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Editorial on the Research Topic
Individual’s mechanics, movement and kinematics post-stroke

Disability after stroke is a major burden on society, due to its high incidence and
prevalence. Among the priorities of rehabilitation programs, stroke rehabilitation aims to
restore independence and improve patients’ quality of life. Dynamic balance, fall prevention
and upper limb recovery are essential features for the clinical management of hemiparetic
patients. In this context, the assessment of movement by means of quantitative movement
analysis in hemiparetic post-stroke patients is key to planning rehabilitative interventions.
Kinematic analysis facilitates the interpretation of the extent and mechanisms of motor
recovery, and it has been increasingly applied in neurological research.

Although quantitative biomechanical approaches are objective, sensitive and
quantitative, their associations with clinical measures have not been fully studied. Thus,
the goal of the Research Topic was to provide a quantitative evaluation of the relationship
between lower or upper extremity biomechanics and clinical scores to investigate in depth
themotor dysfunction associated with stroke-relatedmovement disabilities, which is critical
to improving our understanding and expanding interventional strategies to minimize long-
term consequences due to stroke.

We invited authors to submit their latest results in the field, in the form of original
papers, reviews, or clinical cases, focusing mainly on biomechanics and movement analysis
in stroke patients, rehabilitation programs for stroke patients and their quantitative
outcomes and innovative data analysis and models to study the mechanisms of motor
recovery; 9 papers were accepted for publication in this Research Topic and they are
summarized in the following paragraphs.

The papers could be divided into two main categories: assessment of gait performance
and upper limb during specific movements.

In terms of the assessment of gait performance, Li et al. studied the feasibility of muscle
co-contraction using two EMG-based Co-Contraction Indices to approximate lower limb
joint stiffness trends during gait in two individuals post-stroke patients. Abdollahi et al.
conducted a systematic review of fall risk factors in the stroke community in order to
identify their similarities and trends. Kantha et al. compared virtual reality (VR)-based
skateboarding with walking at a comfortable walking speed on a treadmill in 20 young
participants, in terms of kinematics and electromyographic activity of the trunk and legs;
the authors demonstrated that the effect of VR skateboarding is particularly manifest when
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focusing on the supporting leg. Wang et al. investigated gait
characteristics and fall risk in patients with cerebral small vessel
disease (CSVD) and demonstrated that CSVD patients with
seemingly normal gait and independent ambulation still have a
high risk of falling. In particular, gait spatio-temporal kinematic
parameters, gait symmetry, and gait variability were found to be
important indicators for assessing high-fall risk. Sekiguchi et al.
explored the differences in kinetic parameters of slow gait speed in
patients with stroke across brain lesion sides. Lastly, with respect to
the upper limb assessment category, Schwarz et al. examined inter-
joint coordination in post-stroke patients during various upper
limb movement tasks using parameters obtained from a wearable
sensor, demonstrating that the kinematic parameters of the
upper limb after stroke are largely influenced by the task. Cheng
et al. investigated the kinematic components of the finger-to-nose
test obtained from principal component analysis and the
associations with upper extremity motor function in subacute
stroke survivors. Li et al. provided an accurate interpretation
and assessment of the underlying “motor control” deficits caused
by stroke, using functional brain controllability analysis, based on
electroencephalography and functional near-infrared spectroscopy,
simultaneously recorded during a hand-clenching task. Goffredo
et al. developed a predictive model for rehabilitation outcome at
discharge assessed by the Motricity Index of the affected upper
limb, based on multidirectional 2D robot-measured kinematics in
individuals with subacute stroke.

It is evident from the articles in this Research Topic that
improved performance in gait and upper limb motor skills leads
to reduced risk of falls and better functioning in stroke patients. The
articles in this Research Topic provide a foundation for the
development of effective rehabilitation interventions to minimize
the long-term consequences of stroke.
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How Well Do Commonly Used
Co-contraction Indices Approximate
Lower Limb Joint Stiffness Trends
During Gait for Individuals
Post-stroke?
Geng Li1, Mohammad S. Shourijeh1, Di Ao1, Carolynn Patten2 and Benjamin J. Fregly1*

1 Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX,
United States, 2 Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine
and Rehabilitation, School of Medicine, University of California, Davis, Davis, CA, United States

Muscle co-contraction generates joint stiffness to improve stability and accuracy during
limb movement but at the expense of higher energetic cost. However, quantification of
joint stiffness is difficult using either experimental or computational means. In contrast,
quantification of muscle co-contraction using an EMG-based Co-Contraction Index
(CCI) is easier and may offer an alternative for estimating joint stiffness. This study
investigated the feasibility of using two common CCIs to approximate lower limb joint
stiffness trends during gait. Calibrated EMG-driven lower extremity musculoskeletal
models constructed for two individuals post-stroke were used to generate the quantities
required for CCI calculations and model-based estimation of joint stiffness. CCIs were
calculated for various combinations of antagonist muscle pairs based on two common
CCI formulations: Rudolph et al. (2000) (CCI1) and Falconer and Winter (1985) (CCI2).
CCI1 measures antagonist muscle activation relative to not only total activation of agonist
plus antagonist muscles but also agonist muscle activation, while CCI2 measures
antagonist muscle activation relative to only total muscle activation. We computed the
correlation between these two CCIs and model-based estimates of sagittal plane joint
stiffness for the hip, knee, and ankle of both legs. Although we observed moderate to
strong correlations between some CCI formulations and corresponding joint stiffness,
these associations were highly dependent on the methodological choices made for CCI
computation. Specifically, we found that: (1) CCI1 was generally more correlated with
joint stiffness than was CCI2, (2) CCI calculation using EMG signals with calibrated
electromechanical delay generally yielded the best correlations with joint stiffness,
and (3) choice of antagonist muscle pairs significantly influenced CCI correlation with
joint stiffness. By providing guidance on how methodological choices influence CCI
correlation with joint stiffness trends, this study may facilitate a simpler alternate
approach for studying joint stiffness during human movement.

Keywords: muscle co-contraction, co-contraction index, joint stiffness, electromyography (EMG), EMG-
driven modeling
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INTRODUCTION

Muscle co-contraction refers to the simultaneous activation
of muscles on opposite sides of a joint. It is an important
mechanism used by the central nervous system to regulate
joint stability (Hirokawa et al., 1991; McGill et al., 2003) and
provide movement accuracy (Gribble et al., 2003; Missenard
et al., 2008). Individuals who suffer from orthopedic injuries
or neuromuscular disorders use elevated levels of muscle co-
contraction (Lamontagne et al., 2000; Rudolph et al., 2000;
Higginson et al., 2006; McGinnis et al., 2013) to generate
additional joint stiffness so as to compensate for the lack of joint
stability (Gollhofer et al., 1984; Kuitunen et al., 2002; Mohr et al.,
2018), although evidence in support of this premise is equivocal
(Banks et al., 2017). While co-contraction increases joint stiffness
which in turn may improve the stability (Latash and Huang,
2015) and accuracy (Wong et al., 2009) of limb movement, it
does so at the expense of increased energetic cost (Moore et al.,
2014). Quantification of joint stiffness is therefore critical for
understanding how this quantity adds both benefit and cost to
dynamic movements such as gait.

Stroke is a common clinical condition that often impairs
movement through an increase in joint stiffness (Thilmann
et al., 1991; Rydahl and Brouwer, 2004; Galiana et al., 2005;
Mirbagheri et al., 2008; Gao et al., 2009) and spasticity (Galiana
et al., 2005; Mirbagheri et al., 2008) along with a decrease
in joint range of motion (Gao et al., 2009). Some clinicians
have developed rehabilitation regimens that use stretching and
relaxation to help reduce joint stiffness (Bressel and McNair,
2002; Selles et al., 2005; Gao et al., 2011). Other clinicians
have used assistive devices with stiffness-informed designs to
help improve movement function in stroke survivors. These
devices include rehabilitation robots (Vallery et al., 2008),
exoskeletons (Liu et al., 2018), and ankle-foot orthoses (Singer
et al., 2014). A common theme in these studies is the need
for reliable quantification of joint stiffness for the design and
evaluation of new treatments. However, joint stiffness is difficult
to measure experimentally (Pfeifer et al., 2012) or calculate
computationally, and determining it requires musculoskeletal
modeling informed by appropriate muscle recruitment strategies
(Sartori et al., 2015). Consequently, development of easy-to-use
methods for estimating joint stiffness in a clinical setting could
be valuable for improving the treatment of individuals post-
stroke.

Quantification of muscle co-contraction may offer an
alternative for estimating joint stiffness. Although previous
studies have reported that muscle co-contraction and joint
stiffness are related (Kuitunen et al., 2002; McGinnis et al.,
2013; Collins et al., 2014), the relationship between these two
quantities remains poorly understood, as initially noted by
Hortobágyi and Devita (2000). One issue is that previous studies
have quantified joint stiffness primarily in the form of quasi-
stiffness. Joint quasi-stiffness is described as the gradient of
the torque-angle curve rather than the true characterization
of joint stiffness (Rouse et al., 2013). Since joint quasi-
stiffness does not change for different levels of muscle co-
contraction, it is not an accurate representation of joint

stiffness generated by muscle co-contraction. From another
perspective, quasi-stiffness represents the joint moment response
to changes in not only joint position but also muscle activation
and joint velocity (Sartori et al., 2015). To address these
issues, the present study defines joint stiffness as the elastic
response of a joint moment to changes in only joint position.
This definition follows the recommendation of Latash and
Zatsiorsky (1993) and provides a reasonable basis for the
evaluation of the relationship between muscle co-contraction and
joint stiffness.

The Co-Contraction Index (CCI) is a commonly used method
for quantifying muscle co-contraction during human movement.
Computation of a CCI involves choosing from a wide selection
of methods, and previous studies have examined how differences
in method affect CCI results (Knarr et al., 2012; Banks et al.,
2017; Souissi et al., 2017). Two common CCI formulations
(Falconer and Winter, 1985; Rudolph et al., 2000) allow clinical
researchers to make a fast and easy assessment of muscle co-
contraction using surface electromyographic (EMG) data, and
these two formulations have been used in several studies to
quantify muscle co-contraction (Kellis, 1998; Di Nardo et al.,
2015; Banks et al., 2017). The selected CCI formulation with
associated methodological choices could affect the extent to
which the CCI is a reasonable surrogate for joint stiffness.
Consequently, it would be valuable to evaluate how different
methodological choices for calculating a CCI affect the CCI’s
ability to approximate joint stiffness trends during activities of
daily living such as gait.

This study provides a quantitative evaluation of the
relationship between lower extremity muscle co-contraction
indices and corresponding joint stiffnesses during gait. We
calculated CCIs and lower body joint stiffnesses using
EMG data collected from the lower extremity muscles of
two individuals post-stroke walking at their self-selected
speed. CCIs were calculated for the two common CCI
formulations noted above using four different methods for
EMG data post-processing. Lower body joint stiffnesses were
calculated using EMG-driven musculoskeletal models calibrated
using the EMG, motion capture, and ground reaction data
collected from each subject. Correlations between CCIs and
joint stiffnesses for each subject were calculated, and CCI
calculation methods that helped improve the correlations
were identified. These findings could help clinicians formulate
CCIs that yield results more strongly aligned with joint
stiffness trends.

MATERIALS AND METHODS

Experimental Data
Walking data collected from two hemiparetic male subjects post-
stroke were used for this study. The first subject (male, height
1.70 m, mass 80.5 kg, age 79 years, right-sided hemiparesis,
lower extremity Fugl-Meyer Motor Assessment score of 32
out of a maximum 34), herein referred to as subject S1,
walked at a self-selected speed of 0.5 m/s. The second subject
(male, height 1.83 m, mass 88.5 kg, age 62 years, right-sided
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hemiparesis, lower extremity Fugl-Meyer Motor Assessment
score of 25 points), herein referred to as subject S2, walked
at a self-selected speed of 0.45 m/s. Both subjects walked
for multiple cycles on a split-belt instrumented treadmill
(Bertec Corp., Columbus, OH, United States) while motion
capture (Vicon Corp., Oxford, United Kingdom), ground
reaction (Bertec Corp., Columbus, OH, United States), and
EMG (Motion Lab Systems, Baton Rouge, LA, United States)
data were collected. EMG signals were measured at 1,000 Hz
from 16 muscles in each leg (Table 1) using a combination
of surface and fine-wire electrodes. For more details about

the data collection and the experimental protocol, see Meyer
et al. (2017). Data from ten gait cycles for each subject were
selected for analysis.

EMG Data Processing and EMG-Driven
Model Calibration
Raw EMG data were processed using a standard methodology.
The data were high-pass filtered at 40 Hz, demeaned, rectified,
and low-pass filtered at a variable cutoff frequency of 3.5/period
of the gait cycle (Lloyd and Besier, 2003) while using a 4th order

TABLE 1 | Muscles analyzed in this study.

Muscle name (abbreviation) EMG source Direction of moment generation EMG scale in S1 EMG scale in S2

Hip Knee Ankle L R L R

Adductor brevis (addbrev) Adductor longus FLEX 0.14 0.05 0.05 0.23

Adductor longus (addlong) FLEX 0.33 0.07 0.05 0.27

Adductor magnus distal (addmag1) EXT 0.07 0.05 0.05 0.09

Adductor magnus ischial (addmag2) EXT 0.05 0.05 0.05 0.31

Adductor magnus middle (addmag3) 0.07 0.05 0.05 0.25

Adductor magnus proximal (addmag4) FLEX 0.13 0.05 0.05 0.66

Gluteus maximus superior (glmax1) Gluteus maximus EXT 0.32 0.20 0.43 0.09

Gluteus maximus middle (glmax2) EXT 0.33 0.20 0.39 0.09

Gluteus maximus inferior (glmax3) EXT 0.32 0.20 0.51 0.09

Gluteus medius anterior (glmed1) Gluteus medius EXT 0.71 0.62 0.06 0.92

Gluteus medius middle (glmed2) EXT 0.69 0.63 0.06 0.92

Gluteus medius posterior (glmed3) EXT 0.69 0.62 0.06 0.93

Gluteus minimus anterior (glmin1) 0.32 0.14 0.99 0.16

Gluteus minimus middle (glmin2) 0.30 0.15 0.99 0.16

Gluteus minimus posterior (glmin3) EXT 0.30 0.15 0.99 0.16

Iliacus (iliacus) Iliopsoas* FLEX 0.05 0.05 0.05 0.05

Psoas (psoas) FLEX 0.99 0.82 0.21 0.06

Semimembranosus (semimem) Semimem EXT FLEX 0.35 0.40 0.26 0.15

Semitendinosus (semiten) EXT FLEX 0.30 0.40 0.26 0.15

Biceps femoris long head (bflh) Bflh EXT FLEX 0.76 0.38 0.57 0.14

Biceps femoris short head (bfsh) FLEX 0.76 0.39 0.57 0.14

Rectus femoris (recfem) Rectus femoris FLEX EXT 0.48 0.27 0.65 0.05

Vastus medialis (vasmed) Vastus medialis EXT 0.27 0.50 0.18 0.29

Vastus intermedius (vasint) EXT 0.31 0.44 0.16 0.28

Vastus lateralis (vaslat) Vastus lateralis EXT 0.32 0.11 0.16 0.27

Lateral gastronemius (gaslat) Gasmed FLEX PF 0.05 0.12 0.19 0.30

Medial gastronemius (gasmed) FLEX PF 0.14 0.14 0.26 0.44

Tibialis anterior (tibant) Tbialis anterior DF 0.61 1.00 1.00 1.00

Tibialis posterior (tibpost) Tibialis posterior* PF 0.05 0.05 0.05 0.40

Peroneus brevis (perbrev) Peroneus longus PF 0.05 0.98 0.77 0.26

Peroneus longus (perlong) PF 0.05 0.99 0.76 0.26

Peroneus tertius (pertert) DF 0.05 0.99 0.77 0.26

Soleus (soleus) Soleus PF 0.65 0.96 1.00 0.08

Extensor digitorum longus† (edl) Edl* DF 1.00 0.26

Flexor digitorum longus† (fdl) Fdl* PF 1.00 0.05

Tensor fasciae latae‡ (tfl) Tfl 0.52 1.00

Direction of moment generation of each muscle is indicated as FLEX – in the direction of joint flexion, EXT –in the direction of joint extension, DF – in the direction of
ankle dorsiflexion, PF – in the direction of ankle plantarflexion. EMG scale is the scale factor applied to the basic EMG signal of a muscle to account for the difference
between the physiological maximum and maximum observed during gait trials. S1, Post-stroke subject S1; S2, Post-stroke subject S2. *measured using fine-wire EMG.
†measured from only the 1st post-stroke subject (S1). ‡measured from only the 2nd post-stroke subject (S2).
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zero phase-lag Butterworth filter (Meyer et al., 2017). Filtered
EMG data were subsequently normalized to the maximum value
over all cycles and resampled to 101 normalized time points for
each gait cycle. Normalized EMG data for each gait cycle were
offset by the minimum value so that the minimum EMG value for
each gait cycle was zero. These processing procedures represent
the basic approach for EMG processing adopted by other studies
for the quantification of muscle co-contraction (Rosa et al., 2014).
The EMG signals processed using the aforementioned procedures
were defined as the basic EMG signals, EMGbasic.

An EMG-driven modeling process was used to calibrate
relevant parameters of the lower body musculoskeletal model
used to represent each subject (Meyer et al., 2017). The calibrated
model parameters included those defining the conversion of
basic EMG into muscle excitation, muscle excitation into muscle
activation via activation dynamics, and muscle activation into
muscle force via a Hill-type muscle tendon model with rigid
tendon. The calibration process utilized numerical optimization
to adjust model parameter values so as to achieve the closest
match between joint moments produced by the EMG-driven
musculoskeletal model and those calculated from inverse
dynamics. Conversion of basic EMG into muscle excitation
involved adding an electromechanical delay and applying a
muscle-specific EMG scale factor to EMGbasic. Electromechanical
delay is defined as the duration from the instant an electrical
signal is received to the instant a force response is generated
by the muscle. Electromechanical delay was assumed to be the
same for all muscles in each leg (Meyer et al., 2017). The
delays for subject S1 were 82 ms (left leg) and 93 ms (right
leg, paretic side) while for subject S2 they were 100 ms (left
leg) and 114 ms (right leg, paretic side). A muscle-specific
scale factor (Table 1) was used to account for the difference
between the estimated maximum EMG value and the maximum
value over all experimental trials. The processed EMG signals
resulting from calibration of both electromechanical delays and
scale factors were defined as fully calibrated EMG signals,
EMGcalibrated.

To isolate the underlying effect of the two EMG parameters on
quantification of co-contraction, we introduced two additional
types of EMG signals: (1) scaled EMG signals EMGscaled, which
are EMG signals normalized to the optimized maximum EMG
value but without electromechanical delay, and (2) delayed EMG
signals EMGdelayed, which are electromechanically delayed EMG
signals that are not normalized to the optimized maximum value.
These signals were obtained as shown below:

EMGscaled = EMGbasic × scale factor (1)

EMGdelayed =
EMGcalibrated

scale factor
(2)

CCI Computation
CCI values were computed from processed EMG data using
the two most common formulations. CCI1 was based on the
formulation reported by Rudolph et al. (2000),

CCI1 (t) =
InputL (t)
InputH (t)

(
InputL (t)+ InputH (t)

)
(3)

while CCI2 was based on the formulation reported by Falconer
and Winter (1985):

CCI2 (t) =
2× InputL (t)(

InputL (t)+ InputH (t)
) (4)

For both formulations, InputL and InputH represent EMG
signals from an antagonist muscle pair, where both signals
were resampled to 101 normalized time points (0 – 100%
of gait cycle at 1% increment). InputL is the EMG signal
with the lower absolute magnitude at time t while InputH
is the EMG signal with the higher absolute magnitude. For
both CCI formulations, the input quantities include the four
types of EMG signals (EMGbasic, EMGscaled, EMGdelayed, and
EMGcalibrated) described above. Each CCI calculation method
used in this study is described by a combination of the selected
CCI formulation and the selected EMG type. For example,
EMGdelayed CCI1 means the CCI values are calculated using
delayed EMG signals based on the Rudolph et al. (2000)
CCI formulation.

In addition to varying the types of EMG signals used
to compute CCI, this study also investigated how the
difference in constituent muscles for an antagonist muscle
pair could affect the relationship between CCI and joint
stiffness. CCI was computed for three lower limb degrees
of freedom (DOFs) in the sagittal plane: hip, knee, and
ankle flexion and extension for both non-paretic side and
paretic side. Lower extremity muscles were classified by their
functional roles during gait (Table 1), and one muscle was
selected from each of the agonist group and the antagonist
group to form various combinations of antagonistic pairs.
Antagonistic muscle pairs consisting of small muscles that
were not major contributors to overall joint stiffness (less
than 2% on average) were not included for the subsequent
analyses. The majority of the EMG-based CCIs in previous
studies were computed using EMG signals measured from
surface muscles (Rosa et al., 2014) because the alternative
fine-wire EMG method is invasive and not universally
available. Therefore, despite the availability of fine-wire
EMG data of deep muscles (iliacus, psoas, tibialis posterior,
extensor, and flexor digitorum longus), the analyses in
this study focused on CCI computed from surface EMG
signals of muscles for the findings to be more applicable
in clinical settings. Antagonistic muscle pairs consisting
of the aforementioned deep muscles were omitted in the
subsequent analyses.

Estimation of Joint Stiffness
Sagittal plane stiffness of the lower extremity joints (hip,
knee, and ankle) in each leg was estimated using a model-
based formulation (Shourijeh and Fregly, 2020). The derivation
starts with expressing joint stiffness as the partial derivative
of joint moment Mj with respect to generalized coordinate θj
corresponding to degree of freedom (DOF) j:

Kjoint = −
∂Mj

∂θj
(5)
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The net joint moment Mj can be expressed as the sum of the
product of muscle moment arm and tendon force for each muscle
spanning the joint:

Mj =

n∑
i=1

rijFTi (6)

where rij represents the moment arm of the ith muscle about DOF
j, FTi represents the tendon force of the ith muscle, and n is the
total number of muscles. By substituting the expression of joint
moment Mj into Eq. (5) and performing partial differentiation
via product rule, one obtains

Kjoint = −
∂Mj

∂θj
= −

n∑
i=1

(
∂rij
∂θj

FTi + rij
∂FTi
∂θj

)
(7)

Re-expressing ∂FTi
∂θj

as ∂FTi
∂ lMT
i

∂ lMT
i

∂θj
via the chain rule and taking

advantage of the fact that rij = −
∂ lMT
i

∂θj
, where lMT

i represents the
muscle-tendon length of the ith muscle, K joint can be expressed
as the sum of the stiffness contributed by each individual muscle
Kmus as shown below:

Kjoint =

n∑
i=1

Kmus i = −

n∑
i=1

(
∂rij
∂θj

FTi + r2
ij

∂FTi
∂ lMT

i

)
(8)

This model-based stiffness formulation assumes that the muscle
model possesses a rigid tendon. As moment arms and muscle-
tendon lengths of the musculoskeletal model (Meyer et al.,
2017) were represented by surrogate models in the form of
polynomials of joint kinematics, muscle stiffness around a joint
could be computed analytically. Identical to CCI calculations,
joint stiffness was calculated at 101 normalized time points within
each gait cycle.

Statistical Analyses
The strength of association between CCI (CCI1 or CCI2) and
joint stiffness Kjoint was quantified by the Pearson correlation
coefficient using the corrcoef function in MATLAB (MathWorks,
Natick, United States). Correlation was calculated between the
two time series for each of the 10 gait cycles analyzed:

r1j = corrcoef
(
CCI1j ,Kj

)
(9)

r2j = corrcoef
(
CCI2j ,Kj

)
(10)

The Wilcoxon rank sum test was performed in MATLAB using
the ranksum function to compare the mean correlation coefficient
between the two classes of data (10 pairs of correlation coefficients
for 10 gait cycles). The analysis tested the null hypothesis that
the two classes of data came from samples with continuous
distributions possessing equal medians. The level of statistical
significance was set at p = 0.05.

RESULTS

Joint stiffness trends were mostly symmetrical between the non-
paretic and paretic side for subject S1 (Figures 1A,B, 1st row).

For the hip joint on each side, joint stiffness increased steadily
in the early stance phase (0 – 15% gait cycle), then were largely
maintained at a constant level slightly above 100 N-m/rad for
the remainder of the stance phase (15 – 55% gait cycle), then
decreased during late stance and swing phases (55 – 100% gait
cycle). For the knee joint on each side, joint stiffness increased
steadily early in the stance phase (0 – 20% gait cycle) and then
gradually decreased from the peak value. For the ankle joint,
however, joint stiffness on the paretic side peaked at a magnitude
much higher than that on the non-paretic side at approximately
30% gait cycle. The decline in joint stiffness was more gradual
on the non-paretic side during swing phase than what was more
sudden on the paretic side.

In contrast, joint stiffness trends were asymmetrical between
the non-paretic and paretic side for subject S2 (Figures 2A,B, 1st
row). Joint stiffness for hip, knee, and ankle on the non-paretic
side was sustained at a high level to a much later point in the
gait cycle before declining than that on the paretic side. The joint
stiffness trends coincided with the subject’s gait pattern which had
both longer than normal stance phase on the non-paretic side
(0 – ∼75% gait cycle) and shorter than normal stance phase on
the paretic side (0 – ∼50% gait cycle). Also observed from joint
stiffness trends of subject S2 was that joint stiffness for the hip on
the paretic side reached a peak magnitude much higher than that
on the non-paretic side at 35% gait cycle and was followed by a
sharp decline which was not seen on the paretic side.

For subject S1, we observed correlation ranged from moderate
to strong between CCI1 and joint stiffness (Figure 3A) and
from weak to moderate between CCI2 and joint stiffness
(Figure 3B). Correlation between CCI1 and K joint , r1 was
moderate (0.5 < r̄1 < 0.7) for the hip joint, strong (r̄1 > 0.7)
for the knee joint, and moderate (0.5 < r̄1 < 0.7) for the ankle
joint on both sides. Correlation strength was assessed based on
Moore et al. (2015). Correlation between CCI2 and K joint , r2
were moderate (0.5 < r̄2 < 0.7) for the hip joint on both sides,
moderate (0.5 < r̄2 < 0.7) for the knee joint on both sides, weak
(0.3 < r̄2 < 0.5) for the ankle joint on the non-paretic side and
moderate (0.5 < r̄2 < 0.7) on the paretic side.

For subject S2, we observed correlation ranged from weak to
strong between CCI1 and joint stiffness (Figure 4A) and from
weak to strong between CCI2 and joint stiffness (Figure 4B).
Correlation between CCI1 and K joint , r1 was strong (r̄1 > 0.7)
for the hip joint on the non-paretic side and moderate
(0.5 < r̄1 < 0.7) on the paretic side, moderate (0.5 < r̄1 < 0.7)
for the knee joint on the non-paretic side and strong (r̄1 > 0.7)
on the paretic side, weak (0.3 < r̄1 < 0.5) for the ankle joint on
the non-paretic side and moderate (0.5 < r̄1 < 0.7) on the paretic
side. Correlation r2 between CCI2 and K joint were moderate
(0.5 < r̄2 < 0.7) for the hip joint on both sides, strong (r̄2 > 0.7)
for the knee joint on both sides, weak (0.3 < r̄2 < 0.5) for the
ankle joint on the non-paretic side and moderate (0.5 < r̄2 < 0.7)
on the paretic side.

The highest mean values for r1 were generally higher
than those for r2 for both subjects with a few exceptions
(Figures 5A,B). Correlations r1 and r2 were evaluated at six joints
for both subjects, which yielded a total of 12 cases for comparing
r1 and r2. In 7 of the 12 cases, r1 was larger than r2 (Figures 5A,B):
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FIGURE 1 | Post-stroke subject S1, lower extremity joint stiffness and sample EMG-based CCI1 and CCI2 values (mean ± 1 standard deviation) for (A) non-paretic
side, and (B) paretic side. The sample EMG-based CCIs were selected for display because of their highest correlation with corresponding joint stiffness. The
antagonistic pair of muscles selected for CCI computation are identified and EMG signal type is displayed in parenthesis.

S1 Knee (NP) Ankle (NP) Knee (P) Ankle (P), S2 Hip (NP), Ankle
(NP), and Knee (P), where NP refers to the non-paretic side and
P refers to the paretic side. In only 3 of the 12 cases was r2 clearly
higher than r1 (Figures 5A,B): S1 Hip (NP), S2 Hip (P), Ankle
(P). In the other two case, S1 Hip (P) and S2 Knee (NP), neither
r1 nor r2 was clearly higher than the other.

We also identified the EMG processing methods and
antagonistic muscle pairings that would likely yield the highest

correlations between the CCIs and joint stiffness. The CCI with
highest correlation to joint stiffness at each joint for both subjects
was calculated based on either EMGdelayed or EMGcalibrated
(Figures 3A,B, 4A,B). CCIs calculated using EMGscaled did not
always yield higher correlations with joint stiffness than did
those calculated using EMGbasic. The antagonist muscle pairs
that yielded that highest correlation between CCIs and joint
stiffness (Figures 3A,B, 4A,B) were: 1. Adductors-hamstrings
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FIGURE 2 | Post-stroke subject S2, lower extremity joint stiffness and sample EMG-based CCI1 and CCI2 values (mean ± 1 standard deviation) for both (A)
non-paretic side, and (B) paretic side. The sample EMG-based CCIs were selected for display because of the highest correlation with corresponding joint stiffness.
The antagonistic pair of muscles selected for CCI computation are identified and EMG processing method is displayed in parenthesis.

or quadriceps-hamstrings combinations for the hip joints;
2. Quadriceps-hamstrings combinations for the knee joints;
3. Tibialis anterior-gasctronemii or tibialis anterior-soleus
combinations for the ankle joints.

DISCUSSION

This study evaluated how well different CCI formulations
approximate lower extremity joint stiffness trends during gait for
individuals post-stroke. Joint stiffness trends may help reveal gait

pathologies in these individuals as demonstrated in this study.
In addition, joint stiffness may potentially be used to improve
the design of rehabilitation treatments and assistive devices for
individuals post-stroke. However, the difficulty of measuring or
computing joint stiffness is well documented. It would therefore
be beneficial to the clinical community if commonly used co-
contraction indices correlated well with joint stiffness, thereby
providing easy-to-calculate surrogate measures of joint stiffness.
Although moderate to strong correlation was observed between
some CCI formulations and corresponding joint stiffness, this
correlation was highly dependent on the methodological choices
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FIGURE 3 | (A) Post-stroke subject S1, correlation between CCI1 and joint stiffness K joint. Bars are at the mean value of the Pearson correlation coefficient, and
error bars are at one standard deviation (+/– depending on the sign of mean value). Each muscle combination for antagonistic pairing displayed in the figure
represents the best correlation between K joint and CCI1 computed using a specific type of EMG signals: (1) EMGbasic (blue); (2) EMGscaled (red); (3) EMGdelayed

(yellow); and (4) EMGcalibrated (purple). (B) Post-stroke subject S1, correlation between CCI2 and joint stiffness K joint. Bars are at the mean value of the Pearson
correlation coefficient and error bars are at one standard deviation (+/– depending on the sign of mean value). Each muscle combination for antagonistic pairing
displayed in the figure represents the best-in-class correlation between K joint and CCI2 computed using a specific type of EMG signals: (1) EMGbasic (blue); (2)
EMGscaled (red); (3) EMGdelayed (yellow); and (4) EMGcalibrated (purple).
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FIGURE 4 | (A) Post-stroke subject S2, correlation between CCI1 and joint stiffness K joint. Bars are at the mean value of the Pearson correlation coefficient, and
error bars are at one standard deviation (+/– depending on the sign of mean value). Each muscle combination for antagonistic pairing displayed in the figure
represents the best correlation between K joint and CCI1 computed using a specific type of EMG signal: (1) EMGbasic (blue); (2) EMGscaled (red); (3) EMGdelayed

(yellow); and (4) EMGcalibrated (purple). (B) Post-stroke subject S2, correlation between CCI2 and joint stiffness K joint. Bars are at the mean value of the Pearson
correlation coefficient, and error bars are at 1 standard deviation (+/– depending on the sign of mean value). Each muscle combination for antagonistic pairing
displayed in the figure represents the best correlation between K joint and CCI2 computed using a specific type of EMG signal: (1) EMGbasic (blue); (2) EMGscaled (red);
(3) EMGdelayed (yellow); and (4) EMGcalibrated (purple).

made for CCI computation. The conditions under which we
observed the highest CCI correlations with joint stiffness were
obtained can be summarized as follows: (1) CCI1 formulation
(Rudolph et al., 2000) was better than CCI2 formulation
(Falconer and Winter, 1985); (2) EMG signals with calibrated

electromechanical delay (EMGdelayed and EMGcalibrated) worked
better than did EMGbasic or EMGscaled when calculating CCI1,
(3) Some antagonist muscle pairs worked better than did other
antagonist muscle pairs when calculating CCI1. These findings
could be used as a preliminary foundation for predicting joint
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FIGURE 5 | The difference in the highest mean correlation between CCI1 and K joint (r1) and between CCI2 and K joint (r2) for each type of EMG signal. Positive
difference (red) indicates CCI1 has a higher correlation with K joint than does CCI2, while negative difference (blue) indicates the opposite. NP, non-paretic side, P,
paretic side. The results are for: (A) Post-stroke subject S1, and (B) Post-stroke subject S2. A star (*) indicates a statistically significant Wilcoxon rank sum test result
(p < 0.05).

stiffness trends from EMG-based measurement of muscle co-
contraction.

Joint stiffness trends can help reveal gait pathologies as
demonstrated in this study. On the surface, the joint stiffness
trends confirmed clinical observations about the post-stroke
subjects studied. Subject S1 has relatively high motor functioning
post-stroke (Fugl-Meyer Motor Assessment score: 32 points), and
joint stiffness trends between both non-paretic and paretic sides
were symmetrical to a certain extent just as the gait patterns
were. Subject S2 has relatively low motor functioning (Fugl-
Meyer Motor Assessment score: 25 points) and gait asymmetry

is a direct consequence. This was observed as longer than
normal stance phase on the non-paretic side and shorter than
normal stance phase on the paretic side, indicating possibly a
compensation from the non-paretic side for weakness on the
paretic side. The gait asymmetry observed was well supported
by the trends of joint stiffness we estimated. Delving deeper
into the gait pathologies, both subjects experienced a sudden
spike in joint stiffness at joints on the paretic side: S1 (ankle)
and S2 (hip). The former incidence was due to the abnormally
high activation of the soleus muscle, which was not observed
on the non-paretic side. The latter incidence was due to
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the abnormal activation of hip flexors in iliacus and psoas,
compounded by the unexpectedly large stiffness generation by
adductors, which are not conventionally considered as major
hip flexors. The model-based estimation of joint stiffness, and
calculated CCIs to some extent, may offer a way to probe
into the root cause of these pathologies, providing valuable
knowledge to both diagnostics and treatment of gait pathologies
for stroke survivors.

Co-Contraction Index would be a suitable candidate to
consider for addressing the aforementioned clinical needs
because of its common adoption in the clinical community
and simplicity in usage. Various methodological choices in CCI
calculation were explored in this study. One key decision was
to not include moment-based CCI and instead focus on EMG-
based CCI. Even though moment-based CCI explored in previous
studies (Knarr et al., 2012; Souissi et al., 2017) may achieve
a stronger correlation with joint stiffness, as a product from
advanced neuromusculoskeletal modeling and simulation, the
moment-based CCI is considered to be unfit to the aim of this
study, which is to build the preliminary knowledge of using
some tools that can be readily deployed in the clinical setting to
approximate joint stiffness. EMG-based CCI would on the other
hand represent a more viable option because of its simplicity and
common adoption. As this study focused on EMG-based CCI,
key methodological choices in CCI calculation that would help
improve correlation with joint stiffness would be identified in the
following discussion.

We compared the correlation between CCIs and joint stiffness
for each of the six lower extremity joints in both legs of two
subjects. The comparison shows that correlation between CCI1
and joint stiffness K joint (r1) was generally higher than for CCI2
(r2) in more cases if each comparison at a joint on one of
the subjects was considered one case (Figures 5A,B). r1 was
higher than r2 in 7 out of the 12 total cases, but lower in 3
other cases: S1 Hip (NP), S2 Hip (P), and Ankle (P). K joint is
a sum of the stiffness generated by all the individual muscles
Kmus. The sum term in the CCI1 formulation, InuptL+InputH ,
was more effective at characterizing this summation than any
term in the CCI2 formulation. This effectiveness became more
pronounced when the quantities used for CCI computation from
each muscle were accurate proxies for the corresponding Kmus.
On the other hand, the CCI2 formulation was more suitable
for quantifying the ratio of antagonist muscle activities. This is
demonstrated by the observation that the correlation between
CCI2 and K joint was comparable to the correlation between the
InputL / InputH term of CCI1 and K joint . Close examination
also showed that CCI2 values for subject S1 reached a peak
in magnitude in the swing phase (∼60 to 100% gait cycle)
comparable to that during the stance phase (0 to∼60% gait cycle)
at several joints (Figures 1A,B). This phenomenon was deemed
unlikely to be physiological. This exposes the limitation of the
CCI2 formulation that when the two quantities from antagonist
muscles become close in magnitude, CCI2 would report a high
level of co-contraction regardless of how small both quantities
might be, as CCI2 focuses on quantifying the ratio between
the two quantities. Since the CCI1 formulation was a better

choice than CCI2 for approximating joint stiffness trends, the
subsequent discussion will focus on the methodological choices
involved in calculating CCI1.

Electromyography processing methods would affect the
correlation between EMG-based CCIs and joint stiffness. From
the EMGbasic signals, two modifications were applied to obtain
the other types of processed EMG signals. One modification was
adding electromechanical delay from EMGbasic to EMGdelayed.
This modification increased the correlation between CCI1 and
K joint . EMG signals are able to convey partial information
about joint stiffness because of the relationship between EMG
amplitude and Fmus. Introducing electro-mechanical delay
improves the synchronization between an EMG signal the
resulting muscle force. Consequently, the correlation between
the EMG signal and Kmus increases, resulting in an increased
correlation between the EMGdelayed-based CCI1 and K joint . The
second modification was applying a muscle-specific scale factor
(Table 1), i.e., from EMGbasic to EMGscaled and from EMGdelayed
to EMGcalibrated. This modification did not produce a clear
improvement in the correlation between resultant CCI1 and
K joint . Applying the scale factor did not change the ability of
the EMG signals to represent Kmus, and the correlation between
scaled EMG signal and Kmus remained the same as before
scaling. However, the muscle-specific scale factor did change
the relative contribution of muscle EMG amplitudes to the sum
term in the CCI1 formulation, InputL+ InputH . In some cases,
a change in the sum term caused a decrease in the correlation
between resultant CCI1 and K joint . Although applying muscle-
specific scale factors changed muscle force estimates during the
calibration of the EMG-driven musculoskeletal model, these scale
factors did not consistently increase the correlation between CCI1
and K joint . Because of a definite improvement in correlation
with K joint from having the electromechanical delay, EMGdelayed-
based and EMGcalibrated-based CCIs both yield higher correlation
with K joint than the other EMG-based CCIs. Despite yielding
comparable level of correlation with K joint , EMGdelayed-based
CCI1 is more aligned with our goal than EMGcalibrated-based for
approximating joint stiffness trends using tools readily available
in clinical settings, because while the electromechanical delay
for both EMGs can be measured experimentally, EMGdelayed
does not require model-based calibration of the scale factors but
EMGcalibrated does require that.

This study explored various combinations of antagonistic
muscle pairing for computing CCIs. We identified that CCIs
computed from the following combinations would likely have
higher correlation with the joint stiffness than the others:
adductors-hamstrings or quadriceps-hamstrings for the hip
joints; quadriceps-hamstrings for the knee joints; tibialis
anterior-gasctronemii or tibialis anterior-soleus for the ankle
joints. We compared these combinations with the ones in
the literature to see if we have identified ones that are
less commonly used. For the hip joint, we could only find
one study in which CCI was computed (Hoang et al.,
2019), which was moment-based and used a formulation
different than the two equations examined in this study. Our
study found that EMG from conventional hip flexor-extensor
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combination, e.g., rectus femoris-biceps femoris long head
or rectus femoris-semitendinosus could yield a moderate
correlation with hip flexion-extension joint stiffness. We also
found the more unconventional adductor-biceps femoris long
head combination could present another option to yield
a moderate correlation between EMG-based CCI and joint
stiffness. For the knee joint, there are two commonly used
combinations in the literature: quadriceps-hamstrings (Kellis
et al., 2003; McGinnis et al., 2013; Mohr et al., 2018), and
quadriceps-gastrocnemii (Rudolph et al., 2000; Lewek et al.,
2006; Mohr et al., 2018). Our study found that antagonistic
pairs formed from the quadriceps-hamstrings combination
is better than the quadriceps-gastrocnemii combination for
achieving high correlation between CCI and knee joint stiffness.
For the ankle joint, our study found that tibialis anterior-
gastrocnemii or tibialis anterior-soleus combinations could yield
a moderate correlation between CCI and ankle joint stiffness. The
combinations were consistent with the commonly used in the
literature (Böhm and Hösl, 2010; Di Nardo et al., 2015). Our study
identified the antagonistic muscle pairings used in literature that
would yield a correlation between CCI and joint stiffness, and also
discovered some alternative options that were less conventional.

Contrary to the general trend noted above that the correlation
between CCI1 and joint stiffness K joint was generally higher
than for CCI2, some discrepancies existed: (1) at the hip joint
on the non-paretic side of subject S1; (2) at the hip joint
on the paretic side of subject S2; and (3) at the ankle joint
on the paretic side of subject S2, where CCI2 was better
correlated with K joint . These discrepancies are possibly because
this study presented CCI data of only the muscles from
which EMG data could be obtained by surface measurement.
Although fine-wire EMG data for some muscles were also
collected from the subjects studied to be used for EMG-
driven model calibration and estimation of joint stiffness,
these muscles were excluded from the CCI analysis, since
EMG data would not be available from them in a clinical
setting. Among the muscles omitted were iliacus and psoas,
two primary hip flexors; and extensor digitorum longus and
tibialis posterior, one primary dorsiflexor, and one primary
plantarflexor, respectively. These discrepancies could be rectified
if the EMG data from the omitted muscles were made available
for CCI calculation. Even though invasive, the fine-wire EMG
measurement technique could still provide valuable information
for the estimation of muscle co-contraction and joint stiffness
when such measurements were allowed.

This study also found that the correlation between CCIs
and joint stiffness is generally lower at the ankle joints than
at other lower body joints for both subjects. It is possibly
because a complex joint in the likes of ankle is actuated by
a relatively small number of muscles in the musculoskeletal
models (Subject S1: 3 dorsiflexors and 7 plantarflexors; Subject
S2: 2 and 6, respectively). These muscles actuate motion in the
subtalar inversion-eversion DOF in addition to the dorsi or
plantar flexion. It is difficult to allocate the precise amount of
muscle activation to the actuation of ankle joint in the sagittal
plane. Therefore, the comparison between muscle co-contraction

and joint stiffness is skewed. Moreover, we chose to omit muscle
activities from extensor digitorum longus and tibilais posterior
because they were obtained through fine-wire EMG and thus
were not suitable for the goals of this study. This decision limited
the number of muscles available for representing co-contraction
around ankle joint, limiting our options to identifying muscle
activities in synchronization with the generation of joint stiffness,
hence resulting in a relatively lower correlation between CCIs and
joint stiffness at the ankle joints than at the other joints.

One limitation of this study was that the joint stiffness
used for comparison with different CCI methods was obtained
from a neuromusculoskeletal model instead of experimentally
using a joint perturbation technique. A model-based approach
was used since the perturbation approach is difficult to
implement experimentally, especially for dynamic tasks such
as gait (Pfeifer et al., 2012). Consequently, there are very
few reports of experimental measurements, especially during
dynamic tasks, and they are only preliminary (Kobayashi et al.,
2010; Shorter et al., 2019). The model-based approach has been
reported to generate joint stiffness estimates that compare well
with experimental joint stiffness measurements for isometric
conditions (Pfeifer et al., 2012; Sartori et al., 2015). A published
model for estimating joint stiffness (Shourijeh and Fregly, 2020)
was used in the present study, and the model parameters
were calibrated using a validated EMG-driven modeling process
(Meyer et al., 2017). Thus, the model closely reproduced
the subject’s experimental joint moments when the subjects’
experimental EMG and kinematic data were used as input,
suggesting that the estimated muscle forces and thus joint
stiffness values are likely to be at least reasonable. Our model-
predictions of joint stiffness are generally consistent with the
limited published results (Pfeifer et al., 2012; Sartori et al.,
2015). The trends in the model estimates of joint stiffness were
also supported by clinical observation as previously discussed.
Ideally, if a system that can easily measure joint stiffness in vivo
during different activities is developed in the future, it can
provide great benefits to the clinical and research community,
including direct data to evaluate the models used to estimate
joint stiffness.

Another limitation of this study was that it analyzed gait
data collected from only two hemiparetic subjects. Although the
collection of sixteen channels (including six fine-wire) of EMG
from each leg of the subject during walking was time-consuming
and not a common practice, it facilitated the calibration of our
musculoskeletal model. Although analyzing two subjects limits
our ability to draw more general conclusions that could be
applied to the stroke population, at the same time, this dataset
provided a unique opportunity to build a musculoskeletal model
of the subjects and calibrate the model parameters using an
EMG-driven framework that did not require prediction of any
missing EMG signals as in Sartori et al. (2014). Despite the
relatively small number of subjects, the subjects of this study
covered a wide spectrum in the post-stroke population, as one
maintained relatively high motor functioning abilities while the
other was more impaired in motor functioning abilities. The
two subjects also exhibited different pathologies during gait.
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One had abnormal activation in soleus muscle while the other had
abnormal activation in hip flexors. These different pathologies
provide unique opportunities and testing cases to evaluate the
premise of this study. Future work of the current study would
repeat the analysis with data from more subjects post-stroke to
be able to make more generalizable conclusions and possible
recommendations to the clinicians.

In conclusion, this study demonstrated the feasibility of using
EMG-based CCIs to approximate lower limb joint stiffness
trends during gait for individuals post-stroke. A number of
methodological choices for CCI computation were examined.
Key methodological choices to achieve the highest possible
correlation between CCI and joint stiffness should include the
use of CCI1 formulation and adding calibrated electromechanical
delay to the EMG signals for computing EMG-based CCI1.
Antagonistic muscle pairings that yielded the highest correlations
between CCI and joint stiffness were also identified. These
findings provide the preliminary knowledge to help clinicians
formulate CCI that may yield results more aligned with joint
stiffness trends during gait for individuals post-stroke. By using
CCI to approximate joint stiffness trends, this study may open
an alternative approach to estimate joint stiffness, which is
difficult to obtain through either computational modeling or
experimental measurement.
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Background: Deficits in interjoint coordination, such as the inability to move out of

synergy, are frequent symptoms in stroke subjects with upper limb impairments that

hinder them from regaining normal motor function. Kinematic measurements allow

a fine-grained assessment of movement pathologies, thereby complementing clinical

scales, like the Fugl–Meyer Motor Assessment of the Upper Extremity (FMMA-UE). The

study goal was to investigate the effects of the performed task, the tested arm, the

dominant affected hand, upper limb function, and age on spatiotemporal parameters

of the elbow, shoulder, and trunk. The construct validity of the metrics was examined by

relating them with each other, the FMMA-UE, and its arm section.

Methods: This is a cross-sectional observational study including chronic stroke

patients with mild to moderate upper limb motor impairment. Kinematic measurements

were taken using a wearable sensor suit while performing four movements with both

upper limbs: (1) isolated shoulder flexion, (2) pointing, (3) reach-to-grasp a glass,

and (4) key insertion. The kinematic parameters included the joint ranges of shoulder

abduction/adduction, shoulder flexion/extension, and elbow flexion/extension; trunk

displacement; shoulder–elbow correlation coefficient; median slope; and curve efficiency.

The effects of the task and tested arm on the metrics were investigated using a

mixed-model analysis. The validity of metrics compared to clinically measured interjoint

coordination (FMMA-UE) was done by correlation analysis.

Results: Twenty-six subjects were included in the analysis. The movement task

and tested arm showed significant effects (p < 0.05) on all kinematic parameters.

Hand dominance resulted in significant effects on shoulder flexion/extension and curve

efficiency. The level of upper limb function showed influences on curve efficiency

and the factor age on median slope. Relations with the FMMA-UE revealed the

strongest and significant correlation for curve efficiency (r = 0.75), followed by

shoulder flexion/extension (r = 0.68), elbow flexion/extension (r = 0.53), and shoulder

abduction/adduction (r = 0.49). Curve efficiency additionally correlated significantly with

the arm subsection, focusing on synergistic control (r = 0.59).
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Conclusion: The kinematic parameters of the upper limb after stroke were influenced

largely by the task. These results underpin the necessity to assess different relevant

functional movements close to real-world conditions rather than relying solely on

clinical measures.

Study Registration: clinicaltrials.gov, identifier NCT03135093 and BASEC-ID 2016-

02075.

Keywords: upper extremity, stroke, biomechanical phenomena, kinematics, interjoint coordination

INTRODUCTION

Incidences of upper limb impairments after stroke have been
reported in 48 to 85% of acute stroke patients (Jørgensen et al.,
1999; Persson et al., 2012). Acute deficits might include paresis,
ataxia, and loss of sensory function (Yew and Cheng, 2009). The
course of recovery from these impairments varies from complete
restoration to different degrees of compensatory adaptation
(Levin et al., 2009; Bernhardt et al., 2017). Throughout the course,
deficits in interjoint coordination have been described as a key
feature in stroke-related dysfunctions that is characterized by the
reappearance of primitive movement synergies and the presence
of joint coupling (Krakauer and Carmichael, 2017). Interjoint
coordination has been defined as the process to spatially and
temporally arrange the degrees of freedom (DOF) needed to
achieve the movement goal (Tomita et al., 2017) and is closely
linked to the concept of synergies (Roh et al., 2013; McMorland
et al., 2015; Santello and Lang, 2015). Based on two principal
synergies, the flexor and the extensor synergy, pathological
stereotypical coupling between two or more DOF has been
observed as a phenotype of the loss of interjoint coordination
after stroke. A loss of interjoint coordination is associated with
weakness (Sukal et al., 2007) and spasticity (Allison et al., 2016)
along the time course after stroke (Levin, 1996; Cirstea et al.,
2003), leading to learned bad or non-use in daily life (Taub
et al., 2006; Raghavan, 2015). Determining the level of interjoint
coordination and associated motor dysfunction of stroke-related
movement disabilities is critical to improve our understanding
and expand interventional strategies to minimize long-term
consequences due to stroke.

Interjoint coordination after stroke is often assessed by the

Fugl–Meyer Motor Assessment of the Upper Extremity (FMMA-

UE). This clinical assessment evaluates volitional movement
control of the upper limb in a hierarchical manner from proximal
to distal segments (Fugl-Meyer et al., 1975) and by taking
into account the within-synergy, mixed-synergy, and out-of-
synergy movement patterns as proposed by Twitchell (1951) and
Brunnstrom (1966, 1970). Although the FMMA-UE has been
attested to be of high quality in clinimetric properties (Gladstone
et al., 2002), some limitations need to be considered in terms
of the measurement construct being used. First, items of the
FMMA-UE are assessed on a three-point ordinal scale (“not,”
“partial,” and “fully”), and the “partial” category is very broad.
An evaluation of “partial” movement achievement includes
limitations in active range of motion or movement deviations,
such as shoulder abduction or elbow flexion during shoulder

flexion, that can range from small to exaggerated differences
and cannot be differentiated further. This level of evaluation
of movement quality does not allow to differentiate between
physiological and pathological movement behavior (Kwakkel
et al., 2017). Second, a full score in FMMA-UE cannot be directly
related to complete restitution since deviations in movement
kinematics and limitations in daily life might still be present
(Thrane et al., 2019). Third, the FMMA-UE assesses mostly
abstract movements and limb postures based on empirically
derived stroke recovery stages that have little to no relevance to
the subject’s movements in daily life. Considering the widespread
and recommended usage of the FMMA-UE as a primary outcome
measure in stroke research trials (Santisteban et al., 2016;
Burridge et al., 2019; Kwakkel et al., 2019; Subramanian et al.,
2020) and the overall neutral results of most stroke rehabilitation
trials (Corbetta et al., 2015; Eraifej et al., 2017; Veerbeek et al.,
2017), the question on how far this outcome can sensitively
capture changes on the body function level when performing
daily life tasks cannot be omitted.

The introduction of modern technology opened new avenues
for assessments of motor function. Upper limb kinematic motion
analysis in the stroke population has been performed with
2D and 3D set-up conditions for assessing a large number
of different kinematic outcome parameters in predominantly
pointing or reach-to grasp tasks (Schwarz et al., 2019b).
Kinematic parameters measure body functions and thereby
characterize aspects of movement control, such as interjoint
coordination. Outcome measures to quantify upper limb
interjoint coordination include spatial measures of active range
of motion in shoulder and elbow and of trunk displacement (van
Kordelaar et al., 2012) that have been attested to be of sufficient
validity and reliability in 3D pointing tasks (Subramanian et al.,
2010; Massie et al., 2011, 2014; Wu et al., 2014). Measures
of interjoint coordination, relating at least two DOF, ranged
from angle–angle plots (Beer et al., 2007; Woodbury et al.,
2009; Alt Murphy et al., 2011), correlation analysis (Yang
et al., 2017), slope statistics (Baniña et al., 2017), and ratio or
index measures (Cirstea and Levin, 2007; Levin et al., 2016) to
mathematically more complex parameters, such as functional
Principal Component Analysis (van Kordelaar et al., 2013) or
approximate entropy metrics (Sethi et al., 2017). Parallel to this,
movement timing or workspace measures, such as circle size
area (Sukal et al., 2007; Krabben et al., 2011; Ellis et al., 2016),
provide indirect measures as a result of pathological synergies.
Taken together, the variety of metrics identified for evaluating
interjoint coordination illustrate the wide context and aspects

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 January 2021 | Volume 8 | Article 62080521

https://clinicaltrials.gov
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Schwarz et al. Post-stroke Upper Limb Interjoint Coordination

of this movement construct and tight connection between the
movement characteristics and the chosen metric as, for example,
the circle size area in a circle drawing task (Houwink et al.,
2013). Considering this state-of-the-art in upper limb kinematic
assessments, it could be proposed that research on interjoint
coordination would profit from task-independent metrics that
could be evaluated in various tasks and settings, thereby allowing
for comparability, especially for pooling in meta-analysis.

In this study, first, it was questioned whether kinematic
parameters representing aspects of interjoint coordination in
the shoulder–elbow–trunk complex are different with respect
to different movement tasks and the arm being tested by
considering the dominant affected side, the upper limb function,
and age as covariates. Second, it was examined whether
statistically significant correlations can be found between each
of the kinematic parameters of the affected side, the FMMA-
UE full score, and the FMMA-UE arm subscale that evaluates
the shoulder–elbow–trunk complex according to the synergy
concept. The findings will provide new insights into the
characteristic interjoint coordination in different functional and
non-functional upper limb movements after stroke, propose
kinematic parameters to quantify spatiotemporal aspects of
interjoint coordination, and, as a long-term goal, support the
establishment of feasible and repeatable qualitative kinematic
assessments in close relation to real-world functional activities.

MATERIALS AND METHODS

A prospective cross-sectional study was performed at the
rehabilitation clinic Cereneo, Vitznau, Switzerland, to explore
the relationship between upper limb function and activity
as measured by clinical assessments and by a wearable
motion capture system. The study protocol was approved
by the Cantonal Ethics Committee Northwest and Central
Switzerland (BASEC-ID: 2016-02075) and prospectively
registered in ClinicalTrials.gov (NCT03135093). Between July
2017 and October 2019, 523 patients from the stroke research
register of the Department of Neurology, University Hospital
Zurich (Zurich, Switzerland) were screened by telephone and
onsite screening.

Study Participants
The subjects were deemed eligible when they met the
following inclusion criteria: (1)>6 months post-unilateral stroke
(hemorrhage or ischemic), (2) at least 18 years of age, and (3)
upper limb motor impairment, but at least partially able to
lift the arm against gravity (>30◦ of shoulder flexion) and to
flex and extend the fingers for basic grasping. The exclusion
criteria were (1) an increased upper limb muscle tone with
limitations in range of motion [modified Ashworth Scale (MAS)
≥3], (2) severe sensory deficits in the upper limb [Erasmus
modifications to the revised Nottingham Sensory Assessment
(EmNSA) of 0 in one of the test regions], (3) a preexisting
orthopedic or neurological disease affecting movements of the
upper limb, (4) contraindications on ethical grounds, e.g.,
persons who are decisionally impaired, (5) known or suspected
non-compliance, or (6) severe communication or cognitive

FIGURE 1 | Measurement system set-up.

deficits that cause an inability to follow the study procedures
as determined by the Montreal Cognitive Assessment (MoCA)
≤20 points (Dong et al., 2013). The MAS (Bohannon and
Smith, 1987) and the EmNSA (Stolk-Hornsveld et al., 2006)
were performed with the participant in supine position. The
EmNSA was evaluated for the surface, pinprick, sharp-blunt,
and proprioceptive discrimination in both arms. Each participant
gave a written informed consent according to the Declaration of
Helsinki and the Swiss regulatory authorities.

Study Experiments
An experienced research therapist performed all the study
experiments during a single-day measurement at the
rehabilitation clinic Cereneo (Vitznau, Switzerland). The
study experiments started after onsite screening and informed
consent with setting up the wearable kinematic measurement
system. When being acquired with the system, the participant
performs the FMMA-UE and a set of daily living activities
with both upper limbs. The less-affected side was assessed to
determine the close-to-physiological-movement behavior on
the best available level in delineation to pathological movement
behavior of the affected upper limb during functional and
non-functional activities.

Measurement System
A portable and wireless sensor-based motion capture system was
used to capture upper limb kinematics (Xsens MVN Awinda,
Xsens Technologies, the Netherlands). The system consists of
17 inertial measurement units (IMU), a receiver station, and
attachment equipment (MVN Manual, 2018). The nine IMUs
of the upper body used in this analysis were fixated on a T-
shirt above both scapulae with the sensors’ x-axes parallel to
the spina scapulae and above the sternum, with the sensor
aligned with the x-axis, as illustrated in Figure 1. The upper
extremity IMUs were mounted with elastic Velcro straps on the
upper arm above the lateromedial part of the humerus bone,
around the distal radioulnar joint, three fingers above the wrist,
and on the dorsal palm of the hand by the use of a palm
glove or medical tape in case the glove was not fitting. Each
IMU contains 3D linear accelerometers, 3D rate gyroscopes, 3D
magnetometers, and a battery. Combined with information of the
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TABLE 1 | Upper limb movement task characteristics.

Task number (1) (2) (3) (4)

Task name Shoulder flexion Pointing ahead Reach-to-grasp a glass Key insertion

Set-up

Start position

End position

Task purpose Non-functional Functional Functional Functional

Description According to FMMA-UE, item

shoulder flexion from 0◦ to

90◦, elbow in 0◦ extension

and neutral forearm

Gesture of pointing in the air

at shoulder height, to look

ahead/ indicate to a visual

scene in the distance

Reach to a non-filled glass

placed in 90% arm’s length,

move it to the mouth, take a

sip, and place it back

Pick up a key placed at the

medial side of the subjects’

hand, take it up, and insert the

key into a lock on a top shelf

(28.5cm) in 90% arm’s length

Upper body effector Proximal

(shoulder, elbow)

Distal

(index finger)

Distal

(hand, finger)

Distal

(MCP, thumb)

Movement focus Internal External External External

Contact type No contact No contact Grasp contact at end Grasp contact from start to

end

Grasp type Not applicable Not applicable Cylindrical grasp Palm opposition

Functional motion primitive Not applicable Reposition or reach-to-point Reach-to-grasp Transport and stabilize

Movement phase for analysis From movement start to

maximum shoulder flexion

(90◦)

From movement start to

maximum shoulder flexion

From movement start to

grasp the glass

From key pick-up to insertion

into lock

FMMA-UE, Fugl–Meyer Motor Assessment of the Upper Extremity; MCP, metacarpo-phalangeal joint.

subjects’ body measures into a biomechanical model, the data of
3D angular velocity, 3D acceleration, 3D earthmagnetic field, and
atmospheric pressure allow as Table 3D orientation for human
kinematic motion analysis (MVN software, 2018). The kinematic
data are sampled at 60Hz. The accuracy of the system to measure
each body segments’ position has been reported as ∼5mm and
the orientation with ameasurement error of 3◦ (Roetenberg et al.,
2007a,b). The system was previously validated with a camera-
based system (Optotrak) demonstrating comparable results
(Robert-Lachaine et al., 2017) and additionally investigated for
intra- and interrater reliability with fair to excellent results, even
when being used by clinicians with no experience in applying
motion capture technologies (Al-Amri et al., 2018).

Setting up the system for each participant included taking
body measures, such as body height, shoulder height (distance
from the ground to the top of the acromion), and shoulder
width (distance between the right and the left lateral border
of the acromion), the sensor attachment, and a calibration
procedure that consisted of standing in neutral position at the
calibration spot, walking 3m, and returning to the start. The
whole procedure took about 15 to 20min and was completed
when the subject returned back to neutral pose standing at
the calibration spot. The measurements of all subjects were
performed in an upright sitting position on an armless chair
in the same examination room of the rehabilitation clinic, as
well as the position and orientation of the subject. This allowed
to control for possible external inferences that could affect the
sensor data of the IMUs, such as electric leads.

Movement Tasks
The selected movements consisted of four different discrete
movement tasks: (1) isolated shoulder flexion, (2) pointing ahead,
(3) reach-to-grasp a glass, and (4) key insertion into a lock.
The selection was based on the shared upper limb workspace
along the sagittal plane and discrete reaching movement while
discriminating variations in non-functional and functional
movements with and without grasp contact in alliance with
existing upper limb movement (Schambra et al., 2019) and grasp
taxonomies (Feix et al., 2016). An overview of the movement
tasks including characteristics such as contact and the underlying
motion primitives is provided in Table 1. Each movement task
was demonstrated and instructed verbally, including demo-trials
if necessary. The movement start was defined by a flick on one
of the sensors. After task completion, the subjects were asked
to return to the start position. For the analysis, the maximum
shoulder flexion angle and/or the maximum distance of the hand
IMU positional data along the x-axis defined the movement
end. The chair had a standard seat height of 46 cm, with a back
support 51 cm in height and with a backward inclination that was
counterbalanced by fixing a tight pillow at the back of the chair.
The table was height-adjustable to allow a subject-specific set up
of 0◦ in all axis of the shoulder, 90◦ of elbow flexion, and with
the hand pronated on the table. The subjects were instructed to
perform the task at a comfortable speed while keeping contact
with the back of the chair. This instruction was given once at the
beginning to not interfere profoundly with the natural movement
behavior. Three to six repetitions were performed with each
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upper limb to include at least three successful trials in the data
analysis (Alt Murphy et al., 2018), starting with the less-affected
side and followed by the affected side.

Outcome Measures
The recorded kinematic measures were segmented by movement
trial based on the flip signal and the maximal target angle and
stored in mvnx files for data transferring and processing in
MATLAB (The MathWorks Inc., Natick, MA, USA). For each
movement task, participant, and tested upper limb, the shoulder
and elbow angles and the positional data of the trunk sensor of all
repetitions were extracted for analysis. The kinematic parameters
of interest consisted of spatial and spatiotemporal measures.

Spatial Parameters

Spatial measures included joint angle ranges in degrees around
one rotation axis and trunk displacement in millimeter. Each
joint can be expressed in six DOF around the orthogonally
arranged rotation axis, where one joint angle is defined by a joint
rotation as the orientation of a distal segment with respect to a
proximal segment. Joint rotations are calculated using the Euler
sequences ZXY and XZY by the MVN software (MVN Manual,
2018) based on the coordinate system agreed by the International
Society of Biomechanics (ISB) (Wu et al., 2005). All angles
follow the ISB Euler angle extractions of Z (flexion/extension), X
(abduction/adduction), and Y (internal/external rotation), except
for the shoulder joint where the Euler sequence XZY is used. The
definitions of the origins of the segments are somewhat different
from marker-based recommendations since MVN uses a motion
tracker placed on the segment rather than markers placed on
bony landmarks close to the joint origin (MVNManual, 2018).

The range of motion was defined by calculating the minimum
and maximum angle for all data points from movement onset
to end (van Meulen et al., 2015). The standard deviations of
the minimum and maximum joint angle were calculated as a
measure of variability. For the purpose of this study to evaluate
interjoint coordination in the shoulder–elbow complex, shoulder
flexion/ extension, shoulder abduction/adduction, and elbow
flexion/extension were captured and analyzed. Even though
shoulder rotational movements are an important component of
the upper limb, they were not considered in this study since
the measurement accuracy of rotations around the transversal
plane were associated with the largest measurement error ranging
from 16◦ to 34◦ (Walmsley et al., 2018). The challenge to
measure rotational movements on the transversal plane might
be related to the larger differences between soft tissue and
bone motions during rotation. Elbow flexion/extension was
determined by rotation around the z-axes, where elbow extension
was represented by 0◦ and positive values indicating flexion of the
elbow. Shoulder flexion–extension was defined as an elevation
parallel to the sagittal plane and angles that rotate around the z-
axis. Shoulder abduction–adduction was defined as an elevation
on the frontal plane and rotates around the x-axes of the shoulder
joint. Positive values indicate shoulder flexion or abduction, and
negative values indicate shoulder extension or adduction.

In contrast to ISB descriptions of the shoulder with the
thorax, clavicle, scapula, and humerus, the MVN model does

not define the thorax segment nor the clavicle. The MVN model
splits the thorax region into spine segments (MVN Manual,
2018). In alliance with other studies in the field, trunk motions
were simplified to trunk displacement as defined by changes
in position and orientation of the sternum sensor between
movement onset and end (Subramanian et al., 2010). The change
in trunk displacement was calculated by subtracting the mean of
the first 10 data points from the other position values in the x-,
y-, and z-direction and were summarized by:

Trunk displacement=

√

(

Tx2+Ty2+Tz2
)

where Tx includes frontal displacement, Ty includes sideway
displacement, and Tz includes displacement in rotation.

Spatiotemporal Parameters of Shoulder–Elbow

Coordination

Angle–angle plots of the shoulder and the elbow flexion angle for
each timeframe of the movement were derived to qualitatively
analyze interjoint coordination and coupling between shoulder
and elbow flexion/extension in reaching, as illustrated in
Figure 2. For each movement repetition per participant, the
elbow and shoulder angles were set to 0◦ or 90◦ according to the
related starting position and time normalized with respect to the
mean trial length to enable comparability.

A shoulder–elbow correlation coefficient was calculated to
quantify the relationship between shoulder flexion/extension
(SF) and elbow flexion/extension (EF) in the following equation:

r=

∑

m

∑

n (SFmn−SFmean)(EFmn−EFmean)
√

(
∑

m

∑

n (SFmn−SFmean)
∧2

∑

m

∑

n (EFmn−EFmean)
∧2

)

where SFmean = mean(SF) and EFmean = mean(EF).
In the case of isolated joint movements, a low correlation

coefficient highlights the ability to uncouple joint movements,
whereas a coupling relationship was detected if the change in
movement direction of two segments occurred at the same
time. In isolated joint motions of task (1), a well-coordinated
movement with a constantly extended elbow would result in a
correlation coefficient close to 0, whereas pathologically coupled
movements would result in a higher correlation coefficient,
according to the hypothesis of voluntary joint control. Reaching
out for an object on a table is likely to start from an elbow flexed
position and then requires the elbow to extend while the shoulder
is being elevated so that a negative correlation would be expected
for physiological movement and conversely a low correlation in
case of pathological coupling with remaining elbow flexion while
reaching out.

Shoulder–elbow median slope was defined by the slopes
connecting the data points of elbow–shoulder angle–angle
plots as depicted in Figure 2. The mean slope between elbow
flexion/extension and shoulder flexion/extension was used to
assess interjoint coordination by Baniña et al. (2017). In this
present study, the median slope was selected instead of the mean
slope to account for the non-linearity of angle–angle curves,
especially in task (2), (3), and (4). The slope changes between
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FIGURE 2 | Schematic of shoulder–elbow coordination measures.

the shoulder and elbow per timeframe ranges from positive to
negative infinite values, representing the gradient of the curve.

Shoulder–elbow curve efficiency is included to quantify the
maximum movement execution in the target DOF for the
movement. It was defined by the sum of absolute joint range
in shoulder flexion/extension and elbow flexion/extension, as
visualized in Figure 2, divided by the number of data points of
the movement to quantify the amount of both joint ranges in
reaching. The sum of absolute joint ranges was normalized with
respect to the number of frames to include the temporal efficiency
of the movement. For isolated joint movements, such as in task
(1), the absolute range in elbow flexion/extension is subtracted
from the absolute range in shoulder flexion/extension, divided
by the number of timeframes. For the other movement tasks,
the absolute ranges in elbow and shoulder flexion/extension were
summed up to quantify the upper limb movement magnitude
during reaching. Values are given in degrees per frame, with
higher values representing more efficient movement activation to
reach the movement goal.

Clinical Measurements

The FMMA-UE was collected as a clinical stroke-specific
measurement to evaluate upper limb motor impairment (Fugl-
Meyer et al., 1975). The FMMA-UE is hierarchically composed,
starting with assessing reflex appearance and primitive synergy
patterns followed by within- to out-of-synergy movements in the
arm subscale, based on the assumption that recovery “follows
a definable stepwise course.” The FMMA-UE is partitioned
into four sections, “upper extremity,” “wrist,” “hand,” and
“coordination and speed,” as differences in recovery in each
subscale could be independent from each other. Each test item
is rated based on the best performance with the full FMMA-
UE score ranging from zero to 66. For the purpose of this
study, upper limb functionality subgroups were considered based
on (Hoonhorst et al., 2015). who stratified FMMA-UE scores
according to upper limb capacity measures that include grasping

and displacement movements. With this subgroup selection,
it was intended to investigate differences with respect to the
subjects’ capacity in grasping performance.

The information on hand dominance was obtained by asking
the individual which hand he or she preferred to use for writing
and throwing a ball prior to the stroke.

Statistical Analysis
The statistical analysis was performed using Matlab (MATLAB
version 2016b, The Mathwork, Natick, MA) and SPSS
(SPSS version 26.0, IBM Corp., Armonk, NY, USA). Spatial
measures of joint ranges in elbow flexion/extension, shoulder
flexion/extension, and shoulder abduction/adduction were
presented in absolute range of motion from minima to maxima
with the corresponding standard deviations. Trunk displacement
was given by absolute displacement from minima to maxima
in millimeters. Spatiotemporal measures of shoulder–elbow
coordination included the correlation coefficients r, the
median slope, and the curve efficiency. All kinematic outcome
parameters were explored for determining normal distribution
in histograms and QQ plots. The descriptive statistics of the
kinematic measures were summarized for all subjects and for
each task and tested limb separately.

A linear mixed-model analysis was performed for each
kinematic parameter to account for mixed effects in a repeated-
measurement design. Each kinematic metric was treated as a
dependent variable with respect to the independent fixed factors
movement task (shoulder flexion, pointing, reach-to-grasp a
glass, key insertion), the tested arm (affected, less-affected side),
dominant hand is the affected hand (yes, no), the upper limb
functionality group, as assessed with the FMMA-UE (32–47
points, “limited”; 48–52 points, “notable”; 53–66 points “full”)
(Hoonhorst et al., 2015) and age (≤55 years and ≥56 years)
(Kwakkel et al., 2017).

The relationship between clinically measured impairment
and kinematic measures was examined by Spearman rank
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FIGURE 3 | Study flow of the participants.

correlations. To evaluate the relationship between shoulder–
elbow coordination, as measured in the FMMA-UE arm
subsection when compared to spatiotemporal measures,
Spearman rank correlation was used. According to the COSMIN
guidelines, correlations between two measures of the same
construct should be r ≥ 0.5, correlations of related measures r =
0.3–0.5, and correlations of unrelated constructs r < 0.3 (Prinsen
et al., 2018). All statistical tests were performed at a significance
level of 5%.

RESULTS

A total of 28 stroke subjects were included in the study, of
which 26 were included in the data analysis. The study flow
of participant inclusion is shown in Figure 3. The participant
characteristics are summarized in Table 2. The study sample

represents 26 mild to moderately impaired chronic stroke
subjects, of whom 14 subjects were affected in their dominant
upper limb. Seventeen subjects of the 26 included showed some
resistance against passive movement in at least one of the tested
muscles, as defined by a MAS score between 1 and 2. Sensory
function was somewhat impaired in 21 subjects as determined
by the EmNSA ranging from 29 to 40 points in the affected
upper limb.

Kinematic Characteristics per Movement
Task of the Affected and Less-Affected
Side
Overall, 468 kinematic datasets per arm were included in the
analysis, representing 26 stroke subjects, when performing four
upper limb movement tasks. The observed QQ plots for the
kinematic parameters did not lead to rejecting the assumption
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TABLE 2 | Study participant characteristics.

Characteristic Total (N = 26)

Gender, female/male 9/17

Mean age (SD), years 62.19 (12.10)

Mean body height (SD), cm 173.81 (10.94)

Mean BMI (SD), kg/m2 26.97 (4.23)

Paretic body side, left/right 13/13

Months since strokea 20.50 (12–34)

Initial stroke severity NIHSSa 8 (6–11)

MoCA (0–30)a 27 (24–28)

MAS sum of the upper extremity (0–14)ab 1.75 (0.25–3)

Shoulder internal rotator muscles (%)b 42.3

Biceps brachii muscle (%)b 69.2

Triceps brachii muscle (%)b 11.5

Wrist flexor muscles (%)b 23.1

Wrist extensor muscles (%)b 15.4

Finger flexor muscles (%)b 15.4

Finger extensor muscles (%)b 19.2

EmNSA-UE (0–40)a 38 (36–39)

FMMA-UE (0–66)a 47.50 (40.25–55.00)

FMMA-UE arm subsection (0–36)a 26 (22.00–29.75)

FMMA-UE wrist subsection (0–10)a 6 (6.00–7.75)

FMMA-UE hand subsection (0–14)a 11 (9.00–14.00)

FMMA-UE coordination subsection (0–6)a 4 (3.25–5.00)

BMI, body mass index; EmNSA, Erasmus modified version of the Nottingham Sensory

Assessment; FMMA-UE, Fugl–Meyer Motor Assessment of the Upper Extremity; MAS,

modified Ashworth Scale; MoCA, Montreal Cognitive Assessment; NIHSS, National

Institutes of Health Stroke Scale; L, left; SD, standard deviation.
aValues are presented in median (interquartile range).
bMAS scores between 1 and 2 for the tested muscle.

of normal distribution in the analyzed data. The spatial
measures of joint ranges in elbow flexion/extension, shoulder
flexion/extension, shoulder abduction/adduction, and trunk
displacement are summarized for all subjects, each movement
task, and affected (red-colored) and less-affected upper limb
(blue-colored) in Figures 4A–D. Each boxplot illustrates the
median, the upper and lower quartile, the minimum, and the
maximum, as well as outliers shown as a red plus for each of
the spatial measures. Different ranges across the spatial measures
can be seen between the tasks. While increased trunk motions
are shown in Figures 4C,D when compared to Figures 4A,B,
shoulder flexion/extension shows larger ranges in Figures 4A,B

when compared to Figures 4C,D.
The spatiotemporal kinematics are illustrated in terms

of shoulder–elbow angle plots for each movement task in
Figures 5A–D. Each scatter curve represents the normalized
mean curve per subject arm and task. Visual exploration of
the shoulder–elbow angle plots depicts that deviations in terms
of an increase of elbow flexion during shoulder flexion task
(1) can be observed in all subjects and both arms while being
increased in the affected upper limb in Figure 5A. Shoulder–
elbow angle plots of the pointing ahead movement in task
(2) revealed different movement strategies to emphasize the

direction to look at between subjects in both the affected and less-
affected upper limb. Figure 5B illustrates that subjects tended
to either move through wide ranges of elbow flexion–extension,
emphasize elbow extension at the end of the movement, or keep
the elbow relatively extended throughout the movement. The
shoulder–elbow angle plots of task (3) in Figure 5C illustrate
comparable curve shapes during reaching in the affected and
unaffected upper limbs. Similarly, curve shapes during task (4) in
Figure 5D are comparable in both the affected and the unaffected
upper limb. Besides the inter- and intra-individual movement
variability, a preservation of the shoulder–elbow coordination
can be described across the functional movement tasks when
comparing the mean curve shape per subject of the shoulder–
elbow plots between the affected side and the less-affected side.

Effects of the Factors on the Spatial and
Spatiotemporal Kinematic Measures
The mean estimates and standard deviation of the investigated
kinematic parameter are presented for each fixed factor in
Table 3. The results of the fixed-effects analysis per independent
factor (task, tested arm, affected is dominant side, upper limb
function, age) on each dependent kinematic measure are shown
in Table 4. The results of post hoc pairwise testing between the
four movement tasks and the three upper limb function levels are
shown in terms of p-values per kinematic parameter and factor in
Table 4.

Statistically significant differences were found for all
movement tasks and all investigated kinematic parameters as
displayed in Table 4. Trunk displacement ranged from 1.7 to
2.9 cm between tasks and was only statistically significantly
different between isolated shoulder flexion and the key insertion
task [F(3, 58.036) = 6.119, p = < 0.001]. Effects of the factor of
the tested arm were found for all kinematic parameters except of
the shoulder–elbow correlation. The factor of affected dominant
hand or affected non-dominant resulted in statistically significant
effects on shoulder flexion/extension [F(1, 39.832) = 7.058, p =

0.011] and shoulder–elbow curve efficiency [F(1, 61.565) = 6.323,
p = 0.015]. Differences with respect to upper limb function were
detected for shoulder–elbow curve efficiency [F(2, 61.565) = 7.285,
p = 0.001], with significant differences between the limited (N
= 13) and full function (N = 10) and between notable (N = 3)
and full function in post hoc testing. The factor of age revealed
significant effects on the dependent variable of shoulder–elbow
median slope, with a mean of−0.784 compared to−0.705 in the
less-affected side [F(1, 34.432) = 4.344, p= 0.045].

Relationship Between Clinically Measured
Impairment and Spatiotemporal
Kinematics
For the comparison between spatial and spatiotemporal
kinematic measures across tasks per subject and the FMA-UE,
correlation coefficients were calculated for each combination
and presented in the confusion matrix in Table 5. The strongest
statistically significant correlation with the FMA-UE was
found for curve efficiency (r = 0.75), followed by shoulder
flexion/extension (r = 0.68), elbow flexion/extension (r = 0.53),
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FIGURE 4 | Spatial measures of the affected and less-affected arm per task across subjects (N = 26). AS, affected side; EFlexExt, elbow flexion/extension; LAS,

less-affected side; SFlexExt, shoulder flexion/extension; SAbdAdd, shoulder abduction/adduction; TrunkDP, trunk displacement. (A) Shoulder flexion. (B) Pointing

ahead. (C) reach-to-grasp a glass. (D) Key insertion.

and shoulder abduction/adduction (r = 0.49). Furthermore,
strong correlations were found between elbow flexion/extension
and shoulder flexion/extension (r = 0.53), between elbow
flexion/extension and shoulder abduction/adduction (r = 0.53),
and between shoulder flexion/extension and shoulder
abduction/adduction (r = 0.57). For shoulder–elbow curve
efficiency, significant correlations were shown with shoulder
flexion/extension (r = 0.85) and elbow flexion/extension
(r = 0.55).

The relationship between the FMMA-UE arm subsection
and kinematic metrics representing measures of shoulder–
elbow coordination was additionally investigated to explore
the comparability of kinematic measures and shoulder–elbow
coordination as specifically tested in the FMMA-UE arm
subsection. In the result, a statistically significant correlation
between the clinically measured impaired interjoint coordination
and curve efficiency (r = 0.59, p = 0.002) was found. For the
shoulder–elbow correlation coefficient (r = 0.24, p = 0.230)
and shoulder–elbow median slope (r = 0.09, p = 0.653), no
statistically significant correlations were found with the FMMA-
UE arm subsection. Figure 6 illustrates the subjects’ mean values

of the correlation coefficient, the median slope, and curve
efficiency over all tasks and for each task plotted against the
FMMA-UE arm subsection.

DISCUSSION

To our knowledge, this was the first study to investigate
interjoint coordination during representative upper limb tasks
in chronic stroke patients with mild to moderate upper limb
motor impairment, aiming to bridge the gap between abstract
clinical motor assessments and the kinematic characterization of
various upper limbmovements performed in daily life. Kinematic
metrics reflecting interjoint coordination were investigated and
compared across movement tasks by considering the covariates’
dominance, age, and upper limb function and related with a
recommended standard clinical test, the FMMA-UE (Kwakkel
et al., 2017, 2019; Burridge et al., 2019). It was found that
the values of kinematic metrics were largely dependent on the
movement task and the tested arm, while age and the affected
dominant side hardly influenced the metrics. The fact that
both spatial and spatiotemporal metrics of the shoulder–elbow
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FIGURE 5 | Shoulder–elbow mean curve per tested arm and task across subjects (N = 26). (A) Shoulder flexion. (B) Pointing ahead. (C) reach-to-grasp a glass. (D)

Key insertion.

complex were largely dependent on the movement performed
underpins the need to assess upper limb interjoint coordination
in different task contexts. Interestingly, the elbow joint ranges
were significantly different and less variable during isolated
shoulder flexion task (9.4◦ ± 7.5◦), representative for one
of the FMMA-UE items, when compared to the pointing
task (40.3◦ ± 26.2◦), even though both tasks shared the
same person-related workspace and target position, indicating
the differences of the FMMA-UE from natural movement
behavior. Comparing the results of the clinically measured

impairment with the FMMA-UE and the resulting kinematic
metrics across all tasks revealed moderate correlations between
the FMMA-UE or FMMA-UE arm subsection and metrics
on shoulder and elbow joint ranges and shoulder–elbow
curve efficiency (r ≥ 0.5) besides low correlations between
trunk metrics and shoulder–elbow correlation coefficient and
median slope.

All spatial and spatiotemporal kinematic measures, except
the shoulder–elbow correlation coefficient, showed statistically
significant discriminability between pathological movement
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FIGURE 6 | Relation between shoulder–elbow coordination metrics and the

Fugl–Meyer Motor Assessment of the Upper Extremity arm subsection

(19-35/36) per subject and task. (A) Shoulder-elbow correlation coefficient per

subject FMMA-UE arm subsection and task. (B) Shoulder-elbow median slope

per subject FMMA-UE arm subsection and task. (C) Shoulder-elbow curve

efficiency per subject FMMA-UE arm subsection and task.

behavior of the affected upper limb and physiological movement
behavior of the less-affected upper limb.

Trunk motions ranged between a mean of 1.8 and 3.0 cm,
tending to increase from the shoulder flexion, pointing ahead,
reach-to-grasp a glass, to the key insertion task. This illustrates
increased trunk compensation, with an increase in task
complexity by requiring distal upper limb interactions with
objects (McIsaac et al., 2015). Trunk compensatory movements
were shown to be slightly but significantly increased when
moving the affected limb (mean of 2.5 cm) when compared to
the less-affected upper limb (mean of 2.1 cm). However, these

differences were small when compared to previous findings of
trunk movements of around 10 cm in stroke subjects during
reach-to-point (Cirstea et al., 2003) and reach-to-grasp (Alt
Murphy et al., 2018). Hence, the presented results fall within
the limits of 2 to 5 cm as a clinically meaningful cutoff
score for compensatory trunk movements (Alt Murphy et al.,
2013). The differences in the shoulder DOF can be partially
explained by differences in target height between tasks, especially
between the reach-to-grasp a glass on the table that requires
less shoulder flexion when compared to the other movement
tasks with targets on shoulder-height level. Shoulder joint ranges
in flexion/extension and abduction/adduction were diminished
in the affected arm in comparison to the less-affected arm,
with joint ranges of 53◦ vs. 60◦ and 34◦ vs. 44◦, respectively,
suggesting inefficient activation or weakness of the shoulder
muscles and the inability to cope with antigravity torques (Roh
et al., 2013). Elbow flexion/extension ranged from a mean of 9.4◦

in isolated shoulder flexion and around 52◦ during functional
task execution. The larger ranges in elbow flexion/extension
during functional movements when compared to non-functional
isolated shoulder flexion support the idea, that the elbow joint is
rather dynamically involved in reaching movements of daily life
activities than being involved as a stable or stabilizing component
of a movement as predominantly examined in the FMMA-UE.

On the level of spatiotemporal measures of shoulder–elbow
coordination, values of the correlation coefficient largely varied
between r =−0.9 and r = 0.9 within and between subjects with a
tight connection to the movement tasks as illustrated in Figure 4.
The correlation coefficient is a measure of the linear relationship
between two variables, such as shoulder flexion/extension and
elbow flexion/extension. Although the correlation coefficient
provides estimates of general trend between two variables, it
does not consider non-linearity in rather bell-shaped angle–angle
curves. The shoulder–elbowmedian slope represents estimates of
the relationship between two DOF per timeframe (Baniña et al.,
2017). Both the correlation coefficient and the median slope are
quantifications of the overall trend in the shoulder–elbow curve
and depend on both the type of movement as well as whether the
shoulder and elbow move inphase or outphase. Consequentially,
both metrics are limited to the general relationship between two
joints. Shoulder–elbow curve efficiency ranged between a mean
of 0.14◦ and 1.44◦ per frame with respect to the movement
task. Curve efficiency was considerably lower in the shoulder
flexion and key insertion task when compared to the other
tasks, which could be an indicator of the increased requirements
on movement preciseness during key insertion and increased
internal attentional focus during isolated shoulder flexion. Curve
efficiency was introduced as a novel measure of interjoint
coordination that combines the absolute spatial changes in two
DOF while considering temporal aspects in terms of timeframes
needed to perform the movement. In that sense, curve efficiency
accounts for the proposed definition of interjoint coordination by
Tomita and coworkers as “a goal-oriented process in which the
DOF are organized in both spatial and temporal domains such
that the body configuration enables the endpoint to reach to a
desired location in a context dependent manner” (Tomita et al.,
2017). Herein curve efficiency has proven to be discriminable
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TABLE 3 | Descriptive statistics for each kinematic parameter per task and tested arm.

Factor TrunkDP

in mm

SAbAd

in◦

SFleEx

in◦

EFlEx

in◦

SE Corr Coeff SE median

slope

SE curve

efficiency in
◦/frame

Movement

Task (1)

Task (2)

Task (3)

Task (4)

17.7 ± 6.9

20.1 ± 12.4

24.6 ± 13.1

29.7 ± 15.3

54.0 ± 8.4

53.6 ± 12.2

32.2 ± 6.1

17.7 ± 6.2

77.5 ± 13.5

74.2 ± 14.4

37.6 ± 8.0

36.9 ± 10.3

9.4 ± 7.5

40.3 ± 26.2

52.2 ± 10.8

41.5 ± 8.5

0.94 ± 0.1

0.33 ± 0.4

−0.96 ± 0.0

−0.75 ± 0.2

0.14 ± 0.1

−0.30 ± 0.7

−1.38 ± 0.2

−1.44 ± 0.4

0.7 ± 0.3

2.0 ± 0.6

1.5 ± 0.5

0.6 ± 0.3

Arm teste

AS

NA

24.8 ± 9.0

21.3 ± 12.4

34.4 ± 6.1

44.4 ± 6.6

53.2 ± 8.7

59.9 ± 8.9

36.9 ± 9.8

34.8 ± 11.2

0.10 ± 0.1

−0.11 ± 0.1

−0.64 ± 0.3

−0.85 ± 0.3

± 0.3

1.4 ± 0.4

Affected is dominant side

Yes

No

23.1 ± 10.7

22.9 ± 8.6

38.8 ± 6.5

39.9 ± 5.1

53.4 ± 11.6

59.7 ± 9.1

34.8 ± 11.2

36.9 ± 9.8

−0.10 ± 0.1

−0.11 ± 0.1

−0.77 ± 0.3

−0.72 ± 0.2

± 0.4

1.3 ± 0.3

UL function group

Limited

Notable

Full

24.2 ± 9.2

24.7 ± 17.4

20.2 ± 9.4

38.7 ± 5.5

40.5 ± 10.8

39.0 ± 5.6

57.0 ± 9.8

50.8 ± 19.5

61.9 ± 10.1

34.9 ± 10.2

34.3 ± 16.1

38.2 ± 10.4

−0.10 ± 0.1

−0.09 ± 0.1

−0.12 ± 0.1

−0.72 ± 0.4

−0.83 ± 0.3

−0.69 ± 0.4

1.2 ± 0.3

± 0.6

1.5 ± 0.4

Age group

≤55 years >56

years

23.2 ± 12.1

22.8 ± 8.2

39.3 ± 7.4

39.5 ± 4.9

57.4 ± 13.3

55.7 ± 8.6

36.0 ± 12.2

35.6 ± 9.6

−0.10 ± 0.1

−0.11 ± 0.1

−0.78 ± 0.3

−0.71 ± 0.2

1.2 ± 0.4

1.2 ± 0.3

Corr Coeff, correlation coefficient; EFlEx, elbow flexion/extension; full, full UL function (FMMA-UE 53-66); limited, limited UL function (FMMA-UE 32-47); notable, notable function

(FMMA-UE 48-52); SAbAd, shoulder abduction/adduction; SFlEx, shoulder flexion/extension; TrunkDP, trunk displacement; SE, shoulder–elbow; UL, upper limb.

with respect to the factor whether the affected hand is the
dominant hand and with respect to the upper limb motor
function group, indicating promising associations with upper
limb motor impairment levels.

Taken together, these findings confirm the importance of
including different upper limb movement tasks when looking at
interjoint coordination in patients after stroke and non-disabled
adults as the task strongly affects kinematic metric outcomes
(Jeannerod, 1990; Michaelsen et al., 2004; Mesquita et al.,
2020). Adding up to these task-related kinematic differences,
research on functional brain activation provides evidence that
the cerebral control of upper limb movements is arranged
in a task-specific action topography by taking the activity
as a whole rather than being controlled by separating or
combiningmovement components or specific or fixed brain areas
(Handjaras et al., 2015; Leo et al., 2016). The findings of the
present study emphasize the importance to consider the effects of
the movement purpose, the attentional focus, and the movement
complexity on kinematic expressions complementary to clinical
assessment evaluations. Unlike the shoulder flexion movement
of the FMMA-UE that relies on an internal movement focus
and a stable extended elbow position, the three representative
functional tasks rely on an external movement focus with mainly
inverse kinematics between shoulder flexion and elbow extension
and bell-shaped angle–angle profiles. Even though further curve
fitting analysis is out of the scope of the present study, a
visual inspection of the shoulder–elbow angle plots suggests
that motions in the shoulder and elbow were diminished in
the affected side when compared to the less-affected side, while
the task-associated shapes seem to be largely preserved in the
affected limb. These results furthermore underpin the challenge

to clearly distinguish pathological from physiological interjoint
coordination and movement activation in terms of active range
ofmotion and strength at least in natural surroundings, including
the constant influence of gravity.

The relationship between the spatiotemporal kinematic
measures and the clinically measured upper limb motor
impairment was explored as a part of validity. The herein
presented findings on correlation between the FMMA-UE
and spatial metrics shoulder flexion/extension and elbow
flexion/extension are in line with research on validity (Massie
et al., 2011, 2014; Finley et al., 2012; van Kordelaar et al.,
2012; de Paiva Silva et al., 2014; Li et al., 2015; Rech et al.,
2020). In contrast to existing research (Subramanian et al.,
2010; Finley et al., 2012; van Kordelaar et al., 2012; de Paiva
Silva et al., 2014; Massie et al., 2014), we did not find a
strong correlation between trunk displacement during various
tasks and the FMMA-UE total score. The strong correlation
between curve efficiency and shoulder flexion/extension and
elbow flexion/extension found in this study might be related to
the fact that curve efficiency is a derivative of both DOF besides
the temporal aspect of this movement parameter. The fact that
shoulder–elbow curve efficiency significantly correlated with the
FMMA-UE arm subsection supports the idea that it measures the
same construct of interjoint coordination in the upper extremity.
Future work on upper limb kinematic measurements after stroke
should investigate its clinimetric properties, such as reliability,
measurement error, and responsiveness.

Limitations
The spatiotemporal kinematic analysis of this study was limited
to three out of seven DOF, namely, shoulder flexion/extension,
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TABLE 4 | Results of linear mixed model analysis.

Factor Kinematic metric for interjoint coordination

TrunkDP SAbAd SFlEx EFlEx SE corr coeff SE median

slope

SE curve

efficiency

Movement Task

Task (1) vs. Task (2)

Task (1) vs. Task (3)

Task (1) vs. Task (4)

Task (2) vs. Task (3)

Task (2) vs. Task (4)

Task (3) vs. Task (4)

0.001

1.000

0.056

0.002

0.861

0.058

0.714

<0.001

1.000

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

1.000

<0.001

<0.001

<0.001

<0.001

1.000

<0.001

<0.001

<0.001

<0.001

0.129

1.000

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

0.020

<0.001

<0.001

<0.001

<0.001

1.000

<0.001

<0.001

<0.001

1.000

0.001

<0.001

<0.001

Arm tested

AS vs. NA

0.001 <0.001 <0.001 0.002 0.395 <0.001 <0.001

Affected is

dominant side

(Yes vs. No)

0.935 0.413 0.011 0.251 0.089 0.161 0.015

UL function group

Limited vs. notable

Limited vs. full

Notable vs. full

0.257

1.000

0.317

0.791

0.693

1.000

1.000

1.000

0.051

0.325

0.244

0.053

0.264

1.000

0.335

0.755

0.070

0.342

0.328

0.073

0.069

0.122

1.000

0.070

0.001

0.498

0.003

0.005

Age group

≤55 years vs.

>56 years

0.889 0.888 0.540 0.860 0.125 0.045 0.394

Corr Coeff, correlation coefficient; EFlEx, elbow flexion/extension; full, full UL function (FMMA-UE 53-66); limited, limited UL function (FMMA-UE 32-47), notable, notable function

(FMMA-UE 48-52); SAbAd, shoulder abduction/adduction; SFlEx, shoulder flexion/extension; TrunkDP, trunk displacement; SE, shoulder-elbow; UL, upper limb. Statistically significant

effects (p < 0.05) are indicated in bold.

shoulder abduction/adduction, and elbow flexion/extension,
even though rotational movements and the forearm and hand
component are known to be part of movement quality.
We decided to examine interjoint coordination on the
basic level of the two joints that contribute most to the
movement performance and present characteristic stroke-
related movement phenotypes, such as the pathological
flexor synergy.

Another limitation relates to the fact that we have
considered the less-affected upper limb as the physiological
movement comparator, even though we were aware of
the evidence on movement limitations in the ipsilesional
upper limb (Bustrén et al., 2017). Nevertheless, the less-
affected upper limb represents a valuable comparator in
the asymmetrical impairment of unilateral stroke and is
always available to the patient and the assessor in clinical
practice (Lang et al., 2017). For this reason, comparisons
between the affected limb and the less-affected upper
limb remain the best-available comparator in terms of
movement quality measures until a reasonable amount
of normative kinematic data from the healthy population
is available.

We have not controlled for possible strength limitations
and therefore were not able to differentiate between weakness
and interjoint coordination in the presented experimental set-
up, as gradually studied by by Dewald and colleagues (Sukal
et al., 2007; Ellis et al., 2016). This could be induced by

including a gradual armload increase during movement task
execution. Apart from that, real-world upper limb functions
are performed not only in sitting but also in other body
positions, such as standing. The fact that the pioneering
works on interjoint coordination and synergistic control after
stroke emphasized the influence of the postural setting of the
subject on synergistic control (Fugl-Meyer et al., 1975) supports
further research on this topic and its consideration in upper
limb assessments.

In the current study, a wearable inertial sensing suit
was used, and this goes against recent recommendations to
capture upper limb kinematics by an opto-electronic device
(Kwakkel et al., 2019). However, the pros of wearable sensing
suits are the wide applicability in flexible environments,
the avoidance of problems with marker occlusion during
object manipulation, and the comparably less time-
consuming system set-up (pre- and post-processing) and
costs of the equipment (Walmsley et al., 2018). Based on
previous research, the reliability and measurement error
has shown to be comparable between inertial sensing and
optoelectronic system (Robert-Lachaine et al., 2017), even
when the system was used by an unexperienced person
(Al-Amri et al., 2018).

Lastly, it needs to be acknowledged that other analytical
approaches on the kinematic data, such as dimension–
reduction approaches, would have been possible, allowing
the presentation of other kinematic outcomes (Schwarz
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TABLE 5 | Confusion matrix of the correlation coefficients for each measure combination.

TrunkDP SAbAd SFlEx EFlEx SE Corr Coeff SE median

slope

SE curve

efficiency

FMA-UE −0.16

p = 0.436

(−0.51–0.24)

0.49

p = 0.010

(0.13–0.73)

0.68

p = 0.000

(0.40–0.84)

0.53

p = 0.004

(0.19–0.76)

0.10

p = 0.603

(−0.29–0.47)

0.053

p = 0.791

(−0.33–0.42)

0.75

p = 0.000

(0.52–0.88)

TrunkDP −0.11

p = 0.595

(−0.47–0.28)

−0.12

p = 0.550

(−0.48–0.27)

−0.04

p = 0.831

(−0.42–0.34)

−0.10

p = 0.611

(−0.46–0.29)

−0.08

p = 0.678

(−0.45–0.31)

−0.04

p = 0.846

(−0.41–0.35)

SAbAd 0.57

p = 0.002

(0.24–0.78)

0.53

p = 0.004

(0.19–0.76)

−0.03

p = 0.880

(−0.41–0.35)

0.28

p = 0.154

(−0.11–0.60)

0.40

p = 0.040

(0.02–0.68)

SFlEx 0.53

p = 0.004

(0.19–0.76)

−0.20

p = 0.318

(−0.54–0.20)

−0.02

p = 0.921

(−0.40–0.36)

0.85

p = 0.000

(0.70–0.93)

EFlEx −0.26

p = 0.198

(−0.58–0.14)

−0.15

p = 0.450

(−0.50–0.24)

0.55

p = 0.003

(0.21–0.77)

SE Corr Coeff −0.07

p = 0.712

(−0.44–0.31)

−0.18

p = 0.380

(−0.52–0.22)

SE slope median
0.01

p = 0.956

(−0.37–0.39)

The correlation coefficient, the p-value, and the 95% confidence interval are shown. The italicized measures present statically significant correlations.

EFlexExt, elbow flexion/extension; SFlexExt, shoulder flexion/extension; SAbdAdd, shoulder abduction/adduction; Trunk DP, trunk displacement; SE, shoulder–elbow; Corr Coeff,

correlation coefficient; UL, upper limb. The bold measures present statistically significant correlations.

et al., 2019a). Kinematic measures of the movement
smoothness domain have been used for quantifying interjoint
coordination based on accelerometer or gyroscope signals
in the lower limb during gait assessment (Beck et al.,
2018) and should be additionally considered in future work
of upper limb interjoint coordination besides the herein
proposed measures.

Future Research
Future research should expand on an upper limb movement
task set (Kwakkel et al., 2019), allowing to assess the widest
possible range of the tested subjects’ functional capabilities by
considering a stepwise increase of movement task complexity,
task instruction, and focus (McIsaac et al., 2015). Including
a functional planar task on the table level, such as wiping
or shape-drawing, besides gesture movements, reach-to-grasp,
and manipulating activities should be considered in such a
task set and future works to enable kinematic evaluations in
stroke subjects with lower levels of upper limb function and
reducing load on the shoulder. Dual-task conditions should be
included in the highest level of task difficulty to assess the
functional capability under real-world conditions, for example,
when cooking and talking at the same time, as well as to
uncover subliminal deficits that still might impact the person’s
performance level in daily life. Another important aspect in
upper limb assessments reflecting needs of real-world use is the
consideration of posture. In this line, it would be interesting to

investigate the impact of posture on upper limb kinematics. The
resemblance with daily life tasks in such an assessment protocol
is likely to ease task understanding and naturalness of the
performance even in subjects with difficulties in understanding.

CONCLUSIONS

The presented work on qualitative upper limbmovement analysis
confirmed that kinematic measures of interjoint coordination
in the shoulder–elbow–trunk complex are largely depending
on the movement task and the tested arm in chronic stroke
patients with mild to moderate upper limb motor impairments.
The kinematic metrics during functional movements showed
different expressions and variability when compared to those
of the non-functional isolated shoulder flexion, supporting
the importance to assess different movement tasks in order
to get a more complete picture of the patient’s quality of
movement. The metrics correlate at the best moderately with
standard clinical tests, which underlines their benefit. Among
the investigated spatiotemporal measures of shoulder–elbow
coordination, curve efficiency showed promising discriminability
between the affected side and the less-affected side, the factor
of affected hand dominance, and upper limb functionality and
correlated well with the FMMA-UE and the FMMA-UE arm
subsection, respectively. Consequentially, this study contributes
to novel approaches in post-stroke upper limb assessment
methodologies by combining technological opportunities to
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measure aspects of body function during activities that are close
to that of the real world and representative for the ICF activities
and participation domain.
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Background: Kinematic analysis facilitates interpreting the extent and mechanisms
of motor restoration after stroke. This study was aimed to explore the kinematic
components of finger-to-nose test obtained from principal component analysis
(PCA) and the associations with upper extremity (UE) motor function in subacute
stroke survivors.

Methods: Thirty-seven individuals with subacute stroke and twenty healthy adults
participated in the study. Six kinematic metrics during finger-to-nose task (FNT) were
utilized to perform PCA. Clinical assessments for stroke participants included the Fugl-
Meyer Assessment for Upper Extremity (FMA-UE), Action Research Arm Test (ARAT),
and Modified Barthel Index (MBI).

Results: Three principal components (PC) accounting for 91.3% variance were included
in multivariable regression models. PC1 (48.8%) was dominated by mean velocity,
peak velocity, number of movement units (NMU) and normalized integrated jerk (NIJ).
PC2 (31.1%) described percentage of time to peak velocity and movement time. PC3
(11.4%) profiled percentage of time to peak velocity. The variance explained by principal
component regression in FMA-UE (R2 = 0.71) were higher than ARAT (R2 = 0.59) and
MBI (R2 = 0.29) for stroke individuals.

Conclusion: Kinematic components during finger-to-nose test identified by PCA are
associated with UE motor function in subacute stroke. PCA reveals the intrinsic
association among kinematic metrics, which may add value to UE assessment and
future intervention targeted for kinematic components for stroke individuals.

Clinical Trial Registration: Chinese Clinical Trial Registry (http://www.chictr.org.cn/)
on 17 October 2019, identifier: ChiCTR1900026656.

Keywords: stroke, upper extremity, kinematics, motor function, principal component analysis
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INTRODUCTION

Stroke is the leading cause of disability worldwide, and upper
extremity (UE) motor impairment is one of the most relevant
functions affected in stroke (Langhorne et al., 2009; GBD, 2019).
The impairment results in poor motor control and exerts a
negative impact on UE functional capacity and activities of
daily living (ADL). To optimize UE recovery after stroke, it is
essential to select multilevel outcome measure for interpretation
of motor recovery and clinical decision-making (Winstein et al.,
2016; Villepinte et al., 2020). According to the International
Classification of Functioning, Disability and Health (ICF)
(WHO, 2001), there have been extensive validated UE scales
on body function and activity, among which the Fugl-Meyer
Assessment of Upper Extremity (FMA-UE), Action Research
Arm Test (ARAT), and Modified Barthel Index (MBI) are
commonly utilized in clinical practice (Santisteban et al., 2016).
However, these ordinal rating scales may carry the potential
for examiner bias and lack sensitivity to quantify small but
potentially impacting change over time (Lang et al., 2013).

Kinematic analysis facilitates interpreting the extent and
mechanisms of motor restoration, and it has been increasingly
applied in neurological research (Balasubramanian et al.,
2012). Although kinematic approaches are objective, sensitive
and quantitative, their associations with clinical measures
have not been fully studied (Schwarz et al., 2019). In
previous studies of kinematic metrics, multivariable regression
models are often employed to explain clinical outcomes. Due
to the prerequisites of statistical models, such approaches
were unable to include high collinear but potentially useful
variables. In the case of collinearity, kinematic metrics of
lower correlation with dependent variables were removed
from the models (Alt Murphy et al., 2012; van Dokkum
et al., 2014; Hussain et al., 2019). However, variables in
the models measured only limited aspect of UE motor
function, hardly to explain heterogeneity in clinical presentations
and the intrinsic correlations among kinematic variables
during motor recovery (Tran et al., 2018; Schwarz et al.,
2019).

Principal component analysis (PCA) is a dimensionality
reduction technique to retain the most variance of dataset
without the need to exclude highly correlated variables (Zhang
and Castelló, 2017). Since principal components (PCs) are
the linear combinations of original variables, dataset can be
represented as several statistically independent PCs (Ringnér,
2008). To our knowledge, kinematics studies using PCA
regression models have focused on the distal hand. In a recent
study, representative features of manual dexterity were extracted
by a PCA-based logistic regression method (Lin et al., 2019).
The model had shown to increase performance in identifying the
severity of hand dysfunction in stroke participants. In another
study of participants with mild stroke, three PCs in combination,
including grip force scaling, motor coordination and speed of
movement could predict manipulation skills measured by Jebsen
Taylor Hand Function Test (Allgöwer and Hermsdörfer, 2017).
PCA is also widely implemented in other clinical researches such
as identification of patient phenotypes and prognosis prediction,

but is rarely used in UE kinematics (Ibrahim et al., 2014;
Badhiwala et al., 2018).

The aim of this study was to explore the kinematic
components of finger-to-nose task (FNT) obtained from PCA
and the associations with upper extremity motor function in
subacute stroke survivors. Furthermore, we hypothesized that
kinematic metrics reflected movement strategy, smoothness and
velocity during the FNT; hence, the models were considered to
measure aspects of motor impairment (FMA-UE), and explain
more variance than activity assessments (ARAT and MBI).

MATERIALS AND METHODS

Participants
A total of 37 individuals with subacute stroke (28 men,
aged 49.78 ± 10.26 years) and 20 healthy adults (12 men,
aged 52.62 ± 10.23 years) were recruited in the study. The
inclusion criteria for subacute stroke individuals were: (1)
Clinical diagnosis of unilateral, first-ever subacute stroke verified
by brain imaging (MRI or CT). (2) Aged between 18 and 80
years. (3) Showing motor impairment (FMA-UE < 66). (4)
Mini-Mental State Examination score ≥ 22 and compliance with
the assessments. (5) No complicating medical history such as
visual, cardiac or pulmonary disorders. Exclusion criteria were
other musculoskeletal or neurological conditions that affect arm
function. Control participants were 18–80 years old, and had no
neurological or orthopedic disorders (Johansson et al., 2017). All
participants in this study were right-handed as determined by
the Edinburgh Handedness Inventory (Verdino and Dingman,
1998). Data were extracted from the cohort of a clinical study
in the Department of Rehabilitation Medicine. We followed
the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) checklist for cross-sectional studies
(Vandenbroucke et al., 2007).

Clinical Assessments
Clinical assessments for stroke participants included the FMA-
UE, ARAT, and MBI. The FMA-UE is a reliable and validated
measure of motor impairment after stroke. The FMA-UE consists
of 33 items (scores ranging from 0 to 66) and higher scores
indicate less upper limb impairment (See et al., 2013). The ARAT
was used to evaluate functional ability and dexterity of the paretic
upper limb. It consists of 19 items (scores ranging from 0 to
57) and higher scores indicate greater arm functional capacity
(Yozbatiran et al., 2008). The level of independence in basic
activities of living was assessed with the translated version of
MBI. The MBI consists of 10 items (scores ranging from 0
to 100), and higher scores indicate greater ADL independence
(Leung et al., 2007).

Kinematic Testing Protocol
The kinematic test was accomplished by a portable
Inertial Measurement Unit system (IMU, Noraxon USA
Inc.). Each IMU sensor contained a coordinate system to
measure accelerations and three-dimensional orientations at
a sampling frequency of 100 Hz. The IMU system showed
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excellent reliability, accuracy and precision in quantifying
kinematic testing protocol (Öhberg and Bäcklund, 2019; Park
and Lee, 2020). According to a rigid upper body model, four
sensors were placed on body segments (head, upper arm,
forearm and hand). The system was calibrated before the
kinematic testing protocol was implemented. To improve the
measurement quality, the device automatically filtered raw data
using Kalman filter algorithm.

Participants sat in a height-adjustable chair with their hips
and knees flexed to 90◦. Positions were not restrained, and
compensatory movements were allowed when necessary (Li et al.,
2015). Upper extremity maintained in the neutral position, with
elbow extension and palm downward initially. The standardized
procedure for the finger-to-nose test was introduced by the same
researcher, and then was imitated by the participants for three
times before the test. On a verbal command, the participants
performed FNT as quickly and as accurately as possible, and then
returned to the initial posture. Stroke individuals performed the
test with the affected arm and the healthy adults performed with
the non-dominant arm. The tests were recorded for five times, but
a mean of three middle trials was used in statistical calculations
(Alt Murphy et al., 2012; Schiefelbein et al., 2019).

Kinematic Analysis
Kinematic analysis focused on UE end-point performance during
the going phase of finger-to-nose test. Data recorded in the IMU
software were exported to single.csv files, then were imported
to and extracted through a semi-automated custom written
program in MATLAB (The MathWorks, Natick, Massachusetts,
United States) for kinematic analysis. Onset and end of
movements were defined using a velocity threshold of 50 mm/s
(Menegoni et al., 2009; Schiefelbein et al., 2019). UE kinematic
metrics were calculated through the anatomical coordinate
system and joint rotation recommended by the International
Society Biomechanical (ISB) (Wu et al., 2005). In this study,
six kinematic metrics were utilized: movement time (MT),
mean velocity (VM), peak velocity (VP), percentage of time to
peak velocity (TVP%), number of movement units (NMU) and
normalized integrated jerk (NIJ) (Nordin et al., 2014).

MT is an objective and quantitative variable frequently used
to reflect movement performance, which was defined as the time
taken during the going phase of the test. To define VP, the
maximum tangential velocity of the index finger was calculated
during each movement segment; and VM was defined as the
average tangential velocity. TVP% is the proportion of time
spent during the start of the movement until the peak velocity.
The number of velocity peaks characterize NMU over a cut-off
value corresponding to the 10% of VP. When multiple velocity
peaks occur, the movement is composed of several smaller,
corrective sub movements. NIJ was utilized to assess movement
smoothness, which was calculated using the jerk normalized by
MT and length of the task (Johansson et al., 2017; Rodrigues et al.,
2017),

NIJ =

√
MT5

2× length2 ×
∑

jerk(t)2

where jerk is the third derivate of the endpoint displacement and
length is the shortest distance between the start and end positions
of the index finger.

Statistical Analysis
Statistical analyses were performed on SPSS version 22.0 and
R statistical software. A two-sided p-value of less than 0.05
was set as statistical significance. Categorical variables were
compared through Chi squared test, and quantitative variables
were compared through one-way ANOVA. The Shapiro-Wilk test
was employed to evaluate the normal distribution of quantitative
data. The Pearson’s correlation coefficients were conducted
between the kinematic variables and clinical assessments. The
limit for multicollinearity between independent variables was set
at 0.7 for Correlation Coefficients.

Data were scaled into a matrix at first because the mean
and variance may differ greatly across the variables. Data
matrix was calculated using the PCA function of R software.
Then the matrix underwent eigenvalue decomposition to obtain
its eigenvectors with corresponding eigenvalues. Eigenvector
represented the contribution of each kinematic variable to the
principal component, and was visualized by the Correlation
Circle. Eigenvalue represented the amount of variance explained
by the PCs. The model utilized the least number of PCs to
achieve≥90% of the total variance explained. Finally, the original
data set was transformed via the eigenvectors as weighting
coefficients to obtain principal component scores (Kassambara,
2017). Wilcoxon rank-sum tests were conducted to detect
subgroup differences in principal component loadings in age
(<50 vs. ≥50), paretic side, type of stroke for stroke participants,
and between the groups. Kruskal-Wallis tests were performed to
assess the differences in stroke severity (FMA-UE scores 0–22,
23–47, 48–64). The obtained PCs were included as independent
variables in multivariable regression to investigate the association
between kinematic metrics and clinical assessments. Probability
for entry in backward regression was set at 0.05 and removal at
0.10. Adjusted R2 values with p-values, unstandardized coefficient
(β), and unique partial correlation coefficients were used to
estimate the contribution of each PC to the model.

RESULTS

Demographics and Clinical
Characteristics
Demographics and clinical characteristics of the participants were
presented in Table 1. In this study, individuals with subacute
stroke had a moderate UE impairment, with an average FMA
scores of 36.22 ± 17.69 and ARAT scores of 23.97 ± 17.38.
No statistical difference was observed in age, gender, Body
Mass Index and TVP% between healthy participants and stroke
individuals. The healthy participants performed the task with
higher speed (VP, VM), less time (MT), and better smooth
profiles (NMU and NIJ) than the stroke individuals (P < 0.001).
Multicollinearity was found between MT and NIJ, as well as
among VM, VP and NMU. Significant correlations were found
between FMA-UE and VP (r = 0.81), VM (r = 0.85), and NMU
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TABLE 1 | Demographics and Clinical Characteristics.

Characteristics Stroke group
(n = 37)

Control group
(n = 20)

P-value

Age (years) 49.78 ± 10.26 52.62 ± 10.23 0.318

Gender (M/F) 28/9 12/8 0.319

Body mass index
(kg/m2)

24.43 ± 2.60 23.48 ± 2.64 0.195

MT (s) 1.09 ± 0.31 0.62 ± 0.12 P < 0.001*

VP(m/s) 1.61 ± 0.92 4.04 ± 0.67 P < 0.001*

VM (m/s) 0.78 ± 0.44 2.19 ± 0.39 P < 0.001*

TVP% (%) 42.23 ± 11.30 46.74 ± 5.16 0.156

NMU 2.56 ± 1.25 1.14 ± 0.28 P < 0.001*

NIJ 2.86 ± 1.98 0.54 ± 0.18 P < 0.001*

Days between onset
and enrollment

106.30 ± 65.46 – –

Type of stroke
(ischemic/hemorrhagic)

26/11 – –

Paretic side (left/right) 22/15 – –

MMSE (range 0–30) 27.16 ± 2.41 – –

FMA-UE (range 0–66) 36.22 ± 17.69 – –

ARAT (range 0–57) 23.97 ± 17.38 – –

MBI (range 0–100) 72.30 ± 22.20 – –

Values are presented as means ± standard deviation or as otherwise indicated.
MT, movement time; VP, peak velocity; VM, mean velocity; TVP%, percentage of
time to peak velocity; NMU, number of movement units; NIJ, normalized integrated
jerk; MMSE, Mini-Mental State Examination; FMA-UE, Fugl-Meyer Assessment for
Upper Extremity; ARAT, Action Research Arm Test; MBI, Modified Barthel Index.
*P < 0.05.

(r = − 0.65). ARAT showed significant correlation with VP
(r = 0.76), VM (r = 0.8), and NMU (r = − 0.59). MBI showed
significant correlation with VP (r = 0.55), VM (r = 0.58), and
NMU (r = − 0.45). MT, TVP% and NIJ were not significantly
associated with the clinical assessments (Figure 1).

Principal Component Analysis
As shown in the Scree Plot (Figure 2A), based on eigenvalue
decomposition of the kinematic metrics, the principal
components for stroke participants were arranged in the
descending order. The first three PCs explained 91.3% variance
of the dataset. The quality or proportion of representation
of the kinematic variables to the PCs were presented in the
squared coordinates (Figure 2B). PC1 accounting for 48.8%
of the variance was characterized by velocity profiles (VM,
VP) and smoothness profiles (NMU, NIJ). PC2 accounting
for 31.1% of the variance reflected movement planning
(TVP%) and movement time (MT) of stroke survivors. PC3
accounting for 11.4% of the variance mainly described movement
planning (TVP%).

The z-scores of each kinematic metric in accounting for the
variance of the principal components for the stroke group and
control group were demonstrated in the principal component
loadings (Supplementary Figures 1–7 and Supplementary
Tables 1, 2). No subgroup differences were found in principal
component loadings concerning age, paretic side and type
of stroke for stroke participants (Supplementary Figures 8–
10). Stroke severity measured by the FMA-UE was found

to be associated with the principal component loadings
(Supplementary Figure 11 and Supplementary Tables 3–5).
Besides, correlation circles demonstrated the similarity in loading
weights among correlated kinematic variables in the respective
PCs (Figures 2C,D). Positively correlated kinematic variables
were grouped together and negatively correlated variables were
positioned on opposite quadrants of the plot. PC1 was positively
associated with the velocity variables (VM, VP) and negatively
associated with the smoothness variables (NMU, NIJ). PC2 was
positively associated with the TVP% and negatively associated
with the MT. PC3 was positively associated with all the
kinematic variables.

Association With Clinical Assessments
The first three PCs were included in the multivariable regression
models with clinical assessments as the dependent variables,
including the FMA-UE, ARAT, and MBI. The results and
equations of principal component regressions were presented
in Table 2 (P < 0.001). PC1 was positively correlated with
the clinical assessments and PC2 was negatively correlated.
PC3 was positively correlated with the FMA-UE. The backward
multiple regression indicated that principal components could
explain the most variance in the assessment of motor impairment
measured by the FMA-UE. The principal components together
explained 71% of the total variance, which demonstrated a unique
contribution of 55, 9, and 7%, respectively. In the model of
ARAT, the PC1 and PC2 showed significant contribution to the
model and explained 59% of the variance, accounting for 51 and
8%, respectively. In the model of MBI, PC1 and PC2 showed
significant contribution to the model and explained 29% of the
variance, accounting for 22 and 7%, respectively.

DISCUSSION

Conventional multivariable analyses of kinematic data have to
meet the criteria of statistical approaches. Potential meaningful
variables may be excluded due to high-mathematical collinearity.
In this study, the associations between six FNT kinematic
variables and UE motor function were explored through PCA
for individuals after subacute stroke. Our results showed that
the first three principal components explaining 91.3% variance
were significantly associated with the clinical assessments for
the stroke individuals. The variance explained by principal
component regression in FMA-UE (R2 = 0.71) were higher than
ARAT (R2 = 0.59) and MBI (R2 = 0.29).

PC1—Movement Speed and Smoothness
PC1 accounting for 48.8% variance of the data, was largely
dominated by variables that described the movement speed
and smoothness. Speed indexes reflect one’s efficiency and
ease of movement. Similarly, mean and peak speed have been
reported to correlate with upper limb motor impairment in a
previous study (Bosecker et al., 2010). Movement speed depends
on individual’s voluntary effort, ability to control interaction
torques of agonist/antagonist muscles and maintain normal
inter-joint coordination during timed tasks (Nordin et al., 2014).
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FIGURE 1 | Correlations between clinical assessments and kinematic metrics.

Besides, smoothness is related to the temporal organization
or coordination of upper-limb segments since post-stroke
individuals typically present excessive discrete movements
(Balasubramanian et al., 2015).

Correlation analysis showed that movement speed was
negatively associated with NMU (r =−0.70 and−0.74) in stroke
survivors. However, the correlation analysis was inconsistent
with the final equations shown in Table 2 because there may
be intrinsic interactions among variables. A possible explanation
may be the case that movement smoothness was sacrificed for
increased speed in some participants (Swaine and Sullivan, 1993).
However, lower speed cannot ensure increased performance
in smoothness as measured by NIJ. It should be noted that
NIJ showed not significant association with peak velocity. In
addition, measurement of smoothness should be taken with
caution because a single smoothness parameter cannot reflect
the entire recovery process of stroke survivors (Rohrer et al.,
2002). Therefore, smoothness and speed indexes should be in
combination as a major kinematic component (PC1) to depict
only part of UE performance.

PC2 and PC3—Movement Planning and
Time
PC2 accounting for 31.1% variance, was largely dominated by
movement planning and movement time; PC3 accounting for

11.4% of the variance mainly described movement planning.
TVP% reflects movement planning and is defined as the
proportion of time spent from the onset to the peak velocity
(Nordin et al., 2014). MT refers to temporal efficiency to
perform a certain activity or movement, and is expected to
decrease with patient’s recovery (Zollo et al., 2011). Compared
with healthy adults, post-stroke individuals had prolonged
movement duration while the left-shifted velocity peaks were
not statistically significant. In the current study, the clinical
scales showed weak correlations with TVP% and MT, which
were not included in the conventional regression models.
However, PC2 and PC3 increased the performance of regression
models by 7–9%. This is consistent with a study of robot-
based kinematic assessment that movement duration can
add value to estimate FMA-UE (Bosecker et al., 2010). The
results therefore indicated that PC2 and PC3 may contain a
considerable proportion of kinematic information, which should
be taken into account when interpreting and estimating UE
motor function.

In line with our study, these kinematic variables, especially
velocity profiles, have been previously reported to affect UE
motor function after stroke (van Dokkum et al., 2014; Schwarz
et al., 2019). However, the associations between kinematics
and some clinical scales are often weak to moderate and even
controversial (Tran et al., 2018), e.g., NIJ and jerk (Rohrer et al.,
2002; Gulde and Hermsdörfer, 2018), NMU (Rohrer et al., 2002;

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 April 2021 | Volume 9 | Article 66001541

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-660015 April 5, 2021 Time: 19:47 # 6

Chen et al. PCA of Upper Extremity Kinematics

FIGURE 2 | (A) Scree Plot demonstrating the principal components accounting for variances. (B) Squared coordinates demonstrating the proportion of
representation of the kinematic variables to the PCs. (C) Correlation circles demonstrating the similarity in loading weights among correlated kinematic variables in
PC1 and PC2. (D) Correlation circles demonstrating the similarity in loading weights among correlated kinematic variables in PC2 and PC3.

Otaka et al., 2015), and VP (Gilliaux et al., 2014). Collinearity
among these variables, like VM, VP, and NMU, makes it
difficult for conventional multivariate statistical models to
explain heterogeneous population. Our results indicated that
the UE motor function may be associated with multiple
variables contained in the kinematic patterns named principal
components, instead of separate parameters. In addition,
multiple kinematic metrics were weighted and considered as
part of the PCs to estimate clinical scales. The same kinematic
variables contributed differently to each principal components,
suggesting that the intrinsic correlations among variables could
exert influence on UE motor function. Equations acquired
from PCA-based regression are important for understanding UE
motor control during FNT that is often ignored in conventional
statistical models. Moreover, the MBI is a questionnaire for ADL
instead of an observational measure toward UE motor function.
Hence, individuals could have used compensatory behaviors
or actually the less affected arm to improve the score, which
may be hardly illustrated by the present kinematic assessment
(Hsieh et al., 2007).

Our results showed that FNT kinematics could explain
more variances in aspects of motor impairment as measured
by FMA-UE, than activity assessments as measured by ARAT
and MBI. According to our best knowledge, there was no
previous report on principal component regression for end-
point kinematics of gross movement obtained in subacute stroke
survivors. In studies using multivariable linear regression, various
task settings were implemented to investigate the variances of
clinical scores explained by kinematics. Similarly, the FMA-
UE was well explained by trunk displacement and shoulder
flexion (51%) for the pointing task, and by trunk displacement
alone (52%) for the reach-to-grasp task (Subramanian et al.,
2010). In a drinking task, movement smoothness and trunk
displacement together explain 67% of the total variance in
functional assessment (ARAT), while trunk displacement alone
explained 20% of the variance in motor impairment (FMA-UE)
(Alt Murphy et al., 2012). The associations between kinematic
variables and the capacity activity were relatively low in our
study, suggesting that the kinematic testing protocols may be
task-specific to measure different aspects of ICF domains after
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TABLE 2 | Multivariable regression analysis of the principle components against the clinical assessments.

Independent Unstandardized Standard Partial unique P-value of Adjusted R2

variables coefficient β error contributions the variable (model P-value)

Dependent variable: z-score of FMA-UE 0.71 (<0.001*)

PC1 0.44 0.05 55% < 0.001*

PC2 −0.23 0.07 9% 0.002*

PC3 0.34 0.11 7% 0.004*

Equation via inverse transformation:

FMA-UE = 7.24VP + 16.14TVP% + 6.79MT + 14.69VM − 2.74NMU + 0.79NIJ + 3.50

Dependent variable: z-score of ARTA 0.59 (<0.001*)

PC1 0.42 0.06 51% < 0.001*

PC2 −0.21 0.08 8% 0.012*

Equation via inverse transformation:

ARAT = 4.76VP - 20.87TVP% + 2.86MT + 10.11VM − 3.33NMU − 0.57NIJ + 23.75

Dependent variable: z-score of MBI 0.29 (0.001*)

PC1 0.29 0.08 22% 0.001*

PC2 −0.22 0.10 7% 0.044*

Equation via inverse transformation:

MBI = 4.54VP − 26.21TVP% + 5.80MT + 9.39VM − 3.09NMU − 0.14NIJ + 70.62

FMA-UE, Fugl-Meyer Assessment for Upper Extremity; ARAT, Action Research Arm Test; MBI, Modified Barthel Index; PC, principal component; MT, movement time; VP,
peak velocity; VM, mean velocity; TVP%, percentage of time to peak velocity; NMU, number of movement units; NIJ, normalized integrated jerk.
∗P < 0.05.

stroke. In addition, FMA-UE and ARAT were only explained
20 and 13% of the variance in a manual dexterity task with
relatively small workspace (Hussain et al., 2019). The varying
correlations between kinematics and clinical scales indicate that
kinematic tests may likewise measure different ICF domains,
which should be taken into consideration the task selection and
clinical interpretation of kinematic analysis.

LIMITATIONS

One of the limitations of this study is the relatively limited
sample size. Although no subgroup differences were found
in principal component loadings concerning age, paretic side
and type of stroke for stroke participants, the results must be
interpreted with caution when generalizing to a wider range
of populations. Moreover, there are currently no guidelines for
selecting standardized kinematic assessments and the optimal
kinematic metrics. Our results are limited to the similar end-
point movement performance of kinematic test and comparable
variables utilized during the FNT. Future studies should
therefore include much variables (such as the limit of arm
movement), comprehensive tasks at different UE segments
as well as trunk movement and ICF levels (WHO, 2001;
Tran et al., 2018).

CONCLUSION

This study showed that kinematic components during finger-
to-nose test identified through PCA are associated with upper
extremity motor function. PCA-based regression model indicates
that finger-to-nose kinematics reflecting movement strategy,

smoothness and velocity, measure much aspects of motor
impairment than activity assessments. Such machine-learning
method reveals the intrinsic association among kinematic metrics
including velocity, smoothness and movement strategy. Our
findings provide a new perspective on UE clinical assessment
and future rehabilitation targeted for principal components of
kinematic metrics.
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Functional Brain Controllability
Alterations in Stroke
Xuhong Li1, Feng Fang2*, Rihui Li 2,3 and Yingchun Zhang2*
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Motor control deficits are very common in stroke survivors and often lead to disability.
Current clinical measures for profiling motor control impairments are largely subjective and
lack precise interpretation in a “control” perspective. This study aims to provide an
accurate interpretation and assessment of the underlying “motor control” deficits
caused by stroke, using a recently developed novel technique, i.e., the functional brain
controllability analysis. The electroencephalography (EEG) and functional near-infrared
spectroscopy (fNIRS) were simultaneously recorded from 16 stroke patients and 11
healthy subjects during a hand-clenching task. A high spatiotemporal resolution fNIRS-
informed EEG source imaging approach was then employed to estimate the cortical
activity and construct the functional brain network. Subsequently, network control theory
was applied to evaluate the modal controllability of some key motor regions, including
primary motor cortex (M1), premotor cortex (PMC), and supplementary motor cortex
(SMA), and also the executive control network (ECN). Results indicated that the modal
controllability of ECN in stroke patients was significantly lower than healthy subjects (p =
0.03). Besides, the modal controllability of SMA in stroke patients was also significant
smaller than healthy subjects (p = 0.02). Finally, the baselinemodal controllability of M1was
found to be significantly correlated with the baseline FM-UL clinical scores (r = 0.58, p =
0.01). In conclusion, our results provide a new perspective to better understand the motor
control deficits caused by stroke. We expect such an analytical methodology can be
extended to investigate the other neurological or psychiatric diseases caused by cognitive
control or motor control impairment.

Keywords: stroke, brain controllability, motor control, EEG, fNIRS (functional near infrared spectroscopy)

INTRODUCTION

Stroke is the major cause of motor impairment, leading to motor control deficits at acute stage
(Langhorne et al., 2011). More than 1.1 million people in the United States report difficulty with
functional limitations in daily lives following stroke (Inman et al., 2012). Accurate interpretation and
identification of motor impairment after stroke are of cardinal importance for the patient, clinician,
and healthcare system (Bonkhoff et al., 2020). Over the past decades, effort has been taken to
understand the underlying neural control mechanisms related to motor impairment following stroke
to enhance the treatment efficacy of stroke rehabilitation interventions (Collin and Wade, 1990;
Mani et al., 2013; Vliet et al., 2020). Emerging evidences have shown that various brain regions are
specialized for different aspects of motor control (Mani et al., 2013), indicating it is critical to
precisely define and evaluate the controllability of different brain regions that contribute to specific
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motor control deficits caused by stroke. Unfortunately, such a
precise evaluation of motor control deficits of stroke, in which
both high resolution brain imaging strategy and accurate
description of “controllability” are needed, is not currently
available.

Recently, advanced neuroimaging techniques, including
functional magnetic resonance imaging (fMRI), functional near-
infrared spectroscopy (fNIRS), and electroencephalography (EEG),
have been widely employed to investigate the dynamic alteration of
cortical excitability and network connectivity following stroke, and
shown great potential to understand the relationship between the
dysfunctional brain network and motor control deficits (Grefkes
et al., 2008a; Bajaj et al., 2014; Snyder et al., 2021). For example,
previous fMRI study illustrated that the motor control deficits of
stroke patients were associated with pathological intra- and inter-
hemispheric interactions among key motor regions such as primary
motor cortex (M1), premotor cortex (PMC), and supplementary
motor cortex (SMA), and executive control network (ECN) (Grefkes
et al., 2008a; Zhao et al., 2018). A recent study employing EEG to
investigate the resting-state networks under different frequency
bands in stroke showed that reduced cortical activity and
connectivity in alpha and beta bands in stroke patients might
explain the motor impairment caused by stroke (Snyder et al.,
2021). Similarly, a previous fNIRS study applying the spectral
interdependency methods demonstrated the bi- and uni-
directional connectivity between motor brain regions were
associated with specific movement suppression and motor control
execution, and could provide promising biomarkers to characterize
motor control impairment in stroke patients (Bajaj et al., 2014).

While unimodal fMRI, fNIRS, and EEG studies have provided
critical insight into the brain network alteration associated with
stroke, their limitations have prevented in-depth study to
simultaneously extract the spatial and temporal information
of the brain activity in a good precision. Specifically, EEG
offers high temporal accuracy to unveil the dynamics of neural
activity but suffers from the volume conduction problem,
which may make the estimation of brain connectivity

unreliable (Winter et al., 2007). FMRI and fNIRS show
higher spatial resolution to locate the brain activity than
EEG (spatial resolution: fMRI > fNIRS > EEG), however,
these two neuroimaging techniques are incapable of
recovering accurate time course of cortical activity and the
accuracy of hemodynamic-based connectivity network is
questionable (Roebroeck et al., 2011). To overcome these
limitations, a recently developed, spatiotemporal specific
method, dynamic brain transition network (DBTN), for
EEG and fNIRS (or fMRI) integration analysis was applied
to reconstruct highly specific patterns of cortical activity,
which were then used to recover the general and
conditionally-specific brain networks that support stimulus
response (Nguyen et al., 2019; Fang et al., 2020). Previous
study has utilized the DBTN source imaging approach to
identify biomarkers associated with motor function recovery
and document the post-stroke motor reorganization (Li et al.,
2020). The results showed that the functional brain
connectivity of PMC, M1, and SMA were potential
biomarkers to assess the motor function recovery of stroke,
and the DBTN source imaging strategy was potentially useful
for monitoring and predicting post-stroke motor recovery (Li
et al., 2020).

Even though previous studies have reported potential
biomarkers to assess the motor control deficits of stroke, all
these biomarkers themselves are not directly associated with the
“control” assessment of the brain. As such, a specific
understanding of the “motor control” deficits caused by stroke,
which may lead to advanced interpretation of the physiological
symptom observed in stroke patients, is remains lacking.
Recently, network control theory has been applied to
interpret brain state transitions (Gu et al., 2015).
Conventional graph-based measures show the local
properties of varied brain regions and their important roles
in their network architectures (Sporns, 2018). Differently,
control theory-based network measures describe one brain
region’s capability to change the brain behavior from one state

TABLE 1 | Participants demographics and clinical characteristics.

Patients ID Age (years) Sex (F/M) Affective side Days after stroke Lesion location FM-UL

Pre Post

01 55 Male R 45 Left basal ganglia 12 \
02 66 Female R 89 Left pons 18 33
03 36 Male R 75 Left basal ganglia 30 \
04 46 Male R 40 Left thalamus 53 \
05 37 Male R 84 Left coronal radiate 32 \
06 55 Female R 32 Left pons 56 \
07 61 Female R 42 Left basal ganglia 14 \
08 47 Male R 72 Left basal ganglia 20 \
09 36 Male R 99 Left basal ganglia 17 \
10 43 Male R 101 Left basal ganglia 18 20
11 63 Female R 52 Left pons 16 \
12 40 Male R 56 Left basal ganglia 61 \
13 56 Male L 62 Right basal ganglia 56 60
14 51 Female L 44 Right basal ganglia 43 49
15 50 Male L 32 Right basal ganglia 11 13
16 43 Male L 110 Right basal ganglia 22 27
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to another state (Gu et al., 2015). For example, modal
controllability diagnostic describes the ability of one brain
region to steer the brain networked system into difficult-to-
reach state (Gu et al., 2015). Previous study has employed the
brain controllability analysis to assess the cognitive control
deficit in neurological and psychiatric diseases such as
depression and dementia (Fang et al., 2021). However, no
study has ever utilized brain controllability measure to assess
the motor control deficit of stroke, to specifically describe the
“motor control” deficit with a specific “controllability”
measurement.

In this study, we integrated our recently developed DBTN-
based fNIRS-informed EEG source imaging approach, and
functional brain controllability analysis to assess “motor
control” deficits caused by stroke. We hypothesized that the
modal controllability of the key motor brain regions (M1,
PMC, and SMA) and the ECN would decrease among stroke
patients compared to healthy subjects. To the best of our
knowledge, this study represents the first effort to employ the
brain network “controllability” diagnostic to specifically interpret
the “motor control” deficits caused by stroke. Additionally, this
study is also the first study to apply the brain controllability
analysis based on the non-invasive, portal, and costless
neuroimaging tools with a high spatiotemporal fNIRS-
informed EEG source imaging approach.

MATERIALS AND METHODS

Study Design
Sixteen stroke patients with hemiparesis (5 females and 11 males;
age 49.1 ± 9.4 years) were recruited from Guangdong Provincial
Work Injury Rehabilitation Center, and 11 age-matched, healthy
subjects (3 females and 8 males; age 41.2 ± 15.8 years) were
recruited as the control group. All participants are right-handed.
The experimental protocol was approved by the ethics committee

of the Guangdong Provincial Work Injury Rehabilitation Center
(AF/SC-07/2016.30). Participants gave written informed consent
according to the Declaration of Helsinki.

The inclusion criteria for stroke patients were as follows: 1)
stroke that occurred 1–6 months prior to the first assessment, 2)
age between 18 and 70 years, and 3) able to follow instructions
and to consent (Mini Mental State Examination score >27). The
exclusion criteria were as follows: 1) deficits in communication or
attention that would interfere with the experiment participation,
2) contraindication to MRI scanning, and 3) other diseases that
would substantially affect the function of upper extremity.

All patients underwent a 4-weeks conventional rehabilitation
intervention in the hospital. The intervention included standard
physical training (walking, sitting, standing balance, and
movement switching), occupational therapy (eating, drinking,
swallowing, dressing, bathing, cooking, reading and writing, and
using the restroom), andmassage for 6 h per day, 5 days per week.
Prior to the beginning of intervention, all patients underwent a
baseline assessment of upper extremity function by Fugl-Meyer
Assessment rating scale (FM-UL, normal = 66) and participated
in a concurrent EEG-fNIRS recording (pre-intervention)
(Gladstone et al., 2002). Ten patients were not able to
complete the entire rehabilitation intervention and thus, were
ineligible to participate in the post-intervention EEG-fNIRS
recording and clinical assessment. Therefore, only six patients
participated in the concurrent EEG-fNIRS recording and clinical
assessment of motor function in the post-intervention session. All
motor function assessments were performed by an experienced
therapist from the Department of Rehabilitation Medicine in the
hospital.

Experimental Paradigm
During the experiment, participants received visual instruction
through a monitor placed in front of them. A motor executive
(ME) paradigm consisted of 40 randomized trials of left- and
right-hand clench tasks (20 trials for each hand) was employed.

FIGURE 1 | Experimental design. (A) The experimental motor executive task used in the study. The “ME” represents motor execution. (B) The EEG and fNIRS
channel locations.
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Each trial started with an 8-s ME task, indicated by a “+” symbol
in a black background (Figure 1A). During the ME period,
subjects were asked to naturally squeeze a sponge ball with the
corresponding hand shown on the monitor. Patients were
required to try their best to squeeze the sponge ball using
their affected hands without causing any shaking of their
bodies. In this study, the whole-hand clenching task was
applied since previous studies reported that the whole-hand
clenching evoked stronger brain cortical activations than
classic motor task such as finger tapping (Grefkes et al.,
2008b). Meanwhile, the whole-hand clenching task is
relatively easier to be executed by stroke patients who have
motor deficits.

Data Acquisition
A concurrent EEG and fNIRS recording paradigm was employed
to collect the EEG signal and hemodynamic response signal
(Figure 1B). Specifically, 32 active EEG electrodes were placed

on the scalp, and the EEG signals were measured using an EEG
recording system (Brain Products GmbH, Germany) with 500 Hz
sampling rate. Meanwhile, a total of 40 fNIRS channels were
positioned over the main brain regions, including the motor
cortex, frontal cortex, temporal cortex, and occipital cortex.
FNIRS signals were recorded simultaneously using a
continuous-wave NIRS imaging system (NIRScout, NIRx
Medizintechnik GmbH) with 3.91 Hz sampling rate.

EEG fNIRS Preprocessing
The analytical pipeline is shown in Figure 2. The raw EEG signals
were first filtered by a notch filter at 50 Hz to remove powerline
noise and then a fourth-order Butterworth bandpass filter
(0.5–45 Hz). Eye movement artifact was then removed using
independent component analysis (ICA) strategy. The common
average method was utilized to re-reference the EEG signals
(Ludwig et al., 2009). After that, EEG signals were segmented
into multiple trails that began 2000 ms before the task onset and

FIGURE 2 | Schematic of Methods. (A) EEG analysis using a sliding window scheme. FNIRS activation map is then extracted to form spatial priors; (B) Source
localization analysis of cortical source activity; (C) Functional brain network construction; (D) Estimation of brain network dynamic process and the brain controllability
analysis; (E) Calculate the modal controllability of each single brain region.
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ended 8000 ms after the task onset, and baseline correction was
performed for each trial. Finally, we manually inspected and
excluded any trial with large artifact.

For the fNIRS signals, a fourth-order Butterworth band pass
filter (0.01–0.5 Hz) was applied first to eliminate artifacts such as
cardiac interference (0.8 Hz). Following this, motion artifacts
were removed from the fNIRS signals using a wavelet-based
method (Molavi and Dumont, 2012). The concentration
changes of the HbO and HbR were then computed utilizing
the modified Beer-Lambert Law (Ferrari and Quaresima, 2012).
The obtained signals were manually inspected for every channel,
wherein trials with apparent spikes and discontinuous segments
were deemed as noisy trials and excluded from further analysis
(usually signal changes with amplitude >0.4 au and exceeding a
threshold of 100 in change of standard deviation within 0.3 s)
(Delgado Reyes et al., 2018). Finally, the general linear model
(GLM) was employed to obtain the activated channels that
significantly induced by each hand movement, which would be
used as spatial priors for the EEG source imaging.

fNIRS-Informed EEG Source Localization
Forward Calculation
In this study, theMNI 305 templatewas used as commonbrainmodel
for all subjects (Fonov et al., 2011). The high-density cortical layer and
the brain-skull-scalp layers were generated on the brain model using
the Freesurfer analysis suite (Fischl, 2012). The boundary element
method (BEM) was then employed to construct the 3-layer brain
model (Fuchs et al., 2002). A lead-field matrix G was then computed
based on the cortical source space, the 3-layer brainmodel, and the 32
EEG channels via forward calculation (Hallez et al., 2007).

Inverse Calculation
Our recently developed high spatiotemporal fNIRS-constrained
EEG source imaging approach, DBTN, was employed to perform
source analysis (Nguyen et al., 2016; Nguyen et al., 2018; Li et al.,
2020). Following this method, electrical activity within the source
space is reconstructed based on multimodal, sliding-window
calculations, which makes the algorithm spatially precise and
resilient to depth bias and noise from volume conduction

(Nguyen et al., 2016; Nguyen et al., 2018; Li et al., 2020). Briefly,
the calculation of the current density J can be formulated as:

J � RGT(GRGT + λC)
−1
Y (1)

where Y represents the EEG signals and J indicates the unknown
source activity.C and R represent the noise and source covariance
matrices, respectively. The regularization parameter λ
represents a trade-off between the model accuracy and
complexity that is traditionally determined through the L-
curve method. Within this construction, the source covariance
matrix, R, represents prior knowledge about the distribution of
J. Under the framework of the high spatiotemporal fNIRS-
constrained EEG source imaging (DBTN), however, R is
constructed as a weighted sum of the active spatial priors,
where each individual prior is a sub-map of the fNIRS
activation pattern, as mentioned above:

R � ∑N

i�1λ
R
i Qi (2)

Following this equation, R is defined by the sum of N covariance
components Q = (Q1, . . . , QN), weighted by an unknown
hyperparameter λR. Each individual covariance component, Qi, is
formed from a subset of the fNIRS map. The hyperparameters λR

were estimated for each EEG window using a Restricted Maximum
Likelihood algorithm (Nguyen et al., 2016), and the corresponding
current densities were calculated. The DKT40 atlas was then
employed to form 62 regions of interest (ROIs) (Klein and
Tourville, 2012). More details about the DBTN methodology can
refer to (Nguyen et al., 2016; Nguyen et al., 2018; Li et al., 2020).

Functional Brain Network Controllability
Analysis
Functional Network Construction
DBTN-based source localization formed a basis multivariate time-
series for subsequent functional connectivity analysis using a
measure of weighted phase lag index (wPLI) (Vinck et al., 2011).
The wPLI method is a data-driven technique based on the weighted
phase differences between two time-series signals. The functional

FIGURE 3 | Relationship between the z-scored modal controllability and the z-scored node strength in (A) Healthy subjects and (B) Stroke patients.
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brain network was then constructed by the wPLI values and utilized
for the following brain network controllability analysis.

Brain Controllability Analysis
One of the critical steps in applying network control theory to the
human brain is to define a model for the dynamics of neural
processes (Gu et al., 2015; Karrer et al., 2020). In this study, a
simplified, noise-free, linear, and time-invariant model was
employed to build the brain network dynamic model (Gu
et al., 2015). The model equation can be formulated as follows:

x(t + 1) � Ax(t) + Bu(t) (3)
where x describes the state (that is, the magnitude of
neurophysiological activity) of brain regions over time, and A
is the functional connectivity matrix constructed by the wPLI
method. The input matrix B specifies the control nodes and the
input u denotes the external stimulation. In this study, the
external stimulation of u can be considered as the
experimental paradigm shown on the screen that elicited the
preceding of motor behaviors in the brain.

Themodal controllability was then utilized to evaluate the control
capability of various regions in steering the network system into
different ease level of states (Medaglia et al., 2017).The modal
controllability reflects the ease of a node to push the brain
network system into many different difficult-to-reach states
(Medaglia et al., 2017). Mathematically, it was defined as:

ϕi � ∑N

j�1(1 − λ2j(A))v2ij (4)

vij is the element of the eigenvectors matrix of A and λj is the jth
eigenvalue.

From a cognitive perspective, the brain areas with high modal
controllability may be important in switching the brain between
many cognitive functions that require significant cognitive effort
(Gu et al., 2015). If control energy can be likened to cognitive
effort and if brain states can be likened to cognitive functions,
then the difficult-to-reach state refers to the brain state that
requires significant cognitive effort to reach from the initial
brain cognitive state such as from a resting brain state to a
motor performance state that is cognitively demanding. In this
study, we calculated the modal controllability of the three main
motor brain regions, M1, PMC, and SMA, from the contralateral
sides, and also the psychological brain system of ECN for both
stroke patients and healthy subjects. In this study, the ECN was
extracted from the ROIs located in the prefrontal cortex including
the ventromedial prefrontal cortex and dorsolateral prefrontal
cortex, parietal cortex, and anterior cingulate cortex (Callejas
et al., 2005; Duncan, 2013; Dong et al., 2015).

Statistical Analysis
Linear regression analysis was first performed to investigate the
relationship between themodal controllability and the node strength
(Montgomery et al., 2021). The modal controllability of three
different motor brain regions, M1, PMC, and SMA, were
computed and compared, respectively, between stroke patients
and healthy controls using non-parametric statistical test, Mann
Whitney U test (Nachar, 2008). The modal controllability of ECN
was also compared between stroke patients and healthy controls
using Mann Whitney U test. The baseline modal controllability of
M1, PMC, SMA, and ECN were correlated with the baseline clinical
scores, FM-UL, using linear regression model. Meanwhile, the
changes of modal controllability of the three motor-related
regions and the ECN were also correlated with the changes of
baseline clinical scores from pre- and post-intervention using linear
regression model. False discovery rate (FDR) method was employed
for correction of multiple comparisons (Genovese et al., 2002).

RESULTS

Demographic and Clinical Behavior Data
Table 1 summarizes the demographic information of the stroke
patients including age, gender, site of the lesion, time of stroke, and
clinical assessment scores. Statistical analysis showed that there were
no significant differences between stroke patients and healthy
subjects in terms of age (p > 0.05, t test) and gender (p > 0.05,
chi-square test) (Satorra and Bentler, 2001; De Winter, 2013).

Controllability of Psychological Brain
Network and Motor Brain Regions
InFigure 3, the relationship between themodal controllability and the
node strength was investigated. The results showed that the z-scored
modal controllability was significantly correlated with the z-scored
node strength in both healthy subjects (r = −0.96, p = 1.62e-38) and

FIGURE 4 | (A) Comparison of modal controllability in M1, PMC, and
SMA between stroke patients and healthy subjects. (B) Comparison of modal
controllability in executive control network (ECN) between stroke patients and
healthy subjects. Asterisk represents significant difference (p < 0.05)
after multiple comparison correction.
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stroke patients (r = −0.87, p = 5.21e-22). The negative correlation
between themodal controllability and the node strength are consistent
with previous studies (Gu et al., 2015; Wiles et al., 2017).

Then, the modal controllability of ECN was computed and
statistically compared between the two groups. As shown in
Figure 4B, the modal controllability of ECN in healthy
subjects was significantly larger than the modal
controllability of ECN in stroke patients (p = 0.03).
Following this, the modal controllability of three key motor
regions, M1, PMC, and SMA, were calculated and statistically
compared. In Figure 4A, the modal controllability of SMA in
healthy subjects was significantly higher than the modal
controllability of SMA in stroke patients (p = 0.02, FDR-
corrected). The modal controllability of PMC was
significantly larger in healthy subjects than stroke patients
before multiple correction (p < 0.05, uncorrected), but
insignificant after multiple correction (p = 0.06, FDR-
corrected). No significant difference of modal controllability
in M1 was observed between stroke patients and healthy
subjects (p = 0.46, FDR-corrected).

Correlation Between Baseline
Controllability and Clinical Scores
The relationship between the baseline modal controllability and
the baseline clinical scores (FM-UL) was then explored in stroke

patients. The z-scored baseline modal controllability and FM-UL
scores were computed and correlated using linear regression
model. As shown in Figure 5A, the baseline modal
controllability of M1 was significantly correlated with the
baseline FM-UL scores (r = 0.58, p = 0.01). No significant
correlation was observed between the FM-UL scores and the
modal controllability of PMC, SMA, and ECN.

In order to identify biomarkers to predict the recovery rate of
stroke patients, the changes of modal controllability and the
changes of FM-UL scores at pre- and post-intervention
recordings were calculated and correlated by the linear regression
modal. In Figure 5B, the results showed that no significant
correlation was observed between the changes of modal
controllability and the changes of FM-UL scores based on six
stroke patients’ data, even though very high correlation existed.

DISCUSSION

While current neuroimaging studies have proposed potential
network-level biomarkers to assess the motor control
impairment and better understand the underlying neural
mechanisms on stroke patients (Grefkes et al., 2008a; Bajaj
et al., 2014; Snyder et al., 2021), none of the biomarkers could
provide a “control” concept to specifically describe the “motor
control” deficits. Therefore, the primary goal of this study is to

FIGURE 5 | (A) Relationship between the baseline FM-UL scores and the baseline modal controllability in M1, PMC, SMA, and ECN. (B) Relationship between the
changes of FM-UL scores and the changes of modal controllability at pre- and post-intervention among the 6 stroke patients.
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assess the “motor control” deficits of stroke patients by
performing a high spatiotemporal resolution source imaging
analysis, and employing a specific “control” diagnostic, which
is the modal controllability (Gu et al., 2015). The main findings in
this study are that the modal controllability of SMA and ECN are
significantly lower in stroke patients than healthy subjects. In
addition, the baseline modal controllability of M1 is found to be
significantly correlated with the baseline clinical scores of stroke
patients. To the best of our knowledge, this study represents the
first attempt to apply the measure of “controllability” to
specifically assess the “motor control” deficits caused by
stroke. Besides, this is also the first study to employ the brain
network controllability analysis based on the non-invasive, portable,
and costless neuroimaging modalities associated with a high
spatiotemporal fNIRS-informed EEG source localization approach
(Nguyen et al., 2018). The methodologies utilized in this study may
provide a new perspective to better understand the cognitive control
or motor control impairment of different neurological or psychiatric
diseases, and promote the development of neuromodulation
strategies in an experimentally friendly manner.

In general, most stroke patients suffer from various degrees of
motor deficits, which has been associated with the functional
impairment across different motor control areas such as M1,
PMC, and SMA (Zhao et al., 2018). The PMC and SMA brain
regions are appear to be higher level areas that encode complex
patterns of motor output and select appropriate motor plans to
achieve desired end results, while M1 appears to be relatively
lower hierarchy and decomposes movement into simple
components in a body map, and these simple movement
components are then communicated to the spinal cord for
execution (Graziano, 2006). Previous study has employed
brain connectivity analysis to assess the relationship between
cortical disconnection and motor performance, demonstrating
that the cortical disconnection of M1 and SMA are associated
with the upper/lower extremity motor control performance of
stroke patients (Peters et al., 2018). The results further show that
the SMA is important in the temporal organization of movement
and becomesmore significant in the control of simple motor tasks
if theM1 is injured (Peters et al., 2018), indicating that the SMA is
more involved in performing difficult tasks than M1. However,
the “dis/connection” itself does not have any implication of the
“control” capability, to precisely describe the motor control
deficits and the ability of various brain regions in guiding the
brain into easy or difficult states in response to the tasks.
Therefore, in this study, we employed a novel “controllability”
measure to specifically describe the “control” ability loss of the
above motor regions in stroke patients.

Network control theory is an innovative and leading subfield of
dynamic network theory that offers powerful engineering-based
concepts to examine functional signaling in the networked systems
(Gu et al., 2015). Traditional graph-basedmeasurements such as node
degree, betweenness centrality, and clustering coefficient, describe the
local properties of the network architecture (Bullmore and Sporns,
2009). However, these locally static graphmeasures themselves do not
have any implication to describe the “control” ability of the regions in
controlling the brain state transition (Fang et al., 2021). Differently,
controllability diagnostics are systematic-level measures that describe

the capability of different brain regions in affecting the network
dynamics and steering the brain into various easy or difficult to
reach states (Betzel et al., 2016). For example, themodal controllability
indicates the capability of a specific brain region in controlling the
brain network system into difficult-to-reach states (Gu et al., 2015). In
a control perspective, our results demonstrated that the modal
controllability of SMA in stroke patients was significantly lower
than healthy controls (Figure 4A), indicating the SMA showed
less control ability to guide the brain network system into hard-to-
reach states in stroke patients. Physiologically, as mentioned above,
the SMA ismore involved in performing cognitively demanding tasks
and the disconnection of SMA is associated with motor control
deficits of stroke patients (Peters et al., 2018). Instead of interpreting
the lost capability of motor control performance based on the static
graph measures (dis/connection), our results interpreted the specific
“motor control” deficits of stroke patients with a particular systematic
measure, “controllability”, to precisely describe the “motor control”
ability loss in stroke patients. Specifically, our results indicated that the
motor control deficits caused by stroke may due to the lost capability
of SMA in steering the brain network system into cognitively
demanding states. Prior study reported that a subject’s cognitive
processing and set-shifting speed appears to be coded, to some
degree, in the connectivity strength of bilateral intraparietal sulcus
nodes of the ECN (Seeley et al., 2007). From a control point of view,
our results showed that the capability of ECN to control the brain to
enter some difficult states was lost in stroke patients (Figure 4B). This
may explain the motor impairment of stroke patients in performing
some control-demanding tasks that require higher level cognitive
processing provided by ECN to complete the difficult tasks.

In this study, we also correlated the controllability values with
the clinical scores (FM-UL). In our results, the baseline modal
controllability of M1 showed significantly positive correlation
with the baseline FM-UL scores (Figure 5A). Even though most
studies hypothesized the M1 controlled movement at a simple
level, some researches also demonstrated that the M1 may serve
some complex function than originally hypothesized (Graziano,
2006). Our results further illustrated that the capability of M1 to
steer the brain network system into some complex brain states
that require a lot of cognitive effort may account for the motor
reservation of stroke, and be utilized as biomarkers to predict the
reservation of motor performance in stroke patients at baseline.
Unfortunately, due to the limited sample size of patients who
have both pre- and post-intervention EEG-fNIRS recordings, the
changes of modal controllability could not significantly predict
the changes of clinical scores, although high correlations were
observed (Figure 5B). This will be improved as the immediate
next step once we have more patients with the post-intervention.

In this study, we quantified the contribution of topological
factor (node strength) to the variability in controllability in stroke
patients and healthy subjects, respectively. As reported in previous
study (Jeganathan et al., 2018), lower correlation between the node
strength and the controllability measure indicated that other
network features or factors may influence the nodes’
controllability. In our results, we showed that the correlation
between node strength and controllability in stroke patients was
lower than that of health subjects (Figure 3). Thismay indicate that
the network alterations caused by stroke may break the underlying
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neural control patterns by increasing the effects of other network
features in contributing to the normal control patterns.

While the current investigation provides a new perspective to
interpret the specific motor control deficits in stroke patients, some
limitations and drawbacksmust be acknowledged. First and foremost,
the sample size is relatively small in this study. Meanwhile, the clinical
characteristics of patients are rather heterogeneous, such as lesion size,
location, initial motor impairment (11–61), stroke phase (acute/
subacute) and stroke subtype (cortical/subcortical). These variables
could have certain effects on characterizing the behavioral and
neurological outcomes. Besides, even though a high spatiotemporal
resolution brain imaging approach was employed to reconstruct the
source activities, the brain model utilized for each subject was from a
common brain model, which may induce mild bias when estimating
the cortical activities. The immediate next step will be collected the
magnetic resonance imaging (MRI) data from those participants to
construct the patient-specific brain model, to further increase the
fNIRS-informed EEG source localization accuracy. Moreover, in this
study, we only considered the EEG sources located in the cortical areas
due to the shallow penetration depth of fNIRS (around 1–3 cm) in the
cortex (Liu et al., 2015), but will be improved with the development of
advanced neuroimaging techniques and algorithms. Additionally, the
current study employed a simple linear network dynamic model,
which remains to be improved to account for the nonlinear effect in
future. Finally, as our experimental paradigm asked the subjects to
performmotor control behaviors froma resting state, we assumed this
is a difficult-to-reach process (compared to the brain states transition
between resting to sleeping or resting to resting) that requires
significant cognitive effort from the resting state (especially for
stroke patients), which is consistent with the definition of
modal controllability. In future studies, we may employ other
brain controllability measurements such as average
controllability and global controllability to investigate the
control properties of the brain in stroke and other diseases.

CONCLUSION

This study represents the first attempt to employ the network
“controllability” diagnostic to specifically interpret the “motor

control” deficits caused by stroke. In addition, the current study is
also the first study to apply the brain controllability analysis based
on the non-invasive, portal, and costless neuroimaging tools with
a high spatiotemporal fNIRS-informed EEG source imaging
strategy. The results demonstrated that the modal
controllability of SMA and ECN were significantly decreased
in stroke patients compared to healthy subjects, and the baseline
modal controllability of M1 could be utilized to predict the
clinical scores at baseline for stroke patients. The
methodologies proposed in this study may be extended to
investigate the cognitive/motor control deficits caused by other
neurological or psychiatric diseases, and design neuromodulation
strategies by employing the network control theory in an
experimentally friendly manner.
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Background/Purpose: To prevent falling, a common incident with debilitating health
consequences among stroke survivors, it is important to identify significant fall risk factors
(FRFs) towards developing and implementing predictive and preventive strategies and
guidelines. This review provides a systematic approach for identifying the relevant FRFs
and shedding light on future directions of research.

Methods: A systematic search was conducted in 5 popular research databases. Studies
investigating the FRFs in the stroke community were evaluated to identify the commonality
and trend of FRFs in the relevant literature.

Results: twenty-seven relevant articles were reviewed and analyzed spanning the years
1995–2020. The results confirmed that the most common FRFs were age (21/27,
i.e., considered in 21 out of 27 studies), gender (21/27), motion-related measures (19/
27), motor function/impairment (17/27), balance-related measures (16/27), and cognitive
impairment (11/27). Among these factors, motion-relatedmeasures had the highest rate of
significance (i.e., 84% or 16/19). Due to the high commonality of balance/motion-related
measures, we further analyzed these factors. We identified a trend reflecting that subjective
tools are increasingly being replaced by simple objective measures (e.g., 10-m walk), and
most recently by quantitative measures based on detailed motion analysis.

Conclusion: There remains a gap for a standardized systematic approach for selecting
relevant FRFs in stroke fall risk literature. This study provides an evidence-based
methodology to identify the relevant risk factors, as well as their commonalities and
trends. Three significant areas for future research on post stroke fall risk assessment have
been identified: 1) further exploration the efficacy of quantitative detailedmotion analysis; 2)
implementation of inertial measurement units as a cost-effective and accessible tool in
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clinics and beyond; and 3) investigation of the capability of cognitive-motor dual-task
paradigms and their association with FRFs.

Keywords: stroke, fall risk factors, fall risk assessment, cost-benefit analysis, dual-task paradigm, performance
assesment, detailed motion analysis

1 INTRODUCTION

Stroke is currently considered as the second leading cause of
mortality for individuals above the age of 60 years, and the fifth
leading cause of death in individuals aged 15–59 years old,
worldwide (Thrift et al., 2017). According to the World Health
Organization (WHO), every year, 15 million people are
diagnosed with stroke, of which, approximately 6 million die
and another 5 million are left with permanent disabilities (CDC,
2019) (National library of medicine, 2022) (Thomas et al., 2000).
In the United States, more than 795,000 people suffer a stroke
every year, leading to an annual financial burden of nearly
$46 billion, including the cost of health care services,
medications, and missed days of work. Falling is a very
common complication consequent to stroke, where both
physical (weakness, paralysis, sensory disturbances, and
impaired postural control) and mental impairments (mental
fatigue, depression and impaired cognitive function) associated
with stroke can contribute to regular falls (Larén et al., 2018).
Moreover, most stroke patients, especially those who have
suffered ischemic strokes, are prescribed antiplatelets or
anticoagulants for secondary stroke prevention, which could
increase their propensity for post-trauma and bleeding upon
falling. Indeed, falls are seven times more prevalent among
this population in comparison to healthy individuals and are
often more consequential (Langhorne et al., 2000; Weerdesteyn
et al., 2008; Melillo et al., 2015; Wei et al., 2017). Research studies
have indicated that approximately half of stroke patients
experience at least one fall in the first year post-stroke and
that falling leads to further morbidity and mortality along
with a dramatic increase in the cost of care (Andersson et al.,
2006; Mackintosh et al., 2006; Ashburn et al., 2008; Kerse et al.,
2008; Baetens et al., 2011; Simpson et al., 2011; Blennerhassett
et al., 2012; Tilson et al., 2012; Yoshimoto et al., 2016). Moreover,
falling often causes hip fractures and various other motion
restrictions, which poses limitations on performing activities of
daily living (ADLs) (Pouwels et al., 2009). This, in turn, triggers a
viscous cycle in terms of the effect of immobility on the
musculoskeletal system, leading to further compromise in
musculoskeletal health and mobility of stroke patients and
hence an increased risk of falls. It is, therefore, imperative to
assess the risk of falling among stroke survivors during their path
to partial or full recovery leverage the information towards more
effective predictive and rehabilitation strategies.

In the last two decades, several studies have targeted fall risk
assessment among stroke survivors (Ashburn et al., 2008; Baetens
et al., 2011; Allin et al., 2016; An et al., 2017). More specifically, a
growing body of literature has been exploring the association
between the different fall risk factors (FRFs) and the frequency of
falls. Risk factors are typically categorized into different groups,

including demographics, medications, physical capability,
cognitive impairments, among others. For example, the
outcome of timed up and go (TUG) testing, during which the
participant is asked to stand up from a chair, walk for three
meters, return, and again sit on the same chair, can be considered
as a FRF (Podsiadlo and Richardson, 1991; Jalayondeja et al.,
2014; Pinto et al., 2016). Overall, most studies on fall risk
assessment of stroke survivors follow a common approach,
whereby several risk factors are identified to generate an initial
pool of factors to be analyzed. Implementing statistical analysis
tools, these factors are then compared between stroke patients
who have fallen and those who have not. The published articles in
this area indicate that there are more than 100 FRFs which can be
included in the initial pool. However, due to the large number and
variety of risk factors, it is not feasible to consider all of them in
one study, which makes it challenging to select the appropriate
initial list of FRFs.

To the best of our knowledge, only three review papers on fall
risk assessment within the stroke community were published
prior to this study. Walsh et al. (2016) conducted a systematic
review on fall risk prediction models for stroke patients. Their
results discussed several models to assess fall risk, recommending
that future studies need to focus on the validation and
improvement of current available models. In another study,
Tan and Tan. (2016). used a narrative review to explore the
epidemiology of falls within the stroke community. They
categorized the risk factors for the elderly stroke population
into several groups, including motor deficits, cognitive
function, medication, and psychological risk factors,
concluding with suggestions for fall prevention and
management strategies for stroke survivors. Xu et al. (2018)
conducted a meta-analysis of common FRFs to identify the
most significant ones leading to falls. Their findings indicated
that impaired mobility, reduced balance, use of sedative/
psychotropic medications, disability in self-care, depression,
cognitive impairment, and history of prior falls all had strong
associations with falls among stroke survivors. One of the main
limitations of this meta-analysis, on the other hand, was the
insufficient number of observational studies meeting the
requirement to be involved in the analysis of each risk factor.
Their findings indicated that impaired mobility and reduced
balance, with odds ratios (OR) of 4.36 and 3.87, respectively,
proved to be the most impactful factors for falls among stroke
survivors (Xu et al., 2018). It must be noted, however, that the
reported OR data were calculated from only three studies, since
the authors excluded a significant portion of studies due to the
high heterogeneity, as well as lack of providing OR data in their
results. The characteristics of this study, therefore, cast some
uncertainty as to the conclusions regarding the most significant
fall risk factors despite shedding light on this relevant issue.
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Hence, although numerous studies were conducted to identify
FRFs for stroke survivors, further work incorporating less
heterogeneity and proper outcome assessment (e.g., involving
OR) is still needed to validate the association of common FRFs
with fall occurrence for the stroke community.

To bridge the aforementioned knowledge gap in literature,
researchers need to establish a standard reference point for
identifying the appropriate FRFs to generate an initial pool of
risk factors. To this end, this review will provide a commonality
analysis on the FRFs and their significance ratio among the
articles considering each factor. Furthermore, the articles will
be explored to categorize their considered FRFs into subjective
and objective classes. Finally, the articles will be reviewed to
identify the trend of implementing motion analysis to identify the
risk of fall in stroke community. Briefly, the results of this study
will help: 1) to provide evidence-based data by which researchers
can determine which FRFs to include in the initial pool of factors;
2) to explore changes over time regarding the most salient FRFs as
described by researchers; and 3) to identify the potential
opportunities such as conducting detailed motion analysis
employing IMU sensors while performing cognitive-motor
dual-task to improve the quality of fall risk assessment among
stroke survivors. The outcome of this study may facilitate the
development of a more efficient and accurate approach/model to
conduct future fall risk assessment studies.

2 METHODS

2.1 Search Strategy
In order to conduct the review, the guidelines for Preferred
Reporting Items for Systematic review and Meta-analyses
(PRISMA) were implemented (Page et al., 2021). A systematic
review approach was developed to identify the relevant articles for
the review. We identified the potentially eligible studies by
systematically searching the databases: MEDLINE, EMBASE,
Web of Science, and PubMed. The search queries were
primarily conducted from 1995 until 2020, without restriction
on study design, document type, or language. Specifically, the
title, abstract, and keywords in potentially relevant articles were
searched for specific words: (“stroke” OR “cerebrovascular
accident” OR “cerebrovascular apoplexy” OR “cerebrovascular
disease” OR “cerebrovascular stroke”) AND (“falls” OR “falling”)
AND (“prospective” OR “follow up” OR “cohort” OR “case-
control” OR “longitudinal study” OR “cohort study” OR
“observational study” OR “case-control study”). The entry
terms for each keyword were extracted implementing the
Medical Subject Heading (MeSH) tool. The same search terms
and Boolean combinations were used to identify the relevant
articles while using the advance search in each database. We
augmented the search results by manually forward and backward
(in Google Scholar) citation tracking. Additional articles were
added from the authors’ archives or through cross-referencing.

2.2 Study Selection
Studies addressing the prediction of fall risk and/or those
identifying significant risk factors among stroke survivors were

recorded. Since the focus of this review was to evaluate the factors
involved in the FRFs among stroke patients, any prospective
study describing a follow-up period of more than one day was
included. Two authors independently searched the literature and
merged their results, and then the final selected studies were
carefully reviewed to ensure that all the articles met the inclusion
criteria for the review. The inclusion criteria consisted of: 1) a
prospective study on stroke survivors; 2) assessing the risk of fall;
3) published in English. Studies were excluded if participants had
other neurological diseases, such as Alzheimer, Parkinson’s
disease, multiple sclerosis, and spinal cord injury.

2.3 Data Extraction
The results of the comprehensive database search were screened
for relevance, and the selected papers were analyzed. The data
from each study were extracted using a format developed by the
authors. The form included the following information from each
article: Authors, Publication date (year), Location of the study,
Sample size, Setting, Number of Parameters, Labeling of the
Participants, Significant Factors, Non-Significant Factors,
Univariate/Bivariate analysis: Output Type, Multivariate
Analysis (Model): Method, Age of the participants, and Notes.

2.4 Risk of Bias
Most fall risk assessment studies could be categorized as cohort
studies which fall under the umbrella of observational studies.
Considering the various available tools to assess the risk of bias in
observational studies (Deeks et al., 2003), the Cochrane Tool to
Assess Risk of Bias in Cohort Studies was selected (Higgins,
2008). The tool includes eight questions with 4 choices each. One
of the questions was not applicable in fall risk assessment studies
and consequently removed from the analysis. The remaining
questions were related to the selection of the cohorts,
comparability, and assessment of outcome. The seven
questions were answered for each of the 27 articles by two
authors (i.e., MA and ER) independently. The cases of
discrepancy in the results in terms of risk of bias assessment
for each paper were addressed in a meeting between the two
authors. Since there were seven questions with four possible
answers reflecting the quality of the study in various aspects
(ranging from 0 for high risk of bias to 3 for low risk of bias), the
overall score for each study was between 0 and 21. Studies with
scores of <14, 14 to 17, and >17 were classified as low, acceptable,
and good quality, respectively.

2.5 Fall Risk Factor Commonality and
Significance Analysis
As noted earlier, it was not feasible to conduct a thorough meta-
analysis on the various FRFs due to the limited number of studies
for each FRF required for such an analysis. This impediment
stems from discrepancies in the heterogeneity of factors, as well as
discrepancies in the format of outcomes—principally involving a
variety of preferred statistical measures. To address these issues,
we have developed a list of significant risk factors towards
affording researchers better insight into the commonality and
significance of the factors. Using this risk factor-specific
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approach, we have reported the number of studies considering
each factor, as well as the number of studies in which that
particular factor was determined to be significant. In order to
simplify the process of comparing factors, a scale was created for
each factor to calculate the ratio of the number of studies which
identified a given FRF to be a significant to the number of the
studies considering that factor.

Significance Ratio(SR) � Number of the studies finding the FRF to be significant in fall risk
Number of the studies considering the FRF

Note that if at least one of the items in a particular category
had a significant impact on the fall risk, the category was classified
as a significant factor. As an example, Mansfield et al. conducted a
balance test requiring participants to stand as still as possible on a
force plate. They subsequently calculated the mediolateral root
mean square (RMS) of the center of pressure (COP), identifying it
as a significant risk factor for falls, in contrast, to the
anteroposterior RMS of COP which was determined to be
non-significant. Therefore, since there was a factor from the
category of balance-related measures among the significant
FRFs, we considered that category (i.e., balance-related
measures) as significant in that study.

2.6 Analysis of the Balance and
Mobility-Related Factors in Fall Risk
This study also analyzed changes over time in the methods
assessing the balance and mobility of stroke patients and how
that information factored into the fall risk assessment process.
Accordingly, any articles considering these factors were further
analyzed to determine all implemented approaches. Initially, the
identified balance and mobility-related factors from literature
were categorized as either subjective or objective. We have also
classified objective balance andmobility-related factors according
to the equipment used for assessment, which provides researchers
with a more accurate depiction of the level of motion analysis
achieved in the various studies. For example, TUG testing
typically measures the time for accomplishing a specific
physical task, notably standing from/sitting on a chair,
walking, and turning. Since the only equipment measuring the
output of this test (i.e., time) is a timer, we can conclude that it
does not pay sufficient attention to more detailed motion analysis
parameters such as gait characteristics. However, a similarly
designed study might utilize a force plate or inertial
measurement unit (IMU) sensors which can deliver more
detailed gait-analysis data, potentially improving the accuracy
of identifying the risk for falls among stroke victims.

3 RESULTS

3.1 Study Identification
A total of 10,746 articles were initially identified through the
process of searching the databases and relevant repositories as
described above. Due to duplication and not meeting the
inclusion criteria, a portion of these articles were removed,
resulting in a total of 27 articles considered relevant (Figure 1).

3.2 Study Characteristics
The characteristics of interest included publication year, location,
sample size, setting, and details of the patient labeling, as shown
in Table 1.

Assessment of the risk of bias indicated that all the articles in
the review had at least acceptable quality based on formula
described earlier. The detailed results of this analysis are
shown in Table 2.

The frequency for the 14 most common FRFs assessed in the
articles is shown in Table 3. The FRFs were classified into six
categories: sociodemographic risk factors, sensorimotor risk
factors, cognitive risk factors, psychosocial risk factors, medical
risk factors, and balance and mobility risk factors.

Table 4 provides the extracted data from articles that
considered stability and motion-based factors, which were
then categorized as either subjective or objective. Moreover,
the objective factors were subsequently classified into two
groups: 1) studies without force/motion sensors; 2) studies
with force/motion sensors (i.e., involving detailed motion
analysis).

4 DISCUSSION

To the best of our knowledge, up to date, there is no
comprehensive literature review on fall risk assessment among
stroke survivors. The most recent review presented a relevant
meta-analysis on the various FRFs impacting stroke population
(Xu et al., 2018), but only included a handful of studies which met
the data-analysis requirements. There is a need, therefore, for
identifying FRFs and understanding associated commonalities
and trends in recent fall risk assessment articles to develop
effective interventions. Towards this we reviewed a total of
27 articles spanning almost 3 decades from multiple countries
to identify the most frequently cited FRFs and the number of
studies categorizing them as significant risk factors. The second
objective of this review was to explore changes in how different
researchers consider these FRFs and propose specific ones which
could potentially provide better outcomes. Such analysis could
determine how shifting to a new level of FRF-based research, in
conjunction with detailed motion analysis, could assist in
developing more accurate fall risk prediction and assessment
models.

4.1 Common FRFs and Significance Ratios
According to the commonality table (Table 3), the most common
FRFs, as described in literature, included age, gender, motion-
related measures, balance-related measures, motor function/
impairment, and cognitive impairment. The significance ratio
for age, cognitive impairment, and gender were 38%, 36%, and
24%, respectively, which demonstrates the lack of consensus
among studies regarding the impact of these factors on fall
risk assessment. By contrast, the significance ratio for motion-
related measures, balance-related measures, and motor function/
impairment were 84%, 81%, and 65%, respectively. These
percentages imply a consensus that these factors have a
significant impact on fall risk among stroke survivors. The
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large significance ratio for motion-based measures is compatible
with earlier findings (Xu et al., 2018).

Among the less common FRFs, such as history of falls,
depression, visual impairment, and fall efficacy scale (FES),
FES presented the highest significance ratio. Representing the
level of fear of falling among stroke survivor, FES had a
significance ratio of 75%, which is the third largest after
motion- and balance-related measures with significance ratios
of 84% and 81%, respectively. It is noteworthy that visual
impairment with a 43% significance ratio was among the
important FRFs, which also confirms the importance of factors
associated with balance control. In fact, vison, along with
proprioception and balance-control mechanisms in the inner
ear, are the primary systems for maintaining human balance.
Consequently, since visual impairment could affect balance, a
stroke victim’s vision represents a potentially important factor in
fall risk assessment. Moreover, an inclusive assessment of balance
measures should represent the combined effects of vision, as well
as other sensory systems and proprioception in fall risk. Hence, it
is highly recommended that both balance and FES should be
considered in the initial pool of FRFs in future studies. Finally, the
FRFs with the least significance ratios were urinary incontinence/

medications, use of sedative/psychotropic medications, duration
of stroke, and stroke type. It is worthy to note, that among the
eight articles which considered stroke type, none identified it as a
significant fall risk factor (Table 1).

As mentioned, the most common significant factors among
the pool of reviewed articles were balance and motion-related
measures, thus confirming the critical importance of these
measures in determining the risk for falls among stroke
victims. The list of measures in the various reviewed articles
revealed that numerous subjective and objective scales were used
to evaluate balance and motion in stroke survivors (Table 4). For
example, subjective tools such as Katz ADL, Fugl-Meyer, and the
Barthel index were routinely implemented in the assessed studies
(Nyberg and Gustafson, 1997; Olsson et al., 2005; Jalayondeja
et al., 2014). In general, these approaches help to determine self-
reported physical status of patients by asking them to report
about the quality of their daily physical activities, or by
subjectively evaluating their physical capabilities by a clinician
using observational gait and balance assessment measures. By
contrast, more objective measures such as 10 MWT, 6 MWT,
TUG, and FSST must be administered by someone who is skilled
in their use (Persson et al., 2011; Simpson et al., 2011;

FIGURE 1 | Identification of the eligible studies to be included in the review.
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Blennerhassett et al., 2012). These tests usually measure the time
needed to accomplish a physical task, such as walking for
10 meters (10 MWT).

It is expected that reviewing the utilization of different factors
reported in earlier studies could lead to beneficial information in
the fall risk assessment and hence inspire more effective
management strategies of stroke survivors. For example,
exploring the evolution of balance and motion-based tools
confirmed that earlier studies focused more on the
implementation of subjective versus objective tools.
Specifically, articles dating from 1997 to 2014 (12 out
19 articles) used subjective tools to assess the balance and
motion of stroke survivors (Table 4). Moreover, in some of
these studies, subjective measures were combined with
standard objective tests such as TUG and 10 MWT, which are
designed to measure a single parameter, such as speed or time
while the subject performs a specific task. As described earlier,
TUG testing requires the patient to stand up from a normal chair,
walk for 3 m, return, and sit on the chair again; the output of this
test is the time required to complete the task. Clearly, this type of
assessment does not provide detailed motion parameters, such as
those obtained from instrumented force plates or motion sensors.
In 2015, Mansfield et al. was the first research team to conduct a

study that considered a detailed analysis of motion during quiet
standing (i.e., balance testing) and walking (i.e., gait testing)
(Mansfield et al., 2015). Later, Taylor-Pilliae et al. investigated
the capability of a single motion sensor in motion-monitoring of
stroke survivors over the course of 48 h during usual daily
activities (Taylor-Piliae et al., 2016). It should be noted that
this study was more of a feasibility analysis designed to assess
the capacity of the system in identifying fall risk indicators during
posture transition and gait; thus, subjective measures were not
considered. To the best of our knowledge, the study by Lee and
Jung. (2017) was the only one to integrate both subjective tools
along with the balance related-measures from detailed motion
analysis The results of this study revealed that postural sway
velocity with eyes-closed on a soft surface outperformed other
subjective and objective measures such as BBS, Fugle-Meyer
Assessment, and weight-bearing asymmetry in fall prediction
for post-stroke individuals. Finally, Wei et al. (2017) conducted a
study to explore the correlation between gait and balance
parameters with respect to falls among stroke survivors.

Overall, among the reviewed articles, there were only four
studies involving detailed motion analysis designed to identify the
effect of motion in fall risk assessment (Mansfield et al., 2015;
Taylor-Piliae et al., 2016; Lee and Jung, 2017; Wei et al., 2017).

TABLE 1 | The characteristics of the reviewed articles.

Article Location Sample
size

Setting Follow-up
details

Nyberg and Gustafson,
(1997)

Sweden 135 Hospital stay/2–4 weeks after the stroke/after acute phase/stroke rehabilitation unit 8 weeks

Yates et al. (2002) United States 280 Data collected in 3–14 days of stroke onset. 1, 3, and
6 months

Lamb et al. (2003) United States 94 At home 12 months
Olsson et al. (2005) Sweden 158 Hospital stay/2–4 weeks after the stroke/after acute phase/stroke rehabilitation unit 8 weeks
Mackintosh et al. (2006) Australia 55 Community 6 months
Wada et al. (2007) Japan 101 Community 12 months
Ashburn et al. (2008) United Kingdom 115 Community 12 months
Kerse et al. (2008) New Zealand 1,104 Community 6 months
Divani et al. (2009) United States 1,174 Community 24 months
Maeda et al. (2009) Japan 72 Admitted to rehabilitation center Variant
Persson et al. (2011) Norway 96 Rehabilitation hospital and community 12 months
Simpson et al. (2011) Canada 80 Community 13 months
Nyström and Hellström,
(2013)

Sweden 68 Acute stroke unit/newly diagnosed with stroke 6 weeks

Alemdaroğlu et al. (2012) Turkey 66 Rehabilitation hospital, then home 6 months
Blennerhassett et al.
(2012)

Australia 30 Community 6–36 months

Jalayondeja et al. (2014) Thailand 97 Stroke patients enrolled within 1 month of their stroke/outpatients/fall at home or
outside

6 months

Breisinger et al. (2014) United States 419 Admitted to rehabilitation unit Variant
Callaly et al. (2015) Ireland 522 Community 24 months
Mansfield et al. (2015) Canada 95 Rehabilitation hospital and community 6 months
Goljar et al. (2016) Slovenia 232 Admitted for the first time to the stroke rehabilitation ward/stroke patients during their

first inpatient rehabilitation
12 months

Pinto et al. (2016) Brazil 131 Outpatients in stroke clinic 2 years
Taylor-Piliae et al. (2016) United States 10 Mix of outpatients and post-stroke at least 3 months after stroke 2 days
Yoshimoto et al. (2016) Japan 65 Patients discharged from a rehabilitation ward 12 months
Wei et al. (2017) Taiwan 112 Hospital or rehabilitation ward and then community 6 months
Lee and Jung, (2017) South Korea 71 Community 12 months
Foster et al. (2018) United Kingdom 7,267 Immediate data from hospitalized patients 10 years
Persson et al. (2018) Sweden 504 Stroke unit at hospital 4 days
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These studies were among the seven most-recent reviewed
articles, which implies a trend towards clarifying the role of
motion in fall risk identification within the stroke community.
These four studies are further explored in Section 4.2 to
investigate the potential for improving the accuracy of fall risk
assessment models via the implementation of a thorough motion
analysis protocol of stroke survivors.

4.2 Opportunities to Improve Fall Risk
Assessment
Considering the gaps in the existing literature may shed some
light on the future directions for this important area of study. The
initial pool of FRFs in future studies could be identified according
to Table 3, coupled with other relevant reviews on the FRFs
impacting the stroke community. According to the results of this

TABLE 2 | Risk of bias assessment using Cochrane Tool to Assess Risk of Bias in Cohort Studies.

Article 1 Was
selection
of exposed
and non-
exposed
cohorts
drawn
from

the same
population?

2 Can
we be

confident
in the

assessment
of exposure?

3 Did
the study
match

exposed
and

unexposed
for all

variables
that
are

associated
with

the outcome
of interest

or did
the statistical

analysis
adjust

for these
prognostic
variables?

4 Can
we be

confident
in the

assessment
of the

presence
or absence

of
prognostic
factors?

5 Can
we be

confident
in the

assessment
of outcome?

6 Was
the follow

up of
cohorts

adequate?

7 Were
co-

interventions
similar
between
groups?

Sum Quality

Nyberg and Gustafson,
(1997)

3 2 3 2 3 2 2 17 Good

Yates et al. (2002) 3 2 2 2 3 3 2 17 Good
Lamb et al. (2003) 3 2 3 2 1 3 2 16 Acceptable
Olsson et al. (2005) 3 2 3 2 3 2 2 17 Good
Mackintosh et al. (2006) 3 2 3 2 2 3 2 17 Good
Wada et al. (2007) 3 2 3 2 3 3 2 18 Good
Ashburn et al. (2008) 3 2 3 2 3 3 2 18 Good
Kerse et al. (2008) 3 2 3 2 3 3 2 18 Good
Divani et al. (2009) 3 2 3 2 3 3 2 18 Good
Maeda et al. (2009) 3 2 2 2 2 2 2 15 Acceptable
Persson et al. (2011) 3 2 3 2 3 3 2 18 Good
Simpson et al. (2011) 3 2 3 2 3 3 2 18 Good
Anna and Karin (2012) 3 2 2 2 2 2 2 15 Acceptable
Alemdaroglu et al.
(2012)

3 2 3 2 3 3 2 18 Good

Blennerhassett et al.
(2012)

3 2 2 2 3 3 2 17 Good

Jalayondeja et al.
(2014)

3 2 3 2 2 3 2 17 Good

Breisinger et al. (2014) 3 2 3 3 3 2 2 18 Good
Callaly et al. (2015) 3 2 3 2 2 3 2 17 Good
Mansfield et al. (2015) 3 2 3 3 2 3 2 18 Good
Goljar et al. (2016) 3 2 3 2 1 3 2 16 Acceptable
Pinto et al. (2016) 3 2 2 2 3 3 2 17 Good
Taylor-Pilliae et al.
(2016)

1 3 2 3 2 1 2 14 Acceptable

Yoshimoto et al. (2016) 3 2 2 2 3 3 2 17 Good
Wei et al. (2017) 3 2 3 3 2 3 2 18 Good
Lee and Jung, (2017) 3 2 3 3 2 3 2 18 Good
Foster et al. (2018) 3 2 3 3 2 2 2 17 Good
Persson et al. (2018) 3 3 3 2 2 2 2 17 Good

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2022 | Volume 10 | Article 9106987

Abdollahi et al. Fall Risk Factors in Stroke Survivors

63

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


TABLE 3 | Commonalities among the 14 most significant FRFs in the articles.

Risk factors Number of
studies

considering the
factor

Number of
studies

in which the
factor was
significant

Significance
ratio (%)

References

Age 21 8 38 Nyberg and Gustafson, (1997); Yates et al. (2002); Mackintosh et al.
(2006); Wada et al. (2007); Ashburn et al. (2008); Kerse et al. (2008);
Divani et al. (2009); Maeda et al. (2009); Persson et al. (2011); Simpson
et al. (2011); Alemdaroğlu et al. (2012); Breisinger et al. (2014);
Jalayondeja et al. (2014); Callaly et al. (2015); Goljar et al. (2016); Pinto
et al. (2016); Yoshimoto et al. (2016); Lee and Jung, (2017); Wei et al.
(2017); Foster et al. (2018); Persson et al. (2018)

Gender (female) 21 5 24 Nyberg and Gustafson, (1997); Yates et al. (2002); Olsson et al. (2005);
Mackintosh et al. (2006); Wada et al. (2007); Ashburn et al. (2008); Kerse
et al. (2008); Divani et al. (2009); Maeda et al. (2009); Persson et al.
(2011); Simpson et al. (2011); Breisinger et al. (2014); Jalayondeja et al.
(2014); Callaly et al. (2015); Goljar et al. (2016); Pinto et al. (2016);
Yoshimoto et al. (2016); Lee and Jung, (2017); Wei et al. (2017); Foster
et al. (2018); Persson et al. (2018)

History of fall 9 4 44 Nyberg and Gustafson, (1997); Mackintosh et al. (2006); Ashburn et al.
(2008); Kerse et al. (2008); Divani et al. (2009); Alemdaroğlu et al. (2012);
Callaly et al. (2015); Pinto et al. (2016); Foster et al. (2018)

Motor function/impairment
(lower Extremities)

17 11 65 Nyberg and Gustafson, (1997); Yates et al. (2002); Lamb et al. (2003);
Olsson et al. (2005); Wada et al. (2007); Ashburn et al. (2008); Divani
et al. (2009); Maeda et al. (2009); Persson et al. (2011); Alemdaroğlu
et al. (2012); Nyström and Hellström, (2013); Jalayondeja et al. (2014);
Callaly et al. (2015); Goljar et al. (2016); Pinto et al. (2016); Lee and Jung,
(2017); Wei et al. (2017)

Cognitive impairment 11 4 36 Nyberg and Gustafson, (1997); Lamb et al. (2003); Wada et al. (2007);
Kerse et al. (2008); Maeda et al. (2009); Simpson et al. (2011);
Alemdaroğlu et al. (2012); Jalayondeja et al. (2014); Goljar et al. (2016);
Wei et al. (2017); Persson et al. (2018)

Depression 8 4 50 Nyberg and Gustafson, (1997); Lamb et al. (2003); Olsson et al. (2005);
Mackintosh et al. (2006); Kerse et al. (2008); Alemdaroğlu et al. (2012);
Callaly et al. (2015); Wei et al. (2017)

fall Efficacy Scale (FES) 4 3 75 Mackintosh et al. (2006); Blennerhassett et al. (2012); Wei et al. (2017);
Persson et al. (2018)

Visual impairment 7 3 43 Nyberg and Gustafson, (1997); Yates et al. (2002); Lamb et al. (2003);
Olsson et al. (2005); Mackintosh et al. (2006); Divani et al. (2009);
Alemdaroğlu et al. (2012)

Duration of stroke 8 3 38 Lamb et al. (2003); Wada et al. (2007); Ashburn et al. (2008); Divani et al.
(2009); Maeda et al. (2009); Alemdaroğlu et al. (2012); Goljar et al.
(2016); Pinto et al. (2016)

Stroke type 8 0 0 Yates et al. (2002); Wada et al. (2007); Kerse et al. (2008); Maeda et al.
(2009); Breisinger et al. (2014); Jalayondeja et al. (2014); Goljar et al.
(2016); Wei et al. (2017)

Urinary incontinence/
medications

8 2 25 Nyberg and Gustafson, (1997); Lamb et al. (2003); Olsson et al. (2005);
Divani et al. (2009); Persson et al. (2011); Alemdaroğlu et al. (2012);
Callaly et al. (2015); Pinto et al. (2016)

Use of sedative/psychotropic
medications

4 1 25 Nyberg and Gustafson, (1997); Olsson et al. (2005); Wada et al. (2007);
Alemdaroğlu et al. (2012)

Balance-related measures 16 13 81 Nyberg and Gustafson, (1997); Lamb et al. (2003); Olsson et al. (2005);
Mackintosh et al. (2006); Ashburn et al. (2008); Maeda et al. (2009);
Persson et al. (2011); Simpson et al. (2011); Alemdaroğlu et al. (2012);
Blennerhassett et al. (2012); Jalayondeja et al. (2014); Mansfield et al.
(2015); Yoshimoto et al. (2016); Lee and Jung, (2017); Wei et al. (2017);
Persson et al. (2018)

Motion-related measures 19 16 84 Nyberg and Gustafson, (1997); Lamb et al. (2003); Olsson et al. (2005);
Mackintosh et al. (2006); Ashburn et al. (2008); Kerse et al. (2008);
Maeda et al. (2009); Persson et al. (2011); Simpson et al. (2011);
Alemdaroğlu et al. (2012); Blennerhassett et al. (2012); Jalayondeja et al.
(2014); Mansfield et al. (2015); Pinto et al. (2016); Taylor-Piliae et al.
(2016); Yoshimoto et al. (2016); Lee and Jung, (2017); Wei et al. (2017);
Persson et al. (2018)
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review and (Xu et al., 2018), balance andmotion-related measures
represent the most common and significant fall risk factors. These
measures can be categorized into three classes: 1) subjective, 2)
objective without force/motion sensors, and 3) objective with
force/motion sensors (detailed motion analysis). Most of the
reviewed studies implemented subjective tools for assessing the
balance and motion of participants. However, as explained
earlier, researchers in this area, have recently started to pay
more attention to objective assessment of balance and motion
analysis, especially with the rapidly emerging smart wearable
tools and technologies, which promise a paradigm shift in gait
and balance quantification of various movement pathologies
including stroke (Mohan et al., 2021). With respect to
objective categories, it remains to be determined which class
(i.e., with or without force/motion sensors) could lead to more
accurate fall risk assessment among stroke survivors. Hence,
conducting fall risk assessment studies which includes

measures from all three classes would be of great assistance in
guiding researchers and clinicians in determining the most
appropriate platform for assessing fall risk.

To augment the numerous available tests for assessing balance
and motion in stroke survivors, the effect of the data type
(i.e., subjective or objective) of a given system for capturing
balance/motion data needs to be explored. Table 5 lists studies
which incorporated a detailed balance and motion analysis and
the systems/sensors which they utilized. The results indicate that
IMUs, force plates, and pressure mats were typically implemented
to investigate balance and gait. Force plates were mostly intended
to calculate the location of the center of pressure (COP), as well as
to determine balance-related parameters, such as the range of
trajectory of the COP in different directions during quiet
standing. Due to the fact that force plates typically limit data
collection to a laboratory environment, utilizing wearable IMU
sensors for motion and balance analysis is preferred since these

TABLE 4 | The stability and mobility-related risk factors in the articles.

Article Stability & mobility

Subjective Objective

Without force/motion sensors With force/motion sensors
(detailed motion analysis)

Nyberg and
Gustafson, (1997)

Katz ADL (activities of daily living), Fugl-meyer

Lamb et al. (2003) Balance problems and ADL difficulties while
performing various tasks such as walking, dressing,
and toileting

Olsson et al. (2005) Katz ADL, Fugl-meyer
Mackintosh et al.
(2006)

BBS score Fast gait speed and step test score

Ashburn et al. (2008) BBS score, nottingham extended ADL, Rivermead
upper limb, rivermead total score, rivermead leg and
trunk,rivermead gross function

Mean functional reach

Kerse et al. (2008) Barthel index, FAI score (activity)
Maeda et al. (2009) BBS score
Persson et al. (2011) BBS score, SwePASS 10 MWT, TUG
Simpson et al. (2011) BBS score, ABC: Activity-Specific Balance

Confidence Scale
TUG, 6 MWT

Alemdaroğlu et al.
(2012)

Fugl-Meyer

Blennerhassett et al.
(2012)

Environmental analysis of mobility questionnaire
(EAMQ)

6 MWT, Four Square Step Test (FSST), Step
Test (ST)

Jalayondeja et al.
(2014)

BBS score, Barthel Index Timed up & Go (s), 10-m walk test (m/s): preferred
speed & maximum speed, 2-min walk test

Mansfield et al.
(2015)

Detailed analysis of COP and gait

Pinto et al. (2016) Quality of life (EQ-5D) Timed up and Go quartile
Taylor-Piliae et al.
(2016)

postural transition (PT) duration (in seconds), Gait
speed (meters per second)

Aborted PT attempts (number per day),
Steps (number), Duration of gait (% of
total activity)

Yoshimoto et al.
(2016)

Barthel Index 10-m walking speed (m/s), One-leg standing time
of the affected side (s), One-leg standing time of
the unaffected side (s)

Wei et al. (2017) Gait and balanced detailed parameters
Lee and Jung, (2017) Korean modified barthel index, fugl-meyer

assessment, BBS, functional ambulation category
Postural sway velocity: eye open/closed
firm/soft surface

Persson et al. (2018) SwePASS, Self-perceived impaired postural control
(section 13 BBS), Self-perceived previous physical
activity level was assessed using the Saltin-Grimby
Physical Activity Scale
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sensors can be implemented outside a controlled environment;
indeed, balance assessment using IMU sensors is a well-
established approach (Mancini et al., 2011). The same
techniques could be implemented to evaluate balance in stroke
survivors using IMU sensors, where many potential locations can
be identified for IMU sensor placement while collecting data from
a participant in clinical settings and/or during ADLs.
Accordingly, a recommended future study would involve
identifying the optimal location(s) for IMU senor(s) placement
with which the highest accuracy for fall risk assessment could be
achieved.

Another area within the scope of improvement of fall risk
assessment studies involves the type of tasks during whichmotion
data is collected. Importantly, although the significance ratio for
cognitive impairment as an FRF was found to be 36%, cognitive
factors may have larger impact on fall risk assessment when
physical task performance is also factored in. For instance, dual-
task paradigms are often utilized in fall risk assessment of the
elderly population and patients suffering from multiple sclerosis
(Wajda et al., 2013; Muir-Hunter and Wittwer, 2016; Rydalch
et al., 2019; Rizzo et al., 2021). Likewise, there are many studies on
the effect of cognitive-motor interference on the performance of
stroke survivors (Haggard et al., 2000; Bowen et al., 2001;
Cockburn et al., 2003; Hyndman et al., 2006; Kemper et al.,
2006; Plummer-D’Amato et al., 2008; Dennis et al., 2009;
Plummer-D’Amato et al., 2010; Plummer et al., 2013;
Plummer et al., 2014). Specifically, it has been proven that
when stroke survivors perform a cognitive task while walking,
their gait speed (Bowen et al., 2001; Hyndman et al., 2006;
Plummer-D’Amato et al., 2008), stride length (Hyndman et al.,
2006; Plummer-D’Amato et al., 2008), cadence (Kemper et al.,
2006; Plummer-D’Amato et al., 2008), and stride duration
(Haggard et al., 2000; Cockburn et al., 2003; Plummer-
D’Amato et al., 2008) all decrease. These findings are
significant since most individuals are under some level of
cognitive load while they are performing daily life activities.
For example, remembering directions, listening to music, or
chatting with a friend while walking are common across all
communities and age brackets. Thus, in order to determine a
more accurate fall risk assessment platform among stroke
survivors, it would be best to assess performance using a dual-
task paradigm. Cognitive-motor dual-task implementation would
provide more realistic information about the functionality of
stroke survivors during daily activities. Furthermore, it could
transfer the performance quality of stroke survivors to some
extreme region of difficulty, whereby discriminating between

high fall risk (vs. low fall risk) individuals could be performed
more easily. Such an approach could facilitate the development of
fall risk assessment models with higher accuracy, especially in
comparison to available models in the literature which rely on
single-task paradigms for the functional assessment of stroke
victims. Hence, future studies should prioritize dual-task
paradigms for assessing the risk for falls within the stroke
community.

Several methods could be implemented to execute cognitive-
motor dual-task paradigm. To this end, there will be a physical
task such as walking, TUG test, and balance test tied with a
second task which is mainly to put a cognitive load on the stroke
survivors. The physical task could be selected according to the
objective of the studies. However, to put the cognitive load on the
individuals, there are limited number of methods to be utilized.
Generally, there are five categories of activities to be considered in
dual-task paradigms. The first approach is the n-back tasks in
which the subject is presented with a sequence of stimuli, and the
task consists of indicating when the current stimulus matches the
one from n steps earlier in the sequence (Voelcker-Rehage et al.,
2006; Plummer-D’Amato et al., 2008; Coulacoglou and Saklofske,
2017). The load factor n can be adjusted to make the task more or
less difficult. This method is basically putting the cognitive load
through using working memory. Second method is the auditory
clock which is associated with visuospatial cognition (Plummer-
D’Amato et al., 2008; Kao and Pierro, 2021; Plummer et al., 2021).
In this method, the participant hears a time (e.g., ‘‘two-oh-seven’’)
and are asked to say ‘‘yes’’ if both hands are in a particular half of
the clock and ‘‘no’’ if they are not. The spontaneous speech,
auditory Stroop task, and counting backward are the other classes
of activities to perform cognitive-motor dual-task (Brown and
Marsden, 1991; Plummer-D’Amato et al., 2008). Among these,
the researchers could select one or more of them and conduct the
fall risk assessment study in stroke community. Since, it has not
been investigated in the field of fall risk assessment in stroke
survivors, comparison of the fall risk accuracy while using the
mentioned methods and finding the most adequate method of
implementing cognitive-motor dual-task paradigm could also be
of a great help in the future studies.

There are several limitations in this review and the relevant
literature which need to be improved in the future studies. The
main drawback in the literature is that the studies did not provide
the effect size for their analyses on the FRFs. Due to this gap in the
literature, Xu et al., could not perform any analyses on the FRF
with more than four articles which is a very few sample size to
make a reliable decision based on it (Xu et al., 2018). To address

TABLE 5 | The articles conducted detailed balance and motion analysis and their implemented sensors.

The study The analysis Implemented sensors for
data collection

Mansfield et al. (2015) Detailed analysis of center of pressure and gait Force plate & Pressure mat
Taylor-Piliae et al.
(2016)

Postural transition (PT) duration (in seconds), gait speed (meters per second), aborted PT
attempts (number per day), steps (number), duration of gait (% of total activity)

IMU sensor on chest

Wei et al. (2017) Detailed analysis of center of pressure and gait IMU sensor (location not clarified) & load sensors in
the shoes

Lee and Jung, (2017) Detailed analysis of center of pressure Force plate
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this issue, this review focused on the commonality analysis to
provide a more inclusive insight considering all the articles
including each FRF. However, we did not implement some
data from the articles in the pool of review such as sample
size, the statistical method, accuracy of the assessment, etc.
Hence, having a consistent approach in the future studies on
fall risk assessments in stroke survivors and reporting the effect
size in a proper format would help the field to get a better and
accurate understanding about the impact of various FRFs by
providing an inclusive/reliable meta-analysis based on a rich pool
of articles in the literature.

There is a significant benefit in providing a review on the
statistical methods implemented to analyze the FRFs in the
literature. So far, the reviews on the FRFs have been focused on
the outcome of the statistical analyses. However, a review of
the implemented statistical methods in the studies could help
the researchers to compare and select the adequate statistical
methods for their analyses. Furthermore, this type of study
could investigate the effects of using various statistical
approaches/models on the outcome of the fall risk
assessment. Such a review study on the methods could be
considered as a potential next phase for this systematic review.
To this end, a preliminary review was conducted on the articles
involved in this review and the statistical methods were
summarized in Figure 2. The results of this preliminary
review showed that in general, there were six statistical
methods implemented in the articles to analyze the effects
of each FRF on fall risk. Depending on the type of the analysis
and the risk factor, researchers have selected their own set of
statistical tools/methods to evaluate the impact of the FRFs on
fall risk level. In the next step, in some of the studies, a fall risk
assessment model was developed based on the significant FRFs
utilizing either multivariable Cox (proportional hazards)
regression (e.g., (Foster et al., 2018; Persson et al., 2018)) or
logistic regression (e.g., (Lamb et al., 2003; Yoshimoto et al.,
2016)). Recently, machine learning approaches such as
support vector machine (SVM), multi-layer perceptron
(MLP), random forest, decision tree, naïve Bayes, and
boosted tree are showing promising results in classifying

faller and non-fallers in community dwelling older people
(Qiu et al., 2018). Hence, it is highly recommended to
explore the capability of these tools to develop fall risk
assessment models in stroke community.

According to the results of this review, motion analysis
demonstrates a high capability for identifying those at risk for
falling. However, obtaining accurate and timely patient
information (especially from patients with impaired
mobility) is a critical issue which needs to be addressed in
future studies. Recent advancements in wearable tools and
smartphone technologies, as well as in computational
platforms, big data mining and artificial intelligence, have
certainly improved options for monitoring and evaluating
patients, where several literature reports describe the
successful implementation of smartphone motion data to
categorize physical status attributes, such as balance or
fatigue level (Hou et al., 2018; Karvekar et al., 2020).
Similarly, if researchers can validate the capability of a
single IMU sensor in fall risk assessment with high
accuracy, the developed model could be utilized as a
smartphone application. Such an application would reduce
the need for clinical visits and provide real-time continuous
fall risk assessment data during ADL to clinicians, while
engaging patients in self-monitoring and rehabilitation.

5 CONCLUSION

This study presented a systematic review of 27 published
papers on fall risk factors and fall risk assessment post stroke,
with findings indicating that balance and motion-related
measures constitute the most common and significant
factors for this at-risk population. Further analysis of these
studies demonstrated a clear paradigm shift from using
traditional subjective tools to more quantitative objective
approaches for assessing balance and motion deficits. Due
to the relevance of these two factors in fall risk identification,
it is recommended that further studies are needed to
investigate an optimal combination of balance/motion

FIGURE 2 | The general path of fall risk assessment studies in stroke survivors with a focus on implemented statistical analysis methods.
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assessment tools and protocols for investigating the fall risk
for stroke survivors. Considering the accessibility and low
cost of high performance IMU sensors, IMU-based analysis,
along with other smart sensors, is suggested for capturing
motion and balance dynamics. Furthermore, cognitive-motor
dual-task studies are highly recommended for future
implementation on fall risk assessment of stroke patients
for more realistic outcomes. Given the multiple challenges
that stroke sufferers face and the critical importance of
avoiding additional physical and emotional harm resulting
from falls, research targeting the development of advanced
fall risk assessment models should be prioritized.
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Baseline robot-measured
kinematic metrics predict
discharge rehabilitation
outcomes in individuals with
subacute stroke
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Daniele Galafate1, Matteo Cioeta1, Domenica Le Pera1,
Federico Posteraro4 and Marco Franceschini1,3
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Background: The literature on upper limb robot-assisted therapy showed that

robot-measured metrics can simultaneously predict registered clinical

outcomes. However, only a limited number of studies correlated pre-

treatment kinematics with discharge motor recovery. Given the importance

of predicting rehabilitation outcomes for optimizing physical therapy, a

predictive model for motor recovery that incorporates multidirectional

indicators of a patient’s upper limb abilities is needed.

Objective: The aim of this study was to develop a predictive model for

rehabilitation outcome at discharge (i.e., muscle strength assessed by the

Motricity Index of the affected upper limb) based on multidirectional 2D

robot-measured kinematics.

Methods: Re-analysis of data from 66 subjects with subacute stroke who

underwent upper limb robot-assisted therapy with an end-effector robot

was performed. Two least squares error multiple linear regression models

for outcome prediction were developed and differ in terms of validation

procedure: the Split Sample Validation (SSV) model and the Leave-One-Out

Cross-Validation (LOOCV) model. In both models, the outputs were the

discharge Motricity Index of the affected upper limb and its sub-items

assessing elbow flexion and shoulder abduction, while the inputs were the

admission robot-measured metrics.

Results: The extracted robot-measured features explained the 54% and 71% of

the variance in clinical scores at discharge in the SSV and LOOCV validation

procedures respectively. Normalized errors ranged from 22% to 35% in the SSV

models and from 20% to 24% in the LOOCV models. In all models, the

movement path error of the trajectories characterized by elbow flexion and

shoulder extension was the significant predictor, and all correlations were

significant.
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Conclusion: This study highlights that motor patterns assessed with

multidirectional 2D robot-measured metrics are able to predict clinical

evalutation of upper limb muscle strength and may be useful for clinicians

to assess, manage, and program a more specific and appropriate rehabilitation

in subacute stroke patients.

KEYWORDS

robot-assisted therapy, stroke, motor recovery, upper extremity, kinematics,
biomarkers, predictors

Introduction

Most stroke survivors experience upper limb motor

impairments that negatively influence Activities of Daily

Living (ADL) (Nichols-Larsen et al., 2005). Over the past two

decades, robotic devices have been shown to provide intensive

and highly repeatable therapy, enrich the sensorimotor

experience, and offer customizable and repeatable support

during treatment (Mehrholz et al., 2018; Morone et al., 2020;

Gandolfi et al., 2021). In particular, Mehrholz et al. evidenced the

efficacy of upper limb Robot-assisted Therapy (ulRT) in

improving ADL, arm function, and arm muscle strength

(Mehrholz et al., 2018) in stroke patients.

Recently, robots have been recognised not only as a

rehabilitation device but also as a measurement tool,

suggesting that they can provide a standardized and objective

measure of a patient’s motor control and improve research

knowledge on treatment effects and stroke recovery

(Agrafiotis et al., 2021). In this regard, studies on ulRT have

analyzed the Robot-Measured Kinematic (RMK) data to assess

ulRT-induced biomechanical changes and patient progress over

time (Dipietro et al., 2011; Balasubramanian et al., 2012; Panarese

et al., 2012; Mazzoleni et al., 2013; Tran et al., 2018; Goffredo

et al., 2019). Furthermore, RMK data have also been shown to be

able to capture relevant aspects of goal-directed movements that

may reveal pathological motor synergies in stroke survivors

(Dipietro et al., 2011; Panarese et al., 2012; Goffredo et al.,

2019). RMK metrics were also found to correlate with motor

impairment as measured by Fugl-Meyer upper limb assessment

(Colombo et al., 2005; Duret et al., 2016) and to be representative

of pathological motor synergies when different directions of

movement were analyzed (Panarese et al., 2012; Goffredo

et al., 2019). The latter is in accordance with the kinematic

approach to identify how the central nervous system represents

and implements the motor control strategies necessary to obtain

the movements in stroke patients (Micera et al., 2005). RMK data

were also processed to predict the clinical assessment outcomes

(Krebs et al., 2014; Duret et al., 2019; Agrafiotis et al., 2021;

Goffredo et al., 2021; Grimm et al., 2021; Moretti et al., 2021),

considering the importance of biomarkers of neurorehabilitation

outcomes for evidence-based practice (Langhorne et al., 2009;

Scott and &Dukelow, 2011; Duret et al., 2015; Franceschini et al.,

2018). In this context, the Predict REcovery Potential (PREP2)

tool is the predominant predictor of upper limb functional

outcomes from clinical assessment, Magnetic Resonance

Imaging (MRI) and Transcranial Magnetic Stimulation (TMS)

biomarkers, with an impact on rehabilitation planning and

realistic treatment goal setting (Stinear et al., 2017). Although

PREP2 predicts correctly approximately 70% of patients, the

major limitation is that TMS is not readily available in many

clinical settings (Connell et al., 2021). Therefore, in rehabilitation

hospitals equipped with robots for ulRT, an alternative,

ecological robot-based method to predict rehabilitation

outcome could be the analysis of RMK data at baseline.

However, to the best of our knowledge there is no evidence in

literature on the RMK-based predictors of clinical outcomes at

discharge that account for motor synergies at baseline.

Considering the importance of quantitative indicators of

upper limb function, Krebs et al. and Moretti et al. found that

RMK metrics from a 2D robot can be biomarkers of clinical

outcomes registered on the same day (Krebs et al., 2014; Moretti

et al., 2021). Their findings were consistent with those of Grimm

et al. who analyzed exoskeleton-based kinematics (Grimm et al.,

2021). On the other hand, Agrafiotis et al., developed RMK-based

models of clinical outcomes with the aim of removing inter- and

intra-rater variability and reducing the sample size in stroke

clinical trials (Agrafiotis et al., 2021). To our knowledge, only

Duret et al. predicted upper limb recovery at the end of ulRT

(Duret et al., 2019). They found that selected RMK parameters,

calculated from the total end-effector trajectory did not predict

the upper limb Fugl-Meyer Assessment. In our previous paper

(Goffredo et al., 2021), we analyzed RMKmetrics calculated from

reaching movements with different directions. Specifically, the

movement path error, the mean movement speed, and the

number of speed peaks of each point-to-point trajectory were

analyzed. Then, a generalized linear analysis was applied to

estimate the relationships between the RMK measures at

baseline and the (clinical and RMK) data at the end of ulRT,

considering each direction of movement separately. The analysis

revealed that a subset of the RMKmetrics was correlated with the

probability of rising one class in the Motricity Index at the end of

ulRT. Our multidirectional 2D analysis of RMK metrics showed

that pre-treatment kinematic data are representative of

pathological motor synergies in stroke survivors, i.e., the

ability to perform movements of shoulder (ab-adduction,

internal and external rotation) and elbow (flexion-extension)
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is representative of flexor synergy in stroke patients (Goffredo

et al., 2021). However, despite the importance of predicting

rehabilitation outcomes for clinician decision-making and

treatment optimization, there is a paucity of literature on

post-ulRT rehabilitation outcomes based on patients’ upper

limb abilities and motor synergies at baseline.

The aim of this study is to re-analyze the retrospective data from

our previous study to develop a multidirectional 2D RMK-based

predictive model for rehabilitation outcome (i.e., muscle strength

assessed by theMotricity Index of the affected upper limb) at the end

of ulRT. Potential predictors included patient demographics, stroke

characteristics, and pre-treatment RMK metrics calculated

considering upper limb movements which are representative of

the stroke flexor synergy. In order to reliably predict the discharge

rehabilitation outcome, we compared two least squares error

multiple linear regression models that differ in terms of the

output validation procedure.

Materials and methods

This is a re-analysis of data acquired and processed by the

IRCCS San Raffaele Roma (Rome, Italy) in an observational

retrospective study (Ethical approval no. 06/17; 22/02/2017) on

stroke inpatients who underwent ulRT in addition to the

conventional therapy (Goffredo et al., 2021).

Patients and treatments

Sixty-six stroke patients whowere trained for 20 sessions (5 times/

week; 45min per session) with the In Motion 2 robot (Bionik

Laboratories, Watertown, MA, United States), were included in the

study. The persons were inpatients admitted to the IRCCS San

Raffaele Roma (Rome, Italy) between January 2011 and December

2017who satisfied the following inclusion criteria: age between 18 and

80 years; first event of unilateral hemiparetic stroke; subacute phase

(RT started within 30 ± 7 days post stroke); upper limb Chedoke-

McMaster scores between 2 and 5; Motricity Index affected upper

limb<100; ulRT for 20 sessions. Subjects were excluded from the study

if they had bilateral impairment; chronic phase; ulRT for less than

20 sessions; interruption of the ulRT for more than three consecutive

days; presence of other severe medical conditions; incomplete data in

the database.More detailed information on the ulRT conducted by the

patients is available in the previous papers of the authors (Goffredo

et al., 2019; Goffredo et al., 2021).

Data collection and feature extraction

The following demographic and clinical data have been

collected at baseline: age, gender, affected side, stroke onset

time, and etiology. Moreover, the following clinical outcomes

were recorded before (T1) and after (T2) the ulRT: Motricity

Index of the affected Upper Limb (MIUL) (Bohannon, 1999),

Motricity Index sub-item assessing the elbow flexion (MIELBOW),

and Motricity Index sub-item assessing the shoulder abduction

(MISHOULDER). TheMIUL is a discrete scale measuring themuscle

strength of the paretic upper extremity. Three actions were

separately assessed: pinch grasp, elbow flexion, and shoulder

abduction. Each action was scored (0–33) with a MI sub-item

composed of six classes, as defined by Wade (Wade, 1989). The

total upper extremity score (MIUL) was calculated by adding one

to the sum of the three sub-items (maximum possible score =

100). The MI sub-item related to the pinch grip was not

considered in this study because the InMotion2-based ulRT

typically involves the elbow and shoulder joints.

The RMK metrics were calculated from the trajectories

(200 Hz) recorded by the robot, considering each movement

direction separately (Goffredo et al., 2021). Figure 1 shows the

reference system (coinciding with the lesion side) used to

calculate the RMK metrics. Considering the results of our

previous analysis of kinematic biomarkers for upper-limb

motor recovery (Goffredo et al., 2021), we extracted the

features that were correlated with muscle strength at

discharge, i.e.: Movement Path Error direction A (MPEA),

direction C (MPEC), and direction D (MPED); and mean

Movement Speed direction B (MSB).

The MPE is a measure of accuracy (the value is 0 if the trajectory

lies exactly on a straight line connecting the initial and the final target):

it is computed as themean value of the distance between each point of

the actual path travelled by the subject from the ideal one (i.e., the

straight line connecting the central target and the peripheral one).

Since the considered peripheral targets are along the x and y axes, the

MPE computation is the following:

MPE �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
N

∑
N

k�1

∣∣∣∣y[k]∣∣∣∣ directionD

1
N

∑
N

k�1
|x[k]| directions A andC

(1)

where N is the number of samples for each trajectory, identified

by the coordinates x[k] and y[k] in the xy plane. TheMS has been

computed from the discrete-time velocity signals vx[k] and vy[k]

along the x and y axes, respectively as the mean value of the

resultant velocities in the xy plane:

MS � 1
N

∑
N

k�1

����������������
(vx[k])2 + (vy[k])2

√
(2)

All RMK metrics were recorded at T1 and showed good

test-retest reliability (Koeppel and Pila, 2020). Prior to

modeling, age, stroke onset time, and RMK metrics have

been standardized by subtracting the mean and scaling to

unit variance. Figure 1 includes the list of features used for

model development.
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Statistical analysis and predictive models

All statistical analyses were performed using the R statistical

package system v. 4.2.0 (R Foundation for Statistical Computing,

Austria). A significance level of 5% (p-value ≤ 0.05) was assumed.

Demographic and clinical data were reported with frequencies

and percentages if they were categorical variables, while

continuous variables were expressed with mean and standard

deviation, median, and interquartile range.

The study compared two types of outcome prediction models

that differed in terms of the validation procedure. The first model

was the least squares error multiple linear regression model with

the Split Sample Validation procedure (SSV model). The second

model was the least squares error multiple linear regression with

the Leave-One-Out Cross-Validation procedure (LOOCV

model). In both models, the outputs were MIELBOW (T2),

MISHOULDER (T2), and MIUL (T2) discharge scores (adjusted

for age, sex, stroke onset time, and clinical assessment scores

admission), whereas the inputs were the RMK metrics at

admission.

For the SSV models, 75% of the data were randomly

separated for model training, whereas the remaining 25%

were set aside for model validation (Bosecker et al., 2010).

The Chi-square test for categorical variables, and ANalysis Of

VAriance (ANOVA) for continuous variables when normally

distributed, and otherwise Mann Whitney test, confirmed that

the training and validation data sets were not significantly

different. Moreover, the data set was randomly divided into

four groups (25% data each), and the Kruskal Wallis test

(Bonferroni’s correction) confirmed that there was no

significant difference (p-value>0.05) between any combination

of these groups in training and validation sets.

For the LOOCV models, one of the 66 records was removed,

and the remaining were used to build the model. The resulting

model was then used to make predictions about the record set

aside (Bishop, 1995). This was repeated for each of the 66 cases.

Each prediction model was described by the percentage of

variance explained (R2), the adjusted R2 (Radj
2), the Mean

Absolute Error (MAE), Root Means Squared Error (RMSE),

and normalized RMSE (RMSEn). The normalized MAE

(MAEn) was calculated to compare the performance of the

model for the different dependent variables.

Results were assessed by correlation between therapist-

assigned values and corrected predicted values (Spearman’s

rank correlation coefficient, r, and associated p values). Since

theMIUL is a discrete variable, each predicted value was corrected

using a nearest neighbor procedure by assigning the score with

the minimum Euclidean distance from the valid scores.

Results were assessed by correlation between therapist-

assigned scores and corrected predicted scores (Spearman’s

rank correlation coefficient, r, and associated p-values). The

strength of the correlations calculated in the analyses was

interpreted as follows; |r|=0–0.3 very weak, |r|=0.31–0.5 weak,

|r|=0.51–0.7 moderate, and |r|=0.71–1.0 strong (Moore et al., 2013).

Ethical considerations

Since March 2012, the Italian Data Protection Authority

(Garante per la protezione dei dati personali) declared that

IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico -

Institute for scientific research and healthcare) is authorized to

perform retrospective studies without the approval of the local

Ethical Committee, and mandatory formal communication is

FIGURE 1
Experimental setup, reference system in case of right (I) or left (II) affected limb, and description of the features considered for the models’
development.
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sufficient. Such communication relative to this study was

registered by the Ethical Committee of the IRCCS San

Raffaele Roma (Rome, Italy) on 22/02/2017 (code number:

06/17).

Results

In this study, we compared outcome predictors obtained by

two modeling procedures differing from one another by output

validation.

Split sample validation models

Table 1 shows the patient’s demographics and clinical

characteristics at baseline: data are shown for all recruited

subjects, training set, and validation set separately. No

significant differences (p-value>0.05) were registered between

the training and the validation sets.

Predictive models for muscle strength at T2 of each clinical

outcome were developed using the least squares error multiple

linear regression on the training set. In all models, the movement

path errors in the C (MPEC) and D (MPED) directions were

significant predictors (p-value<0.05). Specifically, MPEC
provided larger contribution (MIELBOW: β = −5.16;

MISHOULDER: β = −5.02; MIUL: β = −13.52) than MPED
(MIELBOW: β = 3.37; MISHOULDER: β = 3.37; MIUL: β = 8.26).

The training and validation results of the SSV models for

estimating the MIELBOW (T2), MISHOULDER (T2), and MIUL (T2)

are shown in Table 2. All correlations were significant at p-value <
0.05. The residual plots had no significant patterns, indicating that

no underlying trends in the data were missed and that the model

was fit. The MIELBOW registered a moderate correlation in the

training set (R2 = 0.683), but a weak one in the validation set (R2 =

0.481). This decrease is more remarkable in MISHOULDER, which is

characterized by an R2 of 0.640 in the training set and a very weak

level of correlation in the validation one (R2 = 0.200). The MIUL
showed the highest R2 value in both datasets. The resulting models

explained 64%–76% of the variance in discharge scores, in the

training set. For predicting the clinical outcomes of a patient in the

validation set, the average error was 6.098 points for the MIELBOW
model (range 0–33), 8.357 points for the MISHOULDER model

(range 0–33), and 17.265 points for theMIULmodel (range 1–100).

To illustrate the MI score predictions, the actual score of each

patient was plotted together with the predictions generated by the

models (Figure 2). The correlation between the therapist-assigned

scores and predicted scores was moderate for MIELBOW (r = 0.794;

p-value < 0.001) andMISHOULDER (r = 0.627; p-value < 0.001), and

strong for MIUL (r = 0.839; p-value < 0.001).

Leave-one-out cross-validation models

The following LOOCV predictive models of discharge

MIELBOW, MISHOULDER, and MIUL were obtained:

M̂IELBOW(T2) � 12.99 − 4.89 ·MPEC(T1) (3)
M̂ISHOULDER(T2) � 13.70 − 4.26 ·MPEC(T1) (4)

M̂IUL(T2) � 32.50 − 11.99 ·MPEC(T1) (5)

The generalizability of each model was evaluated by testing

its ability to predict scores of patients who were not involved in

the development of the model (Table 3). In all models, the MPEC
(i.e., the error of the trajectory towards the body) was the

significant predictor, and all correlations were significant

(p-value<0.05). The residual plots did not have any significant

correlations. The resulting models explained 46.4%–67.6% of the

variance in discharge scores, and the normalized RMSE ranged

from 17% to 22%.

Figure 3 depicts the actually measured score with the

predicted ones generated by the models. The correlation

coefficients between the therapist-assigned scores and the

model’s output evidences a significant correlation in all

TABLE 1 Sample characteristics at baseline (T1).

All data (n = 66) Training set (n = 50) Validation set (n = 16)

Age (years) 64.97 ± 12.75 64.84 ± 13.55 65.38 ± 10.26

Sex, male/female 44 (66.7%)/22 (33.3%) 32 (64.0%)/18 (36.0%) 12 (75.0%)/4 (25.0%)

Side, right/left 39 (59.1%)/27 (40.9%) 27 (54.0%)/23 (46.0%) 12 (75.0%)/4 (25.0%)

Stroke onset time (days) 15.27 ± 18.07 12.88 ± 7.97 22.75 ± 33.59

Etiology, ischemic/hemorrhagic 47 (71.2%)/19 (28.8%) 34 (68.0%)/16 (32.0%) 13 (81.3%)/3 (18.8%)

MIELBOW(T1) 14.0 (9.0–19.0) 14.0 (9.0–19.0) 16.5 (2.25–25.0)

MISHOULDER(T1) 14.0 (9.0–19.0) 14.0 (9.0–19.0) 16.5 (2.25–25.0)

MIUL(T1) 42.0 (19.0–62.0) 40.5 (19.0–58.75) 50.5 (8.25–76.0)

Data are shown as N (%), mean ± SD, or median (IQR). Motricity Index affected elbow flexion (MIELBOW); Motricity Index affected shoulder abduction (MISHOULDER); Motricity Index

affected Upper Limb (MIUL); before ulRT (T1).
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outcomes: MIELBOW (r = 0.747; p-value < 0.001), MISHOULDER

(r = 0.653; p-value < 0.001), and MIUL (r = 0.813; p-value <
0.001).

Discussion

Predicting rehabilitation outcomes based on pre-treatment

characteristics would be of great benefit to clinicians in setting

realistic rehabilitation goals, personalizing treatment activities,

and supporting patient discharge in an appropriate setting

(Stinear et al., 2017). In the present article, we examined the

predictive abilities of two types of multiple linear regression

models to reliably predict the rehabilitation outcome at discharge

using RMK-based features. Specifically, both SSV and LOOCV

validation procedures were considered. Since the ability to

perform point-to-point reaching movements in different

directions is considered in the literature to be representative

of different synergies involved in the performance of reaching

tasks (Panarese et al., 2012; Goffredo et al., 2019), pre-treatment

RMK metrics were considered as predictive features for

rehabilitation outcomes at discharge in the models developed

in this study, with each direction of movement assessed

separately.

The procedure consisted of a re-analysis of 66 inpatients with

subacute stroke who were included in a 4-week ulRT and whose

data had been examined in our previous studies with different

aims (Goffredo et al., 2019; Goffredo et al., 2021). In particular, in

Goffredo et al. (Goffredo et al., 2021), a relationship was found

between RMK measures at baseline and (clinical and RMK) data

at the end of ulRT, considering each direction of movement

separately (Goffredo et al., 2021), and revealing that a subset of

kinematic parameters was correlated with the probability of

rising one class in the Motricity Indexes (when considered as

TABLE 2 SSV predictive models for the clinical outcomes (MIELBOW, MISHOULDER, MIUL) at the end of ulRT (T2). Results of the training and validation sets
are depicted separately.

SSV models

Training set (n = 50) Validation set (n = 16)

RMSE RMSEn (%) R2 (Radj
2 ) MAE (MAEn) RMSE RMSEn (%) R2 (Radj

2 ) MAE (MAEn)

MIELBOW(T2) 5.547 17 0.683 (0.622) 4.234 (18%) 8.186 25 0.481 (0.35) 6.098 (24%)

MISHOULDER(T2) 5.294 16 0.640 (0.570) 4.372 (19%) 11.588 35 0.200 (0.14) 8.357 (35%)

MIUL(T2) 13.859 14 0.765 (0.719) 10.400 (15%) 21.650 21.8 0.628 (0.54) 17.265 (24%)

Motricity Index affected elbow flexion (MIELBOW); Motricity Index affected shoulder abduction (MISHOULDER); Motricity Index affected Upper Limb (MIUL); Root Mean Square Error

(RMSE); normalized Root Mean Square Error (RMSEn);percentage of variance explained (R2); adjusted percentage of variance explained (Radj
2); Mean Absolute Error (MAE); normalized

Mean Absolute Error (MAEn); after ulRT (T2).

FIGURE 2
Scatter plot of MI scores prediction with SSV models. Each patient’s actual score was plotted together with the predictions generated by the
models. Training and validation sets are depicted separately. The results of a linear polynomial fitting are also shown.
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categorical variables). In contrast, in the present study, we

developed models to predict Motricity Indexes at discharge

from selected RMK features and found that the SSV and

LOOCV validation procedures explained 54% and 71% of the

variance in clinical scores at discharge respectively. Normalized

errors ranged from 22% to 35% in the SSVmodels, and from 20%

to 24% in the LOOCV ones.

Our findings are in agreement with the studies of Agrafiotis

et al. (Agrafiotis et al., 2021) and Moretti et al. (Moretti et al.,

2021), although they analyzed chronic stroke patients. Both

studies found a significant correlation between RMK metrics

and clinical outcomes (upper limb Fugl-Meyer Assessment

(Agrafiotis et al., 2021; Moretti et al., 2021), Motor Power

(Agrafiotis et al., 2021), NIH stroke scale (Agrafiotis et al.,

2021), modified Rankin scale (Agrafiotis et al., 2021), Wolf

Motor Function Test (Moretti et al., 2021), Barthel Index

(Moretti et al., 2021), and Medical Research Council score

(Moretti et al., 2021) demonstrating that traditional stroke

assessment scales can be accurately reproduced by robotic

measurements. The outcomes of these studies pave the way

for the use of RMK data to reduce the sample size needed for

future clinical trials on chronic stroke patients (Agrafiotis et al.,

2021) and to objectively, quantitatively, and rapidly assess

impairments in body function (Moretti et al., 2021). However,

most published studies on this topic examined the relationships

between technology-based metrics and clinical assessment

outcomes measured close in time (e.g., concurrently) (Krebs

et al., 2014; Grimm et al., 2021; Olesh et al., 2014; Wang

et al., 1109). Conversely, our findings showed that baseline

data collected from a rehabilitation robotic device are able to

predict clinical outcomes at discharge with statistically significant

accuracy. Mostafavi et al. (Mostafavi et al., 2013) showed results

similar to ours although the RMK metrics derived from an

exoskeleton robot and the predicted rehabilitation outcome at

discharge was an overall measure of disability in ADL (i.e., the

Functional Independence Measure).

FIGURE 3
Scatter plot of MI scores prediction with LOOCVmodels. Each patient’s actual score was plotted together with the predictions generated by the
models. The results of a linear polynomial fitting are also shown.

TABLE 3 Results from the predictive models for the discharge clinical outcomes (MIELBOW, MISHOULDER, MIUL)by applying the Leave-One-Out Cross-
Validation (LOOCV) procedure.

LOOCV models

RMSE RMSEn (%) R2 (Radj
2 ) MAE (MAEn)

MIELBOW(T2) 6.768 20 0.676 (0.631) 5.165 (22%)

MISHOULDER(T2) 7.177 22 0.600 (0.545) 5.680 (24%)

MIUL(T2) 17.103 17 0.753 (0.719) 13.487 (20%)

The “new patients”MAE is the averaged error across all left-out subjects during the LOOCV procedure. Abbreviations:Motricity Index affected elbow flexion (MIELBOW); Motricity Index

affected shoulder abduction (MISHOULDER); Motricity Index affected Upper Limb (MIUL); Root Mean Square Error (RMSE); normalized Root Mean Square Error (RMSEn);percentage of

variance explained (R2); adjusted percentage of variance explained (Radj
2); Mean Absolute Error (MAE); normalized Mean Absolute Error (MAEn); after ulRT (T2).
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Data analysis showed that the significant features for

predicting the discharge Motricity Indexes were the errors of

the trajectories towards the body, which were strongly influenced

by the typical postural patterns of the upper extremity after

stroke (Raghavan, 2015): the trajectory towards the body is

performed by flexing the elbow and extending the shoulder

and is representative of upper limb spastic co-contraction

(Bensmail et al., 2010) and the typical pathological flexor

strategy of stroke survivors (Hefter et al., 2012; McMorland

et al., 2015). In our analysis, the error of the trajectory

towards the body was a significant predictor in both SSV and

LOOCV models, showing that the less accurate and controlled

the trajectory towards the pathological patterns is, the smaller

muscle strength, assessed with the Motricity Index, is at the end

of the ulRT. Our findings agree partly with Gialanella & Santoro

(Gialanella and Santoro, 2015), who showed that at the end of

rehabilitation, the motor score of the functional independence

measure was lower in patients having at admission, the only

flexor synergy of the affected limbs. Similarly, the systematic

review by Coupar et al. (Coupar et al., 2012) found strong

evidence that less impairment at baseline is associated with

better upper limb recovery. Conversely, the outcomes of our

model are not in accordance with Welmer et al. (Welmer et al.,

2006) who found that stroke patients with typical pathological

synergies had significantly better functioning scores.

In our previous analysis of the data (Goffredo et al., 2021), the

error of the trajectory towards the body negatively affects the

probability of increasing one class in the discharge Motricity

Indexes. However, in the re-analysis of data with least squares

multiple linear regression, we found that the error of the

trajectory towards the body was a significant predictor of

Motricity Indexes, which strongly correlate (r > 0.8 for the

MIUL) with the therapist-assigned ones (Figures 2, 3). The

comparison between the SSV and the LOOCV models showed

that the error of the trajectory towards the body was a significant

predictor in bothmodels, whereas the samemetric towards target

D appeared in the SSV models.

In the literature, the most widely recognized predictor of

upper limb functional outcome is the PREP2 tool (Stinear et al.,

2017; Connell et al., 2021), which is based on clinical, MRI, and

TMS biomarkers. Despite its high accuracy, the major

characteristic of PREP2 is that TMS is not readily available in

many clinical settings. Therefore, in rehabilitation hospitals

equipped with robots for ulRT, our ecological, quantitative,

objective analysis of baseline RMK data could be a valuable

alternative to predict the rehabilitation outcome. Furthermore,

since RMK metrics are representative of the ability to perform

goal-directed movements, RMK biomarkers are able to predict

rehabilitation outcomes according to the motor synergies at the

baseline.

This study has the following limitations due to its

retrospective design: a limited number of subjects; lack of an

ICF-based assessment (considering body function, activity, and

participation); and lack of RMK data from able-bodied subjects.

Considering the SSV models, the training and validation datasets

differed with respect to the time of stroke onset: although no

statistical significance was found between groups (p-value>0.05),
it may have influenced the presence of stereotypic movement

synergies. Although the analysis normalized the time of stroke

onset before modelling, future studies with a more homogeneous

sample of patients would be interesting. The limitation of the

study in terms of database size can be partially overcome

considering that LOOCV models are more reliable and

unbiased than SSV ones (Bishop, 1995) and seem particularly

suitable when the dataset is small and an accurate estimation of

model performance is required. In addition, the LOOCV models

confirmed the outcomes of the SSV procedure with a correlation

of up to R2 = 0.753 (RMSEn = 17%). However, the future research

agenda should consider large longitudinal studies including

different categories of robots for upper limb rehabilitation

(Gandolfi et al., 2021), evaluating the patients with an ICF-

based assessment, and comparing the outcomes with a control

group composed of able-bodied subjects.

Nevertheless, the study highlights that in stroke ulRT, the

motor patterns assessed with RMK metrics strongly relate to

discharge rehabilitation outcome and that the accuracy in

performing elbow flexion movement is a significant predictor

of outcome. The developed models, thus, are able to predict the

clinical assessment of upper limb muscle strength and can be

useful to clinicians to assess, manage, and program a more

specific and appropriate rehabilitation in subacute stroke

patients.

Conclusion

Multidirectional 2D RMK-based predictive models were

developed and validated for discharge rehabilitation outcomes

in sixty-six subacute stroke patients who performed ulRT with a

planar end-effector robot. Accuracy in performing elbow flexion

and shoulder extension movements was found to be a significant

predictor of muscle strength at the end of ulRT: patients with a

pathological upper limb flexor strategy were less likely to increase

muscle strength at discharge.

Since the potential recovery of motor function depends on

the synergies that occur after stroke, quantitative and measurable

knowledge of upper limb function before initiation of physical

therapy could be useful for an accurate and individualized

prognosis, allowing more realistic expectations for recovery

and helping to set realistic goals with a personalized

rehabilitation program. In this respect, the results of this

study suggest that subacute stroke patients with a marked

flexor strategy tend to have a worse rehabilitation outcome at

discharge: in these cases, physical therapy should focus on

developing beneficial health synergies and avoid reinforcing

pathological patterns.
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Introduction: The use of virtual reality (VR) technology in training and rehabilitation
gained increasing attention in recent years due to its potential to provide immersive
and interactive experiences. We developed a novel VR-based balance training, VR-
skateboarding, for improving balance. It is important to investigate the
biomechanical aspects of this training, as it would have benefited both health
professionals and software engineers.

Aims: This study aimed to compare the biomechanical characteristics of VR-
skateboarding with those of walking.

Materials and Methods: Twenty young participants (10 males and 10 females) were
recruited. Participants underwent VR-skateboarding and walking at the comfortable
walking speed, with the treadmill set at the same speed for both tasks. The motion
capture system and electromyography were used to determine joint kinematics and
muscle activity of the trunk and legs, respectively. The force platform was also used
to collect the ground reaction force.

Results: Participants demonstrated increased trunk flexion angles and muscle
activity of trunk extensor during VR-skateboarding than during walking (p < 0.01).
For the supporting leg, participants’ joint angles of hip flexion and ankle dorsiflexion,
as well as muscle activity of knee extensor, were higher during VR-skateboarding
than during walking (p < 0.01). For the moving leg, only hip flexion increased in VR-
skateboarding when compared to walking (p < 0.01). Furthermore, participants
increased weight distribution in the supporting leg during VR-skateboarding
(p < 0.01).

Conclusion: VR-skateboarding is a novel VR-based balance training that has been
found to improve balance through increased trunk and hip flexion, facilitated knee
extensormuscles, and increasedweight distribution on the supporting leg compared
to walking. These differences in biomechanical characteristics have potential clinical
implications for both health professionals and software engineers. Health
professionals may consider incorporating VR-skateboarding into training
protocols to improve balance, while software engineers may use this information
to design new features in VR systems. Our study suggests that the impact of VR-
skateboarding particularly manifest when focusing on the supporting leg.
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Introduction

Virtual reality (VR) technology allows users to interact with
computer-generated environments in a simulated environment
(Cipresso et al., 2018). In healthcare, VR has been used as a tool
for rehabilitation and training, with the potential to improve motor
function, cognitive function, and psychological wellbeing in
individuals with various conditions, such as stroke, low back
pain, and Parkinson’s disease (Lheureux et al., 2020; Liang et al.,
2022; Yalfani et al., 2022). The immersive nature of VR can increase
adherence and motivation to training programs and lead to
improved outcomes (Moon et al., 2021; Recenti et al., 2021).
Moreover, VR can be used for sensory integration exercise as it
engages multiple senses, including vestibular, vision, and
proprioception, simultaneously (Yen et al., 2011). Thus, studies
have found that VR-based training can be effective in improving
motor function, balance, and mobility in individuals who have had
a stroke, as well as cognitive function in those with brain injury and
other neurological conditions (Kumar et al., 2018; Chen et al.,
2021). VR-based training has also been shown to have positive
effects on psychological well-being, such as reducing anxiety and
depression in individuals with chronic pain (Rawlins et al., 2021).
Therefore, VR-based training has the potential to enhance the
effectiveness of various interventions in healthcare.

Exergames, also known as exercise games, are interactive
technology-based physical activities that are designed to provide
an enjoyable and engaging way to get physically active (Sween et al.,
2014). Exergames have gained popularity in recent years,
particularly among older adults or individuals with chronic
conditions, as a way to promote physical activity and improve
physical fitness (Sween et al., 2014; Moret et al., 2022). Exergames
can involve a wide range of physical activities, from dancing and
jumping to moving arms and using other body movements to
control the game (Asín-Prieto et al., 2020; Lopes et al., 2020).
Research has shown that regular participation in exergames can
improve coordination, balance, and other physical fitness
measures, as well as reduce stress and improve mental health
outcomes such as mood and cognitive function (Sween et al.,
2014; Moret et al., 2022). Exergames can be played on video
game consoles, smartphones, and VR head-mounted displays,
and are suitable for people of all ages and fitness levels (Asín-
Prieto et al., 2020). The evidence on the effects of exergames on
health outcomes is mixed, overall, they suggest that exergames can
be a useful tool for promoting physical activity and improving
physical and mental health.

Unilateral leg training is a type of exercise that focuses on
strengthening and conditioning one leg at a time (Liao et al.,
2022). This type of training can be useful for a variety of purposes,
including improving muscle imbalances, preventing injuries, and
rehabilitating after an injury (Manca et al., 2017; Liao et al., 2022).
Unilateral leg training can be performed using a variety of exercises,
such as lunges, single-leg squats, and single-leg deadlifts, using body
weight or added resistance (Baumgart et al., 2017; Manca et al., 2017).
This type of training can be especially beneficial for athletes and
individuals with a history of lower body injuries, as it can help to
improve balance, stability, and overall leg strength (Liao et al., 2022).
In addition, research has shown that unilateral leg training can be
effective for improving muscle strength and power, as well as
increasing muscle activation and coordination (Zhou et al., 2022).

Unilateral leg training can be incorporated into a well-rounded fitness
routine along with other forms of exercise to improve overall physical
fitness and balance performance (Manca et al., 2017; Liao et al., 2022).
However, it is important to use proper technique to prevent injury and
ensure optimal results.

In order to combine VR-based training, exergames, and unilateral
leg training, we developed an exergame called virtual reality
skateboarding (VR-skateboarding). Moreover, VR technology was
used to simulate a real-world environment in a safe setting, as well
as to provide task-specific training for balance in the unilateral leg.
However, the biomechanical characteristics of VR-skateboarding have
not yet been fully explored. Therefore, we conducted a study to
compare the biomechanical characteristics of VR-skateboarding
with those of walking. We chose to compare these two activities
because they involve similar movement patterns, such as repetitive leg
movements. We hypothesized that VR-skateboarding would result in
greater joint angles, muscle activity, and weight distribution compared
to walking, which could potentially improve balance. The findings of
this study could be useful for health professionals in understanding the
mechanisms of training effects and designing training protocols, as
well as for software engineers in creating new features and
implementing multidisciplinary approaches.

Materials and methods

VR-skateboarding

VR-skateboarding is a training approach that combines VR and
treadmill technology. It involved using a skateboard that was
integrated with a split-belt treadmill (QQ-mill, Motekforce Link,
Netherlands), as shown in Figure 1; Supplementary file S1. The
skateboard was placed on the stationary belt of the treadmill, while
the moving belt was set to a comfortable walking speed for the
participant. Comfortable walking speed was measured using a 10-
m walk test, which is the most common and reliable test (Bohannon,
1997; Bohannon and Williams Andrews, 2011; Cheng et al., 2020b).
The leg that was placed on the skateboard was referred to as the
“supporting leg,” while the leg that slide on the moving belt was
referred to as the “moving leg.” For safety purposes, the skateboard
wheels were fixed statically on the stationary belt of the treadmill.
Handrails were also available at waist level for support during VR-
skateboarding, if needed.

A virtual scenario for VR-skateboarding was created using
Unity3D software (version 5.3.2, San Francisco, United States) and
displayed using virtual reality head-mounted displays (HTC VIVE,
HTC Corporation, New Taipei City, Taiwan). The virtual scenario
depicted skateboarding on a city road, as shown in Figure 2. Three
wireless inertial measurement unit sensors (HTC VIVE trackers, HTC
Corporation, New Taipei City, Taiwan) were used in VR-
skateboarding as follows: 1) two trackers were placed on the
participant’s legs to track leg movements. The speed and distance
travelled in the virtual scenario were adjusted based on the movement
of the tracker on the moving leg; 2) one tracker was attached in front of
the skateboard and used to control the left and right direction of
skateboarding to avoid obstacles in the virtual scenario. The
cumulative distance travelled was provided as real-time virtual
feedback and a final score to motivate participants during VR-
skateboarding.
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Participants

The eligibility of participants was assessed based on inclusion and
exclusion criteria. The inclusion criteria included being between the
ages of 20 and 40 years and not having any symptoms such as leg pain
or numbness. The exclusion criteria included having had previous
surgery and having neurological disorders such as stroke, lumbar
radiculopathy, or spinal cord injury.

Procedure

For walking, participants were asked to walk on the split-belt
treadmill at a comfortable walking speed for 1 min × 5 times. Then,
participants were asked to performVR-skateboarding using their non-
dominant leg as the supporting leg on the skateboard. Participants
were instructed to skate with their dominant leg as the moving leg at a
comfortable walking speed for 1 min × 5 times. According to previous

studies, treadmill speed has the potential to impact biomechanical
characteristics during movement (Möckel et al., 2003; Matjačić et al.,
2019). In order to eliminate confounding factors from treadmill speed,
the treadmill was set to the same speed (i.e., comfortable walking
speed) for both VR-skateboarding and walking.

Evaluation

Joint kinematics measurements

A 3-dimensional motion capture system (VICON ver. 2.5,
Oxford Metrics Ltd., Oxford, United Kingdom) with ten
infrared cameras (VICON Bonita, Oxford Metrics,
United Kingdom) was used to collect joint kinematic data at a
sampling rate of 120 Hz. The system used 45 spherical retro-
reflective markers (14 mm) placed over anatomical landmarks
based on the Plug-In-Gait model (Cheng et al., 202b).

Muscle activity measurements

Surface electromyography (EMG) (TrignoTM, Delsys Inc.,
Boston, MA, United States) was used to collect muscle activity data
(i.e., erector spinae: trunk extensor; gluteus medius: hip abductor;
rectus femoris: knee extensor; and tibialis anterior: ankle dorsiflexor)
(Wang et al., 2015). The sampling rate of the EMG was 960 Hz.

Ground reaction force measurements

Two force platforms (QQ-mill, Motekforce Link, Amsterdam,
Netherlands) were used to collect ground reaction force (GRF)
data. The force platforms were able to sample at a frequency of
960 Hz using LabVIEW software (National Instruments, Austin,
TX, United States).

FIGURE 1
An illustration of a virtual reality skateboarding system.

FIGURE 2
An illustration of a virtual scenario.
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Data processing

Data from the motion capture system, EMG, and force platforms
were processed using a custom program written in MATLAB R2020a
software (MathWorks, Natrick, MA, United States). The GRF of the
moving leg was used to identify the movement cycle (i.e., the stance
and swing phases) of each stride. A GRF threshold of 10 N was used to
identify the movement cycle (Baumgart et al., 2017). A total of
100 stable strides were selected for analysis (Kubinski et al., 2015).
The stance phase occurs from heel-strike to toe-off, while the swing
phase occurs from toe-off to heel-strike, as shown in Figure 3.

For joint kinematics, the data were filtered using a 2nd-order low-
pass Butterworth filter with a cut-off frequency of 3 Hz. The filtered
data was smoothed using a moving average (Chien and Hsu, 2018).
The minimum, maximum, and range values of the trunk, hip, knee,
and ankle joints during entire movement cycle were calculated (Smith
et al., 2016).

For muscle activities, the EMG data were filtered using a 2nd-
order Butterworth filter with bandpass and notch filters at 30–350 Hz
and 60 Hz, respectively (Adewuyi et al., 2016). The filtered data was
full-wave rectified (using a root mean square) and smoothed (using a
moving average) (Tabard-Fougère et al., 2018). The EMG was
normalized using the resting EMG for each muscle (Wang et al.,
2015). The EMG data was also time-normalized from 0 to 100 percent
for each phase (Androwis et al., 2018). The integrals of normalized
EMG (i.e., trunk extensor, hip abductor, knee extensor, and ankle
dorsiflexor) were then separately reported for the stance and swing
phases, as well as for the entire movement cycle (Vigotsky et al., 2017;
Wu et al., 2019).

For GRF, the data were filtered using a 2nd-order low-pass
Butterworth filter with a cut-off frequency of 5 Hz. The filtered
data was smoothed using a moving average (Cheng et al., 2020a).
The peak values of GRF in entire movement cycle were computed,

while the impulse values of GRF were separately computed for the
stance and swing phases, as well as for the entire movement cycle
(Golyski et al., 2018; Lee et al., 2020; Jafarnezhadgero et al., 2021).

Statistical analysis

Statistical analysis was performed in Predictive Analytics Software
Statistics 18.0 for Windows (SPSS, Chicago, IL, United States). The
normality of all variables was determined using the Shapiro–Wilk test.
Nevertheless, the data were not normally distributed. Thus, the non-
parametric Wilcoxon signed-rank test was used to compare the
variables between VR-skateboarding and walking. The p-value was
set at 0.05 as statistically significant.

Results

Twenty young participants (age: 27.4 ± 2.8 years, height: 167.2 ±
10.0 cm, weight: 61.2 ± 11.6 kg, body mass index: 21.7 ± 2.0 kg/m2)
were recruited, with ten of them being female. All participants were
right-leg dominant and used the left leg as the supporting leg and the
right leg as the moving leg during VR-skateboarding. The average
speed for VR-skateboarding and walking was 1.2 ± 0.1 m/s.

Joint kinematics

The joint kinematic results for both VR-skateboarding and
walking are illustrated in Figure 4; Table 1.

During VR-skateboarding, participants exhibited greater
minimum and maximum trunk angles and a wider range of
movement in their trunk compared to walking (z = −3.92, p <

FIGURE 3
An illustration of data processing. EMG, electromyography; GRF, ground reaction force; %BW, percentage of body weight; HS, heel-strike of moving leg;
TO, toe-off of moving leg.

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Kantha et al. 10.3389/fbioe.2023.1136368

84

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1136368


0.01; z = −3.92, p < 0.01; and z = −3.92, p < 0.01, respectively). This
indicated that participants bent their trunk forward more and
moved in a wider range during VR-skateboarding when
compared to walking.

In the supporting leg, participants demonstrated increased
minimum and maximum hip (z = −3.92, p < 0.01; and
z = −3.92, p < 0.01, respectively) and ankle (z = −3.92, p < 0.01;
and z = −3.92, p < 0.01, respectively) angles during VR-

FIGURE 4
An illustration of joint kinematics. The solid line represents the mean and the shaded area represents the standard deviation. Flex, flexion; Ext, extension;
PF, plantarflexion; DF, dorsiflexion; HS, heel-strike of moving leg; TO, toe-off of moving leg; VR-skateboarding, virtual reality skateboarding.

TABLE 1 Comparison of the joint kinematics during the entire movement cycle between VR-skateboarding and walking.

Body Segments Joint Angle (degree)

Minimum Maximum Range

VR-skateboarding Walking VR-skateboarding Walking VR-skateboarding Walking

Trunk 20.05 ± 2.14* −0.45 ± 1.44 30.25 ± 2.60* 2.87 ± 1.25 10.19 ± 2.33* 3.32 ± 1.19

Hip Supporting Leg 26.02 ± 1.59* −17.18 ± 2.01 48.32 ± 2.83* 19.30 ± 1.04 22.30 ± 2.23* 36.48 ± 2.24

Moving Leg 1.80 ± 1.60* −13.77 ± 1.21 26.16 ± 1.21* 19.85 ± 1.04 24.36 ± 2.22* 33.62 ± 1.39

Knee Supporting Leg 22.32 ± 1.98* −1.65 ± 2.39 31.80 ± 3.36* 47.13 ± 1.38 9.48 ± 2.77* 48.78 ± 1.81

Moving Leg 2.54 ± 1.04* 1.59 ± 1.13 23.28 ± 1.61* 44.99 ± 2.51 20.74 ± 2.00* 43.40 ± 2.24

Ankle Supporting Leg 24.42 ± 2.79* −9.03 ± 3.02 30.25 ± 2.12* 15.14 ± 2.53 5.82 ± 2.45* 24.17 ± 2.53

Moving Leg −12.09 ± 4.31 −13.08 ± 1.89 27.26 ± 4.84* 18.25 ± 4.50 39.35 ± 7.52* 31.33 ± 4.63

Values are mean ± standard deviation. VR-skateboarding, virtual reality skateboarding. Wilcoxon signed-rank test: *statistically significant values (p < 0.05).
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skateboarding compared to walking. However, participants had
reduced range of movement in the hip and ankle joints (z = −3.92,
p < 0.01; and z = −3.92, p < 0.01, respectively) during VR-
skateboarding compared to walking. The knee also showed
increased minimum angle (z = −3.92, p < 0.01) but reduced
maximum angle and range of movement (z = −3.92, p < 0.01;
and z = −3.92, p < 0.01, respectively) during VR-skateboarding. The
findings suggest that, in the supporting leg, VR-skateboarding
entailed greater flexion in the hip and ankle joints and a smaller
range of movement compared to walking. Additionally, during VR-
skateboarding, participants demonstrated decreased flexion in the
knee joint and a reduced range of movement in this joint.

In the moving leg, the hip joint angles showed a lower range of
motion (z = −3.92, p < 0.01) during VR-skateboarding compared to
walking, with both the minimum and maximum angles being higher
(z = −3.92, p < 0.01; and z = −3.92, p < 0.01, respectively) in VR-
skateboarding. The knee joint also showed a lower range of motion
during VR-skateboarding (z = −3.92, p < 0.01), with the minimum
angle being higher (z = −2.72, p < 0.01) and the maximum angle being
lower (z = −3.92, p < 0.01). Whereas, the ankle joint demonstrated a
greater range of motion during VR-skateboarding (z = −3.80, p <
0.01), with the maximum angle being higher (z = −3.92, p < 0.01) and
the minimum angle showing no significant difference (z = −1.30, p =

0.19) compared to walking. VR-skateboarding involved greater hip
flexion and a smaller range of movement in the moving leg compared
to walking. However, it also entailed decreased knee flexion and a
reduced range of movement, as well as increased ankle dorsiflexion
and a greater range of movement.

Muscle activity

The muscle activity results for both VR-skateboarding and
walking are illustrated in Figure 5; Table 2.

Muscle activity of the trunk extensor in the stance phase, swing
phase, and entire movement cycle was higher during VR
skateboarding than during walking (z = −3.92, p < 0.01; z = −3.92,
p < 0.01; and z = −3.92, p < 0.01, respectively). This indicated that VR-
skateboarding appeared to involve higher muscle activity in the trunk
extensor muscles compared to walking.

In the supporting leg, muscle activity of the knee extensor was
higher in the stance phase, swing phase, and entire movement cycle
(z = −3.92, p < 0.01; z = −3.92, p < 0.01; z = −3.92, p < 0.01; and
z = −3.92, p < 0.01, respectively) during VR-skateboarding than during
walking. However, muscle activity in the hip abductor and ankle
dorsiflexor was lower in the stance phase (z = −3.80, p < 0.01; and

FIGURE 5
An illustration of muscle activity. The solid line represents themean and the shaded area represents the standard deviation. HS, heel-strike of moving leg;
TO, toe-off of moving leg; VR-skateboarding, virtual reality skateboarding.
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z = −3.92, p < 0.01, respectively), swing phase (z = −3.92, p < 0.01; and
z = −3.92, p < 0.01, respectively), and entire movement cycle
(z = −3.92, p < 0.01; and z = −3.92, p < 0.01, respectively) during
VR-skateboarding than during walking. The results suggest that VR-
skateboarding entailed distinct muscle activity patterns compared to
walking, specifically higher activity in the knee extensor but lower
activity in the hip abductor and ankle dorsiflexor.

In the moving leg, VR-skateboarding was associated with lower
muscle activity in the hip abductor during the stance phase (z = −3.17,
p < 0.01) and entire movement cycle (z = −2.68, p < 0.01) compared to
walking, but no significant difference was observed in the swing phase
(z = −0.85, p = 0.39). Additionally, VR-skateboarding involved lower
muscle activity in the knee extensor and ankle dorsiflexor in the stance
phase (z = −3.92, p < 0.01; and z = −3.92, p < 0.01, respectively), swing
phase (z = −3.92, p < 0.01; and z = −3.92, p < 0.01, respectively), and
entire movement cycle (z = −3.92, p < 0.01; and z = −3.92, p < 0.01,
respectively) compared to walking. These findings suggest that muscle
activity in the hip abductor, knee extensor, and ankle dorsiflexor of the
moving leg was lower during VR-skateboarding compared to walking,
except for the hip abductor in the swing phase, which showed no
difference.

Ground reaction force

Our results showed that the average stance phase during walking
was 63.58% ± 0.24%. During VR-skateboarding, the average stance
phase was 51.91% ± 1.74%. Hence, the stance phase was shorter during
VR-skateboarding than during walking (z = −3.92, p < 0.01). The GRF
results for both VR-skateboarding and walking are illustrated in
Figure 6; Table 3 and Table 4.

In the supporting leg, the peak GRF during VR-skateboarding was
lower than during walking (z = −3.92, p < 0.01). However, the impulse
GRF during VR skateboarding was higher in the stance phase
(z = −3.92, p < 0.01) and entire movement cycle (z = −3.92, p <
0.01) but lower in the swing phase (z = −3.92, p < 0.01) compared to
walking. These results indicated that during VR-skateboarding, the
force loading on the supporting leg and weight distribution in the
swing phase were less compared to walking, but there was a greater
distribution of weight during the stance phase and throughout the
entire movement cycle.

In the moving leg, the peak and impulse GRF during VR-
skateboarding was lower than walking (z = −3.92, p < 0.01; and
z = −3.92, p < 0.01, respectively). The results showed that during VR-

TABLE 2 Comparison of the muscle activity between VR-skateboarding and walking.

Muscle groups Electromyography integral (norm)

Stance Phase Swing Phase Entire Movement Cycle

VR-skateboarding Walking VR-skateboarding Walking VR-skateboarding Walking

Trunk Extensors 2.88 ± 0.23* 1.71 ± 0.21 2.20 ± 0.16* 1.58 ± 0.17 2.54 ± 0.18* 1.65 ± 0.17

Hip Abductors Supporting Leg 1.49 ± 0.13* 2.19 ± 0.31 1.55 ± 0.09* 2.56 ± 0.26 1.52 ± 0.09* 2.38 ± 0.28

Moving Leg 1.82 ± 0.45* 2.16 ± 0.17 1.42 ± 0.43* 1.33 ± 0.38 1.62 ± 0.32* 1.75 ± 0.21

Knee Extensors Supporting Leg 4.10 ± 0.77* 2.57 ± 0.25 4.58 ± 0.53* 2.56 ± 0.26 4.34 ± 0.57* 2.56 ± 0.27

Moving Leg 1.82 ± 0.18* 3.61 ± 0.79 1.40 ± 0.23* 2.33 ± 0.53 1.61 ± 0.20* 2.97 ± 0.55

Ankle Dorsiflexors Supporting Leg 1.23 ± 0.11* 2.57 ± 0.24 1.31 ± 0.10* 2.54 ± 0.25 1.27 ± 0.10* 2.56 ± 0.24

Moving Leg 1.44 ± 0.28* 3.69 ± 0.57 1.42 ± 0.29* 5.92 ± 1.18 1.43 ± 0.27* 4.81 ± 0.79

Values are mean ± standard deviation. VR-skateboarding, virtual reality skateboarding. Wilcoxon signed-rank test: *statistically significant values (p < 0.05).

FIGURE 6
An illustration of ground reaction force. The solid line represents the mean and the shaded area represents the standard deviation. GRF, ground reaction
force; %BW, percentage of body weight; HS, heel-strike of moving leg; TO, toe-off of moving leg; VR-skateboarding, virtual reality skateboarding.
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skateboarding, the force loading on the moving leg and weight
distribution in the swing phase were lower compared to walking.

Discussion

Our study found that there were differences in joint kinematics,
muscle activity, and weight distribution between VR-skateboarding
and walking, particularly in the supporting leg. Previous research on
skateboarding had primarily focused on the “ollie” technique, which
involves using the skateboard to jump over obstacles, and therefore
was not directly comparable to VR-skateboarding in our study
(Frederick et al., 2006; Hu et al., 2021). Our results indicated that
the supporting leg during VR-skateboarding involved higher trunk,
hip, and ankle movements, as well as higher muscle activity of the knee
extensor, and a higher weight distribution compared to walking. Based
on these findings, we recommended VR-skateboarding as a potential
rehabilitation training approach for improving balance.

During VR-skateboarding, participants demonstrated a greater
range of trunk movement and flexion compared to walking. Previous
research has indicated that trunk bending can helpmaintain the center
of mass within the base of support during activities such as a unilateral
squat (Eliassen et al., 2018; van den Tillaar and Larsen, 2020). In our
study, VR-skateboarding involved balancing on a skateboard, which
may have required participants to lean forward or bend their trunk to
maintain balance and control. This may have explained the observed
increase in trunk flexion during VR-skateboarding, as such
movements may not have been necessary for walking. Our findings
were consistent with previous studies that have shown that increases in
trunk flexion can enhance muscle activity in the trunk extensor
muscles eccentrically during the stance and swing phases (Voglar
et al., 2016; Yoder et al., 2019). The flexion position involved in VR-
skateboarding may also have increased the demands on the trunk
extensor to maintain balance and control. Additionally, it is possible
that the use of VR technology in VR-skateboarding may have
contributed to the observed differences in trunk angles and

movement (Horsak et al., 2021; Meinke et al., 2022). The visual
input provided by the VR headset may have influenced the
participant’s trunk angles and movement in order to maintain
balance and control within the virtual environment (Lin et al.,
2019a; Benady et al., 2021). As a result, the increased trunk
bending during VR-skateboarding may have led to higher muscle
activity in the trunk extensor compared to walking. The increased
trunk bending during VR-skateboarding leading to higher muscle
activity in the trunk extensor may be an effective approach of
exercising to improve balance.

In the supporting leg, VR-skateboarding resulted in higher hip and
ankle joint kinematics, as well as increased muscle activity of the knee
extensor, compared to walking. This could be attributed to the height
difference between the skateboard and the treadmill belt, which
required participants to constantly flex the joints in the supporting
leg to maintain balance. Previous research has shown that the knee
extensor and hip abductor in the supporting leg are activated to hold
body weight during unilateral squatting (Eliassen et al., 2018; van den
Tillaar and Larsen, 2020). Our study also found that the activation of
the knee extensor in the supporting leg during VR-skateboarding was
higher than during walking, both in the stance and swing phases.
However, the activation of the hip abductor was lower during VR-
skateboarding, possibly due to the support provided by the handrail
(Komisar et al., 2019). In addition, the activation of the ankle
dorsiflexor was lower during VR-skateboarding due to the
stationary position of the supporting foot. This fixed position of
the ankle joint may also have contributed to the decrease in ankle
dorsiflexor activation observed in previous studies (Macrum et al.,
2012; Guillén-Rogel et al., 2017).

In the moving leg, VR-skateboarding required participants to
increase hip flexion and ankle dorsiflexion in order to maintain
trunk flexion and clear their feet from the ground. However,
participants exhibited lower joint angles of knee flexion during VR-
skateboarding compared to walking. This may have been due to the
shorter stance phase in VR-skateboarding, which can limit the range of
motion at the hip and knee joints. Previous research has shown that a

TABLE 3 Comparison of the peak ground reaction force during the entire movement cycle between VR-skateboarding and walking.

Body segments Peak ground reaction force (% body weight)

VR-skateboarding Walking

Supporting leg 95.64 ± 2.08* 111.76 ± 2.35

Moving leg 83.28 ± 5.39* 111.48 ± 2.71

Values are mean ± standard deviation. VR-skateboarding, virtual reality skateboarding. Wilcoxon signed-rank test: *statistically significant values (p < 0.05).

TABLE 4 Comparison of the impulse ground reaction force between VR-skateboarding and walking.

Body Segments Impulse Ground Reaction Force (% Body Weight)

Stance phase Swing phase Entire movement cycle

VR-skateboarding Walking VR-skateboarding Walking VR-skateboarding Walking

Supporting leg 48.34 ± 5.84* 24.79 ± 0.85 87.95 ± 2.20* 93.64 ± 3.08 68.15 ± 3.05* 59.21 ± 1.88

Moving leg 53.51 ± 3.88* 76.72 ± 3.22 N/A N/A N/A N/A

Values are mean ± standard deviation. VR-skateboarding, virtual reality skateboarding; N/A, not applicable. Wilcoxon signed-rank test: *statistically significant values (p < 0.05).
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shorter stance phase can result in reduced knee flexion angles (Yen
et al., 2019). Additionally, the muscle activity of the lower extremity in
the non-weight-bearing leg tends to decrease when body weight is
reduced or shifted to the other leg (Clark et al., 2004; Kristiansen et al.,
2019). Our results showed a decrease in muscle activity of the hip
abductor and knee extensor in the moving leg, which may have been a
result of participants shifting their weight to the supporting leg.
However, while the joint kinematics and muscle activation in the
moving leg were reduced, the weight shifting to the supporting leg can
be beneficial for balance training of the unilateral leg specifically.

The results of this study indicated that VR-skateboarding was
associated with a lower force loading but higher weight distribution
on the supporting leg when compared to walking. This decrease in
force loading was believed to be due to the support provided by
holding onto the handrail, while the increase in weight distribution
was likely due to weight shifting (Clark et al., 2004; Wu et al., 2018;
Kristiansen et al., 2019). Weight shifting has been found to improve
balance by strengthening muscles, improving coordination, and
enhancing control of the body’s center of mass, leading to increased
stability during movement (Lin et al., 2019a; Lin et al., 2019b).
Additionally, VR-skateboarding was found to have a shorter stance
phase for the moving leg compared to walking. Although this study
conducted VR-skateboarding at the same speed as walking, there
were still differences in movement cycles. One possible explanation
for this is that both legs were moving during walking, so
participants needed to shift their center of mass to the new base
of support provided by the supporting leg (Lin et al., 2019a). This
process required time and distance to complete (Lin et al., 2019a).
However, in VR-skateboarding, the supporting leg consistently
supported the body weight, allowing the moving leg to swing
more freely. Previous research has shown that gait training with
a shorter stance phase can reorganize walking patterns and
improve walking speed (Stolze et al., 2001; Yen et al., 2019).
The decreased force loading, increased weight distribution, and
reduced duration of movement cycles observed in VR-
skateboarding may have the potential to reduce joint loading,
enhance weight bearing, and improve walking speed,
respectively. These factors may have contributed to the potential
benefits of VR-skateboarding as a rehabilitation tool for individuals
with balance impairments.

Clinical implications

The clinical significance of this study is the potential use of VR-
skateboarding as a rehabilitation training approach to improve
balance. When performing VR-skateboarding, participants had
greater range of movement and flexion in their trunk compared to
when walking, as well as increased muscle activity and weight
distribution in the supporting leg. These differences in
biomechanics contributed to increase joint and muscle
coordination during VR-skateboarding. Additionally, VR-
skateboarding might also be considered a type of closed kinetic
chain exercise, where the foot is fixed. Our results indicated that
participants consistently kept the foot of the supporting leg on the
skateboard. Previous studies have revealed that closed kinetic chain
exercises can promote muscle co-contraction to stabilize the trunk and
legs. This muscle co-contraction also aids in improving
proprioception, or the ability to sense the position and movement

of one’s body in space, subsequently improving balance. Furthermore,
the use of VR technology may have influenced the observed
differences in joint kinematics, muscle activity, and weight
distribution. These findings suggest that VR-skateboarding may be
an effective training approach for improving balance in individuals
undergoing rehabilitation.

In addition, the consideration of the biomechanical characteristics
of VR-skateboarding is important for software engineers creating new
features and implementing multidisciplinary approaches. By
understanding the biomechanics, software engineers can design
features that are ergonomic and user-friendly, ensuring that the
products they develop are comfortable, safe, and appropriate for
balance training. This is particularly important for products or
systems that would be used by a wide range of individuals with
different physical abilities and characteristics, as it allows for the
creation of solutions that are accessible and inclusive. Incorporating a
multidisciplinary approach also enables software engineers to consider
the diverse needs and perspectives of different populations, such as
those with unilateral leg symptoms, to create well-rounded and
effective solutions. Overall, the incorporation of biomechanical
characteristics in the development process can lead to the creation
of innovative and highly functional products and systems that meet
the needs of a diverse range of users.

Study limitations

This study had a few limitations. First, for safety reasons,
participants held onto a handrail while VR-skateboarding. This
may have partially supported their body weight and potentially
affected joint kinematics, muscle activity or weight distribution.
However, we believed that handrail use is necessary in patient
populations to prevent accidents during training. Second, this study
conducted the experiment on the same population and at the same
speed (i.e., comfortable walking speed). Moreover, participants were
all healthy individuals with no leg abnormalities. Therefore, the results
of VR-skateboarding in this study should be interpreted with caution
when applied to patient populations or different speeds. Third,
participants performed VR-skateboarding and walking with bare
feet in this study. According to previous studies, wearing shoes can
change biomechanical characteristics, particularly reducing force
loading (Zhang et al., 2013; Udofa et al., 2019). Hence, this factor
should be taken into consideration when applying our findings to VR-
skateboarding while wearing shoes.

Conclusion

VR-skateboarding was a novel VR-based balance training
approach. The results of our study demonstrated that VR-
skateboarding involved increased movement and muscle activity in
the trunk, hips, and ankles, particularly in the supporting leg,
compared to walking. The weight distribution was also found to
increase when participants stood on the skateboard with their
supporting leg. These findings suggested that VR-skateboarding
may be a promising rehabilitation tool for improving balance.
Additionally, we proposed that future developments and
applications of this training should prioritize the strengthening of
the supporting leg in order to maximize its therapeutic benefits.
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Background: Falls and gait disturbance are significant clinical manifestations of

cerebral small vessel disease (CSVD). However, few relevant studies are reported

at present. We aimed to investigate gait characteristics and fall risk in patients

with CSVD.

Methods: A total of 119 patients with CSVD admitted to the Department of

Neurology at Tianjin Huanhu Hospital between 17 August 2018 and 7 November

2018 were enrolled in this study. All patients underwent cerebral magnetic

resonance imaging scanning and a 2-min walking test using an OPAL wearable

sensor and Mobility Lab software. Relevant data were collected using the gait

analyzer test system to further analyze the time-space and kinematic parameters

of gait. All patients were followed up, and univariate and multivariate logistic

regression analyses were conducted to analyze the gait characteristics and

relevant risk factors in patients with CSVD at an increased risk of falling.

Results: All patients were grouped according to the presence or absence of falling

and fear of falling and were divided into a high-fall risk group (n = 35) and a low-

fall risk group (n = 72). Logistic multivariate regression analysis showed that the

toe-o� angle [odds ratio (OR) = 0.742, 95% confidence interval (CI) 0.584–0.942,

p < 0.05], toe-o� angle coe�cient of variation (CV) (OR = 0.717, 95% CI: 0.535–

0.962, p < 0.05), stride length CV (OR= 1.256, 95% CI: 1.017–1.552, p < 0.05), and

terminal double support CV (OR = 1.735, 95% CI: 1.271–2.369, p < 0.05) were

statistically significant (p < 0.05) and were independent risk factors for high-fall

risk in patients with CSVD.

Conclusion: CSVD patients with seemingly normal gait and ambulation

independently still have a high risk of falling, and gait spatiotemporal-kinematic

parameters, gait symmetry, and gait variability are important indicators to assess

the high-fall risk. The decrease in toe-o� angle, in particular, and an increase in

related parameters of CV, can increase the fall risk of CSVD patients.

KEYWORDS

cerebral small vessel disease, walking, fall, gait analysis, gait parameters

1. Introduction

Cerebral small vascular disease (CSVD) refers to a series of imaging and clinical

manifestations that characterize a syndrome caused by any functional or structural

pathological damage to small cerebral vessels, such as terminal arterioles, venules, and

capillaries. Gait disorder is one of the main symptoms of CSVD patients (1, 2). Studies
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have shown that most falls of stroke patients after discharge occurs

during walking, and gait disorder is an independent predictor

of patients’ fall risk. However, most studies are described by

scale, observation, and other methods, with low accuracy, strong

subjectivity, and limited dimensions (3). With the development of

ergonomics, a large number of gait parameters can be obtained

using wearable sensor devices, and gait symmetry and gait

variability can be calculated (4). Both reflect the ability to maintain

a stable and consistent walking rhythm in themotor control system.

However, we found that there were few studies on gait symmetry

and variability in patients with CSVD (5, 6). Therefore, we used

wearable devices to measure the parameters related to the gait of

patients with CSVD. Furthermore, we calculated gait symmetry and

variability. We investigated the gait parameters that contributed to

the high risk of falls among follow-up patients with a high risk

of falling. Through our study, we can provide early rehabilitation

treatment for patients with CSVD and reduce the occurrence

of falls.

2. Materials and methods

2.1. Patients

In this study, 119 patients with CSVD were hospitalized at the

Department of Neurology of Tianjin Huanhu Hospital, Tianjin,

China between 17 August 2018 and 7 November 2018. The study

was registered with the Chinese Clinical Trial Registry (Clinical

Trial Registration No. ChiCTR2100042031) and was approved by

the Ethics Committee of Tianjin Huanhu Hospital. All patients

underwent head magnetic resonance imaging, including T2,

fluid-attenuated inversion recovery, diffusion-weighted imaging,

apparent diffusion coefficient, and gradient echo sequences.

All patients were able to walk and complete the evaluation

independently. All the clinical data were complete.

The inclusion criteria were as follows: (1) age≥18 years; (2) met

the diagnostic criteria for mild stroke [National Institutes of Health

Stroke Scale (NIHSS) score ≤3]; (3) according to the pathogenesis,

the selection (Trial of Org 10172 in Acute Stroke Treatment)

type was small-artery occlusion; (4) all participants could walk

independently and safely for 2min without help from others or

assistive devices; and (5) all participants were fully informed of the

research process and signed the informed consent form.

The exclusion criteria were as follows: clinical diagnosis of

dementia, mental disorders, severe cerebral hemorrhage, and other

systemic diseases affecting gait, such as joint injury, arthritis,

cervical spine disease, and lumbar spine disease.

Participants were selected according to inclusion criteria and

exclusion criteria (Figure 1).

2.2. Study design

2.2.1. General assessment
General clinical data of all patients, including age, sex, height,

weight, and medical history, were collected and analyzed.

2.2.2. Assessment of gait function
All enrolled patients underwent a 2-min walk test under the

guidance of a physician, which was conducted in an empty room

dedicated to the evaluation. The patients walked freely along a

straight line which could be turned back for 2min. Patients were

simulated in advance to ensure that they were familiar with the test.

At the start of the experiment, the OPAL wearable sensor (APDM)

and Mobility Lab software (https://apdm.com/wearable-sensors/)

were used for the 2-min walking test. The instrument had a total of

six sensors, which were placed on the patient’s body by professionals

according to the following positions. The first sensor was worn at

the uppermost sternal handle of the sternum, the second sensor

was worn at the lowermost fifth lumbar vertebra at the lumbosacral

junction, and the third and fourth sensors were worn on the dorsal

side of the bilateral wrist joint. The fifth and sixth sensors were

worn on the dorsum of both feet.

2.2.3. Assessment of gait parameters
Gait parameter data were collected through the gait analysis

and test system and transmitted to a computer terminal. Then,

the time-space and kinematic gait parameters were analyzed. Gait

symmetry was assessed using the Asymmetry Index (AI). The AI

was calculated as follows:

AI = |XL− XR|/max(XL, XR)× 100,

with L and R representing the left and right sides of the patient,

respectively (5). X represents the corresponding gait parameter

used in the analysis. This study mainly included stride length,

single-limb support, terminal double support, swing, foot strike

angle, and toe-off angle. Gait variability was assessed using the

coefficient of variation. First, the coefficient of variation (CV) was

calculated using the formula “standard deviation/mean,” which

represents the gait variability (CVL represents the left variability

and CVR represents the right variability). The next step was to

integrate the variability of the left and right gait parameters using

the formula (7, 8):

√

(CVL+ CVR)/2× 100.

The parameters included were stride length, single limb

support, terminal double support, swing, toe-off angle, and foot

strike angle.

2.2.4. Main outcomes
All patients were followed up for the presence of falls and the

presence of fear of falling (FOF). The assessment of FOF was as

follows: According to the FOF scale developed by American scholar

Tinetti in 1993 (9), patients were asked, “Are you afraid or worried

about falling?” The presence of FOF was determined by answering

“not afraid,” “slightly afraid,”’ “somewhat afraid,” and “very afraid.”

Those who answered “not afraid” were defined as having no FOF,

and those who answered with any other option were defined as

having a FOF. Based on the presence of FOF or falling, the patients

were divided into a high-fall risk (HFR) group and a low-fall risk

(LFR) group. If the patient had no history of falls and answered

Frontiers inNeurology 02 frontiersin.org93

https://doi.org/10.3389/fneur.2023.1166151
https://apdm.com/wearable-sensors/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2023.1166151

FIGURE 1

Flow chart of the inclusion and exclusion process of included patients.

as “not afraid,” they were assigned to the LFR group, and patients

who had a history of falls or answered “slightly afraid,” “somewhat

afraid,” or “very afraid,” were assigned to the HFR group.

2.3. Statistical analysis

Data processing was performed using SPSS 24.0 software (SPSS

Inc., Chicago, IL, USA). Normally distributed numerical data

were presented as the mean ± standard deviation (x ± s), and

the independent sample t-test was used for comparison between

the groups. Numerical data that showed a skewed distribution

were presented as the median (the first quartile, third quartile)

[M (Q1, Q3)], and the Mann–Whitney U-test was used for

comparison between groups. Count data were expressed in the

form of cases (percentage) [n (%)], and an X2 test was used

for comparison between groups. Data from both groups were

analyzed using multivariate logistic regression, and a p-value of

<0.05 was considered statistically significant. In this study, logistic

regression was used for the multivariate analysis of the two groups

of data.

3. Results

3.1. Baseline clinical characteristics

The demographic characteristics of the LFR and HFR groups

are summarized in Table 1. A total of 119 patients were included

in this study, and the mean (SD) age was 59.55 (9.89) years. In

total, 94 cases weremale patients, 25 cases were female patients, and

12 cases were lost to follow-up, including the LFR (72 cases) and

HFR group (35 cases). Age, sex, height, weight, diabetes mellitus,

cardiac disease, and smoking did not differ significantly between

the groups; however, the presence of hypertension was higher

in the HFR group compared with the LFR group (p < 0.05)

(Table 1).

3.2. Gait analysis in the LFR group and HFR
group

Compared to patients in the LFR group, patients in the

HFR group had lower stride frequency, slower stride speed,

shorter stride length, and longer gait cycle time (p < 0.05).

Simultaneously, the proportion of double limb support and

terminal double support increased during each gait cycle, while

the proportion of single limb support and swing decreased

(p < 0.05). As shown in Table 2, the patients in the HFR

group had smaller foot strike and toe-off angles (p < 0.05)

(Table 2).

3.3. Comparison of gait symmetry between
the two groups

This study compared gait symmetry between the two

groups and found that the foot strike angle AI increased

in patients in the HFR group (p < 0.05), whereas the

stride length AI, toe-off angle AI, single-limb support

AI, terminal double support AI, and swing AI showed

no significant differences between the groups (p > 0.05)

(Table 3).

3.4. Comparison of gait variability between
the two groups

After analyzing gait variability in both groups, we found that

the stride length CV, single limb support CV, terminal double

support CV, swing CV, foot strike angle CV, and toe-off angle CV

were significantly higher in the HFR vs. LFR group (p < 0.05)

(Table 4).
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TABLE 1 Demographic characteristics of participants.

LFR group (n = 72) HFR group (n = 35) X
2/t-value P-value

Male [n (%)] 54 (75.00) 28 (80.00) 0.329 0.566

Age (year) 59.28± 10.46 61.80± 7.54 −1.274 0.206

Height (cm) 168.96± 6.54 170.43± 7.37 −1.046 0.298

Weight (kg) 74.25± 12.94 73.37± 10.75 0.347 0.729

Hypertension [n (%)] 48 (67.6) 30 (85.7) 3.995 0.047a

Diabetes [n (%)] 26 (36.6) 13 (37.1) 0.003 0.958

cardiac disease [n (%)] 9 (12.7) 7 (20.0) 0.981 0.322

smoke [n (%)] 40 (56.3) 26 (74.3) 3.214 0.073

LFR group, low-fall risk group; HFR group, high-fall risk group.
aP < 0.05.

TABLE 2 Comparison of time-space and kinematic parameters between the two groups (x ± s).

Mean ± SD t-value P-value

LFR group (n = 72) HFR group (n = 35)

Stride frequency (steps/min) 106.4± 9.21 100.20± 12.52 2.909 0.004a

Stride speed (m/s) 0.92± 0.21 0.79± 0.25 2.832 0.006a

Stride length (m) 1.03± 0.20 0.93± 0.23 2.386 0.019a

Gait cycle (s) 1.14± 0.10 1.22± 0.19 −3.030 0.003a

Double limbs support (%GCT) 22.50± 5.64 25.32± 7.16 −2.220 0.029a

Single limb support (%GCT) 38.75± 2.81 37.36± 3.58 2.199 0.030a

Terminal double support (%GCT) 11.24± 2.79 12.62± 3.57 −2.186 0.031a

Swing (%GCT) 38.76± 2.80 37.36± 3.59 2.202 0.030a

Foot strike angle (degrees) 18.48± 6.18 14.73± 6.64 2.877 0.005a

Toe off angle (degrees) 33.17± 5.17 29.45± 6.37 3.233 0.002a

LFR group, low-fall risk group; HFR group, high-fall risk group.
aP < 0.05.

TABLE 3 Comparison of gait symmetry between the two groups [%, M (Q1, Q3)].

LFR group (n = 72) HFR group (n = 35) Z-value P-value

Stride length AI 0.96 (0.77, 1.69) 1.55 (0.77, 2.99) −1.755 0.079

Single limb support AI 1.74 (0.77, 3.69) 2.77 (1.13, 5.16) −1.454 0.146

Terminal double support AI 8.03 (2.94, 16.31) 10.66 (4.41, 19.96) −1.627 0.104

Swing AI 1.72 (0.83, 3.82) 2.65 (1.15, 4.96) −1.481 0.139

Foot strike angle AI 10.96 (5.84, 22.55) 19.89 (7.69, 33.91) −2.105 0.035a

Toe off angle AI 4.46 (2.04, 6.57) 6.66 (3.68, 13.49) −1.939 0.053

LFR group, low-fall risk group; HFR group, high-fall risk group; AI, asymmetry index.
aP < 0.05.

3.5. The regression analysis of influencing
factors

All statistically significant gait indicators were included in the

logistic multivariate regression analysis. The parameters of the

toe-off angle, toe-off angle CV, stride length CV, and terminal

double support CV were statistically significant (p < 0.05).

These were identified as independent risk factors for falling

in patients with CSVD. However, the remaining time-space

and kinematic parameters of gait, gait symmetry parameters,

and gait variability parameters were not statistically significant

(p > 0.05) (Table 5).

4. Discussion

4.1. Fall and fear of falling in patients with
CSVD

Falls caused by gait disorders in patients with CSVD seriously

affect their quality of life and are closely related to a poor prognosis
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TABLE 4 Comparison of gait variability between the two groups [%,M (Q1,Q3)].

LFR group (n = 72) HFR group (n = 35) Z-value P-value

Stride length CV 20.67 (18.43, 25.64) 23.95 (19.93, 26.80) −2.085 0.037a

Single limb support CV 16.10 (14.27, 18.94) 18.75 (16.25, 20.92) −2.962 0.003a

Terminal double support CV 30.46 (28.16, 33.16) 33.22 (29.30, 37.50) −3.054 0.002a

Swing CV 16.08 (14.13, 19.91) 18.67 (16.68, 22.08) −3.114 0.002a

Foot strike angle CV 34.56 (28.75, 42.24) 40.34 (32.69, 53.28) −2.626 0.009a

Toe off angle CV 22.18 (19.06, 25.22) 26.11 (24.06, 29.40) −3.758 0.000b

LFR group, low-fall risk group; HFR group, High-fall risk group; CV, coefficient of variation.
aP < 0.05.
bP < 0.001.

TABLE 5 Results of the multivariate logistic regression analysis.

β value SE wald P-value OR value 95% CI

Lower limit Upper limit

Stride frequency (steps/min) −0.110 0.395 0.078 0.780 0.896 0.413 1.943

Stride speed (m/s) 0.122 0.179 0.466 0.495 1.130 0.795 1.606

Stride length (m) −0.052 0.167 0.097 0.756 0.949 0.684 1.318

Gait cycle (s) 0.016 0.267 0.004 0.952 1.016 0.603 1.714

Double limbs support

(%GCT)

−0.045 0.556 0.007 0.935 0.956 0.321 2.843

Single limb support (%GCT) −0.293 1.100 0.071 0.790 0.746 0.086 6.445

Terminal double support

(%GCT)

−1.035 1.022 1.024 0.312 0.355 0.048 2.636

Swing (%GCT) −0.901 1.074 0.703 0.402 0.406 0.049 3.336

Foot strike angle (degrees) 0.084 0.130 0.424 0.515 1.088 0.844 1.403

Toe off angle (degrees) −0.299 0.122 6.015 0.014a 0.742 0.584 0.942

Foot strike angle AI 0.023 0.024 0.864 0.353 1.023 0.975 1.073

Stride length CV −0.332 0.150 4.911 0.027a 0.717 0.535 0.962

Foot strike angle CV 0.113 0.067 2.800 0.094 1.119 0.981 1.277

Toe off angle CV 0.228 0.108 4.496 0.034a 1.256 1.017 1.552

Single limb support CV −0.348 0.367 0.899 0.343 0.706 0.344 1.449

Terminal double support CV 0.551 0.159 12.027 0.001a 1.735 1.271 2.369

Swing CV −0.499 0.402 1.539 0.215 0.607 0.276 1.336

Hypertension 1.080 0.691 2.442 0.118 2.944 0.760 11.408

AI, asymmetry index; CV, coefficient of variation.
aP < 0.05.

(1, 2). FOF is a precursor to falling in patients with CSVD. FOF

refers to the reduction of confidence or fall efficacy to avoid

falling while participating in certain activities that the patients are

capable of (9). Some studies (10) have shown that FOF not only

exists in elderly people who have a history of falling but also in

elderly people who have never experienced a fall. FOF reduces

the patients’ confidence in activities, which is not conducive to

the rehabilitation of motor function in patients with stroke and

affects the recovery of their neurological function. One study has

shown that the incidence of FOF in patients with stroke during

hospitalization was 54%, and the incidence of FOF in stroke

patients after discharge was 32–66% (11). Our study found that

the incidence of FOF in patients with CSVD who could walk

independently was 32.71%. The possible reasons are related to

the included population in this study and the time from onset to

follow-up. The mean age of CSVD patients included in this study

was 59.55 ± 9.89 years, NIHSS score ≤3 points, and the time

from onset to follow-up was 4 years. Therefore, younger patients,

mild stroke, and short follow-up time may lead to a lower risk

of falls.
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4.2. Time-space parameters and kinematic
parameters of gait in patients with CSVD

Spatio-temporal parameters and kinematic parameters are

important indicators of gait. Abnormal spatio-temporal and

kinematic parameters often lead to gait instability, and patients are

more likely to fall (12). In our study, we found that patients with

CSVD in the HFR group had a shortened stride length, reduced

stride frequency, and decreased stride speed. A reduction in stride

length usually means a reduction in forward propulsion force and

impairment of balance (13). Stride speed reflects the movement

ability of an individual, and a decrease of 0.1 m/s has a significant

clinical significance (14). The decline in walking speed reflects a

decrease in the propulsion of the gait and is a sign of gait damage,

and patients are more likely to fall when they want to increase

their walking speed or are not prepared. In our study, the average

stride speed in the HFR group decreased by 0.13 m/s compared

to the LFR group, i.e., fall risk increased. We found that not only

was the gait cycle of patients in the HFR group extended but

also the proportion of double limb support and terminal double

support in the gait cycle was extended, and the proportion of single

limb support was reduced. This was to prevent falls and maintain

body balance, which further absorbed shocks and maintained load-

bearing stability by extending the time both feet contact the ground

during double limb support and shortening the instability of single

limb support (15). Stride frequency is negatively correlated with

the gait cycle (16). When the gait cycle is prolonged, the gait

frequency decreases, which is a compensatory manifestation of gait.

Once entering the decompensation stage, the probability of patients

falling increases sharply. Swingmainly reflects an individual’s floor-

clearance ability (17). The proportion of swing-phase patients in the

HFR group was significantly shortened, resulting in a reduction in

their floor clearance ability.

We included the important parameters of gait kinematics: the

foot strike angle and toe-off angle. The foot strike angle reflects

shock absorption and maintains forward stability (18), while the

toe-off angle reflects the forward gait force, which is an important

reflection of the ground clearance ability of the foot (19). In our

study, we found that the foot strike and toe-off angles in patients

with high-fall risk decreased during walking, indicating that CSVD

not only affects the stability of the body moving forward but also

affects the driving force for forwardmovement, resulting in patients

with decreased ground clearance ability of the foot, increased

instability, and increased fall risk.

4.3. Symmetry and variability of gait in
patients with CSVD

In our study, not only the conventional gait parameters were

analyzed, but the symmetry and variability of gait were quantified

using formulas. The AI of the foot strike angle in the HFR group

was significantly higher compared to the LFR group. In related

studies (20), human gait symmetry is typically assumed to be

consistent with left and right gait functions. The gait symmetry

of healthy humans can effectively reduce the energy consumption

of walking, reduce the risk of falling, and provide a stable and

comfortable walking mode (21). The higher the AI, the greater the

asymmetry deviation of the bilateral limbs during walking, and the

higher the influence on the stability of walking (22). Therefore, the

results of our study indicated that the lower extremities of patients

in the HFR group had greater differences in shock absorption and

maintenance of progressive stability while walking stability was

poor. Compared with the LFR group, the AI of each gait parameter

in the HFR group was higher, indicating that the gait asymmetry

of the left and right limbs was more prominent in the HFR group

during walking. Some studies have found that the increase of gait

parameter asymmetry in stroke patients during walking is related

to the decrease in progressive stability, impaired balance function,

and increased risk of falls. Our further analysis found that there

was a significant difference in the AI elevation of the foot strike

angle between the two groups, and the foot strike angle reflected the

foot clearance ability, so our study showed that the foot clearance

ability of patients in the HFR group increased asymmetrically and

increased the risk of fall.

Gait variability refers to the stability of gait during walking,

which reflects the ability of the motion control system tomaintain a

stable and consistent walking rhythm (23). However, some studies

have shown that the heterogeneity of gait time-space parameters

is large, and gait variability is more effective in evaluating fall risk

(24). In our study, we found that the stride length CV, single-

limb support CV, terminal double support CV, swing CV, foot

strike angle CV, and toe-off angle CV of patients with CSVD in

the HFR group were significantly higher than those in the LFR

group, suggesting that patients in the HFR group had decreased

gait stability during walking. In addition, increased gait variability

leads to increased energy expenditure, resulting in difficulty in

maintaining postural balance and a higher risk of falls (25). We

further included the indicators with statistical differences between

the two groups for logistic regression analysis and found that toe-

off angle, toe-off angle CV, stride length CV, and terminal double

support CV were independent risk factors for falls in patients

with CSVD. Terminal double support, which accounts for 10% of

the gait cycle, is mainly responsible for weight release and weight

transfer during walking (26). Its increased variability indicates

that as the inconsistency of weight release and transfer of the

lower limbs increases, the ability of the body to maintain stability

decreases, and the risk of falling increases.

5. Conclusion

The high risk of falls in patients with CSVD is closely related

to the time-space and kinematic parameters of gait, as well as the

symmetry and variability of gait. In particular, toe-off angle, toe-

off angle CV, stride length CV, and terminal double support CV

were independent risk factors for falling in patients with CSVD.

Our study could promote a better understanding of the risk factors

for falling caused by gait disturbance in patients with CSVD. Our

findings provide evidence for clinical work, which is helpful in

administering targeted drugs or early rehabilitation intervention.

However, this study has some room for improvement. First, some

kinematic parameters, such as knee joint and hip joint, could be

included while selecting some kinematic parameters which have the

greatest impact on gait. In this way, it would be more sufficient
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in reflecting the comprehensive effect of cerebral microvascular

disease on gait. Second, we could conduct a multicenter study and

carry out rehabilitation interventions on gait disorders in patients

so as to provide amore effective basis for guiding clinical treatment.
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The differences in kineticmechanisms of decreased gait speed across brain lesion
sides have not been elucidated, including the arrangement of motor modules
reflected by kinetic interjoint coordination. The purpose of this study was to
elucidate the differences in the kinetic factors of slow gait speed in patients with
stroke on the lesion sides. A three-dimensional motion analysis system was
employed to assess joint moment in the lower limb and representative gait
parameters in 32 patients with right hemisphere brain damage (RHD) and
38 patients with left hemisphere brain damage (LHD) following stroke as well
as 20 healthy controls. Motor module composition and timing were determined
using principal component analysis based on the three joint moments in the
lower limb in the stance phase, which were the variances accounted for principal
components (PCs) and the peak timing in the time series of PCs. A stepwise
multiple linear regression analysis was performed to identify the most significant
joint moment and PC-associated parameter in explaining gait speed. A negligible
difference was observed in age, weight, height, and gait speed among patients
with RHD and LHD and controls. The following factors contributed to gait speed:
in patients with RHD, larger ankle plantarflexion moment on the paretic (p =
0.001) and nonparetic (p = 0.002) sides and ankle dorsiflexion moment on the
nonparetic side (p = 0.004); in patients with LHD, larger ankle plantarflexion
moment (p < 0.001) and delayed peak timing of the first PC (p = 0.012) on the
paretic side as well as ankle dorsiflexion moment on the nonparetic side (p <
0.001); in the controls, delayed peak timing of the first PC (p = 0.002) on the right
side and larger ankle dorsiflexion moment (p = 0.001) as well as larger hip flexion
moment on the left side (p = 0.023). The findings suggest that the kinetic
mechanisms of gait speed may differ among patients with RHD following
patients with stroke with LHD, and controls.

KEYWORDS

stroke, gait, kinetics, lesion side, laterality, kinetic coordination

1 Introduction

Patients with stroke have reduced gait speed, which impairs their mobility within the
community (Fulk et al., 2017), limits their living space (Tashiro et al., 2019), compromises
their independence in daily life (Compagnat et al., 2021), and hinders their ability to resume
to work (Jarvis et al., 2019). This can ultimately affect their overall quality of life (Sprigg
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et al., 2013). Gait speed is a crucial indicator of functional mobility
and is associated with various aspects of daily life for patients
with stroke.

Current interventions, such as electromechanical-assisted gait
training and treadmill training with physiotherapy, have shown a
modest increase in walking velocity for patients with stroke
(Mehrholz et al., 2017; Mehrholz et al., 2020). However, these
improvements may not reach the minimal clinically significant
changes for gait speed, which range from 0.10 to 0.18 m/s (Fulk
et al., 2011; Bohannon and Glenney, 2014). This suggests that
current interventions may be insufficient. Various factors, such as
ankle moment and trail limb angle, contribute to reduced
propulsion force in patients with stroke (Hsiao et al., 2016b),
indicating different mechanisms at play when it comes to
increasing gait speed. Trail limb angle is defined as the angle
between the laboratory’s vertical axis and the vector connecting
the greater trochanter and the fifth metatarsal head. Therefore,
understanding individual-specific factors contributing to reduced
gait speed is crucial for developing personalized training strategies.

Various studies have examined the relationship between gait
speed and the side of the brain lesion in patients with stroke, but
findings have been inconsistent (Chen et al., 2014; Kim et al., 2019;
Ursin et al., 2019; Frenkel-Toledo et al., 2021; Vismara et al., 2022).
Some studies found that patients with right hemisphere brain
damage (RHD) have slower gait speed than those with left
hemisphere brain damage (LHD), while others found no
significant difference. Patients with RHD often exhibit decreased
capacity to shift body weight and unstable body movement and
posture control, which can lead to slower start and reduced muscle
activation in the paretic leg (Fernandes et al., 2018; Coelho et al.,
2019). These patients also show higher center of pressure (CoP)
sway velocity during static standing (Fernandes et al., 2018). Hsiao
et al. (2017) suggested that difficulties in transferring weight from
side to side and maintaining stability while walking could decrease
walking speed (Hsiao et al., 2017). This process leads to the
generation of vertical ground reaction force, resulting in an
increase in walking speed and control of whole body angular
momentum (WBAM) in the frontal plane during gait (Silverman
and Neptune, 2011; Hsiao et al., 2017). Patient with strokes often
exhibit increased WBAM during their gait (Nott et al., 2014; Brough
et al., 2019). The ankle plantar flexion moment in late stance, which
begins when the foot contacts the ground and ends when the foot
leaves the floor, was related to the vertical ground reaction force and
WBAM during gait (Silverman and Neptune, 2011; Elhafez et al.,
2019). These observations suggest that the reduction in walking
speed and increase in WBAM observed in patients with RHD may
be due to a significant decrease in ankle plantar flexion moment in
late stance on the paretic side during gait. However, this is only a
tentative explanation and further research is needed to confirm or
refute this hypothesis.

Previous researches have shown that in patient with strokes,
walking speed is linked to kinetic parameters in the paretic lower
limb, particularly at the ankle and hip joints (Olney et al., 1994; Kim
and Eng, 2004; Jonkers et al., 2009; Sekiguchi et al., 2012; Mentiplay
et al., 2019). From the results of our previous study using principal
component analysis (PCA) in healthy controls, we found that as gait
speed increases, the later peak timing of the first principal
component (PC) demonstrates that the timing of propulsion

control, exhibited by kinetic coordination, plays an important
role in generating propulsion (Sekiguchi et al., 2019). In patients
with stroke, we have observed a decrease in ankle joint moment and
disrupted kinetic coordination, which impacts their forward
movement, using PCA (Sekiguchi et al., 2022). Additionally, the
first PC during gait, which involves moments at the ankle and hip
joints, occurs earlier in time and includes knee joint flexion or
extension (Sekiguchi et al., 2022). However, it remains unclear
whether there is a relationship between the timing of the first PC
and gait speed in patients with stroke.

The purpose of this study was to elucidate the differences in
the kinetic factors of slow gait speed between the lesion sides in
patients with stroke. We conducted a stepwise multiple linear
regression analysis to determine which joint moment and
parameter associated with kinetic coordination are most
explanatory for gait speed. In patients with right hemisphere
damage (RHD), we hypothesize that the observed reduction in
walking speed and increase in whole body angular momentum
(WBAM) may be due to a significant decrease in the ankle plantar
flexion moment in the late stance on the paretic (left) side during
gait. Furthermore, in patients with left hemiplegia, difficulties in
dynamic control may result in a lack of correlation between
walking speed and kinetic coordination on the paretic
(right) side.

This study provides valuable insights into the kinetic
mechanisms underlying decreased gait speed in patients with
stroke and may inform future rehabilitation strategies. By
identifying specific joint moments and parameters associated
with decreased gait speed, rehabilitation professionals may be
able to develop more targeted interventions to improve walking
speed and functional mobility in patients with stroke.

2 Materials and methods

2.1 Subject

The present study included 32 patients with right-sided
(8 females, 58 ± 10 years old, Table 1) and 38 patients with left-
sided (9 females, 54 ± 13 years old, Table 1) brain lesions following
stroke as well as 20 healthy controls (8 females, 57 ± 16 years old,
Table 1). All patients underwent post-stroke rehabilitation, which
was tailored to each patient’s needs and recovery phase. To be
included, patient with strokes had to meet the following criteria. (1)
being able to walk without a cane over a distance of at least 7 m, (2)
experiencing paresis ranging from mild to severe, with a
Brunnstrom recovery stage of VI or lower in the lower limb on
the paretic side, and (3) having an ischemic or hemorrhagic
supratentorial lesion. To be included as a control, healthy
controls must not have had any neurological lesions. Healthy
controls were not eligible if they had any of the following: (1)
medical conditions that were not stable, (2) a history of major
orthopedic surgery or current orthopedic conditions that could
affect their ability to walk, or (3) higher brain dysfunction that
could affect the accuracy of the measurements. Before participating
in this study, the participants gave their written and informed
consent. Our institutional review board approved this study
(2016-1-354).
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2.2 Gait analysis

The participants were asked to walk 7 m, repeating the task 2 to
10 times until data for five strides were collected. The patients walked
barefoot at a comfortable pace without assistive devices and could rest
between trials if needed. The walking speed of the healthy subjects over
a distance of 7 m was determined using the patient’s previously
recorded walking speed as a reference, and they were instructed to
walk the distance within that time. Participants had the opportunity to
practice walking before the measurement (Figure 1). We calculated the
duration required for the healthy individuals to traverse a distance of
7 m, aligning it with their previously recorded walking pace. The
healthy subjects were guided to cover the 7-meter distance within
the predetermined time frame. Prior to the actual gaitmeasurement, the
healthy controls rehearsed the 7-meter walk multiple times. Data from
an average of more than five strides from successful trials were used for
analysis. Whole-body motion data were collected using an 8-camera
motion analysis system at a rate of 120 Hz (MAC 3D, Motion Analysis

Corporation, Santa Rosa, CA, USA) with 33 reflective markers placed
on 12 body segments (As shown in Supplementary Table). The three-
dimensional coordinates were smoothed with a bidirectional fourth-
order Butterworth low-pass filter with a cutoff frequency of 6 Hz.
Ground reaction force data were collected at a rate of 1,200 Hz using
four force plates (Anima Corporation, Chofu, Tokyo, Japan) embedded
in the walkway and smoothed with a bidirectional fourth-order
Butterworth low-pass filter with a cutoff frequency of 200 Hz.

A model consisting of 12 body segments, based on
anthropometric data and following the work of (Dumas et al.,
2007), included the feet, shanks, thighs, pelvis, thorax, upper
arms, and forearms. A joint coordinate system was used to
calculate the kinematic data for each joint in the lower
extremities, as described by Winter (2009).

Additionally, inverse dynamics was employed to estimate the
kinetics of the joints in the lower extremities (Selbie et al., 2013). All
kinematic and kinetic data were normalized to 100% of a single gait
cycle. The representativemethod was used to calculate spatiotemporal

TABLE 1 Subjects’ demographic characteristics.

Right-sided brain lesion Left-sided brain lesion Controls

N 32 38 20

Gender (Male/Female) 24/8 29/9 12/8

Age (years) 58.6 ± 9.9 53.9 ± 13.0 57.4 ± 16.3

Height (cm) 165.3 ± 9.0 165.2 ± 7.5 165.9 ± 8.7

Weight (kg) 62.3 ± 9.1 64.8 ± 11.4 61.6 ± 11.1

Diagnosis (Hemorrhage/Infarction) 22/10 21/17

Location of lesion (M/S) 3/29d 8/29

Time since stroke (months) 26.8 ± 39.3 31.4 ± 40.5

aValues are expressed as means ± standard deviations.
bNo significant difference was observed in the physical characteristics, diagnosis, location of lesion and time since stroke among the groups.
cM/C represents mixed cortical & subcortical and cortical lesions.
dOne patient with left hemisphere damage did not have CT or MRI images available as they were hospitalized in another facility.

FIGURE 1
Gait Analysis Procedure. The diagram illustrates the experimental setup for the gait analysis study. Participants walked a 7-meter distance multiple
times, with data from an average of more than five strides used for analysis. Reflective markers were placed on 12 body segments, and motion data were
collected using an 8-camera motion analysis system. Ground reaction force data were collected using four force plates embedded in the walkway.
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parameters (Butler et al., 2006). The kinematic and kinetic data were
used to obtain the representative gait parameters, following the
methods outlined in a previous study by Kinsella and Moran
(2008). The kinetic data was normalized to the patient’s body weight.

A spatiotemporal decomposition using principal component
analysis (PCA) was performed on the joint moments in the lower
limb (ankle, knee, and hip) to calculate the coordination of the lower
limb joints and the loading on each joint. This is the samemethod used
in our previous study (Sekiguchi et al., 2022). The kinetic data in the
stance phase during gait was used in this study unlike one gait cycle
used in the previous study (Sekiguchi et al., 2022). The parameters of
interest included the percentage of variance explained by each principal
component (PC), the timing of the peak of the first PC, and the factor
loadings of each joint in each PC. The percentage of variance explained
by each PC and the peak timings represented the spatial and temporal
aspects of the motor module.

The evaluation of balance control was conducted using the range of
whole-body angular momentum (WBAMR) in the frontal plane (Brough
et al., 2019). The calculation ofwhole-body angularmomentum (WBAM)
was performed using a 12-segment inverse dynamics model. This
involved aggregating the angular momentum of each body segment
around the center of mass for the entire body in the frontal plane.
The whole-body angular momentum was then normalized based on the
subject’s mass, walking speed, and leg length. WBAMR was characterized
as the difference between the maximum positive and minimum negative
peaks of WBAM, with an average taken across all strides.

All gait-related parameters were calculated using a custom software
program created with MATLAB (MathWorks Inc., Natick, MA, USA).

2.3 Clinical characteristics

A physical therapist, Y.S., assessed the neurological impairment
of patients using the Stroke Impairment Assessment Set (SIAS)
(Tsuji et al., 2000). Information about the patients’ demographic and
clinical characteristics was gathered through interviews and
medical records.

2.4 Statistical analysis

The number of gait cycles used for statistical analysis varied from
5 to 9 for each participant. The determination of the number of gait
cycles was based on each patient’s walking ability. In instances where a
slower walking speed and high variability were expected, we
incorporated a larger number of steps into our analysis. Gait
speed, cycle time, stride length, step width, and WBAMR were
compared between the three groups (RHD and LHD patients and
controls) using one-way analysis of variance (ANOVA). Stance,
swing, double stance, single-support phase times, step length, joint
angle, joint moment, and PCA-related parameters were analyzed
using a two-way ANOVA. Although we evaluated the normality of
the gait dataset using the Shapiro-Wilk test, we did not conduct non-
parametric tests for the two-way ANOVA, as these tests do not
compute interactions between factors. The within-subject factor was
side (paretic/nonparetic for hemiparesis patients and right/left for
controls) and the independent factor was group (hemiparesis patients/
controls). The two-way ANOVA was performed separately for left-

sided and right-sided brain lesions. If a significant difference was
found, a Bonferroni post hoc test was conducted. In addition, we
compared all parameters between patients with RHD and LHD using
unpaired t-test. A chi-square test of independence was conducted to
investigate the relationship between the side of the lesion and the
location of the lesion and the diagnosis. Stepwise multiple linear
regression was used to determine which joint moments and PCA-
related parameters best explained gait speed. Forward and
backward selection methods were used. In each forward step,
the independent variable with the smallest probability of F not
in the regression equation and ≤0.05 was included. In each
backward step, the independent variable with a probability of
F ≥0.10 was removed. The analysis ended if no variables met
the criteria for inclusion or exclusion. A post hoc statistical power
was conducted using G*Power software (ver. 3.1.9.2; Heinrich-
Heine-Universität Düsseldorf) and MATLAB (MathWorks Inc.,
Natick, MA, USA). The significance level was set at p = 0.05 and we
estimated effect sizes using partial eta squared (ηp2), eta squared
(η2), r, and Cohen’s d. Statistical analyses were performed using
SPSS ver. 24 (IBM-SPSS Inc., Chicago, IL, USA).

In our study, we initially conducted a sample size calculation
using G*Power 3.1.9.2. We assumed a multiple regression model
with 22 predictors and aimed to estimate the partial regression
coefficients. With an effect size of f2 = 0.18, corresponding to an
adjusted coefficient of determination R2 ≈ 0.15, we performed our
tests at a 5% significance level and aimed for 80% power. This led us
to a required sample size of 140 participants in total.

3 Results

The common and differing results of the parameters related to gait
for patients with LHD and RHD are compiled in the Supplementary
Material Data Sheet, which also includes a summary due to the
extensive amount of results for ease of reference.

The post hoc power analysis demonstrates that despite our sample
size being less than the initially estimated 140 participants, the actual
power achieved with our sample of 32 patients with right-sided brain
lesions, 38 patients with left-sided brain lesions, and 20 healthy controls
was 0.99. This high power indicates that our study was adequately
powered to detect significant effects, despite the smaller sample size.

3.1 Subject characteristics

We did not find significant differences in gender, age, height,
weight, diagnosis, and time since stroke among the groups. The
speech (p < 0.001, r = 3.15) and finger function (p = 0.030, r = 0.56)
item scores in patients with LHD were lower than those with RHD.
No significant difference in the other items of SIAS was also found
between patients with RHD and LHD.

3.2 Differences in gait parameters

Tables 2–4 present the representative gait, kinetic and kinematic,
and PCA-related parameters, respectively, of patients with RHD,
LHD, and also healthy controls. We presented the results of the
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TABLE 2 Mean and standard deviation of spatiotemporal and WBAMR data in patients following stroke and healthy controls.

Right-sided brain lesion Left-sided brain lesion Healthy controls Two-way ANOVA

Right-sided brain lesion vs.
controls

Left-sided brain lesion vs. controls

p-value p-value

Paretic side Nonparetic
side

Paretic side Nonparetic
side

Right Left Subjects Laterality Interaction Subjects Laterality Interaction

Gait speed (m/s) 0.52 ± 0.26 0.46 ± 0.27 0.48 ± 0.18

Gait cycle time (s) 1.52 ± 0.47 1.67 ± 0.62 1.82 ± 0.52

Stride length (m) 0.70 ± 0.27a 0.65 ± 0.27a 0.88 ± 0.17a

Step width (m) 0.16 ± 0.05 0.16 ± 0.04 0.14 ± 0.03

WBAMR 0.13 ± 0.10 0.16 ± 0.13b 0.08 ± 0.04b

Stance time (s) 0.96 ± 0.43c,d 1.17 ± 0.51c 1.14 ± 0.61c 1.35 ± 0.68c 1.25 ± 0.45 1.23 ± 0.43d 0.186 <0.000 <0.000 0.998 <0.000 <0.000

Swing time (s) 0.55 ± 0.10 0.37 ± 0.09 0.54 ± 0.10 0.38 ± 0.14 0.58 ± 0.10 0.59 ± 0.10 <0.000 <0.000 <0.000 <0.000 0.002 0.001

Step length (m) 0.36 ± 0.12c,d 0.32 ± 0.15c,e 0.33 ± 0.13c,f 0.31 ± 0.15b,c 0.43 ± 0.09e,f 0.43 ± 0.08b,d 0.008 0.030 0.146 0.001 0.500 0.140

aSignificantly different between patients and healthy controls at p < 0.05.
bSignificantly different between the left sides in patients with left-sided brain lesion and healthy controls at p < 0.05.
cSignificantly different between the paretic and nonparetic sides in patients at p < 0.05.
dSignificantly different between the left sides in patients with right-sided brain lesion and healthy controls at p < 0.05.
eSignificantly different between the right sides in patients with right-sided brain lesion and healthy controls at p < 0.05.
fSignificantly different between the right sides in patients with left-sided brain lesion and healthy controls at p < 0.05.
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TABLE 3 Mean and standard deviation of kinematic and kinetic data in patients following stroke and healthy controls.

Right-sided brain
lesion

Left-sided brain lesion Healthy controls Two-way ANOVA

Right-sided brain lesion vs.
controls

Left-sided brain lesion vs. controls

p-value p-value

Left side Right side Right
side

Left side Right
side

Left side Subjects Laterality Interaction Subjects Laterality Interaction

Paretic
side

Nonparetic
side

Paretic
side

Nonparetic
side

Peak hip extension moment
in early stance (Nm/kg)

0.42 ± 0.30a 0.61 ± 0.34a,b 0.34 ± 0.26a,c 0.46 ± 0.21a,c,d 0.29 ± 0.10b 0.31 ± 0.15d 0.004 0.010 0.002 0.066 0.004 0.031

Peak hip flexion moment in
the stance phase (Nm/kg)

0.57 ± 0.33 0.62 ± 0.28 0.64 ± 0.32a 0.54 ± 0.26a 0.68 ± 0.28 0.61 ± 0.17 0.498 0.140 0.835 0.412 0.038 0.687

First peak knee extension
moment in the stance phase
(Nm/kg)

0.16 ± 0.14a,e 0.33 ± 0.20a,b 0.31 ± 0.21e 0.34 ± 0.26d 0.22 ± 0.17b 0.18 ± 0.15d 0.199 0.003 0.051 0.019 0.887 0.240

Peak knee flexion moment
in the stance phase (Nm/kg)

0.37 ± 0.32a,e,f −0.04 ± 0.17a,b 0.12 ± 0.27a,e −0.01 ± 0.20a,d 0.15 ± 0.13b 0.18 ± 0.11d,f 0.968 <0.000 <0.000 0.011 0.226 0.047

Second peak knee extension
moment in the stance phase
(Nm/kg)

0.19 ± 0.16a,e 0.44 ± 0.25a,b 0.34 ± 0.23a,e 0.47 ± 0.30a,d 0.32 ± 0.14b 0.25 ± 0.08d 0.383 <0.000 0.013 0.025 0.479 0.004

Peak ankle dorsiflexion
moment in early stance
(Nm/kg)

0.03 ± 0.07a,f 0.09 ± 0.09a 0.03 ± 0.06a,c,g 0.07 ± 0.05a,c 0.07 ± 0.05g 0.07 ± 0.06f 0.626 0.016 0.012 0.093 0.175 0.221

Peak ankle plantarflexion
moment in the stance phase
(Nm/kg)

0.72 ± 0.27a,f 0.95 ± 0.20a 0.68 ± 0.30a,g 0.89 ± 0.24a 0.96 ± 0.17g 1.00 ± 0.16f 0.008 0.001 <0.000 0.002 <0.000 0.002

Peak hip extension in
stance (°)

−6.1 ± 7.9a,f −12.8 ± 17.1a,b −8.9 ± 8.9a,g −12.7 ± 14.2a,d 1.6 ± 6.5b,g 1.7 ± 6.5f,d <0.000 0.035 0.043 <0.000 0.290 0.255

Peak hip flexion in early
stance (°)

26.1 ± 7.1 23.5 ± 15.5 28.9 ± 8.0 27.7 ± 14.8 27.6 ± 4.3 27.4 ± 4.3 0.233 0.456 0.418 0.709 0.705 0.753

Peak knee flexion in early
stance (°)

11.1 ± 9.9a,e 19.2 ± 5.8a,b,e 17.7 ± 9.3a,g 20.7 ± 8.5a,d 12.9 ± 5.7b,g 12.1 ± 5.0d 0.068 0.004 0.017 <0.000 0.362 0.109

Peak knee extension in
stance (°)

−0.9 ± 9.0a,e −8.1 ± 5.3a,b,e −7.1 ± 8.2a −9.5 ± 7.5a,d −4.2 ± 5.3b −2.2 ± 5.3d 0.346 0.001 0.050 0.003 0.877 0.051

Peak knee flexion in late
stance (°)

22.5 ± 12.7a,f 44.4 ± 4.9a,b 27.7 ± 11.1a,g 43.7 ± 6.7a,d 35.3 ± 5.1b,g 34.9 ± 6.8f,d 0.345 <0.000 <0.000 0.718 <0.000 <0.000

(Continued on following page)
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TABLE 3 (Continued) Mean and standard deviation of kinematic and kinetic data in patients following stroke and healthy controls.

Right-sided brain
lesion

Left-sided brain lesion Healthy controls Two-way ANOVA

Right-sided brain lesion vs.
controls

Left-sided brain lesion vs. controls

p-value p-value

Left side Right side Right
side

Left side Right
side

Left side Subjects Laterality Interaction Subjects Laterality Interaction

Paretic
side

Nonparetic
side

Paretic
side

Nonparetic
side

Ankle plantarflexion in early
stance (°)

5.4 ± 8.7a −1.4 ± 4.6a,b 3.3 ± 5.3a 0.4 ± 6.3a 3.4 ± 3.7b 2.9 ± 3.1 0.342 0.010 0.003 0.189 0.096 0.254

Ankle dorsiflexion in
stance (°)

11.0 ± 9.6a,e,f 21.2 ± 3.4a,b 15.1 ± 6.5a,f,g 20.0 ± 5.7a 18.9 ± 3.8b,g 19.2 ± 2.8f 0.019 <0.000 <0.000 0.168 0.012 0.024

aSignificantly different between the paretic and nonparetic sides in patients at p < 0.05.
bSignificantly different between the right sides in patients with right-sided brain lesion and healthy controls at p < 0.05.
cSignificantly different between the nonparetic sides in patients with left-sided and right-sided brain lesion.
dSignificantly different between the left sides in patients with left-sided brain lesion and healthy controls at p < 0.05.
eSignificantly different between the paretic sides in patients with left-sided and right-sided brain lesion.
fSignificantly different between the left sides in patients with right-sided brain lesion and healthy controls at p < 0.05.
gSignificantly different between the right sides in patients with left-sided brain lesion and healthy controls at p < 0.05.
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TABLE 4 Mean and standard deviation results for the PCA-related data.

Right-sided brain lesion Left-sided brain lesion Healthy controls Two-way ANOVA

Right-sided brain lesion vs.
controls

Left-sided brain lesion vs. controls

p-Value p-Value

Left side Right side Right
side

Left side Right side Left side Subjects Laterality Interaction Subjects Laterality Interaction

Paretic
side

Nonparetic
side

Paretic
side

Nonparetic
side

Timing of peak PC1
(% stance phase)

67.22 ± 16.45a,b 75.28 ± 14.67a 68.74 ± 15.92c 54.40 ± 34.15d 79.15 ± 6.75c 81.35 ± 6.86b,d 0.170 0.227 0.037 < 0.000 0.163 0.059

Variance explained by
PC1 (%)

0.78 ± 0.12 0.77 ± 0.12 0.81 ± 0.10a 0.74 ± 0.13a 0.79 ± 0.10 0.78 ± 0.08 0.631 0.766 0.663 0.550 0.063 0.086

Variance explained by
PC2 (%)

0.20 ± 0.10 0.18 ± 0.10 0.17 ± 0.10 0.22 ± 0.11 0.20 ± 0.09 0.19 ± 0.08 0.879 0.712 0.616 0.950 0.224 0.192

Variance explained by
PC1 + PC2 (%)

0.98 ± 0.03a 0.95 ± 0.04a,e 0.98 ± 0.02a 0.95 ± 0.04a,d 0.98 ± 0.02e 0.98 ± 0.02d 0.027 0.035 0.005 0.046 0.006 0.055

Loadings of ankle joint
moment in PC1

0.66 ± 0.15 0.62 ± 0.09 0.66 ± 0.11a,c 0.61 ± 0.16a 0.60 ± 0.07c 0.63 ± 0.07 0.125 0.163 0.763 0.376 0.421 0.037

Loadings of knee joint
moment in PC1

−0.23 ± 0.51a,b,f 0.37 ± 0.45a 0.27 ± 0.49f 0.38 ± 0.45 0.28 ± 0.53 0.23 ± 0.51b 0.122 < 0.000 0.001 0.541 0.720 0.307

Loadings of hip joint
moment in PC1

−0.22 ± 0.44a,b −0.39 ± 0.34a −0.38 ± 0.32c −0.32 ± 0.41d −0.52 ± 0.15c −0.54 ± 0.10b,d 0.005 0.127 0.058 0.012 0.638 0.379

Loadings of ankle joint
moment in PC2

0.15 ± 0.38a,b,f −0.25 ± 0.42a −0.16 ± 0.41f −0.12 ± 0.47 −0.19 ± 0.41 −0.19 ± 0.41b 0.137 0.005 0.005 0.616 0.779 0.765

Loadings of knee joint
moment in PC2

0.57 ± 0.28b 0.50 ± 0.31e 0.60 ± 0.23a 0.47 ± 0.30a 0.68 ± 0.24c,g 0.73 ± 0.20b,g 0.005 0.253 0.860 0.004 0.253 0.017

Loadings of hip joint
moment in PC2

−0.38 ± 0.56a,b 0.11 ± 0.65a −0.10 ± 0.63 0.04 ± 0.69 0.10 ± 0.54 0.05 ± 0.49b 0.107 0.010 0.038 0.419 0.677 0.357

aSignificantly different between the paretic and nonparetic sides in patients at p < 0.05.
bSignificantly different between the left sides in patients with right-sided brain lesion and healthy controls at p < 0.05.
cSignificantly different between the right sides in patients with left-sided brain lesion and healthy controls at p < 0.05.
dSignificantly different between the left sides in patients with left-sided brain lesion and healthy controls at p < 0.05.
eSignificantly different between the right sides in patients with right-sided brain lesion and healthy controls at p < 0.05.
fSignificantly different between the paretic sides in patients with left-sided and right-sided brain lesion.
gSignificantly different between the right and left sides in healthy controls at p < 0.05.
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statistical power in Supplementary Tables S6–S9 as
Supplementary Material.

3.2.1 Gait speed, step length, gait cycle time, step
width, and WBAM

No significant differences were observed in gait cycle time, gait
speed, location of lesion, and step width among the three groups.
However, significant differences were found in stride length (F(2,87) =
5.611, p = 0.005, η2 = 0.11) and WBAMR (F(2,87) = 3.288, p = 0.042,
η2 = 0.07). The stride lengths of patients with RHD (p = 0.004, d =
0.95) and LHD (p = 0.034, d = 0.77) were shorter than those of
healthy controls. There was no significant difference in WBAMR

between patients with RHD and LHD. However, the WBAMR in
patients with LHD was larger than that of healthy controls (p =
0.032, d = 0.68) (Table 2).

3.2.2 Spatiotemporal parameters in patients
with RHD

Significant main effects of group (F(1,50) = 7.654, p = 0.008, ηp2 =
0.13) and side (F(1,50) = 4.981, p = 0.030, ηp2 = 0.09) on step length
were found. Patients with RHD had shorter step lengths than
controls, and the step length on the left side was longer than on
the right side (Table 2).

Significant main effects of group (F(1,50) = 33.112, p < 0.001,
ηp2 = 0.40), side (F(1,50) = 29.223, p < 0.001, ηp2 = 0.37), and
interactions between group and side (F(1,50) = 28.013, p < 0.001,
ηp2 = 0.36) were also found on swing time. The swing time on
the paretic (left) side was longer than on the nonparetic (right)
side in patients with RHD (p < 0.001, d = 1.94). The swing
time on the nonparetic (right) side in patients with RHD
was shorter than that on the right side in healthy controls
(p < 0.001, d = 2.33).

In addition, there were significant main effects of side (F(1,50) =
33.626, p < 0.001, ηp2 = 0.40) and interaction between group and side
(F(1,50) = 25.687, p < 0.001, ηp2 = 0.34) on stance time. The post hoc
test showed that the stance time was shorter on the paretic (left) side
than on the nonparetic (right) side in patients with RHD (p < 0.001,
d = 0.44). The stance time was shorter on the paretic (left) side in
patients with RHD than on the left side in healthy controls (p =
0.031, d = 0.63).

3.2.3 Spatiotemporal parameters in patients
with LHD

Significant main effects of group (F(1,50) = 11.766, p = 0.001,
ηp2 = 0.17) on step length, with patients with LHD having shorter
step lengths than the controls, were found (Table 2).

There were also significant main effects of group (F(1,50) =
32.147, p < 0.001, ηp2 = 0.37), side (F(1,50) = 11.030, p = 0.002,
ηp2 = 0.17), and interactions between group and side (F(1,50) =
12.974, p = 0.001, ηp2 = 0.19) on swing time. The swing time on the
paretic (right) side was longer than that on the nonparetic (left) side
in patients with LHD (p < 0.001, d = 1.29). The swing time on the
nonparetic (left) side was shorter than that on the left side in healthy
controls (p < 0.001, d = 1.60).

Furthermore, there were significant main effects of side (F(1,50) =
15.989, p < 0.001, ηp2 = 0.22) and interaction between group and side
(F(1,50) = 20.884, p < 0.001, ηp2 = 0.27) on stance time. The post hoc
test found that the stance time was shorter on the paretic (right) side

than on the nonparetic (left) side in patients with LHD (p <
0.001, d = 0.32).

3.2.4 Kinetic and kinematic parameters of patients
with RHD

Significant main effects of side and interaction between group
and side were observed on all kinetic parameters, except the peak hip
flexion moment in the stance phase, as presented in Table 3.
Moreover, the results showed significant main effects of group on
the peak hip extension moment in early stance (F(1,50) = 9.307, p =
0.004, ηp2 = 0.16) and peak ankle plantarflexion moment in the
stance phase (F(1,50) = 7.599, p = 0.008, ηp2 = 0.13). In patients with
RHD, both the first (p < 0.001, d = 0.81) and second peak knee
extension moments (p < 0.001, d = 0.76) on the paretic side during
the stance phase were smaller than those in patients with LHD. The
peak knee flexion moment during the stance phase on the paretic
side was larger in patients with RHD than in those with LHD (p <
0.001, d = 0.86). Furthermore, the peak hip extension moment (p =
0.033, d = 0.52) and ankle dorsiflexion (p = 0.048, d = 0.48) in early
stance on the nonparetic side were larger in patients with RHD than
in those with LHD (Table 3).

The results of the post hoc test for kinetic parameters were as
follows. The peak hip extension moment and first and second peak
knee extension moments in stance on the nonparetic (right) side in
patients with RHDwere larger than those on the right side in healthy
controls (p < 0.001, d = 1.13; p = 0.041, d = 0.60; p = 0.049, d = 0.58)
and those on the paretic (left) side in patients with RHD (p < 0.001,
d = 0.53; p < 0.001, d = 0.98; p < 0.001, d = 1.23). Although the peak
knee flexion moment in the stance phase on the nonparetic (right)
side was smaller than that on the paretic (left) side (p < 0.001, d =
1.59) and that on the right side in healthy controls (p < 0.001, d =
1.24), the peak knee flexion moment in the stance phase on the
paretic (left) side in patients was larger than that on the left side in
healthy controls (p = 0.015, d = 0.72). The peak ankle dorsiflexion
moment in early stance and ankle plantarflexion moment in the
stance phase on the paretic (left) side were smaller than those on the
nonparetic (right) side in patients (p < 0.001, d = 0.76 and p < 0.001,
d = 0.98) and those on the left side in healthy controls (p = 0.043, d =
0.59 and p < 0.001, d = 1.22).

There were significant main effects of group, side, and
interaction between group, and side on kinematics such as the
peak hip extension in stance, peak knee flexion in early stance,
and peak ankle dorsiflexion in stance, as presented in Table 3. In
addition, there were significant main effects of side and interaction
between group and side on the peak knee extension in stance, peak
knee flexion in late stance, and peak ankle plantarflexion in early
stance. The peak knee flexion (p = 0.005, d = 0.69) and peak ankle
dorsiflexion (p = 0.037, d = 0.51) in early stance on the paretic side in
patients with RHD were smaller than those with LHD. On the other
hand, the peak knee extension in stance on the paretic side with
RHD was larger than those with LHD (p = 0.004, d = 0.72).

The results of the post hoc test for kinematic parameters were as
follows. The peak hip extension in the stance phase, peak knee
extension in the stance phase, and peak ankle plantarflexion in early
stance on the nonparetic (right) side were lower than those on the
paretic (left) side (p = 0.001, d = 0.59; p < 0.001, d = 0.97; p < 0.001,
d = 0.98) and those on the right side (p = 0.001, d = 1.06; p = 0.013,
d = 0.74; p < 0.001, d = 1.12) in healthy controls. The peak knee
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flexion in early and late stance and peak ankle dorsiflexion in the
stance phase on the nonparetic side (right) were higher than those
on the paretic (left) side in patients (p < 0.001, d = 1.01; p < 0.001, d =
2.27; p < 0.001, d = 1.41) and those on the right side in healthy
controls (p < 0.001, d = 1.09; p < 0.001, d = 1.82; p = 0.030, d = 0.64).
The peak hip extension in stance, peak knee flexion in late stance,
and peak ankle dorsiflexion in stance on the paretic (left) side were
also smaller than those on the left side in healthy controls (p = 0.001,
d = 1.02; p < 0.001, d = 1.14; p = 0.001, d = 1.05).

3.2.5 Kinetic and kinematic parameters of patients
with LHD

A significant main effect of side on kinetics such as the peak
hip flexion moment in the stance phase was observed, which was
larger on the right side than on the left side. Significant main
effects of group on the first peak knee extension moment in
the stance phase and peak ankle dorsiflexion moment in early
stance were also observed, which were larger in patients than in
healthy controls. There were significant main effects of group
and interaction between group and side on the peak knee flexion
in the stance phase and second peak knee extension moment
in the stance phase. Moreover, significant main effects of
group, side, and interaction between group, and side on the
peak ankle plantarflexion moment in the stance phase were
found (Table 3).

The results of the post hoc test for kinetic parameters were as
follows. The peak hip extension moment and second peak knee
extension moment in stance on the nonparetic (left) side in patients
with RHD were larger than those on the left side in healthy controls
(p = 0.006, d = 0.79 and p = 0.003, d = 0.48) and those on the paretic
(right) side in patients (p < 0.001, d = 0.53 and p = 0.002, d = 0.90).
The peak knee flexionmoment in the stance phase on the nonparetic
(left) side in patients with RHD was smaller than that on the left side
in healthy controls (p < 0.001, d = 1.16) and that on the paretic
(right) side in patients (p = 0.007, d = 0.52). The peak ankle
plantarflexion moment in the stance phase on the paretic (right)
side was smaller than that on the nonparetic (left) side in patients
(p < 0.001, d = 0.78) and that on the left side in healthy controls
(p < 0.001, d = 1.08).

Significant main effects of side and interaction between group
and side were observed on kinematics such as the peak knee flexion
in the late stance phase and peak ankle dorsiflexion in the stance
phase, as presented in Table 3. In addition, there were significant
main effects of group and interaction between group and side on the
peak knee extension in stance. Significant main effects of side on the
peak ankle plantarflexion in early stance were found, which was
larger on the right side than on the left side. Significant main effects
of group on the peak hip extension and peak knee flexion in early
stance were also observed, which were smaller, and larger,
respectively, in patients than in healthy controls.

The results of the post hoc test for kinematic parameters were as
follows. The peak knee extension in the stance phase on the
nonparetic (left) side in patients was smaller than that on the left
side in healthy controls (p < 0.001, d = 1.07). The peak knee flexion
in the late stance phase on the paretic (right) side in patients was
smaller than those on the nonparetic (left) side (p < 0.001, d = 1.74)
and on the right side in healthy controls (p = 0.005, d = 0.80). The
peak knee flexion in late stance on the nonparetic side (right) was

higher than that on the right side in healthy controls (p <
0.001, d = 1.31).

3.2.6 PCA-related parameters of patients with RHD
There were significant main effects of group on the peak timing

of the first PC (F(1,50) = 10.234, p = 0.002, ηp2 = 0.17) and the percent
variance of the first two PCs (F(1,50) = 5.183, p = 0.027, ηp2 = 0.09) as
well as of interaction between group and side on the peak timing of
the first PC (F(1,50) = 4.581, p = 0.037, ηp2 = 0.08) and the percent
variance of the first two PCs (F(1,50) = 8.837, p = 0.005, ηp2 = 0.15).
A significant main effect of side was observed on the percent
variance of the first two PCs (F(1,50) = 4.678, p = 0.035, ηp2 = 0.09).
The post hoc test indicated earlier peak timing of the first PC on
the paretic (left) side than on the nonparetic (right) side (p = 0.009,
d = 0.52) and the left side in healthy controls (p = 0.001, d = 1.04).
The percent variance of the first two PCs on the nonparetic (right)
side was lower than those on the paretic (left) side (p < 0.001,
d = 0.85) and on the right side in healthy controls (p = 0.002,
d = 0.94) (Table 4).

There were significant main effects of side on the loading of knee
joint moment for the first PC (F(1,50) = 17.572, p < 0.001, ηp2 = 0.26),
of group on the loading of hip joint moment for the first PC (F(1,50) =
8.636, p = 0.005, ηp2 = 0.15), and of interaction between group and
side on the loading of knee joint moment for the first PC (F(1,50) =
12.488, p = 0.001, ηp2 = 0.20). The post hoc test showed that the
loading of hip joint moment for the first PC was a negative value and
larger in patients than in healthy controls. On the paretic (left) side,
the loading of knee joint moment for the first PC was a negative
value and lower than those on the nonparetic (right) side (p < 0.001,
d = 1.26) and on the left side in healthy controls (p = 0.003, d = 0.90).
The loading of knee joint moment for the first PC on the paretic side
in patients with RHD was smaller than those with LHD (p <
0.001, d = 1.01).

3.2.7 PCA-related parameters of patients with LHD
There were significant main effects of group on the peak timing

of the first PC (F(1,50) = 18.800, p < 0.001, ηp2 = 0.25) and the percent
variance of the first two PCs (F(1,50) = 4.169, p = 0.046, ηp2 = 0.07) as
well as of side on the percent variance of the first two PCs (F(1,50) =
8.097, p = 0.006, ηp2 = 0.13). There seemed to be an interaction
between group and side in the percent variance of the first two PCs
(F(1,50) = 3.828, p = 0.055, ηp2 = 0.06). The post hoc test indicated
earlier peak timing of the first PC on the paretic (right) and
nonparetic (left) sides in patients than on the right (p = 0.007,
d = 0.77) and left (p = 0.008, d = 0.76) sides in healthy controls. The
percent variance of the first two PCs on the nonparetic (left) side was
lower than those on the paretic (right) side (p < 0.001, d = 0.78) and
the left side of healthy controls (p = 0.023, d = 0.64) (Table 4).

There were significant main effects of the group on the loading
of hip joint moment for the first PC (F(1,50) = 6.723, p = 0.012, ηp2 =
0.11) as well as of interaction between group and side on the loading
of ankle joint moment for the first PC (F(1,50) = 4.571, p = 0.037, ηp2 =
0.08). The post hoc test indicated that the loading of hip joint
moment for the first PC was a negative value and larger in
patients than in healthy controls. The loading of ankle joint
moment for the first PC was higher on the paretic (right) side
than on the nonparetic (left) side (p = 0.015, d = 0.42) and right side
in healthy controls (p = 0.016, d = 0.69).

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Sekiguchi et al. 10.3389/fbioe.2024.1240339

109

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1240339


3.3 Influence of kinetic and PCA-Related
parameters on walking speed

The results obtained from the multiple regression analysis of gait
speed for patients with RHD and LHD lesions and healthy controls
are presented in Table 5. In patients with LHD and healthy controls,
the peak ankle dorsiflexion moment in early stance on the left side
(nonparetic side) and timing of peak PC1 on the right side (paretic
side) were found to be significant gait speed predictors.
Furthermore, only in patients with LHD, the peak ankle
plantarflexion moment in the stance phase on the right side
(paretic side) found to be a significant gait speed predictor. In
healthy controls, the peak hip flexionmoment in the stance phase on
the left side was found to contribute to gait speed. In patients with
RHD, the peak ankle dorsiflexion moment in early stance and ankle
plantarflexion moment in the stance phase on the right side
(nonparetic side), as well as ankle plantarflexion moment in the
stance phase on the left side (paretic side), were identified as
contributors to gait speed. The statistical power in the multiple
regression analysis across all groups was 0.99, indicating that the
findings are likely reflecting actual effects rather than being products
of chance (Table 5).

4 Discussion

The factors that contributed to gait speed varied among patients
with RHD, patients with LHD, and controls. Consistent with
hypothesis, in patients with RHD, larger ankle plantarflexion
moments on both the paretic (left) and nonparetic (right) sides
as well as ankle dorsiflexion moment on the nonparetic (right) side
were contributing factors. However, contrary to hypothesis, WBAM

in RHD did not differ from that in patient with LHD and healthy
controls. The results may reflect the cautious gait in patients with
RHD, who have instability while standing. In patients with LHD,
larger ankle plantarflexion moment and delayed peak timing of the
first PC on the paretic (right) side as well as ankle dorsiflexion
moment on the nonparetic (left) side were contributing factors. In
controls, larger ankle dorsiflexion moment as well as larger hip
flexion moment on the left side and delayed peak timing of the first
PC on the right side were contributing factors. Contrary to
hypothesis, our results indicated that patients with LHD
controlled walking speed by the timing of kinetic coordination
on the paretic (right) side, similar to control groups. No study
has investigated the factors contributing to gait speed in patients
with stroke by simultaneously including kinetic parameters of both
the paretic and nonparetic sides. To the best of our knowledge, this is
the first study that included bilateral kinetic factors in a multiple
regression analysis and demonstrated that the kinetic factors
contributing to gait speed differ between patients with
LHD and RHD.

Our findings suggested that, much like the control groups,
patients with LHD managed their walking speed by coordinating
the timing of kinetic movements on their paretic (right) side.
Previous research has shown that left hemisphere dominance for
skilled movement is attributed to anatomical and functional
hemispheric asymmetries of the primary motor cortex,
descending pathways, and somatosensory association and
premotor cortices (Serrien et al., 2006). Indeed, patients with a
left hemisphere lesion performing an upper-limb task demonstrated
a deficit in intersegmental coordination (Schaefer et al., 2012).
Additionally, our study observed a more pronounced impairment
of motor function and language abilities in the paretic (right) hand
of patients with left hemisphere damage (LHD) compared to those

TABLE 5 Multiple regression analysis with gait speed in patients with hemiparesis and healthy controls.

Variable Partial regression
coefficient

Standardized partial
regression
coefficient

Variance,
R2

p-value VIF

Healthy controls

Peak ankle dorsiflexion moment in early
stance on the left side

−1.640 −0.528 0.565 0.001 1.391

Timing of peak PC1 on the right side 0.011 0.402 0.735 0.002 1.051

Peak hip flexion moment in the stance phase
on the right side

−0.091 −0.304 0.798 0.023 1.380

Patients with right-sided brain lesion

Peak ankle plantarflexion moment in the
stance phase on the paretic side

0.414 0.428 0.559 0.001 1.596

Peak ankle plantarflexion moment in the
stance phase on the nonparetic side

0.495 0.380 0.662 0.002 1.475

Peak ankle dorsiflexion moment in early
stance on the nonparetic side

−0.904 −0.310 0.741 0.004 1.165

Patients with left-sided brain lesion

Peak ankle plantarflexion moment in the
stance phase on the paretic side

0.506 0.548 0.517 0.000 1.147

Peak ankle dorsiflexion moment in early
stance on the nonparetic side

−2.040 10.423 0.682 0.000 1.101

Timing of peak PC1 on the paretic side 0.004 0.233 0.728 0.012 1.054

aPC, principal component.
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with right hemisphere damage (RHD). This observation may be
attributed to the lateralization of brain function, where the left
hemisphere, typically dominant in right-handed individuals, is
primarily responsible for tasks involving language and fine motor
skills. These findings suggest that the significant relationship
between gait speed and the timing of kinetic coordination on the
right side in controls and patients with LHD may be due to left
hemisphere dominance. Furthermore, previous studies have
demonstrated that the processing of sensory-motor data is
carried out by a more extensive and densely connected network
in the dominant left hemisphere (Guye et al., 2003). Therefore,
damage to one network component is more easily compensated for
by other network components, indicating that patients with LHD
could control gait speed by timing kinetic coordination despite a left
hemisphere lesion.

In healthy controls, gait speed was associated with the timing of
peak PC1 on the right side and hip flexion moment and ankle
dorsiflexion moment on the left side. Healthy controls with delayed
timing of peak PC1 on the right side had faster gait speed, consistent
with a previous study (Sekiguchi et al., 2019). Furthermore, hip
flexion moment was involved in gait speed, consistent with another
previous study (Fukuchi et al., 2019). Hip flexion moment may also
be involved in the propulsion of the lower limb during the swing
phase. The involvement of the ankle dorsiflexion moment on the left
side may be due to the influence of the heel rocker function during
gait. The period when the peak ankle dorsiflexion moment on the
left side was observed is the early stance phase on the left side and the
late stance phase on the right side, respectively. During this period,
as walking speed increases due to increased propulsion of the lower
limb on the right side, the left lower limb may be possibly stabilized
by an appropriate ankle dorsiflexion moment on the left side to
break the ankle plantarflexion movement. Patients with lesion in the
right hemisphere had decreased ability to shift body weight as well as
poorer body sway and stance control, indicating that the right
hemisphere may be associated with stability (Fernandes et al.,
2018; Coelho et al., 2019). These facts support the idea that as
walking speed increases, the ankle dorsiflexionmoment is controlled
by the right hemisphere to stabilize the left lower limb, whereas the
left hemisphere is involved in skilled movements such as
intersegmental coordination.

In patients with LHD, gait speed was associated with left ankle
dorsiflexion moment and right PC1 timing. In these patients, the
factors involved in gait speed were similar to those in healthy controls,
except for the plantarflexion moment of the paretic (right) ankle.
Contrary to patients with RHD, the right hemisphere involved in
stability was not damaged and was able to maintain balance control in
the paretic lower limb, such as increased knee flexion and decreased
hip extension angle in early stance and increased knee extension
moment which is support moment in patients with LHD. This may
be a factor in performing similar kinetic control as healthy individuals
with similar gait speed. Consistent with the previous study, the timing
of peak PC1 was earlier on the paretic side (Sekiguchi et al., 2022). Like
in other studies on muscle synergy, the timing of the impaired motor
module involved in paretic propulsion may be involved in gait speed
(Routson et al., 2013). The hip flexion moment was greater in the
paretic (right) than in the nonparetic (left) side in patients with LHD,
similar to healthy subjects. However, the plantarflexion moment was
reduced on the paretic (right) side. Thus, it is possible that the impaired

plantarflexion moment on the paretic side had a greater effect on gait
speed, similar to the result of a previous study (Olney et al., 1994).

The absolute values of the loadings of ankle and hip joint
moments for the first PC were high in both patients and healthy
controls. The first motor module, which comprised of ankle, and hip
joint moments, plays a role in inducing propulsion and supporting
weight (Sadeghi et al., 2001). In patients with RHD, the loading of
knee joint moment for the first PC on the paretic (left) side was a
negative value, representing flexion moment, which is unlike the
patients with LHD. A previous study showed excessive
cocontraction of ankle plantar flexors and knee flexors in the
stance phase during gait in patients with stroke (Fujita et al.,
2018). In addition, patients with RHD had larger knee flexion
moments in the stance phase on the paretic (left) side than those
with LHD and in healthy controls. These facts indicate that the first
motor module of kinetic variables merged with the knee flexion
moment due to excessive cocontraction of knee flexor and ankle
plantar flexor on the paretic (left) side in patients with RHD. As the
knee flexion moment decreases the support moment, patients with
RHD have controls that reduce both the quantity and quality of the
support moments in the stance phase on the paretic side during gait.
Kinetic control by kinetic coordination on the paretic side in
patients with RHD may cause lower-limb instability on the
paretic side and larger knee extension and smaller ankle
dorsiflexion in the stance phase on the paretic side to increase
stability. Hip extension on the nonparetic side was decreased to
prevent instability in the stance phase on the paretic (left) side by
taking shorter steps like caution gait (Eils et al., 2004). Additionally,
the stance time on the paretic (left) side in patients with RHD was
shorter than that in controls. However, this was not observed on
the paretic (right) side in patients with LHD. The impulse,
calculated by multiplying the stance time by the ground
reaction force, influences angular momentum. The reduced
stance time could explain why the WBAMR in patients with
RHD did not differ from that in healthy controls. This may
also be indicative of a cautious gait pattern. A decrease in hip
extension on the nonparetic side, a component of trail limb angle
that contributes to propulsion, relatively increases the
contribution of ankle plantarflexion moment on the nonparetic
side to gait speed (Hsiao et al., 2015; Hsiao et al., 2016a).

Patients with RHD had different results in kinetic factors
contributing to gait speed from healthy subjects and patients
with LHD. In patients with RHD, the kinetic factors included
dorsiflexion moment in the early stance on the nonparetic (right)
side and plantarflexion moment in the late stance on the paretic
(left) side, consistent with those in patients with LHD. The results of
this study indicate that kinetic control by ankle plantarflexion
moment on the paretic side, which induces propulsion (Hsiao
et al., 2015; Hsiao et al., 2016a), and ankle dorsiflexion moment
on the nonparetic side, which controls ankle plantarflexion and
braking, in the late stance in patients with stroke is important for
increasing gait speed. However, from a left–right perspective, the
kinetic factors in patients with left-sided brain lesions differed from
those in patients with right-sided brain lesions. Contrary to normal
subjects and patients with left-sided lesions, in patients with right-
sided brain lesions, the left lower limb is responsible for propulsion,
whereas the right lower limb is responsible for braking and stability.
In fact, in patients with right-sided brain lesions, the timing of peak
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PC1 was not related to gait speed as the right limb is responsible for
stability. This suggests that after stroke onset, patients with right-
sided brain lesions may alternate kinetic roles of the lower limbs in
gait speed between the left and right limbs.

」This study has several limitations. First, there were
differences in finger motor dysfunction and language
dysfunction between the left and right lesion sides. These
differences may reflect dominant and nondominant hemispheric
effects due to the lesion side. Finger motor dysfunction may affect
the lower-limb kinetic variables and gait speed, consistent with the
result of a previous study indicating that changes in finger
spasticity following botulinum toxin treatment were associated
with changes in stride (Lee et al., 2023). In this study, the
differences in multiple regression analysis results due to the
variance between the left and right brain lesion sides may be
influenced by differences caused by finger motor dysfunction
rather than differences between the left and right brain lesion
sides. However, because healthy controls and patients with left
brain damage had similar results in multiple regression analysis,
the influence of finger motor dysfunction is thought to be small.
The second limitation is that this study measured barefoot walking
and walked without using a cane. Therefore, it is possible that the
kinetic factors of walking speed examined were different from
those of daily walking. Third limitation is that we did not
investigate the dominant foot. According to a previous study,
about 61.6% of the general population with a broad age range is
right-footed, while 8.2% is left-footed and 30.2% is mixed-footed
(Tran, U. S., & Voracek, M., 2016). Since the majority of people are
right-footed, it is possible that the majority of the subjects in this
study were also right-footed. The fourth limitation is that due to
the lack of MRI images for all cases, we were unable to perform a
detailed analysis of the size and severity of the lesions in the
subjects. Therefore, it is unclear whether there is difference in the
size and severity of the lesions between the patients with
RHD and LHD.

In conclusion, this study has provided valuable insights into the
kinetic mechanisms of decreased gait speed in patient with strokes,
with a specific focus on differences across brain lesion sides. For
patients with right hemisphere brain damage, larger ankle
plantarflexion moments on both the paretic and nonparetic sides,
as well as ankle dorsiflexion moment on the nonparetic side, were
significant contributors to gait speed. In contrast, for patients with
left hemisphere brain damage, larger ankle plantarflexion moment
and delayed peak timing of the first principal component on the
paretic side, along with ankle dorsiflexion moment on the
nonparetic side, were the key factors. These findings highlight the
necessity of taking into account the side of the brain lesion when
devising rehabilitation strategies aimed at improving gait speed in
patients with stroke.
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