), simply outputting T1/T2 values after the MRF signal
time course and cardiac RR interval times are inputted to
the network (Figure 11) (107). DL has also been applied to
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FIGURE 10

(A) Interplay of SMART, artificial intelligence (AI), and clinical CMR: A graphical overview of the relationships between artificial intelligence (AI)
and its subsets, machine learning (ML) and deep learning (DL), as well as AI’s potential impact on clinical CMR through SMART techniques. AI
uses machines to perform tasks usually disposed to humans and covers all ML techniques. ML specifically investigates how computers learn
from data, and DL, the most popular ML technique, automatically learns important features of data. (B) Examples of deep learning applications
to SMART CMR workflows: DL has been applied at all stages of the CMR workflow, from image acquisition to analysis. Advantages to DL
applications include reductions in input needed from clinicians through automated methods, and significant reductions in time for acquisition,
reconstruction, and analysis. Challenges remain in applying DL to clinical settings, include computational limits, the lengthy training required for
DL networks, and the “black box” nature of DL.

automated planning and sequence design, useful for reducing
the complexity of scanning for technologists, though limited
literature exists of cardiac applications (108).

Widespread application of DL to SMART is still limited.
Their novelty and their current development status limit DL
to a use mostly in small, exploratory studies, rather than large
clinical validation trials. In addition to the signal-dictionary
matching in cMRF, DL has been applied to quickly reconstruct
T1 and T2 maps directly from cMRF images (107), reconstruct
feature maps from multitasking images while accelerating
reconstruction time by a factor of up to 3,000 (109), accelerate
the acquisition of whole-heart magnetization transfer images
fivefold (28), and has accurately estimated image IQ from other
sequences in line with expert human reader ratings (110).
Since DL has the potential to expedite the time-consuming
and computationally demanding reconstruction processes of

many SMART, its application will likely increase as SMART
become more mature.

The use of DL is not without limitations. While DL may
offer an increase in SMART reconstruction speeds, it requires
a training stage which may not be easy or fast to conduct.
Computational challenges such as the limits in processing
capabilities to reconstruct long image sequences (111), and
the need for labeled datasets in training (111) may complicate
or restrict its general utility. Small datasets used for training
DL networks may not accurately represent the diversity of the
true population, preventing adoption in clinical practice (111).
Furthermore, the “black box” nature of DL may limit a more
rapid widespread adoption (111). The performance of other
sparse sampling methods (PI, CS, LRT, HD-PROST) can be
characterized using mathematical tools to understand how and
when these methods fail, but this is more challenging with
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FIGURE 11

(A) Biological neural network: pictorial depiction of visual processing by interconnected neurons in the human brain. Figure design inspired by
Zhu et al. (128). (B) Artificial (computer) neural network: pictorial of an artificial (computer) neural network as used in DL methods. Neural
networks are composed of multiple hidden layers of interconnected nodes, which parallel the human brain’s interconnected neural signaling
pathways. Network inputs go through several layers of computations which not visible to the reader, and as such, these computations are
known as hidden layers. Within each layer, filters are applied to the input, producing spatially dependent features which are then input to the
next layer. The network aims to learn the optimal value of the filters, known as their weight, to generate features of maximum relevance to the
task. If there are many layers, or computations, in the model, it is known as a deep neural network. (C) Neural network in CMR: a basic graphical
representation of the deep neural network structure used to accelerate cardiac Fingerprinting (cMRF), as proposed by Hamilton and Seiberlich
(106). After the network has been trained on simulated cMRF data, undersampled cMRF images are input and the network produces
reconstructed T1/T2 maps. Specifically, for a given voxel, the measured cMRF signal time course and cardiac RR interval times from the ECG are
input. The network then produces the estimated T1 and T2 values per voxel. This technique greatly accelerates reconstruction time from
undersampled images, suggesting applications for rapid CMR reconstructions in clinical settings.

DL because the mathematical expressions inside the neural
networks are hidden. This may be especially problematic when
DL methods return reconstructions that look realistic but are
in-fact inaccurate descriptions of the real pathology or anatomy.
Ideally, clinicians should be able to understand DL’s predictions
before applying the results to clinical decision making (111).
Minimizing bias in network design and ensuring training can be
done with representative datasets and weighting will be critical
to ensure DL networks do not simply replace manual bias with
another form (109).

Despite its limitations, recent work supports the idea that
SMART techniques will move toward DL reconstructions. The
long manually intensive reconstructions currently experienced
with SMART techniques only pushes CMR’s time limitation

from the foreground to the background (42). CMR will be
unable to accommodate more patients without experiencing a
reconstruction backlog, but this can be solved with DL (111).

Conclusion and future outlook

The application of SMART to clinical settings has the
potential to change the current practice of CMR imaging. The
ability of these techniques to acquire and then reconstruct
different types of CMR images from a single image acquisition
sequence simplifies the workflow for both the technologist and
the patient. In the long term, this may allow CMR to be used in
centers or locations without technologists specialized in cardiac
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imaging. The benefit may also extend to patients living in remote
areas, avoiding long commutes to specialized CMR centers. The
significant shortening of scan times by using SMART compared
to conventional CMR sequences may allow higher patient
throughputs, reducing cost per scan and shortening CMR
waitlists (9). The other added benefit for clinicians is the co-
registration of SMART images, as various tissue characteristics
or regional function can be reliably combined and thereby
better inform therapeutic decisions. As part of a comprehensive
CMR exam which includes morphology, function, and tissue
characterization, SMART provides opportunity to obtain several
of these parameters simultaneously. Some additional technical
developments and eventually large, prospective, controlled
clinical trials will be required to bring these techniques into
clinical routine and identify areas where the techniques need
to be optimized for clinical application. However, SMART
addresses the issues of complicated imaging methods and long
scan times in one way or another.
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Cardiometabolic disease refers to the spectrum of chronic conditions that include

diabetes, hypertension, atheromatosis, non-alcoholic fatty liver disease, and their

long-term impact on cardiovascular health. Histological studies have confirmed

several modifications at the tissue level in cardiometabolic disease. Recently,

quantitative MR methods have enabled non-invasive myocardial and liver tissue

characterization. MR relaxation mapping techniques such as T1, T1ρ, T2 and

T2
∗ provide a pixel-by-pixel representation of the corresponding tissue specific

relaxation times, which have been shown to correlate with fibrosis, altered tissue

perfusion, oedema and iron levels. Proton density fat fraction mapping approaches

allow measurement of lipid tissue in the organ of interest. Several studies have

demonstrated their utility as early diagnostic biomarkers and their potential to bear

prognostic implications. Conventionally, the quantification of these parameters by

MRI relies on the acquisition of sequential scans, encoding and mapping only

one parameter per scan. However, this methodology is time inefficient and suffers

from the confounding effects of the relaxation parameters in each single map,

limiting wider clinical and research applications. To address these limitations, several

novel approaches have been proposed that encode multiple tissue parameters

simultaneously, providing co-registered multiparametric information of the tissues

of interest. This review aims to describe the multi-faceted myocardial and hepatic

tissue alterations in cardiometabolic disease and to motivate the application of

relaxometry and proton-density cardiac and liver tissue mapping techniques. Current

approaches in myocardial and liver tissue characterization as well as latest technical

developments in multiparametric quantitative MRI are included. Limitations and

challenges of these novel approaches, and recommendations to facilitate clinical

validation are also discussed.
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1. Introduction

Quantitative MRI (QMRI) measures physical tissue values,
related to the nuclear spin of protons in water. It includes the
T1-, T2-, T2

∗-, T1ρ -relaxation times and the proton density. The
respective parameter maps provide quantitative parameter values
for each voxel, which carry information about the corresponding
structural environment of the protons. QMRI can be used to assess
microstructural alterations related to tissue remodeling and has
emerged as valuable imaging modality for myocardial and hepatic
tissue characterization (1, 2). QMRI has been incorporated in
standardized diagnostic clinical protocols in various pathologies,
including inflammatory cardiomyopathies (3), amyloidosis (4),
Anderson-Fabry disease (5) and iron overload (1, 2, 6). It has also
been proposed by both the European Association for the Study of the
Liver and the American Association for the Study of Liver Disease
as a non-invasive diagnostic tool for tissue characterization in Non-
alcoholic Fatty Liver Disease (NAFLD) (7, 8). QMRI facilitates direct
quantitative comparison of tissue maps in the same individual with
chronic disease over time and allows more accurate longitudinal
monitoring of the disease, thereby enabling an individualized
characterization and more objective patient assessment.

Cardiometabolic disease, which describes a clustering of
disorders that touch upon the interface between cardiovascular
disease (hypertension, atherosclerosis) and metabolic disease states
(insulin resistance, diabetes, adiposity, NAFLD) (9), is a chronic
disease state and a major cause of morbidity worldwide. The reported
prevalence is 33–35% in adults and is associated with an increased
risk of adverse cardiovascular events and all-cause mortality (10,
11). Cardiometabolic disease is challenging for physicians to manage
because it can be present for years before becoming clinically
apparent. Histological and functional alterations have been observed
in the heart and liver, in addition to the skeletal muscle, liver,
pancreas, adipose tissue and microcirculation (12). Numerous studies
suggest that QMRI may add valuable information by identifying
microstructural tissue damage early in the disease process, allowing
for instituting and maintaining optimum health behaviors and
treatment strategies, at a time when it is likely to be most effective.

The objective of this review is to provide an overview of
parametric QMRI in cardiac and hepatic tissue characterization
in cardiometabolic disease. First, we describe cardiac and hepatic
tissue structural changes that occur in the primary manifestations
of cardiometabolic disease, namely in diabetes, hypertension and
atherosclerosis, as a framework for understanding how QMRI can
be utilized to assess these changes. Then, we describe single-
parameter mapping techniques and their clinical applications in
the corresponding disease states. Lastly, we describe emerging
multiparametric approaches in heart and liver, which are promising
for comprehensive understanding of this multi-faceted disease.

Abbreviations: CMR, cardiovascular magnetic resonance; T2DM, type 2
diabetes mellitus; ECV, extracellular volume; HTN, hypertension; IR,
inversion recovery; LGE, late-gadolinium enhancement; LVH, left ventricular
hypertrophy; MOLLI, modifier look-locker imaging; MRF, magnetic resonance
fingerprinting; NAFLD, non-alcoholic fatty liver disease; NASH, non-
alcoholic steatohepatitis; QMRI, quantitative magnetic resonance imaging; SR,
saturation recovery.

2. Microscopic tissue alterations in
cardiometabolic disease

2.1. Diabetic cardiomyopathy

Type 2 diabetes mellitus (T2DM) is estimated to affect 6%
of the world’s population (13) and is considered a coronary
heart disease risk equivalent (14–17). The pathogenesis of the
cardiac morbidity is multifactorial (18, 19). It has been proposed
that metabolic modifications induced by hyperglycaemia, insulin
resistance and hyperlipidaemia cause an aberrant use of fatty
acids for energy generation (20). Fatty acid may saturate ß-
oxidation and accumulate in the cytosol, leading to lipotoxic
effects. Furthermore, hyperglycemia elicits reactive oxygen species
and advanced glycation product formation, which lead to cardiac
glucotoxicity. Both, the lack of fuel and lipo/gluco-toxicity as well
as disturbances in mitochondrial energetics are triggering cardiac
low-grade chronic inflammation, fibrosis and contractile dysfunction
(21). Histological studies have confirmed corresponding changes in
the myocardium of diabetic patients and animals, including the
presence of diffuse myocardial and perivascular fibrosis (22–24;
Figure 1), increased quantities of matrix collagen, inflammation,
myocyte hypertrophy, myocardial steatosis and increased apoptosis
(25–29). These pathophysiological changes often evolve quiescently
to heart failure; and the prevalence of heart failure in T2DM is
ranging from 19 to 26% (30, 31). It is therefore of clinical relevance to
comprehend early alterations of cardiac tissue composition in T2DM
and the progress from subclinical disease to more advanced disease
stage manifesting clinically.

2.2. Hypertensive cardiomyopathy

Arterial hypertension is part of the constellation of disorders
that constitute the cardiometabolic disease and is associated with
an estimated 54% of strokes and 47% of ischemic heart disease
worldwide (32, 33). The pathogenesis of hypertensive heart disease
involves primarily cardiomyocyte hypertrophy, providing adaptive
response to pressure overload (involving effects of growth factors,
cytokines and neurohormones, and genetic predisposition) (34,
35). The alterations in the cellular and non-cellular (extracellular
matrix) level induce structural remodeling of the myocardium with
fibrosis of the muscle and perivascular space, medial hypertrophy
of intramyocardial coronary vasculature, microangiopathy with
decreased coronary reserve and development of epicardial coronary
stenoses (36, 37). Myocardial fibrosis has been documented
histologically in hypertensive hearts in subjects with hypertension
(HTN) and left ventricular hypertrophy (LVH) (38). Myocardial
fibrosis can be focal, referred to as replacement fibrosis, or diffuse,
also known as interstitial fibrosis and is the most typical pattern
in hypertensive heart disease (36) (Figure 2). Myocardial fibrosis
predisposes patients to diastolic and systolic dysfunction, myocardial
ischemia, and arrhythmias (39). It has been also demonstrated
that treatment with inhibitors of angiotensin converting enzyme
reduces collagen content and left ventricular stiffness with potential
improvement in diastolic and systolic function, and perhaps
outcomes (40). Thus, monitoring myocardial tissue alterations
in hypertensive patients could enable risk stratification, inform
treatment strategies, and monitor response.
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FIGURE 1

Fibrosis plays a crucial role in the development of diabetic cardiomyopathy. Representative images of Masson’s trichrome staining of a longitudinal
section of the heart of control and diabetic mice (scale bar 1 mm). Magnified views show extracellular collagen deposition in the interstitial (scale bar
50 µm) and perivascular (scale bar 50 µm) space. Compared to the control group, diabetic cardiomyopathy mouse hearts displayed markedly increased
collagen content both in the interstitial and perivascular space. Adapted from Li et al. with permission (24).

2.3. Atherosclerotic cardiovascular disease

Atherosclerotic Cardiovascular Disease constitutes an important
aspect of cardiometabolic syndrome and remains a leading cause
of morbidity and mortality worldwide (41). The atherogenic
process is primarily an inflammatory process and consists of
several cellular and molecular interactions, including fatty tissue
accumulation, platelet aggregation, abnormal vasomotor function,
and can potentially culminate in atherosclerotic plaque formation,
erosion, rupture or concomitant thrombus formation (42, 43),
impeding blood flow and leading to tissue ischemia. In an
acute ischemic event, the infarcted myocardial regions undergo
a complex process of invasion, transformation and apoptosis of
various cell types, including inflammatory cells and myofibrolasts,
before remodeling to fibrotic scar tissue. Occasionally lipomatous
metaplasia of the scar tissue ensues (44, 45). Fibrosis has also been
histologically observed in non-infarcted regions of the heart as a
result of left ventricular remodeling in patients with severe coronary
atherosclerosis (46, 47). It is hypothesized that coronary artery
stenosis, induced by atherosclerosis, impairs perfusion and causes
chronic hypoxia with myocyte loss with consequent “reparative”
collagen synthesis, contributing to interstitial collagen accumulation
(48). Furthermore, there is ample evidence supporting the association
of inflammation with the initiation and progression of atherosclerosis
(43, 49). Atherectomy specimens have demonstrated the migration
of the inflammatory cells in the arterial endothelium and that
the inflammatory burden contributes to atherogenesis and adverse
events (43).

2.4. Non-alcoholic fatty liver disease

NAFLD is considered the hepatic manifestation of the metabolic
syndrome and constitutes one of the most common causes of chronic

liver disease, with an estimated worldwide prevalence of around
25% (50). It is characterized by excessive fat accumulation in the
hepatic tissue that is not attributable to consumption of alcohol (8).
This condition may range histologically from simple non-alcoholic
fatty liver, which is considered a benign condition, to non-alcoholic
steatohepatitis (NASH), which additionally involves various stages of
inflammation to tissue necrosis (8). Evidence from several studies
suggests that all-cause mortality and more specifically cardiovascular-
related mortality is higher in patients with NASH, and this is
independent of the risk conferred by traditional risk factors and
components of the metabolic syndrome (51–53). There is therefore a
clinical need for reliable non−invasive biomarkers at the tissue level
for the assessment of NAFLD and NASH (54).

3. Single-parameter mapping
techniques in cardiometabolic
disease

Parametric mapping requires the acquisition of a series of
weighted images with different contrasts. These contrasts are
generated by varying timing parameters such as echo times or
inversion times. Fitting the series of weighted images to the
corresponding signal model, in a pixel-wise manner, enables the
generation of a quantitative map of the tissue relaxation, expressed
in units of time (e.g., milliseconds). Single-parameter mapping
techniques include T1 mapping, T2 mapping, T2

∗ mapping and
T1rho mapping. Extracellular volume can be generated from native
(pre-contrast) and post contrast T1 mapping. Proton density fat
fraction (PDFF) is a ratio, expressed as a percentage, of the fraction
of the MRI-visible protons attributable to fat divided by all MRI-
visible protons in that region of the liver attributable to fat and water.
A brief introduction to each of these maps and their application in
cardiometabolic disease is given below. The latter is also summarized
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FIGURE 2

Focal myocardial fibrosis in a hypertensive patient. Late gadolinium
enhancement in a 63-year-old female patient with longstanding
hypertension. The arrows show an area of intramyocardial late
gadolinium enhancement in the basal and mid inferoseptal and
inferolateral segments. This is not the most typical fibrosis pattern in
hypertension, which is usually diffuse. Adapted from Maceira et al.
with permission (36).

in Table 1. The reader is referred to (55, 56) for further reading about
the specific mapping techniques.

3.1. T1 mapping

T1 (spin-lattice) relaxation time is the characteristic tissue
relaxation constant governing the recovery of longitudinal
magnetization (Mz) back to its thermal equilibrium following a
radiofrequency pulse. T1 parametric mapping is conventionally
achieved by applying magnetization preparation pulses (e.g.,
Inversion Recovery (IR) or Saturation Recovery (SR) pulses to
encode T1 as in MOLLI (1) or in SASHA (57) respectively) preceding
the readout to generate the desired T1 contrast. The same preparation
pulse type is typically applied several times with varying parameter
settings, (e.g., inversion delay or saturation delay) to obtain different
T1 contrast weighted images, which are then used for pixel-wise
parametric fitting to the expected signal behavior. The need for
several weighted images for parametric fitting (e.g., ∼10 for T1
mapping) and the time required to allow for magnetization recovery
reduce the efficiency of the sequence, usually limiting it to one or
few 2D slices, especially in the case of cardiac imaging, where the
readout is synchronized with the ECG and usually performed at the
diastolic cardiac phase.

Native T1 values are prolonged by tissue free water content and
are typically shortened by fat and iron. Increased native T1 values are
seen in oedema and during inflammation (3). Increased T1 values
are also seen in areas of fibrosis, due to associated expansion of
the extracellular space as seen for example in myocardial infarction
(MI) and hepatic fibrosis (58). Controversial results about myocardial
T1 values in diabetic cardiomyopathy have been reported, some
studies have concluded significantly increased native T1 values in
the myocardium of diabetic patients in comparison to controls (59–
62) (Figure 3), while other studies have not found a significant

difference (20, 63). Meta-analysis of the relevant studies did not show
an association of diabetes with native T1 time (64). With regards
to arterial hypertension, several groups have shown that elevated
T1 values are found in hypertensive subjects with left ventricular
hypertrophy (LVH) compared with those with normal left ventricular
myocardial mass and controls (38, 65–67). These results suggest that
hypertensive patients have increased myocardial fibrosis, but that
this is triggered with the onset of LVH rather than earlier. This
could also suggest that interstitial changes in early hypertension (pre-
LVH) are non-existent or perhaps are small and not detectable with
current applications of T1 mapping technique. These findings have
been confirmed by a meta-analysis (68). Additionally, in a cohort of
patients with NAFLD versus healthy subjects, native liver T1 values
could differentiate steatotic from non-steatotic livers and showed a
strong correlation with history of cardiovascular disease (69).

3.2. T2 mapping

T2 (spin-spin) relaxation time is the MR constant governing
the decay of transverse magnetization (Mx,y) and is dependent on
spin-spin interactions. T2 parametric mapping is conventionally
achieved by applying T2-preparation pulses, with different time
durations, before the readout to encode T2 (70) and generate the
desired T2 weighted images. T2 mapping requires the acquisition
of ∼3–4 T2 weighted images including pause heartbeats to allow
for magnetization recovery, which collectively reduces the efficiency
of the sequence, usually limiting spatial resolution and coverage
resulting in the acquisition of only one or a few 2D slices per
CMR examination.

T2 mapping detects tissue free water content and has been shown
very useful for detection of myocardial inflammation and oedema
in chronic and acute disease settings (71–76). T2 mapping is also
used for the differential diagnosis of acute myocardial infarction
as it allows detection of the associated oedema and inflammation
caused by the acute immune response (77). Jiang et al., demonstrated
that diabetes status is related to increased T2 values even in
asymptomatic individuals, and this is associated with both left
ventricular systolic and diastolic function (78). Furthermore, a recent
study has demonstrated that there is good correlation between liver
T2 values and histology determined steatosis (r = 0.780, p < 0.001)
and grade of steatosis (r = 0.779, p < 0.001). Interestingly, a higher
correlation between the liver T2 value and percentage of histological
steatosis was observed (r = 0.838, p < 0.001), after adjusting for
the fibrosis stage. A T2 cut-off value of 65 ms [area under the
curve (AUC) ± SE: 0.88 ± 0.07, 95% confidence interval (CI): 0.73–
1.00, p = 0.005] could discriminate moderate/severe steatosis from
none/mild steatosis with a sensitivity of 81%, specificity of 86%,
positive predictive value of 85%, and negative predictive value of
82% (79).

3.3. T2
∗ mapping

T2
∗ time captures the dephasing in transverse magnetization

(perpendicular to the strong magnetic field) due to the combined
effect of field inhomogeneities and susceptibility induced distortions
from the magnetised tissue (e.g., high content of paramagnetic
materials such as iron) and the spin-spin relaxation related
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TABLE 1 In vivo CMR studies with conventional single-parameter mapping techniques in patients with cardiometabolic disease.

References Study design Patient
characteristics

Reference
standards

CMR
methods

Accuracy/Correlation

Permutt et al. (100) Prospective
cross-sectional

51 NAFLD adults 51 corresponding
biopsies

PDFF PDFF correlated with histology-determined steatosis, (r2 = 0.54,
P < 0.0001)

Wong et al. (87) Cross-sectional
prospective

231 T2DM adults 945 non-diabetic
patients referred for

CMR

ECV ECV: 30% (26.9, 32.7) T2DM vs 28.1% (25.0, 31) HV, P < 0.001

Idilman et al. (166) Retrospective
observational

70 NAFLD adults Corresponding liver
biopsies

PDFF PDFF correlated with biopsy-determined steatosis, (r = 0.86, P = 0.02)
PDFF correlated less strongly with biopsy-determined steatosis when

fibrosis was present, (r = 0.6 vs r = 0.859, respectively; P = 0.020)
PDFF correlated better in mild hepatic steatosis than that of moderate

or severe steatosis (r = 0.835 and r = 0.402, respectively; P = 0.003)
PDFF measurement of 15.03% (area under the curve, 0.95; 95%
confidence interval: 0.91, 1.00) differentiates moderate or severe

steatosis from mild or no hepatic steatosis, with a sensitivity of 93.0%
and a specificity of 85.0%, and respective positive and negative

predicted values of 91.0% and 88.0%

Tang et al. (104) Prospective
cross-sectional

77 NAFLD adults 77 corresponding
biopsies

PDFF PDFF was significantly correlated with histologic steatosis grade
(ρ = 0.69, P < 0.001).

Area under the receiver operating characteristic curves was 0.989 (95%
confidence interval: 0.968, 1.000) for distinguishing patients with

steatosis grade 0 (n = 5) from those with grade 1 or higher (n = 72);
0.825 (95% confidence interval: 0.734, 0.915) to distinguish those with
grade 1 or lower (n = 31) from those with grade 2 or higher (n = 46);

0.893 (95% confidence interval: 0.809, 0.977) to distinguish those with
grade 2 or lower (n = 58) from those with grade 3 (n = 19).

Shah et al. (89) Cross-sectional
prospective

11 T2DM obese
adolescents

10 non-T2DM obese
adolescents

12 HV

ECV: 37.6% (33.6%, 40.7%) T2DM obese vs 32.8% (27.8%, 34.5%)
non-T2DM obese, P = 0.03

ECV: 26.4% (25.3%, 27.1%) T2DM obese vs 37.6% (33.6%, 40.7%) HV,
P = 0.03

ECV was associated with hemoglobin A1c (r = 0.76, P < 0.0001)

Banerjee et al. (110) Comparative
prospective

90 NAFLD/NASH
adults

Histological
specimens within 1

month
7 HV

Native T1 and T2*
Estimated cT1

cT1 correlated with increasing liver fibrosis rs = 0.68, 95% CI
0.54–0.78, p < 0.0001

Kuruvilla et al. (38) Cross-sectional
prospective

20 HTN LVH, 23 HTN
non-LVH

22 HV Native T1
ECV

Native T1: 996± 32.5 ms HTN LVH vs 967.4± 35 ms HV, P = 0.007
Native T1: 974.0± 33.6 ms HTN non-LVH vs 976.4± 35 ms HV,

P = not statistically significant
ECV: 29%± 3 HTN LVH vs 26%± 2 HV, P = 0.006

ECV: 27%± 2 HTN non-LVH vs 26%± 2 HV, P = 0.6

Treibel et al. (67) Observational
prospective

40 well-controlled HTN
adults

50 HV Native T1: 997± 27 ms HTN with LVH vs 948± 31 ms HTN no LVH,
p < 0.001

Native T1: 955± 30 ms HTN versus 965± 38 ms HV, p = 0.16
ECV: 27.1%± 2.7 HTN vs 26.1± 2.4, P = 0.06

ECV: 28.8± 2.8% HTN LVH vs. 26.2± 2.2 HTN no LVH, p < 0.01)

Doycheva et al. (102) Prospective
cross-sectional

100 T2DM adults None PDFF PDFF, median (IQR): 12.3 (9.2) T2DM NAFLD vs 2.7 (1.9) T2DM no
NAFLD, P < 0.0001

Levelt et al. (20) Cross-sectional
prospective

46 T2DM adults 20 HV Native T1
ECV

Native T1: 1,194± 32 ms T2DM vs 1,184± 28 ms HV, P = 0.23
ECV: 29%± 2 T2DM vs 29%± 3 HV, P = 0.77

Rodrigues et al. (66) Observational
prospective

88 HTN (41 normal LV;
15 Conc-REMDL;

Conc-LVH 24; Ecc LVH
8

29 HV Native T1
ECV

Native T1: 1,031± 35 ms HTN normal LV vs 1,024± 41 ms HV,
p = reported as not statistically significant

Native T1: 1,029± 45 ms HTN Conc-REMDL vs 1,024± 41 ms HV,
p = reported as not statistically significant

Native T1: 1,054± 41 ms HTN Conc-LVH vs 1,024± 41 ms HV,
p = 0.007

Native T1: 1,062± 41 ms HTN Ecc-LVH vs 1,024± 41 ms HV,
p = 0.017

ECV: 29%± 4 HTN Conc-LVH vs 27%± 3 HTN normal LV,
p < 0.0001

ECV: 29%± 4 HTN Conc-LVH vs 26%± 3 HTN Conc-REMDL,
P = 0.012, p < 0.0001

ECV: 30%± 3 HTN Ecc-LVH vs 27%± 3 HTN normal LV, P = 0.6
ECV: 30%± 3 HTN Ecc-LVH vs 26%± 3 HTN Conc-REMDL,

P = 0.021

Swoboda et al. (61) Case-controlled
observational

100 T2DM adults (50
ACR+ve T2DM, 50

ACR-ve T2DM)

30 HV Native T1
ECV

Native T1: 1,232± 36 ms T2DM vs 1,210± 47 ms HV, P = 0.0.02
Native T1: 1,253± 66 ms T2DM ACR +ve vs 1,232± 36 ms T2DM

ACR-ve, P = 0.05
ECV: 25.1± 2.9 T2DM vs 23.3± 3 ms HV, P < 0.0.001

ECV: 27.2± 4.1 ms T2DM ACR+ve vs 25.1± 2.9 ms T2DM ACR-ve,
P = 0.004

(Continued)
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TABLE 1 (Continued)

References Study design Patient
characteristics

Reference
standards

CMR
methods

Accuracy/Correlation

Van den Boomen
et al. (68)

Systematic review
and Meta-Analysis

831 HTN (739 no LVH
HTN)

1101 HV Native T1 HTN patients (with and without LVH) showed a significant difference
between T1 values vs HV (SMD: 0.19; 95% CI 0.01–0.37; I2 = 61%;

P = 0.04)
HTN patients without LVH showed no significant difference between

the T1 values of HV and HTN patients (SMD: 0.03; 95%
CI –0.07–0.13; I2 = 2%; P = 0.52)

Shang et al. (63) Cross-sectional
prospective

38 T2DM adults 32 HV Native T1
ECV

Native T1: 1,213.5± 57.5 ms T2DM vs 1,212.8± 41.4 ms HV, P = 0.95
ECV: 30.4± 2.9 T2DM vs 27.1± 2.4HV, P < 0.001

ECV correlated with duration of diabetes (R = 0.539, P = 0.0005)

Cao et al. (59) Cross-sectional
prospective

50 T2DM patients 50 BMI-matched HV Native T1 and ECV ECV: 27.4± 2.5% vs. 24.6± 2.2%, p < 0.001
native T1: 1,026.9± 30.0 ms T2DM vs. 1,011.8± 26.0 ms

HV, p = 0.022
Native T1 values correlated with the hemoglobin A1c levels

(standardized β = 0.368, p = 0.008)
ECVs were associated with the HbA1c levels (standardized β = 0.389,

p = 0.002)

Lam et al. (60) Cross-sectional
prospective

27 T2DM patients 10 HV Native T1 Native T1: 1,056± 31 ms T2DM vs 1,016± 21 ms HV, P = 0.00051)
Native T1 values correlated with the hemoglobin A1c levels (ρ = 0.43,

P = 0.0088)
ECV: 25%± 0.03 T2DM vs 26%± 0.02 HV, P = 0.47

Gulsin et al. (91) Cross-sectional
prospective

75 T2DM HFpEF adults 65 non-diabetic
HFpEF adults

ECV ECV: 28± 5 T2DM HFpEF vs 28± 5 non-diabetic HFpEF, P < 0.683

Chirinos et al. (90) Retrospective
cross-sectional

32 T2DM HFpEF adults 21 non-diabetic
HFpEF adults

ECV: 30.4% T2DM HFpEF vs 27.1% non-diabetic HFpEF, P = 0.10

Kucukseymen et al.
(62)

Retrospective
observational

36 T2DM HFpEF obese
adults

45 HV Native T1 Native T1: 1,129± 25 ms T2DM HFpEF vs 1,071± 27 ms HV,
P < 0.001

Native T1: 1,162± 37 ms T2DM HFpEF obese vs 1,071± 27 ms HV,
P < 0.0.01

Arcari et al. (65) Cross-sectional
prospective

163 HTN 133 HV Native T1: 1,102± 42 ms HTN vs 1,062± 39 ms HV, P < 0.001
Discrimination of HTN versus HV: AUC 0.98 (0.93–0.99)

Jiang et al. (78) Prospective
observational

135 T2DM adults Age-, sex- and
BMI-matched 55 HV

Native T1
Pre-contrast T2

Native T1: 1,242.6± 230.3 ms T2DM vs 1,209.2± 181.7 ms HV,
P = 0.439

Pre-contrast T2: 41.79± 3.41 ms T2DM vs 40.48± 2.63 ms HV,
P = 0.009

ECV: 32.61± 4.62 ms vs 27.53± 3.05 ms, P < 0.001

Bojer et al. (93) Prospective
cross-sectional

264 T2DM adults (207
without LGE, 29
ischemic LGE, 25

non-ischemic LGE, 3
both ischemic and

non-ischemic LGE)

25 sex-matched HV ECV ECV: 32.2± 3.8 T2DM with LGE (ischemic and non-ischemic lesions)
vs 28.8± 2.7 T2DM without LGE, P < 0.0001

ECV: 28.8± 2.7 T2DM without LGE vs 26.1± 1.5 HV, P < 0.0001
± 3.1 T2DM with non-ischemic LGE vs 28.8± 2.7 T2DM without

LGE, P = 0.01

Khan et al. (88) Prospective
observational

70 T2DM
76 pre-diabetic

296 HV T2DM was associated with elevated ECV after adjusting for clinical
and imaging covariates: β coefficient 1.33 (95% CI, 0.22–2.44); P = 0.02

ECV 30% Hazard Ratio for composite events, 3.31 (1.93–5.67),
P < 0.001

Erden et al. (69) Observational
prospective

83 NAFLD adults 26 HV
Liver biopsy for 44

patients

Native T1 MOLLI 3(3)3(3)5: 766.2 (561.2–2,210.2) vs 595.6
(457.6–644.6), P < 0.001

Native T1 MOLLI 5(3)3: 656.2 [502.9–1,028.1 vs 564.8 (445.4–605.4)],
P < 0.001

Native T1 MOLLI 3(2)3(2)5: 744.6 (538.5–2221.5) vs 582.2
(464.0–637.4), P < 0.001

Native T1 MOLLI 5(3)3hrc: 638.3 (465.6–931.1) vs 556.8
(442.1–465.6), P < 0.001

T2 FLASH: 42.0 (33.2–44.1) NAFLD vs 41.4 (34.0–44.8), P = 0.13
T2 TrueFISP: 49.5 (39.4–55.1) NAFLD vs 49.1 (45.1–53.1), P = 0.679

Differentiating NAFLD and control group: Native T1 MOLLI
3(3)3(3)5 AUC: 0.976, Accuracy% (95%CI): 94.5 (90.2–98.8),

Sensitivity% (95% CI): 92.8 (85.1–96.6), Specificity%: (95% CI) 100
(87.1–100), P < 0.001

Differentiating severe steatosis from mild/moderate steatosis
Native T1 3(3)3(3)5: AUC: 0.995, Accuracy% (95%CI): 98.7

(96.3–100), Sensitivity% (95% CI): 100 (74.2–100), Specificity% (95%
CI): 98.5 (92.1–99.7), P < 0.001

Laohabut et al. (92) Retrospective
cohort

188 T2DM adults
undergoing CMR for
ischemia or viability

551 non-T2DM
adults undergoing

CMR for ischemia or
viability

Native T1
ECV

Native T1: 1,335± 75 T2DM vs 1,331± 58, P = 0.516
ECV: 30.0± 5.9 T2DM vs 28.8± 4.7, P = 0.004

High ECV (HR: 2.01, 95% CI: 1.03–3.93) was identified as
independent predictors of cardiovascular events

(Continued)
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TABLE 1 (Continued)

References Study design Patient
characteristics

Reference
standards

CMR
methods

Accuracy/Correlation

Idilman et al. (79) Retrospective
observational

23 NAFLD adults (with
NASH and without

NASH)

Corresponding
biopsy

Pre-contrastT2 Pre-contrast T2: 69± 7.37 ms NASH vs 61.73± 5.99 ms NAFLD
without NASH, p = 0.016

Pre-contrast T2: 65.44± 8.56 NAFLD with lobular inflammation vs
NAFLD without lobular inflammation 63.87± 5.1 ms, p = 0.640
Pre-contrast T2: 68.75± 9 NAFLD with portal inflammation vs
64.31± 7.3 ms, NAFLD without portal inflammation, p = 0.347
Pre-contrast T2 correlated with histology-determined steatosis:

r = 0.780, p < 0.001
Pre-contrast T2 correlated with grade of steatosis: r = 0.779, p < 0.001

Liver T2 did not correlate with fibrosis stage: rs = –0.299, p = 0.165
Liver T2 correlated with fibrosis stage after adjusting for steatosis:

r = –0.536, p = 0.012
T2 value 65.01 ms discriminated moderate/severe from none/mid
steatosis: (area under the curve [AUC]± SE: 0.875± 0.073, 95%

confidence interval [CI]: 0.73–1.00, p = 0.005), with a sensitivity of
81.3%, specificity of 85.7%, positive predictive value of 85%, and

negative predictive value of 82.1%

Salvador et al. (64) Systematic review
and Meta-Analysis

5,053 T2DM Native T1
ECV

T2DM is associated with a higher degree of MF assessed by ECV% (13
studies; mean difference: 2.09; 95% CI: 0.92–3.27) but not by native T1

(21.74; 95% CI: –1.27 to 44.75).

ACR+ve, albumin: creatinine ratio (indicating persistent micro-albuminuria) positive; ACR-ve, albumin: creatinine ratio (indicating persistent micro-albuminuria) negative; [AUC]± SE, area under
the curve ± standard error; BMI, body mass index; CMR, cardiac MRI; Conc-REMDL, concentric-remodelling; Conc-LVH, concentric left ventricular hypertrophy; cT1, corrected T1; Ecc LVH,
eccentric left ventricular hypertrophy; ECV, extra-cellular volume; HbA1c, hemoglobin A1c; HTN, hypertension; HV, healthy volunteers; LGE, late gadolinium enhancement; LVH, left ventricular
hypertrophy; MF, myocardial fibrosis; NAFLD, non-alcoholic fatty liver disease; PDFF, proton-density fat fraction; T2DM, type 2 diabetes mellitus.

FIGURE 3

Maps of native-T1 relaxation times in (A) a healthy control and (B) a diabetic adult with normal left ventricular structural parameters demonstrate similar
global mean T1 relaxation times (A: 1014 ms, B: 1023 ms). (C) In contrast, elevated native-T1 relaxation times within the septum, anterior wall, and inferior
right ventricular insertion area of a diabetic adult with increased septal wall thickness (1.4 cm) and elevated mass-to-volume ratio (1.4 mg/ml) result in a
longer mean left ventricular native-T1 time (C: 1,095 ms) compared to either A or B. Adapted from Lam et al. with permission (60).

dephasing. The T2
∗ relaxation time values are always shorter than or

equal to T2. Routine evaluation of liver and heart iron content using
T2
∗ mapping is indicated in patients with suspected iron overload,

for instance due to frequent transfusions in thalassaemia and sickle
cell patients (80, 81). Increased iron can be co-existing in NAFLD
and other chronic liver diseases (82) and emerging evidence suggests
that liver iron deposition is associated with worse histopathological
features of NASH and disease progression. T2

∗ based imaging thus
could be used clinically if integrated into clinical guidelines to identify
such patients (83, 84). Additionally, iron may interfere with liver
T1 estimation and thus might contribute to lower accuracy in tissue
characterization, if not corrected for.

3.4. Extracellular volume

The estimation of the extracellular volume (ECV) is based on
the intravenous injection of extracellular gadolinium-based contrast
agent (GBCA) with non-protein-bound volume distribution and can
be measured using pre- and post-contrast T1 mapping (85). The
underlying principle is that the T1 shortening effect of an extracellular

GBCA is directly related to its tissue concentration. The relationship
between ECV in the myocardium and blood is approximated by
Equation 1, where the change in 1/T1 in the tissue and blood pool
is used to determine contrast agent concentrations, the ratio of which
yields an estimation of ECV, following a correction for red blood cell
density in the blood pool (haematocrit, Hct).

ECV myocardium =(
1

T1myopostGd
−

1
T1myonative

)
(

1
T1bloodpostGd

−
1

T1bloodnative

) ∗(1−Hct)(86) (1)

CMR studies have demonstrated, that ECV was significantly
higher in HTN LVH subjects versus controls (0.29 ± 0.03 vs.
0.26 ± 0.02, p < 0.01) and HTN non-LVH subjects (0.29 ± 0.03 vs.
0.27 ± 0.02, p = 0.05) (38, 66). CMR studies showed controversial
results with regards to the association of diabetes with increased
ECV. Several studies demonstrated that increased ECV is present in
diabetic subjects in comparison to controls (20, 59, 61, 63, 78, 87–
92). This was found to weakly correlate with hemoglobin A1c levels
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FIGURE 4

Four type 2 diabetes mellitus patients (A–D) with typical non-ischemic late gadolinium enhancement (LGE) lesions with left ventricular short-axis and
long-axis images. Non-ischemic lesions are located mid-myocardial, basal and lateral or inferolateral. In segments with non-ischemic LGE lesions, the
myocardium remains thick. Adapted from Bojer et al. with permission (93).

(59, 89) and the duration of diabetes (63). It was also associated
with mortality and/or incident of heart failure admission (87), and
constituted an independent risk factor for adverse cardiovascular
outcomes (88, 92). It was also associated with late gadolinium
enhancement (LGE) lesions that could not be explained by previous
infarcts (non-ischemic LGE lesions) and prevalent complications of
diabetes (retinopathy, autonomic neuropathy) (93; Figures 4, 5). On
the contrary, dissimilar results with regards to the association of
diabetes with increased ECV have been suggested by other groups
(20, 60, 88, 91, 94, 95). A recently published meta-analysis concluded
that diabetes was associated with increased ECV but not with
native T1 increase and increased ECV was also associated with poor
glycaemic control (64).

3.5. T1ρ mapping

T1ρ (T1rho) measures the spin-lattice relaxation in the rotating
frame, and is a sensitive marker for probing macromolecular water
interaction (96). T1ρ has been demonstrated to be sensitive to oedema
and fibrotic scar in chronic myocardial infarction. Application
of non-contrast T1ρ -mapping in CMR has been reported to
discriminate between infarcted and healthy myocardium in animal
models (97). Oedema also induces enhancement in T1ρ values, as
demonstrated in the area-at-risk in acutely ischemic myocardium,
in acute myocarditis and Takotsubo cardiomyopathy (98, 99). This
mapping technique sequence is yet to be routinely used in clinical
practice. Nevertheless, both oedema and fibrosis are present in the
myocardium and liver in NAFLD and future clinical validation in
this patient group is warranted to assess its clinical utility as a
potential biomarker.

3.6. Proton density fat fraction

Proton density fat fraction (PDFF) is a ratio, expressed as a
percentage, of the fraction of the MRI-visible protons attributable

to fat divided by all MRI-visible protons in that region of the liver
attributable to fat and water. Taking advantage of the chemical
shift between fat and water, pulse sequences can be used to acquire
images at multiple echo times at which fat and water signals have
different phases relative to each other (2). MRI-determined PDFF
correlates with histologically determined steatosis grade in patients
with NAFLD and has been utilized for the assessment of NAFLD
in T2DM patients (100, 101) (102). The diagnostic accuracy of
MRI-PDFF was further validated by Idilman et al. (103) and Tang
et al. (104), both of which demonstrated that MRI-based PDFF
assessments correlated closely with histology as assessed by liver
biopsy (r = 0.82) and explant ex vivo histology assessment (r = 0.85).
Idilman et al. noted that the presence of hepatic fibrosis reduced the
correlation between biopsy results and PDFF (103).

4. Multiparametric approaches in
quantitative MR

Cardiac and liver QMRI, including T1, T2 and ECV mapping,
have emerged as an approach to quantify tissue properties in
cardiometabolic disease. Furthermore, in the past years, there has
been a growing interest in alternative parameters that may add
complementary information. For instance, several studies have
shown that T1ρ could be an alternative for the detection of liver (105–
107) and myocardium fibrosis (98, 108, 109) without the need of
an external contrast agent injection. Nevertheless, at the moment,
in clinical practice each quantitative parameter is investigated
individually. As a result, sequential, lengthy scans are required to
capture multiple parameters in order to accurately describe the
various disease phenotypes of cardiometabolic disease (1, 110–112).

Simultaneous multiparametric QMRI, in which the parameters
of interest are obtained from a single scan have recently gained
attention. An important aspect of this approach is that the parameters
should no longer be confounded by each other, promising reliable
quantification of the individual parameters in shorter scan time. For
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FIGURE 5

Late gadolinium enhancement images and extracellular volume
fraction (ECV) maps by diabetic status. Example of two patients, with
prediabetes and diabetes mellitus. Both patients had no late
gadolinium enhancement (indicative of replacement fibrosis). The
patient with diabetes mellitus had significantly higher amount of ECV
(indicative of interstitial fibrosis) compared to the patient without
diabetes mellitus. CMR indicates cardiac magnetic resonance.
Adapted from Khan et al. with permission (88).

instance, liver T1 values have been shown to depend strongly on
iron content necessitating an additional measurement for liver iron,
such as T2

∗mapping, for interpretation of T1 values (113). Recent
studies in adult and pediatric patients with NAFLD also suggest that
hepatic PDFF and T2

∗ are strongly correlated with each other in vivo.
This relationship was observed using different MRI techniques and
therefore PDFF and T2

∗ value should be considered together when
interpreting each of those in human liver (114, 115). Finally, it has
been observed that liver fat declines in patients with advanced fibrosis
(burnt-out NASH), hence disease progress can be misinterpreted if
NAFLD is screened with PDFF for steatosis only (102).

Several models of simultaneous multiparametric QMRI have
been investigated in research studies, including methods like joint
multiparametric mapping or transient-state imaging approaches
(116, 117), magnetic resonance fingerprinting (MRF) (118) and

magnetic resonance multitasking (119). Each of them follows a
different technical approach, but with the shared goal of providing
as many different parametric maps as possible within a single scan.
A brief description of each of these and their potential to improve the
clinical assessment of cardiometabolic disease is discussed hereafter.

4.1. Joint multiparametric mapping

In cardiac MRI, several 2D joint parametric mapping approaches
have been proposed. With these approaches the acquisition sequence
is generally designed to encode T1 and T2 simultaneously. Blume
et al. (120) (steady-state) and Kvernby et al. (121) (transient state)
employed interleaved T2-preparation and Inversion Recovery (IR)
preparation pulses for T2 and T1 encoding, respectively. Akçakaya
et al. (122) and Guo et al. (123) also used T2-preparation for T2
encoding but replaced the IR by SR for T1 encoding to make the
sequence less dependent to heart rate variation. Another approach
was proposed by Santini et al. (124); in this case, an IR pulse provides
T1 encoding, and the subsequent continuous balanced-Steady-State-
Free-Precession readout provides the T2 encoding.

The multiparametric maps from the aforementioned approaches
are obtained after pixel-wise fitting to a sequence-dependent model.
However, the need of resting periods for magnetization recovery
and the use of breath-holds results in low spatial resolution, limited
coverage, and motion artifacts if patients are unable to hold their
breath. Applications for cardiac imaging, that sought to address these
issues and to enable the acquisition in a clinically-feasible scan time
have also been proposed (125) (126; Figure 6A, B1, B2). Those
rely on “dictionary matching.” Using this approach, a dictionary is
generated which is a compendium of possible signal evolutions for a
set of combinations of parameters of interest (such as T1 or T2), which
can be calculated, for example with Bloch simulations (118) or the
Extended Phase Graph (127) formalism. The “multi-parametric MR
signal” of every pixel is then compared against all entries included
in the dictionary by pattern matching (e.g., dot product or least
square), to estimate the parameter combination that best represents
the measured signal evolution. Dictionaries can also be employed to
predict the signal evolution of the transient state; as proposed in MRF.
There exist also several examples of multiparametric approaches
which were proposed for liver imaging, including water/fat-separated
T1 mapping (MP-Dixon-GRASP) (128) along with PDFF imaging
and water-specific T1 mapping [T1(Water)] (PROFIT1) (113). An
alternative approach has been proposed by Pavlides et al. This
includes T1 mapping for fibrosis/inflammation imaging and T2

∗

mapping for liver iron quantification. The T1 measurements of this
method are adjusted for the iron level, as high iron levels in the
presence of fibrosis can lead to “pseudo-normal” T1 values. This
was achieved by integrating the results from shortened-MOLLI T1
maps and T2

∗

maps in an algorithm that allows to correct for the
bias introduced by elevated iron in the T1 measurements, yielding
iron−corrected T1 maps (110, 129). In total, seventy−one patients
with suspected NAFLD were recruited within 1 month of liver biopsy
and the performance of multiparametric magnetic resonance for
the assessment of NASH and fibrosis was evaluated using histology
as reference standard (130; Figure 7). Fibrosis stage as analysed
on biopsy correlated with MRI-estimated inflammation and fibrosis
(rs = 0.51, P < 0.0001). The AUC using this multi-parametric
approach for the diagnosis of cirrhosis was 0.85 (95% CI: 0.76–0.95;
P = 0.0002) and for the diagnosis of mild vs significant NAFLD was
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FIGURE 6

Simplified sequence diagram and corresponding images for three
multi-parametric acquisition frameworks. (A) Short-axis T1 and T2

maps, and CINE images at apical, mid-ventricular, and basal levels
obtained from a single joint T1/T2 + CINE free-running whole-heart
scan. Figure adapted with permission from Qi et al. (128). (B1)
Short-axis T1 and T2 map slices and a representative slice of water and
fat CMRA images, obtained from a single joint whole-heart T1/T2

mapping + Water/FAT CMRA whole heart free-breathing isotropic
scan. (B2) Representative coronal and transverse slices of joint T1, T2

maps and Fat images from a 3D isotropic free-breathing liver
acquisition.

0.89 (95% CI: 0.80–0.98%; P < 0.0001). This prospective pilot study
demonstrated the potential of multiparametric QMRI to assess the
overall disease severity in patients with NAFLD.

4.2. Magnetic resonance fingerprinting

Most of joint multiparametric approaches presented above
are based on steady state imaging and/or discrete sampling of
few timepoints along the exponential signal decay, followed by
magnetization recovery of the signal and then fit to a certain signal
model. There are, however, alternatives like MRF (118) that rely

on transient state imaging to generate co-registered multiparametric
maps in a single highly efficient scan. In MRF, acquisition parameters
such as flip angle and/or repetition time vary pseudo-randomly
(Figure 8A1) throughout the scan to generate a unique signal
evolution for every tissue, the so-called “fingerprint,” defined by
different combination of T1, T2 and other parameters of interest,
when encoded. Parametric encoding can also be increased by
interleaving magnetization preparation (e.g., IR or T2-preparation)
blocks at certain timepoints, similarly to the joint steady-state
multiparametric approaches described above (Figure 8A2). In
order to obtain a high temporal resolution (i.e., a large number
or timepoints in the signal evolution) in an efficient manner,
high acceleration factors and thus, highly undersampled images
are obtained (Figure 8B). In parallel, a dictionary containing a
sufficiently large and representative number of combinations of
parameters of interest (e.g., T1 or T2) is generated using the specific
acquisition parameters (Figure 8C).

The “fingerprint” of every voxel is then compared against all the
possibilities or entries included in the dictionary by pattern matching
to estimate the parameter combination that best explains the
measured signal evolution (Figure 8D). In this way, multiparametric
co-registered quantitative maps are generated within a single scan
(Figure 8E). This dictionary can be reutilized in the subsequent scans
provided that the acquisition parameter patterns remain unchanged,
which is, however, not the case for cardiac imaging due to subject-
specific heart rate variations.

Hamilton et al. (131) proposed for the first time the application
of the MRF framework for an ECG-trigged scan for simultaneous T1,
T2 and M0 characterization of myocardial tissue. However, given the
high flexibility that MRF provides for the extension of the sequence
to encode additional parameters, several works have been proposed
to extend cardiac MRF to multiparametric assessment, including
simultaneous cardiac T1/T2 maps and PDFF, simultaneous T1, T2 and
T1ρ cardiac MRF and simultaneous T1, T2, PDFF and T2

∗ acquisition
(132) (133, 134).

Some of these approaches have been evaluated in healthy subjects
(135, 136) and small patient cohorts (137) (138) (139).

For liver imaging, Chen et al. (140) proposed a robust MRF
framework where T1 and T2 2D maps are obtained on a 3T scanner.
This framework has been further extended to include 2D T1, T2, T2

∗

and PDFF mapping in a 14s breath-hold acquisition (141) and initial
clinical validation against histological grading from liver biopsies in
a cohort of 56 patients with diffuse liver disease has been performed
(142). Further advances include evaluating T1, T2, T2

∗, PDFF and T1ρ

mapping (143).
Future clinical validation studies of the aforementioned methods

for comprehensive cardiac and liver tissue characterization in
cardiometabolic disease are anticipated.

4.3. Magnetic resonance multitasking

Magnetic resonance multitasking is an alternative approach that
enables multiparametric assessment along with the visualization of
cardiac and respiratory motion from a single scan. This technique
is based, by definition, on a continuous acquisition in which all
the possible signal evolutions that are taking place due to different
image dynamics (i.e., how the signal would evolve throughout the
acquisition due to magnetization relaxation, cardiac or respiratory
motion, contrast agent pharmacokinetics or any other cause)
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FIGURE 7

Representative magnetic resonance data with the corresponding transient elastography (TE) and histology data from patients with known or suspected
non-alcoholic fatty liver disease NAFLD. T1, T2∗ mapping values were used to derive the calculated corrected T1 maps (cT1) maps and Liver Inflammation
and Fibrosis (LIF) scores. Patients were classified based on biopsy findings, using the Fatty Liver Inhibition of Progression (FLIP) algorithm (92), as having:
mild disease (A), significant disease/mild fibrosis (B) and significant disease/advanced fibrosis (C). Red circles indicate typical regions of interest. There
was a significant association between histological fibrosis and MRI LIF scores. Adapted from Pavlides et al. with permission (130).

are stacked as extra temporal dimension or “tasks” in a high
dimensional low rank tensor. In the original work, Christodoulou
et al. proposed (119) a cardiac MR multitasking approach where
a T2-IR prepared free-breathing acquisition leads to simultaneous
and motion-resolved T1, T2 and functional assessment within a
single ∼60 s ECG-free scan. At Nyquist sampling rate, the high
number of time dimensions considered for this matter would require
prohibitive scan times. Christodoulou et al. exploited the low-rank
property of the generated tensor, thus the redundant and highly
spatio-temporally correlated information is leveraged during the
image reconstruction step (Figure 9). Feasibility of the proposed
technique has been shown in myocardial T1 and ECV mapping (144)
and of multi-slice motion-resolved joint T1/T2 cardiac mapping in
a single 3-min free-breathing scan (145). Furthermore, in a recent
work, Wang et al. (146) proposed the feasibility of simultaneous 3D
quantification of water specific T1, PDFF and T2

∗

in a single 5-min

scan. Future studies with larger patient cohorts for both heart and
liver are warranted for robust clinical validation.

4.4. Technical challenges of quantitative
MR

Parametric mapping has been widely adopted in clinical practice
and constitutes a complementary imaging biomarker in several
pathologies. In the theoretical realm, parameters maps depend on
the interaction of physics (MRI signal) and the underlying tissue
biology. Nevertheless, in clinical practice, several limitations need to
be acknowledged, as most mapping techniques depend on several
confounding factors. Relaxation time is the result of the combination
of the subject, hardware, acquisition, reconstruction algorithm, and
map analysis that were used; consequently, all steps in obtaining
a relaxation time can add bias or uncertainty to its measurement.
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FIGURE 8

Schematic overview of a cardiac/liver MRF framework. (A1) Acquisition parameters such as repetition time (TR) and variable flip angles (FA) may be
pseudo-randomly varied throughout acquisition and (A2) magnetization preparation pulses are introduced to increment contrast weighing on the
desired parameters. (B) Highly undersampled images are obtained, and (C) a dictionary of different signal evolutions for a range of T1/T2 (and other
parameters of interest) combinations are calculated in parallel. (D) Matching the temporal evolution of the signal measured with the dictionary will
provide (E) inherently co-registered parametric maps of the scanned region.

A comprehensive review on this scope can be found in Ogier et
al. (147). In brief, patients’ heart rate, breathing pattern along with
scanner characteristics, such as magnetic field and coils array affect
the derived map. With regards to the acquisition and reconstruction
techniques, well-established confounding factors include the pulse
sequence choice, which is known to affect the quantification of the
parameter to be mapped, due to the particular technical and physical
limitations of chosen sequence (148). For instance, for T1 mapping,
different sequences such as MOLLI, shMOLLI, SASHA or SAPPHIRE
show different accuracy and precision, as shown by Roujol et al. (149),
and dedicated comparative studies have been done to determine
which offers better diagnostic power (150). This is also the case for
T2 mapping, where the use of dedicated T2-prep pulses is known to
provide significantly underestimated T2 values compared to spoiled
gradient echo and multi-echo spin echo sequences (151). Prior work
has also suggested steady-state preparation schemes to reduce the
oscillations that occur in the transient state of steady state free
precession due to off-resonance, and the linear flip angle approach
was shown to have a superior performance in the presence of large
off-resonance frequencies (152). Furthermore, k-space readout, be it
linear or centric, has been shown to affect accuracy and precision
in T2 mapping (148). Similarly, T1rho relaxation is dependent
on the applied spin-locking frequency. Additionally, the widely

used MOLLI T1-mapping sequence is recognized to be confounded
by alterations in T2, and linear T2prepared balanced steady state
free precession values are confounded by T1. On some occasions,
parameter estimation errors arise when estimating a single parameter
without taking into account the effect of other parameters that are
inherently coupled; T2-prepared sequences will be more prone to
T2
∗

susceptibility artifact due to imperfect refocusing of the signal
during the preparation whereas T1 quantification in the presence of
iron will be biased and a corrected T1 (cT1) is required (130). Other
sources of quantification variability such as magnetization transfer
(153) or partial volume (154) may affect accuracy and precision.
Promisingly, some of these effects can be eliminated or diminished
with multi-parametric sequences such as MRF or CMR Multitasking,
where several parameters of interest are estimated at the same time
for each voxel, removing mis-registration inaccuracies and reducing
estimation biases, furthermore multiple corrections can be included
on the framework (119, 155–158). Unfortunately, the reproducibility
of the aforementioned techniques is still impacted by confounding
factors. In particular, multitasking and fingerprinting techniques,
where modeling of the signal evolution is utilized to calculate the
parameters, error liability is possible where not all influences on
signal evolution are included in the model (148) (e.g., the cumulative
effect of magnetisation transfer in MOLLI sequence, partial volume,
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FIGURE 9

(A) A generic sequence diagram for Multitasking technique. The continuous acquisition cycles through different preparation modules (e.g., IR, T2-IR, and
SR), with FLASH excitations filling the entire recovery period. The training and imaging data are collected in an interleaved way, for resolving temporal
and spatial information, respectively. (B) An illustration of multi-dimensional image. In this example, the image tensor contains one spatial dimension r
and three temporal dimensions (can be T1/T2/T2∗ relaxation, resp motion, cardiac motion, etc.) and its low–rank tensor structure can be explicitly
expressed through tensor factorization between 4 sets of basic functions (U, V, W, Q) and a core tensor G. (C) Representative reference and Multitasking
cardiac T1, T2, FF, and T2

∗ maps from a healthy volunteer. (D) Representative reference and Multitasking liver T1, T1w (water T1), FF, and R2* maps from a
patient with non-alcoholic steatohepatitis. Adapted from Cao et al. (59) and Wang et al. (146).

off-resonance effects, magnetisation transfer) (158). Considering
those effects on dictionary generation can minimize imperfections.
Additionally, the increase of the number of parameters to be
estimated for a given number of data points also leads to an increase
in the complexity of the acquisition/reconstruction and may affect
accuracy and precision as well as increasing computational demands.

4.5. Future perspectives for clinical
integration of QMRI in cardiometabolic
disease

Significant progress has been made to-date to better understand
the histological alterations of cardiac and hepatic tissue in
cardiometabolic disease and their potential correlation to QMRI
techniques. The quantification of cardiac fibrosis in T2DM has been
extensively studied with T1 mapping and ECV methods and this
has been associated with adverse cardiovascular events. Several pilot
studies have also demonstrated myocardial fibrosis in hypertension.
Parametric tissue characterization has demonstrated hepatic fibrosis,
steatosis and inflammation in proof-of-principle studies in NAFLD.
Nevertheless, the scope of QMRI in cardiometabolic disease has
not been fully investigated. This is attributed primarily to two
factors. Firstly, the standardization of the existing clinical single-
parametric mapping techniques has been suboptimal and current
guidelines suggest the generation of site-specific normal ranges.
Validation and subsequent standardization of the new methods
has not been performed either and is a crucial step to enhance
clinical uptake. Furthermore, the reproducibility and robustness of

the proposed methods needs to be ensured in multi-center and
multi-vendor studies. The design of prospective, longitudinal studies
tailored to the relevant clinical questions, incorporating the novel
technologies available, is also mandatory to expedite clinical adoption
(159). Efforts toward reproducibility and standardization can often
be accelerated through an overarching international organization
that many parties trust, such as the Quantitative Image Biomarker
Alliance of the Radiological Society of North America and the
Quantitative MR Study of the International Society for Magnetic
Resonance in Medicine (ISMRM).

Additionally, advanced acquisition schemes often come at the
cost of lengthy acquisition and post-processing times. Further
applications of multi-parametric QMRI that incorporate deep-
learning based approaches demonstrate promising results at no
extra time-cost either at acquisition or image processing level and
would augment the diagnostic information (160–162). This could
also allow the exploration of additional contrast weightings, including
for example tissue diffusion. Furthermore, in view of the multi-
organ manifestations of cardiometabolic disease, studies investigating
simultaneously the liver and cardiac tissue are anticipated, to gain
insight into the pathophysiology of cardiac-liver axis (140).

5. Limitations

Ongoing research in cardiometabolic disease has discovered
novel mechanistic pathways across various organ systems, including
cardiac and skeletal muscle, pancreas, liver, adipose tissue and
microcirculation. An elaborate review on inter-organ pathogenetic
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interrogation and multimodality imaging perspective is out of
scope of this article and has been covered elsewhere (4).
Additional MRI techniques that have been applied in cardiometabolic
disease include magnetic resonance elastography and magnetic
resonance spectroscopy. Magnetic resonance elastography has been
primarily utilized for the evaluation of liver stiffness. It relies
on the demonstration of propagating shear waves within the
liver employing a phase-contrast type sequence (163). Magnetic
Resonance spectroscopy investigates cardiac and hepatic metabolism
in vivo by measuring proton signals as a function of their resonance
frequency. By using the gyromagnetic properties of 1H, 31P, 13C, and
23Na, Magnetic Resonance Spectroscopy relates energy metabolism
to (dys)function of the heart (164, 165). This article, which focuses
on relaxation and proton-density fat fraction mapping techniques,
cannot elaborate on the aforementioned methods due to space
constraints. The reader is directed to (163–165) for deeper insights
into the physics and applications of the respective methodology.

6. Conclusion

Cardiometabolic disease is a cluster of complex diseases that
involve changes in the physiology of myocardial and hepatic tissue.
Quantitative MR imaging is a valuable tool to characterize this
disease, although a single quantitative parameter may not provide
sufficient information. Simultaneous multiparametric MRI has
demonstrated the feasibility of obtaining fast, co-registered multiple
parametric maps within a single short MR scan and is promising
for comprehensive understanding of the disease. QMRI frameworks
are currently at a transition point between development and clinical
adoption. Inclusion of standardization agreements, quality control
protocols, and reproducibility assessment are essential for the clinical
validation and uptake of these new promising techniques to gain
further insight into cardiometabolic disease.
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