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Neuroimaging post-stroke has the potential to uncover underlying principles of disturbed 
hand function and recovery characterizing defined patient groups, including their long term 
course as well as individual variations. The methods comprise functional magnetic resonance 
imaging (MRI) measuring task related activation as well as resting state. Functional MRI may be 
complemented by arterial spin labeling (ASL) MRI to investigate slowly varying blood flow and 
associated changes in brain function. For structural MRI robust and accurate computational 
anatomical methods like voxel-based morphometry and surface based techniques are available. 
The investigation of the connectivity among brain regions and disruption after stroke is 
facilitated by diffusion tensor imaging (DTI). Intra- and interhemispheric coherence may 
be studied by electromagnetic techniques such as electroencephalography and transcranial 
magnetic stimulation. 

Consecutive phases of stroke recovery (acute, subacute, early chronic and late chronic stages) 
are each distinguished by intrinsic processes. The site and size of lesions entail partially different 
functional implications. New strategies to establish functional specificity of a lesion site include 
calculating contrast images between patients exhibiting a specific disorder and control subjects 
without the disorder. Large-size lesions often imply poor cerebral blood flow which impedes 
recovery significantly and possibly interferes with BOLD response of functional MRI. Thus, 
depending on the site and size of the infarct lesion the patterns of recovery will vary. These 
include recovery sensu stricto in the perilesional area, intrinsic compensatory mechanisms 
using alternative cortical and subcortical pathways, or behavioral compensatory strategies 
e.g. by using the non-affected limb. In this context, behavioral and neuroimaging measures 
should be developed and employed to delineate aspects of learning during recovery. Of special 
interest in recovery of hand paresis is the interplay between sensory and motor areas in the 
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posterior parietal cortex involved during reaching 
and fine motor skills as well as the interaction with 
the contralesional hemisphere. The dominant 
disability should be characterized, from the level 
of elementary to hierarchically higher processes 
such as neglect, apraxia and motor planning.

In summary, this Research Topic covers new trends 
in state of the art neuroimaging of stroke during 
recovery from upper limb paresis. Integration 
of behavioral and neuroimaging findings in 
probabilistic brain atlases will further advance 
knowledge about stroke recovery.

Citation: Weder, B. J., Wiest, R., Seitz, R. J., eds. 
(2016). Principles Underlying Post-Stroke Recovery of  
Upper Extremity Sensorimotor Function – A 
Neuroimaging Perspective. Lausanne: Frontiers Media. 
doi: 10.3389/978-2-88919-767-5

This image shows lesion overlap maps for 
patients in the acute phase after a cortical 
sensorimotor (MI/SI) stroke, confirmed 
on diffusion-weighted MRI, exhibiting 
contralateral hand paresis or plegia as 
common denominator (upper half). The 
corresponding three-dimensional rendering 
with a vertical cut through the maximum 
overlap of the complete cohort is added in 
the lower half. The image relates to the paper 
of Abela E, Missimer J, Wiest R, Federspiel 
A, Hess C, Sturzenegger M, Weder B (2012) 
(Lesions to Primary Sensory and Posterior 
Parietal Cortices Impair Recovery from Hand 
Paresis after Stroke. PLoS ONE 7(2): e31275. 
doi:10.1371/journal.pone.0031275).
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The Editorial on the Research Topic 

Principles Underlying Post-Stroke Recovery of Upper Extremity Sensorimotor Function – A 
Neuroimaging Perspective

A substantial proportion of stroke survivors suffer from long-term sensorimotor deficits of the 
contralesional arm and hand (1). Neuroimaging, using a diversity of methods, has the potential to 
uncover underlying principles of functional disabilities and recovery characterizing patient groups 
as well as individual variability (2–6). The present issue aims at (i) revealing the physiological 
mechanisms and the long-term course of stroke recovery with respect to site and size of lesions, 
(ii) correlating behavioral deficits and electrophysiological parameters with imaging patterns, (iii) 
delineating neural networks involved, and (iv) identifying sites where interventions enhance the 
recovery process.

Seitz and Donnan give an overview of mechanisms and disease-related limitations in post-stroke 
recovery. They address two informative subsections delineating time courses of the recovery process 
and state-of-the-art of neurorehabilitative training to improve the stroke-induced neurological 
deficit.

Auriat et  al. complete this clinical perspective with an overview on the use of transcranial 
magnetic stimulation and multimodal neuroimaging to estimate functional resources post-stroke. 
They provide a review of data from studies utilizing DTI, MRS, fMRI, EEG, and brain stimulation 
techniques, focusing on TMS and its combination with uni- and multimodal neuroimaging methods 
with respect to their benefits and limitations.

Falcon et al. used “The Virtual Brain (TVB),” an open source platform based on local biophysical 
models. Using this platform, they simulated individuals’ brain activity linking structural data directly 
to a TVB model. Correlating TVB parameters with graph analysis metrics, they obtained evidence 
for a shift of global to local dynamics in chronic stroke patients.

Buetefisch reviews the role of an intact contralesional motor cortex (M1) in post-stroke recovery 
of upper extremity motor function. The impact of the contralesional M1, on the lesioned motor 
cortex, seems to be promoting activity in the acute and inhibiting it in the chronic stage. Supportive 
evidence comes from animal studies, including changes in neurotransmitter systems, dendritic 
growth, and synapse formation. Thus, the contralesional M1 may represent a treatment target during 
rehabilitation.
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Sharma and Baron report an fMRI study of a finger-thumb 
opposition sequence in chronic, well-recovered subcortical stroke 
patients. Using independent component analysis, they could 
show that recovery of motor function involved pre-existing corti-
cal networks contributing to recovery in a differentiated manner.

The study of Abela et al. complements these investigations of 
functional networks associated with recovery in the case of corti-
cal sensorimotor stroke. The structural covariance network in 
patients recovering from hand paresis encompassed (i) a cortico-
striato-thalamic loop involved in motor execution and (ii) higher 
order sensorimotor cortices affected by the stroke lesions. The 
network emerged in the early chronic stage post-stroke was 
related to gray matter volume increases in the ipsilesional medio-
dorsal thalamus, and its expression depend on an interaction of 
recovered hand function and the lesion size.

Bannister et al. report about neuroimaging evidence for the 
significance of the contralesional hemisphere in the recovery 
process after hemispheric supratentorial ischemic stroke, thus 
supplementing the review of Buetefisch. They followed the time 
course of touch sensation in the upper extremity using resting 
state  –  fMRI to explore functional connectivity. Improvement 
of touch sensation was related to changes in the contralesional 
hemisphere and cerebellum: (1) an increase in connectivity 
strength between the secondary somatosensory area seed and 
both inferior parietal cortex and middle temporal gyrus as well 
as the thalamus seed and cerebellum and (2) a decrease in con-
nectivity strength between SI seed and the cerebellum.

Primaßin et al. dealed with four exemplary cases in which 
motor and language domains were affected differently. They 
focused on dissociative outcomes after 7 weeks of rehabilita-
tive treatment following the predominant failure at baseline. 
Primarily, precise location of the lesions in the corticospinal 
tract and/or fasciculus arcuatus, respectively, turned out to 
be critical for recovery. Motor and language improvement 
seemed to occur together, rather than to compete for recovery 
resources.

Ben-Shabat et al. investigated changes in human propriocep-
tion, its specific brain activation, laterality, and changes follow-
ing stroke. Brain activation involved the supramarginal gyrus 
(SMG) and dorsal premotor cortex (PMd) with a prominent 
lateralization in the former. Lateralization was diminished in 
three patients exhibiting proprioceptive deficits post-stroke and 
a common lesion within the thalamus. The findings underline 
the role of SMG and dPM in spatial processing and motor 
control.

Brugger et al. investigated the intriguing role of supplemen-
tary motor complex (SMC) and disturbed motor control, a 
retrospective clinical and lesion analysis of 10 patients present-
ing anterior cerebral artery stroke. In the very acute phase, 
alien hand syndrome (AHS) dominated accompanied by failed 
conscious awareness of motor intention and a missing sense of 
agency while performing externally triggered movements. In the 
follow-up, motor signs specifically related to AHS, i.e., disturbed 
self-initiated movements, grasping, and intermanual conflict, 
were mainly related to lesions of the pre-supplementary motor 
area and medial cingulate cortex.

Camilleri et  al. studied the neural substrate underlying the 
performance of the trail making test (TMT) that is often used 
in the follow-up of stroke. In healthy volunteers, they found that 
performance in terms of motor speed to be related to the local 
brain volume of a region in the lower bank of the left inferior 
sulcus. Conjunction analysis of four connectivity approaches 
has shown this area to represent a constituent of the so-called 
multiple demand network, highlighting the TMT as related rather 
to executive than primary motor function.

In summary, the neurological deficits, recovery mechanisms, 
and the prognosis for recovery after stroke are hot spots of clinical 
neurology and systems neuroscience research. Multimodal imag-
ing, applied neurophysiology, and careful neurobehavioral in vivo 
correlations have opened new vistas on the pathophysiological 
mechanisms underlying post-stroke recovery of upper extremity 
sensorimotor deficits paving new avenues for future research.
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In acute stroke, the major factor for recovery is the early use of thrombolysis aimed at 
arterial recanalization and reperfusion of ischemic brain tissue. Subsequently, neurore-
habilitative training critically improves clinical recovery due to augmention of postlesional 
plasticity. Neuroimaging and electrophysiology studies have revealed that the location 
and volume of the stroke lesion, the affection of nerve fiber tracts, as well as functional 
and structural changes in the perilesional tissue and in large-scale bihemispheric net-
works are relevant biomarkers of post-stroke recovery. However, associated disorders, 
such as mood disorders, epilepsy, and neurodegenerative diseases, may induce sec-
ondary cerebral changes or aggravate the functional deficits and, thereby, compromise 
the potential for recovery.

Keywords: cerebral ischemia, infarct location, thrombolysis, recovery, perilesional plasticity, network 
reorganization, stroke associated disturbances, neurorehabilitative training

iNTRODUCTiON

Stroke is one of the leading causes of persistent disability in Western countries (1). It induces acute 
deficits of motion, sensation, cognition, and emotion. In the majority of patients, stroke results from 
an interruption of cerebral blood supply and subsequent ischemic brain damage, while >25% of 
patients suffer from intracranial hemorrhage (2, 3). Recovery from stroke is a multifaceted process 
depending on different mechanisms that become operational at different phases after the acute insult 
ranging from hours to many months (4). Importantly, intravenous and intra-arterial thrombolyses 
have opened new avenues to substantially reverse the amount of brain damage and the neurological 
deficit after stroke (5–8). Furthermore, neuroscience-based strategies in neurorehabilitation 
have improved the fate of stroke patients. Specifically, training approaches including very early 
mobilization, antigravity support for walking, basic arm training, and arm ability training can be 
tailored to the neurological deficits to optimally engage the residual capacities of the patients (9–11). 
From a technical point of view, neuroimaging and neurophysiological methods have offered means 
to investigate the recovery potential of stroke patients already in the acute stage of stroke (12–14). 
In particular, these non-invasive neuroscientific measures substantiate clinical observations and 
have opened new insights into the neuroscientific basis of recovery mechanisms from stroke. More 
recently, the recovery potential after stroke has been studied by using multivariate analyses in which 
epidemiological factors have also been taken into account (15). We address here the mechanisms of 
post-stroke recovery including postlesional plasticity and disease-related limitations of the recovery 
potential in acute ischemic stroke. 
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MeCHANiSMS OF POST-STROKe 
ReCOveRY

Dynamics of Cerebral ischemia
A sudden interruption of arterial blood supply leads to distur-
bances of neural function and the clinical appearance of neuro-
logical or neuropsychological deficits. In the most severe cases, 
ischemia is so severe that structural brain damage and the forma-
tion of ischemic brain infarction occur (Figure 1). The cessation 
of cerebral blood circulation induces an immediate suppression 
of cerebral electrical activity with peri-infarct depolarization 
leading to repeated episodes of metabolic stress (16, 17). There is 
good evidence from animal experiments that ischemic damage of 
neurons and brain tissue occurs in proportion to the reduction of 
regional cerebral blood flow (rCBF) (16). Thus, the acute occlu-
sion of a cerebral artery, the thereby caused local depression of 
rCBF, and its subsequent electrical, metabolic, and ionic changes 
are critical factors determining the extent of a cerebral ischemic 
infarct (18). Imaging and neurophysiological studies in humans 
have shown that, similar to animal experiments, spreading 
depression occurs in severe ischemic stroke leading to progres-
sive infarct expansion (19, 20).

After occlusion of a cerebral artery, an area of impaired perfu-
sion surrounds an area with a complete cessation of perfusion 
whose extent is determined by the compensatory recruitment of 
arterial collaterals. In the area of misery perfusion, the so-called 
penumbra, the extraction of oxygen from blood into brain tissue 
is enhanced as was shown in stroke patients by multiparametric 
imaging with positron emission tomography (21, 22). The 
advent of magnetic resonance imaging (MRI) has allowed a 
spatial dimension to be introduced. It has been shown that the 
area of impaired perfusion typically exceeds the area of reduced 
extracellular water diffusion, thus signifying virtually reversible 
brain tissue damage due to ischemia (23–25). In fact, there is a 
good correspondence between the area with enhanced oxygen 
extraction and the perfusion–diffusion mismatch area in acute 
stroke (26, 27).

The area of reduced brain perfusion undergoes a dynamic 
lesion transformation within the first 24 h after onset of ischemia 

FiGURe 1 | Successful thrombolysis. (Left) Severe perfusion deficit in the 
precentral gyrus (red) as assessed in a time-to-peak map before 
thrombolysis. (Middle) Point-like abnormality in diffusion-weighted imaging at 
the same time signifying the perfusion–diffusion mismatch. (Right) Two small 
lesions in diffusion-weighted imaging 24 h after intravenous thrombolysis 
accompanied by complete recovery from hemiparesis.

(28–30). In a persisting arterial occlusion, the infarct lesion 
expands up to 24 h (31, 32). Beyond the acute time window of 
about 24  h, secondary changes including an early phase with 
vasogenic edema and a later phase with inflammatory infiltration 
evolve (33–35). Lymphocytes and macrophages have been shown 
to accumulate in the perivascular vicinity ~6 days after a cerebral 
infarction and are heterogeneously distributed within the infarct 
area (36). Due to their immunological competence, these cells 
are suited to augment the infarct lesion raising the interesting 
notion that immunosuppression may have a beneficial affect in 
acute stroke (37).

Reversal of Cerebral ischemia
In acute ischemic stroke, intravenous thrombolysis is targeted 
toward the rescue of brain tissue by early recanalization of the 
occluded cerebral artery. It has been shown to be effective up to 
4.5 h with maximal efficacy within the first 90 min after symptom 
onset (5, 6, 38). The beneficial role of early recanalization was 
demonstrated by functional brain imaging (39–42) and monitor-
ing with transcranial Doppler sonography (43, 44). More recently, 
neuroradiological interventions with intra-arterial thrombolysis 
and/or thrombectomy have been shown to be at least as effective 
as intravenous thrombolysis even in distal carotid or proximal 
middle cerebral artery (MCA) occlusion (8). By multiparametric 
MRI, it became evident that brain tissue at the risk of ischemic dam-
age can be salvaged by tissue reperfusion (Figure 1). Important 
factors determining the extent of a brain infarct are the severity 
and duration of ischemia, the dimension and composition of the 
causal arterial emboli, the anatomy and the vascular changes of 
the cerebral arteries, and the presence of diabetic hyperglycemia 
(29, 41, 45–47). In failed reperfusion, severe edema formation 
will develop that can hardly be limited pharmacologically. Thus, 
to rescue patients from malignant brain swelling after stroke 
craniectomy has been advocated as a symptomatic therapy which 
is a life-saving action but does not reduce the neurological deficit 
in patients older than 60 years (48).

Brain infarcts may result from cardiac or artery to artery 
embolism, from thrombotic occlusion of the small penetrating 
arteries complicating vessel hyalinosis or microatheroma (49, 
50). While infarcts in the territory of the posterior cerebral artery 
(PCA) are typically embolic in origin affecting the entire supply 
area of the PCA (51), infarcts in the anterior cerebral artery (ACA) 
territory are usually of atherosclerotic origin and more variable 
in lesion pattern and neurological deficit (52). The situation is 
most complex in the MCA territory because of the arborization 
of the MCA, the large territory supplied by the artery, and the 
widespread anastomoses of the leptomeningeal arterial branches 
fed from the ACA or PCA. The poorer these collaterals are due 
to arterosclerotic changes in the intracranial arteries, the more 
severe is the initial ischemic event and the resulting stroke lesion 
(41, 53, 54).

The location and the volume of the cerebral infarct deter-
mine the neurological deficit in an individual patient as shown 
for sensorimotor as well as cognitive and emotional functions 
(55–61). Large brain infarcts involving subcortical white 
matter may affect multiple brain systems which may result 
in complex neurological syndromes, such as apraxia, neglect, 
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TABLe 1 | Classification of ischemic brain infarcts.

Type infarct location Pathogenesis Response to 
thrombolysis

i Territorial Occlusion of cerebral 
artery branch

I.1 Cortical Distal branch Early

I.2 Cortico-subcortical Proximal branch Limited

ii Striatocapsular Occlusion of MCA stem

II.1 ±Insula Infarct core Early

II.2 +Periventricular  
white matter

Large lesion Limited

iii Lacunar hyalinosis of 
arterioles

Limited

III.1 Fiber tracts

III.2 Internal capsule 
(anterior choroidal 
artery)

III.3 Basal ganglia, lateral 
thalamus

III.4 Medial and anterior 
thalamus (perforating 
branches of posterior 
cerebral artery)

iv Chronic hemodynamic 
deficit + downstream 
emboli

IV.1 Cortico-subcortical Extracranial artery 
occlusion ± intracranial 
large artery 
occlusion ± accompanied by 
reactive vasodilation

Limited

IV.2 Arterial borderzone Extracranial artery occlusion

Adapted from Seitz and Donnan (75).
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and Gerstman’s syndrome (62–64). In such patients, measures 
of fiber tract damage or cortical activations have been found to 
predict the degree of recovery (55, 65–68). Similar observations 
have also been made for language, somatosensory and visual 
functions (69–72).

Residual Brain infarct Lesions After 
Thrombolysis
The successful recanalizing therapy is of fundamental importance 
for the topography and volume of the resulting ischemic infarct 
lesion (73, 74). This was taken into consideration in developing a 
refined classification of ischemic brain infarcts (75). It should be 
stated, however, that the functional prognosis of ischemic stroke 
is worse than that in cerebral hemorrhage in stroke survivors 
(76). This most likely reflects the structural damage of brain 
tissue in ischemic stroke, while in cerebral hemorrhage recovery 
can occur largely upon absorption of the hematoma. Accordingly, 
territorial Type I infarcts depend on the size of the emboli and the 
location of the arterial occlusion (Table 1). Distal arterial branch 
occlusion gives rise to small infarcts entirely limited to the cer-
ebral cortex, while proximal arterial branch occlusions result in 
larger infarcts involving the cerebral cortex and the underlying 

white matter (77, 78). In MCA stroke, these territorial infarcts do 
not destroy the entire motor and somatosensory representation 
areas, nor the complete descending motor cortical output or 
afferent sensory input tracts (55, 79, 80). This allows sufficient 
recovery potential associated with perilesional reorganization in 
the adjacent cerebral tissue in response to various neurorehabili-
tative approaches.

Ischemic lesions of large parts of or the entire striatocapsular 
region typically result from an embolic occlusion of the MCA 
stem (81) (Table 1). If reperfusion is achieved early, only the deep 
perforating arteries and the arteries that supply the insular cortex 
may remain obstructed causing infarcts of the lentiform nucleus 
and insula (82). However, when collaterals are insufficient due to 
arteriosclerotic changes in multiple cerebral arteries (41, 53, 54), 
the infarct lesions become larger involving to a larger extent also 
the hemispheric white matter. This causes hemispatial neglect 
and conduction aphasia due to cortico-cortical and cortico-
subcortical disconnections (62, 83, 84).

Small-sized, lacunar-type, infarcts (Type III infarcts) result 
from an occlusion of the small penetrating cerebral arteries or 
even arterioles. They typically occur in the anterior choroidal 
artery, the deep perforating lenticular MCA branches, the 
thalamic branches of the PCA, or in brainstem structures and 
the pons (85, 86). In spite of their small spatial dimension, but 
due to their strategic location, they cause well-defined neuro-
logical syndromes, such as pure motor and pure sensory stroke 
(Table  1). These infarcts have a limited recovery potential as 
predicted by a loss of motor-evoked potentials and asymmetry 
of water diffusivity on MR imaging (55, 87, 88). The crucial role 
of the white matter for functional outcome becomes apparent 
from the observation that small infarcts in the precentral gyrus 
allow for profound motor recovery, whereas infarcts of similar 
volume in the periventricular white matter or the internal cap-
sule may induce a severe and persistent hemiparesis (89, 90). 
Interestingly, white matter damage in stroke was found in a large 
genome-wide association study to be related to a mutation in 
chromosome 17 (91).

Patients with a chronic occlusion of extracranial cerebral 
arteries resulting from dissection or long-standing cerebro-
vascular disease constitute Type IV infarcts (Table  1). These 
patients may become symptomatic with transient ischemic 
attacks due to small embolic or hemodynamically induced 
watershed infarcts in cerebral white matter (92, 93). In these 
patients, blood flow depression induces a reactive vasodilatation 
of the intracranial blood vessels resulting in a severe delay in 
cerebral brain perfusion in the presence of an enhanced cerebral 
blood volume (94, 95).

Perilesional Plasticity
Ischemia and reperfusion evoke a large number of biochemical, 
metabolic, and immunological processes that evolve sequentially 
as identified in animal experiments (96). In addition, there are 
rapid changes in the expression of genes, neurotransmitters, 
such as glutamate and GABA, as well as neurotrophic media-
tors implicated as molecular substrates related to perilesional 
reorganization (21, 97–101). These biochemical changes are 
accompanied on the microscopical level by the growing of axons 
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TABLe 2 | Techniques, actions, and effects of non-invasive stimulation of the human brain.

Transcranial magnetic stimulation (TMS) Transcranial electrical stimulation

Neuromodulatory effects

Single pulse TMS Paired-pulse TMS Repetitive TMS Patterned rTMS Direct current stimulation 
tDCS

Alternating current 
stimulation

Random noise 
stimulation

Intracortical (single 
coil)

1 Hz TMS 
(inhibitory)

Continuous theta-burst 
stimulation (inhibitory)

Cathodal tDCS

Cortico-cortical (two 
coils)

>4 Hz TMS 
(excitatory)

Intermittent theta-burst 
stimulation (excitatory)

Anodal tDCS

After Liew et al. (119).
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and formation of new synapses in the perilesional vicinity and in 
remote locations in functionally related areas in the affected and 
contralesional “non-affected” hemisphere (102, 103). In particu-
lar, they occur when animals recover in an enriched environment 
or are subjected to dedicated training (104, 105).

Non-invasive brain stimulation techniques have provided 
means to explore changes of cortical excitability following stroke 
in humans. There are different technical approaches that allow to 
enhance or to suppress brain activity (106). By these methods, 
diagnostic and therapeutic goals were aimed for as summarized in 
Table 2. For example, using paired-pulse TMS, it was found that 
within the first 7 days after a brain infarct, there is an enhanced 
cortical excitability in the cortex adjacent to the brain lesion 
(107–109). In fact, the sites of residual motor representation move 
into the region of maximal cortical disinhibition (110). Also, 
fMRI activation areas related to finger movements were found to 
remap to spared more dorsal locations of the motor cortex (111, 
112). Notably, an enhanced excitability was propagated to the 
contralesional hemisphere (14, 107–109, 113). It decreased in the 
patients who showed a good recovery within the 90 days, while it 
persisted in those patients with poor recovery (114). In keeping 
with these observations, functional MRI performed ~2 days after 
stroke revealed an area in the ipsilesional postcentral gyrus and 
posterior cingulate gyrus that correlated with motor recovery 
~3 months after stroke (115). Conversely, recovery of hand func-
tion was associated with progressively lateralized activation of the 
affected sensorimotor cortex (116–118).

Non-invasive electrical anodal stimulation of the affected 
motor cortex was found to augment motor skill acquisition due 
to improved consolidation but not due to long-term retention of 
the task (120). In contrast, application of 1-Hz repetitive TMS 
(rTMS) that downregulates the contralesional motor cortex 
improved the kinematics of finger and grasp movements in the 
affected hand (121). This was accompanied by an overactivity in 
the contralesional motor and premotor cortical areas predicting 
improvement in movement kinematics. One may wonder if long-
term retention of the induced effects can be achieved by longer 
lasting stimulation or by the combination of voluntary action 
and direct brain stimulation preferentially in the acute phase 
after stroke. The combination of electrical stimulation of finger 
extensor muscles and training over 2–3 weeks did not result in a 
greater improvement of dexterity of the affected hand as assessed 
with the Jebson test than each intervention alone (122). Subjects 
with an intact motor cortex showed a greater improvement than 

those who had damage of the motor cortex. Similarly, in chronic 
stroke-induced aphasia rTMS over the left inferior frontal gyrus 
resulted in an increase of reaction time or error rate in a semantic 
task suggesting restoration of a perilesional tissue in the left 
hemisphere after stroke (123, 124). Given the human postlesional 
changes of cortical excitability it may be intriguing to rebalance 
the interhemispheric rivalry by direct cortical stimulation or 
peripheral stimulation (125–128). An even greater effect was 
observed when bihemispheric direct cortical stimulation was 
used to activate the affected motor cortex and to inhibit the 
contralesional motor cortex (129). Cortical stimulation in asso-
ciation with motor training also improved motor performance 
(128, 130–132). Along the same line, combining peripheral 
nerve stimulation to the affected hand with anodal direct cur-
rent stimulation of the affected motor cortex in chronic stroke 
facilitates motor performance beyond levels reached with either 
intervention alone (133).

infarct induced Damage to Cortico-
Cortical and Cortico-Subcortical 
Connections
Corticospinal fibers are key factors for the recovery of motor 
function after stroke as demonstrated with different imaging 
modalities as well as electrophysiological measures (55, 87, 
134–136). In non-human primates, the cortico-reticulo-spinal 
and cortico-rubro-spinal tracts are known to mediate motor 
functions in case of corticospinal tract lesions (137, 138), since 
these tracts have been described as functionally redundant in 
healthy animals (139). In humans, however the corticospinal 
tract is of key relevance for motor recovery (Figure 2). In fact, 
the integrity of the corticospinal tract determines the movement 
related motor cortex activation (65, 87). When there are no motor 
evoked potentials and there is poor recovery in chronic patients, 
the fractional anisotropy of the posterior part of the internal 
capsule as assessed by diffusion tensor imaging was altered in the 
affected hemisphere (68, 87). Notably, these patients had bilateral 
fMRI activations in relation to finger movements, while in the 
patients with a lower asymmetry, there was an activation lateral-
ized to the affected hemisphere.

There are not only changes in the efferent motor fiber tracts but 
also in the cortico-cortical and probably also cortico-subcortical 
fiber tract systems during recovery. In fact, the intracortical excit-
ability as assessed with TMS was increased in motor cortex of 
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FiGURe 2 | Striatocapsular stroke (Type ii.1) in a patient with 
persistent hemiplegia. Note the small but complete destruction of the 
posterior limb of the internal capsule (arrow). Color bar: green fronto-occipital 
diffusion, red right-left diffusion, blue dorso-ventral diffusion. By permission of 
Oxford University Press (URL www.oup.com), Free permission Author reusing 
own material, p. 82 fig: 6.4 (left part) from “Stroke Rehabilitation” edited by 
Carey and Leeanne (140).
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both hemispheres both in subcortical and cortical infarcts (108, 
114, 141, 142). Conversely, ipsilesional MEPs were more easily 
elicited from proximal muscles in stroke patients than in healthy 
subjects (143–145). Moreover, motor cortical connectivity was 
shown by diffusion tensor imaging to be enhanced after stroke 
(146). Additionally, orientation uncertainty and greater white 
matter complexity correlated with functional outcome and were 
possibly triggered by functional demands (146, 147). In addition, 
it was found recently that the pyramidal tract splits up in the pons 
forming a ventral and a dorsal tract. When both tracts are affected, 
patients have a poor recovery, while continuity of the projections 
in the dorsal portion was characterized by good recovery (136). 
In addition, in chronic stroke patients, DTI-derived measures 
of transcallosal motor fibers as well as ipsilesional corticospinal 
tracts pyramidal tract and alternate fiber tract determine the 
therapeutic response to rehabilitation. The more the diffusivity 
profiles resembled those observed in healthy subjects, the greater 
a patient’s potential for functional recovery (88). These findings 
accord with the evidence from functional imaging suggesting that 
the concerted action of both cerebral hemispheres is required 
for recovery. This corresponds well to the observation that even 
patients with an excellent recovery may show a bilateral activa-
tion pattern (148, 149). This abnormal activity involved premotor 
cortical areas and was largely reminiscent of activity patterns in 
learning but are essentially transient in nature (84, 115, 149). 
Notably, tiny activation areas in contralesional motor cortex were 
related to mirror movements that frequently occur initially after 
stroke (150).

Network types of neuroimging data analysis have revealed 
that there is a pathological interhemispheric interaction between 
the ipsi- and contralesional motor cortex as well as between the 
ipsilesional supplementary motor area (SMA) and contralesional 
motor cortex in patients with a single infarct lesion (151, 152). In 
unilateral movements of the affected hand, there was an inhibitory 
influence from the contralesional to the ipsilesional motor cortex 
which correlated with the degree of motor impairment (152). In 
bimanual movements, the interaction of the ipsilesional SMA and 
the contralesional motor cortex was reduced, and this correlated 
with impaired bimanual performance. This can be related to the 
observation that there was less activation in contralesional motor 
cortex when the motor task did not require working memory 
demands and no change when the task required online visual 
feedback monitoring (153). Furthermore, connectivity strength 
of the prefrontal cortex to the premotor cortex was enhanced in 
relation to motor imagery highlighting its role for higher order 
planning of movement (154).

DiSeASe-ReLATeD LiMiTATiONS OF THe 
ReCOveRY POTeNTiAL

Associated Diseases
It has been known for 30  years that patients with acute stroke 
may develop cognitive impairment and mood disorders which 
may aggravate their clinical conditions (155, 156). However, only 
recently it was shown in a large database of stroke patients sub-
jected to systemic thrombolysis that the pre-existing functional 
impairment may reduce the patients’ response to thrombolysis 
and the survival rate (157). In a prospective, open label study of 
192 patients (68 ± 13 years, 50% males) subjected to intravenous 
thrombolysis the patients was found to improve (P  <  0.0001), 
while 18% deceased within 100 days (158). This was predicted 
by older age (76 ± 10 years, P < 0.05) and more severe affection 
on admission (P < 0.0001). Also, these patients more frequently 
had atrial fibrillation (P  <  0.03) than the surviving patients. 
Furthermore, it was found that stroke patients with a severe pre-
stroke disability have a virtually 50% risk of deceasing. It seems 
that women are particularly liable of depression after stroke and 
that this is related to a greater stroke severity (159). Of note are 
patients with migraine that to a large proportion suffer from small 
vessel disease (160) or hemorraghic stroke (161). This is of great 
functional relevance since white matter disease due to small ves-
sel disease enhances the risk of depression, physical disability, and 
a reduction of quality of life (162). Furthermore, there is evidence 
from a huge meta-analysis that ischemic stroke is associated with 
the presence and subsequent development of dementia, particu-
larly in recurring ischemic stroke (163). In addition, dementia was 
found to be associated with increased letality (164). Interestingly, 
small vessel disease is the most frequent vascular abnormality 
in patients with Parkinson’s disease (165, 166). These vascular 
changes seem to predispose patients with Parkinson’s disease to 
cerebrovascular accidents (167). Arteriosclerosis was found to be 
of particular relevance for Parkinsonian gait, while macroscopi-
cal infarcts seem to result in rigidity (168). Moreover, infarcts 
induce epileptic seizures (169), which may mimic stroke as in 
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FiGURe 3 | Severely reduced spontaneous movement activity in the affected left arm in right hemispheric brain infarct. Shown is the recording time 
between 4 p.m. until 10 a.m. the following day. The intermittent slow wave activity in electroencephalographic recordings predicted poor motor recovery. Dotted 
lines indicate seconds. From Ruan and Seitz (174).
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Todd’s paresis and impair recovery due to reduced consciousness. 
Beyond that stroke may induce changes of affect including alex-
ithymia (58) or depression (170). The latter was found to be most 
severe in chronic obstructive pulmonary disease, smoking, and 
in patients with poor socioeconomic status. Also the increasing 
lesion load with recurrent strokes in the elderly may predispose 
to depression (171) and death (172). Thus, there is an intimate 
interaction of stroke and comorbities the latter of which impair 
the recovery potential of stroke patients. Deeper insight into the 
pathophysiology of these interactions is required to counteract 
these detrimental effects and to enhance the recovery potential 
of the multimorbid stroke patients.

Functional Deficits in Brain infarcts
The neurological deficit has two expressions. There is the impair-
ment to perform actions on command which is usually assessed 
in clinical examinations. And there is the decrease in spontaneous 
motor activity which may be functionally relevant (Figure 3). In a 
prospective study of 25 patients (63 ± 10 years) with acute MCA 
stroke and seven control patients without neurological disease 
(61 ± 14 years), movement activity was measured continuously 

for 4 days in both arms using Actiwatches (Cambridge Research 
Instruments, UK). Stroke patients with an initial decline in arm 
movement activity showed no increase in movement activity in 
either arm over 4 days after stroke, while other patients improved 
steadily after admission. The impairment continued to be different 
among the two groups 3 months after stroke (173). Stroke sever-
ity, location and treatment, as well as arterial blood pressure and 
body temperature were not different among the groups. But, in 
the non-recovering patients, the C-reactive protein was elevated 
and related to a low number of waking hours. These results sup-
port the notion that in the acute stage after MCA stroke, there 
are patients with a secondary decline in general motor activity 
and an enhanced sleep demand which was related to systemic 
inflammation.

Moreover, recordings with the electroencephalogram (EEG) 
revealed that stroke patients may exhibit focal slow wave activ-
ity (SWA) as well as focal epileptic changes in the affected 
hemisphere (175–177). Focal SWA (1–4 Hz) has been reported 
to predict poor recovery from stroke (178–180) but can last even 
for years (181). Notably, EEG recordings have revealed that, in 
addition to their neurological deficit, stroke patients also have 
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an abnormal sleep architecture (182, 183). It is unclear, however, 
what the functional impact of SWA is on spontaneous movement 
activity of the affected side after stroke. In fact, stroke patients 
with similar infarcts concerning lesion location and volume may 
show recovery patterns of the formal neurological assessment 
that are not reflected by the spontaneous movement activity of the 
affected limbs (184, 185). In acute stroke patients (68 ± 8 years) 
and age-matched controls (68  ±  12  years), movement activity 
was measured continuously and synchronously with the EEG for 
24 h in both arms using actiwatches (174). The stroke patients had 
lower total sleep time (P = 0.031), sleep efficiency (P = 0.019), 
percent non-rapid eyement movement sleep (P  =  0.034), and 
percent sleep stage N2 (P = 0.003) and showed reduced spontane-
ous movement activity in the affected arm during wakefulness. 
Stroke patients with abnormal focal SWA showed less spontane-
ous arm movement activity than those without SWA, while there 
were no differences in the sleep parameters (Figure  3). These 
findings accord with earlier observations by Bassetti and Aldrich 
(175) supporting the notion that sleep architecture is impaired 
in stroke patients leading to sleep fragmentation, increased 
wakefulness, and increased REM latency (186). Furthermore, the 
stroke patients with SWAs enjoyed a limited recovery as assessed 
with the NIHSS. Thus, focal SWA is a marker of profound brain 
pathology.

Times-Lines for Post-Stroke Recovery
The neurological deficits can regress substantially in the early 
period after ischemic stroke following acute stroke treatment 

with arterial recanalization and effective reperfusion. The 
relatively early recovery in patients with small cortical lesions 
steadily evolves over weeks and levels out over the subsequent 
months (112, 187, 188). In contrast, the processes of cerebral re-
organization are slow and may need many months to complete. 
In the acute phase of stroke, it is difficult to predict the degree of 
ultimate recovery, since there is a large heterogeneity of recovery 
over the first 3  months after stroke (12). Prediction becomes 
progressively better the more specific and differentiated the 
physiological assessment measures are and the longer the time 
since stroke (70, 189, 190). For example, the neurological state 
by day 4 predicts the long-term neurological outcome (188, 191). 
The recovery of activities of daily living usually develop within 
26  weeks after the stroke insult and is often accompanied by 
compensatory hand use (192, 193).

Neurorehabilitative Training
There are numerous reports about rehabilitative approaches to 
improve the neurological deficit following stroke (4, 13). Notably, 
patients older than 65 years benefit as much as younger patients 
from intensive rehabilitation (190, 194), while younger patients 
typically improve more on mobility, balance, walking, and grip 
strength (195). The intensity of the training rather than the type 
of training appears to determine long-term improvement of 
motor function (113, 196–198). While passive training of wrist 
movements was reported to be clinically effective and associated 
with change in cortical activation (199), volitional control of 
finger and thumb extensions was found to play an important role 

FiGURe 4 | Gaming-based training scenario using the commercially available hand hold PABLOR-device. Hand movements are measured by acceleration 
and force sensors and thereby steer objects in virtual reality games. Training on consecutive days enlarged the angle of hand rotations and decreased the 
heterogeneity of movement execution both in healthy subjects and stroke patients. From Seitz et al. (213).
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Following stroke, the brain undergoes various stages of recovery where the central 
nervous system can reorganize neural circuitry (neuroplasticity) both spontaneously 
and with the aid of behavioral rehabilitation and non-invasive brain stimulation. Multiple 
neuroimaging techniques can characterize common structural and functional stroke-re-
lated deficits, and importantly, help predict recovery of function. Diffusion tensor imaging 
(DTI) typically reveals increased overall diffusivity throughout the brain following stroke, 
and is capable of indexing the extent of white matter damage. Magnetic resonance 
spectroscopy (MRS) provides an index of metabolic changes in surviving neural tissue 
after stroke, serving as a marker of brain function. The neural correlates of altered brain 
activity after stroke have been demonstrated by abnormal activation of sensorimotor 
cortices during task performance, and at rest, using functional magnetic resonance 
imaging (fMRI). Electroencephalography (EEG) has been used to characterize motor 
dysfunction in terms of increased cortical amplitude in the sensorimotor regions when 
performing upper limb movement, indicating abnormally increased cognitive effort and 
planning in individuals with stroke. Transcranial magnetic stimulation (TMS) work reveals 
changes in ipsilesional and contralesional cortical excitability in the sensorimotor corti-
ces. The severity of motor deficits indexed using TMS has been linked to the magnitude 
of activity imbalance between the sensorimotor cortices. In this paper, we will provide a 
narrative review of data from studies utilizing DTI, MRS, fMRI, EEG, and brain stimulation 
techniques focusing on TMS and its combination with uni- and multimodal neuroimaging 
methods to assess recovery after stroke. Approaches that delineate the best measures 
with which to predict or positively alter outcomes will be highlighted.

Keywords: multimodal neuroimaging, stroke, sensorimotor recovery, diffusion tensor imaging, magnetic 
resonance spectroscopy, functional MRi, electroencephalography, transcranial magnetic stimulation
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iNTRODUCTiON

Recent advances in stroke treatment have stressed early interven-
tion, greatly reducing the risk of mortality after stroke (1). Yet, 
development of treatments aimed at improving function after 
stroke has failed to keep pace, in part because rehabilitation spe-
cialists do not yet understand how to best help the brain recover 
from stroke. The importance of this issue is underscored by work 
from the Boyd Lab showing a clinically meaningful decline in 
population-based quality of life for Canadians with stroke from 
1998 to 2005 (2). In this work, declines in health-related quality 
of life in the Canadian population were associated with increases 
in the proportion of individuals with impaired motor function 
post-stroke. Together the high incidence, increased survival 
rates, and decreased quality of life following stroke demonstrate 
a critical need for improved understanding of brain recovery 
after stroke.

Many have attempted to define the neural mechanisms of post-
stroke impairment and recovery in the hope that understanding 
these processes will improve rehabilitation interventions and 
enhance function (Figure  1, Part I). Since the development of 
neuroimaging techniques, such as magnetic resonance imaging 
(MRI) and functional MRI (fMRI), it is possible to identify both 
structural and functional brain changes, termed neuroplasticity, 
as individuals with stroke re-learn motor skills. In addition, the 
use of transcranial magnetic stimulation (TMS) allows cortical 
excitability to be temporarily enhanced or reduced, which ena-
bles researchers to experimentally test the influence of specific 
brain regions on motor learning and recovery from stroke. To 
date, numerous studies show neuroplastic change after stroke by 
documenting recovery of function that is independent of sponta-
neous change associated with acute recovery (3, 4). Our work (3, 
5–9) and that of others (10–12) clearly shows that motor learning 
and capacity for neuroplastic change (13, 14) are preserved, even 
during the chronic stage after stroke. Experience-dependent 
neuroplasticity likely explains a portion of the change associated 
with motor learning after stroke in this work (15), yet despite 
these advances in knowledge, no clear pattern of motor-related 
brain activation has emerged that fully explains how the brain 
compensates for stroke-related damage during motor learning.

In part, our failure to grasp how the damaged brain learns 
stems from an incomplete understanding of the relationships 
between behavior and brain function. Key to improving functional 
recovery after stroke is more fully understanding and mapping 
experience-dependent neuroplasticity (17), which demonstrates 
that the functional organization of the motor system can be 
modified by use. Technological advances have enabled detailed 
structural assessment of the brain with volumetric analysis of 
white and gray matter, the indexing of white matter connectivity 
using diffusion imaging, quantifying metabolic changes with 
magnetic resonance spectroscopy (MRS), mapping of brain activ-
ity with fMRI and electroencephalography (EEG), and assessing 
experience-dependent neuroplasticity through the manipulation 
of cortical excitability using repetitive TMS (rTMS). In this review, 
we highlight the use of these neuroimaging techniques to map 
the neuroplasticity of motor learning and sensorimotor recovery, 
as well as the advances in knowledge that have been stimulated 

from their use. In combination, the knowledge gained from these 
approaches is contributing significantly to the genesis of novel, 
evidence-based interventions designed to promote functional 
recovery after stroke.

NeUROiMAGiNG

Structural imaging
Volumetric Analysis
It has long been recognized that lesion location rather than size 
explains the bulk of neurological deficits after stroke (18). For 
instance, the degree damage to the cortical spinal tract (CST) 
rather than lesion volume correlates with motor ability after 
stroke (19). However, stroke-related damage also has effects 
on regions remote from the site of injury (20). The time point 
of assessment is important because of delayed atrophy in areas 
remote from the stroke (21). Advances in volumetric analysis 
of MRI have allowed for the automated quantification of brain 
volumes after segmentation into gray and white matter (22, 23) 
often using only an anatomical T1 scan (Figure 1, Section IIA). 
The quality of the scan influences the precision of segmentation 
and having additional scans, such as fluid-attenuated inversion 
recovery (FLAIR), T2, or proton density (PD), can improve 
accuracy and identification of subtle lesions (23). Unfortunately, 
difficulties arise when using these methods to quantify brains 
with a neurological pathology (24, 25). Caution must be taken 
to ensure programs designed to use anatomical landmarks to 
segment and quantify brain volumes are functioning as expected 
with analysis of chronic post-stroke brains, where landmarks may 
shift or be non-existent due to direct damage or atrophy. Recently, 
our group has utilized the FreeSurfer-based image analysis pack-
age (26, 27) for volumetric segmentation in chronic stroke and 
found that segmentation was unaffected by small subcortical 
lesions (24). However, participants with more extensive damage 
had to be excluded from the analysis due to segmentation errors. 
Alternative segmentation programs or using more extensive 
manual edits will allow for the inclusion of participants with 
larger lesions.

Volumetric analysis may be a valuable predictor of responders 
to post-stroke interventions (23, 28). Future use of volumetric 
analysis in rehabilitation studies will likely provide more useful 
information on the influence of structural integrity on post-
stroke recovery. However, extreme caution and manual review/
intervention of computerized assessments must be used to ensure 
accurate quantification of post-stroke brains (24, 25).

Diffusion-Weighted Imaging
Diffusion-weighted magnetic resonance imaging (DW-MRI) 
non-invasively provides information on white matter pathways 
in the human brain. Based on its ability to determine water 
diffusion characteristics, DW-MRI has been extensively used to 
identify the orientation and integrity of white matter after stroke, 
and to relate these measures to motor function [see Ref. (28) 
for review]. Brain regions, such as the corpus callosum (CC) 
(29, 30) and the corticospinal tract (CST) (29, 31–33), have 
been repeatedly studied and related to both motor function and 
functional potential (30, 31, 33). DW-MRI has been touted as a 
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promising tool for rehabilitation planning and prognosis after 
stroke (31), and may predict neural changes after motor learn-
ing. Importantly, preliminary studies have demonstrated that the 
integrity of CST (24, 34) and CC (35) influences the efficacy of 
rTMS, suggesting that DW-MRI can provide valuable informa-
tion when selecting rTMS protocols and predicting the efficacy 
of an intervention.

FiGURe 1 | A summary of our current understanding of factors that contribute to post-stroke impairment (i) and the assessment tools available for 
quantifying these changes (ii). Loss of white matter projections is illustrated as a decreased number of CST projections (IA). Diaschisis, a remote functional 
depression, can impact intra- and interhemispheric areas (IB). A focal lesion can disrupt the mutual balanced inhibition between hemispheres. Damage from stroke 
disrupts the balance by decreasing the inhibition of the contralesional hemisphere, which results in increased inhibition of the injured hemisphere (IC). FreeSurfer-
based volumetric analysis, using structural T1s, can be manually modified to correct for errors in the automated segmentation of injured brains (IIA). Identification of 
CST and CC in an individual with chronic stroke utilizing tractography of diffusion-weighted images (IIB). The axial brain image identifies the voxel placement in the 
hand knob of an individual with chronic stroke, the resulting spectra quantifies multiple neurotransmitters (IIC). BOLD signal during movements of the unaffected and 
affected hand in individuals with left-sided subcortical stroke; modified, with permission, from Grefkes et al. (16) (IID). EEG trace from an electrode located at Cz 
(over primary motor cortex) in an individual with chronic stroke and a healthy control as they take a step (time 0) (IIE). Transcallosal inhibition evoked from stimulation 
over ipsilesional and contralesional primary motor cortex (IIF). Ipsilesional stimulation failed to produce an observable iSP in the ipsilateral (to the TMS pulse) limb, 
whereas contralesional stimulation evoked a quantifiable iSP in the ipsilateral (to the TMS pulse) limb. iSP occurs in the time between the green (onset) and red 
(offset) lines. CST, cortical spinal tract; CC, corpus callosum; fMRI, functional MRI; BOLD, blood oxygen level dependent; iSP, ipsilateral silent period; TMS, 
transcranial magnetic stimulation.

The motion of water molecules is restricted based on its loca-
tion and in white matter movement of water is restricted across 
the tracts, with a relatively greater freedom of movement parallel 
to the white matter fibers. It is this basic principle, which allows 
for DW-MRI to identify the diffusion characteristics of white 
matter and predict specific white matter pathways. Several diffu-
sion-based measures have been related to post-stroke outcome, 
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primarily, fractional anisotropy (FA), apparent diffusion coeffi-
cient (ADC), axial diffusivity (AD), radial diffusivity (RD), num-
ber of tracts, and tract volume. FA is the most commonly reported 
DW-MRI measure, and indicates the degree of directionality 
within the tissue microstructure, which is determined by tissue 
features, such as axons, myelin, and microtubules. FA ranges from 
0 (completely isotropic) to 1 (completely anisotropic); therefore, 
higher FA indicates greater directionality (36, 37). ADC, AD, 
and RD are all based on the eigenvalues of the apparent diffusion 
tensor [λ1, λ2, and λ3 (38)]. AD is an indicator of water diffusion 
along the parallel, principal, direction of axonal water diffusion 
[AD = λ1 (38)]. RD is an index of water diffusion perpendicular 
to the principal direction of water [RD = λ2 + λ3/2 (38)]. ADC 
is the mean value of eigenvalues of the apparent diffusion tensor 
[ADC = λ1 + λ2 + λ3/3 (38)]. Tractography methods allow for the 
visualization of fiber architecture and also allow for the identifica-
tion of fiber number and volume in pathways of interest to stroke 
recovery (Figure 1, Section IIB).

Although the reproducibility of tractography has been 
established in a stroke population (39, 40), different analysis 
methods can affect the interpretation of results (41). At present, 
no “gold standard” method for fiber tractography exists for 
in vivo application (42–44). For example, our group has recently 
found that diffusion tensor imaging (DTI) and constrained 
spherical deconvolution (CSD) methods produce significantly 
different results when applied to individuals with chronic stroke 
(41). Although DTI is the most commonly applied method of 
tractography analysis in stroke research, CSD analysis provided 
a stronger relationship between CST and CC white matter char-
acteristics, and post-stroke outcome. Additionally, DTI-based 
tractography often fails to reconstruct fibers projecting to the 
lateral aspect of the cortex (41, 42). Lateral projections of the 
CST play a significant role in motor recovery after stroke (45), 
specifically fine motor control of the hand (46). The failure of 
DTI to detect these lateral projections likely hinders correlations 
between CST and CC diffusion measures and motor function. If 
DW-MRI tractography is to become a feasible tool for assessing 
prognosis, functional potential, or rehabilitation strategies, it 
is important that this technique be as sensitive and specific to 
actual white matter fiber architecture as possible. Inability to 
detect an intact CST or an under-estimation of the projection 
of fiber populations may undermine patients’ expected poten-
tial for recovery resulting in minimized rehabilitation efforts. 
Additional studies are needed to identify optimized tractogra-
phy strategies for identifying the fiber projections important for 
stroke recovery.

In addition to tractography, several strategies are utilized to 
interpret the microstructural white matter information provided 
from DW-MRI. Many studies use a FA map to place a region 
of interest (ROI) over a section of white matter (29), or use 
tract-based spatial statistics (TBSS) to isolate specific regions of 
change (47). Each of these methods has been able to correlate FA 
and/or diffusion measures of the CST with sensorimotor func-
tion and impairment following stroke (29, 32, 48). Lindenberg 
et  al. found a correlation between fiber number asymmetry 
(ipsilesional  −  contralesional/ipsilesional  +  contralesional) 
and motor outcome in chronic stroke (32). Cho et al. used DTI 

tractography to classify CST integrity after corona radiata infarct 
(49) and intra-cerebral hemorrhage (50), and found a relation-
ship between tract involvement and functional outcome. ADC of 
the CST appears to be elevated in the chronic stage of stroke (51, 
52), and has been related to functional outcomes (28, 52). AD and 
RD have been less frequently reported after stroke. Nonetheless, 
studies in individuals with acute stroke found AD of the CST to 
be related to motor outcomes (53, 54). One study found increased 
RD in several regions, including the posterior CC, in acute stroke 
patients compared to controls; however, increased AD occurred 
only in the corona radiata (55). These results are consistent with 
the work by Lindenberg et  al., who assessed individuals with 
chronic stroke in comparison to controls (30). Recent work has 
shown that ADC, AD, and RD are elevated in the ipsilesional CST 
and are related to motor outcome in individuals with chronic 
stroke (41).

Several studies have assessed the relationship between 
DW-MRI-based diffusion measures of the CC and post-stroke 
outcome. Recently, Takenobu et al. used a combination of voxel-
based statistical tractography and a deterministic ROI-based 
approach to determine callosal FA in acute ischemic stroke 
patients (47). A significant positive correlation between FA 
values within a ROI placed in the callosal midbody and motor 
impairment was reported. Lindenberg and colleagues employed 
a probabilistic tractography method, identifying white matter 
tracts passing through contralesional primary motor cortex, and 
found that several DTI-based outcomes were related to baseline 
motor function and improvements in motor function after a 
5-day intervention combining non-invasive brain stimulation 
and motor practice (30). Specifically, transcallosal FA was nega-
tively correlated with baseline motor function, and both AD and 
RD were positively correlated with change in function between 
pre- and post-intervention assessments.

Together these findings indicate multiple measures of white 
matter microstructure of the CST and CC correlate with stroke 
outcome. It remains to be seen which diffusion measure(s) and 
method(s) will provide the most reliable indication of CST and 
CC function. Populations with stroke tend to have heterogene-
ous characteristics, such as, varied time since stroke onset, wide 
range of functional and cognitive impairments, and differences 
in lesion size and location. The contribution of these factors to 
white matter microstructure have not been comprehensively 
explored, and should be evaluated in future work to enhance the 
use of DW-MRI to predict stroke outcome and the response to 
interventions.

Magnetic Resonance Spectroscopy
Magnetic resonance spectroscopy allows for the non-invasive 
measurement of metabolites in vivo, within a defined region of 
tissue. H1MRS uses resonance signals from hydrogen protons to 
quantify cerebral metabolites, which have different identifiable 
resonance signals (or peaks) in a static magnetic field, measured 
in parts per million (ppm). Thus, the magnitude of the peak 
resonance at the chemical shift point for each metabolite can be 
measured and a spectral map computed, providing information 
on the presence and concentration of metabolites within the 
target tissue [see Ref. (56) for review] (Figure  1, Section IIC). 
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The process of acquiring MRS data (shimming, water suppres-
sion, and phasing curve fitting) has now been automated and is 
available in programs, such as linear combination (LC) model 
(57) or magnetic resonance user interface (MRUI) (58).

The number of metabolites that can be differentiated in the 
MRS spectrum depends on the field strength of the MRI scanner 
(59, 60). With a 3T MRI, it is normally possible to obtain reliable 
peaks for six different metabolites: N-acetylaspartate (NAA), 
myo-inositol (mI), choline, creatine, glutamate, and lactate. 
Signals from the different peaks overlap making detection of 
less-abundant metabolites, such as gamma-aminobutyric acid 
(GABA), difficult without specific optimization of the MRS pro-
cedure that involves editing the spectra to obtain the GABA peak 
at the cost of losing information from other observable peaks 
(61). The physiological roles of the five identifiable metabolites 
are still under examination. The physiological role of NAA in 
the CNS is unclear; however, it is considered a marker of viable 
neurons. Lowered levels of NAA may indicate neural loss or death 
(62). mI is a cerebral osmolyte and occurs in astrocytes. It is con-
sidered a marker of glial cells and elevated mI is often considered 
a sign of gliosis or cytotoxic edema (63). mI is elevated in spared 
neural tissue in chronic stroke (64, 65). Choline represents the 
sum of four choline-containing compounds in the CNS, all of 
which are contained in cellular membranes; choline is considered 
a marker of cell membrane integrity. Elevated choline levels may 
indicate increased cell membrane turnover or demyelination 
(62, 66). Creatine also represents the sum of creatine-containing 
compounds, creatine and phosphocreatine, both of which are cel-
lular energy reserves and are markers of energy metabolism in the 
brain (62). Creatine and choline levels are commonly believed to 
be stable across the brain and are often used to normalize levels of 
other cerebral metabolites; however, this may not be an appropri-
ate approach in neuropathological conditions, such as stroke, as 
choline and creatine levels may be unstable after cerebral infarct 
(67). Glutamate represents the sum of glutamate and its precursor 
glutamine; it is not possible to differentiate these two compounds 
at 3T field strength (59). Glutamate is the principle excitatory 
neurotransmitter in the CNS and levels of glutamate may be 
of particular interest in indexing changes related to N-methyl-
d-aspartate receptor (NMDAR)-mediated neuroplasticity, or 
glutamate excitotoxicity post-stroke.

Magnetic resonance spectroscopy has significant potential to 
act as an index of metabolic changes in surviving neural tissue 
after stroke (68). Thus, MRS has primarily been useful as a marker 
of neuronal loss or to indicate altered metabolic processes in 
penumbral tissue following infarction. NAA levels are reduced 
in areas of cerebral infarct (69), consistent with neural death, and 
appear to reduce further from acute to chronic stroke, perhaps 
indicating neuronal loss by diaschisis (70). Combining lactate 
peaks with NAA data provides useful predictive information 
about the viability of peri-infarct tissue in acute stroke (71–73). 
MRS has been less utilized in evaluating sensorimotor outcomes 
in chronic stroke, though analyses of spared ipsilesional tissue 
have provided interesting insights into neural adaptations in 
motor networks following distal infarct. In individuals with 
subcortical stroke, there is lower NAA and higher mI in spared 
ipsilesional primary motor cortex (M1) (65, 74); this is consistent 

with neuronal stress or atrophy as result of an infarct to the motor 
network. Lower NAA and higher mI have also been reported in the 
ipsilesional supplementary motor area (SMA) and premotor cor-
tex, respectively (64). NAA levels in M1 and non-primary motor 
areas positively correlate to motor function in several reports (64, 
74–76) suggesting motor outcomes after stroke rely in part on the 
integrity of surviving neural tissue. There have been fewer reports 
on neurotransmitter levels and functional outcomes after stroke. 
Cirstea et al. report levels of glutamate in ipsilesional M1 correlate 
with motor impairment, with higher levels of glutamate relating 
to better motor function, though glutamate was not significantly 
reduced in ipsilesional M1 compared to contralesional M1 (65). 
A recent study from Blicher et al., using optimized MRS protocols 
for detection of GABA, reveals GABA is reduced in ipsilesional 
M1 after stroke (77). Further, Blicher et al. report improvements in 
motor function in response to constraint-induced therapy (CIT) 
related to individual differences in GABA levels, with higher 
baseline GABA in ipsilesional M1 relating to greater improve-
ments in motor function after CIT (77). Future studies linking 
MRS measures to functional outcomes are needed, particularly 
in relation to glutamate’s potential role in motor adaptation after 
stroke. MRS provides significant potential benefit as a modality 
to link observations of changes in neural activity post-stroke from 
fMRI or TMS imaging with changes in metabolic function.

Magnetic resonance spectroscopy could also be a valuable 
tool to advance our understanding of the neurochemical effects 
of rTMS, and may be used as a predictive measure to identify 
responders from non-responders. It is thought that rTMS does 
not change NAA levels, instead it shifts neuronal metabolism 
and neurotransmitter levels (78). Studies examining the effects 
of rTMS on MRS measures have, thus far, largely been conducted 
on high-frequency rTMS over the dorsolateral prefrontal cortex 
(DLPFC) in the treatment of depression. These studies have begun 
to examine individual variability in pre-stimulation metabolite 
levels and how these relate to treatment response. Participants 
who responded to high-frequency rTMS over DLPFC for treat-
ment of depression showed lower baseline levels of glutamate 
prior to rTMS stimulation, and greater increases in cortical 
glutamate in response to rTMS (79, 80), while non-responders 
showed a decrease in glutamate levels in response to stimulation 
(80). Therefore, response to rTMS appears to rely in part on base-
line levels of glutamate in target brain regions. These studies were 
conducted on rTMS for depression, with different stimulation 
targets and network effects than rTMS for sensorimotor recovery. 
However, they highlight the potential value of MRS as an index of 
treatment response to stimulation for stroke patients.

There is scant research to date on MRS response to rTMS 
over sensorimotor regions as it relates to stroke recovery. To our 
knowledge, only one such study has been conducted, by Stagg 
et al., using GABA-optimized MRS in examination of the effects of 
continuous theta burst stimulation (cTBS) to M1 (81). The authors 
report cTBS, which has inhibitory effects on cortical circuitry, 
increases GABA levels without affecting glutamate levels in M1 
(81). Individual baselines in GABA levels relate to improvement 
gains on upper limb motor function (77), and a study in healthy 
adults demonstrated that individuals with greater reductions in 
GABA levels after transcranial direct-current stimulation (tDCS) 
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showed improved motor learning and greater M1 activation in 
fMRI (82). It remains to be seen whether individuals with dif-
fering levels of baseline GABA following stroke show differing 
responses to rTMS protocols, this is an avenue that should be 
examined in future research. Not only would future MRS work 
expand our understanding of the neurobiological actions of 
rTMS, but it also could allow for improved understanding of 
baseline neurochemical characteristics that predict response to 
rTMS protocols, and thus more targeted individualized treatment 
approaches in stroke rehabilitation.

Functional imaging
Functional MRI
Functional MRI measures changes in blood movement in the 
brain over time. This signal is the blood oxygen level dependent 
(BOLD) signal. The BOLD signal is an indirect measure of neural 
activity and reflects the amount of deoxyhemoglobin in a tissue. 
The amount of deoxyhemoglobin depends on the local rate of 
metabolism of oxygen, the volume of blood in the region, and the 
amount of blood flow in a region (83). As neural activity increases 
in a brain region, local oxygen metabolism, blood volume, and 
blood flow all increase together (83). When MRI measures the 
BOLD signal, there is a time delay between the neural event and 
the signal measurement. The “fast response” occurs 2–3 s after 
an event with the main BOLD signal recorded ~5 s later. In the 
literature, the BOLD signal is sometimes described as a “hemo-
dynamic response.”

Measurement of BOLD signal can occur as the study par-
ticipant is performing a task (Figure  1, Section IID), or while 
“resting” – the participant is typically asked to think of nothing 
in particular but to remain awake (84). After collecting the study 
data, it can be processed and analyzed in very similar ways. The 
difference is that some analysis techniques are designed for use 
with certain experiment types (i.e., for resting state). Resting-state 
fMRI is defined as the spontaneous low-frequency (<0.1  Hz) 
BOLD fluctuations with spatio-temporal correlations in networks 
(85). What the BOLD signal fluctuations mean is not yet clear, but 
increasing evidence suggests it does have a neural basis (85).

In the past, stroke rehabilitative research using neuroimaging 
focused on the analysis of local lesion-specific activity and sub-
sequent impairments (86, 87). Limitations in computation and 
mathematical modeling restricted study to isolated brain regions, 
though clinically the effects of an isolated stroke can demonstrate 
large sensorimotor and cognitive effects in remote areas (88). 
Recent advancements in technological and scientific knowledge 
have allowed for broader study of brain activity upstream and 
downstream from the stroke lesion, namely network analysis. 
Network analysis allows for the study of potential widespread 
changes in neural activity after a focal lesion. Analyzing patterns 
of network activity can inform researchers and clinicians of 
the effect a lesion has on the output of brain activity and may 
indicate whether certain “compensatory” network patterns are 
better than others for producing functional motor performance. 
A recent review of network analysis demonstrated altered activity 
both adjacent to and distant from a stroke lesion, affecting both 
hemispheres, and a pattern of change in network activity linked 

with motor impairments and recovery (89). Reorganization in the 
lesioned hemisphere includes interactions between the fronto-
parietal regions and the primary motor cortex, which may suggest 
greater cortical control is needed for motor performance of the 
paretic upper extremity (89). These studies underline the ability 
of network analysis to determine connectivity patterns after a 
stroke, and its potential for determining the effectiveness of cur-
rent rehabilitative therapies. If network analysis can link certain 
patterns of early post-stroke activity with better prognosis, it may 
have a role in informing the direction of future therapies.

Brain network activity after a stroke is commonly studied with 
task-based fMRI. The challenges with using fMRI in individuals 
after a stroke, is that the post-stroke motor impairments can 
make motor performance difficult often resulting in movement 
synergies (90), mirror movements (91), and head motion during 
an fMRI scan (92). If during an fMRI study, participants produce 
head movement beyond a few millimeters, move in synergies or 
produce mirror movements, the scan may be rendered useless. 
People who have sustained a severe stroke with resulting severe 
motor impairments are often not studied with task-based fMRI, 
as motor performance of even simple tasks are frequently not 
possible without assistance, though some studies attempt to 
overcome this limitation by studying passive movements (93, 
94). Even those who have sustained a mild or moderate stroke 
may have difficulty performing common functional tasks, such 
as individuated finger movements, so researchers are limited to 
studying basic and simple motor tasks, limiting generalizability 
to other motor tasks. Imaging the brain during rest allows for 
the study of individuals with a wide range of post-stroke motor 
impairments, and permits the examination of network activity 
without the need for task performance. For these reasons, resting-
state imaging is an attractive method for studying stroke network 
activity.

Resting-State fMRI
Resting-state fMRI can characterize functional deficits after 
a stroke and provide important predictive evidence that links 
brain behavior with functional sensorimotor recovery of the 
upper limb. After a cortical stroke, participants demonstrate 
increased network activity in the ipsilesional fronto-parietal 
cortex, bilateral thalamus and cerebellum, while contralesional 
M1 and occipital cortical activity are decreased compared with 
healthy controls (95). Furthermore, the functional connectivity 
of the ipsilesional M1 with the contralesional thalamus, SMA, 
and middle frontal gyrus during the acute stroke phase positively 
correlate with motor recovery after 6 months (95), suggesting that 
changes in upper extremity motor impairment can be predicted 
by alterations in resting-state activity. Recently, participants 
with impaired upper extremity function received 12  weeks of 
training with shoulder and elbow robotic rehabilitation (96). 
Resting-state fMRI and upper extremity motor impairment was 
assessed before and after training. Decreased impairment could 
be predicted from functional connectivity changes measured 
by resting-state fMRI. Resting-state fMRI can reveal disrupted 
functional connections within hours of stroke as well as during 
recovery. Individuals with ischemic stroke were scanned within 
24 h, 1 week, and 3 months post-stroke (97). Within hours after 
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stroke, lower connectivity was found in individuals with motor 
deficits. Interestingly, connectivity was restored 1 week later in 
those with recovered hand function. However, residual decreased 
subcortical connectivity remained 3 months later, even in those 
individuals without remaining hand motor impairment. These 
findings indicate that though motor function improves for some 
individuals after stroke, resting-state fMRI may remain altered. 
Resting-state fMRI also allows for the analysis of multiple net-
works simultaneously. Recent work has proposed that disrupted 
whole brain connectivity in both the sensorimotor and dorsal 
attention network is closely linked with functional impairment 
more than the intra-hemispheric connectivity (98).

Task-Based fMRI
Task-based fMRI can inform the capacity of individuals to 
recover after stroke, specifically with regard to motor function 
and learning. fMRI studies have found that paretic hand move-
ment early after stroke is linked to widespread bilateral activity 
within the motor system, with greater bilateral activity found 
in individuals with greater motor impairment (99). Research 
directed at understanding the function of this bilateral pattern 
of activity suggests that the surviving brain regions influence 
distant regions during movement (99). It is now known that 
brain regions that survive the initial stroke influence one another 
during movement, and that multiple brain regions and pathways 
participate in reorganization and functional recovery, such as the 
CST, brainstem pathways, interhemispheric connections (100). 
The contralesional hemisphere also provides support for paretic 
hand movements (100). Task-specific practice in individuals 
with chronic stroke facilitated motor learning and reduced the 
volume of contralesional cortical activity while using the paretic 
arm (101). Performing the learned task altered cortical activa-
tion by producing a more normalized contralateral pattern of 
brain activation, which suggests task-specific motor learning 
may be an important stimulant for neuroplastic change and can 
remediate maladaptive patterns of brain activity after stroke. 
Our group has found motor learning and overall improvements 
in motor control are associated with increased response in the 
prefrontal-based attentional network in individuals with chronic 
stroke (14). Additionally, evidence of plasticity is also noted for 
movement of the non-paretic arm; this activity is related to altera-
tions in neural activation in areas anatomically and functionally 
connected to the lesion, implying an extensive bilateral network 
is involved (102).

Electroencephalography
Electroencephalography uses surface electrodes placed on the 
scalp to detect fluctuating electrical voltages, which result from 
the small electrical currents generated by active neurons (103). 
EEG recordings are mainly generated by pyramidal neurons in 
cortical layers III, V, and VI, with summation of cortical activity 
producing a voltage field that can be recorded on the scalp (103). 
EEG is used for diagnosis, prognosis, treatment monitoring, and 
clinical management in acute ischemic stroke (104). Additionally, 
in chronic stroke, the EEG signal can identify subtle changes in 
the brain that cannot be detected by clinical measures; further, 
quantification of the EEG signal before and after rehabilitation 

interventions can assess neuroplasticity both locally surrounding 
the lesion and within whole brain networks (105).

For EEG, resting-state activity can provide valuable predictive 
information regarding network activity after a stroke, but has limi-
tations with regard to spatially localizing the sources, or regions 
of interest, within the network. Stroke can affect the synchrony 
of electrical oscillations in neural networks and these changes in 
network coherence can be associated with neurological deficits. 
In individuals with sub-acute stroke, functional connectivity of 
resting-state EEG correlated with motor performance. Individuals 
with stroke presented with disrupted alpha band connectivity 
where the spatial distribution of alpha activity reflected the pattern 
of motor and cognitive deficits of the individual participant (106). 
Even 1  month after stroke, measures of delta and alpha power 
were correlated with stroke severity scores (107). Focal brain 
lesions affect functional brain networks. In individuals 3 months 
after ischemic stroke, the synchrony of alpha band oscillations 
decreased between affected brain regions with the rest of the brain 
and this decrease was related to cognitive and motor deficits (108). 
Resting-state EEG can measure the synchronization of neuronal 
firing, and this can occur in the form of phase coupling or 
amplitude correlation. Behavioral performance after a stroke can 
be predicted by two distinct resting-state EEG coupling patterns: 
(1) amplitude of beta activity between homologous regions and 
(2) the lagged phase synchronization in EEG alpha activity from 
one brain region to rest of the cortex (109). A disruption of these 
coupling patterns is found to be associated with neurological defi-
cits in individuals with stroke (109). Robot-aided rehabilitation 
programs are a relatively new and promising therapy, promoting 
brain plasticity and supporting improvements in upper extremity 
motor control. In a pilot study of seven individuals with stroke, 
12 weeks of robotic rehabilitation decreased upper limb impair-
ment and changed brain connectivity as indicated by altered 
coherence in the high beta band (24–33 Hz) (110). These studies 
demonstrate the ability of EEG to provide information about the 
patterns of impairment and recovery after stroke.

Transcranial Magnetic Stimulation
Transcranial magnetic stimulation is a useful way to non-inva-
sively measure and modulate cortical excitability. TMS activates 
neurons in the cortex under the coil, which at high enough 
intensities transsynaptically depolarizes corticospinal output 
neurons. The corticospinal volleys activated by TMS reach the 
target muscle and can be recorded by surface electromyography 
(EMG) (111). Multiple single and paired-pulse techniques can be 
used to index neuroplasticity, providing useful information about 
how stroke and subsequent interventions modify brain function 
(see Figure 2 for overview).

Single Pulse
Motor Thresholds In order to account for individual responses to 
TMS across individuals, a standardized motor threshold value is 
determined. Resting motor threshold is most commonly defined 
as the lowest percent of stimulator output that is required to 
produce a motor-evoked potential (MEP) with a peak-to-peak 
amplitude of 50 μV on five out of 10 trials while the individual 
is at rest (112). Similarly, active motor threshold is defined as the 
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lowest percent of stimulator output that is required to produce 
an MEP with a peak-to-peak amplitude of 200 μV on five out of 
10 trials while the individual maintains a light background con-
traction (113). Threshold values are often used to determine the 
stimulation intensity to use in the assessment and modulation of 
cortical excitability with TMS techniques.

MEP Input–Output Curves Motor-evoked potential input–
output (IO) curves utilize single-pulse TMS over a range of 
intensities to measure the increase in excitability within the 
corticospinal system in response to increased stimulus inten-
sity, as indexed by MEP amplitude (114, 115). The linear slope 
of the curve (115) or area under the curve (116) produced by 
increasing stimulator intensity is quantified as a representation 
of the ability of the excitability of the M1 representation to be 
up- regulated, and the strength of the corticospinal connections. 
MEP IO curves can be measured while the participant is at 
rest, or during a sustained contraction. Resting MEP IO curves 
activate lower threshold neurons, while active MEP IO curves 
utilize the voluntary contraction to activate higher threshold 
neurons, thus stimulating unique neuronal pools, which may 
have different functional significance (117).

M1 Cortical Mapping Single-pulse TMS can also be utilized to 
probe the excitability of M1 in terms of quantifying the distribu-
tion and amplitudes of MEPs in the target muscle(s). TMS map-
ping of M1 follows the principles of motor homunculus (118) 
where stimulation of different motor regions produces system-
atic responses in the corresponding peripheral musculature. The 
amplitudes and distribution of MEPs when different scalp sites 
are systematically stimulated can be analyzed and displayed as 

topographical maps showing the greatest activity produced from 
a corresponding scalp location over M1. Mapping the M1 repre-
sentation of particular muscles is used to understand the healthy 
and pathological cortex, as well as to map change in neuronal 
representation of muscle groups over time or following an inter-
vention (119–129).

Silent Period When single-pulse TMS is applied while holding 
a slight contraction in the contralateral limb, a cortical silent 
period (CSP) is produced, which presents a prolonged reduction 
in EMG activity following the MEP (130–132). The CSP orig-
inates largely from activation of inhibitory cortical and spinal 
interneurons, and there is evidence that the latter half of the CSP 
is associated with GABAB-like activity at the cortical level (133). 
Therefore, single-pulse TMS can be indicative not only of motor 
cortical excitability, or increases in corticospinal tract excitability 
in response to increasing stimulator output, but also inhibitory 
circuit activity within the corticospinal system.

Transcallosal inhibition (TCI), important in interhemispheric 
communication, can be quantified via an ipsilateral silent period 
(iSP) derived from single-pulse TMS (134, 135). Specifically, dur-
ing a sustained unilateral muscle contraction, a single TMS pulse 
over the ipsilateral M1 is delivered to evoke a reduction in the 
background EMG activity in the ipsilateral muscle, known as the 
iSP. Since the iSP is diminished or absent in patients with lesions 
of the corpus callosum (135, 136), it is likely a result of inhibition 
via transcallosal projections.

Paired Pulse
Intracortical Inhibition and Facilitation The excitation of M1 
pyramidal neurons that ultimately translates into corticospinal 
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output to target muscles is also influenced by intracortical cir-
cuitry within the motor cortex. Inhibitory intracortical circuitry 
within M1 influences corticospinal output, and can be quantified 
using TMS. Specifically, short-interval intracortical inhibition 
(SICI) and long-interval intracortical inhibition (LICI), quantify 
inhibitory circuitry. SICI is produced when two TMS pulses (a 
subthreshold conditioning stimulus followed by a suprathreshold 
test stimulus) are administered over M1 with an interstimulus 
interval (ISI) of 1–6 ms and results in a decreased MEP amplitude 
than that elicited by a single TMS pulse alone (137). Intracortical 
facilitation (ICF), from 10 to 15 ms after the stimulation, meas-
ures the facilitatory circuits in M1. The protocol for measuring 
ICF is identical to that with SICI (subthreshold conditioning 
stimulus and suprathreshold test stimulus), with only the ISI dif-
fering. At longer ISIs of 50–200 ms, there is again a period were 
inhibition is produced due to paired-pulse TMS called LICI (138, 
139). Unlike SICI, LICI is evoked with two identical suprathresh-
old pulses. SICI is likely mediated by GABA-A (140) and LICI by 
GABA-B (133, 141–143) receptor-mediated circuitry, due to the 
differences in the time course of activation of the respective cir-
cuitry (Figure 1, Section IIF). ICF appears to be mediated by dif-
ferent neural circuitry than SICI (144), and glutamate may play a 
role in mediating ICF (145). Assessing these inhibitory and facili-
tatory circuits is an important component of understanding how 
neuroplastic change may be mediated and underlies associated 
behavioral changes, functional improvement, and assessment of 
neurological injury (i.e., stroke).

Short-Afferent Inhibition and Long-Afferent Inhibition Measures 
of short (SAI) and long-afferent inhibition (LAI) use single-pulse 
TMS in conjunction with peripheral nerve stimulation to exam-
ine the integration of sensory information into the motor output 
system. Specifically, an electrical stimulation is delivered at the 
contralateral median nerve prior to a TMS pulse delivered over 
M1 while the participant is at rest, which results in a reduced MEP 
relative to a single pulse alone. SAI applies this technique with an 
ISI of 20 ms and LAI utilizes an ISI of 200 ms (130, 146–150). SAI 
provides only enough time for activation of the primary soma-
tosensory cortex and secondary somatosensory cortex, whereas 
LAI is long enough to ensure activation of primary somatosen-
sory cortex, bilateral secondary somatosensory cortex, and con-
tralateral posterior parietal cortex (130). While the mechanisms 
underlying both SAI and LAI have not been described, they pro-
vide information on the impact of peripheral nerve stimulation 
on M1 excitability, which is an important component to consider 
when studying sensorimotor integration in regards to neuroplas-
ticity and neurological injury.

TMS Assessment of Cortical Excitability and Connectivity in 
Stroke Several methods of TMS assessment have shown that 
there is altered brain excitability and connectivity during all 
phases post-stroke (acute, sub-acute, and chronic). In approxi-
mately the first week after stroke, the ability to elicit MEPs in the 
paretic limb after single-pulse stimulation over the ipsilesional 
hemisphere predicts good recovery (151–156). A lack of elicited 
MEPs in the paretic limb along with increased MEP amplitudes 
in the non-paretic limb after contralesional stimulation predicts 

poor motor recovery (31, 157), although this is not always the 
case (151, 158, 159). The appearance of MEPs where there were 
none before and improvement of TMS measures of corticospi-
nal integrity during the first few months of recovery (160–162), 
both correlate with better functional outcome. An imbalance of 
motor cortex excitability (decrease lesioned cortex excitability 
and overly increased excitability of contralesional cortex) occurs 
following severe stroke and a restoration of balance is associated 
with functional recovery (151, 157, 162, 163). Several studies uti-
lizing motor cortical mapping have show that there are a decreased 
number of excitable scalp sites over the ipsilesional compared to 
contralesional cortex (160, 164–168), which has been suggested 
to indicate a hemispheric imbalance between the cortices that 
accompanies motor impairment of the more affected limb.

After stroke, measures of intracortical inhibition and excitation 
within the ipsilesional hemisphere are altered. There is increased 
inhibition as measured by a prolonged CSP after subcortical 
stroke (169). Conversely, SICI and LICI are suppressed (158, 170, 
171), and ICF remains within normal ranges (172–174). Recent 
reports have shown that SAI is reduced in the acute phase of 
stroke, where increased suppression of SAI has been correlated 
with better motor function 6 months after stroke (175). In the 
contralesional hemisphere, motor thresholds and MEP ampli-
tudes remain generally normal (151, 162, 173, 176–181), but SICI 
is suppressed in some (158, 172, 173, 177).

The connectivity between hemispheres is also altered fol-
lowing stroke, showing asymmetric transcallosal interactions. 
Several studies show that ipsilesional M1 generates less TCI than 
usual (177, 182), and contralesional M1 continues to demonstrate 
normal, or even increased, levels of interhemispheric inhibition 
(IHI) (183, 184). The net result is increased inhibition acting on 
ipsilesional M1 (183) that can depress ipsilesional M1 excitability. 
These changes may interfere with neuroplasticity in ipsilesional 
cortex (4, 185, 186), as increased IHI from contralesional M1 
onto ipsilesional M1 reduces excitability in neurons that survived 
the stroke (177, 187) and is associated with more severe func-
tional deficits (183, 184). Additionally, work from our group with 
chronic stroke participants has found increased TCI from the 
ipsilesional to contralesional M1 while maintaining a contraction, 
suggesting greater inhibitory signals sent from the ipsilesional to 
contralesional M1 (188). Further, we have recently shown that 
contralesional TCI was negatively correlated with hemiparetic arm 
function and impairment, demonstrating decreased inhibition 
from the contralesional to ipsilesional hemisphere is associated 
with greater impairment (189). Therefore, bilateral alterations in 
cortical excitability and circuitry are associated with the degree 
of motor impairment and post-stroke recovery.

Modulation of Cortical Excitability  
with Repetitive TMS
Repetitive TMS can be applied in specific patterns to uniquely 
modulate cortical excitability; the effects of rTMS may last for 
periods of time exceeding that of stimulus application, from 
minutes to an hour beyond stimulation (190–192). Therefore, 
rTMS can be used to index neuroplasticity or enhance cortical 
excitability before a behavioral intervention, such as skilled 
motor practice (193, 194).
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Repetitive TMS, when applied in specific patterns, can excite 
or inhibit a local cortical region for a short duration. rTMS can 
be applied at low frequencies of under 1 Hz that suppresses excit-
ability in the targeted area, or at high frequencies over 1 Hz, which 
transiently excites the targeted area for ~15 min (195). Similarly, 
theta burst stimulation (TBS) uses a 5-Hz stimulation pattern, 
with triplets of 20 Hz stimulation, to inhibit or facilitate cortical 
excitability if the TBS is applied continuously (inhibitory cTBS), 
or intermittently (facilitatory iTBS), respectively (190). The effects 
of cTBS and iTBS can last up to 60 min post-stimulation (190, 
191). Importantly, the specific effects of cTBS and iTBS show sub-
stantial inter-individual variability, which likely depends upon 
which interneuron populations are activated by the TMS pulse 
(196). rTMS protocols, like TBS, have been shown to modulate 
cortical excitability, and at times behavior, when applied over 
motor-related areas, such as M1 (190), contralateral M1 (197, 
198), the SMA (199), the dorsal premotor cortex (PMd) (200), 
the primary somatosensory cortex (S1) (194), area 5 (201), as well 
as non-motor areas, such as the cerebellum (202) and the DLPFC 
(203). Not only does rTMS modulate cortical activity directly 
below the magnetic coil, but activity in remote cortical and 
subcortical regions can be modified by application of rTMS over 
a single cortical target (204). Specifically, changes in MRI activity 
can be detected in M1/S1, SMA, PMd, cingulate motor area, the 
putamen, and thalamus after rTMS over left hemisphere M1 or 
S1 (204). These methods for modulating cortical excitability are 
thought to mimic early stages of long-term potentiation (LTP) or 
long-term depression (LTD)-like mechanisms, and are proposed 
to be dependent upon NMDA receptors (205). Due to the ability 
to modulate cortical excitability in motor and non-motor-related 
cortical areas beyond the time of stimulation itself (206), rTMS 
has been utilized by researchers to developed protocols to test 
whether the application of stimulation alone, or in conjunction 
with other behavior and therapy can further rehabilitation from 
neurological impairment, such as stroke.

Repetitive Brain Stimulation as an Intervention After Stroke
Since rTMS is known to modulate cortical excitability in local 
and remote regions to the areas stimulated, it has been sug-
gested to be a viable therapeutic approach to aid in the recovery 
of motor function after stroke (207), yet there is accumulating 
evidence that the response to rTMS is inconsistent and variable 
(34, 193, 194). When targeting stimulation over M1, rTMS has 
been delivered in isolation (34, 208–210) and in combination 
with rehabilitation training (193, 194, 211, 212) in individuals 
with stroke. Since the effects of rTMS can outlast the period of 
stimulation itself (190, 206), the prevailing thought is that the 
aftereffects may be capitalized on by pairing it with skilled motor 
practice and/or rehabilitation training to promote neuroplastic 
change (193, 194, 213).

Theoretically, rTMS can be used to increase cortical excit-
ability in the ipsilesional cortex by directly applying excitatory 
rTMS over the ipsilesional hemisphere (Figure 3) or by applying 
inhibitory rTMS over the contralesional to potentially decrease 
abnormally increased inhibition to the lesioned M1 (Figure 4). 
This manipulation of cortical excitability is supported by obser-
vations of imbalanced IHI after stroke (214). Impaired motor 

performance following stroke is often attributed to a disruption 
in IHI where an overactive contralesional area suppresses the 
activity of the lesioned hemisphere.

Repetitive Brain Stimulation as an Intervention After Stroke: 
Ipsilesional Stimulation
Studies have shown promising preliminary findings using 
high-frequency excitatory (>1  Hz) rTMS applied over the 
ipsilesional hemisphere. One study showed that 3-Hz rTMS 
over the ipsilesional hemisphere for 10  days combined with 
passive limb manipulation, which gradually increased to active 
manipulation of the paretic limb, resulted in improvements 
in function and recovery of MEPs in certain individuals, with 
no relationships between improvements in function and MEP 
increases (215). Another study demonstrated increases in MEPs 
and improvements in a sequential finger motor task when 10-Hz 
rTMS was applied over the ipsilesional M1, and that cortical 
excitability was associated with improvements in motor learning 
(216). Similarly, improvements in motor skill learning have been 
shown when 5-Hz rTMS is applied over ipsilesional S1 (193) 
and this improvement is dependent on the white matter volume 
in the somatosensory cortex in the lesioned hemisphere (24). 
Although variable depending on stroke location, individuals with 
subcortical stroke only showed improved movement kinematics 
after 10-Hz rTMS over ipsilesional M1, whereas hand dexterity 
actually deteriorated in the majority of those with cortical stroke 
(217). This study also found that rTMS reduced activation of 
contralesional cortex for those with subcortical stroke, and 
caused bilateral activation of primary motor and sensory areas 
in those with cortical stroke (217). The authors concluded that 
it is likely that the extent and location of stroke may determine 
the beneficial response to ipsilesional excitatory rTMS. Studies 
have also reported little effects of applying excitatory rTMS 
over the ipsilesional cortex. Talelli and colleagues used iTBS 
over ipsilesional M1 followed by intensive physiotherapy of the 
paretic upper limb for 10 days that did not show any significant 
improvements (212). Another study combined 20-Hz rTMS over 
ipsilesional M1 with CIMT in chronic stroke for 2 weeks, finding 
that no additional improvements beyond that of CIMT alone 
were observed except slightly lower motor thresholds (218). 
However, it could be that the pairing of excitatory rTMS over the 
index finger muscle representation in M1 followed by reaching, 
grasping and other gross arm movements contributed the lack of 
positive effects in the above two studies. A recent study suggested 
that 10-Hz rTMS applied over ipsilesional M1 delivered 5 days 
per week for 2 weeks enhanced motor function of the paretic limb 
only in those with subcortical stroke and those who presented 
with MEPs immediately after the intervention and at a 2-week 
follow-up (219).

Repetitive Brain Stimulation as an Intervention After Stroke: 
Contralesional Stimulation
An alternative to directly enhance ipsilesional M1 excitability 
by applying excitatory rTMS over the lesioned hemisphere 
is to deliver inhibitory rTMS over contralesional M1. This 
approach potentially releases contralesional IHI and indi-
rectly enhances ipsilesional M1 excitability. Some studies 
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demonstrate that low-frequency inhibitory (<1 Hz) rTMS or 
cTBS applied over the contralesional hemisphere improves 
hand function (209, 210), reach-to-grasp movements (220), 
motor learning (194), and brief improvements in hand dexterity, 
which was associated with a reduction in TCI to the ipsilesional 
M1 (221).

Other studies have investigated functional brain activa-
tion changes following rTMS in stroke. One study showed a 
significant increase in the peri-infarct fMRI-related activity in 
the ipsilesional M1 after 6-Hz low-frequency rTMS over the 
contralesional M1 (208). Another study demonstrated improved 
motor performance of the paretic hand following 1-Hz rTMS 
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over the contralesional M1 that was associated with a decrease 
in over-activation of contralesional M1 activation during paretic 
hand movements (222). Additionally, connectivity between SMA 
and M1 within the ipsilesional hemisphere was enhanced after 
inhibitory rTMS over contralesional M1 (222). Recently, it was 
shown that 10 sessions of 1-Hz rTMS over contralesional M1 
showed a change in contralesional plasticity (35), and that mild 
improvements in motor ability was associated with more normal 
transcallosal white matter. These data suggest that the condition of 
callosal white matter may influence the impact of contralesional 
rTMS on recovery of motor function after stroke (35).

Variability in Response and Application of rTMS in Stroke
Overall, the reported effects of rTMS in individuals with stroke 
are moderate (223) but inconsistent (24, 34, 193, 194, 224). Varied 
effects are noted regardless of what type of rTMS is employed (34, 
193, 194) and irrespective of the targeted brain region (34, 193, 
194, 216, 225). Further, research to date has suggested that varied 
responses to rTMS are not explained by simple demographic fac-
tors, such as age, sex, or stroke severity (24, 34). There are several 
potential reasons for this variability, such as stroke location and 
extent (217, 226), post-stroke duration (219, 225), presence of 
MEPs (31, 219, 227), hemispheric dominance pre-stroke (228), 
callosal (33, 189, 229) and corticospinal structural integrity (24, 
34, 189), cortical target location for rTMS (193, 219, 224), brain-
derived neurotrophic factor genotype (230), different interneu-
ron populations activated by TMS (196), and combination with 
a well-controlled motor learning task or individualized physical 
therapy. Despite its broad use, a comprehensive understanding of 
the physiologic effects of rTMS on the brain is lacking. Further, 
there is no consensus on which brain region to stimulate, whether 
it is somatosensory (193) or motor execution (194, 216) or prepa-
ration (231) areas, and if stimulation should be applied over the 
ipsilesional or contralesional hemisphere (194).

Although rTMS demonstrates great potential to enhance 
post-stroke recovery future work is needed to address the issue 
of response variability. With a greater understanding of the fac-
tors driving response variability, we will be better able to target 
rehabilitation to the individual.

MULTiMODAL ASSeSSMeNTS

Multimodal Neuroimaging: Combined 
TMS, MRi, and eeG Assessment After 
Stroke
Few studies have utilized multiple methods of neuroimaging in 
order to predict motor function and impairment due to stroke 
(188, 189, 229, 232, 233). Studies have shown that those with 
decreased MEP amplitudes also have a weaker paretic hand, with 
greater activation in the ipsilesional M1 as recorded by task-
based fMRI (234). A study using TMS to assess corticospinal 
integrity via single-pulse assessment of MEPs and fMRI during 
isometric hand gripping determined that in patients with less 
corticospinal excitability, there was an associated increase in 
activation of contralesional premotor and cerebellar areas (232). 
The suggestion from these combined methods is that other 

non-primary motor cortical areas may be playing a functionally 
relevant role in controlling force production in more severely 
affected individuals with stroke. A combined paired-pulse dual 
coil TMS and fMRI study showed that both TMS and fMRI neu-
rophysiological function in the contralesional PMd was associ-
ated with the degree of impairment (233). Specifically, a lack of 
inhibition from contralesional PMd to ipsilesional M1 measured 
by paired-pulse TMS and greater activation of PMd during hand-
grip was correlated with the level of clinical impairment. The 
authors suggested that contralesional PMd may support recovery 
in ipsilesional M1 (233).

Stinear and colleagues have demonstrated through DTI and 
TMS that weak or absent MEPs evoked ipsilesionally and greater 
asymmetry in FA of the posterior limb of the internal capsule 
are predictive of poor motor recovery (227). Recent work from 
our lab has demonstrated the utility of combined TMS and MRI 
measures to predict motor function (188). Specifically, bilateral 
hand dexterity was found to correlate with resting motor threshold 
and precentral gyral thickness. Those with higher resting motor 
thresholds and decreased precentral gyral thickness presented 
with decreased bilateral hand dexterity. Furthermore, increased 
levels of TCI were associated with greater midcallosal white mat-
ter volume (188). In another study, we demonstrated that altered 
microstructure of transcallosal fiber tracts in anterior sub-regions 
were associated with TCI and upper extremity impairment in 
chronic stroke (189). Specifically, anterior transcallosal tract 
FA and TCI from the non-lesioned to lesioned M1 predicted a 
unique amount of variance in upper limb impairment. Those with 
less FA in anterior sub-regions of the corpus callosum and less 
TCI were those presenting with greater upper limb impairment 
(189). Another recent study combined fMRI, DTI, and TMS in 
the assessment of hemispheric balance between ipsilesional and 
contralesional cortices (229). Task-based fMRI lateralization to 
the ipsilesional hemisphere was associated with better TCI and 
stronger ipsilesional motor-related area output via DWI tractog-
raphy. These studies demonstrate the usefulness of combining 
multiple methods of neuroimaging along with measures of TMS 
in order to more comprehensively assess and predict motor 
function and impairment. Utilizing multimodal neuroimaging 
can be used in future investigations to aid in identifying optimal 
biomarkers of stroke recovery and to predict response to rehabili-
tation in order to maximize treatment outcomes.

A novel multimodel neuroimaging approach combines TMS 
with EEG. TMS and EEG may be used in combination in real-
time in order to directly characterize local and distributed corti-
cal activity, providing a rich source of temporally specific data to 
determine causal mechanisms of cortical responses to TMS in 
humans in vivo (235–238). Another advantage of this approach is 
the ability to stimulate any cortical regions and record the evoked 
activity using EEG, subverting the need to record peripheral 
responses via surface EMG, which can prove difficult in the ipsile-
sional hemisphere. Although this has not been utilized in stroke, 
the combined technique of TMS-EEG may provide new insights 
into cortico-cortical connectivity in sensorimotor recovery after 
stroke due to spontaneous recovery and with interventions 
(behavioral, stimulation, pharmacological, etc.) not able to be 
captured before.
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TABLe 1 | Cost/availability are ranked relative to the other imaging 
methods.

Method Benefits Limitations Cost/
availability

Volumetric 
analysis

Quantification of brain 
volumes from basic (T1) 
structural scans

Limited accuracy in 
individuals with lesions

$$/+++

DW-MRI Assesses microstructural 
characteristics of white 
matter

Tractography results 
are variable across 
methods and sensitive 
to movement

$$$/++

MRS Quantification of 
neurotransmitter levels in 
defined area

Requires technical 
expertise and expensive 
coil for acquisition

$$$/+

fMRI Identifies patterns of brain 
activation at high spatial 
resolution

Poor temporal resolution 
and is limited to 
participants who can 
complete task

$$$/++

Resting-
state fMRI

Not dependent on task 
completion

Sensitive to movement $$$/+

TMS Assessment and 
modulation of cortical 
excitability and plasticity

Requires specialized 
equipment and trained 
personnel

$$/+

EEG Provides information 
on functional integrity 
of cortex and has high 
temporal resolution

Poor spatial resolution 
and is limited to cortical 
activity

$/+++

Increasing price is associated with more $ signs, and greater availability is indicated by 
more + signs.
DW-MRI, diffusion-weighted MRI; MRS, magnetic resonance spectroscopy; fMRI, 
functional MRI; EEG, electroencephalography; TMS, transcranial magnetic stimulation.
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Multimodal Neuroimaging: TMS and MRi 
Assessment of rTMS-Based interventions 
After Stroke
Very few studies have utilized multimodal neuroimaging with 
TMS to identify the underlying neurobiology of sensorimo-
tor recovery from stroke (31, 188, 189, 227, 229, 233), and 
research is scarce in the investigation of an intervention using 
multimodal imaging with rTMS (24, 35). These studies have 
demonstrated the usefulness of combining imaging of corti-
cal and subcortical structures with neurophysiological data 
acquired from TMS in order to better predict aspects of upper 
limb motor recovery and the potential response to rTMS (24, 34, 
35). Carey et al. demonstrated that those with greater structural 
integrity of the posterior limb internal capsule of the ipsilesional 
hemisphere demonstrate greater response to contralesional 
rTMS and the behavioral improvements associated with rTMS 
(34). Transcallosal FA was shown to correlate with the degree of 
behavioral improvements due to contralesional rTMS, indicat-
ing the DTI-derived measures may aid in individually tailored 
interventions when considering using contralesional rTMS to 
potentially induce transcallosal neuroplasticity (35). Recently, 
we have shown that increased ipsilesional S1 white matter 
volume was associated with the degree of skill learning improve-
ment when 5-Hz rTMS was applied over S1 before motor skill 
practice (24). These studies suggest that data acquired from 
structural and functional imaging may be used to categorize 
those who respond to rTMS in order to personalize application 
in a rehabilitation setting.

THe FUTURe OF MULTiMODAL 
NeUROiMAGiNG FOR PeRSONALiZeD 
THeRAPY

Recently, there have been several models proposed to cat-
egorize individuals for personalized treatment based on 
multi-neuroimaging methods (227, 239). The “predicting 
recovery potential (PREP) algorithm” has been introduced and 
suggested that patients who present with an ipsilesional MEP 
have the best prognosis for recovery, and intensive unilateral 
therapy of the paretic limb is recommended. However, those 
who do not present with an ipsilesional MEP are divided into 
two categories: (1) low asymmetry in FA of the corticospinal 
tract (greater integrity of the ipsilesional corticospinal tract), 
with a prognosis of limited functional improvement and (2) 
high asymmetry in FA of the corticospinal tract (less integrity of 
the ipsilesional corticospinal tract) with the poorest prognosis 
for functional improvement. Those with low corticospinal tract 
asymmetry are recommended to receive “primed” ipsilesional 
brain stimulation and augmented training of the paretic upper 
limb. However, if there is an absence of an MEP after stimulating 
the ipsilesional M1 with a relatively high hemispheric asymme-
try of FA, the recommendation of therapeutic intervention is 
modified to include stimulation of the contralesional M1 along 
with augmented bilateral therapy to engage the contralesional 
and ipsilesional cortices (31, 227). Di Pino and colleagues (239) 
similarly have suggested a bimodal balance-recovery model that 

proposes a personalized application of rTMS (or other types 
of non-invasive brain stimulation) depending on structural 
reserve of the central nervous system, along with clinical and 
neurophysiological data from multiple imaging sources. This 
bimodal balance-recovery model attempts to account for the 
possibility of interhemispheric competition and the fact that 
the contralesional hemisphere may serve to support recovery of 
function after stroke (239).

These studies suggest that a combination of neuroimaging 
methods will likely benefit in the assessment of stroke-related 
damage and personalized treatment strategies, particularly when 
using rTMS (or other types of non-invasive brain stimulation) for 
individuals following stroke. However, there will always be a risk of 
mislabeling participants, resulting in a substandard care. For this 
reason, we must continue to utilize new technologies to broaden 
our understanding of stroke recovery, improving both diagnostic 
abilities and interventions. For instance, in an individual who 
does not present with an ipsilesional MEP perhaps simultaneous 
TMS-EEG could be used to test if cortical activity is evoked by 
ipsilesional TMS, making it possible to narrow down the site of 
impairment. This could be very useful information, giving a more 
accurate prognosis and identifying the ideal pathway to target for 
recovery. As advancements in neuroimaging continue to impact 
research in stroke recovery, personalized therapy will become 
more reliable and utilized, and new interventions will become 
possible.

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org


October 2015 | Volume 6 | Article 22633

Auriat et al. Multimodal neuroimaging of stroke

Frontiers in Neurology | www.frontiersin.org

CONCLUSiON

The information provided above strongly suggests the potential 
for multimodal imaging in future neuroplasticity and rehabili-
tation studies after stroke. Structural and functional imaging 
and physiological assessments have all provided important 
insights into both the pathology of stroke and mechanisms 
underlying neurological recovery. Table  1 lists the major 
benefits/limitations of each imaging method covered in this 
review. Additionally, we have also highlighted the potential 
of non-invasive brain stimulation as an important therapeutic 
approach. Although many studies have found rTMS improves 
recovery an increasing number are failing to find benefit. 
Numerous technical factors affect rTMS interventions, includ-
ing the site targeted, type of stimulation, and number of stimu-
lation sessions. However, the variability in response to rTMS 
also highlights the importance of understanding individual 

differences in response, which likely depend on a variety of 
biological factors, such as, age, time after stroke, lesion size, 
and location, which in turn impact patterns of functional 
and structural connectivity. Advances in neuroimaging are 
improving the ability to predict the patterns of structural and 
functional connectivity best suited to specific interventions. In 
the near future, novel-individualized interventions will be able 
to optimize recovery after stroke.
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There currently remains considerable variability in stroke survivor recovery. To address 
this, developing individualized treatment has become an important goal in stroke treat-
ment. As a first step, it is necessary to determine brain dynamics associated with stroke 
and recovery. While recent methods have made strides in this direction, we still lack 
physiological biomarkers. The Virtual Brain (TVB) is a novel application for modeling brain 
dynamics that simulates an individual’s brain activity by integrating their own neuroim-
aging data with local biophysical models. Here, we give a detailed description of the 
TVB modeling process and explore model parameters associated with stroke. In order 
to establish a parallel between this new type of modeling and those currently in use, in 
this work we establish an association between a specific TVB parameter (long-range 
coupling) that increases after stroke with metrics derived from graph analysis. We used 
TVB to simulate the individual BOLD signals for 20 patients with stroke and 10 healthy 
controls. We performed graph analysis on their structural connectivity matrices calculating 
degree centrality, betweenness centrality, and global efficiency. Linear regression analysis 
demonstrated that long-range coupling is negatively correlated with global efficiency 
(P = 0.038), but is not correlated with degree centrality or betweenness centrality. Our 
results suggest that the larger influence of local dynamics seen through the long-range 
coupling parameter is closely associated with a decreased efficiency of the system. We 
thus propose that the increase in the long-range parameter in TVB (indicating a bias 
toward local over global dynamics) is deleterious because it reduces communication as 
suggested by the decrease in efficiency. The new model platform TVB hence provides a 
novel perspective to understanding biophysical parameters responsible for global brain 
dynamics after stroke, allowing the design of focused therapeutic interventions.

Keywords: stroke, brain dynamics, graph theory, computational biophysical modeling, connectome, brain 
networks, imaging, Mri
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inTrODUcTiOn

Heterogeneity of functional outcomes following stroke remains 
a major limitation to stroke rehabilitation. While the majority of 
stroke survivors suffer from motor impairment, particularly in 
the upper extremities (1), the degree and type of this impairment 
and the level of recovery following rehabilitation are highly vari-
able (2). The functional basis for variation in patient deficits is 
still poorly understood, and there is no consensus on a theoretical 
or empirical framework for linking brain injury to functional 
deficits (3). In order to address this issue, recent approaches in 
stroke rehabilitation have aimed at the development and the opti-
mization of individualized treatments that maximize long-term 
functional gains (4, 5).

To this end, different theoretical approaches have been used. 
The most general method has probed stratification measures 
based on patient demographics, behavioral outcomes, affective 
states, brain function, and lesion characteristics (4–6). None have 
been shown as a reliable biomarker. Particularly noticeably has 
been the presence of an inconsistent relationship between brain 
lesion and the resulting functional deficits (6), likely due to the 
inherent complexity of damage in a highly interconnected brain.

Researchers have thus turned to network analysis to under-
stand stroke (7–9). In this approach, one of the goals is to 
explain the observed variations after stroke and predict recovery. 
Interestingly, the initial efforts with network analysis focused on 
alterations to specific pathways as the key links to understand 
behavior (8, 10). For example, while some functional connectiv-
ity studies showed that lesions within the motor areas can cause 
dysfunction of remote brain regions (11–13), others showed a 
relationship between improved motor function and strengthening 
interhemispheric and intrahemispheric connectivity involving 
the primary motor cortex (14). An important issue in interpret-
ing such relationships is that the changes may reflect either the 
abnormal functioning of a damaged network or the formation of 
a different network that results in new behavioral patterns.

Furthermore, while these initial studies have been an impor-
tant development, their main limitation is that they assume 
stable, localized changes within specific sub-networks, obliterat-
ing global changes, with the consequence that these potential 
biomarkers have been very adequate as descriptors at the group 
level but not in individual patients (15).

Recently, the neuroimaging community has begun to focus on 
connectomics, or the mapping of all connections at the whole-
brain level. These connectomes, derived from structural [dif-
fusion tensor imaging (DTI)] or functional outputs (fMRI and 
EEG), have recently been termed “big data,” referring to datasets 
that require the generation of large amounts of multimodal imag-
ing data, (including raw, preprocessed, and intermediate data), 
for a high number of subjects (16). These initiatives span normal 
function [Human Connectome Project (17), CONNECT (18), 
Brainnetome (19), development [National Institutes of Health 
(NIH) Pediatric Database] and brain disorders such as Alzheimer’s 
disease (Alzheimer’s Disease Neuroimaging Initiative)].

In order to help interpret such large datasets, graph theory 
is increasingly used to distinguish inherent patterns that likely 
correlate with brain networks at the whole-brain level. Using 

connectomics and graph theory, specific brain regions can be 
understood as nodes (20), and lesions can be understood as 
damage to nodes and/or the connections among them. With 
these methods, stroke has been shown to produce changes in 
both structural and functional network connectivity, particu-
larly related to the organization of “hubs,” or highly intercon-
nected nodes (21, 22). Graph theory provides an assessment of 
the changes at an organizational level. However, this approach 
still suffers from some limitations, mainly the inability to deter-
mine dynamical changes in a constantly changing brain and 
the lack of concrete biophysical substrates for understanding 
those dynamics. Consequently, according to Smith et al., one 
of the major challenges in the field of functional connectom-
ics “will be to enable application of biologically interpretable 
models using large numbers of nodes in a robust and practical 
way” (9).

In other words, although tackling questions about brain net-
work dynamics in both healthy and stroke populations requires 
a great deal of data, simply collecting more data is not itself an 
answer. While these efforts provide the necessary empirical foun-
dation, they lack a computational and theoretical framework with 
quantitative tools to link these multiple datasets to “reconstruct” 
the brain and provide the link between these data and the brain 
function of individuals.

In this context, novel theoretical perspectives have been pro-
posed based upon the nature of the brain as a large-scale network 
(3, 23–25). The implementation of the framework has been sig-
nificantly accelerated by The Virtual Brain (TVB), a novel large-
scale neural modeling platform (26–28). TVB uses neuroimaging 
data to parameterize a model and because individual data is used, 
the individual person’s brain can become a “virtual brain.”

The Virtual Brain (thevirtualbrain.org) was developed as a plat-
form for modeling the dynamics of large-scale neural systems (3, 
29). TVB integrates structural long-range connectivity generated 
from empirical DTI data with mesoscopic, or local level models 
[at each node or region of interest (ROI)]. By combining these 
two scales (global connectivity with local dynamics), TVB is able 
to predict and simulate an individual’s brain activity, essentially 
modeling a virtual representation of their brain. TVB thus lies at 
the intersection of experimental and theoretical neurosciences, 
making it well positioned to provide a link between population 
and individual datasets.

The models available in TVB integrate the anatomical con-
nectivity between parts of the brain (provided by DTI) and the 
dynamics of local neural populations (embedded in the plat-
form). Using these models, TVB has the flexibility to generate 
simulated data ranging from local field potentials to EEG and 
fMRI BOLD signals, allowing for a multimodal link between 
simulated and empirical data. The scalable architecture of TVB 
allows us to include neurophysiological information (e.g., 
receptor distributions and ion channels) adding another level of 
detail and bringing the model’s behavior closer to the real brain. 
Spatiotemporal motifs as present in empirical EEG/fMRI data 
can be reproduced to a large degree (29, 30). Because biophysical 
parameters are invisible to brain-imaging devices, TVB acts as a 
“computational microscope” that allows the inference of internal 
states and processes of the large-scale model.
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The Virtual Brain therefore serves as a powerful research 
tool that has the potential to utilize big data and to develop and 
test advanced theories of brain dynamics. The individualiza-
tion of TVB allows the creation of one model per person and 
systematically assesses the modeled biophysical parameters 
related to individual differences. The natural extension of 
this approach goes further into clinical applications, deriving 
parameters that both relate to biophysics and predict clinical 
outcome, making TVB an ideal tool for addressing limitations 
in stroke research.

The objective of this manuscript is twofold:

 (1) To give a thorough overview of the modeling method 
employed using TVB as it pertains to stroke, with the goal 
of providing details for those interested in using it in the 
context of stroke.

 (2) To provide a link between one of the TVB parameters 
(long-range coupling) to current whole-brain analytical 
approaches based on graph analysis.

MaTerials anD MeThODs

subjects
Twenty individuals with ischemic stroke in the middle cerebral 
artery territory (41.13  ±  23.78  months postonset) and 10 age-
matched controls were recruited for the study. Demographics for 
all stroke subjects are shown in Table 1.

imaging acquisitions
Magnetic resonance images were collected using a 3-T Philips 
scanner and an eight-channel SENSE head coil for signal recep-
tion and body coil transmitter for signal excitation. The following 
sequences were used:

TaBle 1 | Demographics and stroke characteristics of the stroke cohort.

subject age sex handedness    affected  
hemisphere

affected  
   hand

 stroke location stroke volume  
       (mm3)

1 41 F Right Right ND Cort 22,495.0
2 54 F Right Left D Cort/subcort 49,078.0
3 57 M Right Left D Cort/subcort 17,411.0
4 57 M Right Left D Cort/subcort 38,703.0
5 54 F Right Left D Subcort 27,677.0
6 50 M Right Right ND Subcort 3,570.0
7 23 M Right Left D Subcort 560.0
8 55 F Right Right ND Cort 6,781.0
9 68 M Right Left D Subcort 1,988.3
10 56 F Right Left D Subcort 6,239.7
11 46 M Right Left D Subcort 325.0
12 56 F Left Right D Cort/subcort 60,669.0
13 37 M Right Left D Cort/subcort 83,406.2
14 62 M Right Left D Subcort 22,154.8
15 57 M Right Right ND Cort/subcort 25,392.0
16 66 M Right Left ND Cort/subcort 19,927.0
17 61 M Right Left D Subcort 978.0
18 74 M Right Left D Cort/subcort 63,642.0
19 67 F Right Right ND Subcort 588.0
20 74 F Right Left D Cort/subcort 44,892.0

D, dominant hemisphere; ND, non-dominant; Cort, cortical; subcort, subcortical.

1.  High-resolution anatomical images (T1-w): three-
dimensional (3D) Magnetization Prepared Rapid 
Gradient Echo sequence, FOV  =  250  ×  250, resolu-
tion = 1 mm × 1 mm × 1 mm, SENSE reduction factor = 1.5, 
TR/TE = 7.4/3.4 ms, flip angle = 8, sagittal orientation, and 
number of slices = 301 covering the whole brain.

2.  Diffusion Tensor Imaging (DTI): FOV  =  224  ×  224, TR/
TE =  13,030/55, 72 slices, slice thickness =  2 mm, resolu-
tion = 0.875 × 0.875 × 2, b = 1,000 s/mm2 (and b = 0), 32 
diffusion directions.

3.  Functional imaging acquisition at rest (rsfMRI): whole 
brain (37 slices), single-shot echo-planar MR (EPI), 
slice thickness  =  4.0  mm, FOV  =  230  ×  230, voxel 
size  =  2.8  mm  ×  2.8  mm, TR/TE  =  2,000/20  ms, and 
duration = 5 min.

resting state fMri Preprocessing
Resting state fMRI (rsfMRI) preprocessing analysis was per-
formed using AFNI functions (31) and included the following 
steps:

1.  Motion correction using a six-parameter 3D registration of 
functional and anatomical data sets (32).

2.  Three-dimensional spatial registration to a reference acqui-
sition from the first fMRI run.

3.  Registration of functional images to the anatomical volume.
4.  Despiking of the time series.
5.  Mean normalization of the time series.
6.  Inspection and censoring of time points occurring during 

excessive motion (>1 mm) (33).
7.  Regression of cerebrospinal fluid and white matter signals to 

remove slow drifts in the fMRI signal.
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Preprocessing: structural connectivity
Brain Parcelation
Parcellating image data that contain lesions with the use of 
semiautomated schemes produce inaccurate results due to the 
absence of tissue and consequent mechanical deformation. We 
therefore developed The Virtual Brain transplant (VBT). This 
method effectively replaces the lesion produced by the cortical 
stroke with T1-w images of brain tissue from the contralesional 
hemisphere from the same subject (34). This method allows us 
to use a semiautomated parcelation scheme subsequent to the 
transplant. The VBT process consisted of the following steps 
(Figure 1):

1.  Lesion segmentation by hand.
2.  The high-resolution anatomical T1-w brain images and 

lesion masks were uploaded to a transplantation pipeline, 
which dissected the MRI brain tissue from the non-lesioned 
hemisphere homologous to the lesion, and transplanted it 
into the lesioned hemisphere at the site of the lesion, filling 
in the missing portions of the brain.

3.  After the initial transplant was done, manual corrections 
in the interface between the native and transplanted T1-w 
images were performed.

4.  The brain was segmented into 83 cortical and subcortical 
regions using the Lausanne 2008 (Freesurfer) parcelation 
scheme within the Connectome Mapper Toolkit (35, 36).

T1-w to DTI Alignment
The T1-w anatomical image was then aligned to a reference 
b = 0 s/mm2 DTI image, using a six degrees of freedom linear 
transformation with FSL’s FLIRT function (37). This transforma-
tion was also applied to the Freesurfer parcellations.

DTI Tractography
We performed the following steps:

1.  DWI was aligned to the same reference b = 0 s/mm2 image 
used to align the corrected T1-w via VBT to DTI. Distortions 
caused by eddy currents and head motion were corrected 
using the FSL eddy current correction (12 degrees of 
freedom linear transformation), and the diffusion gradient 
vectors rotated accordingly (38). That is, the T1-w images 
with the “transplanted masks” are used to supply the region 
of interest landmarks for tractography but do not directly 
impact the tractography algorithm as the transplant is not 
performed in the DWI space.

2.  The diffusion-weighted images were resampled to 2mm 
isotropic resolution (39).

3.  White matter deterministic tractography of DTI data was 
performed in Trackvis software (39) using the FACT algo-
rithm (40). Threshold values of a maximum of 60° turning 
angle and a minimum of 0.20 fractional anisotropy (FA) were 
used as stopping criteria for the tracking algorithm. These 
thresholds take into account the decrease in signal in regions 
with the lesion. The FA threshold is particularly useful in 

terminating tracks before they enter regions containing the 
lesion. These regions, filled with CSF, have FA values close to 
zero. Therefore white matter pathways ordinarily connect-
ing two ROIs will not be tracked if the ROI is completely 
lesioned, despite appearing intact in the transplanted T1-w 
image from which the parcelation is made. If a parcelation 
is partially compromised by the lesion then white matter 
pathways will also be partially tracked as reflected by a lesser 
number of streamlines.

Generation of Structural Connectivity Matrices
Using the Connectome Mapper Toolkit, two connectivity metrics 
were extracted for each pathway in order to generate two struc-
tural connectivity matrices that quantify connectivity between all 
pairs of the cortical regions for each subject:

1.  Weights, defined as FA  ×  number of streamlines in the 
pathway (note that per the white matter deterministic 
tractography of DTI data, pathways connecting regions 
impacted by the lesion will show a decreased number of 
streamlines and potentially altered FA). This metric reflects 
the maximum rate of transmission of information through 
edges (41). The number of streamlines in the pathway was 
assessed using the deterministic FACT algorithm.

2.  Lengths of the individual tracts, defined in millimeters, were 
derived after smoothing the tractography with a B-Spline 
filter (39).

These matrices are symmetrical, as connections using DTI are 
considered unidirectional (30).

Modeling with TVB
Modeling with TVB involves three initial steps, namely the 
import of individual structural connectivity matrices (obtained 
as described earlier), the selection of a biophysical local model, 
and the choice of relevant biophysical parameter values. TVB 
has several types of local models available, each one taking into 
account different biophysical parameters. Hence, whereas some 
are focused on field potentials [Stefanescu–Jirsa two dimensional 
(2D) and Stefanescu–Jirsa 3D (SJ3D)], others are focused on 
firing rates (Wilson–Cowan, Brunel–Wang, and Jansen–Rit) or 
are phenomenological (Generic 2D, Kuramoto, and Epileptor). In 
our previous efforts, since we simulated the BOLD response, the 
mesoscopic model used was the SJ3D, one of the more complex 
and refined models in the repertoire of TVB.

The reasoning behind this choice was not only the obvious 
relationship between the BOLD response and local field poten-
tials (42–44) but the additional fact that the BOLD signal has 
poor time resolution and the model does not rely heavily on 
synaptic delays. Concretely, the SJ3D model is a reduced form 
of the Hindmarsh–Rose model (43), which forecasts individual 
neuronal behavior. The SJ3D model predicts local dynamics 
using six differential equations that include variables represent-
ing physiological properties such as neuron membrane potentials, 
transport of ions across the membrane through fast and slow ion 
channels, and the dynamic coupling of excitatory and inhibitory 
neuronal populations.
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FigUre 1 | Virtual brain transplant method. Virtual brain transplant is done in stroke cases with cortical damage with the goal of being able to parcellate the 
brain. This graphic representation summarizes the process of replacing the damaged portion of the brain with the homologous non-stroke tissue. (a) T1-w image 
showing the lesion (left hemisphere) of one subject. (B) Close-up of the left hemisphere, demarcating the lesion mask in red. (c) Segregation of the right and left 
hemispheres (left) and after the right hemisphere has been flipped having the lesion mask applied (right). (D) Depiction of the tissue from the right hemisphere 
applied to the lesion in the left hemisphere (left) and the resulting transplanted brain volume (right).

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org


FigUre 2 | Flowchart of TVB modeling. Graphic representation depicting the elements involved in TVB modeling. Components shown in green boxes represent 
empirically collected data. Elements shown in blue boxes represent modeling components within the TVB platform. Empirical input to the TVB consists of two 
structural connectivity matrices (weights and lengths) derived from DTI and a brain parcelation derived from T1-w acquisition. Modeling within TVB includes both global 
and local parameters resulting in the simulation of biological signals including BOLD. Finally, the reliability of the simulation is then compared to the empirical signals.
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The sequential steps for modeling in TVB are as follows 
(graphical depiction can be found in Figure 2):

1.  Importing the two metrics derived from individualized SC 
matrices [weights (FA  ×  number of fibers) and lengths] 
representing connections between regions, along with the 
T1-w structural data providing individual brain topology.

2.  Parameter space exploration: the goal of this process is 
the optimization of the model parameters. When applying 
TVB methodology to stroke, one can classify the numerous 
parameters included in the modeling into two categories: 
global parameters that will model brain dynamics between 
nodes, and local parameters that will describe brain 
dynamics within nodes. In the first category, the two main 
parameters to optimize are conduction velocity and long-
range coupling. Likewise the biophysical parameters within 
the SJ3D model to be used are those providing the coupling 
between excitatory and inhibitory populations within the 
local regions: K11 (excitatory on excitatory), K12 (excitatory 
on inhibitory), and K21 (inhibitory on excitatory). This 
exploration systematically explores the entire range of avail-
able values for each parameter and identifies the value with 
the highest overall distribution of variance (Figure 3) as the 
optimal parameter value to be used on each individual for 
the actual signal simulation. The order of optimization can 
be done as follows:

 a. Long-range coupling and conduction velocity: starting 
ranges are 0.001–0.1 global coupling and 1–100 conduction 
velocity.

 b. K12 and K21: starting ranges are 0–1.0 for both. K12 is 
optimized first, and the identified value is then used when 
optimizing K21.

 c. K11: starting range is 0–1.0.
3.  Simulating the BOLD response: based on the values obtained 

in the parameter exploration, simulation of the BOLD time 
series should reflect the same duration (4 min) and sampling 
rate (TR = 2 s) of the empirical MRI acquisition. Noise is 
added to each node. The noise to be used is white with 
Gaussian amplitude (mean  =  0, standard deviation  =  1). 
Numerical integration of the system is performed using 
stochastic Heun’s method (45), with an integration step size 
of 0.0122 ms.

4.  Validating the simulated brain signals: this is done by com-
paring the simulated and empirical time series in terms of 
their amplitude, frequency, and phase.

 a. Amplitude: the range is calculated by identifying the highest 
and lowest peaks present in the time series across all regions. 
The overall mean is calculated by averaging the mean ampli-
tude per region across all regions. Mean amplitudes should 
be similar. An example is shown in Figure 4A.

 b. Frequency is computed via fast Fourier transforms of the 
time series with Matlab’s “fft” function with an fs of 0.5 Hz 
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FigUre 3 | example global parameter space explorations in healthy and stroke cases. This figure represents the two viewing options for multiple parameter 
or single parameter explorations. (a) Parameter explorations of the K12 and K21 variables (coupling between inhibitory and excitatory populations) in one healthy 
control (top) and one stroke case (bottom). Heat maps depict the distribution of system variance, with hotter colors indicating values of parameters that yield higher 
variance. High resolution of heat maps allows for identification of precise parameter values related to high variance. (B) Parameter exploration of the K21 variable 
alone, after optimization has been completed. Colored circles depict degree of variance at each value of K21.

FigUre 4 | comparisons of simulated and empirical signals: amplitude and frequency. (a) BOLD time series: example of a simulated (top) and empirical 
(bottom) time series. Note the similarity of amplitudes as indicated by the maxima and minima. (B) Frequency: example frequency distribution graphs for primary 
motor cortex (M1) of the simulated (top) and empirical (bottom) time series where both signals have similar profiles and peaks.
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to determine the range, profile, and peak frequencies. The 
maximum frequency for simulated signals should be around 
0.25 Hz that coincides with the empirical BOLD responses. 
An example is shown in Figure 4B.

 c. Phase can be done by calculating the pair-wise covariance 
of the time series for each region for each subject (30) using 
the “corr” function in Matlab, which results in a functional 
connectivity matrix for each subject. In order to smooth the 
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FigUre 5 | comparison of simulated and empirical signals: phase. (a) Functional connectivity matrix from simulated data modeled from one subject.  
(B) Average functional connectivity matrix from empirical data from all healthy subjects. (c) Correlation of functional connectivity between simulated (x-axis) and 
empirical (y-axis) time series.

November 2015 | Volume 6 | Article 22847

Falcon et al. The Virtual Brain

Frontiers in Neurology | www.frontiersin.org

data, one can average all matrices from groups of interest to 
obtain a group control matrix and then calculate the pair-
wise linear correlation coefficient between the simulated 
functional connectivity matrix for each individual to the 
group (Figure 5). Results from this analysis should reveal 
similar phases between empirical and simulated signals. 
Significance of the correlation can be achieved via Fisher 
Z-transformation.

comparison Between healthy controls 
and stroke
We found an increase in long-range coupling in the stroke 
group compared to healthy controls. The meaning of long-
range coupling is not intuitive, especially when compared to 
other parameters more closely linked to biophysical features, 
such as conduction velocity, channel dynamics, and the cou-
pling between excitatory and inhibitory neuronal populations. 
The long-range coupling function is applied to the activity 
propagated between brain region regions by the structural 
pathways before it enters the local dynamic equations of the 
model. Its primary purpose is to rescale the incoming activity 
to a level appropriate to model. At a more intuitive level this 
parameter describes the balance between the global and the 
local dynamics. In other words, an increase in long-range 
coupling suggests a preponderance of local over long-range 
brain dynamics.

In order to put this parameter in the context of current 
network analytical approaches, in this study we determined 
the relationship between the modeled long-range coupling in 
stroke cases with structural network metrics derived from graph 
analysis including degree centrality, betweenness centrality, and 
global efficiency.

graph analysis
Graph Analysis Metrics
Based on the deterministic tractography performed for each 
individual subject, a binary adjacency matrix Aij was generated 

whose elements represent the connections (edges) between nodes 
i and j (46–48). From these matrices, three measures of functional 
integration were obtained: average degree centrality, average 
betweenness centrality, and global efficiency as others have done 
(49–51), using the NetworkX software (52) [mathematical nota-
tion adapted from (20)]:

1.  Average degree centrality is the number of nodes adjacent to 
node i, averaged across all nodes in the graph (53):
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  where n is the number of nodes in the graph, and N is the 
set of those nodes; ki is the degree centrality for node i, and 
aij equals 1 when nodes i and j are the nearest neighbors and 
zero otherwise. This is the simplest measure of centrality and 
is commonly used to discriminate between well-connected 
nodes (hubs) and less well-connected nodes (51).

2.  Average betweenness centrality refers to the fraction of 
shortest paths between any pair of nodes in the network that 
travel through a given node averaged across all nodes (54):
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  where bi is the betweenness centrality for node i; phj is the 
number of shortest paths between nodes h and j, and phj(i) 
is the number of shortest paths between h and j that pass 
through node i. This is the oldest and most commonly used 
measure of centrality (51) where “shortest” refers to the 
path between two nodes that contains the least number of 
intermediate nodes.

 3. Global efficiency is the average of the inverse of the shortest 
path length between all nodes (minimum number of edges 
traversed to connect one node to another) (21, 53):
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FigUre 6 | Distributions of graph analysis metrics in control and stroke cases. Distribution graphs comparing the control (black) and stroke (green) cases 
for (a) Degree centrality, (B) Betweenness centrality, and (c) Global efficiency. Note that distributions in stroke shift to the left for global efficiency but not for degree 
centrality nor for betweenness centrality.
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where dij
-1 is the inverse of the shortest path length between nodes 

i and j. For binary matrices, a network where each node has a 
direct connection to all other nodes in the graph has maximal 
global efficiency, equal to 1, while a partially disconnected net-
work has lower global efficiency (49).

Comparison of Graph Analysis Metrics Between 
Groups
To test for differences in degree centrality, betweenness central-
ity, and global efficiency between healthy and stroke cases, we 
used the Wilcoxon-rank sum test. Significance threshold was 
set to P = 0.017 (Bonferroni correction). A simple linear regres-
sion analysis was used to correlate TVB long-range coupling 
(independent variable) with graph analysis metrics (dependent 
variables).

resUlTs

comparison of graph analysis Metrics 
Between stroke cases and healthy 
controls
Results from the Wilcoxon-rank sum test showed no significant 
differences between healthy controls and stroke cases in degree 
centrality (P = 0.11), betweenness centrality (P = 0.86), or global 
efficiency (P = 0.0822). However, the distributions of each graph 
analysis metric between the two groups showed differences 
(Figure 6). Specifically, global efficiency showed a trend toward 
lower values in stroke cases compared to controls (P = 0.04) but not 
degree centrality (P = 0.22) nor betweeness centrality (P = 0.95). 
While there was not a statistical difference in distribution of 

degree centrality between healthy and stroke populations, a large 
amount of subjects showed lower values of degree centrality.

correlation Between long-range 
coupling and graph analysis Metrics
Linear regression analysis showed that the only graph analysis 
metric associated with the TVB long-range coupling parameter 
was global efficiency (Figure 7). That is, higher values of global 
coupling were correlated with lower values of global efficiency 
(t  =  −2.19, P  =  0.038). There was no significant correlation 
between global coupling and degree centrality (P  =  0.7) or 
betweenness centrality (P = 0.6).

DiscUssiOn

We have demonstrated that TVB can be a novel tool for iden-
tifying biophysical biomarkers of stroke recovery, showing that 
(1) the parameters associated with TVB modeling directly link 
structural imaging data to biophysical processes associated with 
brain dynamics; (2) the models are individualized, as they are 
based on the specific structural connectome from each person; 
and (3) TVB parameters can be correlated with other metrics 
not currently associated with biological parameters (i.e., graph 
analysis metrics). Importantly, this study harnessed the relation-
ship between TVB and graph analysis, wherein the latter supplies 
an additional description of changes in relationships between 
different brain regions, while TVB supplies the neurobiological 
mechanisms responsible for them. The outlined steps using TVB 
offer a unique method, providing a new dimension to the study 
of stroke.
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FigUre 7 | correlation between global coupling and graph analysis metrics. Correlation graphs between global coupling (x-axes) and graph analysis metrics 
(y-axes): (a) Global efficiency, (B) Degree centrality, and (c) Betweenness centrality. Only global efficiency correlated significantly with long-range coupling 
(P = 0.038) but not degree centrality (P = 0.7) or betweenness centrality (P = 0.6).
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TVB integrates Macroscopic and 
Mesoscopic levels to Predict Brain 
Dynamics
There is currently no way to directly measure the local parameters 
modeled in TVB in humans, whereas global measures derived 
from imaging data have been used as potential biomarkers of 
stroke recovery (6, 55), the parameters considered within TVB 
at the local level represent a dimension reduction derived from 
processes at the cellular or even molecular levels. That is, the 
mesocopic level represents the transitional state between the 
macro- and microscales (56). Thus, these parameters better inform 
us of underlying brain mechanism responsible for brain dynamics 
that current imaging analyses are unable to access, such as dynam-
ics between excitatory and inhibitory neuronal populations and 
ion channel properties. In this way, TVB can assist to generate 
hypotheses associated with basic mechanisms that are responsible 
for the changes in brain dynamics associated with stroke.

In this context, it is important to mention that TVB can 
have wide applicability in the clinical setting because the input 
required for its operation can be minimal. In ideal circumstances, 
the experimental data needed are T1-w, fMRI (EEG or MEG), 
and DTI. However, some of these categories may not be necessary 
when only physiological data are available (e.g., EEG) without 
anatomical or connectivity data. In these cases, TVB platform 
includes normalized anatomical data (a parcellated cortical 
surface based on the MNI atlas) and a theoretical structural con-
nectome based on the CocoMac database (3, 57). For stroke cases, 
while it is preferable to have anatomical data, it is still possible to 
run accurate simulations by manually modifying this provided 
structural connectome to exemplify the individual lesions.

The resulting TVB Models are 
individualized
There is large consensus on the importance of individualized 
medicine as one of the means to improve medical care. In this 

sense, a central feature of TVB is its direct focus on individual 
subjects’ brain dynamics. The structural connectivity matrix of 
each individual drives the modeling producing the individual-
ized simulated brain activity, whereas the applicability of previous 
studies has been at the group level (15). By generating reliable 
simulations, the system provides a window into the state of bio-
physical parameters associated with it in each person and hence 
enables the development of customized, individualized therapies 
and treatments.

There are a myriad of stroke therapies currently under 
investigation, including constraint-induced motor therapy 
(58–60), action observation therapy (61, 62), neurostimulation 
(e.g., transcranial magnetic stimulation and transcranial direct-
current stimulation) (63, 64), robotic therapy (65, 66), and 
cellular-based (e.g., stem cell) therapies (67), that have shown 
limited degrees of effectiveness, due perhaps to the fact that 
they are not specifically targeting brain mechanisms responsible 
for individual dysfunction. This is a reflection of the paucity in 
our understanding of basic mechanisms generating individual 
brain dynamics. Having new hypotheses applicable to each 
patient will enable us to generate new therapeutic interventions 
that specifically target the elements producing particular brain 
states. Furthermore, the more we learn about basic processes 
based on animal studies for instance, the more we can modify 
current TVB local models and hence, obtain more sophisticated 
simulations.

TVB Parameters can be related to Other 
network Metrics
An additional feature of parameters derived from TVB is that 
they can be contrasted with other measures. Our results showed 
a trend toward decreased global efficiency in stroke that measures 
the network’s capacity for communication, with greater efficiency 
indicating better overall communication (20, 49). In other words, 
network communication is impaired after stroke. Interestingly, 
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degree centrality and betweeness centrality after stroke were not 
different from healthy controls probably due to the large variance 
of stroke size.

The negative correlation between global efficiency and the 
modeled long-range coupling provides unique insight into the 
network structure of the brain following stroke. We have previ-
ously observed increased long-range coupling after stroke, intui-
tively indicating a higher influence of local dynamics on brain 
activity than long-range dynamics. In this context, it is important 
to remember that the global model is derived from the structural 
connections between nodes, and hence, one would expect that 
shorter (direct) paths that originate from damaged nodes should 
be compromised. The graph analysis results suggest that the post-
stroke connectivity between nodes is done through less efficient, 
longer paths (20). Therefore, decreased global efficiency and 
increased long-range coupling after stroke suggest a breakdown 
in the ability to transfer information between regions, weighting 
the activity toward local dynamics. Our findings thus highlight 
the global impact of stroke, despite its relatively focal damage. 
This novel finding in stroke is consistent with studies in other 
neurological diseases, such as schizophrenia, where imbalances 
between local and global dynamics, specifically a breakdown 
of local structure and a shift toward global dynamics have been 
suggested (68).

limitations
The Virtual Brain as any modeling approach is laden with limita-
tions. Among them:

1.  The fact that TVB simulations depend on structural con-
nectivity assumes the structural matrices having reasonable 
reliability. This is very relevant in stroke because the damage 
can produce mechanical distortions of tissue. In our case, 
we have used TVB transplant to minimize these issues. 
Additionally, there are many definitions of “weights” of 
connections (69, 70) although novel approaches promise at 
least high intraindividual reliability in the reconstruction 
(71). In our case, we used a surrogate measure reflecting the 
“number of fibers per pathway.” This is the reason why we 
normalized the number of streamlines between nodes by the 
FA of the particular pathway.

2.  The weights of connections are currently based on the 
size (number of streamlines) of the pathways, yet the 
particular features of the synaptic connections are not 
taken into consideration. For example, the penetrance of 
a smaller pathway could be larger than a bigger pathway 
if the former establishes the synaptic contact with more 
proximal versus distal dendrites. This type of informa-
tion is available for other species but is not yet known in 
humans.

Future Directions and clinical impact
The ability of generating a virtual brain from any individual opens 
up an interesting venue for therapeutics. Once a hypothesis is 

derived from the biophysical parameters affected by the stroke, 
the effects on brain dynamics can be tested within the TVB 
platform by modifying the parameters for an individual case. 
In this way, TVB can be used as a test for potential therapeutic 
interventions before they are tested in animal models or indi-
vidual patients.

The Virtual Brain thus has the potential to revolutionize stroke 
treatment in the future, by allowing for:

1.  The application to “big data.” While the current study used a 
smaller sample size, once we have parameter changes, future 
studies can more readily utilize TVB in a large number of 
patients.

2.  The ability to study longitudinal brain changes in stroke, 
from acute and sub-acute to chronic stroke. Because of the 
predictive potential of TVB, the inclusion of patients at early 
stages can provide the identification of powerful biomarkers 
for recovery.

3.  The individualization of treatment with minimal input: one 
single MRI scan including the anatomical scan, DTI, and 
resting state fMRI.

4.  The ability to perform whole-brain modeling, integrating 
the particular intercommunication between nodes (DTI 
derived) to local biophysical models associated with con-
crete basic functional parameters.

5.  The opportunity to identify tangible targets for treatment 
that are testable within the application itself.

6.  An open source platform: it is possible to add new, more 
sophisticated mesoscopic and microscopic models via the 
open source nature of TVB. Therefore, new developments 
on basic physiological knowledge can be easily integrated in 
the future.

 7. Allowing the simulation of resting state brain activity, as was 
done in this study, but also of evoked responses through a 
built-in feature that allows for the stimulation of brain areas, 
with features determined by the modeler.
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Role of the contralesional 
hemisphere in post-stroke recovery 
of upper extremity motor function
Cathrin M. Buetefisch1,2*

1 Emory University, Atlanta, GA, USA, 2 Georgia Institute of Technology, Atlanta, GA, USA

Identification of optimal treatment strategies to improve recovery is limited by the incom-
plete understanding of the neurobiological principles of recovery. Motor cortex (M1) reor-
ganization of the lesioned hemisphere (ipsilesional M1) plays a major role in post-stroke 
motor recovery and is a primary target for rehabilitation therapy. Reorganization of M1 in 
the hemisphere contralateral to the stroke (contralesional M1) may, however, serve as an 
additional source of cortical reorganization and related recovery. The extent and outcome 
of such reorganization depends on many factors, including lesion size and time since 
stroke. In the chronic phase post-stroke, contralesional M1 seems to interfere with motor 
function of the paretic limb in a subset of patients, possibly through abnormally increased 
inhibition of lesioned M1 by the contralesional M1. In such patients, decreasing contrale-
sional M1 excitability by cortical stimulation results in improved performance of the paretic 
limb. However, emerging evidence suggests a potentially supportive role of contralesional 
M1. After infarction of M1 or its corticospinal projections, there is abnormally increased 
excitatory neural activity and activation in contralesional M1 that correlates with favorable 
motor recovery. Decreasing contralesional M1 excitability in these patients may result 
in deterioration of paretic limb performance. In animal stroke models, reorganizational 
changes in contralesional M1 depend on the lesion size and rehabilitation treatment and 
include long-term changes in neurotransmitter systems, dendritic growth, and synapse 
formation. While there is, therefore, some evidence that activity in contralesional M1 will 
impact the extent of motor function of the paretic limb in the subacute and chronic phase 
post-stroke and may serve as a new target for rehabilitation treatment strategies, the pre-
cise factors that specifically influence its role in the recovery process remain to be defined.

Keywords: transcranial magnetic stimulation, motor cortex reorganization, neurorehabilitation of motor function, 
motor stroke recovery, functional magnetic resonance image

introduction

With the introduction of relatively sophisticated neuroimaging techniques, such as positron emission 
tomography (PET) and functional and structural magnetic resonance imaging (MRI), and novel 
electrophysiological techniques, such as transcranial magnetic stimulation (TMS), studying the 
underlying mechanisms of motor recovery after stroke in humans have become increasingly feasible. 
In 1991, Chollet et al. (1) reported for the first time the activation of bilateral sensorimotor cortices in 
stroke patients moving their affected hand and suggested that ipsilateral motor projection may play 
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a role in recovery. This claim was further substantiated in 1993 by 
Carr et al. (2) who used TMS of the primary motor cortex (M1) 
to probe the functional integrity of the corticospinal tract (CST) 
after stroke. He reported that, in patients with poor motor out-
come, TMS applied to the motor cortex of the hemisphere affected 
by stroke (ipsilesional M1) did not produce detectable motor-
evoked potentials (MEPs), indicating disrupted function of the 
CST. However, when TMS was applied to the motor cortex of the 
hemisphere spared by the stroke (contralesional M1), MEPs were 
detected in both the hands. These findings suggested abnormal 
corticospinal projections from the contralesional M1 to muscles 
of the affected hand (see below for more detailed discussion).

In the following years, the role of the contralesional M1 in 
motor recovery after stroke and its potential as new target for 
rehabilitation efforts have been a topic of intense research efforts 
in humans and animal stroke models (3–5). As this field moved 
forward, it became apparent that several factors may impact the 
role of contralesional M1 in the control of the paretic hand move-
ments and that even in healthy intact brain the ipsilateral M1 
(corresponding to the contralesional M1 in paretic hand move-
ments) is active in the control of strictly unilateral hand move-
ment (6–11). In the context of the incomplete understanding of 
the ipsilateral M1 in motor control, the interpretation of findings 
pertaining to the role of contralesional M1 (corresponding to the 
ipsilateral M1 in intact human) in motor recovery after stroke 
remains problematic.

In this review, the evidence for contralesional M1 activity in 
recovery of hand function after stroke will be discussed. In the 
first part of this review, I will summarize the advances in our 
understanding of motor control of hand movements as they per-
tain to a better understanding of contralesional M1 function in 
motor recovery of hand movements. There is emerging evidence 
that ipsilateral M1 (corresponding to contralesional M1 in stroke 
patients) is active even in healthy subjects, depending on age and 
motor task demands (11–14). Motor task-dependent activity of 
ipsilateral M1 and the interaction between M1s may contribute 
to the contradicting data in contralesional M1 in stroke patients, 
where stroke-related motor impairment impacts the demand of a 
given motor task. In the second part of the review, I will discuss 
data available from animal stroke models and humans after 
stroke pertaining to the role of contralesional M1 reorganiza-
tion in post-stroke recovery. Finally, I will discuss in which way 
neurorehabilitation science can leverage on the knowledge of 
contralesional M1 reorganization to develop new and effective 
rehabilitation treatment strategies.

ipsilateral M1 and interhemispheric 
interaction in the Control of Hand 
Movements in intact Man

The Contribution of ipsilateral M1 and its 
Corticospinal Connections in the Control of 
Hand Movements
In fMRI studies of unilateral hand motor performance in intact 
man, strictly contralateral M1 activation was demonstrated by 
some investigators (15, 16) while bilateral M1 activation was 

observed by others (6, 11, 17–19). Increased ipsilateral M1 
was demonstrated in tasks with higher accuracy or complexity 
demands (6–8, 11, 17, 20). However, the interpretation of these 
neuroimaging data was limited by measuring qualitatively dif-
ferent movements where the tasks were not being matched for 
their kinematics (e.g., force, amplitude, and frequency) and by 
lacking the verification of a strictly unilateral execution of the 
motor task during the acquisition of imaging data. Measuring 
unilateral performance is important as without it, the presence 
of bilateral upper extremity activity with increasing difficulty of 
the task referred to as “mirror movements” cannot be ruled out 
and may contribute to observed bilateral M1 activation. In our 
recent study of healthy middle-aged people (n = 13, 10 females, 
age 55.4 ± 10.9 years), subjects performed a pointing task with 
a joy stick. By decreasing the size of the target, the demand 
on accuracy was parametrically increased while participating 
muscle groups and movement kinematic were kept the same. 
Unilateral performance was verified with electromyographic 
(EMG) recording from upper extremity muscles. As illustrated 
in Figure 1, performance of the pointing task (collapsed across 
different target sizes) resulted in extensive activation of bilateral 
sensorimotor cortex in the precentral and postcentral gyri/
sulci (Figure 1, red). This contrasts with activation arising from 
the qualitatively different finger tapping task (Figure  1, green/
yellow), which resulted in activation restricted to contralateral 
sensorimotor areas and the corresponding ipsilateral cerebellum. 
Of note is that ipsilateral M1 activation in the pointing task is 
largely anterior to the activation arising from the tapping task 
executed by the contralateral hand.

While there is evidence for ipsilateral corticospinal projec-
tions in humans, evidence for the control of the hand move-
ments via ipsilateral corticospinal connections is weak. In intact 
humans, stimulation of M1 using TMS elicits MEPs in ipsilateral 
hand muscles but these are difficult to obtain and require 
high stimulation intensity and pre-innervations of the target 
muscle (21). In non-human primates, recording of ipsilateral 
M1 neurons during upper limb movements demonstrate that 
cells in iM1 are modulated by the task but that the timing of 
this activity is best correlated with weak muscle activity in the 
contralateral non-moving arm (22). Alternatively, task-related 
effects in the ipsilateral M1 could be mediated by corticoreticu-
lospinal connections. In contrast to corticospinal connection, 
corticoreticulospinal projections are bilateral and are thought to 
be involved in the execution of selective finger movements (23). 
The involvement of this pathway is supported by TMS-derived 
evidence of longer latencies of MEPs elicited in the ipsilateral 
hand muscles (21). One could also argue that this M1 area may 
be concerned with the integration of afferent input from other 
motor areas. Recent evidence of bilateral M1 projections from 
posterior parietal (24, 25) and dorsal premotor areas, likely con-
veying some task-related information such as visuospatial and 
motor planning information, support a more indirect effect and 
the notion that M1 functions at a higher level in motor control by 
integrating afferent information and then generating a descend-
ing motor command that defines the spatiotemporal form of the 
movement (26). A higher level role for M1 in motor control is 
also supported by the results of a recent repetitive TMS (rTMS) 
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study where low-frequency rTMS applied to left M1 improved 
performance in both hands for the task with the highest demand 
on precision while performance remained unchanged for the 
tasks with lower demands (14).

interhemispheric interaction in the Control of 
Hand Movements in intact Humans
In addition to the corticospinal projections and ipsilateral 
corticocortico connections, motor areas of the two hemispheres 
are interconnected to each other and interact in the execution of 
motor tasks. Improved performance after transiently inhibiting 
the ipsilateral M1 by means of low-frequency rTMS (14, 27, 28) 
could indicate that there may be a need for suppression of task 
performance related ipsilateral M1 excitatory activity. Because the 
relationship between the two primary motor cortices is impacted 
by stroke (4, 5, 29) and topic of great interest in neuromodulation 
treatment approaches targeting the contralesional M1 (3), this 
topic will be reviewed for the intact brain.

The main structure connecting the motor areas is the corpus 
callosum. Connections between primary motor areas are less 

FiGURe 1 | Motor demand-dependent activation of motor cortices using a pointing task: pointing and finger tapping tasks related brain activation: 
Activity related to the pointing task (collapsed across XL, L, and M targets) is indicated in red. Activation related to right- and left-handed finger tapping is 
indicated in green, with overlap between finger tapping and pointing task performance shown in yellow. Note that while there was extensive bilateral activation for 
the pointing task, M1 activation in the finger tapping tasks was only seen contralateral to the performing hand, so that the left hemisphere is solely due to 
right-handed finger tapping (with left hemisphere yellow areas show overlap between right-handed finger tapping and right-handed pointing task performance) and 
the right hemisphere activity is solely due to left-handed finger tapping (yellow colors in the right hemisphere show overlap between activity due to the right-handed 
targeting task and left-handed finger tapping task, outlined with a yellow border for ease of visualization). Significant activation related to increasing motor demand 
(M targets > L targets) is indicated in blue (overlap between this region and left-handed finger tapping shown in cyan, outlined for clarity). All activations are shown 
overlaid on the Colin27 template in standard space, thresholded at a corrected p < 0.05 (uncorrected threshold p < 0.005 and cluster size >2360 mm3). Increased 
color intensity corresponds to higher estimates of percent signal change. Cuts in the three-dimensional rendering are shown at x = 0, y = −15, and z = 35. The right 
hemisphere is depicted in the upper panel. The right (R) and left (L) side of the brain are indicated in the lower panel. Numerical labels above each slice show slice 
coordinates in the x dimension (sagittal sections) or z dimension (axial sections) (11).

abundant than premotor areas and primarily excitatory [for 
detailed review, see Ref. (5)]. Interhemispheric inhibition (IHI) 
can be demonstrated with TMS by applying a conditioning 
stimulus (CS) to one M1 and a test stimulus (TS) to the homo-
topic area of the other M1 (30) (Figure 2). The CS inhibits the 
size of the MEP produced by the TS. The amount of inhibition is 
expressed as a percentage of the mean MEP amplitude evoked by 
a single TS. While resting IHI is measured with the subject at rest, 
active IHI is measured during movement preparation. In healthy 
subjects executing a hand motor task, the inhibitory effect of one 
M1 on the other M1 decreases (31) depending on the movement 
kinematics (32, 33). In a study by Talelli et al. (20), a relationship 
between resting IHI and task-related ipsilateral M1 activity as 
measured by fMRI was demonstrated. Specifically, peak forces for 
a hand grip were positively correlated with increases in ipsilateral 
M1-blood oxygenation level-dependent (BOLD) response when 
IHI between motor cortices was weak. This positive correlation 
changed to a negative correlation when IHI was strong. This 
would indicate that activity in ipsilateral M1 is controlled to some 
extent by the inhibitory effect of the contralateral M1.
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Contralesional M1 Reorganization in  
Post-Stroke Recovery

Reorganization of Contralesional M1 in the 
Post-Stroke Recovery Period (fMRi evidence)
In task-related functional imaging studies of stroke patients, the 
activation of contralesional motor areas (corresponding to ipsi-
lateral motor areas in healthy subjects) have been consistently 
reported (34). Cross-sectional studies of stroke patients moving 
the affected hand revealed a shift from an initially (abnormal) 
bilateral activation of motor areas in the subacute stroke patients 
(1, 9, 16, 35–40) toward a more normal unilateral activation 
pattern of ipsilesional motor areas in chronic stroke patients 
(40). Importantly, in a longitudinal study of stroke patients, this 
activation shift to the ipsilesional hemisphere was associated 
with good recovery, whereas persistence of the bilateral activa-
tion pattern was associated with poor outcome (40). On the 
basis of these studies, it was concluded that greater involvement 
of contralesional M1 predicted poorer motor outcome. (34, 
40). However, in several studies, mirror movements of the non-
affected hand were reported during the performance with the 
affected hand during imaging (34). This raised the possibility 

that some contralesional M1 activity is, in fact, related to mir-
ror movements of the non-affected hand (41, 42). As mirror 
movements and coactivation of the non-affected hand are seen 
more frequently in patients with poor motor outcome (41, 43), 
the presence of these movements may have confounded the 
findings of increased contralesional M1 activation in patients 
with poor outcome.

In our own fMRI study of subacute stroke patients with excel-
lent recovery, strictly unilateral performance resulted in activation 
of bilateral motor cortices (16). In this study, eight stroke patients 
underwent fMRI of the brain to test M1 activity related to the 
performance of a non-sequential finger opposition task with their 
paretic hand. EMG activity of bilateral arm muscles was recorded 
during the scanning. All patients showed excellent recovery. 
Their results were compared to age-matched normal volunteers. 
While overt mirror movements were absent in all patients, three 
patients showed substantial EMG activity of the non-affected arm 
when performing the task with the affected hand. Their data were 
excluded from further analysis. As demonstrated in Figure 3, in 
the remaining five patients with strictly unilateral performance, 
bilateral activation of premotor and primary motor cortices was 
evident. In contrast, the age-matched controls showed a strictly 

FiGURe 2 | Resting and active interhemispheric inhibition (iHi): (A) IHI can be demonstrated by applying a conditioning stimulus to M1, which inhibits the size 
of the motor-evoked potential (MEP) produced by the test stimulus applied to the homotopic area of the opposite M1. These measures are obtained during rest 
(resting IHI, rIHI) or in the pre-movement period during preparation of a movement (active IHI). (B) During rest, there is significant rIHI (round symbol) from one M1 on 
the other M1. Active IHI (rectangular symbol) decreases immediately prior to the movement onset depending on kinematics of the movement (B,C). (B,C) Pointing to 
a large target with less demand on accuracy (square) results in less reduction of active IHI compared to pointing at a small target (diamond) with high demand on 
accuracy (33).
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FiGURe 3 | Mean fMRi activation map of the performance of a finger sequence with the affected hand in patients (n = 5) (A) and with either hand in 
the age-matched control group (n = 9) (B). For both groups, the activation map is superimposed on the T1-weighted MRI of the same healthy control subject. 
(A) In patients, right in the axial slice of brain (z = 56) corresponds to the lesioned hemisphere and left to the contralesional hemisphere. Activation of contralesional 
precentral gyrus is evident (corrected p < 0.05). (B) For the control group performing the finger sequence with the left (lower left image, corrected p = 0.05) or right 
(lower right image, uncorrected p < 5.8e−12) hand, there was activation in the precentral gyrus of the hemisphere that is contralateral to the performing hand. 
Initially, the significance level was set as low as corrected p = 0.05 to pick up any activity in the motor cortex ipsilateral to the moving hand (shown for left hand 
movement, lower left image). At this significance level, massive activation was seen in the pre- and postcentral gyrus contralaterally when moving the right hand. To 
separate clusters of activity in pre- and postcentral gyrus, the significance level was increased until the two clusters became distinct (uncorrected p < 5.8e−12, 
lower right panel) (16).
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unilateral activation of the corresponding contralateral M1. These 
results support the notion that activation in contralesional M1 
most likely reflects a reorganizational process in these patients. 
However, based on the findings in healthy subjects, where 
ipsilateral M1 is activated as the task becomes more demanding, 
increased activity could also be explained by a relatively higher 
demand on motor skill in stroke patients when compared to 
healthy controls (i.e., because of the compromised hand function 
due to stroke, the execution of the task is more challenging for 
the patient compared to the controls). Schaechter and Perdue 
(44) studied chronic stroke patients with good recovery of hand 
function and demonstrated that cortical activation during per-
formance of the unskilled and skilled movement was increased 
in the patients relative to controls in the contralesional primary 
sensorimotor cortex. These findings suggest that in the chronic 
phase after stroke the neuronal substrate supporting affected hand 
function includes contralesional M1. The question whether this 
abnormal contralesional M1 activity is related to recovery-related 
regenerative responses as demonstrated for the subacute stroke 
patients or whether these changes reflect degenerative responses 
to the stroke remains to be determined as both processes are 
to some extent activity dependent, interact and impact similar 
circuitries (4).

Mechanisms Underlying Reorganization 
of Contralesional M1 in the Post-Stroke 
Recovery Period
The interpretation of task-related fMRI results is limited by the 
fact that changes in inhibitory and excitatory activity cannot be 
distinguished and the functional relevance of these changes in M1 
activity is unclear. Specifically, task-related increases in BOLD in 

contralesional M1 could result from increases of inhibitory or 
excitatory activity or any combination of these.

In rodent stroke models, functional and structural reorgani-
zational changes in contralesional M1 have been reported [for 
detailed review, see Ref. (4, 5)]. Briefly, in these models, small 
focal cortical lesions led to long-lasting changes in contralesional 
M1, such as down-regulation of GABAA-receptor function (45, 
46) and up-regulation of NMDA-receptor function (47, 48), 
both mechanisms operating in increases of synaptic efficacy such 
as long-term potentiation (LTP). In contrast to human studies 
(see below), excitability in contralesional M1 was transiently 
increased but returned to the original values within hours. 
Similarly, representation of the rodent forelimb expanded in 
the contralesional M1 but returned to normal dimensions over 
the following days [for review, see Ref. (5)]. From a structural 
perspective, increase in neuropil volume (49), use-dependent 
dendritic growth followed by dendritic pruning, synapse forma-
tion, and changes in the specific structure of synaptic connections 
have been described (49–51).

In humans, increased intracortical excitability of contrale-
sional M1 has been demonstrated in subacute and chronic stroke 
patients (29, 52–54) when explored with the paired pulse TMS 
technique. In this paradigm, a suprathreshold TS is preceded by 
a subthreshold CS at an interstimulus interval (ISI) of 2 ms. In the 
M1 of healthy subjects, CS inhibits the MEP produced by the sub-
sequent TS, referred to as short interval intracortical inhibition 
(55). This effect is mediated by GABAA-receptors (56) and arises 
in close proximity to the stimulated area (57). By varying the 
intensity of CS, the effects mediated by inhibitory and excitatory 
networks can be separated in more detail (29, 54) (Figures 4A,B). 
In a study of subacute stroke patients, the inhibitory effect of CS at 
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low intensity was similar to values found in healthy age-matched 
controls while the inhibitory effect was abnormally reduced at 
higher intensities. This may indicate that the balance of excitatory 
and inhibitory activity in neuronal circuits was shifted toward 
excitatory activity (29, 54). Alternatively, abnormal function 
of the high threshold GABAergic inhibitory interneurons may 
result in a decreased inhibitory effect of CS at higher intensities. 
These findings suggest that regulation of excitatory and inhibitory 
neurotransmitter systems may play a role early in the reorganiza-
tion process in contralesional M1 (48, 58) and may support func-
tional recovery early after stroke. This notion is supported by the 
finding in patients in the subacute phase of stroke involving M1 
or its corticospinal projections where a close association between 
increased excitability of contralesional M1 and good recovery of 
hand function was demonstrated (54). However, whether these 
findings hold up and can be applied to patients with other lesion 
locations has to be determined in larger longitudinal studies.

Relationship Between Contralesional M1 
and ipsilesional M1 (interhemispheric inhibition) 
in the Post-Stroke Recovery Period
As described for the intact brain, the two motor cortices inhibit 
each other through connections via the corpus callosum (5). In 
addition to the discussed mechanisms underlying contralesional 
M1 reorganization, stroke-related changes in the inhibitory drive 
between motor cortices could play an important role in reorgani-
zational changes of contralesional M1. While increased contral-
esional M1 excitability was demonstrated in multiple studies (29, 
31, 53, 54, 59), very few studies have examined the relationship 
between increased contralesional M1 excitability and resting IHI. 
It was concluded that loss of inhibitory drive of the lesioned M1 
on the contralesional M1 through interhemispheric connections 
may contribute to the reorganizational processes observed for 
this motor cortex. Increases in contralesional M1 excitability 
may result in an excessive inhibitory effect on the ipsilesional M1, 
which may interfere with its reorganization and related recovery 
(31, 53, 59). In our study of 23 subacute stroke patients with 
documented ongoing recovery of motor function, contralesional 
M1 excitability was increased as demonstrated by paired pulse 
TMS technique (29) (see above for detailed description of the 
methods). Resting IHI from ipsilesional M1 on contralesional M1 
was reduced in both cortical and subcortical location of the stroke 
while IHI from contralesional M1 on ipsilesional M1 was normal 
(Figures  4C,D). In patients with cortical stroke, there was an 
inverse correlation between inhibitory effect from contralesional 
on ipsilesional M1 and contralesional M1 excitability. This rela-
tionship was not seen in patients with subcortical stroke. This 
would indicate that in subacute patients recovering from stroke, 
the demonstrated increased contralesional M1 excitability is not 
causally related to abnormally reduced IHI from ipsilesional M1 
on contralesional M1. Further, because IHI of the contralesional 
on ipsilesional M1 was normal and measures of contralesional 
M1 excitability were increased, there was no evidence in this 
study to support the hypothesis that an abnormally increased 
contralesional M1 excitability results in abnormally increased IHI 
of contralesional on ipsilesional M1 with subsequently decreased 
activity or excitability of ipsilesional M1 in this patient population. 

However, when IHI was measured in the pre-movement interval 
(active IHI, see above for details of the methods) contralesional 
on the ipsilesional M1 was abnormally increased in chronic stroke 
patients when compared to healthy age-matched controls (31). 
The role of abnormally increased active IHI and the relationship 
between abnormal active IHI, measures of M1 excitability, and 
recovery of hand function in stroke needs to be determined in 
more detail and is currently a topic of active investigations.

There is some evidence regarding the relationship between the 
ipsi- and contralesional M1 in rodent stroke models. Specifically, 
an ischemic lesion of M1 leads to partial denervation of the 
contralesional M1, which has a tendency to sprout into the per-
ilesional neuronal tissue of ipsilesional M1 (60, 61). Moreover, 
learning a new motor skill with the non-affected limb reduces 
spontaneous recovery and limits rehabilitation-related functional 
improvements of the affected limb (62–64). These findings under-
score the importance of interhemispheric connections between 
and ipsi- and contralesional M1 and their potential involvement 
in mediating reorganizational effects on the ipsilesional M1.

Factors that Determine the Role of 
Contralesional M1 in the Post-Stroke 
Recovery Period
The factors that determine involvement of contralesional M1 are 
currently not known. In non-human primate stroke models, pro-
gressively larger M1 hand lesions were associated with a propor-
tional expansion of ipsilesional ventral premotor (PMv) (65, 66) 
and supplementary motor area (SMA) (67) hand representation.

In rodent stroke models, reorganizational changes in con-
tralesional M1 depend on the lesion size (68) and rehabilitation 
treatment (64, 69) and include long-term changes in neurotrans-
mitter systems, dendritic growth, and synapse formation (45, 
46, 50, 51, 70, 71). Inhibiting the contralesional hemisphere in 
rats that recovered from large ischemic infarcts generates more 
behavioral deficits of the impaired forelimb in comparison to 
control animals (72).

In humans, Schaechter and Perdue (44) demonstrated in 
chronic stroke patients a linear relationship between abnormally 
increased affected hand movement-related contralesional M1 
activity and extend of CST damage. Further, the observed differ-
ential effect on contralesional M1 excitability and the relationship 
between contralesional M1 excitability and IHI (Figure 4) (29) 
supports the notion that location of the stroke seems to impact 
reorganizational processes. These differential remote effects of 
the lesion are also consistent with the findings that contralesional 
M1 seems to support function in a subset of patients after stroke 
(18) but may interfere with recovery or affected hand function in 
others (73, 74).

interventions in Stroke Rehabilitation 
Treatment Targeting Contralesional M1

Several reports have demonstrated that non-invasive cortical 
stimulation can enhance functional reorganization, motor 
cortical excitability, and the beneficial effects of motor train-
ing on performance (75–80). Either ipsi- or contralesional 
M1 are target of these interventional approaches (3). In this 
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FiGURe 4 | M1 excitability and iHi in patients with subacute stroke (n = 23) and healthy age-matched controls (n = 20): eMG was recorded from the 
first dorsal interosseus muscle (FDi). (A,B) Effect of lesion location on SICI in patients. Control (square) and contralesional M1 of patients with cortical [open 
triangle (A)] and subcortical location of infarction [open inverted triangle (C)]. IHI of the lesioned M1 on the contralesional M1 is reduced in patients with cortical 
(open triangle) or subcortical infarction (open inverted triangle) when compared to healthy controls (square). (D) IHI from contralesional M1 on the lesioned M1 was 
intact for cortical infarction (black triangle) and subcortical infarction (black inverted triangle). The conditioned MEP amplitude is expressed as percentage of the 
mean test-MEP. (e,F) Relationship between M1 excitability, SICI (CS at 80% MT), and IHI in patients with cortical infarction (triangle) and subcortical infarction 
(inverted triangle). For each patient (each point represents one subject), SICI of the contralesional M1 was plotted against IHI from lesioned on the contralesional M1 
(open symbols). Regression was calculated. For cortical location of the infarction, there was an inverse linear relationship between SICE of the contralesional M1 and 
IHI from lesioned on the contralesional M1 [(e) r2 = 0.972, p = 0.002]. Although there is a similar trend in the subcortical group (F), the relationship was more 
variable [(F)r2 = 0.105, p = ns]. The insert indicates the position of the coil for application of CS (dotted lines) and the TS (solid lines). The location of the lesion is 
indicated by the bullet. CS = intensity of conditioning stimulus, MT = motor threshold. The scattered lines indicate the cutoff between facilitation (>100) and 
inhibition (<100). Mean ± SE. *p < 0.05, **p < 0.02, and ***p < 0.01 (29).
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review, I will focus on non-invasive cortical stimulation targeting 
the contralesional M1.

Down-regulation of excitability in one motor cortex influ-
ences corticomotor excitability in the opposite motor cortex. 
Several reports of studies in healthy subjects have now demon-
strated that 1 Hz rTMS applied to M1 of one hemisphere results 
in increased corticomotor excitability in the opposite M1 (81, 
82) and improved performance in the corresponding hand (14, 
83) depending on the level of motor demand (14). As discussed 

in the previous sections, although the extent to which the 
contralesional M1 contributes to motor recovery is not known, 
many currently employed rTMS protocols are designed with the 
assumption that following stroke, ipsilesional M1 is hypoactive 
while contralesional M1 is hyperactive and should be inhibited 
(3, 80). Accordingly, stimulation of contralesional M1 has been 
used to inhibit its hyperactivity (3, 74, 78, 84–86). Meta- analyses 
on the effectiveness of repetitive transcranial magnetic stimula-
tion (rTMS) or transcranial direct current stimulation (tDCS) 
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in stroke rehabilitation therapy do not agree on the available 
evidence to either support or reject it (87–90).

Summary

Taken together, there is evidence from human and animal studies 
that activity in contralesional M1 will impact motor function of 
the paretic limb differently in different patients. However, cur-
rently employed treatment strategies are geared toward inhibiting 
its function. There is a great need to identify the precise factors 

that specifically influence the role of contralesional M1 in the 
recovery process. A better understanding of those factors is criti-
cal to the development of effective therapies tailored to its specific 
role in the recovery process to improve outcome post stroke.
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Introduction: Stroke is the leading cause of long-term disability. Functional imaging
studies report widespread changes in movement-related cortical networks after stroke.
Whether these are a result of stroke-specific cognitive processes or reflect modulation of
existing movement-related networks is unknown. Understanding this distinction is critical
in establishing more effective restorative therapies after stroke. Using multivariate analysis
(tensor-independent component analysis – TICA), we map the neural networks involved
during motor imagery (MI) and executed movement (EM) in subcortical stroke patients
and age-matched controls.

Methods: Twenty subcortical stroke patients and 17 age-matched controls were
recruited. They were screened for their ability to carry out MI (Chaotic MI Assessment). The
fMRI task was a right-hand finger-thumb opposition sequence (auditory-paced 1Hz; 2, 3,
4, 5, 2. . .). Two separate runs were acquired (MI and rest and EM and rest; block design).
There was no distinction between groups or tasks until the last stage of analysis, which
allowed TICA to identify independent components (ICs) that were common or distinct to
each group or task with no prior assumptions.

Results: TICA defined 28 ICs. ICs representing artifacts were excluded. ICs were only
included if the subject scores were significant (for either EM or MI). Seven ICs remained
that involved the primary and secondary motor networks. All ICs were shared between
the stroke and age-matched controls. Five ICs were common to both tasks and three
were exclusive to EM. Two ICs were related to motor recovery and one with time since
stroke onset, but all were shared with age-matched controls. No IC was exclusive to
stroke patients.

Conclusion:We report that the cortical networks in stroke patients that relate to recovery
of motor function represent modulation of existing cortical networks present in age-
matched controls. The absence of cortical networks specific to stroke patients suggests
that motor adaptation and other potential confounders (e.g., effort and additional muscle
use) are not responsible for the changes in the cortical networks reported after stroke.
This highlights that recovery of motor function after subcortical stroke involves preexisting
cortical networks that could help identify more effective restorative therapies.
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INTRODUCTION

Stroke remains a leading cause of long-term disability and
carries a significant social and economic cost (1, 2). After stroke,
functional imaging studies of movement report widespread
changes in activation of the cortical networks (3–8). The
precise cognitive processes that determine these changes
remain unclear. In this study, we used a data-led method
to explore if the changes in movement-related networks are
a result of processes specific to stroke patients (i.e., use of
additional muscles) or whether they represent modulation
of extent movement-related networks. Understanding this
distinction in neuroplasticity is likely to help establish
the driver of fMRI changes reported after stroke and help
establish the most effective restorative therapies for patients
(9–11).

Using a variety of tasks, numerous groups have reported
changes in movement-related networks – importantly these
remote changes relate to the recovery of motor performance.
Movement-related fMRI activation in the ipsilesional primary
motor cortex is associated with better recovery (4, 7, 8, 12, 13).
Indeed it is on this model that many restorative intervention
studies are based (14) changes in movement-related networks are
being used to predict response to therapies (15). Yet it is possible
that the changes in movement-related networks may represent an
epiphenomenon of the increased difficulty involved in carrying
out the task after a stroke (6).

There are several caveats when considering comparisons of
patients with healthy volunteers (6). For instance, the kinematics
of movements, EMG patterns, motor strategies (adaptation versus
relearning), and whether movement involved different body parts
in different subjects have not been monitored consistently in the
MRI. In other words, it is possible that the differences reported
represent a composite of cognitive processes specific to stroke
patients that may not be directly related to the recovery process
as such.

Understanding whether there are networks specific to stroke
patients will greatly aid the understanding of the recovery process
after stroke. It may allow a more targeted approach to rehabilita-
tion as it could identify the most appropriate training programs.
We explored the extent to which the widely described changes
in motor networks after stroke are a result of specific processes
(i.e., motor adaptation or use of different muscle) or whether they
representmodulation of extantmotor performance. There are two
key aspects to our study.

First, to remove any biases produced by subtle differences in
motor performance, we studied both motor imagery (MI) and
executed movement (EM). MI is intrinsically linked to the motor
system and can be used to study the motor system without actual
movement (16–19). In stroke patients with normal activations
during EM,we have reported abnormal hemispheric lateralization
during MI that related to recovery of motor function. In other
words, by studyingMI aswell as EM,we are able to identify aspects
of task-dependent activation that relate to motor execution and
those more “upstream” (20).

Second, we use a data-led approach using tensor-independent
component analysis (TICA) (21). Using TICA, we examine

the cortical networks that are common to stroke patients and
aged-matched controls or exclusive to either. Unlike the con-
ventional mass univariate approach, TICA is a powerful data-
led approach that explores similarities as well as differences in
cortical networks. Importantly, both tasks (MI and EM) from
both groups (stroke and aged-matched controls) are consid-
ered the same. We are able to use a “blinded task” during the
production of the independent components (ICs) as they have
the same temporal profile. In other words, we make no prior
assumptions as to the extent of overlap, if any, between the
task-related networks in stroke patients and controls or between
the MI and EM. If the widely reported changes in movement-
dependent networks are related to a stroke-specific cognitive pro-
cess, then this analytic approach will likely produce separate com-
ponents.

We hypothesize that in recovered subcortical stroke patients,
the task-relatedmotor networks identified for both EMandMI are
shared with the age-matched controls. In keeping with our reports
from healthy volunteers, we expect to find networks related exclu-
sively to EM and others that are shared withMI. Finally, we expect
that in stroke patients, the task-related networks would correlate
with measures of motor recovery.

MATERIALS AND METHODS

Subjects
Twenty subcortical stroke patients were recruited (six females;
mean age, 66± 8.8 years). Inclusion criteria were the following:
(i) first-ever ischemic or hemorrhagic stroke with initial motor
deficit lasting at least 2 weeks; (ii) ability to perform the motor
activation task; and (iii) right-handedness. They had no past
medical history of any neurological, psychiatric, or musculoskele-
tal disorders and were not taking regular medication. Seventeen
age-matched control subjects (nine males) aged 40 years (mean,
57.6± 8.5 years) were recruited through local advertisement. Sub-
jects had no history of medical disorders and were not taking
regular medication. All subjects were right handed as assessed by
the Edinburgh scale (22) and gave written consent in accordance
with the Declaration of Helsinki, and the protocol was approved
by the Cambridge Regional Ethics Committee.

All subjects underwent assessment with the Chaotic Motor
Imagery Assessment (CMIA). They were excluded if unable to
perform MI adequately. Chaotic Motor Imagery is defined as
an inability to perform MI accurately or, if having preserved
accuracy, the demonstration of temporal uncoupling (23). The
full-assessment is described in detail in Ref. (24). Briefly, the
assessment has three components performed in order. Where
appropriate, subjects were given specific instructions to perform
first-person kinesthetic MI. They were instructed not to view the
scene from the third person and not to count or assign numbers
or tones to each finger.

The stroke patients were assessed with the NIH Stroke Scale
(NIHSS), the Action Research Arm Test (ARAT), Stroke Impact
Score (SIS), and the Motricity Index. Thumb to index finger
tapping over 15 s (TIT ratio) (25) and mirror synkinesia were
measured. Transcranial Doppler was used to assess vasomotor
reactivity and was preserved in all.
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Functional MRI
Motor (Imagery) Paradigm
The fMRI tasks was a block design (20, 26) of a right-hand finger-
thumb opposition sequence (paced at 1Hz; sequence 2, 3, 4, 5,
2. . .) and rest. There were two separate runs acquired (MI and
rest and EM and rest). Subjects were instructed to keep their eyes
closed throughout the session.We used bilateral fiber-optic gloves
(FifthDimensionTechnologies, SA) tomonitor fingermovements
and exclude inappropriate movement. The gloves were also used
to confirm the performance of MI – after each MI block (24).
Post MR subjects rated the vividness of MI performance on a
seven-point scale.

Data Acquisition
A 3-T Brucker MRI scanner was used to acquire both T2-
weighted and proton density anatomical images andT2*-weighted
MRI transverse echo-planar images sensitive to the BOLD sig-
nal for fMRI (64× 64× 23; FOV 20× 20× 115; 23 slices 4mm,
TR= 1.5 s, TE 30ms, voxel size 4× 4× 4).

Image Analysis
Analysis was carried out using TICA (21) as implemented
in MELODIC (Multivariate Exploratory Linear Decomposi-
tion into Independent Components) Version 3.09, part of FSL
(FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). Only the
affected hand in stroke patients was assessed. Where necessary
images were flipped, the hand studied was always contralateral
to the left hemisphere matching the right-hand tasks of the
age-matched controls. Contralateral is therefore ipsilesional in
stroke patients.

The first 12 volumes were discarded to allow for T1 equi-
libration effects. Preprocessing involved masking of non-brain
voxels, voxel-wise de-meaning of the data, and normaliza-
tion of the voxel-wise variance. Subject movement was less
than 2mm.

The preprocessed data were whitened and projected into amul-
tidimensional subspace using probabilistic principal component
analysis where the number of dimensions was estimated using
the Laplace approximation to the Bayesian evidence of the model
order (27). The whitened observations were decomposed into sets
of vectors which describe signal variation across the temporal
domain (time courses), the session/subject domain, and the spatial
domain (maps) by optimizing for non-Gaussian spatial source dis-
tributions using a fixed-point iteration technique (28). Estimated
component maps were divided by the standard deviation of the
residual noise and thresholded by fitting a mixture model to the
histogram of intensity values. The time course of each IC was then
entered into a general linear model of the convolved block design
of Task versus Rest.

An IC was considered to be involved in MI or EM if a one-way
t-test found the subject scores to be significantly different from
zero across subjects. When an IC was significantly involved in
both tasks, then a paired t-test (p< 0.05 corrected for multiple
comparisons) was performed on the subject score for each task.
In the stroke group, the subject scores of each remaining compo-
nent were correlated (Spearman p< 0.05 corrected for multiple
comparisons) with the impairment scores.

RESULTS

Behavioral Results
Four control subjects and eight stroke patients were excluded
because of chaotic motor imagery. Twelve stroke patients
remained [eight left hemisphere; four females; for full demo-
graphic details see Sharma et al. (24)]. There was no difference
in score between the stroke group and control subjects.

All subjects suppressed movement and all were compliant dur-
ing the fMRI task. Median post-MRI MI vividness score was 6
(range, 4–7).

fMRI Data
No distinction was made between tasks until the final stage of
processing. As 25 subjects performed two tasks, MI and EM,
50 “blinded” tasks were processed. As no distinction was made
between imagery and EM during the generation of the ICs, we use
the term “blinded.”

A subject score for each IC is produced that includes the effect
size for the 50 blinded tasks (13 controls subjects, EM and MI, 12
stroke patients) for the associated spatiotemporal process shown
in the spatial map.

Twenty-eight ICs were defined by TICA. ICs that identified
artifact recognized by previously published patterns and high fre-
quency were excluded by visual inspection. ICs driven by outliers
or were not significant across either task were also excluded.
Therefore, only components in which the subject scores were
significantly different from zero (for either the stroke or control
group for either task) were included.

Seven ICs remained. Each component was significantly
involved in both the stroke group and the control group. As
hypothesized, some ICs were shared between EM and MI (subject
scores significantly greater than zero for both tasks in both groups)
and somewere exclusive to EM (subject score greater than zero for
EM only in both groups).

Figures 1 and 2 show the whole brain activations and deactiva-
tions, the time course (BOLD), subject scores, and percentage of
total variance explained. Table 1 summarizes the areas involved
[labeled using the Jülich Atlas (29)].

Independent Components (IC 1, 2, 4, 5, 8)
Shared by Executed Movement and Motor
Imagery
Five components (IC 1, 2, 4, 5, 8; Figures 1 and 2) were sig-
nificantly involved in both age-matched controls and stroke
patients and were common to both EM and MI (subject
scores> 0 for both tasks in both groups). Together these five
ICs explained 33% of the total explained variance. All of the
components significantly correlated with the active blocks of
the task.

In three of the components (IC1, 2, 5), the subjects score was
greater during EM than during MI in the age-matched controls
only – no such difference was found in the stroke group. IC1
involved activation of the contralateral motor areas and bilateral
involvement of premotor and parietal areas. More specifically,
there was contralateral activation of BA4a, SMA, BA3b, and
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FIGURE 1 | The figures show the involvement of each IC across the whole brain with a standard threshold of p>0.5 (alternative hypothesis test) and
the variance it accounts for out of the total explained variance. In four stroke patients, the images were flipped so that the left hemisphere is always
contralateral to executed movement/motor imagery. The left hemisphere equates to the ipsilesional hemisphere. The scales show the transformed z-score, orange is
activation, and blue is deactivation. The normalized time course response is shown for each task and the full model fit (full model fit=blue, executed
movement= red, and motor imagery= green). The mean subject scores with standard error bars are shown for each task and differences highlighted (executed
movement= red, motor imagery= green). The time course and subject score for each task are shown.
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FIGURE 2 | The figures show the involvement of each IC across the whole brain with a standard threshold of p>0.5 (alternative hypothesis test) and
the variance it accounts for out of the total explained variance. In four stroke patients, the images were flipped so that the left hemisphere is always
contralateral to executed movement/motor imagery. The left hemisphere equates to the ipsilesional hemisphere. The scales show the transformed z-score, orange is
activation, and blue is deactivation. The normalized time course response is shown for each task and the full model fit (full model fit=blue, executed
movement= red, and motor imagery= green). The mean subject scores with standard error bars are shown for each task and differences highlighted (executed
movement= red, motor imagery= green). The time course and subject score for each task are shown.

parietal areas [IPC(PFo)]. There was bilateral activation of PMd,
both SI and SII, and parietal areas (hIP2,3 and 7PC). There was
ipsilateral activation of the parietal areas [hIP1, IPC (Pft)] and
cerebellum.

Similarly IC 2 predominantly showed contralateral activation
of BA4, parietal lobe [IPC (Pfo)], and bilateral activation
of PMd, SI, SII, parietal lobe (hIP2), and contralateral
cerebellum. However, in a different topographical location

(more dorsal), there was a small degree of deactivation
of the contralateral BA4a and ipsilateral parietal lobe
[IPC (Pfm)].

Independent component 4 was exclusively contralateral. While
sensory motor areas (BA4, SMA, PMd, SI, SII, BA3a,3b) and
parietal areas [both SPL(7PC) & IPC(Pfop)] were involved, it was
the only IC to involve BA44. Notably there was no cerebellar
activation.
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TABLE 1 | Regions activated or deactivated in each independent component.

Activated in both executed movement and motor imagery Executed movement only

IC1 IC2 IC4 IC5 IC8 IC3 IC7

Left Right Left Right Left Right Left Right Left Right Left Right Left Right

BA44 ↑
BA4 ↑ ↑a ↓ ↑ ↑ ↑ ↑ ↑
Pre-SMA

SMA ↑ ↑ ↑ ↑ ↑ ↑
PMd ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Area 1 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Area 2 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
3a ↑ ↑ ↑ ↑ ↑
3b ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
hIP1 ↑
hIP2 ↑ ↑ ↑ ↑ ↑ ↑ ↑
hIP3 ↑ ↑ ↑ ↑
SPL(7A) ↑
SPL(7PC) ↑ ↑ ↑ ↑ ↑ ↑ ↑
IPC(PFop) ↑ ↑ ↑ ↑ ↑ ↑
lPC(PFt) ↑ ↑ ↑ ↑ ↑
IPC(PFm) ↓
IPC(Pga)

IPC(PF)

Thal_premotor

Thal_motor

Thal_Somatosensory

Caudate

TE

CB ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

aSmall area of deactivation in a more dorsal area.

Independent component 5 shared many features of IC1 and
IC2, with involvement of primary and secondary motor areas
as well as parietal areas. More specifically, there was contralat-
eral activation of BA4, BA3b, parietal areas [SPL(7PC)], bilat-
eral activation of SI, SII, and cerebellum, and ipsilateral parietal
areas [IPC(PFt)]. Notably, it was the only component with only
ipsilateral involvement of PMd and parietal area (hIP3).

Independent component 8 was similar to IC4 with predomi-
nantly contralateral activation (except for SMA). This involved
BA4a, BA3a. In contrast, it was the only component with con-
tralateral PMd, SII activation.

Independent Components Involved During
Executed Movement Only (IC 3, 7)
Two components, IC 3 and 7, were involved during EM only
explaining 6.77 and 7.22% of total variance, respectively. IC3
involved activation of the contralateral BA4, BA3a, and IPC,
with bilateral activation of SMA, PMd, S1&2, BA3b, parietal area
(SPL), and cerebellum. There was ipsilateral activation of parietal
area (hIP2). IC7 activated the contralateral BA4, PMd, S1, BA3a,
and parietal areas [HIP3 SPL (7A)], with bilateral involvement
of BA3b, parietal area [IPC (PFop)], and cerebellum. There was
ipsilateral activation of SII, hIP2, and parietal area [IPC (Pft)].

Relationship of Motor Imagery and
Executed Movement ICs in Stroke Patients
to Motor Performance and Time Since
Stroke (IC 1, 3, 7)
In the stroke group, there were two ICs (1 and 3) that related to
motor performance. While IC 3 was exclusive to EM, it is notable
that IC1 – a component common to both EM and MI – is also
related to motor performance.

As there was no significant difference between the IC1 subject
scores for each task, both tasks were explored together. There
was a significant positive correlation between this combined IC1
subject score and theMotricity (Arm) scores (ρ = 0.581; p< 0.05),
i.e., the greater the activity within this network the better the
recovery. The same overall pattern of correlation was mirrored
with SIS (ρ = 0.501; p< 0.05) and Motor Activity Log (ρ = 0.540;
p< 0.05).

Independent component 3 (EM only) was positively correlated
with SIS (ρ = 0.648; p< 0.05). In other words, greater activation
of IC3 was associated with better recovery.

Finally, IC7 was negatively correlated with time since stroke
(ρ = 0.592; p< 0.05), i.e., this activation within this network
reduced with time since stroke.

Figure 3 summarizes these findings.
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FIGURE 3 | Spearman correlations between IC1 and (A) stroke impact score (B) motricity index and (C) motor activity log. Spearman correlations between IC3 and
(D) stroke impact score and (E) time since stroke.
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DISCUSSION

We report that the cortical networks that relate to recovery of
function are not specific to stroke but instead represent modu-
lation of existing networks. As expected, most cortical networks
were shared between EM and MI (accounting 33.13% of the total
explained variance), with only two networks that were exclusively
found during EM (accounting for 13.99% of the explained vari-
ance). The absence of any cortical networks specific to stroke
patients suggests that the changes in cortical networks reported
after stroke are not a result of a subtle biases exclusive to stroke
patients – thismay have included amotor behavior like adaptation
(adjusting movement to new demands) or other potential con-
founders such as effort or attention. This work emphasizes that
recovery of motor function involves preexisting cortical networks
that may help identify more effective restorative therapies for
stroke patients.

This study further extends the close similarities between MI
and EM. We report that the first IC (IC1 accounting for 7.22% of
the total explained variance) was involved in both groups and in
both tasks (EM and MI). It involved activation of the contralateral
motor areas and bilateral involvement of premotor and parietal
areas. The involvement of the motor cortex – an area pivotal
to motor learning (30) – strengthens the rationale for using MI
training after stroke.We found that greater involvement of IC1was
associated with better recovery ofmotor performance after stroke.
As this IC is shared between tasks, it suggests that a key aspect
of the recovery process occurs “upstream” from motor execution.
Importantly, this network is shared with age-matched controls,
implying that it is not exclusive to stroke.

Consistent with our previous findings in healthy volunteers
(31), we report two networks that are exclusive tomotor execution
(IC 3 and 7 explaining 6.77 and 7.22% of total variance, respec-
tively). The areas common to both are the contralateral primary
and secondary motor areas (although IC7 was largely bilateral
with marked cerebellar involvement). This is likely explained by
the differences between EM and imagery. First, EM involves dis-
charge via the corticospinal tract (CST) that we have previously
suggested dominates the movement-related activation (6). Sec-
ond, the resultant movement produces afferent sensory feedback
to the motor system.

We postulate that the IC3 is responsible for the discharge
via the CST, given the near exclusive activation of the pri-
mary motor cortex. In support of this view, greater subject
score of this network is associated with better recovery of
motor performance (as assessed with the SIS). This is consis-
tent with the findings from transcranial magnetic stimulation
(TMS) studies that suggest that preservation of the CST is asso-
ciated with a better recovery of motor performance after stroke
(32–34).

It is likely that IC7 is related to the sensory feedback during
motor execution, given the significant bilateral cerebellar activa-
tion. We found that this network reduces with time since stroke,
similar to other reports that use network analysis of resting-
state fMRI (35). Remarkably, both of these movement-related
networks are shared with age-matched controls, again consistent

with the idea that recovery ofmotor performance after subcortical
stroke involves modulation of extant networks rather than stroke-
specific networks.

The interactions between the primary motor cortices are the
foundation for numerous interventions after stroke (4, 14, 15,
25). These interventions can include but are not limited to
TMS [see Cramer et al. (7) for an overview]. Overall, there
is growing support for this model (13, 36). In addition to
the contralateral motor cortex activation, we identify an area
of deactivation within the more dorsal aspect of the ipsilat-
eral/contralateral motor cortex (IC2). While there are complex
interactions between the motor cortices during movement, the
topographical distributions of these areas, i.e., away from the
“hand area” make interpretation difficult. Of course, the model
previously suggested (4, 14, 15, 25) is an oversimplification and
fails to capture the existence of multiple cortical networks that
are involved in the recovery process. It may also apply to cer-
tain stages and degrees of recovery only. Importantly, future
work needs to address the effect of interventions like TMS and
tDCS on multiple cortical networks (37, 38) as their effects
may be more nuanced that simply increases or decreases acti-
vation. This highlights the importance of selecting the most
appropriate training that should be combined with TMS or
tDCS (39).

This study has a number of limitations. The patients included
were relatively well recovered and whether similar results would
be found in a more severely affected group is unknown. We
studied only subcortical stroke. It is feasible that our findings
may not apply to cortical strokes. We studied both right- and
left-hemisphere strokes in right handers and flipped the MR
images to one side in order to carry out the TICA on a mean-
ingful sample size. Again, we cannot rule out that findings for
dominant and non-dominant hemisphere stroke may differ. We
excluded stroke patients who were performing chaotic motor
imagery, and it is therefore possible that these patients may
have used alternative cognitive processes that could have been
interpreted as being stroke specific – though one would not
expect these networks to relate to the recovery of motor per-
formance as such. Although TICA can examine cortical net-
works that are shared between tasks, it has limitations (40).
By considering EM and MI together in TICA analysis, we
must assume that the tasks have the same temporal profile.
It is entirely possible that this approach has overlooked corti-
cal networks that have different temporal profiles – this limits
the use of TICA-based fMRI as a biomarker for patient selec-
tion. However, if that was the case, then one would expect
those areas to have been highlighted by earlier mass univariate
fMRI studies.

CONCLUSION

In summary, we find that in our sample of well-recovered sub-
cortical stroke patients, cortical networks associated with recov-
ery of motor performance include some cognitive processes
upstream from actual movement while others are exclusively
dependent on execution. Importantly, all of these networks were
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present in age-matched controls, suggesting that recovery of
motor performance after stroke requires existing cortical motor
networks rather than recruiting additional areas. These results
also imply that the models of motor recovery after stroke [sug-
gested by Ward and Cohen (14)] should be updated to consider
movement as a combination of distinct cortical networks, each of
which may have a separate contribution to recovery. Finally, we
need to explore how each of these networks is affected by non-
invasive stimulation to fully exploit their therapeutic potential.
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aim: To describe structural covariance networks of gray matter volume (GMV) change in 
28 patients with first-ever stroke to the primary sensorimotor cortices, and to investigate 
their relationship to hand function recovery and local GMV change.

Methods: Tensor-based morphometry maps derived from high-resolution structural 
images were subject to principal component analyses to identify the networks. We cal-
culated correlations between network expression and local GMV change, sensorimotor 
hand function and lesion volume. To verify which of the structural covariance networks of 
GMV change have a significant relationship to hand function, we performed an additional 
multivariate regression approach.

results: Expression of the second network, explaining 9.1% of variance, correlated with 
GMV increase in the medio-dorsal (md) thalamus and hand motor skill. Patients with 
positive expression coefficients were distinguished by significantly higher GMV increase 
of this structure during stroke recovery. Significant nodes of this network were located 
in md thalamus, dorsolateral prefrontal cortex, and higher order sensorimotor cortices. 
Parameter of hand function had a unique relationship to the network and depended 
on an interaction between network expression and lesion volume. Inversely, network 
expression is limited in patients with large lesion volumes.

conclusion: Chronic phase of sensorimotor cortical stroke has been characterized by 
a large scale co-varying structural network in the ipsilesional hemisphere associated 
specifically with sensorimotor hand skill. Its expression is related to GMV increase of md 
thalamus, one constituent of the network, and correlated with the cortico-striato-thalamic 
loop involved in control of motor execution and higher order sensorimotor cortices. A 
close relation between expression of this network with degree of recovery might indicate 
reduced compensatory resources in the impaired subgroup.

Keywords: stroke recovery, structural covariance network, fronto-parietal network, thalamocortical loop,  
tensor-based morphometry
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introduction

As both cross-sectional and a few longitudinal observational stud-
ies have demonstrated, behavioral recovery from hemiparesis after 
ischemic stroke shows marked between-subject variability (1, 2). 
This variability is thought to be determined not only by general 
demographic or clinical factors – such as age, gender or medical 
comorbidities – but also by neurobiological processes prompted 
by damage to critical nodes of functional and structural brain 
networks (3, 4). Activation studies using functional MRI (fMRI) 
have contributed considerably in the past to current knowledge of 
these processes (5–7); moreover, resting state fMRI and structural 
MRI have provided complementary insights in recent years (8). 
The improved understanding of stroke provided by neuroimag-
ing could impact neurorehabilitative therapies (9–11).

Activation studies performed with fMRI have shown that 
successfully recovered subjects show almost normal cerebral pat-
terns, exhibiting change during recovery from attention demand-
ing controlled processing of motor performance in the subacute 
stage to more fluent and automatic processing in the late chronic 
stage (12). This suggests recovery at the synaptic and/or neuronal 
level in the perilesional zone. In contrast, individuals presenting 
impaired recovery retain ineffective motor patterns and may not 
regain fully the specific motor function (13, 14); they, thus, possi-
bly require cognitive control and concentrated effort to maintain 
motor execution (15). Accordingly, volitional and emotional 
effort are means to enhance output in a diseased, low-efficient 
motor system, as indicated by the enhanced activation of motor 
networks observed in fMRI-studies of patients with chronic 
motor impairment (12). An additional aspect of the recovery 
process evidenced by studies at varying stages post-stroke is the 
influence of the contralesional hemisphere, functionally rather 
supporting motor activity in the early acute phase and mainly 
inhibiting it in the chronic stage (16, 17).

In the following, we utilize structural MRI to study stroke 
recovery in a patient cohort of 28 patients selected for first cortical 
sensorimotor stroke and associated initial hand paresis or plegia. 
The analysis employs a relatively new method, tensor-based 
morphometry (TBM), to quantify gray matter volume (GMV) 
changes during recovery (18, 19). While indicating structural 
neuronal plasticity, the changes cannot be assigned in vivo to a 
specific mechanism, e.g., axon sprouting, dendritic branching or 
synaptogenesis (20). Requiring high-resolution MRI [3D modi-
fied driven equilibrium Fourier transform (3D-MDEFT)] imag-
ing, TBM evaluates the transformations relating one acquisition 
to a second in a single subject. In our longitudinal study, the first 
acquisition was performed after 3 months in the subacute phase 
and the second after 9 months in the chronic phase. In all patients, 
initial diffusion-weighted MR images (21) delineated impacted 
critical brain lesions. High-resolution T1 (3D-MDEFT)-MRIs 
were acquired in 28 patients 3 and 9 months after stroke (22). 
An example of multimodal imaging in a wider sense (23), the 
acquisition protocols provided two non-redundant data sets from 
the same MR instrument in the same study population: bright 
tissue contrast for lesion delineation in the acute phase and GMV 
changes derived from the high-resolution T1 images by TBM 
analysis.

Accompanying the imaging was an array of clinical, motor and 
sensory assessments performed regularly during the 9-month 
study. Of the behavioral assessments, picking small objects (PSO), 
a lateralized motor skill requiring a particular precision grip, 
showed the greatest variance over the 9-month trial period (21). 
Response feature analysis (RFA) using Akaike’s information crite-
rion applied to the 9-month recovery trajectories of the individual 
patient tests partitioned the patient cohort into three subgroups 
showing fast linear, slow exponential or impaired recovery (24). A 
multivariate analysis, principal component analysis (PCA), of the 
PSO task confirmed the partitioning among the 28 patients and 
characterized each patient’s expression of the principal recovery 
trajectory by a single coefficient (22). This expression coefficient 
served as correlate to identify the neural pattern, represented as 
a principal component image of a PCA of the 28 TBM images, 
most closely associated with recovery. We have shown previously 
in the context of PET regional cerebral blood flow (CBF) images 
that PCA provides a powerful tool for elucidating disease-related 
abnormalities and post-lesional reorganization of neural net-
works in the human brain (25).

A previous mass-univariate analysis of these TBM images 
yielded three findings: (i) most striking, impaired patients with 
chronic disturbed hand motor skills showed the most prominent 
GMV increase in the ipsilesional medio-dorsal (md) thalamus, 
including also the head of the caudate nucleus; (ii) all patients 
evidenced GMV decreases within the contralesional anterior 
cerebellum at a location typical of cerebellar diaschisis after sen-
sorimotor cortical stroke; and (iii) patients showing fast recovery 
exhibited a slight GMV increase in the perilesional premotor 
cortex (PMC). These results stimulated several questions: Does 
the significant GMV increase of md thalamus in these patients 
represent an isolated, local effect or does it implicate an extended 
gray matter network involved in recovery after a sensorimotor 
cortical stroke? Does the extended network show a structural 
covariance pattern that discriminates among classes of recovery 
process? How does the network relate to the initial lesion pattern?

These questions led to the hypotheses examined in the current 
study: the prominent GMV changes in the md thalamus relate 
to the dorsolateral prefrontal circuit of Alexander et  al. (26) 
as proposed in our previous paper and may have access to the 
dysfunctional sensorimotor network post-stroke (22). A posited 
distributed neuronal network including the md thalamus is specifi-
cally related to sensorimotor hand skill. This network manifests a 
structural covariance pattern that may distinguish among patient 
subgroups according to recovery class. The structural covariance 
pattern shows a correlation with the initial lesion pattern.

Participants and Methods

Patients and healthy controls
We prospectively recruited patients at two comprehensive stroke 
centers (Departments of Neurology, University Hospital Bern 
and Kantonsspital St. Gallen, Switzerland) from January 01, 
2008 through July 31, 2010. Inclusion criteria were (1) first-ever 
stroke, (2) clinically significant contralesional sensorimotor 
hand function impairment as leading symptom, and (3) inclu-
sion of the pre- and/or post-central gyri within the ischemic 
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lesion confirmed on acute diffusion-weighted (DWI) and fluid 
attenuated inversion recovery (FLAIR) MRI scans. Patients were 
excluded if they presented (1) aphasia or cognitive deficits that 
precluded understanding the study purposes or task instructions, 
(2) prior cerebrovascular events, (3) occlusion or stenosis >70% 
of the carotid arteries in MR–angiography, (4) purely subcortical 
stroke, and (5) other medical conditions interfering with task per-
formance. We recruited 36 patients, seven of which dropped out 
(three withdrew consent, two were too frail for repeated testing, 
one was shown to have no cortical stroke after enrollment, one 
was lost to follow-up). The final sample consisted of 29 patients 
(five female). As a control group for the analyses of behavioral and 
clinical data, we recruited 22 healthy older adults (11 female) from 
the local community. Groups were matched for age (unpaired 
two-tailed t-test: t(49) = 3.4, p < 0.12) and handedness accord-
ing to the Edinburgh Handedness Questionnaire (unpaired 
two-tailed t-test: t(49)  =  0.36, p  <  0.30). The study received 
ethical approval from both research centers [Ethikkommission 
des Kantons St. Gallen (EKSG), Kantonsspital St. Gallen, 9007 St. 
Gallen and Kantonale Ethikkommission Bern (KEK), 3010 Bern, 
Switzerland]. All participants gave written informed consent 
before enrollment according to the Declaration of Helsinki. The 
same cohort was used for our previous publications (21, 22, 27).

Data acquisition
Study Timeline
We performed a baseline examination within the first 2 weeks after 
stroke (median 5 days, range 1–18 days) with extended measure-
ments of clinical and behavioral data (see below). The same 
measurements were taken 3  months (91  days, 80–121  days) and 
9 months (277 days, 154–303 days) after stroke. During each of these 
two visits, we acquired high-resolution anatomical imaging data. 
Patients were additionally seen at monthly intervals in-between 
these examinations to evaluate recovery of dexterous hand function.

Clinical and Behavioral Data
Clinical stroke severity was assessed using the National Institutes 
of Health Stroke Scale (NIHSS) (28). Hand motor function was 
assessed with two outcome variables, grip force and dexterity. Grip 
force was measured by hand dynamometry (HD) with a Jamar 
Dynamometer (29, 30). Dexterous hand function was measured 
using the modified Jebsen Taylor Test (JTT), a standardized 
quantitative assessment that consists of five timed subtests that 
simulate everyday activities (31). For our current analysis, we 
relied on data from the JTT subtest “PSO”, which consists of 
picking six common objects (two paper clips, two bottle caps, 
two coins) and dropping them into an empty can as fast as pos-
sible. As previously shown by our group, PSO explains by far most 
of the longitudinal variance in JTT scores and allows accurate 
classification of patient subgroups (see Supplementary Material 
for details) (21). The two motor tasks measure complementary 
aspects of hand motor function. Behaviorally, HD is performed 
with a simple power grip using the whole hand, whereas PSO 
necessitates precision grip characterized by opposition of the 
thumb against one or two fingers (32); and furthermore a proper 
coupling of grasping and lifting phases of objects performing this 
task which has been shown to be specifically vulnerable in the case 

of lesioned dorsolateral PMC (33). Neuroanatomically, each grip 
form is controlled by different components of the sensorimotor 
network: power grips are mainly controlled by the primary sen-
sorimotor cortices, whereas precision grip control includes the 
premotor and posterior parietal cortices (34, 35). As a measure 
of sensorimotor integration, we included a tactile object recogni-
tion (TOR) task, which consisted in discriminating 30 everyday 
objects with either hand (36). This task was administered at the 
same time as the NIH evaluation. Further details on measure-
ment procedures can be found in the Supplementary Material.

Imaging Data
All patients underwent acute phase imaging at admission accord-
ing to local stroke imaging protocols. This included a diffusion-
weighted imaging (DWI) scan and T1-weighted (T1w) anatomical 
image. At 3 and 9 months after stroke, each patient underwent 
high-resolution T1w imaging using a 3D-MDEFT with following 
imaging parameters (37): repetition time TR = 7.92 ms, echo time 
TE = 2.48 ms, flip angle = 16°, inversion with symmetric timing 
(inversion time 910 ms), 256 × 224 × 176 matrix points with a 
non-cubic field of view (FOV) of 256 mm × 224 mm × 176 mm, 
yielding a nominal isotropic resolution of 1  mm3 (i.e., 
1 mm × 1 mm × 1 mm), fat saturation, 12 min total acquisition 
time. Identical prescription of MR images was achieved by use 
of the Siemens auto-align sequence that automatically sets up 
consistent slice orientation based on a standard MRI atlas.

Data analysis
Synopsis
Longitudinal clinical and behavioral data were analyzed with 
a variant of RFA (24). This is a technique that uses summary 
measures to simplify analysis of serial measurements [cf. Ref. (24) 
for clinical examples]. As described below and in Ref. (21), we 
proceed in two levels: at the single-subject level, we summarize 
each patient’s z-transformed longitudinal data using linear and 
non-linear curve fitting. At the group level, we then calculate a 
PCA of these curves to derive a number that summarizes each 
patient’s recovery relative to the whole cohort. The analysis of 
structural high-resolution imaging data was performed similarly. 
At the single-subject level, we calculated TBM maps that encode 
(longitudinal) local GMV change between 3 and 9  months 
after stroke, as previously described (22). At the group level, 
we again calculated a PCA to identify regions with co-varying 
GMV change across time. In analogy to previous work analyzing 
structural covariance in the human brain, we refer to these maps 
as longitudinal structural covariance networks (38, 39).

Response Feature Analysis of Clinical and  
Behavioral Data
First, each patient’s PSO task data were transformed to z-scores 
using the mean and SD of a healthy control group of 22 age-matched 
subjects; normal performance was defined as z ≤ 0 ± 2.5 units. Then, 
each patient’s recovery trajectory was identified by fitting a set of lin-
ear and exponential models to the z-scores, and the best fitting model 
was selected using Akaike’s information criterion. Patients were 
classified in three recovery subgroups according to their recovery 
model: fast (linear recovery trajectory), slow (exponential recovery 
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trajectory converging to z ≥ −2.5) and impaired recovery (expo-
nential recovery trajectory converging to z < −2.5). The principal 
component analyses of the PSO and TOR task, and NIH evaluation 
were performed with Matlab program, princomp (The Mathworks, 
Inc., Natick, MA, USA). The PSO task yielded ten principal compo-
nent time courses and variances (one per visit); the TOR task and 
NIH evaluation, three time courses and variances. Each produced 36 
patient expression coefficients (or “scores”). The Kaiser–Guttmann 
criterion was used to select salient principal components (40). 
Missing data, arising when patient did not show or could not per-
form task, were replaced by means over all patients at the time point 
of the missing data; 10 out of 280 planned visits yielded missing data. 
The present study uses the expression coefficients of the subset of 28 
patients for which TBM images were acquired.

Lesion Mapping
Lesions were manually traced on DWI images using MRIcron,1 
as described in Ref. (21). Lesion volumes were calculated by 
summing all voxels within the resultant binary lesion masks. The 
latter were used to exclude lesioned voxels during normalization 
of all images into the stereotaxic Montreal Neurological Institute 
(MNI) space (see below). Additionally, we built summary lesion 
maps for each recovery subgroup, which we thresholded at >20% 
lesion density for comparison with structural data (see below).

Tensor-Based Morphometry
Tensor-based morphometry maps were calculated as described 
in Ref. (22) using SPM8 (version 46672) running on MATLAB 
(R2009a, MathWorks, Natick, MA, USA). Briefly, we first rea-
ligned 3D-MDEFT images from both acquisition time points 
to correct for position differences. We next used segmentation 
with cost-function masking to derive gray matter tissue parti-
tions (41, 42). We then calculated in each subject the Jacobian 
determinants (first derivatives) of high-dimensional deformation 
fields that transform voxel-by-voxel the T1w image from month 
3 onto the T1w image from month 9. Multiplication of the first 
derivatives with the matter segmentation from month 3 results 
in a map that encodes matter volume expansion or contraction 
per voxel across time. These maps were transformed into the 
stereotaxic MNI space using normalization parameters derived 
from segmentation. Normalized GMV change maps were finally 
smoothed with a 12 mm × 12 mm × 12 mm isotropic 3D Gaussian 
kernel, motivated by previous studies that show a reduction of 
false positives for this kernel size in voxel-based morphometry 
studies (43). These smoothed maps were entered in the covari-
ance analysis as described below. Based on our previous study, we 
used an unbiased region of interest analysis to extract local GMV 
changes from ipsilesional thalamus, ipsilesional dorsal PMC and 
contralesional cerebellum (22).

Structural Covariance Using Principal  
Component Analysis
The PCA of the TBM images was performed on a subset of 28 
patients representing the volume changes between months 3 and 

1 https://www.nitrc.org/projects/mricron
2 http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

9 (of the 29 patients retained for the study 1 had to be excluded 
because of MR motion artifacts). PCA was executed on the 
images data using in house software written in MATLAB based 
on the algorithm described by Alexander et al. and Moeller et al. 
(44, 45). Extracerebral voxels were excluded from the analysis 
using a mask derived from the gray matter component yielded by 
segmentation of the anatomical image volume into gray matter, 
white matter and cerebrospinal fluid followed by the calculation 
of residual matrices for each of the 28 scans. From matrices whose 
rows corresponded to the 28 scans and columns to the 132407 
relevant voxels in a single image volume were subtracted from 
each element (i) the mean of voxel values of its column and (ii) 
the mean of voxel values of its row, and (iii) added to each element 
the grand mean of all voxel values in the original matrices. The 
row, column, and grand means of the resulting residual matrices 
vanish. Using the singular value decomposition implemented 
in Matlab, each residual matrix was then decomposed into 28 
components. Each component consisted of an image volume, i.e., 
eigenimage, a temporal expression coefficient, i.e., eigenvariate, 
and an eigenvalue. The squared eigenvalue is proportional to the 
fraction of variance described by each component; the subject 
expression coefficients describe the amount that each scan con-
tributes to the component; and the component image displays 
the degree to which the voxels co-vary in the component in the 
course from months 3 to 9. The subject expression coefficients and 
voxel values of a principal component are orthonormal and range 
between −1 and 1; the orthogonality reflects the lack of statistical 
correlation among the principal components. Significant clusters 
were delineated by applying a height threshold at the first and 
ninety-ninth percentile of voxel values and an extent threshold 
of 32 voxels (corresponding to the minimal resolution element 
of the TBM maps). These clusters were localized using the Jülich 
cytoarchitectonic probabilistic atlas (SPM Anatomy toolbox, 
Version 1.8, made available through the Human Brain Mapping 
division at the Forschungszentrum Jülich at http://www.fz-juelich.
de/inm/inm-1/DE/Forschung/_docs/SPMAnatomyToolbox/
SPMAnatomyToolbox_node.html). Furthermore, we calculated 
the overlap between each network cluster and subgroup lesion 
density maps.

statistical analysis
We used median and range for descriptive statistics. We first 
assessed the relationship of structural covariance component 
expression, clinical and structural variables, e.g., lesion volume 
and regional GMV change, using Pearson’s correlation coefficient 
in order to identify the network related to hand function recov-
ery. Next, we assessed differences with respect to subgroups in 
network expression and behavioral variables. To do so, we first 
applied the Shapiro–Wilk test and inspected Q–Q plots for each 
variable to assess deviations from normality. We used then non-
parametric tests to compare scalar variables where appropriate, 
i.e., the Kruskal–Wallis one-way analysis of variance by ranks to 
assess differences in the central tendency among any of the three 
subgroups, and the Mann–Whitney U test to compare pairs of 
subgroups against each other. Finally, we used robust (multiple) 
regression within the framework of the general linear model to 
test the relationship of network expression, clinical and structural 
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variables to hand function recovery and their interaction across 
the whole patient cohort. The criterion for significance was set at 
p < 0.05, Bonferroni corrected for multiple comparisons.

results

clinical and Behavioral Data
Clinical characteristics of the patient cohort are summarized in 
Table 1. Representative sections of each subjects’ ischemic lesion 
can be found in Figure S1 in Supplementary Material. The behav-
ioral data was incorporated in two principal component analyses. 
The first principal components of PSO and NIH assessments were 
chosen for further analysis because they explained the greatest 
fractions of variance, 70 and 90%, respectively, of the correspond-
ing PCAs. RFA of the PSO task indicated that eight patients 
showed normal motor performance at baseline (subgroup “fast 
recovery”), ten patients exponential recovery that converged to 
normal motor performance (“slow recovery”) and eight whose 
recovery trajectories followed exponential recovery curves that 
did not reach normal performance (“impaired recovery”) (21).

selection of longitudinal structural covariance 
networks
Table 2 characterizes three principal components of the TBM 
images (structural covariance networks) that correlated with 
clinical and behavioral variables across the whole patient cohort. 
The first component (PC1TBM) correlated with GMV reduction 
in the cerebellum contralateral to the affected hemisphere. 
The second component (PC2TBM) correlated with lesion size, 
GMV volume increase in the md thalamus, clinical (PC1NIHSS 
expression) and hand function specific recovery (PC1PSO expres-
sion). The fourth principal component correlated exclusively 
with PC1NIHSS expression. None of the other PCs surviving the 
Kaiser–Guttmann criterion correlated with any of the external 
variables.

Thalamocortical network related To hand 
Function recovery
Effects Across the Patient Cohort
Since the second structural covariance network PC2TBM cor-
related with our specific measure of hand function recovery, 
we focused further analysis on its critical clusters (or nodes, 
Figure 1A). Clusters that co-varied with the thalamus fell within 
the first percentile of voxel values, and were labeled as “positive” 
clusters since the thalamus showed gray matter increase. These 
clusters (ordered by size) included insular and peri-insular 
cortex, dorsolateral prefrontal and ventral premotor cortices, 
thalamus, posterior parietal cortices and two smaller clusters 
in the temporal and occipital cortex. A single cluster fell within 
the ninety-ninth percentile and included pre- and post-central 
cortex. Table 3 summarizes localization, statistics and functional 
correlates of all clusters that survived thresholding (PC1TBM and 
PC4TBM, are summarized in Tables S1 and S2 in Supplementary 
Material, respectively). Functional interpretation was done in the 
context of motor hand function, based on current literature. The 
expression of this network had a strong correlation with thalamic 
GMV change across the whole cohort (Figure 2A).

Effects Within Patient Subgroups
Having identified a structural network related to hand function 
recovery (Table  4), we next analyzed its relationship to lesion 
topography within recovery subgroups. Lesion analyses are 
summarized in Figure 1B. Projection of subgroup lesion density 
maps onto PC2TBM clusters showed that the thalamic cluster was 
spared across all subgroups, but that the other clusters showed 
varied involvement. A detailed volumetric analysis (Table  5) 
showed that only a small fraction of each lesion density map 
affected network clusters (median and range 0.95%, 0–6.7%), 
indicating that GMV density changes occurred either in perile-
sional or more distant areas. When analyzing the percentage of 
each cluster affected by the lesion, there were notable differences: 
lesions in the fast recovery subgroup affected mostly the parietal-
opercular and insular cluster (Cluster 1+), whereas lesions in 
the impaired subgroup affected mostly the ventral premotor 
cortex and intraparietal sulcus (IPS) (Cluster 3+ and 4+). The 
slow recovery subgroup showed no clear lesion profile. Affection 
of the pre/post-central cluster (Cluster 1−) increased across 
subgroups.

We further compared the patients subgroups presenting nor-
mal motor performance after 9 months (fast and slow recovery) 
with the subgroup that did not achieve normal performance 
(impaired recovery). As expected from the RFA, the latter group 
yielded the highest expression coefficients in PC1NIHSS (p < 0.01) 
and specifically in PC1PSO (p < 0.0001). This group had also the 
largest GMV expansion in the medio-dorsal thalamus and the 
highest lesion volumes (both p < 0.05). Figure 2 shows the rela-
tionship between PC2TBM expression and thalamic GMV change 
(panel A) and hand skill recovery as reflected by PSO (panel B), 
respectively. Considering all individuals, GMV change correlated 
with expression coefficients of the structural covariance network 
of PC2TBM (R  =  0.72 and p  <  0.5 after correction for multiple 
comparisons). PC2TBM expression could also distinguish between 
subgroups: When dividing patients into subgroups with positive 
versus negative network expression coefficients (without regard 
to recovery subgroup assignments), we found that the positive 
subgroup has significantly higher thalamus GMV change (median 
1.35% with range 0.83–1.79%), whereas the negative subgroup 
shows no significant change (median 0% with range 0.04–0.04%, 
Mann–Whitney U test p < 0.001).

However, only the impaired recovery subgroup showed a lin-
ear relationship between the expression of structural covariance 
network of PC2TBM and recovery (Figure 2B): the slope estimate 
(and SE) was 53.1 ± 22.7; adjusted R = 0.74 with p < 0.05. Note 
that one patient of this subgroup showed a negative PC1PSO 
expression score. Inspection of the raw data indicated that this 
particular subject showed a secondary deterioration of skilled 
hand function during the last 2  months of the study, after an 
initially favorable course. Removal of this outlier did not change 
results. A few individuals of the recovered subgroups exhibited 
high GMV changes in the medio-dorsal thalamus, representing 
exceptions to the group trend.

Multivariate Linear Regression
To further test the specificity of the association between PC2TBM 
and hand function recovery, we calculated a multivariate linear  
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TaBle 1 | Descriptive statistics of clinical and demographic data of stroke patients at baseline, month 3 and month 9.

no. id age gender side etiology nih B nih M3 nih M9 mrs B mrs 
M3

mrs 
M9

hD
B

hD
M3

hD
M9

PsO
B

PsO
M3

PsO
M9

TOr
B

TOr
M3

TOr
M9

1 p01 77 M L UN 4 2 1 2 1 1 31 40 41 9.7 7.9 5.7 30 30 30

2 p02 50 M R OC 7 1 0 4 1 0 6 54 63 0.0 6.0 6.2 25 28 30

3 p03 78 M R LAD 5 5 3 3 2 2 15 17 42 13.5 11.1 9.1 28 29 27

4 p05 80 M L LAD 2 3 1 2 1 1 42 42 37 10.6 6.5 8.4 30 30 30

5 p06 53 F R LAD 6 3 3 3 2 1 11 9 19 29.9 10.1 14.9 0 0 0

6 p07 78 F R CE 4 2 2 2 1 1 18 21 21 14.0 7.5 7.1 0 12 24

7 p09 70 F R CE 3 2 0 2 1 0 21 31 34 9.1 8.5 6.0 29 30 30

8 p11 41 F L LAD 3 2 0 1 0 0 32 37 39 5.6 4.0 5.11 24 30 30

9 p12 54 M R UN 4 2 1 3 1 0 14 33 38 8.5 5.5 5.2 30 30 30

10 p15 54 M L LAD 6 4 1 3 1 1 10 24 33 38.8 13.1 11.1 0 6 10

11 p16 73 M R OC 4 2 0 2 1 0 51 55 55 7.3 4.9 5.3 26 29 30

12 p17 58 M L CE 4 2 0 3 0 0 20 39 48 11.5 4.3 4.7 30 29 30

13 p20 70 M L CE 6 4 2 3 1 1 24 35 42 12.9 9.7 9.3 0 6 10

14 p24 74 M R CE 4 1 0 1 0 0 34 49 50 14.3 6.9 5.1 28 30 30

15 p25 49 M R CE 3 2 1 2 1 0 49 59 67 12.3 5.3 5.9 0 6 10

16 p26 44 M L CE 3 1 0 1 0 0 9 33 50 11.5 6.0 5.1 30 30 30

17 p30 63 M L CE 4 1 1 3 0 0 43 41 45 10.6 6.3 6.3 30 30 30

18 p31 63 M L UN 5 0 0 2 0 0 30 48 44 5.3 4.2 4.7 30 30 30

19 p33 75 M R LAD 3 2 2 2 1 1 3 14 22 0.0 18.8 11.5 12 28 30

20 p35 78 M L LAD 5 3 2 3 1 1 23 48 40 10.1 6.8 6.1 30 30 30

21 p36 60 M L CE 4 1 1 3 1 1 31 40 41 18.2 8.0 6.6 30 30 30

22 p37 75 M R OC 4 2 1 2 1 1 0 27 32 0.0 8.6 10.4 4 23 25

23 p38 77 M L LAD 5 2 2 3 1 1 10 21 23 26.9 10.9 8.3 29 30 30

24 p41 51 M R CE 2 1 0 2 1 1 36 41 52 7.1 5.1 4.8 30 30 30

25 p42 64 M R LAD 1 0 0 2 0 0 14 33 35 18.9 7.1 7.4 29 30 30

26 p43 82 M L LAD 3 3 2 2 2 1 17 10 18 16.8 21.4 13.9 20 22 25

27 p44 67 M R UN 11 10 9 4 3 3 15 15 41 52.3 45.1 12.3 3 4 2

28 p45 53 M R LAD 11 9 4 5 3 2 0 10 17 0.0 45.5 19.9 0 1 3

Median 65.5 24 M 13 L 11 LAD, 
10 CE, 4 
UN, 3 OC

4 2 1 2 1 1 20 35 41 11.0 7.3 6.5 28 29 30

Range 41, 82 4 F 15 R 1, 11 0, 10 0, 9 1, 4 0, 3 0, 3 0, 51 9, 59 17, 67 0.0, 52.3 4.0, 45.5 4.7, 19.9 0, 30 0, 30 0, 30

Median (z) −1.3 −0.2 0.4 −5.0 −1.2 −0.4 0.6 0.6 0.6

Range (z) −2.8, 
1.3

−2.3, 
1.9

1.6, 2.6 −38.9, 
0.5

−33.2, 
1.6

−11.7, 
1.0

−7.5, 
0.6

−6.5, 
0.6

−4.5, 
0.6

M, male; F, female. Etiology is classified according to the Trial of ORG 10172 in acute stroke treatment (TOAST): LAD, large artery disease; CE, cardioembolism; OC, other determined cause; UN, undetermined cause. NIH, National 
Institutes of Health Stroke Scale; mRS, modified Rankin Scale; HD, hand dynamometry (in kilograms); PSO, picking small objects task (in seconds); TOR, tactile object recognition (in numbers of recognized objects); z, z-scores using 
mean and standard deviation of healthy controls for each task.
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TaBle 2 | correlation of longitudinal structural covariance networks across all patients (n = 28).

component Variance (%) Parameters with significant correlationsa Values of parametersb correlation 
coefficient (r)

PC1TBM 19.9 GMV change ant. cerebellum −0.2 (−1.3, 0.6) % −0.57

PC2TBM 9.1 Lesion volume 9.0 (0.6, 141.7) cc 0.61

PC1NIHSS expression −3.65 to 11.9 0.61

PC1PSO expression −20.99 to 64.26 0.51

GMV change md Thalamus 0.4 (−0.6, 4.0) cc 0.72

PC4TBM 8.1 PC1NIHSS expression 0 (−3.65, 11.9) 0.54

Cumulative Variance 37.1

NIHSS score, National Institute of Health Stroke Scale-score; PSO, picking small objects, MI primary motor cortex, SI primary sensory cortex.
aSignificant correlations after correction for eight multiple comparisons: 0.05/8 = 0.006 yields significant entries. This probability corresponds to a correlation coefficient of 0.466.
bValues of parameters are indicated as median, including range, expression coefficients are indicated as range due to normalization (median of 0).

 

FigUre 1 | spatial topography of longitudinal structural covariance network correlating with hand function recovery. (a) shows the six largest clusters 
of supra-threshold voxels for the second principal component (PC2TBM) projected onto a standard three dimensional brain and onto a cytoarchitectonic atlas (cluster 
3+) in MNI space. Clusters are labeled according to their (positive or negative) correlation with gray matter volume expansion in the medio-dorsal thalamus. The 
threshold for positive clusters corresponds to the first percentile of voxel values (absolute value 0.0064), the threshold for the negative cluster to the ninety-ninth 
percentile (absolute value 0.0095). (B) shows the spatial relationship between the covariance network clusters and lesion maps of patient subgroups. Color-coded 
contours define areas with ≥20% lesion probability in each subgroup. Size, localization, cytoarchitectonic assignment, and functional correlates of the individual 
clusters are summarized in Table 3.
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TaBle 3 | clusters of the longitudinal structural covariance network (Pc2TBM) related to hand function recovery: size, localization, cytoarchitectonic 
assignment, and functional correlates.

cluster size (n vox.) Mni (max.) anatomical area cytoarchitectonic area Functional correlate (references in brackets)

First-percentile voxels (height threshold: 0.0064, extension threshold: 32 voxels)

1+ 1362 38/−28/16 R. parietal operculum OP1, OP2, OP3 Tactile working memory, stimulus discrimination and 
perceptual learning (41–44)

R. insula Ig1, Ig2 Multisensory processing (36, 50–53)

54/−26/28 R. inferior parietal lobule PFcm, PFop, PFt Action observation and imitation (47–49)

2+ 653 43/26/26
40/10/34

R. DLPFC (dorsal-posterior part)
R. ventral premotor cortex

n.a.
n.a.

Action execution and working memory (34, 35)
Motor hand skill related to intrinsic objects properties (83)

3+ 502 10/−20/6 R. thalamus Thal: prefontal
Thal: temporal
Thal: parietal

MD nucleus to prefrontal cortex (33–35)
MD nucleus to temporal lobe (33–35)
LP/Pu complex to parietal lobe (33–35)

4+ 408 42/−38/42 R. intraparietal sulcus
R. post-central gyrus
R. inferior parietal lobule

hIp1, hIp2, hIp3
BA2
PFt, PFm

Spatial attention, visuomotor transformation (57, 66–68)
Primary somatosensory information processing (56)
For PFt see above; for PFm non-spatial attention (49)

5+ 271 52/−48/2 R. superior (and middle  
temporal) gyrus

n.a. Spatial awareness (69)

6+ 158 30/−62/36 R. middle occipital gyrus n.a. Spatial processing of tactile stimuli (70)

ninety-ninth-percentile voxels (height threshold: 0.0095, extension threshold: 32 voxels)

1− 179 54/−14/38 Pre- and post-central gyrus BA 4p, 3b, 1, 2 Voluntary and passive finger motion (BA 4p) (71)
Somatosensory information perception (3b) and 
processing (1, 2, 73)
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regression of PC1PSO onto covariance network expression, age, 
volume, and thalamic GMV change: it showed significant effects 
of the model intercept (p = 0.036), PC2TBM expression (p = 0.048) 
and lesion volume (p = 0.037). The significant intercept indicated 

FigUre 2 | correlation between Pc2TBM, thalamic gMV change, and longitudinal hand function recovery. (a) shows the relationship between thalamic 
gray matter volume (GMV) change and expression of the structural covariance network PC2TBM: thalamus GMV change = 0.0325 × PC2TBM + 0.0053; R = 0.72, 
p < 0.001. Dashed transversal lines indicate the interval of reliable GMV change (± 0.75%), as determined in previous studies. (B) shows the correlation between 
expression of the structural covariance network PC2TBM and the first component of longitudinal behavioral recovery of skilled hand function, PC1PSO. Only impaired 
patients show a strong correlation between network expression and hand function recovery; PC1PSO = 51.9 × PC2TBM + 19.76; adjusted R = 0.74, p < 0.05. The 
recovered subgroups are characterized by a constant of differing magnitude. One patient with negative expression coefficients of PC1PSO (marked by an asterisk) has 
been identified as outlier (see text).

residual variance not modeled by our predictors. We, therefore, 
investigated a reduced model that included PC1PSO as dependent 
variable, and only the significant predictors from the first model, 
i.e., PC2TBM expression, lesion volume and their interaction 
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TaBle 5 | Overlap between subgroup lesion density maps and longitudinal structural covariance network related to hand function recovery.

cluster 1+ cluster 2+ cluster 3+ cluster 4+ cluster 5+ cluster 6+ cluster 1−
pOP vPMc Thal iPs sTg MOg Pcg

Raw volume (cc) 10.9 5.2 4.0 3.3 2.2 1.3 1.4

Fast 105.7 7.10 0.3 0 1.0 0.3 0 0.3

Slow 113.9 1.82 0.5 0 1.0 1.0 0.2 0.6

Impaired 239.7 8.7 3.3 0 3.3 1.1 0.9 1.4

Percent of lesion on cluster

Fast 6.7 0.3 0 0.9 0.3 0 0.3

Slow 1.6 0.4 0 0.9 0.9 0.2 0.5

Impaired 3.6 1.4 0 1.4 0.5 0.4 0.6

Percent of cluster affected

Fast 61.5 5.8 0 30.3 13.6 0 21.4

Slow 14.7 9.4 0 29.7 46.4 17.7 44.3

Impaired 33.0 62.7 0 98.8 51.4 69.2 100.0

Cluster labels correspond to Table 3, additionally including main anatomical region within each cluster. Volumes are calculated for subgroup density maps in Figure 1B and each 
cluster separately.
pOP, parietal operculum; vPMC, ventral premotor cortex; Thal, thalamus; IPS, inferior parietal sulcus; STG, superior temporal gyrus; MOG, middle occipital gyrus; PCG, pre- and 
post-central gyri.
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(PC2TBM expression  ×  lesion volume) as independent vari-
ables. The interaction term significantly predicted PC1PSO scores 
(β = 1.1, t(24) = 3.83, p < 0.001) over and above the other vari-
ables (both p > 0.1). The interaction term explained a significant 
portion of variance in hand function recovery (R2 = 0.639, F(3, 
24) = 14.18, p < 1.6e−5). Full model parameters are summarized 
in the Table S3 in Supplementary Material.

Discussion

In this study, we have identified structural covariance networks 
deduced from GMV changes during the recovery of patients 
suffering from hand paresis after ischemic sensorimotor stroke. 
These networks correspond to the first, second, and fourth 

TaBle 4 | clinical and structural variables across recovery subgroups.

Fast recovery n = 8 slow recovery n = 12 impaired recovery n = 8 Kruskal–
Wallis, p

Mann–Whitney, 
impaired versus 

recovered p (2-tailed)

network of gmv change between months 3 and 9

PC2TBM expression coeff. −0.079 (−0.117, 0.025) −0.04 (−0.23, 0.52) 0.06 (−0.22, 0.51) 0.55 n.a.

Parameters tested for correlation

Age 63 (41, 73) 75 (49, 80) 68.5 (53, 82) 0.31 n.a.

Lesion size (cc)a 7.80 (0.76, 75.52) 3.48 (0.57, 70.39) 42.84 (2.72, 141.71) 0.08 <0.05

PC1 (NIH) expression coeff.a −2.18 (−3.07, 0.61) −1.31 (−3.65, 2.12) 1.33 (−1.40, 11.90) <0.01 <0.01

PC1 (PSO) expression coeff.a −15.3 (−21.0, 6.7) −10.8 (−16.8, 3.1) 16.5 (−5.6, 64.3) <0.0001 <0.0001

PC1 (TOR) expression coeff. 13.9 (−0.45, 14.3) 13.9 (11.0, 14.3) −29.3 (−34.3, 13.7) <0.001 <0.001

GMV premotor area 0.0043 (−0.0010, 0.0092) 0.0017 (−0.0013, 0.0078) 0.0011 (−0.0020, 0.0083) 0.69 n.a.

GMV thalamusa 0.0017 (−0.0043, 0.0143) 0.0023 (−0.0061, 0.0292) 0.0083 (−0.0002, 0.0179) 0.06 <0.05

GMV cerebellum −0.0019 (−0.0130, 0.0031) −0.0029 (−0.0089, 0.0060) −0.0012 (−0.0121, 0.0051) 0.43 n.a.

All values are given as median (range).
NIH, National Institutes of Health Stroke Scale; PSO, picking small objects; PC1, first principal component of longitudinal data of corresponding clinical or behavioral variable; 
PC2TBM, second principal component of tensor-based morphometry data; GMV, gray matter volume.
aSignificant correlations after correction for multiple comparisons: at a nominal alpha level of 0.05 and eight correlations, a p-value of 0.05/8 = 0.006 yields significant entries. This 
probability corresponds to a correlation coefficient of 0.466.

principal components determined from a PCA of TBM images 
and explained 19.9, 9.1, and 8.1% of the variance, respectively. 
Implied by the correlation of its expression coefficients with 
GMV-decrease in the anterior cerebellum contralateral to pre- 
and post-central infarction in all patients, the first component 
PC1TBM appears to reflect a neuronal network caused by diaschisis 
from sensorimotor cortex (46). The second component PC2TBM, 
associated with a specific manual skill, i.e., precision grip, as 
implied by its correlation with PC1PSO represents a neuronal net-
work involving GMV- increase in the md thalamus. Finally, the 
correlation of the fourth component expression coefficients with 
the NIHSS scores summarized in PC1NIHSS suggests that the cor-
responding network reflects general neurological deficit. A third 
behavioral parameter of sensory information processing, TOR, 
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showed no significant correlation with a principal component, 
although a deficit persisted in the impaired subgroup.

Finally, a multivariate linear regression approach verified (i) 
the unique relationship of PC1PSO to the structural covariance 
network of PC2TBM; and furthermore, that this relationship is 
related specifically to the network expression but not to a single 
constituent, e.g., md thalamus. Since PC2TBM relates directly to 
hand function recovery and thus to our study aim, we will discuss 
this network in more detail in the following.

associations of the structural covariance 
network With external Variables
This study represents important progress following our recent 
paper on “Gray matter volumetric changes related to recovery 
from hand paresis after cortical sensorimotor stroke” (9) as it 
relates the most prominent finding of gray matter increase in 
the md thalamus in patients after a first-ever stroke to a large 
distributed structural covariance network including a cortico-
striato-thalamic loop and diverse sensorimotor cortices.

Irrespective of the clinical and behavioral course, this PC2TBM 
network distinguishes clearly within the study cohort since the 
subgroup with positive expression coefficients is associated with 
large GMV increases in the md thalamus between months 3 and 
9, while the subgroup with negative expression coefficients did 
not exhibit a recognizable GMV change. The GMV increases in 
the former subgroup exceed the measurement uncertainty and 
are consistent with the few comparable studies, e.g., in the paper 
of Gauthier et  al. (32). As Table  2 shows, the neural network 
represented by PC2TBM is significantly related to the recovery of 
motor hand skill in the patient cohort; however, only the impaired 
recovery subgroup shows a strong linear regression, while the 
fast and slow recovery groups show little correlation with PC1PSO 
(Figure 2B). A multivariate linear regression positing the depend-
ence of PC1PSO on the three salient principal components as well as 
on age, lesion volume, and GMV change in the thalamus showed 
significant effects only in PC2TBM and lesion volume. A refined 
analysis showed a significant interaction between these two vari-
ables, and revealed that the interaction was the only significant 
explanatory variable. The fast and slow recovery groups indicated 
an inverse relationship between PC2TBM and lesion volume; the 
greater lesion volumes were accompanied by smaller component 
expression coefficients, and vice versa. In contrast, the members 
of the impaired group exhibiting the largest interaction expressed 
most strongly PC1PSO.

network Topography and suggested Functions
The salient regions of the second principal component PC2TBM are 
summarized in Table 3; the regions characterized by voxel inten-
sities of the first percentile contain the thalamic cluster. Using a 
probabilistic atlas of white matter connections, we found that this 
thalamic cluster was located on regions of the md thalamus that 
are preferentially connected to prefrontal, temporal and parietal 
cortex (33, 34). These three cortical regions were also found in the 
set of regions belonging to the first percentile, underscoring the 
importance of the thalamic gray matter increase. The implicated 
md thalamus and dorsolateral prefrontal cortex are constituents 

of the subcortico-cortical, dorsolateral prefrontal loop (35). The 
involvement of this dorsolateral prefrontal-striato-thalamic loop 
suggests a compensatory mechanism to maintain motor execu-
tion by cognitive control once the primary (more automatic) sen-
sorimotor network of hand motor skill is dysfunctional (47).

Both parts of posterior medial thalamus and dorsal-posterior 
subarea of the dorsolateral prefrontal cortex are interconnected 
with the posterior parietal cortex (PPC) (48), which our previ-
ous VLSM studies (8) have shown to be seriously affected in the 
impaired subgroup.

Densely interconnected structures of ventral PMC, PPC, SII 
and posterior insula are represented in the component image of 
PC2TBM, representing possible sub-networks engaged in higher 
order sensorimotor information processing and spatial awareness 
(see below). In the PPC locally functional processed information, 
e.g., space and action perception, is transmitted via feedback 
loops to ventral PMC (34, 49, 50). The areas co-varying posi-
tively with the thalamus represent a complex neuronal network 
consisting of functional and dysfunctional nodes. The functional 
nodes outside of the lesions comprise the dorsolateral prefrontal 
loop for motor execution (26), whereas the dysfunctional nodes 
include various higher order sensorimotor cortices within the 
lesions. Performance of sensorimotor hand skill, especially in the 
impaired recovery group, is related to lesion size and extension 
into network nodes in ventral PMC, PPC, SII, and posterior 
insula.

A remarkable feature of the structural covariance pattern is 
the appearance of the parietal operculum subarea OP1 in the 
absence of OP4. OP4 plays a role mainly in basal sensorimotor 
integration processes, e.g., incorporating sensory feedback into 
motor actions which are the basis for information processing 
during tactile exploration (51, 52). The involved OP1 seems to 
support more complex information processing demanded during 
tactile working memory, stimulus discrimination, and perceptual 
learning (53–56). These differing functional roles are reflected by 
the distinct connectivity profiles of the areas: OP4 is connected 
to fronto-parietal areas, while OP1 is connected predominantly 
to the inferior parietal cortex (IPC) (57). In a three-region model 
in humans, the rostral IPC, including PFcm, PFop, PFt, has been 
shown to be involved in reaching and grasping (58). The very 
rostral part (PFop) seems to be activated specifically during 
observation of tool use. Moreover, meta-analyses indicated the 
participation of PFt in action observation and imitation networks 
(59–61). In humans somatosensory activation of the posterior 
insula has been observed during simple stimulation paradigms, 
e.g., estimation of the roughness of gratings and TOR, suggesting 
a role in somatosensory processing (62–65). Multisensory pro-
cessing in the posterior insula has also been observed in primate 
experiments with responses also to auditory, baroreceptive and 
painful stimuli (66, 67).

As has been shown in primates, while area 2 is activated by 
fine grained proprioceptive sensory information obtained by 
transitive finger movements (68), specific neuron populations 
within anterior IPS (AIP) are activated by grasping and manipu-
lation of 3-D objects as well as by visual fixation of objects (69). 
Analogously, in humans area 2 is involved in the perception 
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of geometrical and texture characteristics like edge length and 
roughness. This function contrasts to the putative human homo-
logue of the IPS, which responds to shape perception, including 
somatosensory discrimination, visuo-tactile matching, and, 
together with premotor cortices, skilled motor manipulation of 
3-D objects (50, 70–73). The human IPS has been characterized 
using cytoarchitectonical techniques (74, 75). Functional con-
nectivity analyses have shown these sub-areas along the IPS to be 
distinguished by distinct connections (76). The AIP ROIs (hIP1 
and hIP2) connect mainly to frontal attentional regions, whereas 
posterior IPS (hIP3) connects mainly to posterior occipital 
regions. Analog connections have been shown in macaque 
anatomical studies, e.g., the strong connections between the AIP 
and ventral PMC and the posterior IPS (CIP) to visual cortices 
(77). This explains also visuomotor coordination via the AIP 
and the implication of the posterior IPS in peripersonal visual 
representations (78–80). Karnath et al. found that in patients free 
of lesions in visual as well as subcortical structures, the critical 
site for spatial awareness was located in the superior temporal 
gyrus (BA 22 and 42) (81). Using fMRI it could be shown that the 
right middle occipital gyrus processes spatial rather than non-
spatial auditory and tactile stimuli (82). In a review, Rizzolatti 
et al. conclude that the ventral PMC executes both motor and 
cognitive functions: motor functions comprise hand actions 
related to intrinsic object properties and head and arm actions 
related to spatial locations, whereas cognitive functions include 
space perception, action understanding and imitation (83). 
In the context of our study the observation of Ehrsson et al. is 
of importance as they found that precision grip showed more 
extending activations compared to power grip, involving ventral 
PMC in both hemispheres (35).

Of the salient regions of the second principal component 
PC2TBM, a single cortical cluster contains voxels belonging to the 
ninety-ninth percentile, which presumably characterizes fast 
and slow recovered individuals. It includes a sub-network within 
pre- and post-central gyrus, ventral to the center of gravity of 
the lesion in the slowly recovering subjects as described in our 
previous paper (21). The isolated involvement of 4p, but not of 
4a, substantiates the double representation of the motor system 
in the precentral gyrus, the former activated in simple motor 
tasks, whereas the latter responds to more complex and self-
initiated tasks (84). In activation studies of healthy individuals, 
voluntary and passive finger motion stimulated areas 4p and 3a, 
simple sensory stimulation areas 3b, 1 and 2 and complex sensory 
stimulation area 4a (85).

limitations
This study comprises a detailed evaluation and discussion of 
structural covariance networks associated with hand motor skill. 
At the outset, the number and composition of recovery subgroups 
in the patient cohort was unknown. Thus, the number of patients 
in each subgroup is relatively small. Larger cohorts would be 
desirable to assign subjects reliably to subgroups characterized 
by distinct patterns of structural reorganization associated with 
varying degrees of recovery. Besides subgroup specific patterns, 

especially in the subgroup with slow but complete recovery, 
the assessment of idiosyncratic aspects, e.g., exceptions to the 
involvement of the dorsolateral prefrontal-striato-thalamic loop, 
is another challenge. Meeting it would necessitate detailed pro-
tocols, including a comprehensive neuro-rehabilitation program, 
reporting of targeting interventions and physiological measures 
of movement efforts versus efficiency of motor activity. As the 
existence of the subgroup with fast complete recovery indicates, 
an earlier begins after stroke of the study might help to assess 
structural plasticity in the first 3  months when most recovery 
occurs. The incomplete gender matching must also been taken 
into consideration, because women have been shown to perform 
dexterity tasks (nine-hole peg test) faster than men depending 
on age, and upper limb kinesthetic asymmetries in contralateral 
reproduction of elbow movements, elicited by tendon vibration, 
were prevalent in males (86, 87).

conclusion

As posited in Section “Introduction”, our study confirms that the 
md thalamus, distinguished by significant gray matter increase 
after first-ever stroke, is a constituent of an extensive structural 
covariance network encompassing (i) a cortico-striato-thalamic 
loop involved in motor execution and (ii) higher order sensori-
motor cortices affected to varying degrees in the study cohort. 
Positive expression coefficients of the network are associated 
with significant GMV increases in the md thalamus in contrast to 
negative expression coefficients. This brain structural covariance 
pattern reflects a specific structural covariance network related to 
recovery of motor hand skill and may distinguish among patient 
subgroups according to recovery class. The surrogate marker 
for motor hand skill, PSO, depends on an interaction between 
the expression of the network and lesion volume. Related to this 
condition, the impaired group exhibiting the largest interaction 
expressed most strong PC1PSO and inversely were limited in the 
expression of the structural covariance network of PC2TBM. To 
conclude, our application of tensor-based morphology has shown 
it to be a powerful method for studying gray matter changes 
after stroke; it is capable of revealing both local changes and in 
associated extensive neural networks. Regarding its future use 
application, TBM will be potentially of interest in the study of 
targeted treatment effects in the long-term.
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Background: Distributed brain networks are known to be involved in facilitating behavioral 
improvement after stroke, yet few, if any, studies have investigated the relationship between 
improved touch sensation after stroke and changes in functional brain connectivity.

Objective: We aimed to identify how recovery of somatosensory function in the first 
6 months after stroke was associated with functional network changes as measured using 
resting-state connectivity analysis of functional magnetic resonance imaging (fMRI) data.

Methods: Ten stroke survivors underwent clinical testing and resting-state fMRI scans 
at 1 and 6 months post-stroke. Ten age-matched healthy participants were included as 
controls.

results: Patients demonstrated a wide range of severity of touch impairment 1 month 
post-stroke, followed by variable improvement over time. In the stroke group, significantly 
stronger interhemispheric functional correlations between regions of the somatosensory 
system, and with visual and frontal areas, were found at 6 months than at 1 month 
post-stroke. Clinical improvement in touch discrimination was associated with stronger 
correlations at 6 months between contralesional secondary somatosensory cortex (SII) 
and inferior parietal cortex and middle temporal gyrus, and between contralesional 
thalamus and cerebellum.

conclusion: The strength of connectivity between somatosensory regions and distrib-
uted brain networks, including vision and attention networks, may change over time in 
stroke survivors with impaired touch discrimination. Connectivity changes from contral-
esional SII and contralesional thalamus are associated with improved touch sensation 
at 6 months post-stroke. These functional connectivity changes could represent future 
targets for therapy.

Keywords: stroke recovery, somatosensory disorders, neuronal plasticity, magnetic resonance imaging, tactile, 
intrinsic functional connectivity
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introduction

Somatosensory impairment is common after stroke, occurring 
in 50–80% of stroke survivors (1, 2). However, investigations of 
the neural correlates of clinical somatosensory improvement after 
stroke are scarce (3). In particular, knowledge of how brain net-
works are interrupted is limited, but is critical to better understand 
the nature of the clinical deficit and post-stroke recovery (4).

Stroke impacts not only the focal lesion site but also on remote 
brain regions (5, 6). Lesions have important remote effects on 
the function of connected neural networks that are structurally 
intact, i.e., physiological changes in distant but functionally related 
brain areas (4, 7, 8). These remote effects contribute significantly 
to the observed behavioral deficits and recovery potential (4, 8). 
Further, changes in brain networks (across both hemispheres and 
function-specific networks) have been shown to be important in 
recovery of motor and attention functions (4, 6). A significant 
challenge is to identify the brain networks and processes that 
mediate functional improvement so that rehabilitation strategies 
can be aimed at the appropriate targets (9).

Only a few studies have investigated changes in the brain over 
time in association with somatosensory recovery (3, 10–13). These 
studies have primarily involved identification of brain regions 
associated with task-related brain activation. A few studies have 
reported that somatosensory recovery is associated with patterns 
of activation in primary somatosensory (SI) cortex that resembles 
those seen in healthy controls. For example, return of ipsilesional 
SI activation has been shown to be associated with improved 
somatosensory perception (10–12). Staines et  al. (12) found 
that enhanced primary somatosensory cortex activation using 
functional MRI in the stroke-affected hemisphere occurred in 
conjunction with improved touch detection in four patients with 
thalamocortical strokes. Likewise, Wikström et al. (10) reported 
that increased amplitude of early somatosensory evoked fields in 
the ipsilesional SI in response to median nerve simulation was 
associated with recovery of two-point discrimination (the ability 
to discern that two nearby objects touching the skin are truly two 
distinct points, not one) in stroke patients.

While relative “normalization” of brain activity in primary 
and secondary (SII) somatosensory regions in both hemispheres 
seems to underlie good clinical recovery, patients with more 
severe impairments have been shown to recruit attention and 
multisensory brain regions to a greater degree than that seen in 
healthy controls, in order to accomplish successful task perfor-
mance (3, 11, 14–17). In an early positron emission tomography 
(PET) study of five patients after subcortical stroke, Weder et al. 
(14) reported activation across bilateral sensorimotor cortex and 
distributed regions, such as premotor cortex and cerebellum, 
with worse performance on a tactile shape discrimination task 
found to correlate with bilateral sensorimotor cortex activation. 
Tecchio et  al. (16) used magnetoencephalography (MEG) to 
study 18 patients at the acute (5 days) and post-acute (6 months) 
stages after stroke. They reported that excessive interhemispheric 
asymmetry correlated with a greater degree of clinical improve-
ment over time in those patients who showed partial recovery. 
Taskin et al. (15) reported reduced activation of ipsilesional SI 
with preserved responsiveness of SII in six patients who had 

suffered thalamic strokes. More recently, in 19 patients, a study 
into the relationship between touch impairment and interrup-
tion to cortical and subcortical somatosensory areas revealed 
that the neural correlates of touch impairment in patients with 
interruption to subcortical somatosensory areas (e.g., thalamus), 
involved a distributed network of ipsilesional SI and SII, con-
tralesional thalamus, and attention-related frontal and occipital 
regions (3).

Use of task-based brain activation paradigms can be chal-
lenging for stroke patients who may have difficulty performing 
a given task, and inability to perform the task may impact on the 
validity of the results (18). Resting-state functional connectivity 
analysis of functional magnetic resonance imaging (fMRI) data 
has more recently been employed as a way of assessing activity in 
the brain over time and across different networks of the brain (19, 
20). Resting-state functional connectivity reveals intrinsic, spon-
taneous networks that elucidate the functional architecture of the 
human brain at rest (task-independent). Functional connectivity 
is defined as the statistical association (or temporal correlation) 
among two or more anatomically distinct regions (21). Data are 
analyzed for coherence across the whole brain and/or in relation 
to particular regions of interest (ROIs). Evidence suggests that 
this measure is indicative of behaviorally relevant brain networks 
without requiring task performance (22). Consistent resting-state 
networks, with sharp transitions in correlation patterns, are reli-
ably detected in individual and group data (23, 24).

In stroke patients, use of this technique has revealed disrup-
tion of functional connectivity of brain networks, even within 
structurally intact brain regions (6, 25, 26). Changes in functional 
connectivity have been described in motor recovery under 
resting-state and task-related conditions (27). Further, changes 
in functional connectivity over time have been found to occur in 
conjunction with behavioral change, both in healthy individuals 
(22) and in stroke patients (7, 25). For example, He and col-
leagues (25) reported that in patients with spatial neglect, dorsal 
attention network connectivity was disrupted early after stroke, 
but appeared to have improved to similar levels as controls by 
9 months post-stroke, in conjunction with behavioral improve-
ment. This supports the interpretation that different networks or 
areas of the brain may dynamically change and assume different 
roles to allow behavior to occur.

The aim of the current study was to identify longitudinal 
changes in functional connections of the somatosensory network 
in stroke patients with somatosensory impairment, and to estab-
lish if and how these correlations are associated with improve-
ment in touch discrimination.

The importance of interhemispheric functional connectivity 
in behavioral performance and recovery has been highlighted 
from studies using resting-state fMRI (rsfMRI) with animal 
and human stroke populations (7, 25, 28). The most consistent 
finding is of changes in interhemispheric functional connectivity 
between homotopic areas, such as ipsilesional and contralesional 
primary motor cortex (7). Longitudinal changes have also been 
reported. Decreased interhemispheric functional connectivity of 
the ipsilesional sensorimotor cortex has been reported early after 
stroke, with return to more normal levels during the recovery 
process (7, 29, 30). These findings are not surprising given that 
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interhemispheric connections are implicated in sensory (31) and 
cognitive processing (32) and in models of motor and somatosen-
sory recovery (33–37). Thus, changes in interhemispheric func-
tional connectivity in stroke patients and associations between 
these changes and behavioral improvement are expected. We 
hypothesized that over time, stroke patients would exhibit return 
to a more “typical” pattern of interhemispheric functional con-
nectivity between homologous cortical somatosensory regions, 
and that stronger interhemispheric resting-state functional 
correlations between homologous SI and SII regions at 6 months 
than at 1  month post-stroke would be associated with clinical 
improvement.

Increased connectivity with distributed networks has also 
been reported in recovery after stroke. First, the visual system 
drives human attention and planning (38, 39), and a rich his-
tory of evidence for cross-modal plasticity between the visual 
and somatosensory systems exists (40). Recruitment of visual 
areas has been reported in previous studies of motor recovery 
after stroke (30, 41) as well as in patients with somatosensory 
impairment after stroke (3). Second, greater recruitment of 
attention systems is known to be necessary (42) to compensate 
for the impairment of function-specific brain areas due to aging 
or injury (43, 44). In stroke patients, increased attention has 
been shown to be required to accomplish previously simple 
tasks, such as walking, and attention skills have been shown to 
predict outcome after stroke (42, 45). Increased activation of 
frontoparietal attention areas, such as inferior parietal cortex 
(IPC), has been reported to occur in recovering stroke patients 
with motor problems (46–48). Thus, greater functional connec-
tions with frontoparietal attention networks could be expected 
in stroke patients with somatosensory impairment. As such, we 
predicted that stronger thalamocortical and cortico-cortical 
functional correlations with frontoparietal visual attention net-
works at 6 months post-stroke would be associated with clinical 
improvement.

Materials and Methods

Participants
Ten stroke patients with impaired touch discrimination of 
the upper limb were assessed at 1 and 6  months post-stroke. 
Inclusion criteria were as follows: first episode infarct, medical 
stability, ability to give informed consent and comprehend sim-
ple instructions, and right-hand dominance. Exclusion criteria 
included the following: brain-stem infarct or hemorrhagic stroke, 
previous neurological dysfunction, medical history impairing 
hand function or precluding MRI, or evidence of neglect based 
on standard neuropsychological tests. We also studied 10 age-
matched, right-hand dominant healthy controls (4 male, mean 
age 60.60 years, range 23–79 years) without any history of neu-
rological or somatosensory impairment. The relevant university 
and hospital human ethics committees approved the study and 
written informed consent was obtained from each participant.

Demographic and clinical Profile
Background information included age, gender, and premorbid 
hand dominance (49). For the stroke patients, a clinical profile 

obtained within 48 h of the MRI study included the following: 
severity of neurological impairment, using the National Institute 
of Health Stroke Scale (NIHSS) (50); severity of global disability, 
using the Barthel Index (51); and upper limb function, using the 
action research arm test (ARAT) (52). Severity of somatosensory 
impairment was quantified across several modalities, including 
touch (see below); limb position sense, using the wrist position 
sense test (WPST) (53); tactile object recognition, using the 
functional tactile object recognition test (54); and temperature 
discrimination, using the Rolyan® hot and cold discrimination 
kit. Age-matched healthy controls were also assessed on measures 
of somatosensentation.

Quantification of Touch impairment
The primary somatosensory outcome measure was the tactile dis-
crimination test (TDT) (55), a psychophysical measure of touch 
discrimination of plastic gratings using the fingertip. Participants 
discriminate differences in finely graded plastic texture surfaces 
using the method of constant stimuli and a three-alternative 
forced-choice design. Five surface sets, which span the Weber 
function of texture differences, are each presented 10 times. The 
test score is the probability of correct discrimination response 
across all stimuli presented (n  =  50) and represents the area 
that subtends the psychometric function after accounting for 
chance. The TDT has high test–retest reliability, age-appropriate 
normative standards, and excellent discriminative properties 
(55). Touch detection of the fingertips was assessed using the 
Weinstein enhanced sensory test (WEST) hand monofilaments 
and the rapid threshold procedure (56).

image acquisition
Functional Imaging Sequences
Whole-brain fMRI studies were performed using a 3-T GE 
Horizon LX Sigma MRI scanner with quadrature head coil (GE 
Medical Systems, WN, USA). Five minutes of resting-state data 
(100 volumes) were acquired for all participants. Images were 
acquired in 25 axial slices spanning cerebellum to the apex of 
the cerebrum using a gradient-echo, echoplanar (EPI) sequence 
[repetition time (TR) = 3000 ms; echo time (TE) = 40 ms; flip 
angle = 75°; field of view (FOV) = 240 mm; 128 × 128 matrix; 
slice thickness = 4 mm; interslice gap = 1 mm; in-plane voxel 
size = 1.95 mm × 1.95 mm; bandwidth = 100]. The participants 
were instructed to close their eyes and perform no particular 
task. Participants’ arms rested comfortably on their chest, but 
not touching each other or anything else. The data were collected 
immediately after performing an in-scanner somatosensory 
task involving perception of a plastic texture grating, the results 
of which have been reported elsewhere (3). The participants 
were monitored during the scanning session to ensure that they 
were awake and alert. They were debriefed after resting-state 
data collection and none of them reported falling asleep.

Structural Imaging Sequences
Whole-brain anatomic and angiographic images were acquired 
at the same session and included the following: a high-resolution 
3D anatomical image, 2D T1-weighted and axial 2D T2-weighted 
images in the same plane as EPI, and 2D angiographic images.
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Data analysis
Pre-Processing of fMRI Data
Pre-processing for each participant’s data included image 
conversion, slice timing correction, determination of optimum 
realignment target (median center-of-within-brain intensity), 
motion detection and realignment (rigid body with six degrees 
of freedom), normalization to a customized EPI brain template 
(see below), Gaussian smoothing (8  mm full width at half 
maximum), and automated creation of within-brain mask of 
normalized images, using Statistical Parametric Mapping, SPM2 
(www.fil.ion.ucl.ac.uk) and iBrain™ software (57). Motion cor-
rection parameters were included as covariates of no interest. 
Data from each imaging run were scaled to a grand mean of 
100. The statistical analysis of the resting-state data employed an 
Autoregressive AR (1) model to account for temporal autocor-
relation in the data.

For group analyses, fMRI data were brought into standard 
space. The spatial normalization target used was a custom tem-
plate, approximating the EPI template in Montreal Neurological 
Institute (MNI) space supplied with SPM2. The custom template 
was created in an iterative fashion from a larger group of partici-
pants (N = 33) involved in the overall study. Images of patients 
with right hemisphere lesions were flipped such that all infarcts 
were in the left hemisphere.

Pre-Processing for Connectivity Analysis
Several processing steps were used to optimally prepare the 
functional data for analysis of voxel-based correlations. Data 
were high-pass filtered (using SPM8) (www.fil.ion.ucl.ac.uk) with 
a high-pass cut-off of 0.01 Hz and low-pass filtered in iBrain™ 
(57) using a finite impulse response filter to remove the effect of 
high-frequency noise (f < 0.08 Hz) (58).

Construction of Seed Regions of Interest
To measure interregional functional connectivity of the soma-
tosensory system, we identified functionally and anatomically 
defined regions of interest (ROIs) representing nodes in the 
somatosensory system. These ROIs for functional connectivity 
analysis were determined by identifying regions of maximal 
activation from somatosensory fMRI task-related brain activa-
tion data in healthy controls (59). Significant activation clusters 
were restricted to the a priori determined cortical ROIs, the hand 
regions of SI, and bilateral SII, using cytoarchitectonic maps (60). 
The thalamic clusters were restricted to regions of the thalamus 
previously reported to show high probability of connectivity 
to somatosensory cortex, based on a thalamic connectivity  
atlas (61).

Six seeds were selected, and comprised clusters in the left and 
right primary and secondary somatosensory cortices and left 
and right somatosensory ventroposterior lateral thalami. Each 
cortical seed ROI was approximately 100 voxels in size (voxels 
were 1.95  mm  ×  1.95  mm  ×  4  mm in size). The cortical seed 
regions were constructed to make the ROIs relatively uniform in 
size and were anatomically verified. As the thalamic seeds were 
based on the thalamic atlas (61), the size was determined by that 
template (141 and 168 voxels). Seeds were placed on the normal-
ized images for each individual.

rsfMRI Correlation Analysis
The first step in all rsfMRI analyses was to extract BOLD signal 
time courses from each of the six ROIs by averaging timecourses 
over voxels within each region for each individual at each time 
point. For each individual, to compute functional connectivity 
maps corresponding to a selected seed ROI, the average BOLD 
signal timecourse of the voxels within the ROI was correlated 
against all other voxels within the brain, as originally described 
by Biswal et al. (62). Several potential sources of spurious vari-
ance along with their temporal derivatives were included in the 
design matrix as confounds: (1) six parameters obtained by rigid 
body correction of head motion; (2) the average whole-brain 
signal; (3) signal from a ventricular cerebrospinal fluid (CSF) 
ROI; and (4) signal from a region centered in the white matter 
(63). Regions in the CSF and white matter were identified manu-
ally using MRIcro software (64). The regression of these factors 
as variables of no interest was aimed at removing fluctuations 
unlikely to be involved in specific regional correlations (63). The 
analysis was performed using Statistical Parametric Mapping, 
SPM8 (www.fil.ion.ucl.ac.uk), with the individual functional 
connectivity maps thresholded at p-value <0.001 (uncorrected) 
at the voxel level.

Second Level Imaging Analysis
In the group analysis, the contrast (con*.img) images from 
the  individual analyses of each individual participant were 
combined in a second level, random-effects model. To test for 
differences in patterns of functional connectivity between the 
healthy and stroke groups, between-group differences were evalu-
ated using two-sample t tests. To test for differences in patterns 
of functional connectivity within the stroke group between the 
1-month and 6-month time points, within-group differences were 
evaluated using paired t tests. In order to identify how differences 
in functional connectivity over time might be associated with 
changes on clinical test scores, individual changes in TDT scores 
over time were included as a regressor in subsequent correlation 
analyses in the group-level random-effects analysis of change in 
functional connectivity for the stroke group. Only clusters with 
p-values <0.05 (false discovery rate, FDR, corrected) are reported 
as significant. Anatomical localization of significant clusters was 
defined using the anatomy toolbox in SPM8, which is based on 
probabilistic cytoarchitectonic maps (60).

Lesion locations were outlined on axial slices of the 3D ana-
tomical images obtained at 6  months post-stroke, plotted into 
stereotactic space, as described previously (65), and displayed on 
a template. The percentage overlap between lesion location and 
the seed regions was defined for each participant.

results

Demographic, lesion, and clinical Data
Ten stroke survivors (4 male, mean age 58.96  years, range 
18–79 years) were studied at approximately 1 month (M = 4.56, 
SD = 1.58 weeks) and 6 months (M = 26.99, SD = 1.69 weeks) 
post-stroke (Table  1). All were right-hand dominant with a 
median hand laterality quotient of 100 (49). The left hemisphere 
was infarcted in six patients (Figure 1). Five patients had lesions 
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primarily involving subcortical somatosensory structures, in 
particular the thalamus, and five had lesions predominantly 
involving cortical SI and/or SII. The percentage overlap between 
lesion location and our pre-defined seed regions is provided in 
Table 1. All with subcortical lesions had involvement of thalamus, 
often including ventral posterolateral nucleus, a region known 
to project somatosensory information to SI. Only three had 
2–10% overlap with the thalamic seed used in analysis. Those 
with cortical lesions primarily had involvement of postcentral 
gyrus (n = 3) and/or secondary somatosensory regions (n = 5) 
including parietal operculum and nearby regions of the insula 
and supramarginal gyrus. Across patients there was no overlap 
between lesion site and the SI seed. Four patients had lesion 
locations that overlapped with the SII seed; three had 10–19% 
overlap and a further patient with a very large lesion had 87% 
overlap.

Patients presented with wide variation in severity of touch 
discrimination (Table  2), ranging from −11.58 (very severe 
impairment) to 79.31 (just within the normal range) on the TDT 
(55) at the 1-month study. Several patients performed within 
normal limits on the TDT at 6 months post-stroke, and in three 
cases at the 1-month time point. Somatosensory impairment was 
indicated in these patients on the basis that the TDT score for 
the affected hand was lower than for the “unaffected” hand, they 
demonstrated impairment on other clinical somatosensory tests, 
and/or they reported a “hyper-sensitivity” profile of heightened 
sensitivity to somatosensory stimuli.

For the stroke group, mean affected-hand score on the TDT at 
the 1-month time point was 35.98 ± 33.13 SD (median 35.47 per-
centage correct area under the curve), compared to 79.85 ± 8.11 
SD (median 77.09) for healthy controls in the matched hand. 
TDT scores were significantly higher in the healthy control group 
than in the patient group (Mann–Whitney U = 11.00, p = 0.002). 
The stroke group demonstrated significant improvement in TDT 
scores with the affected hand between the 1- and 6-month time 
points (Z = −2.293, p = 0.022). Clinical scores and demographic 
and clinical information for the stroke patients are presented in 
Table 1.

Functional connectivity During the resting state
Functional Connectivity of Stroke Patients  
Compared to Healthy Controls
Within the healthy control group, the SI seeds for both hemi-
spheres showed significant functional connectivity with bilateral 
SI and motor (Brodmann Area, BA 4a, 6) regions (Figure 2). In 
contrast, at 1 month post-stroke the stroke group exhibited a lack 
of interhemispheric connectivity for both of the SI seeds, with 
each SI seed functionally connected only with surrounding SI 
and motor areas. At 6 months post-stroke, there appeared to be 
some return of interhemispheric SI connectivity for the stroke 
group (Figure 2). For example, the ipsilesional SI seed showed 
significant functional connectivity not only with surrounding SI 
and motor areas but also with contralesional SI, contralesional 
visual and motor areas, and with ipsilesional SII. Similarly, the 

TaBle 1 | Background and clinical characteristics and lesion details of stroke patients (N = 10).

iD age gender side of 
lesion

site of lesion lesion 
volume 
(voxels)

Overlap 
with seed 

regions (%)

Weeks since stroke nihss

1 month 6 months 1 month 6 months

S10 71 M L Lateral thalamus (vpl, vpm) 345 0 7.57 25.29 1 0
S13 71 F L Lateral thalamus (vpl, vpm) 253 5 – L Th 3.29 28.57 2 1
S14 56 M L Multiple lesions in hemispheric 

white matter
22,761 2 – L Th 6.14 25.86 6 6

S16 76 M R Posterior insula, inferior parietal 
lobule, adjacent hemispheric 
white matter

14,728 19 – R SII 6.00 30.86 1 1

S17 40 F R Posterior insula, inferior parietal 
lobule, postcentral gyrus

3998 19 – R SII 3.71 26.86 3 1

S18 79 M L Putamen/caudate nucleus, 
parietal/cortical

21,939 87 – L SII 3.86 26.00 4 1

S19 18 F R Thalamus (lp), hippocampus, 
fusiform gyrus

12,465 0 2.43 25.29 4 3

S20 55 F L Supramarginal gyrus, parietal 
operculum, superior parietal 
lobule, postcentral gyrus

6593 0 3.57 27.14 4 1

S21 63 F L Thalamus (vpl), occipital 
periventricular white matter, 
lacunar lesion in head of right 
caudate nucleus

10,107 10 – L Th 5.00 27.29 3 2

S22 59 F R Postcentral gyrus, superior 
parietal lobule, anterior portion

8990 10 – R SII 4.00 26.71 2 2

Median 59.00 4M; 6F 6L; 4R 8990 3.93 26.77 3.00 1.00
(IQR) 
25th–75th

(55.00–71.00) (2435–13,597) (3.61–5.75) (25.89–27.25) (2.00–4.00) (1.00–2.00)

ID, stroke identification number; NIHSS, National Institute of Health Stroke Scale, 1–4 = minor stroke, 5–15 = moderate stroke, 16–20 = moderate/severe stroke, and  
21–42 = severe stroke (50); M, male; F, female; R, right; L, left; voxel size = 1.95 mm × 1.95 mm × 4mm; vpl, ventral posterolateral nucleus; vpm, ventral posteromedial nucleus;  
lp, lateral posterior nucleus; Th, thalamus; SII, secondary somatosensory cortex; IQR, interquartile range.
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contralesional SI seed remained functionally connected with 
surrounding SI and motor regions, and showed connections not 
present at the 1-month time point with ipsilesional SI and SII, 
and contralesional middle occipital gyrus. At the 1-month time 
point, the healthy group exhibited significantly greater functional 
connectivity than the stroke group between the contralesional SI 
seed and a cluster in the contralesional occipital lobe and contral-
esional cerebellum (MNI = 30/−56/16; k = 99 voxels; z = 4.76).

In the healthy control group, SII seeds of each hemisphere 
exhibited significant functional connectivity with bilateral SII 
and SI, as well as with medial supplementary motor area (SMA, 
BA 6). The stroke group demonstrated a similar pattern of con-
nectivity for the ipsilesional SII seed at 1  month post-stroke. 
For the contralesional SII seed, significantly connected clusters 
also extended into bilateral SI. At 6  months post-stroke, the 
ipsilesional SII seed showed functional connectivity only with 
surrounding SII and SI. The contralesional SII seed was again 
functionally connected with bilateral SII and contralesional SI, 
with additional small clusters in contralesional SMA (BA 6) and 
medial visual areas (BA 17, 18, commonly referred to as human 
V4 and V2).

In the healthy control group, thalamus seeds of each hemi-
sphere were functionally connected to a statistically significant 
extent with bilateral thalami (thalamus surrounding the seed 
region in the same hemisphere, as well as contralateral thalamus) 
and SII/insula in the same hemisphere (Figure 2). At 1 month 
post-stroke, the patient group showed significant functional 
connectivity from both thalamus seeds with bilateral thalami, 

S16 S10

S17 S13

S18 S14

S20 S19

S22 S21

FigUre 1 | infarct locations for individual stroke participants. Lesions 
were predominantly located in cortical somatosensory regions (SI and/or SII) 
(images in left column), and in somatosensory areas of the thalamus (images in 

right column). Infarct locations for each individual are plotted in stereotactic 
space. Images are displayed in neurological convention (subject’s left is 
displayed on image left).

although to a less extent than that seen in the healthy control 
group. In addition, the contralesional thalamus was functionally 
connected with small clusters in contralesional inferior and supe-
rior frontal gyri, and contralesional cerebellum. At 6  months, 
ipsilesional thalamus in stroke patients still showed significant 
functional connectivity with thalami in both hemispheres, 
whereas the contralesional thalamus was only functionally con-
nected with surrounding contralesional thalamus and with a 
small cluster in the left putamen.

Longitudinal Functional Connectivity  
Changes in the Stroke Group
To test for differences in patterns of functional connectivity 
within the stroke group between the 1- and 6-month time points, 
within-group differences were evaluated using paired t tests 
(Table 3). For the contralesional SI seed, there was significantly 
greater functional connectivity at 1-month than at 6-month 
post-stroke between contralesional SI and a cluster falling in 
the contralesional cerebellum and hippocampus. At 6  months, 
there was significantly greater functional connectivity between 
 contralesional thalamus and a cluster in ipsilesional middle 
cingulate cortex.

Functional Connectivity Changes Associated  
with Somatosensory Improvement
In subsequent correlation analyses, changes over time in clinical 
scores, as measured using the TDT, were included as a regressor 
in the group-level random-effects analysis of change in functional 
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connectivity for the stroke group. The functional connectivity 
changes significantly associated with changes in TDT scores are 
shown in Table 3 and Figure 3. Greater improvement in TDT 
scores was associated with greater functional connectivity at 
6-month than at 1-month post-stroke between the contralesional 
SII seed and clusters in the contralesional IPC and contralesional 
middle temporal gyrus. Greater connectivity at 6-month than at 
1-month post-stroke between the contralesional thalamus seed 
and a cluster in contralesional cerebellum was also associated 
with greater improvement. Greater functional connectivity at 
1-month than at 6-month post-stroke between the contralesional 
SI seed and contralesional cerebellum was associated with greater 
improvement in TDT scores over time. Conversely, relative to the 
6-month recovery time, greater improvement in TDT scores may 
be viewed as being associated with less functional connectivity at 
6 months than at 1 month between the contralesional SI seed and 
contralesional cerebellum (Figure 3).

Discussion

interhemispheric Functional connectivity is 
Disrupted at 1 month after stroke and shows 
some recovery Toward normal levels at 
6 months
Our findings of functional connectivity extend previous findings 
of changes in activation of brain regions with somatosensory 
impairment and add to the growing body of literature on the role 
of interhemispheric connectivity in stroke recovery across a range 
of functions. One month post-stroke, patients with impaired 
touch sensation and lesions predominantly located in soma-
tosensory areas of the thalamus, and/or in cortical somatosensory 
regions (SI and/or SII), exhibited disruption of interhemispheric 
functional connectivity of homologous SI regions relative to 
age-matched healthy controls. At 1 month post-stroke, the stroke 
group only exhibited SI functional connectivity with SI within 
the same hemisphere; at 6  months, there was some return of 
interhemispheric SI connectivity.

Our finding of less interhemispheric connectivity in the 
stroke patients with impaired touch sensation relative to healthy 
controls early post-stroke is consistent with evidence of disrupted 
interhemispheric functional connectivity in stroke patients for 
other functions, such as movement and attention (7, 25, 27, 28). 
The disruption observed is likely to be behaviorally relevant, 
given that activity in both hemispheres has been shown to be 
important in sensory processing (31, 66) and in activation studies 
of somatosensory and motor recovery (33–36). Further, previous 
studies using rsfMRI in stroke recovery across functions have 
highlighted the importance of interhemispheric functional con-
nectivity in behavioral performance and in recovery over time 
(7, 25, 28).

Evidence of SI interhemispheric connectivity at 6 months 
in stroke patients with less severe touch impairment is con-
sistent with growing evidence from related studies. Activation 
studies of motor recovery indicate “return to more normal 
patterns” is associated with better recovery in the post-acute 
and chronic phase (e.g., 6  months) post-stroke (67, 68). In 
addition, a recent review of rsfMRI studies in motor recovery 
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FigUre 2 | Functional connectivity maps for the healthy control group and 
for the stroke group at the 1- and 6-month time points. Left three columns: 
group-level functional connectivity maps. Right-hand column: overlaps of binarized 
group-level functional connectivity maps for the stroke group at the two time 
points. Blue = 1-month time point; Red = 6-month time point; Yellow = overlap. 
The stroke group appears to show disrupted interhemispheric functional 
connectivity for the SI seeds at 1 month post-stroke, relative to healthy controls. 
Some return of interhemispheric functional connectivity can be seen at 6 months. 
In contrast, interhemispheric SII connectivity in the stroke group appeared greater 
at 1 month than at 6 months post-stroke. The seed region is indicated in green. 

Images are displayed in neurological convention (subject’s left is displayed on 
image left). The left hemisphere represents the ipsilesional hemisphere – images of 
patients with right hemisphere lesions were flipped such that all infarcts are 
represented in the left hemisphere. Healthy controls were individually matched and 
images flipped accordingly. Slice numbers represent axial slice position in Montreal 
Neurological Institute (MNI) space. Color scale represents Z-values of group 
functional connectivity maps. SI, primary somatosensory cortex; SII, secondary 
somatosensory cortex. Analyses are based on contrast maps with an individual 
voxel height threshold level of p < 0.001. Results are displayed for significant 
clusters with p < 0.05 (false discovery rate, FDR, corrected).
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TaBle 3 | Functional connectivity changes in the stroke group between the 1- and 6-month time points, and changes associated with improvement in 
TDT scores.

seed region cluster size (voxels) Z-value Mni maxima coordinates (x, y, z) cluster anatomical location of significantly 
correlated regions

regions showing greater functional connectivity at 1 month
Contralesional SI 60 4.14 14, −32, −18 Contralesional cerebellum lobules I–V, hippocampus

12, −28, −6
6, −34, −20

regions showing greater functional connectivity at 6 months
Contralesional thalamus 49 4.44 −16, −22, 38 Ipsilesional middle cingulate

regions showing greater functional connectivity at 6 months than 1 month post-stroke in association with improvement in touch discrimination
Contralesional SII 53 4.55 52, −58, 26 Contralesional IPC

30 5.02 58, −26, −10 Contralesional middle temporal gyrus
Contralesional thalamus 35 4.27 12, −42, −40 Contralesional cerebellum lobule IX

20, −44, −34

regions showing greater functional connectivity at 1 month than 6 months post-stroke in association with improvement in touch discrimination
Contralesional SI 42 3.89 28, −44, −24 Contralesional cerebellum lobules V, VI

Anatomical definitions are based on the anatomy toolbox in SPM8, which is based on probabilistic cytoarchitectonic maps (60).
MNI, Montreal Neurological Institute; SI, primary somatosensory cortex; SII, secondary somatosensory cortex; IPC, inferior parietal cortex.
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found that reorganization of motor networks encompasses a 
restoration of interhemispheric functional coherence in the 
resting state, particularly between the primary motor cortices 
(27). While we do not report a significant longitudinal change 
in connectivity between contralesional and ipsilesional SI, 
we did observe significant interhemispheric connectivity for 
both SI seeds at 6  months that was not present at 1  month. 
Together, our findings resonate with studies illustrating 
the role of inhibitory influences from intact hemisphere in 
stroke recovery (33) and highlight the need to re-establish 
a balance of activity across hemispheres in association with 
 improvement (35).

Disruption and resolution of Functional 
connectivity with Occipital Visual areas
Another key finding was the role of functional connectivity with 
primary visual occipital regions. At the 1-month time point, func-
tional connectivity between contralesional SI and the occipital 
lobe was significantly less in the stroke group compared to the 
matched healthy control group. At the 6-month time point, the 
stroke group demonstrated functional connections with visual 
occipital areas that were not present at 1  month post-stroke, 
including between ipsilesional SI and contralesional visual areas 
(BA 17, 18), between contralesional SI and contralesional mid-
dle occipital gyrus, and between contralesional SII and bilateral 
visual areas (BA 17, 18). Together, these findings suggest a pattern 
of disruption of functional connections between somatosensory 
and visual areas at 1  month post-stroke, which showed some 
return after 6 months.

Supporting the suggestion of less connectivity with visual 
occipital regions early post-stroke is Park et al.’s (30) finding 
that one month after stroke, patients with motor impairment 
demonstrated decreased functional connectivity between pri-
mary motor regions and occipital cortex. Similarly, Carey et al. 
(3) reported that in a group of stroke patients with thalamic 
lesions studied at 1 month post-stroke, touch discrimination 
correlated negatively with task-related activation in occipital 

regions. Connectivity with occipital regions at 6-month are 
also consistent with Seitz et  al.’s (41) study of the functional 
networks related to motor recovery, which found that improved 
motor function after stroke was associated with involvement 
of distributed areas including extrastriate visual areas. Thus, 
there seems to be a pattern of disrupted interactions between 
 sensorimotor and visual occipital systems around 1  month 
after stroke, with some resolution over time that may be clini-
cally relevant.

Functional connections to Frontoparietal 
attention regions
In stroke patients, functional connections to frontoparietal 
attention regions (69), involving middle cingulate and IPC, 
were significantly greater at 6  months than at 1  month post-
stroke, and these differences between time points were in part 
associated with changes in behavioral performance. Functional 
connectivity between contralesional thalamus and ipsilesional 
middle cingulate cortex was significantly greater at 6 months than 
at 1  month post-stroke. Furthermore, behavioral improvement 
on the TDT was associated with greater functional connectivity 
6  months post-stroke between contralesional SII and a cluster 
in contralesional IPC. In addition, the individuals who showed 
thalamocortical functional connectivity with frontal regions at 
the 1-month time point also had relatively low TDT scores, while 
those who showed this connectivity pattern at 6  months had 
better TDT scores.

Activation of distributed attention networks has been observed 
in previous task-based studies of stroke recovery, including in 
relation to somatosensory recovery (3, 36). Involvement of fron-
toparietal attention networks in association with behavioral out-
come has been a common finding in stroke patients in the motor 
domain (46–48). Further, longitudinal changes in rsfMRI include 
changes in frontal and parietal cortices during motor recovery 
(30). Here, we extend this finding of functional connectivity to 
somatosensory recovery post-stroke. Baseline brain activity in 
the medial thalamus and the frontoparietal network is important 
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FigUre 3 | Functional connectivity differences between 1 and 6 months post-stroke associated with changes in tactile discrimination test (TDT) scores. 
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Scatter plots illustrate change in TDT score plotted against the difference 
between the two time points in connectivity strength between the seed and 
the cluster (shown in images on the right), for each individual. Improvement in 
TDT scores was associated with (a) greater functional connectivity at 
6 months between the contralesional SII seed and clusters in the 
contralesional inferior parietal cortex and contralesional middle temporal gyrus; 
(B) greater functional connectivity at 6 months between the contralesional 
thalamus seed and a cluster in contralesional cerebellum; and (c) less 
functional connectivity at 6 months between the contralesional SI seed and 
contralesional cerebellum. Images are displayed in neurological convention 

(subject’s left is displayed on image left). The left hemisphere represents the 
ipsilesional hemisphere – images of patients with right hemisphere lesions 
were flipped such that all infarcts are represented in the left hemisphere. Slice 
numbers represent axial slice position in Montreal Neurological Institute (MNI) 
space. Color scale represents Z-values of functionally connected clusters 
associated with TDT score change. SI, primary somatosensory cortex; SII, 
secondary somatosensory cortex; IPC, inferior parietal cortex. Analyses are 
based on contrast maps with an individual voxel height threshold level of 
p < 0.001. Only clusters with p-values <0.05 (false discovery rate, FDR, 
corrected) are reported as significant and displayed.

FigUre 3 | continued
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in perception (70) and may affect information processing follow-
ing sensory impairment. In addition, focal attention involved in 
perception of pain, processing of reward, and error detection, has 
been associated with activity in medial frontal/anterior cingulate 
(69). Attention is essential to any perception or learning (69, 71), 
and has been identified as a key element of recovery from brain 
injury (25, 42, 45). It could be speculated that our findings reflect 
stroke patients’ use of higher-level attention and behavioral pro-
cesses to supplement previously more automatic somatosensory 
perceptual functions.

involvement of contralesional hemisphere
Changes in functional connectivity between the 1- and 6-month 
time points and in association with improvement in TDT over 
time were all seeded within the contralesional hemisphere, i.e., 
contralesional SI at 1  month and contralesional thalamus and 
SII at 6 months. We did not find significant changes over time 
in connectivity from our ipsilesional seeds. Further, the regions 
showing relatively increased correlation were also primarily in 
the contralesional hemisphere, with the exception of ipsilesional 
middle gyrus at 6-month >1-month post-stroke. These findings 
highlight a role for change in connectivity of the “intact” con-
tralesional hemisphere, in particular somatosensory SI, SII and 
thalamus regions, in individuals with impaired touch sensation 
post-stroke. Further, the observation that increased connectivity 
from these contralesional somatosensory seeds was associated 
with improvement in touch discrimination scores over time 
suggests a role for the contralesional somatosensory network 
in facilitating touch discrimination perception. While previous 
task-based fMRI studies typically show an initial increase in 
activation of contralesional sensorimotor cortex early followed 
by restoration of activation in the ipsilesional cortex, our finding 
suggests that disruption of the initial interhemispheric con-
nectivity at resting state may lead to ongoing alterations in the 
activity (functional connectivity) of contralesional hemisphere. 
These relative increases in connectivity, observed both early and 
late, may help in achieving a more balanced interhemispheric 
connectivity in association with greater improvement in patients 
with partial recovery.

At 1-month, increased connectivity between contralesional 
SI and contralesional cerebellum was associated with greater 
improvement in touch sensation over time. In comparison, at 
6 months, the relatively greater connectivity associated with better 
touch discrimination was between contralesional SII and IPC and 
contralesional thalamus and cerebellum. Interestingly, contral-
esional cerebellum had changed connectivity to somatosensory 

seeds associated with improvement at both times, but via different 
nodes of the network. A role for increased connectivity between 
contralesional SI and cerebellum, at 1-month associated with 
improvement, is consistent with our observation of greater con-
nectivity between these regions in the healthy group, compared 
to stroke patients, at 1-month. Longitudinal changes in rsfMRI 
during motor recovery have also involved bilateral thalamus 
and cerebellum, with involvement of cerebellum persisting 
over the 6-month period post onset (30). A large proportion 
of cerebellum maps to association areas (72). In addition, the 
cerebellum has connections with SI, although preferentially 
with the contralateral cerebrum (72). Afferent projections first 
synapse in the deep cerebellar nuclei and then project to a second 
synapse in the contralateral thalamus that in turn serves as a relay 
to the cerebral cortex, consistent with involvement of thalamus 
at 6 months. Co-observation of greater functional connectivity 
of contralesional thalamus with ipsilesional middle cingulate at 
6 months, suggests an increased interhemispheric connectivity. 
Involvement of contralesional thalamus has been reported in 
association with touch impairment in a sample of 19 stroke sur-
vivors at 1-month post-stroke (3). Contralesional thalamus has 
potential to be accessed irrespective of lesion location (3), has an 
influence on bilateral SI via its prefrontal connections (73), and 
may have a role in gating of sensory information and in large-
scale reorganization in the somatosensory cortex and thalamus 
after sensory loss (74, 75).

limitations
The major limitation of this study was the small and heterogeneous 
sample of stroke patients. Replication of these preliminary findings 
in larger samples is required. Use of a larger sample would also allow 
investigation of these changes without the need to flip individual 
brain maps into common space. This would permit inferences 
about the role of lateralized frontoparietal attention networks in 
facilitating post-stroke behavioral improvement (8). While it is 
recognized that functional connectivity may be influenced by the 
participants recent experience (76), the sequence of acquisition 
was common for all participants, i.e., it was immediately preceded 
by a touch discrimination task. Further, our stroke findings may 
be interpreted with reference to healthy controls who underwent 
the same protocol sequence, and our longitudinal findings with 
reference to connectivity studies in the same individual over time.

Application of rsfMRI analyses in stroke patients presents 
issues that need to be considered in the interpretation of our find-
ings. The potential impact of lesion location on pre-defined seed 
ROIs is an unavoidable issue. This was in part minimized through 
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application of individual lesion masks during the normalization 
phase. In addition, we quantified the percentage overlap between 
the lesion and seed region for each participant to monitor the 
presence of this potential limitation. All but one participant had 
<20% overlap. There was no overlap with the ipsilesional SI seed 
and only 10% or less overlap with the thalamic seed. The seed 
with most overlap was the SII seed, with 4 of 10 patients hav-
ing overlap. Our major findings of change in connectivity were 
evident for contralesional seeds, and thus, can be interpreted with 
confidence. Further, lack of evidence of significant change for 
ipsilesional SI and thalamic seeds is unlikely explained by analysis 
method and seed overlap, as this was minimal. Interpretation of 
functional connectivity from ipsilesional SII may be impacted 
by overlap between lesion and seed. Although we did not find 
a significant change over time, we did observe significant con-
nectivity from ipsilesional SII at 1 and 6 months, suggesting pres-
ence of lesion overlap with this seed is an unlikely explanation. A 
recent investigation of overlap between lesion location and seeds 
between stroke and healthy groups suggests that the percent of 
infarct-related overlap to any ROI was not related to connectivity 
strength in connections that included those damaged seeds (77). 
While this finding is based on a larger sample (n = 32) and mul-
tiple correlations, it does provide some support for interpretation 
of seed-based connectivity data in stroke patients. Finally, even 
if the differences in connectivity observed between stroke and 
healthy controls is due to impaired anatomic connections from 
these regions, our findings still inform us of the key functional 
connections involved in somatosensory impairment, the impact 
of lesion on the function, and the changes in functional connectiv-
ity associated with clinical improvement in touch discrimination.

Use of the BOLD signal in fMRI studies of stroke patients has 
been a highly debated issue given the potential impact of vascular 
compromise. The BOLD signal provides an indirect indication of 
neural activity, and changes in resting-state activity can reflect a 
complex combination of neural, vascular, and metabolic factors 
(78). Connectivity analysis methods have the advantage that 
they do not rely on BOLD signal stability, nor assume a com-
mon hemodynamic response function (79). However, they are 
not immune to issues associated with abnormal neurovascular 
coupling in stroke patients. Indeed, it is unclear how potential 
vascular latency differences between brain regions impact inter-
pretation following stroke. For example, changes in peri-infarct 
regions, such as hypoperfusion and potential decoupling of the 
neurovascular response (80), may impact the signal. It has been 
suggested that differences across regions may confound studies 
of whole-brain connectivity (81). A few studies have therefore 
adjusted for non-neural vascular latency differences prior to 
resting-state connectivity analyses in healthy controls with only a 
minor impact on their findings (81). However, we should exercise 
caution when interpreting findings in stroke patients, particularly 
in locations close to the lesion border. Further, it is important 
to recognize that changes observed with rsfMRI may reflect an 
interaction between neural activity and vascular changes over 
1–6  months. It should also be noted that we did not exclude 
patients with conditions that may impact the BOLD signal, such 
as leukoencephalopathy and/or carotid artery disease, and thus 
the impact of these conditions if present is unknown.

implications and Future Directions
In summary, stroke patients showed changes in functional con-
nectivity over a period of recovery under non-specific rehabilita-
tion conditions. Further, most changes in functional connections 
from 1 to 6 months post-stroke were shown to relate to improve-
ment in touch discrimination scores over time, in patients with 
partial recovery. There appeared to be some return of functional 
connections over time in patients between homologous SI 
regions, and between somatosensory and visual occipital areas, 
although not to the levels seen in age-matched controls. Change 
in connectivity over time and/or in association with improve-
ment was observed in relation to contralesional somatosensory 
seeds, and primarily involved frontoparietal attention regions 
and cerebellum. Change in contralesional SI connectivity was 
important at 1-month in relation to improvement over time, 
while changes in connectivity of contralesional SII and thalamus 
become important at 6 months.

These changes in connectivity could represent future targets 
for therapy. In particular, increase in strength in connections 
between somatosensory regions and attention and vision 
regions is consistent with pre-existing connections with these 
networks and suggest targets for neuroscience-based rehabilita-
tion approaches designed to access viable brain networks (36). 
While our findings indicate that some individuals spontaneously 
access these regions in association with improved performance, 
the potential exists for knowledge of these individual differences 
to guide access in other stroke survivors through therapy. For 
example, the effective sensory discrimination training approach 
described by us to achieve stimulus specific improvements in 
touch discrimination (82) employs training strategies to achieve 
cross-modal calibration of perceived texture roughness across 
touch and vision, as well as use of attentive exploration of tex-
tured stimuli and deliberate use of anticipation trials (36, 82). 
These strategies may be helpful in accessing vision and atten-
tion networks in survivors who may not otherwise make these 
connections.

Targeting of contralesional and distributed networks via 
secondary somatosensory cortex and thalamus is also sug-
gested. Our findings first highlight the role of the contralesional 
hemisphere in post-stroke performance and recovery. The 
seed-based change in contralesional functional connectivity is 
consistent with structural and functional connectivity studies 
of sensorimotor training that suggest global network efficiency 
is influenced by long-range connections across hemispheres, in 
addition to ipsilesional integrity (83). Changes in connectivity 
of contralesional SII and thalamus at 6 months suggest a role for 
nodes that have connections within the somatosensory network 
and beyond. SII has strong connections with SI, thalamus, and 
homologous SII, as well as with frontal and parietal networks 
(84). SII has more dense bilateral connectivity than SI (85), is 
involved in tactile working memory, discrimination, and percep-
tual learning (86–88), and is regarded as an integration node of 
the somatosensory network. Enhanced SII connections with IPC 
and middle temporal gyrus at 6 months highlight connectivity 
with distributed networks. The potential exists to influence this 
highly connected node of the somatosensory network through 
rehabilitation designed to access discriminative and tactile 
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learning functions. The thalamus is also implicated. It has an 
important role in gating somatosensory input and deactivation 
of contralesional thalamus is associated with touch discrimina-
tion performance in stroke survivors at 1  month post-stroke 
(3). Involvement of thalamus is consistent with evidence from 
animal studies (74, 75) that gating of sensory inputs, rather 
than cortical representation alone, is important in recovery. In 
addition, increased connectivity between thalamus and cerebel-
lum suggests short-range functional connectivity of subcortical 
networks (89). Thalamus and cerebellum are two of three major 
subcortical network hubs identified (89). Involvement of both 
long-range and short-range functional connectivity changes 
may reflect not only the individual variation in recovery and 
underlying mechanisms but also the potential to drive one or 
other through appropriately targeted therapy. While connectiv-
ity-based research is still in its infancy post-stroke, it has great 
potential to guide the development of scientifically informed 
rehabilitation interventions.
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Despite intensive research on mechanisms of recovery of function after stroke, surpris-
ingly little is known about determinants of concurrent recovery of language and motor 
functions in single patients. The alternative hypotheses are that the two functions might 
either “fight for resources” or use the same mechanisms in the recovery process. Here, 
we present follow-up data of four exemplary patients with different base levels of motor 
and language abilities. We assessed functional scales and performed exact lesion anal-
ysis to examine the connection between lesion parameters and recovery potential in 
each domain. Results confirm that preservation of the corticospinal tracts (CSTs) is a 
neural predictor for good motor recovery while preservation of the arcuate fasciculus (AF) 
is important for a good language recovery. However, results further indicate that even 
patients with large lesions in CST, AF, and superior longitudinal fasciculus, respectively, 
are able to recover their motor/language abilities during intensive therapy. We further 
found some indicators of a facilitating interaction between motor and language recovery. 
Patients with positive improvement of motor skills after therapy also improved in lan-
guage skills, while the patients with no motor improvements were not able to gain any 
language recovery.

Keywords: stroke, motor, language, hemiplegia, hemiparesis, aphasia, recovery

introduction

It is a common clinical observation that in patients with both initial hemiparesis and aphasia after 
stroke, motor and language recovery may take different courses. Interestingly, scientific research has 
primarily focused on the examination of the course of recovery regarding either motor or language 
abilities, but only few studies addressed both. Aphasia has even been a criterion for exclusion in 
several studies of motor recovery (1, 2).

To our knowledge, there is only one multiple single-case study that addressed the issue of language 
recovery going parallel to a therapy of motor functions of the upper limb. Harnish et al. (3) examined 
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five stroke patients during the course of 6 weeks of motor therapy. 
They assessed not only the recovery of motor functions of the 
upper limbs and functional motor reorganization but also changes 
in their language abilities. The authors report that in the three 
subjects showing the largest motor improvements they could also 
observe significant language improvements. In the individual 
fMRI measurements, where the patients had to tap the fingers 
of the paretic hand within the scope of their capacities, a shift of 
activation to the right hemisphere during the course of motor 
treatment could be observed in these three patients. Harnish et al. 
concluded that language changes seem to co-occur with motor 
changes after motor therapy. Anatomical analyses of the patients’ 
lesions were not carried out.

The finding of Harnish et al. that motor recovery can foster 
language recovery is very interesting for the current state of 
discussion about common mechanisms in motor and language 
processing. Especially the theory of cognitive embodiment has 
gained broad attention and kindled a whole line of research. In 
the light of embodiment theory, cognitive functions like language 
are grounded in the sensorimotor experiences and to the under-
lying systems (4, 5). For example, Hauk et al. (6) were able to show 
that language processing and comprehension activate motor 
regions, while Glenberg et al. (7) found that first- and second-
grade children who manipulate images of toys on a computer 
screen develop improved comprehension skills in reading  –  a 
comprehension benefit was evoked by the conduction of motor 
tasks. There are numerous imaging studies demonstrating activa-
tion of the sensorimotor systems by listening to language with 
motor content [for example, see Ref. (8, 9)]. Recently anatomic 
correlates for common motor speech and motor (10) as well as 
language and motor processing (11) have been postulated on the 
basis of imaging data.

With the theoretical and experimental background that 
motor and language activity are not functionally independent, 
interdependencies regarding the course of recovery of these two 
domains can be assumed as well. These relations might result in 
two possible interactions between motor and language recovery 
processes: either competitive or additive effects may occur. 
Competitive rehabilitative interactions might be characterized by 
a “fight” for resources between the language and motor recovery 
capacities. In this case, a good motor recovery may limit or even 
prevent the course of language recovery and vice versa. The inverse 
assumption of an additive interaction between both domains 
during recovery implies that a positive course of motor recovery 
would influence language recovery positively, and vice versa. The 
results of Harnish et al. (3), which are in line with the findings 
concerning embodiment, seem to support the second hypothesis.

The identification of determinants of motor and language 
recovery after stroke is within the main stream of research on 
neurorehabilitation. There are several studies evaluating the role 
of lesion parameters as well as brain activation for complete or 
poor recovery for language and motor domain separately. We will 
briefly highlight the most relevant results in order to establish the 
backdrop for our study.

As to the motor domain, the lesion location is an important 
predictor for motor rehabilitation (12), whereas the size of the 
brain lesion seems to be no predictor for motor function recovery 

after stroke (12–14). Shelton and Reding (15) found that the 
probability of recovery of the upper limbs after stroke seems to 
diminish in dependence of the lesion location in the following 
order: cortex, corona radiata, and internal capsule. The dimen-
sion of impairment of the corticospinal tract (CST) is another 
indicator for good rehabilitation of hand motor function after 
stroke; severe damage of the CST has mainly been assessed in 
more severely affected patients (12–15).

Similarly, in the language domain, lesion location may play 
an important role in sufficient language recovery. Meinzer et al. 
(16) found that language rehabilitation after intensive language 
therapy was correlated with the integrity of the left hippocampus 
and the surrounding white matter. Marchina et al. (17) were able 
to show that the extent of impairment of the left arcuate fasciculus 
(AF) is a predictor for language recovery. The global lesion size 
does not have an influence on language rehabilitation after stroke 
[e.g., see Ref. (16, 18)].

Functional imaging has resulted in inconsistent results for 
both recovery of motor [e.g., see Ref. (19–23)] and language 
abilities [e.g., see Ref. (24–29)]. The heterogeneity of the results in 
the language and motor domain can possibly be attributed to dif-
ferent methods and objectives that were used in previous studies 
as well as different types of strokes (e.g., subcortical vs. cortical). 
Therefore, it is hardly possible to combine the mentioned results 
of the two different domains for predicting recovery patterns in 
patients with concurrent impairments in both domains.

Therefore, neural correlates for simultaneous recovery in the 
language and motor domain after stroke remain unclear. The 
results of Harnish et  al. (3), which were investigated through 
fMRI and behavioral measurements, give a first hint for an 
additive interaction between both domains during the course of 
rehabilitation. To our knowledge, there are no studies with the 
aim to explore lesion characteristics of different ways of concur-
rent motor and language recovery. Therefore, it remains unclear 
if an additive interaction between motor and language recovery 
processes through therapy can be linked to specific structural 
lesions in the brain.

The aim of the present study was to investigate systemati-
cally the determinants of language and motor recovery in four 
exemplary patients with different base levels of motor and lan-
guage abilities. Alongside the clinical assessment of motor and 
language abilities, we focused on (1) the examination of lesion 
characteristics at pre-test and (2) possible interactions of motor 
and language recovery processes following the 7-week language 
and motor therapy phase (i.e., outcome at the post-test).

Apraxia of speech is a clinically known influence factor to 
the possibilities of improving language skills in aphasic patients. 
Furthermore, since anatomic correlates for common motor 
speech and motor processing have been described (10), motor 
speech could be considered a “link” between motor and language 
processing functions. Therefore, in addition to motor and lan-
guage processing functions, we considered the phenomenon of 
apraxia of speech independently for the patients in our patient 
group. Since we aimed to discuss motor speech functions on a 
purely exploratory level, no precise hypotheses were formulated.

Over all, four hypotheses were formulated concerning both 
lesion characteristics and possible therapy-induced interactions:
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Regarding (1), lesion characteristics, the following hypotheses 
were addressed:

 (i) In line with current research (12–14, 16, 18), we assume that 
global lesion size is not a correlate for sufficient concurrent 
motor and language recovery.

 (ii) We expect that patients with smaller lesions in function-
specific white matter tracts for motor (CST) and language 
processing [AF, superior longitudinal fasciculus (SLF)] 
show good recovery potential in the particular domains as 
opposed to patients with extensive lesions to these tracts.

 Regarding (2), possible interactions of motor and language 
recovery processes, our hypotheses are as follows:

 (iii) In line with Harnish et  al. (3), we assume that patients 
with an increase in motor abilities after therapy phase 
will also show positive language recovery (i.e., an increase 
in language abilities at the post-test) and vice  versa. This 
would indicate an additive interaction between motor and 
language domains during simultaneous motor and language 
therapy.

 (iv) Complementarily, we anticipate that patients who do not 
profit from motor therapy do not show an increase in 
language abilities at the post-test after therapy phase and 
vice versa.

Materials and Methods

Patients
Four patients suffering from subacute to chronic stroke with differ-
ent base levels of motor and language skills at the beginning of the 
study (see Figure 1) were selected. The selection of patients with 
opposing base levels in motor and language skills was conducted 
in order to include previous individual recovery processes into 
the evaluation of the current recovery process. Clinical records 
documented that at the acute stage of the stroke, all patients were 
described as non-fluent to globally aphasic and had paresis of vary-
ing degrees, ranging from mild hemiparesis (4/5) to full hemiple-
gia. The different base levels resulted from the patients’ individual 
recovery processes prior to the participation in the study.

At the beginning of the study, language skills were classi-
fied as “good” (Base: L+) or “poor” (Base: L−) according to 
the patients’ individual profile height in the language assess-
ment of the Aachener Aphasie Test [AAT; (30) (see Table  1)]. 
Correspondingly, the classification of “good” vs. “poor” motor 
skills (M+ vs. M−) was based on the raw score of the Wolf Motor 
Function Test [WMFT (31), see Table 2]. This resulted in four 
possible baseline profiles: Base: M+/L+, M−/L+, M+/L−, and 
M−/L−, denoting good functions in both motor and language 
domains, the dissociations between the domains, and finally the 
combination of both severely impaired motor and language func-
tion at the pre-test of the study.

Apart from different performance patterns in the language 
and motor domain, the patients had to meet the following 
criteria for inclusion into the study: (1) general MRI compat-
ibility, (2) native German speakers, (3) right-handed according 

to the Edinburgh Inventory of Handedness [Laterality coef-
ficient ≥80; (32)], (4) normal or corrected-to-normal vision, 
(5) no hearing loss, (6) no pregnancy, (7) single stroke in the 
left hemisphere, (8) subacute or chronic stage of stroke (at least 
6 weeks post onset), (9) clinically diagnosed aphasia or residual 
symptoms of aphasia and clinically diagnosed hemiparesis, 
and (10) no history of dementia or other CNS or psychiatric 
diseases.

The patients were recruited from the Aphasia Rehabilitation 
Ward of the Neurological Clinic, Uniklinik RWTH Aachen. 
Informed written consent for participating in the study was 
obtained from each patient prior to the participation in the 
study. The study was approved by the local ethics committee 
and conducted according to the Declaration of Helsinki. Patient 
characteristics are displayed in Figure 1.

research Design
All patients were recruited during their 7-week stay at the Aphasia 
Rehabilitation Ward of the Department of Neurology, Uniklinik 
RWTH Aachen. A pre–post test design was used to assess both 
motor and language abilities prior and after the 7-week therapy 
phase. The pre-test took place during the first week of the treat-
ment. Deficits were quantified using standardized assessment 
tests and applied by trained personnel (speech and language 
therapists, physiotherapists, and neurologists). Structural MRI 
scans were conducted in the first week of the patients’ stay at 
the hospital. The post-test took place during the seventh (i.e., 
last) week of the stay at the Aphasia Rehabilitation Ward. Again, 
the functional language and motor scales were used to evalu-
ate patients’ development during the intensive treatment. MRI 
measurements were not repeated. Between pre- and post-test, the 
patients participated in 7 weeks of motor and language therapy 
(for an overview of the research design, see Figure 2).

clinical examinations
The following tests were applied:

Functional Language Scales
The “Aachener Aphasie Test” [AAT (30)], a robust and highly 
validated test of language in multiple domains, was conducted 
to assess the patients’ overall linguistic abilities. Additionally, 
five subtests of the standard neurolinguistic test battery “Lexikon 
Modellorientiert” [LEMO (33)] were employed: subtest 5 – “lexi-
cal decision making,” subtest 25  –  “finding synonyms,” subtest 
30 – “oral naming,” and subtest 32 – “finding rhymes.”

Functional Motor Scales
The Wolf Motor Function Test [WMFT (31)] was applied to 
evaluate the quality and duration of the patients’ arm and hand 
movements. In addition, the Dynamic Gait Index [DGI (34)] was 
conducted in order to assess gait and balance.

Additional Scale
Three subtests from the “Aachener Materialien zur Diagnostik 
Neurogener Sprechstörungen” [AMDNS (35)] were used in 
order to screen for neurogenic speech disorders: “duration of 
phonation,” “variability of speech intensity,” and “articulatory dia-
dochokinesis.” These subtests were used to control the influence 
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TaBle 2 | results of the patients in WMFT and Dgi.

Pat. (base) WMFT Dgi

Pre Post Pre Post

1 (M+/L+) 70 73 24 24

2 (M−/L+) 34 40* 20 24**

3 (M+/L−) 69 74** 21 23

4 (M−/L−) 5 5 11 13

Pat., patient; pre, pre-test; post, post-test; WMFT, Wolf Motor Function Test; DGI, 
Dynamic Gait Index; **significant improvement (Wilcoxon signed rank test, p < 0.05); 
*significant improvement (Wilcoxon signed rank test, p < 0.1).
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of the patients’ motor speech function on motor and language 
ability and recovery.

In addition, subtest “Articulation” (spontaneous speech) of 
the AAT was considered separately, since it is specially related to 
motor speech functions.

Analysis of Behavioral Data
The single-case characteristics of our study put some restraints 
on the statistical tests that are available. For the AAT, significant 
improvements and deteriorations were differentiated. To test for 
significant changes in the patient’s performance between pre- and 
post-test, the computer program “AATP” (36) was employed. This 
program automatically calculates significant changes using the 
psychometric single-case diagnosis (37) with p < 0.1, an alpha-
level that is common for single cases. In reference to LEMO, 
significant changes between pre- and post-test were calculated 

FigUre 1 | Overview of the four patients’ base levels upon inclusion into the study, including T1-weighted images of the patients’ lesions, optimized 
for displaying the position of the lesion. Abbreviations: “+” = good; “−” = poor motor/language skills; p.o., post onset; MCA, middle cerebral artery; ACA, 
anterior cerebral artery.

TaBle 1 | results of the patients in the aaT and leMO.

Pat. (base) aaT leMO

Profile height lD Fs Fr On

Pre Post Pre Post Pre Post Pre Post Pre Post

1 (M+/L+) 57.9 58.7 78 79 38 39 11 7° 19 20

2 (M−/L+) 72.5 73.3 80 80 40 40 20 20 18 18

3 (M+/L−) 41.9 43* 45 61* 34 36 10 6 – –

4 (M−/L−) 40.9 41.3 70 74 35 37 – – 9 9

AAT, Aachener Aphasie Test; LEMO, Lexikon Modellorientiert; Pat., patient; pre, pre-test; post, post-test; LD, Lexical Decision; FS, Finding Synonyms; FR, Finding Rhyms; ON, Oral 
Naming; *significant improvement [AAT: calculated with AATP; LEMO: McNemar Test, p < 0.05; (*)];°, significant deterioration (McNemar Test, p < 0.05).

for each subtest conducting the McNemar test (p  <  0.1 or 
p < 0.05). Concerning the WMFT and DGI, significant changes 
were calculated with the Wilcoxon signed rank test (p < 0.1 or 
p < 0.05). In the additional scale AMDNS, only notable changes 
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FigUre 2 | research design.
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were evaluated. They were defined as a positive or negative change 
of severity comparing the degrees of severity on a 4-point scale 
(3 = severe impairment, 0 = no impairment).

imaging acquisition
Structural MRI measurements (T1, FLAIR) were conducted for 
lesion analyses using a Philips 3T scanner at the Brain Imaging 
Facility at University Hospital, RWTH Aachen. All images 
were made using SENSE (Sensitivity Encoding) technology 
conducting an eight-channel phase array head coil. A three-
dimensional isotropic T1-weighted sequence (MPRAGE) was 
performed in the sagittal plane. Acquisition parameters were: 
repetition time/echo time =  9.9/4.6 ms; flip angle =  8; field of 
view = 256 mm; matrix = 256 × 256; slice thickness = 1 mm; voxel 
size = 1 mm × 1 mm × 1 mm. Acquisition parameters for the FLAIR 
measurement were: repetition time/echo time = 11,000/125 ms; 
field of view  =  224  mm; matrix  =  312  ×  157; slice thick-
ness = 3 mm; voxel size = 0.72 mm × 1.13 mm × 3 mm.

analysis of imaging Data
All data were analyzed on an individual subject basis. For the 
analysis of lesions, all lesions were marked within the FLAIR 
image using MRIcron (38). Afterwards, the lesion maps were 
normalized via FLIRT (39) and transformed into standard MNI 
space. Anatomical masks of interest from the atlases supplied 
with FSL [MNI Structural Atlas (40) and JHU White-Matter 
Tractography Atlas (41)] were extracted. The right hemisphere 
in the MNI Structural Atlas was masked out by zeroing all voxels 
with x-coordinates 0–45; anatomical structures of interest were 
already lateralized in the JHU White-Matter Tractography 
Atlas. No thresholding was applied. The size of each structure 
was determined by counting the number of non-zero voxels in 
each map. Then, an intersection of the patient-specific lesions (in 
standard space) with the respective anatomical maps was created 
by multiplying them with each other using FSL command line 
tools (fslmaths). This yielded a map representing the damage to 
the particular map inflicted by the patient’s lesion. The size of this 
map was determined by counting the non-zero voxels inside this 
map. Afterwards, the calculation of the percentage of the entire 
anatomical structure affected by the lesion followed by dividing 

the voxel count of the intersection by the voxel count of the 
anatomical map.

Lesions of the patients were analyzed according to their 
localization in the following cortical and subcortical structures: 
frontal lobe, parietal lobe, temporal lobe, occipital lobe, insula, 
putamen, thalamus, and caudate. Concerning white matter 
tracts, the lesion analysis procedure previously described 
was conducted for the CSTs, SLF and AF. All fiber tracts were 
included due to their previously described role in motor and 
language processing.

results

Behavioral Data
The patients’ overall behavioral outcome (changes of performance 
after the 7-week therapy phase) in the functional scales showed 
heterogeneous results both for motor and language assessments 
(see Tables 1 and 2; Tables S1–S3 in Supplementary Material).

additional scale
Motor speech abilities (AMDNS) showed heterogeneous results 
with both notable improvements and deteriorations across all 
patients’ performances. However, none of the measured changes 
occurred on a significant level. An overview of the results in these 
tests is given in Table 3. As described above, subtest “Articulation” 
of the AAT was considered separately and showed heterogeneous 
results with notable improvements in Patient 1 (Base: M+/L+) 
and Patient 3 (Base: M+/L−), one notable deterioration [Patient 
2 (Base: M−/L+)] and one stable result [Patient 4 (Base: M−/L−; 
see Table 4)].

synoptical analysis of Behavioral and  
lesion-related Data
As shown in Tables 5 and 6, all patients had lesions in the frontal 
and parietal lobe, as well as white matter tract injury in the SLF 
and AF (see also Figures 3 and 4). Concerning further cortical 
and subcortical structures, patients did not show a homogeneous 
pattern of their lesions. In the following tables, we demonstrate an 
overview of the patients’ recovery outcome following the 7-week 
therapy phase together with the patients’ lesion characteristics in 
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TaBle 4 | results of the patients in the subtest “articulation”  
(aaT; degree of impairment).

Pat. (base) articulation (aaT)

Pre Post

1 (M+/L+) 3 4

2 (M−/L+) 5 4 

3 (M+/L−) 2 3

4 (M−/L−) 3 3

Degree of impairment: 5 = no impairment; 1 = severe impairment (i.e., cannot be 
evaluated due to lack of intelligibility).

TaBle 3 | results of the patients in the aMDns (degree of impairment).

Pat. (base) aMDns

Dia DU inT

Pre Post Pre Post Pre Post

1 (M+/L+) 18 15 9 5 0 3

2 (M−/L+) 18 18 3 3 3 0

3 (M+/L−) 6 6 6 6 0 2

4 (M−/L−) 9 9 16 17 3 3

Cumulative dysarthria score: degree of impairment: 0 = no impairment; 3 = severe 
impairment. Pat., patient; pre, pre-test; post, post-test; DIA, diadochokinesis; DU, 
duration of phonation; INT, variability of speech intensity.

TaBle 5 | Overview of the patients’ functional recovery (post-test) in both domains, lesion volume, and percentage of damaged tissue in defined 
cortical and subcortical brain areas.

Pat. (base) lesion volume to specific areas

Outcome after 7-week therapy phase Total lesion volume cortical (lobar) subcortical

Motor recovery language recovery Fro Par Tem Occ ins Put Tha cau

1 (M+/L+) Non-responder
WMFT (o), DGI (o)

Non-responder
AAT (o), LEMO−

10,325 2,403 6,368 2,409 335 1,903 437 – –

2 (M−/L+) Strong responder
WMFT+, DGI+

Non-responder
AAT (o), LEMO (o)

6,852 5,815 3,193 – – – – – –

3 (M+/L−) Partial responder
WMFT+, DGI (o)

Strong Responder
AAT+, LEMO+

14,406 8,422 4,171 1,255 – 2,764 732 23 25

4 (M−/L−) Non-responder
WMFT (o), DGI (o)

Non-responder
AAT (o), LEMO (o)

50,472 18,747 16,884 9,692 7,556 3,340 1,237 87 12

+, Significant improvement; (o), no change; −, significant deterioration. Non-responder, patient showed no positive response to motor or language therapy; partial responder, partial 
positive response, i.e., significant improvement in one of the applied tests; strong responder, strong positive response, i.e., significant improvement in both applied tests; –, no lesion 
measured; Fro, frontal lobe; Par, parietal lobe; Tem, temporal lobe; Occ, occipital lobe; Ins, insula; Put, putamen; Tha, thalamus; Cau, nucleus caudate.
Lesion volume was calculated within the FLAIR data (voxels).
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cortical and subcortical (Table  5) as well as white matter tract 
areas (Table 6).

Discussion

The present study explored if there are determinants for concur-
rent motor and language recovery during intensive therapy in 
four exemplary chronic stroke patients with different base levels 
of language and motor abilities. In particular, we examined if 
(1) concerning lesion characteristics (i) the global lesion size is 
a correlate of sufficient concurrent motor and language recovery 

and if (ii) the extent of damage of the function-specific white mat-
ter tracts for motor and language is predictive for the recovery 
potential in the respective domains.

In the further analysis of (2) possible interactions of motor and 
language recovery processes, we investigated if (iii) an additive 
interaction between motor and language domains during simul-
taneous motor and language therapy occurs and if (iv) there will 
be a lack of interaction between both domains when there is no 
recovery progress in at least one domain.

The four patients had different motor and language base levels 
and were systematically examined in this study to evaluate the 
relation of their therapy outcome in both domains (i.e., recovery 
process that was measured from pre- to post-test) and lesion 
parameters. To explore predictors for (iii) concurrent motor and 
language recovery, various functional scales in the motor and 
language domain and also in the motor speech domain were 
applied. Concerning the lesion analysis, cortical and subcortical 
lesion characteristics as well as white matter tract damage were 
explored.

One major finding of this study is that we could detect some 
indicators for an additive behavior of motor and language 
recovery. It seems that motor and language recovery co-occur in 
a sense that motor recovery facilitates the possibility of a positive 
therapy-induced language recovery. In addition, lesion size per se 
is not determining a sufficient motor and language recovery. 
However, the specific lesion areas play an important role for a 
sufficient recovery. Another main finding was that large damage 
in important fiber structures for motor or language processing 
allows no prediction about the recovery of the fiber-induced 
function at a single subject level.

lesion characteristics
Global Lesion Size
Considering the global lesion size in our four patients, Patient 3 
(Base: M+/L−) was the only participant who was able to improve 
significantly in both motor and language functions at the post-test. 
In addition, this patient had the second largest overall lesion size. 
In comparison, Patient 2 (Base: M−/L+), the patient showing the 
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TaBle 6 | Overview of the patients’ functional recovery (post-test) in both domains, lesion volume, and percentage of damaged tissue in particular 
white matter tracts.

Pat. (base) Outcome after 7-week therapy phase lesion volume to specific white matter tracts

Motor recovery language recovery csT slF aF

1 (M+/L+) Non-responder
WMFT (o), DGI (o)

Non-responder
AAT (o), LEMO−

– 5,115 1,196

2 (M−/L+) Strong responder
WMFT+, DGI+

Non-responder
AAT (o), LEMO (o)

1,057 1,916 736

3 (M+/L−) Partial responder
WMFT+, DGI (o)

Strong responder
AAT+, LEMO+

568 7,188 3,944

4 (M−/L−) Non-responder
WMFT (o), DGI (o)

Non-responder
AAT (o), LEMO (o)

1,643 16,462 7,458

+, Significant improvement; (o), no change; −, significant deterioration. Non-responder, patient showed no positive response to motor or language therapy; partial responder, partial 
positive response, i.e., significant improvement in one of the applied tests; strong responder, strong positive response, i.e., significant improvement in both applied tests; –, no lesion 
measured; CST, corticospinal tract; SLF, superior longitudinal fasciculus; AF, arcuate fasciculus.
Lesion volume was calculated within the FLAIR data (voxels).

FigUre 3 | structural Mri (Flair sequence). Overlay of normalized 
lesion maps of the patients in the standard brain. Red, Patient 1 (Base: M+/
L+); yellow, Patient 2 (Base: M−/L+); blue, Patient 3 (Base: M+/L−); green, 
Patient 4 (Base: M−/L−). (a) axial, subcortical view; (B) axial, cortical view; 
(c) coronal view; (D) sagittal view (left hemisphere).
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smallest global lesion size, was able to improve in motor but not 
language scales at the post-test, whereas Patient 1 (Base: M+/L+) 
and Patient 4 (Base: M−/L−, the patient with the largest global 
lesion size), did not show improvement in any scale. The fact that 
Patient 3 (Base: M+/L−) was able to improve on such an extensive 
level shows that the global lesion size cannot be the single determi-
nant regarding recovery potential. This finding is in line with the 
current state of research [e.g., see Ref. (12–14, 16, 18)].

White Matter Tracts
Concerning white matter tracts, lesion characteristics seem to 
be less distinct. Although Patient 1 (Base: M+/L+) was the only 

patient who did not show a lesion of the CST, he also did not 
improve in motor therapy, most possibly due to a high motor 
base level and a ceiling effect. Patient 3 (Base: M+/L−) showed 
the smallest lesion of all patients (i.e., of all patients with lesions 
of the CST) and was able to improve in one motor test. Whereas 
Patient 2 (Base: M−/L+) with the second largest lesion of the 
CST was a strong responder to motor therapy with improve-
ments in both motor function tests. Patient 4 (Base: M−/L−) 
had the most extensive CST lesion and was a non-responder to 
motor therapy.

Especially the distinction between Patients 2 (Base: M−/L+) 
and 3 (Base: M+/L−) is of further interest: although fiber dam-
age of the CST in Patient 2 (Base: M−/L+) was about two times 
larger than that in Patient 3 (Base: M+/L−), probably leading 
to his worse baseline profile, Patient 2 (Base: M−/L+) actually 
showed better abilities to recover in the motor domain than 
Patient 3 (Base: M+/L−; strong responder vs. partial responder, 
see Tables 5 and 6). This difference could be attributed to the fact 
that the measureable extent of the lesion in Patient 2 is primarily 
caused by the location of the lesion at the level of the primary 
motor cortex, whereas Patient 3’s smaller lesion mainly affects 
the part of the pyramidal tract further down in the corona radiata 
(see Figure 4). It is possible that this specificity of the anatomical 
lesion site in Patient 3 leads to a higher amount of damage to 
fibers that are relevant to motor recovery.

In summary, among our patient group, Patient 1 (Base: 
M+/L+) showed no lesion of the CST and no therapy-induced 
improvement due to ceiling effects and an already high level of 
motor functions at the pre-test. Patient 2 (Base: M+/L−) showed 
an extensive overall lesion, however, damage was more related to 
cortical structures than to lesions in the CST. This patient showed 
good recovery potential with improvements in both motor func-
tion tests. In comparison, Patient 3 (Base: M+/L−) showed a 
smaller lesion, however, he only recovered to a smaller degree 
than Patient 2 (Base: M−/L+). His lesion location in the corona 
radiata probably led to a reduction in recovery potential. Last, 
Patient 4 (Base: M−/L−) with the most extensive lesion of the 
CST was not able to improve in motor therapy at all. This result is 
supportive to the finding that strategic lesion location, rather than 
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FigUre 4 | structural Mri (Flair sequence). Overlay of normalized lesion maps of patients 2 and 3 in the standard brain. Yellow, Patient 2 (Base: M−/L+); 
green, Patient 3 (Base: M+/L−); red, corticospinal tract. (a) sagittal view; (B) coronal view; (c) axial, subcortical view.
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lesion volume, is an important determinant to recovery potential 
[e.g., see Ref. (15)].

Concerning the lesion of the AF, similar results could be 
found. Patient 2 (Base: M−/L+) who showed the smallest lesion 
of the AF did not show therapy-induced language improvement 
at the post-test, as well as Patient 1 (Base: M+/L+) who presented 
with the second smallest lesion. Patient 4 (Base: M−/L−) who 
showed the most spacious lesion of the AF was also not able to 
profit significantly from intensive therapy. Only Patient 3 (Base: 
M+/L−) was able to improve strongly in both language scales, 
although he showed the second largest lesion of the AF.

These findings seemingly point toward the assumption that the 
specific lesion size of the CST and/or AF does not directly influ-
ence the outcome of motor and/or language recovery. However, 
we feel that this assumption would be too shortsighted since at 
this point, the individual base levels, i.e., the level of motor and 
language skills that the patients presented with at the pre-test, 
need to be considered: regarding the lesion of the CST, we pointed 
out that Patient 1 (Base: M+/L+) did not show motor recovery 
although he did not have any lesion of the CST. However, Patient 
1 already showed a comparatively high level of motor skills at the 
pre-test (see Table 2), leaving him with only small possibilities 
for significant improvements at the post-test. The same holds for 
Patient 2 (Base: M−/L+) regarding the extent of the AF lesion. As 
described, Patient 2 showed the smallest AF lesion of all patients 
but did not show language recovery. This could be attributed to 
possible ceiling effects. However, even after eliminating those two 
patients with possible ceiling effects from our considerations, in 
our patient group still neither the patient with the (then) smallest 
CST lesion [Patient 3 (Base: M+/L−)] nor the patient with the 
(then) smallest AF lesion [Patient 1 (M+/L+)] are the patients 
showing most motor and language recovery, respectively. This 
observation points strongly toward the conclusion, that even 
patients with large lesion of the CST/AF are able to recover 
motor/language abilities during intensive therapy.

interactions of Motor and language 
recovery Processes
Based on the results that were published by Harnish et  al. (3), 
we assumed that the patients with an increase in motor abilities 

after the 7-week therapy phase would show positive language 
recovery (i.e., an increase in language abilities at the post-test), 
indicating that an additive interaction between motor and lan-
guage domains during simultaneous motor and language therapy 
occurs. We also anticipated that patients who do not profit from 
motor therapy do not show an increase in language abilities at 
the post-test after therapy phase and vice  versa. Regarding the 
data of our four patients, two of our patients, namely Patient 2 
(Base: M−/L+) and Patient 3 (Base: M+/L−), were able to profit 
from motor therapy, leading to a significant improvement of 
motor functions at the post-test. Of these two patients, Patient 
2 (Base: M−/L+) did not show improvements in the language 
domain while Patient 3 (Base: M+/L−) was a strong responder 
to language therapy also (see Tables 5 and 6). However, Patient 
2 (Base: M−/L+) already showed a comparatively high level of 
language skills at the pre-test with a mean profile height of 72.5 
in the AAT (see Table 1) as well as even the maximum possible 
raw scores at LeMo, indicating only mild residual symptoms of 
aphasia even at the beginning of the therapy phase.

As to Patient 1 (Base: M+/L+) and Patient 4 (Base: M−/L−), 
none of them were able to improve motor function skills and, in 
addition, none of them were able to profit from language therapy. 
Of the two patients, Patient 1 (Base: M+/L+) already showed 
a relatively high language profile at the pre-test, however, with 
a mean profile height of 57.9 in the AAT, he clearly could have 
improved significantly in that scale. Additionally, the raw scores 
indicate that significant improvement of the subtest “Finding 
Rhymes” (LeMo) would also have been possible (see Table  1). 
Therefore, the existence of ceiling effects in this patient can be 
excluded and the lack of positive therapy outcome has to be 
considered as a “real” effect.

In none of our four patients improvements in the motor or the 
language domains were bound to measurable deteriorations in 
the other domain. This lack of dissociation between the recovery 
processes of the two domains hints toward the assumption that a 
“fight for resources” could not be observed in our patient group.

In conclusion, only one patient with a positive response to 
motor therapy [Patient 3 (Base: M+/L−)] was able to improve 
significantly in language functions at the pre-test, whereas 
Patient 2 (Base: M−/L+), who also improved significantly in 
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motor functions, could not have achieved measurable improve-
ments due to ceiling effects in the language domain but did show 
numerical improvements of language skills. The evident motor 
recovery in the case of Patient 3 (Base: M+/L−) might have been 
a facilitating factor for a good response to language therapy. The 
two patients who could not benefit from the intensive motor 
therapy program [Patient 1 (Base: M+/L+) and Patient 4 (Base: 
M−/L−)] could also not improve significantly concerning 
language skills. Therefore, we assume that these results are sug-
gestive of a positive interaction operating between motor and 
language domains during recovery in the sense that a positive 
therapy-induced motor recovery is a prerequisite to the possibil-
ity of recovering language skills through language therapy. This 
finding is in accordance with Harnish et al. (3). Regarding the 
oppositional outcome (positive language therapy outcome lead-
ing to improved motor outcome), no such interactions could be 
observed, therefore, due to our small sample size, it is not possible 
to formulate a conclusion concerning the possibility of contrary 
recovery dynamics.

apraxia of speech
Interestingly, dissociations in the recovery of apraxia of speech 
became apparent in the additional functional Scale AMDNS and 
in the subtest “articulation” of the AAT.

Only Patient 1 (Base: M+/L+), who had the smallest amount 
of lesioned voxels in the frontal lobe (see Table 5), was able to 
improve notably in “articulatory diadochokinesis” and “dura-
tion of phonation” (AMDNS) and showed a notable improve-
ment in the communication parameter “articulation” (AAT; 
see Tables 3 and 4). Patient 2 (Base: M−/L+), showing a larger 
lesion in the frontal lobe, showed stable performances regarding 
motor speech. Patient 3 (Base: M+/L−) and 4 (Base: M−/L−) 
had the highest amount of lesioned voxels in the frontal lobe 
and stable or inferior results in the post-test [except of a notable 
improvement in the communication parameter “articulation” 
(AAT, Patient 3)]. Patients 3 (Base: M+/L−) and 4 (Base: M−/
L−) were also not able to conduct complex articulatory diado-
chokinesis tasks at the pre- and post-test, probably due to the 
severe apraxia of speech. These two patients demonstrate larger 
affection of the insular cortex by the lesion in comparison to 
Patient 2 (Base: M−/L+; no insular lesion) and Patient 1 (Base: 
M+/L+; see Table 5). The insula is associated with articulatory 
coding/motor programing and motor control [e.g., see Ref. 
(42, 43)] and its left precentral gyrus forms also an anatomical 
correlate for the development of apraxia of speech (44, 45). 
Therefore, preservation of the insula appears to be a necessary, 
but not exclusive predictor for motor speech recovery. Lesions 
in other cortical or subcortical regions may also play a role for 
developing recovery potential in motor speech coordination. 
This assumption would be in accordance with the findings of 
Ogar et al. (45). They pointed out that patients showing a severe 
apraxia of speech had larger lesions in neighboring regions 
like Broca’s area or basal ganglia. To conclude, the described 
literature and our findings suggest that the overall amount of 
lesioned voxels in the frontal lobe per se is able to predict motor 
speech recovery in our sample of patients. This finding has to be 
tested in a larger number of patients and, in addition, distinctive 

subcortical parts of the frontal lobe like insular or basal ganglia 
should be analyzed precisely in reference to their predictive 
value for recovery.

limitations
The present multiple case study provides a new approach in 
analyzing concurrent motor and language recovery as well as the 
interaction behavior between these domains during recovery. On 
the one hand, our findings provide some first indictors, given 
the fundamental research gap in this field. On the other hand, 
the data in this study are of limited generalizability as only single 
cases were examined. In addition, a more specific analysis of spe-
cific brain areas is needed. It was also not possible to control the 
time of onset/duration of aphasia and motor dysfunction in the 
patients. This is a variable of potential influence due to different 
restitution processes in different time intervals after stroke [e.g., 
restitution in the early subacute vs. chronic stage of aphasia; see 
Ref. (46)]. A group study would be necessary to elucidate if these 
first results are transferable to a larger sample of subjects.

conclusion and Perspectives

To conclude, we show that primarily the strategic location of the 
lesion is a determinant of functional recovery in the motor and 
language domain. Another main finding was that large damage 
to important white matter structures for motor or language 
processing is not a single predictive factor for the recovery of the 
affected function. Regarding motor speech, the extent of dam-
age to the frontal lobe (especially insula) seems to be a neural 
correlate for a good motor speech (apraxia of speech) recovery. 
Poor motor speech abilities, often associated with an apraxia of 
speech, play a special role in the recovery of language skills and 
are distinguished by large frontal lesions.

With respect to the interaction of the motor and language 
domain during recovery, first hints for additive effects were found. 
Those patients with good base levels in motor skills improved in 
language abilities. Therefore, motor and language improvement 
seem to co-occur, as stated before by Harnish and colleagues (3), 
rather than to compete for recovery resources.

Concerning the mechanisms of recovery, we were not able 
to find evidence for a “fight for resources,” since motor or lan-
guage recovery was not associated with a loss of abilities in the 
other domain, respectively. But it was clearly visible that there 
is no prospect of recovery in the language domain if there are 
no resources and abilities available in the motor domain. This 
is indicative for an additive, synergetic recovery mechanism as 
described by Harnish and colleagues (3).

A further important finding was that the characteristics of the 
lesion (specific area, overall size) are no obligatory determinant 
or predictor for the success of motor or language therapy. We 
could show that a patient with large CST damage exhibited posi-
tive motor recovery while a patient with large AF/SLF damage 
improved well in the language testing.

In this study, only single cases were analyzed. A larger group 
study will investigate recovery mechanisms and correlates sup-
ported by a higher statistical power as well as additional fMRI 
measurements. The results, together with the findings in this 
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paper, will add to the knowledge about recovery processes in this 
clinically relevant patient group.
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The right supramarginal gyrus is 
important for Proprioception in 
healthy and stroke-affected 
Participants: a Functional Mri study
Ettie Ben-Shabat1,2* , Thomas A. Matyas1,2 , Gaby S. Pell1 , Amy Brodtmann1† and  
Leeanne M. Carey1,2†

1 Neurorehabilitation and Recovery, Stroke, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia, 
2 Occupational Therapy, School of Allied Health, College of Science, Health and Engineering, La Trobe University, Melbourne, 
VIC, Australia

Human proprioception is essential for motor control, yet its central processing is still 
debated. Previous studies of passive movements and illusory vibration have reported 
inconsistent activation patterns related to proprioception, particularly in high-order sen-
sorimotor cortices. We investigated brain activation specific to proprioception, its later-
ality, and changes following stroke. Twelve healthy and three stroke-affected individuals 
with proprioceptive deficits participated. Proprioception was assessed clinically with the 
Wrist Position Sense Test, and participants underwent functional magnetic resonance 
imaging scanning. An event-related study design was used, where each proprioceptive 
stimulus of passive wrist movement was followed by a motor response of mirror  copying 
with the other wrist. Left (LWP) and right (RWP) wrist proprioception were tested sep-
arately. Laterality indices (LIs) were calculated for the main cortical regions activated 
during proprioception. We found proprioception-related brain activation in high-order 
sensorimotor cortices in healthy participants especially in the supramarginal gyrus (SMG 
LWP z = 4.51, RWP z = 4.24) and the dorsal premotor cortex (PMd LWP z = 4.10, 
RWP z = 3.93). Right hemispheric dominance was observed in the SMG (LI LWP mean 
0.41, SD 0.22; RWP 0.29, SD 0.20), and to a lesser degree in the PMd (LI LWP 0.34, 
SD 0.17; RWP 0.13, SD 0.25). In stroke-affected participants, the main difference in 
proprioception-related brain activation was reduced laterality in the right SMG. Our find-
ings indicate that the SMG and PMd play a key role in proprioception probably due to 
their role in spatial processing and motor control, respectively. The findings from stroke- 
affected individuals suggest that decreased right SMG function may be associated with 
decreased proprioception. We recommend that clinicians pay particular attention to the 
assessment and rehabilitation of proprioception following right hemispheric lesions.

Keywords: proprioception, kinesthesis, upper extremity, functional laterality, stroke, magnetic resonance imaging, 
cerebral cortex

Abbreviations: BA, Brodmann area; fMRI, functional magnetic resonance imaging; IPL, inferior parietal lobe; LI, laterality 
index; LWP, left wrist proprioception; MI, primary motor cortex; PMd, dorsal premotor cortex; RWP, right wrist proprio-
ception; SI, primary somatosensory cortex; SIMI, primary sensorimotor cortex; SII, secondary somatosensory cortex; SMA, 
supplementary motor area; SMG, supramarginal gyrus.
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inTrODUcTiOn

Limb proprioception refers to knowledge of the spatial location 
of one’s limb in the absence of vision. Proprioception is vital for 
motor control (1), particularly of the upper limbs (2). It is essen-
tial for the control of coordinated movements, especially small or 
precise movements, and for motor skill acquisition (3). Hence, 
proprioceptive deficits in the upper limbs are associated with 
decreased function (1). Despite the importance of propriocep-
tion for function, it remains unclear which brain regions beyond 
the primary sensorimotor cortices (SIMIs) are involved in the 
processing of proprioception and how this brain activation is 
altered following focal brain lesions associated with propriocep-
tive deficits.

Researchers studying brain activation during passive move-
ments of the elbow (4, 5), wrist (6, 7), hand (8), and finger (9, 
10) have identified activation in the contralateral primary 
somatosensory (SI) and motor (MI) cortices and the inferior 
parietal lobe (IPL). However, investigators disagreed on the 
pattern (contralateral, ipsilateral, or both) and exact location of 
activation [supramarginal gyrus (SMG) or the secondary soma-
tosensory cortex (SII)]. In contrast, neurophysiological studies of 
primates, identified the superior parietal lobe as a key region for 
the processing of proprioception (11, 12). The ability of current 
brain imaging paradigms to investigate proprioceptive specific 
processing, and in particular the contribution from higher order 
brain regions, requires careful consideration and design.

Inconsistent proprioception-related brain activation has also 
been reported in high-order motor cortices including the sup-
plementary motor area (SMA), cerebellum (6, 8), and the premo-
tor cortex (PMC) (5, 6, 8). Variations in proprioception-related 
brain activation may have been due to the fact that brain imaging 
studies of passive movements varied in paradigm design. In some 
cases, the support of the moving limb was suboptimal and may 
have introduced significant tactile stimulation (6, 8, 10), thus 
generating confounding brain activation.

Proprioception-related brain activation has also been stud-
ied using illusory vibrations. This is vibration of a tendon at a 
frequency between 70 and 100Hz, which creates an illusion of 
movement (13). Early findings from illusory vibration studies 
emphasized activation in motor cortices including: MI, SMA, 
PMC, and the cingulate motor area (14, 15). Later, researchers 
also identified brain activation in the IPL (5, 16–18). However, as 
was the case with passive movements, reported activation varied 
in location, with reports of activation in the parietal operculum 
(5, 15, 17) or the SMG (16, 18). Hemispheric bias was also contro-
versial with some researchers reporting bilateral activation (16, 
18), while others report a right hemisphere dominance (15, 17).

Illusory vibrations provide different peripheral stimuli to 
passive movements. The stimulus is large phasic and of uniform 
frequency in the primary afferent fibers of the muscle spindles 
(19, 20). Minimal, if any, stimulation is produced in the second-
ary fibers of the muscle spindles and the joint receptors (19, 20). 
In contrast, passive movements produce multifrequency phasic 
and tonic stimulation of the primary afferent fibers in the muscle 
spindles (21). Secondary fibers of the muscle spindles and joint 
receptors are also stimulated (21–23). It is possible that different 

peripheral stimuli were associated with differential brain activa-
tion (5). In such circumstances, brain activation during passive 
movements is likely to reflect the central processing of proprio-
ception more accurately than illusory vibration.

An important limitation of both passive movement and 
illusory vibration brain imaging studies of proprioception is 
that participants were not required to provide accurate and 
measurable responses to the proprioceptive stimuli during scan-
ning. Responses to proprioceptive stimuli are important for two 
reasons. First, by asking participants for accurate responses to 
proprioceptive stimuli (and monitoring the responses), examin-
ers ensure that participants adequately engage in proprioceptive 
information processing. Second, the response requirement 
introduces a certain degree of difficulty to the proprioceptive 
task, which would not have been present if responses were not 
required. Increased task difficulty is desirable due to the associ-
ated increase in cortical activation (24, 25).

In healthy participants, findings from behavioral studies 
have suggested asymmetry in the accuracy of proprioception 
from the right and left limbs (26–28). Asymmetry in behavioral 
measures suggests hemispheric dominance and thus asymmetry 
in proprioception-related brain activation. Brain activation stud-
ies of illusory vibration stimulation confirmed right hemispheric 
dominance (15, 17, 18). Brain activation in the IPL and inferior 
frontal gyrus was found in all three studies, but the exact loci 
of activation and degree of laterality (i.e., right hemispheric or 
bilateral activation) varied. None of the brain imaging studies of 
passive movements investigated laterality of proprioception.

Quantitative behavioral measures of proprioception in stroke-
affected individuals have shown deficits in about 50% of the par-
ticipants (1, 29). Considering the adverse effect of proprioceptive 
deficits on function (1), it is important not only to understand 
the central processing of proprioception in healthy participants 
but also how it changes following brain lesions associated with 
proprioceptive deficits. This is because proprioception can be 
rehabilitated (30–32) with associated changes in brain activation 
(33) and improvement in function (34).

The current study was designed to investigate the brain–behav-
ior relationship of proprioception. The research questions were:

 (1) Which high-order brain areas are important for early coding 
of natural proprioceptive stimuli?

 (2) Is proprioception-related brain activation lateralized, and if so 
in which areas?

 (3) How does proprioception-related brain activation in stroke-
affected individuals with proprioceptive deficits differ from 
that of healthy participants?

To answer these questions, we designed an event-related 
functional magnetic resonance imaging (fMRI) study with a 
controlled proprioceptive stimulus and response paradigm. The 
study was exploratory with data-driven laterality analyses.

First, proprioceptive stimuli were delivered with maximal limb 
support and minimal tactile stimulation to eliminate confounding 
brain activation. Second, participants were required to respond 
accurately to each proprioceptive stimulus for optimal brain acti-
vation related to attended proprioceptive information processing. 
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Third, the paradigm and analyses were designed to show brain 
activation at the beginning of a proprioception task during the 
coding of proprioceptive stimuli. We hypothesized that coding 
proprioception would involve high-order somatosensory cortices 
in the parietal lobe including the IPL, the SII, and the superior 
parietal lobe. We also hypothesized that proprioception-related 
brain activation would be found in high-order motor cortices in 
the frontal lobe including the PMC, SMA, and cingulate motor 
cortex. The second hypothesis was that proprioception-related 
brain activation would be lateralized to the right hemisphere, 
particularly the high-order cortices. Finally, we hypothesized 
that laterality would decrease following stroke which affected 
proprioception.

MaTerials anD MeThODs

Participants
Twelve healthy right-handed participants (35) were recruited. 
Participants were aged 23.4  ±  3.3  years (seven females) and 
their age was restricted (18–30 years) to control for age-related 
variations in proprioception (36) and brain activation (37). 
Participants’ proprioception was within the normative range 
(average absolute error below 11 ± 4.8°) as verified behaviorally 
with the Wrist Position Sense Test (38).

Three participants with chronic strokes (CSs) and propriocep-
tive deficits were also recruited: CS1 45 years, male, 16 months 
post right hemisphere stroke, average absolute wrist position 
error on the Wrist Position Sense Test was 25.6  ±  22.5°; CS2 
65 years, female, 72 months post left hemisphere stroke, average 
absolute error 17.9 ± 15.2°; and CS3 46 years, male, 68 months 
post left hemisphere stroke, average absolute error 20.8 ± 18.4°.

Participants had no history of wrist injury, neurological injury 
(other than the three participants affected by stroke), psychiatric 
conditions, ongoing medical issues, diabetes, hearing impair-
ments, or any of the standard contraindications to MRI scanning. 
The study was approved by the La Trobe University and Austin 
Health Human Ethics Committees, conforming to Declaration of 
Helsinki standards. Participants gave written informed consent 
prior to recruitment.

experimental Design and analysis 
approach
Participants performed a limb position matching task in the 
scanner using an event-related study design. The experimental 
paradigm was carefully constructed to ensure that fMRI data 
were collected specifically during coding of proprioception and 
not during response generation. Care was also taken to ensure 
that other confounding stimuli were excluded. We used an 
exploratory approach to identify the parietal and frontal regions 
activated specifically at the beginning of the proprioceptive 
stimuli during coding of proprioception. Brain laterality analy-
ses were data driven, and only regions that showed significant 
activation during coding of proprioception were then analyzed 
for laterality. A priori selection of specific brain regions for the 
laterality analyses was not possible due to the conflicting litera-
ture. Testing and analysis of right wrist proprioception and its 

laterality were performed separately to that of the left wrist. No 
direct comparisons were made between left and right wrist data. 
Data of stroke-affected individuals were analyzed as case stud-
ies and no direct comparisons were made with data of healthy 
participants.

experimental Paradigm
An event-related fMRI study was conducted in which participants 
performed a limb position matching task. The proprioceptive task 
was performed with eyes closed to eliminate the effect of vision 
on proprioception. Participants’ hands were placed in splints 
attached to a lap-tray (wrist and splint axes were aligned), and 
their arms were supported on contoured foam cushions. Hand 
placement was designed to minimize confounding tactile stimu-
lation or voluntary movement. The event-related design enabled 
temporal separation of brain activation related to proprioception 
from that related to motor response. A single trial was composed 
of two events: a proprioceptive stimulus event and a response 
event (see Figure  1). Each event was followed by a randomly 
varying interstimulus interval which varied between 0.5 and 
12 s: 0.5–6.0 s for 70% of events, 6.0–10.0 s for 20% of events, or 
10.0–12.0 s for 10% of events (i.e., jittering) (39). The purpose of 
the response events was to ensure participants’ vigilance. Hence, 
the specific pattern of brain activation during response events 
was not relevant to the research question. The brain activation of 
interest took place at the beginning of the proprioceptive events, 
during coding of proprioception.

The investigator was visually cued to passively move the 
participant’s hand via a lever (to minimize tactile stimulation) 
for a maximal duration of 3 s. In addition, the investigator was 
pretrained to deliver passive wrist movements at a rate of 10° a 
second or faster, to ensure stimulation of the main proprioceptors 
which are sensitive to changes in joint position, and to produce 
a phasic firing pattern (40). Passive movements of the wrist were 
presented in random order to any one of 21 predetermined posi-
tions within a 100° range of wrist flexion-extension movements. 
Positions were analyzed together rather than individually as the 
research question pertained to proprioception-related brain 
activation in general and not the differential processing of each 
position.

Response requirements were designed to ensure maximal 
attendance to the proprioceptive stimulus. Response events 
commenced with a 600 ms auditory cue of either a pink noise 
(random noise with an equal energy in all octaves) or a click 
train, and participants were allowed 3  s for their response. 
The pink noise cued the participant to mirror copy the wrist 
position with the opposite hand (70% of the events), while the 
click train cued participants not to copy the wrist position (30% 
of the events). The examiner closely monitored participants’ 
responses during the scans and accuracy of response measure-
ments were collected in the prescan testing. Vigilance was also 
monitored in the prescan testing by assessing adherence to 
auditory sounds that served as cues to either respond or not 
respond to the proprioceptive stimuli. Responses were consid-
ered non-vigilant if participants moved their response hand 
half way or more toward mirror copying the stimulus position 
when cued not to respond. Vigilance was scored as percentage 
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of correct adherence to “do not respond” cues. Participants were 
first studied during left wrist proprioceptive stimuli (LWP) with 
right wrist responses, and then 2–6 months later during right 
wrist proprioceptive stimuli (RWP) and left wrist responses. 
The time between LWP and RWP scans was not expected to 
affect the results as no direct comparisons were made between 
the two.

Tests and Prescan Training Performed 
Outside the scanner
The proprioceptive paradigm was practiced in a prescan session, 
1–9 days before the scan to ensure familiarity with the task. During 
the prescan sessions, measurements of angular wrist displace-
ments were taken by potentiometers attached to the wrist axes. 
Following familiarization, participants’ responses were measured 
for accuracy and vigilance.

Electromyographic recordings were taken outside the scanner 
only. The EMG amplifier that we used is designed to work in the 
electrically noisy clinical environment and therefore has an oper-
ating bandwidth of 18–370 Hz. Outside the bandwidth, signal was 
filtered below −3 db. Notch filter was set at 50 Hz. Rectified signal 
was then sampled at 10  Hz, and these samples were employed 
to compute the average signal for each condition: passive move-
ments, active movements, and rest. Recordings were collected 
simultaneously from two channels (wrist flexors and extensors) 
during random 30 s blocks of passive movements, active move-
ments, and rest. Recordings were collected over 6.5 min, and 2 s 
of data was trimmed from the beginning and end of each block 
to avoid contamination of the data. Data were then normalized in 
the following manner. For each participant, the median of active 
movement readings was multiplied by a constant that gave it the 
value of 100. Then all recordings from the same muscle group 
were multiplied by this constant. Data of all participants were then 
pooled, and a non-parametric Wilcoxon T-test was conducted to 
compare EMG recordings during passive and active movements. 
Statistically significant difference was interpreted as evidence of 
participants’ ability to relax their forearm muscles during passive 

FigUre 1 | The event-related experimental design.

movements. This ensured that brain activation was not related to 
voluntary muscle contraction.

Data acquisition
A scanning session contained four runs. Each run extended 
over 20 trials. Runs commenced with auditory instructions, 
which lasted for 27 s. The first 12 volumes of each run were 
discarded (nine volumes of instruction and three equilibra-
tion volumes). One hundred and thirty-one whole brain vol-
umes were collected from each run. The computer program 
Presentation® (Version 9.701) was used to coordinate scanner 
timing with the delivery times of the visual cues to the inves-
tigator and the auditory cues to the participants. The same 
software served to generate log-files, which recorded event 
times in each run.

Data were acquired on a 3  T GE Horizon LX MRI scanner 
(GE Systems, Milwaukee, WI, USA). Tilted axial slices were ori-
ented parallel to a line passing inferior to the genu of the corpus 
callosum and superior to the cerebellum. The tilted imaging 
plane served to maximize the signal from the parietal cortex. 
Functional scans were acquired using a T2*-weighted gradient 
echo echo-planar imaging sequence [imaging parameters: repeti-
tion time = 3000 ms, echo time = 40 ms, flip angle = 75°, field of 
view = 240 mm, matrix = 128 × 128, 25 slices, 4 mm thick, and 
1 mm gap (in-plane resolution 1.875 mm × 1.875 mm)].

Anatomical axial 3D scans were acquired using a T1-weighted 
FSPGR imaging sequence [repetition time  =  13.8  ms, echo 
time = 2.7 ms, inversion time = 500 ms, flip angle = 20°, field of 
view = 240 mm, matrix = 512 × 512, 80 slices, 2 mm thick (in-plane 
resolution 0.47 mm × 0.47 mm)]. Axial 2D T2-weighted image 
was also taken [repetition time = 3400 ms, echo time = 77 ms, 
inversion time = 500 ms, flip angle = 90°, field of view = 240 mm, 
matrix = 512 × 512, 25 slices, 4 mm thick, 1 mm gap (in-plane 
resolution 0.47 mm × 0.47 mm)].

1 http://www.neurobs.com/presentation.
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stroke lesion Mapping
Lesion sites were identified on the non-normalized anatomical 
axial 3D T1 images of each stroke-affected participant. A neu-
rologist visually mapped the lesion sites to normalized generic 
axial slices (41) taken from the Talairach atlas (42). A second 
neurologist then evaluated that the lesions were accurately 
mapped. While lesion mapping has a subjective element, this 
process minimized the risk of bias.

Data analysis of fMri scans
Individual Image Processing
Data analyses were carried out using SPM 2 (Wellcome 
Department of Imaging Neuroscience, London, UK). Raw images 
were inspected for artifacts or structural abnormalities and then 
pre-processed: (i) correction for slice acquisition time, (ii) rea-
lignment to a target volume closest to the median value of head 
motion (iBrain™ Version 32 used for median image calculation), 
(iii) coregistration of anatomical scans to functional scans, (iv) 
spatial normalization into the Montreal Neurological Institute 
space [with masking the lesion sites for the stroke-affected par-
ticipants – cost function masking (43)], and (v) spatial smoothing 
with a kernel size of 8 mm.

Statistical Analyses
Only the beginning of each proprioception event was modeled as 
the research question was related to brain activation during cod-
ing of proprioceptive stimuli. Timing of each event was entered 
according to time recorded in the Presentation® log-file. We used 
a hemodynamic response function and included an additional 
dispersion regressor to allow for the longer event durations in 
this study (up to 3 s).

It was expected that the brain regions most significantly acti-
vated during the beginning of the proprioceptive stimuli (coding 
of proprioception) would not be activated to the same degree dur-
ing other components of each trial, namely: response generation, 
auditory cues, and interstimulus intervals. Therefore, contrasts 
were generated to identify brain activation that took place at 
the beginning of proprioception events above conditions of no 
interest (response generation, auditory cues, and interstimulus 
intervals). Individual data of healthy participants were analyzed 
using a standard unpaired t-test. The voxel-height threshold was 
set at p < 0.001, uncorrected for multiple comparisons. Analysis 
at the individual level was exploratory; therefore, a low threshold 
was selected to reveal trends of brain activation. The threshold 
used for data of stroke-affected participants was set at p < 0.05 
corrected for multiple comparisons due to the expected bilateral 
brain activation (44, 45) of greater extent (44) compared to 
healthy participants. A high pass filter was used to remove the 
effect of low frequency drift on the data.

Group Analyses
Random effect analyses were used to generate t-contrasts for 
group activation maps of the LWP and RWP scans. As with 
individual analyses, only the beginnings of proprioception 

2 http://www.brain.org.au/software.html.

events were modeled, and they were contrasted against all other 
brain activation that took place during the experiment (response 
events, auditory cues, and interstimulus intervals). To avoid the 
risks of multiple comparisons, cluster correction (minimum 
cluster size of 20 voxels) for multiple comparisons was used at 
p < 0.05 (contrasts entered in the analysis were at voxel-height 
threshold of p < 0.001). Anatomical loci of significant activation 
were identified using probabilistic maps (46) available from the 
SPM2 toolbox.

The probabilistic maps, however, did not specify the cyto-
architectonic probability of Brodmann area (BA) 6. Thus, using 
the Talairach coordinates BA 6 was divided into lateral and 
medial parts. The area lateral to x = 15 was considered as the 
PMC and medial to it, the SMA. The PMC was divided into 
superior and inferior areas. The area superior to z  =  42 was 
considered as the dorsal PMC (PMd), while inferior to it was 
the ventral PMC (PMv). The SMA was divided into anterior 
and posterior parts. The area anterior to y = 0 was considered 
as pre-SMA, while posterior to it was interpreted as the SMA 
proper [see Figure 2, (47)].

Laterality Analyses
Laterality calculations in the form of laterality index (LI) were 
used to quantify the hemispheric symmetries of proprioception-
related brain activation during LWP and RWP separately, and 
no direct comparisons were made between the two. Anatomical 
brain regions selected for the LI calculations (regions of interest) 
were the primary SI and MI (based on the literature reviewed 
in Section “Introduction”), and more importantly high-order 
somatosensory and motor cortices identified in both the LWP 
and RWP group analyses. Outlines for the regions of interest 
were defined using an independent template – the Wake Forest 
University PickAtlas available from the SPM2 toolbox. For BA 
6, outlines of subregions were generated manually using the 
FSLView tool (Version 3.0), in accordance with the guidelines 
detailed in Section “Group Analyses.”

Laterality was determined using signal extent based on the 
previously described protocol (48). Signal intensity of each 
voxel in the region of interest was determined by the statistical 
parametric maps of the LWP and the RWP contrasts. The average 
signal intensity was then calculated for the 5% of voxels show-
ing the highest t-score. The LI was calculated as: (right −  left)/
(right  +  left). Using the top 5% of voxels showing the highest 
t-score served to reduce the risk of confounding brain activation 
related to inhomogeneities in the magnetic field or multiple 
comparisons. This risk was also reduced by contrasting brain acti-
vation during proprioceptive coding with all other experimental 
conditions (response generation, auditory processing, and rest), 
rather than contrasting with rest only.

Laterality thresholding is designed to limit type I errors. Based 
on the literature, we selected an a priori threshold of −0.2 ≥ LI 
value ≥ 0.2 to indicate lateralized brain function (49). Thus, we 
expected that in the dominant region the area of the most signifi-
cant brain activation showed at least 33% higher signal intensity 
compared to the homologous area. LIs were calculated for each 
ROI of each participant based on the individual analyses. Group 
LIs were reported as mean and standard deviation.
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FigUre 2 | The regions of interest selected for the laterality calculations and the subdivisions of Brodmann area 6. Areas depicted: Brodmann Areas 
1,2,3, primary somatosensory cortex; area 4, primary motor cortex; area 40, supramarginal gyrus; PMv, ventral premotor cortex; PMd, dorsal premotor cortex; 
subdivisions of area 6, Pre-SMA, pre-supplementary motor area and SMA proper, supplementary motor area proper.
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FigUre 3 | lesion sites of the three stroke-affected participants.
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resUlTs

clinical and Proprioception results
All healthy participants completed the LWP scans and six com-
pleted the RWP scans. The other six were not available to partici-
pate in the RWP study. During the prescan sessions, participants 
were vigilant for 96.8% of the tested trials (range: 89–100%, 
SD = 4.8%). The mean absolute error of participants’ response 
accuracy for the matching task performed in the scanner was 8.6° 
(SD = 2.7°) for LWP and 7.5° (SD = 0.9°) for RWP.

As with the previous studies (5), forearm muscle electro-
myographic recordings for healthy participants during passive 
movements (mean 10.73, SD 7.70) were significantly lower than 
during active movements (116.96, 76.44) when tested with the 
Wilcoxon T test (p < 0.001).

Lesion sites of stroke-affected participants were subcortical, 
and the common lesion site was the thalamus (see Figure 3). The 
lesions of CS1 and CS3 extended to include the posterior limb 
of the internal capsule and the basal ganglia. During the prescan 
session, the mean absolute error of response for CS1 (LWP) was 
17.9° (SD = 9.6°), vigilance 91.7%; for CS2 (RWP) mean absolute 
error of response 7.5° (SD = 7.0°), vigilance 94.4%; and for CS3 
(RWP) mean absolute error of response 19.6° (SD  =  13.3°), 
vigilance 100%.

cortical areas activated During 
Proprioception
Group brain activation of healthy participants during the LWP 
task was in the right SI cortex, particularly in BA 3a, the right 
SMG, PMd, MI (BA 4a and 4p), superior and middle frontal 
gyri, SMA proper, and the middle cingulate cortex (see Table 1; 
Figure  4). Group brain activation during performance of the 
RWP task was significant in the right SMG, the left PMd, and MI 
(BA 4a) (see Table 1; Figure 4).

Proprioception-related brain activation varied among stroke-
affected participants; however, common areas of brain activated 
included the IPL, SPL, and PMd (see Table 2).

laterality of Proprioception-related Brain 
activation
Laterality was investigated for the SMG and PMd, high-order 
somatosensory and motor cortices identified in the group 
analyses and for the SI and MI given their well-established role in 

proprioception (see Figure 2). Right laterality of SMG activation 
was observed for both the LWP and the RWP scans (see Figure 5; 
Table 3). Laterality calculations for the PMd illustrated a lesser 
degree of laterality compared to the SMG, with contralateral 
activation during LWP and bilateral activation during RWP (see 
Figure 5; Table 3). As expected, LIs of the SI and MI showed con-
tralateral activation (see Figure 5; Table 3). For stroke-affected 
participants, brain activation was bilateral in both the SMG and 
PMd (see Table 3).

DiscUssiOn

We investigated the brain–behavior relationship pertaining to 
processing of proprioceptive stimuli at the wrist. There are three 
novel aspects to our study design. First, natural proprioceptive 
stimuli of passive movements were used, and maximal effort 
was made to control for confounding tactile and motor stimuli. 
Participants were required to provide accurate and measurable 
response to each proprioceptive stimulus both in and outside the 
scanner. Second, the event-related design with its variable inter-
stimulus intervals enabled temporal isolation of brain activation 
related to coding proprioception. Third, stroke-affected partici-
pants with proprioceptive deficits were studied with respect to the 
effect of pathology on proprioception-related brain activation.

Our findings indicated that proprioception-related brain acti-
vation in high-order somatosensory and motor cortices included 
the SMG and PMd. The right SMG was activated during both 
RWP and LWP, and its activity was reduced in the presence of 
proprioceptive deficits. Proprioception-related brain activation 
in the PMd was contralateral during LWP and bilateral during 
RWP. Thus, a certain degree of right PMd laterality was also 
observed during the central processing of proprioception. These 
findings confirm right hemispheric dominance in the processing 
of proprioception, but unlike other studies highlight the key role 
the right SMG plays in proprioception.

high-Order Proprioception-related Brain 
activation
The findings from our study suggest that the high-order pro-
prioception-related brain activation of both the SMG and PMd 
is pivotal for the central processing of proprioception. Several 
studies have identified proprioception-related brain activation 
in frontoparietal networks; however, various activation loci were 
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FigUre 4 | group analyses of brain activation in healthy participants during proprioception. Group brain activation was overlaid on a whole brain and axial 
sections of the Montreal Neurological Institute template. Threshold level p < 0.05 corrected at the cluster level. Abbreviations: LWP, left wrist proprioception; RWP, 
right wrist proprioception.

TaBle 1 | group analyses of brain activation loci in healthy participants during proprioception.

Task anatomical 
location

Ba cluster size Z score Talairach coordinates

x y z

LWP R SI 3a 844 4.57 34 −32 45
R SMGa 40 4.51 52 −40 37
R PMda 6 4.10 32 −26 69
R MI 4a 3.96 36 −32 69
R MI 4p 3.86 36 −22 53
R SFGa 6/8 3.32 24 4 57
R MFG 6/8 3.31 26 6 53
R SMA (proper)a 6 83 3.75 16 −12 61
R MCCa 6/24 3.19 10 −8 49

RWP R SMGa 40 33 4.24 56 −38 29
L PMd 6 29 3.93 −32 −26 64
L MIa 4a 3.38 −36 −32 69

Clusters of proprioception-related brain activation are reported at the cluster-level threshold of p < 0.05 FDR corrected.
aAnatomical locations of more than one maxima. Within each cluster (>20 voxels), only the most significant maximum is listed per anatomical location. BA, Brodmann area; L, 
left; LWP, left wrist proprioception; PMd, dorsal premotor cortex; R, right; RWP, right wrist proprioception; SFG, superior frontal gyrus; SI, primary somatosensory cortex; SMA, 
supplementary motor area; SMG, supramarginal gyrus; SPL, superior parietal lobe; MCC, middle cingulate cortex; MI, primary motor cortex; MFG, middle frontal gyrus.
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suggested (15, 18, 50–52). Both passive movement and illusory 
vibration studies identified brain activation in the IPL. Within 
the IPL, most studies reported proprioception-related brain 
activation in the parietal operculum (5, 9, 15, 17, 51, 53–55) and 
only a few reported brain activation in the SMG (6, 18, 56, 57). 
The SMG is located in the lateral aspect of the IPL whilst the  
parietal operculum is located medially to the SMG and in the 
roof of the Sylvain fissure (46). Variability across subjects in the 
cytoarchitectonic maps of the five areas that occupy the surface 
SMG has been reported (58) and may have contributed to the 
variable naming of regions (e.g., parietal operculum compared 
to SMG) in previous studies. The parietal operculum unlike 
the SMG is best known for its involvement in the processing of 
tactile stimuli (59). Tactile stimulation may have accompanied 
some of the passive movement stimuli in previous studies, for 
example, from the soles of the feet during ankle dorsiflexion (54, 
55). Where tactile stimulation accompanied the proprioceptive 

stimulation, it is not possible to identify which of the two stimuli 
generated activation in the parietal operculum.

The SMG is part of the somatosensory association cortex 
which has a role in interpretation of tactile sensory information 
as well as in perception of space and limbs location (15, 18). 
Previous literature suggests that frontoparietal activation in the 
SMG and PMC may be related to the spatial processing of stimuli 
around the hand (60) or the recognition of voluntary movement 
in the human, equivalent of the mirror neuron system (61). Such 
functions would rely heavily on knowledge of one’s limp posi-
tion. Indeed Brozzoli et al. (60) showed that the posterior parietal 
cortex was explicitly responsible for the hand’s position sense.

Brain activation in the SMA is the commonest activation in 
high-order motor cortices identified in illusory vibration (15, 
18) and passive movement (51, 54–56, 62, 63) studies. The SMA 
has been implicated in processes underlying internally guided 
movements (i.e., active movements). In comparison, the PMd has 
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TaBle 2 | individual brain activation loci of stroke-affected participants during proprioception.

Participant and task anatomical 
location

Ba cluster size Z score Talairach coordinates

x y z

CS1 LWP L IPLa 40/7 272 7.44 −42 −50 53
L Sup M Gyra 6 182 7.26 −4 22 53
L SMA (proper) 6 6.99 −4 16 61
R ITG 37 58 7.22 58 −60 −7
R SPL 7 111 6.99 16 −72 65
R IPLa 40 149 6.96 40 −54 53
R SMGa 40 126 5.94 56 −38 33
L PMda 6 87 5.91 −36 −8 65

CS2 RWP L SPLa 7 458 7.26 −26 −56 73
L SIa 2 7.19 −34 −40 57
L SIa 1 6.64 −36 −42 73
L IPLa 40 292 7.15 −54 −40 45
L STG 41/42 5.76 −64 −42 25
L SMG 40 5.50 −54 −48 29
L PMda 6 130 6.37 −24 −20 81
L SMA (proper) 6 5.99 −6 −14 73
R SMGa 40 80 5.74 56 −46 49
R IPLa 40 5.06 58 −34 57

CS3 RWP L PMda 6 340 Inf −32 −14 73
L MFG 6 4.95 −24 −4 61
R IPLa 40 519 Inf 32 −54 45
R SMGa 40 6.50 40 −38 45
R SPLa 7 421 Inf 12 −86 57
R cuneus 18/19 Inf 12 −88 49
L SOG 18 7.19 −10 −88 45
L cuneusa 18 5.11 −6 −98 25
L SMGa 40 304 Inf −66 −38 37
L STG 42/37 6.58 −52 −42 25
R PMd 6 255 7.73 26 −10 69
L IPL 40 246 7.61 −42 −56 57
L SPLa 7 6.19 −38 −58 69
L angular gyrus 39 5.46 −48 −62 45
L ITG 37 71 7.26 −60 −56 −7
R MOG 19 93 7.02 34 −88 33
L calc gyrusa 17 55 5.48 −20 −64 9

Clusters of proprioception-related brain activation are reported at the cluster-level threshold of p < 0.05 FDR corrected. 
aAnatomical locations with more than one maximum. Within each cluster (>50 voxels), only the most significant maximum is listed per anatomical location. BA, Brodmann area; calc 
gyrus, calcarine gyrus; IPL, inferior parietal lobe; ITG, inferior temporal gyrus; L, left; LWP, left wrist proprioception; MFG, middle frontal gyrus; MOG, middle occipital gyrus; PMd, 
dorsal premotor cortex; PMv, ventral premotor cortex; R, right; RWP, right wrist proprioception; SI, primary sensory cortex; SMA, supplementary motor area; SMG, supramarginal 
gyrus; SOG, superior occipital gyrus; SPL, superior parietal lobe; STG, superior temporal gyrus; Sup M Gyr, superior medial gyrus.
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been associated with externally guided movements (i.e., passive 
movements) (64). Given that passive movements are externally 
imposed, higher activation of PMd than SMA was both expected 
and found in our study.

Frontal activation in the PMd is important for the processing 
of proprioception, probably due to the tight coupling between 
proprioception and its use during movement. Bilateral PMd and 
right SMG activation was found in a brain imaging study of preci-
sion grip but not power grip (65). As proprioception is pivotal 
for precise motor control (3), it is likely that the frontoparietal 
brain activation found during precision grip included that of 
proprioception.

Other lines of research have also found functional association 
between the SMG and PMd. Anatomical studies in primates 
showed that proprioceptive information travels to the PMd and 
that extensive connections exist between the posterior parietal 
lobe and the PMd (66). In a brain imaging study where healthy 

participants were required to integrate proprioceptive informa-
tion into spatial visual or somatic sensory tasks, frontoparietal 
activation (especially in the right hemisphere) was found (67). 
Finally, lesion studies indicated that the integrity of the parietal 
cortex, frontal cortex, and their connections was required for 
recovery from spatial neglect (68).

right hemispheric Dominance During 
Proprioception
We found activation of the right SMG during both RWP and LWP, 
and its activity was reduced in the presence of proprioceptive 
deficits. Some evidence exists for left laterality of proprioception 
in the IPL (16, 69). Most of the evidence, however, suggests right 
hemispheric laterality during proprioception. Illusory vibration 
studies identified lateralized frontoparietal activation in the right 
SI (BA 2), middle frontal gyrus (BA 44, 45), parietal operculum, 
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TaBle 3 | laterality calculations of brain activation during proprioception of healthy and stroke-affected participants.

anatomical region healthy cs1 lWP li cs2 rWP li cs3 rWP li

lWP li (n = 12) rWP li (n = 6)

Mean sD Mean sD

SMG 0.41 0.22 0.29 0.21 −0.18 −0.19 −0.05
PMd 0.34 0.17 −0.13 0.25 −0.06 0.02 0.18
SI 0.56 0.32 −0.34 0.30 −0.56 0.42 0.19
MI 0.64 0.24 −0.62 0.30 −0.77 0.66 0.59

Positive values indicate right hemisphere activation greater than left and vice versa for negative values. Stroke-affected participants are listed as CS1–3. LI, laterality index; LWP, left 
wrist proprioception; MI, primary motor cortex; PMd, dorsal premotor cortex; RWP, right wrist proprioception; SI, primary sensory cortex; SMG, supramarginal gyrus.

FigUre 5 | laterality of proprioception-related brain activation in regions of interest of healthy participants. Group mean and standard deviation of 
laterality indices of the: supramarginal gyrus (SMG), dorsal premotor cortex (PMd), primary somatosensory (SI), and motor (MI) cortices. Diamonds represent sensory 
cortices and squares motor cortices. Filled shapes represent high-order cortices, while outlined shapes represent primary cortices. Dashed lines represent absolute 
laterality indices of 0.2. Laterality indices higher than 0.2 represent greater cerebral activation in the right compared to left hemispheres and vice versa for values 
smaller than −0.2.

April 2015 | Volume 6 | Article 248122

Ben-Shabat et al. The Right Supramarginal Gyrus Is Important for Proprioception

Frontiers in Neurology | www.frontiersin.org

and insula (15, 17), with one study reporting activation in the 
SMG rather than the parietal operculum (18). In passive move-
ment studies of left and right limbs, right hemispheric laterality 
was evident in the superior temporal gyrus and the parietal 
operculum for ankle movements (55) or bilateral IPL and parietal 
operculum for wrist movements (51). Our findings provide sup-
port for right hemispheric laterality but identify the right SMG in 
particular as a key region activated during proprioception. The 
lack of brain activation in the parietal operculum is likely due 
to the effort made in our study to minimize confounding tactile 
stimulus.

Right SMG activation during proprioception may be 
explained by the role that this region plays in spatial process-
ing (70). In their important work, Stephan and colleagues (70) 
used identical visual stimuli to perform a simple reaction time 
task, a lingual task or a spatial task. They found that despite the 
common visual stimuli only the spatial processing task activated 
the right SMG and the junction of the occipital, parietal, and 

temporal lobes. We regard proprioception as a spatial-processing 
task because it involves judgments of a limb’s spatial location. If 
proprioception is a spatial-processing task and the right SMG 
is a key brain region involved in spatial processing, then this 
could explain the significance of right SMG activation found in 
our study.

Studies of participants with hemispatial neglect have also 
demonstrated an association with right SMG lesions (71). 
The diagnosis of hemispatial neglect is often made based on 
visuo-spatial assessment (72), which involves the extraper-
sonal space. Committeri et  al. (73) showed that lesions in 
the right SMG were particularly related to impaired spatial 
processing in the personal space studying a large sample of 
participants with hemispatial neglect, although propriocep-
tion as such was not tested. Our findings raise the question 
of whether hemispatial neglect caused by right SMG lesions 
not only affects personal space in general but also affects 
proprioception specifically.
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The effect of Proprioceptive Deficits 
Poststroke on the central Processing of 
Proprioception
The thalamus was the common lesion site of the three stroke-
affected participants included in our study. For two of the 
participants (CS1 and CS3), the brain lesions extended to the 
internal capsule, and both displayed more severe proprioceptive 
deficits on behavioral testing (the Wrist Position Sense Test and 
the pre scan behavioral measures). Similar lesion sites in the 
thalamus and the internal capsule were found in other studies of 
participants with proprioceptive deficits (74–79).

We found that SMG activation was bilateral in stroke-affected 
participants. This was the most significant difference observed 
from the proprioception-related brain activation patterns in 
healthy participants, where right SMG laterality was found. The 
findings from stroke-affected individuals with proprioceptive 
deficits are consistent with the significance of right SMG integrity 
for adequate proprioceptive function. In previous brain imaging 
studies of stroke-affected participants where passive movement 
stimuli were delivered, participants with somatosensory deficits 
were specifically excluded (50–52, 77, 80, 81). Our findings are 
therefore not comparable and are novel for stroke survivors with 
quantified proprioceptive deficits.

Of interest is our finding of ipsilateral brain activation in SIMI. 
A similar pattern of ipsilateral rather than contralateral SIMI 
activation has been found in stroke-affected individuals with 
motor deficits (82, 83). Furthermore, ipsilateral SIMI activation 
was found in the studies of participants with tactile deficits who 
performed a touch discrimination task during scans (84, 85). Our 
findings suggest that similar to other sensory and motor modali-
ties, proprioceptive deficits are associated with a shift of brain 
activation to the ipsilateral SIMI.

study limitations
Sample size is the main limitation for this study. Twelve par-
ticipants performed the LWP and only six of them performed 
the RWP. Due to the smaller RWP group size, group analyses 
were conducted with a threshold of 0.001 uncorrected for mul-
tiple comparisons. Such a threshold increases the risk of false 
positives, i.e., reporting activation that did not actually occur. 
To assess the effect of this risk on our results, two additional 
analyses were conducted. First, group analysis of the LWP was 
performed at a threshold of 0.05 corrected for multiple com-
parisons (FDR). Second, a LWP group analysis was conducted 
for the six participants who also performed the RWP. Results 
of both analyses showed the same patterns of brain activation 
were maintained with the same anatomical loci. To minimize 
the risk of false positives reported in this paper only activation 
under the threshold of 0.05 corrected at the cluster level was 
reported. Thus, the additional analyses designed to address 
limitations related to sample size and threshold, supported the 
principal proprioception-related brain activation identified in 
this study.

Contralateral brain activation in SI was not found during 
RWP. The laterality calculation showed that SI activation during 
RWP tended to be bilateral. In another brain imaging study of 

arm proprioception, bilateral SI activation was found during 
right stimulation compared to contralateral activation during left 
stimulation (15). In our study, bilateral SI activation during RWP 
together with the small sample size was the likely cause for activa-
tion not reaching significance level. Thus, bilateral SI activation 
was under represented in our study.

clinical implications
The presence of laterality in proprioception-related brain activa-
tion suggests differences in the central processing of propriocep-
tion arriving from the left and right limbs. Previous behavioral 
studies have identified smaller absolute errors for left compared 
to right limb proprioception (26–28). Our findings together with 
those of previous brain imaging studies support right hemisphere 
dominance of proprioception.

Right hemisphere dominance for proprioception has clinical 
implications for both assessment and treatment. Particular care 
appears necessary when assessing proprioception in people with 
brain lesions affecting the right hemisphere, particularly the 
SMG. The question of which assessment tool to use for proprio-
ceptive assessment is beyond the scope of this paper. However, 
accurate quantitative tools with normative ranges such as the 
Wrist Position Sense Test (38) are preferred. A relevant clinical 
question is the relative contribution of lesions in the right SMG 
and PMd to proprioceptive deficits.

People with right hemispheric lesions are more likely to require 
specific proprioceptive rehabilitation. Furthermore, based on 
the studies of recovery from spatial neglect (68), recovery from 
proprioceptive deficits may be a function of right SMG and or 
PMd integrity. A future study examining the relative effect of 
rehabilitation on right SMG and PMd function would be useful, 
as would studies on whether normalization of brain activation in 
these regions correlate with functional recovery.

cOnclUsiOn

We present a novel and innovative brain imaging study of pro-
prioception, where participants were required to provide a direct 
response to each stimulus, and where response accuracy was 
monitored. This is the first time that laterality of proprioception-
related brain activation has been directly studied with a natural 
proprioceptive stimulus (passive movements). This is also the 
first time that such stimuli have been used to examine brain 
activation in stroke affected individuals with proprioceptive 
deficits. We achieved temporal isolation of brain activation dur-
ing coding of proprioceptive stimuli by using the event-related 
study design. This activation involved high-order somatosensory 
and motor cortices, namely the SMG and PMd, respectively. 
Laterality analyses and lesion studies indicated that the right 
SMG plays a key role in the processing of proprioception. The 
results provide a novel insight into the brain–behavior system 
of proprioception and how it is affected by brain lesions. These 
insights suggest that people with right hemispheric lesions may 
be more susceptible to proprioceptive deficits, particularly if the 
right SMG is affected. As the right SMG is commonly implicated 
in spatial neglect, it raises important questions of whether spatial 
neglect and proprioceptive deficits are different or associated 
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impairments, and what the relative contribution of the SMG 
and PMd to proprioceptive function might be. If SMG and PMd 
lesions affect proprioception differently, then it is possible that 
different treatment methods may be required to address these 
differential impairments.
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Background: Both the supplementary motor complex (SMC), consisting of the supple-
mentary motor area (SMA) proper, the pre-SMA, and the supplementary eye field, and
the rostral cingulate cortex are supplied by the anterior cerebral artery (ACA) and are
involved in higher motor control. The Bereitschaftspotential (BP) originates from the SMC
and reflects cognitive preparation processes before volitional movements. ACA strokes
may lead to impaired motor control in the absence of limb weakness and evoke an alien
hand syndrome (AHS) in its extreme form.

Aim: To characterize the clinical spectrum of disturbed motor control after ACA strokes,
including signs attributable to AHS and to identify the underlying neuroanatomical
correlates.

Methods: A clinical assessment focusing on signs of disturbed motor control including
intermanual conflict (i.e., bilateral hand movements directed at opposite purposes),
lack of self-initiated movements, exaggerated grasping, motor perseverations, mirror
movements, and gait apraxia was performed. Symptoms were grouped into (A) AHS-
specific and (B) non-AHS-specific signs of upper limbs, and (C) gait apraxia. Lesion
summation mapping was applied to the patients’ MRI or CT scans to reveal associated
lesion patterns. The BP was recorded in two patients.

Results: Ten patients with ACA strokes (nine unilateral, one bilateral; mean age:
74.2 years; median NIH-SS at admission: 13.0) were included in this case series. In the
acute stage, all cases had marked difficulties to perform volitional hand movements,
while movements in response to external stimuli were preserved. In the chronic stage
(median follow-up: 83.5 days) initiation of voluntary movements improved, although all
patients showed persistent signs of disturbed motor control. Impaired motor control is
predominantly associated with damaged voxels within the SMC and the anterior and
medial cingulate cortex, while lesions within the pre-SMA are specifically related to AHS.
No BP was detected over the damaged hemisphere.
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Conclusion: ACA strokes involving the premotor cortices, particularly the pre-SMA, are
associated with AHS-specific signs. In the acute phase, motor behavior is characterized
by the inability to carry out self-initiated movements. Motor control deficits may persist to
a variable degree beyond the acute phase. Alterations of the BP point to an underlying
SMC dysfunction in AHS.

Keywords: anterior cerebral artery, stroke, supplementary motor area, anterior cingulate cortex,
Bereitschaftspotential

Introduction

Voluntary and involuntary movements are generated and con-
trolled by a complex bihemispheric neuronal network involv-
ing the primary motor (MI) and supplementary motor complex
[SMC; consisting of the supplementary motor area (SMA) proper
and pre-SMA], cingulate cortex, and dorsolateral prefrontal cortex
as well as a number of subcortical brain structures such as the
basal ganglia and the cerebellum. Motor areas supplied by the
anterior cerebral artery (ACA) involve the SMC, the anterior and
middle cingulate cortex, and the rostral section of the corpus
callosum. This part of the motor network is particularly involved
in the generation of self-initiated (i.e., volitional), complex move-
ment sequences, inhibition of purposeless movements triggered
by external stimuli such as the grasp reflex, error control during
motor performance, and motor learning (1, 2). An electrophys-
iological measure of voluntary control is available with the so-
called Bereitschaftspotential (BP). The BP is a negative potential
over the vertex emerging approximately 1 s before the onset of
a voluntary movement. The early component most presumably
originates from the SMA, while the later component is mainly
assigned to the primary motor cortex and the lateral premotor
cortex (3). The BP probably reflects cognitive processes preceding
the initiation of volitional movements (4). According to recent
computational frameworks for action, both conscious awareness
of intention and a sense of agency characterize voluntary move-
ments (5). By applying direct electrical stimulation to the SMC,
a conscious intention of moving can be provoked underlining its
role in generating volitional movements (6).

As previously mentioned, ACA strokes lead to a severe dis-
ruption of the above-mentioned motor network. The clinical
spectrum of disturbed motor control after ACA strokes may
encompass signs such as involuntary grasping of nearby objects,
utilization behavior, and intermanual conflicts (i.e., the two hands
are directed at opposite purposes) with absence of volitional
movements (7). Underutilization of one body side in the absence
of relevantweakness or sensory disturbances or deficits of reflexes,
as it can be observed in ACA strokes, has been summarized
under the term “motor neglect” (8) Apart from limb weakness,
the above-mentioned motor signs have been acknowledged as
characteristic features of the so-called alien hand syndrome (AHS)
(9, 10). Its first description was rendered by Goldstein in 1908
who reported “a type of apraxia with the feeling of estrangement

Abbreviations: ACA, anterior cerebral artery; AHS, alien hand syndrome; BP,
Bereitschaftspotential; MNI,Montreal National Institute; NIHSS, National Institute
of Health Stroke Scale; SMA, supplementary motor area; SMC, supplementary
motor cortex; SPM, statistical parametric mapping; VOI, volume of interest.

between the patient and his hand” (11). In 1972, Brion and Jeyd-
nak observed analogous symptoms in a patient with a corpus
callosum tumor, which inspired them to coin the term “la main
etrangère.” It was subsequently translated into the English term
“alien hand” (12, 13).

It has turned out that the clinical picture of AHS is variable
and reflects a spectrum of abnormalities in motor control rather
than a homogeneous clinical entity (14). Dolado et al. proposed
following hallmarks as essential for the diagnosis of an AHS: (i) a
feeling of foreignness of the affected limb, (ii) failure to recognize
ownership of it when visual clues are removed, (iii) autonomous
motor activities that are perceived as involuntary and are different
from other identifiable movement disorder, and (iv) attribution
of an action to another subject due to lacking sense of agency
(15). Lesions within the SMC, the cingulate cortex and the corpus
callosum have often been implicated in the context of AHS (10).

Although AHS has been known for a very long time, there
is no comprehensive clinical-anatomical correlation addressing
impairedmotor control in a larger number ofACA stroke patients.
Hitherto, most of the published literature is restricted to case
reports and case series [reviewed in (7, 16, 17)]. The only system-
atic approaches published suffer frommethodological drawbacks,
including definitions that are too wide apart with regard to dis-
turbed motor control and/or the lack of using adequate imaging
methods (16, 17). Therefore, the aim of this case series was to
characterize the clinical spectrum of disrupted motor control,
including signs attributable to AHS and to identify the main
underlying neuroanatomical correlates (18).Wehypothesized that
an involvement of the SMC is essential for the occurrence of the
AHS spectrum of disturbed motor control after ACA strokes.

Patients and Methods

Study Population
Over a period of 6 years, patients with arm paresis or plegia,
after circumscribed ACA infarction were identified at our
center and included in this case series. Conscious awareness of
intention and sense of agency of volitional movements of the
affected limb, both thought to be key features of an AHS, were
the main focus of this study (5). On the basis of these two key
features, clinical signs of disturbed motor control were classified
into three different groups (7, 10, 13, 15–17, 19–31). Group A
included AHS-specific signs, namely (A.I) lack of self-initiated
movements, (A.II) exaggerated (not suppressible) grasping and
groping behavior, and (A.III) presence of an intermanual conflict
(i.e., the two hands are directed at opposite purposes). Group B
included clinical signs, which did not necessarily reflect disturbed
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awareness of intention and sense of agency. These symptoms
were thus considered as non-AHS-specific signs of disturbed
motor control: (B.I) maintaining a particular limb position after
a preceding complex motor task (i.e., motor perseveration),
(B.II) Co-activation of the contralateral limb during volitional
movements of the ipsilateral limb (i.e., mirror movements), and
(B.III) any form of tremor. Group C included symptoms, which
were signs beyond disturbed motor control of the upper limbs:
(C.I) in this group, gait apraxia was expected (21). The study was
approved by the ethics committee of the Kanton St. Gallen and
was conducted according to GCP guidelines.

Epidemiological Data and Clinical Tests
Demographics and disease characteristics, including National
Institute of Health Stroke Scale (NIHSS)-scores and stroke eti-
ology according to TOAST criteria (32), were taken from the
patients’ records. All patients underwent a standard neurologi-
cal examination. The following procedures were used to screen
clinically for the aforementioned clinical signs of disturbed motor
control: (A.I) impaired self-initiated movements were studied by
observing volitional gestures and the interaction with the exam-
iner during taking the history and the clinical assessment. Fur-
thermore, patients were asked to voluntarily perform tasks such as
virtual piano playing or typing on a keyboard. Testing of muscle
strength was difficult in the acute phase due to the inability to
perform voluntary movements, but weakness was excluded in the
subacute stage in all cases. (A.II) The presence of an interman-
ual conflict was evaluated by antiphasic upper limb movements
(i.e., windmill-like movements of both arms), transferring objects
from one hand to the other or by performing bimanual tasks
(e.g., putting on glasses). A marked shift or loss of phase, dis-
turbances on performing coordinated bimanual tasks, and pur-
poseless counteracting of upper limbs during bimanual tasks were
attributed to the presence of an intermanual conflict. (A.III) Exag-
gerated grasping behavior was tested by moving objects nearby
in the visual field and by asking them to suppress compulsive
grasping. Patients were also observed when they released objects
or when they transferred objects from one hand to the other.
(B.I) Motor perseveration was defined as maintaining a particular
hand position, which was clearly related to a preceding (complex)
motor task. (B.II) Mirror movements were picked up during the
assessment of the affected hand by observing the contralateral
one and vice versa. (B.III) We also screened our patients for any
form of resting, postural and action tremor. (C.I)Gait apraxiawas
assessed in those patients who were able to walk independently.
Theywere asked towalk along the corridor and to turn toward and
away from the affected side. Shuffling gait with high cadence and
paroxysmal interruption of locomotion, with trembling of the feet
in place and preserved (seemingly paradoxical) ability to increase
step length and height when stepping over an object on the floor
or when presenting cueing signals, were considered as signs of gait
apraxia (33). Patients were asked if they had the feeling of their feet
being glued on the floor.

Typical clinical signs of disturbed motor control in the context
of an ACA stroke, as specified above, were documented accord-
ing to a predefined protocol. In nine patients (with exception
from patient P6), videos of the clinical examination as detailed

above were available for retrospective review. In P6, who explicitly
declined video monitoring, symptoms were documented in detail
in his hospital files. Symptom severity and persistence were rated
by a neurologist in a semi-quantitative manner: clinical symp-
toms were considered as severe (+++), if they were permanently
present and/or if they were a relevant source of impairment in
the patient’s ability to carry out the clinical test. Severity was con-
sidered as moderate (++), if symptoms were frequently present,
but only mildly interfered with the patient’s ability to carry out
the clinical test. If there was just a hint of a particular sign or
if the respective sign occurred only rarely, it was considered as
mild (+). Absence of a particular sign was rated as “0.” Notably,
due to the lack of validated clinical scores, this scale has been
designed for the purpose of this case series. To assess the reliability
of this rating, a second blinded examiner rated the videos and
the interrater reliability rate (IRR) was calculated by the means
of kappa statistics. Calculations yielded a kappa coefficient of
0.83± 0.12 observed as proportion of maximum possible kappa
thus indicating a good IRR.

Bereitschaftspotential (Readiness Potential)
The BPwas recorded by using an EEG-EMGpolygraphy. The EEG
electrodes were placed over C3, C4, and Cz and the reference over
Fpz according to the 10–20 EEG system. The ground electrode
was fixed at the ear lobe. Patients were asked to keep their eyes
closed and to repetitively perform briskly initiated middle finger
extensions of 1-s duration in a self-paced manner, with an inter-
val between each movement of approximately 6–7 s. Before the
actual recording, they were instructed how to perform the finger
movements while getting the sense for timing and movement
initiation. To generate entirely self-initiatedmovements, theywere
instructed not to count or to pace the movement onset by using
any other form of rhythmical encoding (e.g., by humming). They
were also advised to fully shift their attention on the finger move-
ment and to avoid falling asleep. Muscle activity was recorded
from the long finger extensors by surface EMG. To avoid blinking,
particularly at the time of movement initiation, we positioned
two small sand bags over their eyelids. Eighty to 100 sequences
of middle finger extensions were recorded from each hand. The
BP was calculated offline using the ASA software (ENT Enschede,
Netherlands). At least 50 artifact-free EEG epochs lasting from
2.0 s before to 1.0 s aftermotor onset were chosen and averaged for
each limb separately. The BP was baseline corrected by averaging
the epoch 1.5–2.0 s before motor onset. The amplitude at 0.25,
0.50, 0.75, 1.00, 1.25, and 1.25 s before and 0.25, 0.50, 0.75, and
1.00 s after motor onset as well at motor onset was calculated by
averaging all data points acquired 50ms before and after each
respective time point (34). The results were then plotted against
the grand average of the BP from 13 healthy controls.

Lesion Summation Mapping
Images were acquired within the first days after hospital submis-
sion (median 2.5 days; range 0–30). Isotropic diffusion weighted
imaging (DWI) sequences and T1 sequences were acquired in
a 1.5 T or a 3 T MRI scanner (T1: slice thickness 5mm, DWI:
b= 1000 s/m2, slice thickness 4mm). We used DWI sequences
for lesion analysis as they showed the best contrast for ischemic
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brain tissue. In two patients, only CT scans were available. In both
patients, however, the scans already showed a clearly demarcated
ischemic brain lesion. Hence, they were feasible for reliably draw-
ing lesion maps and were included for further imaging analysis.

For pre-processing of the scans, DWI and T1 sequences were
first co-registered using Statistical ParametricMapping 8 (SPM8)1
(18, 35). According to the general agreement for working in
the stereotaxic standard space, the anterior commissure was
defined as the origin of the coordinate system in all scans (MNI-
coordinates x= 0, y= 0, z= 0). The ischemic lesions were drawn
manually on the DWI sequences using the freely available MRI-
cron software2 and the drawings were put together to a 3D volume
of interest (VOI). Both DWI and T1-weighted sequences were
normalized to a MRI template and T1-weighted images were seg-
mented by the means of the Clinical Toolbox running on SPM83.
The lesion maps were entered as masks in the algorithm for cost
function masking to avoid distortion of the voxels within the
ischemic lesion during spatial normalization. CT normalization
routine integrated in the Clinical Toolbox was used analogously
to normalize CT scans to a standard space template. Afterwards,
all lesions were flipped to the left side to enhance power of the
analysis. In the patient with a bilateral ACA infarction, the larger
hemispheric volume defect was accordingly flipped to the left side.

Calculation of lesion maps was done in three steps. (1)
Weighted summation (overlap)maps were calculated in SPM8 for
each clinical sign. Only VOIs from patients showing a particular
sign were included in the retrospective calculation (see Table 1).
A Kernel filter with 4mm full-width half maximum was used to
slightly smooth the summation maps. Each map was then thresh-
olded to voxels damaged in >25% of our patients showing the
respective clinical sign. (2) Summation maps for each symptom
group (A, B, C) were created by using the image calculator func-
tion integrated in SPM8. The respective summation maps were
calculated by summing up the summation maps of the different
symptoms included in groups A and B, respectively. The sum-
mation map of group C was identical to the map for gait apraxia
and therefore did not require further calculation. (3) To address
the question which part of the ischemic lesions contributes to

1http://www.fil.ion.ucl.ac.uk/
2http://www.mccauslandcenter.sc.edu
3http://www.mricro.com/clinical-toolbox/

disturbed motor control of upper limbs in general, the union set
of group A and B (A∩B) and the set difference of (A∩B)\C were
calculated. To address the question which brain section is specific
for symptoms of the AHS spectrum, the set difference of A\(B∪C)
was calculated. Prior to calculation of all these sets, each group
summationmapwas transferred into binarymaps using the SPM8
image calculator.

In a final step, each lesion map was plotted onto the automated
anatomical label (AAL) atlas using MRIcron and the involved
brain areas as well as the center of gravity were identified by
the respective built-in function. As the AAL does not distinguish
between the pre-SMA and SMA proper, ROIs with the anterior
commissural line as the border between these two areas (1, 36)
were manually drawn in MRIcron and were used to determine the
number of damaged voxels encompassed by each subsection.

Results

Study Populations
Information from 10 patients aged between 63 and 87 years (mean
74.2) were available. Among them were eight males and two
females. Initial NIHSS ranged from 2 to 21 points (median 13.0).
Seven patients were followed up from the acute stage and three
patients were added after reviewing our stroke database and clini-
cal notes from the last 2 years. All patients investigated in the acute
stage had disturbed conscious awareness of intention and sense
of agency. The first signs of recovery occurring within days were
involuntary finger movements elicited by touching their palm.
In one patient, information on these features were missing. Five
patients had an ischemic lesion within the left hemispheric ACA
territory, four within the right and one had large bilateral ACA
infarctions. The lesion pattern ranged from circumscribed infarcts
confined to the SMA to bilateral territorial infarcts within the
ACA territory. According to the TOAST criteria (32), macroan-
giopathy was identified as a stroke etiology in 3/10 patients,
cardioembolic events in 6/10, and arterial emboli secondary to
aneurysm coiling in the ACA in 1/10. Detailed clinical and radio-
logical information are summarized in Table 1.

Signs of Motor Control
Initially, all cases had marked difficulties to perform volitional
hand movements. In the acute setting, 9/10 patients presented

TABLE 1 | Baseline demographic data and clinical findings.

No Age (years) Sex First ever stroke Stroke etiology NIHSS-score

P1 83 Female Total right-sided ACA stroke Cardioembolism 15
P2 82 Male Partial left-sided ACA Cardioembolism 17
P3 74 Male Partial left-sided ACA Cardioembolism 21
P4 87 Female Total right-sided ACA infarct Cardioembolism 7
P5 63 Male Total bilateral ACA infarct Cardioembolism 15
P6 75 Male Partial left-sided ACA infarct Cardioembolism 16
P7 69 Male Partial left-sided ACA infarct Large artery arteriosclerosis 3
P8 70 Male Total right-sided ACA infarct Large artery arteriosclerosis 6
P9 65 Male Partial left-sided ACA infarct Stroke of other determined etiology 11

(Secondary to aneurysma coiling) 7
P10 74 Male Partial right-sided ACA infarct Large artery arteriosclerosis 2

Stroke etiology according to Toast criteria; ACA, anterior cerebral artery; NIHSS, National institute of health stroke scale.
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TABLE 2 | Disturbed motor control.

No I. Primary presentation II. Motor signs at follow-up

AHS Impaired self-initiated
movements

Grasping Intermanual
conflict

Motor
perseveration

Mirror
movements

Tremor Gait
apraxia

P1 ++ +++ +++ + 0 ++ na ++

P2 ++ + ++ ++ + + 0 +

P3 ++ + ++ ++ + + + +

P4 ++ + 0 ++ + + 0 +

P5 + ++ +++ ++ + na ++ na
P6 ++ (+) 0 + + + 0 0
P7 na (+) 0 ++ 0 0 0 0
P8 ++ ++ ++ ++ + + ++ +

P9 ++ 0 ++ + 0 + + 0
P10 + 0 0 + + + 0 0

Primary presentation (scoring): AHS, ++; minor or transient AHS, +.
Motor signs at follow-up (scoring): severe presentation, +++; moderate presentation, ++; mild presentation, +; symptom not present, 0.
na, information not available.

with an apparently severe paresis or plegia of one or both upper
extremities, respectively (five right-sided, three left-sided symp-
toms, and one bilateral symptoms). In the subacute and chronic
stage for all patients, movement initiation improved but signs
of disturbed motor control such as exaggerated grasping, and
disturbing movements of the affected limb persisted to a variable
extent. These data are summarized in Table 2 and relate to the
last control after the ischemic stroke (median duration of follow-
up: 83.5; range: 7–585 days). Lack of self-initiated movements was
present in 8/10 patients, intermanual conflict in 10/10 patients,
exaggerated grasping and groping behavior in 6/10 patients,motor
perseveration in 8/10 patients, mirror movements in 7/9 patients,
tremor in 5/10, and gait apraxia in 4/8 patients. In the patient
with bilateral ACA infarcts, a reliable evaluation of mirror move-
ments was not possible due to the severe impairment of initiating
movements of both limbs.

Imaging
Table 3 summarizes the size of and the anatomical location of
the weighted summation maps for each clinical sign. The total
centers of gravity of the specific maps for grasping, intermanual
conflict, lack of self-initiated movements, mirror movements, and
motor perseveration were located in the caudal tier of the anterior
cingulate cortex, whereas the center of gravity of the maps for gait
apraxia and tremor were located within the white matter adjacent
to the anterior cingulate cortex (MNI-coordinates: lack of self-
initiated movements: x=−11, y= 9, z= 36; intermanual conflict
x=−3, y=−3, z= 34; grasping: x=−10, y= 10, motor per-
severation: x=−10, y= 10, z= 34; mirror movements: x=−7,
y= 0, z= 42; z= 34; tremor: x=−3, y=−2, z= 27; gait apraxia:
x=−13, y= 16, z= 27) (Figure 1). The combined summation
map for all AHS-specific motor symptoms (i.e., group A) encom-
passed a total lesion volume of 99,863 voxels (corresponding to
a lesion volume of 99.9ml with a center of mass in the anterior
cingulate cortex (x=−10, y= 12, z= 35). Similarly, the respective
map for non-AHS-specific motor symptoms of the upper limbs
(group B) had a lesion volume of 101,691 voxels (lesion volume:
101.7ml) with its center of mass in the anterior cingulate cortex
(x=−11, y= 11, z= 36) (Figure 2).

The union set of the maps for group A and B (A∩B) had a
total size of 66,132 voxels (corresponding to a total lesion volume
of 66.1ml). 4.8% of the total lesion volume was located in the
SMAproper, 8.5% in the pre-SMA, 14.4% in the anterior cingulate
cortex, 10.0% in the MC, 6.5% in the genu, and 5.8% in the body
of the corpus callosum. The remaining 50% of the lesion volume
affected various other frontal brain regions. The calculation of the
set difference of A∩B\C revealed a total lesion volume of 9,394
voxels (total lesion volume: 9.4ml). 8.1% of the lesion volume
was found in the SMA proper, 25.2% in the pre-SMA, 13.1%
in the midcingulate cortex, and 3.0% in the body of the corpus
callosum. The set difference of A\B∪C encompassed 2,447 voxels
(total lesion volume 2.4ml). 0.6% of the lesion volumewas located
in the SMA proper, 32.3% in the pre-SMA, and 20.8% in the
midcingulate cortex (Table 4; Figure 3). In between comparison
showed that group A had the highest percentage of lesion load
within the pre-SMA while the corpus callosum was not affected.

The Bereitschaftspotential (Readiness Potential)
The BP was recorded in two patients (P2 and P3). Both of them
had a left-sided ACA infarct involving a large section of the
vascular territory. Accordingly, the BP could not be detected over
the contralateral hemisphere (corresponding to the electrodes C3)
while performing finger movements with the affected right hand.
Interestingly, a BP could not be recorded over the right hemi-
sphere either (C4), when they performed the same task with the
clinically unaffected left hand. The patients’ recordings are shown
in Figure 4 (plotted against a grand average of BP recordings from
13 healthy controls).

Illustrative Cases Reflecting the Spectrum of
Disturbed Motor Control in ACA Strokes
Of all cases, P1 (female, 83 years) with an ischemic lesion of the
entire ACA territory, including the genu corpus callosum showed
the most severe form of an intermanual conflict and exaggerated
grasping. In the subacute stage, she was unable to perform biman-
ual tasks, e.g., putting on her glasses, as the affected limb coun-
teracted the unaffected one. Moving objects in the nearby visual
field led to compulsive grasping (magnetic hand) (Figure 5). After
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discharge from the hospital, she deteriorated progressively due
to her deficient awareness of motor intention and self-agency.
Therefore, she became severely impaired in managing her day-to-
day life.

P2 (male, 82 years) with a large stroke in the left ACA territory
did not show any volitional movements of the left upper limb on
clinical testing in the acute phase. However, when hewas explicitly
asked to grasp the examiner’s hand, he was able to develop full
strengths in keeping with a severe motor neglect. He also suffered
from mildly exaggerated grasping. Intriguingly, he was not aware
of preservedmotor function and strength of the upper limbbefore.
At the follow-up 5months later, apart from a slight intermanual
conflict, the motor neglect had resolved and motor control of
the affected limb had recovered almost completely. He was fully
independent in his daily life.

P5 (male, aged 63 years) experienced bilateral ACA infarcts
and accordingly showed the most severe clinical syndrome of all
our cases. The onset of his neurological symptoms and clinical
course during the first 3months after admission remain unclear,
as he was found after lying on the floor for 1 day and signs of
disturbed motor control were not sufficiently documented by
the referring hospital. We saw him 3months after stroke onset
where he presented with akinetic mutism, an almost complete
inability to perform volitional hand movement despite preserved
limb strength, abasia, severely disturbed initiation of volitional
movements, exaggerated grasping, motor perseveration, and mild
bilateral action tremor.

Of all cases, P7 (male, 69 years) showed the mildest symptoms.
He experienced a sudden feeling of a not obeying hand on the
right side. These symptoms persisted for a few hours, but quickly
improved thereafter. In the subacute stage, he had markedly
improved but still showed a slight intermanual conflict and had
slight problems with writing. The MRI revealed a small ischemic
lesion within the left SMA.

Discussion

In our case series, which is one of the largest imaging-based
studies in AHS patients, we found a wide spectrum of clinical
signs related to disturbed motor control ranging from very mild
presentations with only transient impairment to very severely
affected cases. Some of these symptoms, which we observed in
our patients, have been well described in previous papers on
AHS (7, 10, 13, 15–17, 19–31), while features such as mirror
movements, motor perseveration, or the occurrence of an action
tremor have so far not been reported in association with ACA
strokes. In this case series, we were confronted with the interesting
phenomenon of an initially apparent paresis/plegia of the upper
extremity with significant recovery of muscle strength over the
subsequent few weeks. The recovery curve of muscle strength,
however, was more rapid and more favorable than it would have
been expected in patients with weakness due to a corticospinal
tract lesion. This observation points to alternative explanations of
impaired upper limb function such as a severemotor neglect in the
acute stage. The first signs of motor recovery in our patients were
movements triggered by external stimuli such as touching their
hand. Interestingly, patients were neither aware of the underlying
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FIGURE 1 | The figure shows axial slices and a sagittal slice of a T1-standard MRI scan with the superimposed summation lesion maps for each
clinical sign. Each lesion map is thresholded at voxels damaged in >25% of patients showing the respective clinical sign. The legend (provided in percentages)
refers to the total number of patients showing the respective clinical sign (MNI-coordinates: z= 8, 23, 33, 43, 53, 63 and x=−6, respectively).

motor intention nor of the self-agency of their movements, thus
suggesting a full-blown motor form of AHS (15, 20, 24). The
dissociation between self-initiated and externally triggered move-
ments is essential, because they are largely dependent on the
medial motor system supplied by the ACA, whereas the latter

mainly rely on the lateral premotor system (supplied by theMCA)
(37). A few patients presented with mild or only transient signs
of AHS, as reflected by disturbed motor awareness in the acute,
but not in the chronic phase. However, at the follow-up they still
showed some signs of disturbed motor control as seen in themore
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Group A (Summation map)

Group B (Summation map)

Group C (Gait apraxia)

100%
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FIGURE 2 | The figure shows the lesion summation maps for group A, which included the lesion maps for all AHS-specific symptoms (grasping,
intermanual conflict, impaired self-initiated movements). Group B encompasses all lesion maps for non-AHS-specific motor symptoms (motor
perseveration, mirror movements, tremor). Group C (other signs) corresponds to the lesion map for gait apraxia. The legend encodes the percentage of
all patients*signs. The lesion maps are thresholded to voxels damaged in at least 25% of patients*signs and are plotted on axial and sagittal slices of standard T1
MRI scan (MNI-coordinates: z=−2, 8, 13, 23, 33, 43, 53, 63 and x=−6, respectively).

TABLE 4 | Percentage of lesion on regions of interest related to AHS associated and specific symptoms.

Total lesion
volume

SMC ACC MCC PCC CC (genu) CC (body)

Volume Volume
(SMAp)

Volume
(pre-SMA)

Volume Volume Volume Volume Volume

Voxels % Voxels % Voxels % Voxels % Voxels % Voxels % Voxels % Voxels %

A∩B 66,132 100 3,162 4.8 5,599 8.5 9,551 14.4 6,622 10.0 0 0.0 4,317 6.5 3,811 5.8
A∩B\C 9,394 100 763 8.1 2,364 25.2 0 0.0 1,232 13.1 0 0.0 0 0.0 279 3.0
A\(B∪C) 2,447 100 14 0.6 791 32.3 0 0.0 505 20.6 0 0.0 0 0.0 0 0.0

The table shows the location of the intersections with regard to the involvement of various brain regions of interest. The proportion of the total lesion volume is shown for each brain
regions (in voxels and in percentage of the total lesion volume). A, symptom group A; AHS, alien hand syndrome; ACC, anterior cingulate cortex; B, symptom group B; C, symptom group
C; CC, corpus callosum; MCC, midcingulate cortex; n.a., not applicable; PCC posterior cingulate cortex; SMA, supplementary motor area; SMAp, SMA proper; SMC, supplementary
motor cortex.

severely affected cases, though to a much milder degree. This
underscores the notion that the presentation of an AHS has a wide
clinical spectrum.

Moreover, we were interested whether clinical signs of AHS (as
defined as lack of conscious awareness of intention and the sense
of agency) and non-AHS-specific signs, commonly observed in
association with AHS, are caused by different lesion patterns. We
could demonstrate that both AHS-specific and non-AHS-specific

signs trace back to lesions within the SMC, and the anterior and
medial cingulate cortex. This result was not entirely unexpected
due to the important role of these brain areas in voluntary motor
control (i.e., self-initiated movements and suppression of exter-
nally triggered motor subroutines) (1, 2). Our results are in line
with a previously published retrospective analysis of 100 ACA
strokes, which showed that motor disturbances were by far the
most common signs (17).
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Union set A∩B

Set difference A∩B\C

Set difference A\BUC

FIGURE 3 | Different sets (A∩∩∩B, A∩∩∩B\\\C, A\\\B∪∪∪C) calculated from the respective summation maps after transforming them to binary maps are
superimposed on sagittal slices of a standard T1 MRI Scan (MNI-coordinates: x=−−−23,−−−18,−−−13,−−−8,−−−2, 0). The union set of group A and B (A∩B) and
set difference (A∩B)\C are thought to reflect the anatomical substrates for disturbed motor control in general regardless if the signs are specific for an AHS or not,
whereas the set difference A\(B∪C) reveals the anatomical substrates for AHS-specific symptoms. Interestingly, the latter set difference involves mainly the SMA,
whereas disturbed motor control involves the SMC in addition to other regions of the frontal and rostral parietal lobe.

Amain finding of the present study is the predominant involve-
ment of the pre-SMA in AHS-specific signs as shown by the
approach with different set differences. This is a novel finding
for ACA infarcts, but consistent with results from fMRI studies
in healthy persons showing greater activations in rostral parts
of the SMA after self-initiated movements (37). The pre-SMA,
projects both to the lateral premotor cortex and the caudal parts
of the SMA (38), although latter is not considered to play a major
role in movement preparation as its projections descend directly
through the pyramidal tract (39, 40). Gait apraxia was selected as a
“reference”-clinical sign not associatedwithAHS andnot affecting
the upper extremities, but known to occur in lesions involving the
medial frontal lobe. In line with this, gait apraxia was associated
with lesions affecting the cingulate cortex in our study (21).

Previous studies of clinical-anatomical correlation in ACA
stroke patients were biased mostly because of the approach with
semi-quantitative analyses of predefined regions of interest. In
the work of Chang and colleagues, AHS was associated with
a combined involvement of the medial frontal lobe and the
corpus callosum. An isolated or predominant affection of the
cingulate cortex was found to result in an intermanual conflict,
while medial frontal lesions were more likely to present with
grasping behavior (10, 16). More recently, Sarva and colleagues
published a systematic review of the literature on AHS (7). They

concordantly found that the SMC, cingulate cortex and corpus
callosum were the most commonly affected structures in the
“frontal” AHS variant. Predominant involvement of hemispheric
structures more frequently led to involuntary grasping and
groping behavior, whereas an intermanual conflict was the most
frequent clinical sign in callosal lesions. Our findings, however,
do not favor the same relevance of the corpus callosum for clinical
signs of AHS as suggested by these authors.

There were some clinical signs, which have not yet been
described as common signs in ACA strokes. Mirror movements
are usually seen in early childhood due to mutations in the DCC
and RAD51 genes (41), although they may sometimes also occur
in patients with basal ganglia disorders and strokes, mainly of
the corona radiata. However, they have rarely been described in
association with ACA strokes (26, 42). Functional MRI revealed
that mirror movements are paralleled by bilateral activation of
M1 and the SMA (25). Mirror movements probably occur due
to an insufficient interhemispheric inhibition of the motor cortex
located ipsilateral to the moved limb by a network, which con-
nects the SMC, dorsolateral PFC, and M1 (43). The unilateral
tremor of the affected hand we observed in some patients also
deserves further consideration. It occurred in all patients as a
new clinical sign with a latency of a few weeks after stroke. To
our best knowledge, there are hardly any comparable reports of
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FIGURE 4 | EEG segments 1.5 s before to 1.0 s after onset of EMG activity in the finger extensors related to a briskly initiated extension of the middle
finger were averaged (EMG 1: right finger extensors; EMG 2: left finger extensor). In contrast to healthy controls, the Bereitschaftspotential in the two
patients with left-sided ACA infarcts does not show any negative shift over the hemisphere contralateral to the moved hand (C3). Interestingly, the BP was also
attenuated over the unaffected right hemisphere (C4), when patients performed hand movements with their unaffected left hand. The results are plotted against a
grand average of BP recordings from 13 healthy controls. Time is plotted on the x-axis (in second) and the BP amplitude on the y-axis (in μV). The nomenclature of
the electrodes refers to the 10–20 EEG system.

FIGURE 5 | The series of images illustrates the compulsive grasping behavior in P2. The patient was asked to avoid grasping the examiner’s hand. However,
the patient could not inhibit grasping. After she had taken the examiner’s hand, she could not release it without support by her left hand.

a hand tremor associated with ACA ischemia in the literature
(25, 31). Stroke-associated tremor has mainly been reported in
lesions of the thalamus, and the striatonigral, cerebello-thalamic
or dentatorubrothalamic pathways (44). Clinically, the observed
tremor resembles that of a dystonic tremor with a strong tendency
to occur during action (45). In line with one previous report, the
tremor was mostly seen just transiently (31). An association of
the tremor with SMA and cingulate cortex lesions is of interest
because an abnormal overactivity of these brain regions was found
in an fMRI study in essential tremor (46). Our observations may
thus suggest that an impaired function of the SMC or cingulate

cortexmay play an important role in the generation or suppression
of pathological oscillatory network activity.

Our findings underpin the crucial role of lesions involving the
SMC and cingulate cortex for disturbed motor control after ACA
infarcts. Error detection and conflict monitoring have previously
been attributed to the anterior cingulate cortex (2). The SMC, in
turn, is more important for the generation of self-initiated move-
ments, generation of complex motor tasks and the suppression of
stimulus-driven, though, purposeless movements (i.e., grasping)
(1). In this context, the BP is also of interest since it presumably
originates from the SMC and reflects cognitive motor control
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prior to voluntary movements (3). So far, there are only two case
reports of ACA strokes, which included BP recordings. In line
with our findings, the BP following movements of the affected
hand was also attenuated there (28–30, 47). Notably, the BP
was also attenuated in our patients when they performed fin-
ger movements with their non-affected hand. This might indi-
cate disturbed interhemispheric activation following a unilateral
SMC lesion.

This analysis has several limitations. Due to its design as in
parts retrospective case series, follow-ups were not standardized
and patients were seen at different latencies after their strokes.
Therefore, transient neurological signs may have been missed.
Furthermore, this lack of standardized time intervals between
the assessment in the acute stage and the follow-up assessments
does not allow drawing definite conclusions to the clinical and
functional outcome of these patients. A limitation of our clinical
approach is the fact that it has not been validated elsewhere and
there are no validated clinical scores for AHS symptoms in the lit-
erature. Therefore, we invented a semi-quantitative rating for our
case series, which was proven here to have a very good IRR. Fur-
thermore, the fact that just two patients underwent BP recordings
does not allow to draw final conclusions on the BP inACA strokes,
since this potential is quite variable despite optimal recording
settings (28). We acknowledge that a larger number of patients
would also have increased the statistical power here. Moreover,
our imaging results may have been flawed because of the different
imaging methods used. A CT scan yields a different image of the
brain in terms of contrast and distortion as an MRI scan. We
attempted to overcome this concern making use of validated CT
andMRI templates for spatial normalization (43). Nonetheless, we

decided to include the two ACA stroke patients with CT scans,
because otherwise we would have abolished two clinically very
interesting patients from our series. A theoretical issue is the
definition of an adequate threshold to delineate damaged brain
voxels for lesion analysis. In order to avoid false negative results
in this small patient cohort, we went for a rather low threshold
of more than 25% of individuals to explore the defined motor
signs by voxel-based symptom lesion mapping (35). Furthermore,
we determined lesion location as the basis of anatomical proba-
bility atlases, which do not account for individual variability of
neuroanatomy.

Conclusion

In summary, AHS is primarily characterized by disturbed con-
scious awareness of intention and a deficient sense of agency
for voluntary hand movement. This is reflected by the inabil-
ity to carry out self-initiated movements while externally cued
movements are neither suppressed nor perceived by the subjects.
Common motor signs following ACA strokes are disturbed self-
initiated movements, grasping and groping behavior, interman-
ual conflict, motor perseveration, mirror movements, and coarse
tremor. Their occurrence is mainly associated with lesions of
SMC, as well as the anterior and midcingulate cortex. The motor
signs specifically related to AHS, i.e., disturbed self-initiated
movements, grasping and intermanual conflict, are mainly related
to lesions of the pre-SMA and MCC. To date, little is known about
the clinical course and long-term outcome of these patients or
about the best approach on how to rehabilitate these patients.
Therefore, further studies in these patients are warranted.
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The assessment of motor and executive functions following stroke or traumatic brain 
injury is a key aspect of impairment evaluation and used to guide further therapy. In 
clinical routine, such assessments are largely dominated by pen-and-paper tests. While 
these provide standardized, reliable, and ecologically valid measures of the individual 
level of functioning, rather little is yet known about their neurobiological underpinnings. 
Therefore, the aim of this study was to investigate brain regions and their associated 
networks that are related to upper extremity motor function, as quantified by the motor 
speed subtest of the trail making test (TMT-MS). Whole-brain voxel-based morphometry 
and whole-brain tract-based spatial statistics were used to investigate the association 
between TMT-MS performance with gray-matter volume (GMV) and white-matter 
integrity, respectively. While results demonstrated no relationship to local white-matter 
properties, we found a significant correlation between TMT-MS performance and GMV 
of the lower bank of the inferior frontal sulcus, a region associated with cognitive pro-
cessing, as indicated by assessing its functional profile by the BrainMap database. Using 
this finding as a seed region, we further examined and compared networks as reflected 
by resting state connectivity, meta-analytic connectivity modeling, structural covariance, 
and probabilistic tractography. While differences between the different approaches were 
observed, all approaches converged on a network comprising regions that overlap with 
the multiple-demand network. Our data therefore indicate that performance may primar-
ily depend on executive function, thus suggesting that motor speed in a more naturalistic 
setting should be more associated with executive rather than primary motor function. 
Moreover, results showed that while there were differences between the approaches, a 
convergence indicated that common networks can be revealed across highly divergent 
methods.

Keywords: trail-making test, motor speed, inferior frontal sulcus, voxel-based morphometry, resting state fMri, 
meta-analytic connectivity modeling, structural covariance, probabilistic tractography
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inTrODUcTiOn

Hand motor deficits are among the most common impairments 
following stroke (1). As a result, post-stroke assessment of motor 
functions is a key aspect of patient evaluation and is used to 
guide further therapy. In addition to fast but typically qualitative 
clinical assessments, this often involves neuropsychological tests 
of coordinated hand function. In practice, such assessments are 
still largely dominated by pen-and-paper tests. One example of 
such a simple pen-and-paper test is the motor speed subtest of 
the trail-making test (TMT-MS) from the Delis–Kaplan executive 
function system [D–KEFS; (2)]. This test measures the time that 
subjects take to manually trace a pre-specified trail. The TMT-MS 
requires the examinee to connect circles by following a dotted 
line, and aims to serve as a baseline measure of the motor com-
ponent that should be shared by the other portions of the test. The 
results should thus provide information about the extent to which 
difficulty on the other TMT subtests probing higher, executive 
functions may be related to a motor deficit. However, the results 
of the TMT-MS cannot only be used as a baseline for other TMT 
subtests, but also provide information of drawing speed per  se, 
and thus can be used by clinicians as an assessment of upper 
extremity motor function (2).

Pen-and-paper tests such as the TMT provide standardized 
and reliable valid measures of the individual level of functioning; 
however, rather little is yet known about their neurobiological 
underpinnings. Therefore, one aim of the current study is to 
investigate brain–behavior relationships with regard to upper 
extremity motor function, as quantified by the TMT-MS from the 
D–KEFS. Additionally, previous studies have demonstrated that 
while the brain can be subdivided into distinct modules based on 
functional and microstructural properties [reviewed in Ref. (3)], 
processes such as motor function are likely to involve the efficient 
integration of information across a number of such specialized 
regions. Due to this integrative nature of the brain, most higher 
mental functions are likely implemented as distributed networks 
(4), and it has therefore been suggested that an understanding 
of how a brain region subserves a specific task should require 
information regarding its interaction with other brain regions 
(3). Therefore, the current study additionally aims to investigate 
the networks associated with the regions we find to be related to 
TMT-MS performance.

A number of different approaches can be employed to 
investigate networks associated with a particular brain region. 
Task-free (seed-based) resting-state functional connectivity 
(RS-FC) refers to temporal correlations of a seed region with 
spatially distinct brain regions, when no task is presented 
(5, 6). Meta-analytic connectivity modeling (MACM) (7–9) 
investigates co-activation patterns between a seed region and the 
rest of the brain, by calculation of meta-analyses across many 
task-based fMRI experiments and paradigms stored in, e.g., the 
BrainMap database (10, 11). Structural covariance (SC) is based 
on the correlation patterns across a population of gray-matter 
characteristics such as volume or thickness (12, 13) that are 
thought to reflect shared mutational, genetic, and functional 
interaction effects of the regions involved (14, 15). While 
having conceptual differences, these three modalities all share 

the goal of delineating regions that interact functionally with a 
particular seed region. By contrast, probabilistic tractography 
(PT) focuses on white-matter anatomical connectivity obtained 
from diffusion-weighted images (DWI) by producing a measure 
of the likelihood that two regions are structurally connected 
(16, 17). Previous studies have reported convergence between 
RS and MACM (18–20), between RS and SC (21, 22), RS and 
fiber tracking (23–26), and between RS, MACM, and SC (27, 28). 
However, striking differences among the different connectivity 
approaches have also been found (26, 27).

In this study, we first used whole-brain voxel-based morpho-
metry [VBM; (29)] and whole-brain tract-based spatial statistics 
[TBSS; (30)] to investigate the association between TMT-MS 
performance with gray-matter volume (GMV) and white-matter 
integrity, respectively. Using the result of these initial analyses as 
the seed region of interest, we further examined and systematically 
compared networks obtained through RS-fMRI, MACM, SC, and 
PT. The aim of these analyses was twofold. First, we sought to 
explore the relationship of brain morphology to a simple measure 
of hand motor function. Second, we aimed to characterize both 
the divergence and convergence of four unique approaches to 
quantifying brain connectivity.

MaTerials anD MeThODs

subjects
Data from the Enhanced Nathan Kline Institute  –  Rockland 
Sample1 (31) was used for all analyses except for meta-analytical 
connectivity modeling and functional characterization (where 
the BrainMap database was used). From this cohort, we used 
anatomical, RS, and DWI of subjects that had completed the 
TMT-MS, no current psychiatric diagnosis, a Beck depression 
inventory score (BDI) of less than 14 and did not exceed 3 
SDs from the population mean. This resulted in a sample of 
109 right-handed healthy volunteers between 18 and 75 years 
of age (mean age 40.39  ±  15.49; 37 males). First, effects of 
age, gender, handedness, and BDI score as known influences 
on hand motor speed (32, 33) were regressed out of the raw 
TMT-MS performance score (Figure 1A; Table 1). This resulted 
in an adjusted performance score, which indicated how much 
better or worse a subject performed than would be expected 
given these confounding factors (Figure 1B). The association 
of these adjusted scores with local GMV and white-matter 
integrity was then tested by carrying out whole-brain VBM and 
TBSS, respectively.

Delis–Kaplan executive Function system: 
Trail-Making Test – Motor speed
The Delis–Kaplan executive function system: trail-making test 
(D–KEFS TMT) consists of five different conditions (2). For the 
current study, we were exclusively interested in the TMT-MS, 
which requires participants to trace over a dotted line as quickly 
as possible while making sure that the line drawn touches every 
circle along the path. In particular, the participant is prompted to 

1 http://fcon_1000.projects.nitrc.org/indi/enhanced
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focus on speed rather than neatness but has to make sure that the 
line touches every circle along the path. If the line departs from 
the dotted line or is not correctly connected to the next circle, the 
participant is stopped immediately and redirected to the dotted 
line while keeping the stopwatch running. The scoring measure 
is the time (in seconds) that the participant needs to complete 
the task.

relationship Between TMT-Ms 
Performance and gray-Matter Volume
Whole-Brain VBM Analysis
The association between regional GMV and individual perfor-
mance (adjusted for the potentially confounding effects of age, 
gender, handedness, and BDI), was investigated by performing 
a whole-brain VBM analysis. This analysis used the anatomical 
T1-weighted images of the 109 subjects described above. These 
scans were acquired in sagittal orientation on a Siemens TimTrio 
3T scanner using an MP-RAGE sequence (TR  =  1900  ms, 
TE = 2.52 ms, TI = 900 ms, flip angle = 9°, FOV = 250 mm, 176 
slices, voxel size = 1 mm × 1 mm × 1 mm). Images were preproc-
essed using the VBM8 toolbox in SPM8 using standard settings, 
namely spatial normalization to register the individual images to 
ICBM-152 template space, and segmentation, wherein the differ-
ent tissue types within the images are classified. The resulting nor-
malized gray-matter segments, modulated only for the non-linear 
components of the deformations into standard space, were then 
smoothed using an 8  mm isotropic full-width-half-maximum 
(FWHM) kernel, and finally assessed for significant correlation 
between GMV and the adjusted TMT-MS performance scores. 
Age, gender, BDI scores, and Edinburgh handedness inventory 
(EHI) scores were used as covariates together with the adjusted 

FigUre 1 | histograms showing distribution of TMT-Ms performance. (a) The distribution of the raw TMT-MS performance. (B) The distribution of the 
adjusted TMT-MS performance after effects of age, gender, handedness, and BDI scores were regressed out of the raw scores.

TMT-MS performance scores, leading to an analysis of partial 
correlations between GMV and TMT-MS. As we modulated the 
gray-matter probability maps by the non-linear components only 
to represent the absolute amount of tissue corrected for individual 
brain size, we did not include total brain volume as an additional 
covariate in the analysis. That is, given that the correction for 
inter-individual differences in brain volume was applied directly 
to the data it was not performed (a second time) as part of the 
statistical model. Statistical significance using non-parametric 
permutation inference was assessed at p < 0.05 [family-wise error 
(FWE) corrected for multiple comparisons].

Whole-Brain TBSS Analysis
A TBSS whole-brain analysis was performed to investigate the 
association between white-matter volume and adjusted TMT-MS 
performance. DWI from the same group of 109 volunteers 
acquired on a 3T TimTrio Siemens scanner (137 directions, 
b = 1,500 s/mm2) were used. Preprocessing was performed accord-
ing to standard protocols using FSL2. The DWI data were first cor-
rected for head-motion and eddy-current effects of the diffusion 
gradients. The b0 images were averaged and skull-stripped using 
BET (34) to create the analysis mask. Within this mask, a simple 
diffusion-tensor model was estimated for each voxel. Finally, 
non-linear deformation fields between the diffusion space and 
the ICBM-152 reference space were computed using FSL’s linear 
(FLIRT) (35, 36), and non-linear (FNIRT) image registration tools 
(37). These allow mapping between the individual (native) diffu-
sion space and the ICBM-152 reference space; i.e., the same space 

2 www.fmrib.ox.ac.uk/fsl
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TaBle 1 | characteristics of the cohort.

age gender BDi ehi

26 Male 4 80 
20 Male 0 95 
53 Male 0 55 
48 Female 9 100 
62 Female 5 90 
18 Female 7 75 
54 Female 0 95 
18 Female 1 90 
21 Male 4 85 
62 Female 1 100 
53 Male 3 75 
22 Male 4 90 
62 Female 12 100 
54 Female 0 95 
24 Female 1 85 
44 Female 8 90 
57 Female 2 95 
44 Female 3 70 
51 Male 7 70 
63 Female 0 80 
26 Female 1 60 
59 Male 4 95 
30 Male 0 85 
50 Female 1 90 
26 Female 2 75 
18 Male 0 80 
24 Female 10 95 
64 Female 0 95 
47 Male 4 100 
38 Female 0 80 
23 Female 1 70 
42 Female 8 85 
59 Female 2 100 
26 Male 5 100 
18 Male 3 90 
19 Male 1 100 
27 Female 12 60 
20 Female 3 100 
56 Female 5 100 
18 Male 4 85 
30 Male 4 55 
58 Female 6 95 
52 Female 3 85 
38 Male 1 65 
64 Male 5 80 
41 Female 2 100 
49 Female 5 60 
57 Female 8 60 
40 Female 3 80 
48 Female 0 100 
36 Female 1 100 
20 Male 5 90 
60 Female 3 75 
59 Male 2 85 
52 Female 8 100 

age gender BDi ehi

41 Male 1 70 
26 Female 7 75 
51 Female 5 75 
61 Female 0 80 
58 Male 5 80 
56 Female 0 65 
54 Female 4 95 
27 Male 5 60 
42 Female 9 70 
31 Female 7 100 
21 Female 1 100 
18 Male 3 90 
48 Female 3 85 
20 Female 5 55 
60 Female 1 100 
20 Female 1 90 
50 Female 2 90 
62 Male 7 70 
18 Male 2 85 
57 Female 1 100 
24 Female 0 95 
26 Female 0 80 
57 Female 5 85 
19 Male 2 70 
49 Male 0 60 
23 Female 2 85 
58 Female 5 55 
55 Male 4 80 
41 Female 5 100 
41 Female 0 100 
25 Female 2 75 
49 Female 0 90 
49 Female 1 100 
21 Female 6 75 
50 Male 1 85 
19 Male 3 65 
59 Male 3 85 
41 Male 0 80 
44 Male 13 100 
20 Female 13 85 
47 Male 5 90 
21 Male 2 55 
47 Female 7 55 
55 Female 1 90 
23 Female 13 100 
61 Male 1 80 
52 Female 0 100 
20 Male 10 60 
51 Female 0 65 
42 Female 0 100 
21 Female 0 80 
36 Female 8 100 
43 Female 9 85 
43 Female 5 95 

to which also the VBM and RS (as described below) data are also 
registered. The FA images were hereby normalized into standard 
space and then merged to produce a mean FA image. This was in 
turn used to generate a skeleton representing all fiber tracts com-
mon to all subjects included in the study (30, 38). The maximal 
FA scores of each individual FA image were then projected onto 

the mean FA skeleton. This projection aims to resolve any residual 
alignment problems after the initial non-linear registration (38). 
The resulting skeleton was then used to perform a multi-covariate 
analysis, using age, gender, BDI scores, EHI scores, and TMT-MS 
scores. Statistical significance using non-parametric permutation 
inference was again assessed at p < 0.05 multiple comparisons.
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Seed Definition and Functional Characterization
The regions revealed by the initial VBM analysis were function-
ally characterized based on the behavioral domain meta-data 
from the BrainMap database3 (10, 11, 39), using both forward 
and reverse inference, as performed in previous studies (40, 41). 
Behavioral domains, which have been grouped for the purpose 
of the database, describe the cognitive processes probed by an 
experiment. Forward inference is the probability of observing 
activity in a brain region, given knowledge of the psychological 
process; whereas reverse inference is the probability of a psycho-
logical process being present, given knowledge of activation in 
a particular brain region. The results of both the forward and 
reverse inferences will be defined by the number and frequency 
of tasks in the database. In the forward inference approach, the 
functional profile was determined by identifying taxonomic 
labels for which the probability of finding activation in the 
respective region/set of regions was significantly higher than 
the overall (a  priori) chance across the entire database. That 
is, we tested whether the conditional probability of activation 
given a particular label [P(Activation|Task)] was higher than the 
baseline probability of activating the region(s) in question per se 
[P(Activation)]. Significance was established using a binomial 
test [p  <  0.05, corrected for multiple comparisons using false 
discovery rate (FDR)]. In the reverse inference approach, the 
functional profile was determined by identifying the most likely 
behavioral domains, given activation in a particular region/set 
of regions. This likelihood P(Task|Activation) can be derived 
from P(Activation|Task) as well as P(Task) and P(Activation) 
using Bayes’ rule. Significance (at p < 0.05, corrected for multiple 
comparisons using FDR) was then assessed by means of a chi-
squared test.

Multi-Modal connectivity analyses
Multi-modal connectivity analyses were used to further char-
acterize the results from the initial VBM analysis. In particular, 
we investigated; (1) RS-FC, inferred through correlations in the 
blood–oxygen-level-dependent (BOLD) signal obtained during 
a task-free, endogenously controlled state (5, 6); (2) MACM, 
revealing co-activation during the performance of external task 
demands (7, 8); (3) SC, identifying long-term coordination of 
brain morphology (15); and (4) probabilistic fiber tracking, pro-
viding information about anatomical connectivity by measuring 
the anisotropic diffusion of water in white-matter tracts (16, 17).

All the analyses were approved by the local ethics committee 
of the Heinrich Heine University Düsseldorf.

Task-Independent Functional Connectivity:  
Resting-State
A seed-based RS analysis was used to investigate the task-
independent FC of the seed region (5, 6). RS-fMRI images of the 
109 subjects described above were used. During the RS acquisition, 
subjects were instructed to not think about anything in particular 
but not to fall asleep. Images were acquired on a Siemens TimTrio 
3T scanner using BOLD contrast [gradient-echo EPI pulse 

3 http://www.brainmap.org

sequence, TR = 1.4 s, TE = 30 ms, flip angle = 65°, voxel size = 2.
0 mm × 2.0 mm × 2.0 mm, 64 slices (2.00 mm thickness)].

Data were processed using SPM8 (Wellcome Trust Centre 
for Neuroimaging, London4). The first four scans were excluded 
prior to further analyses and the remaining EPI images were 
then corrected for head movement by affine registration which 
involved the alignment to the initial volumes and then to the 
mean of all volumes. No slice time correction was applied. The 
mean EPI image for each subject was then spatially normal-
ized to the ICBM-152 reference space by using the “unified 
segmentation” approach. (42). The resulting deformation was 
then applied to the individual EPI volumes. Furthermore, the 
images were smoothed with a 5-mm FWHM Gaussian kernel 
so as to improve the signal-to-noise ratio and to compensate 
for residual anatomic variations. The time-series of each voxel 
were processed as follows: spurious correlations were reduced 
by excluding variance that could be explained by the following 
nuisance variables: (i) the six motion parameters derived from 
the re-alignment of the image; (ii) their first derivatives; (iii) 
mean gray matter, white matter, and CSF signal. All nuisance 
variables entered the model as both first- and second-order 
terms. The data were then band-pass filtered preserving fre-
quencies between 0.01 and 0.08  Hz. The time-course of the 
seed was extracted for every subject by computing the first 
eigenvariate of the time-series of all voxel within the seed. This 
seed time-course was then correlated with the time-series of all 
the other gray-matter voxels in the brain using linear (Pearson) 
correlation. The resulting correlation coefficients were trans-
formed into Fisher’s z-scores and tested for consistency across 
subjects by using a second-level ANOVA including age, gender, 
BDI scores, and EHI scores as covariates of no interest. Results 
were corrected for multiple comparisons using threshold-free 
cluster enhancement, a method that has been suggested to 
improve sensitivity and provide more interpretable output than 
cluster-based thresholding [TFCE; (43)], and FWE-correction 
at p < 0.05.

Task-Dependent Functional Connectivity:  
Meta-Analytic Connectivity Modeling
The whole-brain connectivity of the seed was characterized 
using a task-dependent approach by carrying out MACM. This 
method looks at FC as defined by task activation from previous 
fMRI studies and benefits from the fact that a large number of 
such studies are normally presented in a highly standardized 
format and stored in large-scale databases (9). Thus, MACM is 
based on the assessment of brain-wise co-activation patterns of 
a seed region across a large number of neuroimaging experi-
ment results (7). All experiments that activate the particular 
seed region are first identified and then used in a quantitative 
meta-analysis to test for any convergence across all the activa-
tion foci reported in these experiments (9). Any significant 
convergence of reported foci in other brain regions as the seed 
was considered to indicate consistent co-activation with the 
seed. For this study, we used the BrainMap database to identify 

4 http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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studies reporting neural activation within our seed region5 (10). 
A coordinate based meta-analysis was then used to identify con-
sistent co-activations across the experiments identified by using 
activation likelihood estimation (ALE) (44–46). This algorithm 
treats the activation foci reported in the experiments as spatial 
probability distributions rather than single points, and aims at 
identifying areas that show convergence across experiments. The 
results were corrected using the same statistical criteria as for 
the RS imaging data, i.e., using TFCE (43) and FWE-correction 
at p < 0.05.

Structural Covariance
Structural covariance was used to investigate the pattern of corti-
cal gray-matter morphology across the whole brain by measur-
ing the correlations of GMV, obtained through VBM, between 
different regions. This method assumes that such morphometric 
correlations carry some information about the structural or func-
tional connectivity between the regions involved (13–15, 21). SC 
analysis was performed using the GMV estimates obtained from 
the VBM pipeline, as described above. Following preprocessing 
of the anatomical images, we first computed the volume of the 
seed region by integrating the (non-linear) modulated voxel-wise 
gray-matter probabilities of all voxels of the seed, which was then 
used as our covariate of interest for the group analysis. A whole-
brain general linear model (GLM) analysis was applied using the 
GMV of the seed, along with the same additional covariates (of 
no interest) as for the RS-FC analysis. The results were corrected 
using the same statistical criteria as for the other connectivity 
modalities, i.e., using TFCE (43) and FWE-correction at p < 0.05.

Probabilistic Tractography
Probabilistic tractography was used to investigate white-matter 
anatomical connectivity from our seed region to the rest of the 
brain. The PT analysis was performed based on the same DWI 
as used for the TBSS analysis using the Diffusion Toolbox FDT 
implemented in FSL (16, 47). Fiber orientation distributions in 
each voxel were estimated according to Behrens et  al. (48), i.e., 
using the BEDPOSTX crossing fiber model. Linear and subsequent 
non-linear deformation fields between each subject’s diffusion 
space and the MNI152 space as the location of the seeds and sub-
sequent output were computed using the FLIRT and FNIRT tools, 
respectively. For PT, 100,000 samples were generated for each seed 
voxel and the number of probabilistic tracts reaching each location 
of a cortical gray matter. Importantly, we did not investigate the 
number of tracts reaching specific ROIs, but rather analyzed the 
number of tracts reaching each gray-matter voxel of the ICBM-
152 template. The distance of each target (i.e., whole-brain gray 
matter) voxel from the seed voxel was computed using the ratio of 
the distance-corrected and non-corrected trace counts [cf. (49)]. 
This allowed us to address a limitation of structural connectivity 
profiles generated by PT, namely the fact that trace counts show 
a strong distance-dependent decay. That is, voxels close to the 
region of interest will inevitably feature higher connectivity values 
than even well-connected distant ones. These effects were adjusted 

5 http://www.brainmap.org

by referencing each voxel’s trace count to the trace counts of all 
other gray-matter voxels in the same distance (with a 5-step, i.e., 
2.5 mm, tolerance) along the fiber tracts [for a detailed description 
see Ref. (49)]. We thus replaced each trace count by a rank-based 
z-score indicating how likely streamlines passed a given voxel rela-
tive to the distribution of trace counts at that particular distance. 
The ensuing images were tested for consistency across subjects by 
using a second-level ANOVA. Results were corrected using the 
same statistical criteria as for the other connectivity modalities, 
i.e., using TFCE (43) and FWE-correction at p < 0.05.

Comparison of Connectivity Measures
The similarities and differences amongst all the different connec-
tivity maps were compared and contrasted. The overlap between 
all the four thresholded connectivity maps (RS, MACM, SC, and 
PT) was computed using a minimum statistic conjunction (50), 
in order to identify common connectivity with the seed across the 
different modalities. This was done by computing the conjunction 
between the maps of the main effects for each of the modalities. 
An additional minimal conjunction analysis was also performed 
across the three modalities used to investigate gray-matter regions, 
namely, RS, MACM, and SC. Furthermore, we looked at specifically 
present connectivity for each of the modalities. Specifically present 
connectivity refers to regions that were connected with the seed 
in one modality but not in the other three [cf. (27)]. This was 
assessed by computing differences between the connectivity map 
of the first modality and those of the other three, respectively. 
Then a conjunction of these three different maps was performed. 
For example, the specifically present connectivity for MACM was 
assessed by computing the difference between the MACM map and 
the RS map in conjunction with the difference between the MACM 
map and the SC map and the difference between the MACM map 
and the PT map. Conversely, specifically absent connectivity was 
investigated by computing differences between one modality and 
the other three in order to identify regions that were present in 
the latter three modalities but not in the former. A conjunction of 
these different maps was then performed. For example, the specifi-
cally absent connectivity for MACM was assessed by computing the 
difference between the RS and MACM maps in conjunction with 
the difference between the SC and MACM maps and the difference 
between PT and MACM. All resulting maps were additionally 
thresholded with a cluster extent threshold of 100 voxels.

Finally, the resulting common connectivity, specifically present 
connectivity and specifically absent connectivity networks were 
functionally characterized based on the behavioral domain data 
from the BrainMap database as previously described for the seed 
region.

resUlTs

relationships Between TMT-Ms 
Performance and Brain structure:  
Whole-Brain VBM and TBss analyses
The whole-brain VBM analysis revealed a significant negative 
correlation between the adjusted TMT-MS score and the GMV of 
a region in the lower bank of the left inferior frontal sulcus (IFS) 
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Figure 2A). Since the TMT-MS score refers to task completion 
time, this negative correlation indicates that better performance 
was associated with higher GMV in this region (Figure 2B).

The functional profile (based on the BrainMap database) 
of this region showed a significant association with cognition, 
specifically reasoning, at p < 0.05 (Figure 3).

The TBSS analysis of white-matter associations did not yield 
any significant results.

connectivity of the iFs
Whole-brain connectivity of the region showing a significant 
association with TMT-MS performance was mapped using 
RS-FC, MACM, SC, and PT. Both similarities and differences 
amongst all the different connectivity maps were observed.

Converging Connectivity
Connectivity of the IFS seed, as revealed through RS-FC, MACM, 
SC, and PT analyses, included a number of distinct brain regions 
(Figure  4). Investigation of common regions interacting with 

the IFS across the different connectivity modalities (calculated 
through a minimum statistical conjunction analysis across the 
four thresholded connectivity maps) revealed convergence in the 
left inferior frontal gyrus (IFG) extending into the left IFS. An 
additional cluster was observed in the right Brodmann Area 45 
(Figure 5A; Table 2). Functional characterization of this network 
found across all four connectivity approaches indicated an asso-
ciation with processes related to language, including semantics, 
phonology, and speech. Additionally, associations with working 
memory and reasoning were also revealed (Figure 5B). On the 
other hand, a conjunction across the modalities used to investi-
gate gray-matter regions (RS-FC, MACM, and SC) resulted in 
a broader convergence, including clusters in the IFG bilaterally 
extending into the precentral gyrus, together with clusters in the 
middle cingulate cortex, middle orbital gyrus, and insula lobe of 
the left hemisphere (Figure 6).

Specifically Present Connectivity for Each Modality
In the next step, we looked at the connectivity effects that were 
present in one modality but not in the other three (Figure 7A; 
Table 3).

For RS-FC, we found specific connectivity between the seed 
region and bilaterally in the inferior parietal lobule, IFG (pars 
opercularis and pars triangularis), middle frontal gyrus, inferior 
temporal gyrus, middle orbital gyrus, and supramarginal gyrus. 
Additionally, areas in the right IFG (p. orbitalis), cerebellum, 
superior orbital gyrus, middle occipital gyrus, and angular gyrus 
were also revealed by RS-FC. Moreover, specific RS-FC con-
nectivity was found in areas of the left superior parietal lobule 
(Figure 7A in red). When functionally characterized using the 
BrainMap meta-data (Figure  7B in red) the components of 
this network were found to be mainly associated with cognitive 
functions, including working memory, attention, and action 
inhibition. In addition, fear was also found to be associated with 
this network.

Connectivity exclusively found using MACM was only 
observed in one region in the left hemisphere, namely in the 
insula lobe and adjacent IFG (p. triangularis), in an area slightly 
more posterior position to that found in RS-FC (Figure  7A 
in green). This region was found to be mainly associated with 
language functions, namely semantics, speech, and speech execu-
tion. Moreover, functions such as pain perception and music were 
also found to be related (Figure 7B in green).

FigUre 2 | Whole-brain VBM results. (a) Region showing significant 
correlation between gray-matter volume and adjusted time taken. Statistical 
significance using non-parametric permutation inference was assessed at 
p < 0.05 [family-wise error (few) corrected for multiple comparisons]. (B) 
Correlation between motor speed and gray-matter volume. The better (lower) 
the performance score the higher the gray-matter volume.

FigUre 3 | Behavioral domains from the BrainMap database significantly associated with the seed, p < 0.05.
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Connectivity specific to SC was observed in the bilateral 
superior medial gyrus, temporal pole, superior temporal gyrus, 
Heschl’s gyrus, rolandic operculum, supplementary motor area, 
superior and middle frontal gyri (more anterior to the effect 
found in RS-FC), IFG (p. orbitalis) (inferior to the area found in 
RS-FC on the right hemisphere) and middle orbital gyrus (bilat-
erally more anterior to the RS-FC effect). In the right hemisphere, 
specifically present SC connectivity included areas in the anterior 
cingulate cortex, insula lobe, middle temporal gyrus, supramar-
ginal gyrus (more inferior to the area found in RS-FC), medial 
temporal pole, superior and inferior parietal lobules (the latter 
being more inferior to the area found in RS-FC), and superior 
orbital gyrus (more anterior to RS-FC specific connectivity in the 
same region). Additional connectivity was also observed in the 
left rectal gyrus, and left precentral gyrus (Figure 7A in blue). 
This network was found to be mainly functionally associated 
with functions related to emotion (fear, disgust, and sadness) and 
perception (audition and pain) (Figure 7B in blue).

The network specifically present for PT was found to be 
mainly functionally associated with functions related to emotion 
and pain. Additionally, functions such as action execution and 
action imagination were also found to be related (Figures 7A,B 
in yellow).

Specifically Absent Connectivity for Each Modality
Additionally, we looked at connectivity that was specifically 
absent in each modality, i.e., regions for which connectivity was 
absent in a particular modality but was observed in the other three 
(Figure 8A; Table 4). No regions were found to be specifically 

absent for the RS-FC modality. By contrast, for MACM we found 
specifically absent connectivity with areas of the left middle and 
inferior frontal gyri (p. triangularis) (Figure 8A in green). These 
regions were found to be functionally associated with cognitive 
functions, namely working and explicit memory but also with 
phonology, semantics, and syntax (Figure 8B in green).

Conversely, for SC specifically absent connectivity was found 
for an area in the left precentral gyrus (Figure 8A in blue; Table 4). 
This region was in turn found to be mainly functionally associated 
with language-related functions (phonology, semantics, speech, 
and syntax) together with working memory (Figure 8B in blue).

Connectivity specifically absent for PT was also found to be 
functionally associated with language-related functions (phonol-
ogy, semantics, and speech) together with working memory, 
reasoning, and attention (Figures 8A,B in yellow).

DiscUssiOn

The aim of this study was to employ a multi-modal approach to 
investigate the regions and associated networks related to upper 
extremity motor function, as quantified by the TMT-MS. In a 
first step, we therefore correlated local GMV with performance 
in motor speed. This analysis revealed a significant correlation 
between TMT-MS performance and GMV in a small region 
in the IFS, which was functionally characterized as being 
involved in cognitive tasks. In turn, the TBSS analysis of local 
WM associations yielded no significant result. We then further 
investigated the connectivity of the left IFS seed using a multi-
modal approach. Functional interactions with other gray-matter 

FigUre 4 | Brain regions found to be significantly connected with the seed for each modality at p < 0.05, FWe corrected for multiple comparisons 
using threshold-free cluster enhancement (TFce statistic).
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FigUre 6 | a comparison of the conjunction across rs-Fc, MacM, 
and sc (purple) with brain regions found to be significantly connected 
with the seed region when using PT (yellow) at p < 0.05, FWe 
corrected for multiple comparisons using threshold-free cluster 
enhancement (TFce statistic).

FigUre 5 | conjunction analysis and functional characterization of seed. (a) Conjunction across RS-FC, MACM, SC, and PT. (B) Behavioral domains from 
the BrainMap database significantly associated with the commonly connected regions shown in (a) (FDR-corrected for multiple comparisons, p < 0.05).

TaBle 2 | converging connectivity of the iFs seed.

region x y z cytoarchitectonic 
assignment

cluster 1 (780 voxels)
L middle orbital gyrus −46 46 −2

cluster 2 (1,235 voxels)
R Inferior frontal gyrus (p. triangularis) 52 28 14 Area 45

x, y, and z coordinates refer to the peak voxel in MNI space. R, right; L, left.

regions and white-matter structural connections were assessed 
using RS-FC, MACM, SC, and PT approaches. The networks that 
emerged revealed both similarities and differences between the 
different modalities. A conjunction analysis between the four 
connectivity approaches was used to delineate a core network. 
Further analyses were used to investigate connectivity patterns 
specific to each of the modalities.

relationships Between TMT-Ms 
Performance and Brain structure
In this study, we found TMT-MS performance to be specifically 
related to the local brain volume of a region in the lower bank 
of the left IFS. That is, across subjects better performance (lower 

completion time) was associated with higher GMV in this cluster. 
The left IFG, including IFS, has been formerly described as part 
of a multiple-demand system responsible for multiple kinds of 
cognitive demand, in which goals are achieved by assembling a 
series of sub-tasks, each separately defined and solved (51). An 
objective definition of this “multi-demand network” has recently 
been proposed by Müller et  al. (52) based on a conjunction 
across three large-scale neuroimaging meta-analyses to identify 
regions consistently involved in sustained attention (53), working 
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may seem to primarily depend on executive rather than more 
basic motor control processes. Does this contradict the assump-
tion that the TMT-MS test is a baseline measure of motor speed? 
Not necessarily, but rather, given our findings, we would argue that 
motor speed in a more naturalistic setting should be more strongly 
associated with executive rather than primary motor function.

In congruence with the present results, previous studies have 
linked longer reaction times and motor slowing with sustained 
attention (58). However, lesion studies have associated slowing in 
motor processes with lesions in the right lateral frontal lobe (59, 
60). Consequently, these results contrast with the findings of the 
present study. Additionally, the present results differ from those 
obtained using tasks that are commonly employed to investigate 
changes to the motor system following stroke; for instance, in 
functional neuroimaging studies using fist opening/closure 
paradigms (61, 62). Here, activation and interactions of the 
primary motor cortex as well as the lateral and medial pre-motor 
cortices are of essential importance. Similar regions were found 
in another functional neuroimaging study which used a finger 
tapping paradigm and focused on healthy subjects (63). In turn, 
activations involving the inferior frontal cortex and other regions 
of the executive, multi-demand network are not prominently 
seen. This implicates a potentially important distinction between 
neuroimaging assessments of stroke patients, in which more 
fundamental aspects of motor performance are usually tested, 
and paper-and-pencil tests that apparently, even when aimed at 

FigUre 7 | specific connectivity of seed and functional characterization. (a) Specific connectivity for RS-FC (red), MACM (green), SC (blue), and PT (yellow). 
An additional cluster extent threshold of 100 voxels was applied. (B) Behavioral domains from the BrainMap database significantly associated with the specifically 
connected regions shown in (a) (FDR-corrected for multiple comparisons, p < 0.05).

memory (54), and inhibitory control (55). Importantly, the IFS 
location identified in the current study was found to be part of this 
multi-demand network, indicating that TMT-MS performance is 
related to brain structure in a region involved in executive rather 
than motor functions. This association between certain aspects 
of motor performance and cognitive or executive functions has 
already been suggested in earlier studies (56, 57).

At first glance, these results contradict the intention of the 
TMT-MS to measure motor speed, and to serve as a baseline 
measure for higher, executive aspects of the test (2). However, one 
may argue that since subjects are given specific instructions to 
follow a dotted line while making sure that the line drawn touches 
every circle along the path, the accurate completion of this task 
should in fact draw heavily on executive control processes. It may 
hence not surprise that performance in a task requiring a relatively 
high degree of executive motor control and attention is related to 
a structure that is part of the multi-demand network involved in 
executive functions (51). In turn, there was no significant asso-
ciation between performance and GMV in cortical or subcortical 
motor structures as may have been expected. In this context, it 
must be noted that adequate hand motor abilities are a necessary 
prerequisite for performing the TMT-MS test successfully; i.e., 
subjects have to be able to use their hand to draw the required lines. 
Hence, the reliance of TMT-MS completion on an intact cortical 
and subcortical motor system is obvious. What we found, however, 
is that performance (i.e., the speed at which the task is completed) 
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testing basic motor speed, are more reflective of executive motor 
control. In summary, we would thus argue that the distinction 
between motor and “higher cognitive” tasks, which seems rather 
prevalent in (neuroimaging) stroke research, may be slightly mis-
leading, as executive motor control functions may play a major 
role in the everyday impairments following stroke.

Core Network
Notably, all three FC approaches (RS-FC, MACM, and SC), 
together with locations revealed as structurally connected by 
PT, converged on a network comprising of the left inferior gyrus 
extending into the left IFS and an additional cluster in the right 
Brodmann Area 45. In combination with the observation of a 
fairly restrictive region associated with TMT-MS performance, 
these results suggest a core network of mostly regional connectiv-
ity that is in line with the current view on the role of the inferior 
frontal cortex in executive functioning (51).

Additionally, the right IFG, bilateral adjacent pre-motor corti-
ces, and anterior insula were additionally found to converge when 
looking only at the FC approaches, namely, RS-FC, MACM, and 
SC (but not PT). Similar as the IFS seed, most of these clusters 
overlap with regions previously described to be part of the mul-
tiple-demand network (51, 52). In particular, the bilateral IFG, 
and left anterior insula as well as the MCC were the regions that 
overlapped with the multiple-demand network. Thus, we here 
show that, across different (functional) connectivity approaches 
the IFS shows robust interactions with regions associated with 
multiple cognitive demands. This is additionally supported by the 
functional characterization of the network robustly connected 
with the IFS across the different FC approaches, which show an 
association with multiple cognitive tasks. These observations thus 
continue to emphasize the important role of cognitive functions 
in the TMT-MS and thus suggest that this test might be tapping 
into executive rather than primary motor function.

convergence and Differences Between 
connectivity Measures
Convergence Among Modalities
Functional interactions can be probed by using different 
approaches, each having their own methodological features, and 
potentially also different biases even though the same statistical 
analyses and thresholds were used for each of the modalities. 
The use of the different modalities in the current study provided 
an opportunity to systematically compare all the different 
approaches. Despite the conceptual differences between the dif-
ferent modalities, a common network was revealed. When com-
paring the modalities RS-FC, MACM, and SC networks through 
a minimum statistic conjunction analysis, all three approaches 
converged on a core network that included adjacent parts of left 
IFG, its right-hemispheric homolog, right precentral gyrus, left 
middle cingulate cortex, middle orbital gyrus, and insular cortex. 
These results are in line with previous studies that used different 
seeds and therefore different networks, and also showed conver-
gence between RS and MACM (18–20), between RS and SC (21, 
22, 28), between RS and fiber tracking (23–26), and between RS, 
MACM, and SC (27, 64). As a result, it can be suggested that 
future studies could benefit from a multi-modal approach and 

TaBle 3 | specifically present connectivity of iFs seed.

region x y z cytoarchitectonic 
assignment

rs-Fc

Cluster 1 (5322 voxels)
L rectal gyrus −4 24 −26
Cluster 2 (4183 voxels)

−30 −72 20
Cluster 3 (3958 voxels)

14 18 −28
Cluster 4 (2318 voxels)

36 −64 24
Cluster 5 (1630 voxels)
R Cerebellum (Crus 2) 44 −66 −50
Cluster 6 (1357 voxels)
L inferior temporal gyrus −52 −50 −26
Cluster 7 (817 voxels)
R inferior temporal gyrus 54 −50 −26

MacM

Cluster 1 (279 voxels)
L insula lobe −30 22 −10

sc

Cluster 1 (26511 voxels)
R medial temporal pole 32 6 −33
Cluster 2 (7299 voxels)

−39 3 −27
Cluster 3 (2577 voxels)
R superior frontal gyrus 21 33 30
Cluster 4 (1710 voxels)
L middle frontal gyrus −40 51 10
Cluster 5 (875 voxels)

−24 30 −23
Cluster 6 (525 voxels)

28 −46 36 Area hIP1 (IPS)
Cluster 7 (341 voxels)
L inferior frontal gyrus  
(p. Opercularis)

−57 15 7 Area 44

Cluster 8 (229 voxels)
L SMA −8 17 52 Area 6
Cluster 9 (153 voxels)
L precentral gyrus −33 −7 54
Cluster 10 (122 voxels)
L inferior frontal gyrus (p. Orbitalis) −46 26 −5

PT

Cluster 1 (919 voxels)
L superior medial gyrus −8 54 28
Cluster 2 (748 voxels)
R superior medial gyrus 10 56 24
Cluster 3 (387 voxels)
L paracentral lobule −10 −34 60 Area 4a
Cluster 4 (308 voxels)
R precuneus 8 −66 40 Area 7A (SPL)
Cluster 5 (234 voxels)
L inferior frontal gyrus (p. Orbitalis) −48 22 −4 Area 45
Cluster 6 (232 voxels)
L precuneus −2 −72 36 Area 7P (SPL)
Cluster 7 (179 voxels)
L middle temporal gyrus −58 −28 −12
Cluster 8 (111 voxels)

−4 −36 −48
Cluster 9 (107 voxels)
L middle occipital gyrus −52 −70 −2

x, y, and z coordinates refer to the peak voxel in MNI space. R, right; L, left.
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the consequent use and interpretation of the convergent network 
rather than focusing on a unimodal approach.

Furthermore, our resulting similarity between the SC and PT 
networks and the networks obtained from the other two modali-
ties supports the idea that FC can be used to reflect structural 
connectivity and that SC of GMV can reflect functional networks 
in the brain (21, 22, 27). Consequently, our results together with 
previous findings provide evidence for the fact that SC is func-
tional in nature.

Differences Among Modalities
Despite the convergence observed across all approaches, diver-
gent connectivity patterns were also found when looking at 
contrasts of the different modalities. This is not surprising, given 
that the approaches use different data and methods in order to 
determine connectivity between a seed region and the rest of the 
brain. Previous studies have similarly reported striking differ-
ences between RS-FC and MACM connectivity approaches (20, 
27). Clos et al. (27) and Jakobs et al. (20) have already argued that 
the differences that result from these two approaches may be the 

FigUre 8 | specifically missing connectivity of seed and functional characterization. (a) Specifically missing connectivity for MACM (green), SC (blue), and 
PT (yellow). An additional cluster extent threshold of 100 voxels was applied. (B) Behavioral domains from the BrainMap database significantly associated with the 
specifically missing regions shown in (a) (FDR-corrected for multiple comparisons, p < 0.05).

TaBle 4 | specifically absent connectivity of iFs seed.

region x y z cytoarchitectonic 
assignment

MacM

Cluster 1 (735 voxels)
L inferior frontal gyrus (p. triangularis) −42 40 −2
L inferior frontal gyrus (p. triangularis) −50 38 6
L inferior frontal gyrus (p. triangularis) −52 20 30 Area 45
Cluster 2 (166 voxels)
L middle frontal gyrus −44 12 38 Area 44

sc

Cluster 1 (205 voxels)
L precentral gyrus −50 4 16

PT

Cluster 1 (629 voxels)
L inferior frontal gyrus (p. triangularis) −42 32 6
Cluster 2 (339 voxels)
R inferior frontal gyrus (p. triangularis) 46 34 6 Area 45
Cluster 3 (119 voxels)
R precentral gyrus 54 6 18 Area 44

x, y, and z coordinates refer to the peak voxel in MNI space. R, right; L, left.
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result of the conceptual differences between the methods. While 
RS-FC is based on correlation of fMRI time-series measured in 
the absence of an external stimulus (5, 65), MACM delineates 
networks that are conjointly recruited by a broad range of tasks 
(3). That is, RS and MACM derive FC from different mental 
states, in the absence and presence of a task, respectively. As a 
result, spontaneous networks related to self-initiated behavior 
and thought processes that can be captured in the task-free state 
may be largely missed in MACM analyses (3).

In particular, RS-FC of our seed was specifically found in a 
number of regions that have been predominantly associated with 
executive functions, such as working memory, attention, action 
inhibition, and spatial cognition. Importantly, there were no 
regions that were present in SC, PT, and MACM, but absent in 
RS-FC as revealed by the specifically absent RS-FC. This indicates 
that RS-FC captures the broadest network. By contrast, specific con-
nectivity observed for MACM was found to be mainly associated 
with language-related functions such as semantics and speech. In 
turn, specifically absent regions in MACM were found to be mainly 
associated with cognitive functions such as working memory and 
explicit memory as well as language-related functions. As already 
mentioned above, these diverging patterns, with RS-FC capturing a 
broader network than MACM is possibly due to the conceptual dif-
ferences. Moreover, these two approaches also differ in the subject 
groups assessed. While a group of 109 subjects were recruited for 
the RS-FC analysis, the MACM analysis relied on a large amount of 
published neuroimaging studies from the BrainMap database (10), 
with the selection criteria being activation of our identified seed 
region. Thus, it is possible that this difference in subject groups may 
have also contributed to the difference in results obtained.

In contrast to the FC approaches mentioned above, specific SC 
connectivity was observed in regions found to be mainly associ-
ated with functions related to emotion (fear, disgust, and sadness) 
and perception (pain, gustation, audition, hunger, and somesthe-
sis). Additional functions observed included action inhibition 
and cognition. On the other hand, functional characterization of 
areas that were found to be specifically absent for SC connectivity 
revealed an association with functions related to cognition and 
language such as working memory, phonology, orthography, 
syntax, and speech. Given these results, it can be noted that the 
specific SC network showed a prominent association with per-
ception and emotional processing. The strong association with 
emotional processing in SC is particularly interesting since the 
functional characterization of the seed region and the conjunction 
network did not indicate such an involvement. Moreover, while the 
specific RS-FC network revealed regions that were predominately 
related to cognition and the MACM network revealed regions 
that were predominantly related to language, the SC network 
found such regions to be specifically missing. These differences 
may be largely due to the conceptual differences between the FC 
modalities described above and SC. The exact biological basis of 
SC is still rather unclear (27), but it has been hypothesized that 
SC networks arise from synchronized maturational change that 
could be mediated by axonal connections forming and reforming 
over the course of development (66). Therefore, early and recip-
rocal axonal connectivity between regions is expected to have a 
mutually trophic effect on regional growth in an individual brain 

leading to covariance of regional volumes across subjects (14). 
That is, the correlation of anatomical structure between regions 
is the result of similarities in maturational trajectories (14). The 
specific connectivity pattern of the SC modality may thus be 
reflecting synchronized developmental patterns within a network 
of regions associated with perception and emotional processing. 
This could thus be the reason for particular regions to be present 
in the SC network and not in the MACM and RS-FC networks 
since the latter two modalities are more likely to highlight regions 
that are related to certain functions rather than long-term ana-
tomical interactions. Additionally, SC is also likely to include other 
influences such as common genetic factors, developmental brain 
symmetry, neuromodulator distributions, and vascular territories 
(14, 15), which contribute to its more widespread distribution.

In congruence with the specific SC network, the PT network 
also showed a prominent association with perception and emo-
tional processing while functional characterization of areas that 
were found to be specifically absent for PT connectivity revealed 
an association with functions related to cognition and language. 
These results further imply that the regions that were specifically 
associated with SC may reflect dominant long-term synchronized 
maturational patterns. However, despite the differences observed, 
it should be noted that the core network showed that the resulting 
SC network (also) revealed functional relations despite the fact 
that it was defined by anatomical covariance. SC may hence be 
regarded as a measure potentially bridging between structural and 
functional connectivity aspects. However, when comparing the PT 
to the other three networks, contrasting regions can be observed. 
This could be due to biases related to the use of conventional 
diffusion tensors. Such tensors can only capture the principal 
diffusion direction, and thus makes them prone to errors induced 
by crossing fibers (67). As a result, this could have limited the 
possible resulting convergence amongst the four modalities.

cOnclUsiOn

In summary, the present results demonstrate a significant correla-
tion between TMT-MS performance and GMV in the lower bank 
of the IFS, which was functionally characterized as being involved 
in cognitive tasks. Additionally, all connectivity approaches used 
(RS-FC, MACM, SC, and PT) converged on a network compris-
ing of regions that overlap with the multiple-demand network. 
Results therefore indicate that performance (i.e., the speed at 
which the task is completed) may primarily depend on executive 
function, thus suggesting that motor speed in a more naturalistic 
setting should be more strongly associated with executive rather 
than primary motor function. Moreover, the common connectiv-
ity resulting from the different modalities used verifies that com-
mon networks can be revealed across highly divergent methods.
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