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Machine learning and artificial intelligence for smart agriculture
1 Introduction

Information, knowledge and equipment are the three main components of smart

agriculture. This special edition focuses on a few issues that still require research and

discussion. For example, using and enhancing machine learning techniques for crop

disease and pest detection and recognition, plant species recognition, smart agricultural

IoT, food material supply chain security tracing, and other crucial issues in

smart agriculture.
2 Computer vision

Visual recognition technology has been increasingly applied to numerous areas of

agricultural development with the advancement of computer graphics and image

processing technology in artificial intelligence (AI). Today, there is still a significant

room for this technology in modern agriculture (Tombe, 2020; Benos et al., 2021; Dhanya

et al., 2022).

During the process of green apple harvesting or yield estimation, the accurate

recognition and fast location of the target fruit bring tremendous challenges to the

vision system. Sun et al. improved a density peak cluster segmentation algorithm for RGB

images with the help of a gradient field of depth images to locate and recognize target

fruit. Specifically, the image depth information is adopted to analyze the gradient field of

the target image.

There are two serious apple diseases which are ring rot produced by Botryosphaeria

dothidea and anthracnose caused by Colletotrichum gloeosporioides. In Feng et al., the
frontiersin.org01
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automatic separation between two diseases was examined using

image processing technologies. The acquired disease images were

preprocessed using morphological opening and closing

reconstruction, color image contrast stretching, and image

scaling. Then, two crop leaf lesion segmentation algorithms

based on circle fitting were suggested and applied. Support

vector machine (SVM) models and random forest models were

used based on individual LBP histogram features and various LBP

histogram feature combinations.

In addition, crop classification is crucial for the development

of phenotypes and genetic resources. Fu et al. created rapeseed

dataset (RSDS) using eight categories of data gathered. The

target-dependent neural architecture search (TD-NAS) was

proposed. TD-NAS is a revolutionary target-dependent search

technique based on VGGNet.
3 Internet of things

Sensor nodes in agricultural IoTs, such as soil temperature

and humidity sensors, air temperature and humidity sensors,

etc., collect data in the agricultural environment. The data is

wireless transferred from the sensor nodes to the sink node for

data collection. The gateway change the protocol into one that

can be communicated over the Internet when it receives data

from the sink node (Ayaz et al., 2019; Doshi et al., 2019; Priya

et al., 2021).

Usually, multidimensional time series data are produced in

enormous quantities by smart agricultural IoT. However, due to

the limitations of the scenarios, data loss and misrepresentation

are frequent problems with smart agricultural IoTs. In order to

solve the aforementioned issues, in, using generative adversarial

networks (GAN), Cheng et al. offered a new anomaly detection

model that can handle the multidimensional time series data

produced by smart agricultural IoTs.

Meanwhile, a multi-objective strategy based on supervised

machine learning was utilized in Uyeh et al. to identify the ideal

number of sensors and installation locations in a protected

cultivation system. A tree-based model in the form of a gradient

boosting technique was specifically adapted to observed

(temperature and humidity) and derived circumstances (dew

point temperature, humidity ratio, enthalpy, and specific

volume). Time series forecasting was used for feature variables.

In order to choose the right number and locations for the best

sensors in a protected cultivation system, a machine learning

model was created and put forth.

In larger fields, such as those seen in large-area agriculture,

more sensors/nodes are advised to better account for soil

heterogeneity. But farmers must pay a higher and frequently

prohibitive price for this (purchase, labor costs from installation

and removal, and maintenance). The agricultural industry would

benefit greatly from methodologies that allow for maintaining

monitoring capability/intensity with fewer in-field sensors. In
Frontiers in Plant Science 02
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Maia et al., sensor data analysis over two irrigation seasons in

three cotton fields from two cotton-growing regions of Australia

revealed a connection between soil matric potential and

cumulative crop evapotranspiration (ETcn) derived from

satellite measurements between irrigation events. This

connection can be represented as a second-degree function.
4 Agricultural robots

Globally, the use of intelligent machines and robots in

agriculture is receiving increasing attention (Oliveira et al.,

2020). A picking robot is a type of agricultural robot that uses

a variety of sensors to sense the complicated agricultural

environment and then picks the target using this knowledge

and a decision-making algorithm. Ma et al. explore the

distributed averaging issues of agriculture picking multi-robot

systems under directed communication topologies by utilizing

the sampled data. A distributed protocol based on nearest-

neighbor information is presented using the principles of

algebraic graph theory and matrix theory.
5 Pest control

Crop diseases and pests have long been a significant issue in

agricultural production, having a negative impact on farmers’

income, modern agricultural development, and agricultural

output. Early disease and pest identification, monitoring, and

control are crucial for preventing the large-scale spread of

diseases and pests, preserving the quality of crops, and

reducing environmental pollution brought on by pesticide

residues (Buja et al., 2021; Liu and Wang, 2021).

The brown planthopper (BPH), Nilaparvata lugens (Stl;

Hemiptera: Delphacidae), is a piercing-sucking insect that

seriously harms rice plants by sucking out their phloem sap and

spreading viruses. For reducing mating rates, a physical control

mechanism based on BPH courting disruption is a viable approach

to reducing environmental pollution. To gather effective courtship

disrupting signals. Feng et al. created a vibration signal recording,

monitoring, and playback system for BPHs. This technology was

used to gather and evaluate male competitiveness and BPH courting

signals in order to determine their frequency spectra. According to

the findings, the mean main vibration frequency and mean pulse

rate of female courtship signals are 234 Hz and 23 Hz, respectively.

Male courting signals had mean main vibration and pulse

frequencies of 255 Hz and 82 Hz, respectively.

Furthermore, Cnaphalocrocis medinalis, Sogatella furcifera,

and Nilaparvata lugens are three kinds of migratory pests that

severely reduce rice yield and result in economic losses each year.

Sun et al. create an intelligent monitoring system of migrating

pests based on searchlight trap and machine vision to replace

manual identification of migratory pests in. The system consists
frontiersin.org
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of a cloud server, a Web client, a migratory pest automatic

identification model, and a searchlight trap based on machine

vision. The searchlight trap uses lights at night to draw in high-

altitude migrating insects. All captured insects are distributed

using rotary brushes and multi-layer insect conveyor belts. The

intelligent monitoring system can automatically monitor the

three migratory pests in time.
6 Food security

For the quality and safety of agricultural products, food

traceability is crucial (Ivar et al., 2020). In Jing and Li a hybrid

mode of block-chain and IoTs is used to build a traceability system

for red jujube. The solution addresses the issue of date and quality

traceability by integrating block-chain and IoTs technologies with

properties of tamper-proof, decentralization, and distributed

storage. The entire process of red jujube cultivation, processing,

and sales is documented in the block. To guarantee the realization

of quality traceability of red jujube in the framework throughout

the whole process of big data processing, and the crucial data

gathered in each procedure is saved in the database.
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More recently, smart agriculture has received widespread attention, which is a deep 
combination of modern agriculture and the Internet of Things (IoT) technology. To achieve 
the aim of scientific cultivation and precise control, the agricultural environments are 
monitored in real time by using various types of sensors. As a result, smart agricultural 
IoT generated a large amount of multidimensional time series data. However, due to the 
limitation of applied scenarios, smart agricultural IoT often suffers from data loss and 
misrepresentation. Moreover, some intelligent decision-makings for agricultural 
management also require the detailed analysis of data. To address the above problems, 
this article proposes a new anomaly detection model based on generative adversarial 
networks (GAN), which can process the multidimensional time series data generated by 
smart agricultural IoT. GAN is a deep learning model to learn the distribution patterns of 
normal data and capture the temporal dependence of time series and the potential 
correlations between features through learning. For the problem of generator inversion, 
an encoder–decoder structure incorporating the attention mechanism is designed to 
improve the performance of the model in learning normal data. In addition, we also present 
a new reconstruction error calculation method that measures the error in terms of both 
point-wise difference and curve similarity to improve the detection effect. Finally, based 
on three smart agriculture-related datasets, experimental results show that our proposed 
model can accurately achieve anomaly detection. The experimental precision, recall, and 
F1 score exceeded the counterpart models by reaching 0.9351, 0.9625, and 0.9482, 
respectively.

Keywords: anomaly detection, smart agriculture, time series data, deep learning, generative adversarial network, 
attention mechanism
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INTRODUCTION

Nowadays, Internet of Things (IoT) technology has been obtained 
rapidly developments, as a paradigm, to drive the evolution 
of modern industries and smart cities. As for serious challenges 
in environmental pollution, energy depletion, and water shortage 
in the whole world, there is an urgent need for the agriculture 
industry to move toward digitalization (Cao et  al., 2021). To 
address these challenges, smart agriculture solutions based on 
real-time monitoring and decision-making have been received 
increasing attention. Smart agriculture is a deep combination 
of IoT technology and modern agriculture, which mainly takes 
modern agriculture as an application scenario and applies IoT 
technology to achieve a goal of scientific cultivation and precise 
control (Farooq et  al., 2019).

For smart agriculture IoT systems, automated management 
and smart decision of IoT applications are driven by the detailed 
analysis of data (Cao et  al., 2021). These data are collected 
by a large number of various types of sensors and provide 
information about different environmental conditions. Thus, 
environmental monitoring and data analysis play an important 
role in increasing crop yields. The sensors in different application 
scenarios are shown in Figure  1. However, IoT devices in 
smart agriculture are usually exposed to harsh environments 
and are highly susceptible to damage due to cost control (Rafii 
and Kechadi, 2019; Abdallah et  al., 2021). In addition, the 
heterogeneous nature of network devices makes it difficult to 
design protocols, and the transmission of data is easily 
compromised (Pundir and Sandhu, 2021). Poor communication 
quality can lead to data loss and misrepresentation. Increasingly 
complex IoT systems bring technical complexity and therefore 
make the design of privacy and security mechanisms more 
difficult. This can also expose the network to attacks that could 
lead to data tampering (Abdallah et  al., 2021). Missing or 
misrepresented data is significantly different from normal data 

in the time series data collected by the sensors (Moso et  al., 
2021). These can be  considered as anomalies in the data 
(Adkisson et al., 2021). Moreover, IoT applications also require 
an algorithm to analyze these data to facilitate intelligent 
decision-making. By analyzing the data in detail, the intelligent 
system can make the most efficient resource scheduling to 
increase crop yield. Testing for crop growth patterns can help 
reduce soil depletion, and different weather and soil conditions 
can affect irrigation decisions (Vilenski et  al., 2019; Vyas and 
Bandyopadhyay, 2020; Garg et  al., 2021). The main idea of 
data analysis in the smart agriculture scenario is to analyze 
various sensor data, and the analysis results can reflect the 
changes in the environment (Khalil et  al., 2021). In particular, 
data that differ from normal data due to environmental changes 
can be also designated as anomalies. Therefore, anomaly detection 
has become an important work of smart agricultural IoT.

The data collected by smart agriculture IoT sensors is mainly 
called stream data, also called time series data. They are a 
series of infinite data points with a timestamp T . The purpose 
of time series anomaly detection is to find anomaly points or 
anomaly subsequences in a time series. In previous years, 
machine learning-based data mining techniques have been 
evaluated and achieved high performance in anomaly detection 
(Nassif et  al., 2021; Pang et  al., 2021). Due to the specificity 
of time series, their data sets lack labeling information. Therefore, 
it is usually treated as unsupervised machine learning. 
Unsupervised tasks do not require expert knowledge and can 
automatically adapt to data changes (Yu et  al., 2021). Different 
environmental indicators generate different time series data. 
Multiple time series form multidimensional time series data, 
which is the main data format in smart agriculture. There are 
potential correlations between the different dimensions of these 
data, which should be  considered primarily. However, existing 
unsupervised machine learning methods cannot handle the 
non-linearity of potential correlations in multidimensional time 

FIGURE 1 | Sensors in different application scenarios.
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series (Li et  al., 2019). Up to date, with the increasing number 
and types of sensors, smart agriculture generated a large amount 
of time series data, and there exist two challenges in anomaly 
detection. One is that the amount of monitored variables and 
data points is exploding, and the other is that there are potential 
correlations and time dependencies between multidimensional 
variables. They lead to high-dimensional and heterogeneous 
time series data features, which cannot be  accomplished by 
machine learning-based anomaly detection models (Yang et al., 
2021). Thus, it is necessary to find some new research approaches 
to solve these emerging problems of anomaly detection in 
smart agriculture.

In recent years, deep learning has been proposed for anomaly 
detection, and most of them are reconstruction-based models. 
The general process of reconstruction-based anomaly detection 
is that a model is employed to learn the distribution of normal 
data, and then the trained model is used to reconstruct the 
data to be  measured. The error between the reconstructed 
data and the original data is used to determine if the data is 
anomalous. Reconstruction-based anomaly detection models 
can model large-scale data and capture potential correlations 
between multidimensional data. Among them, generative 
adversarial networks (GAN) work well (Goodfellow et al., 2014). 
GAN generally contain generator and discriminator. The generator 
can generate samples, and the discriminator can determine 
whether the input sample is the original sample or the sample 
generated by the generator. The generator wants to generate 
samples that are closest to the original samples to fool the 
discriminator. The discriminator wants to accurately determine 
whether the sample is a real sample or not. The learning 
ability of the model is continuously improved by the adversarial 
learning of both. GAN was initially introduced to anomaly 
detection to solve problems related to image data (Schlegl 
et  al., 2017; Zenati et  al., 2018a). With the growth of the 
number and dimensionality of time series data, GAN was 
introduced to time series data anomaly detection due to its 
superiority in processing high-dimensional data. GAN-based 
anomaly detection belongs to the reconstruction-based anomaly 
detection models, in which GAN is used to learn the distribution 
of normal data. A trained GAN to reconstruct anomaly data 
will produce large reconstruction errors. Finally, the anomaly 
score is used to determine whether the test sample is anomalous, 
where the anomaly score mainly includes the reconstruction error.

Li et  al. (2019) and Bashar and Nayak (2020) introduced 
the general GAN into the anomaly detection model for time 
series data. The goal of these algorithms is to detect time 
series data anomalies quickly and accurately by GAN. Generally, 
there are two main types of anomalies: one is data loss or 
data misrepresentation caused by equipment failure or network 
anomalies, and the other is data anomalies that do not conform 
to the potential correlation of normal data distribution. However, 
since the generator input of GAN is random normal data, 
this brings inconvenience to the calculation of reconstruction 
error. The calculation of each reconstruction error requires 
finding the optimal normal data corresponding to the 
reconstructed samples, which needs the inversion of the generator. 
This leads to a large computational cost and may also degrade 

the detection results. Some works in the field of anomaly 
detection have focused more on changes in model structure, 
but there have been few improvements to the way errors are 
calculated. Most studies considered only a single computational 
method, and the point-wise difference calculation was widely 
adopted (Li et  al., 2019; Bashar and Nayak, 2020; Geiger et  al., 
2020). This does not exactly fit the time series data format 
and sometimes does not conform to the true definition of 
error. Time series data is a series of data points that can form 
a smooth curve. For the curve as a form of data, the curve 
similarity should be  considered as an error measure.

Motivated by the above observation, we focus on the anomaly 
detection of multidimensional time series data, which is generated 
from different sensor data in smart agricultural systems. In 
this paper, we  propose a new GAN-based anomaly detection 
method. In particular, for generator inversion, an encoder–
decoder architecture is designed. In this architecture, 
we  introduce an attention mechanism that can effectively 
improve the reconstruction effect. Then, a new reconstruction 
error calculation is provided. The point-wise difference and 
curve similarity are jointly considered as reconstruction errors, 
which makes the error definition more realistic and improves 
detection performance. Finally, we  conduct experiments using 
three data sets related to smart agriculture and specialize the 
model parameters according to the data set characteristics. 
The experimental results show that our approach outperforms 
the other four counterpart anomaly detection methods.

RELATED WORK

With the rapid development of computer technology, researchers 
began to experiment with computer technology to solve anomaly 
detection. Hawkins (1980) had a widely accepted explanation 
of anomalies, namely, “in a given data set, anomalous data 
are that part of the data that is significantly different from 
the majority of the data.” Current anomaly detection methods 
can be  broadly classified into proximity-based methods, 
probability-based methods, prediction-based methods, and deep 
learning-based methods (Aggarwal, 2017). These methods except 
deep learning are called traditional methods. They used statistical 
measures to calculate the correlation between the data records. 
These techniques assumed that the time series is linear and 
follows a known statistical distribution, which makes them 
inapplicable to many practical problems (Adhikari and Agrawal, 
2013). As the volume and dimensionality of data grow, more 
deep learning algorithms have been proposed for anomaly 
detection on complex data. Deep learning-based anomaly 
detection methods have advantages over these methods in 
characterizing multidimensional time series data and are more 
helpful in solving practical problems.

Generally, time series data anomaly detection algorithms 
are divided into two steps. The data are modeled by different 
data structures and then the degree of deviation of the test 
data from the normal data is evaluated based on different 
forms of metrics (e.g., distance-based and density-based). Data 
with excessive deviations are judged to be  abnormal. The deep 
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learning-based anomaly detection is similar to the above process. 
Neural networks are used in the data representation phase to 
learn the data distribution, and reconstruction-based methods 
are applied in the anomaly calculation phase to measure error. 
Since the data structure learns the normal data distribution, 
there will be  a large reconstruction error using this model to 
reconstruct abnormal data. In recent years, there has been an 
increasing number of studies using GAN for anomaly detection. 
As a result, a state-of-the-art survey of the anomaly detection 
for GAN is discussed in the following section.

GAN for Image Anomaly Detection
AnoGAN (Schlegl et  al., 2017) was the first work that applied 
GAN for image anomaly detection. The model was trained 
with normal data and the final anomaly scores were obtained 
by calculating errors in the trained generator and discriminator. 
The reconstruction error was calculated in the generator to 
calculate the error more efficiently. However, this computation 
requires finding the inverse mapping from the data space to 
the latent space and is not synchronized with the training. It 
can lead to extremely high error computation time. Zenati 
et al. (2018a) proposed an efficient GAN-based anomaly detection 
to solve the above problem. They added an extra encoder to 
GAN to avoid looking for latent vector at each detection. The 
calculation of the anomaly error was the same as the 
AnoGAN. Skip-GANomaly proposed by Akçay et  al. (2019)  
introduced an architecture of skip connection to improve image 
reconstruction. The model improved image reconstruction but 
did not perform well on all data sets, which was limited by 
unstable training. Zenati et al. (2018b) pointed out that AnoGAN 
was inappropriate for real-time anomaly detection or larger 
data sets. They proposed a bi-directional GAN for image 
anomaly detection, which simultaneously trained the inverse 
mapping through an encoder network. The model contained 
three discriminators which effectively improved training stability.

GAN for Time Series Anomaly Detection
The achievements of GAN in image anomaly detection have 
attracted the attention of researchers, and have been introduced 
into time series anomaly detection. Li et  al. (2018) proposed 
a GAN-based anomaly detection method (GAN-AD) for time 
series data, which was used to detect possible anomalous 
behaviors in complex networks. To capture the correlation of 
time series data, Long Short-Term Memory networks (LSTM) 
were used as the basic model to learn normal data distribution 
patterns. For the evaluation of the error, since the output of 
the discriminator indicated whether the sample is false or not, 
it was used directly as the anomaly score to find the anomaly. 
Li et  al. (2019) later extended their study to use a vanilla 
GAN model to capture multivariate time series model 
distributions and detect anomalies using reconstruction errors 
and discriminator outputs. Bashar and Nayak (2020) improved 
on AnoGAN (Schlegl et  al., 2017) and proposed an anomaly 
detection algorithm for time series data. The model used a 
convolutional neural network (CNN) as the basic network to 
capture the correlation between variables. Both of the above 

models can learn the time correlation of time series data and 
effectively detect anomalies. However, they also need to find 
the inverse mapping from the real space to the latent space, 
which requires an inversion of the generator resulting in a 
longer computation time.

To address this problem, Geiger et  al. (2020) proposed 
TadGAN based on Zenati et al. (2018a). This model introduced 
cycle-consistent GAN architectures, which allowed the generator 
to compute the reconstruction error directly without finding 
the inverse mapping and reducing the computation time. For 
the calculation of the anomaly score, the combination of point-
wise difference and discriminator was typically considered as 
the anomaly score. However, using point-wise difference measures 
alone does not exactly fit the time series data characteristics. 
The time series can form different smoothing curves, and the 
shape differences between these curves should be  equally 
considered in the reconstruction error calculation. The TadGAN 
used curve similarity as a form of calculation of reconstruction 
error. However, they studied the point-wise difference and 
curve similarity separately and did not consider them together 
to meet a realistic definition. Apart from this, the existing 
articles are insufficient for the study of reconstruction errors.

Anomaly Detection in Smart Agriculture
Research on deep learning-based anomaly detection for IoT 
systems has yielded excellent results, some of which have been 
introduced into smart agriculture to address emerging challenges. 
Most of the research on smart agriculture has focused on the 
field of anomaly detection in agricultural images, such as the 
identification of pests and crop diseases. TPest-RCNN proposed 
by Li et  al. (2021) aimed to identify whitefly and thrips in 
greenhouses. The model was trained on a set of pest images 
captured by a flytrap and used a transfer learning strategy to 
achieve improved detection. Liu and Wang (2020) optimized 
the feature layer of Yolo V3 model by using the image pyramid 
to achieve multi-scale feature detection and improved the 
detection accuracy and the speed of Yolo V3 model. Experiments 
showed that the model can accurately and quickly detect the 
location and category of tomato pests and diseases.

For time series data generated in agricultural IoT systems, 
some researchers have focused on anomaly detection of sensor 
network data. Several papers have offered specifics on anomalies 
in smart ecosystems (Cook et  al., 2019; Hasan et  al., 2019; 
Park et  al., 2021). In smart agriculture scenarios, agricultural 
IoT devices are often exposed to harsh conditions that can 
lead to failure of the device itself, compromised communications, 
or malicious attacks, which can lead to data anomalies. Adkisson 
et  al. (2021) proposed an anomaly detection model for smart 
farming using an unsupervised autoencoder machine learning 
model. The model used an autoencoder to encode and decode 
the data, and anomalous data generated a high reconstruction 
loss value. Ultimately, the test data was determined to 
be  anomalous based on a threshold value. Abdallah et  al. 
(2021) applied autoregressive integrated moving average 
(ARIMA) and LSTM model to a smart agricultural system 
and specialized models based on sensor constraints. The transfer 
learning strategies were introduced into the models to improve 
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the prediction. Anomaly detection for time series data can 
also be applied in crop harvesting. Moso et al. (2021) proposed 
a powerful ensemble-based approach for anomaly detection, 
which was mainly used for data streams generated in smart 
agriculture. This technology can be  applied to crop data sets 
and identify anomalies that affect crop harvest.

In summary, time series anomaly detection based on deep 
learning has obtained excellent results, and GAN for anomaly 
detection has been continuously explored. Various deep learning 
models have been introduced to solve the problem of time 
series data for smart agriculture. As the amount and 
dimensionality of data increase, existing smart agriculture 
anomaly detection models are unable to handle the data. GAN 
has been introduced to various fields to process multidimensional 
time series data with better results. Therefore, we  introduce 
GAN into smart agriculture for anomaly detection and specialize 
model structure for smart agriculture data characteristics. 
However, the existing studies of GAN for anomaly detection 
are limited by the problem of generator inversion and the 
reconstruction error is calculated in a simple way. To address 
the problem of GAN for anomaly detection, we  design a new 
architecture and an error calculation method to improve the 
anomaly detection performance.

PROPOSED APPROACH

In this section, we  first describe a novel GAN-based anomaly 
detection model and focus on how it uses an adversarial 
learning architecture by considering the dependencies between 
time series data. Then, the internal detailed architecture of 
the model is shown, which includes the encode–decoder in 
the generator and the structure of the discriminator. These 
designs have strong relevance to the goals of improving 
reconstruction effects and reducing error computation time. 
To better learn the data distribution, a multi-channel attention 
mechanism is embedded in the encoder and decoder, which 
can further improve the reconstruction effect. Finally, 
we  introduce a new error calculation method in this model, 
which can describe the errors more rationally and improve 
the detection results effectively.

The core idea of the reconstruction-based anomaly detection 
method is to encode a data point (time series data in this 
model) and then decode the encoded data point to reconstruct 
the data. Anomalous data loses a lot of information during 
the encoding–decoding process, because what the model should 
learn is how to reconstruct normal data. Thus, a normal trained 
model cannot reconstruct abnormal data in the same way as 
normal data. Large reconstruction errors will arise in the process 
of reconstructing anomalous data. This means that the 
reconstructed data has a large difference from the original 
data. In this paper, GAN model is used to model the data 
in an attempt to learn the normal distribution of the data.

The basic task of anomaly detection is to identify whether 
the data to be  tested conforms to the distribution of normal 
data, and data that do not conform to the normal distribution 
are defined as anomalous (Chalapathy and Chawla, 2019;  

Kwon et  al., 2019). In this work, the completed trained GAN 
is used for anomaly detection. The test samples are processed 
in the same data processing manner and then fed into the 
model in an attempt to reconstruct them. The anomaly score 
is calculated using a jointly trained generator and discriminator, 
which consists of the output of the discriminator and the 
reconstruction error of the generator. For reconstruction errors, 
we  use a new calculation to detect potential anomalies in the 
data (more details will be  described in “Anomaly Detection”).

The Proposed GAN Framework
The general architecture of our proposed model is shown in 
Figure  2. The first objective of this model is to learn the 
normal distribution of a given data set by means of adversarial 
training. Previous studies have taken random normal vectors 
in the latent space Z  and inputted them into the generator 
for training (Li et  al., 2019; Bashar and Nayak, 2020). The 
trained generator is able to implicitly capture the multivariate 
distribution of the training data and learn the mapping of 
random data to normal data. However, the error between the 
reconstructed time series data and the real data needs to 
be  calculated in anomaly detection. In order to reconstruct 
the data, it is necessary to find the random normal data 
corresponding to the reconstructed data at each calculation. 
This process requires the inversion of the generator and is 
time-consuming and computationally resource intensive. To 
solve this problem, an encoder–decoder architecture is designed 
as a generator, in which the encoder learns the mapping of 
normal data to latent vector in the latent space and optimizes 
the computation time of reconstruction errors.
Sensors in smart agricultural systems perform continuous 
measurement tasks to detect changes in the environment. 
Therefore, they generate a large amount of multivariate time 
series data. We  use LSTM as the basic model of generator 
and discriminator to deal with complex multidimensional time 
series data. For the characteristics of multidimensional time 
series data, the data streams are not processed separately. The 
entire data set is processed concurrently to capture potential 
interactions between variables. Multivariate time series data 
are divided into subsequences that are fed into the model 
through a sliding window mechanism. We  set the window 
size as the super parameter of the model to determine the 
optimal window length, which can capture the data distribution 
in different situations according to the characteristics of different 
data sets. Here, the window size is set as

 s i iw = ´ =30 1 2 10, , , .

The data first needs to be  preprocessed before training. The 
multivariate time series data F Ì ´RT N  of the length T  and 
number N  of variables are partitioned into a training set 
Ftrain

T NRÍ ´1 , a validation set Fvalidation T NRÍ ´2  and a test 
set Ftest T NRÍ ´3 . Noted that the training set data must be  all 
normal data. Next, the training data set Ftrain T NRÍ ´1  is divided 
into a series of subsequences X X m Rtrain train

i S Nw= ={ }Í ´
,i , ,1 2  

using a sliding window of size sw , where Xtrain  denotes Xt s tw- : .  
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Given the step size st , the number of subsequences can 
be calculated by ( )1 1  = − +w tm T s s . Similarly, the validation 
set Fvalidation

T NRÍ ´2  can be  partitioned into a series of 
subsequences X X j n Rvalidation validation

j S Nw= ={ }Í ´
, , ,1 2 , 

where ( )2 1=  −  + w tn T s s . Subsequences in the validation 
data set are marked to indicate whether the sequence is abnormal 
or not (1 means normal, 0 means abnormal). The test set is 
handled exactly in the same way as the validation set.

Model training is performed after the data preprocessing 
is completed. The distribution of the data is learned by the 
GAN model in adversarial training. In our model, the mapping 
functions of the X  and Z  domains are learned as e : X Z®  
and G Z X: ® , respectively. X  is the input data, which 

represents the training samples x Xi
N

i

t1
1

¼

=
( ){ } Î  given by the 

model. Z  is the vector in latent space and the encoder 
learns the mapping e : X Z®  to encode the input data as 
a latent vector. The mapping G Z X: ®  is learned by the 
decoder, which reconstructs the vector in latent space to the 
input data. With the above two mapping functions, we  can 
achieve the data reconstruction: x x G x xi i i i® ( )® ( )( ) »e e
. These two mapping functions are obtained by adversarial 
learning methods, and together they form the generator of 
the GAN architecture.

The generator tries to deceive the discriminator by generating 
the real sample through the encoder–decoder architecture so 
that the discriminator judges the generated data as the real 
sample. To ensure that the distribution pattern of normal 
data is learned by the model, we  make sure that the training 
data are all normal during the training phase. Unlike the 
general GAN that inputs the variables in latent space to the 
generator, the normal sample xi  after data segmentation 
processing is directly fed into the generator and the two 
mapping functions e  and G  mentioned above learn the 
mapping patterns of the two stages, respectively. The samples 
are reconstructed as much as possible to the original samples 
after two mappings. Both the generator output G xie ( )( )  and 
the original data xi  are then sent to the discriminator to 
distinguish whether they are generated data or not. The 
generator tries to generate the same samples as the original 
data, and the discriminator tries to distinguish the real samples 
from the generated samples. This process is similar to the 
one in which the generator G uses the discriminator D as 
an adversary (Goodfellow et  al., 2014). Adversarial training 
of both G and D continuously improves their performance 
until a set number of iterations is reached or the model 
converges. After continuous iterations of adversarial learning, 
the generator implicitly learns the normal data distribution 
and the discriminator can distinguish the real data from the 

FIGURE 2 | Overall framework of GAN.
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generated data. The overall loss function in this process is 
mainly adversarial loss.

Adversarial Loss
Both the generator and the discriminator try to optimize the 
competing loss functions during training. Thus, the optimization 
process can be considered as a minimax game problem. During 
the game, the generator tries to minimize the loss to make 
the generated sample as close as possible to the original sample. 
The discriminator tries to maximize the loss to distinguish 
the real samples from the generated samples. The adversarial 
loss of the training process is defined as follows:

( )( ) ( )( )( )( )~ ~log log  = + −   1adv X pX X pXL E D X E D G Xε
 

(1)

where D X( )  is the discriminator output, EX pX~  represents 
the true sample sampled from the real space, log D X( )( )  
means that the original sample is expected to be  judged as 
true by the discriminator, and ( )( )( )( )log 1 X− εD G  means 
that the generated sample is expected to be  considered false.

Feature Loss
GAN may lead to training instability when both the generator 
and the discriminator try to optimize the losses. To  
solve this problem, we introduced the feature matching proposed 
by Salimans et al. (2016) and used this loss function to stabilize 
the model training. It is defined by the following equation:

 
( ) ( )( )( )~= −

2fea X pXL E f X f G Xε
 

(2)

where f *( )  is the output of the last layer of the discriminator, 
and the loss is L2  norm of X( )  and f G Xe ( )( )( ) .

Mapping Loss
The goal of the model is to learn two mappings to reconstruct 
the sample. However, relying only on adversarial loss does 
not guarantee that a single original sample xi  can be  mapped 
to the latent vector zi  and thus reconstructed as ˆix . To reduce 
the search space in the mapping process, we  minimize the 
L2  norm of residuals of the original and reconstructed samples. 
Its loss can be  calculated as

 
( )( )−

2map X ~ pXL = E X G Xε
 

(3)

The generator tries to minimize the loss function, and the 
final overall loss function is obtained by combining (1), (2), 
and (3), as

 = + +G a adv f fea m mapL L L Lλ λ λ  (4)

where la ， l lf m, and represent the weights of each loss 
function, respectively.

The generator is trained directly using the adversarial loss 
in an attempt to maximize the following adversarial loss:

( )( ) ( )( )( )( )~ ~log log  = + −   1D X pX X pXL E D X E D G Xε
 

(5)

The set loss function will be optimally searched by employing 
stochastic gradient descent (SGD). After continuous iterative 
adversarial learning, the discriminator and generator performance 
are gradually improved. When the set epoch or loss function 
convergence is reached, the GAN model can learn the distribution 
of normal data. After that, anomaly scores can be  designed 
based on the model output to detect anomalies (described in 
Section “Anomaly Detection”).

The Architecture of Generator and 
Discriminator
To improve the reconstruction effect, we  optimize the design of 
the generator for time series data, and the basic model of the 
generator and discriminator of GAN is designated as LSTM. Inspired 
by the Jiang (2020), the LSTM module is improved into the 
Enhanced LSTM structure, which consists of multiple LSTM 
structures, as shown in Figure  3. It shows in detail the internal 
structure of the 3-layer Enhanced LSTM we  introduced. The 
horizontal direction is the time step of the LSTM, that is, the 
time window size. The vertical is the number of LSTM layers, 
so that ht

0( )  and ( )0
tc  are the hidden cell state and memory 

state of the first LSTM layer at moment t, respectively. The 
general LSTM passes the hidden cell state hi  and the memory 
state ci  horizontally to the LSTM cell at the next moment and 
passes hi  to the next LSTM layer in vertical direction.

Unlike the general stacked LSTM structure, the Enhanced 
LSTM binds both the hidden cell state and the memory state 
of each LSTM cell layer at a certain moment. It has the 
advantage of making full use of the hidden cell state and 
memory state of the current layer. The hidden cell state and 
the memory state of all layers except the current layer are 
used as the auxiliary input. This can improve the learning 
capability of the model network for time series data.

Recently, the attention mechanism has been widely applied 
in various research areas of neural networks. The attention 
mechanism allows the importance of different features to the 
final effect to be  calculated, enabling the model to give higher 
weights to features that are beneficial to the outcome. In 
addition, the attention mechanism has a high degree of 
correctness and interpretability. RAIM (recurrent attentive and 
intensive model; Xu et  al., 2018) was a model including an 
attention mechanism, which used multi-channel attention to 
improve the prediction of the model. Hashimoto et  al. (2021) 
introduced RAIM into GAN to detect time series anomalies 
generated by semiconductor sensors. To this end, we  consider 
a multi-channel attention mechanism, and an attention module 
is connected before both the encoder and the decoder.

The multi-channel attention module is divided into two 
stages, which can adaptively give different weights to 
multidimensional variables. The encoder and decoder structures 
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are shown in Figures 4A,B, respectively. The first stage performs 
the attention calculation in the time dimension. This mechanism 
based on the features extracted from the past sequences calculates 
the importance of different time steps of the input sequence. 
The input data X x t Tt= ={ }, , ,1  is a series of time series 
data of length T , where the data xt dÎ  at time t  is an 
d -dimensional vector. Let the i -th subsequence be  Xi s dwÎ ´ ,  
when X is split by a sliding window sw  (Hashimoto et  al., 
2021). Then the importance aij  of the time dimension is 
calculated by the following equation:

 
S W h X w bi
time

h
a
i i

T
x
a a= + +( )-tanh · 1
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where Wh
a s hw ´  and wxa d 1́  are the weighting 

matrices, ba sw 1́  is the learning parameter through the 
attention mechanism, and hi-1  is the hidden state vector 
extracted from the Enhanced LSTM in the previous time step.

The second stage performs attention calculation in the feature 
dimension. Within the same time step, different weights are 

given according to the importance of different dimensional 
features, and the importance bij  of each feature is calculated 
by the following equations:

 ( )tanh · −= + +1
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i i xi hS W h X w bβ β β
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where Wh
d hb ´  and wx swb 1́  are the weighting 

matrices, b db 1́  is the learning parameter through the 
attention mechanism, and hi-1  is the hidden state vector 
extracted from the Enhanced LSTM at the previous time step. 
After a two-stage attention mechanism, the model can capture 
important features more accurately.

The attention mechanism calculates the importance of the 
features and time of the input multidimensional time series 
data and weights them with the input to obtain a new input. 
The Enhanced LSTM captures the correlation and time 
dependence between the input data weighted by the attention 
mechanism. In the encoder, the Enhanced LSTM input is 
the original sample after weighting and the output is the 

FIGURE 3 | Enhanced LSTM structure.
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feature vector. After that, the linear layer independently maps 
each feature vector as a latent vector each time. The decoder 
then reconstructs the latent vector into the original data by 
the same process. The discriminator is a simple Enhanced 
LSTM architecture, which is mainly used to distinguish the 
input samples as the real samples or the reconstructed samples. 
The performance of the discriminator and generator is gradually 
improved by adversarial learning.

Anomaly Detection
Our proposed model has been iteratively trained to learn the 
distribution pattern of normal data. The GAN model has the 
advantage of training a generator and a discriminator together, 
both of which can output metrics to help identify anomalies. 
The anomaly detection process is shown in Figure 5. The labeled 
test set data are divided into subsequences according to time 
windows using the same method as the training set data. The 
segmented time series data X X j n Rtest test

j S Nw= ={ }Í ´
, , ,1 2  

will be  binary classified. Each subsequence is determined to 
be  normal (close to the normal data distribution) or abnormal 

(deviating from the normal data distribution) based on a 
threshold. We  try different thresholds by using empirically 
determined threshold intervals and finally determine the threshold 
that results in optimal anomaly detection.

Reconstruction error is a measure of the difference between 
the true sample and the reconstructed sample. The ordinary 
generator only learns the mapping G Z X: ®  from random 
normal data in latent space to normal data, but there is no 
inverse mapping G X Z- ®1

: . That is to say, it is necessary 
to find the optimal latent vector z ZÎ , such that the sample 
G z( )  reconstructed by the generator is closest to the test 
sample xt st

j
e  in terms of distribution pattern. This process is 

the inversion of the generator. It needs to be  further trained 
for the test sample to find the optimal latent vector, which 
generates the reconstruction sample with minimum error. The 
general procedure is to randomly sample z Z1Î  in the latent 
space and feed it into the generator to obtain the fake generative 
sequence G z1( ) . After that, the loss function is defined for 
the generated samples and the best latent vector z  is found 
by gradient update in successive iterations. The degree of similarity 

A

B

FIGURE 4 | Encoder–decoder internal detailed structure (A) encoder structure; (B) decoder structure.
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between the generated sample of the latent vector and the 
original sample determines the accuracy of the reconstruction 
error calculation.

In this paper, the generator has learned how to map the 
normal data in real space to the latent vector in latent 
space and then decode the latent vector back to the normal 
data. For the reconstructed samples, its corresponding latent 
vector is obtained by simply feeding it into the encoder 
without inversion. To improve the reconstruction effect and 
constrain the search domain, we  add a new loss function 
(equation (3)). The reconstruction error can be  obtained 
after the test data set is reconstructed by the generator. 
We  combine two different error calculations to define the 
error more realistically.

The most intuitive way to measure the error is to use the 
point-wise difference, which directly calculates the difference 
between the corresponding points within each time step of 
the two series data. The error of the test data set at moment 
t is calculated as follows:

 
( )( ), ,

=
= −∑

1

n
test i test i

d t t
i

l x G xε
 (10)

where x Rt
test i n,   is the measured value of i-th variables at 

moment t .
Time series data is a series of data points that make up a 

smooth curve. For this feature, we  introduce the dynamic time 
warping (DTW) algorithm (Berndt and Clifford, 1994), which 
calculates the optimal match between two time series data 
and measures whether the two curves are similar in shape. 
This algorithm can solve the time shift issue of time series. 
As shown in Figure  6, there are two curves with the same 
shape, but they are not synchronized in time steps. In the 
actual error calculation, this should be  determined as a low 
error. However, using a point-wise difference at the 10th time 
step leads to a larger error value. After the accumulation of 
multiple time steps, the error value may reach a level that 
affects the detection results. Based on this case, the DTW 

FIGURE 5 | Anomaly detection.
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algorithm is introduced to measure the error more rationally. 
For the original subsequence X x x xt t t sw= ¼( )+ + -, , ,1 1  and the 
reconstructed subsequence ( )1 1ˆ , , ,ˆ ˆ ˆ+ + −= …

wt t t sxX x x , we  define 
the matrix W R s sw w 2 2* ´ * , let the (i,j)-th element wk  represent 
the distance between xi  and ˆ jx . We  want to find the warp 
path w w w wk* = ( )1 2· , ,  that defines the minimum distance 
between the two curves, subject to boundary conditions at 
the start and end, as well as constraints on continuity and 
monotonicity (Geiger et  al., 2020). The two curve distances 
are defined as follows:

 
( )ˆ, min∗

=

 
 = = =
  

∑
1

1 k

t k
k

S W DTW X X w
k

 

(11)

The final reconstruction error is given by using (10) and 
(11) as:

 = +R d tL L Sα β  (12)

where a  and b  are the coefficients of the two reconstructed 
calculated values, which are the empirical values that make 
the experimental effect optimal.

During the training process, the main goal of the 
discriminator is to distinguish real samples from the generated 
samples and the output LD  (between 0 and 1) can be regarded 
as a parameter to determine whether the sequence is a real 
sample (close to 1) or a fake sample (close to 0). Thus, the 
output of the discriminator can be  used as a measure of the 
anomaly score. The reconstruction error and the discriminator 
output are considered together as the final anomaly score. 
However, the reconstruction error and discriminator output 
cannot be  simply used because a larger reconstruction error 
with a smaller discriminator output can lead to a very high 
anomaly score. The above problem is solved by using numerical 
normalization. The normalized result is calculated by the 
following formula to obtain the final anomaly score.

 ( ) ( )= + −1R DA x L Lτ τ  (13)

where τ determines the relative importance of the two indicators 
(default value is 0.5).

Metrics, such as the precision of anomaly detection, can 
be  calculated from the labeled test set data. Thresholds taken 
from the empirically determined threshold interval are used 
for anomaly detection. Different thresholds are obtained for 
different data sets, which results in optimal detection accuracy. 
Our proposed method is summarized in Algorithm 1.

EXPERIMENTS

In this section, we  present the experimental design and the 
experimental results. The experimental design contains data 
set processing and parameter settings. The evaluation metrics 
for anomaly detection are briefly described. Experimental results 
include comparison experiments and model performance. Finally, 
the results of each experiment are discussed.

Datasets and Experimental Settings
To evaluate the performance of the proposed model, we  test 
it on an agriculture-related time series data set. For future 
anomalies that may be  encountered in smart agriculture, 
we  mainly use three data sets that can represent relevant 
anomalous behaviors: SWMRU (USDA-ARS, 2016), KDDCUP99 
(Blake and Merz, 1999), and HomeC (Taranveer, 2019).

The SWMRU data set contains 15-min mean weather data 
from the United States Department of Agriculture-Agricultural 
Research Service (USDA-ARS) Conservation and Production 
Laboratory (CPRL), Soil and Water Management Research Unit 
(SWMRU) research weather station, Bushland, Texas (Lat. 
35.186714°, Long. -102.094189°, elevation 1,170 m above MSL) 
for all days in 2016. The data set has 18 variables and 35,139 
time durations and it collects the values of sensors deployed 
at different heights on the grass during the irrigation season.

KDDCUP99 data set is the data set used for The Third 
International Knowledge Discovery and Data Mining Tools 
Competition. The data set is a network traffic data set that has 
42 variables with 56,235 data points each. This data set is used 
to train a network intrusion detection model, which is adopted 
in our experiments to simulate possible anomalies in smart 

FIGURE 6 | Time shift issue of time series.
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agricultural IoT due to intrusions. Most anomaly detection data 
sets have far fewer anomalous data points than normal data 
points, which leads to an imbalance in anomaly detection. This 
data set is a relatively balanced data set and its introduction 
allows for a more objective assessment of model performance.

The existing public data set for IoT power monitoring in 
agriculture has small dimensions, so the smart home IoT power 
usage data set HomeC can be  used to simulate the power 
monitoring of IoT devices in future smart agriculture. It is 
collected in a smart home application scenario, and the data 
structure is similar to that of the agricultural IoT data set but 
with higher dimensionality. This data set contains 32 variables 
with 503,900 data points each. The information about the data 
set is presented in Table  1. The normal data points in the data 
set are marked as 1 and the abnormal data are marked as 0. 
The original data set is divided into the training set, the validation 
set, and the test set, and the training set contains only normal 
data. We  use an unsupervised training approach, where the 
labeled validation set is used to find the optimal parameters of 
the model, and the labeled test set is used to compute the 
results of anomaly detection to evaluate the model performance.

For data preprocessing, we use a sliding window mechanism 
to partition the data as described in section 3.1. The optimal 
window size is an important element in the study of time 
series data. For this case, we use different window sizes, namely, 
s i iw = ´ =30 1 2 10, , , , to capture the state of the data at 
different accuracies. The results of this experiment are useful 
for exploring the effect of window size on detection performance. 
To better capture the normal data distribution, the training 
phase time step st  is set to 10. During the testing phase, the 
time step is set to a time window size to ensure that anomalies 
are not repeatedly detected. The generator uses an Enhanced 
LSTM as the encoder and decoder, where the Enhanced LSTM 

depth is set to 3 and the hidden unit is set to 100. Generally, 
the discriminator follows the same parameter settings. However, 
unlike the generator, the final output dimension is 1, because 
the value of the discriminator indicates the degree of abnormality 
of the input sample. Li et  al. (2019) evaluated the effect of 
latent vector dimensionality on the results in their experiments 
and verified that a dimension of 15 produced better data 
reconstruction, so we  consider setting the dimension to 15  in 
our experiments. Since the discriminator converges faster, we set 
to train the discriminator once in one epoch but train the 
generator three times, with the epoch set to 100. The main 
parameters of the model are shown in Table  2.

Evaluation Measures
We use three standard evaluation measures, namely, Precision 
(Pre), Recall (Rec), and F1 score, to evaluate the anomaly 
detection performance of the proposed model:

 
Pre TP

TP FP
=

+  
(14)

 
Rec TP

TP FN
=

+  
(15)

 
F Rec

Pre Rec
1 2 e
= ´

´
+

Pr

 
(16)

The objective of the model is anomaly detection, so the 
detected anomalies are positive samples. Therefore, TP is the 
correctly detected abnormal (True Positives: detected as abnormal 
while labeled as abnormal), FP denotes the incorrectly detected 
abnormal (False Positives: detected as abnormal while labeled 
as normal), TN represents the correctly detected normal (True 
Negatives: detected as normal while labeled as normal), and 
FN means the incorrectly detected normal (False Negatives: 
detected as normal while labeled as abnormal). TP FP+  denotes 
all the anomalies detected by the model, so precision indicates 
how many of the detected anomalies contain real anomalies, 

A B C

FIGURE 7 | Comparison of reconstruction effects on the SWMRU data set (A) Real sample; (B) No attention mechanism; (C) attention mechanism.

TABLE 1 | Details of datasets.

Dataset Number of 
variables

The total length 
of time series

Proportion of 
anomaly

SWMRU 18 35,139 5%
KDDCUP99 42 56,235 19.5%
HomeC 32 503,900 8%
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while TP FN+  is all the actual anomalies, so recall indicates 
how many of all the existing anomalies are detected by the 
model. The F1 score is the equal-weighted harmonic mean of 
the precision and recall. In the application scenario of anomaly 
detection anomalies are not common; that is, the distribution 
of anomalous and normal data is not balanced. Thus, the 
accuracy metric will not be  used to evaluate the performance 
of the model.

Results and Discussion
We evaluate the anomaly detection performance of the proposed 
model on the above three data sets. To compare the performance 
of the models, MAD-GAN, TadGAN, TAnoGAN, and 
AutoEncoder (AE) were adopted to perform experiments on 
the same data set and record the experimental results. The above 
four counterpart models commonly used the reconstruction-
based anomaly detection methods (Malhotra et  al., 2016; Li 
et  al., 2019; Bashar and Nayak, 2020; Geiger et  al., 2020). In 

addition, to verify the validity of our proposed model structure, 
the results of the ablation experiments are shown and discussed.

Data Reconstruction Performance
To evaluate the reconstruction ability of the generator for the 
samples, we  first visualize the multidimensional time series 
samples generated by the model with the original data. For 
more visualization, only one of these dimensions is shown for 
two data sets. In order to measure the degree of improvement 
of the attention mechanism on the reconstruction effect, the 
samples generated by the models without the attention mechanism 
are shown together. As shown in Figures  7, 8, the samples 
without the attention mechanism have largely conformed to 
the original sample distribution in terms of the overall trend. 
However, the comparison shows that the attention mechanism 
still leads to an improvement in the reconstruction effect. When 
the curve changes more dramatically, the generated samples 
are closer to the original samples because the attention mechanism 
allows the model to learn the samples more accurately.

TABLE 2 | Model parameter settings.

Window size
Training window 

step size
Test window step 

size
Input dimension

Number of LSTM 
hidden units

Number of LSTM 
layers

Latent space 
dimension

30 , 1,2, 10i i× =  10 Window size Data set dimension 100 3 15

A B C

FIGURE 8 | Comparison of reconstruction effects on the HomeC data set (A) Real sample; (B) No attention mechanism; (C) Attention mechanism.

A B C

FIGURE 9 | MMD values for each data set (A) SWMRU; (B) KDDCUP99; (C) HomeC.
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ALGORITHM 1 | Algorithm for proposed method.

In addition, Maximum Mean Discrepancy (MMD) was used 
to evaluate whether the GAN model actually learns the 
distribution of the training data (Li et al., 2015, 2019). Therefore, 

MMD was also introduced into the experiment to compare 
the effect of reconstruction. The decrease in the MMD values 
indicates that the data generated by the model conform more 
to the distribution of the original sample. The MMD values 
generated from the three data sets by iterative training of the 
GAN are plotted in Figure  9. As shown in these figures, as 
the number of iterations increases, the model outputs samples 
that are increasingly closer to the original samples. And the 
samples generated in the three data sets by the model 
incorporating the attention mechanism obtained lower MMD 
values. The MMD value more clearly illustrates that the attention 
mechanism improves the reconfiguration effect.

Window Setting and Reconstruction Error 
Metric
The sliding window size setting is critical to the processing 
of time series data, so we conduct experiments on the validation 
data set to determine the appropriate window size. The 
relationship between the sliding window size setting and the 
reconstruction error metric will also be discussed in this section. 
Next, the experiments are described using the HmoeC data 
set as an example. The sliding window size is still set to 
s i iw = ´ =30 1 2 10, , , , but the reconstruction error is calculated 
in two ways to explore its relationship with the window size. 
The model proposed in this paper uses the point-wise difference 
coupled with the DTW algorithm results as the final 
reconstruction error calculation, where the parameters a  and 
b  are derived from multiple experiments on the validation 
set tuned according to different data sets.

In the previous experiments, we  used the coupling results as 
a reconstruction error metric to determine its potential correlation 
with the window size. It was found experimentally that all three 
indicators of the experiment showed a decreasing trend as the 
time window increased. And when the time window increases 
to a certain extent, these indicators show a large decline. However, 
the common models that use point-wise error as a reconstruction 
metric do not show this phenomenon. For comparison, 
we conducted experiments using the universal point-wise difference 
calculation ( b  = 0). None of the three indicators showed a 
significant decrease with increasing time windows. The precision, 
recall, and F1 scores of the data set are shown in Figure  10.

A B C

FIGURE 10 | Variation of metric with time window for the HomeC data set(A) Precision; (B) Recall; (C) F1 Score.
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From the above experimental results, it can be  seen that the 
best values of precision, recall, and F1 score can indeed be obtained 
by using the calculation method proposed in this paper. However, 
as the time window increased, the experimental results showed 
a significant downward trend. This is because the DTW algorithm 
outputs the similarity measure of the two curves, and it is 
proposed to solve the time shift problem of the curves. But 
the tolerance of the DTW algorithm to curve similarity increases 
due to the excessive time window. The DTW algorithm has a 
small probability of finding the optimal distance between two 
curves in a small window and outputs a large calculated value. 
The anomaly will be  detected because it improves the 
reconstruction error value. When the window becomes larger, 
the DTW algorithm can always find the corresponding minimum 
distance. Therefore, the output value is reduced, resulting in 
the abnormal subsequence being incorrectly classified as normal.

The experimental results also clarify that the window size 
does have a large effect on the results, so the window size needs 
to be  determined reasonably. The window size should be  strictly 
determined when using DTW as a reconstruction error metric. 
The experimental time window size is finally determined to 
be  90, at which time the optimal F1 score is 0.9388.

Comparison Experiments and Discussion
The window size is set to 90 based on the results obtained in 
section 4.3.2, and the remaining hyperparameters are tuned using 
the validation set. Anomaly detection is performed on three test 
data sets using our proposed model with optimal hyperparameters 
to obtain precision, recall values, and F1 scores. To demonstrate 
the effectiveness of our proposed model, we conduct experiments 
using each of the four reconstruction-based anomaly detection 
models mentioned above, including MAD-GAN, Tad-GAN, 
TAnoGAN, and AE. The average values of Precision, Recall, and 
F1 score after ten rounds are calculated on three data sets, and 
the comparison results of five algorithms are shown in Table  3. 
As shown in Table 3, the metrics of our proposed model exceed 
0.9 on all three data sets and outperform other algorithms in 
several of the three metrics. The experimental results indicate 
that the model proposed in this paper has better performance 
and outperforms other algorithms in the specified data set.

In addition, to demonstrate the validity of our proposed model 
improvement, the results of the ablation experiments are also 
presented in Table  3. To prove the effectiveness of the encoder–
decoder architecture containing the attention mechanism, 
we  modify the generator to the same LSTM architecture as 
MAD-GAN. At the same time, the discriminator and the error 
calculation method are kept constant. The reconstruction error 
is obtained after generator inversion. The experimental results 
are noted as “Ours-Gen,” that is, the experimental results obtained 
by removing the improvements of the generator. To demonstrate 
the boosting effect of Enhanced LSTM on the discriminator, 
we also keep the remaining architecture constant and only change 
the generator to the general LSTM architecture. Since there is 
no change in the generator, the experimental results can be obtained 
directly without generator inversion. The experimental results 
are noted as “Ours-Dis,” which is the experimental result obtained 
after removing the discriminator improvement. For the error 

calculation method, the experimental results are noted as “Ours-
Gen-Dis.” After the generator and discriminator improvements 
are all removed, the remaining architecture of our proposed 
model is equivalent to MAD-GAN except for the error calculation 
method. As shown in Table  3, after removing the generator 
improvements, our proposed model shows a substantial decrease 
in the experimental metrics for all three data sets. It is concluded 
that our proposed encoder–decoder architecture incorporating 
the attention mechanism does improve the model performance. 
In addition, the results of the “Ours-Dis” also showed a small 
decrease. The Enhanced LSTM that was introduced into the 
discriminator is also relevant for model performance improvement. 
The experimental metrics of “Ours-Gen-Dis” are higher than 
MAD-GAN, which can prove that our proposed error calculation 
method improves the detection effect.

The model proposed in this paper significantly outperforms 
AE, MAD-GAN, and TAnoGAN in all three metrics. Our 
proposed model generator is similar to AE, but the final detection 
performance is better than AE. The autoencoder alone does 
not detect anomalies very well, because the autoencoder trained 
with appropriate loss functions in adversarial training is better 
able to learn the general data distribution. The better the generator 
learns normal data, the more sensitive it is for the abnormal 
data in anomaly detection. For MAD-GAN and TAnoGAN, 
these two models share a similar structure, in which their 
generators are similar to simple decoders. They both use random 
normal data directly to generate the reconstruction data, after 
which the reconstruction error is calculated. In order to obtain 
the accurate reconstruction error, it is necessary to find its 

TABLE 3 | Experimental results of different methods on three data sets.

Data set Methods
Precision 

(%)
Recall (%) F1 score

SWMRU Ours 92.37 95.55 0.9482
Ours-Dis 92.05 94.50 0.9403
Tad-GAN 91.08 94.13 0.9348
Ours-Gen 87.95 90.31 0.8891
Ours-Gen-Dis 87.16 89.94 0.8835
MAD-GAN 85.41 89.23 0.8754
TAnoGAN 86.43 89.35 0.8876
AE 69.48 75.26 0.7238

KDDCUP99 Ours 93.51 96.25 0.9385
Ours-Dis 93.38 96.05 0.9365
Tad-GAN 93.17 94.83 0.9405
Ours-Gen 87.19 92.35 0.8847
Ours-Gen-Dis 86.49 91.42 0.8794
MAD-GAN 83.65 89.30 0.8689
TAnoGAN 85.58 88.23 0.8736
AE 75.43 81.41 0.7749

HomeC Ours 91.12 92.79 0.9235
Ours-Dis 90.73 92.48 0.9205
Tad-GAN 88.49 92.53 0.9199
Ours-Gen 85.74 88.63 0.8749
Ours-Gen-Dis 84.16 88.11 0.8636
MAD-GAN 83.39 87.09 0.8419
TAnoGAN 82.24 88.67 0.8676
AE 67.26 72.84 0.6929

The bold values in Table 3 are the highest values of each experimental metric for each 
data set.
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corresponding optimal latent vector for the test sample. In the 
reconstruction error calculation process of the two models 
mentioned above, the best latent vector is derived from the 
inversion of the test sample by the generator. This may allow 
the model to improve the reconstruction performance on the 
test sample, thus allowing the reconstruction error values to 
be  reduced to the extent that affects the final test results. Our 
models are trained based on normal samples, and both the 
encoder and decoder learn the two mappings based on the 
distribution pattern of the normal samples. The encoder learns 
how to map a normal sample to a latent vector to reconstruct 
the normal sample. And for test samples that may have anomalies, 
the encoder mapping may lose some information. The same is 
true for the decoder, which learning goal is to improve the 
reconstruction ability of the latent vector for normal samples. 
After two mappings, test samples with distribution patterns that 
differ significantly from the normal sample may yield greater 
reconstruction errors. In other words, the encoder–decoder 
structure can widen the gap between normal and abnormal 
samples, which helps to improve detection performance.

On the other hand, TadGAN introduced the cycle-consistent 
loss and trained the encoder together with the generator, which 
was used to learn the mapping of normal data to latent vectors. 
Both this model and our model train the encoder and generator 
together, so they have almost similar experimental performance. 
The difference is that this model used cycle-consistent loss for 
training and introduced a new discriminator for the encoder 
to improve learning, whereas our model improves learning 
through an attention mechanism. Both training methods prevent 
the contradiction between the encoder and the generator and 
find the corresponding optimal latent vector to the test sample 
using the most direct method. TadGAN explored different ways 
of coupling different reconfiguration computations with 
discriminator outputs, and we  have conducted experiments 
using its best structure. The average F1 score of this model 
is higher than that of our model, but the recall of our model 
is higher than it. This proves that our model can detect more 
anomalies that are present actually. Meanwhile, the optimal 
F1 value of our model outperformed it in ten training rounds.

CONCLUSION

In this paper, we  proposed a GAN-based anomaly detection 
model for multidimensional time series data generated in smart 
agricultural IoT. This model used the GAN architecture to learn 
the distribution patterns of normal data and applied reconstruction 
methods for anomaly detection. Considering the time dependence 
of time series data and the potential correlation between 
multidimensional variables, an improved Enhanced LSTM network 
to form the basis of the GAN was considered in this model. 
For the problem of generator inversion, the encoder–decoder 
architecture was adopted as the generator structure of GAN. The 
co-training of the encoder and decoder eliminated the inversion 
of the generator for test samples. This effectively reduced the 
computation time and met the demand for real-time anomaly 
detection. The performance of anomaly detection has been 

improved by the use of encoder–decoder architecture. To further 
improve the reconstruction effect, the encoder–decoder architecture 
incorporates an attention mechanism, which can extract weights 
in the time and feature dimensions to help the model reconstruct 
the samples. For anomaly detection, a new anomaly score 
calculation was proposed, which took the coupled result of the 
point-wise difference error and the curve similarity metric as 
the reconstruction error. The point-wise error and curve similarity 
were considered together to better fit the definition of realistic error.

Experiments were designed on three smart agriculture-related 
data sets and these results were compared with four previous 
anomaly detection algorithms to verify the effectiveness and 
superiority of the algorithm. The results proved that our method 
outperformed other methods in most of the metrics, and the 
error calculation method proposed in this paper can better detect 
the anomaly. Not only that, our proposed model obtained superior 
experimental metrics on high-dimensional smart agriculture data 
sets, which also reflects that GAN can better handle high-dimensional 
time series data. With the continuous development of smart 
agriculture, the dimensionality and quantity of data will grow. 
The model proposed in this paper also provides a new and useful 
insight for the anomaly detection of high-dimensional time series 
data in smart agriculture. However, the time window size setting 
needed to be  considered primarily, which may be  the reason 
why this model is lower than one of the counterpart models in 
terms of F1 score. Thus, how to choose time windows in time 
series is an important research topic, and the calculation method 
proposed in this paper also has a strong correlation with the 
size of time windows, we  will continue our work on anomaly 
calculation methods and time windows in the future.
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Ring rot caused by Botryosphaeria dothidea and anthracnose caused by Colletotrichum
gloeosporioides are two important apple fruit diseases. It is critical to conduct
timely and accurate distinction and diagnosis of the two diseases for apple disease
management and apple quality control. The automatic distinction between the two
diseases was investigated based on image processing technology in this study. The
acquired disease images were preprocessed via image scaling, color image contrast
stretching, and morphological opening and closing reconstruction. Then, two lesion
segmentation methods based on circle fitting were proposed and used to conduct
lesion segmentation. After comparison with the manual segmentation results obtained
via the software Adobe Photoshop CC, Lesion segmentation method 1 was chosen
for further disease image processing. The gray images on the nine components in the
RGB, HSI, and L∗a∗b∗ color spaces of the segmented lesion images were filtered by
using multi-scale block local binary pattern operators with the sizes of pixel blocks of
1 × 1, 2 × 2, and 3 × 3, respectively, and the corresponding local binary pattern (LBP)
histogram vectors were calculated as the features of the lesion images. Subsequently,
support vector machine (SVM) models and random forest models were built based on
individual LBP histogram features or different LBP histogram feature combinations for
distinguishing the diseases. The optimal SVM model with the distinction accuracies
of the training and testing sets equal to 100 and 95.12% and the optimal random
forest model with the distinction accuracies of the training and testing sets equal to
100 and 90.24% were achieved. The results indicated that the distinction between the
two diseases could be implemented with high accuracy by using the proposed method.
In this study, a method based on image processing technology was provided for the
distinction of ring rot and anthracnose on apple fruits.

Keywords: apple ring rot, apple anthracnose, image distinction, circle fitting, multi-scale block local binary
pattern, support vector machine, random forest
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INTRODUCTION

Apple is a kind of fruit with great commercial value, and it
is an important kind of export fruit in China (Chen et al.,
2010). Apple ring rot caused by Botryosphaeria dothidea and
apple anthracnose caused by Colletotrichum gloeosporioides is
two common diseases on apple fruits (Li B. H. et al., 2013; Hu
et al., 2016). These two kinds of diseases form lesions on the
apple fruit surface and cause decay on apple fruits, resulting in
severe yield losses and quality declines of apple fruits. Lesions
on apple fruits caused by ring rot are usually very similar to
those caused by anthracnose. Agricultural technicians with rich
practical experience are required to differentiate and identify the
two apple fruit diseases accurately. The conventional diagnosis
method of the diseases mainly relies on naked-eye symptom
observations conducted by experienced agricultural technicians.
This method is time-consuming and laboursome. In addition,
there are not enough agricultural technicians to meet the actual
needs of apple production. Therefore, it is necessary to explore
a rapid, accurate, convenient, and highly automated disease
identification method.

Image processing technology has been widely applied in
the diagnosis, identification, and monitoring of plant diseases
(Sankaran et al., 2010; Barbedo, 2016; Vishnoi et al., 2021), such
as wheat diseases (Li et al., 2012; Johannes et al., 2017; Deng et al.,
2021), maize diseases (DeChant et al., 2017; Chen et al., 2021),
rice diseases (Phadikar et al., 2013; Lu et al., 2017; Narmadha
et al., 2022), cotton diseases (Camargo and Smith, 2009; Caldeira
et al., 2021), soybean diseases (Pires et al., 2016; Shrivastava et al.,
2017; Araujo and Peixoto, 2019), cucumber diseases (Vakilian
and Massah, 2013; Zhang S. W. et al., 2017; Kainat et al., 2021),
tomato diseases (Yamamoto et al., 2017; Trivedi et al., 2021),
grape diseases (Tian et al., 2007; Oberti et al., 2014; Zhu et al.,
2020), and citrus diseases (Pydipati et al., 2006; Sankaran et al.,
2013). Moreover, image processing technology has been used
to make disease severity assessments (Li et al., 2011; Barbedo,
2014; Vieira et al., 2014; Shrivastava et al., 2015; Ganthaler et al.,
2018), conduct pathogen identification (Chesmore et al., 2003;
Deng et al., 2012; Wang et al., 2021), and perform automatic
counting of pathogen spores (Li X. L. et al., 2013; Li et al.,
2017). It is convenient and rapid to perform plant disease
identification using image processing technology, and automatic
disease identification can be realized, indicating that the image-
based plant disease identification method has a good application
prospect. However, most of the reported related studies focused
on the diagnosis and identification of plant leaf diseases.

There have been some reports on image-based distinction and
recognition of apple diseases (Yin et al., 2012; Huo et al., 2013;
Dubey and Jalal, 2014, 2016; Omrani et al., 2014; Tan et al.,
2015; Wang et al., 2015; Zhang C. L. et al., 2017; Liu et al., 2018;
Bansal et al., 2021; Ortega-Sánchez et al., 2022), but few of them
focused on the distinction and recognition of apple fruit diseases.
The two related studies conducted by Yin et al. (2012) and
Huo et al. (2013), respectively, were based on 78 low-resolution
images of three kinds of apple fruit diseases including apple ring
rot, apple anthracnose, and new apple ring rot (26 images per
apple fruit disease) that were taken by using mobile phone in

natural scenes, an improved level set interactive segmentation
method was used to perform segmentation operation on the
preprocessed images, and then six color features, eight texture
features, and seven shape features were extracted. Based on
the 15 texture and shape features, Yin et al. (2012) developed
a support vector machine (SVM) model with a linear kernel
function to identify the three kinds of apple fruit diseases, and
average identification accuracy of 90.00% was achieved. Based on
the eight texture features extracted from the segmented disease
images, Huo et al. (2013) built the identification models of the
three kinds of apple fruit diseases using three methods including
gray relation analysis, SVM, and compressive sensing, the average
identification accuracies of 86.67, 90, and 90%, respectively, were
obtained for the three models, respectively. Tan et al. (2015) used
a deep learning neural network based on flexible momentum
to identify the images of diseased apple fruits and achieved a
recall rate of 98.4%. Wang et al. (2015) developed a convolutional
neural network (CNN) based on a variable impulse learning
algorithm to conduct the identification of 100 images of diseased
apple fruits, and the identification accuracy was 97.45%. The
overall accuracy of 91.1% was obtained by Nachtigall et al.
(2017) using CNN to identify healthy apple fruits and unhealthy
apple fruits in five disorders including scab caused by Venturia
inaequalis, alternaria rot caused by Alternaria alternata, bull’s eye
rot caused by Cryptosporiopsis perennans, penicillium rot caused
by Penicillium expansum, and bitter pit (calcium deficiency)
based on the images acquired under controlled conditions.

The quality of plant disease images acquired in natural scenes
is usually affected by many factors such as uneven illumination,
complex background, and blurred edges. It is necessary to
explore an accurate and highly automated image segmentation
method to segment these disease images. Furthermore, feature
extraction after image segmentation is particularly important
for image recognition. The local binary pattern (LBP) operator
is a local texture descriptor (Ojala et al., 1996). Because of its
characteristics of gray-scale invariance, simple calculation, and
insensitivity to illumination changes, this operator is widely used
in the fields such as medical image recognition (Nanni et al.,
2012; Panda et al., 2018) and face recognition (Ahonen et al.,
2006; Yang and Chen, 2013; Lu et al., 2018). The LBP operator
has also been applied in the image-based recognition of plant
diseases. Leiva-Valenzuela and Aguilera (2013) implemented
image-based detection of fungally decayed, shriveled, and
mechanically damaged blueberries based on the 951 extracted
features including LBP features. In a study conducted by Dubey
and Jalal (2014), based on apple fruit images of apple blotch,
apple rot, apple scab, and normal apple, the K-means clustering
technique was applied to perform image segmentation, color
and texture features including global color histogram, color
coherence vector, color difference histogram, structure element
histogram, local ternary pattern, completed local binary pattern
(CLBP), and LBP was extracted, and then the color, texture, and
fused features were applied to identify apple fruit images by using
a multi-class support vector machine (MSVM), finally, an average
identification accuracy of approximately 90% was obtained. In
another study conducted by Dubey and Jalal (2016), the MSVM
method was used to classify apple blotch, apple rot, and apple scab
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based on the color (global color histogram and color coherence
vector), texture (LBP and CLBP), and shape (Zernike moments)
feature extracted from apple fruit images, and the results showed
that classification performance with accuracy more than 90%
could be achieved by using the MSVM models built based
on CLBP or each feature combination containing color and
texture features. Multi-scale block local binary pattern (MB-
LBP), a modified LBP operator, can extract texture information
at different scales of an image and is not easily affected by image
noise (Liao et al., 2007; Zhang et al., 2007). It has been applied
in studies on object detection and recognition (Halidou et al.,
2014; Li et al., 2015; Kang et al., 2017; Karanwal, 2021). To the
best of our knowledge, there are no reports on the distinction
between apple ring rot and apple anthracnose by using the image
processing method based on LBP features.

In this study, after preprocessing the digital images of apple
fruits infected with ring rot and anthracnose acquired in natural
scenes, two lesion segmentation methods based on circle fitting
were developed and applied to implement lesion segmentation
of the disease images. Subsequently, the gray images on the
nine components in the RGB, HSI, and L∗a∗b∗ color spaces
of the segmented lesion images were filtered by using MB-
LBP with pixel blocks in different sizes, and the corresponding
LBP histogram features were extracted. Finally, based on these
features, SVM models and random forest models were developed
to distinguish the two kinds of apple fruit diseases. The aim of
this study was to provide a rapid and accurate method for the
non-destructive distinction of the two diseases in apple fruits.

MATERIALS AND METHODS

The distinction of ring rot and anthracnose on apple fruits
based on image processing was conducted in accordance with the
procedures as shown in Figure 1.

Acquisition of Disease Images
A total of 123 apple fruit disease images were acquired using
different digital cameras under field conditions, including 60
images of apple ring rot and 63 images of apple anthracnose.
Most of the disease images used in this study were acquired
in the apple orchards in Shangzhuang Experimental Station of
China Agricultural University and Sujiatuo County, Haidian
District, Beijing, China in the autumn of 2014 by using two
digital cameras Canon PowerShot SX100 IS (Canon Inc., Tokyo,
Japan) and Canon EOS 700D (Canon Inc., Tokyo, Japan), and
were acquired in the apple orchards in Sujiatuo County, Haidian
District, Beijing, China in the autumn of 2015 by using the
digital camera Canon PowerShot SX100 IS. The other disease
images were provided by Shutong Wang from the College of Plant
Protection, Hebei Agricultural University, Baoding, China, and
He Wang from Forest Pest Management and Quarantine Station
of Beijing, Beijing, China.

Image Preprocessing
Preprocessing operations of the acquired disease images,
including image scaling, color image contrast stretching,

FIGURE 1 | Flow chart of image-based distinction of ring rot and anthracnose
on apple fruits.

and morphological opening and closing reconstruction were
performed by using the image processing toolbox in the software
MATLAB R2013b (MathWorks, Natick, MA, United States).

Image Scaling
Because the disease images were acquired by using different
digital cameras with different settings, there were obvious
differences among the images in size. In order to process the
disease images by using the same morphological operations, it is
necessary to resize them into the same size range. In this study,
the acquired disease images were scaled with an equal ratio in the
range of 1,000× 1,000 pixels to 2,000× 2,000 pixels.

Color Image Contrast Stretching
Color image contrast stretching is conducive to the enhancement
of the color difference between the lesions and the surrounding
background, and this operation facilitates the subsequent
lesion image segmentation. Color image contrast stretching
was operated by using the following MATLAB code:
rgbstr = imadjust(rgb, stretchlim(rgb)), where rgb is the RGB
color image to be processed, and rgbstr is the processed image.

Morphological Opening and Closing by
Reconstruction Operations
Morphological opening and closing by reconstruction operations
can reduce the noise interference to the real edges (Wang et al.,
2008; Zhang and Wang, 2009). In this study, the morphological
opening and closing by reconstruction operations of R, G, and
B color components were performed using the circular structure
element (disk) with a radius of 10, and then the obtained three
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color component images were integrated into a new color image
by using the function “cat” in the MATLAB R2013b software.

Lesion Image Segmentation
The backgrounds of apple disease images obtained in natural
scenes are usually complex, mainly including soil, branches,
and leaves of apple trees, other green plants, and local strong
reflection. Automatic and accurate segmentation of lesions on
the surface of apple fruit from the complex backgrounds is
crucial for disease distinction and identification. Generally, the
lesions of ring rot and anthracnose on apple fruits have two
distinct characteristics. Firstly, the lesions are usually brown,
thus the red component of the lesions in a disease image is
often greater than the green component. This characteristic can
be used to distinguish green elements such as the leaves of
apple trees and other green plants in the background. Secondly,
the lesions are located on the surface of apple fruit and are
usually nearly round, and this characteristic can be used to
distinguish branches of apple trees, soil, and other backgrounds
with similar colors to the lesions. In this study, according to
the above characteristics, the approximate position of apple
fruits in a disease image was determined firstly, and then
lesion segmentation was conducted by using the lesion image
segmentation methods based on circle fitting. The steps for lesion
image segmentation in detail are as follows.

Step 1. To make full use of the image color information,
the gradient of the integrated color image obtained after
morphological opening and closing by reconstruction operations
was first calculated. Assuming that c(x, y) is the gradient of any
point (x, y) in the color image, it can be calculated according to
the method described by Gonzalez and Woods (2011), which can
be expressed as follows.

Let r, g, and b be the unit vectors of the R-axis, G-axis, and
B-axis in the RGB color space, respectively, and the vectors u and
v can be defined as:

u =
∂R
∂x

r +
∂G
∂x

g +
∂B
∂x

b (1)

and
v =

∂R
∂y

r +
∂G
∂y

g +
∂B
∂y

b (2)

Let gxx, gyy, and gxy represent the dot products of these vectors u
and v, as follows:

gxx = u · u = uTu =
∣∣∣∣∂R∂x

∣∣∣∣2 + ∣∣∣∣∂G∂x
∣∣∣∣2 + ∣∣∣∣∂B∂x

∣∣∣∣2 (3)

gyy = v · v = vTv =
∣∣∣∣∂R∂y

∣∣∣∣2 + ∣∣∣∣∂G∂y
∣∣∣∣2 + ∣∣∣∣∂B∂y

∣∣∣∣2 (4)

and

gxv = u · v = uTv =
∂R
∂x

∂R
∂y
+

∂G
∂x

∂G
∂y
+

∂B
∂x

∂B
∂y

(5)

here, the direction of the maximum change rate of c(x, y) can be
given by the angle θ(x, y), which can be calculated by using the

following formula:

θ
(
x, y

)
=

1
2

arctan
[

2gxy
gxx − gyy

]
(6)

and the value of the change rate at point (x, y) in the direction of
the angle θ(x, y) can be given by using the following formula:

Fθ

(
x, y

)
=
{1

2
[ (
gxx + gxy

)
+
(
gxx − gxy

)
cos2θ

(
x, y

)
+2gxysin2θ

(
x, y

) ]} 1
2 (7)

The partial derivatives of Formulas (3), (4), and (5) can be
calculated by using the Sobel operator, and then the gradient of
any point (x, y) can be calculated.

Step 2. Edge detection of the gradient image generated in
Step 1 was carried out by using the Canny operator. For the
Canny operator, the default values were used for the sensitivity
thresholds, and the standard deviation of the Gaussian filter,
σ(sigma), was set to 20. The purpose of edge detection is to
preserve the real edge, remove the false edge, and present the
edge image in a binary pattern. In the binary edge image, the
edge of the junction of the diseased and healthy regions may
have breakpoints. Therefore, in this study, the circular structure
element with a radius of 2 was used to conduct a dilation
operation on the edge image to obtain the continuous lesion edge
as much as possible.

Step 3. To remove the green background such as the leaves
of the apple tree and other green plants from the image, the pixel
points with the green component greater than the red component
were assigned a value of 0, and the other pixel points were
assigned a value of 1, and then the green-background-subtracted
binary image can be obtained. The green apple fruits in the image
can also be removed in the process of the background subtraction.
Because the lesions of the two apple fruit diseases are usually
brown for which the green component is much smaller than the
red component, they could still be completely retained in the
image after the background subtraction, and thus the subsequent
lesion extraction will not be affected. The binary edge image
obtained in Step 2 was inversed, and then multiplied with the
green-background-subtracted binary image, thus a new binary
image was obtained.

Step 4. Cavity filling of the binary image obtained in Step 3
was carried out. To avoid the adhesion between apple fruits and
the background in the image and remove the relatively small
background target, the circular structure element with a radius
of 50 was used to conduct the opening operation on the binary
image obtained after cavity filling.

Step 5. The areas of all the remaining connected components
were calculated, and any region for which the area of the
connected component was less than two-thirds of the area of
the maximum connected component was removed. The retained
regions were regarded as the regions where apple fruits may exist.

Step 6. Assuming that the number of the retained regions was
M, that is, the number of the regions where apple fruits may exist
was M, let j = 1, then the convex hull of the jth apple fruit region
was calculated and the region contour was extracted. Considering
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that apple fruits are usually near-circular, circle fitting of the jth
apple fruit region was carried out based on the contour combined
with the least square method. Circular curve fitting by using the
least square method was carried out according to the specific
calculation method as described by Li and He (2013), which can
be listed as follows.

Suppose the formula of the circular curve to be fitted is:

Rad2
= (x− Ax)2

+ (y− By)2 (8)

in which Rad is the radius of the circle curve, and Ax and By are
the abscissa and ordinate of the circle center, respectively.

Suppose the pixel point set on the contour line is (xi, yi) where
i = 1, 2, . . ., N, and N represent the number of pixel points on the
contour line. The distance from the ith pixel point in the set to
the circle center is di, then

d2
i = (xi − Ax)2

+ (yi − By)2 (9)

The difference between the square of the distance from the point
(xi, yi) to the circle center and the square of the radius of the
circular curve, δi, can be described as the following formula:

δi = d2
i − Rad2

= (xi − Ax)2
+ (yi − By)2

− Rad2

= x2
i + y2

i + axi + byi + c (10)

Let Q (a, b, c) be the sum of squares of δi, then

Q
(
a, b, c

)
=

∑
δ2
i =

∑[
x2
i + y2

i + axi + byi + c
]2 (11)

The least-square method was used to calculate and achieve the
optimal fitted circular curve, that is, the parameters a, b, and c
were calculated to minimize Q (a, b, c). The partial derivatives of
Q (a, b, c) with respect to a, b, and c were calculated, respectively,
and then were set to 0, thus the extreme points could be achieved
and the values of the corresponding parameters a, b, and c could
be obtained. The partial derivatives of Q (a, b, c) with respect to
a, b, and c were calculated according to the following Formulas
(12), (13), and (14), respectively.

∂Q
(
a, b, c

)
∂a

=

∑
2
(
x2
i + y2

i + axi + byi + c
)
xi = 0 (12)

∂Q
(
a, b, c

)
∂b

=

∑
2
(
x2
i + y2

i + axi + byi + c
)
yi = 0 (13)

∂Q
(
a, b, c

)
∂c

=

∑
2
(
x2
i + y2

i + axi + byi + c
)
= 0 (14)

After the values of the corresponding parameters a, b, and c
were obtained, the fitted values of Ax, By, and Rad could be
estimated according to the following Formulas (15), (16), and
(17), respectively.

Ax =
a
−2

(15)

By =
b
−2

(16)

Rad =
1
2

√
a2 + b2 − 4c (17)

After circle fitting of the jth apple fruit contour was conducted,
the distances between all the pixel points in the image and the
circle center were calculated, then the pixel points with a distance
less than the circle radius were assigned a value of 1 and the other
pixel points were assigned a value of 0, and thus the binary image
of the jth apple fruit region was obtained.

Step 7. Two methods were tried to find the real lesion edges
in this study, thus the corresponding lesion image segmentation
methods were classified as Lesion segmentation method 1
and Lesion segmentation method 2, respectively. For Lesion
segmentation method 1, the binary edge image obtained in Step
2 was multiplied with the circle fitting binary image of the jth
apple fruit region, in order to retain the edge inside the apple
fruit region and remove the edge outside the apple fruit region;
the convex hull areas of all the edges were calculated, and the
edge with the largest convex hull area was considered as the edge
of the junction of the diseased and healthy regions; then the
convex hull contour corresponding to this edge was calculated,
and the circle fitting method of apple fruit region was used
to fit the contour, finally the region obtained by circle fitting
was treated as the region where the disease lesion was located.
For Lesion segmentation method 2, firstly, the circular structure
element with a radius of 20 was used to conduct the closing
operation on the image obtained by the opening operation in
Step 4, and a binary image was obtained. The purpose of this
operation was to reduce the possible depressions in the retained
regions. Subsequently, the binary edge image obtained in Step 2
was multiplied with the circle fitting binary image of the jth apple
fruit region and then was multiplied with the above binary image
obtained by closing operation, aiming to retain the edge inside
the apple fruit region and remove the edge outside the apple
fruit region. The remaining procedures of Lesion segmentation
method 2 were the same as that of Lesion segmentation method 1.

Step 8. Let j = j+1, if j≤M, then Steps 6 and 7 will be repeated,
otherwise the operations for the lesion image segmentation
will be finished.

After segmentation, each pixel in a lesion image was
determined as a lesion pixel or a healthy pixel. The evaluation
of image segmentation performance can be conducted by
referring to the evaluation method of a binary classification
model (Powers, 2011). The manual segmentation method using
the Adobe Photoshop CC software was utilized to conduct
segmentation of the lesion images, and the segmentation results
were considered as references. The segmentation results obtained
by using the manual segmentation method were compared with
those obtained by using the two segmentation methods described
above, and Recall, Precision, and Score (Qin et al., 2016) were
used as the indices to evaluate the above two segmentation
methods. The three indices were calculated according to the
following formulas as described by Qin et al. (2016):

Recall =
N1

N2
(18)
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Precision =
N1

N3
(19)

Score =
Recall+ Precision

2
(20)

where N1 is the total number of lesion pixels in a lesion
image correctly determined by using one of the segmentation
methods described above, N2 is the total number of lesion
pixels in the lesion image determined by using the manual
segmentation method, and N3 is the total number of the pixels
in the lesion image. All of these three indices range from 0 to
1. To evaluate the performances of the two lesion segmentation
methods, the image dataset of apple ring rot comprising 60
images, the image dataset of apple anthracnose comprising 63
images, and the aggregated image dataset comprising all of the
123 images, were constructed by using the acquired images after
preprocessing. The segmentation method with larger values of
Recall, Precision, and Score, was chosen as the automatic lesion
segmentation method for further disease image processing and
disease distinction.

Extraction of Local Binary Pattern
Histogram Features From the
Segmented Lesion Images
To reduce the influence of illumination on the image features,
MB-LBP operators with pixel blocks in different sizes were used
to filter the gray images on the nine components in the RGB, HSI,
and L∗a∗b∗ color spaces of the segmented lesion images, and then
the corresponding LBP histogram vectors were calculated.

Initially, all of the segmented lesion images were resized to
256 × 256 pixels. The three-scale sizes of pixel blocks (sub-
regions) were set as 1 × 1 pixels, 2 × 2 pixels, and 3 × 3
pixels, and the corresponding MB-LBP operators were recorded
as MB1-LBP, MB2-LBP, and MB3-LBP, respectively. For each MB-
LBP operator, the number of neighborhoods was set to 8, and
the neighborhood radius was set to 2. The MB3-LBP operator,
as shown in Figure 2, was taken as an example. In Figure 2,
each small square surrounded by thin black lines represents a
pixel, and each square (sub-region) enclosed by thick black lines
represents a pixel block. The gray value of each pixel block is
the average of the gray values of nine (3 × 3) pixels included
in the corresponding block. The black point at the center of
the center block is labeled as the center point, and the eight
surrounding black points are labeled as to its eight neighborhood
points. For the black point located at the center of a pixel block,
the gray value of the pixel block is used directly as the value of
this black point. For the black point is not located at the center of
a pixel block, the gray value of the pixel block is determined by
using the bilinear interpolation method. By comparing the gray
value of each neighborhood point with that of the center point,
an 8-bit binary number is obtained, which is then used as the
response value of the center point. MB1-LBP operator and MB2-
LBP operator are the same as the MB3-LBP operator except for
the size of each pixel block.

The gray images on the nine components in the RGB, HSI,
and L∗a∗b∗ color spaces of the segmented lesion images were

filtered by using MB1-LBP with the size of the pixel block of
1 × 1, MB2-LBP with the size of the pixel block of 2 × 2, and
MB3-LBP with the size of the pixel block of 3 × 3, respectively,
and the corresponding local binary pattern histogram vectors
were calculated as the features of the lesion images (Zhang
et al., 2013). In this study, the uniform LBP operator with 59
histogram bins that include 58 uniform histogram bins and
one non-uniform histogram bin, was used for the calculation
of the LBP histogram. Finally, the LBP histogram vector in 59
dimensions was obtained. The algorithm in detail was described
by Zhang et al. (2007, 2013).

Disease Distinction Model Building
Based on Local Binary Pattern
Histogram Features of the Segmented
Lesion Images
From all of the acquired apple disease images, 40 images of
ring rot and 42 images of anthracnose were randomly selected
to form the training set, and the remaining 20 images of ring
rot and the remaining 21 images of anthracnose were used to
form the testing set. Disease distinction models were built by
using two modeling methods including the SVM method and the
random forest method.

The LBP histogram features extracted by using the MB-
LBP operators are in a large number of dimensions. The SVM
method can be applied to effectively solve the data problems of
small samples, non-linearity, high dimensions, and local minima
(Cortes and Vapnik, 1995; Burges, 1998). Therefore, the SVM
method was used to build distinction models of the images of
ring rot and anthracnose on apple fruits in this study. Based on
the LBP histogram features extracted from the segmented lesion
images, the SVM models for the distinction of the two kinds of
apple diseases were built by using C-SVM in the LIBSVM package
developed by Chang and Lin (2011). To build an SVM model,
a radial basis function kernel was selected, and the grid search
algorithm was used to search for the optimal penalty parameter C
and the optimal kernel function parameter g in the range of 2−10–
210 with a searching step of 0.4. Based on the training set, the
distinction accuracies at all points within the grid were achieved
by running three complete cross-validations. When the highest
distinction accuracy was achieved, the corresponding values of C
and g were treated as the optimal parameters and were recorded
as Cbest and gbest , respectively. Then, the SVM model was built by
using the parameters Cbest and gbest . The distinction accuracies of
the training set and testing set were calculated and were used to
evaluate the model distinction performance.

A random forest, composed of multiple decision trees, can
realize prediction by integrating the prediction result of each
decision tree (Breiman, 2001). This modeling method can deal
well with high-dimensional features, and the running speed of the
built model is fast. Therefore, the random forest method was used
to build distinction models of the images of apple ring rot and
apple anthracnose based on the extracted LBP histogram features
in this study. To a certain extent, the distinction performance
of a random forest model depends on the number of decision
trees constituting the model, so it is necessary to try a variety

Frontiers in Plant Science | www.frontiersin.org 6 June 2022 | Volume 13 | Article 88489131

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-884891 June 3, 2022 Time: 16:13 # 7

Feng et al. MB-LBP-Based Distinction of Apple Diseases

FIGURE 2 | The diagram of the MB3-LBP operator.

of values and determine the optimal number of decision trees
according to the distinction performances of the built random
forest models. In this study, during building the random forest
models for disease distinction, the number of decision trees was
successively assigned as 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100,
and the optimal random forest model was determined according
to the distinction accuracies of the training set and testing set and
the number of decision trees. For the built random forest models
with the same distinction accuracies of the training set and testing
set, the one with the least number of decision trees was considered
the optimal model. For each decision tree, the arithmetic square
root (

√
N or N1/2) of the total number (N) of LBP histogram

features used for modeling was treated as the number of features
randomly selected. If

√
N or N1/2 was a decimal, the integral

number obtained by rounding up the decimal was considered the
value of the feature number.

RESULTS

Results of Image Preprocessing and
Image Segmentation
For apple ring rot, the results of image preprocessing and image
segmentation, taking an image as an example, are shown in
Figure 3. As shown in Figures 3A,B, after image preprocessing,
the color of the lesion region on the surface of the diseased
apple was obviously deepened, and the edge of the junction of
the diseased and healthy regions became clearer. The results of
lesion image segmentation by using Lesion segmentation method
1 and Lesion segmentation method 2 are shown in Figures 3C,D,
respectively. The results demonstrated that the size and location
of the lesion segmented by using Lesion segmentation method

1 were closer to that of the real lesion than that of the lesion
segmented by using Lesion segmentation method 2. For apple
anthracnose, there were no relatively obvious differences between
the segmentation results of the two segmentation methods,
and the satisfactory lesion segmentation performances were
achieved by using both Lesion segmentation method 1 and Lesion
segmentation method 2. Taking an image of apple anthracnose
as an example, the corresponding results of image preprocessing
and image segmentation are shown in Figure 4.

After lesion segmentation operations of all the diseased images
were conducted by using the two lesion segmentation methods
(i.e., Lesion segmentation method 1 and Lesion segmentation
method 2), the statistical results of Recalls, Precisions, and Scores
for the two methods based on the three image datasets described
above are shown in Table 1. The shape of very few lesions
was very irregular, e.g., two or more lesions joined together,
resulting in the extreme values of Recall, Precision, and Score.
To reduce the influence of the extreme values on evaluating
the lesion segmentation methods, the mean and median of
each evaluation index (Recall, Precision, or Score) were used
to evaluate the performances of the two lesion segmentation
methods described above.

For the image dataset of apple ring rot, when Lesion
segmentation method 1 was used, the mean and median of the
Recalls were 0.93 and 0.99, respectively; the mean and median
of the Precisions were 0.92 and 0.95, respectively; and the mean
and median of the Scores were 0.93 and 0.95, respectively. For
this image dataset, when Lesion segmentation method 2 was
used, the mean and median of the Recalls were 0.81 and 0.89,
respectively; the mean and median of the Precisions were 0.93
and 0.96, respectively; and the mean and median of the Scores
were 0.87 and 0.93, respectively. The results demonstrated that,
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FIGURE 3 | The results of image preprocessing and lesion segmentation for apple ring rot. (A) Original color image. (B) Image after preprocessing. (C) Image after
lesion segmentation by using Lesion segmentation method 1 without closing operation. (D) Image after lesion segmentation by using Lesion segmentation method 2
with the closing operation. The black areas in panels (C,D) are the segmented lesions obtained by using Lesion segmentation method 1 and Lesion segmentation
method 2, respectively.

for the image dataset of apple ring rot, the means and medians
of the Recalls and Scores obtained when Lesion segmentation
method 1 was used, were higher than those obtained when Lesion
segmentation method 2 was used; and the mean and median of
the Precisions were similar when Lesion segmentation method
1 and Lesion segmentation method 2 were used, respectively.
The results indicated that Lesion segmentation method 1 was
more suitable for lesion segmentation of the images of ring rot
on apple fruits.

For the image dataset of apple anthracnose, when Lesion
segmentation method 1 was used, the mean and median of the
Recalls were 0.95 and 1, respectively; the mean and median of
the Precisions were 0.94 and 0.97, respectively; and the mean
and median of the Scores were 0.94 and 0.97, respectively.
When Lesion segmentation method 2 was used on this image
dataset, the mean and median of the Recalls were 0.91 and
0.99, respectively; the mean and median of the Precisions were
0.96 and 0.97, respectively; and the mean and median of the
Scores were 0.93 and 0.97, respectively. The results demonstrated
that, for the image dataset of apple anthracnose, the mean and
median of the Recalls, Precisions, or Scores obtained when Lesion
segmentation method 1 and Lesion segmentation method 2 were
used, respectively, were similar, and all the indices were more
than 0.9. The results indicated that these two lesion segmentation

methods were both suitable for lesion segmentation of the images
of apple anthracnose.

For the image dataset of the aggregated image dataset obtained
after aggregation of the two image datasets of apple ring rot
and apple anthracnose, when Lesion segmentation method 1
was used, the mean and median of the Recalls were 0.94 and
0.99, respectively; the mean and median of the Precisions were
0.93 and 0.96, respectively; and the mean and median of the
Scores were 0.93 and 0.96, respectively. For this aggregated image
dataset, when Lesion segmentation method 2 was used, the mean
and median of the Recalls were 0.86 and 0.96, respectively;
the mean and median of the Precisions were 0.95 and 0.97,
respectively; and the mean and median of the Scores were 0.9
and 0.95, respectively. The results showed that, for the aggregated
image dataset, the mean and median of the Recalls or Scores
obtained when Lesion segmentation method 1 was used, were
both higher than those obtained when Lesion segmentation
method 2 was used, and the mean and median of the Precisions
obtained when the former method was used were similar to those
obtained when the latter method was used.

The results described above indicated that Lesion
segmentation method 1 was more suitable for lesion
segmentation of the images of ring rot and anthracnose on
apple fruits. Therefore, Lesion segmentation method 1 was
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FIGURE 4 | The results of image preprocessing and lesion segmentation for apple anthracnose. (A) Original color image. (B) Image after preprocessing. (C) Image
after lesion segmentation by using Lesion segmentation method 1 without closing operation. (D) Image after lesion segmentation by using Lesion segmentation
method 2 with the closing operation. The black areas in panels (C,D) are the segmented lesions obtained by using Lesion segmentation method 1 and Lesion
segmentation method 2, respectively.

selected for realizing the automatic segmentation of the lesion
images of the two apple fruit diseases in this study.

Distinction Results of the Support Vector
Machine Models Based on the Local
Binary Pattern Histogram Features
The distinction results of the SVM models based on the
LBP histogram features of the gray images on each individual
component in the RGB, HSI, and L∗a∗b∗ color spaces of the
segmented lesion images are shown in Tables 2–4, respectively.

R1 denoted the LBP histogram feature of the gray image of
the R component of the lesion image filtered by the MB1-LBP
operator, and R2 denoted the LBP histogram feature of the gray
image of the R component of the lesion image filtered by the
MB2-LBP operator, R1G1 denoted the combination of R1 and
G1, and the rest features’ names could be deduced by analogy.
The results showed that the optimal SVM model for disease
distinction was built based on the feature L1a1 and that this SVM
model had the best distinction performance. For this optimal
SVM model, the parameters Cbest and gbest were 12.126 and 0.144,
respectively, and the distinction accuracy of the training set was

TABLE 1 | Statistical comparison of the segmentation effects using the two lesion segmentation methods.

Image dataset Lesion segmentation method Recall Precision Score

Mean Median Mean Median Mean Median

Image dataset of apple ring rot Lesion segmentation method 1 0.93 0.99 0.92 0.95 0.93 0.95

Lesion segmentation method 2 0.81 0.89 0.93 0.96 0.87 0.93

Image dataset of apple anthracnose Lesion segmentation method 1 0.95 1.00 0.94 0.97 0.94 0.97

Lesion segmentation method 2 0.91 0.99 0.96 0.97 0.93 0.97

Aggregated image dataset Lesion segmentation method 1 0.94 0.99 0.93 0.96 0.93 0.96

Lesion segmentation method 2 0.86 0.96 0.95 0.97 0.90 0.95

Aggregated image dataset was obtained after aggregation of the two image datasets of apple ring rot and apple anthracnose.
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TABLE 2 | Distinction results of the SVM models based on the LBP histogram
features of the gray images of the three components in RGB color space of the
segmented lesion images.

Feature The optimal parameters of
SVM model

Distinction
accuracy of the
training set/%

Distinction
accuracy of the
testing set/%

Cbest gbest

R1 21.112 0.082 93.90 90.24

G1 2.297 0.144 80.49 70.73

B1 0.758 0.250 78.05 60.98

R1G1 2.297 0.144 92.68 85.37

R1B1 21.112 0.047 96.34 92.68

G1B1 588.134 0.005 96.34 73.17

R1G1B1 194.012 0.016 100.00 87.80

R2 1.320 2.297 100.00 70.73

G2 2.297 0.435 96.34 58.54

B2 0.758 0.250 75.61 65.85

R2G2 111.430 0.005 95.12 80.49

R2B2 1.320 0.082 87.80 82.93

G2B2 0.758 0.144 78.05 68.29

R2G2B2 1.320 0.082 90.24 80.49

R3 2.297 2.297 100.00 73.17

G3 337.794 0.003 90.24 58.54

B3 21.112 0.027 90.24 68.29

R3G3 2.297 0.250 98.78 75.61

R3B3 21.112 0.027 96.34 82.93

G3B3 64 0.047 100.00 58.54

R3G3B3 4 0.082 97.56 75.61

R1 represents the LBP histogram feature of the gray image of the R component
of the lesion image filtered by the MB1-LBP operator; R2 represents the LBP
histogram feature of the gray image of the R component of the lesion image filtered
by the MB2-LBP operator; R1G1 represents the combination of R1 and G1; the
rest features’ implication could be deduced by analogy.

100% and the distinction accuracy of the testing set was 95.12%.
The model for which the distinction performance ranked second
among all the built SVM models, was built based on the feature
R1B1 with the parameters Cbest and gbest of 21.112 and 0.047.
For this model, the distinction accuracies of the training set and
testing set were 96.34% and 92.68%, respectively. The model for
which the distinction performance ranked third among all the
built SVM models, was built based on the feature R1 with the
parameters Cbest and gbest of 21.112 and 0.082. For this model,
the distinction accuracy of the training set was 93.9% and the
distinction accuracy of the testing set was 90.24%. The SVM
model was built based on the feature R1G1B1 with the optimal
parameters Cbest and gbest of 194.012 and 0.016 and the SVM
model was built based on the feature L1a1b1 with the optimal
parameters Cbest and gbest of 6.964 and 0.082, the distinction
accuracies of the training set were both 100% and the distinction
accuracies of the testing set were both 87.8%. For the SVM model
built based on the feature L1b1 with the optimal parameters,
Cbest and gbest of 2.297 and 0.25, the distinction accuracies of the
training set and testing set were 97.56 and 85.37%, respectively.
For the SVM model built based on the feature R1G1 with
the optimal parameters, Cbest and gbest of 2.297 and 0.144, the

distinction accuracies of the training set and testing set were
92.68 and 85.37%, respectively. The results demonstrated that
accurate distinction of apple ring rot and apple anthracnose can
be achieved by using the SVM modeling method based on LBP
histogram features. The LBP histogram features used in the above
SVM models with satisfactory distinction performances were
obtained by filtering the gray images of the related components
with the MB1-LBP operator. Compared with the other two MB-
LBP operators (MB2-LBP and MB2-LBP), the pixel block of the
MB1-LBP operator is the smallest, and the highest fineness of the
image texture can be obtained after image filtering with it, which
may be helpful to improve the ability of the models to distinguish
between apple ring rot and apple anthracnose.

Distinction Results of the Random Forest
Models Based on the Local Binary
Pattern Histogram Features
The distinction results of the random forest models built based
on the LBP histogram features of the gray images of the three
components in the RGB, HIS, and L∗a∗b∗ color spaces of the
segmented lesion images of apple ring rot and apple anthracnose

TABLE 3 | Distinction results of the SVM models based on the LBP histogram
features of the gray images of the three components in the HSI color space of the
segmented lesion images.

Feature The optimal parameters
of SVM model

Distinction
accuracy of the
training set/%

Distinction
accuracy of the
testing set/%

Cbest gbest

H1 0.758 0.082 69.51 68.29

S1 111.430 0.016 82.93 82.93

I1 2.297 0.758 96.34 78.05

H1S1 6.964 0.016 75.61 82.93

H1I1 2.297 0.047 79.27 78.05

S1I1 0.435 0.144 78.05 78.05

H1S1I1 0.435 0.082 75.61 80.49

H2 2.297 0.144 78.05 75.61

S2 337.794 0.005 89.02 46.34

I2 0.758 0.250 79.27 68.29

H2S2 4.000 0.250 100.00 70.73

H2I2 0.758 0.144 81.71 80.49

S2I2 1.320 0.082 81.71 75.61

H2S2I2 0.758 0.250 92.68 80.49

H3 6.964 0.027 75.61 70.73

S3 0.758 0.758 93.90 63.41

I3 21.112 0.002 62.20 65.85

H3S3 1.320 0.144 90.24 75.61

H3I3 1.320 0.435 98.78 82.93

S3I3 1.320 0.758 100.00 70.73

H3S3I3 1.320 0.435 100.00 78.05

H1 represents the LBP histogram feature of the gray image of the H component
of the lesion image filtered by the MB1-LBP operator; H2 represents the LBP
histogram feature of the gray image of the H component of the lesion image filtered
by the MB2-LBP operator; H1S1 represents the combination of H1 and S1; the
rest features’ implication could be deduced by analogy.
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TABLE 4 | Distinction results of the SVM models based on the LBP histogram
features of the gray images of the three components in the L*a*b* color space of
the segmented lesion images.

Feature The optimal
parameters of SVM

model

Distinction
accuracy of the
training set/%

Distinction
accuracy of the
testing set/%

Cbest gbest

L1 12.126 0.435 100.00 73.17

a1 2.297 1.320 100.00 65.854

b1 1.320 0.758 96.34 80.49

L1a1 12.126 0.144 100.00 95.12

L1b1 2.297 0.250 97.56 85.37

a1b1 2.297 0.758 100.00 70.73

L1a1b1 6.964 0.082 100.00 87.80

L2 1.320 0.758 95.12 63.41

a2 36.758 0.009 80.49 70.73

b2 1.320 0.144 84.15 75.61

L2a2 0.758 0.435 96.34 73.17

L2b2 0.758 0.250 90.24 73.17

a2b2 36.758 0.027 98.78 65.85

L2a2b2 1.320 0.082 95.12 78.05

L3 111.430 0.047 98.78 58.54

a3 337.794 0.009 91.46 56.10

b3 6.964 0.082 91.46 75.61

L3a3 1.320 0.435 100.00 70.73

L3b3 1.320 0.435 100.00 80.49

a3b3 0.758 0.144 87.80 78.05

L3a3b3 1.320 0.144 98.78 80.49

L1 represents the LBP histogram feature of the gray image of the L * component
of the lesion image filtered by the MB1-LBP operator; L2 represents the LBP
histogram feature of the gray image of the L * component of the lesion image
filtered by the MB2-LBP operator; L1a1 represents the combination of L1 and a1;
the rest features’ implication could be deduced by analogy.

are shown in Tables 5–7, respectively. The results showed that
the optimal random forest model for the distinction of the two
apple fruit diseases was built with the number of decision trees
equal to 30 based on the feature R1B1 and that the distinction
performance of this model was the best among all the built
random forest models. For this optimal model, the distinction
accuracies of the training set and testing set were 100 and 90.24%,
respectively. In terms of disease distinction performance, three
models tied for second place with the distinction accuracies
of the training set and testing set equal to 100 and 87.8%,
respectively, among all the built random forest models. Among
these three models, one was built with the number of decision
trees equal to 90 based on the feature R1, another was built
with the number of decision trees equal to 50 based on the
feature R1G1B1, and the other was built with the number of
decision trees equal to 80 based on the feature L3a3b3. For the
random forest model built based on the feature R1G1, H1S1,
H1S1I1, I3, H3I3, L1b1, or L3a3 with the number of decision trees
corresponding to 60, 60, 90, 80, 100, 70, or 30, the distinction
accuracy of the training set was 100% and the distinction accuracy
of the testing set was 85.37%. The results demonstrated that
accurate distinction of apple ring rot and apple anthracnose can

be obtained by using the random forest method based on LBP
histogram features.

DISCUSSION AND CONCLUSION

Diseases play important roles in the reduction of the yield
and quality of apple fruits. Accurate disease diagnosis is a key
prerequisite for the prevention and control of apple diseases.
In this study, taking ring rot and anthracnose on apple fruits
as the research objects, the lesion image segmentation of the
two apple diseases was carried out, and then the MB-LBP
features were extracted from the segmented lesion images, finally,
the distinction of the images of the two apple diseases was
conducted by using both the SVM method and the random forest
method. According to the characteristics of the lesions of the two
apple diseases, two lesion segmentation methods based on circle
fitting, Lesion segmentation method 1 and Lesion segmentation
method 2, were developed and compared. The statistical results
of three evaluation indices including Recall, Precision, and Score
of the two lesion segmentation methods indicated that Lesion
segmentation method 1 was better than Lesion segmentation
method 2. Therefore, Lesion segmentation method 1 was selected

TABLE 5 | Distinction results of the random forest models based on the LBP
histogram features of the gray images of the three components in RGB color
space of the segmented lesion images.

Feature The number of decision
trees built by the best
random forest model

Distinction
accuracy of the
training set/%

Distinction
accuracy of the
testing set/%

R1 90 100.00 87.80

G1 60 100.00 75.61

B1 100 100.00 75.61

R1G1 60 100.00 85.37

R1B1 30 100.00 90.24

G1B1 80 100.00 80.49

R1G1B1 50 100.00 87.80

R2 90 100.00 78.05

G2 10 98.78 75.61

B2 20 100.00 63.41

R2G2 20 98.78 73.17

R2B2 60 100.00 82.93

G2B2 10 97.56 73.17

R2G2B2 90 100.00 82.93

R3 100 100.00 80.49

G3 70 100.00 73.17

B3 50 100.00 73.17

R3G3 60 100.00 80.49

R3B3 90 100.00 75.61

G3B3 90 100.00 73.17

R3G3B3 50 100.00 75.61

R1 represents the LBP histogram feature of the gray image of the R component
of the lesion image filtered by the MB1-LBP operator; R2 represents the LBP
histogram feature of the gray image of the R component of the lesion image filtered
by the MB2-LBP operator; R1G1 represents the combination of R1 and G1; the
rest features’ implication could be deduced by analogy.
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TABLE 6 | Distinction results of the random forest models based on the LBP
histogram features of the gray images of the three components in the HSI color
space of the segmented lesion images.

Feature The number of decision
trees built by the best
random forest model

Distinction
accuracy of the
training set/%

Distinction
accuracy of the
testing set/%

H1 90 100.00 70.73

S1 30 100.00 78.05

I1 70 100.00 78.05

H1S1 60 100.00 85.37

H1I1 50 100.00 80.49

S1I1 50 100.00 82.93

H1S1I1 90 100.00 85.37

H2 20 100.00 75.61

S2 40 100.00 82.93

I2 40 100.00 73.17

H2S2 90 100.00 78.05

H2I2 60 100.00 82.93

S2I2 60 100.00 75.61

H2S2I2 90 100.00 80.49

H3 70 100.00 73.17

S3 20 100.00 70.73

I3 80 100.00 85.37

H3S3 60 100.00 80.49

H3I3 100 100.00 85.37

S3I3 50 100.00 80.49

H3S3I3 70 100.00 82.93

H1 represents the LBP histogram feature of the gray image of the H component
of the lesion image filtered by the MB1-LBP operator; H2 represents the LBP
histogram feature of the gray image of the H component of the lesion image filtered
by the MB2-LBP operator; H1S1 represents the combination of H1 and S1; the
rest features’ implication could be deduced by analogy.

to realize automatic segmentation of the lesion images in this
study. To reduce the influence of illumination on the features
of lesion images, the gray images of the nine components in
the RGB, HSI, and L∗a∗b∗ color spaces of the segmented lesion
images of the two apple diseases were filtered by using MB1-
LBP, MB2-LBP, and MB3-LBP operators, respectively, and the
corresponding LBP histogram features were extracted for further
disease distinction. The results demonstrated that for the built
disease distinction SVM model based on the feature R1, R1G1,
R1B1, L1a1, L1b1, R1G1B1, or L1a1b1, the distinction accuracies
of the training set and testing set were high, and the satisfactory
disease distinction performance was achieved. Among these SVM
models, the distinction performance of the model built based
on the feature L1a1 was optimal. The obtained results showed
that the satisfactory disease distinction performance could be
achieved when the random forest model was built based on the
features R1, I3, R1G1, R1B1, H1S1, H3I3, L1b1, L3a3, R1G1B1,
H1S1I1, or L3a3b3. Among these random forest model models,
the distinction performance of the model built based on the
feature R1B1 was optimal. For both the SVM model and the
random forest model based on the feature R1B1, the distinction
accuracies of the training set and testing set were more than
90%, indicating that the feature R1B1 can be utilized to well
distinguish between ring rot and anthracnose on apple fruits. In

practical applications, the disease image database as a training
set may be very large. Generally, the random forest model runs
faster than the SVM model, and it is easy to realize large-
scale parallel computing and rapid analysis of massive data by
using the random forest method. Considering these factors, it
is suggested that using R1B1 features to build a random forest
model can be carried out for the distinction of the images of
ring rot and anthracnose on apple fruits. The results indicated
that it is feasible to distinguish between ring rot and anthracnose
with typical symptoms on apple fruits by using the method
proposed in this study.

Disease images obtained in natural scenes often have complex
backgrounds, which can induce uneven illumination, various
noises, blurred lesion edges, and other phenomena in the images.
Therefore, under these circumstances, it is difficult to conduct
complete lesion image segmentation. Zou et al. (2010) used
multi-threshold methods to segment apple images from the black
background, and then used a flooding algorithm and a snake
algorithm to conduct the detection of apple fruit defects, thus
the in-line detection of apple quality was realized. The lesion
image segmentation method of the two apple fruit diseases based
on circle fitting proposed in this study can realize the automatic
segmentation of lesion images without human interaction. Even

TABLE 7 | Distinction results of the random forest models based on the LBP
histogram features of the gray images of the three components in the L*a*b* color
space of the segmented lesion images.

Feature The number of decision
trees built by the best
random forest model

Distinction
accuracy of the
training set/%

Distinction
accuracy of the
testing set/%

L1 30 100.00 80.49

a1 60 100.00 75.61

b1 100 100.00 78.05

L1a1 60 100.00 82.93

L1b1 70 100.00 85.37

a1b1 40 100.00 80.49

L1a1b1 60 100.00 82.93

L2 10 97.56 70.73

a2 60 100.00 82.93

b2 80 100.00 78.05

L2a2 40 100.00 80.49

L2b2 30 100.00 80.49

a2b2 50 100.00 80.49

L2a2b2 70 100.00 80.49

L3 60 100.00 73.17

a3 20 100.00 80.49

b3 60 100.00 80.49

L3a3 30 100.00 85.37

L3b3 100 100.00 82.93

a3b3 30 100.00 80.49

L3a3b3 80 100.00 87.80

L1 represents the LBP histogram feature of the gray image of the L* component
of the lesion image filtered by the MB1-LBP operator; L2 represents the LBP
histogram feature of the gray image of the L * component of the lesion image
filtered by the MB2-LBP operator; L1a1 represents the combination of L1 and a1;
the rest features’ implication could be deduced by analogy.
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if the image background, such as a natural scene with soil,
branches, and leaves, is complex, relatively accurate segmentation
results can be obtained. Because the strategy of the lesion image
segmentation method used in this study was to determine the
apple fruit location firstly and then determine the lesion location,
the method required that the apple fruits should occupy the main
part of the whole image in order to accurately determine the apple
fruit location. In this study, it was assumed that the lesions of
ring rot and anthracnose on apple fruits were nearly circular, but
in practice, two or more lesions may join together, resulting in
a great difference between the lesion shape and a circle, which
could make the used lesion segmentation method ineffective. In
addition, an apple fruit itself is a 3D (three-dimension) object,
and a lesion on its surface is a 3D curved surface. The acquired
image of the apple fruit and lesion is the projection of the
3D curved surface on a 2D (two-dimension) plane, and an
inappropriate camera shooting angle can seriously affect the near
circularity after the projection. Therefore, in the process of image
capture, the lesions on the apple fruits should be photographed
from the front side as much as possible to ensure the accuracy
of lesion image segmentation. Meanwhile, the applications of
3D image acquisition and processing technology to plant disease
distinction and identification should be strengthened.

Extracted features from the segmented lesion images are
the bases of disease image recognition. However, uneven
illumination and illumination changes can affect the extracted
image features. In this study, the MB-LBP operators were used
to extract the texture features in different scales and to reduce
the influence of image noise caused by the factors including
uneven illumination and illumination changes and based on the
extracted features, satisfactory distinction results of the two apple
diseases were achieved by using both the SVM method and the
random forest method. As a local texture descriptor, the LBP
operator has been utilized in plant disease image recognition
(Leiva-Valenzuela and Aguilera, 2013; Dubey and Jalal, 2014,
2016; Shrivastava et al., 2017; Araujo and Peixoto, 2019). It
has been improved to new operators including CLBP (Dubey
and Jalal, 2014, 2016), adaptive center-symmetric local binary
patterns (Wang et al., 2016), and square symmetric local binary
patterns (Shrivastava et al., 2017) for image recognition of plant
diseases. In further studies, more improved LBP operators can
be used to explore better feature extraction methods for disease
image recognition.

Deep learning has been applied to plant disease image
recognition (Tan et al., 2015; DeChant et al., 2017; Lu et al.,
2017; Liu et al., 2018; Bansal et al., 2021; Caldeira et al.,
2021; Chen et al., 2021; Trivedi et al., 2021; Narmadha et al.,
2022). It can reduce image preprocessing operations and achieve
satisfactory disease recognition results. Compared with the
disease distinction method used in this study, the deep learning
method requires a large number of artificially labeled image
samples to achieve satisfactory results; otherwise, the trained
deep learning model is easy to result in over-fitting and poor
generalization ability. In addition, the interpretability of a deep
learning model is poor, and it is difficult to determine the
reason for a recognition error made by using the model. In
this study, the proposed segmentation methods for the images

of apple ring rot and apple anthracnose were designed based
on visual cognition experiences of human beings, and the
purpose of each step involved in the segmentation algorithm
is interpretable. When the number of the obtained image
samples for training is not enough to meet the requirement
of deep learning, the developed method in this study can
provide a feasible solution. In further studies, it is expected to
explore a general end-to-end apple disease recognition solution
based on deep learning and a more comprehensive apple
disease image database.

In recent years, image processing and recognition techniques
have been developed and applied in many fields such as automatic
apple picking (Zhang et al., 2016; Tao and Zhou, 2017; Kang
et al., 2020), non-destructive detection of apple fruit quality
(Zou et al., 2010; Zhang et al., 2014; Li Y. F. et al., 2021),
automatic apples grading (Huang and Fei, 2017; Bhargava and
Bansal, 2021), and apple yield estimation (Qian et al., 2013; Li
Z. J. et al., 2021). These techniques can be used as references to
carry out automatic identification and diagnosis of apple diseases.
Computer vision technology can be made full use of to improve
the ability of image acquisition and processing and to realize
online detection and recognition of apple diseases. Furthermore,
the distinction and identification of apple diseases could be
implemented by comprehensive utilization of various detection
methods. Hyperspectral imaging technology has been used to
detect bruises (Xing et al., 2005; Ferrari et al., 2015; Tan et al.,
2018; Zhang and Li, 2018) and insect damage (Tian et al., 2015;
Rady et al., 2017) on apple fruits. The advantages of hyperspectral
imaging technology with the characteristic of combining images
with spectra can be used to detect apple diseases (Jarolmasjed
et al., 2018; Shuaibu et al., 2018; Solovchenko et al., 2021).

The symptoms of plant diseases may be different at the
different growth stages. The images with the typical symptoms
of the two apple fruits diseases were used in this study.
Further studies on the image distinction and recognition of the
two apple fruit diseases with atypical symptoms are needed.
Moreover, besides the two apple fruit diseases (ring rot and
anthracnose), there are other apple fruit diseases such as
scab, fruit moldy core rot caused by Trichothecium roseum,
and Phytophthora rot caused by Phytophthora cactorum (Li
B. H. et al., 2013; Hu et al., 2016). The research on image
recognition technology for various apple fruit diseases and
the different development stages of the diseases should be
strengthened. Specially, the research on the early monitoring
and early diagnosis of apple fruit diseases based on image
processing technology should be carried out for effective and
early control of the diseases. An image database of various apple
fruit diseases should be established, and the image recognition
methods and recognition systems for the diseases should be
developed based on image processing technology. With the
development and popularity of smartphones, image acquisition
becomes more convenient. Apps (mobile applications) related
to plant diseases have been developed and applied in practice.
Smartphone-based apple disease recognition systems have been
reported (Qu et al., 2015), but usually there are a few kinds
of apple diseases included, leading to limited applicability.
Therefore, the research and development of Apps for image
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recognition of various fruit tree diseases should be carried
out so that the disease recognition could be conducted in the
fields and the problems of the recognition and diagnosis of
plant diseases could be solved in time. Furthermore, disease
image distinction and identification can be integrated into an
apple production management system or an apple post-harvest
grading system to better ensure apple production safety and apple
product management.
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Food traceability is very important for the quality and safety of agricultural products,
which is related to the people’s livelihood and national economy and has drawn great
attention from governments and scientists around the world. The existing studies
have not yet overcome the crisis characteristics comprehensively and systematically.
A traceability system of red jujube is constructed by a hybrid mode of blockchain and the
Internet of Things (IoTs). The system integrates the blockchain and the IoT technologies
with characteristics of tamper-proof, decentralization, and distributed storage and
solves the problem of date quality traceability by designing the technical process and
architecture of date quality traceability and the big data of red jujube, jujube plantation,
processing enterprise, commercial enterprises, and market administration. The whole
process from planting to processing and sales of red jujube are recorded in the block
to ensure the realization of quality traceability of red dates in the process. Through the
whole process of big data processing, the key information collected in each process
is stored in the database to ensure the realization of quality traceability of red dates
in the framework. The system can help to minimize the production and distribution
of unsafe or poor-quality products, thereby minimizing the potential for bad publicity,
liability, and recalls.

Keywords: red jujube quality and safety, traceability system, blockchain, internet of things (IoTs), quality control
system

INTRODUCTION

The quality and safety of agricultural products are related to the people’s livelihood and national
economy. The frequent occurrence of agricultural product quality and safety crises has drawn
great attention from countries around the world. Quality control in agricultural production and
throughout the supply chain is one of the most challenging issues in the world today, especially
when it comes to typical food products. The quality and safety of agricultural products are an
important study direction at present, which is a multidisciplinary study field. Its purpose is to
explore the technology, measure and supervision guarantee system to ensure the hygiene and
food safety of agricultural products, reduce the potential disease, and prevent the risk of food
poisoning in the process of agricultural products processing, storage, and sales. In recent years,
many agricultural quality control systems have been presented and various companies are trying
to experiment with joint use of radiofrequency identification (RFID), Internet of Things (IoTs),
and blockchain technologies to solve problems in scenarios where numerous untrusted actors get
involved (Galvez et al., 2018; Corallo et al., 2020).

Good traceability systems help to minimize the production and distribution of unsafe or poor
quality products and minimize the potential for bad publicity, liability, and recalls. The current
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food labeling system cannot guarantee that the food is
authentic, good quality, and safe. Zhao et al. (2019) presented
comprehensive information about traceability with regard to
safety and quality in the food supply chain and applied as a tool
to assist in the assurance of food safety and quality, as well as to
achieve consumer confidence.

Blockchain technology is a new digital technological approach
underpinned by the Industry 4.0. It is used to ensure
data integrity and prevent tampering and single point of
failure through offering fault tolerance, immutability, trust,
transparency, and full traceability of the stored transaction
records to all the agri-food value chain partners. Zhao et al. (2019)
used systematic literature network analysis to review the state-
of-the-art blockchain technology, including its recent advances,
main applications in agrifood value chain, and challenges from
a holistic perspective. They identified six challenges that have
been included storage capacity and scalability, privacy leakage,
high cost and regulation problem, throughput and latency
issue, and lack of skills. Yadav et al. (2020) identified seven
enablers by grouping thirty subenablers, developed the Internet
of Things (IoTs)-based efficient and supportive coordinating
system for enhancing the coordinating mechanism in Agriculture
Supply Chain Management (ASCM) under natural outbreaks
and discussed a case study of the sugar mill industry. Zu
et al. (2020) analyzed and researched in detail the typical crisis
events of agricultural product quality and safety in China from
2004 to 2018. They extracted 13 abstract features to form a
set of agricultural product quality and safety crisis features.
Their studies are helpful to enrich the study results of quality
and safety management of agricultural products in China and
take effective measures to reduce the harm. Rakitskii et al.
(2020) quantified 42 active ingredients of pesticides (and their
metabolites) in samples of rice grain, dragon fruit (pitahaya),
avocado, mango, and banana (fresh and dried) and used the
sample preparation procedure with QuEChERS technology for
the multiresidues determination of the 40 compounds. The
results show the safety of certain types of food products
imported from Vietnam by the content of residual quantities of
pesticides. Demestichas et al. (2020) overviewed the application
of blockchain technologies for enabling traceability in the agri-
food domain and presented definitions, levels of adoption,
tools, and advantages of traceability, accompanied with a brief
overview of the functionality and advantages of blockchain
technology. They conducted an extensive literature review on the
integration of blockchain into traceability systems and discussed
the relevant existing commercial applications, highlighting the
relevant challenges and future prospects of the application of
blockchain technologies in the agri-food supply chain. Feng et al.
(2020) reviewed the blockchain technology characteristics and
functionalities, provided valuable information for researchers
and practitioners on the use of blockchain-based food traceability
management and proposed an architecture design framework
and suitability application analysis flowchart of blockchain-
based food traceability systems. By combining smart contracts,
Interplanetary File System, and the Internet of Things, Cocco
and Mannaro (2021) tried to address these issues and presented
a proposal of an implementation model for the supply chain

management of a typical Italian Carasau bread. The method
can guarantee and certify a transparent, secure, and auditable
traceability in such a way that each actor of the supply
chain can verify the quality of the product. Ray et al. (2021)
looked into manufacturer–retailer collaboration in the UK food
supply chain and aimed to develop a preliminary conceptual
framework by identifying the key factors that influence long-
term performance and accuracy of collaborative forecasting and
developed a new model for Synchronized Information Forecast
Collaboration (SIFC). Zhao and Ning (2017) constructed
an agricultural traceability system of agricultural products
through the IoT technologies of information, security, and
cloud computing. This system can provide effective basis
for agricultural trade, logistics, and safe consumption. The
customers can effectively understand the detailed process and
risk status of every phase of agricultural products through this
system. Almalki et al. (2021) presented a low-cost platform for
comprehensive environmental parameter monitoring using the
IoT to help farmers, government, or manufacturers to predict
environmental data over the geographically large farm field,
which can enhance crop productivity and farm management
in a cost-effective and timely manner. Yang and Sun (2020)
introduced blockchain technology and proposed a blockchain-
based data management system to afford efficient data extraction,
management, and access control for heterogeneous forms of
data across the agricultural supply chain. Zhang et al. (2020)
analyzed the operation mechanism and development path of
agricultural product supply chain by blockchain technology and
reconstructed the agricultural product supply chain based on
the advantages of blockchain technology. Blockchain makes
data public for all the drones and enables drones to log
information concerning world states, time, location, resources,
delivery data, and drone relation to all the neighbor drones.
Alsamhi et al. (2021) introduced decentralized independent
multidrones to accomplish the task collaboratively and discussed
end-to-end delivery application of combination of blockchain
and multidrone in combating coronavirus disease 2019 (COVID-
19) and beyond future pandemics. Edge computing has prospects
in agricultural applications, such as safety traceability of
agricultural products, pest identification, unmanned agricultural
machinery, and intelligent management. It is possible to apply
federated learning to beyond 5G by development of edge
computing makes. Alsamhi et al. (2022) proposed a blockchain
empowered federated learning framework, presented its potential
application scenarios in beyond 5G, and designed a deep
reinforcement learning-based algorithm to find an optimal
solution to the problem. The results showed that the proposed
scheme is effective. Zhang et al. (2021) primarily reviewed
the application of edge computing in the agricultural IoTs
and investigated the combination of edge computing and
artificial intelligence, blockchain, and virtual/augmented reality
technology. Tharatipyakul and Pongnumkul (2021) gathered 25
review articles on blockchain or agri-food supply chain and 39
study articles that presented screenshots of user interfaces of
related applications, reviewed 7 review articles that focused on
the blockchain-based agri-food supply chain to understand the
benefits and challenges in the blockchain applications, aimed
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to address this gap by reviewing existing works from user
interface perspectives, and analyzed 14 blockchain-based agri-
food traceability applications and 10 non-blockchain-based agri-
food traceability applications. Finally, they discussed the study
gaps and future study directions related to user interface design,
which should be addressed to ease future blockchain adoption.

Agricultural products traceability management integrated
system can produce the data uploaded to the agricultural
products of the whole process of cultivation of traceability
management integrated system, the digital information, so
supervision department can do random inspection of agricultural
products, through the data to verify reliability, record results,
give consumers a greater sense of trust, enhance consumer
confidence. The problems of traceability agricultural products
system are summarized as: (1) Enterprises developing traceability
agricultural products system are not the same, so traceability
information cannot be shared, many system software are not
compatible, and the purpose of query cannot be achieved in
different systems. Some query terminals can only be queried
in supermarkets, which make it inconvenient to use; (2) At
present, the traceability system is not unified in many aspects,
such as identification code, storage information, and network
query system, and it also faces different kinds of food; and (3)
The accuracy of traceability is not high, some of them can only be
traced back to the enterprise, and the specific process of planting,
processing, or transportation cannot be traced.

Xinzheng red jujube (XRJ) is a specialty of Xinzheng city,
Zhengzhou City, Henan Province, China. It is a good fruit
nourishing blood and spleen beauty, has high medicinal value,
and its leaves, flowers, fruits, skins, roots, and thorns can be used
as medicine. However, the development of XRJ industry is also
facing many problems, such as the quality and safety system is
not perfect, especially the pesticide and fertilizer residues are too
high, which greatly restrict the development pace of XRJ industry.
The quality and safety of XRJ is not only a major livelihood
issue related to people’s health, but also a major obstacle to the
international XRJ trade. To guarantee safety in food, an efficient
tracking and tracing system is required. RFID devices allow
recording all the useful information for traceability directly on
the commodity. By analyzing the problems existing in the quality
and safety of XRJ and discussing the quality and safety problems
of XRJ based on the IoT, this article tries to construct a quality
control system of XRJ based on the IoT, improve the quality
and safety control level of XRJ, and then realize the intelligent
and scientific management of XRJ production, which have
important practical significance for promoting the development
of modern XRJ. This proposed system aims to reduce the
chemical pesticides, fertilizers and antibiotics usage, stimulating
sustainable food consumption, and promoting affordable healthy
food for all. Consumers are encouraged to choose healthy
and sustainable diets and reduce food waste. Farmers and
producers are encouraged to provide more details about food
origin, nutritional value, and environmental footprint. The
contributions of this article are as follows.

(1) A hybrid mode of blockchain and the IoT is used to
construct a quality control system of XRJ.

(2) Data processing of XRJ traceability system is
introduced in detail.

(3) The XRJ traceability system is verified in the Henan
Xinzheng Xinxing Jujube Industry Corporation Ltd.

The rest of the article is organized as follows. In Section 2,
the related work is introduced. Section 3 focuses on XRJ quality
traceability system in detail. The experiments and analysis are
conducted in Section 4. Section 5 concludes the study work and
point out the future work.

RELATED WORK

Agricultural Internet of Things
The Internet of Things (IoTs) is an extended network based
on the internet through a variety of sensors, RFID technology,
global positioning system (GPS), infrared sensors, laser scanner,
and other equipment and technology, no need to monitor real-
time acquisition, connected, interactive object or process, collect
the sound, light, heat, electricity, mechanics, chemistry, biology,
location, and other needed information, through all the kinds
of possible internet access, to realize the ubiquitous connection
between objects and objects, objects and people, and realize the
intelligent perception, recognition, and management of objects
and processes. The Internet of Things is an information carrier
based on the internet, traditional telecommunications networks,
etc. It enables all the ordinary physical objects that can be
independently addressed to form an interconnected network
(Mukkamala et al., 2018).

At present, XRJ production mainly depends on manual
experience management and lack of scientific and systematic
guidance. Information acquisition is one of the most important
key technologies to realize the high level of facility production of
XRJ and to optimize the facility biological environment control.
The agricultural IoT plays a crucial role in revolutionizing
agricultural production. From the practical experience of
developed countries, the IoT has many applications in the field
of agriculture and is developing in the direction of reliability,
energy saving, environmental adaptability, low cost, information,
and intelligence. If it is a jujube production base of thousands of
acres, if the IoT technology is applied, manual control only needs
to click the mouse tiny action, only a few seconds before and
after, can completely replace the tedious manual operation such
as watering and fertilization. From the point of view of different
stages of XRJ production, whether from the cultivation stage of
planting and harvest stage, the IoT technology can be used to
improve its work efficiency and fine management.

• At the plant preparation stage, a bunch of sensors can
be arranged in the greenhouse to analyze real-time soil
information and choose the right date varieties.
• At the planting and cultivation stage of jujube, the IoT

technology can be used to collect temperature and humidity
information for efficient management, so as to cope with
environmental changes and to ensure plant seedlings grow
in the best environment.
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FIGURE 1 | Tracking and traceability system of Xinzheng red jujube (XRJ).

FIGURE 2 | XRJ tracing query based on radiofrequency identification
(RFID) + Quick Response (QR) code.

• At the growth stage of jujube, the IoT can be used
to monitor the environmental information, nutrient
information, and crop diseases and insect pests in real
time. Using relevant sensors are accurate and real-time
access to soil moisture, environmental temperature and
humidity, illumination, through real-time data monitoring
and special varieties of expert experience, combining
with control system regulating crop growth environment,
improve crop nutrition state, crop pest and disease
outbreaks in time period, to maintain the best crop growth
conditions. It plays a very important role in the growth and
management of jujube.
• At the harvest stage of jujube, the IoT technology is

used to transfer information such as appearance, fruit
diameter, and nutritional composition of jujube to the data
center. According to the data of planting environment,
weather condition, and fruit tree status, the planting scheme
is optimized for next year through big data technology
analysis.

Through the IoT technology, the production and operation
of XRJ can be rapidly transformed from extensive and empirical
management to fine and scientific management, so as to improve
the yield and quality of XRJ, reduce the production cost of XRJ,

and protect the agricultural environment. Figure 1 shows the
flowchart of tracking and traceability system, where tracking is
the ability to follow the path of a particular unit or batch of
XRJ from upstream to downstream of the supply chain and
traceability is the ability to identify the source of a specific unit or
batch of XRJ products from the downstream to the upstream of
the supply chain, i.e., the ability to trace the planting, production,
and processing of a certain XRJ product through the method of
traceability code.

Data acquisition in Figure 1 is implemented by RFID+Quick
Response (QR) code. Figure 2 shows the XRJ tracing query
flowchart based on RFID+ QR code.

Blockchain
Blockchain is a chain of blocks, each containing a certain
amount of information, connected in the chronological order
of their creation (Konstantinidis et al., 2018). The chain is
stored on all the servers and as long as one server in the
system works, the whole blockchain is safe. These servers,
called nodes in a blockchain system, provide storage space and
computing power for the entire blockchain system. Tampering
with information in a blockchain is extremely difficult because
it requires the consent of more than half of the nodes
and modification of all the nodes, which are usually in the
hands of different parties. Compared with traditional networks,
blockchain has two core features: data are hard to tamper
with and it is decentralized. Based on these two characteristics,
the information recorded by blockchain is more authentic
and reliable, which can help to solve the problem of distrust
among people. In the narrow sense, blockchain is a distributed
ledger that cannot be tampered with or forged by means of
cryptography. It is a chain data structure that combines data
blocks sequentially according to time sequence. Generalized
blockchain technology is the use of blockchain data validation
and data storage structure and update the data generated by
distributed node consensus algorithm, using the way to ensure
the safety of data transmission and access of cryptography, the
use of automated script code intelligent contracts, programming
and operation data of new distributed infrastructure, and
computing paradigm.
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FIGURE 3 | The architecture of XRJ traceability system.

FIGURE 4 | The flowchart of XRJ traceability system.

Blockchains allow people to have a distributed peer-to-peer
network where non-trusting members can interact with each
other without a trusted intermediary in a verifiable manner.
Combining blockchain with the IoT, namely, blockchain-IoT is
powerful and can cause significant transformations across several
industries, paving the way for new business models and novel,
distributed applications (Christidis and Devetsikiotis, 2016). It
facilitates the sharing of services and resources leading to the
creation of a marketplace of services between devices and allows
people to automate in a cryptographically verifiable manner
several existing, time-consuming workflows.

XINZHENG RED JUJUBE QUALITY
TRACEABILITY SYSTEM

From the actual needs of the whole quality and safety
management of XRJ, based on the quality and safety standards of
XRJ, technical standards of XRJ, safety law, and other regulations

and standards, the whole process risk management and
traceability system framework of pollution-free XRJ quality and
safety are designed. The wireless network remote environment
monitoring technology is used to collect and analyze the data
of XRJ in the whole circulation links such as XRJ, processing,
storage, transportation, and sales, and generate reports with the
results, so that managers can understand the situation in each
link and solve related problems in time. All the monitoring report
and pictures are numbered, using the information classification
and coding standards, designing the pollution-free XRJ quality
security coding, generating the QR code identification of XRJ, so
that the consumers by smartphone scanning, back to the whole
process of XRJ circulation. The whole process of pollution-free
XRJ quality and safety can be monitored and traced.

The XRJ quality traceability system based on hybrid mode is
mainly divided into hardware and software system. The hardware
module mainly realizes the real-time data collection of crops
from planting to processing, circulation and sales of XRJ, and
writes the data into the database. The software system is divided
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FIGURE 5 | Data processing of XRJ traceability system.

FIGURE 6 | Implementation processing of XRJ traceability system.

into Web Service and Android client. Since the Android client
cannot interact directly with the database, this document uses
Web Service as a bridge. The Web Service retrieves data from
the database and the Android client retrieves data from the Web
Service through Simple Object Access Protocol (SOAP).

(1) Hardware environment design: The hardware part of the
system mainly includes power supply module, sensor module,
ZigBee module, and gateway module. The power supply module
supplies power to other modules. The sensor module collects
environmental data in real time and then transmits the data to
the gateway module through ZigBee module. Finally, the gateway
module uploads the data to the database through a specific serial
port communication program.

(2) Software design: The gateway module of the hardware part
writes the real-time data collected by the sensor into the database

through serial communication. The Web Service obtains data
from the database and the Android client obtains data from
the Web Service through SOAP protocol. The Android client
interacts with the database through Web Service, so as to realize
the data query function.

The architecture and flowchart of traceability system of
XRJ based on hybrid mode of blockchain and the IoT are
shown in Figures 3, 4, respectively.Figure 5 shows the data
processing process of the system based on hybrid mode of
blockchain and the IoT, including network data process and
business process. Figure 6 shows the implementation processing.
Data can be stored in two ways: database and blockchain. The
database is maintained by the Production and market supervision
administration in the traceability system, while the blockchain is
jointly maintained by jujube farmers, jujube gardens, industrial
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TABLE 1 | System development environment configuration.

Development
environment

Tool and version number

The operating system Ubuntu 16.04

Blockchain deployment
container

Docker 19.03.9

Blockchain development
tools

Hyperledger Fabric 1.4.0◦

Hyperledger Fabric SDK
Java 1.4.0

The database MySQL 5.7

System development
language

Java1.8.0261

System backend
development framework

Springboot 2.1.4, MyBatis
2.0.1

System front-end
development framework

Vue.js2.0, Uniapp

enterprises, commercial enterprises, and end consumers. Data
entry, data verification, and data maintenance are carried out
through simple operation. Traces the process in the design,
the most will include red jujube cultivation in the process of
planting, management, and collect key information such as input
to the database and the most maintenance blockchain node,
after the consensus of the processes in the system to write the
key information into blocks, once written, this information is
given by the blockchain traceability, difficult to tamper with the
traits, such as in the information written after success, will get a
block return value, the return value will be saved in the database
maintained by the market supervision administration, is the key
to realize consumers on the date planting time, location, and
other key information query. Collectively, red jujube acquisition
time can be purchase level key information into blocks, such
as industrial enterprises processing time, production time, and
so on key information can be written to block, the business
enterprise can be dispatching information, storage time, put in
the region during the key information such as writing block, get
the corresponding return value, save in the administration of
the market supervision, and maintenance of the database. The
market supervision administration plays a supervisory role in
the whole process of data entry, providing national supervision
for consumers to purchase dates and processed products, and
effectively protecting the rights and interests of consumers. As
far as consumers are concerned, detailed information about
dates and processed products provided by jujube farmers, jujube
gardens, industrial enterprises, and commercial enterprises can
be easily found through the quality traceability system. Its main
operating process is: the consumer by scanning red jujube and
its processed products of QR code on the package to the market
supervision and administration of the maintenance of red jujube-
related data in the database query, can detailed process of red
date information query, if the query shows information does
not accord with red jujube actual information, to a large extent
can be concluded that the purchase of jujube is safe, consumer
can undertake inform against to market supervisory bureau or
commercial enterprise, obtain corresponding compensation.

EXPERIMENTS AND RESULTS

Choose the high-quality characteristics in XRJ varieties to quality
and safety traceability system demonstration experiment, on
the basis of sufficient study, analysis of demand, study and
development to establish traceability anticounterfeiting XRJ
whole-industry chain management system, unified data standard
system construction, software and hardware, and the reliable
technology are constructed to obtain integrity, practicality,
advanced, and scalability. Anticollision method of RFID tag in
large dynamic change and fast moving environment is carried
out synchronously and is used in traceability anticounterfeiting
management system to improve batch tag identification efficiency
in complex environment. The advantages and characteristics
of the XRJ whole-industry chain traceability anticounterfeiting
management system based on radiofrequency identification
technology will be gradually promoted to red jujube, planting,
and sales enterprises in the province, benefiting the majority of
villages and growers.

According to the distribution of relevant personnel in the
enterprise, the application scheme is determined: (1) personnel
in the headquarters. Due to data center server deployment in
enterprise headquarters, system administrator in the enterprise
headquarters, production management personnel, and technical
personnel can switch to the traditional C/S architecture system
client data reporting and can carry out data analysis and
statistics, the traditional C/S architecture system data reporting
and management of the purpose is to improve the response
speed data, reduce the influence of Windows Communication
Foundation (WCF) frame on system performance; (2) Personnel
other than the headquarters. The staff in the base, processing
plant, or outside can choose different system clients for data
reporting and management according to whether the network is
smooth. When the network is not smooth, people can choose the
traditional C/S frame system client to input the local data into the
local server and carry out the local data analysis and statistics.
When the network is normal, people can use the WCF client
to synchronize data from the local server to the data center at
the headquarters. After the synchronization, the WCF client can
directly report data to the data center at the headquarters in real
time and analyze and collect statistics over the internet.

The Henan Xinzheng Xinxing Jujube Industry Corporation
Ltd. is chosen to validate the system. The network infrastructure
of the enterprise is better. The enterprise has a provincial planting
base of red dates: Nankou red jujube production center and
9 large-scale planting bases. Some bases have poor network
infrastructure and the network cannot be guaranteed to be
smooth all the time. According to the network infrastructure of
the enterprise, it is very suitable to use the agricultural production
traceability management system based on hybrid architecture. At
present, the client of the whole system has been deployed in three
planting bases and the server has been installed in the corporate
headquarters. The production management department is in
urgent need of obtaining the real planting area, number of trees
planted, amount of pesticides and fertilizer applied and their
types, yield, and other data of each base. However, such data
can only be collected after the production cycle is completed
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TABLE 2 | Test results of each module of the system.

Test module Function Input data Expected result Test result

Farming operations
Quality inspection
Warehouse storage
Transport

Farming Operations
Quality Inspection Data
Storage Repository Data
Shipping data

Agr. operation data
Quality check data
storage repository data
Transportation data

Save success
Save success
Save success
Save success

Normal
Normal
Normal
Normal

Data auditing Farm process audit
Warehouse storage audit
Quality inspection audit
Transport data audit

Farm operation ID
Storage ID
Quality test ID
Transport data ID

The audit is successful and the data Normal
Normal
Normal
Normal

Traceability data tamper
verification

Clothing operation tamper effect
test
Tamper check is stored in the library
Quality test tamper check
Transportation data tamper check

Farm operation ID
Storage ID
Quality test ID
Transport data ID

If not tampered, the content not
displayed. Otherwise, the data
comparison between the database
and the blockchain is displayed

Normal
Normal
Normal
Normal

Data reduction Farm operation ID
Quality test ID
Storage ID Transport data ID

Data restoration succeeds Normal

Product management New product
Edit product
Remove product
Query products by terms
Traceability queries

Product information
Product information
Product ID
Query conditions
Product Batch No.

New success
Modify success
Delete success
Query products meet conditions
Data of origin, product, agricultural
operation, warehousing, storage
and transportation of this batch of
products are queried from the
blockchain

Normal
Normal
Normal
Normal
Normal

for a period of time. After adopting this system, the above data
can be obtained on the same day. In addition, the following
functions are also realized: (1) query the planting and production
situation of different batches, different people, different bases,
and different time periods; (2) Trace codes are formed according
to relevant rules; (3) Query the quality management of the whole
production process according to the traceability code; and (4)
Upload enterprise traceability data to the ministerial traceability
data center through the upload component. Figure 3 shows
the main interface of XRJ production traceability management
system. The upper part is divided into the system menu, the
left part is divided into the navigation bar, and the right part
is divided into the main part of the system, by clicking the
specific items in the navigation bar and people can operate the
corresponding record table on the right.

The blockchain-based agricultural product traceability system
consists of six modules: source and origin, product, agricultural
operation, quality inspection, warehousing and storage, and
transportation. The data of agricultural operation, quality
inspection, warehousing and storage, and transportation shall
be stored in the blockchain after verification. We collectively
refer to the data of these four modules as source information.
The specific implementation of each functional module of the
traceability system is demonstrated through sequence diagram
analysis. The system development environment configuration
is shown in Table 1. Hyperledger Fabric network deployment
requires the use of Docker container because the Fabric’s
billing nodes, sorting nodes, and smart contracts all run
in Docker container. In system terminal sudo, add apt—
repository “deb [arch = amd64] https://hyperledger-fabric.
readthedocs.io/en/release-1.2/network/network.html stable” and

Sudo apt-getinstall docker-ce docker-ce-cli container. IO installs
the Docker container.After setting up the Fabric operating
environment, the next step is to build the Fabric blockchain,
consisting of the following major steps: generating certificates
and keys, generating genesis blocks, creating channels, starting
the Fabric network, nodes joining channels, and installing and
instantiating smart contracts.

In the development stage of the system, white-box test is
applied to simulate all the kinds of possibilities inside the
program to improve the robustness of the processing method. In
the test stage, black-box test is used to test each functional module
by simulating user behavior. The test results of each module of
the system are shown in Table 2.Each functional module of the
system is tested by building a Fabric blockchain and deploying
smart contracts. As shown in Table 2, the system completes the
development and implementation of specific functions to ensure
the reliability of the system.

CONCLUSION

With the rapid development of economic level, some agricultural
product enterprises reduce production costs to maximize the
profits of some agricultural enterprises and result in a lot of
agricultural product safety incidents in recent years. Therefore,
people have to pay more attention to food safety in daily life.
This article constructs a set of XRJ quality traceability system
and carries on the system analysis and application verification.
The hybrid model in the system makes use of its unique time
stamp, consensus mechanism, and other technical means to
realize the data of jujube planting, jujube purchasing, jujube
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processing, jujube sales, and other data that cannot be tampered
and traceable. At the same time, the market supervision bureau
and consumers are included in the date quality traceability
supervision system, which breaks the information island of
traditional traceability, provides information support, realizes
the full transparency of production and sales process to a
certain extent, provides technical support for good market
operation order, and provides quality guarantee for consumers’
life and health. With in-depth study and development of
blockchain technology, coupled with the requirements of high-
quality development of the date industry, blockchain technology
will provide new solutions to date traceability, pesticide
residues, and brand counterfeiting. While establishing XRJ safety
supervision and supervision mechanism, relevant departments
need to establish traceability XRJ system, implement relevant
responsibility to individuals, and strengthen food production
supervision at the source.
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In the process of green apple harvesting or yield estimation, affected by the factors, such
as fruit color, light, and orchard environment, the accurate recognition and fast location
of the target fruit brings tremendous challenges to the vision system. In this article, we
improve a density peak cluster segmentation algorithm for RGB images with the help
of a gradient field of depth images to locate and recognize target fruit. Specifically, the
image depth information is adopted to analyze the gradient field of the target image.
The vorticity center and two-dimensional plane projection are constructed to realize the
accurate center location. Next, an optimized density peak clustering algorithm is applied
to segment the target image, where a kernel density estimation is utilized to optimize
the segmentation algorithm, and a double sort algorithm is applied to efficiently obtain
the accurate segmentation area of the target image. Finally, the segmentation area with
the circle center is the target fruit area, and the maximum value method is employed to
determine the radius. The above two results are merged to achieve the contour fitting of
the target fruits. The novel method is designed without iteration, classifier, and several
samples, which has greatly improved operating efficiency. The experimental results show
that the presented method significantly improves accuracy and efficiency. Meanwhile,
this new method deserves further promotion.

Keywords: green target fruit, center location, density peak clustering, kernel density estimation, RGB-D image

INTRODUCTION

The machine vision system, employed to realize the localization and recognition of target fruits, has
been widely applied in agricultural production processes, such as apple orchard yield estimation
(Maheswari et al., 2021), apple automatic harvesting (Jia et al., 2020a), and fruit growth monitoring
(Genno and Kobayashi, 2019). How to achieve accurate recognition and fast location of target fruits
will directly affect the reliability and real-time performance of automated operations. This is also
the key to research, which has attracted the attention of many domestic and foreign scholars. In
the recent years, whether it is with the help of the monocular vision system (Zhang et al., 2017) or
binocular vision system (Si et al., 2015), a single fruit (Silwal et al., 2017) or overlapping occluded
fruit (Lv et al., 2019b), a static target (Häni et al., 2020a), or a dynamic target (He et al., 2017), it
has made great progress in recognition, and most of these studies are implemented with red apples
as the harvesting target. However, many types of apples are green apples, such as white winter
Pearmain and Granny Smith. Because the color of the fruit is similar to the color of the background
branches and leaves, it is difficult to recognize and locate the target fruit. Besides, affected by factors,
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such as complicated unstructured orchard environment and the
blurred borders of irregular bright areas, the performance of
visual system is relatively not good.

It is very necessary to improve the recognition and location
efficiency of green apples and further improve the automated
assembly level of the vision system in agricultural production
management. Accurate location and fast recognition of green
target fruit become a new challenge. With the joint efforts of
many scholars, certain progress has been made (Lv et al., 2019a;
Sun et al., 2019; Behera et al., 2020; Ji et al., 2020). It is difficult
to recognize green apples only from the perspective of color, and
it needs to be processed or try other features. Therefore, Zhang
used a color camera equipped with a ring flash to capture images
of apple trees. By analyzing the feature difference between the
green apple areas and the similar-color background, a classifier
was designed based on color features to recognize the green
apples in the near-color background. The recognition success
rate reached 89.3%, and the algorithm took 3.14s on average
(Zhang et al., 2014).

To recognize the same color fruits under unstable light
and the occlusion of branches and leaves, Barnea proposed a
3D detection model based on RGB color features and related
shape features (Barnea et al., 2016), where the mean average
precision of recognition reached 55%. Li DH et al. presented
an improved spectral clustering algorithm based on mean shift
and sparse matrix to recognize overlapping green apples and the
algorithm improved the running speed (Li et al., 2019), The high
coincidence degree of the optimized spectral clustering algorithm
reached 95.41%, and the false detection rate is 3.05%. Gaussian
linear fitting on the foreground images of the green apples was
adopted under the V channel, and threshold segmentation was
used to segment the images (Li et al., 2018), which was 91.84%
of the recognition rate. The gPb-OWT-UCM edge detection
algorithm was applied in the green apple detection model based
on the SUN saliency detection mechanism by Wang, which
can obtain complete and accurate green apple segmentation
images (Wang et al., 2019). The above method reached accurate
segmentation with average sensitivity, false-positive rate, false-
negative rate, and overlapped rate of 8.4, 0.8, 7.5, and 90.5%,
respectively. The segmentation time of each apple image was
around 37.1 s. All these methods merged corresponding texture
features through color features. Due to the changes in light
intensity and angle, the boundary between the target fruit and
the background is blurred, and the recognition effect is not
ideal. Affected by factors, such as occlusion of branches and
leaves and overlapping between fruits, some features are absent,
which makes the recognition difficult. Some algorithms have high
time and space complexity, and it is difficult to meet real-time
operation requirements.

With the rapid development of deep learning theory, end-to-
end automatic detection process based on deep networks and
the advantages of deep extraction of image features (Kamilaris
and Prenafeta-Boldú, 2018; Koirala et al., 2019; Zhao et al., 2019;
Tang et al., 2020) bring a new perspective for recognizing green
apples. A multi-scale multilayer perceptron and a convolutional
neural network (CNN) were applied to segment apple images
and extract the apple target by Bargoti, where the apple target

was recognized and counted by the watershed segmentation and
the circular Hough transform method (Bargoti and Underwood,
2017), where F1-score reached 85.8%. To accurately locate
the tomato fruit under the complex scenes, Liu improved
the YOLOv3 one-stage target detection model to predict the
circular areas (Liu et al., 2020), and the precision and times
of YOLO-Tomato were 94.75% and 54 ms. Jia optimized the
Mask R-CNN to adapt to the detection of apple targets, where
the residual neural network (ResNet) and dense convolutional
network (DenseNet) were combined as the feature extraction
network of the original model that the precision and recall rate
have reached 97.31 and 95.70%, respectively (Jia et al., 2020b).
Li proposed an ensemble U-Net segmentation model, and the
high-level semantic features of U-Net and the edge features of
Edge were integrated to retain multi-scale contextual information
and realize efficient segmentation of target fruit (Li et al., 2021),
where the recognition rate reached 95.11% and the recognition
speed was 0.39 s. A modified YOLOv3 model based on clustering
optimization is designed, and the influence of front-lighting and
backlighting is clarified to detect and recognize banana fruits,
inflorescence axes, and flower buds by Wu et al. (2021). To
recognize and detect plant diseases, Chen et al. (2022) proposed
an improved plant disease-recognition model based on the
YOLOv5 network model via a new involution bottleneck module,
an SE module, and an efficient intersection over union loss
function to optimize the performance of target detection, where
mean average precision reached 70%. A DaSNet-V2 network
structure was proposed by Kang, visual sensors were used for
real-time detection and instance segmentation of orchard apples,
and the branches were segmented. Visual sensors were applied
in field trials, and the experimental results showed that the
presented method was efficient and reliable (Kang and Chen,
2020), where the precision of detection, fruit segmentation,
and branch segmentation achieved 0.844, 0.858, and 0.795,
and computational time was 30 and 265 ms on GTX-1080Ti
and Jetson-TX2, respectively. To improve the performance of
apple detection, a deep learning method approach based on the
adaptive training sample selection (ATSS) was applied to close-
range and low-cost terrestrial RGB images (Biffi et al., 2020).
In addition, considering the lack of public datasets in the field
of fruit detection, the MinneApple benchmark dataset (Häni
et al., 2020b) and KFuji RGB-DS dataset (Gené-Mola et al.,
2019) are publicly used to study fruit detection and segmentation.
The MinneApple benchmark dataset is designed and published
for detection and segmentation. The KFuji RGB-DS dataset is
presented, containing 967 multi-modal images and 12,839 Fuji
apples. Although the recognition accuracy of the target fruit
is high based on deep learning, it has high requirements for
machine hardware and requires a large number of training
samples. In the actual operation process, it is difficult to meet
these conditions one by one.

For the above problems, with the help of gradient information
of depth images, an improved density peak cluster segmentation
method of RGB images is proposed to fast location and accurate
recognition of green apples based on RGB-D image information.
The depth image of the apple is used to obtain the center of
the target fruit and determine the location of the target fruit.

Frontiers in Plant Science | www.frontiersin.org 2 June 2022 | Volume 13 | Article 86445853

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-864458 June 3, 2022 Time: 16:15 # 3

Sun et al. Fruit Recognition by RGB-D Image

To obtain the target fruit area, an optimized density clustering
segmentation algorithm is introduced to segment the RGB image
of the apple. Next, the depth and RGB images are combined
by scanning the maximum radius of the segmented area where
the circle center is located, and the target fruit contour is
fitted to realize the efficient recognition and location of green
apples. The new method applies the process of locating the
circle center first and then recognizing, breaking the traditional
method of recognizing first and then locating. Meanwhile, the
new method is designed without iteration and a classifier, which
effectively improves the efficiency of recognizing and locating
the target fruit. In addition, the new method can complete
the algorithm training for small sample datasets, greatly saving
sample processing time. To summarize, our contributions to this
article are as follows.

(1) The depth image information is applied to locate the fruit
center via the idea of vorticity.

(2) An optimized density peak cluster segmentation method
based on kernel estimation is designed to segment RGB
images without subjective judgment.

(3) Experimental results outperform the other state-of-the-
art models in accuracy and efficiency for green fruit
recognition and detection.

The rest of this article is organized as follows. In section
“Materials and Methods,” image acquisition and ideas of this
article are introduced. In section “The Center Location of the
Target Fruit,” we describe in detail how to use depth information
to locate the target fruit. Section “Target Area Segmentation”
illuminates how to apply color image information to segment the
target. Section “Fitting of Target Fruit” is to fit the target fruit
according to the fast-locating result of the depth image and the
segmentation result of the color information. In section “Results
and Discussion”, the experiments, including the experimental
design and result analysis, are conducted and experimental
results can be discussed. The conclusion is presented in section
“Conclusion.”

MATERIALS AND METHODS

Image Acquisition
Image acquisition location: Longwangshan apple production
base in the Fushan District, Yantai City, Shandong Province
(the agricultural information technology experimental base
of Shandong Normal University). All images were collected
under natural light.

Image acquisition device: Kinect V2 (Microsoft). The RGB
images have a resolution of 1,920 by 1,080 pixels whereas the
depth images have a resolution of 512 by 424 pixels. All RGB
images and depth images were stored in the bitmap (BMP)
format. The distance range from the camera lens to the target is
0.5–4.5 m. When the Kinect camera acquired the depth image, it
collected each point in the field of view and forms a depth image
representing the surrounding environment.

Apple category: Gala. Fruits were in an immature status
before harvesting.

Image acquisition mode: To imitate the actual monitoring
environment, a tripod was used to fix the Kinect V2 camera
angle. Kinect SDK 2.0 software was applied to capture the RGB-
D images from the same angle. The color and depth images were
saved in Portable Network Graphics (PNG) format. For the same
fruits, we collected the images from different angles, including
a single target, branch and leaf occlusion, or overlapped fruits.
To facilitate image fusion, the resolution of all RGB images was
adjusted to be the same as the resolution of the depth image 512
by 424 pixels. The images of green apples in actual environments,
such as single fruits, overlapping fruits, and occlusion fruits, are
shown in Figure 1.

The Method and Ideas of This Article
Based on the features of green apples, this article proposes a
method for fast location and recognition of the green target fruit
by the depth images (Choi et al., 2017) and RGB images of the
target fruit. The depth image is utilized to find the center location
of the target fruit and realize the effective location of the target
fruits. Then, an RGB image is applied to segment fruits and
background and obtain the target fruit area. Finally, the depth
images and the RGB images are merged into a segmented area
with the circle center as the target fruit, realizing the location and
recognition of the target fruit. The overview of the new method is
shown in Figure 2. The new method has two branches: locating
the center of the target fruit through the depth image; segmenting
the target fruit area from the RGB image.

For the depth image, the depth information of the target image
is analyzed to draw an iso-contour map of the depth image
and obtain the gradient field information of the target image.
The three-dimensional gradient information of the target fruit
is projected to the two-dimensional. To achieve the accurate
location of the target fruit, the two-dimensional gradient vector
is rotated 90◦ in the clockwise direction. It found that vorticities
of the target fruit are relatively regular and orderly, whereas
background regions present divergent and irregular states.
According to the geometric meaning of the depth image, the
center of each vorticity is viewed as the center of the target fruit.

A density peak clustering segmentation algorithm based on
kernel density estimation is proposed in RGB images. First, a
kernel density estimation method is applied to calculate the local
density and difference in each data point in a non-parametric
way. Note that a super-pixel segmentation algorithm is applied
to segment images into blocks to convert images from pixel-level
representation to area-level representation, which can reduce the
number of data points and the amount of calculation. Then, a
decision graph is constructed to separate the cluster centers and
other data points. Next, a double sorting algorithm is adopted to
automatically find the cluster centers, achieving the green target
fruit segmentation.

Based on the center of the target fruit and the target fruit
segmented area, the center of the target fruit is merged with
the segmented area. Specifically, the segmented areas located in
the circle center are considered as the green target fruits; the
maximum value method is employed to obtain the radius of the
target fruit. Finally, the contour of the target fruit is fitted to
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realize the location and recognition of the target fruit through the
circle centers and its corresponding radius.

THE CENTER LOCATION OF THE
TARGET FRUIT

Traditional target fruit location is mostly to segment the
target fruit area first and then find the circle center through
morphological methods. The location, detection, and
segmentation results mentioned by these methods in the
Introduction section are not accurate enough and the calculation
amount is relatively large. In complex unstructured orchard
environments, the accurate location of the target fruit is still
an unsolved problem, and the locating of the green target
fruit is even more challenging. This study introduces the
depth information of the target fruits and applies the spatial
information of the images to find the centers of the green apples.

Contour Image Acquisition
The Kinect camera can directly obtain the distance information
between the target and lens. Based on the imaging principle of the
depth sensor, the pixel closer to the camera has a smaller distance
value. The smaller distance value of the target corresponds to the
smaller pixel value. The larger distance value of the surrounding
background corresponds to the larger pixel value. Therefore, the
pixels of the same value in the depth image are fitted to a closed
curve. These curves can be projected onto a two-dimensional
plane. Finally, the depth contour of the target image is obtained,
that is, the depth of the pixels on the same depth contour is equal.

For the iso-contour map, a simple smoothing filtering process
is performed. The three-dimensional geometric characteristics of
the target are calculated through the mapped depth information.
The depth of the image is drawn with a certain depth difference.

Figure 1A will be an example to elaborate on the fast location and
accurate recognition of green apples, as shown in Figure 3.

Depth Image Gradient Information
According to the principle of the depth sensor, the smallest pixel
from the objects to the camera has the smallest distance value.
As shown in Figure 3, the depth value of the central area of the
target fruit is less than that of the non-central area of the target
fruit based on the numerical characteristics of the depth image.
Therefore, the depth information of the target depth image can
be quantified by the gradient field theory. A vector

−→
V can be

constructed.

−→
V = ∇D =

(
∂D
∂x

,
∂D
∂y

,
∂D
∂z

)
= (u, v,w) (1)

where
−→
V represents a set of vectors (u, v, w) on the gradient

vector field in three-dimensional space; u, v, w are partial
derivatives of depth D in the x, y, z directions in three-
dimensional coordinates, respectively, obtaining the gradient
direction of the target fruits. Since the surface of the target fruit is
convex, the 3D gradient field information can be projected onto
the 2D plane. In other words, only the x and y directions are
considered.

−→
V = ∇D =

(
∂D
∂x

,
∂D
∂y

)
= (u, v) (2)

where u, v represent the partial derivatives of the gradient field D
in the x, y directions, respectively, which can obtain the gradient
direction of the target fruit. Then, the direction vector on the 2D
plane is obtained, which diverges outward along the apple surface
in the gradient field, as shown in Figure 4.

In Figure 4, it can be found that the obtained direction vector
presents a state of outward divergence in a relatively orderly way
for the relatively regular target fruit area. Due to the complex

FIGURE 1 | Apple images of RGB and depth images collected at the same sample point (note: panels (A,B) are single fruits without obscured; (C) are overlapping
fruits; (D) are occlusion fruits; top images of every group represent the RGB image and bottom images represent depth images). The number of images: This study
collected a total of 300 sample points data, including 300 depth images and 300 RGB images and containing 526 target fruits in the dataset.
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FIGURE 2 | The overview of our method.

background and the slightly disordered depth information, the
vector projection is more chaotic in the non-target fruit area. In
other words, the more regular the target fruit is, the more orderly
the vector projection is. The more complex the background is, the
more disorderly the vectors are.

Center Location
Enlighted by dynamic vorticity, we apply the vorticity center
of the target depth image as the fruit centers. Specifically, the
vorticity is a 3D vector, and a pixel angular velocity (only
direction) is introduced through the adjacent vectors.

−→
ω′ = ∇ ×

⇀
V =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
× (u, v, 0) =

(
∂u
∂x
−

∂v
∂y

)
⇀
z

(3)
where ∇ is a partial derivative operator in x, y, z directions, and
⇀
z represents a direction vector on the z-axis.

Since the rate of change of the vortex size increases from the
edge to the center of the circle, the vectors in the gradient field are
spliced into a similar arc shape. If the vector size is the same, the
angular velocity is defined as follows:

ω =
φ

t
(4)

where φ represents the size of the arc length (similar to the size of
the vector), and t represents the same time.

When gradient vectors with convex parabola are rotated in
the same direction, a similar convergent vortex is formed in the
position of vorticity maximum value and fruit center. In other
words, the gradient vector of the primitive concave paraboloid
is rotated 90◦ in a clockwise direction, and it becomes divergent
and disordered. The maximum vorticity of the fruit area can
be calculated at the center point of the fastest distance change,
namely, the center of the target fruit. Further, the gradient vector
of the fruit center area is a convex parabola center with such
a characteristic: the vorticity of the central region of the fruit
is greater than that of the surrounding region. In other words,
the vorticity value of the fruit gradually decreases from the
fruit center to the fruits boundary. Therefore, this geometric
characteristic causes the gradient vector field plot of apples in
2D appeared to stretch out from the center of the apples to

the direction of its closest perimeter pixel. The center of the
vorticity can be projected onto a 2D plane, and the gradient
vector is rotated in the same direction along the depth contour.
The central location is the center of the target fruit, as shown in
Figure 5.

It can be found that the vorticity centers of the regular area
are the centers of the target fruits after rotation of the gradient
vector in Figure 5. This method can rapidly locate the centers of
the target fruits.

TARGET AREA SEGMENTATION

For green apple image segmentation, it is difficult to achieve
accurate segmentation by traditional image segmentation
algorithms that only rely on color features due to the closeness
of color between fruit skin and branches or leaves in the
background. In this article, a density peak clustering algorithm
is introduced to segment fruit area and background. To obtain
a clearer segmentation boundary without human interference,

FIGURE 3 | Contours of the depth image.
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FIGURE 4 | Two-dimensional plane projection of gradient field.

a kernel density estimation method is utilized to optimize the
clustering segmentation algorithm.

The main idea of the density peaks clustering algorithm
(DPCA) (Rodriguez and Laio, 2014) is to judge the class that it
belongs to by the neighboring points. The density of each class
center point is greater than the density of neighboring points and
this class center point is far enough away from the center points of
other classes. Therefore, two main parameters are involved in the
DPCA: the local density of data points and the distance between
high-density points.

Image Block Segmentation
The basis of the clustering algorithm is to calculate the distance
between data points, which can be transformed into the
description of the feature components of the data points, and

the feature components determine the distribution relationship
of the data points in the feature space. In the field of image
segmentation, the pixel points of the image are the data points
in the clustering algorithm. However, pixels considered as the
calculation unit consume a lot of calculation space and time.
Therefore, an image is divided into blocks, and the image blocks
are applied as data points for clustering segmentation, which can
greatly reduce the amount of calculation. The most common
method of image block division is super-pixel segmentation,
which uses the simple linear iterative clustering (SLIC) (Achanta
et al., 2012) super-pixel segmentation algorithm for gathering
similar pixels in a small area to form irregular blocks.

Considering the small color difference between the target fruit
and the background, we convert RGB color space into the L∗a∗b
color space emphasizing color change before using the SLIC
algorithm. The cluster center is initialized to Ck, and the iteration
step is initialized to S. S can be formulated as follows:

S =
√
N
k

(5)

where N is the number of image pixels and k is the number of
blocks. To prevent the cluster center from falling on the edge
of the image, the gradient value of each pixel is calculated in
the 3 by 3 neighborhood of the cluster center, and the center
is moved to the pixel with the smallest gradient. Next, iterative
optimization is performed. To save computing time, the color and
spatial distance are calculated, where the distance Dis between
each pixel and the cluster center is calculated the 2S by 2S the
neighborhood around the center point.

 dc =
√

(li − lj)2
+ (ai − aj)2

+ (bi − bj)2

ds =
√

(xi − xj)2
+ (yi − yj)2

(6)

FIGURE 5 | Location of target fruits circle center (gradient vectors are uniformly rotated 90◦ clockwise).
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FIGURE 6 | SLIC super-pixel segmentation effect.

The distance Dis between each pixel and cluster center is
constructed as follows:

Dis =

√
(dc)2

+

(
ds
S

)2
m2 (7)

where l, a, b are Lab space values, x, y are pixel coordinates,
and m is the maximum possible value of Lab space distance. Each
pixel updates the image block to which it belongs. The cluster
center is updated by averaging the pixels of the same block until
the center point no longer moves.

The SLIC image block segmentation algorithm considers the
color and space features of the image and defines the search range
of 2S by 2S effectively reducing the computation complexity of the
DPCA. Finally, the target image block effect map is presented, as
shown in Figure 6.

It can be seen from Figure 6 that the image block is applied to
represent the green apple image, which maintains the consistency
of the original pixel points. These irregular blocks do not destroy
the original image representation structure. Meanwhile, the
target image is represented from the pixel level to the block level,
which indicates that the conversion loss is small. Each irregular
image block replaces pixels with the basic unit of the DPCA,
which will greatly reduce the number of data points.

Feature Component Selection
After the target image is divided into image blocks, the effect
of its shape and texture features is greatly reduced. Therefore,
the feature component of the block is constructed in the unit
of the super-pixel feature block as the feature components of
the data points. Considering the closeness of color between the
target fruit skin and the background, the color information of the
target image is decomposed in the RGB color space to analyze
features from different color channels to better select proper
feature components, as shown in Figure 7.

FIGURE 7 | The RGB components corresponding to different scenes in the
image (note: the red line represents the R component; the green line
represents the G component; the blue line is the B component; the three lines
are the RGB components corresponding to the pixels in the black horizontal
dashed line).

It can be observed that the target fruit area in the green apple
image has significant performance in the R and G channels,
but is not obvious in the B channel in Figure 7. For the G
channel, it is difficult to distinguish branches and leaves from
the background. The performance of the B channel is not
obvious for background branches and leaves and the target apple
loses its significance. Therefore, R-B and G-B super-pixels are
used to represent the image block features of the target image
segmentation. Based on the image block, the R-B and G-B mean
values are applied as the feature components of the data points
to construct the feature space of the green apple target image
through the density clustering segmentation algorithm, as shown
in Figure 8.

The different colors of the data points represent the three
classes obtained after clustering in Figure 8, where red, green,
and yellow points represent green fruits, leaves, and branches,
respectively. The boundary between the different clusters is not
obvious and the shape is irregular. The data points of the
boundary area are relatively scattered. Traditional clustering
algorithms are difficult to deal with clustering problems with
fuzzy boundaries, and low-density area boundaries are only
presented inside the feature space.

Density Peak Clustering Segmentation
Algorithm
The DPCA algorithm can find out the high-density areas
segmented by low-density areas and obtain arbitrary-shaped
clusters. The cluster centers are fixed, where the data points
belong to the clusters with the closest distance and greater local
density. DPCA meets two assumptions: the local density of the
cluster center (density peak point) is greater than the density of
surrounding data points; the distance between different cluster
centers is relatively far. To find the class center that meets the
two conditions at the same time, the local density ρi of each
data point xi and the distance δi from each data point xi to the
data point xj are calculated, where the local density of the data
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FIGURE 8 | The feature space of the mean value of R-B and G-B.

point xj is greater than that local density of data point xi and the
distance is the closest.

The distance between two data points is calculated by
Euclidean distance and is written as follows:

dij =

√√√√Dim∑
d=1

(xi − xj)2 (8)

where Dim represents the spatial dimension.
The local density ρi of the data point xi is defined as follows:

ρi =
∑
j

χ(dij − dc) (9)

where dc is the cutoff distance that needs to be set manually.

χ(x) =
{

1 x ≤ 0
0 x > 0

, indicates the number of data points with a

distance less than dc from the i-th data point as the true density
of the data points xi.

The distance δi from data point xi to the nearest data point xj
whose local density is greater than xi is defined as

δi =

{
min

(
dij
)
, ρj > ρi

max
(
dij
)
, ρj ≤ ρi

(10)

The value with the smallest distance xi in the data points with
larger local density than data point is found. If the local density
of the data point xi is the largest, the maximum distance between
xj and xi is selected.

Combining the above parameters, the basic principles and
steps of DPCA segmentation are described as follows:

Step 1: the Euclidean distance dij between any two data points
are calculated;

Step 2: the cutoff distance dc is set, and the local density ρi of
data point xi and distance δi are calculated;

Step 3: a clustering decision graph is drawn with the local
density ρi as the horizontal axis and the distance δi as the vertical
axis;

Step 4: the data points with high values of ρi and δi are marked
as cluster centers for the decision graph and points with relatively
small values ρi but relatively large values of δi as noise points;

Step 5: each remaining data point is assigned to its nearest
neighbor and the class of the data point with greater density until
all data points are allocated.

The algorithm idea of DPCA segmentation is much more
intuitive. It can quickly find the density peak point and can
efficiently complete the sample allocation and noise point
recognition. The segmentation algorithm can quickly complete
clustering without iteration and has high operating efficiency.
However, the segmentation performance is restricted by the
cutoff distance to a certain extent. The selection of cutoff
distance mainly depends on the human experience. Therefore,
the selection of the clustering center has certain subjective factors.

Kernel Density Estimation Optimization
The local density ρ of data points represents the distribution
of neighboring data points in the area with the cutoff distance
as the radius in the feature space. The selection of the cutoff
distance will directly affect the clustering results. For the green
target fruit, if the cutoff distance is not selected properly, it
will be difficult to solve the boundary problem of the target
image, so a more robust calculation method is needed. This study
introduces a kernel density estimation optimization method to
evaluate the local density of data points. This estimation is a non-
parametric method, which can fully use its data characteristics to
calculate, avoiding the influence of human prior knowledge. In
other words, this method can get rid of the dependence on the
cutoff distance dc.

The local density of data points is defined by kernel density
estimation:

ρi(x.y) =
1
nh

n∑
i=1

Kh

(
x− xi
h

,
y− yi
h

)
(11)

where Kh is the scaling kernel function, h > 0 is a smooth
parameter. A Gaussian kernel function is adopted to smooth the
peak function. Therefore, the scaling kernel function is

K
(
x, y

)
=

1
2πσ2 exp

(
−

(x− xi)2
+
(
y− yi

)2

2σ2

)
(12)

where, xi, yi are the mean values of the R-B area and G-B area of
the i-th image block, respectively.

The result of using Gaussian kernel density to estimate the
density distribution of the green fruit target image is shown in
Figure 9.

Based on the local density ρi and distance δi, the cluster center
is a data point with a larger local density and distance. Thus, a
decision graph with the local density ρi as the horizontal axis and
the distance δi as the vertical axis is constructed for finding cluster
centers, as shown in Figure 10.
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FIGURE 9 | Local density distribution of target image data points.

FIGURE 10 | Decision graph of target image clustering.

It can be seen in Figure 10 that the data points with larger
local density and distance in the decision graph are different
cluster centers. However, the specific number of cluster centers

needs to be artificially set according to actual problems. The data
points close to the local density axis are cluster members and
their distances are small. The data points close to the distant
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axis are abnormal points, and the data points in the upper right
corner are outliers.

Cluster Center Optimization
For the characteristics of the DPCA segmentation algorithm and
the clustering process, the determination of non-cluster center
data points does not completely depend on the cluster center,
namely, the number of center points is not the number of final
clusters. Considering that the complexity of the green apple
image mainly lies in the complex structure between the target
fruit and the background and the similarity of the two colors,
it brings difficulties to the recognition of the target fruit. The
segmentation of apple images is generally divided into three
categories: target fruit, leaves, branches, and sky.

In this article, a double sorting algorithm is employed to
automatically select the clustering center. Specifically, first, the
local density value of all image blocks is sorted by descending
and the first 20 image blocks are selected. Then, the distance
values selected for 20 image blocks are sorted by descending
order and the first 15 blocks are picked. Finally, the ratio of the
number of pixels contained in each cluster and the number of
pixels in the entire image is counted to analyze, as shown in
Figure 11.

It can be seen from Figure 11 that the first three categories
account for 91.69% of the total number of pixels and the
remaining categories of pixels account for a relatively low
proportion. The clustering error of the target fruit area is brought
by the boundary judgment and is related to the first 3 classes.
The last 12 classes are regarded as the data non-allocation
to the cluster center, which does not affect the target image

segmentation. The segmentation effect obtained by the algorithm
in this article is shown in Figure 12.

According to the segmentation result, the novel method
completes the segmentation of the green target fruit and the
background. The new method has a higher operating efficiency
without iteration.

FITTING OF TARGET FRUIT

In the apple image, the target fruit can be regarded as a round-
like shape, which guarantees the two elements of the recognizing
and locating of the round-like target: accurate locating of the
circle center and value of the radius. Although green apples have
brought new challenges owing to the close color of the target
fruit’s skin and background, this study combines the depth and
RGB image information of the green apple to solve the problem
of recognizing and locating the green target fruit.

The center of the target fruit has been obtained in the depth
image in section “The Center Location of the Target Fruit,” and
the segmented area of the target fruit is obtained in the RGB
image in section “Target Area Segmentation.” The above two
results are merged. The target fruit area is the area where the
center is located. In this study, the maximum value method is
used to obtain the radius of the target fruit. Then, the contour
of the target fruit is fitted to achieve the recognition and location
of the target fruit. For a single target fruit, the maximum distance
from the center of the circle to the edge of the region is directly
selected. For overlapping target fruits, the minimum value from
the extremum is used as the radius of the center. The process of

FIGURE 11 | The ratio of the number of pixels in each class to the total number of pixels.
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FIGURE 12 | Target image segmentation effect graph. (A) The left image represents the original RGB image and (B) the right image refers to the visualization result
of the density peak clustering segmentation algorithm based on kernel density estimation corresponding to the original RGB image.

FIGURE 13 | The process of determining the radius of the overlapping target fruit.

determining the maximum radius of the overlapping target fruit
is shown in Figure 13.

For overlapping target fruits, as shown in Figure 13, the
segmented connected area containing the center of the circle is
scanned to obtain six maximum vector lengths. The minimum
value as the radius corresponding to the circle center is applied to
realize the recognition and location.

Therefore, the center and radius of the circle have been
determined, and the contours of the target fruit are fitted to
complete the recognition and location of the target fruit, as shown
in Figure 14.

After the new method completes the segmentation, there is no
need to extract the features of the target fruit segmentation area,

and there is no need to design a classifier. The target fruit can
be determined by the central location. It can be concluded that
the recognition accuracy and efficiency of the novel method are
relatively high.

RESULTS AND DISCUSSION

Based on the above theoretical analysis, this research proposes
a new method that can achieve rapid and accurate recognition
and location of the target fruit of green apples. To better
verify the effectiveness of the new algorithm, the following
experiments are conducted.
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FIGURE 14 | Fitting effect of target fruit.

Result Assessment
The collected 300 pairs of green apple images were used in
the experiment, including 526 target fruits. A single target
fruit, occlusions of branches and leaves, and overlapping
fruits are 287, 89, and 150, respectively. Recognition rate
and running time are used to evaluate the recognition and
location method. The recognition rates are calculated, including
overall recognition rate, single target fruit recognition rate,
obscured target fruit recognition rate, and overlapping target
fruit recognition rate. The results of our optimized method
with different growth postures are presented in Table 1. Note
that the experimental operating platform of this study is as
follows: the host configuration is equipped with an Intel Core
i5-5257 CPU clocked at 2.7GHz and 4GB of memory; the
operating environment is MATLAB R2015a installed with a
64-bit Windows 10 operating system. From Table 1, the total
recognition rate of our method can reach 96.96%, where the
recognition of fruits without obscurity is 99.3%. It can be
concluded that our method has a high recognition rate.

To better verify the performance of the new method, the
experiment is compared with the method in the literature (Li
et al., 2019; Lv et al., 2019a; Jiao et al., 2020). Meanwhile, the
performance of the new method is evaluated from the above
indicators. The results of comparative experiments with the

TABLE 1 | Correct recognition rate of three type’s fruits (%).

Model Fruit without
obscured

Obscured
fruit

Overlapping
fruit

Total recognition
rate

Ours 99.30 95.33 92.13 96.96

Ref. 16 97.56 91.33 86.51 93.92

Ref. 12 97.91 89.33 85.39 93.35

Ref. 36 96.17 90.67 89.89 93.53

Note that the bold value represents the optimal value under a specific evaluation
metric.

TABLE 2 | Comparison of the recognition performance of each algorithm.

Model Recognition time (ms) Total recognition rate (%)

Ours 897 96.96

Ref. 16 1269 93.92

Ref. 12 1505 93.35

Ref. 36 1627 93.53

Note that the bold value represents the optimal value under a specific evaluation
metric.

literature (Li et al., 2019; Lv et al., 2019a; Jiao et al., 2020) are listed
in Table 1.

Further, the operating efficiency and recognition accuracy of
the whole new algorithm are evaluated, and the recognition time
and recognition accuracy are calculated. The results are listed in
Table 2.

It can be found from Tables 1, 2 that the efficiency of
recognition and location of a single unobstructed fruit with
a single branch and leaf obscured are the highest, and the
recognition rate for overlapping target fruits is slightly lower.
Based on the overall comparison effect, the recognition rate
and operation efficiency have been greatly improved. The new
method in this article is better than other methods.

Visualization Result of Location and
Recognition
Due to the variable natural growth posture of apple fruit,
the shooting angle, and other factors, the collected target
fruit presents three postures: single unobstructed, obscured by
branches and leaves, and overlapping fruits. According to the
new method in this article, three types of samples are tested,
and the recognition results obtained are shown in Figure 15. We
can find that a single unobstructed fruit, overlapping fruit, and
fruit occluded by branches and leaves can all recognize and locate
the target fruit.

Result Analysis
It can be seen in Figure 15 and Tables 1, 2 that for the problem
of green target fruit recognition and location, the new method
has greatly improved the accuracy and operation efficiency of
the recognition and location. The recognition rate of a single
target fruit can reach almost 100%, indicating that the novel
method is feasible.

In general, the novel method is designed without iteration
during the clustering and segmentation process, without
features of the segmentation area and a classifier during
the recognition process. Therefore, the performance of the
novel method is greatly improved. In terms of recognition
and location accuracy, the new method can accurately locate
the center and radius of the circle. The performance is also
significantly improved.

Limitation Discussion
Although the overall recognition rate of the target fruit is
relatively high, there is still a small problem: the recognition
accuracy of excessively overlapping target fruits is low owing
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FIGURE 15 | Three types of target fruit recognition and location effect (I) RGB space image, (II) depth image, (III) center position effect image, (IV) segmentation
rendering, (V) identify and location.

to the occlusion of branches and leaves for overlapping
target fruits. Specifically, when the maximum value is used
to find the radius corresponding to the circle center in the
connected area of the segmented overlapping target fruit, the
minimum value is scanned for the occluded area of branches
and leaves, which makes it difficult to obtain the optimal
radius. An excessively overlapping apple sample is shown in
Figure 16.

For the problem of difficulty in locating the center
of excessively overlapping fruit, we will consider
optimizing the method of locating the center to reduce
the dependence on depth information during the

FIGURE 16 | The visualization results of an excessively overlapping apple.

positioning process, that is, using a small amount of
gradient information to achieve the method of locating
the center of the circle. In addition, the RGB image
segmentation method will be optimized to obtain smoother
segmentation boundaries.

CONCLUSION

Focusing on the problem of recognition and location of
green apples, this article proposes a fast and accurate
location and recognition method based on the fusion of
depth images and RGB images. First, the gradient field
information in the depth image is employed to draw an
iso-level contour map and gradient vectors of the target
image. All gradient vectors are rotated in the same direction
to obtain different vorticity. The three-dimensional depth
image is projected to the two-dimensional plane to find
the center of vorticity. The center of vorticity is the center
of the target fruit, achieving an accurate location of the
center of the target fruit. Second, a density peak clustering
algorithm is used to segment the target fruit in the RGB
image. To get rid of the subjective factors of selecting a
cutoff distance, the Gaussian kernel density estimation is
applied to optimize the algorithm. For the cluster centers,
a double sort method is utilized to select the cluster centers
automatically to achieve efficient segmentation of target
images. Finally, the results of the two steps are merged and the
segmentation area of the circle center is just the target fruit
area. The maximum value method is applied to obtain the
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target fruit radius, and the contour of the target fruit is fitted to
complete the efficient and accurate recognition and location of
the target fruit.

The proposed method is presented without iteration during
the process of center location and clustering segmentation,
without features of the segmentation area and a classifier in
the recognition process. Therefore, the running efficiency of the
new method is significantly improved. In the process of center
location and radius calculation, the error is relatively small, and
thus, the recognition and location accuracy of the new method
is higher. Experimental results also show that the new method
has greatly improved the accuracy and operating efficiency of
recognition and location. In addition, our method is a lightweight
method that does not require high-performance servers for
computing, which can easily to transplant and embedded into the
hardware environment of the fruit picking robot or applied to
the automatic monitoring process of fruit growth. Therefore, the
new method can solve the problem of recognizing and locating
green target fruit well. The proposed method can be further
extended to the problem of rapid and accurate recognition and
location of spherical fruits, which can be used in the field of
machine harvesting or yield estimation of spherical fruits. For
the task of fruit recognition with overlapping targets occluded by
branches and leaves, the radius calculation of the new method
is susceptible to be interference, which will be the focus of
future research.
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Three species of rice migratory pests (Cnaphalocrocis medinalis, Sogatella furcifera, and 
Nilaparvata lugens) cause severe yield and economic losses to rice food every year. It is 
important that these pests are timely and accurately monitored for controlling them and 
ensuring food security. Insect radar is effective monitoring equipment for migratory pests 
flying at high altitude. But insect radar is costly and has not been widely used in fields. 
Searchlight trap is an economical device, which uses light to trap migratory pests at high 
altitude. But the trapped pests need to be manually identified and counted from a large 
number of non-target insects, which is inefficient and labor-intensive. In order to replace 
manual identification of migratory pests, we develop an intelligent monitoring system of 
migratory pests based on searchlight trap and machine vision. This system includes a 
searchlight trap based on machine vision, an automatic identification model of migratory 
pests, a Web client, and a cloud server. The searchlight trap attracts the high-altitude 
migratory insects through lights at night and kills them with the infrared heater. All trapped 
insects are dispersed through a multiple layers of insect conveyor belts and a revolving 
brush. The machine vision module collects the dispersed insect images and sends them 
to the cloud server through 4G network. The improved model YOLO-MPNet based on 
YOLOv4 and SENet channel attention mechanism is proposed to detect three species 
of migratory pests in the images. The results show that the model effectively improves 
the detection effect of three migratory pests. The precision is 94.14% for C. medinalis, 
85.82% for S. furcifera, and 88.79% for N. lugens. The recall is 91.99% for C. medinalis, 
82.47% for S. furcifera, and 85.00% for N. lugens. Compared with some state-of-the-art 
models (Faster R-CNN, YOLOv3, and YOLOv5), our model shows a low false detection 
and missing detection rates. The intelligent monitoring system can real-timely and 
automatically monitor three migratory pests instead of manually pest identification and 
count, which can reduce the technician workload. The trapped pest images and historical 
data can be visualized and traced, which provides reliable evidence for forecasting and 
controlling migratory pests.

Keywords: searchlight trap, rice migratory pests, intelligent monitoring, deep learning, machine vision
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INTRODUCTION

According to the Food and Agriculture Organization of the United 
Nations, the annual potential loss of crop yield caused by pests 
is about 30% worldwide. Migratory pests are among the most 
harmful, as they can cause great disasters in a short period of 
time (Hu et  al., 2020). Considering the long-distance migratory 
ability of migratory pests, dynamic monitoring of migratory pests’ 
population is crucial for timely and effective pest management. 
Dynamic monitoring of pest populations includes adult monitoring, 
field pest egg survey, and damage symptom investigation. Among 
them, timely monitoring of adult occurrence time and quantity 
is the basis of effective pest management (Jiang et  al., 2021). At 
present, the adult monitoring equipment of migratory pests mainly 
includes insect radar and light trap. Insect radar mainly indirectly 
monitors pest species and quantity through calculating the insect 
flapping wing frequency, the body shape, and size of each insect 
in radar images (Feng, 2011; Zhang et  al., 2017). In fact, the 
insect wing flapping frequency is related to insect instar and 
flight environment temperature. Insects with the same shape and 
size may be  different insect species. Consequently, it is difficult 
to accurately identify the insect species which becomes a major 
obstacle to the widespread application of insect radar in fields 
for migratory pest forecasting (Feng, 2003). As an important tool 
for monitoring agricultural pests, light traps can be  divided into 
two types (Yang et  al., 2017). One is for trapping pests in fields, 
named ground light trap. The other is for trapping pests in high-
altitude, named searchlight trap. Compared with the ground light 
trap, searchlight trap shows superiority in monitoring migratory 
pests, such as larger biomass, longer monitoring period, and more 
obvious fluctuation curve of pest quantity (Jiao et al., 2017; Shang, 
2017; Qin, 2019). From 2014, searchlight traps (using metal halide 
lamps, bulb light source wavelength of 500–600 nm, and power 
of 1,000 W) have been used to monitor regional migratory pests 
and obtained good monitoring results (Jiang et al., 2016). However, 
the identification and count of pests trapped by the searchlight 
traps still needs to be  carried out manually. This manual method 
requires high professional skills and spends much time, which 
causes low efficiency, high labor intensity and non-timely data 
application (Song et  al., 2021; Yan et  al., 2021).

With the development of machine vision, there has been 
some progress in pest detection and recognition studies 
based on images. Qiu et  al. (2007) used the automatic 
threshold segmentation, feature extraction, and BP neural 
network classifier method to identify nine species of field 
pests. Based on the morphology and color features of pests, 
Han and He  (2013) developed a support vector machine 
classifier to automatically identify six species of field pests. 
Zou (2013) adopted four different methods to extract shape 
features of rice planthoppers to improve the accuracy of 
pest identification. Yao et  al. (2021a) proposed an automatic 
pest detection method based on improved CornerNet, which 
effectively improved the detection effect of rice planthoppers 
on light-trap insect images. Feng (2020) proposed YOLO-
pest model to detect three species of Cnaphalocrocis medinalis, 
Chilo suppressalis, and Sesamia inferens, which reduced false 
detection and missing detection caused by insect adhesions 

in images. In order to improve the detection precision of 
light-trap insects, Yao et al. (2021b) proposed a bilinear 
attention network to identify similar light-tap pests. But 
there are no reports about intelligent searchlight traps based 
on machine vision and its pest identification methods. The 
challenges of pest identification from searchlight traps are 
(1) to timely disperse insects for collecting high-quality pest 
images, (2) to accurately identify the small size of pests, 
(3) to accurately distinguish those similar pests, and (4) to 
identify target pests from a large number of non-target insects.

To automatically identify and count rice migratory pests 
trapped by searchlight traps, we design an intelligent monitoring 
system of migratory pests based on searchlight trap and machine 
vision. The system can realize the automatic identification and 
count of three species of rice migratory pests (C. medinalis, 
Sogatella furcifera, and Nilaparvata lugens) attracted by 
searchlight trap.

MATERIALS AND METHODS

Intelligent Monitoring System of Migratory 
Pests
The Intelligent monitoring system of migratory pests consists 
of an intelligent searchlight trap based on machine vision, an 
automatic identification model of migratory pests, a Web client, 
and a cloud server. The searchlight trap firstly attracts and 
kills insects, then the machine vision module disperses insects 
and captures images. After these images are uploaded to the 
server, the server runs the model to identify migratory pests 
in the images. Finally, the identification results of pests are 
presented to the Web client. Figure  1 shows the 
system construction.

The searchlight trap is mainly composed of a searchlight, 
an infrared heater module, and an insect collection box. When 
the equipment works at night, those flying insects within a 
high altitude of 500 m can be  attracted. After the insects drop 
into the equipment from the top of the searchlight trap, they 
are killed and dried by the infrared heater module.

The machine vision module includes multilayer insect conveyor 
belts, Android PAD, industrial camera (MV-CE200-10GC), area 
light source, and network transfer module. Firstly, the dead insects 
fall into a vibrating slope controlled by a vibration motor for 
dispersing insects. Then, insects are dispersed onto the first layer 
of conveyor belts for further dispersion. Before falling onto the 
second layer of belt, the big insects are left and small insects 
are dispersed to the third layer of belt by a revolving brush for 
avoiding big insects covering small insects. When the big insects 
are transmitted onto the second layer, the camera takes photos 
of insects on the third layer of belt. The images are uploaded 
to the cloud server through the network transfer module on 
the Android PAD. The Android PAD is equipped with a special 
program to display images and photograph information (photograph 
time, image number, etc.) in real-time. The parameters can 
be manually set on the screen to control the photograph. Finally, 
all insects fall into the insect collection box at the bottom after 
they are photographed.
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The Image Dataset
The intelligent searchlight trap was installed in the paddy fields 
in Fuyang District, Zhejiang Province. 2,430 images with rice 
migratory pests were collected in 2021. The size of an image 
is 5,472 × 3,648 pixels.

The migratory pest images were divided into a training set 
and a testing set in the ratio of 9:1. We  used the LabelImg tool 
to annotate three species of migratory pests (C. medinalis, 
S. furcifera, and N. lugens) in images. The classification information 
and coordinate information of the labeled region were saved in 

the corresponding XML file. The searchlight trap caught many 
non-target insects as well. Some of them are very similar to the 
target pests visually, which leads to false detection. These non-target 
insects are called interference pests in this paper. The information 
of dataset is shown in Table  1.

Image Preprocessing
Image Data Enhancement
As we all know, the larger the dataset, the better the generalization 
performance for deep learning methods. To improve the 
robustness and generalization ability of the automatic 
identification model of migratory pests, we  use some image 
processing methods to increase the number of images for 
training models. These methods include image left and right 
mirror, 90° rotating image, image equalization, and adding 
Gaussian noise (Lee, 1980). The algorithm functions of these 
methods are called from OpenCV library. Finally, the training 
sample number is increased by four times. The data enhancement 
results are shown in Figure  2.

FIGURE 1 | Intelligent monitoring system of rice migratory pests based on searchlight trap and machine vision.

TABLE 1 | The number of migratory pests on images.

Datasets Image 
number

Pest number

C. medinalis S. furcifera N. lugens Interference 
pests

Training sets 2,187 73,146 90,126 59,250 8,487
Test sets 243 6,993 9,006 5,850 822
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Overlapping Sliding Window Method
Among three migratory pests, the size of two planthopper pests 
is about 3–5 mm, accounting for about 0.06% of the original 
image size. Due to the small area proportion of one pest in one 
image, the feature extraction network cannot extract effective 
features, which results in a concerning problem of missing detection 
of planthoppers. We  adopt the overlapping sliding window 
processing method (OSW; Yao et  al., 2021a) to improve the area 
proportion of each target pest in sub-images. The method can 
reduce missing detection and improve detection precision.

The original image is 5,472 × 3,648 pixels. We  quarter the 
size of the original image and then add the length of the 
circumscribed rectangle of the largest pest (300 pixels) in the 
image to determine the size of the fixed window as 1,668 × 1,212 
pixels. During detection, the sliding window slides towards the 
center from all sides. The order of movement is to move from 
the position (1) slides to (2) and (3) respectively, then slides 
from (3) to position (4). Figure  3 shows the implementation 
of overlapping sliding window processing method. It cuts out 
the image in the window to become a new subimage when 
sliding. The size of the new subimage is smaller than the original 
image, but the size of the pests in the subimage has not changed, 

so the area ratio of each target pest has increased. The change 
from small target into “large” target contributes to extract the 
features of the target more efficiently. In the example figure, 
the sliding window takes the image at position (1) and then 
the picture at position (2). An overlapping area of pest length 
is left between the two subimages, which ensures that each 
pest will be  fully learned and detected at least once. In this 
way, the missing detection is reduced and the number of data 
sets can be  increased without destroying the integrality of the 
insect body, which is beneficial for improving the detection 
precision of the model. If a target pest happens to appear on 
the boundary of the sliding window, part of the pest body 
appears in the sliding window and it may be  detected by the 
detection box. This problem is subsequently solved by the target 
detection box suppression method.

Detection Model of Rice Migratory Pests
Model Network Framework
Typical single-stage object detection models include the YOLO 
series (Redmon et al., 2016; Redmon and Farhadi, 2017, 2018), 
SSD (Liu et  al., 2016), etc. The YOLO model is known for 
both speed and precision.

A

B

C

FIGURE 2 | Data enhancement of target pest images (A) C. medinalis, (B) S. furcifera, and (C) N. lugens.
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In our work, the YOLOv4 is used to detect three rice migratory 
pests from our intelligent searchlight trap based on machine 
vision. The YOLOv4 model consists of a feature extraction network 
CSPDarknet-53 and an up-sampling feature fusion module 
(Bochkovskiy et  al., 2020). The activation function for 
DarknetConv2D of YOLOv4 is Mish and the convolution block 
is DarknetConv2D_BN_Mish. This design makes it not completely 
truncate at negative value, thereby ensuring information flow and 
avoiding the problem of saturation. YOLOv4 uses the CSPnet 
structure to enhance learning ability through repeated feature 
extraction. The SPP structure is added to the feature extraction 
network of YOLOv4, which can greatly increase the receptive 
field and isolate the most significant contextual features. These 
improvements enable YOLOv4 to achieve better detection results 
while consuming less computational resources. The migratory 
pest targets in this paper have the characteristics of large insect 
quantity, many insect species, small targets, and similar insects, 
which put forward higher requirements for the robustness and 
computational performance of the model. Accordingly, we  chose 
YOLOv4 as the original detection model.

Due to the complex background of migratory pests caused 
by lots of non-target insects trapped by searchlight trap, the 
original YOLOv4 model has two detection problems. One is 

the false detection of target pests and interference pests. The 
other is the missing detection of small target pests. Aiming 
at the two problems, we  firstly use the overlapping sliding 
window method to increase the area proportion of the targets 
in one image. Secondly, the SENet channel attention mechanism 
is added to the YOLOv4 model to reduce the false detection 
of target pests. The improved model is named YOLO-MPNet 
and its network framework is shown in Figure  4.

By adding the SENet channel attention mechanism, we design 
one dependency model of each channel. This model improves 
the expression ability of the network and makes the network 
selectively learn some features. Besides, this new network 
structure can adaptively detect targets by slightly increasing 
model complexity and a small amount of computation. The 
specific steps are as follows: (1) to perform global average 
pooling on the feature layer of the input module, (2) to add 
two fully connected neural networks and conduct normalization.

Feature Extraction Network
Feature extraction is an important part of target detection. The 
number of target detection frames, classification accuracy, and 
the detection efficiency is directly affected by the feature extraction 
network. The backbone network of the YOLOv4 is CSPDarkNet53, 

FIGURE 3 | The diagram of overlapping sliding window method.
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which is composed of the resblock body module, one-time down-
sampling, and multiple stacking of residual structures.

Initially, input images enter ResBlock by a 3 × 3 convolution 
channel. Then, the feature map undergoes multiple down-
sampling, which is divided into two 1 × 1 convolution layers 
with stride 1 and enters the partial transition and residual 
block, respectively. After splicing, the feature map finally passed 
through convolution to reduce the complexity of calculation 
and improve the calculation speed.

Other Compared Models
To compare the detection performance of different CNN models, 
we trained another three state-of-the-art target detection models 
YOLOv3, YOLOv5, and Faster R-CNN.

YOLO model was first proposed by Redmon in 2016. YOLOv3 
is the third iterating version and has a great improvement on 
the detection accuracy and speed (Redmon and Farhadi, 2018). 
YOLOv5 introduced multi-scale network detection to furtherly 
enhance the model flexibility (Glenn, 2020). Faster R-CNN is 
a two-stage target detection model, which combines the candidate 
region generation stage with the classification stage, and can 
achieve a high detection accuracy (Girshick, 2015).

Model Training
All models run on a PC with an Intel Core i7-9800xCPU 
@  3.8 GHz and 3 GeForce GTX 1080Ti. The operating system 
is Linux16.04. YOLO series model and Faster R-CNN model 
run on tensorflow framework.

Evaluation Metrics
To evaluate the detection effect of the YOLO-MPNet model, 
we  use precision (P), recall (R), and F1 as evaluation indicators. 

Precision indicates the proportion of the target pests that are 
correctly detected among all detected targets. Recall indicates 
the proportion of correctly detected pests among the target 
pests. F1 is a comprehensive evaluation index of precision and 
recall, which is  used to evaluate model performance when 
precision and recall are in conflict. The higher the F1 value, 
the better the balance of precision and recall. The formulas are 
as follows.

 
P =

number of correctly detected pests

total number of detected targetts  
(1)

 
R =

number of correctly detected pests

total number of target pests  
(2)

 
F P R

P R1 2= ×
×
+  

(3)

In our work, the pest detection speed is very important in 
pest occurring peaks. To evaluate the detection speed of different 
models, frames per second (FPS) is calculated.

RESULTS

Detection Results of Different Models
Table  2 presents the detection results of three migratory pests 
on the same test set using YOlOv3, YOLOv4, Yolov5, Faster 
R-CNN, YOLOv4 with OSW and YOLO-MPNet with OSW.

FIGURE 4 | The network framework of YOLO-MPNet model.
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YOLOv4 achieves the higher precision rate, recall rate, 
and F1 of three pests than YOLOv3, YOLOv5 and Faster 
R-CNN. The precision rate of C. medinalisare, S. furcifera, 
and N. lugens. are 73.66, 66.72, and 71.27%, respectively, 
and their recall rate are 60.13, 55.24, and 59.24%, respectively. 
In our mind, the two-stage model Faster R-CNN should 
have higher precision than one-stage model YOLOv4. As it 
can be  seen, Faster R-CNN seems to be  an unsatisfied 
approach in our pest detection task. Although the FPS of 
YOLOv5 is higher than YOLOv4, we  consider both the 
precision rate and FPS. So we  select the YOLOv4 as an 
original model which is improved.

The YOLOv4 with overlapping sliding window method 
effectively improves the precision and recall rates of three pests. 
The precision rates of C. medinalisare, S. furcifera, and N. lugens 
are increased by 7.92, 9.7, and 8.19% respectively, their recall 
rate are increased by 22.26, 19.39, and 18.42%, respectively. 
Because the sliding window processing method during image 
preprocessing increases the area ratio of each target pest in 
the subimages, which helps to extract more abundant features 
of small target pests and reduce the missing detection.

The searchlight trap attracts a large number of non-target 
insects. Some insects are similar to target pests, which results 
in false detection. The improved model YOLO-MPNet with 
a SENet attention mechanism achieves better detection effects 
of three migratory pests than YOLOv4 after the same sliding 
window method is processed on original images. The precision 
rates of three pests of C. medinalisare, S. furcifera, and N. lugens 
are increased by 12.56, 9.4, and 9.33% respectively, their recall 
rates are increased by 9.6, 7.84, and 7.34%, respectively. It 
proves that the SENet channel attention mechanism can 
effectively decrease false detection between target pests and 
interference pests.

Precision-Recall Analysis
To investigate the false detections and missing detections, PR 
curves of YOLOv4, YOLOv4 with overlapping sliding window 
and our improved model YOLO-MPNet with overlapping sliding 
window are shown in Figure 5. When pest images are processed 
with overlapping sliding window, the precisions of YOLOv4 
and YOLO-MPNet can keep a high value in a big range of 
recall. So the overlapping sliding window method can effectively 

FIGURE 5 | PR curves for different models.

TABLE 2 | The detection results of different models for migratory pests.

Detection models Precision (%) Recall (%) F1 (%) FPS

C. medinalis S. furcifera N. lugens C. medinalis S. furcifera N. lugens C. medinalis S. furcifera N. lugens

YOLOv3 70.13 60.69 64.51 57.36 45.13 48.65 63.10 51.76 55.47 0.89
YOLOv4 73.66 66.72 71.27 60.13 55.24 59.24 66.21 60.44 64.70 0.95
YOLOv5 71.26 63.54 69.22 59.21 52.51 56.32 64.68 57.50 62.11 1.02
Faster R-CNN 72.21 54.61 55.76 59.68 47.23 48.11 65.35 50.65 51.65 0.32
YOLOv4 with OSW 81.58 76.42 79.46 82.39 74.63 77.66 81.98 75.51 78.55 0.68
YOLO-MPNet with OSW 94.14 85.82 88.79 91.99 82.47 85.00 93.05 84.11 86.85 0.66
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FIGURE 6 | Examples of detected pests. The green, orange, and blue boxes contain C. medinalis, S. furcifera, and N. lugens, respectively.

reduce pest false detections and missing detections. In general, 
YOLO-MPNet performs the best on three migratory pest 
detection with a high precision and recall at same time.

Visualization of Detection Results
The detection results of migratory pests are visualized in 
Figure 6. YOLO-MPNet could detect the three migratory pests 
well under different insect densities. As it can be  seen, the 

trapped pests could effectively be  dispersed by our multilayer 
insect conveyor belts. Some of occluded pests could be correctly 
detected by our model.

Web Client Interface of System
The web client interface of the intelligent monitoring system 
of migratory pests mainly includes user login, automatic 
identification of migratory pests, equipment management, user 
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management, and data curves. Users can view the detection 
result images through the web interface and historical monitoring 
data. Figure  7 shows the web interface of the system and the 
detected images.

CONCLUSION

To realize automatic and accurate identification of rice migratory 
pests from searchlight traps, we develop an intelligent monitoring 
system of migratory pests, which is composed of a searchlight 
trap based on machine vision, an automatic identification model 
of migratory pests, a Web client, and a cloud server. To identify 
and count three rice migratory pests (C. medinalis, S. furcifera, 
and N. lugens) from a large number of non-target insects 
trapped by searchlight traps, we  propose an improved model, 
YOLO-MPNet. To solve the problem that the backbone network 
cannot effectively extract features of small target pests, this 
paper introduces the overlapping sliding window processing 
method, which can improve the area proportion of small targets 
in images and optimize the identification effect of small target 
pests. At the same time, the feature extraction network is 
improved by adding the SENet channel attention mechanism. 
The model’s adaptability to complex backgrounds is strengthened. 
YOLO-MPNet has achieved higher precision, recall and F1 
values among three species of migratory pests (C. medinalis, 
S. furcifera, and N. lugens) than the YOLOv3, YOLOv4, YOLOv5, 
and Faster R-CNN models.

In this paper, only three species of rice migratory pests 
are identified by our model. In fact, some non-migratory pests 

are trapped by the searchlight traps. In future work, more 
species of pests from searchlight traps will be  studied.
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To provide high-quality Astragalus mongholicus Bunge to domestic and foreign markets 
and maintain sustainable development of the A. mongholicus industry, Firstly, we evaluated 
the impact of environmental factors and planting areas on the A. mongholicus industry. 
The maximum entropy method (MaxEnt) was utilized to simulate the suitability distribution 
of A. mongholicus and establish the relationship between the active component contents 
of A. mongholicus and ecological factors through linear regression analysis. The random 
forest algorithm was subsequently used to perform feature selection and classification 
extraction on Sentinel-2 imagery covering the study area. Furthermore, the planting, 
processing, and sales of A. mongholicus in Guyang County were investigated, and the 
roles of stakeholders in the value chains were analyzed. The results demonstrated that 
precipitation of the warmest quarter, minimum temperature of the coldest month, standard 
deviation of seasonal temperature changes, range of mean annual temperature, and mean 
diurnal range [mean of monthly (max temp - min temp)] were the five environmental 
variables that contributed the most to the growth of A. mongholicus. The most influential 
factor on the distribution of high-quality A. mongholicus was the mean temperature of 
the coldest quarter. The classification results of image features showed that the planting 
areas of A. mongholicus was consistent with the suitable planting areas predicted by 
MaxEnt, which can provide data support to the relevant departments for the macro 
development of the A. mongholicus industry. In the production of A. mongholicus, 10 
value chains were constructed, and the study demonstrated that the behavior of 
stakeholders, target markets, and the selected planting area had a significant impact on 
the quality of A. mongholicus.

Keywords: Astragalus mongholicus Bunge, value chains, species distribution models, maximum entropy, remote 
sensing, random forest
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INTRODUCTION

The continuous improvement of people’s health awareness has 
resulted in medicinal plants receiving increased attention. 
A. mongholicus is an important raw material for use in functional 
health care products and is widely sought after. In China, the 
root of A. mongholicus is a traditional Chinese medicine 
(Figure 1). Moreover, A. mongholicus plants are rich in glycosides, 
polysaccharides, and flavonoids that exert various beneficial 
health effects, such as immunoregulation, protection against 
cardiovascular and cerebrovascular diseases, delayed aging, and 
anti-rheumatism effects (Durazzo et  al., 2021).

In recent years, the growth of international and domestic 
market demand for A. mongholicus has prompted the expansion 
of its plantation areas, in an effort to alleviate the supply and 
demand pressures. Guyang County is renowned as one of the 
main producing areas of high-quality A. mongholicus. Accordingly, 
the A. mongholicus produced in Guyang County was awarded 
the “Geographical Indication of Agricultural Products” status 
by the Ministry of Agriculture and Rural Affairs in 2017.1 
Furthermore, subsequent to its review as a high-quality 
agricultural product by the working institutions of the prefecture- 
and provincial-level agricultural and rural departments in 
September 2020, A. mongholicus from Guyang County was 
included in the second batch of national famous, special, and 
excellent new agricultural products.2 Therefore, Guyang county 
is considered an ideal location for the production of high-
quality A. mongholicus (Dao-di Herbs).

Due to the rotation cultivation mode of A. mongholicus, a 
large number of suitable land is needed to provide options 
for planting areas in the coming years. However, to obtain 
the planting situation of A. mongholicus, it also needs sufficient 
time to consult the data and conduct field investigation. This 
survey method is expensive, inefficient, and prone to subjective 
deviation, resulting in errors in planting conditions. Species 
distribution models (SDMs) use specific algorithms to correlate 
species distribution with environmental variables, thereby 
predicting the potential distribution of a species across different 
geographical spaces and time (Zhu et al., 2013). This probability 

1 http://www.moa.gov.cn/nybgb/2017/dsq/201802/t20180201_6136210.htm
2 http://www.aqsc.agri.cn/tzgg/202009/t20200918_361324.htm

reaction reflects habitat suitability and allows for further research 
on the regional distribution of the estimated model of the 
target species. Among the SDMs, the maximum entropy model 
(MaxEnt) is most commonly used (Xu et  al., 2015) which 
produces good results. For example, Yang et  al. (2020b) 
successfully used the MaxEnt model to predict the habitat 
suitability of Salweenia bouffordiana by analyzing the main 
environmental factors affecting its habitat (Yang et  al., 2020b). 
Considering this, using the MaxEnt model to understand the 
relationship between different environmental factors and species 
distribution is an effective way to develop management and 
protection strategies for medicinal plant species.

Remote sensing can play significant roles in determining 
the distribution, growth area and status, and occurrence of 
diseases and insect pests among medicinal plants. Since 2000, 
remote sensing technology has gradually advanced the theory 
and methods of medicinal plant resource investigations and 
has been effectively applied in medicinal plant production (Lan 
et  al., 2021). Previous studies have successfully utilized 
Landsat-8TM, Gaofen-1 (GF-1), Resources satellite three (ZY-3), 
and other remote sensing satellite data for the detection of 
medicinal plants (Na et  al., 2013; Shi et  al., 2017). Sentinel-2 
is mainly used for land environmental monitoring and provides 
information on land cover, including soil condition and vegetation 
patterns. This information is crucial for improving agricultural 
and forestry planting structures, estimating agricultural areas, 
and predicting crop yield. On this basis, using Sentinel-2 
imagery to comprehensively monitor the planting distribution 
of A. mongholicus in Guyang County may be of great significance 
to the development of the A. mongholicus industry.

With the exception of planting area, planting personnel, 
processing, sales and other factors also affect the development 
of A. mongholicus industry. Currently, A. mongholicus is mainly 
cultivated by individual farmers, and only a few large-scale 
cultivation enterprises exist. These individual farmers are 
restricted by limited funds, small-scale planting, and lack of 
cultivation knowledge, and the consequential blind planting 
results in failure to meet standardized planting requirements. 
In addition, variety mixing and species degradation in the 
seed supply base (Qi, 2020), the use of inappropriate planting 
habitats, and dense application of herbicides, fertilizers, and 
insecticides may reduce crop quality and be  detrimental to 

A B C

FIGURE 1 | The cultivated of Astragalus mongholicus (A); Details of A. mongholicus (B); dried roots A. mongholicus (C).
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consumer health (Zhao et  al., 2017). In contrast, large-scale 
planting companies have mainly been able to circumvent these 
problems by hiring experienced professionals and utilizing 
specialized mechanical equipment to meet planting standards. 
Medicinal plant products pass through several stakeholder levels, 
including processing and distribution, before finally reaching 
the consumer. The processing of A. mongholicus is primarily 
not very extensive, and is mainly executed in family workshops 
using relatively outdated technology. Moreover, the foundational 
processing technologies of some enterprises also requires 
improvement to avoid possible imbalances in the quality of 
medicinal materials (Sun and Chen, 2018). The value chain 
(VC) describes the entire process from the initial planting of 
raw materials to the processing and sale of final products, all 
while considering the relationships between different stakeholders 
in the chain (Booker et al., 2012). In recent years, an increasing 
number of people are applying the VCs to the Chinese herbal 
medicine industry. According to the production and circulation 
mode, the roles of different stakeholders in the VCs are organized 
to effectively evaluate the quality and economic benefits of 
Chinese herbal medicine in the different VCs (Booker et al., 2015).

In addition to the utilization of A. mongholicus as a traditional 
Chinese medicine, it has been incorporated into Chinese patent 
medicine, food therapeutics, and other health care products 
(Qin et al., 2013), resulting in a gradual expansion of its market 
demand. The artificial planting of high-quality A. mongholicus 
may be  an effective method to bridge the gap between supply 
and demand. To this end, this study aims to (1) predict the 
suitable growth area of A. mongholicus by utilizing MaxEnt 
and monitoring ecological factors affecting its production. Linear 
regression analysis was used to evaluate the relationship between 
the active component content of A. mongholicus and ecological 
factors, and to identify those ecological factors that contributed 
most to the growth of A. mongholicus; (2) monitor planting 
distribution areas by combining Sentinel-2 imagery; and (3) 
visit and inspect the planting, processing, and sales links of 
A. mongholicus, build VCs, and analyze the impact of stakeholder 
behavior on the development of the A. mongholicus industry.

MATERIALS AND METHODS

Study Area Description
Guyang County is located in central Inner Mongolia (Figure 2), 
at latitude 40°42′–41°08′ N and longitude 109°40′–110°41′ 
E. The county stretches across approximately 80 km (east to 
west) and is roughly 66 km wide (north to south), covering 
a total area of 5,025 km2. Guyang county has a mid-temperate, 
continental, arid, and semi-arid monsoon climate, with low 
average temperatures, little precipitation, and sufficient sunlight. 
Furthermore, major temperature variations are characteristic 
of Guyang county, and its mountains and hills make up 
approximately 90% of the total area (Rural Social and Economic 
Investigation Department of National Bureau of Statistics, 2021). 
Chunkun Mountain, in the east of the territory, is 2,321 m 
above sea level, dividing the county into the southern 
mountainous and northern hilly areas. The area in between 

constitutes the Guyang and Bailingnuo basins, of which the 
lowest point is 1,240 m above sea level. Guyang presents with 
a typical “plateau basin” terrain that performs an adequate 
heat collection function, which is beneficial to the growth of 
A. mongholicus.

Study Species and Data Collection
In this study, the sample data were derived from a field survey 
of Guyang county from July 8 to July 12, 2021 using the 
Global Positioning System (GPS), from which the geographic 
distribution data of A. mongholicus were obtained. During the 
positioning process, sample points were randomly selected from 
each plot subject to the condition that the minimum distance 
between any two points would be  at least 20 m. Subsequently, 
from 8 October to 12 October 2021, samples of mature 
A. mongholicus from Guyang County were collected for active 
ingredient content determination. Different stakeholders of the 
A. mongholicus industry in Guyang County were interviewed, 
and relevant information on the cultivation, processing, and 
sales stages of A. mongholicus was obtained using 
field investigations.

MaxEnt Predicted Astragalus mongholicus 
Distribution
Climate is the main environmental factor determining species 
distribution. The MaxEnt model was used to explore the 
environmental niche and potential distribution of A. mongholicus 
according to its spatial location and environmental variables, 
thereby allowing for the selection of a suitable planting area 
for A. mongholicus.

Ecological Factor Selection
A total of 19 climate (with a resolution of 30 s) and altitude 
datasets were obtained from the global climate data website.3 
We  selected 20 ecological factors, including temperature, 
precipitation, and altitude, to determine which ecological factors 
have the greatest impact on the development of the planting 
industry (Ngarega et  al., 2021; Zhang et  al., 2021).

MaxEnt Model Prediction
Jaynes et  al. proposed the MaxEnt principle in 1957 (Jaynes, 
1957), and Phillips et  al. developed MaxEnt software—that is 
easy to operate and does calculations swiftly—using the Java™ 
programming language (Phillips et  al., 2006), based on the 
original model. Herein, MaxEnt software (Version 3.4.1 K) was 
used to predict the suitable distribution of A. mongholicus, 
and 10-fold cross-validation was conducted to analyze the 
validity and accuracy of the model. The jackknife method was 
used to measure the weight of each variable and output it in 
logistic format. The maximum number of iterations and the 
convergence domain were set to 105 and 0.0005, respectively. 
The operation was repeated 10 times, and the remaining values 
were used as default values to extract and analyze habitat 

3 http://www.worldclim.org/
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suitability. Using the latitudinal and longitudinal geographical 
distribution data of A. mongholicus and relevant ecological 
factor data from the study area, a prediction model was 
established for the potential geographical distribution of 
A. mongholicus (Zhu et  al., 2017). The model results were 
evaluated using the area under the receiver operating 
characteristic (ROC) curve (area under curve, AUC). The 
AUC-based evaluation standard indicated whether the prediction 
result was less accurate (<0.5), acceptable (0.5–0.8), or ideal 
(0.8–0.9), the latter of which would demonstrate high 
modeling accuracy.

Construction of Active Component Content and 
Its Relationship With Main Ecological Factors
Saponins and flavonoids are the main active components in 
A. mongholicus, which serve as valuable indices for evaluating 
the quality of A. mongholicus in Chinese, British, and European 
pharmacopoeia. According to the “Chinese Pharmacopoeia” (2020 
edition), the astragaloside IV and calycosin-7-glucoside content 
in 37 A. mongholicus samples had been determined using high-
performance liquid chromatography (HPLC; European 
Pharmacopoeia Commission, 2017; British Pharmacopoeia 
Commission, 2019; National Pharmacopoeia Committee, 2020). 

In the present study, astragaloside IV was determined using the 
Thermo Fisher Ultimate 3,000 HPLC system, Agilent C18 column, 
with a flow rate of 1.0 ml/min. The mobile phase consisted of 
acetonitrile and deionized water (34%:66%), and the injection 
volume was 10 μl. Furthermore, calycosin-7-glucoside was separated 
on a Waters C18 column at a flow rate of 1 ml/min. The mobile 
phase consisted of acetonitrile (solvent A) and water containing 
0.2% methanoic acid (solvent B). Gradient elution was applied 
as follows: 0–20 min, 80–60% B; 20–30 min, 60% B. The injection 
volume was 10 μl and the temperature of the column was 
maintained at 30°C. Detection was performed at a wavelength 
of 260 nm and each sample was assayed in triplicate.

In addition, SPSS statistical analysis software was utilized 
to analyze the differences in astragaloside IV and calycosin-
7-glucoside contents in A. mongholicus from different township 
areas in Guyang County. A correlation matrix was used to 
determine the relationship between astragaloside IV, calycosin-
7-glucoside, and the major ecological factors affecting 
A. mongholicus growth. By conducting stepwise linear regression 
analysis, the relationship equations between each index 
component and the main ecological factors were obtained.

The relationship equations were input into the grid calculator 
of ArcGIS to obtain the quantitative distribution layers of 

FIGURE 2 | Land cover map of Guyang County.
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astragaloside IV and calycoside-7-glucoside in A. mongholicus. 
Using the spatial calculation function of ArcGIS, these two 
layers were superimposed on the ecological suitability distribution 
layer of A. mongholicus, from which the spatial suitability 
distribution region of astragaloside IV and calycoside-7-glucoside 
in Guyang County was obtained.

Acquisition and Processing of Remote 
Sensing Data
Image Data Acquisition
In recent years, the continuous development of remote sensing 
technology and its applications has greatly reduced the human 
error of traditional manual field surveillance, improved the 
objectivity, scientificity, and accuracy of survey data, and has 
been widely used to survey medicinal plant resources (Chen, 
2021). We  aimed to use remote sensing technology to monitor 
the planting area of A. mongholicus, obtain data on its planting 
practices and area, provide references for relevant departments 
to formulate related policies and plans, ensure product supply 
and stable market prices, and promote the steady development 
of the A. mongholicus industry.

The Sentinel-2 satellite was launched by the European Space 
Agency (ESA) for the EU Copernicus Programme to support 
global land services, including the monitoring of vegetation, 
soil and water coverage, inland waterways, and coastal areas. 
Sentinel-2 imagery cover 13 spectral bands of visible light. 
Moreover, considering the good spatial resolution, global 
coverage, and relatively good time resolution of Sentinel-2 data, 
it is widely used in many fields.

Images covering the entire Guyang County (February–November 
2021) were downloaded from the Copernicus Open Access Center.4 
Although some associated data have been orthogonal and geometric 

4 https://scihub.copernicus.eu/

corrected, they cannot be  directly used. As such, preprocessing, 
such as atmospheric correction and resampling, was required 
and the resolution of all bands was resampled to 10 meters. 
The pre-processed image was synthesized by the layer stacking 
function of ENVI. Additionally, bands 2, 3, 4, 5, 6, 7, 8, 8A, 
11, and 12 were mainly included, whereafter regional cropping 
was performed using the subset data of the ROIs function to 
obtain a complete image of Guyang County.

Time Window Selection for Extraction of the 
Vegetation Index
According to phenological knowledge, the appropriate time 
window is selected to extract the characteristics of crop planting 
structure during the process of crop development. To ensure 
economic benefits, crop phenological indicators were recorded 
through field observations. Most A. mongholicus in Guyang 
County were selected and sown in April–May, matured in 
July–August, and harvested in October–November. Various 
crops, in addition to A. mongholicus, are planted in Guyang 
County. To allow for better classifications, we  extracted the 
normalized difference vegetation index (NDVI) of Guyang 
County from February to October 2021 using ENVI software 
and combined the training datasets of A. mongholicus to develop 
the temporal NDVI profile, thereby obtaining the spectral 
changes and time windows over different periods (Inoue and 
Olioso, 2006). The NDVI is used to detect the growth state 
of vegetation and vegetation coverage. Moreover, it can reflect 
the background effects of the vegetation canopy, such as soil, 
wetland, snow, dead leaves, and roughness, etc. In addition, 
we  also extracted the ratio vegetation index (RVI), enhanced 
vegetation index (EVI), and normalized red edge vegetation 
index (NDVIre; Table  1; Tan et  al., 2018).

Principal Component Analysis
Principal component analysis (PCA) was performed on the 
Sentinel-2 imagery within the optimal time window. PCA is 
a commonly used dimensionality reduction method in image 
processing. In remote sensing image classification, PCA is often 
used to eliminate the correlation between bands and perform 
feature selection. Under the premise of not reducing the 
“effective” information, the original dataset was converted into 
“effective” information, and the identification was carried out 
with fewer dimensions, thereby reducing the number and 
dimension (Hess and Hess, 2018; Wang et  al., 2021a).

Texture Feature Extraction
Texture features were extracted from the bands containing the 
main features, based on the PCA results. Texture reflects a certain 
change rule for an object’s surface color and gray level. This 
information effectively distinguishes ground objects with similar 
spectra and different spatial distribution structure characteristics, 
and is widely used to extract image information. Texture features 
are also important in the process of feature extraction, representing 
the spatial distribution of pixels in remote sensing images. The 
addition of texture features can aid in the reduction of the salt 
and pepper noise and improve classification accuracy (Liu et al., 2021).

TABLE 1 | Spectral characteristic index set.

Spectral region Vegetation index Formula

Normalized vegetation index NDVI (B8-B4)/(B8 + B4)
Enhanced vegetation index EVI 2.5 × (B8-B4)/

(B2 + 6 × B1 + 7.5 + B3 + 1)
Ratio vegetation index RVI B8/B4
Red edge vegetation index 
1

NDVIre1 (B8 − B5)/(B8 + B5)

Normalized difference 
vegetation index red-edge 
1narrow

NDVIre 1n (B8A − B5)/(B8A + B5)

Normalized difference 
vegetation index red-edge 2

NDVIre 2 (B8 − B6)/(B8 + B6)

Normalized difference 
vegetation index red-edge 
2narrow

NDVIre 2n (B8A − B6)/(B8A + B6)

Normalized difference 
vegetation index red-edge 3

NDVIre 3 (B8 − B7)/(B8 + B7)

Normalized difference 
vegetation index red-edge 
3narrow

NDVIre 3n (B8A − B7)/(B8A + B7)
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Classifier Classification
The random forest classifier (Breiman, 2001), which has the 
important function of analyzing the significance of features 
and building a classification regression tree, was used. The 
collected coordinate points were processed using ArcGIS to 
generate a sample set, and 70% of the sample points were 
randomly selected and imported into EnMAP and ENVI software 
together with remote sensing images as training sets.

Accuracy Evaluation
A confusion matrix was used to classify and identify the 
planting area of A. mongholicus. The matrix consisted of the 
following terms: overall accuracy (OA), user accuracy (UA), 
and the Kappa coefficient of variation (Kappa; Vasileios et  al., 
2018). The overall accuracy represents the probability that the 
classified result is consistent with the test data type for each 
random sample. Furthermore, Kappa coefficient is an indicator 
for comprehensively evaluating the classification accuracy and 
is used to judge the consistency of images.

VCs Analysis
First, we  determined the main links in the production process 
of A. mongholicus, whereafter the stakeholders in the process 
were identified and matched to different chains, linking the 
main production activities with the stakeholders according to 
their different interests. A VC analysis diagram of the roles 
played by the stakeholders in different chains was then created. 
In addition, the production behavior, quality, and financial 
performance of A. mongholicus in the VCs were analyzed 
according to the methods described by Yao et al. (2018) Finally, 
we analyzed the strengths and weaknesses of the VCs in terms 
of safety, quality, and geographical indications (Yao et al., 2018).

Price Forecasting
Fluctuations in the price of Chinese herbal medicines not only 
have a major impact on stakeholders in the VCs, but also 
exert pressure on governmental market regulation, affecting 
the sustainability and healthy development of the Chinese 
medicine industry (Cui et al., 2020). Therefore, the price forecast 
of Chinese herbal medicines could provide a price reference 
for stakeholders in the VCs and ensure smooth progression 
of Chinese herbal medicines planting and production processes. 
The autoregressive integrated moving average model (ARIMA) 
is a time-series autoregressive technique that calculates future 
short-term forecasts by analyzing historical data (Alabdulrazzaq 
et  al., 2021). It was created by Box and Jenkins in the 1970s 
to mathematically describe changes in a time series (Rao et al., 
1972). In the current study, price data of A. mongholicus from 
2017 to 2021 was collected and the future market price for 
A. mongholicus was predicted and analyzed using the ARIMA 
model in SPSS (IBM, Armonk, NY, United  States). It is worth 
noting that we  first used the price data from 2017–2020 to 
make a price forecast for 2021, and compared the forecast 
results with the price data we  collected to verify the accuracy 
of the model. Then, we  forecast the price of A. mongholicus 
in 2022 based on the data from 2017–2021.

RESULTS

Study on Ecological Suitability of 
Astragalus mongholicus
The MaxEnt model prediction results were imported into 
ArcGIS software (George and Fred, 1971). To guide local 
governments and farmers toward more effective A. mongholicus 
planting strategies in the current environment, and develop 
medicinal value according to the regional results of the 
ecological suitability of A. mongholicus, Guyang County 
administrative data were covered in ArcGIS. In calculating 
the model results, the influence of each ecological factor 
on the distribution of A. mongholicus was determined by 
analyzing the response curves of those ecological factors 
that had a notable contribution rate and were ranked high 
in importance.

Accuracy of MaxEnt Model
The ROC curve showed that the area under the curve (AUC) 
value of the A. mongholicus test sample was 0.872. According 
to the AUC evaluation standard, the MaxEnt model results 
were ideal and reached a good level, which also demonstrated 
the validity of the model for evaluating the habitat suitability 
of A. mongholicus (Figure  3).

Regional Ecological Suitability for Astragalus 
mongholicus in Guyang County
The model analysis results demonstrated that the north of 
Xidoupu Town, the west of Yinhao Town, and the middle of 
Xiashihao Town had higher ecological adaptability. Xingshunxi 
Town and Huaishuo Town had a large area of medium growth 
area suitability (Figure  4).

Main Ecological Factors Affecting the Growth of 
Astragalus mongholicus
Precipitation of the warmest quarter (26.6%), minimum 
temperature of the coldest month (20.3%), standard deviation 
of seasonal temperature changes (11%), range of mean annual 
temperature (10.8%), and mean diurnal range [mean of monthly 
(max temp - min temp)] (7.4%) were identified as the five 
environmental variables with the highest contribution rates to 
the MaxEnt modelling results. Moreover, their cumulative 
contribution was 76.1%. These results indicated that the identified 
environmental variables were the main ecological factors affecting 
the habitat of A. mongholicus (Table  2).

Content of Index Components and Relationships 
With Main Ecological Factors
The astragaloside IV and calycaryin-7-glucoside contents of 
the 37 A. mongholicus samples that were evaluated, are shown 
in the Supplementary Table  1. The relationships between the 
astragaloside IV and isoflavone glycoside contents of 
A. mongholicus, respectively, and the main ecological factors 
are represented by the following equations:
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These equations indicate that most ecological factors exerted 
different effects on the accumulation of the two active substances. 
For example, the mean temperature of the coldest quarter 

(BIO11) played an important role in the accumulation of both 
active compounds; it was negatively correlated with the 
accumulation of astragaloside IV and positively correlated with 
that of isoflavone glycoside. Mean annual temperature (BIO1) 
had a greater impact on the astragaloside IV content, to which 
it was negatively correlated. Mean diurnal range [mean of 
monthly (max temp  - min temp)] (BIO2), precipitation of the 
coldest quarter (BIO19), and minimum temperature of the 
coldest month (BIO6) had positive effects on the accumulation 
of astragaloside IV. Moreover, mean annual temperature (BIO1) 
was positively correlated with the accumulation of calycosin-
7-glucoside. As indicated in Figure  5, the most suitable areas 
for the accumulation of the two compounds are similar. The 
areas with high compound content are mainly distributed in 
the north and central areas of Guyang County, while the 
southern area is relatively small. Therefore, cultivation of 
A. mongholicus with high-quality active compounds is mainly 
suitable in the north of Xidoupu Town, the west of Yinhao 
Town, and the middle of Xiashihao Town.

Image Feature Analysis
Remote sensing technology can obtain the dynamic change 
information of the A. mongholicus planting area over time, 
and further provide basic data for the layout formulation of 
the A. mongholicus planting industry, and the establishment 
of a high-quality A. mongholicus cultivation technology system. 
Based on the spectral analysis results, months with large spectral 

FIGURE 3 | ROC value of A. mongholicus modeled by MaxEnt based on distribution date.
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differences (June, July, August, September, and October) were 
further analyzed. The images were collected on June 17, July 
30, August 21, September 30, and October 20, 2021. First, 
PCA was performed on the original images associated with 
the selected 5 months to obtain those bands with a larger 
monthly contribution rate, whereafter the texture features of 
these bands were analyzed. The raw images, vegetation index 
bands, and texture feature bands for the selected 5 months 
were then fused.

Principal Component Analysis
PCA was used in this study because it both aids selection of 
useful features and improves separability in the transformed 
feature space. In addition, PCA is beneficial in terms of its 
operation, because it is an unsupervised analysis. This method 
generates super pixels by simple linear iterative clustering (SLIC) 
and then transforms the features of super pixels using PCA. The 
transformed features are then used for the final classification 
(Su, 2019). Herein, PCA was performed on the 10 raw spectral 
bands for June 2021 using the “Forward PCA Rotation New 
static and Rotate” tool in ENVI Classic (Table 3). The contribution 
rate of the first principal component was 98.07%, and the 
cumulative contribution rate of the first and second principal 

components was 99.49%, indicating that the first two 
characteristics accounted for the majority. To ensure 
computational efficiency, feature extraction with a monthly 
cumulative contribution rate of 99% was selected, and used 
the same method to perform PCA on images from July, August, 
September, and October.

Texture Feature Extraction
As far as the texture features of Guyang County are concerned, 
the most obvious feature was the mountain, of which the 
coverage was extremely wide, presenting with rough texture 
features. In addition, the farmland was mainly distributed in 
relatively flat areas and in a regular state, owing to anthropogenic 
influences. In contrast, the grassland was distributed in a more 
scattered pattern and consisted mostly of herbaceous vegetation 
without a particularly obvious canopy structure. ENVI software 
was used to extract texture features from the Sentinel-2 imagery 
of Guyang County, and to calculate the gray level co-occurrence 
matrix (GLCM), thereby generating a total of eight textures: 
mean, variance, homogeneity, contrast, dissimilarity, entropy, 
angular second moment, and correlation (Xu et  al., 2016). 
This allowed for A. mongholicus to be  better distinguished 
from the other crops.

FIGURE 4 | Ecological Suitability Regionalization of A. mongholicus in Guyang County.
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Classifier Classification
The classifier was used to extract distribution information of 
A. mongholicus, and the planting area of the evaluated 
A. mongholicus was statistically identified. The sample data 
were randomly divided into training set (70%) and validation 
set (30%). The results showed that the actual planting area of 
Radix Astragali was very consistent with the high suitability 
growth area predicted by the MaxEnt, and the planting area 
of A. mongholicus in Guyang County was 29.0123 km2. Compared 
with the actual planting area, the accuracy rate was 83.69%, 
with certain reliability (Figure  6).

Accuracy Evaluation
The random forest classification algorithm was used to classify 
the Sentinel-2 imagery time series including 143 characteristic 
variables (original spectral feature and vegetation index texture 
feature), and extracted the distribution information of 
A. mongholicus in the image. The OA of the model was 96.51%, 
and the Kappa accuracy was 94.96%.

Industrial Structure and VC
As a geographical symbol of agricultural products in China, 
A. mongholicus, a specialty of Guyang County, offers higher 
productivity and quality. Owing to its long cultivation and 
supply history, we found that A. mongholicus production practices 
consist of 10 mature VCs, which can be  distinguished by their 
various composite patterns of stakeholders. Typically, 
A. mongholicus undergoes six production stages before it reaches 
the wholesale and retail herbal markets, as shown in Figure  7.

After conducting the survey, we  constructed the VCs, as 
shown in Figure  8. VCs 1–3 started with independent farmers 
tending to their own relatively small areas of land to grow 
A. mongholicus. This represents a traditional, small-scale farmer’s 
economic form, and is an important part of A. mongholicus 

production. In these VCs, farmers usually sell A. mongholicus 
through large suppliers (e.g., middlemen, cooperatives, and 
processing companies), although the yield of A. mongholicus 
products varies from year to year, which incurs high transaction 
and switching costs, limiting farmers’ income. However, when 
farmers are located close to medicinal material markets or 
processing companies, they can sell their products directly and 
increase their income, as in VC 3. Most often, middlemen and 
processing companies finely process and grade the A. mongholicus 
purchased from farmers, subsequently selling it to pharmaceutical 
factories or Chinese herbal medicine markets to gain higher 
profits. Finally, the products are retailed to consumers through 
hospitals, pharmacies, and other avenues. This pattern is most 
common in Guyang County (Chen et  al., 2021).

VCs 4–6 represented agricultural cooperatives with relatively 
large areas of land, which are usually composed of several 
farmers who manage large tracts of land through leases or 
other means, with the capacity to purchase more machinery 
and equipment than small-scale farmers. These farmers receive 
more financial, technical, and equipment support to grow 
A. mongholicus individually or cooperatively. Many cooperatives 
involved in A. mongholicus planting tend to sell fresh roots 
to middlemen or processing companies, thus achieving rapid 
capital recovery in the second year of planting. In addition, 
some cooperatives have complete facilities to manage the 
wholesale, and processing of raw materials. After being subjected 
to a series of operations, A. mongholicus medicinal products 
in these VCs are obtained and sold directly to the Chinese 
herbal medicine market and pharmaceutical factories, in the 
hopes of reducing the consumption cost of middlemen and 
others, thereby increasing revenue (Jiang et  al., 2021).

VC 7 started with a planting company. Planting companies 
generally cultivate A. mongholicus in large plantations using a 
high degree of mechanization, comprehensive sprinkler irrigation 
systems, and warehouses storages. After the planting company 

TABLE 2 | Details of the 20 ecological factors used to predict Astragalus mongholicus distribution.

Abbreviation Name Relative contribution Type

BIO1 Mean annual temperature 0.8% Continuous
BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 7.4% Continuous
BIO3 Isothermality 0.5% Continuous
BIO4 Standard deviation of seasonal changes in temperature 11% Continuous
BIO5 Maximum temperature of the warmest month 0.6% Continuous
BIO6 Minimum temperature of the coldest month 20.3% Continuous
BIO7 Range of mean annual temperature 10.8% Continuous
BIO8 Mean temperature of the wettest quarter 5.7% Continuous
BIO9 Mean temperature of the driest quarter 0.9% Continuous
BIO10 Mean temperature of the warmest quarter 0.4% Continuous
BIO11 Mean temperature of the coldest quarter 0% Continuous
BIO12 Mean annual precipitation 0.2% Continuous
BIO13 Precipitation of the wettest month 2.3% Continuous
BIO14 Precipitation of the driest month 6.1% Continuous
BIO15 Precipitation Seasonality (Coefficient of Variation) 1.2% Continuous
BIO16 Precipitation of the wettest quarter 1.2% Continuous
BIO17 Precipitation of the driest quarter 0.3% Continuous
BIO18 Precipitation of the warmest quarter 26.6% Continuous
BIO19 Precipitation of the coldest quarter 3.2% Continuous
BIO20 Altitude 0.5% Continuous
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buys the seeds, it hires farm workers to perform planting, 
weeding, and pest control. This pattern is more common in 
the area surrounding Guyang County, where large stretches 
of land are available for growing A. mongholicus.

Cultivation companies in VC 8 were involved in all VC 
nodes, from production and processing to wholesale. They 
typically rent the land and hire workers to farm, harvest, 
pre-process, and then process the A. mongholicus in the 
Companies’ own processing plants. Processed A. mongholicus 
can be  sold to hospital pharmacies and private clinics. 
Because these planting companies simultaneously fulfill the 
roles of independent farmers, middlemen, and processing 
entities, VCs involving them are simplified, with reduced 
costs and improved economic efficiency. Compared with 
independent farmers and agricultural cooperatives, planting 
companies have a more standardized planting and processing 
model. Moreover, all process stages are traceable, including 
the production chain and planting technology, application 
of fertilizers and pesticides, and quality inspection. The 
wholesale and retail sectors can control the quality and 
supply of A. mongholicus products more directly and achieve 
rational resource allocation and revenue maximization. In 
addition, most planting companies employ local, experienced 
farmers for planting and processing, providing job 
opportunities in the region. These farmers can also find 
other jobs during the off-season, thereby increasing their 
income. Planting companies around Guyang County, based 
on the principles of high-quality standards and timely delivery, 
sell processed A. mongholicus products to wholesale and 
retail departments, optimizing the supply model of 
A. mongholicus products (Bi et  al., 2020).

As an export VC, VC 9 was similar to VC 8 but represented 
export of A. mongholicus products to foreign consumers. In 
this chain, exported A. mongholicus products are subject to 

stricter quality control measures to improve reliability of the 
A. mongholicus production system and achieve reputation and 
marketing goals.

VC 10 was an e-commerce-based supply model. With the 
development of the big data era, the internet-based Chinese 
medicine trade (e-commerce) is becoming increasingly common, 
and the future trend entails a shift of the trade center from 
the market to the place of origin. Contractors (in the form 
of middlemen or small medical processing plants) are the main 
players that buy pre-processed A. mongholicus directly from 
independent farmers or agricultural cooperatives, process it 
into medicinal slices or powder, package it more attractively, 
and sell it online. In theory, e-commerce should offer higher 
profits than traditional marketplaces because of significantly 
lower operating costs; however, the quality control of products 
sold through online platforms requires significant improvement. 
Moreover, e-commerce currently represents a relatively new 
supply model in which sales channels are not yet fully established 
and sales levels are far lower than those of offline sales. Further 
in-depth research is required to address these issues.

Price Volatility and Forecast
In recent years, the price of Chinese herbal medicines has 
significantly varied at high frequency, resulting in strong 
uncertainty and intensified market risk. The price data of 
Mongolian A. mongholicus was collected for 5 years and it was 
evident that the price was not fixed. Price volatility affects all 
stakeholders in the VCs and has a significant impact on the 
income for growers. Uncertainty about prices may affect growers’ 
enthusiasm, resulting in changes in acreage. For wholesalers, 
price uncertainty can lead to backlogs or reduced revenues. 
We  hope to provide stakeholders with a reference value by 
predicting future price trends.

A B

FIGURE 5 | Regional suitability distribution of high-quality A. mongholicus in Guyang County. Its suitability was based on the content of astragaloside IV (A) and 
calycosin-7-glucoside (B).
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First, we  predict the price in 2021 based on the ARIMA 
model, and get the price of A. mongholicus as shown in 
Figure  9A. The prices of A. mongholicus we  collected in 2021 

are all 15 yuan/kg, and the difference from the predicted value 
is within the range of 2 yuan/kg, which has a certain accuracy. 
Meanwhile, the model got a Mean Absolute Percentage Error 
(MAPE) of 3.369%, and R2 was 0.948. Studies have shown that 
when MAPE is less than 10%, the model fit is better (Nakashima 
et  al., 2021), so the ARIMA price prediction model is feasible.

We predicted the price of A. mongholicus in 2022 based 
on the price from 2017 to 2021, and MAPE was 2.755%, R2 
was 0.947. Figure  9B shows data collection date in January 
2017 (horizontal axis), price of A. mongholicus (vertical axis), 
price forecast trend (blue line), and price forecast confidence 
interval (dotted line) is depicted. Those prices indicated after 
January 2022 are forecast prices. During the period from 2017 
to September 2018, the price of A. mongholicus was relatively 
stable. However, during September 2018–May 2020, the price 
of A. mongholicus experienced a rapid decline and recovery. 
After May 2020, the price has remained stable at 15 yuan/kg. 
In 2022, the price of A. mongholicus has a gentle rise and 
gradually stabilized.

According to the ARIMA price forecast model, the market 
price of A. mongholicus in Mongolia may be  expected to show 
a steady future trend, although the overall impact may not 
be  significant. This can be  gradually improved by adjusting 
the supply relationship related to A. mongholicus production, 
processing, and sales, thereby alleviating drastic price fluctuations.

DISCUSSION

Practical Application of SDM Prediction
The quality of medicinal plant products can be  more clearly 
identified in different markets by understanding the internal 
and external linkages between production, processing, and trade 
networks. The added value offered by medicinal plants can 
be  introduced at various stages of plant production. As the first 
step in its VC, A. mongholicus cultivation techniques are essential 
to increasing its value. In our study, the ecological and quality 
suitability of A. mongholicus was partitioned, and the quality 
of this medicinal plant was closely related to the choice of 
cultivation site. Therefore, in the process of converting medicinal 
plant raw materials into high-value products, the realization of 
value depends not only on actual production, but also on scientific 
guidance, which is an indispensable step (Yang et  al., 2020a).

A high overlap was found between the suitable distribution 
area of A. mongholicus and the area with the highest active 
components. However, the environmental data that has the 
greatest impact on the suitable growth of A. mongholicus was 
the precipitation in the warmest quarter, although it was not 
the most important environmental data to promote the 
accumulation of its effective components. In short, although 
there were many similarities between the suitable distribution 
area and the high-quality distribution area of A. mongholicus, 
the ecological and environmental factors affecting the two were 
different. Studies have shown that the promotion of secondary 
metabolite accumulation in medicinal plant tissues is related 
to the interactions of multiple environmental factors (Jiang 
et  al., 2020). The quality of many authentic medicinal plants 

TABLE 3 | Principal component analysis results of original bands in each month.

PC Eigenvalue Percent (%)

(a) June
1 *********** 98.07
2 198653.1435 99.49
3 50204.4439 99.85
4 7833.7430 99.91
5 5591.6879 99.95
6 3837.2299 99.98
7 1600.1198 99.99
8 823.2481 99.99
9 434.7474 100.00
10 402.0703 100.00

(b) July
1 *********** 92.96
2 925510.1174 99.40
3 54794.9855 99.78
4 10584.4943 99.86
5 7311.4799 99.91
6 6335.4789 99.95
7 3513.3720 99.98
8 1921.6643 99.99
9 945.7515 100.00
10 577.5016 100.00

(c) August
1 *********** 93.61
2 667177.0382 99.41
3 45269.5504 99.78
4 9327.8970 99.86
5 4539.5440 99.91
6 3432.8620 99.95
7 2540.6536 99.98
8 1691.1817 99.99
9 761.6588 100.00
10 352.9345 100.00

(d) September
1 *********** 97.76
2 178696.0256 99.35
3 52125.5981 99.81
4 765.1415 99.88
5 5518.4661 99.93
6 4760.6366 99.97
7 1433.4957 99.98
8 1133.7566 99.99
9 559.6960 100.00
10 487.0376 100.00

(e) October
1 *********** 98.52
2 102878.8513 99.36
3 46063.2139 99.73
4 16295.3402 99.86
5 7186.4223 99.92
6 4443.8691 99.96
7 2203.5974 99.98
8 1118.5134 99.99
9 1064.3939 100.00
10 598.6472 100.00

**** represents Eigenvalue, however, its data digits exceed the range displayed by 
ENVI, so the software output is ****.
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is related to certain environmental stressors, and it is proposed 
that the formation of high-quality medicinal materials may 
need to experience unfavorable environmental conditions (Huang 
and Guo, 2007) Therefore, further research is needed to explore 
the influence of the environment on the distribution of high-
quality medicinal plants. However, the contribution of altitude 
to the study was not significant. It may be  that most of 
A. mongholicus in Guyang County was planted in flat and 
broad agricultural land. The altitude range of A. mongholicus 
planting in the whole county was similar, thus the altitude 
had little effect. Whether altitude has an impact on the growth 
of A. mongholicus needs further study in an area with large 
altitude differences.

In this study, the predicted distribution of SDMs was similar 
to the distribution extracted from remote sensing, reflecting 
the major potential of using geographic information to predict 
the distribution of A. mongholicus. Furthermore, the feasibility 
of employing SDMs to guide the introduction and cultivation 
of medicinal plants was demonstrated. In a previous study, 
Wang et  al. (2021b) used MaxEnt to estimate the impact of 
climate change on the distribution of potatoes in China from 
1961 to 2017, predicting its suitable planting areas and guiding 
its planting distribution (Wang et  al., 2021b).

Practical Application of Remote Sensing 
Prediction
Based on the Sentinel-2 imagery, the planting distribution 
information of A. mongholicus in Guyang County was extracted 
and the distribution and planting area of A. mongholicus 
was obtained. This method had high feasibility and can aid 
government departments and farmers to make informed 
production decisions. In particular, government departments 
can identify discrepancies by comparing remotely sensed 
planting data to those reported by farmers or businesses. 
In a previous study, we  used ZY-3 satellite imagery as a 
remote sensing data source to interpret the Saposhnikovia 
planting situation in Naiman Banner. Thereafter, 20 sample 
plots were randomly selected for field measurement, and 
the accuracy was evaluated by comparisons with the 
interpretation results. Subsequent calculations revealed the 
accuracy of extracting the Saposhnikovia planting area at 
93.90%, which meets the requirements of remote sensing 
monitoring of agricultural conditions (Jia et al., 2019). Remote 
sensing technology is widely used in agriculture; however, 
in the investigation of medicinal plant resources, cultivated 
medicinal plants are mainly monitored, whereas wild medicinal 
plants are rarely monitored, and a lot of experimental 

FIGURE 6 | Comparison of random forest prediction results and ecological suitability distribution results.
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verifications thus remain necessary. Subsequent studies should 
further monitor the yield, diseases, and insect pests of 
medicinal plants, so as to provide more statistical data for 

relevant management departments and promote the 
formulation of relevant policies and stable economic  
development.

FIGURE 7 | Six stages of A. mongholicus before reaching consumers.

FIGURE 8 | Primary VCs and stakeholders involved in A. mongholicus produce.
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The Relationship Between Behavior, 
Income, and Quality
In traditional markets, VC stakeholders are inclined to take 
steps toward cost reduction and profit growth, however, this 
can lead to reduced product quality. VC 1 and 2, constructed 
herein, were typical examples of traditional markets. To achieve 
high yield in such VCs, excessive chemical drugs may have 
been used without professional guidance, and unreasonable 
planting measures may have been implemented, resulting in 
reduced quality and safety of A. mongholicus. Therefore, quality 
issues were common in these ventures, although the income 
of farmers was relatively low.

VCs 3–6 reflected relatively standardized market models 
involving larger acreages and more standardized planting patterns 
than that of independent farmers. However, they were highly 
variable and determined the quality of a medicinal materials 
based on the market environment.

In high-quality markets, companies were more comprehensively 
involved with some form of self-regulation. Consequently, their 
brand reputations were improved, thereby increasing their overall 
value. The production in VCs 7 and 8 reflected a high-quality 
product that would enter a high-quality market. Quality products 
are key to the development of a factory, and the reliability and 
traceability of its products allows it to build a good reputation.

In the export market, relevant companies strictly controlled 
every step of the production process and extensive quality 
tracking of A. mongholicus was performed by conducting 
germplasm selection and soil testing in the planting area. As 
such, it was ensured that all aspects (from planting to product 
packaging), met the inspection standards required by foreign 
markets. VC 9 implemented effective quality control measures 
during cultivation and production, resulting in the production 
of high-quality A. mongholicus. This would result in highly 
lucrative returns for the stakeholders. Selling medicinal materials 

A

B

FIGURE 9 | Price forecast for 2021 (A); Price forecast for 2022 (B).
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through e-commerce platforms, as in VC 10, could greatly 
reduce store rental costs. However, several gaps remained in 
the supervision process; high-quality medicinal materials from 
the same source could be  classified into different grades and 
enter the market through different channels. Therefore, the 
behavior and interests of stakeholders, as well as the quality 
and target market of the product, were closely related.

The Chinese herbal medicine industry has a long chain 
with a wide range and many limitations. It is necessary to 
consider the information associated with its cultivation, 
processing, acquisition, storage, transportation, and sales in 
addition to paying more attention to the drug properties of 
Chinese herbal medicines. Moreover, guidance practices on 
the development of the Chinese herbal medicine industry should 
be strengthened, the large fluctuation of total output and prices 
caused by production dispersion should be  alleviated, and the 
establishment of price formation mechanisms oriented by high 
quality and high prices should be  promoted. The Chinese 
herbal medicine industry is highly focused on authenticity. 
Unlike most crops, which focus on production yield, Chinese 
herbal medicines are more oriented toward quality assurance. 
Therefore, the production of Chinese herbal medicines required 
unique developmental directions and ideas.

Price Fluctuation Factors
Along with improvement on the economic level, people pay 
increasingly more attention to their own health care and disease 
prevention. Market price fluctuations of traditional Chinese 
medicines are not only closely related to its production costs, 
but are also affected by factors such as policies, climate, 
and epidemics.

Traditional Chinese medicine plays an active role in the 
early interventional treatment of diseases. Moreover, according 
to existing literature and clinical experience, Chinese herbal 
medicine has a therapeutic effect on COVID-19 (Leung et al., 
2020). These products have become an important part of 
China’s fight against the pandemic, resulting in an increased 
demand for Chinese herbal medicine. Under the current state 
of prevention and control of viral dissemination, it may 
be  difficult to harvest Chinese herbal medicines and its 
transportation may be inconvenienced in some areas, resulting 
in price fluctuations. In addition, due to the impact of bad 
weather patterns, drought and flood disasters have reduced 
production in some areas, and the worldwide spread of the 
epidemic has also led to insufficient supply of imports and 
exports (Wu and He, 2021). Overall, the demand for Chinese 
herbal medicines has increased; however, supply has decreased, 
which inevitably leads to price fluctuations. Nevertheless, it 
is worth noting that the planting area of Chinese herbal 
medicines has annually increased in recent years, which would 
likely improve the supply and demand problem to a certain 
extent and alleviate the sharp price fluctuations.

Limitations of This Study
In this study, we  selected Guyang County as the study area, 
considering that the A. mongholicus grown in this area has 

been recognized as an agricultural geographical indication 
product by the Ministry of Agriculture and Rural Affairs 
of the People’s Republic of China, and the high quality of 
A. mongholicus grown in this area has been recognized by 
the state and society. However, Guyang County is small, 
the A. mongholicus cultivation area is limited, and the 
relationship between supply and demand cannot be improved 
to a large extent. In order to effectively explore the suitable 
planting areas of A. mongholicus in the country, we executed 
a detailed investigation of various data. According to the 
results of the fourth census of traditional Chinese medicine 
resources, there exists a large number of A. mongholicus in 
Northeast, North, and Northwest China, especially in Shanxi 
and Gansu. Nevertheless, this study provides a reference 
for future research.

CONCLUSION

With increasing demand for traditional Chinese medicine in 
China, the sustainable development of the traditional Chinese 
medicine industry has received more attention. In this study, 
we  combined remote sensing technology with SDM to predict 
the suitable growth area of A. mongholicus in Guyang County, 
aiming to provide theoretical guidance for the selection of 
A. mongholicus planting areas. The relationship model between 
the active components and ecological factors of A. mongholicus 
in Guyang County was established to evaluate the main factors 
affecting the accumulation of active components in 
A. mongholicus. Among these ecological factors, mean 
temperature of the coldest quarter (BIO11) played an important 
role in the accumulation of astragaloside IV. Moreover, mean 
diurnal range [mean of monthly (max temp  - min temp)] 
(BIO2) and precipitation of the coldest quarter (BIO19) influenced 
the accumulation of calycaryin-7-glucoside. The northern and 
central regions of Guyang County were predicted to be suitable 
planting areas for high-quality A. mongholicus. Sentinel-2 imagery 
were used to monitor the growth area of A. mongholicus, which 
resembled the actual planting situation and provided data 
references which may be  used by the relevant management 
departments to formulate the required policies and plans for 
conducting economic management. Moreover, the behavior of 
stakeholders, suitability of geographic planting areas, and target 
markets had significant influences on the quality of 
A. mongholicus. Stakeholders in each VC played different roles 
in the cultivation, processing, and sales of A. mongholicus. 
However, in addition to the selected planting area and associated 
quality, yield, pests, and diseases also affected the supply of 
A. mongholicus. In future research, remote sensing technology 
should be  used to monitor the yield, diseases, and insect pests 
of A. mongholicus, balance supply and demand, and aid in 
the development of the A. mongholicus industry. Our research 
proved that it is necessary to conduct a larger-scale and more 
comprehensive study on the suitable cultivation areas of 
A. mongholicus by means of remote sensing and SDM, to lay 
a foundation for deepening its role in the environment and 
to allow for its sustainable utilization.
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With the rise of the trend of advocating traditional Chinese 
medicine and natural medicine in the world, the international 
recognition of medicines and health food produced from natural 
Chinese herbal medicine resources has been increasing, and 
the development and utilization of Chinese herbal medicine 
resources has become an important trend in the development 
of medicine in the world. As a health care product, A. mongholicus 
can be  used both as medicine and as food, and has a wide 
range of uses. In order to give full play to the role of 
A. mongholicus, in addition to continuing to strengthen planting 
techniques, we  should also develop A. mongholicus products 
that meet different needs according to the uniqueness of 
A. mongholicus. Exploiting its market potential is of great 
significance to promoting the development of A. mongholicus 
industry, promoting regional development, and building a green 
A. mongholicus production base.
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Irregular changes in the internal climates of protected cultivation systems can prevent
attainment of optimal yield when the environmental conditions are not adequately
monitored and controlled. Key to indoor environment monitoring and control and
potentially reducing operational costs are the strategic placement of an optimal number
of sensors using a robust method. A multi-objective approach based on supervised
machine learning was used to determine the optimal number of sensors and installation
positions in a protected cultivation system. Specifically, a gradient boosting algorithm,
a form of a tree-based model, was fitted to measured (temperature and humidity)
and derived conditions (dew point temperature, humidity ratio, enthalpy, and specific
volume). Feature variables were forecasted in a time-series manner. Training and
validation data were categorized without randomizing the observations to ensure the
features remained time-dependent. Evaluations of the variations in the number and
location of sensors by day, week, and month were done to observe the impact of
environmental fluctuations on the optimal number and location of placement of sensors.
Results showed that less than 32% of the 56 sensors considered in this study were
needed to optimally monitor the protected cultivation system’s internal environment with
the highest occurring in May. In May, an average change of −0.041% in consecutive
RMSE values ranged from the 1st sensor location (0.027◦C) to the 17th sensor location
(0.013◦C). The derived properties better described the ambient condition of the indoor
air than the directly measured, leading to a better performing machine learning model.
A machine learning model was developed and proposed to determine the optimal
sensors number and positions in a protected cultivation system.

Keywords: air-vapor mixture, artificial intelligence, greenhouse, machine learning, psychrometric properties,
RMSE, time-series big data

Frontiers in Plant Science | www.frontiersin.org 1 July 2022 | Volume 13 | Article 92028494

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.920284
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2022.920284
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.920284&domain=pdf&date_stamp=2022-07-07
https://www.frontiersin.org/articles/10.3389/fpls.2022.920284/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-920284 July 1, 2022 Time: 15:43 # 2

Uyeh et al. Optimal Sensors Placement in Protected Cultivation

INTRODUCTION

The changing climate and depletion of natural resources such
as fossil-based energy, land, and water necessitate improving
resource use efficiency. Protected cultivation systems such as
greenhouses could be essential in efficiently providing nutritious
fresh foods for a growing world population (Stanghellini, 2013).
Higher water use efficiency per unit area of crop production
has been recorded in protected cultivation systems compared to
open-field cultivation (Li et al., 2010). This could be a potential
solution to land scarcity. Where disasters such as pandemics
make farms momentarily less accessible, remotely controlled and
autonomous cultivation strategies would be beneficial.

However, the benefits in these systems come at higher energy
demands, especially when poor decisions are made based on
incorrect monitoring of the micro-climate. Overheating and
consequently poor plant growth and ensuing economic losses
could be one such result (Park and Park, 2011). Protected
cultivation systems could, however, be capital intensive.
Improved efficiency will reduce the system’s energy consumption
and reduce production costs (DeFacio et al., 2002; Vox et al.,
2010).

In protected cultivation systems, irregular changes or high
fluctuations in indoor climatic conditions can be deleterious to
productivity. Temperature and relative humidity management to
meet specific plant requirements is critical for survival, optimum
growth, and enhanced productivity (DeFacio et al., 2002; Vox
et al., 2010). The optimal placement of the minimum number of
sensors for measuring the micro-climate of protected cultivation
systems is critical for their efficient use and sustainability. The
protected cultivation system has a high level of variability caused
by plant respiration and heating systems.

Ventilation causes air movement and consequently the
uniformity of the environment. In Guzmán et al. (2019), the wind
direction was reported to have a significant effect on ventilation
rate, airflow, and crop temperature distributions. Also, in Li
et al. (2010), it was observed that temperature did not rise
linearly between inlet and fans and was higher at or above the
top of the crop canopy than within it in a full-size house but
not in a glasshouse compartment. A method for determining
the optimal number and locations of the sensors would be
necessary to accurately measure the environment of a protected
cultivation system.

Recent high-tech protected cultivation systems are equipped
with advanced sensors for monitoring parameters such as
temperature, relative humidity, CO2, and light. This is
done to improve monitoring and control of micro-climate
parameters and sometimes facilitate remote-controlled and
autonomous cultivation. Decisions may be made based on
various actuators used to regulate heating, lighting, cooling,
dosing of CO2 and fertilizers, dehumidification, irrigation,
screening, fogging, as examples (Nelson, 1991; Uyeh et al.,
2019, 2021; Bhujel et al., 2020; Gadekallu et al., 2021). These
actuators operate based on sensors providing feedback on
measured data for the control loop set points configured
in a computing device (Stanghellini, 2013; Graamans et al.,
2018).

In autonomous growing systems (Stanghellini, 2013;
Graamans et al., 2018; Hemming et al., 2020), deployment of the
more costly, high-precision sensors have added benefits such as
durability and reduced capital costs in the long-term. Decisions
based on imprecise measurements could result in poor plant
growth (due to under-or over-heating) or irreversible damage
and associated economic losses. An additional benefit of using
more precise sensors is energy savings.

Growers constantly face decision-making and optimization
problems in agriculture. Multiclass models have been used to
develop multivariate statistical methods in agriculture (Guzmán
et al., 2019) and Principal Component Analysis - whale
optimization-based neural networks to classify diseases in plants
(Li et al., 2010). Others include algorithms and systems for
improved decision-making and optimizations (Nelson, 1991;
DeFacio et al., 2002; Vox et al., 2010; Park and Park, 2011; Uyeh
et al., 2019; Gadekallu et al., 2021). Machine learning provides
opportunities to solve complex tasks such as optimal sensor
placement because of its capabilities to efficiently compute vast
and complex datasets with a high success ratio and fewer errors
(Syed and Hachem, 2019a,b).

To solve the optimal sensors placement problem, this study,
(a) designed and fabricated temperature and humidity sensors
to monitor every section of a protected cultivation system and
accurately collect data per minute were, (b) derived psychometric
properties to understand better, the actual condition and behavior
of the air-vapor mixture in a protected cultivation system, and
(c) proposed a machine-learning solution based on the derived
psychometric properties.

A machine learning algorithm, the Gradient Boosting
Algorithm, was implemented as a multi-objective approach to
determine the optimal number of sensors and locate their
best position. The objective function of this algorithm was to
minimize the root mean squared error (RMSE) and the number
of sensors using two multiple hyper-parameter tuning algorithms
(Random Search and Grid Search).

Related Works
Growers constantly face decision-making and optimization
problems. Multiclass models have been used to develop
multivariate statistical methods in agriculture (Gadekallu et al.,
2021) and principal whale optimization-based neural networks
to classify diseases in plants (Gadekallu et al., 2021). Others
include algorithms and systems for improved decision-making
and optimizations (Park et al., 2019; Syed and Hachem, 2019a,b;
Uyeh et al., 2019, 2021; Bhujel et al., 2020). Using an inadequate
number of sensors may lead to under-performance, while a
likely result of being superfluous is large sizes of redundant data
and its associated management problems. The sensor placement
problem has been recognized and studied in other fields. These
include fire detection in a target region (Li et al., 2013), air
and water quality monitoring (Du et al., 2014; Fontanini et al.,
2016), and monitoring physical activity in humans with a three-
dimensional accelerator (Boerema et al., 2014). Others include
structural health monitoring based on modal data (Chang and
Pakzad, 2014; Tong et al., 2014) and mid and low frequency
range methods (Rao et al., 2014). Attempts have been made to
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FIGURE 1 | Workflow for optimal sensor selection using (state method) in a protected cultivation system.

FIGURE 2 | Location of the experimental greenhouse (G) used for data
collection for optimal sensor placement study.

determine the optimal sensor selection and location in internal
environments, focusing on structures stability (Worden and
Burrows, 2001; Löhner and Camelli, 2005; Wang et al., 2009;

Chang et al., 2012; Hu and Patel, 2014; Huang et al., 2014;
Arnesano et al., 2016; Seabrook, 2016). Worden and Burrows
(2001) studied the optimal temperature sensor location using
an error-based approach for monitoring a stadium’s heating,
venting, and air-conditioning systems.

As the environment in protected cultivation systems is
dynamic, optimal sensor placement may involve the following
scenarios: (a) multiple sensor types required in one system with
two or more sometimes embedded as one (Faris and Mahmood,
2014); (b) movements of the rising and setting sun which affects
the internal data (Cossu et al., 2014; Wang et al., 2014); (c)
multiple layers of plant beds with varying atmospheric conditions
at each level (Pamungkas et al., 2014); and (d) the influence of
other internal structures of the system.

Techniques for selecting and installing sensors for monitoring
and controlling climatic conditions in protected cultivation
systems such as plant factories, greenhouses, etc., have been
mostly heuristic. Feng et al. (2013), simulated greenhouse internal
air temperature and wind-velocity distributions and suggested
that the optimal sensor location is where the air and speed do
not change rapidly. Several approaches, such as z-index, the
outliers, and statistical measures, including central tendency and
dispersion measures, have been employed (Lee et al., 2019). This
study’s limitation was the low volume of air temperature data and
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FIGURE 3 | The experimental greenhouse with temperature and relative humidity sensors installed; (A) front view; (B) side view for optimal sensor placement study;
and (C) with growing strawberry plants and fan for mechanical ventilation circled in broken red lines.

FIGURE 4 | Wireless system architecture for remote sensing of the protected cultivation system.

the non-inclusion of other influencing environmental variables
such as humidity and light. In more complex and larger-sized
systems, statistically based techniques incapable of handling big
data would be ineffective.

Some studies attempted to use machine learning to determine
the number of optimal sensors and identify their locations
(Aydin et al., 2019), however, derived conditions (dew point
temperature, humidity ratio, enthalpy, and specific volume),
or some other environmental variables were not taken into
consideration to provide a better representation of the protected
cultivation system state. According to Ponce et al. (2014),
most analytic models focusing on controlling the internal
environment of protected cultivation systems have been based
on a state-space relationship. This state-space form includes
variables such as indoor temperature, humidity, energy input,
outdoor temperature, wind speed, time, etc. Further, they (Ponce
et al., 2014) recorded temperature and humidity are influential
variables used to simplify the greenhouse state. Psychometric
properties such as dew point temperature, humidity ratio,
enthalpy, and specific volume would be beneficial to better

represent the greenhouse’s dynamic behavior, especially since air
is mixed with vapor (Czubinski et al., 2013).

METHODOLOGY

a. Overview
Temperature and relative humidity data were collected

remotely from a protected cultivation system located on the
research farm of Kyungpook National University, South Korea.
Data was collected over seven months (February, March, April,
May, June, July, and October). The time-series observation
for the two conditional parameters recorded per minute were
representative data.

The temperature and humidity data were preprocessed, and
four psychometric variables (dew point temperature, humidity
ratio, enthalpy, and specific volume) were derived and used to
model the protected cultivation system’s indoor environment.
The algorithm was trained on 70 % of the data to ensure
generalization and no overfitting. The metric of evaluation,
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FIGURE 5 | Graphs of (A) training data; and (B) test data used in data preprocessing for sensor A1 in optimal sensor placement study.

RMSE, was minimized by tuning the algorithm’s hyper-
parameters (parameters whose values are used to alter the
machine learning algorithm’s learning rate) iteratively. Based on
each month, sensor ranking was carried out. Furthermore, the
number of optimal sensors required daily, weekly, and monthly
was determined in a supervised manner. Figure 1 shows the
workflow for optimal sensor selection. The data is collected
using the fabricated temperature and humidity sensors and
stored in a cloud system. The collected data was preprocessed
using forward fill and transformed into psychrometric variables.
The preprocessed temperature, humidity, and transformed
psychrometric data were used to develop the supervised
machine learning model. Optimal sensor selection was done by
minimizing RMSE using hyper-parameter tuning.

b. Experiment setup and protected cultivation system
location

A Quonset-shaped protected cultivation system
(greenhouse) located on the research farm of Kyungpook
National University, Daegu, South Korea (35◦53′43.0
N and 128◦36′49.1 E) was selected for this study. The
greenhouse is used to cultivate strawberries and is close
to two inner roads and a major road with heavy vehicular
traffic (Figure 2).

Fifty-six 2-in-1 temperature and humidity sensors were
installed on eight rows and seven columns, each at 3 m horizontal
and 1 m vertical distance apart for uniformity (Figure 3). The
sensors were specifically manufactured to have a similar range
(and error) of−20◦C to 80◦C (± 0.3◦C) and 0% to 100% (± 2%)
for temperature and relative humidity, respectively. The sensors
were installed in different columns represented with A – H
(Figure 3A) and seven fixed rows in Figure 3C. To prevent solar
radiation from interfering with readings and causing errors, the
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FIGURE 6 | Flow chart showing the summary of the model building process for optimal sensor selection.

sensors were enclosed in a plastic covering. Constantly running
ventilation fans were installed in the greenhouse (Figure 3B).

c. Environmental sensing of protected cultivation system and
data collection

A network controller (U-NWC-W-7S, UBN, Daegu,
South Korea) was installed to minimize the temperature and
relative humidity data collection error from the 56 sensors. The
controller has a distributed processing system, a radio frequency
of 447.9 MHz, enabling mobile software development for
real-time data retrieval from the sensors. The sensor-controller
system’s architecture is shown in Figure 4.

The sensors were tightly installed to prevent movement and
connected via cables to the sensor nodes, which transferred data
via gateways to a server and then to a mobile telephone device.
This wireless system enabled consistent remote monitoring.
Preventive maintenance of the systems was regularly carried out
to avert errors from factors such as sensor clogging.

d. Variability analysis of greenhouse environmental data
The variability of the conditions within the greenhouse was

measured by calculating the Coefficient of Variation (CV) as
the ratio of the standard (Equation 1) deviation to the mean
temperature/humidity in each period (when expressed as a
percentage) as used by Ayalew et al. (2012) and Kassie (2014).

Coefficient of Variation (CV) =
Standard deviation, σ

Mean, µ
(1)

e. Dynamic time warping to determine the effect of the plants
on microclimate distribution

i. Data Description
Using the hourly reading of the temperature and relative

humidity data collected in March with plants and June when the

TABLE 1 | Coefficient of Variation for temperature-relative humidity data for
estimating the variability of the greenhouse.

Month Temperature CV (%) Relative humidity CV (%)

June 22.1 36.70

October 25.26 38.96

February 40.43 32.53

July 14.08 19.30

March 42.30 42.09

May 24.65 38.31

greenhouse was without plants, the data dimensions for March
and June were 744, 113, and 720, 113, respectively.

ii. Implementation of dynamic time warping algorithm
The dynamic time warping (DTW) algorithm, following

Furlanello et al. (2006) and given below, was implemented to
ascertain the effect of the plants on the microclimate distribution
of the greenhouse.

Input:
series: u = {u1, u2,..., uTu }
series: v = {v1, v2,..., vTv }
Base conditions :
g (0,0) = 0
g (1,1) = d (u1, v1)·wD
g (i,0) =∞ for 1 ≤ i ≤ Tu
g (0, j) =∞ for 1 ≤ j ≤ Tv
Recursive relation:

g(i,j) = min


g(i, j− 1)+d(ui, vj) · wv

g(i− 1, j− 1)+d(ui, vj) · wD
g(i− 1, j)+d(ui, vj) · wH

for 1 ≤ i ≤ Tu and 1 ≤ j ≤ Tv
Alignment deduction by tracing back from g (Tu,

Tv) to g (0,0).
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FIGURE 7 | Plots of temperature data for (A) March and June; and (B) optimal match of the time series.

Where Tu and Tv are the time points for series u and v,
respectively; d is the local distance minimized by the DTW
algorithm to find the minimum cost path or best alignment; g is
the matrix of the dynamic table construction of (Tu + 1)× (Tv +

1); wH , wD, wV are the weight configuration for horizontal (H),
diagonal (D) and vertical (V) time distortions.

f. Protected Cultivation Environmental Data Preprocessing
Preprocessing the data involved standardizing features (sensor

locations) and treating missing values. To standardize the
features within a range of 0 to 1, feature scaling was done.
Train-validation split was carried out in a time series to
avoid a randomized or highly stochastic output. The tree-
based algorithm (Gradient Boosting) was fitted on the training
data and validated on the remaining (or unseen) portion to
prevent overfitting.

Missing data was less than 1%, and these were
treated with forward (or backward) filling given the
appropriateness of this approach for the observations
recorded within a minute. Figure 5 shows the result of the
data preprocessing at sensor A1.

From the two condition parameters – temperature and
humidity – psychometric properties (dew point temperature,
humid ratio, enthalpy, and specific volume) describing the air

vapor mixture (Czubinski et al., 2013) in the greenhouse were
derived. This helped to determine more features of importance
as condition parameters for the greenhouse environment.

g. Derivation of Psychometric Variables
Equations 2–5 were used to convert the raw temperature and

relative humidity data into dew point temperature, humidity
ratio, enthalpy, and specific volume (Handbook, 2001):

Dew point temperature (◦C), Td =
T− (100− RH)

5
(2)

Humidity ratio, w =
0.62198Pw

P− Pw
(3)

Enthalpy(kJ/kg), h = 1.006T+ w (2501+ 1.805 (T)) (4)

Specific volume (m3/kg), v =
RdaT

P− Pw
(5)

Where T was internal temperature; RH, relative humidity; Pw,
partial pressure of water vapor; P, total pressure; and Rda, gas
constant for dry air = 287.055 J/(kg K).
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TABLE 2 | Performance of a sensor network in identifying the optimal number of
sensors and placement for measuring greenhouse conditions across different
months using temperature data.

Index Sensor location (s) RMSE (◦C)

February (F7)

0 C2 0.0448124

1 C2, H7 0.0133850

2 C2, H7, B7 0.0114320

3 C2, H7, B7, A1 0.0102077

4 C2, H7, B7, A1, D6 0.0108046

5 C2, H7, B7, A1, D6, F1 0.0110145

March (G7)

0 H7 0.0380515

1 H7, D5 0.0278228

2 H7, D5, F7 0.0239464

3 H7, D5, F7, A7 0.0215741

4 H7, D5, F7, A7, B7 0.0196743

5 H7, D5, F7, A7, B7, B4 0.0194982

6 H7, D5, F7, A7, B7, B4, C7 0.0199467

7 H7, D5, F7, A7, B7, B4, C7, E7 0.0200142

April (F7)

0 D6 0.0397207

1 D6, D7 0.0349923

2 D6, D7, F6 0.0288990

3 D6, D7, F6, F4 0.0286996

4 D6, D7, F6, F4, H7 0.0285790

5 D6, D7, F6, F4, H7, G7 0.0270916

6 D6, D7, F6, F4, H7, G7, F5 0.0268920

7 D6, D7, F6, F4, H7, G7, F5, F3 0.0266292

8 D6, D7, F6, F4, H7, G7, F5, F3, E6 0.0260851

9 D6, D7, F6, F4, H7, G7, F5, F3, E6, E7 0.0226352

10 D6, D7, F6, F4, H7, G7, F5, F3, E6, E7, H6 0.0224960

11 D6, D7, F6, F4, H7, G7, F5, F3, E6, E7, H6, D2 0.0224442

12 D6, D7, F6, F4, H7, G7, F5, F3, E6, E7, H6, D2, D5 0.0223317

13 D6, D7, F6, F4, H7, G7, F5, F3, E6, E7, H6, D2, D5, C6 0.0226247

14 D6, D7, F6, F4, H7, G7, F5, F3, E6, E7, H6, D2, D5, C6, D3 0.0226412

May (D4)

0 A2 0.0291603

1 A2, B2 0.0288598

2 A2, B2, B3 0.0266414

3 A2, B2, B3, F1 0.0235686

4 A2, B2, B3, F1, D3 0.0171915

5 A2, B2, B3, F1, D3, H1 0.0172351

6 H7, D5, F7, A7, B7, B4, C7 0.0173482

June (D5)

0 D4 0.0115102

1 D4, D3 0.0105300

2 D4, D3, C6 0.0103634

3 D4, D3, C6, C2 0.0104309

4 D4, D3, C6, C2, C4 0.0106421

July (D4)

0 D5 0.0069262

1 D5, F1 0.0062005

2 D5, F1, D6 0.0061786

3 D5, F1, D6, D3 0.0051103

4 D5, F1, D6, D3, C4 0.0050485

(Continued)

TABLE 2 | (Continued)

Index Sensor location(s) RMSE (◦C)

5 D5, F1, D6, D3, C4, D2 0.0050180

6 D5, F1, D6, D3, C4, D2, C6 0.0048374

7 D5, F1, D6, D3, C4, D2, C6, F7 0.0047972

8 D5, F1, D6, D3, C4, D2, C6, F7, E1 0.0046052

9 D5, F1, D6, D3, C4, D2, C6, F7, E1, H7 0.0046170

10 D5, F1, D6, D3, C4, D2, C6, F7, E1, H7, F4 0.0046221

October (B7)

0 B1 0.0397534

1 B1, D3 0.0355036

2 B1, D3, B2 0.0373681

3 B1, D3, B2, F1 0.0381142

NB: Sensor location in parenthesis implies the location with the least RMSE value -
most important (predictor). The bolded values represent optimal sensor locations.

Optimal Sensors Placement Problem
Formulation
Objective 1: Minimizing the RMSE (Sensor Location Ranking)

A single sensor location that gives the maximum gain to
the objective function (Equation 6) was selected from all the
environment’s 56 possible positions. Furthermore, having fixed
the previous selection of the best sensor location, the following
location was determined from the remaining (56 – 1 = 55)
locations that gave the best improvement in the objective –
lowest RMSE. This technique was applied iteratively until the last
sensor location was determined. That is, RMSEmin,1, RMSEmin,2,
RMSEmin,3,. . ., RMSEmin,56, where 1, 2,. . ., 56 are placeholders
for the sensor nodes, A1, A2,. . ., H7 (not necessarily in this order
but ranked by the minimum RMSE at each node).

RMSEmin_N =

√∑n
i = 1 (xi (i, t)− xˆi (i, t))2

n
(6)

Where N was sensor location number, xi (i, t) is the actual
observation of the climatic variables at location i and time t,
xˆi (i, t) was the estimated value, and n was the total number of
nodes or sensor locations.

N submatrices of the matrix, A of m × n representing
the data, such that, A ∈ Rm × n were derived to represent the
observations at each sensor node given that Sm,p→q ∈ Rm × p→q

∀ m, n, p, q ∈ N {p, q < n}. p→ q took an element from the
start of the column of a particular sensor location to the end of
the column (a node was defined at column index p and q-1 with
temperature and humidity index, respectively, for a two-in-one
sensor). Sub matrix, S of elements aij where i = 1, 2, . . ., m; j = 1, 2,
. . ., q-1 is ordered in a rectangular frame as shown in Equation 7.

S =
[

a1pa1q−1a2pa2q−1
...
... ampamq−1

]
, aij ∈ R (7)

A supervised learning approach was employed for this study.
As such, a response or target variable (climatic variables to be
predicted by the input features), yt+k was derived by making
a k-step forecast of a column (feature) of the submatrix, S for
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FIGURE 8 | Root mean squared error curves showing the reduction in error at different numbers of sensors using temperature and relative humidity data for
(A) February; (B) March; (C) April; (D) May; (E) June; (F) July; and (G) October.

k ∈ N. All observations were made per minute and the response
variable at time t was one step ahead of the observation; thus,
k = 1. A machine learning model simply represented in Equation
8 where d = 1, 2, . . . D were index features, was fitted on the new
data matrix, C ∈ Rm × 3

⊇ S and evaluated by the performance
metric, RMSE. This was carried out for all sensor nodes, and the
RMSEs were used to rank the order of importance of the sensor
nodes – in the order of increasing RMSE values. This implied a
larger improvement to the objective function is used to rank the
sensors.

f : RD
→ R (8)

Objective 2: Minimizing the Optimal Number of Sensors
The second objective of this study was to determine the

minimum optimal number of sensors and the sensor location
ranking. Having determined the sensor location that gave the
most considerable improvement to the objective function, the
target variable, yt+k was taken to be a one-step forecast of one
of the environmental variables (temperature) readings at this
location. Following Li (2016), a gradient boosting model at each
point m of M stages, Gm such that 1 ≤ m ≤ M was fitted
on the preprocessed data, with the subsequent addition of some
estimators, hm(x)(regression trees) to improve the model by
compensating for the inadequacy of the existing model Gm(x)
(Equation 9).

Gm1(x) = Gm(x)+ hm(x) (9)

Gm1(x) is the new model, Gm(x) is the existing model and
hm(x) is the regression tree.

As a supervised learning problem for the training data,
{(x1, y1), ..., (xn, yn)}, an approximation function, Gˆ(x)
extended a function G(x) to minimize the objective function
given as R(yt+k, G(x)) by starting with a model containing
function G0(x) and expanding the model as given in Equations
10 and 11.

G0(x) = arg min
ţ

n∑
i=1

R(yi, µ) (10)

Gm(x) = Gm−1(x)+ [

n∑
i=1

R(yi, Gm−1(xi)+ hm (xi))] (11)

where i ∈ N, hm ∈ H is a base learner function.
The model was updated by applying the steepest gradient

descent to the minimization problem in Equations 12 and 13.

Gm(x) = Gm−1 (x)− µm

n∑
i=1

∇Gm−1 R(yi, Gm−1 (xi)) (12)

µm =

n∑
i=1

R(yi, Gm−1(xi)− µ∇Gm−1 R(yi, Gm−1 (xi))) (13)

where the derivatives are taken concerning the functions Gi for
i ∈ {1, , m} and m was the step length.

An N number of sensor locations was considered, where
RMSEmin,1 < RMSEmin,2 < RMSEmin,3 < RMSEmin,4 < . . . <
RMSEmin,N for each node from 1, 2, . . ., N. A one-step-
ahead time forecast at node 1 was taken as the response
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TABLE 3 | Performance of sensor network in identifying the optimal number of
sensors and placement for measuring greenhouse conditions across different
months using relative humidity data.

Index Sensor location(s) RMSE (%)

February (F7)

0 C2 0.0299539

1 C2, H7 0.0115791

2 C2, H7, B7 0.0095410

3 C2, H7, B7, A1 0.0094043

4 C2, H7, B7, A1, D6 0.0093536

5 C2, H7, B7, A1, D6, F1 0.0093313

6 C2, H7, B7, A1, D6, F1, C3 0.0092886

7 C2, H7, B7, A1, D6, F1, C3, D3 0.0093494

8 C2, H7, B7, A1, D6, F1, C3, D3, F2 0.0094121

March (G7)

0 H7 0.0399899

1 H7, D5 0.0266852

2 H7, D5, F7 0.0190371

3 H7, D5, F7, A7 0.0163404

4 H7, D5, F7, A7, B7 0.0156854

5 H7, D5, F7, A7, B7, B4 0.0158632

6 H7, D5, F7, A7, B7, B4, C7 0.0159132

April (F7)

0 D6 0.0397690

1 D6, D7 0.0347859

2 D6, D7, F6 0.0307091

3 D6, D7, F6, F4 0.0305697

4 D6, D7, F6, F4, H7 0.0304953

5 D6, D7, F6, F4, H7, G7 0.0290896

6 D6, D7, F6, F4, H7, G7, F5 0.0288381

7 D6, D7, F6, F4, H7, G7, F5, F3 0.0289097

8 D6, D7, F6, F4, H7, G7, F5, F3, E6 0.0291045

May (D4)

0 A2 0.0255216

1 A2, B2 0.0252681

2 A2, B2, B3 0.0215447

3 A2, B2, B3, F1 0.0199938

4 A2, B2, B3, F1, D3 0.0179418

5 A2, B2, B3, F1, D3, H1 0.0181023

6 H7, D5, F7, A7, B7, B4, C7 0.0194512

June (D5)

0 D4 0.0129441

1 D4, D3 0.0105844

2 D4, D3, C6 0.0109450

3 D4, D3, C6, C2 0.0110102

July (D4)

0 D5 0.0152904

1 D5, F1 0.0143873

2 D5, F1, D6 0.0148891

3 D5, F1, D6, D3 0.0152913

October (B7)

0 B1 0.0343254

1 B1, D3 0.0302872

2 B1, D3, B2 0.0298292

3 B1, D3, B2, F1 0.0312717

4 B1, D3, B2, F1, D2 0.0324157

NB: Sensor location in parenthesis implies the location with the least RMSE value -
most important (predictor). The bolded values represent optimal sensor locations.

or target variable to be used as a predictor for other nodes
to determine the performance of placement, while, for the
first aspect, the input features were environmental variables
(temperature and humidity), and the second aspect, the four
psychometric properties (dew point temperature, humid ratio,
enthalpy, and specific volume), plus crucially engineered features
of the date/time object variable. The overall RMSE continued
to decrease, indicating improvements in the sensor stacking
performance until a point was reached where there was no further
minimization of the objective function. At this point, the number
of sensors was considered as being optimal. The pseudo-code
below illustrates the algorithm for optimal sensor selection, and
Figure 6 shows the summary of this process. The algorithm
used flow conditional statements that iterated the whole process
of ranking. The RMSE was the objective function. It was the
metric for evaluating the variability due to the disturbances in the
greenhouse’s climate. The ranking was done by using a time-series
forecast methodology. The RMSE compared the predicted values
with the actual values.

The RMSE was minimized by tuning the hyper-parameters of
the algorithm to obtain the best result. This also ensured that
the ranking was not subjected to fluctuations and the optimal
selection was accurate no matter how many times the pipeline
was automated/re-run.

Optimal sensor selection pseudo-code.

Input: Temperature-humidity dataset, A ∈ Rm × n, of(m × n) dimension
Output: Set of optimal sensors
Ranking of. . .
Ranking of sensors
1 Create data-frame for each sensor location
2 Split into Xtrain and Xval in a time-series manner
3 Derive target variable by forecasting a feature’s observations
4 Split into ytrain and yval

5 Fit the model on the data
6 Append sensor locations to a list by RMSE ranking (Update the list of sensors
iteratively with the corresponding RMSE values in an ascending order to show
ranking)

Optimal number of sensors
7 Initialize optimal sensors (p) to 0
8 Assign v to 56 (total number of sensors)
9 for i = 1 to v do
10 Fit model on training set and score
11 if hyper-parameter is not optimal do
12 try other combinations of hyper-parameters
13 else do
14 append RMSE values [Equation 6]
15 increment p by 1
16 return p

EXPERIMENTAL RESULTS AND
DISCUSSION

In (Lee et al., 2019), a statistical approach was adopted for optimal
sensor selection. Our study advanced the optimal sensor selection
by developing a machine learning model using generated time-
series big data and transformed psychrometric variables. In
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TABLE 4 | Seasonal variation in optimal sensor placement.

February (Winter) March (Spring) April (Spring) May (Spring) June (Summer) July (Summer) October (Autumn)

U Td w h v U Td w h v U Td w h v U Td w h v U Td w h v U Td w h v U Td w h v

F7 F7 F7 F7 F7 G7 G7 G7 G7 G7 F7 F7 F7 F7 F7 D4 D4 D4 D4 D4 D5 D5 D5 D5 D5 D4 D4 D4 D4 D4 B7 B7 B7 B7 B7

C2 C2 C2 C2 C2 H7 H7 H7 H7 H7 D6 D6 D6 D6 D6 A2 A2 A2 A2 A2 D4 D4 D4 D4 D4 D5 D5 D5 D5 D5 B1 B1 B1 B1 B1

H7 H7 H7 H7 H7 D5 D5 D5 D5 D5 D7 D7 D7 D7 D7 B2 B2 B2 B2 B2 D3 D3 D3 D3 D3 F1 F1 F1 F1 F1 D3 D3 D3 D3 D3

B7 B7 B7 F7 F7 F7 F7 F6 F6 F6 F6 F6 B3 B3 B3 B3 B3 C6 C6 C6 C6 C6 D6 D6 D6 D6 D6

A1 A1 A7 A7 A7 A7 F4 F4 F4 F4 F1 F1 F1 F1 F1 C2 D3 D3 D3 D3 D3

D6 D6 B7 B7 B7 B7 H7 H7 H7 H7 D3 D3 D3 C4 C4 C4 C4 C4 C4

B4 B4 B4 G7 G7 G7 G7 H1 H1 H1 D2 D2 D2 D2 D2

C7 C7 C7 F5 F5 A4 A4 A4 C6 C6 C6 C6 C6

E7 E7 E7 F3 F3 C4 C4 C4 F7 F7 F7 F7 F7

D7 D7 E6 E6 A3 A3 A3 E1 E1 E1 E1

D4 D4 E7 E7 D2 H7

H6 H6 C2 F4

D2 D2 E1 F5

D5 C1

A6

C3

B1

(3) (3) (6) (6) (4) (9) (11) (11) (6) (3) (13) (4) (14) (7) (7) (17) (5) (10) (10) (5) (6) (4) (4) (4) (4) (9) (13) (10) (10) (10) (3) (3) (3) (3) (3)

Keys: U – untransformed (raw temperature and humidity) data. Td – dew point temperature. w – humidity ratio. h – enthalpy. v - specific volume.

the results obtained in Lee et al. (2019), sensor locations with
the highest entropy were selected as optimal because of high
disturbance from the wind. We implemented an algorithm on
time-series big data and transformed psychrometric variables that
choose sensors that can best monitor the state of the greenhouse
optimally using hyper-parameter tuning.

Variability Analysis: Coefficient of
Variation of Greenhouse Temperature
and Humidity Data
The coefficient of variation (CV) of the climate data was
calculated for all the studied months. The CV was used
to determine the extent of variability of the greenhouse by
computing the ratio of the standard deviation to the mean of the
temperature or relative humidity values.

During the summer period (June and July) in Table 1, it was
observed that the temperature variation was the least, indicating
the data points have the minimum difference from the mean
compared to other periods. July showed the least CV for the
relative humidity data but differed slightly from June and showed
a slightly higher value than February. Similarly, the greenhouse
had the least variability in the summer months for relative
humidity. Considering plants were not grown during this period
in the greenhouse could be a reason for the low variation in
greenhouse climate properties. During aerobic respiration, plants
use oxygen and emit carbon dioxide (Kader and Saltveit, 2002),
which affects the properties of the greenhouse. Generally, this was
observed in other months in which plants were grown.

February and March (the end of winter and the beginning
of spring) are the two months with the highest temperature
CV (40.43% and 42.30%, respectively), similarly with a very

high humidity CV (32.53% and 42.09%, respectively). This was
probably caused by the changing season, with a sharp change in
weather conditions. February and March recorded a low of−9◦C
and −2◦C, respectively. Both months had a high of 24◦C. An
increment of 9.15% and 30.94% in the temperature and humidity
standard deviation, respectively, were observed in March.

The Effect of the Plants on the
Microclimate Distribution
The dynamic time warping algorithm was implemented to
measure the similarity between March and June sensor readings.
Figure 7A shows the plot of the March and June sensor reading
per hour for the temperature data, and Figure 7B shows the
alignment match plot of the series. The optimal match between
the two series, as shown in Figure 7B, cannot be understood
visually since the dataset is quite large.

The first index from the i sequence matches with at least 250
indices of the j sequence. This implies that the first hour of June
matches with the first 11 days of March with a minimal cost path
as indicated by the vertical line. This implied that there were no
statistically significant changes in the climatic condition of the
greenhouse. However, before the end of the first day in June, a
slow change in the graph indicated a shift of alignment between
the two months. A significant match occurred at the 170th index
of the j sequence (7th day of June) with the 352nd index of the i
sequence (toward the evening of the 14th day of March).

This similarity was stable for about 48 h (2 days). The overall
climatic condition of the greenhouse, by the temperature, in the
last seven days in June matched closely with the state of the
greenhouse within the previous two days of March, with minor
variations.
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FIGURE 9 | Optimal sensor selection for spring month using the psychometric dataset; (A) April daily; and (B) weekly.

Almost all points of the i and j indices had unique matches
for the relative humidity data. A lesser number of matches of
the indices was observed. This high linearity implied that the
absence of crops in June did not have much effect on the relative
humidity of the greenhouse compared to the temperature. This
also justified a lesser percentage decrease from March to June in
the relative humidity CV than the CV of temperature as shown
in Table 1.

Temperature-Relative Humidity Data
The optimal hyper-parameters were n_estimators = 1000 and
learning_rate = 0.01, while max_depth ranged from 2 to 7, as
selected by the iterative algorithm. These hyper-parameters were
used to tune the algorithms to learn the data with the maximum
performance. Seven months (February, March, April, May, June,
July, and October) were selected as representative months to
cover the four seasons (winter, spring, summer, and autumn) and
used in the simulations.

In Table 2, index numbers 3, 5, 12, 4, 3, 8, and 1 with the least
RMSE values of 0.0102077, 0.0194982, 0.0223317, 0.0171915,
0.0103634, 0.0046052, and 0.0355036 were recorded as optimal

sensors numbers and locations for February, March, April, May,
June, July, and October, respectively, for temperature data. At
some months, the RMSE values start increasing, indicating that
the addition of more sensors would instead reduce the quality
of the data. These presented the sensors that measured the air-
moisture condition in the greenhouse most accurately in the
different months. The sensors acted as features or variables used
for training the machine learning model. Through ranking, the
number of sensors required was determined with the RMSE
indicating the model’s performance in predicting the best sensor
location. The more relevant the feature(s), the lower the RMSE.
The row (bolded) beyond which the RMSE no longer decreased
was taken as the optimal. Table 2 shows index number that a
high variation in the optimal number of sensors occurred at
different months with a total number of 4, 6, 13, 5, 3, 9, and
3 sensors were optimal for measuring the greenhouse’s internal
environment in February, March, April, May, June, July, and
October, respectively.

Furthermore, investigation of the Pareto front, a set of
nondominated solutions chosen as optimal when no objective
can be improved without sacrificing at least one other objective,
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FIGURE 10 | Optimal sensor selection for summer month using the psychometric dataset; (A) July daily; and (B) weekly.

helped enhance decision-making. The two conflicting objectives
showed a reduction in RMSE values at all the investigated
months with increasing selected sensors. However, to reduce
the RMSE and number of conflicting sensors, the Pareto
front displayed the knee points where a less significant RMSE
occurred. In February, (Figure 8A), a drastic reduction (about
66%) in the RMSE value between one and two sensors with
a slighter decrease between two and five sensors using the
temperature data. This indicated that, for February, two sensors
would give good readings to understand the condition of the
air-vapor mixture in the greenhouse at a less computational
cost than three (about 0.014%), four, and five sensors (about
13%). This trend was seen for the other simulated months,
with March (Figure 8B) having three knee points at two and
five sensors with about 26% and 46%, respectively. In April
(Figure 8C), two distinct knee points were recorded at three

sensors (about 28%) and ten sensors (about 42%). A similar
trend was seen in May (Figure 8D), June (Figure 8E), and
July (Figure 8F). However, in October, a drastic reduction
was seen at two sensors (about 30%), followed by a sharp
rise indicating that more sensors introduced more errors
instead (Figure 8G).

Index numbers 6, 4, 6, 4, 1, 1, and 2 with the least RMSE
values of 0.0092886, 0.0156854, 0.0288381, 0.0179418, 0.0105844,
0.0143873, and 0.0298292 were recorded as optimal sensors
numbers and locations for February, March, April, May, June,
July, and October, respectively, as the sensors that measured
the air-moisture condition in the greenhouse most accurately
in the other months using the relative humidity data. The
results for the sensors to measure the air-vapor mixture in the
greenhouse differed from the temperature and humidity data.
This led us to investigate the stability of the transformed data
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FIGURE 11 | Optimal sensor selection for Autumn month using the psychometric dataset; (A) October daily; and (B) weekly.

would best describe the air-vapor mixture condition in the
greenhouse. In the case of relative humidity, a similar trend
of high variation in the optimal number of sensors occurred
at different months, with a total number of 7, 5, 7, 5, 2, 2,
and 3 sensors being found optimal for measuring the internal
greenhouse environment in February, March, April, May, June,
July, and October, respectively (Table 3).

A similar trend with the temperature data was seen in the
Pareto fronts for the optimal number of sensors to accurately
measure the air-vapor mixture in the greenhouse using the
relative humidity data. A flat Pareto front was seen in the
reduction of RMSE in February (Figure 8A) from 2 to 8
sensors. All other months (Figures 8B–G) showed that the
Pareto front improved decision-making, as there were sensors
that though reduced the RMSE, did not significantly cause the
front to change.

The temperature and relative humidity data had the same
predictor, implying the location with the least RMSE value
(Tables 2, 3). This indicated that the rankings were not different
(shows the sensors with the least interference for the month).
However, the optimal numbers of sensors using the temperature
and relative humidity data varied across the months.

Transformed Data: Psychometric
Variables
The optimal sensor locations for February, March, April, May,
June, July, and October are given in Table 4 for the four
psychrometric properties considered in this study. The monthly
data was split into daily and weekly data to get a clearer view of
optimal sensors placement for each month and investigate the
effect of the sharp changes in weather conditions. Analyses of the
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sensor numbers results show that the transformed psychrometric
variables had fewer optimal locations than the untransformed
(temperature and relative humidity) dataset, with a difference of
up to about 70% in May.

Figures 9A,B show the daily and weekly distributions of the
variables by sensors for a spring month (April), respectively.
Using the transformed psychometric properties (dew point
temperature, humid ratio, enthalpy, and specific volume),
inconsistencies in selections of the ideal number of sensors
required for some days in April were observed. For instance, on
day 1 (April), nine optimal sensors were required when the dew
point temperature property was considered, while four optimal
sensors were required for other properties. The usage of the
derived psychometric properties resulted in the selection of a
reduced number of optimal sensors indicating a more adaptive
nature of the algorithm to these derived variables compared to
the raw temperature and relative humidity variables. The derived
psychometric properties also showed better understanding of
the air-vapor mixture since two combined properties were
considered instead of the untransformed dataset using a single
property. This improved efficiency would benefit the grower by
reducing acquisition and operating costs as well as decreasing
amounts of dat ato be handled. Furthermore, a cross-cutting
beneficial effect would result from energy savings from proper
monitoring and increased productivity.

Over the study period, specific volume (v) required the least
number of sensors for measurement. However, it showed the
most inconsistent result (having values not in a close range
with the result from other derived properties), likely due to
the very low magnitude of the values producing slightly more
stochastic predictions.

Additionally, it was noted that the order of sensor selection
did not change over the study period. For example, as reported for
April in Table 4, in the April column, the ranking of the 13 sensor
locations according to decreasing order of importance was F7,
D6, D7, F6, F4, H7, G7, F5, F3, E6, E7, H6, and D2. If four sensors
were required for measuring the enthalpy variable, then the first
four sensor locations (F7, D6, D7, and F6) were to be considered.
If one sensor only was selected, then F7 was the optimal sensor.
Figures 10, 11 show the periodic variation of optimal sensor
selection for summer (July) and autumn (October), respectively.

Periodic Variation in the Optimal Sensor
Selection
Several plots (Figures 9–11) show the variation in the optimal
sensor selection for the greenhouse over time (that is, daily
and weekly). External disturbances such as temperature, wind,
and humidity influenced the data. Modeling the phenomenon
of natural ventilation proved to be complex, especially because
it was significantly affected by the external climate, and its
design more complicated than fan ventilation. A fan ventilation
system was adopted for verification (Figure 3C). Yet, significant
variations were still observed based on the analysis of the
coefficient of variation of the indoor climate data (Table 1).
Also thought to be influencing the microclimate within the
protected cultivation systems were factors such as the heating

system and the respiration of the plants which could have
led to variations in the relative humidity. This necessitated a
systematic approach for determining the optimal number and
locations of the sensors. For example, on days 15 and 20 of
April (Figure 9A), temperature measurements and standard
deviations of 0.3258◦C and 0.2130◦C, respectively were reported.
Statistically, in terms of measuring dispersion, the magnitude
of the standard deviation varied across daily, weekly, and
monthly periods. These temporal variations in the results
indicated that optimal sensor placement was affected by periodic
variations of different levels of magnitude. However, the sensors
selected at the same level across the measured conditions and
transformed psychrometric properties were the same, pointing
to the robustness of our method to accurately measure the total
air-vapor mixture in the protected cultivation system.

Additionally, the indoor heating system could contribute to
the differences in the optimal locations selected to measure
environmental conditions as some piping systems heat sections
of the greenhouse nonuniformly.

CONCLUSION

A supervised machine learning model was developed to identify
the optimal number and locations of sensors to monitor climatic
conditions in a protected cultivation system using a multi-
objective approach. The Gradient Boosting Algorithm was fitted
to the measured conditions and derived psychrometric variables.
The derived psychrometric properties resulted in fewer optimal
sensors than the raw temperature and relative humidity data.
This study found that the optimal locations of sensors were
both at the sides and center of the protected cultivation system
depending on the time of year. Variability analyses indicated
that no location was consistently optimal. The changes in
the optimal sensor location with seasons were this study’s
limitation. A future study would aim to develop a dynamic
approach to selecting optimal sensors’ locations. This could
include using the ensemble technique by creating multiple
models and considering a mobile environmental measurement
system. Finally, the solutions in the Pareto front improved
decision-making as some points had close relationships. This
would have cross-cutting effects on energy management and
plant productivity.
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Distributed control of agriculture picking multi-robot systems has been widely used in the

field of smart agriculture, this paper aims to explore the distributed averaging problems

of agriculture picking multi-robot systems under directed communication topologies by

taking advantage of the sampled data. With the algebraic graph theory concepts and the

matrix theory, a distributed protocol is proposed based on the nearest sampled neighbor

information. It is shown that under the proposed protocol, the states of all agents can be

guaranteed to reach average consensus whose value is the averaging of the initial states

of all agents. Besides, when considering time-delay, the other distributed protocol is

constructed, in which a time margin of the time-delay can be determined simultaneously.

The necessary and sufficient consensus results can be developed even though the

time delay exists. Simulation results are given to demonstrate the effectiveness of our

developed consensus results.

Keywords: average consensus, directed communication topologies, distributed protocol, smart agriculture,

sampled data

1. INTRODUCTION

Recently, the issue of smart agriculture has attracted wide attention. Driven by the digital
revolution, agriculture has entered a new era of digital and intelligent development (Yang et al.,
2013; Alsamhi et al., 2019a; Horng et al., 2019; Fuentes et al., 2021; Li and Chao, 2022; Teng et al.,
2022). Smart agriculture is a modern agricultural production mode with information, theoretical
knowledge, and hardware equipment as the core elements, and it is an important direction of the
development of modern agriculture (Chen and Yang, 2019). Realizing precision agriculture is a
goal of smart agriculture (Luo et al., 2016), the present stage of agriculture at a relatively low level
of agricultural mechanization, especially in the area of vegetable picking. The traditional way of
vegetables is picked manually, which requires a lot of labor during the picking season. Although
some plantations have begun to mechanize agricultural picking, the level of automation is low, and
vegetable picking is usually carried out by a single mechanical equipment (Brondino et al., 2021),
which is inefficient and costly. Therefore, it is urgent to improve the efficiency and mechanization
of vegetable picking agriculture.

The emergence of the multi-agent system provides a new trend for the development
of smart agriculture. Multi-agent systems are composed of some agents and interactions
among agents to solve problems that are impossible for a single agent, which can
be applied in many aspects, such as multi-robots (Yu et al., 2020), unmanned aerial
vehicles (Lian and Deshmukh, 2006; Alsamhi et al., 2021; Liang et al., 2021), unmanned
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ground vehicles (Ma et al., 2006), etc. To realize the cooperation
between the agents, communication is the fundamental
problem, many scholars have carried out a lot of research on
communication. In Alsamhi et al. (2019b), the development
status of artificial intelligence in the field of the communication
among robots is reviewed, and new ideas for its future research
directions are provided. In order to better realize the cooperation
between robots and ensure effective communication between
robots, Alsamhi et al. (2020) fully analyze and discusses robots in
different spatial positions through the fusion of machine learning
and communication. A sufficient overview is provided for the use
of various machine learning techniques in the communication
among robots, and it is shown that machine learning plays an
important role in improving the communication among robots.
In practical application, information communication will be
delayed, which may result in the instability of the control system
(Seuret et al., 2018). In Zhang et al. (2022), a more general
communication mode between delay subsystems and studies of
the effect of time delay on the performance of interconnected
systems by using the hybrid system theory with memory has been
considered. Agriculture picking multi-robot systems consist of
multiple robots and interactions among robots, which can be
regarded as a kind of multi-agent system. Distributed control of
the multi-agent system is also an important issue in the study of
multi-agent systems. Cooperative control tasks of multi-agent
include clustering, swarming, clustering, formation, tracking,
and other tasks. These collective behaviors can all be unified
as consensus problems. As the core problem of distributed
cooperative control, consensus means that the state values of all
agents tend to be the same as time goes to infinity. The average
consensus problem is a special consensus problem, which means
that the final convergence value of all agents is the average of
the initial value (Hu et al., 2020). In smart agriculture, average
consensus plays an important role in improving the precision
of agriculture. It can better realize the state consensus among
agents through the initial state value of each agent, and complete
cooperative agricultural tasks among agricultural multi-agents.
Particularly, the average consensus of multi-agent systems also
has been widely concerned in computer science, energy ecology,
social economics, and other fields.

The development of distributed cooperative control has
aroused the attention of many researchers in the fields of
automatic control. In Olfati-Saber and Murray (2004), the
Laplacian potential has been introduced for calculating the
difference among agents, with which the distributed control
protocol can be induced to ensure the average consensus of
multi-agent systems under the undirected graph. The consensus
problems have been extended to multi-agent systems whose
topologies are switching (Ren and Beard, 2005), in which
the consensus objective can be guaranteed if the topologies
are joint connected. In the practical application, due to the
limitation of speed and bandwidth of network transmission,
the problem of time delay certainly exists (Sun and Wang,
2009; Chen et al., 2017; Yan and Huang, 2017). Besides, how
to improve the convergence rate should be considered. In Hu
et al. (2019), Zou et al. (2019), Dong et al. (2020), and Ran et al.
(2020), the distributed control protocols and their convergence

analyses have been investigated for finite-time consensus of
multi-agent systems.

At present, continuous control protocols are used in most

research, so the requirements for network communication are

increased. Sampling control can not only reduce the control cost
of the system by reducing information transfer redundancy but

also improve the robustness of the system (Guan et al., 2012;

Ding and Zheng, 2016; Park et al., 2016). Therefore, how to select
the appropriate sampling time and sampling mechanism has
become a concern of researchers. In Gao et al. (2009), a sampling
control protocol is proposed to analyze the consensus of multi-

agent systems with fixed and switched topologies, respectively. In
Gao andWang (2011), the consensus of second-order dynamical

systems with time-varying topologies is studied by sampling data.
The study shows that the system can be consensus by designing
appropriate controller gain and the sampling period when the

union graph has a spanning tree. To the best of our knowledge,
there are quite limited results concerning distributed averaging
problems of multi-agent systems, which are suitable for practical
applications (e.g., picking multi-robot systems).

Motivated by the above discussions, we aim to reduce

information transfer redundancy and control costs of smart
agricultural multi-agent systems by sampling control. There
are many kinds and complex communication structures in

agricultural multi-agent systems. In this article, we explore the
distributed averaging problems of the multi-robot systems for

vegetable picking agriculture under directed communication
topologies. We design a distributed control protocol by taking
advantage of the nearest neighbor sampled information for
the agriculture picking multi-robot system. With this protocol
being used, the necessary and sufficient conditions can be
provided for the average consensus objective of the agriculture
picking multi-robot system. We further give how to select the
sampled period. Besides, in the practical application of multi-
agent systems, communication delays may exist. Especially when
carrying out agricultural cooperation tasks, information needs to
be transmitted between agents. Excessive communication delay
will lead to the failure of agricultural multi-agent systems to
achieve state consensus and thus fail to complete agricultural
tasks. Therefore, we also consider the existence of time-delay
among agents. We use the bilinear transformation method
to develop the associated convergence analysis, which can
simultaneously determine the time margin. It is shown that the
agriculture picking multi-robot system can achieve the average
consensus if and only if both sampled period and time delay
satisfies the appropriate conditions. In addition, simulation
examples are carried out to verify the theoretical results. Different
from other existing sampling control studies, we carry out an
average consensus analysis on picking multi-robot systems with
fixed communication topology as a directed graph. The major
contributions of this article include:

(i) the average consensus of agricultural multi-agent systems
with fixed communication topology as a digraph is studied,
and a distributed control protocol based on sampling
information is proposed to ensure the average consensus of the
agricultural multi-agent system.
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(ii) considering the communication time-delay, another
communication protocol is proposed to ensure that
the agricultural multi-agent systems can achieve average
consensus even with time-delay.

(iii) through the proposed distributed control protocols, the
necessary and sufficient conditions for the system to achieve
average consensus without time-delay and with time-delay
are obtained. Because the average consensus of the system
is achieved through the proposed control protocols, the
relationship between the initial value and the state value is
determined, and the control of the system can be realizedmore
conveniently.

The remainder is outlined below. In Section 2, we introduce
some preliminaries for graph and matrix theory. In Section 3,
we introduce the problem statement for the distributed averaging
of agricultural multi-agent systems for vegetable picking. Section
4 addresses the average consensus of directed the agriculture
picking multi-robot system without and with communication
time-delay, respectively. Simulation examples are introduced in
Section 5. We give comprehensive conclusions in Section 6.

2. PRELIMINARIES FOR NOTATIONS AND
GRAPH THEORY

In this section, some basic concepts related to notations and
graph theory are introduced as follows.

We denote In = {1, 2, · · · , n}, Rn is the set of n-
dimensional real numbers, Rn×n is a set of real matrices with
n-dimensional row vectors and n-dimensional column vectors,
1n = [1, 1, · · · , 1]T ∈ Rn, and 0n = [0, 0, · · · , 0]T ∈
Rn, and diag{α1, α2, · · · , αn} is a diagonal matrix in which
diagonal elements are α1, α2, · · · , αn, zero are the value of
non-diagonal elements.

Let G = (V , E ,A) represent a directed digraph, where V =
{v1, v2, · · · , vn} is a node set, E ⊆ V × V is an edge set and
A = [aij] ∈ Rn×n with aij > 0 ⇔ (vj, vi) ∈ E and aij =
0 ⇔ (vj, vi) /∈ E . Besides, all neighbors of vi are denoted as
N(vi) = {vj :(vj, vi) ∈ E}(i 6= j). An edge (vi, vj) ∈ E means
that the data can be transmitted from the node vi to the node
vj. Let Q = {(vi, vr1 ), (vr2 , vr3 ), · · · , (vrn , vj)} stand for a directed
way from vi to vj, where vi, vr1 , vr2 , · · · , vrn , vj are different. The
digraph G is called strongly connected on condition that G have
at least one directed way between any twain different nodes. Let
1 = diag{

∑n
j=1 a1j,

∑n
j=1 a2j, · · · ,

∑n
j=1 anj} be the in-degree

matrix of G. The Laplacian matrix L ∈ Rn×n of G is defined as
L = 1 − A. Benefiting from L, we can introduce the following
diagonal matrix

W = diag{det(L11), det(L22), · · · , det(Lnn)}

where Lii ∈ R(n−1)×(n−1) is induced from the Laplacian matrix
L by deleting its ith row and ith column, det (Lii) represents
the determinant value of the matrix Lii. The Laplacian matrix
L of a strongly connected digraph G has a zero eigenvalue and
all other eigenvalues with positive real parts. It follows from
Li and Jia (2009) that if G is strongly connected, then wl =

[det(L11), det(L22), · · · , det(Lnn)]T is the left eigenvector of L
associated with the zero eigenvalue, i.e., wT

l
L = 0Tn . With the help

of W, we can construct a new graph G = (V , E ,A), where the
element aij of A = [aij] satisfies

aij =
det(Lii)aij + det(Ljj)aji

2
, ∀i, j ∈ In. (1)

By taking advantage of (1), we can easily obtain

A = WA+ ATW

2
. (2)

With (2), we can establish the relationship between L and L.

Lemma 1. For any digraph G and G, let L and L be the Laplacian
matrix of G and G, respectively. The Laplacian matrices L and
L satisfy

L = WL+ LTW

2
. (3)

proof We can directly derive this result with the help of (2)
and the definition of Laplacian matrices

Lemma 2. Consider a partitioned matrix P =
[

A B
C D

]

∈

R(r+s)×(r+s), where A ∈ Rr×r , B ∈ Rr×s, C ∈ Rs×r , and D ∈
Rs×s.

1. If A is an invertible matrix, then |P| = |A||D− CA−1B|;
2. If D is an invertible matrix, then |P| = |D||A− CD−1B|.

In the analysis of discrete-time systems, by using a bilinear
transformation, the problem of determining Schur stability of
a discrete-time system can be transformed into the problem
of determining Hurwitz stability of a continuous-time system.
Given a polynomial with complex coefficients:

g(s) = ρns
n + ρn−1s

n−1 + · · · + ρ1s+ ρ0 (4)

where ρ ∈ C, i ∈ In. Perform a bilinear transformation z =
s+ 1

s− 1
on g(s), a new polynomial is deduced

f (z) = (z − 1)ng(
z + 1

z − 1
) = χ0 + χ1z + · · · + χnzn (5)

where χi = ai+ιbi, ai, bi ∈ R, i = 0, 1,. . . , n. The Hurwitz stability
of f (z) implies the Schur stability of g(s). Substituting z = wι into
f (z), we get

f (ω) = fω(ω)+ ιfι(ω) (6)

where fω(ω), fι(ω) ∈ R(ω), and

fω(ω) = a0 − b1ω − a2ω
2 + b3ω

3 + a4ω
4 − · · · (7)

fι(ω) = b0 + a1ω − b2ω
2 − a3ω

3 + b4ω
4 − · · · (8)

fω(ω) and fι(ω) constituent interlaced polynomial, to determine
whether f (z) Hurwitz stable, the Hermite-Biehler theorem is
given as follows
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Lemma 3. (Ogata, 1995) The polynomial f (z) is Hurwitz stability
if and only if the related pair fω(ω), fι(ω) is interlaced, and

fω(0)fι
′(0)− f

′
ω(0)fι(0) > 0.

3. PROBLEM STATEMENTS

In the picking process of vegetables, such as cucumbers, a device
with multiple mechanical arms is used to pick the vegetables.
In the actual picking process, multiple mechanical arms pick
vegetables at the same time and then put vegetables into the
picking robot which runs on a specific track. To accurately
collect vegetables picked by mechanical arms, the corresponding
collection robots should achieve position states consensus, to
better pick and collect vegetables. To solve the problem, a
consensus analysis of the robot’s position state is needed. In
this article, we treat each robot as an intelligent agent and all
agents constitute an agriculture multi-agent system. To analyze
the consensus of the agriculture multi-agent system, we use a
digraph G = (V , E , A) of the agricultural multi-agent system
to denote the communication topology of the agriculture picking
multi-robot system, in which the set of all agents can be described
by V , and the relationships among agents can be represented
by E and A. Let xi ∈ Rn be the position state of agent vi and
x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ Rn denote the state vector.
Every agent has the following dynamics

ẋi(t) = ui(t), ∀i ∈ In (9)

where ui is the control protocol to be designed.
Generally, the decision value of the agriculture multi-agent

system not only depends on the topological structure but also on
the initial states. However, the average-consensus problems only
rely on the initial states and have no relation to the topological
structure. That is to say, for random initial states xi(0), ∀i ∈ In,
the average consensus of the system (9) can be reached if

lim
t→∞

xi(t) =
1

n

n
∑

i=1

xi(0), ∀i ∈ In. (10)

The agricultural multi-agent system (9) can reach average
consensus means that we can infer the final position of agents
from the initial position, so the control difficulty is reduced,
and the controllability of the agriculture multi-agent system (9)
is improved.

Since continuous control will increase the communication
burden of agricultural multi-agent systems, in order to prevent
information redundancy and reduce the cost of systems, we
use sampling data to complete the distributed control of
the agricultural multi-agent system. The sampling control can
improve the robustness of the picking robot system. In what
follows, the purpose of this article is to design a distributed
control protocol so that the agricultural multi-agent system
(9) under the strongly connected digraph G accomplishes
the average consensus objective via sampled information.
Besides, when considering the communication time-delay, we
further explore how to develop the time margin of the
communication time-delay.

4. MAIN RESULTS

In this section, we investigate the average consensus problems
of the agricultural multi-agent system (9) whose communication
topologies are directed. Besides, information needs to be
transmitted between agents, and the excessive communication
time-delay will cause the oscillation or divergence of agricultural
multi-agent systems so that the robots in agriculture cannot
achieve position state consensus, which means that the robots
cannot accurately load the picked vegetables. Thus, we further
explore the average consensus problems of agricultural multi-
agent systems when there exist communication time-delays
among agents.

4.1. Distributed Control Protocol Without
Time-Delay
In this subsection, to reduce the communication cost of smart
agricultural multi-agent systems, we aim to solve the average
consensus problems of the agriculture multi-agent system by
taking advantage of sampled data. Toward this end, we introduce
a distributed control protocol by employing the sampled data
as follows:

ui(t) =
∑

j∈N(i)

aij(xj(kp)− xi(kp)), t ∈ [kp, kp+ p),

∀i, j ∈ In, k = 0, 1, 2, · · · (11)

where p is the sampled period. Based on L, we can rewrite (9) and
(11) as a compact form

x(kp+ p) = ψx(kp), k = 0, 1, 2, · · · (12)

where ψ = I − pL.
In the following, we explore the convergence problems of the

system (12). We propose a tree transformation for the system
(12). We first introduce a series of states as follows:

y1(kp) = x1(kp)

y2(kp) = x1(kp)− x2(kp)

y3(kp) = x1(kp)− x3(kp)

...

yn(kp) = x1(kp)− xn(kp).

(13)

Denote

Q =















1 0 0 · · · 0
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1















=
[

C ∈ R1×n

E ∈ R(n−1)×n

]
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and the inverse matrix of Q is given by

Q−1 =















1 0 0 · · · 0
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1















=
[

wr ∈ Rn×1 F ∈ Rn×(n−1)
]

.

With the help of Q, the states y1(kp), y2(kp), · · · , yn(kp) are
defined by

y(kp) ,











y1(kp)
y2(kp)

...
yn(kp)











= Qx(kp).

Substituting y(kp+p) = Qx(kp+p) and y(kp) = Qx(kp) into the
system (12) leads to

y(kp+ p) = (I − pH)y(kp) (14)

where H = QLQ−1 =
[

0 CLF

0n−1 ELF

]

. We denote ŷ(kp) =

[y2(kp), y3(kp), · · · , yn(kp)]T and the system (14) can be divided
into two subsystems:

y1(kp+ p) = y1(kp)− pCLFŷ(kp) (15)

and

ŷ(kp+ p) = (I − pELF)ŷ(kp). (16)

From (16), we can easily see that the reduced system (16)
achieving stability implies the consensus of the system (12).
Hence, the consensus problem of (12) turns into the asymptotic
stability problem of a reduced-order system (16).

With protocol (11) being employed, the average consensus
results can be obtained in the following theorem.

Theorem 1. For the system (9) whose communication topology
is the strongly connected digraph G, let the distributed control
protocol (13) be used. Then, the system (9) can achieve the average
consensus objective if and only if the following condition holds.

0 < p < minλi 6=0
2

λi
, ∀i ∈ In. (17)

Proof. The digraph G is strongly connected, its Laplacian
matrix L has a zero eigenvalue and n−1 non-zero eigenvalue with
positive real parts. It follows from Lemma1 that L is a symmetric
matrix. The eigenvalues of L contain a zero eigenvalue and n− 1
positive real numbers. Based on our defined H, we realize that
the eigenvalues of ELF are positive real numbers. To ensure the
reduced-order system (16) is stable, the condition ρ(I− pELF) <
1. Next, we target at exploring how to ensure ρ(I− pELF) < 1 by
picking up the sampled period p.

We introduce an inverse matrix T such that

T−1ELFT = 3 =













λ2 ∗

λ3
. . .

. . . ∗
λn













(18)

where λ2, λ3, · · · , λn are the nonzero eigenvalues of L and the
elements ∗maybe 0 or 1. Then, employing ỹ(kp+p) = P−1ŷ(kp+
p), ỹ(kp) = P−1ŷ(kp), we can convert the reduced-order system
(16) into

ỹ(kp+ p) = (I − p3)ỹ(kp). (19)

The stability of the systems (16) and (19) are equivalent. We can
further induce

ρ(I − p3) < 1 ⇔ |1− pλi| < 1 for all eigenvalues of L. (20)

Therefore, ρ(I − p3) < 1 holds if and only if p meets the
condition (17) holds. Based on the condition (17), the reduced
system (16) can reach stability, which denotes that the system (9)
is able to achieve the consensus.

Next, we calculate the convergence value of the dynamic
system (9). Let wr and wl denote the right eigenvector and left
eigenvector of L associated with its eigenvalue 0, respectively,
which satisfy wT

l
wr = 1. Correspondingly, we can easily obtain

that wr and wl are also the right eigenvector and left eigenvector
ofψ = I− pL associated with the eigenvalue 1. Since the digraph
G is strongly connected, we can develop that G is undirected and
connected. Without loss of generality, we select wr and wl that
satisfy wr = wl = 1√

n
1n. With (9), we can deduce

x(kp+ p) = ψx(kp)

= ψ
k+1

x(0).

Because ψ has an eigenvalue 1 and n − 1 eigenvalues whose
module is less than 1. Hence, we can develop

lim
k→∞

x(kp) = lim
k→∞

ψ
k
x(0)

= wrw
T
l x(0) =

1

n

n
∑

i=1

xi(0)

which implies the system (9) can achieve the average consensus
objective via sampled control. The sampled control can be used
to reduce the communication cost of the agricultural multi-agent
system (9). We complete this proof.

4.2. Distributed Control Problems With
Time-Delay
It is shown that under the proposed protocol without time-delay,
the states of all agents can be guaranteed to reach a consensus
whose value is the averaging of the initial states of all agents.
However, in the practical application of agriculture multi-agent
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systems, it may suffer from the effect of communication time-
delay. Especially in the completion of agricultural cooperative
tasks, information needs to be transmitted between agents, and
the excessive communication delay will cause the oscillation or
divergence of multi-agent systems, so the time-delay problem
needs to be considered.When considering the existing time-delay
τ which is less than 1 sampling period, the distributed control
protocol is constructed by

ui(t) =



















∑

j∈N(i)

aij(xj(kp− p)− xi(kp− p)), t ∈ [kp, kp+ τ )

∑

j∈N(i)

aij(xj(kp)− xi(kp)), t ∈ [kp+ τ , kp+ p)

∀i, j ∈ In, k = 0, 1, 2, · · · , 0 < τ < p.

(21)

We rewrite (9) and (21) as follows





x(kp+ p)

x(kp)



 = φ





x(kp)

x(kp− p)



 , k = 0, 1, 2, · · · (22)

where

φ =





In − (p− τ )L −τL

In 0



 . (23)

We can deduce from (22) and (23) that

x(kp+ p) = [In− (p− τ )L]x(kp)− τLx(kp− p), k = 0, 1, 2, · · ·
(24)

In the following, we also use the tree transformation for the
system (22), the consensus problem of (22) turns into the
asymptotic stability problem of a reduced-order system.

Substituting y(kp + p) = Qx(kp + p), y(kp) = Qx(kp), and
y(kp− p) = Qx(kp− p) into the system (22) leads to





y(kp+ p)

y(kp)



 =
[

In − (p− τ )H −τH

In 0n×n

]





y(kp)

y(kp− p)



 (25)

where H = QLQ−1 =
[

0 CLF

0n−1 ELF

]

.

We denote

ŷ(kp) = [y2(kp), y3(kp), · · · , yn(kp)]T ,
ŷ(kp− p) = [y2(kp− p), y3(kp− p), · · · , yn(kp− p)]T

and the system (25) can be divided into two subsystems:





y1(kp+ p)

y1(kp)



 =
[

1 0

1 0

]





y1(kp)

y1(kp− p)





−
[

(p− τ )CLF τCLF

0 0

]





ŷ(kp)

ŷ(kp− p)



 (26)

and





ŷ(kp+ p)

ŷ(kp)



 =





In−1 − (p− τ )ELF −τELF

In−1 0(n−1)×(n−1)









ŷ(kp+ p)

ŷ(kp− p)



 . (27)

From (27), we can easily see that the reduced system (27)
achieving stability implies the consensus of the system (9). With
the protocol (21) being employed, the average consensus results
can be obtained in the theorem below.

Theorem 2. For the system (9) whose communication topology
is the strongly connected digraph G, let the distributed control
protocol (21) be used. Then, the system (9) can achieve the average
consensus objective if and only if the following condition holds.

τ < minλi 6=0
1

λi
, 0 < p < minλi 6=0

2

λi
+ 2τ , ∀i ∈ In. (28)

Proof. Since the digraph G is strongly connected, its Laplacian
matrix L has a zero eigenvalue and n−1 non-zero eigenvalue with
positive real parts. It follows from Lemma1 that L is a symmetric
matrix.

We introduce an inverse matrix T such that

T−1ELFT = 3 =













λ2 ∗

λ3
. . .

. . . ∗
λn













(29)

where λ2, λ3, · · · , λn are the nonzero eigenvalues of L and the
elements ∗may be 0 or 1. Then, employing ỹ(kp+p) = T−1ŷ(kp+
p), ỹ(kp) = T−1ŷ(kp), and ỹ(kp − p) = T−1ŷ(kp − p) we can
convert the reduced-order system (27) into





ỹ(kp+ p)

ỹ(kp)



 = ζ





ỹ(kp+ p)

ỹ(kp− p)



 (30)

where

ζ =





In−1 − (p− τ )3 −τ3

In−1 0(n−1)×(n−1)



 . (31)

The stability of the systems (27) and (30) are equivalent. The
characteristic polynomial of ζ is given by

det(sI2n−2 − ζ ) =
∣

∣

∣

∣

sIn−1 − [In−1 − (p− τ )3] τ3

−In−1 sIn−1

∣

∣

∣

∣

. (32)
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TABLE 1 | Comparison of conditions for achieving average consensus in

distributed control protocols.

Number Distributed control protocols Conditions

1 ui (t) =
∑

j∈N(i) aij (xj (kp)− xi (kp)), t ∈ [kp, kp+ p) 0 < p < min 2
λi

2 ui (t) =



















∑

j∈N(i)
aij (xj (kp− p)− xi (kp− p)), t ∈ [kp, kp+ τ )

∑

j∈N(i)
aij (xj (kp)− xi (kp)), t ∈ [kp+ τ , kp+ p)

τ < min
1

λi

0 < p < min
2

λi
+ 2τ

From (32), we can easily obtain that ξ is a partitioned matrix. It
follows from Lemma 2 that

|ξ | = |sIn−1|
∣

∣sIn−1 − [In−1 − (p− τ )3]+ In−1(sIn−1)
−1τ3

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

s

. . .

s

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s− [1− (p− τ )λ2]+ 1
s
τλ2

. . .

s− [1− (p− τ )λn + 1
s
τλn]

∣

∣

∣

∣

∣

∣

∣

∣

=
n

∏

i=2

[s2 − (1− pλi + τλi)s+ τλi]

=
n

∏

i=2

gi(s).

(33)

Then, by applying bilinear transformation s = z + 1

z − 1
, we have

fi(z) = pλiz
2 + 2(1− τλi)z + (p− 2τ )λi + 2 (34)

We can prove the polynomial gi(s) is Schur stable by making sure
that the polynomial (34) is Hurwitz stable. Let z = ωι, we can
further deduce

fi(ω) = −pλiω
2 + 2(1− τλi)ωι+ (p− 2τ )λi + 2. (35)

The real part and imaginary part of (35) are given by

fω(ω) = −pλiω
2 + (p− 2τ )λi + 2 (36)

and

fι(ω) = 2(1− τλi)ωι (37)

The polynomial (35) is Hurwitz stable if and only if the following
conditions hold.

C1) fω(ω) = 0 has two distinct roots γ1 < γ2.
C2) The real root γ3 of fι = 0 satisfies γ1 < γ3 < γ2.

C3) fω(0)f
′
ι (0)− f

′
ω(0)fι(0) > 0.

The condition C1) can be guaranteed by

1fω = 4(pλi)[2− (p− 2τ )λi] > 0. (38)

Noticing p > 0 and λi(i = 2, 3, . . . ,N). Based on (38), we
further induce

0 < p < minλi 6=0
2

λi
+ 2τ , ∀i ∈ In. (39)

If 1fω > 0, we can calculate two roots γ1 and γ2 of fω(ω) = 0 as
follows:

γ1 = −
√

1fω

2pλi
, γ2 =

√

1fω

2pλi
.

Based on fι = 0, we can get its root γ3 = 0. The condition
C2) is naturally satisfied. It is mainly because that γ1 <

0 and γ2 > 0 hold. Motivated by the condition C3), we
can deduce

[2− (h− 2τ )λi](1− τλi) > 0. (40)

With (39) and (40), we can develop that the
system (35) is Hurwitz stable if and only if p and
τ meet (28). Therefore, we can develop that the
reduced system (27) achieves asymptotic stability.
It denotes that the system (22) can achieve the
consensus objective.

Next, we calculate the convergence value of the system (22).
One of the eigenvalues of L is 0, Correspondingly, we can
infer that 1 are the eigenvalues of φ and the module value of
other eigenvalues is less than 1. Because G is undirected and
connected, we can pick up the right eigenvector and the left
eigenvector of the matrix φ corresponding to the eigenvalue 1
as follows:

wr = wl =
1√
n
1n

which satisfy wT
l
wr = 1. According to (24), we have

[

x(kp+ p)
x(kp)

]

= φ

[

x(kp)
x(kp− p)

]

= φk
[

x(0)
x(0)

]

.

Because φ all the other eigenvalues are in the unit circle. Hence,
we can develop

lim
k→∞

[

x(kp+ p)
x(kp)

]

=
[

wrw
T
l
0

wrw
T
l
0

] [

x(0)
x(0)

]

=
[

1
n

∑n
i=1 xi(0)

1
n

∑n
i=1 xi(0)

]

which implies that the system (9) can achieve the
average consensus even if the sampled instance p and the
communication time-delay τ satisfy the condition (28). This
proof is complete.

4.3. Analysis and Comparison of Protocols
We compare and analyze the condition of achieving the average
consensus of the agricultural multi-agent system without time-
delay and with time-delay. The protocols in different cases and
the conditions for achieving average consensus in agricultural
multi-agent systems are given in Table 1, where λi 6= 0 and
∀i, j ∈ In, k = 0, 1, 2, · · · , n, 0 < τ < p. As shown in
Table 1, number 1 is the distributed control protocol in the case
of no time-delay, it can be found that the upper limit of the
sampling period depends on the eigenvalue of L through the
control protocol (11) proposed by Theorem 1. For the case with
time delay is number 2, by applying control protocol (21) and
observation Theorem 2, we can find that the upper limit of

Frontiers in Plant Science | www.frontiersin.org 7 July 2022 | Volume 13 | Article 898183117

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ma et al. Agriculture Picking Multi-Robot Systems

FIGURE 1 | Agriculture picking multi-robot system.

time-delay τ depends on the eigenvalue of L, and the sampling
period is not only related to the eigenvalue of L but also related
to the value of τ . This means that on the premise that τ
meets the value condition, the upper limit of sampling period
p can be further calculated, and to obtain the corresponding
value range of sampling period p under different time-delay
τ values.

5. SIMULATIONS

This section will introduce two simulations to illustrate the
correctness of our developed theoretical results. Here, we
consider agriculture picking a multi-robot system including six
robots in Figure 1, in which robots can pick the vegetables
along the track. From Figure 1, we can see that the mechanical

arm length of multi-robots needs to satisfy the distance
between multi-robots and two plant areas for the purpose
of conveniently gathering the vegetables. Hence, we should
select a suitable orbital position to meet the distance d.
Without loss of generality, we assume that the position
state of the orbit is 5 such that the distance between
orbit and planting area is d. Motivated by distributed
averaging, we can pick up the initial states of six robots
as follows:

x(0) = [2, 6, 7, 3, 4, 8]T .

Example 1. The communication topology of multi-robots can
be described in Figure 2. We can easily see from Figure 2 that
the digraph G1 is strongly connected and weight unbalanced,
in which only the weight 1 is considered. We can get the
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FIGURE 2 | Strong connected digraph G1.

FIGURE 3 | The simulation result with p = 0.1.

Laplacian matrix L of G1. By Lemma 1, the specific values
of the matrix L are computed, and the eigenvalues of L are
further obtained. With the help of Theorem 1, then we can

compute the upper bound value of p is 0.16198. Hence, the
system (12) can reach the consensus objective if and only if p <
0.16198 holds.
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FIGURE 4 | The simulation result with p = 0.17.

FIGURE 5 | The simulation result with τ = 0.06,p = 0.25.
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FIGURE 6 | The simulation result with τ = 0.04,p = 0.24198.

With the distributed control protocol (11) being employed,
the state evolution of the system (12) with the sampled period
p = 0.1 is plotted in Figure 3 and with the sampled period
p = 0.17 in Figure 4. It is obvious from Figures 3, 4 that
the system (12) can achieve the average consensus objective
with value 5 when the sampled instant is p = 0.1 and the
system (12) is divergent when the sampled instant is p =
0.17, which coincide with the results of Theorem 1. Therefore,
our designed protocol can ensure the multi-robots reach the
arbitrary expected position by selecting the initial states of
the robots.

Example 2. When considering the communication time-
delay that is inevitable in communication among agents, we
can calculate that the time margin τ satisfies τmax = 0.081
and p < 2

λmax
+ 2τ based on (28). The state evolution

of the system (22) with τ = 0.06, p = 0.25, τ =
0.04, p = 0.24198, and τ = 0.081, p = 0.3 are plotted
in Figures 5–7, respectively. From Figures 5–7, we can see
that the system (12) can accomplish the average consensus
objective if τmax = 0.081 and p < 2

λmax
+ 2τ hold and

diverge, otherwise. Hence, the effectiveness of Theorem 2 can
be verified.

6. CONCLUSION

To prevent information transfer redundancy and reduce the
cost of the agricultural multi-agent systems, this article has
investigated the distributed averaging problems of directed
agriculture picking multi-robot systems with sampling control.
We have designed the distributed control protocols with and
without time-delay by neighbor information to accomplish
the average consensus objective, respectively. It is shown that
the necessary and sufficient conditions have been provided
for the average consensus, and the robots of the agriculture
picking multi-robot system can achieve the purpose of consensus
position state by setting the initial value. Two simulation
examples have been introduced to demonstrate the effectiveness
of our derived results. The distributed control protocols designed
by sampling control can achieve the average consensus, which
means that the agents of smart agricultural multi-robot systems
can achieve state consensus, and the robots of agricultural
multi-robot systems can accurately collect vegetables picked by
mechanical arms. The protocols we designed also can reduce the
information redundancy and control costs of smart agricultural
multi-agent systems by sampling control, even agricultural
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FIGURE 7 | The simulation result with τ = 0.081,p = 0.3.

multi-agent systems with time-delay, and provide a feasible
method to improve the mechanization level of smart agriculture.
At present, the proposed protocols are only applicable to the
structure proposed, and only apply to the case where the
sampling period is fixed, but we have further studied whether it is
still applicable in other environments. In the future, we attempt
to change the problem of the fixed sampling period into the study
of the variable sampling period, so that the multi-robot systems
can achieve average consistency under more working conditions
and further promote the smooth completion of cooperative tasks
among robots.
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Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal
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Citrus is one of the most important fruits in China. Miyagawa Satsuma, one kind of

citrus, is a nutritious agricultural product with regional characteristics of Chongming

Island. Near-infrared Spectroscopy (NIR) is a proper method for studying the quality of

fruits, because it is low-cost, efficient, non-destructive, and repeatable. Therefore, the

NIR technique is used to detect citrus’s soluble solid content (SSC) in this study. After

obtaining the original spectral data, the first 70% of them are divided into the training

set and 30% into the test set. Then, the Random Frog algorithm is chosen to select

characteristic wavelengths, which reduces the dimension of the data and the complexity

of the model, and accordingly makes the generalization of the classification model

better. After comparing the performance of various classifiers (AdaBoost, KNN, LS-SVM,

and Bayes) under different characteristic wavelength numbers, the AdaBoost classifier

outperforms using 275 characteristic wavelengths for modeling eventually. The accuracy,

precision, recall, and F1-score are 78.3%, 80.5%, 78.3%, and 0.780, respectively and

the ROC (Receiver Operating Characteristic Curve, ROC curve) is close to the upper left

corner, suggesting that the classification model is acceptable. The results demonstrate

that it is feasible to use the NIR technique to estimate whether the citrus is sweet or not.

Furthermore, it is beneficial for us to apply the obtained models for identifying the quality

of citrus correctly. For fruit traders, the model helps them to determine the growth cycle

of citrus more scientifically, improve the level of citrus cultivation and management and

the final fruit quality, and thus increase the economic income of fruit traders.

Keywords: near infrared spectroscopy, AdaBoost, random frog, citrus soluble solids content, machine learning

1. INTRODUCTION

Citrus fruits are among the most commonly grown and consumed fruits all over the world and
meanwhile one of the most important fruits in China since they are very nutritious and can
supplement vitamins, promote digestion and increase appetite (Zou et al., 2016; Anticona et al.,
2020). The total output of Citrus reticulata Blanco is 21.2 million tons in China, accounting for
67% of the total citrus output. Citrus unshiu is one of the three main varieties of citrus reticulata

124

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.841452
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.841452&domain=pdf&date_stamp=2022-07-18
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mhhu@ce.ecnu.edu.cn
mailto:acaizh@sjtu.edu.cn
https://doi.org/10.3389/fpls.2022.841452
https://www.frontiersin.org/articles/10.3389/fpls.2022.841452/full


Chen et al. SSC Binary Classification Using NIR

Blanco in China (Nam et al., 2019; Cheng et al., 2020). This
research uses Miyagawa Satsuma, a variety of citrus unshiu,
from Chongming Island in Shanghai, as the research object. The
citrus in Chongming Island not only grows in environmental
conditions famous for fresh air, clean water, and rich soil but also
ripens in cultivation technology of “green prevention and control
and plastic film covering with grass and organic cultivation” (this
cultivation concept originates from Shanghai Qianwei Citrus Co.,
Ltd.). As a result, it owns the advantages of both rich nutrition
and the regional characteristics of Chongming Island.

Soluble solids content (SSC), is one of the most important
internal quality attributes of most fruits. The SSC plays an
important role in the fruit maturity process and partly influences
the flavor of most fruits, thus determining the acceptance of
rich nutrients and economic benefits in the fruit trade. The
detection of citrus SSC is not only beneficial to customers but
also significant for growers (Li et al., 2016b; Fan et al., 2019;
Guo et al., 2020). Therefore, in recent decades, the demand
to develop non-destructive and rapid evaluation methods for
citrus SSC has become more extensive and urgent. Electronic
nose technology (Zhang et al., 2008, 2016), computer vision
(Xia et al., 2016; Bhargava and Bansal, 2021), and hyperspectral
imaging technology (Li et al., 2016a, 2018) are some common
methods to measure the quality of fruits. However, electronic
nose technology is restricted to limited enclosed space, which
is inconvenient to carry out. Computer vision technology lacks
spectral information. As for hyperspectral imaging technology,
the obtained hypercube contains a lot of redundant information
which leads to a high computation cost.

Fortunately, with the advantage of low testing cost, high
efficiency, good reproducibility of test results, and non-
destructive testing, NIR spectroscopy, between wavelength
region range of 780–2,526 nm, has been applied popularly in the
analysis of different fruit or vegetable samples (Beghi et al., 2017;
Arendse et al., 2018), such as apple (Xia et al., 2020; Arefi et al.,
2021; Ma et al., 2021; Li et al., 2022), tomato (Huang et al., 2021;
Zhang et al., 2021), persimmon (Wei et al., 2020), pear (Cruz
et al., 2021), and banana (Cruz et al., 2021). Xia et al. (2020)
studied the effect of sample diameter differences on the online
prediction of SSC of “Fuji” apples with the methods of visible and
near-infrared spectroscopy and partial least square regression.
It is justified that diffuse transmission spectra in 710–980 nm
and diameter correction method with calculated attenuation
coefficient are the best. Wei et al. used NIR hyperspectral imaging
within 900–1,700 nm to model SSC and firmness determination
of persimmon with partial least squares regression (Wei et al.,
2020). The final models obtained a coefficient of determination
of 0.757, RMSEP of 1.404 Brix, and R2p of 0.876, RMSEP of
0.395 for SSC and firmness detection, respectively. Pahlawan et al.
developed the calibration model to predict the SSC of bananas
using NIR spectroscopy in the range from 350 to 1,000 nm.
It was conducted by various distances of fiber optic probes to
bananas samples (Cruz et al., 2021). To our best knowledge,
there have been few similar studies on Miyagawa Satsuma. From
these researches mentioned above, it can be easily seen that
they focus on predicting the accurate number of the attribute
focused on, such as SSC. Sometimes, we are more interested in

knowing the sugar level rating rather than the specific value.
There is no exact numerical index for distinguishing sweet and
unsweetened, and therefore, we calculate the average value of SSC
as the demarcation index for judging sweet or unsweet for the
reason that SSC is an important index affecting the sweetness.

Reducing dimensions and seeking the most informative
wavelengths are effective methods for processing data while
selecting the most informative wavelengths of target information
is an effective measure to simplify computation and improve
the model performance (Li et al., 2019; Zhou et al., 2020).
First, it has been shown that the inclusion of uninformative
wavelengths while modeling affects the performance of
predicting or classifying and model interpretability (Chang
et al., 2016). Second, the identification of wavelengths that
contain information about the attribute the research focuses
on, will reduce the computation time and cost, from a more
practical point of view (Zhang et al., 2019; Mamouei et al.,
2020). Li et al. (2016a) chose the carlo-uninformative variable
elimination and successive projections algorithm to select the
most effective variables from hyperspectral data when doing
the research on measuring SSC in pear. The results indicated
that the model built using 18 effective variables achieved the
optimal performance for the prediction of SSC. Jun et al. (2018)
used an iteratively retaining informative variables algorithm to
obtain 10 characteristic wavelengths when processing samples
in predicting the SSC of cherry tomatoes. The experimental
results showed the IRIV−CS−SVR model for SSC prediction
could reach accuracy with R2p = 0.9718 and R2c = 0.9845. Fan
et al. (2014) adopted a combination of the standard normal
variate, uninformative variable elimination, genetic algorithm,
and successive projections algorithm to obtain 30 characteristic
wavelengths selected from full-spectra achieving the optimal
performance.

In the current study, the binary classification of Miyagawa
Satsuma is focused on, which owns the regional characteristics of
Chongming Island. The classification model for nondestructive
determination of Miyagawa Satsuma SSC will judge the quality
of citrus more scientifically, and overcome the shortcomings
of subjective differences and low efficiency. Meanwhile, it can
identify the growth cycle of citrus and estimate the maturity
time more accurately, which is conducive to the management
arrangement such as picking. It can also provide a theoretical
basis for citrus grading, which is good for fruit farmers or
manufacturers to sell graded citrus and improve profits (Kundu
et al., 2021).

2. MATERIALS AND METHODS

2.1. Data Collection
2.1.1. Near Infrared Spectra Acquisition

The equipment employed in our research is the Fourier
transform near infrared spectrometer, an antaris II–F-NIR
analyzer made by Thermo Fisher. We set NIR acquisition mode
as integrating sphere mode and the gain as × 1. The NIR spectra
are within the range from 1,000 nm to 2,500 nm.

All samples of Miyagawa Satsuma came from Shanghai
Qianwei citrus Co., Ltd located on Chongming Island. All
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FIGURE 1 | Near infrared (NIR) spectra of citrus in different picking times in chronological order. Different picking orders are represented by different colors. Each line is

the average spectrum of 12 fruit samples at each picking time.

samplings, 11 times total, were carried out within 3 months.
In each sampling, five trees with the most similar growth were
selected, which were without films and not among the outermost
three rows of trees. Then the five trees were divided into
upper, middle, and lower parts, where one sample was picked,
respectively, from four directions: south, east, north, and west. As
a result, 12 samples were obtained per tree, and a total of 60 were
taken for each sampling. Next, 12 samples were randomly chosen
among a total of 60 fruits. For each sample in the 12 fruits, the
NIR spectra were gained from 4 points at the cross symmetry of
the equatorial plane of the fruit. Finally, the averagedNIR spectra,
obtained by averaging NIR spectra of four points, were taken as
the original NIR spectra, as shown in Figure 1.

2.1.2. Soluble Solids Content Acquisition

After the Miyagawa Satsuma was squeezed and centrifuged, the
SSC of the selected Miyagawa Satsuma samples was measured
with a saccharometer (PR-101; Atago Co., Tokyo, Japan).

2.2. Data Preprocessing
The samples with obviously incomplete or wrong data are
eliminated, whether NIR spectra or SSC, thus obtaining a total

of 122 samples. Then samples were divided into the training set
and test set by the SPXY algorithm (Galvao et al., 2005), with
70% of the samples as the training set and 30% as the test set.
The principle of the Kennard stone algorithm (KS) algorithm is
to calculate the Euclidean distance among all samples: select two
samples with the maximum Euclidean distance into the training
set, then carry out the iterative calculation, select the samples
with the maximum and minimum Euclidean distance into the
training set until the number of samples required by the training
set is reached. SPXY algorithm is based on the KS algorithm, and
it furthermore involves the chemical values and spectra among
samples when calculating Euclidean distance, which makes the
training set more representative, and makes the generalization
ability of the established prediction model better.

2.3. Characteristic Wavelength Selection
The random frog (RF) algorithm (Li et al., 2012) was used to
obtain the corresponding number of characteristic wavelengths
of NIR spectral data, which has the features of conceptually
simplicity, and fewer parameters to be trained in algorithm
implementation, strong global search and optimization ability,
etc. The principles of the algorithm are as follows. Each sample
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FIGURE 2 | Cutoff probability of different characteristic wavelengths. For the subsequent modeling, 10 (A), 50 (B), 100 (C), 200 (D), 250 (E), 275 (F), and 300 (G)

characteristic wavelengths are chosen, respectively. The numbers on the right corner of the figure are the cutoff probability of corresponding characteristic

wavelengths number. The cutoff probability generally decreases as the number of informative wavelengths increases.

in a population is regarded as a frog. Then the whole population
is divided into m sub-groups with the scale of n. In each sub-
group, the frogs with the best and worst fitness are used to

produce a new child frog, which can be viewed as a jump of
the best frog. If the fitness of the child frog is better than the
parent with the worst fitness, replace the worst parent with
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FIGURE 3 | Histogram of citrus soluble solid content (SSC) of the total 122 fruit samples collected in this study. The mean of all citruses’ SSC is 9.06 Brix while the SD

is 0.93 Brix. The citruses corresponding to the blue areas are regarded as sweet while the citruses corresponding to the red ones are regarded as unsweet.

the child, otherwise, randomly generate a new child, which
can be viewed as the best frog’s jumping again. If the fitness
of the new child frog is still worse than the worst parent,
then randomly generate another new child to replace the
parent with the worst fitness. The evolutionary strategy of the
random frog algorithm is like frogs jumping toward the optimal
solution so that the algorithm gradually converges to the optimal
solution.

The more specific steps of this algorithm are as follows: First,

initialize parameters. Second, randomly generate an initial frog

group and calculate the fitness of each frog. Third, arrange the

frogs in descending order according to the value of fitness, and
record the local optimal solution Px. Then divide the F frogs from
the initial group into sub-groups, namely, allocate F frogs intom
sub-groups with the scale of n. Fourth, do a local search process,
i.e., do the process described above in each sub-group. As a result,
sub-groups do the fourth process, redivide the frog group, do
the same operation as the first round, and record the global
optimal solution Px. Fifth, verify the calculation stop condition.
If the convergence conditions of the algorithm are reached, the
RF algorithm ends. If the global optimal solution has not been
significantly improved, the execution of the algorithm should also
be stopped.

To validate the performance of the RF algorithm in this task,
the other common wavelength selection namely the competitive
adaptive reweighted sampling algorithm (CARS) is used for
comparison with the RF algorithm.

2.4. Binary Classification Model
The AdaBoost classifier (Freund et al., 1999) is selected
for modeling. Boosting is an important integrated learning
technology, which can enhance weak classifiers with poor
prediction performance into strong classifications with good
prediction performance in a cascade way. The core of its
adaptability is that the wrong samples of the previous basic
classifier will be strengthened, and all the weighted samples will
be used to train the next basic classifier again. At the same time, a
new weak classifier is added in each round until a predetermined
small enough error rate or a predeterminedmaximum number of
iterations is reached.

Specifically, the entire AdaBoost iterative algorithm consists
of three steps: First, initialize the weight distribution of training
data. If there are n samples, each training sample is given the same
weight of 1/n at the beginning. Second, train weak classifiers. In
the specific training process, if a sample point has been accurately
classified, its weight will be reduced in the construction of the
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FIGURE 4 | Comparison of NIR spectra of sweet (SSC beyond 9 Brix) and unsweet (SSC below 9 Brix) fruit samples. The shaded areas represent the confident

intervals to each line.

next training set; On the contrary, if a sample point is not
accurately classified, its weight will be improved. Then, the weight
updated sample set is used to train the next classifier, and the
whole training process goes on in this way, iteratively. Third,
combine the trained weak classifiers into strong classifiers. After
the training process of each weak classifier, increase the weight of
the weak classifier with a small classification error rate to make
it play a greater decisive role in the final classification function
while doing the opposite operation for the weak classifier with a
large classification error rate.

To compare the performance of various classifiers, we choose
AdaBoost, k-Nearest Neighbor (KNN), Bayes classifier, and LS-
SVM to explore the best-performing classification model. In the
current study, we use Matlab and Weka to establish the models.

2.5. Model Evaluation
To verify the efficiency of the classification system, evaluation
indicators viz. confusion matrix, accuracy, precision, recall, F1,
micro-measures, and macro-measures are considered.

1) Confusion matrix: Assume that “Positive” means the
positive samples and that “Negative” means the negative samples.
Meanwhile, “True” represents that the prediction is right while
“False” represents that the prediction is wrong. As a result, “TP”
and “TN” mean that the positive sample is classified as “Positive”

and that the negative sample is labeled as “Negative”, respectively.
“FP” and “FN” represent that the negative sample is labeled as
“Positive” and that the positive sample is classified as “False.” The
four indicators make up the confusion matrix.

2) Accuracy: It is a ratio that is used to estimate the
classification ability of a model within the range from 0 to
1. Generally speaking, the larger accuracy is, the better the
classification is. It can be calculated by the following equation:

Accuracy = TN + TP

TN + TP + FP + FN
(1)

3) Precision: Precision is only used to evaluate the classification
ability of the positive samples within the range from 0 to 1. It is
obvious that the larger precision is, the more effective the system
is. It is computed by:

Precision = TP

TP + FP
(2)

4) Recall: It is a ratio from 0 to 1. Obviously, the more it is close
to 1, the better the system is. The calculation equation is:

Recall = TP

TP + FN
(3)
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5) F1: It is a harmonic mean of recall and precision. In this
study, we consider the weight of recall and precision the same,
which means attaching the weight of 0.5 to either of them. It is
calculated by:

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

(4)

6) Receiver Operating Characteristic (ROC) Curve and Area
Under Curve (AUC): The abscissa of the ROC curve is the false
positive rate (FPR) while the ordinate is the true positive rate
(TPR), where FPR = FP

TN+FP and TPR = YP
TN+FN . Generally

speaking, the closer the ROC curve is to the upper left corner
of the image, the better the performance of the binary classifier.
AUC is the area under the ROC curve and it is generally within
the range of (0.5, 1). When the closer the ROC curve is to the
upper left corner, the greater the value of AUC.

3. EXPERIMENTAL RESULTS AND
ANALYSIS

3.1. NIR Spectral Characteristics of
Miyagawa Satsuma in Different Picking
Time
The NIR spectra in different picking times are shown in Figure 1.
The trend of the citrus spectra collected each time is similar.
There is an obvious absorption trough near 1,080, 1,300, 1,700,
and 2,200 nm, respectively. According to the principles of NIR
spectroscopy, due to the fact that the sample will selectively
absorb NIR waves with different frequencies, the NIR wave
which passes through the sample will become weaker in some
wavelength ranges, and the transmitted NIR wave will carry
the information of organic component and structure. Therefore,
it can be inferred that these absorption troughs can probably
be the most informative areas, which can be reflected in the
characteristic wavelength selection.

Our reason for using fruits with different picking periods for
modeling is to increase the coverage of the SSC, allowing a larger
range of variation in the spectral data and ultimately increasing
the model robustness. We performed the statistical tests on the
obtained spectral data and SSC and found significant differences
between spectral data and SSC for non-adjacent picking periods
(p < 0.05) and no significant differences for adjacent picking
periods (p > 0.05). This is in accordance with expectations.
Because, as the fruit ripens, the SSC will certainly increase and
the spectral differences will increase.

3.2. Performance of RF
As mentioned above, the characteristic wavelength selection can
accelerate the computation speed and reduce computation cost
to a degree. RF algorithm is chosen to generate characteristic
wavelengths with the numbers 10, 50, 100, 200, 250, 275, and
300, respectively, which is displayed in Figure 2. It is easy to
find that the larger the number of characteristic wavelengths
is, the smaller the cutoff probability is. The cutoff probability
indicates the threshold value for screening the required number
of informative wavelengths. The wavelength numbers, 10, 50,

TABLE 1 | Modeling results of sweet (SSC beyond 9 Brix) and unsweet (SSC

below 9 Brix) classification of Miyagawa Satsuma in Chongming Island under

different classifiers with different characteristic wavelengths.

Characteristic

wavelengths

Models Metrics

Accuracy Precision Recall F1-score

(%) (%) (%)

10 AdaBoost 60.9 62.1 60.9 0.604

KNN 69.6 69.8 69.6 0.696

Bayes 65.2 65.4 65.2 0.648

LS-SVM 62.2 53.3 100.0 0.696

50 AdaBoost 60.9 62.1 60.9 0.604

KNN 52.2 53.7 52.2 0.503

Bayes 65.2 65.4 65.2 0.648

LS-SVM 67.6 57.1 100.0 0.727

100 AdaBoost 69.6 69.8 69.6 0.696

KNN 52.2 52.9 52.2 0.516

Bayes 69.6 69.6 69.6 0.694

LS-SVM 59.5 51.6 100.0 0.681

200 AdaBoost 65.2 71.6 65.2 0.631

KNN 65.2 67.8 65.2 0.644

Bayes 69.6 69.6 69.6 0.694

LS-SVM 62.2 53.3 100.0 0.696

250 AdaBoost 69.6 71.3 69.6 0.692

KNN 56.5 58.1 56.5 0.555

Bayes 69.6 69.8 0.7 0.696

LS-SVM 62.2 53.3 100.0 0.696

275 AdaBoost 78.3 80.5 78.3 0.780

KNN 60.9 62.1 60.9 0.604

Bayes 69.6 69.8 69.6 0.696

LS-SVM 62.2 53.3 100.0 0.696

300 AdaBoost 69.6 71.3 69.6 0.692

KNN 65.2 67.8 65.2 0.644

Bayes 69.6 69.8 69.6 0.696

LS-SVM 62.2 54.2 81.3 0.65

1556 AdaBoost 75.0 68.8 91.7 0.786

KNN 60.9 56.3 81.8 0.667

Bayes 73.9 72.7 72.7 0.727

LS-SVM 56.8 50.0 93.8 0.652

Bold font represents the best model.

100, 200, 250, 275, and 300, respectively correspond to the cutoff
probabilities, 0.0471, 0.0260, 0.0225, 0.0222, 0.0091, 0.0060, and
0.0047. The cutoff probability generally decreases as the number
of informative wavelengths increases (Figure 2). Meanwhile, it
is true with what has been inferred in the above section that
the absorption troughs can be the most informative, most of
the retaining wavelengths gather in the areas inferred before
viz. 1,080, 1,300, 1,700, and 2,200 nm. This probably has a
relationship with the functional groups viz. —OH, —CH, —NH.

In addition, the classification models based on CARS selected
wavelengths are established, and their performance is not as good
as the RF-based models. For example, when ten characteristic
wavelengths are selected, the RF-based model gives a better
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FIGURE 5 | Receiver Operating Characteristic (ROC) curves. (A) is ROC curve of positive samples (SSC beyond 9 Brix) while (B) is ROC curve of negative samples

(SSC below 9 Brix).

performance than the model based on CARS, with the accuracy
of 60.9, 69.6, 65.2, and 62.2% vs. 52.78, 52.78, 58.33, and 47.22%
for AdaBoost, KNN, Bayes, and LS-SVM modeling methods,
respectively. Overall, CARS does not perform as well as RF for
the informative wavelength selection.

3.3. Model Analysis Using Plant Physiology
Phenomenon
The spectral properties of plants are mainly determined by their
internal structure. For the current study, the obtained spectra are
the result of the interaction of the incident light with the chemical
composition and physical structure of Citrus. For Miyagawa
Satsuma, its structure can be divided into exocarp (oil cell layer),
mesocarp (white cortex), endocarp, fruit, and fruit stem from
outside to inside. Among them, the surface of the soluble dietary
fiber of mandarin pulp is not smooth, the strips and gaps are
intertwined, and there are raised particles; the surface of the
soluble dietary fiber of mandarin peel is larger, but the surface
depressions are mixed with a few spherical particles. There is a
strong interaction between the two molecules.

As an important indicator for evaluating fruit sweetness,
SSC is mainly composed of soluble sugars (including sucrose,
fructose, and glucose). In the NIR region, the stretching and
deformation vibration absorption peaks ofO−H bonds in soluble
sugars are located around 1,440 and 2,080 nm, and there are
three absorption peaks of soluble solids at 980, 1,169, and 1,485
nm (Musingarabwi et al., 2016). The water content has a great
influence on the absorption of the plant spectrum. Under the
condition of multi-layer leaves, the water absorption bands at
1,100 and 960 nm have a great influence on spectral reflectance.
Absorption leads to a decrease in reflectance and an increase in
absorbance, and peaks of reflectance (i.e., peaks and valleys of
absorbance) appear at 1,600 and 2,200 nm (Ma et al., 2017).

The wavelengths selected by RF include three characteristic
wavelengths near the absorption peaks of soluble solids at 980
nm, 1,169 nm, and 1,485 nm, and two characteristic wavelengths

near the absorption peaks of stretching and deformation
vibrations ofO−H bonds in soluble sugars at 1,440 nm and 2,080
nm, and a characteristic wavelength near the strong absorption
peak of water at 1,400 nm. This analysis explains why the model
based on the RF selected wavelengths performs better.

3.4. Soluble Solids Content Division
The research holds the opinion that consumers are more
concerned about whether the Miyagawa Satsuma is sweet or not,
but not the concrete value of sweetness. Referring to Figure 3,
the dichotomous map or histogram of 122 Miyagawa Satsuma
citruses’ SSC, the distribution of this figure is roughly similar to
the normal distribution, whose mean of all citruses’ SSC is 9.06
Brix and the SD is 0.93 Brix. To carry out our belief, 9 Brix was
taken as the boundary after asking an expert in agriculture for
advice. As a consequence, the citruses with SSC more than or
equal to 9 Brix are considered to be sweet and the others are not
sweet for the following classification modeling.

Figure 4 shows the comparison of NIR spectra of sweet
and unsweet fruit samples. As shown in Figure 4, the large
overlap between the spectral curves of the sweet and unsweet
samples indicates that the model will not perform as expected
if the model is constructed based on original spectra. Therefore,
we need to select the informative wavelengths specific to SSC
classification, and then combine them with pattern recognition
methods for modeling.

3.5. Performance Analysis of Different
Binary Classification Models
As mentioned before, AdaBoost, KNN, Bayes, and LS-SVM
are adopted to establish classification models. The performance
comparison of different classifiers under different characteristic
wavelengths is shown in Table 1. The conclusion can be drawn
that when the number of characteristic wavelengths is 275,
the classification model established by the AdaBoost classifier
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performs best (bold in the table), with accuracy, precision, recall,
and F1-score 78.3%, 80.5%, 78.3%, 0.780, respectively.

From the perspective of the number of characteristic
wavelengths, when the number is 10, the best performer is the
KNN classifier, with accuracy, precision, recall, and F1-score
69.6%, 69.8%, 69.6%, and 0.696.When the number is 50, LS-SVM
performs best according to the accuracy of 67.6%, precision of
57.1%, recall of 100%, and F1-score 0.727. When the number is
100, Adaboost performs best while the best performer belongs
to Bayes when the number is 200. As for the number 250, the
results of AdaBoost are as good as Bayes. Finally, AdaBoost still
stands out among four classifiers when under the condition of
300 characteristic wavelengths. FromTable 1, it can be found that
when the number of characteristic wavelengths is either too small
or too large, the performance of every different classifier is not
as good as the situation when the number is proper, from the
perspective of four classifiers.

Compared to the results of original wavelengths number
1,556 without any procession, the best results of AdaBoost,
KNN, and LS-SVM happen when they are through characteristic
wavelengths selection, however, except Bayes. But after weighing
the wavelength reduction and performance, it is reasonable to
think that characteristic wavelength selection also works for
Bayes.

The ROC of positive and negative samples of the test set is
shown in Figure 5. It can be seen that the ROC curves of positive
and negative samples are all close to the upper left corner, and the
total AUC is 0.841, indicating that the model has good robustness
and can adapt flexibly to the uneven distribution of positive and
negative samples in actual situations.

Too many spectral features bring information redundancy,
and too few spectral features bring information loss. Based
on the experimental results, for this classification task, the
optimal number of spectral features is 275. Compared to the
other modeling methods, the AdaBoost method achieves the
best performance at 275 wavelength numbers. This is because
AdaBoost combines multiple weak classifiers in a reasonable way
to make one strong classifier. The other three methods used in
this paper just give one separate model.

4. CONCLUSION AND REFLECTION

Based on NIR spectroscopy, the random frog algorithm, and
AdaBoost algorithm, and taking citrus in Shanghai Chongming

Island as the research object, this study focuses on the problems
of binary classification between NIR spectra and Miyagawa
Satsuma SSC. Nine Brix is selected as the threshold of being

sweet or not and the samples are divided into the training set and
test set. After selecting characteristic wavelengths through the RF
algorithm, they are used to establish binary classification models
by AdaBoost, LS-SVM, and other classifiers. According to their
performance, the AdaBoost classifier is the optimummodel, with
accuracy, precision, recall, and F1-score 78.3%, 80.5%, 78.3%, and
0.780, respectively.

Analyzing the model performance, we find that the
constructed model does not have a very high performance.
Combined with the sampling process and the test results, two
reasons may be summarized (1) due to the limited penetration
depth of NIR and the thick skin of the fruit, most of the NIR light
does not penetrate the skin to reach the fruit part; and (2) there
are environment disturbances during sampling and instrument
errors in the process of collecting spectra.

The constructed model has the potential to be embedded
in portable NIR acquisition devices in the future, which can
facilitate fruit farmers to judge the quality of the citrus and
be conducive to improving the sale pricing system of citrus in
Chongming Island, so as to maximize the sale profit of fruit-
sellers.
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of Nilaparvata lugens using 
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2 State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China

The brown planthopper (BPH), Nilaparvata lugens (Stål; Hemiptera: 

Delphacidae) is a piercing-sucking pest that causes serious damage to rice 

plants by sucking the phloem sap from the plants and transmitting viruses. 

During courtship, the BPH vibrates its abdomen to produce signals that are 

transmitted to rice plants through its legs. Male BPHs search, locate, and 

mate with female BPHs after they exchange courtship signals with each 

other. Currently, spraying chemical pesticides is still the primary method for 

controlling BPH populations in paddy fields, although this approach has led 

to severe environmental pollution. A physical control method based on BPH 

courtship disruption to reduce the mating rate is a promising strategy for cutting 

environmental pollution. To acquire effective courtship disruptive signals, 

we developed a vibration signal recording, monitoring, and playback system 

for BPHs. Using this system, BPH courtship signals and male competition 

signals were collected and analyzed to obtain their frequency spectra. Results 

show that the mean main vibration frequency of female courtship signals is 

234 Hz and the mean pulse rate is 23 Hz. The mean main vibration and pulse 

frequencies of the male courtship signals are 255 Hz and 82 Hz, respectively. 

Besides, the mean main vibration frequency of the male competition signal is 

281 Hz. Seven different forms and frequencies of artificial signals were played 

back to male BPHs, then the courtship and behavioral responses of male BPHs 

were analyzed. Results indicate that a pure tone of 225 Hz prevents the males 

from recognizing female courtship signals. The male reply rate fell from 95.6 

to 33.3% and the mean reply delay time increased from 5.3 s to 9.1 s. The reply 

rates of the other six artificial signals ranged from 42.9 to 83.7%, and the mean 

reply delays were between 5.0 s and 9.3 s. Therefore, the courtship behavior of 

BPHs can be disrupted by using specific artificial disruptive signals.
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Nilaparvata lugens, courtship signals, disruptive signals, courtship disruption, 
behavior response

TYPE Original Research
PUBLISHED 22 July 2022
DOI 10.3389/fpls.2022.897475

OPEN ACCESS

EDITED BY

Chuanlei Zhang,  
Tianjin University of Science and 
Technology, China

REVIEWED BY

Ran Wang,  
Beijing Academy of Agricultural and 
Forestry Sciences, China
Klaus H. Hoffmann,  
University of Bayreuth,  
Germany
Varvara Yu. Vedenina,  
Institute for Information Transmission 
Problems (RAS), Russia

*CORRESPONDENCE

Qing Yao  
q-yao@126.com

SPECIALTY SECTION

This article was submitted to  
Sustainable and Intelligent Phytoprotection,  
a section of the journal  
Frontiers in Plant Science

RECEIVED 16 March 2022
ACCEPTED 05 July 2022
PUBLISHED 2  July 20222

CITATION

Feng Z, Wei Q, Ye Z, Yang B, Gao Y, Lv J, 
Dai Y, Bao J and Yao Q (2022) Vibrational 
courtship disruption of Nilaparvata lugens 
using artificial disruptive signals.
Front. Plant Sci. 13:897475.
doi: 10.3389/fpls.2022.897475

COPYRIGHT

© 2022 Feng, Wei, Ye, Yang, Gao, Lv, Dai, 
Bao and Yao. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

134

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.897475%EF%BB%BF&domain=pdf&date_stamp=2022-07-22
https://www.frontiersin.org/articles/10.3389/fpls.2022.897475/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.897475/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.897475/full
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.897475
mailto:q-yao@126.com
https://doi.org/10.3389/fpls.2022.897475
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Feng et al. 10.3389/fpls.2022.897475

Frontiers in Plant Science 02 frontiersin.org

Introduction

The brown planthopper (BPH), Nilaparvata lugens (Stål; 
Hemiptera: Delphacidae), is an agricultural pest that feeds on rice 
sap using piercing-sucking mouthparts (Figure 1). BPH outbreaks 
lead to widespread plant death, which directly affects rice yield 
and quality (Dyck and Thomas, 1979). At present, BPH control 
mainly relies on chemical pesticides (Wu, 2018), but the extensive 
use of pesticides often leads to several issues including pesticide 
residue, death of natural enemies, pest resistance, and 
environmental pollution (Matsumura and Sanada-Morimura, 
2010). Therefore, the exploration of new, efficient, and 
environmentally-friendly BPH physical control technologies to 
replace chemical pesticides has become the focus of much research 
in recent years.

Ossiannilsson (1949) demonstrated that most groups of 
Auchenorrhyncha generate low-intensity vibration signals and use 
them for communication. Ichikawa et  al. (1975) recorded the 
courtship signals of three species of rice planthoppers, including 
BPH. The BPH vibration signal cannot be heard by the human ear 
and can only be gathered using specialized devices (Zhang and 
Chen, 1987b). Zhang and Chen (1991) developed a BPH vibration 
signal recording device for BPH vibration signals with a pickup, 
preamplifier, power amplifier, and recorder. The identified 
vibration signals of BPHs mainly occur during courtship and 
mating (Zhang and Chen, 1987a; Saxena et al., 1993), and the 
vibration signals of BPHs have three roles. These roles include the 
communication and identification of male and female individuals, 
stimulation of sexual arousal, and guidance for males in search of 
females (Zhang, 1997). On the same or neighboring rice plants, 
BPHs use vibrating courtship signals to contact the opposite sex. 

Females generally stay in one place, while males call and search 
according to the response signals (Zhang, 1997). At the same time, 
BPH males are capable of emitting vibration signals related to 
reproductive competition, which disturb the other males and 
reduce their mating rate (Zhang et al., 1991). Since the courtship 
vibration signals of BPHs are highly specific and stable (Cokl and 
Virant-Doberlet, 2003), new pest control technologies can 
be  utilized to emit disruptive signals that upset the courtship 
communication of the target pest (Eriksson et al., 2012; Polajnar 
et al., 2016).

Mazzoni et al. (2009) used artificially simulated competition 
signals to disrupt the male and female mating behavior of 
Scaphoideus titanus and proposed a new vibration control 
technology for leafhoppers. This technology used a shaker device 
to generate the selected disruptive signal and transmit the signal 
to grape leaves through trellising wires. The amplitude of the 
signal was 7.5 mm at the source and dropped to 0.1 mm at a 
distance of 10 m from the sound source. The mating inhibition 
rate of the male/female leafhoppers was about 90% and there was 
no negative impact on the natural enemies of the leafhoppers in 
the vineyard (Polajnar et  al., 2016). Fu et  al. (1997, 1999) 
confirmed that the competition signal of males significantly 
reduced the mating rate of BPHs (41.0%) and had a significant 
inhibitory effect during reproduction.

Besides the male competition signal, it has yet to be established 
whether other forms of signals could disrupt BPH courtship and 
mating behavior more effectively. In this paper, we developed a 
system for collecting, monitoring, and playing back BPH vibration 
signals. Artificial digital signals of different frequencies and forms 
were generated using Python and Adobe Audition according to 
the sensitive frequencies of BPH courtship calls and male 
competition calls. The playback and monitoring experiments were 
conducted to determine the most effective courtship 
disruptive signals.

Materials and methods

BPH rearing

All tested BPH subjects were obtained from the insect rearing 
room of the China National Rice Research Institute. The BPHs 
were reared on fresh rice seedlings at 26 ± 1°C and 70 ± 10% 
humidity under a 16/8 h light/dark photoperiod. Newly-emerged 
virgin BPHs (<24 h) were transferred to separate cages to 
avoid mating.

Development of BPH vibration signal 
recording, monitoring, and playback 
system

To collect, monitor, and play back the vibration signals of 
BPHs, we  developed a novel system with magnetoelectric 

FIGURE 1

Nilaparvata lugens (adult).
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converters, low-noise amplifier circuits, transducers, and other 
components. The setup is illustrated in Figure 2.

The magnetoelectric converter (model AT-3600 L) consists of 
a magnet, coil, and stylus. It converts the weak BPH vibration 
signal into a current output. The low-noise amplifier circuit 
utilizes the Texas Instruments bipolar high-performance audio 
operational amplifier (OPA1612), which has excellent noise 
performance and ultra-low distortion. To filter out noise from the 
BPH vibration signal and the signals in the non-target frequency 
band, we designed a Chebyshev sixth-order active band-pass filter. 
The system is powered by a lithium battery and the DC power 
circuit uses two integrated circuit chips: TPS563201 and LM27762. 
These devices support such functions as soft start, current limit, 
and thermal protection, as well as other functions. This power 
circuit has low noise and high-efficiency characteristics, and the 
4,800 mah battery can be used continuously for more than 5 days. 
The transducer incorporates a 0.25 W flat-panel-driven full-
frequency speaker. The signal collected through playback has no 
obvious distortion and only part of the frequency component is 
lost due to the mechanical filtering characteristics of rice plants. 
The system integrates power supply, amplification, and filter 
circuits with single-ended shielding and an optimized printed 
circuit board design to reduce noise during recording 
and monitoring.

Recording of BPH courtship vibration 
signals

A healthy rice plant was planted in a small pot and the stems 
and leaves of the rice plant above 15 cm were removed. The BPH 
test subject was placed in a circular observation box that was 
positioned about 10 cm above the rice stem base. At the top of the 

main rice stem, an iron nail was inserted as the contact point of 
the magnetoelectric converter. The converter of the system was 
attached to an iron stand with an adjustable shaft. Additionally, 
the position of the counterweight was modified so that the 
converter rested lightly on the contact surface directly above the 
nail. The output of the system was connected to a recording pen 
for recording and to headphones for monitoring. In this study, a 
total of 30 male BPHs and 30 female BPHs were used to 
record signals.

Generation of artificial disruptive signals

To disrupt the recognition of BPH courtship signals and male 
localization, we generated seven distinct disruptive signals of three 
different types. From the spectrum of the BPH courtship vibration 
signal in Section 3.1, the frequency of the female courtship signal 
is significantly in the range of 150 Hz to 300 Hz. Therefore, 
we selected the frequencies of 150 Hz, 225 Hz, and 300 Hz as the 
basis for the generation of artificial disruptive signals. Type 1 was 
the pure tone (PT) of different frequencies within the range of the 
female courtship signal. There were three kinds of PTs with 
frequencies of 150 Hz, 225 Hz, and 300 Hz. Type 2 was the 
continuous pulse signal (CPS), which had the same form as the 
female courtship signal. The three kinds of CPS had a constant 
pulse rate (PR) of 22 Hz and three different main vibration 
frequencies (MVF) of 150 Hz, 225 Hz, and 300 Hz. The Type 3 
signal was white Gaussian noise (WGN) with 0 dBW power.

All disruptive signals were synthesized using the Python 
NumPy library (NumPy, 2002), in which the CPS was obtained by 
filling a standard sine wave with a triangular pulse at a frequency 
of 22 Hz. The oscillograms and spectrograms of the seven artificial 
disruptive signals are presented in Figure 3.

A B

FIGURE 2

Vibration signal recording, monitoring, and playback system of BPH: (A) System framework diagram; (B) Physical image of the system.
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Playback of artificial disruptive signals

The experimental conditions were the same as the BPH 
rearing conditions. Healthy and insect-free rice seedlings were 
selected and pruned according to the experimental requirements. 
Well-developed male BPHs that had not mated after emergence 
for 2–3 days were placed into the circular observation box. Next, 
the box and BPH were left alone for more than 3 h. The playback 
device was placed at a height of 2 cm above the box and the signals 
were played back using a Sony recording device (model 
ICD-UX575F). To avoid the influence of intensity difference in the 
courtship and disruptive signals on BPH courtship responses, the 
pre-recorded courtship signal, and disruptive signal were mixed 
according to a uniform intensity.

To ensure that each tested male BPH was active, a female 
courtship signal was played to each BPH. If the tested BPH replied 
to the played signal within 10 s twice in a row, it was considered to 
be in the active reply period (ARP), which means that the tested 
BPH reacted strongly to the courtship signal and sent signals in 
response. Experiments were carried out on BPH that was in the 
ARP, and a combination of two control tests (courtship signal) and 
two disruptive tests (mixed-signal involving the courtship and 
disruptive signals) was used to test each disruptive signal in a loop. 
Each signal was played one syllable at a time by referring to 
segments of the courtship signals of BPHs. The responses of the 
BPHs were observed within 45 s after playback. If the BPHs 
replied, the delay of the reply was recorded. The main purpose of 
recording whether the males replied was to establish whether 
males could distinguish female courtship signals mixed with 
various kinds of disruptive signals. The reply delay was the time it 
took for the males to recognize and reply to the courtship signal.

After each signal was played back, we waited 60 s to confirm 
whether the tested BPH replied. If it did not reply, we waited a 
further 60 s before conducting the next test. If there was still no 
reply after the courtship signal was played a second time, 
we performed an additional test of the courtship signal. If the 
tested BPH still did not reply, we concluded that the tested BPH 
was temporarily not in the ARP, and this data was not recorded in 
the experimental results. Otherwise, the experiments continued. 
Besides, various behaviors of the tested BPHs, including 
movement, searching, localization, etc., were observed and 
recorded throughout the experiments. Each group of playback 
experiments is independent of the other, and the BPH subjects 
were discarded at the end of the experiment, meaning the number 
of tests per set was equal to the number of subjects.

Evaluation of disruption effect on 
courtship behavior

To test whether the disruptive signals had a significant effect 
on the replies of males, a nonparametric test was performed on 
the data of reply delays. Besides, pairwise tests were conducted for 
paired data. Reply delays for the disruption-free signals and the 

seven kinds of artificially synthesized disruptive signals were 
compared using the Kruskal–Wallis test followed by Dunn’s 
pairwise comparison test (Kruskal and Wallis, 1952; Dunn, 1964). 
In this study, the statistical analysis was conducted using the 
Kruskal–Wallis H test in SPSS Statistics.

Results and analysis

Spectra of BPH courtship vibration 
signals

In the experiment, we recorded 60 female courtship signals, 
66 male courtship signals, and 39 male competition signals. 
Analysis of the BPH courtship signals indicates that the female 
signals exhibit a continuous pulse signal. Besides, by using the fast 
Fourier transform to analyze the frequency spectrum of the signal, 
we determined that its main vibration frequency is 236 ± 43 Hz 
and the pulse rate is 23 ± 2 Hz. The male signal is more complex 
and can be divided into a courtship signal and a competition 
signal. The courtship signal of males can generally be divided into 
three parts. The first part is three to ten irregular pulses (a), 
followed by a continuous pulse signal with a main vibration 
frequency of 255 ± 24 Hz (b), while the third part is zero to five 
wide pulses (c). The male BPH competition signal consists of 
continuous pulses (a) and then two to four short pulses (b), and 
the main frequency of the continuous pulse segment is 281 ± 46 Hz. 
The oscillograms and spectrograms of the three signals are 
displayed in Figure 4.

Courtship disruption effect of disruptive 
signals

Playback experiments with disruption-free signals and seven 
kinds of artificially synthesized disruptive signals were carried out. 
The results of the reply rate and reply delay time are shown in 
Table 1.

Table 1 reveals that the male BPHs replied to female courtship 
signals in 95.6% of the control experiments. Besides, using 
Gaussian white noise resulted in a reply rate that was close to the 
control group, at 83.7%. In contrast, under the pure tone disruptive 
signal of 225 Hz, the reply rate of males was only 33.3%. The reply 
rate obtained with other disruptive signals ranged from 42.9 to 
66.7%. As illustrated in Figure 5, there were significant differences 
in reply delay for BPHs that replied (Kruskal–Wallis test, 
H = 19.550, df = 7, p = 0.007**). Also, the results of the pairwise 
comparisons showed significant differences between the three 
groups of PT experiments and the control experiments (Dunn’s 
pairwise comparison test, Pcontrol-150 Hz = 0.009**, Pcontrol-
225 Hz = 0.007**, Pcontrol-300 Hz = 0.005**). However, there were 
no significant differences for the other disruptive signals. The 
disruptive signals caused a substantial decrease in the reply rate of 
the tested BPHs and a considerable increase in the reply delay of 
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the BPHs that replied. This indicates that playing the disruptive 
signal during the male recognition process of female courtship 
signals effectively disrupts the replies and localization of males, 
with a disruption rate of more than 50%. Also, the males that reply 
are less efficient in courtship due to the influence of the disruptive 
signals. Among the various disruptive signals tested, the disruptive 
effect of PT (225 Hz) was the best, followed by PT (300 Hz). The 
other synthetic disruptive signals also had a certain disruptive 
influence, while the WGN signal had almost no effect. Therefore, 
we presume that the BPH courtship signal recognition process is 
particularly sensitive to frequency. In cases when the CPS has the 
same intensity as the PT, the width of the CPS spectrum is greater. 

This means that the intensity of the CPS at the same frequency 
point is slightly weaker and the disruptive effect is lower than PT.

Behavioral response

In the control experiments, the tested male BPHs exhibited 
stimulation after receiving the female courtship signals. There were 
two general modes of the tested BPHs in the behavioral 
observations. In Mode 1, the BPHs searched and localized during 
playback of the courtship signal and replied soon after the signal 
stopped. In Mode 2, the BPHs did not exhibit obvious searching or 

A B C

D E F

G H I

J

M N

K L

FIGURE 3

Oscillograms and spectrograms of artificial disruptive signals: (A) Oscillogram of PT (150 Hz); (B) Oscillogram of PT (225 Hz); (C) Oscillogram of PT 
(300 Hz); (D) Spectra of PT (150 Hz); (E) Spectra of PT (225 Hz); (F) Spectra of PT (300 Hz); (G) Oscillogram of CPS (22-150 Hz); (H) Oscillogram of 
CPS (22-225 Hz); (I) Oscillogram of CPS (22-300 Hz); (J) Spectra of CPS (22-150 Hz); (K) Spectra of CPS (22-225 Hz); (L) Spectra of CPS (22-300 Hz); 
(M) Oscillogram of WGN; and (N) Spectra of WGN. PT: pure tone; CPS: continuous pulse signal; WGN: white Gaussian noise.
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localizing behavior during the playback of the courtship signal, but 
they still replied to the playback signal after the signal stopped. In 
a large number of experiments, both modes were presented and the 
behavioral mode of a single tested BPH switched from time to time.

In the experiments using disruptive signals, the aroused 
behavior of the tested BPHs was lower than in the control 
experiments. There was no reply to the playback signal from 
62.2% of the tested BPHs, and behavioral observations indicated 
that the tested BPHs did not show any obvious movement during 
playback or after playback stopped. The BPHs that replied were 
mostly of the second behavioral mode mentioned above, meaning 
that active searching and locating behavior was very rare. These 
observations demonstrated that the disruptive signals had a 
significant effect on the courtship behavior of BPHs.

Discussion

The rice pest BPH does not have sex pheromones. Instead, 
it vibrates its abdomen at specific frequencies for courtship, 
localization, and eventually mating and egg-laying (Zhang and 
Chen, 1987a). To date, chemical control is still the primary 
method used to regulate the population of BPHs. This has 
caused increased BPH resistance to pesticides, rice pesticide 
residue, and serious environmental pollution (Wu, 2018). Thus, 
it is beneficial to use disruptive signals that upset the courtship 
of male and female BPHs, thereby delaying mating and reducing 
the mating rate. The bioacoustic method for disrupting the 
mating of S. titanus is currently under development and it has 
presented proof of concept under small-scale field conditions 

A

C

E

B

D

F

FIGURE 4

Oscillograms and spectrograms of male and female vibration signals: (A) Oscillogram of female courtship signal; (B) Spectrogram of female 
courtship signal; (C) Oscillogram of male courtship signal (divided into parts a, b and c); (D) Spectrogram of male courtship signal; (E) Oscillogram 
of male competition signal (divided into parts a and b); (F) Spectrogram of male competition signal.

TABLE 1 Screening results of BPH courtship-specific disruptive signals.

Disruptive signals No. of tests No. of replies Reply rate Mean (±SD) reply 
delay (s)

Control None 45 43 95.6% 5.3 ± 3.3

Artificial Disruptive Signals PT (150 Hz) 39 22 56.4% 8.0 ± 5.2

PT (225 Hz) 42 17 33.3% 9.1 ± 5.6

PT (300 Hz) 42 18 42.9% 9.3 ± 5.9

CPS (PR: 22 Hz; MVF: 150 Hz) 42 28 66.7% 5.8 ± 3.2

CPS (PR: 22 Hz; MVF: 225 Hz) 40 21 52.5% 7.2 ± 5.0

CPS (PR: 22 Hz; MVF: 300 Hz) 40 22 55.0% 7.4 ± 6.0

WGN 43 36 83.7% 5.0 ± 3.1

PT, pure tone; CPS, continuous pulse signal; WGN, white Gaussian noise; PR, pulse rate; and MVF, main vibration frequency.
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(Polajnar et al., 2016). While current studies on the vibration 
control of BPHs are limited to the disruptive effect of male 
competition signals (Fu et al., 1997, 1999), this paper aims to 
extract more effective disruptive signals for disturbing 
courtship responses.

Currently, costly equipment such as the laser vibrometer is 
commonly used in vibration studies of S. titanus (Mazzoni et al., 
2009). In this paper, a system for collecting, monitoring, and 
playback of BPH vibration signals was developed using 
magnetoelectric converters, low-noise amplifier circuits, 
transducers, and other components. The system we  devised 
achieved higher functionality with lower costs. Thus, it has the 
potential to be  applied to more species of planthoppers and 
leafhoppers, thereby facilitating more insect vibration studies.

Vibration courtship disruption involves the use of specific 
disruptive signals to precisely upset the communication of 
BPHs which are in the courtship stage. It blocks or disrupts the 
normal courtship behavior between males and females and 
effectively prevents or controls overall mating behavior. BPH 
courtship signals stimulate sexual arousal in the opposite sex 
and are so specific that BPHs are insensitive to other types of 
signals. Therefore, the development of disruptive signals using 
the characteristics of courtship signals may affect the perception 
process of courtship signals. This is different from the method 
devised by Fu et  al. (1997, 1999), which utilized male 
competition signals. The disruption method of the competition 
signal does have some influence, but the mutually competitive 
behavior of males is quite extensive in the BPH population and 
the disruption effect is limited. In contrast, the specific 
disruptive signal obtained through screening emphasizes the 
perception process. Therefore, it has better potential and wider 
applicability. Furthermore, analysis results of male and female 
courtship signals show that although the signals differ greatly 
in the time domain, the frequency range of the main vibrations 
is relatively stable. Therefore, normal courtship communication 

can be disrupted by playing back disruptive signals in the same 
frequency range during the courtship process between male 
and female BPHs. However, the BPH courtship and localization 
process is very conservative, with males generally initiating 
calls and then locating the female based on the female’s 
response (Zhang, 1997). Also, the male courtship signals are 
slightly more complex in the time domain, with different main 
vibration frequencies for male and female courtship signals. 
Therefore, we  focused on the male recognition process of 
female signals to design experiments that screened disruptive 
signals for upsetting the courtship process of BPH males 
and females.

By using artificially synthesized disruptive signals with 
different frequency combinations for playback and monitoring 
experiments, a pure tone signal of 225 Hz was extracted. This 
signal affected male BPH recognition of the female’s courtship call. 
Experiments revealed that the male BPH reply rate decreased 
from the original 95.6 to 33.3%. Furthermore, the mean reply 
delay increased from 5.3 s to 9.1 s. This confirmed that the mean 
reply delay of males under disruption was significantly different 
from the control group. Therefore, it is feasible to use specific 
disruptive signals to disrupt the courtship behavior of BPHs. 
We hypothesize that the effectiveness of the 225 Hz pure tone is 
due to its disruption of the spectral structure of the female 
courtship signal, making it difficult for males to recognize or 
become sexually aroused.

By applying the mating disruption technique for S. titanus, the 
mating inhibition rate was about 90% (Polajnar et al., 2016). Due 
to its satisfactory experimental effects, this method has tangible 
potential for controlling S. titanus reproduction. The experiments 
in this paper only focused on behavior at the courtship stage, but 
our results confirmed the hypothesis that disruption with specific 
disruptive signals efficiently disturbs BPH courtship behavior. 
Furthermore, our results provide support for subsequent research 
on BPH control methods.

FIGURE 5

Mean ± SD of male reply delay from the female courtship signal with or without disruptive signals. Differences from the Kruskal–Wallis test followed 
by Dunn’s pairwise comparisons are denoted as follows: ** p < 0.01.
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Admittedly, there are limitations to the findings of our study. The 
effects of the duration and frequency of the disruptive signals on 
courtship behavior, as well as on mating and egg-laying, still need to 
be tested experimentally. Additionally, the experiments in this paper 
were conducted indoors. However, if the results are applied to paddy 
fields, there will be a great deal of external interference noise, such as 
the shaking of the rice plants due to wind, noise from the 
surrounding environment, etc. For S. titanus, standards in viticulture 
provide delivery means of vibrational energy to target surfaces 
(Polajnar et al., 2016). However, for BPHs, the choice of delivery 
medium is still an issue. If the experimental technique is applied to 
paddy fields, substantial research efforts are still required to 
determine what equipment and what medium can be  used to 
effectively deliver disruptive signals to BPHs on rice stems. In the 
next stage of our research, we will observe the effect of simulated 
external noise on BPH courtship and further investigate the effect of 
disruptive signals on BPH mating. Moreover, we will enhance the 
playback equipment to address certain issues such as avoiding 
environmental pollution, reducing costs, and expanding the effective 
coverage range. These will be very challenging but interesting tasks.
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Machine learning approach to 
estimate soil matric potential in 
the plant root zone based on 
remote sensing data
Rodrigo Filev Maia *, Carlos Ballester Lurbe  and 
John Hornbuckle 

Centre for Regional and Rural Futures, Deakin University, Hanwood, NSW, Australia

There is an increasing interest in using the Internet of Things (IoT) in the agriculture 

sector to acquire soil- and crop-related parameters that provide helpful 

information to manage farms more efficiently. One example of this technology 

is using IoT soil moisture sensors for scheduling irrigation. Soil moisture sensors 

are usually deployed in nodes. A more significant number of sensors/nodes is 

recommended in larger fields, such as those found in broadacre agriculture, to 

better account for soil heterogeneity. However, this comes at a higher and often 

limiting cost for farmers (purchase, labour costs from installation and removal, 

and maintenance). Methodologies that enable maintaining the monitoring 

capability/intensity with a reduced number of in-field sensors would be valuable 

for the sector and of great interest. In this study, sensor data analysis conducted 

across two irrigation seasons in three cotton fields from two cotton-growing 

areas of Australia, identified a relationship between soil matric potential and 

cumulative satellite-derived crop evapotranspiration (ETcn) between irrigation 

events. A second-degree function represents this relationship, which is affected 

by the crop development stage, rainfall, irrigation events and the transition 

between saturated and non-saturated soil. Two machine learning models [a 

Dense Multilayer Perceptron (DMP) and Support Vector Regression (SVR) 

algorithms] were studied to explore these second-degree function properties 

and assess whether the models were capable of learning the pattern of the soil 

matric potential-ETcn relation to estimate soil moisture from satellite-derived 

ETc measurements. The algorithms performance evaluation in predicting 

soil matric potential applied the k-fold method in each farm individually and 

combining data from all fields and seasons. The latter approach made it possible 

to avoid the influence of farm consultants’ decisions regarding when to irrigate 

the crop in the training process. Both algorithms accurately estimated soil 

matric potential for individual (up to 90% of predicted values within ±10 kPa) 

and combined datasets (73% of predicted values within ±10 kPa). The technique 

presented here can accurately monitor soil matric potential in the root zone 

of cotton plants with reduced in-field sensor equipment and offers promising 

applications for its use in irrigation-decision systems.

KEYWORDS

machine learning, remote sensing, soil matric potential, NDVI, evapotranspiration, 
irrigation
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Introduction

Population growth in recent decades has boosted water 
demand worldwide, but water use and water consumption trends 
at current rates are unsustainable (FAO, 2017). Therefore, 
multidisciplinary research efforts in water management are 
required to achieve a sustainable future (Cosgrove and Loucks, 
2015). This includes research on water management in agriculture, 
which accounts for ~70% of the freshwater use worldwide and is 
the most water-demanding of all economic sectors (Pimentel 
et al., 2004). Irrigation is the activity that requires most of the 
water resources available and influences a variety of biophysical 
processes in plants that directly relate to yield.

Optimizing irrigation scheduling decisions in agriculture is a 
challenge that needs to be met to manage water resources more 
efficiently and improve crop water productivity (Jägermeyr, 2020; 
Chaudhary and Srivastava, 2021). Technology development is 
critical in providing more accurate tools for monitoring soil and 
crop water status at different scales (Bittelli, 2011; Cahn and 
Johnson, 2017; Saad and Gamatié, 2020). A range of approaches 
are available for direct and indirect measurements of the soil and 
plant water status (see Jones (2006)). For irrigation scheduling 
purposes, soil moisture monitoring has traditionally been the 
methodology used, and it is generally preferred to other methods 
due to its suitability for irrigation automation. An evaluation of 
available soil moisture measurement technologies and their 
limitations can be found in Susha Lekshmi et al. (2014). Water 
content sensors provide helpful information to determine when 
to irrigate, but soil texture influences the measurements requiring 
site-specific calibration (Cahn and Johnson, 2017). Soil matric 
potential sensors indicate how readily water is accessible for plants 
(Jones, 2006), do not require soil-specific calibration and are 
generally preferred for water management in vegetable crops 
(Thompson et al., 2007; Cahn and Johnson, 2017).

One of the limitations to the wide use of soil matric potential 
sensors at the commercial scale is that they only provide point-
source measurements, and thus, many sensors are needed in 
large-scale broadacre farming to accounting for soil spatial 
variability (Cahn and Johnson, 2017). To monitor large 
heterogeneous farms with sensors, Wireless Sensor Networks 
can be  used to interconnect them and make data available 
online in near real-time. However, it considerably increases the 
cost of the monitoring system (acquisition, installation, 
maintenance, among others), which has been reported as one of 
the significant barriers to the wide adoption of these 
technologies by farmers (Blasch et al., 2022). Remote sensing 
techniques can estimate soil moisture and allow capturing the 
existing spatial variability in large areas. However, these 
techniques still need improvement and are not accurate enough 
to directly estimate soil moisture at a field scale suitable for 
irrigation scheduling (Shunlin Liang, 2020). Therefore, 
methodologies that could minimize the number of in-field 
sensors without losing soil moisture monitoring capability/
intensity would greatly value water managers.

While not yet ready to accurately directly monitor soil 
moisture at the field scale for irrigation scheduling, remote 
sensing-based approaches are helpful for the estimation of crop 
evapotranspiration through vegetation indices gathered from 
satellite, airborne and drone-based platforms following the FAO56 
method (Pereira et al., 2015; Pôças et al., 2020). In this approach, 
crop evapotranspiration (ETc) is estimated by multiplying the 
reference evapotranspiration (ETo) obtained from data collected 
at nearby weather stations by a site-specific crop coefficient that is 
obtained from vegetation indices that can be monitored at high 
temporal and spatial resolution. The Normalized Difference 
Vegetation Index (NDVI) is the most widespread vegetation index 
and is linearly related to the crop coefficient (Trout and Johnson, 
2007). This ETc/NDVI approach enables water managers to 
monitor crop water requirements at individual sites throughout 
the growing season. However, the rate at which moisture is 
depleted from the soil is related to the crop evapotranspiration, 
which varies with the crop phenological stage, and thus, their 
relationship is time dependent. This time-dependent relationship 
hinders the possibility of estimating or accurately predicting soil 
matric potential from evapotranspiration measurements by 
conventional data processing techniques. In this work, we studied 
this relationship when soil matric potential is used to monitor soil 
moisture in gravity surface irrigated systems. The hypothesis was 
that machine learning models can learn the interaction between 
soil-, crop-, and weather-related parameters to estimate soil matric 
potential in the root zone from remotely sensed 
evapotranspiration measurements.

With the adoption of Information and Communication 
Technology in agriculture and the substantial volume of data 
generated, data-driven machine learning techniques that can 
organize data from different sources and the power to learn from 
them become essential (Alzubi et al., 2018; Benos et al., 2021). 
Machine learning techniques have been applied in agriculture in 
various farming practices, with those related to crop management 
activities (disease detection, yield prediction, among others) 
receiving most of the attention. Although growers see potential in 
using the Internet of Things, remote sensing, and machine 
learning (Agriculture 4.0) for having better decision-making 
processes, particularly in irrigation, substantially less work has 
been undertaken on water management activities (Benos et al., 
2021). Within the studies focused on water management, machine 
learning techniques have been applied to estimate groundwater 
reservoirs, soil moisture (Paloscia et al., 2013; Coopersmith et al., 
2016; Prasad et al., 2018; Singh et al., 2019; Babaeian et al., 2021; 
Greifeneder et al., 2021; Grillakis et al., 2021; Orth, 2021; Sungmin 
and Rene, 2021), evapotranspiration (Ponraj and Vigneswaran, 
2020), and provide irrigation control (González-Briones et al., 
2019; Kondaveti et  al., 2019; Murthy et  al., 2019; Akshay and 
Ramesh, 2020; Campoverde et al., 2021; Ikidid et al., 2021; Perea 
et al., 2021; Bhoi et al., 2021a), among other applications (Liakos 
et al., 2018; Cardoso et al., 2020; Perea et al., 2021; Bhoi et al., 
2021b). The machine learning techniques applied in these studies 
are shown in Table 1, following the classification suggested in 

144

https://doi.org/10.3389/fpls.2022.931491
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Maia et al. 10.3389/fpls.2022.931491

Frontiers in Plant Science 03 frontiersin.org

(Liakos et al., 2018) and considering two additional categories: 
Multi-Agent System (MAS) and Genetic Algorithm. The 
algorithms applied to estimate soil moisture are Bayesian models, 
Artificial Neural Networks (ANN), Regression models, Decision 
Tree models and MAS. Several research papers rely on neural 
network algorithms to classify or estimate crop parameters. 
Support Vector Regression (SVR, also called SVM in most papers 
as shown in Table 1) and Decision Tree-based algorithms are also 
primarily used for the same purposes.

This work proposes the original approach of using the 
relationship between soil matric potential and the cumulative 
evapotranspiration between irrigation events expressed in kPa/
mm aiming to (i) explore the proposed relation over the cotton 
growing season and (ii) assess the feasibility of estimating soil 
matric potential in the cotton root zone (0.20 m below ground) 
from remotely sensed evapotranspiration by using machine 
learning models. The kPa/mm relation may represent the 
dynamics of crop water use during the season. Supported vector 
models and ANN were the machine learning models applied 
because of their capability to process time-dependent parameters. 
The models’ performance in estimating soil matric potential at bay 
level was evaluated and compared following two approaches: (i) 
when models were trained with data for each farm and growing 
season, and (ii) when models were trained with data from all the 
sites and seasons combined. The second approach was 
implemented to avoid any influence water managers’ decision 
practices could have on the algorithm responses.

The study contributes to the research on implementing 
machine learning techniques in irrigation water management that 
are scarce in the literature compared to crop management 
activities. It presents an approach to cotton producers of the main 
cotton-growing areas of Australia that would allow them to 
monitor soil matric potential with a reduced number of in-field 
sensors and potentially optimize on-farm water management in 
these systems.

Materials and methods

Site locations and characteristics

The study was conducted during two cotton-growing seasons 
(2019/20 and 2020/21) with data collected from three commercial 

irrigated cotton farms located in the Murrumbidgee Valley (sites 
A and B) and Moree Plains Shire (site C) in the south and north 
of NSW, Australia, respectively (Figure 1). During a typical cotton 
growing season, these farms have approximately 500–1,500 
irrigated hectares depending on irrigation allocations. Irrigation 
fields typically have bays ranging from 8–30 ha, so hundreds of 
irrigated bays may need to be  managed for irrigation water 
applications during the irrigation season.

In the 2019/20 growing season, soil matric potential was 
monitored at sites A and B, while in the 2020/21 season, it was 
monitored at sites A and C. The Murrumbidgee area (sites A and 
B) climate is semi-arid, while it is humid subtropical in Moree in 
the north of NSW. The weather conditions differed between 
growing seasons and between cotton producing areas. Total 
rainfall and reference evapotranspiration (ETo) for sites A and B 
in the 2019/20 cotton growing season (from mid-October to 
April) were 152 and 1,161 mm, respectively. In the 2020/21 
growing season, total rainfall and ETo were 305 and 1,224 mm at 
site A and 582 and 1,245 mm, respectively, at site C.

Three bays were monitored at sites A (14.6 ha in total) and 
B (21.0 ha), while five bays were monitored at site C (172.8 ha) 
in the Moree Plains cotton-producing region where the 
standard practice is to produce in larger bays (up to ~38 ha in 
farm C). In all sites, cotton was furrow irrigated employing a 
bank-less channel irrigation system (Grabham, 2012). 
Irrigation was scheduled based on the farm consultants’ 
decision except for site A during the 2020/21 season, where 
irrigation was triggered based on soil matric potential 
thresholds and recommendations obtained from the cloud-
based IRRISENS platform (Filev Maia et al., 2020). At this site, 
the grower was notified by text message when soil matric 
potential at 0.20 m depth at any of the three bays monitored 
was lower than −40 kPa to be  able to order water to the 
irrigation company and organize the irrigation event 48 h 
in advance.

Measured and estimated parameters

Soil matric potential and crop evapotranspiration (ETc) were 
measured and estimated at each site to explore their relationship 
between irrigation events over the growing seasons. These 
parameters, rainfall and the growing degree days (GDD), were 

TABLE 1 Algorithms used for a range of applications in agriculture using remote sensing (R) and sensors data (S).

Application BM SVM ANN Regression DT MAS Genetic

Water estimation – S S S – – –

Soil moisture R, S – R, S R, S R, S S –

Evapotranspiration – – R, S S S – R, S

Irrigation control S S S – S – –

Rainfall prediction – S – – – – –

Total 4 4 9 5 9 2 1

BM, Bayesian models; SVM, support vector machine; ANN, artificial neural network; DT, decision tree; MAS, multi-agent system.
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used as inputs in the machine learning models described in the 
following subsection.

A WiField logger (Brinkhoff et al., 2017) with two watermark 
sensors (Model 200SS, Irrometer Company Inc., CA, 
United  States) and one 1-wire temperature shielded sensor 
(model DS18B20) was used to continuously monitor soil matric 
potential at each bay. Watermark sensors were installed at 0.20 m 
below ground as in Kang et al. (2012) and Ballester et al. (2021), 
where soil matric potential measurements are essential to trigger 
irrigation events (Brinkhoff et al., 2017). Soil matric potential 
was calculated using the resistance of each watermark and the 
soil temperature based on the following equations 
(Irrometer, 2021):

( ) ( )

( )
( )

3 3

3
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Figure 2 presents the seasonal evolution of the soil matric 
potential for each season and site. When soil matric potential 
readings are observed with more detail between irrigation events, 
there is an inflexion point that indicates the transition from a 
saturated (soil matric potential ≥ −10 kPa) to a non-saturated sate 
(Figure 3). Thus, soil matric potential evolution between irrigation 
events can be modelled by a second-degree function. The second-
degree equation coefficients indicate that the soil matric potential 
has approximately a linear behavior after the inflexion point. The 
same behavior was observed at different moments in the season 
(different crop phenological stages) with weather conditions 
influencing the soil matric potential decrease rate.

The ETc was estimated following the FAO56 approach (Allen 
et al., 1998), in which water requirements are obtained as the 
product between reference evapotranspiration (ETo) and a crop 
coefficient (ETc = ETo × Kc). ETo (using alfalfa as the reference 
crop) was estimated by the Penman-Monteith equation using 
weather information obtained from the nearest meteorological 
stations to each site. The crop coefficient was estimated from 
satellite-based NDVI images using the relationship reported in 
Trout and Johnson (2007) (Kc = 1.37 NDVI  –  0.086). NDVI 
images of each site were obtained using the Google Earth Engine 
API to access the Sentinel-2 top of atmosphere reflectance data 
collection. The extracted images were processed to eliminate 
those with more than 5% of pixels with clouds. The remaining 

FIGURE 1

Location of the farms in the Murrumbidgee Valley (sites A and B) and Moree Plains Shire (site C) in NSW, Australia, where soil matric potential was 
monitored for this study. The red asterisks shown in each NDVI (normalized difference vegetation index) map of each site indicate the monitoring 
stations. Each station was composed of two matric potential sensors and one temperature sensor buried at 0.20 m depth connected to a WiField 
datalogger.
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images were used to calculate the NDVI according to. As 
Sentinel-2 satellites do not provide daily data in the monitored 
areas, NDVI was estimated using linear regression for those dates 
with no images available.

Daily ETc was used to calculate the cumulative 
evapotranspiration between irrigation events as follows:

 
ET ET dcn

d

n
c= ( )

=
∑

0

where d is days since the last irrigation, its value is zero on the 
day that irrigation occurs, and maximum n on the day before the 
next irrigation. The cumulative ETc has the same cumulative 
behaviour as the soil matric potential.

The GDD index was another input parameter used in the models 
to account for the effect of temperature on crop development in each 
cotton-producing region (McMahon and Low, 1972). This index is 
computed from daily maximum and minimum air temperature data 
and a temperature threshold (the base temperature) at which crop 
growth stops. That for cotton is 12°C as follows:

FIGURE 2

Seasonal soil matric potential evolution measured at 0.20 m depth for each farm and cotton growing season.

FIGURE 3

Illustration of the soil matric potential evolution between irrigation events at each farm for different crop phenological stages. The least square 
function and coefficient of determination (R2) is shown for each irrigation event.
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TABLE 3 Description of the machine learning models configuration.

Model Layers/kernel Optimizer

DMP Input: 1 × 3

2 dense layers 32 

neurons each – Tanh

Output 1 × 1

Adam

SVR Input: 1 × 3

Radial basis function 

(RBF) kernel

Output 1 × 1

–

DMP, dense multilayer perceptron; SVR, support vector regression.

 0

( 12) ( )GDD
2=

− += ∑
n

k k

k

Tmax Tmin

 

Machine learning proposed approach

Data selection and pre-processing
In all monitored sites there were three sources of data: WiField 

loggers, Sentinel-2 data collections, and weather stations installed 
in each site or close to it. Table 2 depicts the machine learning 
input data collected in the field. Data cleaning and organization 
were the same in all seasons according to the following criteria:

 • soil matric potential readings range between 0 kPa and 
–200 kPa – readings lower than this value do not represent 
correct values;

 • soil matric potential at each bay was the average of 
two sensors;

 • weather data was collected from on-site weather stations 
(sites A and C) or nearby (site B);

 • remote sensing data extraction occurred every 5 days 
when Sentinel-2 covered the farm area at least once;

 • each satellite image and data extraction considered only 
points from the polygon representing each bay of the 
evaluated paddock, and the cloud coverage in such polygon 
must be less than 5% of the pixels in the image.

All data were organized sequentially according to the GDD to 
enable comparisons between crops from different locations and 
seasons. Two datasets were created to evaluate the algorithms. 
One dataset included data for each site and growing season 
individually, and the other dataset was composed of data from 
sites and seasons.

The time interval of data used to train and evaluate the 
algorithms was from the beginning of the monitoring period, 
excluding the initial 24 h after installing the sensors (wet 
conditions) and data for GDD < 600 (plants not emerged yet or 
emerging), up to 2,200 GDD. No irrigation events were 
undertaken in the evaluated paddocks after 1,700 GDD. The 

selection of the parameter set used as algorithms inputs was based 
on two criteria: (i) the training response (lower errors), and (ii) 
one parameter cannot be a linear combination of the other input 
parameters. This last condition forbids having NDVI and ETc in 
the same input set. The selected input set for all evaluations was 
composed of GDD, ETcn and Rainn. The GDD index is relevant to 
locating the input data in the proper phenological crop stage. The 
other two parameters are essential to evaluate the soil 
water availability.

Machine learning algorithms
The machine learning models must learn the relation kPa/mm 

and forecast the soil matric potential in non-monitored areas 
giving one set of input parameters. As this relation is nonlinear, 
two models were selected to deal with this nonlinearity. First, the 
Support Vector Regression (SVR) algorithm is based on the 
Support Vector model to estimate the value of a point as the best 
hyperplane that represents the given sample (Smola and 
Schölkopf, 2004). The second algorithm was a Dense Multilayer 
Perceptron (DMP) neural network that can be understood as an 
ANN in which one neuron is connected with all neurons from the 
subsequent layers (Arnold et al., 2019). The SVR algorithm was 
implemented based on the Sklearn package, and the DMP model 
was developed using the Tensorflow API (Abadi et al., 2016).

Table 3 presents the configuration of each algorithm. All tests 
were performed using the k-fold method (Bengio and Grandvalet, 
2004), which uses a cross-validation technique when the dataset 
is split in k folds with approximately the same number of samples. 
The algorithms are tested k times, each one changing the validation 
subset, i.e., each interaction deals with a selection of the k – 1 folds 
to training and one to test training, and each fold is used to test 
the algorithm once. The average of tested folds determines the 
algorithm’s accuracy.

Before splitting data in folds, they were shuffled to mix the 
order of the points in the farm dataset and to mix data from 
different farms and seasons in the second type of dataset. In the 
last type of dataset, this is a way to avoid points from just one farm 
being part of a fold and data from other farms in the other fold. 
The risk of not doing this shuffle is to make the algorithms, 
particularly DMP, learn the relation kPa/mm related to one 
grower’s practice instead of a pattern in the cotton crop.

TABLE 2 Potential input features used in this study to estimate soil 
matric potential.

Features Source Dimension/frequency

Solar radiation Weather station Daily value

GDD Weather station Daily value

NDVI Remote sensing Daily estimated

ETcn calculated Cumulative evapotranspiration 

between irrigation events (daily)

Rainn Weather station Cumulative rainfall in mm between 

irrigation events (daily)

Soil matric potential Sensor/estimated Daily average

GDD, growing degree days; NDVI, normalized different vegetation index; 
ETc, cumulative crop evapotranspiration.
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The SVR and DMP models received the same training inputs 
format 1 × 3, i.e., one input has three parameters, and present the 
result as 1 × 1, i.e., one output with one estimated/forecasted point. 
The input set was a combination of parameters from Table 2, and 
the output was soil matric potential in all evaluations.

The R2 (coefficient of determination) obtained for each tested 
fold was considered to evaluate the algorithms’ training and 
responses. However, as the objective of the algorithm evaluation 
is not to estimate the exact soil matric potential but to provide an 
admissible value, the algorithms were also evaluated based on the 
percentage of estimates within an interval of 10 kPa. This interval 
was selected because of the fluctuation observed in soil matric 
potential between sensors installed in the same bay next to each 
other when soil matric potential data for all the sites was assessed.

Results

Relation between soil matric potential 
and ETc (kPa/mm)

The relation between soil matric potential and cumulative 
evapotranspiration between irrigations expressed in kPa/mm, 
represents the ratio of the soil matric potential and water demand 
according to the crop development. This relation can be expressed 
as a second-degree function (Figure 4) in which the inflexion point 
corresponds to the inflexion point from the soil matric potential 
chart (Figure 3). It allows the observation of the dynamics of soil 
matric potential even when soil is saturated, and the crop water 
demand cannot be readily evaluated in the soil matric potential 
chart. Figure 4 shows the relationship between soil matric potential 
and cumulative evapotranspiration in several irrigation events 
(one line for irrigation event). The R2 of each relation kPa/mm is 
similar in farms A and C, even though irrigation management was 
different in each farm. In farm A irrigation scheduling was done 
based on the recommendations of an automatic irrigation control 
system while in farm A and B it was done based on the water 
managers’ practices. The relation was not affected by weather 
events or the crop phenological stage. The same relation was 
observed at different phenological crop stages (see Figure 4 – farm 
B – irrigation event #4 in the end of the growing season when crop 
water demand is lower, and irrigation is not needed) and weather 
conditions. However, rainfall had a decreasing effect on the slope 
of such relation as can be observed in Figure 4 (farms A and B– 
irrigation event #4) when it remained flat for longer.

In farms A and B, the relation kPa/mm had a maximum value 
close to 2.5, while in farm C the maximum value was close to 4.5. 
The difference could be related to the soil and weather conditions 
that were different for farms A and B compared to farm C. Due to 
the difficulty of having an analytical model that encompasses such 
relation, the alternative is to apply a machine learning model. Such 
models may learn the relation kPa/mm and predict the soil matric 
potential through remote sensing data in areas not monitored 
by sensors.

Algorithms’ evaluation in individual farms

The algorithms’ evaluation in individual farms comprises the 
automatic irrigation in farm A and non-automatic (or traditional) 
irrigation strategies in farms B and C. Farms A and B present a 
smaller monitored area than farm C. Consequently, there are 
fewer points in farms A and B compared to farm C to train and 
evaluate resultant model from each algorithm. Due to this 
situation, farms A and B had only three folds to be evaluated, 
while farm C had five folds. Therefore, three folds from each farm 
are presented to evaluate the algorithms’ responses in all 
following analyses.

The DMP presents R2 above 0.80 in farms A and C (Figure 5), 
indicating the automation of the irrigation process did not play a 
decisive role in the algorithm estimation capability, which can 
be  confirmed by SVR results (Figure  6). That SVR algorithm 
presents inferior performance compared to DMP in farms A and 
C, but the opposite in farm B, when the performance was 
substantially superior to DMP. It is possible to evaluate a sequence 
of points similar to a line in farm B (second and third folds in 
Figure  5) not closed from the R2 line estimated by the 
DMP algorithm.

It is also evaluated the soil matric potential estimations/
predictions versus measured points distribution in a ±10 kPa 
interval. Charts in Figures 7, 8 have the R2 = 1 (black line) and the 
±10 kPa represented between grey lines. Both charts represent 
individual farms with three folds each.

Both models’ estimations below –50 kPa present equivalent 
results, while DMP presents better estimations for points below 
–50 kPa in farms A and C. The percentage of estimated points 
in the ±10 kPa interval; across all farms showed a satisfactory 
performance (Table 4). The DMP had better performance than 
SVR in farm C, while there is no difference between algorithms 
in farm A. The monitored area in farm C is more extensive 
than on farms A and B. Due to the size of the bays in farm C, 
an irregular moisture distribution in the bays could be observed 
on the same day, which means the algorithms had to deal with 
significant differences in soil matric potential corresponding 
to the same GDD values in the input parameters.

Farm A presents the same results for both algorithms 
reflecting the regularity promoted by the automation process in 
the irrigated areas. However, farm B presented a significant 
difference between algorithms with SVR superior to DMP, getting 
90% of corrected estimated points in the ±10 kPa band (see farm 
B – SVR dispersion in Figure 8).

Evaluation of algorithms considering all 
farms and growing seasons combined

In individual farm evaluation, the differences in irrigation 
strategies did not cause overfitting in the neural network model 
but could cause a bias in the results (grower practices). Combining 
the measured points from all farms and seasons and shuffling the 
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points are essential to creating the evaluation dataset when such 
bias is not present.

Figure 9 presents the soil matric potential measured versus 
estimated to evaluate the responses provided by SVR and 
DMP. Both algorithms had equivalent results in all testing folds. 

According to the R2 metric, both algorithms present similar 
learning capabilities. The DMP reached R2 = 0.8424 in the fold (d), 
and SVR reached R2 = 0.7559 in the fold (a), meaning the DMP 
model provided a more accurate estimation of the soil matric 
potential in the root zone with a given input set.

FIGURE 4

Evolution of the relation kPa/mm observed during several irrigation events at each farm. Within each farm, the least square function and 
coefficient of determination (R2) is shown for each irrigation event.
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The performance of each model considering the ±10 kPa 
interval is represented in Figure  10. Data organization 
followed the k-fold method that generated other sets of folds 
for training/evaluation sessions. With the reorganization of 
points, the same characteristics were found and represented 
in Figure  9 (compared to Figure  8). Both models present 
similar responses when estimated points are contained in the 
proposed interval, reflecting the field’s measurements. 
Evaluating how many estimated points are in the ±10 kPa 
(Table  4), the SVR presents slightly better results than 
DMP. On average, 69.56% of points in DMP and 72.98% of 
points in SVR are in the proposed interval. Increasing the 
interval to ±15 kPa, both models present the same results 
(~80%) since the interval includes more correctly predicted 
points below –60 kPa.

Discussion

Relationship between soil matric 
potential and ETcn

Soil water dynamics are influenced by many bio-physical 
factors forming a complex system that is difficult to capture by 
analytical models without a significant number of input 
parameters and a complete understanding of their relationship. 
However, changes in soil moisture storage can be determined by a 
soil water balance model as the difference between water added to 
the soil (precipitation and irrigation) and water lost in the system 
(deep percolation, run off, lateral flow and evapotranspiration; 
O’Geen, 2013). In the context of this study, decreases in soil 
moisture storage in the top 0.20 m of soil are mainly due to the 

FIGURE 5

Results obtained with the DMP model when the analysis was done for individual sites. For each farm, the coefficient of determination (R2) obtained 
for the comparison between measured and predicted soil matric potential is shown for three folds.
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crop evapotranspiration. The relationship between soil matric 
potential and cumulative crop evapotranspiration between 
irrigation events (kPa/mm) that is expressed by a second-degree 
function should then represent this system. The R2 obtained for 
this relationship was in most cases >0.72 even though data was 
collected at different times in the season and from farms with 
different soil characteristics, water management strategies and 
weather conditions (Figure 4). For example, in farms A and B, the 
2019/20 cotton growing season was hotter and dryer than the 
2020/21 growing season. The highest (47°C) and lowest (19°C) 
maximum temperatures for the month of January since 1960 were 
recorded in the 2019/20 and 2020/21 growing seasons, respectively. 
These results suggest that the soil matric potential-ETcn relation 
between irrigation events is stable and machine learning models 
that capture this relationship can potentially be used to estimate 
soil matric potential from ETc measurements.

Performance of the models for individual 
and combined datasets

The SVR and DMP models were used in this study to learn 
the pattern of the proposed relationship to be able to indirectly 
estimate soil matric potential in areas not monitored with sensors 
from satellite-NDVI derived ETc measurements. This was possible 
without using specific soil characteristics as data input as it was 
required in other studies such as Villani et  al. (2018). The 
approach followed in this work is different from other studies 
using remote sensed data as an input parameter in machine 
learning models for the estimation or prediction of soil moisture 
(Ahmad et al., 2010; Coopersmith et al., 2016; Torres-Rua et al., 
2016; Sungmin and Rene, 2021). In Ahmad et  al. (2010), 
microwave backscatter observations and incidence angle from 
Tropical Rainfall Measuring Mission (TRMM), NDVI and 

FIGURE 6

Results obtained with the SVR model when the analysis was done for individual sites. For each farm, the coefficient of determination (R2) obtained 
for the comparison between measured and predicted soil matric potential is shown for three folds.
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simulated soil moisture data (at 0.10 m depth) were used as input 
parameters in a Support Vector Machine model to estimate soil 
moisture with good results. In Torres-Rua et al. (2016), surface 
soil moisture was estimated at spatial and temporal resolution 
using a Relevance Vector Machine model by combining in situ 
soil moisture and weather data with satellite-derived 
evapotranspiration (METRIC model). These models used in 
Ahmad et al. (2010) and Torres-Rua et al. (2016), were effective 
in estimating volumetric water content in the top 0.05 m of soil 
but its feasibility for estimating soil moisture at deeper soil layers 
was not studied which limits the applicability of these models to 
irrigation decision support systems. In the study here presented, 
soil matric potential was preferred to soil water content because 
of its suitability for irrigation automation and unneeded soil-
specific calibration. The SVR and DMP models learnt the pattern 
of the soil matric potential and crop evapotranspiration 

relationship using the GDD index, satellite NDVI-derived ETc 
and rainfall as input parameters. The models’ output was the 
estimated soil matric potential at 0.20 m depth, where thresholds 
can be used in practice to trigger irrigation events. Gumiere et al. 
(2020) and Dubois et al. (2021) also explored machine learning 
models for predicting soil matric potential in cranberry and 
potato crops, respectively, for irrigation management. In Gumiere 
et al. (2020), a Random Forest (RF) model with rainfall, reference 
evapotranspiration and soil matric potential measurements at 
0.10 m as input data predicted hourly soil matric potential with 
an R2 of 0.58. The average R2 obtained with the DMP and SVR 
models for individuals farms and for the entire dataset combined 
was ≥0.70 in this study. The best performance of the models here 
tested could be related with the fact that Gumiere et al. (2020) 
predicted soil matric potential hourly while daily values were 
estimated in this work. The RF, SVR, and Neural Network (NN) 

FIGURE 7

Results obtained with the DMP model when the analysis was done for individual sites considering the R2 = 1 (black line) and ± 10 kPa interval between 
the grey lines. Three folds are shown for each farm.
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models used in Dubois et al. (2021) had a higher performance 
(R2 > 0.92) in predicting soil matric potential than the models 
used here although remotely sensed data was not used as an input 
parameter in their study and thus it cannot be  used for the 
purpose proposed in this study.

Soil moisture estimation by machine 
learning models

Both SVR and DMP models performed well in estimating 
soil matric potential (Tables 4, 5). This is a strong indication 
that the kPa/mm relation can be  used to estimate the soil 
matric potential in the root zone of non-monitored areas 
from NDVI data, rainfall, and the GDD index that represents 
the development stage of the crop. The performance 

assessment for individual datasets (farms) showed that both 
models performed similarly and that they performed slightly 
better in farm A and B than in farm C. In particular, the SVR 

FIGURE 8

Results obtained with the SVR model when the analysis was done for individual sites considering the R2 = 1 (black line) and ± 10 kPa interval between 
the grey lines. Three folds are shown for each farm.

TABLE 4 Percentage of estimated points between the ±10 kPa and 
±15 kPa intervals in the analysis for all farms and seasons combined 
applying the DMP and SVR models.

Fold#
Points in ±10 kPa band Points in ±15 kPa band

DMP SVR DMP SVR

1 0.67 0.77 0.76 0.83
2 0.65 0.68 0.78 0.76
3 0.71 0.72 0.81 0.82
4 0.75 0.74 0.83 0.83
5 0.69 0.74 0.82 0.83
Avg. 0.69 0.73 0.80 0.82

DMP, dense multilayer perceptron; SVR, support vector regression.
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A B C

D E F

FIGURE 9

Results obtained with the SVR (A–C) and DMP (D–F) algorithms when the analysis was done combining data from all sites and seasons. The 
coefficient of determination (R2) obtained for the comparison between measured and predicted soil matric potential is shown for three folds.

A B C

D E F

FIGURE 10

Results obtained with the SVR (A–C) and DMP (D–F) algorithms when the analysis was done combining data from all sites and seasons 
considering the R2 = 1 (black line) and ± 10 kPa interval between the grey lines. Three folds are shown for each farm.
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model in farm B presented the highest accuracy, but this 
could just be that the models fit better the dataset for those 
particular farm and season. The performance of the models 
considering the ±10 kPa interval when data from all sites and 
seasons was combined was slightly worse than for individual 
farms although still with an accuracy around 70% (Table 4). 
The SVR model estimated 4% more readings within the 
±10 kPa interval than DMP. The performance improved 
significantly in both models when the interval increased to 
±15 kPa mainly due to the inclusion of estimates of soil matric 
potential between −60 kPa and −120 kPa within this larger 
interval. The dataset used for the training and testing of the 
models had more readings between 0 and −60 kPa than below 
this value because irrigation was scheduled in these sites to 
ensure plant water availability and avoid water stress 
conditions. Consequently, the soil matric potential dataset 
below −60 kPa was scarce for a proper training of the models 
and the accuracy in estimating soil matric potential in drier 
soil was lower.

Conclusion

This study showed that soil matric potential and cumulative 
ETc between irrigation events (kPa/mm) have a stable and robust 
relationship that integrates the effects of soil type and weather 
condition in a second-degree function. It also demonstrated that 
machine learning models with capability to process time-
dependent parameters such as the DMP and SVR applied here can 
learn the patter of the soil matric potential-ETcn relation. This 
offers the possibility of accurately estimating soil matric potential 
in the root zone of crops in non-monitored areas with in-filed 
sensors from remotely sensed ETc estimates. The approach is 
scalable to farms with multiple irrigation fields without the 
limitations of on-ground sensing related to the cost and 
organization of the sensors network.

The assessment of this relation kPa/mm with machine 
learning models provides a new technique to estimate soil 
tension in the root zone of cotton crops although it is 
potentially suitable for other crops. Future work can consider 

collecting data across wider areas and more seasons to refine 
the relation kPa/mm and machine learning models’ 
performance. Additionally, research on expanding the relation 
kPa/mm in other crops to evaluate if the relation sustains and 
how well it represents the complexity of the crop/soil/water/
weather system has merit for other industries.
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TABLE 5 Percentage of estimated points between the ±10 kPa interval 
in the analysis for individual farms with the DMP and SVR models.

Fold#
Farm A Farm B Farm C

DMP SVR DMP SVR DMP SVR

1 0.89 0.88 0.75 0.94 0.55 0.63

2 0.78 0.80 0.77 0.87 0.60 0.61

3 0.83 0.82 0.78 0.90 0.78 0.64

4 – – – – 0.80 0.57

5 – – – – 0.84 0.58

Avg. 0.84 0.84 0.77 0.90 0.72 0.61

DMP, dense multilayer perceptron; SVR, support vector regression.
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It is well known that crop classification is essential for genetic resources and

phenotype development. Compared with traditional methods, convolutional

neural networks can be utilized to identify features automatically. Nevertheless,

crops and scenarios are quite complex, which makes it challenging to develop

a universal classification method. Furthermore, manual design demands

professional knowledge and is time-consuming and labor-intensive. In

contrast, auto-search can create network architectures when faced with new

species. Using rapeseed images for experiments, we collected eight types to

build datasets (rapeseed dataset (RSDS)). In addition, we proposed a novel

target-dependent search method based on VGGNet (target-dependent neural

architecture search (TD-NAS)). The result shows that test accuracy does not

differ significantly between small and large samples. Therefore, the influence of

the dataset size on generalization is limited. Moreover, we used two additional

open datasets (Pl@ntNet and ICL-Leaf) to test and prove the effectiveness of

our method due to three notable features: (a) small sample sizes, (b) stable

generalization, and (c) free of unpromising detections.

KEYWORDS

crop classification, target-dependent, neural architecture search, small samples,
Bayesian optimization
Introduction

Image classification can distinguish objects by color, texture, shape, and spatial

relationship. It uses computers to analyze images and classify each pixel or region into

several categories without human interpretation (Wang and Wang, 2019). The following

are two agricultural scenarios. (a) Genetic resources: artificial recognition is time-

consuming and near-impossible. Automatic species identification is significant for
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taxonomy. Purohit et al. (2016) studied a machine-learning

method using leaf characteristics to recognize species. In

recent years, deep learning, which can automatically extract

features from original data, has dramatically improved

classification performance (Barré et al., 2017; Lee and Chang,

2017; Pawara et al., 2017). Some studies propose associating

machine learning with neural networks (Fu et al., 2016; Li et al.,

2020). (b) Phenotype development: a phenotype is a

characteristic or combination of an organism influenced by the

genotype and by the environment. Usually, plants grow in a

highly variable environment. More accurate and robust

algorithms are needed to deal with complex backgrounds and

quantify phenotypic characteristics. They can distinguish

different components or even instances. Li et al. (2020)

thoroughly reviewed phenotyping technologies and used

machine vision to measure plant stress.

There exist several machine-learning methods such as

support vector machines (SVMs) (Rumpf et al., 2010), k-

nearest neighbor (KNN) (Rahaman et al., 2019), random

forest (RF) (Mohana et al., 2021), and scale-invariant feature

transform (SIFT) (Lowe, 2004). However, they have some

shortcomings: (a) Classifiers are simple, and the effect of

recognition is underperforming. (b) Manual design requires

professional knowledge, so it is hard for researchers. Deep

learning has rapidly developed in recent years because it can

automatically extract features (Lecun et al., 2015) and has

achieved excellent performance in vision tasks (Amara et al.,

2017). Nevertheless, due to a large number of parameters,

designing a good neural network is still a hard task

(Suganuma et al., 2017): (a) People made models manually in

the early days, which required a lot of professional knowledge

(Sun et al., 2020). (b) Neural networks are problem-oriented,

whereas manually designed architectures are not. Two main

factors affect the performance of neural networks:

hyperparameters and training parameters. Training parameters

can be learned in the training stage. However, hyperparameters

must be set before training. Usually, hyperparameters determine

the structure of a network, such as the number and type of layers,

kinds of nodes, etc. We hope to find the best hyperparameters

for a given dataset in a reasonable time. This process is called

hyperparametric optimization. Researchers proved that a

gradient descent algorithm is significantly effective for

calculating training parameters (Rumelhart et al., 1986). In

contrast, there are no explicit strategies for optimizing

hyperparameters (Liu et al., 2020).

Most neural networks can be divided into three types: (a)

professional knowledge is required for manual design, such as

VGG (Ferentinos, 2018) and ResNet (He et al., 2016); (b) semi-

automatic design methods like genetic neural networks (Xie and

Yuille, 2017), hierarchical evolution (Liu et al., 2017), and others;

and (c) fully automatic design, such as when Google introduces

the neural architecture search (NAS) concept (Zoph and Le,

2016), which has received considerable attention (Baker et al.,
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2016; Lu et al., 2018). NAS can search for the best

hyperparameters to perform better than manual design. In

addition, NAS can reduce trials and errors remarkably.

Although NAS is attractive, it still lacks interpretability.

Furthermore, model training and verification are costly, and

early stopping is meaningful for NAS (Baker et al., 2017; Awad

et al., 2021).

This paper studies the hyperparameter optimization of deep

learning, and its organization is as follows: (a) Firstly, we

examine pertinent technologies. (b) Secondly, the proposed

method, as well as the underlying principles, is explained. (c)

We then carry out experiments and discuss the results. (d)

Finally, conclusions and future research directions are provided.
Related works

Deep learning and convolutional
neural networks

Deep learning is a branch of machine learning (Deng and

Yu, 2014). It is an automatic feature selection strategy based on

neural networks. It can combine low-level features to form

abstract high-level features without manual selection.

Compared with traditional image recognition and target

detection methods, the accuracy and generalization are

improved. At present, the main types of neural networks are

multilayer perceptrons (MLPs), convolutional neural networks

(CNNs), and recurrent neural networks (RNNs), among which

CNNs are the most widely used method in classification.

Generally, CNNs comprise convolution layers, pooling layers,

and fully connected layers. A convolution layer uses correlation

information to extract features. A pooling layer (mean pooling

or max pooling) compresses the amount of data and parameters,

reduces overfitting, and keeps the model invariant to translation,

rotation, and scaling. Each neuron (also named a node) in a fully

connected layer connects with the previous neurons. Therefore,

the multidimensional features are integrated and transformed

into several dimensions for classification or detection purposes.

Typical CNN models include AlexNet (Picon et al., 2019),

VGGNet, GoogLeNet (Liu et al., 2017), ResNet, MobileNet

(Howard et al., 2017), etc. AlexNet is the champion network

of the ILSVRC-2012, and it includes five convolution layers and

three fully connected layers. According to Bengio et al. (2013),

deeper CNNs can extract more representative features. Later,

researchers found that blindly increasing the number of layers

would slow network convergence (Glorot and Bengio, 2010).

Microsoft proposed RESNET with residual blocks and fast

connections, which made it possible to build a deeper network

(Szegedy et al., 2016). Google proposed MobileNet for mobile

and embedded vision applications.

The rapid development of deep learning is inseparable from

the extensive use of GPUs. Implementations of CNNs mostly
frontiersin.org
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require GPUs to provide computing support. CNN processes

roughly include (a) data preparation and preprocessing; (b)

model development, training, and testing; and (c) model

deployment. Usually, a dataset can be divided into training,

verification, and test sets, with ratios of 7:2:1, 8:1:1, and 6:2:2.

Training sets are for learning parameters; verification sets are for

optimizing and adjusting hyperparameters; and test sets evaluate

performance and generalization. Some public datasets exist, such

as PlantVillage (Sm et al., 2020), Kaggle (Ad et al), etc. It is worth

noting that many researchers collect their own (Lin et al., 2018;

Chen et al., 2020).
Data augmentation

The size and diversity of datasets are essential factors

affecting the classification effect of CNNs. Data augmentation

can expand the number of images, including moving, flipping,

zooming, etc. Deep learning can learn features from images

regardless of their positions. Therefore, we can expand datasets

through augmentation to avoid overfitting. For example, Perez

et al. (Perez and Wang, 2017) developed a new way to use

generative adversarial networks (GANs) to make images in

different styles.
Neural architecture search

Grid search (GS) is a simple method to find the optimal

parameters. However, an exhaustive search may consume time

due to the enormous hyperparameter space. Random search

(RS) (Andonie and Florea, 2020) explores randomly in the

hyperparameter space and improves the performance, but the

result may be worse sometimes. For example, the result is not

stable. Until now, researchers have proposed many NAS

methods: (a) NAS methods based on reinforcement learning

(RL); (b) NAS methods based on model optimization; and (c)

other improved NAS methods.

(a) NAS methods based on
reinforcement learning

Researchers designed a controller to generate strings

representing the structures of CNNs, trained each CNN

model, and used verification set accuracy as a reward. They

optimized the hyperparameters of DCNNs using a novel MARL-

based approach (multiagent reinforcement learning) (Iranfar et

al., 2022). They then created a multiobjective reward function

and applied it to reinforcement learning in order to find the best

network with the least latency (Tran and Bae, 2021).
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(b) NAS methods based on model optimization
To improve the performance of neural architecture search,

researchers proposed ENAs based on evolutionary computing

(EC) (Thomas et al) to design CNN architectures. EC is a

population-based technology to obtain an optimal global

solution. There are some EC-based technologies, such as

genetic algorithms (GAs) (Ching-Shih. Deb et al., 2002),

particle swarm optimization (PSO) (Kennedy and Eberhart,

1995), and artificial ant colony algorithms (Dorigo et al.,

2006). Researchers proposed a two-stage evolutionary search

with transfer learning (EvoNAS-TL) (Wen et al., 2021). Also,

EPSOCNN, which stands for efficient particle swarm

optimization, is suggested as a way to improve CNN

architectures (Wang et al., 2020).

(c) Other improved NAS methods
To limit the search space, Yu et al. (2021) and Sun et al.

(2019) proposed block-based methods. However, the results are

insufficient and unstable due to the lack of theoretical support.

Hu et al. (2021) proposed a new performance estimation metric

named random-weight evaluation (RWE) to quantify the quality

of CNNs. Lu et al. (2018) proposed NSGANet, an evolutionary

algorithm that combines prior knowledge from handcrafted

architectures with an exploration comprising crossover and

mutation. Some software packages provide search functions,

such as pyGPGO and Optunity (Bergstra et al., 2011),

Hyperopt–Sklearn (Bergstra et al., 2015), etc.

Many CNN models are challenging to apply on mobile/edge

devices due to limited resources such as memory capacity and

power consumption. Researchers have carefully designed some

lightweight networks. Donegan et al. (2021) used a differentiable

NAS method to find efficient CNNs for the Intel Movidius

Vision Processing Unit (VPU), achieving state-of-the-art

accuracy on ImageNet. An FPGA-based CNN accelerator

(field programmable gate array) was proposed (Fan et al.,

2020) with an accurate performance model of hardware

design. Intelligent edge-cloud scenarios are expected to meet

diverse requirements.

All the above studies do not effectively record evolutionary

information, so they cannot guide the whole search process

based on experience. In contrast, Bayesian optimization (Frazier,

2018) assumes the search space as a Gaussian distribution, learns

experience in search processes, and calculates better parameters

iteratively (Wistuba; Gupta et al., 2017; Ji et al., 2019; Basha et al.,

2021). However, these methods still cost enormous computing

resources. As a result, this paper suggests a heuristic target-

dependent method that only needs small samples and is

entirely automatic.
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Proposed method

From the above, we know that neural architecture search is

time-consuming and requires many resources. Therefore, we

intend to optimize the hyperparameter exploration process. In

short, the main contributions of this paper are as follows:
Fron
a. Method: We proposed a target-dependent search

method that only needs small samples. Besides

accuracy, we use precision and recall to promote

generalization. Also, our method can find searches that

are not working well and stop them early to save time

and resources.

b. Dataset: We collected eight kinds of rapeseed images and

created the dataset RSDS.

c. Comparison: Horizontally, we compare each TD-NAS

based on VGGNets. Vertically, we explore the TD-NAS

based on VGGNet-D (VGGNet-16). Furthermore, we

test our method on two additional open datasets,

Pl@ntNet and ICL-Leaf.
Infrastructure and hyperparameters

As for the primary network architecture, we chose VGGNet,

a typical convolutional network with six deepening structures
tiers in Plant Science 04
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labeled A, A-LRN, B, C, D, and E. Here we select A, B, D, and E

for experiments, and D is the most famous model named

VGGNet-16 (Figure 1).

We keep the number and position of convolution and

pooling layers fixed, while the layer number, the dropout rate,

and the neuron number of fully connected layers can be changed.

Table 1 shows the hyperparameter space. It is worth noting that

there is at least one fully connected layer, and the number of

neurons in the last fully connected layer is eight to produce the

output—eight classes of rapeseed.
Search principle and
Bayesian optimization

The aim is to find the hyperparameters of a model with the

best performance on verification sets. Let T be the objective

function for getting maximum accuracy (ACC).

hp* = argmax
hp∈D

T hpð Þ (1)

In formula (1), D is a hyperparameter space. We can create a

model for each hp in D, train the model, and evaluate its

performance on verification sets. This paper separates the

RSDS dataset into three parts: the training set, the validation

set, and the test set, with a ratio of 7:2:1. We use formula (2) as

the judgment criteria (jc) for evaluating model qualities:
FIGURE 1

VGGNet-16.
TABLE 1 Hyperparameter space.

Level Layer Name Values Type

Architectural FC LN {1, 2, 3} Integer

Internal FC DR {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} Float

Internal FC NN {512, 1,024, 2,048, 4,096} Integer

External OU w2 = 1- w1 {1.0, 0.9, 0.8, 0.7, 0.6, 0.5} Float

External OU b {0.5, 1.0, 2.0} Float
frontier
FC, fully connected; LN, layer number; DR, dropout rate; NN, neuron number; OU, output. w, b: parameters in formula (2) (discussed in the next section.)
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jc = w1Acc + w2Fb (2)

Here, Fb (balanced F-score) is the harmonic average of

precision and recall. Usually, the smaller the F-score, the

better the generalization. Therefore, we refine formula (1) to

formula (3):

hp* = argmax
hp∈D

T hp,     jcð Þ (3)

The following Algorithm 1 gives the naive hyperparameter

search process:
ALGORITHM 2

Fron
Input: Space_D, Data_T, Data_VOutput: hp*(1)

Get the training set (Data_T) and the

verification set (Data_V).(2) Select a

j u d g m e n t c r i t e r i o n : A C C . ( 3 ) S e t

hyperparameter search space (Space_D) and

initialize one hyperparameter (hp):(4)

Generate a CNN model with the hp.(5) Train

the model, and verify it.(6) Select the next

hyperparameter (hp), repeat (4), or Quit.(7)

Output the optimal hyperparameter (hp*).
ALGORITHM 1

HPS: Hyperparameters Search.

Algorithm 1 does not record evolutionary information, so it

cannot guide search processes effectively. Even if adopting a

random search, uncertainty still exists.

We propose a heuristic target-dependent search method.

The so-called heuristic means our approach can evaluate a better

location and start a new search. Here, we choose Bayesian

optimization, which assumes the superparameter space as a

Gaussian distribution and obtains better candidates each time.

Our method introduces a stop criterion to reduce the search

scale without lowering generalization. The so-called target-

dependent means that the explored architecture is not

universal and only valid for specific crops. We can quickly

rerun the proposed method to search out new architectures

when facing new species.

Bayesian optimization has two components: (a) Bayesian

statistics for constructing an objective function (typically a

Gaussian process); and (b) acquisition function for calculating

the following sampling points. After initializing several points,

Bayesian optimization can calculate a posteriori and iterate

reasoning until meeting an exit condition. Algorithm 2 shows

our TD-NAS method based on Bayesian optimization, where GP

is a Gaussian process, Acq_F is an acquisition function, and

Dyn_QF is a dynamic quit function. In Algorithm 2, we focus on

steps (6), (4), and (3). Step (4) costs massive resources for

VGGNet training and verifying, so step (6) should select
tiers in Plant Science 05
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hyperparameters elegantly to reduce the number of models.

Furthermore, step (4) should stop the training and verifying

processes when there are unpromising detections. Step (3)

checks the dynamic quit conditions and decides whether to

quit or not.
Input: VGGNet, Space_D, Data_T, Data_V, GP,

Acq_F, Dyn_QFOutput: x*(1) Init S = {(xi,

yi)}, yi = f(xi), xi ϵ Space_D, let f~GP(μ,

K).(2) Select a judgment criterion: jc.(3)

While not Dyn_QF() do:(4) Train and verify

VGGNet(x, Data_T, Data_V) with unpromising

detections.(5) Calculate p(y | x, S).(6)

Acq_F(x, p(y | x, S)), get xnew.(7) ynew = f

(xnew).(8) S = S U (xnew, ynew).(9) Output the

optimal hyperparameter (x*).
ALGORITHM 1

HPS: Hyperparameters Search.

Step (6): The acquisition function strikes a balance between

exploration and exploitation.

In Bayesian optimization, the acquisition function (Acq_F)

is critical for generating points according to prior knowledge.

Exploitation means evaluating at expected points because global

optima are likely to reside there. Exploration means considering

uncertain points is helpful because objects tend to be far from

where we have measured them. Usually, there are three typical

acquisition functions: expected improvement (EI), entropy

search (ES), and knowledge gradient (KG). The expected value

of EI is easy to figure out, which makes it a popular

acquisition function.

Let f *n = maxm≤nf (xm) be the max previous value. We have

one other position, x, to be evaluated, and then we get f (x). Now,

the best-observed point is either f(x) or f *n . The improvement is

then f (x) − f *n ; if this quantity is positive, else 0, mark as ½f (x) −
f *n �+ for convenience. Unfortunately, we should train and

validate the entire network to get f(x). Instead, we can take the

expected value of this improvement and define formula (4):

xn+1 = argmaxEIn xð Þ (4)

Here, EIn(x) = En½½f (x) − f *n �+�, and En indicates that the

expectation is taken under the posterior distribution, as shown

in formula (5): f(x) given x1:n, y1:n is normally distributed with

mean mn (x) and variance s 2
n (x).

f xð Þ j f x1 : nð Þ eNormal mn xð Þ,s 2
n xð Þ� �

(5)

Unlike the f(x) in step 4 of Algorithm 2, EIn (x) is low cost to

observe and allows for easy evaluation of first- and second-order

derivatives, as shown in formula (6):

TD-NAS: Target-dependent neural architecture search.
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EIn xð Þ = Dn xð ÞF Dn xð Þ
sn xð Þ

� �
+ sn xð Þj Dn xð Þ

sn xð Þ
� �

(6)

The definitions of F(),j() can be found in (Jones et al.,

1998). Here, Dn(x) = mn(x) − f *n is the expected difference

between the proposed point x and the previous best. Note that

EIn (x) balances between high expected quality (Dn (x)) versus

high uncertainty (sn (x)).
Step (4): Training and validating the VGGNet without

unpromising detections.

We calculate verification errors when training and verifying.

If the error exceeds the average prior value, it is unpromising to

go further. Figure 2 shows five hyperparameters in search,

including two unpromising detections. Stopping these

unpromising detections early can save resources and time.

Step (3): Making dynamic quit decisions.
Frontiers in Plant Science 06
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Figure 3 gives dynamic quit conditions and their generation

approach. To control the search process, a dynamic quit

function (Dyn_QF) uses these conditions, including whether

the queue of the hyperparameter space is empty or the

maximum number of iterations has been reached.
Experiment and discussion

Dataset and experimental condition

We took photos using a Canon EoS6D camera, which has

20.2 million effective pixels and a maximum resolution of 5,472

× 3,648. We then resized each image to 224 × 224 pixels to

improve the processing speed. To run programs, we used an HP-
A

FIGURE 2

Unpromising detections.
FIGURE 3

Dynamic quit conditions. Generation approach.
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OMEN laptop with an i9-9880H CPU, 32 GB of memory, an

NVIDIA RTX2080 graphics card (8 GB), and Python installed.

We collected rapeseed images at an experimental station of

Anhui Agricultural University, located at 117.2° east longitude

and 31.5° north latitude, in Sanhe town, Hefei, China. We

obtained eight kinds of rapeseed images, at least 1,000 of each

class (Ci|i = 1,…, 8), as shown in Figure 4, named RSDS. We

divided the RSDS into three parts: training set (Tr), verification

set (V), and test set (Te), with a ratio of 7:2:1. We randomly

obtained RSDS-0.1K with (Tr, V, Te = 700, 200, 100) images per

class. Using data augmentation, we obtained more sets as

follows: RSDS-0.2K (Tr, V, Te = 1,400, 400, 200), RSDS-0.4K

(Tr, V, Te = 2,800, 800, 400), and RSDS-1.0K (Tr, V, Te = 7,000,

2,000, 1,000).
Result discussion

We use VGGNet as the base framework. When training, the

initial learning rate is 0.01, and the epoch size is 50. For

comparing two algorithms, “better” means (a) fewer attempts
Frontiers in Plant Science 07
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for the same score and (b) a higher score after the same number

of tries.

For horizontal comparisons, (a) we set w1 = 1, which means

only accuracy is the evaluation indicator. In Table 2, the

verification accuracy of TD-NAS based on VGGNet-16

reaches 81.38%. However, the result obtained on VGGNet-E

(VGGNet-19) is worse than the original, indicating that

Bayesian optimization also has limitations in dealing with

deep networks. The number of neurons in the last fully

connected layer fixes eight to output the probability values of

rapeseed classes through a Softmax function. (b) Do not fix w1.

Instead, use jc as the indicator in formula (2) (Table 3).

Keep the fully connected parameters from Table 2

unchanged and take into account w1 and b. After searching,

we still get the highest verification accuracy (81.06%, Table 3)

based on VGGNet-D, which is slightly lower than the accuracy

of VGGNet-16 (81.38%, Table 2). However, the verification

accuracy of TD-NAS based on VGGNet-E has increased from

78.44% (Table 2) to 79.94% (Table 3).

Now, for vertical comparisons, (a) we use four datasets

(Table 4) to search for TD-NAS on VGGNet-D (VGGNet-16).
FIGURE 4

Rapeseed dataset (RSDS).
TABLE 2 TD-NAS and original VGGNet (A, B, D, and E) (RSDS-0.1K, w1 = 1).

VGGNet-A VGGNet-B VGGNet-D VGGNet-E

Original TD-NAS Original TD-NAS Original TD-NAS Original TD-NAS

V-ACC 74.06% 78.81% 77.38% 77.94% 79.19% 81.38% 80.75% 78.44%

FC

LN 3 3 3 3 3 3 3 3

DR {0.7, 0.7, 0.0} {0.6, 0.4, 0.0} {0.7, 0.7, 0.0} {0.7, 0.5, 0.0} {0.7, 0.7, 0.0} {0.6, 0.5, 0.0} {0.7, 0.7, 0.0} {0.5, 0.3, 0.0}

NN {4,096, 4,096, 8} {2,048, 2,048, 8} {4,096, 4,096, 8} {2,048, 2,048, 8} {4,096, 4,096, 8} {4,096, 2,048, 8} {4,096, 4,096, 8} {2,048, 2,048, 8}

OU

w1 1 1 1 1 1 1 1 1

b – – – – – – – –
V-ACC, verification accuracy; FC, fully connected; LN, layer number; DR, dropout rate; NN, neuron number; OU, output. Bold means To highlight the biggest verification accuracy (V-ACC).
Bold values mean to highlight the biggest verification accuracy (V-ACC).
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(b) We choose the model made by RSDS-0.1K, figure out how

accurate it is on all of the test sets, and compare it to other

models (Table 5). In Table 4, it can be seen that the bigger the

dataset size, the higher the verification accuracy (91.23%,

Table 4). It is worth noting that from RSDS-0.4K to RSDS-

1.0K, the promotion of verification accuracy is only 1.95%, but

the amount of training data has increased by 1.5 times.

Meanwhile, the time consumptions of RSDS-0.1K, RSDS-0.2K,

RSDS-0.4K, and RSDS-1.0K are approximately 00:42:32,

01:11:36, 04:20:38, and 07:26:00, respectively. The costs of

training and verification vary greatly, but the benefits are limited.

The TD-NAS mentioned above on VGGNet-D (VGGNet-

16) searches each dataset to generate models. Table 5 shows the

accuracy of these models on test sets; the diagonal part of the

table shows the accuracy of each model on its own test set,

whereas the first column is the accuracy of the model generated

by RSDS-0.1K on all test sets. It is worth noting that the test

accuracy of the model trained on small samples is not much

different from that trained on large ones.

Figure 5 shows four confusionmatrixes generated on each test set

separately, and the model is TD-NAS on VGGNet-D (VGGNet-16).
Frontiers in Plant Science 08
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Overall, ourmodel performedwell across different test sets. It is worth

noting that the twopairs [C4,C5]and[C7,C8]are farmore likely than

others to misjudge each other. When a person looks at the rapeseed

images of these two pairs, they look very similar in color and shape.
Pl@ntNet-300K and ICL-Leaf datasets

A novel image dataset with high intrinsic ambiguity was

presented (Camille et al., 2021), built explicitly for evaluating and

comparing set-valued classifiers. It consists of 306,146 images

covering 1,081 species, with two particular features: (a) The dataset

has a strong class imbalance, whichmeans that a few species account

for most images. (b) Many species are visually similar (Figure 6),

making identification difficult even for eye experts.

Table 6 shows that test accuracy depends strongly on the

number of images per class. We selected eight species, including

Cirsium arvense, and searched for architecture based on VGG-

16. Let [s1, s2] be the interval of the image number per class (for

example (Rahaman et al., 2019; Sun et al., 2019),), and we

searched twice with s1 and s2 per class (for >2,000, set [2,500,
TABLE 3 TD-NAS (RSDS-0.1K, w1 not fixed).

TD-NAS

VGGNet-A VGGNet-B VGGNet-D VGGNet-E

V-ACC 77.56% 75.13% 81.06% 79.94%

FC

LN 3 3 3 3

DR {0.6, 0.4, 0.0} {0.7, 0.5, 0.0} {0.6, 0.5, 0.0} {0.5, 0.3, 0.0}

NN {2,048, 2,048, 8} {2,048, 2,048, 8} {4,096, 2,048, 8} {2,048, 2,048, 8}

OU

w1 0.9 0.9 0.8 0.9

b 2 0.5 1 0.5
V-ACC, verification accuracy; FC, fully connected; LN, layer number; DR, dropout rate; NN, neuron number; OU, output. Bold means To highlight the biggest verification accuracy (V-ACC).
Bold values mean to highlight the biggest verification accuracy (V-ACC).
TABLE 4 TD-NAS on VGGNet-D (VGGNet-16) (w1 not fixed).

TD-NAS on VGGNet-D (VGGNet-16)

RSDS-0.1K RSDS-0.2K RSDS-0.4K RSDS-1.0K

V-ACC 81.06% 86.53% 89.28% 91.23%

FC

LN 3 3 3 3

DR {0.6, 0.5, 0.0} {0.7, 0.3, 0.0} {0.4, 0.6, 0.0} {0.5, 0.4, 0.0}

NN {4,096, 2,048, 8} {4,096, 2,048, 8} {2,048, 2,048, 8} {2,048, 1,024, 8}

OU

w1 0.8 0.9 0.9 0.8

b 1 0.5 1 2
V-ACC, verification accuracy; FC, fully connected; LN, layer number; DR, dropout rate; NN, neuron number; OU, output. Bold means To highlight the biggest verification accuracy (V-ACC).
Bold values mean to highlight the biggest verification accuracy (V-ACC).
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3,000]), then calculated the mean accuracy. From Table 6, we

found that our method got higher accuracy than Ref (Camille

et al., 2021). claimed, except for the situation “>2,000”. The

results in Ref (Camille et al., 2021). were made with ResNet50,

which has 49 convolutional layers and one fully connected layer.

This architecture is deeper than ours and better at handling

large samples.

Another public leaf dataset called the ICL (Hu et al., 2012)

was built by the Intelligent Computing Laboratory (ICL) at the

Institute of Intelligent Machines, Chinese Academy of Sciences.

It contains 16,851 samples from 220 species, with 26 to 1,078

samples per species (Figure 7).
Frontiers in Plant Science 09
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We selected eight species, including Amorpha fruticosa, and

searched for architecture based on VGG-16 two times. We got

an average test accuracy of 92.31%, a little more than 92.08% in

Ref (Xiao et al., 2010)., which used a traditional machine-

learning method named HOG-MMC (orientation histogram

based on dimension reduction of maximum edge criterion).

From the above, we proved that our method could quickly

discover new architectures when faced with Pl@ntNet-300K and

ICL-Leaf datasets. The contribution of our method includes three

features: (a) small sample sizes, (b) stable generalization, and (c) free

of unpromising detections. In experiments of Pl@ntNet-300K and

ICL-Leaf, as for feature a, we selected [500, 2,000] and [1,000, 1,200]
TABLE 5 Test accuracy comparison.

T-ACC TD-NAS on VGGNet-D (VGGNet-16)

RSDS-0.1K RSDS-0.2K RSDS-0.4K RSDS-1.0K

RSDS-0.1K 81.13% – – –

RSDS-0.2K 79.94% 81.44% – –

RSDS-0.4K 80.22% – 83.13% –

RSDS-1.0K 81.68% – – 82.73%
f

T-ACC, test accuracy.
FIGURE 5

Confusion matrixes generated by TD-NAS on VGGNet-D (VGGNet-16).
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images per class and got average test accuracies represented above.

As for feature b, we increased the number of images per class to

[2,500, 3,000] and [1,500, 2,000], and test accuracy had risen a little

(< 6%), but time cost ascended (> 26%). As for feature c, we set a

switch to control NAS with or without unpromising detections, and

statistics showed that more than 19% of detections are

unpromising. To sum up, due to features a and c, we can quickly

find out new architectures when faced with new species but still get

feature b’s stable generalization.
Frontiers in Plant Science 10
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Conclusion

This paper aims to design a novel target-dependent neural

architecture search method based on VGGNet. This goal was

successfully achieved on a self-built dataset with eight kinds of

rapeseed images. We select accuracy, precision, and recall as the

evaluation indicators. We adopt Bayesian optimization to obtain

better candidate parameters and introduce a stop criterion for

optimizing the dynamic search process. Results show that the
FIGURE 6

Examples of visually similar images belonging to two different classes.
TABLE 6 Test accuracy comparison.

Number of images per class Mean accuracy claimed in (Camille et al., 2021) Ours, TD-NAS on VGGNet-D (VGGNet-16)

10–50 35% 41.25%

50–500 59% 63.38%

500–2,000 79% 80.97%

>2,000 93% 86.75%
FIGURE 7

Typical samples for each species.
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test accuracy of the model trained on small samples is not much

different from those trained on large ones. The generalization of

the model generated by our method is not sensitive to dataset

size, making it meaningful to search out models from small

samples when facing new objects. For example, we tested our

method on two other open datasets, Pl@ntNet and ICL-Leaf.

Due to the enormous model structure and parameter space,

this paper only dealt with fully connected layers and the output

layer. We kept the original network structure unchanged, such

as the kernel and pooling size in convolutional layers.

However, the full network structure search, including

convolutional layers, is universal without margin. Some

literature has pointed out that Bayesian optimization is only

suitable for medium-sized problems (Shahriari et al., 2015).

When faced with new objects, how to quickly search a

minimized network structure is still an attractive topic.

Figure 8 shows our robot platform, with our models running

on (4), an onboard computer, and real-time images captured

by (1), a Realsense D435i camera. We continue to explore in-

depth research questions, such as changing kernels and pooling

sizes in convolutional layers (Franchini et al., 2022). We are

thinking about using the proposed method on more CNN

frameworks in the future.
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FIGURE 8

Our robot platform (capture pictures by (1) and run models on (4)).
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network extraction
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Jiahan Lin1,3, Wadi Chen1,3, Haiwei Wu1,3, Xin Chen1,3,
Yubin Lan1,2,3* and Weixing Wang1,6*

1College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural
University, Guangzhou, China, 2Guangdong Laboratory for Lingnan Modern Agriculture,
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Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China, 5Guangdong Key
Laboratory for New Technology Research of Vegetables, Guangzhou, China, 6Guangdong Provincial
Agricultural Information Monitoring Engineering Technology Research Center, Guangzhou, China
Introduction: It is crucial to accurately determine the green fruit stage of citrus

and formulate detailed fruit conservation and flower thinning plans to increase

the yield of citrus. However, the color of citrus green fruits is similar to the

background, which results in poor segmentation accuracy. At present, when

deep learning and other technologies are applied in agriculture for crop yield

estimation and picking tasks, the accuracy of recognition reaches 88%, and the

area enclosed by the PR curve and the coordinate axis reaches 0.95, which

basically meets the application requirements.To solve these problems, this study

proposes a citrus green fruit detection method that is based on improved Mask-

RCNN (Mask–RegionConvolutional Neural Network) feature network extraction.

Methods: First, the backbone networks are able to integrate low, medium and

high level features and then perform end-to-end classification. They have

excellent feature extraction capability for image classification tasks. Deep and

shallow feature fusion is used to fuse the ResNet(Residual network) in the

Mask-RCNN network. This strategy involves assembling multiple identical

backbones using composite connections between adjacent backbones to

form a more powerful backbone. This is helpful for increasing the amount of

feature information that is extracted at each stage in the backbone network.

Second, in neural networks, the feature map contains the feature information

of the image, and the number of channels is positively related to the number of

feature maps. The more channels, the more convolutional layers are needed,

and the more computation is required, so a combined connection block is

introduced to reduce the number of channels and improve the model

accuracy. To test the method, a visual image dataset of citrus green fruits is

collected and established through multisource channels such as handheld

camera shooting and cloud platform acquisition. The performance of the

improved citrus green fruit detection technology is compared with those of

other detection methods on our dataset.
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Abbreviations: Mask-RCNN, Regions with Convolut

features; Res4b, A module in the Residual network; ResN

CB-Net, Composite Backbone Network; COCO, Micro

in Context; HLB, HuangLongBing disease; RPN, Regi

Faster-RCNN, Faster Region Convolutional Neura
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Results: The results show that compared with Mask-RCNNmodel, the average

detection accuracy of the improved Mask-RCNN model is 95.36%, increased

by 1.42%, and the area surrounded by precision-recall curve and coordinate

axis is 0.9673, increased by 0.3%.

Discussion: This research is meaningful for reducing the effect of the image

background on the detection accuracy and can provide a constructive

reference for the intelligent production of citrus.
KEYWORDS

instance segmentation, Mask-RCNN, feature fusion, CB-Net, deep learning
1 Introduction

Citrus is an important cash crop in China, with an annual

production of nearly 50 million tons. Scientific planning of fruit

preservation and thinning is an important measure for ensuring

citrus yield. During the green fruit stage of citrus, fruit

development is easily affected by the environment, pests, and

diseases, which results in deformed fruit, fruit with pests and

diseases, and fruit with mechanical damage. The edible value of

these fruits is very low, and there is little economic benefit.

However, they absorb some of the nutrients of the fruit tree

during the development process, which results in a waste of

nutrients such that the normal fruit cannot obtain enough

nutrient supply. At the same time, there are too many fruits

on adult citrus trees, and the phenomenon of nutrient

competition among fruits is serious. Therefore, it is important

to accurately define the green fruit stage of citrus through

scientific methods and to reasonably thin the fruit to improve

the yield of citrus (Yan et al., 2021). The citrus green fruit stage is

traditionally judged by the fruit grower’s visual observation,

which not only results in subjective judgment errors (Linker

et al., 2012; He et al., 2016) but also has limitations for the

intelligent and unmanned operation of orchard fruit thinning.

With the development of smart agriculture applications, modern

computer science and technology provide new strategies for crop

target identification and detection, and real-time processing of

orchard image data through sensor systems and high-
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performance computers (Yamamoto et al., 2014; Haseeb et al.,

2020) can greatly reduce labor costs and improve detection

accuracies. Therefore, it is important for growers to make

orchard patrol plans according to the growth of citrus green

fruit, and analyzes the pictures of citrus orchard taken by the

camera using deep learning algorithm, so as to obtain the current

number of citrus green fruits, so that growers can determine the

yield of fruit trees and carry out timely fruit thinning operation.

Machine learning is used to accomplish the task of

classification. Through supervised learning, fitting of a model

to data (or a subset of data) that have been labelled– where there

exists some ground truth property, which is usually

experimentally measured or assigned by humans (Greener

et al., 2022). Subsequently, this model is used to map all the

inputs into the corresponding outputs and make a simple

judgment on the outputs for prediction and classification,

which also has the ability to predict andclassify the unknown

data. Yoosefzadeh et al. (Yoosefzadeh Najafabadi, 2021)

implemented ML algorithms in GWAS, investigated the

potential use of RF and SVM algorithms in GWAS to detect

the associated QTL with soybean yield components, which

would be beneficial to select the superior soybean genotypes.

Therefore, integrating artificial intelligence and computer vision

technology to establish a citrus green fruit stage detection model

would be an effective smart agriculture approach (Yang et al.,

2021) for detecting citrus (Rakun et al., 2011; Lin et al., 2019).

For target detection and recognition of citrus fruits,

traditional machine learning methods mainly use learning

algorithms such as edge detection algorithms, watershed

segmentation algorithms, and support vector machine

algorithms (Kurtulmus et al., 2011; Lu and Hu, 2017; Peng

et al., 2021). Such methods design feature extraction algorithms

for the color, texture, and shape of crops or agricultural products

(Li et al., 2017), segment relevant features in steps, and

accurately locate targets in images (Wang L et al., 2022). For

example, (Dorj et al., 2017) proposed a color feature-based citrus

yield estimation algorithm.
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Based on the automatic watershed algorithm, distance

conversion and marker control methods have been introduced,

which can better segment the individual citrus fruits in images.

(Hu, 2018) improved machine learning-based citrus green fruit

detection by using the local binary method and the maximum

stable polar region algorithm to extract the color images in the

region of interest, using the Hough transform to fit each level of

contour lines to obtain a hierarchical circular target, and finally,

performing a fitted circle nested analysis to obtain the citrus

green fruit target. The above methods describe individual

features of field crops in color, texture, and shape space to

achieve target and background segmentation.

These traditional field crop detection methods require high

background complexity of the input image, and their

performance on complex and diverse agricultural orchard

scenes is limited. In addition, these methods perform feature

extraction on a single scale and fail to produce high-accuracy

detection results. Instance segmentation algorithms provide

pixel-level target detection methods for solving the problem of

inaccurate classification due to individual deformation of targets

of the same category in target detection methods and achieving

the detection of different individuals of targets of the same

category (Liu et al., 2018; Wang et al., 2020; Jia et al., 2021).

The most widely used instance segmentation algorithm is the

Mask-RCNN (He et al., 2017) algorithm (Wang et al., 2016),

which applies the extended convolution method to the Res4b

module of ResNet, which is the backbone network of Mask-

RCNN, for the recognition and localization of poplar plum in

the natural environment to achieve accurate recognition and

segmentation of poplar plum. Zhang Y et al. (Zhang, 2020) used

the Mask-RCNN algorithm with a Kinect V2 (Lachat et al.,

2015) camera to acquire apple images under different

environmental conditions and to segment the generated apple

point cloud data (Wahabzada et al., 2015). Deng Y et al. (Deng

et al., 2020) achieved efficient detection of dense small-scale

citrus flower targets in complex structured images and acquired

the number of visible flowers in images by optimizing the body

convolution part and the mask branching part of the Mask-

RCNN algorithm. The Mask-RCNN algorithm has high-

efficiency detection performance and high operability and is

widely used in various field crop detection and segmentation

(Santos et al., 2020) tasks. It is an important tool for

implementing instance segmentation tasks in agriculture.

Current research has focused on target recognition of ripe

citrus yellow fruits, and less research has been conducted on the

detection of citrus green fruits (Zhao et al., 2016), but it is

important to accurately identify citrus green fruits and define

the citrus green fruit stage. Compared with ripe citrus yellow fruits,

citrus green fruits are more difficult to recognize. The reasons are

as follows: (1) citrus green fruits are difficult to distinguish because

their color is similar to the background under natural light (2)

under natural conditions, citrus green fruits are small in size and

occupy very few pixels in the image (3) citrus green fruits overlap
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each other and thus are easily blocked by leaves, branches and

other background objects, which is difficult to detect. Therefore,

we need to more accurately extract the inherent characteristics of

citrus green fruits, fuse the multiclass features of citrus green fruit,

and use efficient feature extraction methods to improve the

accuracy of citrusgreen fruit detection and segmentation.

Deep convolutional neural networks are constantly evolving,

and many backbone networks are able to integrate low, medium

and high level features and then perform end-to-end

classification. They have excellent feature extraction capability

for image classification tasks, and common backbone networks

are VGG, Resnet, etc. In neural networks, each channel needs to

do convolution operation with a convolution kernel, and then

the results are summed to get a feature map output. The feature

map contains the feature information of the image, and the

number of channels is positively related to the number of feature

maps. The more channels, the more convolutional layers are

needed, and the more computation is required, so reducing the

number of channels is beneficial to the computation speed.

This study selects citrus green fruits in the natural

environment as the research objects due to the limited accuracy

of traditional target detection algorithms for detecting citrus

green fruits in complex backgrounds. Based on an improved

version of the pixel-level instance segmentation algorithm Mask-

RCNN (Fan et al., 2021), a citrus green fruit detection method is

designed by introducing CB-Net (Composite Backbone Network)

(Liu et al., 2020). The method involves assembling multiple

identical backbones using composite connections between

adjacent backbones to form a more powerful backbone. This

helps increase the feature information that is extracted at each

stage in the backbone network. Then, a combined connection

block is introduced to reduce the number of channels and

improve the model accuracy. This method can effectively

mitigate the problem that the citrus green fruit color is similar

to the background color, which reduces the detection accuracy.

The proposed algorithm is pretrained by combining the data of

citrus green fruit images that were captured from multiple angles

using a camera and cloud platform with the training weight file of

the Mask-RCNN algorithm on the COCO dataset. Then, the

algorithm is formally trained and tested on the collected citrus

green fruit images for evaluation. This study provides a research

basis for the tasks of detecting and dividing citrus green fruits

under natural conditions and the development of intelligent and

unmanned operations for citrus green fruit thinning, and it

broadens the research scope of intelligent agriculture in the

field of citrus flower and fruit preservation. It is important to

improve the efficiency of citrus operations and promote the

development of citrus production.

In this study, the image data of citrus green fruit under real

natural environment was collected, and the corresponding data

enhancement processing was carried out to construct a citrus green

fruit data set. Based on the Mask-RCNN algorithm, CB-Net with

deep and shallow fusion was innovatively combined with the
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traditional feature extraction network ResNet to fuse the multilayer

features of citrus green fruits. Then, the proposed model was

compared with the traditional model in detail. Theresults showed

that the proposed algorithm based on the improved Mask-RCNN

has improved citrus green fruit detection accuracy and speed.

The main contributions of this study are as follows:

(1). Based on the strategy of feature fusion, an instance

segmentation method is proposed for reducing the influence

between citrus green fruit features and irrelevant features.

(2). We construct a novel Mask-RCNN model using CB-Net

(a composite backbone network) to fuse the multilayer features

of citrus green fruits so that the model can focus more on the

obvious regions and more detailed features in each image.

(3). The performance of the proposed model in detecting

different individuals under the same class of target to obtain the

morphology of citrus green fruits in advance is evaluated.
2 Materials and methods

2.1 Study area

Sugar tangerine is an important variety in China’s citrus

industry. Its main production area is South China, and it has
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high edible value. Its growth stage is similar to that of ordinary

citrus. The cultivation of sugar tangerine has high environmental

requirements, and sugar tangerine has poor resistance to insects

and diseases. It is necessary to observe the growth of each tree for

a long time to supplement nutrients in time and promote the

normal development of flowers , fruits , and leaves

(Rahnemoonfar and Sheppard, 2017). Using computer vision

to detect citrus green fruit targets requires high-resolution

images and imaging data to study the important shape

features of citrus green fruit and to finally evaluate the

accuracy of the results. The experimental site for this study is

located in the research and development demonstration base for

Green Plant Protection of Citrus HLB (Huanglongbing) and

New Cultivation Modes in Jingshuilong Village, Yangcun Town,

Boluo County, Huizhou City, Guangdong Province (N23°

29’57.81”—N23°29’59.31”,E114°28’8.39”—E114°28’12.26”). It

is 40 m above sea level, and the local climate is mild and

humid, which is suitable for the planting of citrus and other

fruit trees. The crop varieties in this test area are all sugar

tangerines. There are 334 citrus plants in the test area, with 9

rows, a row spacing of 4 m, and a column spacing of 2.5 m. In the

natural light environment, visible image data of citrus green

fruits were collected in July 2020. The citrus experimental site is

shown in Figure 1.
A B

FIGURE 1

Study Area: (A) Geographical location of the study area and (B) the citrus test base.
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2.2 Test data

2.2.1 Test data collection
To improve the quality and diversity of citrus green fruit

images, the modes of the collection were as follows: 1. A manual

hand-held camera (Model D7100, APS-C frame camera of

Nikon, Japan) was used to take multiangle visible images of

citrus green fruits at a distance of 2-3 m from the canopy of the

citrus tree, which produced JPEG images with a resolution of

4928×3264; 2. A wireless zoom camera (Hikvision 3T27EWD)

was called in the orchard through the cloud platform. This zoom

camera has a 1/2.7 largetarget sensor. At a distance of 5-10 m

from the canopy of the citrus tree, we used it for remote real-

time acquisition of visible images of citrus green fruits, which

produced JPEG images with a resolution of 1280×720. The data

acquisition mode diagram is shown in Figure 2. Finally, 200 and

357 citrus green fruit images were collected using the hand-held

camera and cloud platform, respectively, for a total of 557

images. The number of citrus green fruits in each image was

1-10. To obtain a unified data format, the picture resolution was

compressed to 1280×720. Figure 3 shows citrus green fruit

picture data that were collected by the two data collection modes.

2.2.2 Data processing
The data in supervised learning needs to be classified in

advance, and its training samples contain both feature and label

information. Therefore, a method based on improved Mask-

RCNN for constructing citrus green fruit dataset is proposed.

First, Labelme (Russell et al., 2008) data labeling software is used

for instance labeling of citrus green fruit individuals, and the

interface of the data labeling software is shown in Figure 4. The

top of the software is the menu bar, the left side is thetoolbar,

including open file or folder, select the current picture before and

after the picture file, save the annotation file, select the

annotation method, etc., a picture annotation area in the
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middle, and the right side is the picture and the annotation

name, category and other information. When labeling, select

polygon labeling method to manually mark the citrus target with

dense dotting, and mark the visible citrus target area.

The citrus green fruit of each monomer is regarded as a class.

When there are multiple citrus targets in the Figure 4, the labels

are set to “cirtus1”, “cirtus2”, “cirtus3”, and so on. When the

labeling of an image is completed, a json label filewith the suffix

“.json” is generated, which records the version number of

Labelme software, the label of each citrus green fruit labeled

and the pixel coordinates of the corresponding labeling point.

In this study, we fully consider the various shapes in the

environment in which the citrus green fruits are located in the

sample annotation process and ignore the citrus targets that are

obscured by more than 70%. The method can accurately obtain

the citrus green fruit target locations and reduce the interference

of citrus green fruit with obscured feature information in images

with complex backgrounds. A total of 3273 Citrus green fruit

samples are labeled.

In this study, data augmentation is used to improve the

network learning and generalization ability of the network

model. We mainly use image rotation, image horizontal

flipping, vertical flipping, and horizontal-vertical flipping as

data augmentation methods. Rotating and flipping images can

improve detection performance. Meanwhile, hybrid

augmentation is designed to address the limitation of the

overdependence of the model on the dataset. The mixture of

different classes of samples in the dataset is used to generate new

samples, which enhances the linear expression among different

classes of samples and improves the robustness against the

samples. The size of the amplified dataset is 2228.

Furthermore, the dataset is randomly divided into a training

set, validation set, and test set at a ratio of 6:2:2 for training,

tuning, and testing. A flow chart of the data preprocessing is

shown in Figure 5.
FIGURE 2

Data acquisition mode diagram.
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FIGURE 4

Data annotation interface.
A

B

FIGURE 3

Citrus green fruit images. (A) Pictures of citrus green fruit that were captured with a manual handheld camera and (B) pictures of citrus green
fruit that were obtained by the cloud platform.
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2.3 Mask-RCNN

In deep learning, the semantic information includes the

texture, color, or category of the target in the image, the richer

the semantic information, the stronger the correlation between

each pixel point and the surrounding pixels in the image. In the

process of citrus green fruit recognition, it is necessary to

preserve and integrate the feature maps with different

resolutions that are generated by the feature extraction

network in each convolution stage to generate feature maps

with rich high-resolution semantic information.

This is especially beneficial for improving the recognition

rate of green fruits and distinguishing the subtle features of fruits

and leaves. In the current research, the RPN structure that is

proposed by Faster-RCNN (Ren et al., 2015; Sa et al., 2016;

Apolo-Apolo et al., 2020) has advantages in terms of model

accuracy and training prediction speed, but traditional

unidirectional networks such as ZFNet (Fu et al., 2018) and

VGG16 (Qassim et al., 2018) are adopted by the CNN feature

extraction network to convolve and sample the original images

with high resolution and weak semantic information from top to

bottom and finally generate feature maps with low resolution

and strong semantic information. When the target shape or

feature difference in the image is small, a low-resolution feature

map will easily lose the feature information of small targets,

thereby resulting in a decreased recognition rate and missed

detection of the small target, among other effects.

The Mask-RCNN model is based on Faster-RCNN with the

addition of a semantic segmentation branch for outputting the

mask of the target and adjusting the training parameters through

the loss function to achieve deep learning of image features. The

Mask-RCNNalgorithm introduces a feature pyramid network

into the CNN feature extraction network (Lin et al., 2017) and

uses a ResNet network that is based on residual learning as the

feature extraction network. In contrast, FPN in the Mask-RCNN

algorithm fuses multiple feature scales and semantic
Frontiers in Plant Science 07
178
information, which can realize multiscale feature extraction

and fusion of images.

Mask-RCNN adds a mask prediction branch to the target

detection algorithm Faster-RCNN and performs convolution

and fully connected operations on the feature map in parallel

with the bounding-box regression branch and classification

branch. Moreover, it uses the RoI Align (Wang and He, 2019)

method instead of RoI Pooling (Liu et al., 2017) of Faster-RCNN

to enhance the pixel-to-pixel correspondence between network

inputs and outputs, reduce the error of the bounding-box

regression, and improve the target detection accuracy (Li et al.,

2020). Based on the above features, Mask-RCNN enhances the

feature information between citrus green fruit and the

background in the process of detecting citrus green fruit,

which is helpful for reducing the difficulty of citrus green fruit

detection and segmentation. Therefore, this study explores the

high-resolution optimization of feature maps in citrus green fruit

detection based on the advantages of Mask-RCNN, which fuses

multiple feature scales and semantic information to achieve

multiscale feature extraction and fusion of images (He

et al., 2020).
2.4 The proposed algorithm

The feature extraction network extracts the shape features of

citrus green fruit by a convolution operation and builds a

multilayer neural network model to realize the recognition and

localization of citrus green fruit in images. However, in the

actual scene, the citrus green fruit and the leaves are similar in

color, and some of the leaves are also round-like in outline,

which makes it difficult for the model that is built by a single

feature extraction network to distinguish the feature information

of the citrus green fruit and background, which increases the

difficulty of detection and segmentation of citrus green fruit.

Instance segmentation has both the characteristics of semantic
FIGURE 5

Data pre-processing flow chart.
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segmentation and target detection. The region where the

instances are located is identified by the target detection

method, and then semantic segmentation is performed within

the detection frame, and each segmentation result is output as a

different instance. Since citrus green fruits differ from leaves in

shape and color by subtle features, it is necessary to design a deep

and shallow feature extraction network with both extraction and

fusion functions in order to describe the inherent features of

citrus green fruits more accurately. The improved algorithm is

used to further extract phenotypic features such as shape and

color of citrus green fruits under a green background. At the

same time, the object detection is further refined to fuse the

multiple classes of features of citrus green fruits. Then, the

extracted multi-scale feature information is used to separate

the detection object from the background and achieve accurate

segmentation at the pixel level.

In this study, based on the Mask-RCNN network structure,

CB-Net is introduced. CB-Net provides a highly effective feature

extraction method for target detection and instance

segmentation algorithms based on the strategy of composite

connection, which is a worthwhile optimization strategy for

tasks in which detection is difficult and the feature effect is not

obvious. In this study, we expect the improved algorithm to

effectively identify citrus green fruits in similar background

environments and obtain better model accuracy at the expense

of the time cost of model training and prediction.The overall

structure of the Mask-RCNN model that incorporates the CB-

Net strategy is illustrated in Figure 6. The backbone network

consists of a feature extraction network that uses the ResNet +

CB-Net network and backbone, RPN, and an ROI head. The

input citrus green fruit images are compressed and passed into

three branches of the improved feature extraction network.

ResNet based on CB-Net is used to extract and fuse multiple

phenotypes of citrus green fruit, and the expression ability of
Frontiers in Plant Science 08
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multiscale features is enhanced by FPN. Furthermore, the

feature maps are generated and corrected for candidates

bound by the RPN and ROI align modules. Finally, three

prediction branches of regression, classification (Li et al., 2019)

and masking are used for the detection and segmentation of

citrus green fruit. The joint loss function of Mask-RCNN is used

to optimize the parameters in the model training process.

The improved Mask-RCNN uses the ResNet + CB-Net

network as the feature extraction network, and the structure

of the network is illustrated in Figure 7. The design strategy

is that ResNet50 or ResNet101 (Hong et al., 2020) is iterated

many times,and a composite connection module is used between

each ResNet block for transverse propagation of the feature

maps, which can effectively increase the amount of feature

information that is extracted at each stage in the backbone

network and improve the performance of citrus green fruit

detection in similar background environments.

The stage names of each ResNet network are Ci-j in Figure 7,

where i denotes the i-th ResNet network and j denotes the j-th

stage. The CC module is a composite connection module, and

the numbers of channels for 1×1 convolution in CC1, CC2, CC3,

and CC4 are 64, 256, 512, and 1024, respectively.

A single ResNet network has fixed requirements for the size

of the input images. Before images are input to the ResNet

network, they need to be resized. In this study, the original

images of citrus green fruit are resized to 1024×1024×3 as the

first-stage input of each ResNet network. As the depth of the

network increases, the size of the feature maps decreases, and the

output size of stage C1 is 256×256×64, that of stage C2 is

128×128×256, that of stage C3 is 64×64×512, that of stage C4

is 32×32×1024, and that of stage C5 is 16×16×2048. An

important parameter of ResNet + CB-Net is the number of

network iterations. With the increase in the number of network

iterations, the final extracted feature information becomes
FIGURE 6

The structure of Mask-RCNN model integrating CB-Net idea.
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richer, and the model expression ability improves gradually.

When the number of iterations reaches a threshold value, the

improvement in the network accuracy decreases gradually, and

as the number of iterations is further increased, the network

accuracy improvement becomes close to zero. The number of

iterations is linearly related to the time of model training and the

capacity of the physical memory that is occupied by the

hardware. When the accuracy of the network reaches the

saturation condition, increasing the number of iterations has

little benefit in terms of the accuracy but greatly reduces the

operational efficiency of the model and increases the ratio of

the storage space that is occupied by the model. To ensure that

the entire network is highly efficient, the number of iterations is

set to 3; that is, three identical ResNet networks are used

for connections.

The network adopts AHLC mode for composite

connections. The composite connection module consists of a

convolutional layer with a convolutional kernel of size 1×1, a

batch normalized layer (Ioffe and Szegedy, 2015), and an

upsampling module. The 1×1 convolutional operation changes

the number of channels. Batch normalization can improve the

model efficiency and reduce regularization processing. The

upsampling module changes the size of the feature image for

linear matrix superposition with the convolutional layer of the
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next ResNet network. In one connection, we assume that the

output of stage i of the first ResNet network is O1 (i). After a

composite connection with C(·), O1 (i) is superimposed with the

output of stage i-1 of the second ResNet network as the input I2

(i) of Phase i of the second ResNet network. Then, the output O2

(i) of Phase i of the second ResNet can be obtained by Formula 1,

where F(·) is a convolutional operation of stage i.

O2(i) = F(I2(i)) = F C O1(i)ð Þð Þ + O2(i − 1), i ≥ 2 (1)

To further demonstrate the process of lateral transmission of

feature information, the output of C1-2 is transmitted to the

second ResNet network through a composite connection module

as an example (Figure 8). C1-2 is the second stage of the first

ResNet network, so its output feature map size is 128×128×256.

The number of channels of the feature map is downsampled by

CC1 with a 1×1×64 convolution, and the size of the output

feature map is 128×128×64. In addition, to perform linear

summation with the output feature map of C2-1, the length

and width parameters of the feature map are further upsampled.

Then, the size of the output feature map of CC1 is 256×256×64,

which is the same as the size of the output feature map of C2-1.

To generate multiple outputs from the backbone, a composite

connection module is introduced. This module consists of a 1x1

convolutional layer and a batch normalization layer. These
FIGURE 7

ResNet+CB-Net Network structure.
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layers are added to reduce the number of channels and to

perform an upsampling operation to increase the feature

image resolution and improve the model accuracy. To further

demonstrate the process of lateral transmission of feature

information, the output of C1-2 is transmitted to the second

ResNet network through a composite connection module as an

example (Figure 8) C1-2 is the second stage of the first ResNet

network, so its output feature map size is 128×128×256. The

number of channels of the feature map is downsampled by CC1

with a 1×1×64 convolution, and the size of theoutput feature

map is 128×128×64. In addition, to perform linear summation

with the output feature map of C2-1, the length and width

parameters of the feature map are further upsampled. Then, the

size of the output feature map of CC1 is 256×256×64, which is

the same as the size of the output feature map of C2-1.

To obtain the RPN structure and the feature maps that are

required for the ROI prediction branches, P2~P5 of the output of

the last ResNet network are input into the FPN.
2.5 Performance evaluation metrics

In this study, precision rate (P), recall rate (R), and

precision-recall curve (PR) are used as evaluation metrics.

Precision refers to the prediction result, which is defined as

the number of targets that are true positive examples among the

targets predicted as positive examples. Recall refers to the sample

data, which is defined as the number of targets that are predicted

as positive examples among the targets predicted as positive

samples. In equations 2 and 3, TP denotes the number of positive

samples with correct predictions, FP denotes the number of

positive samples with incorrect predictions, and FN denotes the

number of negative samples with incorrect predictions. The PR

curves allow us to analyze the dynamic trends of the accuracy
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rate and recall rate on the whole data set and compare the

performance of different models on the same data set. The

calculation formulas are as follows:

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

AP summarizes the shape of PR curve from the numerical

level, and its value is the average of accuracy at the recall level

with equal intervals of 0 to 1. The calculation formula is:

AP(c) =
Z 1

0
Precision   rate(c)   dRecall   rate(c) (4)

where C represents the goal of a category. In order to

evaluate the effectiveness of the proposed Citrus green fruit

detection method, the precision-recall curve and average

accuracy AP50 and AP75 are used as evaluation indexes. AP50

and AP75 represent the average accuracy when IoU threshold is

set as 50 and 75.
2.6 Model training and testing

The computer hardware configuration parameters that are

used in this test are as follows: The operating system is

Ubuntu18.04, the processor is an Intel Xeon(R) CPU E5-2620

V4 @ 2.1 GHz ×16, and the memory is 64 GB. The graphics

processing unit (GPU) is a GTX TIAN X.

Migration learning (Shilei et al., 2019) is a machine learning

method for knowledge domain migration. The core strategy is as

follows: Knowledge models of mature domains, which are

obtained by algorithms learning on massive data for a long
FIGURE 8

Composite connection module.
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time, are applied to the model training of new domains, where

the similarity between data and domains is used to share

parameters with models of new domains to reduce hardware

resource consumption, while migration learning builds rich low-

level semantic featuresfor the models and guides the models to

learn appropriate weighting parameters parameters (Yin et al.,

2020). The citrus green fruit dataset that is collected in this study

is obviously insufficient to support the data size that is required

for learning the parameters from no initial information.

Based on the above strategy, this study utilizes the pretraining

weights of the Mask-RCNN algorithm on the COCO dataset to

pretrain the model in the initial stage of model training and then

fine-tunes the model using the citrus green fruit dataset that

isestablished in this study (Wang and Xiao, 2021). The training is

backpropagated using minibatch gradient descent (MBGD) to

optimally update the model parameters. During training, the

batch size is set to 2, and the network model initialization learning

rate is set to 0.001. It lasts for 30 epochs in total. After training, the

loss values of the model are recorded after each iteration, and the

correlation curves between the number of iterations and the loss

values are plotted to analyze the accuracy change and

convergence of the model during training. The final converged

model is saved, and then model prediction is performed on the

test set. The average precision, accuracy, and recall are calculated

and saved, and the PR curve is plotted to analyze the

generalization ability of the model.
3 Results

3.1 Performance comparison of different
algorithms

To evaluate the effectiveness of the data enhancement

method in solving the overfitting problem, the Mask-RCNN

algorithm is used for training and testing on the citrus green fruit

images before and after data enhancement. After training on 557

original images, the model has an AP value of 71.31% on 446 test

set images, and after training on 1782 images with data

enhancement, the model has an AP value of 92.47% on 446

test set images, as presented in Table 1.

Based on the data-enhanced citrus green fruit dataset, the

Mask-RCNN algorithm integrated with CB-Net is compared with

the traditional Mask-RCNN algorithm. ResNet50 and ResNet101
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are selected as the feature extraction backbone networks. Four

groups of experiments are conducted, namely, Mask-RCNN

+ResNet50, Mask-RCNN+ResNet101, Improved Mask-RCNN

+ResNet50, and improved Mask-RCNN+ResNet101.

The loss value variance curves of the four groups of tests are

shown in Figure 9. The loss values of all four models eventually

converge between 0.4 and 0.5, and the four models reach better

values within 30 training iterations.
3.2 Comparison of improved model with
other models

To evaluate the performance of the proposed model, training

is performed on the citrus green fruit dataset that is constructed

in this study, and the improvement points are compared one by

one. The results are presented in Table 2. The average accuracy

of the improved Mask-RCNN+ResNet50 model on the citrus

green fruit dataset that is built in this study is 95.36, which is

1.42%, 3.13%, and 2.17% better than those of the other three

models. The results from the segmentation prediction are

visualized in Figure 10. The number of real citrus green fruits

in the original image is 5. The improvedMask-RCNN+ResNet50

model correctly and completely identifies all citrus green fruits.

The other three models misjudge the green leaves as citrus green

fruits or miss the detection of citrus green fruits. Among them,

the Mask-RCNN+ResNet50 model misjudges 3 and misses 1, the

Mask-RCNN+ResNet101 model misjudges 5, and the improved

Mask-RCNN+ResNet101 model misses 1. The results show that

the improvedMask-RCNN+ResNet50 model greatly improves

the accuracy of the detection and segmentation of citrus

green fruit.

The two-stage target detection algorithm usually first uses

the algorithm (selective search or region proposal network, etc.)

to extract candidate frames from the image, and then performs

secondary correction on the candidate frame target to obtain the

detection result. Therefore, the accuracy of candidate frame

selection is particularly important for the target detection task.

In the feature extraction stage, this study mainly uses the

adoption of FPN to enhance the expression of multi-scale

features of citrus green fruits. In a further step, the feature

map is passed through the RPN and ROI Align modules to

generate and correct candidate frames. In order to verify the

accuracy of the candidate frames of the improved model, we

calculate the accuracy and recall rates of the four groups of

experiments on the test set and plot the PR curves, as shown in

Figure 11. The area that is enclosed by each PR curve and the

coordinate axes reflects the accuracy of the candidate frame.

When the area is larger, the confidence of the candidate bound

that is predicted by the model is higher. The areas that are

enclosed by the PR curve and the coordinate axes of the four

models are calculated, and the results are presented in Table 3.

The area that is enclosed by the PR curve and the coordinate axes
TABLE 1 Data enhancement test results.

Models AP

Mask-RCNN (original) 71.31

Mask-RCNN (enhanced) 92.47
AP: Average Precision.
Bold values represent the best indicators in the current table.
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of the improved Mask-RCNN+ResNet50 model is 0.9673, which

is 0.3%, 1.3%, and 1.2% larger than the areas of the other

three models.
4 Application case study

Citrus green fruit thinning assisted identification detection

was conducted in the citrus orchard using the improved model

that was suggested in this paper and transplanted to NVIDIA

Agx Xavier. The citrus orchard is located in Mutan Village,

Zengcheng City, Guangdong Province, China (as shown in
Frontiers in Plant Science 12
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Figure 12A). The specific parameters of the equipment used

are as follows: NVIDIA Agx Xavier, the processor model is 8-

core ARM v8.2, the memory model is eMMC5.1, the size is

32GB, and the GPU (Graphics Processing Unit) is 512-core

Volta GPU with Tensor Cores. High-definition camera (Daipu

DP-UK100), the size of HDCMOS sensor is 1/2.8 inches, the

effective pixel is 2.1 million, and it can shoot 1080P ultra-high-

resolution images.

Before deploying the model with an edge smart station, it is

necessary to initialize the edge smart station. In order to facilitate

subsequent debugging and development, the Jetpack component

library is used to reinstall the Agx Xavier system. The reinstalled

operating system is Ubuntu 18.04, with GPU acceleration

application tools such as CUDA 10.2.89 and Cudnn 8.0.0.180,

and visual computing tools such as OpenCV and Vision Works.

On this basis, according to the CUDA version, install thedeep

learning environment required by Mask RCNN. The

environment is as follows: Tensorflow gpu 1.15.0, keras 2.1.3,

scikit image. Then, we connect the high-definition camera to the

edge smart station through the USB interface, and configure the

camera interface. We use the OpenCV toolkit to obtain the real-

time image data of the camera, and call the model to detect each

image acquired in real time.
A B

DC

FIGURE 9

Loss curves of the four models. (A) Mask-RCNN+ResNet50; (B) Mask-RCNN+ResNet101; (C) Improved Mask-RCNN+ResNet50; (D) Improved
Mask-RCNN+ResNet50.
TABLE 2 Prediction results of four sets of trials.

Models AP50 AP75

Mask-RCNN+ResNet50 94.03 92.17

Mask-RCNN+ResNet101 92.47 89.87

Improved Mask-RCNN+ResNet50 95.36 93.45

Improved Mask-RCNN+ResNet101 93.34 91.68
AP50: The IOU threshold is 0.5.
AP75: The IOU threshold is 0.75.
Bold values represent the best indicators in the current table.
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Place Agx Xavier and the camera on a tripod at a distance of

2-3 meters from the citrus canopy and 1.6 meters above the

ground (as shown in Figure 12B). A total of 10 collection points

were set up in the orchard, and the focal length and angle of the

camera were adjusted according to the position of the equipment

and the green fruit. The camera took 2 hours each time. Both

data collection and model reasoning were processed on Agx

Xavier, and the processed results would be analyzed by the

systemto further give fruit thinning decision-making

suggestions. The overall flow chart is shown in Figure 12C.

After the improved model was transplanted to Agx Xavier, the

recognition of green fruits was in line with the performance

indexes achieved during the model training test, and the

inference time was 0.939 seconds, which could satisfy the
Frontiers in Plant Science 13
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demand for automatic green fruit recognition in citrus orchard

thinning operations.

The equipment need to be manually moved about to collect

various tree plants because it is mounted on a fixed tripod with a

small field of view. In order to expand the applicability of the

system in the future and further increase the robustness and

feasibility of the system, the improved model proposed in this

paper can be deployed on an unmanned vehicle in the future (as

shown in Figure 12D). The method is as follows, an NVIDIA

Agx Xavier that has been ported with an improved model and a

HD camera is built on the unmanned vehicle. Then, by manually

setting fixed trajectories in citrus orchards in advance, the

unmanned vehicle will move along the preset trajectories when

performing the task of citrus green fruit yield detection in citrus
A

B

D E

C

FIGURE 10

Forecast visualization results of the four models. (A) Original image; (B) Mask-RCNN+ResNet50 model; (C) Mask-RCNN+ResNet101 model; (D)
Improved Mask-RCNN+ResNet50 model; (E) Improved Mask-RCNN+ResNet101 model.
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orchards. During the task, the following operations are repeated:

(1) the unmanned vehicle is stationary once every 2 minutes (2)

the HD camera takes pictures to obtain real-time image data (3)

Agx Xavier invokes the model to detect each image obtained in

real time. This enables the acquisition of image data of the whole

orchard with low labor cost.
5 Discussion

To address the problem of difficult identification of citrus

green fruits in the natural environment, an instance

segmentation method based on the strategy of feature fusion is

proposed for reducing the influence between citrus green fruit

features and irrelevant features, and we construct a novel Mask-

RCNN model using CB-Net (a composite backbone network).

The generalization ability of the neural network was improved

by constructing the green citrus dataset and a series of dataset

preprocessing operations. Second, a combined connection block

is introduced to reduce the number of channels and improve the
Frontiers in Plant Science 14
185
model accuracy. The accuracy of the final trained model on the

test set is 95.36%, which is higher than that of Mask-RCNN. This

indicates that the improved model can more accurately identify

more citrus green fruits.

To further verify the effectiveness and feasibility of this

method, the performance of the proposed model in detecting

different individuals under the same class of target to obtain the

morphology of citrus green fruits in advance is evaluated.

Compared with the original method, the average detection

accuracy of the improved Mask-RCNN model is 95.36%,

increased by 1.42%, and the area surrounded by precision-

recall curve and coordinate axis is 0.9673, increased by 0.3%.

The loss values of all models eventually converged between 0.4

and 0.5. The results show that compared with Mask-RCNN

model, data augmentation can solve the model overfitting

problem that is caused by the small amount of data. By fusing

the multi-layer features of Citrus green fruits, the improved

model can pay more attention to the obvious regions and more

detailed features in each image, so as to improve the accuracy of

citrus green fruit detection and segmentation.

Under the conditions of this study, the loss value of the

ResNet50 network converged slightly faster than that of the

ResNet101 network, and the model accuracy of the ResNet50

network was 1.93% higher than that of the ResNet101 network.

The reason for this phenomenon is that the parameter scale of

ResNet101 is larger than that of ResNet50, and the loss value is

related to the update speed of the weight parameters. Compared

with the multicategory and multi scene target detection task, the

semantic information of the citrus green fruit images that were

collected in this study is not obvious, and the low level of

demand for rich semantic features that are generated at higher
FIGURE 11

PR curves of the four models.
TABLE 3 Areas that are enclosed by the PR curves and coordinate
axes of the four models.

Models Areas

Mask-RCNN+ResNet50 0.9638

Mask-RCNN+ResNet101 0.9549

Improved Mask-RCNN+ResNet50 0.9673

Improved Mask-RCNN+ResNet101 0.9556
Bold values represent the best indicators in the current table.
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stages results in data-level limitations,the feature maps with too

many semantic features results in model overfitting. Therefore,

the improved Mask-RCNN +ResNet50 model had better

inference results on the test set, thereby indicating that the

model had more accurate fitting and better generalization ability

for single citrus green fruit characteristics.

Based on the improved model proposed in this study, we

carried out the assisted recognizing detection of citrus green fruit

thinning. The results show that when the improved model

proposed in this paper is applied in the field, the accuracy meets

the training effect, and the average inference time of the system is

0.969s, which meets the requirements of real-time detection. The

improved model proposed in this paper has good generalization

ability and can be practically applied to the identification of citrus

green fruits in citrus orchards. The inference results can further

help the development of fruit thinning in orchards.

Based on the observations of this study, the designed model

has various limitations. In a more complex citrus orchard scene,

the overlap effect cannot be ignored when the number of

recognized citrus green fruits is large and the pixel sizes do not

differ much. In the next step of research, we need to further
Frontiers in Plant Science 15
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differentiate the analysis and training for different scenes, and the

model will be lightly modified to further improve its

generalization ability to enhance its detection accuracy and speed.
6 Conclusions

Using computer vision technologies to establish a citrus

detection model and realize the real-time processing of orchard

images through sensor systems and high-performance computers

is an important development trend of smart agriculture in citrus

detection at present. This study designed a citrus green fruit

detection method based on improved feature network extraction.

Citrus green fruits were selected as the research objects. To ensure

the accurate detection of different individuals of the same target

category in the collected images in the actual detection and

recognition process, based on the Mask-RCNN algorithm, CB-

Net with deep and shallow fusion was innovatively combined

with the traditional feature extraction network ResNet to fuse the

multilayer features of citrus green fruits. Then, the proposed

model was compared with the traditional model in detail.
A B

DC

FIGURE 12

(A)Example application location; (B) HD camera, Agx Xavier, Overall build, Field layout effect;(C) Overall flow chart; (D) Unmanned vehicle and
unmanned vehicle for citrus green fruit dynamic detection.
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The improved model that was proposed in this study showed

an average accuracy of 95.36 on the citrus green fruit dataset that

was established in this study, and the accuracy of the model

increased by 1.18% after the same feature extraction network

was integrated into CB-Net. The improved model has higher

ability to express the characteristics of citrus green fruits and

reduces the interference of complex image backgrounds in citrus

green fruit instance segmentation, and the detection accuracy

has exceeded the basic accuracy requirements. Compared with

the current common algorithms, the improved model has

accuracy advantages and edge erection feasibility. In a data

enhancement contrast test, it was verified that the data

enhancement method that was proposed in this study can

solve the overfitting problem that is caused by the limited

amount of data. The results showed that the proposed

algorithm based on the improved Mask-RCNN has improved

citrus green fruit detection accuracy and speed. A performance

comparison of the Mask-RCNN algorithm before and after the

improvement showed that the optimal model for citrus green

fruit detection and segmentation is the improved Mask-RCNN

+ResNet50 model. The results showed that the ResNet50

network with low-level semantic information performed better

on the dataset in this study. CB-Net promotes the extraction and

fusion of features and further improves the generalization ability

of the model to unknown data.

In the future, the citrus green fruit detection and

segmentation model can be further applied to an edge

intelligent platform with high computing power. The

deployment of the model at the edge is another important

strategy for citrus orchard data transmission. It can provide

technical support for the management and control system of the

citrus key growth period and provide a reference for the

realization of scientific and unmanned farm construction.
Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.
Frontiers in Plant Science 16
187
Author contributions

JLu conceptualized the experiments, selected the algorithms,

collected and analyzed the data. RY, CY and JLi wrote the

manuscript. HW and WC trained the algorithms and collected

and analyzed the data. XC, WW and YL supervised the project

and revised the manuscript. All authors discussed and revised

the manuscript. All authors contributed to the article and

approved the submitted version.
Funding

This work was supported by the Laboratory of Lingnan

Modern Agriculture Project (NT2021009), Basic and Applied

Basic Research Project of Guangzhou Basic Research Plan in

2022 (202201010077), The 111 Project (D18019), Guangzhou

Key R&D project (SL2022B03J01345), The Open Research Fund

of Guangdong Key Laboratory for New Technology Research of

Vegetables (201704) and Guangdong Province Enterprise

S c i e n c e a n d T e c h n o l o g y S p e c i a l Ombu d sm a n

Project (GDKTP2020070200).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
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