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Atherosclerotic plaque deposit in the carotid artery is used as an early estimate to
identify the presence of cardiovascular diseases. Ultrasound images of the carotid artery
are used to provide the extent of stenosis by examining the intima-media thickness
and plaque diameter. A total of 361 images were classified using machine learning
and deep learning approaches to recognize whether the person is symptomatic or
asymptomatic. CART decision tree, random forest, and logistic regression machine
learning algorithms, convolutional neural network (CNN), Mobilenet, and Capsulenet
deep learning algorithms were applied in 202 normal images and 159 images with
carotid plaque. Random forest provided a competitive accuracy of 91.41% and
Capsulenet transfer learning approach gave 96.7% accuracy in classifying the carotid
artery ultrasound image database.

Keywords: carotid artery, ultrasound image, machine learning, deep learning, stroke

INTRODUCTION

Every year, in India, 26% of people die due to cardiovascular diseases, stroke because of artery
stenosis is 75%, and heart attack is 42%. In the United States, one of the 19 deaths is due to
stroke (Farah, 2018). Risk factors that may lead to stroke are physical inactivity, being obese, heavy
drinking, use of illegal drugs, family history having a stroke and other cardiovascular diseases,
cholesterol, high blood pressure, diabetes, and smoking. Other factors with increased stroke risk
are race-, sex-, age-, and hormones-related problems.

Stroke is the third prominent reason for death in many developed countries (Benjamin et al.,
2019). The common cause of stroke is the formation of atherosclerotic plaque in the carotid artery
that can grow large enough to block blood flow leading to stenosis or rupture causing clots in
the artery. Progressive intimal accumulation of protein, lipid, and cholesterol makes medium-
and large-sized arteries, causing atherosclerosis. Atherosclerosis may be existing in body parts,
such as infernal aorta, coronary artery, superficial femoral artery, and the common carotid artery
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bifurcation region. Strain in the arterial wall causes variance
in clinical, mechanical, and molecular levels in the artery. The
plaque formation is compensated by artery enlargement with no
changes in the lumen region, where blood flows.

The mapping of features to any one of the classes in
a computer-assisted diagnostic system is called classification.
Machine learning algorithms that are used for biomedical image
classification are neural network, backpropagation, support
vector machine (SVM), adaptive binary tree-based SVM, decision
trees, such as linear regression, logistic regression, random forest,
k-nearest neighbor (KNN), k-means, Boltzmann machine, mean
shift clustering, Markov statistics nonparametric techniques, and
fuzzy-based classification methods.

Stimulated by the function and structure of the brain, an
artificial neural network (ANN) was developed. A subset of
machine learning, called deep learning, performs classification
tasks directly from the images. The accuracy of deep learning
sometimes exceeds human performance. The model extracts all
the necessary features by itself and performs the classification.
Transfer learning is a kind of deep learning which uses the learnt
knowledge from some other data and uses that for the application
in hand. Some of the transfer learning algorithms are Alexnet,
Mobilenet, Imagenet, Capsulenet, etc.

Carl Azzopardi et al. (2020) used a deep neural network
(DNN) to delineate lumen-intima boundary (LIB) and
media-adventitia boundary (MAB) with a fully automatic
segmentation technique. For the network stochastic gradient
descent optimization problem, a new objective function was
formulated. The invariant intensity data input was given to
the network with a bimodal synthesis of amplitude and phase
congruency. The performance in MAB and LIB detection was
96.2 and 92.5%, respectively. The study was made with just 15
images in each stenosis category which is not a sufficient number
for deep learning-based segmentation. Images from different
sources were not considered for learning, missing generalizability
(Azzopardi et al., 2020).

Roy-Cardinal et al. (2019) extracted noninvasive vascular
ultrasound elastography (NIVE) and ultrasound features, such
as homodyned-K (HK), Nakagami parametric maps, log-
compressed images. The algorithm identified large lipid area,
calcification, ruptured fibrous cap presence, differentiation
of nonvulnerable and vulnerable plaques, and confirming
symptomatic and asymptomatic patients using a random forest
classifier. The study population was 91, and only 5 cases with
fibrous caps were involved. A balanced dataset may give better
classification performance. Based on elastography and B mode
gray-level features, the AUC obtained was 0.90 (95% CI 0.80-
0.92, p < 0.001). The area of calcification accuracy obtained was
0.95 (95% CI 0.94-0.96, p < 0.001), performed using the above
features. Area under the curve variation for other tasks varied
between 0.79 and 0.97 (Roy-Cardinal et al., 2019).

Loizou et al. (2017) studied the texture variability in the
ultrasound video to identify the presence of vulnerable plaque.
The videos were intensity normalized, denoised, IMT segmented,
and texture feature learned to find systole and diastole states.
The texture was visibly variable for diastolic and systolic states.
More gray-scale average was recorded for systole compared to

diastole. Plaque structures had variable textures in both the
states. Systole and diastole features combined gave better results.
Borders of type 1 plaque were not identified by this method.
Acoustic shadowing was produced in type V plaque and was not
recognizable. The state diagram was improper for 2% of cases
(Loizou et al., 2017).

Lekadir et al. (2017) proposed a CNN classification model
for the different plaque constituents. Lipid core, calcified tissues,
and fibrous caps were detected with a correlation of 0.90 related
to clinical results. Based on the patch batched technique, 56
images were converted into 90,000 patches for the process. SVM
with predefined image features gave an accuracy of 78.5%. The
testing time taken for classifying each image was 52 & 13 ms,
and changes in accuracy were reduced by 0.003 by changing
the patches between 9 x 9, 11 x 11, 13 x 13, and 15 x 15
(Lekadir et al., 2017). Pazinato et al. (2016) used the features of
neighboring pixels for carotid image classification. On a dataset
with calcium, lipids, muscles, fibrous, and blood tissues texture,
gradient, statistical, and local binary pattern (LBP) features were
used. Pixel-based machine learning classification was carried out
on the normalized image following multiscale description. The
method was computationally complex and did not focus on any
particular machine learning algorithm. The technique applied in
ultrasound tissue engineering achieved a classification accuracy
of 73%, and was statistically verified (Pazinato et al., 2016).

Gastounioti et al. (2015) explained the importance of
kinematic features for plaque analysis for a computer-aided
diagnosis (CAD). Fisher discriminant ratio-based feature
selection and SVM-based classification were performed.
Applying texture features gave 80% of accuracy and kinematic
features recorded 88% of accuracy. The accuracy of this proposed
CAD has still lots of scope for improvement. AUC, specificity,
and sensitivity improved by 0.70, 0.83, and 0.67, respectively
(Gastounioti et al., 2015). Vegas-Sanchez-Ferrero et al. (2014)
defined a gamma mixture model (GMM) for the subsampled
RF images, and their parameters are useful features to identify
various plaque tissues. The method outperformed in terms
of plaque echogenicity and characteristics. It achieved an
accuracy of 95.16% for four-class classifications and 86.56%
for three-class classification, which can still be improved
(Vegas-Sanchez-Ferrero et al., 2014).

Saba et al. (2021) proposed a classification approach for
carotid artery ultrasound images using four machine learning
models, one deep learning model, and one transfer learning
model. He used the scattering principle of the plaque, where
the symptomatic ones are more scattered than the asymptomatic
ones (Saba et al, 2021). He achieved stable results for
the characterization and classification of the carotid artery
ultrasound images.

Classification of the carotid artery images to identify the
presence of plaque deposit is performed by machine learning
algorithms, CART decision tree, random forest, and logistic
regression. Convolutional neural network (CNN)-based deep
learning classification and Mobilenet and Capsulenet transfer
learning approaches are performed in the carotid artery image
database. The performance of these classification methods is
analyzed with the true values confirmed by three radiologists.
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In this article, section 2 gives the methodology, section
3 describes the results and discussions, and section 4
concludes the article.

METHODOLOGY

This section defines the approach involved in the classification
of the carotid artery ultrasound images. Feature extraction
and selection are done to obtain the appropriate features. The
selected features are given as input to the machine learning
classification algorithms, CART decision tree, random forest,
and logistic regression. The images are given as input to the
CNN, transfer learning algorithms, Mobilenet and Capsulenet.
The classification performance measures are used to identify the
efficiency of the algorithms.

Figures 1A,B give the sample carotid artery ultrasound images
with and without plaque deposit.

Database Creation

Ethical clearance is obtained from the SRM Medical College
Hospital and Research Center, Kattankulathur, Tamil Nadu,
India, to collect carotid artery ultrasound images. Database of the
carotid artery ultrasound B mode images is collected from the
Bharat Scans, Chennai and the SRM Medical College Hospital
and Research Center, Kattankulathur, Chennai.

Feature Extraction

Machine learning involves high-dimensional data, where the
analysis requires a considerable amount of data for learning
and testing. The images obtained are denoised by curvelet
decomposition to remove speckle and preserve useful edges.
Feature reduction minimizes the effects of redundant variables
by selecting feature subsets. Choosing the most significant
features progresses the classification model performance and
reduces over fitting.

Following preprocessing and segmentation of the images, 63
features are taken from the images in the database. A number
of 33 texture features, 5 shape features, 10 histogram and
correlogram features, and 15 morphology features are extracted
from the images. Out of that, 22 most significant features
are selected by principal component analysis (PCA) method
(Parhizkar et al., 2021).

The most discriminant features from the extracted features are
selected based on the following approach. Distance between two
classes for every feature is computed as follows for mean m;, m;
and standard deviation o1, 0.

|m;—m;|
,/0%—}-0%

Features with more distance are those with more significance.
From the 65 extracted features, 22 most significant features
were selected for the classification task. PCA-based feature
selection was performed in addition. The principal components
are derived from the eigenvalues. A correlated feature set is

(1)

distance =

converted into uncorrelated ones called principal components by
an orthogonal transformation.

The selected features are texture, spatial structure, skewness,
kurtosis, histogram, correlogram, histogram of oriented gradient
(HOG), Gabor wavelet, angular 2nd moment, shape, sharpness,
length irregularity, mean probability density function, gray-scale
median, multiregion histogram, arterial wall ROT’s randomness,
absolute gradient, radian and angular sum of discrete Fourier
transform for Fourier power spectrum, coarseness, convexity,
connectivity, and plaque volume. The potential features are given
as input to the machine learning classification algorithms.

Classification by Machine Learning
Algorithms

Proper data preparation, automation and iterative learning,
testing, scalability, and ensemble modeling are necessary for
a classification algorithm. The classification of the carotid
artery images database is performed with the machine learning
algorithms, CART decision tree, logistic regression, and random
forest algorithm.

Machine learning is to develop a mathematical model built
by training the inputs. The inputs are the features selected from
the ultrasound image dataset of the carotid artery. The learning
experience is generalized so that it can give the correct output for
the new image which is not in the database. The generalization of
the model is improved by applying a validation set to the trained
model. The resulting output and error are given as feedback to
the input so that training of the model improves. After many
iterations of tuning and training of the model, the trained model
is used with new unseen test data to find the performance of the
approach (Lundervold and Lundervold, 2019; Latha et al., 2020).

CART Decision Tree

The decision tree is a prediction-based machine learning model
with parameters represented in the branches and target outputs
represented in the form of leaves. Branch labels are represented
by leaves and feature conjunctions that lead to the leaves are
represented as branches. Target with continuous values is called
regression trees. Classification and regression tree (CART) is a
nonparametric decision tree algorithm (Seera and Lim, 2014).
Information gain defines how to quantify the quality of the split.
For attributes p and q, the information gain I is represented as

p p q q
log( )— log, ( ) ()
p+q 2\p+q) p+q p+gq

To create a tree from the available attributes, entropy is
computed. It depends on how much variance the data has.

L(p,q)=—

- Pitqi
E@)=p, ——Ip.9 (3)
; p+q
The training sets each attribute that is found from the gain. It
is the variance between entropy and information gain.
Gain =1 (p, q) —E(A) (4)

Decision trees can identify the nonlinearity in the dataset and
adapt accordingly. The data need not be standardized because a
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FIGURE 1 | (A) Sample image without plaque deposit (B) with plaque deposit.
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distance measure is not involved in the classification. Sigmoid
activation is used to get the optimum classification result. The
rules of CART and other decision trees are as follows:

1. Based on a variable’s value, the splitting criteria for a
node are formulated.

2. The stopping criteria are decided when to
splitting a tree.

3. Final target variable at the end of each node is calculated.

stop

An output of one implies the presence of plaque, and zero
represents the absence of plaque in the image with a threshold
of 0.5. Figure 2 gives the results of applying the CART decision
tree for the carotid artery ultrasound image database. Using
the kurtosis feature, the tree formation for sample 53 images is
projected in Figure 2A. Kurtosis < 0.01 is separated and branches
are formed from that node. Figure 2B is the ROC curve for
which the AUC is 83.53%, which implies that CART is suitable
for disease classification in the carotid artery.

Classification and regression tree is nonparametric and hence
is independent on the distribution kind of the input data.
The algorithm is not affected by the outliers in the input
data. Without strictly following the stopping rule, the tree
can be overgrown and can be pruned back to the optimal
solution. Fit can be improved using a test set and validation
sets. The input variable set can be selected by combining
CART with other prediction methods. The drawbacks of

CART include variance in the model when a small change
in the database is made and imbalanced class data lead
to underfit trees.

Logistic Regression

Binary logistics is more suitable for categorical targets with linear
or nonlinear decision boundaries, with a threshold fixed. It
applies the logistic or sigmoid function. For the curve’s maximum
value L, steepness parameter or growth rate k and x0 being the
midpoint of x, the logistic function is given by

L

T ItekGa—x) ®)

Assuming threshold 0.5, for probability 0.5, class = 1 is
assigned. For probability < 0.5, class = 0 is assigned (Barui et al.,
2018). The cost function ] used is crossentropy since sigmoid
activation is used.

1 & ) .
0)=— t(hy (x') , (v' 6
1(0) mgcos(e(x),m (6)

Where cost (h6 (x),y) = —log(ht(x)) for y = 1 and
cost (h(x),y) = —log(l —h(x)) for y = 0. The natural log
of odds called logit which transforms the line into the logistic

curve is (
log (P—X))= Bo+B1 ()

1-pX @)
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The logistic regression coeflicients are found by maximum
likelihood estimation. Highly correlated inputs from the database
are removed after calculating the pair-wise correlation of the
features. It is done to prevent overfit because of multiple highly
correlated inputs. The sparsity of the data is also reduced so that
the likelihood estimation does not prevent target convergence
(Zhang et al., 2018; Javeed et al., 2019; Zhang and Han, 2020).
Figures 3A,B project the ROC curve and the number of trees
with AUC 87.55%.

Random Forest

Random forest is an ensemble classification approach, protecting
the structure from being affected by overfitting problems,
introduced by Ho in 1995. The tree learners of the random forest
follow bootstrap aggregation bagging. Without increasing, bias
bootstrapping reduces the variance of the model. The trees are
uncorrelated so the prediction of the average of many trees is not
noise-sensitive. Bootstrapping gives different input sets for each
training time. A forest is created randomly with root, internal,
and terminal nodes. Algorithm efficiency improves for a bigger
tree. Unlike other decision tree algorithms, random forest decides
the root and other nodes randomly.

The classifier is efficient enough to handle missing values and
is more suitable for categorical classification. Random forest is
created first, and predictions are made from the created forest
(Javeed et al., 2019; Wu et al., 2020). Sigmoid activation function
is used. Using the random nodes, incorrect labeling can be
identified using Gini impurity given by

j
Ig (n)=1->_ (pi)’ (8)

i=1
The algorithm for random forest creation is as follows.

1. From a total of m feature sets, K features are randomly
selected k < m.

2. Find node from features after best split point.

From the best divided, segregate child node.

4. The above steps are repeated until 1 number of
nodes is achieved.

5. Repeat the above steps for # times to achieve n nodes.

el

The prediction that forms the created random forest is done
by the below procedure.

1. For each test feature, the rules of the model are applied
to get the target.

2. For each predicted target, the votes are estimated.

3. The more voted target is considered the outcome.

Figure 4A projects the error rate which is least for nearly 85
number of trees, then increases, becomes constant, and the next
drop is marked in nearly 920 trees. Figure 4B gives the ROC
curve with AUC 90.63%.

Random forest combines individual tree’s decisions and
considers the maximum voted one, which makes it one of the best
machine learning algorithms. Trees are modeled more diversely,
thus implementing all possible models, and obtaining all possible

outcomes improves model efficiency. Kernel-induced random
forest (KIRF) is followed where trees are built till error no
longer reduces. Out of bootstrap (OOB) samples are applied to
get the error rate of the random forest by taking the mean of
the error from all the bags using all the available features. The
drawbacks of the random forest include model complexity, more
time consuming than other decision trees, and less intuitive for
large decision trees.

Deep Learning Algorithms

Deep learning, which is a class of ANN, extracts the semantic
from the images directly, resulting in better classification
performance. The deep learning model is built with multisource
labeled data and provides more generalized results. The carotid
artery ultrasound image classification is performed with a deep
learning approach, CNN.

Deep learning is a promising machine learning field that can
unravel artificial intelligence problems efficiently. It uses a DNN
where the solution depends on the database. Deep learning is
superior in terms of nonlinearity, generalization, harmony, fault
tolerance, parallelism, and learning. There are undisclosed neural
network layers that perform the learning for the available data.
Each layer holds a relationship with the next and the previous
layers. Deep learning absorbs features and useful representations
directly from the raw image bypassing the feature extraction step.
This automatic learning of feature representation and learning
both happen in the layers.

Due to complexity, the importance of the subject, carotid
image analysis using machine learning is not efficient enough
and needs a model learnt from a huge number of images. The
analysis does not depend on the features extracted manually. The
data may be patient-dependent and expert-dependent which may
influence the outcomes. Deep learning extracts the hidden feature
representations of the images and helps in efficient diagnosis.
For example, deep learning algorithms are CNN, DNN, DBM,
LSTM networks, and generative adversarial networks (GANs),
each having their pros and cons which does not require any
preprocessing of data. The extension of CNN called transfer
learning algorithms, such as Alexnet, Leenet, Googlenet, and
Resnet, has proved their efficiency in the testing phase to a huge
extent in terms of complexity.

Deep learning stacks many neuron layers constructing a
hierarchical feature representation. The layer count in the model
is over 1,000 creating a gigantic model memorizing all features
and thus makes more intelligent classification.

Deep learning executes feature engineering on its own by
combining and correlating the necessary attributes of the image.
Deep learning solves the classification problem end-to-end,
which makes the model better than other machine learning
approaches. There is a lot of scope of development of deep
learning with emerging techniques, such as transfer learning.
Other challenges of deep learning are interpretability, trust, data,
regulations, and workflow integration.

Convolutional Neural Network
Convolutional neural network is a proven traditional deep
learning network based on its translation invariance property

Frontiers in Aging Neuroscience | www.frontiersin.org

January 2022 | Volume 13 | Article 828214


https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

Latha et al.

Early Stroke-Detection Using Carotid-Artery Images

A B
1.0 »
° 1.0 1IN |
§ g ] e S et
o 08 0.95 .‘}M'
2 / o S TR ‘
2 o] -} T
S s € e R"‘W""" \ - Learn
) ) I |\ = Lear Sample
04 i I.‘ = Test
: 0.85
' 00 01 02 03 04 05 0.6 0.7 0.8 0.9 1.0 010 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
False Positive Rate Number of trees
FIGURE 3 | (A) ROC curve (B) number of trees with respect to ROC.
A B
1.0
1 1.0
0.8
] I 9
of-ul @ 0.8
- o
5 0 2 o6
= £
5 04 8
E R o 04
b h e S ]
g 02 ! vl S 02
© =
@ 0.0 1 O ———N—-.—-.—,.—H B,
0.0

0 100 200 300 400 500 600 700 800 900 1000

Number of trees

FIGURE 4 | (A) Error rate (B) ROC curve.

0.1 0.2 03 0.4 05 06 0.7 0.8 09 1.0 0

0.0

False Positive Rate

rcawuc apd

Pooled .
¥ feature Feature maps L)
L i maps 7 Pooled ()
& E =y feature =
- S, W
; 1 — maps
T i | L .
I.—l'\— . -
' e L {
! I
Convolution and Pooling Convolution and Pooling
activation activation Vectorizatio

Convolution Layer

FIGURE 5 | CNN architecture.

5%  Pooling window

Convolution Layer Fully connec:

and shared weights architecture. All nodes connected to all
nodes in the other layers build a much complex system and
may be inefficient. CNN uses the domain knowledge of the data
preserving the spatial relationship, assembling complex patterns
into small, simple patterns (Tajbakhsh et al., 2016).

Rectified linear unit (ReLU) activation function is used for
CNN activation. In convolution layer activation, previous layer
activations are convolved with parameterized filters of size

3 x 3. Learning the same weight reduces the complexity of
weight calculation for each layer and node. The convolution
layer outputs are polled in a pooling layer. For small grids,
the polling layer provides single output by max-pooling or
average pooling. Translational invariance is achieved after the
pooling layer preventing a shift in activation maps because
of the shift in the input. Increased stride length convolution
leads to downsampled pooling reducing the model complexity.
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Based on a stochastic sampling of the neural network, dropout
regularization is performed. Different neurons are removed
in different iterations leading to different outputs each time.
Weights are updated each time to get more optimal results.
Activation maps subtracted from the mean and divided by
standard deviations for each training batch give batch normalized
output (Lundervold and Lundervold, 2019). Figure 5 gives CNN
architecture. The image is directly fed as input to the model. The
convolution layer extracts features, such as corners, edges, and
colors from the input image. Deeper layers extract more deep
features, such as plaque structure, kurtosis, texture of plaque,
and nonplaque area. Dominant features from the restricted
neighborhood are extracted in the pooling layer.

Max-pooling representation is used, which minimizes
computational cost and provides translational in-variation to the
internal representation. Alternate convolution and pooling layers
are used to reduce the large feature space. Later, layers extract
more disease-related features assisting the classification process
and improve classification accuracy.

After the convolution and pooling, the data are converted
into a column vector, suitable for multilevel fully connected
architecture. It is followed by a feed-forward neural network and
back-propagation architecture in successive training iterations.
Dominant and low-level features are adequately identified and
classification proceeds.

Transfer Learning Based on Mobile Network
Architecture
A network pretrained on available images can be fine-tuned for
the application to be performed. When the source and the target
are nearly similar, transfer learning works best in terms of weight
updating and optimization compared to random initializations.
Figure 6 gives Mobilenet architecture. The types of transfer
learning are positive, negative, and neutral. Learning in a
condition facilitating another condition is called positive transfer
learning. Learning a task that makes learning another task harder
is called negative learning. A learning which does not make a
change in another learning is called neutral type of learning.
A1 x 1 convolution is associated with the depthwise convolution
outputs in a pointwise convolution layer. In a single step, inputs
and outputs are combined using a convolution filter. Using
Mobilenet, computation and model size have drastically reduced.
Transfer learning marks fast training, more accurate, and needs
fewer data. The significant levels of transfer learning are

1. Full network adaptation—weights are updated from a
pretrained network instead of arbitrary initialization and
apprise them during the training phase (Wang et al., 2016).
Partial network adaptation—network parameters from the
pretrained network are initialized and used as such for the
first few layers and the last layers are updated for training
(Zeng et al., 2017; Hesamian et al., 2019).

Zero adaptation—network parameters from a pretrained
network are used and are not changed throughout.

Zero adaptation may not be suitable for medical images
trained with other organs or general images because they may not
have similar properties of the carotid image. In using this carotid
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FIGURE 6 | Mobilenet architecture.

database for testing a pretrained network, since the available
dataset is small than the training dataset, the following procedure
is followed. Overfitting may be a concern because of the small

Frontiers in Aging Neuroscience | www.frontiersin.org

1"

January 2022 | Volume 13 | Article 828214


https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

Latha et al.

Early Stroke-Detection Using Carotid-Artery Images

testing set (Akbarian et al., 2019; Latha et al., 2021). The extracted
high-level features may not be similar to the target dataset. The
key features of Mobilenet model compared with the CNN model
are the following.

1. Most of the pretrained layers near the start of
CNN are removed.

Instead, fully trained networks equal to the number of
classes for the application are included.

The newly obtained weights are randomized and replaced
instead of the removed network weights.

The network is trained to update the weights of the new
fully connected layers.

Mobilenet is a family of mobile-first computer vision model
for TensorFlow considering restricted data available and suited
for embedded applications. The model is small, low latent, and

low power designed by google researchers. A width multiplier
parameter is introduced to overcome the resource-accuracy
tradeoff. The resolution multiplier term reduces the layers
internal structure. ReLU activation function is used.

Figure 7 gives the transfer learning with mobile net
architecture, which provides training accuracy 100% and
validation accuracy 95%. Though the training performance is
less than that of CNN, the validation performance has improved
drastically on using mobile net architecture.

Capsulenet

Geoffrey Hinton proposed Capsulenet in 2017, which is
a better representation of capsules than convolution. The
neuron activities also have a viewpoint variance in addition.
CNN requires augmentation and depends more on texture
features, which led to these transfer learning approaches.
CNN’s max-pooling may lose valuable information because of

FIGURE 7 | Transfer learning based on the Mobilenet architecture (snapshot of the obtained results).
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FIGURE 8 | Capsulenet architecture.
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TABLE 1 | Confusion matrix of machine learning algorithms.

CART Decision tree

Logistic regression Random forest

Actual positive (1)  Actual negative (0)

Actual positive (1)

Actual negative (0)  Actual positive (1)  Actual negative (0)

Predicted positive (1) 1283 34 120 27 132 23
Predicted negative (0) 23 181 14 200 8 198
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FIGURE 9 | CNN model applied to the carotid artery ultrasound image database (snapshot of the obtained results).
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poor relationships between hierarchies of simple and complex
objects. Capsulenet applies vector activation and outputs which
encodes feature transformation information. ReLU activation
function is used.
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FIGURE 10 | Capsulenet implementation for the carotid artery database
images (snapshot of the obtained results).

Figure 8 gives Capsulenet architecture with ReLU activation.
Capsules are convolutions with block nonlinearity and routing.
The iterations are slow but require few parameters than CNN.
Inside the knowledge representations, Capsulenet builds a better
model hierarchy. Capsule structures are added to the CNN
model, and the outputs are reused to get more stable higher
representations. Max-pooling is used instead of dynamic routing
and hence achieves translation invariance. It improves the
ability of the network to detect an object even wherever it
lies in the image.

RESULTS AND DISCUSSION

Choice of performance measures to evaluate the machine
learning algorithms gives hope for its practical use. An unsuitable
incorrect measure will mislead to wrong results and a flawed
model which is not suitable for the application. The available
data are imbalanced, and thus, analyzing more number of metrics
assists in proper model selection. It involves comparing the
proposed model with an existing model or predicting the class
label for a given image set.

Performance Metrics

The classification of a carotid artery ultrasound image as
symptomatic or asymptomatic is a binary classification problem.
The performance depends on the count of correctly classified
samples to their class (true positive (TP)), not belonging to
the class, correctly classified as (true negative (TN)), samples
misclassified to that class (false positive (FP)), and those that are
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TABLE 2 | Performance comparison of carotid artery image classification using machine learning approaches.

Algorithm Accuracy (%) Specificity (%) Sensitivity (%) Precision (%) F score (%) AUC (%)
CART Decision Tree 84.21 88.72 78.34 84.25 81.19 83.53
Logistic Regression 88.64 93.46 81.63 89.55 85.41 87.55
Random Forest 91.41 96.11 85.16 94.29 89.49 90.63

misrecognized as belonging to that category (false negative (FN))
(Sokolova and Lapalme, 2009). The overall effectiveness of the
model is given by

TP +TN

accuracy = 9)
TP 4+ TN + FP + FN

The labels class agreement with positive labels in the algorithm
is given by
TP

_— 10
TP + FP (10)

precision =
Positive label identification efliciency is expressed by recall
or sensitivity. The relevant data points are identified using. F
score measures the relationship between the positive labeled data
and that given in the classifier. Specificity explains how effective
the model identifies a negative label. FPR is the false alarm
probability and TPR is the recall parameter. The model’s ability
to identify false classification is derived from the area under
the ROC curve (AUC). An AUC rate 1 is expected for an ideal
classification model. These measures signify the classification
model performance.

TP
recall =——— (11)
TP + FN
. P (12)
recision = ———
P TP + FP
precision x recall
Fscore =2x—mF——— (13)
precision + recall
™N
ificity =—— 14
specificity TN - Fp (14)
AUC = (0)( ) (15)
~ 27'TP+FN TN +FP
TP+ TN
Accuracy = + (16)
TP + TN + FP + FN

ReLu activation function is used in the classification models.

TABLE 3 | Performance comparison of carotid artery image classification by deep
learning approaches.

Algorithm Accuracy (%)
CNN 55
Mobilenet 95

Capsulenet Transfer Learning 96.7

Machine Learning

Table 1 gives the confusion matrix of the machine learning
algorithms applied in the dataset containing 361 images, out
of which 159 are abnormal and 202 are those without any
disease indications.

The CART model gives an accuracy of 84.21%, specificity
88.72%, sensitivity 78.34%, and precision of 84.25%. The results
prove that the model is useful in identifying the negative cases
better than the positive ones. Logistic regression records an
accuracy of 88.64% for the carotid database. The obtained
specificity is 93.46%, sensitivity is 81.63%, and precision is
89.55%. More number of features added to the logistic regression
model will increase the variance in the odds and may lead to
overfitting. This reduces the generalization of the model fit.
Based on the chi-square test, Hosmer-Lemeshow goodness-of-
fit measure can improve model performance. The algorithm
that assumes the data is noise-free. Outliers from the training
data must be removed to prevent misclassification. Random
forest gives an accuracy of 91.41%, specificity 96.11%, sensitivity
85.16%, and precision of 94.29%. The above results prove
that random forest is a more accurate classifier than logistic
regression and CART decision tree for classifying the carotid
artery ultrasound images.

Deep Learning

Convolutional neural network model is applied on ultrasound
image database for the classification of the images as with and
without plaque deposit. The model achieved training accuracy
of 100% and validation accuracy of 55% as given in Figure 9.
Figure 10 gives the result of the capsulenet implementation in
the database.

Convolutional neural network requires a wide number of
data for training the model. Because of the limited number
of data, the validation performance is nearly half, though the
training is efficient. To overcome this, transfer learning was
introduced to perform a deep learning architecture with limited
training dataset.

Capsules group neurons and thus require fewer parameters
between layers. Pose matrix in Capsulenet defines the rotation
and translation of an object, which represents its change
in viewpoint. It makes the model better generalized to new
viewpoints. The spatial relationship between part of the image
and the whole is learnt which makes the image identification
simple. It is a viewpoint-dependent neural activity which does
not require image normalization and can also identify multiply
transformed images (Samiappan and Chakrapani, 2016; Arun
et al., 2019; del Mar Vila et al., 2020; Samiappan et al., 2020).
Underfitting problem was seen in the classification problem by
CNN, which has led to poor performance and generalization.
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The carotid artery ultrasound image dataset is small and was not
sufficient for a deep learning-based classification.

Initially, 300 training images and 61 validation images were
used. Data augmentation methods, such as rotation, flipping, and
translation were done to improve the classification accuracy.

Table 2 gives the performance of the three machine learning
techniques applied for the carotid artery ultrasound image
database. Random forest gives computationally faster and
improved performance results compared to CART and logistic
regression. Since the dataset was small (361 images), machine
learning algorithms were not computationally complex, lags
in accuracy of identification of the disease. Capsules group
neurons and thus require fewer parameters between layers.
Pose matrix captures rotated and translated versions as linear
transformations, and so, Capsulenet is better generalized to new
viewpoints. The spatial relationship between part of image and
the whole is learnt, which makes the image identification simple.
Capsulenet achieves accuracy of 96.7%, which is the highest for
the carotid artery database images.

The images in the database were flipped to both plane
axis rotated to m/4 axis. Table 3 gives the performance of
the three deep learning techniques applied in the carotid
artery image database.

Proposed Capsulenet with max-pooling gives 12.91, 8.33, 5.47,
43.12, and 1.75% improvement in accuracy compared with a
CART decision tree, logistic regression, random forest, CNN,
and Mobilenet classification algorithms, respectively. Negative
transfer is the interference of the previous knowledge in the new
learning. It has not affected the classification performance of the
carotid artery ultrasound images. It is proved with improved
performance measures.

It is proved that deep learning approaches give improved
accuracy of 95.7% for Capsulenet compared to other machine
learning and deep learning algorithms reported in the literature.

CONCLUSION

A number of 361 images were processed to form a database with
the help of radiologists. Extracted features from the database
images are applied to the machine learning algorithms CART
decision tree, random forest, logistic regression, CNN model,
Mobilenet, and Capsulenet transfer learning algorithms for
classifying the images as normal or abnormal. Machine learning
algorithms were able to perform with an accuracy of 84.21,
88.64, and 91.41%, respectively, for CART, logistic regression, and
random forest. Proposed Capsulenet transfer learning approach
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Affective computing is concerned with simulating people’s psychological cognitive
processes, of which emotion classification is an important part. Electroencephalogram
(EEG), as an electrophysiological indicator capable of recording brain activity, is portable
and non-invasive. It has emerged as an essential measurement method in the study
of emotion classification. EEG signals are typically split into different frequency bands
based on rhythmic characteristics. Most of machine learning methods combine multiple
frequency band features into a single feature vector. This strategy is incapable of utilizing
the complementary and consistent information of each frequency band effectively. It
does not always achieve the satisfactory results. To obtain the sparse and consistent
representation of the multi-frequency band EEG signals for emotion classification, this
paper propose a multi-frequent band collaborative classification method based on
optimal projection and shared dictionary learning (called MBCC). The joint learning
model of dictionary learning and subspace learning is introduced in this method.
MBCC maps multi-frequent band data into the subspaces of the same dimension using
projection matrices, which are composed of a common shared component and a band-
specific component. This projection method can not only make full use of the relevant
information across multiple frequency bands, but it can also maintain consistency across
each frequency band. Based on dictionary learning, the subspace learns the correlation
between frequency bands using Fisher criterion and principal component analysis
(PCA)-like regularization term, resulting in a strong discriminative model. The objective
function of MBCC is solved by an iterative optimization algorithm. Experiment results on
public datasets SEED and DEAP verify the effectiveness of the proposed method.

Keywords: cognitive computing, EEG-based emotion classification, multi-frequency band EEG signals, subspace
learning, dictionary learning

INTRODUCTION

Affective computing focuses on how to actively learn, reason, and perceive the surrounding
world, as well as realize a certain level of brain-inspired cognitive intelligence by simulating
people’s psychological cognitive processes (Aranha et al., 2019; Samsonovich, 2020). Researchers in
psychology and neurobiology investigate the changes and relationships in the human physiological
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systems that occur during various emotional states and activities
(Li et al., 2020). More and more evidences show that with the
progress of neuroscience research, there is a connection between
human emotional activity and the activity of specific areas of the
brain, especially the cerebral cortex and central nervous system.
For example, the amygdale is associated with emotions like fear
and anxiety in the limbic system of the brain. Anger can activate
the left frontal lobe of the brain (Davis and Whalen, 2001).
Researchers have also studied the relationship between certain
diseases and emotional activities, such as cancer, cardiovascular
disease, and depression (Zhao et al., 2018). Wirkner et al. (2017)
and Guil et al. (2020) studied the impact of emotional activity
on the progression of breast cancer patients. Nurillaeva and
Abdumalikova (2021) studied the pathways of communication
between the heart and the brain, as well as the relationship
between heart rhythm and cognitive and emotional functions.
According to the study of Gianaros et al. (2014), there is a
link between affective regulation and cardiovascular disease.
The author discussed how intense emotional activity and the
immune system interact, and how these close interactions affect
the treatment of rheumatic cardiovascular disease. Tennant
and McLean (2001) associated mood disorders such as anxiety,
depression, and anger with coronary heart disease. Authors
classified mood disorders as an important risk factor for coronary
heart disease, and concluded that mood disorders are frequently
associated with coronary heart disease events. Klatzkin et al.
(2021) studied the food intake of emotional dieters during various
emotional and stress responses. Researchers are also interested in
the impact of emotional activities in the business field. According
to research on the effect of emotion on commercial advertising,
advertisements with emotional expression and influence are
easier for consumers to remember, and publicity images with
emotional color can influence consumers access behavior
(Shareef et al., 2018). It is clear that research on human emotional
activities is important not only in the study and understanding of
humanity, but also in medical health and commercial activities.
As a result, the study of human emotions, including emotional
activity intervention, can be regarded as scientific and practical.
Electroencephalogram activities are closely related to people’s
psychological attention consciousness and emotional experience.
An emotional EEG signal is a physiological electrical signal
collected by the human brain in a specific emotional state. EEG
signals, as a window into brain thinking activities, cognitive
processes, and mental states, are an important technical means
for studying brain function and its neural mechanism. Wearable
devices placed on the top of the head collect emotional
EEG signals. The acquisition electrode’s placement position
is typically determined using the international standard 10-
20 and other systems. Researchers in the field of artificial
intelligence study the relationship between emotional activities
caused by internal and external stimuli and the content of
stimuli. Machine learning technology in artificial intelligence
is widely used in EEG signals-based emotion classification.
For example, Liu et al. (2020) developed a multi-level features
guided capsule network to describe the internal relationship of
multiple EEG signal channels. The advantage of this model is
that different levels of feature mapping are integrated during

the process of forming the primary capsule, which can improve
feature representation ability. Zhong et al. (2020) proposed
a regularized graph neural network to mine both local and
global relationships between various EEG channels. This method
can alleviate the problem of time dependence in emotional
process. Ni et al. (2021) developed a domain adaptation sparse
representation classification model to alleviate the problem
of insufficient training data in the new scene. This method
employed the discriminative knowledge of historical data or
related data to aid in establishing the classification model of
the current scene.

According to intra-band correlation with a distinct
psychological state, the EEG signals can be split into five
frequency bands. Different frequency band EEG signals reflect
the different states of brain state. Table 1 briefly describes the
information of five frequent bands of EEG signals (Gu et al,
2021a; Shen et al., 2021). Many scholars have studied EEG signals
in different frequency bands. Mohammadi et al. (2017) used
wavelet transform to decompose EEG signals into five sub-band
signals, then extracted entropy and energy features from each
sub-band signal and sent them to support vector machine and
k-nearest neighbor, respectively. Li and Lu (2009) proposed
a frequency band search method to find the best frequency
band for emotion classification. According to their findings,
the gamma frequency band is appropriate for EEG-based
emotion classification using still images as stimuli. Zheng and
Lu (2015) built a Multi-frequent band emotion recognition
classifier using deep neural networks. This study had shown
that the beta and gamma bands contained more discriminative
information for emotion classification. Li et al. (2018) used the
hierarchical deep learning model to train numerous classifiers
on EEG signals. They verified that high-frequency bands
played the most important role in emotion classification. Yang
et al. (2018) developed a 3D representation of signal segment
to extract representative features on bands. They integrated
multiple frequency bands and used the constructed 3D signal
cube as model input. Li et al. (2019) developed a sparse linear
regression model using the technologies of graph regularization
and sparse regularization. The authors compared the effects
of different frequency band signals in emotion recognition on
various EEG datasets.

Because there are internal relationships and differences
between different frequency bands, a new learning method is
required to make full use of the information in multi-frequency
band data. Despite extensive research on the use of different
frequency bands of EEG signals for emotion recognition, one
traditional strategy is to directly concatenate features from

TABLE 1 | The basic information of five frequent bands of EEG signals.

Patterns Frequency Brain state

Delta (3) 1-3Hz Slowest “sleep waves”

Theta (6) 4-7 Hz Light meditation and sleeping

Alpha (a) 8-13 Hz Closing the eyes, relaxation

Beta (B) 14-30 Hz Waking consciousness and reasoning waves
Gamma (y) 30-100 Hz Sensory and high-level information processing
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multi-frequent bands in high dimensional space and consider this
single feature vector as the model’s input. Obviously, this strategy
does not account for the complementarity and consistency of the
data in each frequency band.

Our previous work named as optimized projection and Fisher
discriminative dictionary learning (OPFDDL) (Gu et al.,, 2021a)
extracted multi-frequent band EEG features in the optimal sparse
representation subspace, and adopted the Fisher discrimination
criterion to build a discriminative classifier. This method did
not directly concatenate the features of each frequency band,
but regarded each band signal as an independent feature. It
incorporated the band-correlation knowledge into a dictionary
learning model by learning independent projection matrices for
each frequency band signal. Inspired of this work, we further use
multi-frequent band shared information to exploit the intrinsic
knowledge of EEG signals and achieve correlation modeling of
multiple band data. Thus, in this study we propose a multi-
frequent band collaborative EEG emotion classification method
based on optimal projection and shared dictionary learning
(MBCC). We construct a projection matrix for each frequency
band. The projection matrix is composed of a common shared
matrix (called shared component) and a frequency band-specific
matrix (called specific component). The shared matrix well
reflects the relationship between frequency bands. The EEG
signal of each frequency band is projected to the subspace
through the projection matrix, and the dictionary shared by each
frequency band is learned in the subspace. The corresponding
sparse representation is then obtained from the new data features
using dictionary learning. According to Fisher’s criterion, the
MBCC method ensures that the coding reconstruction errors
of the same class are as small as possible, while the coding
reconstruction errors of different classes are as large as possible.
Considering the information available in the original domain
should not be lost in the projection space, we provide a
regularization term similar to principal component analysis
(PCA) that can retain discriminative knowledge to improve
the discrimination ability of the model. An efficient alternating
iterative optimization algorithm is designed to solve the proposed
model. The experiment yielded good classification results on the
public EEG emotion datasets SEED (Zheng and Lu, 2015) and
DEAP (Koelstra et al., 2011).

The advantages of MBCC are as follows: (1) An effective
discriminative dictionary is trained using the dictionary
learning model framework by capturing common shared
feature information from multi-frequency band data. The
first correlation between data in multiple frequency bands is
represented by the common shared dictionary. It creates a link
between data from different frequency bands in order to obtain
a new feature representation of EEG data. (2) Take into account
the complementarity and difference of frequency band data,
the projection matrix of each frequency band has the common
shared and independent components. The common shared
component reflects the second correlation between multiple
frequency bands and can keep each frequency band consistent.
(3) To assess the model’s discriminative ability, the Fisher
criterion based on coding error is introduced in the projection
space. Furthermore, the PCA-like regularization term based on

the common shared projection component contributes to obtain
more discriminative sparse coding.

BACKGROUND

Let Z = [z1, ..., Zy] € R¥*" be a set of d-dimensional n training
signals. The traditional dictionary learning is to learn a dictionary
matrix to sparsely represent the EEG signals Z. The problem of
dictionary learning (Jiang et al., 2013; Gu et al., 2021b) is,

min ||Z — DAJ|% + A]|Al],
D.a (1)
s.t. Vi, ||dillo = 1,

where D = [dy, ...,d;] € R¥K is the learned dictionary, K
is the dictionary size. A =[aj,...,a,] € RE*" s the sparse
coding coeflicient matrix. The first term in Eq. (1) is to
minimize the reconstruction errors of Z. The second term is the
sparsity constraints.

In our previous work OPFDDL method (Gu et al.,, 2021a),
7" =1[z]", .., zy ] € R¥*"mig the class m frequent band signal
set, m=1,2,..,M, n= 7 ny. By introducing the frequent
band specific projection matrix G™ € R¥*?, each training signal
z}” is projected into a low-dimensional space, as sz;”. Suppose
S, and S’ are within-class and between-class reconstruction
errors of the m-th frequent band signals, respectively. S} and S}’
are defined as,

Sl = Tr(X (G™) 2" ~(G™) D) x (G™)"z"
—G"Ds(a)") (2)
= Tr(G"TWG™)

where  WI = ZJ"’” (z"—Dé(@j")) x (2" —D&(a;”))T. The
function 6(3;”) returns the coding coefficients consistent with the

class of z;".

Sy = Tr(X"((G™)'2]'—(G™)'DE@)") x ((G™) "%

~G"'DE@™M)") (3)
= Tr((G™)TW'G™)
where W} = > (z/'~DE(@]")) x (zy—Df(a]m))T. The

function é(a;”) returns the coding coefficients not consistent
with the class of z}".

According to the classification rule of Fisher criterion (Peng
et al., 2020; Zhang et al.,, 2021), the OPFDDL method proposes
the discriminative model on M frequent bands in the projection
space,

>, TrGM WG
ond %m THG WG (4)
st (GG =1, m=1,2,...M

Then the matrices G, W,, and W, are defined as
W114/ e 0

G=[G.G%,..GM, W,=|: - : |, and
0 .- ij
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: oo . With these definitions, the objective
0o .- Wé\’f

function of OPFDDL has the following form,

min )2 Tr(éTWWG) - )\Tr(GTWbG),

G.D )
s.t. GTG =1

where X\ is the adaptive weight parameter.
The training procedure of OPFDDL is given by Algorithm 1.

ALGORITHM 1 | The OPFDDL algorithm.

Repeat
1. Calculate the coding coefficients by solving the following problem:

AT
min||G'Z = DAIIZ + MIAlls (6)

2. Calculate the projection matrix by solving the following problem:
(°W,, —AW,)G = vG )

3. Calculate the dictionary D by:

_ \D 8L(zk) _
D=D TZ 5 k=1, d (8)
% —2GG ' DAAT +HH') — 2GG Z (AT +HT) ©)
o
A=18",8, 8MH=[", %, M) (10)

4. Calculate the adaptive weighti. by:

_ 6 W6 a
2tr(&' W, G)
Until convergence
MULTI-FREQUENT BAND

COLLABORATIVE EEG EMOTION
CLASSIFICATION METHOD BASED ON
OPTIMAL PROJECTION AND SHARED
DICTIONARY LEARNING

Objective Function of MBCC

The OPFDDL method can be regarded as the baseline
algorithm of MBCC. The primary distinction between the
MBCC method and OPFDDL is that, although OPFDDL
also employs a projection matrix to project each frequency
band to the subspace, the correlation between projection
matrices is weak. The common shared component defined
in MBCC is a key part of multi-frequent band collaborative
learning. In addition, according to the consistency principle,
the PCA-like regularization term in the shared potential space

further captures the discriminative information contained among
multiple frequency bands. Thus, the MBCC method can balance
discriminative knowledge and multi-frequent band correlation in
the projection space.

We look for a projection matrix in the MBCC method to
project the data from d-dimensional space to p-dimensional
space. This study assumes that the projection matrix G™ € R¥*?
for each frequency band has two parts: the shared component
G° € R¥*?, which is a common shared matrix that reflects the
correlation between different frequency bands, and the band
specific component G" € R¥?, which is the projection matrix
for each frequency band. The matrix is equal to the sum of the
shared component and the band specific component,

G"=(1-0G"+cG", (12)
where o € [0, 1]is the balance parameter. When ¢ = 1, the
projection matrix G™ is degenerated into the band specific
matrix G, which is equivalent to the projection matrix in the
OPFDDL method. When o = 0, the model only learns the
common shared matrix.

The projection of the signal in each frequency band is
represented as,

(G2 = (1 - 0)G° +0G") 2", (13)

The within-class reconstruction error of the m-th frequent
band in the projected space can be represented as

Jit=Tr(X" 30001 = )G, b (2" —Dd(a)+
oG"(:, )T (z]"'=D3(@") %)
= Tr (1= 9)G° + 06" TW((1 = 9)G° + 0G")) .

(14)

The between-class reconstruction error of the m-th frequent
band in the projected subspace can be represented as

Tt =Tr(X" 3000 — )G, b (2" —DE (@) +
oG"(;, b (@"~DE@™M)1%)
—Tr (((1 — 0)G? + oG™)TW (1 — 0)G° + cé’”)) .

(15)

Thus, the Fisher criterion of all frequent bands is written as,

> Tr (((1 — )G+ 06" W((1 - 0)G° + oé’”))
min .
DG.G" Y Ty (((1 ~0)G 4+ 0G™)TW(1 — )G + oém))
(16)
Because different frequent band data describe the same object,
there must be an internal connection between them. The model
maximizes the commonality of multiple frequent band data in the
shared projection space using the consistency principle. When
projecting the data from multiple bands to the optimal subspace,
we need to preserve the discriminative information available in
the original space. To solve this problem, we use a PCA-like
regularization term as follows,

J(G) = min > 112" — G(G") 2" |7 (17)
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Ignoring the constant terms in J (G%), Eq. (17) can be
represented as,
J(G) = —min 3, Tr ((G")TZ")((G")'Z™)T)
= —min > ITr((GNHTZ"(Z™TGY). (18)
Let @™ = Z™(Z™)T, Eq. (18) can be written as,
(19)

J(GY) = — rréionzml Tr ((GO)TG)'"GO) .

Combined the Fisher criterion and PCA-like regularization
term, the objective function of MBCC is,

S Tr((1 = 0)G + G TW (1 — 0)G°
+0G")) —a Y, Tr((G)T©™"G)
> Tr(((1 — 0)G° + 0G™)T
W((1 - 0)G’ +0G™))
~m\ T ~m
s.t. Vm, ((1 —0)G? 4+ 6G ) ((1 —0)G® 4+ 6G ) =1
(20)
The projection matrix is orthogonal and it will result in
an efficient procedure for optimization. We can see that the

dictionary learned in the MBCC method have the stronger
discriminative ability.

min
G%,G™,D

Define G =[G% G!; ..., GM] ¢ RM+Ddxp @m — (1 —
o)y, 0ly, ..., oly] € RMEDA - AM — 1,04, 4, ..., 0,c4] €
Rd><(M+1)d’ A= Zfr\r/l[(ﬂm)TW;nﬂm)g — z%(Am)TemAm)

H= Z%I(SZ'”)TWZ"Q'”, Eq. (20) is equivalent to,

Tr (GTAG) — aTr (GT
i r(G G) ocr(G G)G),

G.D Tr (GTHG) @1)

st.GTG=1L
By combining the two terms on the numerator, we can get,

Tr (GT(A — a®)G)

Tr (GTHG) ’ 22)

min
G,D
st.GIG=1

Optimization
It is not easy to directly solve the variables G and D in the
objective function. Therefore, we will take the alternative iterative
optimization scheme to decompose the original problem into two
sub-optimization problems.

Update G. For the given dictionary D, there must be a
minimum p, which satisfies the following formulation,

Tr (GT(A - a@)G) - (23)
Tr (GTHG) >
We have F(p) = m(%n Tr (GT(A — a@)G) — poTr (GT HG).

As a result, we can define the function of p by,

Tr (GT(A - a@)G) — oTr (GTHG) >0, (24)

According to Zhang et al. (2017), (1) F(p) is a decreasing
function of p. (2) F(p) = 0 if p = p*. In addition, the minimum
p always exists.

Then p can be updated by,

F
p= P+ Moy (25)
F(p) = —Tr(G'HG),
where \, is the learning rate.
With the fixed p and D, the objective function of G is,
min Tr (GT(A — a® — pH)G) ,
tin Tr ( )6) 06)

st. GIG =1,

The optimization of G can be solved by the following
eigenvalue decomposition,

(A —a® — pH)G = yG. (27)

The columns of the matrix G are the eigenvectors with respect
to the first p minimum eigenvalues of Eq. (27).
Update D. With the fixed G, the objective function of D is,

Tr(GTAG)

min ——————, 28
D Tr(GTHG) (28)

Let D = [Dy, Dy, ..., Dc] be the learned dictionary, and D is
the j-th class sub-dictionary. The Eq. (28) can be re-written as,

C

J(D)) = min Y

J

Tr(GTA;G)

Tr(GTHG)’ (29)

j=1

where Aj =301 242D x (z;“—DSr;js)T,
H=3,_, >, (Z'-DiI") x (z;”—Djr].'j})T. I/, and
I'’". are the coding coefficient matrices corresponding to classes s

J]
and j of the m-th frequent band, respectively, where s#j.

D; can be updated by gradient descent method, in which Dj is
computed as,

D; = D; + 5#0](D;),

27Dy = WO 0D g o)
There is no connection between A; and Dj, ie, ZTI;; =0
Therefore, we only need compute 618(31-) 51151] .
oJ(Dj) _ —-Tr(GTA;G)(G)TG (1)
oH (Tr(GTHG))*
g—; =@ O] - 7. (32)

Update A. With the fixed D and G, the sparse coding
coefficient matrix A can be computed as,

min ||G'Z — DAI[% + MIAll, (33)
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Since A is differentiable, it can be obtained by,
A=DO'D+ 1) (DTG Z). (34)

The alternating optimization procedure of MBCC is
summarized in Algorithm 2.

ALGORITHM 2 | The MBCC algorithm.

Repeat

1. Calculate the coding coefficient matrix A by Eq. (34)
2. Calculate the projection matrix G by Eq. (27)

3. Calculate the dictionary D by Eq. (30)

Until convergence

Testing

For the testing procedure, each frequency band feature of the
signal z is represented as z”. With the obtained{G™, D}by
Algorithm 2, its label [(z"") on the m-th frequency band can be
computed by the following optimization problem,

I(z") = min||(Q")"2" — Dj(D/D))"'D]2"||,. (35)
Zm

Then the majority voting strategy is used to determine the class

label of signal z,

y = argmax [(z"). (36)
m

EXPERIMENT

Datasets and Experimental Settings

Two EEG emotion recognition data sets used in the experiment,
SEED and DEAP datasets, which are described as follows.
The SEED dataset is an emotional EEG dataset collected and

provided by Shanghai Jiao Tong University’s BCMI Laboratory.
The dataset is completed by requiring participants to wear EEG
acquisition equipment and recording the emotional EEG signals
produced by watching three different types of movie clips. Sixty-
two channel electrodes are used in the SEED dataset. The dataset
was compiled from 15 participants. With a total of 15 clips, the
films are classified as positive, negative, or neutral in terms of
their emotional impact. There are five clips of each type, and
each movie clip lasts about 4 min. To ensure the experiment’s
validity and accuracy, the playback sequence of the 15 videos is
random, with no repeated clips. Every participant repeated the
experiment three times. A few days were set aside in the middle of
each experiment to allow participants to adjust their emotions so
that they had a consistent emotional response to the same movie
clip. In the experiment, EEG signals are divided into 5-s segments

TABLE 3 | The accuracy (standard deviations) of all methods on SEED
dataset in session 2.

Methods B+y a+p+y O+a+pB+y S+0+a+pB+y
SVM 77.25 78.04 79.67 80.92
(8.59) (7.81) (7.96) 9.92)
LC-KSVD 78.31 79.63 80.88 82.37
(7.74) (7.29) (9.65) (9.62)
MvCVM 80.53 82.55 83.37 83.94
(8.28) (8.33) (8.24) (9.54)
GLSRM 80.78 82.66 82.70 83.94
(7.09) (8.75) (8.56) 9.11)
MVU 81.76 82.51 82.84 84.24
(8.89) (8.89) 9.57) 9.82)
OPFDDL 81.30 83.22 84.76 86.21
8.75) 8.78) (9.90) (9.43)
MBCC 81.90 84.24 86.14 87.87
8.52) (7.99) (8.85) (8.07)

The best performance of each comparison is emphasized by the bold font.

TABLE 2 | The accuracy (standard deviations) of all methods on SEED
dataset in session 1.

TABLE 4 | The accuracy (standard deviations) of all methods on SEED
dataset in session 3.

Methods B+y a+p+y O+a+pB+y §+0+a+pB+y Methods B+y a+p+y O+a+pB+y S+0+a+B+y
SVM 77.87 77.96 79.07 81.02 SVM 77.19 78.24 79.31 80.78
(8.69) (9.42) (9.96) (8.26) (9.23) (9.65) (9.41) (9.50)
LC-KSVD 78.39 80.10 81.65 83.50 LC-KSVD 77.61 79.76 80.12 81.92
(9.81) (8.13) 9.19) (8.38) (8.12) (7.09) (7.32) (9.87)
MvCVM 81.08 81.89 83.01 83.84 MvCVM 79.87 82.14 83.18 83.53
(9.84) 8.72) (9.67) (9.93) (8.67) 8.12) (8.02) 9.13)
GLSRM 81.62 82.84 83.33 84.17 GLSRM 80.45 81.30 82.43 83.28
(9.66) (8.95) 8.11) (9.39) (9.09) (9.59) (9.34) (8.84)
MVU 81.65 82.85 83.08 84.27 MVU 80.84 81.32 83.00 83.94
(9.93) (9.50) (8.67) (9.04) 9.27) (8.13) 9.72) (9.28)
OPFDDL 81.18 83.67 84.81 86.52 OPFDDL 81.05 83.18 84.61 86.43
(8.51) (8.18) (8.76) (8.59) (7.84) (9.67) (9.08) (9.86)
MBCC 81.85 84.61 86.07 87.91 MBCC 81.81 84.24 85.63 87.74
(7.98) (8.69) (8.82) (8.26) (8.04) (8.98) (8.22) (8.90)

The best performance of each comparison is emphasized by the bold font.

The best performance of each comparison is emphasized by the bold font.
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FIGURE 1 | Confusion matrices of MBCC on the SEED dataset, (A) B+ v, B)a+B+ v, (C)0+a+B+7v, (D) S+ 0+a+p+y.
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FIGURE 2 | Confusion matrices of OPFDDL on the SEED dataset, (A) B + v, (B) a+B+7v, (C) 0 +a+B+vy, (D)8 +6+a+p + 7.
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and features are extracted every 0.5 s. Thus, the sequence length
of each segment is 19.

The DEAP dataset is another open database for emotion
recognition research that uses EEG and peripheral physiological
signals. The dataset recorded the EEG data and 13 peripheral
physiological signals of 32 participants using music videos as
stimulus materials. The DEAP dataset employs 40 music videos,
each of which is 1 min long, as stimulus materials. These
music videos are labeled and screened using the general three-
dimensional model of valence, arousal, and dominance.

To illustrate the effectiveness of the MBCC method, the
comparison methods in the experiment are: SVM (Cortes and
Vapnik, 1995), LC-KSVD (Jiang et al., 2013), multi-view CVM
(MvCVM) (Huang et al., 2016), global and local structural risk
minimization (GLSRM) (Zhu et al., 2016), multi-view learning

TABLE 5 | The accuracy (standard deviations) of all methods on the DEAP
dataset in valence.

Methods B+y a+p+y O+a+B+y
SVM 62.21 63.04 63.55
(8.30) (8.09) (8.76)
KSVD 62.63 63.51 63.94
(8.59) (8.28) (8.43)
MvCVM 63.87 64.20 64.65
(8.57) (8.42) (9.07)
GLSRM 64.15 66.26 66.84
(9.60) 8.71) (9.35)
MVU 64.14 66.18 66.79
(9.02) (9.29) (9.13)
OPFDDL 66.04 68.42 69.08
(8.74) (8.40) (8.95)
MBCC 66.64 68.85 69.97
(8.65) (8.20) (8.46)

The best performance of each comparison is emphasized by the bold font.

TABLE 6 | The accuracy (standard deviations) of all methods on the DEAP
dataset in arousal.

Methods B+y a+p+y O+a+B+y
SVM 64.77 65.37 65.85
(10.85) (11.67) (10.94)
KSVD 65.07 66.07 66.20
(10.46) (11.09) (11.86)
MvCVM 66.31 66.90 67.19
(11.01) (11.48) (11.24)
GLSRM 66.49 69.05 69.49
(10.33) (10.27) (10.48)
MVU 66.38 69.10 69.27
(10.79) (10.75) (11.12)
OPFDDL 68.46 70.35 70.59
(10.56) (10.87) (10.06)
MBCC 69.14 70.96 71.55
(10.39) (10.88) (10.70)

The best performance of each comparison is emphasized by the bold font.

with universum (MVU) (Wang et al., 2014), and OPFDDL (Gu
et al., 2021a). In detail, the Gaussian kernel is used in MvCVM.
The kernel parameter and the weight parameter are searched in
the grid {1/64, 1/32, ..., 64} and {1, 10, ..., 103}, respectively.
The weights and offsets in GLSRM are searched in the grid{0.1,
0.2, ..., 1}, and its regularization parameters are searched in the
grid {1, 10}, ..., 10°}. In MVU, the learning rate is 0.99, and
the relaxation of views is 107°. In OPFDDL and MBCC, the
number of atoms in each class is selected in {5, 10, ..., 35}.
The dimension of matrix G is set to be 90% of the dimension
of the EEG signal features. The parameter o is searched in the
grid{0.1, 0.2, ..., 1}. The parameter o is set as 0 = 1 — a. The
regularization parameter in Eq. (2) was set as 0.01. All methods
are implemented in MATLAB.

Experiments on the SEED Dataset

The commonly used power spectral density (PSD) features (Jenke
et al., 2014) are adopted in 3, 6, a, B, and y frequent bands. We
obtain 62 dimensional features on each band. We divided the
EEG signal data corresponding to the 15 movie clips collected
and used 12 clips as training data and the remaining three clips
as test data. In both the training and test sets, the proportion
of three classes of EEG signals is the same. After the final
preprocessing, the samples of three different classes of EEG
signals in the training and test sets are balanced. The SEED
dataset is divided into three sessions (sessions 1-3) according to
the time interval of signal acquisition. The classification results of
all methods in three sessions are shown in Tables 2-4. We can see
that the MBCC method performs the best in terms of accuracy
in all three sessions. In Table 2, the accuracies of the MBCC
method are 0.67, 0.94, 1.26, and 1.39% better than the second
best method OPFDDL in multi-frequent bands § + y,a + p +
v.04+a+B+v,8+06+a+p+7y. The results in Tables 3, 4
are similar to those in Table 2. Compared with the OPFDDL
method, the proposed MBCC has the ability to take into account
the complementarity and consistency between frequency bands
while maintaining the PCA constraints of the data structure in the
projection space, which is conducive to improving classification
performance. Thus, the dictionary learned in the projection
space by MBCC has good discriminative performance. The SVM
and LC-KSVD methods merge all frequency band data into a
vector for learning, and they cannot effectively find the internal
connection between each frequency band. For joint learning of
multiple perspectives, MVCVM, GLSRM, and MVU treat each
frequency band as a learning view. Obviously, the MBCC method
obtains a more discriminative model based on dictionary learning
and subspace learning.

By calculating the average results of all experiments on three
sessions, Figures 1, 2 show the confusion matrices of MBCC
and OPFDDL on the SEED dataset, respectively. The real label
is represented by the ordinate of the confusion matrix, while the
predicted label is represented by the abscissa.

It can be seen from Figures 1, 2 that (1) the classification
results of positive emotional EEG signals are relatively good
on the SEED dataset, while the classification results of negative
emotions are relatively poor. Positive emotion is easier to identify
than negative and neutral ones. This shows that positive emotions
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can cause similar brain feedback between frequency bands more
than neutral and negative emotions. (2) The data of different
frequency bands are projected into subspaces, and the common
shared component of the projection matrix represents the
correlation between frequency bands. Obviously, the OPFDDL
method does not have this characteristic. (3) In addition, the
MBCC method use the PCA-like regularization term based on

shared projection matrix to make full use of the discriminative
information of EEG data. Thus, the MBCC method achieves
better classification accuracy on the SEED dataset.

Experiments on the DEAP Dataset
In the DEAP dataset, music video stimulation is a three-
dimensional emotion model based on valence, arousal, and
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dominance. The valence and arousal of emotion are classified
in this subsection. The binary valence-oriented classification
refers to the classification of emotions according to high valence
and low valence. Also, the binary arousal-oriented classification
refers to the classification of emotions according to high arousal

and low arousal. The classification threshold is set to 5, the
participant’s score € [1, 5]for valence is low valence, and score €
(5, 9] is high valence. Similarly, the participant’s score € [1, 5]for
arousal is low arousal, and score € (5, 9] is high arousal. The EEG
signals are segmented by a 4-s time window with an overlap 2 s
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for each frequency band. Similar to the feature extraction strategy
in subsection “Experiments on the SEED Dataset,” PSD features
are used in the DEAP dataset. Following (Shen et al., 2021), four
frequency bands (6, o, P, y) are used in the experiment.

Tables 5, 6 compare the average recognition results on valence
and arousal on the DEAP dataset, respectively. We can see that
(1) all methods have achieved the better classification accuracy
for the arousal than the valence on the DEAP dataset. The reason
may be that arousal, as an indicator of physiological arousal,
reflects the degree of activation of neurophysiological activities,
which can be directly reflected in changes in physiological
signals. The valence-oriented classification is a more complex
task involving mental state, and PSD features may not fully
reflect valence’s state. (2) Compared with the benchmark methods
SVM and LC-KSVD, the MBCC method has achieved much
better results. Compared with GLSRM, MVU, and OPFDDL
methods, the classification performance of the MBCC method
has further improved. The MBCC method has the accuracy rate
of 69.97% for the valence-oriented classification, and 71.55% for
the arousal-oriented classification using four frequency bands.
The classification accuracies of the MBCC method are increased
by 0.89 and 0.96%, respectively, when compared to the second
best method. This is due to that the multi-frequent band
data maintains the consistency between feature similarity and

semantic similarity in the learned subspace and can learn a more
discriminative dictionary shared by frequency bands.

Figures 3, 4 show the confusion matrices of the OPFDDL
method and the MBCC method in valence, respectively.
Figures 5, 6 show the confusion matrices of the OPFDDL method
and the MBCC method in arousal, respectively. Compared with
OPFDDL, MBCC has obvious advantages in valence-oriented
and arousal-oriented classifications. When different band data
describe the same object, there must be an internal connection
between each band data. According to the consistency principle,
the MBCC method maximizes the commonness of multiple
frequent bands in the shared projection space. Furthermore,
the Fisher criterion and PCA-like regularization term aids
in learning more discriminative sparse representation and
maintaining data structure.

Parameter Analysis

The parameter involved in the objective function of the MBCC
method is o, and its impact on MBCC’s performance is analyzed
here. The set value range specifies how to conduct experiments
on the SEED session 1 and DEAP dataset, respectively. Figure 7
depicts the accuracy values at various values of a. The figure
shows that MBCC achieves the highest accuracy value when
taking 0.4, 0.5, and 0.6 on the SEED session 1, DEAP in valence,
and DEAP in arousal, respectively.

The atomic number K of the dictionary also directly
determines the performance of the MBCC method. Figure 8
shows the accuracy values under different K values. We can see
that when K reaches 15 and 20 on the SEED session 1 and
DEAP dataset, respectively, the accuracy rate tends to stabilize.
It indicates that the learned dictionary well represents the data
characteristics of the EEG data. Also it shows that the MBCC
method can be well applied to the SEED and DEAP datasets using
a small size of dictionary.

CONCLUSION

According to the consistent complementarity of multi-frequent
band EEG signals and the internal correlation of data itself,
this study proposes multi-frequency band collaborative EEG
emotion classification method based on the idea of dictionary
learning and subspace learning. Using a projection matrix,
this method maps different frequency band data to the
subspaces of the same dimension. Unlike most existing projection
strategies, the projection matrix we designed is divided into
two parts, a common shared component and a band-specific
component. This strategy can fully use the relevance of different
frequency bands and their shared semantics. In the subspace,
the MBCC method learns the common shared dictionary
between the frequency bands, which can represent the correlation
and discrimination of the EEG data. Simultaneously, the
incorporation of Fisher criterion and PCA-like regularization
term into the subspace via dictionary learning makes the learned
model more discriminative.

However, the time computation of MBCC is relatively high.
It may be not suitable for real-time predicting emotional states
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in applications of human-computer interaction. This is the
problem we need to solve in the next stage. Furthermore,
the work that can be studied further in the future includes:
(1) Human emotions are susceptible to external influences.
For example, the emotions of the subjects may change while
watching a film. The overall emotions of watching the film
may be consistent, but the emotions may be inconsistent with
expectations at times. As a result, the collected EEG signals
are mixed with abnormal samples. In practice, selecting the
appropriate abnormal sample processing method is important.
The use of the correct processing method can improve the
accuracy of emotional EEG signal recognition. (2) EEG signals
have the characteristics of randomness. That is, for the same
individual subjects, EEG signals are different even in the same
emotional state at different times. How to improve the robustness
of emotion classification model in multiple domains still needs
further research. In the future, we will continue to design
and improve our method to be suitable in across time and
individuals scenes.
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Alzheimer’s disease is a neurological disorder characterized by progressive cognitive
dysfunction and behavioral impairment that occurs in old. Early diagnosis and treatment
of Alzheimer’s disease is great significance. Electroencephalography (EEG) signals can
be used to detect Alzheimer’s disease due to its non-invasive advantage. To solve the
problem of insufficient analysis by single-channel EEG signal, we analyze the relationship
between multiple channels and build PLV framework. To solve the problem of insufficient
representation of 1D signal, a threshold-free recursive plot convolution network was
constructed to realize 2D representation. To solve the problem of insufficient EEG
signal characterization, a fusion algorithm of clinical features and imaging features was
proposed to detect Alzheimer’s disease. Experimental results show that the algorithm
has good performance and robustness.

Keywords: Alzheimer’s disease, EEG, PLV, recursive graph, no-threshold

INTRODUCTION

Alzheimer’s disease is a degenerative disease of the central nervous system, mainly manifested
as progressive memory impairment, cognitive dysfunction, personality change and language
impairment, and other neuropsychiatric symptoms, which seriously affect social, career, and life
functions. Alzheimer’s disease is a common disease in the elderly, and its prevalence and incidence
are extremely high. According to statistics, the incidence of Alzheimer’s disease is 5%, the disease is
the most common type of dementia in the elderly, accounting for 50-70% of Alzheimer’s disease,
common in people over 65 years old. It is of great significance to study it.

Alzheimer’s Disease

Alzheimer’s disease occurred in elderly and senile prophase, characterized by progressive cognitive
dysfunction and behavioral impairment of nervous system diseases, main show is memory
disorders, aphasia, disuse, agnosia, visual spatial ability damage, abstract thinking and calculation
ability damage, personality and behavior change, and so on, can be improved by drug treatment,
and the disease is not cured. The etiology and pathogenesis of Alzheimer’s disease are extremely
complex, and may be related to genetic factors, brain pathological changes and other factors.
Generally, Alzheimer’s disease tends to occur in people over 65 years old. Mental stimulation,
trauma, neurological diseases and other factors can induce Alzheimer’s disease. The main
pathological changes were amyloid precursor protein gene on chromosome 21, PSENI gene on
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chromosome 14, and PSEN2 gene mutation on chromosome
1. The brain was reduced in size and weight, and the typical
histopathological changes were neuroinflammatory plaques,
neurofibrillary tangles, and neuron loss (Yoon et al, 2022).
Alzheimer’s disease is usually silent onset, pre-dementia, and
dementia stage symptoms are different, but generally manifested
as memory impairment, speech loss or emotional apathy, crying
and laughing impermanent, severe patients can be complicated
with lung infection, urinary tract infection and pressure ulcers,
and other diseases. Early diagnosis and early treatment is of
great significance.

Method
The current examination methods mainly include:
neuropsychological ~ test,  hematological =~ examination,

neuroimaging examination, Electroencephalography (EEG),
cerebrospinal fluid testing, genetic testing. Due to the
convenience of EEG collection, it has a good detection effect for
early Alzheimer’s disease to become the main research direction.
To this end, we used EEG for the study. Morabito et al. (2012)
constructs the model analysis of Alzheimer’s disease EEG from
the perspective of energy entropy. Anh et al. (2012) used support
vector machine (SVM) to cluster EEG. Falk et al. (2012) analyzed
the disease by the variability in EEG amplitude. Hulbert and
Adeli (2013) combine EEG and imaging information to make
a diagnosis of the disease. Morabito et al. (2013) proposed the
EEG enhancement algorithm to highlight the area where the
lesion signal is located. Zhao and He (2014) used a deep learning
network for disease diagnosis. Cassani et al. (2014) extracted
useful information from the EEG to conduct the research on
Alzheimer’s disease. Bhat et al. (2015) combined the clinical
neural data and EEG to conduct the study. Al-Jumeily et al.
(2015) was diagnosed by EEG analysis. Al-Nuaimi et al. (2016)
analyzed EEG from the perspective of amplitude to diagnose
early Alzheimer’s disease. Yu et al. (2016) analyzed EEG, the
signal transmission process. Kulkarni and Bairagi (2017) used
SVM to extract the significant features of the EEG signal.
Deng et al. (2017) constructed a multiscale model from an
entropy perspective to analyze the complex EEG. Chikara et al.
(2018) proposed monetary reward and punishment to response
inhibition modulate activation and synchronization within the
inhibitory brain network. Houmani et al. (2018) built multiple
networks to implement disease analysis. Kim and Kim (2018)
analyzed the correlation between the signals and extracted the
features. Yang et al. (2018) studied the multi-channel data of EEG
and proposed parallel revolutionary recurrent neural network
to realize Alzheimer’s disease recognition. Chen et al. (2020)
constructed a model from the perspective of classification to
realize signal analysis. Yu et al. (2019) introduced the fuzzy
learning theory to analyze the EEG signals. Maturana-Candelas
et al. (2019) constructed a multiscale model to extract EEG
features. Chikara and Ko (2019) used hierarchical model to
neural activities classification of human inhibitory control,
which achieved good results. Rossini et al. (2020) proposed
markers for early Alzheimer’s disease diagnosis, demonstrating
the validity of the EEG analysis. Qiu et al. (2020) analyzed the
EEG transmission process. Oltu et al. (2021) proposed a novel

Alzheimer’s disease detection algorithm based on EEG. Li et al.
(2021) analyzed the correlation between multiple channels to
diagnose the disease. Puri et al. (2022) proposed the Kolmogorov
Complexity diagnosis of Alzheimer’s disease. Ding et al. (2022)
proposed the Alzheimer’s disease automatic detection system
based on EEG.

In conclusion, the diagnosis of Alzheimer’s disease based on
EEG has achieved some results. However, there are still the
following problems in computer processing: (1) The correlation
between different channels is not studied. (2) The EEG signal
is not well visualized and difficult to analyze. (3) With limited
characteristics and insufficient characterization.

In view of the difficult problem of analysis of Alzheimer’s
disease, we use computer to assist diagnosis. (1) Analyze
the corresponding relationship between different channels at
the same time and build PLV network structure. (2) One-
dimensional EEG signals are converted into two-dimensional
recurrence plot to achieve visual analysis of features. (3)
Combining clinical features with EEG signals features to realize
diagnosis of Alzheimer’s disease.

ALGORITHM FRAMEWORK

Through the analysis of EEG signals, we constructed a new
Alzheimer’s disease analysis algorithm, and the block diagram
is shown in Figurel. The model is constructed from the
perspective of cognition, and the EEG signal analysis model
based on Phase Locking Value (PLV) is proposed to simulate the
EEG transmission process. From the correlation of EEG time
series, the EEG signal analysis algorithm based on recurrence
plot is proposed to convert one-dimensional information into
two-dimensional information for intuitive analysis. From the
perspective of feature correlation, multi-source features are
extracted in order to build a model, and finally realize the fusion
of decision sets and Alzheimer’s disease analysis.

EEG Signal Analysis Based on PLV

Research shows that the cognitive process of human brain
designs the activities of various brain regions and the information
dissemination and interaction between different functional
regions (Sarma and Barma, 2022). From the perspective of
computer, this process can be regarded as building a network
between relevant brain regions to reflect the relationship between
mutual transmissions and processing. Since EEG signal has phase
synchronization relationship, we use PLV to measure EEG phase
synchronization relationship:

1 N—-1
PLV = gexp (iAg (1)) (1)
Ap () = ¢x (jAL) — ¢y (jAL) )

Where, ¢x(t) and ¢,(t) represent the instantaneous phase of
x(t) and y(t), respectively, A¢(t) represents the phase difference,
At represents the period of application. Clustering coefficient
can measure the degree of brain function separation, and the
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FIGURE 1 | The proposed algorithm flow chart.
proportion of the number of connections and the maximum
number of connections between a node and adjacent nodes.
The clustering coeflicient of node i is defined as:
D D CikCiltk F1
ki I, 14k
Ci=———"— (3)
Z > 2 CikGil 0.5
ki i J#k 0 1
. . ) : . F2
where ¢;; is the weight between nodes i and j of the adjacency L0
matrix. The characteristic path length L represents the minimum
number of edges of two nodes connected in the network. 0.5
The weighted network is expressed as: . 0 1 2
0 1 2
L NW-1D @ F3
T NN
> Y (1/Ly) |
i=1 j#i FIGURE 2 | The calculation process.

where N represents the number of weighted nodes and L;
represents the number of edges of the shortest path of nodes i
and j.

1 N N
G=—— L;! (5)
Local subnet efficiency is
1
Lei = -1 6
el NG, (NG, _ 1) Z Jik ( )

where Ng, is the number of nodes of the subgraph G;. The
centrality of the network is introduced for measurement:

Where, 0, (i) represents the number of shortest paths from node
m to node n, which goes through i. 0,,, represents the shortest
path length from m to n. As shown in Figure 2, the signal starts
F1 and ends F3 through two branches. We take i =2 and b,
% = % to achieve the centrality measure.

Under the condition of network establishment, it is necessary
to extract features from the signal as input. Common Space
Pattern (CSP) is used to extract airspace information. It is an
efficient spatial filtering algorithm whose goal is to create an
optimal common spatial filter (Kumar et al., 2017). We use CSP
to extract features. CSP obtains the most distinguishing feature
vector by diagonalizing the task covariance matrix. The specific
process is as follows:

Given two types of data samples X and X, the corresponding
covariance matrix is

Omn (1) x.xT
b=y = @) Ri=— i (8)
mkin Omn trace (X,'XiT)
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FIGURE 3 | Alzheimer’s disease recurrence plot. (A) Calm. (B) Morbidity. (C) Transitional period.

The corresponding mixed space covariance matrix is

R.=R/ +R, )

Where, R; andR, represent the average covariance matrix of two
types of tasks.

Principal component analysis is applied to decompose
eigenvalues of R:

R. = UA U (10)

Where, U, represents eigenvector matrix and A, represents
eigenvalue. The corresponding whitening matrix is

Ut
p=—£ (11)
VA
The spatial filter P is constructed to meet the
following conditions:
Sy = PR, PT = BA, BT
S = PR,PT = BA,BT (12)

AM+A =1

Calculate the projection matrix, and whiten the transformation
of the eigenvector corresponding to the maximum eigenvalue in
EEG and max (A1, A;) to achieve the best classification. To do
$0, a projection matrix is built:

W= (BTP>T (13)

EEG data characteristics are obtained:

ZyixN = Waxm * XpxN (14)

Select the maximum values of 2m row from Zy;«n as feature
input, which is input into the constructed PLV network to realize
feature classification.

EEG Signal Analysis Algorithm Based on

Recurrence Plot

Recurrence plot can be used to measure the correlation of time
series. Its core idea is to map the trajectory of moving state to the
plane, which can realize visualization as shown in Figure 3. The
set of time series is marked as X, and the corresponding recursion
diagram is:

Rj=¢(e—rj)ije{l,2,...N = (m— 1)1}

rij = | X (&) — X (j)
]_ 1x>0 (15)
=1 0other

According to the recursive state of two times, i and j represent the
horizontal and vertical coordinates of the image, and the matrix
R composed of 0 and 1 is obtained.

Although the recurrence plot can intuitively express the time
series, it increases the threshold ¢. The richer nonlinear dynamic
characteristics are lost and the characterization is incomplete.
Thus, we improve it as follows to retain its characteristics to the
greatest extent:

ER,']‘ = |8 - 7‘,']'

jel{l,2,.,N—(m—-1)t} (16)

Convolutional neural network (CNN) network has shown unique
advantages in target segmentation and recognition, and has the
invariance of translation, scaling and tilt of network structure.
It is usually composed of input layer, convolution layer, pooling
layer, full connection layer, and output layer.

With the increase of network layers, the network has nonlinear
fitting ability and improves the performance of the model. But
it will also be accompanied by the phenomenon of gradient
disappearance. In order to solve this problem, we introduce
the residual block to construct the relationship between input
and output through fitting the residual mapping of multi-
layer networks is shown in Figure 4. The problem of difficult
convergence of the deep-seated network can be solved according
to certain overlapping rules. The structure is shown in Table 1.

Based on the above introduction, PLV was used to analyze the
correlation between signals and calculate the probability PE of
signal attributes. To obtain the probability RE of signal attributes,
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FIGURE 4 | Network structure.

TABLE 1 | Network parameters.

The network layer Parameters

Conv 1 (7,7,64;D=2

Conv 2 (8, 8, 64) x 2; Maxpooling; D = 2
Conv 3 (3, 3, 64) x 2; Maxpooling; D = 2
Conv 4 (3,8,128) x 2

Conv 5 8,3,128) x 2

Conv 6 (3, 3,256) x 2

Conv 7 (8, 3,256) x 2

Conv 8 3,3,5612) x 2

Conv 9 3,3,128) x 2

a network based on non-threshold recursive plot was built
from the time correlation of EEG signals. We collected the age,
gender, basic diseases (hypertension, hyperlipidemia, diabetes),
eye movement test, etc., and selected the patients with statistically
significant characteristics using p < 0.05. Age, diabetes, and eye
movement tests were significant by screening.

EXPERIMENT AND RESULT ANALYSIS

There are two data, (1) http://adni.loni.usc.edu/; (2) Clinical data
collected by the hospital. The frequency of signal acquisition
is 8-30Hz, 62 channels of data. With the consent of the
patients, 100 patients with Alzheimer’s disease at different stages
were collected including 48 women and 52 men aged 55-80
years. The EEG collected was divided into calm, morbidity,
and transitional period according to professional physicians and
clinical manifestations. Total 1,000 points of data were collected
in each period. Construct data sets and conduct experiments.

Introduction of Experimental Parameters

and Evaluation Indexes

We analyzed the characteristics of EEG signals and sampled
the data. For each EEG signal accord to the principle of
average sampling, we obtained 1,000 data points, and formed
the recursive plot data of 1,000 x 1,000 data. Then, subsequent
experiments were conducted on this basis. In order to ensure
the consistency of the experiment, we preprocessed the EEG
signal data. Through data analysis, to ensure the consistency

of the experiment, EEG signal data were preprocessed and
representative Fpl, Fp2, F3, and F4 were normalized.

Accuracy A is used to measure the performance of
different algorithms:

TP+ TN

= (17)
TP+ FP+ TN + FN

Where, TP is the positive sample with correct model
classification, FP is the negative sample with wrong model
classification, TN is the negative sample with correct model
classification, and FN is the positive sample with wrong
model classification.

Performance of PLV Algorithm

We build the brain network graph G = (V, E) and using EEG click
as network nodes. The graph side shows the channel relationship.
The PLV can be used as a synchronicity measure to represent the
connection strength in a weighted network analysis. The results
for Alzheimer’s disease are shown in Figure 5, with a low degree
of connection in Fp1. The connection degree between Fp2 and F3
and F4 is high, so the study is carried out based on this.

EEG Signal Analysis of Recurrence Plot

We explored the recurrence plot by selecting EEG during periods
of calm, transition and onset as shown in Figure 6. From the
analysis of EEG signal, during the calm period, EEG does not
fluctuate much, and the signal in the lower right corner of the
recursion graph is strong. In transition, the EEG considerably
began from smooth band, in the middle of the recursive plot
chart presents signal is stronger. During the onset of the disease,
the EEG amplitude was further enlarged, but it was not obvious
on the EEG alone and could not be distinguished effectively,
and the signal intensity around the recursion diagram was
strong. Based on this, the three can be distinguished. Subsequent
fusion of PLV and clinical features can further improve the
detection effect.

The ROC curve corresponding to our algorithm is compared
with the mainstream algorithm, as shown in Figure7. SVM
algorithm (Anh et al., 2012) constructed the classifier and realized
the classification of Alzheimer’s disease. Parallel revolutionary
Cyclic Neural Network (PCRNN) (Yang et al., 2018) established
depth model and analyzed signal composition. Libsvm classifier
(Chen et al., 2020) constructs the model from the perspective
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FIGURE 5 | EEG PLV.

of classification to realize signal analysis. DTW can realize the
measurement of time series. The idea of DTW is to extend
and shorten two time series to represent signal similarity with
the shortest distance. However, EEG signals have a strong
correlation, and the number of points collected by the EEG
signal is too large, which will lead to information loss and
error information introduction through DTW extension and
shortening. Result in poor effect. Figure7 quiet period for
acquisition of data, due to the quiet period EEG signals
is relatively stable, our algorithm and comparison algorithm
can better on the test. Figure7 shows the data collected in
the transitional period. The EEG gradually fluctuates from a
relatively stable signal. However, due to the limited amplitude
of fluctuation, the detection effect of the algorithm decreases
compared with that in the calm period. Figure7 shows the
data collected during the onset of the disease, and the EEG
fluctuates greatly, which can be detected by changing the
amplitude. Overall, all algorithms performed best for quiet
Alzheimer’s disease, followed by morbidity and transitional
Alzheimer’s disease. In addition, the algorithm establishes a
model from the perspective of EEG, carries out processing,
recurrence plot and auxiliary features of EEG Alzheimer’s
disease, and realizes EEG Alzheimers disease analysis, with
high performance.

We added comparative experiments, and the PR algorithm
proposed transformed 1D features into 2D PR without threshold,
which achieved certain results in the diagnosis of Alzheimer’s
disease. On this basis, PLV was adopted to analyze the correlation
between different channels at the same time, and the detection
effect was further improved. Finally, we simulate the process of
physician diagnosis, and fuse the clinical features into the model
to achieve the best effect.

CONCLUSIONS AND DISCUSSIONS

Alzheimer’s disease is a central nervous system variable disease,
although there is no effective treatment method, but it has
a positive effect on its early diagnosis and early treatment.
Studies show that EEG has non-invasive and easy acquisition
characteristics, which has proved to be an effective means
to detect Alzheimer’s disease, for which we propose a new
Alzheimer’s disease analysis algorithm.

Early AI algorithms conducted the analysis only from a
single signal perspective, ignoring the response relationship
between different channels at the same time, resulting in the
limited representational ability of the established model. With
the improvement of medical and information acquisition ability,
scholars focus their attention to the signal transmission process to
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FIGURE 6 | Recurrence plot.

build a model, which enhances the model representation ability.
After deeply studying the EEG transmission process, the PLV
model is constructed to simulate the EEG transmission process
to obtain the Alzheimer’s disease transmission characteristics.
EEG can be regarded as a time series signal, and the
traditional algorithm only builds the model from the 1-
dimension perspective to carry out the study of similarity
measures. Due to the complexity of the signal, a unified 1-
dimensional model cannot be constructed. In this paper, 1-
dimensional EEG is transformed into 2D recurrence plot to
measure signal similarity in an intuitive way, and construct
a threshold-free mechanism to quantify similarity. On this

basis, a deep-learning network is constructed to simulate the
cognitive process of physicians and obtain Alzheimer’s disease
signal characteristics.

A large number of clinical data show that Alzheimer’s disease
is very closely related to clinical characterization, and modeling
from the signaling perspective alone has certain limitations.
Clinical data collected from patients show that people with
hypertension and diabetes have a high probability and rapid
progression of Alzheimer’s disease.

In this paper, based on EEG signals, signal transmission,
signal similarity, and clinical characterization are combined to
achieve the detection of Alzheimer’s disease. Experiments
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FIGURE 7 | Alzheimer’s disease ROC curve.
show that the algorithm has strong robustness and FUNDING

detection rate. Subsequently, we will continue to collect
data to expand the data set and carry out annotation
and feature mining of typical data to assist doctors in
accurate diagnosis.
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Major Depressive Disorder (MDD) is the most prevalent psychiatric disorder, seriously
affecting people’s quality of life. Manually identifying MDD from structural magnetic
resonance imaging (sMRI) images is laborious and time-consuming due to the lack of
clear physiological indicators. With the development of deep learning, many automated
identification methods have been developed, but most of them stay in 2D images,
resulting in poor performance. In addition, the heterogeneity of MDD also results
in slightly different changes reflected in patients’ brain imaging, which constitutes
a barrier to the study of MDD identification based on brain sMRI images. We
propose an automated MDD identification framework in sMRI data (3D FRN-ResNet) to
comprehensively address these challenges, which uses 3D-ResNet to extract features
and reconstruct them based on feature maps. Notably, the 3D FRN-ResNet fully
exploits the interlayer structure information in 3D sMRI data and preserves most of
the spatial details as well as the location information when converting the extracted
features into vectors. Furthermore, our model solves the feature map reconstruction
problem in closed form to produce a straightforward and efficient classifier and
dramatically improves model performance. We evaluate our framework on a private
brain sMRI dataset of MDD patients. Experimental results show that the proposed
model exhibits promising performance and outperforms the typical other methods,
achieving the accuracy, recall, precision, and F1 values of 0.86776, 0.84237, 0.85333,
and 0.84781, respectively.

Keywords: major depressive disorder, deep learning, feature graph reconstruction network, structural magnetic
resonance imaging, automated identification

INTRODUCTION

Major Depressive Disorder (MDD), one of the most common diseases associated with suicidal
behavior, has become increasingly prevalent in recent years and is expected to be the largest
contributor to the world’s disease burden by 2030 (GBD 2017 Disease and Injury Incidence and
Prevalence Collaborators, 2018). People with MDD are at higher risk for obesity, cardiovascular
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disease, stroke, diabetes, cognitive impairment, cancer, and
Alzheimer’s disease. Approximately 8% of men and 15% of
women suffer from depressive disorders during their lifetime,
and nearly 15% of them choose to commit suicide (Gold et al.,
2015). Therefore, it is crucial to diagnose MDD early and provide
timely treatment.

Currently, the clinical diagnosis of MDD is mainly based on
the relevant criteria in the Diagnostic and Statistical Manual
of Mental Disorders (DSM), combined with the patients
interview and the subjective judgment of the clinician (Sakai
and Yamada, 2019). The rapid development of medical imaging
technology has provided more possibilities for pathological and
identification studies of psychiatric disorders. Common medical
imaging available includes Computerized Tomography (CT),
Positron Emission Tomography (PET), Magnetic Resonance
Imaging (MRI). Compared with other types of medical
images, brain structural MRI (sMRI) images can describe
changes in brain tissue volume or structure and reflect
changes in neural activity in the brain. Therefore, sMRI is
widely used to detect and treat psychiatric disorders. On the
other hand, Segall et al. (2009) have found that sMRI of
the brain can generate reliable and accurate brain volume
estimates, making it practical to study the classification of
depression based on brain sMRI images. However, due to
the lack of clear physiological indicators, images of MDD
patients cannot visually present abnormalities or lesions.
Therefore, automated MDD identification is urgently needed in
clinical practice.

Under the deep learning method, it is not easy to obtain
many training samples, and the heterogeneity of MDD is
substantial. Furthermore, most current deep learning networks
rarely involve 3D data. How to apply deep learning framework
to the identification task of MDD sMRI data has become a
research hotspot and challenge. So far, many outstanding studies
have been presented, such as Seal et al. (2021) proposed a deep
learning-based convolutional neural network named DeprNet to
classify Electroencephalogram (EEG) data from MDD patients
and normal subjects. Baek and Chung (2020) proposed a
contextual Deep Neural Network (DNN) model using multiple
regression to efficiently detect depression risk in MDD patients.
However, the methods above use only a 2D deep convolutional
neural network, which cannot obtain the image’s shallow and
deep semantic features. It also easily leads to overfitting, which
seriously affects the accuracy and robustness of the system and
requires a considerable computational cost.

Previous methods rarely use sMRI data to identify MDD
automatically and lack of MDD sMRI dataset, motivating us to
start this study. Moreover, the primary purpose of this paper
is to improve the automated identification accuracy of MDD
effectively to help clinicians make a medical diagnosis. Therefore,
we propose and develop an automated MDD sMRI data
identification framework (3D FRN-ResNet), which introduces
the Feature Map Reconstruction Network (FRN) based on the
ResNet model. Its network structure is shown in Figure 1.
Compared with other methods, our novel framework can
preserve the granular information and details of the feature
maps without overfitting the model. The contributions of our

study are: (1) A feature map reconstruction network is proposed.
(2) Building a 3D residual connectivity network to learn more
deep features of sMRI images. (3) Preserving more texture
details in sMRI images of MDD patients. (4) To get better
identification results.

The remainder of this paper is organized as follows. After
reviewing the state-of-the-art in the field of traditional machine
learning-based methods, deep learning-based methods, and
mental illness detection methods in Section “Related Works.”
Then, we explain our approach for solving the problem of
MDD identification with sMRI data in Section “Materials and
Methods.” Then, we describe MDD sMRI dataset and the
evaluation metrics, also the experimental details in Section
“Experiments.” Finally, the results and the discussions are
described in Sections “Results and Discussion,” followed by the
conclusion in Section “Conclusion.”

RELATED WORKS

Traditional Machine Learning

In recent years, machine learning techniques have been
widely used to mine medical images as computer-aided
diagnostic methods. Multivariate pattern analysis (MVPA),
a data-driven machine learning method, has been used
in diagnostic classification studies of mental disorders at
the individual level (Bachmann et al., 2017). Researchers
have classified feature selection algorithms into Filter-style
feature selection algorithms and Wrapper-style feature selection
algorithms based on the different feature evaluation strategies
(Lazli et al., 2019). In the Filter feature selection model, Mwangi
et al. (2012) used the T-test algorithm to implement feature
selection and classification on a multicenter MDD dataset.
Moreover, in the Wrapper model, Guyon et al. (2002) proposed
a support vector machine-based recursive feature elimination
(RFE-SVM) algorithm for gene sequence feature selection. This
algorithm has been widely used in machine learning tasks for
medical image analysis, such as Hidalgo-Muifoz et al. (2014)
used the RFE-SVM algorithm to classify structural image features
of Alzheimer’s disease, which outperformed the T-test feature
selection algorithm.

However, the Filter model usually has low computational
intensity but poor classification accuracy; the Wrapper model
has high classification accuracy but runs slowly, which is
challenging to apply to datasets with many features. Therefore,
researchers combined the advantages of both and proposed
a combined Filter and Wrapper feature selection method
to improve the classification accuracy while reducing the
computational time overhead. Among them, Ding and Fu
(2018) used the feature selection method combining the Filter
model and Wrapper model to conduct experiments on several
different types of datasets. The experimental results showed
that the hybrid algorithm has high computational efficiency
and classification accuracy (Ding and Fu, 2018). However, the
drawback of the above methods is that they usually require
manual feature design and redundant feature removal to extract
useful distinguishable features.
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FIGURE 1 | The overall diagram of our proposed 3D FRN-ResNet framework.

Deep Learning

Deep learning techniques have led to remarkable progress in
machine learning methods and promising results in medical
image classification applications. Chen et al. (2021) proposed a
cyclic Convolutional Neural Network (CNN) framework that can
take full advantage of multi-scale and multi-location contexts
in a single-layer convolution (LeCun et al., 1989). Cyclic CNNs
can be easily plugged into many existing CNN pipelines, such
as the ResNet family (He et al, 2016), resulting in highly
low-cost performance gains (Chen et al., 2021). Liang and
Wang (2022) proposed a novel model which uses involution
and convolution (I-CNet) to improve the accuracy of image
classification tasks by extracting feature representations on the
channel and spatial domains. Wang et al. (2021) proposed
a semi-supervised generative adversarial network (CCS-GAN)
for image classification. It employs a new cluster consistency
loss to constrain its classifier to maintain local discriminative
consistency in each unlabeled image cluster. At the same
time, an enhanced feature matching approach is used to
encourage its generator to generate adversarial images from
low-density regions of the true distribution, thus enhancing
the discriminative ability of the classifier during adversarial
training. The model achieves a competitive performance in semi-
supervised image classification tasks (Wang et al., 2021). For fine-
grained image classification, it has been a challenge to quickly
and efficiently focus on the subtle discriminative details that make
subclasses different from each other. Zhang et al. (2021) proposed

a new multi-scale erasure and confusion method (MSEC) to
address the challenge of fine-grained image classification.

Furthermore, Dai et al. (2021) proposed a model named
TransMed for multimodal medical image classification in terms
of medical image. TransMed combines the advantages of CNN
and transformer to efficiently extract low-level features of images
and establish long-range dependencies between modalities. The
method has great potential to be applied to many medical image
analysis tasks. Karthikeyan et al. (2020) used three pre-trained
models-VGG16 (Simonyan and Zisserman, 2014), VGGI9
(Simonyan and Zisserman, 2014), RESNET101 (He et al., 2016),
on a dataset of X-ray images from patients with common bacterial
pneumonia, COVID-19 patients, and healthy individuals to
investigate migration learning methods. The proposed method
obtained the best results (Karthikeyan et al., 2020). Talaat et al.
(2020) proposed an improved hybrid image classification method
that uses CNN for feature extraction and a swarm-based feature
selection algorithm to select relevant features.

Mental lliness Detection

There are numerous mental illness detection algorithms, most
of which are based on improvements to the basic deep
learning framework. Payan and Montana (2015) used sparse
autoencoder and 3D convolutional neural networks based on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets
to build algorithms that could predict patients’ disease status,
outperforming the latest research findings at the time. Similarly,
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Farooq et al. (2017) applied deep convolutional neural networks
such as Goolenet and ResNet on the ADNI dataset to learn
discriminative features, achieving the purpose of classifying
Alzheimer’s disease (AD), mild cognitive impairment (MCI),
advanced mild cognitive impairment (LMCI), and healthy
individuals. Moreover, the prediction accuracy of the proposed
technique was significantly improved compared (Farooq et al.,
2017). Li and Liu (2018) applied the deep dense network
(DenseNet) to the ADNI dataset. The original sMRI images did
not need to be standardized preprocessing and directly extracted
and classified features. The experimental results proved the
effectiveness of the proposed method. Yang et al. (2022) proposed
a spatial similarity-based perceptual learning and fusion deep
polynomial network model to learn further robust information to
detect obsessive-compulsive disorder (OCD); the model achieved
promising performance in the rs-fMRI dataset of OCD patients.
Ulloa et al. (2015) proposed a classification architecture using
synthetic sSMRI scans to scale up the sample size efficiently.
A simulator that can capture statistical properties from observed
data using independent component analysis (ICA) and random
variable sampling methods was also designed to generate
synthetic samples. Afterward, the DNN was specially trained
on continuously generated synthetic data, and it significantly
improved the generalization ability in classifying Schizophrenia
patients and healthy individuals (Ulloa et al., 2015). Eslami et al.
(2019) devised a data augmentation strategy to generate the
synthetic dataset required to train the ASD-DiagNet model. The
model consists of an auto-encoder and single-layer perceptron
to improve the quality of extracted features and improve the
detection efficiency of autism spectrum disorder.

Our Work

Although various deep learning frameworks have been proposed
and significant progress has been made in the classification of
brain tumor images. There are still challenges, such as insufficient
sample size for training (Wertheimer et al, 2021), overfitting
or underfitting due to the increased dimensionality of images
(from 2D to 3D), and excessive consumption of computational
resources (Pathak et al., 2019). In addition, the use of deep
learning feature representation has weakened the interpretability
of the features and is not conducive to the pathological analysis
and understanding of the learned features (Zadeh Shirazi et al,,
2020). These challenges limit the application of deep learning in
medical images, so more innovative deep learning models are
needed to achieve better results in medical images.

We propose a 3D FRN-ResNet framework for MDD sMRI
images identification, which uses 3D-ResNet as the base
framework. The conventional ResNet network incorporates
pooling operations to extract global features, discarding a large
amount of local detail information and thus reducing the
resolution of the data. Specifically, during sMRI image processing
of the brain, changes in neural activity in abnormally active (or
inactive) brain regions are difficult to capture, but these small
changes may be necessary for MDD. To solve this problem, we
introduce the FRN method so that the granularity information
and details of the feature map can be retained without overfitting
the model. Its network structure is shown in Figure 1. It achieves

this by framing class membership as a problem in reconstructing
the feature map. Given a set of images belonging to a single
class, we generate the associated feature maps and collect the
component feature vectors across locations and images into a
single pool of support features. For each query image, we attempt
to reconstruct each location in the feature map as a weighted
sum of the support features with a negative mean squared
reconstruction error as the class score. Images from the same class
should be easier to reconstruct because their feature maps contain
similar embeddings, while images from different classes are more
complex and produce larger reconstruction errors. By evaluating
the reconstruction of the complete feature map, FRN preserves
the spatial details of the appearance. Additionally, by allowing
this reconstruction to use feature vectors from any location in
the support image, FRN explicitly discards the annoying location
information. An auxiliary loss function is also introduced, which
encourages orthogonality between features of different classes to
focus on feature differences.

We evaluate the performance of the proposed model on
a constructed sMRI dataset of MDD patients and compare
it with other methods. The results show that our model has
good performance in automated MDD sMRI data identification.
(1) A novel identification network structure based on feature
map reconstruction is proposed in this paper. (2) Feature
extraction followed by feature map reconstruction of sMRI
images retains more fine spatial details and dramatically
improves the identification performance. (3) Classification-
assisted loss functions are developed to distinguish between
different features classes.

MATERIALS AND METHODS

Our goal is to identify MDD using sMRI images automatically.
In order to obtain good identification performance, a robust
network structure is usually required. Therefore, we propose
the 3D FRN-ResNet model for automated MDD sMRI data
identification, consisting of a feature extraction network and a
feature map reconstruction network. The network structure of
3D FRN-ResNet is shown in Figure 1. This section describes the
preprocessing process, the network structure of 3D FRN-ResNet,
and the loss function used in detail.

Data Preprocessing

The sMRI data preprocessing work is implemented using the
MATLAB-based SPM12 toolkit (Ashburner et al., 2021). The
main contents of preprocessing include AC-PC calibration,
non-brain tissue removal, gray matter segmentation, spatial
standardization, and spatial smoothing. The size of sMRI data for
each subject after processing is 121 x 145 x 122 voxels.

Anterior Commissure-Posterior Commissure
Calibration

The calibration procedure focuses on the anterior commissure
(AC) and posterior commissure (PC) calibration. We use
MATLAB software to perform AC-PC calibration, resampling the
images in the standard 256 x 256 x 256 mode, and then the
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FIGURE 2 | Results of removing non-brain tissue.

HC

4

Original

MDD

Gray matter segmentation

FIGURE 3 | Results of gray matter segmentation.

N3 algorithm is used to correct for non-uniform tissue intensity.
We also perform skull stripping and cerebellar resection after
correcting the images by AC-PC correction.

Non-brain Tissue Removal

The original images of sMRI contain some non-brain structures,
such as skulls. In order to avoid increasing the computational
workload and to avoid subsequent image preprocessing, which
may affect the experimental results. Non-brain structures such
as skulls need be removed from the images during the image
preprocessing operation. Figure 2 shows the comparison of a
sample before and after removing non-brain tissue.

Gray Matter Segmentation

During sMRI image processing, sometimes only the state of
specific regions is focused on, which requires tissue extraction
from the target area according to the brain’s anatomy. In the
preprocessing process, we segment the sMRI into three different
images by brain gray matter, white matter, and cerebrospinal fluid
structures. Considering the critical influence of the gray matter
region on the diagnosis of MDD (Arnone et al., 2013), only
the gray matter part is used for the experiments in this paper.
Figure 3 shows the result of gray matter segmentation.

Spatial Standardization

Standardization is the alignment of the images from the previous
preprocessing process to the standard brain template space
Montreal Neurological Institute (MNI) to unify the coordinate
space of all images. The algorithms used for standardization
are non-rigid body alignment algorithms, including affine and
non-linear transformations. Figure 4 shows the comparison of
a sample before and after spatial standardization.

Spatial Smoothing

After completing the above series of processing, it is also
necessary to perform a smoothing process on the image to
suppress the noise of the functional image. Additionally, the
signal-to-noise ratio needs to be improved to reduce anatomical

Original

Spatial standardization

MNI Template

FIGURE 4 | Results of spatial standardization.

or functional differences between images. Usually, the function
used for the smoothing process is the Gaussian kernel function.
In addition, based on experience and practical attempts, we
use a 64 x 64 x 64 pixel cube to down-sample gray matter
density images, and this processing saves computing time and
memory consumption with no loss of classification accuracy.
Figure 5 shows the comparison of a sample before and after
spatial smoothing.

3D-ResNet Framework

Although ResNet has achieved excellent results on many 2D
natural image datasets, it has little success in medical images. The
reason is that the convolution kernels and pooling kernels in 2D
networks are two-dimensional matrices. It can only move in the
two directions of height H and width W of 2D flat images, so only
2D features can be extracted. In contrast, most medical image
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FIGURE 5 | Results of spatial smoothing.

data such as sMRI are 3D stereo data. When using 2D network
processing, only 3D images can be input in layers, or one of the
dimensions can be used as the channel dimension. But neither of
the two methods can make good use of the inter-layer structure
information of the data.

Based on this, this paper adds a depth dimension D to the
filters such as convolution kernels and pooling kernels in the 2D
network, and extends them into 3D matrix. In this way, the filters
can be moved in all 3 directions (H, W, D) of the sMRI data, so
that the spatial information of the data can be fully exploited. And
the output of each filter is also a 3D data. The structure diagram of
the 3D-ResNet is shown in Figure 6. Let the size of one of the 3D
convolution kernels is k x k x k x channel, the number is #, the
input data size is h X w x d. And since the sMRI data used in this
paper is similar to a grayscale map, the channel dimension is 1.
Therefore, the output size of this convolution kernel is as follow:

h—k+1D)xw—k+1)xd—-k+1)xn (1)

By a similar method, the pooling layer and batch
normalization layer in ResNet can be extended to construct
a 3D residual connected network (3D-ResNet). The network can
better extract representative features from 3D sMRI data and
improve the accuracy of identification in MDD patients.

The 3D-ResNet network structure is shown in Figure 6. Due
to the small size of the input region feature map, the convolution
pooling operation is removed from the bottom layer of the
network. And the input map is directly made to enter the residual
network consisting of four stacked residual convolution modules.

Figure 7 shows an example of feature extraction from the
3D-ResNet middle layer. At the end of the extraction process,
the network learns details such as contour boundaries, position,
and orientation, enabling more learning of deeper features in the
sMRI and preparing it for the next step.

Feature Map Reconstruction Networks

Framework

The feature extractor can produce a feature map. However,
the distance metric function requires a vector representation of
the whole graph. Therefore, a method needs to be found to
convert the feature map into a vector representation. Ideally,
this conversion would preserve the granularity of information
and details of the feature map without overfitting the model. But
existing methods, such as global average pooling, are very crude
in discarding some spatial information or flattening a feature
map into a long vector, which also loses location information.
In order to convert the feature map into a vector representation
while preserving the spatial details, Feature Map Reconstruction
Networks (FRN) are proposed in this paper.

When there is a single input image x;, we wish to predict its
label y,. Firstly, let x; passes through feature extractor to generate
a feature map Q € R"™*%, where r represents the size of the space
and d is the number of channels. For each class ¢ € C, we pool
all features from the k input images into a feature matrix S; €
Rkrxd

Then, we try to reconstruct Q as a weighted sum of rows in
Sc by finding the matrix W € Rr x kr so that W x S, & Q can
be obtained. Finding the optimal W is equivalent to solving the
linear least squares problem:

W = argmin ||Q-WS,||> + A||W/||? 2)
w

where is the Frobenius norm, which X\ is a weighted ridge

regression penalty term used to ensure the treatability of the

linear system when it is over- or under-constrained (kr # d).
The ridge regression equation leads to the optimal solution W

and Q..

W =Qs!(S:Sf +nn)7" (3)

Gc = WSC (4)

For a given class ¢, the distance between Q and Q. is defined as
the Euclidean distance and then deflated by using % A learnable
temperature factor A is also introduced. The final predicted
probability is thus given by:

_ 1 _
(QQJZﬂ@—QMZ (5)
e(_Y<QvQc>)
P(yg = clxg) = (—VQ6>) (6)
Zc/ec e - e

In order to ensure the stability of the training, we decide to
use % to improve A. This has the additional benefit of making
our model somewhat robust, in addition to the parameters that
) should be learned. The change \ has diverse effects: the large
one A avoids over-reliance on the weights of W, but it also
reduces the effectiveness of the reconstruction. And it increases
the reconstruction errors as well as limit the distinguishability.
Therefore, we disentangle the degree of regularization p from
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FIGURE 6 | Proposed 3D-ResNet structure.

FIGURE 7 | Visualization of extracted features.

the magnitude of Q. by introducing a learned recalibration term.
This leads to the following formula:

6(: = pWSC (7)

» andpare parameterized as e* and e® to ensure non-negativity
and are initialized to zero. In summary, our final prediction is
given by the following equation.

kr

A= —e® =éb 8
7€ p=c¢ (8)
Q.= pWS. = pQS; (ScS! + 1) 'S, ©9)
e(*y(Qan»
Py = clxg) = P~ >) (10)
oa,
zc/ece ¢

The method introduces only three learning parameters:a,(,
andy. The temperature 7y appears in previous works
(Chen et al., 2020).

Figure 8 is a diagram of the FRN network structure. Support
image is converted to a feature map (left) and aggregated to
a pool of class conditions (middle). A best-fit reconstruction
of the query feature map is computed for each class, and the
closest candidate generates the predicted class (right). Among
them, h x w is the feature map resolution, d is the number
of channels, and the green triangle represents the convolutional
feature extractor.

Loss Function

Medical image classification often faces the problem of minor
differences in the appearance of pathological targets and non-
targets. We also face this challenge for our MDD brain tumor
classification task. For this purpose, our loss function consists
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FIGURE 8 | Feature map reconstruction networks network structure diagram.
of two components. The first is the cross-entropy loss function, EXPERIMENTS

which can be understood as a composition of two parts. The first
part is the calculation of the mutual entropy with label 1, and the
second part is the calculation of the mutual entropy with label
0. We sum the two to obtain the overall mutual entropy. The
formula is as follows.

1
L=——
N “

i=1

[yilog(pi) + (1 — yi)log(1 —p)] (1)

where N is the total number of samples, y; is the category to
which the ith sample belongs, and p; is the predicted value of the
ith sample.

In addition to the classification loss, we use an auxiliary loss
that encourages support features from different classes to span
the potential space.

La= Y >, IISS/II?

ieC jeC,jsi

(12)

Among then, S is line normalized and projects the features
onto the unit sphere. This loss encourages orthogonality between
features from different classes. Similar to Christian et al. (2020),
we reduce this loss by a factor of 0.03. We use L,y as the auxiliary
loss in our subspace network implementation, which replaces
the SimCLR fragment in the cross-transformer implementation
(Carl et al., 2020).

Dataset

The benchmarking clinical MDD sMRI images dataset is
collected at the Seventh Hospital of Hangzhou (SHH) with
Institutional Review Board (IRB) approval, and is used to
train and test our model. Furthermore, the SHH dataset
contains 68 subjects, including 34 MDD patients and 34 healthy
controls (HC). All patients with MDD met the diagnostic
criteria of the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV) for MDD. And all healthy
controls passed the non-patient version of the structured clinical
interview of the DSM-IV. All sMRI images have an imaging
field of view (FOV) = 240 mm x 256 mm, a voxel size of
I mm x 1 mm x 1 mm, a layer thickness of 1 mm, and a scan
layer count of 192. sMRI slice images from the MDD and HC in
SHH dataset are shown in Figure 9.

Evaluation Metrics

A total of 54 samples in SHH dataset are used in the training
process, including 27 MDD patients and 27 healthy individuals.
In addition, 14 samples are used for validation, including 7
MDD patients and 7 healthy individuals. We use four metrics to
evaluate the model performance: Accuracy, Recall, Precision, and
F1 score. Accuracy is calculated as:

TN + TP

(13)
FP+ TN + TP + FN

Accuracy =
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MDD

presentation.

FIGURE 9 | Structural magnetic resonance imaging slice images from the MDD and HC in SHH dataset. Left to right: axial view, sagittal view, coronal view, and 3D

where TN, TP, FP, and FN are the number of true negative,
true positive, false positive, and false negative, respectively. Recall
refers to the ability of a classifier to correctly detect positive
samples, reflecting the proportion of patients with MDD that
are correctly determined as a percentage of the total number of
patients, defined as:

TP

Recall = ————
TP 4+ FN

(14)
Precision refers to the proportion of samples with a positive
prediction that are correctly predicted, defined as:

TP

Precision = ——
TP + FP

(15)

Precision and Recall are contradictory metrics. In general,
Recall tends to be low when Precision is high, while Recall
tends to be high when Precision is low. When the classification
confidence is high, Precision is high; when the classification
confidence is low, Recall is high. To be able to consider these two
metrics together, the weighted average F-measure of Precision
and Recall is proposed, which reflects the overall metric, defined

as:

2 x Precision x Recall
Fl1 =

16
Precision + Recall (16)
In disease diagnosis studies, the higher the recall rate, the
smaller the missed diagnosis rate. Therefore, the accuracy and
recall of models are of most interest.

Experimental Details

In deep learning training, the setting of hyperparameters is
critical and determines the performance of our model. In the
training of the 3D FRN-ResNet model, the initial learning rate
is set to 0.01, the weight decay value is set to 0.001, the number
of epochs is 100, and then the learning rate is changed to 0.1
times when the validation set loss value does not drop for 10
consecutive epochs. Considering the sample size limitation and
using a fivefold cross-validation method to enhance the model’s
generalization ability.

All experiments are performed on a CentOS server with
NVIDIA TITAN Xp GPU, dual-core Intel(R) Xeon(R) Silver 4210
CPU @ 2.20 GHz processor, Python 3.6 programming language,
and PyTorch 1.0 deep learning framework.

RESULTS

We use four metrics, Accuracy, Recall, Precision, and F1 value,
to measure model performance. The average results of the
metrics obtained on the training and validation sets are shown
in Table 1. The experimental results show that the model has
good robustness. We can observe that the Recall is at a high value,
which indicates that the model is quite comprehensive in MDD
patient identification. Furthermore, we can see that the Precision
is also at a high value, demonstrating that the model has a good
ability in MDD patient identification. In addition, the Recall of
the training set is 0.84, and the F1 value of the training set is
0.85, which is very close. The same is true in the validation set,
suggesting the ability to discriminate between healthy and MDD
patients in our model is about the same.

Figures 10, 11 respectively show the composite plot of the
scatter plot and box plot of the evaluation index results of the
training set and the validation set. It can be seen from the box
plots that the fluctuations of the results are tiny, and only a
few outliers appear. In the box plot, the horizontal line in the
middle of the box indicates the median of a dataset. It can
also be observed in the scatter plot that the recall rate reaches
a high range, and the recall rate represents the ability of the
model to diagnose patients who suffer from MDD. The smaller
the difference between the Recall and F1 values, the better the
model’s performance in resolving class imbalance. It can be seen

TABLE 1 | Test results on the training and validation sets.

Accuracy Recall Precision F1
Training 0.86 0.84 0.85 0.85
Validation 0.78 0.76 0.77 0.76

Frontiers in Aging Neuroscience | www.frontiersin.org

May 2022 | Volume 14 | Article 912283


https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

Hong et al. 3D FRN-ResNet for MDD Identification
with the correct rate and recall rate achieving 85 and 84%,

I respectively. We can also observe that accuracy and recall
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FIGURE 10 | Combination of scatter plot and box plot of training set.
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FIGURE 11 | Combination of scatter plot and box plot of validation set.

from the figure below that the recall fluctuation range is not
large, indicating that the model has the similar ability to predict
the MDD patients and healthy individuals. After validation, the
overall performance of the model reached a high level.

In order to explore the influence of different network
structures on the performance of the MDD identification
algorithm, firstly we use five feature extraction networks with
different structures for training based on the FRN structure
in the classification layer. After that, the 3D-Resnet structure
with the best effect is used as the feature extraction network,
and the FRN structure is replaced with a general fully
connected layer for classification. The experimental results
show that compared with ordinary convolutional networks,
ResNet and DenseNet structures can extract and retain richer
detail information, and learn feature representations with
strong discriminative power, thereby effectively improving the
identification accuracy of the network.

From Table 2, we can see that the structural model combining
3D-ResNet and FRN has the highest classification accuracy,

ResNet proposed in this paper can mine effective information,
providing more effective features than the general ResNet and
the traditional 2D networks. Meanwhile, it can be seen from
Table 2 that the FRN network can effectively improve the high
heterogeneity problem in the sMRI images of MDD patients and
thus is applicable in MDD sMRI images identification.

Figure 12 shows the ROC curves of different algorithms using
FRN-net on the SHH dataset. It can be seen that from the figure
out algorithms outperforms others, which further confirms the
effectiveness of our algorithm. The main reason is that we exploit
both multi-scale layers and contextual spatial information to
reduce the semantic gap to a large extent.

The results of the ROC curve in Figure 13 are consistent
with those in Figure 12, indicating that our algorithm does
improve image identification accuracy. On the one hand, our
algorithm proposes a 3D residual connection network, which
extends the idea of residual connections to three dimensions.
It makes full use of the spatial and contextual information of
the image, and preserves the spatial details when converting the
extracted features into vectors and location information. Thus,
higher average accuracy than other methods is achieved, which
also demonstrate the effectiveness of the 3D residual connection
network and classification based on feature map reconstruction.
On the other hand, since we decompose the image into multiple-
scale layers, sufficient scale information is used when generating
multi-scale visual histograms. Therefore, our method has the best
classification specificity and sensitivity.

To further illustrate that the feature map reconstruction
method proposed in this paper is informative for correct
classification, we obtain experimental results for each query
image. In Table 3, all networks are trained with 3D-ResNet
as the backbone. The results in their tables validate the
effectiveness of the classification method based on the feature
map reconstruction proposed in this paper.

Figure 14 illustrates the algorithm’s performance based on the
above test parameters. The proposed FRN can be predicted to be
the best due to its property of classifying affected regions spread
over a given image from a performance overview. 3D ResNet
guarantees its performance in computation time and average

TABLE 2 | Results comparison with different network structures.

Model Backbone Accuracy  Recall Precision F1
FRN(ours) 3D-ResNet 0.85 0.84 0.86 0.84
ResNet 0.79 0.78 0.80 0.79
3D-DenseNet 0.84 0.82 0.87 0.84
DenseNet 0.78 0.78 0.79 0.78
SimpleCNN 0.60 0.58 0.61 0.60

Full connected 3D-ResNet 0.82 0.80 0.82 0.81

Bold values mean the best performance.
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FIGURE 12 | ROC curves with FRN-Net for different backbones of the training set.
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FIGURE 13 | ROC curves with FRN-Net for different backbones of the validation set.
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accuracy for medical image datasets, with the highest recall and
satisfying precision. Statistical, visual, and experimental evidence
is provided through comparisons with other algorithms.

To sum up, through the above experiments, we can see
that the performance of the ProtoNet method is not as good
as other methods. Because traditional ProtoNet algorithms
extract feature histograms through direct statistical methods,
which are linear features that need to be combined with non-
linear classifiers to perform well. The DSN method outperforms
the ProtoNet method, probably because the DSN algorithm

predicts class membership by computing the distances between
query points and their projections into the latent subspace
formed by the supporting images of each class, which improves
methods for image predictive classification. Whereas the CTX
method explicitly produces class-level linear reconstructions
and outperforms the DSN method. Our algorithm decomposes
the image into multi-scale layers and performs 3D residual
network feature extraction and feature map reconstruction to
predict classification, greatly enhancing the discrimination of
image feature representation. Therefore, our algorithm has the
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TABLE 3 | Results comparison with different classifiers.

TABLE 4 | Results comparison with typical methods.

Model Accuracy Recall Precision F1 Method Accuracy Recall Precision F1
Train ProtoNet 0.82 0.81 0.83 0.82 Jiaoetal., 2017 0.82 0.79 0.84 0.81
DSN 0.81 0.79 0.82 0.81 An et al., 2021 0.81 0.79 0.82 0.80
CTX 0.80 0.79 0.81 0.80 Benetal, 2020 0.79 0.77 0.81 0.79
FRN(ours) 0.86 0.83 0.84 0.83 Chengetal., 2022 0.83 0.80 0.82 0.81
Validation ProtoNet 0.76 0.75 0.77 0.76  Abdar et al., 2021 0.81 0.80 0.81 0.79
DSN 0.74 0.72 0.75 0.74  Proposed 0.85 0.82 0.82 0.82
CTX 075 074 0.76 0.75 Bold values mean the best performance.
FRN(ours) 0.80 0.78 0.76 0.77

best average classification accuracy, specificity, and sensitivity,
which indicates that 3D FRN-ResNet indeed improves image
classification accuracy. On the one hand, our algorithm proposes
a 3D residual connection network, which extends the idea of
residual connections to three dimensions. It makes full use of the
spatial and contextual information of the image and preserves
the spatial details when converting the extracted features into
vectors and location information. Thus, higher average accuracy
than other methods is achieved, demonstrating the effectiveness
of the 3D residual connection network and classification based
on feature map reconstruction. On the other hand, since
we decompose the image into multiple-scale layers, sufficient
scale information is used when generating multi-scale visual
histograms. Therefore, our algorithm has the best classification
specificity and sensitivity.

DISCUSSION

The 3D FRN-ResNet proposed in this paper can effectively
improve the identification accuracy and recall rate of sMRI
data from MDD patients and healthy controls, and verifies

its effectiveness and feasibility. The proposed model can assist
physicians to complete the diagnosis, and has significant
significance in research value.

The method is compared with some typical medical image
classification algorithms, and the results are shown in Table 4.
All of these methods use the private SHH dataset. These
results can be compared with those obtained using the
proposed method. Our proposed method is one of the best
and achieves better performance than other methods evaluated
under the same conditions. Jiao et al. (2017) introduced a
joint model with a CNN layer and a parasitic metric layer.
Where the CNN layer provides the essential discriminative
representation, and the metric learning layer enhances the
classification performance for that particular task (Jiao et al,
2017). An et al. (2021) proposed a multi-scale convolutional
neural network, a medical classification algorithm based on a
visual attention mechanism, which automatically extracts high-
level discriminative appearance features from the original image.
In the method proposed by Ben et al. (2020), a new classification
framework was developed to classify medical images using
sparse coding and wavelet analysis, which showed a significant
improvement in identification accuracy. Cheng et al. (2022)

M Proposed M CTX =~ DSN M ProtoNet
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o
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FIGURE 14 | Performance comparison with various models.
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proposed a modular group attention block that captures feature
dependencies in medical images in both channel and spatial
dimensions for resulting in improved classification accuracy.
Abdar et al. (2021) proposed a novel, simple and effective
fusion model with uncertainty-aware module for medical image
classification called Binary Residual Feature fusion (BARF).

Table 4 shows that the model has some advantages in
classification. The bold text in the table represents the best
performance. But there are still differences in accuracy, and
the model has limitations. In future work, solutions can be
proposed for this situation, such as designing a network structure
more suitable for small samples to maximize the neural network
learning ability. In addition, many of the algorithms proposed in
the top methods have excellent performance. How to combine
the advantages of these algorithms and integrating them into
models is the focus of future work. In clinical care, it helps
experts understand patients’ current situation faster and more
accurately, saving experts’ time and achieving a leap in the quality
of automatic medical classification.

CONCLUSION

This paper proposes an automated MDD sMRI data
identification framework and performs a performance validation
on the private SHH dataset with satisfactory results. The
framework comprises a feature extractor and a feature map
reconstruction network. 3D-ResNet acts as a feature extractor
to ensure that MDD sMRI data with depth features can be
learned. Then, the feature map reconstruction network solving
the reconstruction problem in a closed-form produces a class
of simple and powerful characters, which contains fine spatial
details without overfitting the position or pose. Furthermore,
we use an auxiliary loss that encourages support features from
different classes to span the potential space to more clearly
distinguish between classes. Additionally, a benchmarking
clinical MDD sMRI images dataset with 68 subjects (SHH)
is collected to train and test the model, and we evaluate the
proposed 3D FRN-ResNet on the SHH dataset. Experimental
results show that the proposed model exhibits promising
performance and outperforms the typical other methods,
achieving the accuracy, recall, precision, and F1 values of 0.86776,
0.84237,0.85333, and 0.84781, respectively. Compared with some
benchmark methods, the method proposed in this paper can
effectively improve the identification accuracy and recall of MDD
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Alzheimer’s disease (AD) is a neurodegenerative brain disease, and it is challenging
to mine features that distinguish AD and healthy control (HC) from multiple
datasets. Brain network modeling technology in AD using single-modal images often
lacks supplementary information regarding multi-source resolution and has poor
spatiotemporal sensitivity. In this study, we proposed a novel multi-modal LassoNet
framework with a neural network for AD-related feature detection and classification.
Specifically, data including two modalities of resting-state functional magnetic resonance
imaging (rs-fMRI) and diffusion tensor imaging (DTI) were adopted for predicting
pathological brain areas related to AD. The results of 10 repeated experiments and
validation experiments in three groups prove that our proposed framework outperforms
well in classification performance, generalization, and reproducibility. Also, we found
discriminative brain regions, such as Hippocampus, Frontal_Inf_Orb_L, Parietal_Sup_L,
Putamen_L, Fusiform_R, etc. These discoveries provide a novel method for AD
research, and the experimental study demonstrates that the framework will further
improve our understanding of the mechanisms underlying the development of AD.

Keywords: multi-modal, LassoNet, resting state functional magnetic resonance imaging, diffusion tensor
imaging, feature detection

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative brain disease that leads to the damage and
death of brain nerve cells in disease progression. It destroys people’s memory, learning, language,
cognition, life, and other abilities, and seriously affects the quality of life of patients and families
(Zhang and Wang, 2015; Lam et al,, 2021; Lim et al,, 2021). AD risk is also greater later in
life for people with cardiovascular disease, high blood pressure, and diabetes. The Alzheimer’s
Association published a “2021 Alzheimer’s Disease Facts and Figures,” reporting a significant
increase in AD deaths worldwide due to the COVID-19 pandemic. According to the clinical
symptoms of patients, Alzheimer’s disease is divided into a normal state (normal control, NC),
mild cognitive impairment (mild cognitive impairment, MCI) state, and diseased AD state.
MCI manifests as a decline in memory and thinking abilities at a rate greater than the decline
in perception caused by normal aging, but this decline does not interfere with normal social
interaction and work. However, patients with MCI have a high probability of further deterioration
to AD (Zhang et al., 2016; Wang et al., 2017). It is currently difficult to distinguish MCI from
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memory decline due to normal aging, and MCI involves very
subtle brain changes. Therefore, the early diagnosis of MCI/AD is
extremely challenging (Davis et al., 2018; Wang et al., 2018; Zhang
et al., 2018; Potashman et al., 2021).

Magnetic resonance imaging (MRI) has become a hot
spot in the field of AD and MCI disease research due to
its non-invasiveness, multi-sequence imaging, high resolution,
and strong repeatability (Zhang Y.-D. et al, 2014; Zhang
et al.,, 2015a). Resting-state functional MRI (rs-fMRI) and MRI
diffusion tensor imaging (DTI) are imaging techniques that
can study brain mechanisms from the perspective of human
brain functional connectivity and structural connectivity. They
provide imaging evidence for the pathological studies on AD
and MCI. Many studies have found the network structure
related to the resting state in the cerebral cortex, which
covers the brain regions that show a decline in metabolic
function in the early stages of AD, including the posterior
cingulate cortex and the internal parietal region (Choo et al,
2010; Hu et al, 2014; Zhang et al, 2015b; Shim et al,
2017; Wang et al, 2021). Neuroimaging data from a single
modality usually can only reflect part of the brain characteristics,
but many current research studies show that the fusion of
information from multiple imaging modalities can reflect the
brain activity mechanism more comprehensively (Zhang Q
et al, 2014; Zhang and Shi, 2020; Lei et al., 2021; Jiao et al,
2022).

Functional MRI quantifies the temporal correlation between
brain regions by detecting the blood oxygen level dependence
(BOLD) in the human brain (Zhang and Shi, 2020; Wang
et al, 2017), while DTI can track the spatial correlation of
white matter fiber tracts by exploiting the kinetic mechanism
of water molecule diffusion. Combining the spatiotemporal
high-resolution information reflected by fMRI and DTI can
comprehensively describe biological brain characteristics from a
spatiotemporal perspective and improve the accuracy of brain
network modeling, which is of great scientific significance
for studying the neurophysiological mechanisms of AD/MCI
diseases (Dyrba et al, 2015; Aderghal et al, 2020; Xu
et al., 2021). Wee et al. considered the information regarding
the complementary features of multiple imaging techniques,
integrated multi-modal information from DTI and rs-fMRI, and
used multi-kernel support vector machines to build a classifier
for the study of disease classification and early prediction
of MCI (Dai et al, 2019). Schonberg et al. used fMRI to
define the regions of interest for DTI, providing a more
comprehensive and functionally relevant white matter mapping
map for preoperative preparation of brain tumors (Schonberg
etal., 2006). Qi et al. propose a framework that combines DTI and
fMRI multimodal imaging data to accurately identify potential
neurological markers responsible for working memory deficits
(Qi et al, 2018). Li et al. integrated the image information
of rs-fMRI and DTI into a Lasso modeling framework for
the accurate diagnosis of brain network lesions in early AD,
further demonstrating that fusion of multi-modal information
can effectively identify brain network features (Li et al., 2020).
The above-mentioned finding proves that compared with single-
modal data, more valuable features can be obtained by using

multi-modal data. The multi-modal fusion method may further
improve the recognition accuracy of AD/MCI (Zhang et al.,
2015b; Wang et al., 2016; Mak et al., 2017).

In  multi-modal neuroimaging analysis, since the
features extracted from the original images tend to have
higher dimensionality, only a few clinical samples contain
complete multi-modal data, which will produce the curse
of dimensionality. Therefore, we propose a neural network
framework with Lasso regression for multi-modal image
feature extraction and classification. Figure 1 illustrates the
neural network framework of multi-modal neuroimaging for
Alzheimer’s disease.

MATERIALS AND METHODS

Data Processing

The images of 85 subjects (33 healthy control, 29 early mild
cognitive impairment, and 23 AD) were downloaded from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI'), including
rs-fMRI and DTI. All neuroimaging data were obtained using a
SIEMENS 3T MRI scanner. For the rs-fMRI images, the echo
time (TE), the repetition time (TR), the flip angle, the slice
thickness, and the time points were set as 30.0 ms, 3.0 s, 90,
3.4 mm, and 197, respectively. For the DTI data, the gradient
directions, the echo time, the repetition time, the flip angle,
and the voxel size were set as 30, 95 ms, 12.4 s, 90, and
2 x 2 x 2 ms’. For the T1 images, the TE, TR, flip angle,
the slice thickness, and the T1 time were set as 3.0 ms, 2.3 s, 9.0,
1.0 mm, and 900 ms, and the collection plane was SAGITTAL.
The Table 1 showed the significant differences among the three
groups in terms of gender (p < 0.001), age (p < 0.001), MMSE
(p < 0.001),and EDU (p < 0.001) by t-test.

Data Acquisition

The rs-fMRI images were processed using SPM12* (Han and
Glenn, 2018) and DPARBI 6.1° (Yan et al,, 2016) as follows:
(1) The raw DICOM files were converted to NIFITI format. (2)
The first 10 time series nodes of each individual subject were
removed manually to avoid the magnetic field inhomogeneity
problem caused by the startup of the scanner and the influence
of the discomfort of the subject’s initial state on the results. (3)
The interslice scan times were corrected to the same time point.
(4) Images with head movement beyond 2.5 mm translation or
2.5-degree rotation were removed to correct head movement
during scanning. (5) The head motion, white matter signal, and
cerebrospinal fluid signal were set as the main noise covariates
to reduce the influence of noisy covariate signals on scan results
and reduce biological artifacts. (6) Different morphological brains
were standardized to the same standard template and were
registered to T1 images. (7) The 4 x 4 x 4 mm® Gaussian
kernel was applied for spatial smoothing to reduce spatial
noise. (8) The linear trend was removed, and 0.01-0.1 Hz

'www.adni-info.org
Zhttps://www.fil.ion.ucl.ac.uk/spm/software/spm12/
3http://rfmri.org/DPABI

Frontiers in Aging Neuroscience | www.frontiersin.org

May 2022 | Volume 14 | Article 911220


http://www.adni-info.org
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://rfmri.org/DPABI
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

Meng et al.

Multi-Modal Neuroimaging Feature Detection

Bold time series

rs-fMRI connectivity DTI connectivity
= =

Multi-modal
LassoNet Model

y!l
Classification w

L4t W R
et
ST 7 = ol % BER -
a7 AN, (9 & WP
8 e Logn P NN
s w"-r-/’:,
< L |

FIGURE 1 | An illustration of the proposed multi-modal framework for AD.
(A) Data processing. The fMRI and DTl images were preprocessed, and then
the regions of interest were extracted as fMRI and DTl features through the
AAL template, and the corresponding brain networks of fMRI and DTl were
obtained, respectively. Then, computed the inverse proportional function of
the structural brain network as a penalty matrix. (B) Multi-modal LassoNet
Modeling with a neural network. We constructed a multi-modal network
framework for feature selection and classification based on the LassoNet
model. It consisted of residual connection and an arbitrary feed-forward neural
network. The input to the network was the fMRI feature information. The
penalty matrix was introduced to the residual connection to sparse features.
(C) The detection of the pathological mechanism of AD. We visualized brain
regions for selected features to analyze the affected discriminative brain
regions.

filtering was applied to reduce the interference due to low-
frequency and high-frequency noise. The automated anatomical
labeling (AAL; Tzourio-Mazoyer et al., 2002) atlas was applied to

TABLE 1 | Participant characteristics.

Subjects HC EMCI AD P
Number 33 29 23

Gender (M/F) 12/21 14/15 14/9 <0.001
Age (Mean =+ sd) 7388+ 715 7452+7.30 74.34+8.14 <0.001
MMSE (Mean +sd) 29.15+1.13 2852+ 145 21.78+1.89 <0.001
EDU (Mean =+ sd) 16.55 +£2.34 16.31 £2.56 14.96 +£1.90 <0.001

HC, healthy control; EMCI, early mild cognitive impairment; AD, Alzheimer’s
disease; MMSE, Mini-mental status examination; M/F, male/female; Edu,
education; sd, standard deviation.

segment the brain into 90 regions, and the time series of BOLD
signals were extracted.

The DTI data were processed using FSL* (Woolrich et al.,
2009), PANDA® (Abbasi et al., 2021), and MRIcron (NITRC:
MRIcron: Tool/Resource Info) software in Ubuntul8.04 as
follows: (1) The raw DICOM files were converted to NIFITI
format (*.nii.gz). (2) The brain templates were estimated
based on non-diffusion-weighted b0 images using the bet
command. (3) The non-brain space was removed using the
fslroi command and eddy current correction. (4) The diffusion
tensor metric was calculated using the dtifit command. (5)
Deterministic white matter tract in the brain was tracked
using the dti_recon and dti_tracker commands. (6) A part
of the skull tissue in the T1 images was removed using the
bet command. (7) The fractional anisotropy (FA) value of
each subject was registered to its corresponding T1 image
using the flirt command of FSL. When DTI images were
registered with other images, DTI data causing significant
deformities were removed. It should be noted that the
DTI images and rs-fMRI images were registered with the
same T1 imaging.

Multi-Modal LassoNet Framework

Construction
The rs-fMRI functional brain networks can measure temporal
correlations between anatomically segmented brain regions;
DTI-based structural brain networks can characterize and track
spatial white matter tracts in the brain. Herein, it is considered to
unify the multi-modal image information of rs-fMRI and DTI in
a brain network modeling framework, combining the respective
advantages of the two modalities, which can describe the dynamic
mechanism of the brain network from the perspective of time and
space, and realize the construction of the brain network model.
After preprocessing of fMRI images, we obtained 187 time
series (BOLD signal) of 85 participants, and there were 90 ROIs
in each image. Let us assume that we have n participants and i
ROIs. We explored a multi-modal network framework for feature
selection and classification based on the LassoNet (Yan and Bien,
2017; Chen et al., 2019). For n participant, we assumed that the
fMRI time series of the i-th ROI was x; = {xy;, x2i, ..X4i} €
R"*4 (i = 185), where d was the number of time points. Our
goal was to find the best function f*(x;) for predicting y; (the type

*https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
“https://www.nitrc.org/frs/?group_id=582
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of Alzheimer’s diagnosis). As the problem of learning f*(x;) is
non-parametric, we assumed that there was no linear or quadratic
restriction. The multi-modal network consisted of two parts:
residual connection and arbitrary feed-forward neural network.
The penalty was introduced to the residual connection to sparse
features. We define G to be the class of residual feed-forward
neural networks:

G = {f = f@,w:xr—>9TX + gw(X)] (1)

where gW (X) denotes a feed-forward network with weights W,
WO e RY X K represents the weights in the first hidden layer,
and 0 € R? represents the weights in the residual layer.

Let L be the empirical loss? on the training set with fMRI time
series, then L is defined as Equation 2.

n

LOW) = 3 o w), ) ®)

i=1

where W is the weight of the first hidden part; 6 is the weight
of the residual part; n is the number of participants as training
observations size, and ¢ is the loss function. The LassoNet model
objective function is defined as Equation 3.

minimize

s e W) + x||e||lsubjecttoHWf”H < M6,

i=1,--d (3)

where Wi(l) is the weight of feature i and d is the data dimension.

The coupling strength of human brain functional connectivity
and structural connectivity is closely related to the brain
excitation process, and stronger structural brain connectivity is
likely to lead to the enhancement of corresponding functional
connectivity. Here, we introduced a parameter named the
punishment factor to improve the LassoNet model. The
punishment matrix of each DTI image is defined as the inverse
proportional function of structural brain networks (Equation 4).

Dj = e @ (4)

where pj; is the FA information between j-th brain region and
i-th brain region in the DTI network, and o is the mean of the
standard deviation of all elements in the structural brain network
of all participants. Equation 4 is used to penalize the estimated
connection strength value between the j-th ROI and the i-th ROIL.

Since each participant had a corresponding DTI structure
network information D, we calculated the max feature N4, of
each D using Equation 5.

(E—D)x = 0 (5)

where \yqx = max (hg), E is the unity matrix, and x is the
eigenvector. The DTI feature matrix is defined as Equation 6.

DTLector = [N, 0+ Ml, nell, 85] (6)

Then, we modify the LassoNet objective function to Equation 7.

minimize

e’ W L(e, W) + )\-'DTIvector”e”l

subjecttoHW}l)H SM!Gj ,j=1,---d 7)

So, the multi-modal LassoNet framework was constructed. We
summarize the training algorithm of multi-modal LassoNet, as
shown Table 2.

Feature Detection and Model

Comparison

Using the resulting images, we obtained the initial dataset of
85 participants and 187 x 90 features in each participant. We
extracted three groups from the dataset, namely, AD-HC, AD-
EMCI, and EMCI-HC. For each group, the train set, validation
set, and test set were selected randomly using the ratio Sgqip :
Svatid * Stest = 6 12 : 2. Integrating with DTI structure network
information, the Sy, and S5 were applied to filter the optimal
) and integrating with DTI structure network information. With
the resulting X, the S;4in and Sis were used to detect features
and get the sparse feature matrix that classified well in AD-HC,
AD-EMCI, or EMCI-HC.

Since the multi-modal framework was optimized based on the
LassoNet model, to determine the superiority of our proposed
framework, we used the classic Lasso, Group Lasso, Sparse Group
Lasso, and ElasticNet to compare the classification accuracy.

Given n data samples {(x1, 1), (x2,72) .-+ (Xn, yu)}, xi €
R%, x; was a d dimensional vector, that is, each observed data
were composed of the values of d variables, and each y; € Rwas a
real value. Let the mapping f : R — R that minimize the sum
of squared errors, and the optimization objective is defined as
Equation 8.

w* = argminﬁiHy—XWH; (8)

The optimization objective of Lasso (Equation 8) was obtained by
introducing the L1 regularization term in Equation 9.

1
wW* = argminB;Hy—XWH; + MWL ©)

The Lasso was applied to the group and the Group Lasso was
obtained as Equation 10.

2
min

10
W € RP (10)

L
+ 0D il

2 I=1

L
Y= :E: Xiw,

I=1

The Sparse Group Lasso was obtained by integrating the original
Lasso into the Group Lasso, as Equation 11.

2 L
+ 0 D Wl + MWl
2 I=1

min
W € RP

L
y— D XiW

I=1

(11)
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TABLE 2 | Training algorithm of multi-modal LassoNet.

Algorithm: Multi-Modal LassoNet with neural network

1:Input: X e R" d represents fMRI time series (BOLD signal), B represents Number of epochs, M represents hierarchy multiplier, € represents path multiplier, o

represents learning rate, D represents penalty matrix from DTl network.

2: Initialize: L (6, W) represents the feed-forword network on the loss, \ represents the penalty, k represents the number of activate features,

DTly =[h, N2, A3

------ \n represents the multimodal matrix calculated from the penalty matrix D, d represents the number of features, 6e R represents the

weights in the residual layer, K is the number of units in the first hidden layer, 6* and W* are the optimal parameters after iteration.

3: while k > 0 do

4: Update . < (1 + ¢) \DTl,

5: for be (1...B) do

6: Compute gradient of the w.r.t to (6, W) with back-propagation
Update 6 < 6 — aVyL and W < W—-aVvyyL

7:forje{1...d}do

8: Sort the entries of Wj(” into ‘Wj“)‘ > .. > W((;BQ’
1
9: Compute w, : = H% -Syp ({9j| +M-30_ |W<(//)>|)
10: Find n* the first € {0, ... ..., K} such that ‘W&H)‘ <w, < |W((/.B)

11: Update 6 < - sign (6) - wie, I/VI.“)* <—sign(Vl/j(”) - min (Wn*:
12: end for

end for

13: return (0%, WM™

14: end while

Wj_m‘)
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The definition of ElasticNet was obtained by combining L1 and
L2 regularization and Lasso (Equation 12).

min
W e RP

L L
D IWill + 2 D Wil

I=1 I=1

L
y— D XiW,

2
+ N2
I=1 2

(12)

The same Sygin and S,y were applied to filter the optimal
parameters. Using the same Sy, and Sy, the experiments

were repeated 10 times in all five frameworks with the
optimal parameters.

Evaluation Metrics
In this study, the samples were positive and negative, and the
results classified had the following cases:

True Positive (TP): the positive sample was predicted as a
positive sample.
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TABLE 3 | The classification performance comparison of the five methods.

Group Methods ACC (%) + SD SEN (%) + SD SPE (%) + SD GMean (%) + SD F1 (%) + SD
AD-HC Lasso + SVM 85.45+ 1.10 75.34 +£2.87 91.89 + 0.81 83.19 + 1.49 80.05 + 1.66
GroupLasso + SVM 86.16 + 0.78 7713+ 1.73 91.97 + 1.00 84.24 + 0.93 80.75 + 2.75
ElasticNet + SVM 84.56 + 1.00 74.90 £2.14 90.72 £ 1.24 82.41+1.13 79.04 £1.24
Sparse Group Lasso + SVM 85.75 + 0.83 75.99 £+ 2.29 92.20 + 0.88 83.69 + 1.11 80.89 + 1.18
Multi-modal LassoNet 90.68 + 0.34 88.81 + 0.68 91.91 £ 0.55 90.34 + 0.36 88.25 + 0.52
AD-EMCI Lasso + SVM 75.88 + 0.58 93.06 + 0.87 54.22 + 0.95 71.03 £ 0.61 81.15+ 0.56
GrouplLasso + SVM 75.92 + 1.04 93.12 + 0.63 54.33 £ 1.77 7112+ 114 81.16 + 0.87
ElasticNet + SVM 76.13 + 0.61 92.91 + 0.94 54.98 + 1.96 71.45 +1.01 81.27 + 0.60
Sparse Group Lasso + SVM 70.23 + 0.63 90.44 + 1.05 44.69 £+ 1.82 63.56 + 1.04 77.05 £+ 0.67
Multi-modal LassoNet 83.63 + 0.74 87.32 £ 1.22 79.00 + 1.33 83.05 + 0.76 85.70 + 0.84
EMCI-HC Lasso + SVM 67.04 &+ 0.69 78.67 +£1.98 57.61 4+ 1.49 67.30 +£ 0.68 68.12 +£ 0.90
GrouplLasso + SVM 84.42 + 0.65 96.62 + 0.65 74.43 £ 0.98 84.80 £ 0.52 84.08 £ 0.57
ElasticNet + SVM 83.76 +£ 0.42 94.69 + 0.69 74.72 £ 0.92 84.11 £ 0.44 84.07 £ 0.41
Sparse Group Lasso + SVM 83.20 + 1.15 95.83 + 0.88 72.74 +£1.43 83.49 + 1.14 70.86 + 1.16
Multi-modal LassoNet 88.77 + 0.70 90.87 + 1.05 87.06 + 0.95 88.94 + 0.69 87.92 + 0.83
True Negative (TN): the negative sample was predicted asa  GMean is the geometric mean (Equation 16).
negative sample.
GMean = ~/SEN + SPE (16)

False Positive (FP): the negative sample was predicted as a
positive sample.
False Negative (FN): the positive sample was predicted as a
negative sample.

ACC (accuracy) is the number of correctly classified samples
divided by the total number of samples (Equation 13).

TP + TN
TP + TN + FP + FN

ACC = (13)

SEN (sensitivity) is the proportion of pairs of all positive samples
(Equation 14).

(14)

SPE (specificity) is the proportion of pairs of all negative samples
(Equation 15).
TN

SPE = —
TN + FP

(15)

F1 is a comprehensive evaluation indicator. Sometimes, accuracy
and sensitivity needed to be considered together as Equation 17.

2TP

Fl = —/—/—m—«——
2TP + FP + FN

(17)
The receiver operating characteristic (ROC) curve and the
area under curve (AUC) value are also used to evaluate the
performance of the classifier.

RESULTS

The Results of Parameter Optimization

Initially, 187 x 90 = 16, 830 features were obtained and Syqin
and S, were applied to filter the optimal parameters. The A
was the interval of (0.1, 1), and the corresponding accuracy was
calculated in each group. As shown in Figure 2, the best accuracy
of the AD-HC group is 92.79% and X is 0.1. The peak value

Frontiers in Aging Neuroscience | www.frontiersin.org

May 2022 | Volume 14 | Article 911220


https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

Meng et al.

Multi-Modal Neuroimaging Feature Detection

A AD-HC B AD-EMCI C EMCI-HC

1o 7 1o

%
//’
0.8 5ot 08
3
g P 2 2
g ] E]
@ 06 ot 2 06 @
2 2 2
é P 8 é
3 0.4 g 3 0.4 3
= 3 = =
o — Lasorsvi (rea = 0.8452) - — Lassorsvi (area = 0.7572) L — LassovsvM (rea = 0.6697)
0.2 o’ —— Group Lasso+SVM (area = 0.8543) 0.2 V4 —— Group Lasso+SVM (area = 0.7439) 0.2 g ~—— Group Lasso+SVM (area = 0.8593)
77 —— Sparse Group Lasso+SVM (area = 0.8490) 2 —— Sparse Group Lasso+SVM (area = 0.6983) o —— Sparse Group Lasso+SVM (area = 0.8471)
e = ElasticNet+SVM (area = 0.8373) ,,‘ = ElasticNet+SVM (area = 0.7454) = ElasticNet+SVM (area = 0.8562)
Wit Modl LassoNe (area = 0.9120) - Mot Moda LassoNe (area = 0.8476) [ Wit Modl LassoNe (area = 0.6975)
0.0 0.0 0.0 ¥
0. 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate
FIGURE 4 | The ROC curve of the five methods in three groups. (A) Prediction accuracy of AD-HC group. (B) Prediction accuracy of AD-EMCI group. (C) Prediction
accuracy of EMCI-HC group.

TABLE 4 | Discriminative brain regions.

Group ID Regions Abbreviation ID Regions Abbreviation
AD-HC 61 Parietal_Inf_L IPL.L 19 Supp_Motor_Area_L SMA.L
24 Frontal_Sup_Medial_R SFGmed.R 59 Parietal_Sup_L SPG.L
37 Hippocampus_L HIP.L 83 Temporal_Pole_Sup_L TPOsup.L
79 Heschl_L HES.L 64 SupraMarginal_R SMG.R
7 Frontal_Mid_L MFG.L 81 Temporal_Sup_L STG.L
73 Putamen_L PUT.L 52 Occipital_Mid_R MOG.R
15 Frontal_Inf_Orb_L ORBInf.L 32 Cingulum_Ant_R ACG.R
56 Fusiform_R PoCG.L
EMCI-HC 37 Hippocampus_L HIP.L 14 Frontal_Inf_Tri_R IFGtriang.R
27 Rectus_L REC.L 59 Parietal_Sup_L SPG.L
17 Rolandic_Oper_L ROL.L 88 Temporal_Pole_Mid_R TPOmMId.R
30 Insula_R INS.R 44 Calcarine_R CAL.R
6 Frontal_Sup_Orb_R ORBsup.R 49 Occipital_Sup_L SOG.L
8 Frontal_Mid_R MFG.R 31 Gingulum_Ant_L ACG.L
38 Hippocampus_R HIP.R 7 Frontal_Mid_L MFG.L
15 Frontal_Inf_Orb_L ORBInf.L
AD-EMCI 22 Olfactory_R OLFR 63 SupraMarginal_L SMG.L
32 Cingulum_Ant_R ACG.R 57 Postcentral_L PoCG.L
89 Temporal_Inf_L ITG.L 51 Occipital_Mid_L MOG.L
82 Temporal_Sup_R STG.R 24 Frontal_Sup_Medial_R SFGmed.R
85 Temporal_Mid_L MTG.L 39 ParaHippocampal_L PHG.L
42 Amygdala_R AMYG.R 13 Frontal_Inf_Tri_L IFGtriang.L
28 Rectus_R REC.R 60 Parietal_Sup_R SPG.R
8 Frontal_Mid_R MFG.R

of the EMCI-HC group is at the node of 0.3. The prediction
accuracy reaches a peak with a & value of 0.2. We can also
observe that the accuracy of the AD-HC group is much higher
than the other two groups. This may be caused by the large
difference between AD and HC. An interesting finding is that
the accuracy of the AD-EMCI group is the lowest and the gap
in this group is also the lowest. This proves that the similarity
between AD and EMCI is higher, and the similar features make
the classification more stable.

Comparison With Other Methods

We applied the same Sy and Syes to assess the performance of
the five models, and 10 independent experiments were conducted
to evaluate the universality of these models. As shown in Figure 3,

the Multi-modal LassoNet has good prediction accuracy, and in
three groups, the accuracy of the Multi-modal LassoNet is the
highest, far exceeding the other four models. The peaks of the
Multi-modal LassoNet are above 90% in the AD-HC and EMCI-
HC groups, and in the other four models, they are all below 90%.
In the AD-EMCI group, the best accuracy is above 85%, and in
the other four models, it is below 80%. Additionally, the gap of the
Multi-modal LassoNet in 10 experiments is less than 2%. It can
be seen from Figure 3 that the Multi-modal LassoNet framework
has satisfactory classification accuracy in different groups only
by adjusting the k. The curves of the Multi-modal LassoNet
also prove that the proposed framework has good stability, and
the introduction of DTT information improves the classification
performance of the LassoNet model.
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FIGURE 5 | Visualization of discriminative brain regions. (A) AD-HC, (B) AD-EMCI, and (C) EMCI-HC.
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The classification information of the five methods is presented
in Table 3. Multi-modal LassoNet classifiers reported very
good performance. In the AD-HC group classification, ACC,
SEN, SPE, GMean, and F1 were 90.68 + 0.34, 88.81 & 0.68,
91.91 + 0.55, 90.34 £ 0.36, and 88.25 £ 0.52, respectively. In
the AD-EMCI group classification, ACC, SEN, SPE, GMean,
and F1 were 83.63 + 0.74, 87.32 £+ 1.22, 79.00 £ 1.33,
83.05 £ 0.76, and 85.70 * 0.84, respectively. In the EMCI-
HC group classification, ACC, SEN, SPE, GMean, and F1 were
88.77 £+ 0.70, 90.87 £ 1.05, 87.06 £ 0.95, 88.94 + 0.69, and
87.92 £ 0.83, respectively.

For further validation of our framework and results, we plot
the ROC curves of five methods for the AD-HC, AD-EMCI,
and EMCI-HC groups, as shown Figure 4. The AUC values of
our proposed Multi-modal LassNet for AD-HC, AD-EMCI, and
EMCI-HC groups were 0.9120, 0.8478, and 0.8975, respectively.

DISCUSSION

Modeling techniques based on a single neuroimaging modality
lacked the spatial and temporal high-resolution information
brought by different modalities in characterizing the brain
network structure, and could not fully reflect the dynamic

mechanism of brain network connections (Tulay et al., 2019;
Zhuang et al., 2019; Lei et al., 2020). Therefore, we proposed a
multi-modal LassoNet model that was a Lasso neural network
modeling framework using multi-modal information fusion. This
method fused two modalities of fMRI and DTT in a sparse Lasso
neural network framework and introduced connection strength
and subject structure to complete the construction of a multi-
modal brain network. Our proposed method mainly addresses
two issues, which include the selection of AD-related brain ROIs
and the classification and diagnosis of AD. The experimental
results showed that the multi-LassoNet modeling of multi-modal
information could facilitate higher sensitivity of disease diagnosis
and effectively improved the accuracy of model classification. The
good classification performance also revealed that the detected
features of the multi-modal model based on fMRI and DTI
reflected that the brain atrophy caused by the disease process
would lead to the decrease of white matter fiber connectivity
(Gupta et al., 2020). It also proved that structural connectivity
and functional brain network features between connections had
coupling effects.

Compared with the current popular Lasso method, Group
Lasso, Sparse Lasso, and elastic network method, it was
proved that the proposed multi-modal Lasso-based neural
network method was higher than other methods in classification
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performance and had strong regularization parameter stability. It
proved that fusion of multi-modal information more effectively
identified brain network features. Moreover, the results indicated
that the constraint effect of the DTT structural network and the
introduction of the strength of the brain area connection had
a certain degree of influence on the validity of the multi-modal
brain network model. Table 4 shows the top 15 important brain
regions with different classification results.

Visualization selected discriminative brain regions using the
BrainNet Viewer toolbox (Xia et al., 2013), as shown in Figure 5.
By analyzing the brain regions classifying AD-HC,AD-EMCI,
and EMCI-HC, we found that the brain regions belonging
to Hippocampus, Frontal_Inf Orb_L, and Parietal_Sup_L were
among the top 15 brain regions. Previous studies had found
that the hippocampus of the brain was responsible for human
memory and spatial activities and was closely related to AD
pathology (Douaud et al., 2011; Fares et al., 2019). In addition,
some studies had also shown that functional atrophy in the
parahippocampal gyrus is an early marker of AD/MCI disease
(Wang et al, 2016), and the parahippocampal gyrus shows
a more distinct ability than the hippocampus in the early
stage of the disease (Zhu et al, 2019). Frontal Inf Orb_L
corresponded to the region of interest recommended by
physicians for the clinical diagnosis of AD (Jiang et al,
2015). Parietal Sup_L may be associated with the underlying
mechanism of its clinical effect, and it may play a role in the
potential compensatory mechanism of mobilizing more regions
to complete the function after a functional decline (He et al.,
2021). The Hippocampus_L and Hippocampus_R found in the
AD-HC and EMCI-HC groups were reported as the pathogenic
regions of AD. Chik et al. (Yuan et al, 2022) found that
the neurosteroids in the hippocampus were changed during
the progression of Lv et al. (2022) found that compared to
the healthy mouse, the mice having TYRO protein kinase-
binding protein had insufficient learning and memory abilities,
and the amyloid B in the hippocampus was increased, which
worsened with aging. Liu et al. (2022) proved that memory
could be improved by enhancing the functional activity in the
hippocampus and the medial prefrontal cortex. Moreover, the
hippocampus region was not found in AD-EMCIL. This gives
a message that the difference in the hippocampus between
AD and EMCI is not obvious, and their main difference
is found in other brain regions, such as the Amygdala_R,
which is not found in the other two groups. Hong et al
(2022) reported tau deposition in the parahippocampus and
amygdala by studying positron emission tomography (PET)
images in patients with AD. The amygdala atrophy was found
in mild AD subjects and could be used to predict the Mini-
Mental State Examination scores and hippocampal atrophy
(Poulin et al., 2011).

In addition, the Putamen_L was reported to be the earliest
brain region to show increased AP deposition and is a marker
of cognitive decline (Zammit et al., 2020; Cogswell et al., 2021).
The Fusiform_R was confirmed to be a characteristic region of
AD (Guo et al,, 2017; Sprung et al., 2021). Brain network analysis
results generally had a high sensitivity to segmentation template
selection. Different segmentation templates produced different

brain network topology structures, which might potentially affect
the reproducibility of model classification performance. The
segmentation template used in this paper was the AAL structure
of 90 brain regions. However, in the future, the robustness value
of the proposed method would be further verified from the
perspectives of multiple segmentation scales.

In this study, a deterministic fiber tracking technique derived
from DTT images was used to construct a structural brain network
in a multi-modal modeling framework. But this tracking method
only considered the trajectories where white matter fibers cross
or diverge (Lei et al., 2021). Therefore, there may be biases in
determining the most reasonable fiber configuration, affecting
the accuracy of structural network construction. Future research
work will consider adopting a more efficient probabilistic
fiber tract-tracing strategy to obtain the probability value of
brain area connection to complete accurate multi-modal brain
network construction.

In this study, we proposed a novel multi-modal LassoNet
framework for the discriminant analysis of features. This research
is an attempt to apply fMRI and DTI multi-modal information
and sparse representation technology to the research of neural
network framework, and provides a new idea for designing a
brain network modeling framework that integrates more modal
information in the future. The features of multi-modal data can
be fused to obtain more comprehensive pathological information.
Compared to the conventional methods, the proposed method
seeks to identify AD-related brain ROIs and in the classification
and diagnosis of AD. The high-performance classification
implied that the proposed multi-modal LassoNet framework was
beneficial for the early diagnosis and prediction of AD disease.
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Alzheimer’s disease (AD) is a progressive dementia in which the brain shrinks as
the disease progresses. The use of machine learning and brain magnetic resonance
imaging (MRI) for the early diagnosis of AD has a high probability of clinical value and
social significance. Sparse representation classifier (SRC) is widely used in MRI image
classification. However, the traditional SRC only considers the reconstruction error and
classification error of the dictionary, and does not consider the global and local structural
information between images, which results in unsatisfactory classification performance.
Therefore, a large margin and local structure preservation sparse representation
classifier (LMLS-SRC) is developed in this manuscript. The LMLS-SRC algorithm uses
the classification large margin term based on the representation coefficient, which
results in compactness between representation coefficients of the same class and
a large margin between representation coefficients of different classes. The LMLS-
SRC algorithm uses local structure preservation term to inherit the manifold structure
of the original data. In addition, the LMLS-SRC algorithm imposes the {2 1-norm on
the representation coefficients to enhance the sparsity and robustness of the model.
Experiments on the KAGGLE Alzheimer’s dataset show that the LMLS-SRC algorithm
can effectively diagnose non AD, moderate AD, mild AD, and very mild AD.

Keywords: Alzheimer’s disease, sparse representation classifier, image classification, magnetic resonance
imaging, KAGGLE Alzheimer’s dataset

INTRODUCTION

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease that usually progresses
slowly in the early stages and gets worse over time (Katabathula et al., 2021). AD often occurs in the
elderly. The initial symptoms are easy to forget recent events. With the development of the disease,
the symptoms may include language problems, disorientation, mood swings, loss of self-care ability,
etc., which will eventually seriously affect the daily life of the elderly. Currently, about 90 million
people worldwide suffer from AD of varying degrees. It is estimated that by 2050, the number
of AD patients will reach 300 million (Wong, 2020). The specific symptoms of very mild AD are
progressive decline in memory or other cognitive functions, but do not affect the ability of daily
living. According to statistics, about 10-15% of very mild AD will eventually transform into AD
(Porsteinsson et al., 2021). Current scientific and clinical research has not yet clearly identified the
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pathogenesis and etiology of AD, and there is no fully effective
treatment drug. AD is uncontrollable and irreversible after being
diagnosed. However, if patients can be intervened and treated in
the early stage of mild cognitive impairment (MCI), it is hoped
that the onset of AD will be delayed by 5 years, and even stop the
progression of AD in the stage of MCI, and no longer worsen
into AD, reducing the number of patients with AD by 40%
(Venugopalan et al., 2021).

In the past decade, neuroimaging techniques have been
widely used in the classification and prediction of AD. Among
them, magnetic resonance imaging (MRI) is a non-contact
imaging technology that can provide detailed three-dimensional
anatomical images of the brain and provide effective information
for the classification and prediction of AD (Al-Khuzaie and
Duru, 2021). The AD classification algorithms based on machine
learning usually extract the required features from the collected
medical images by manual or semi-manual methods. Various
parts of the brain regions of AD patients will atrophy to varying
degrees due to the progression of the disease process. The
volume, shape and texture information of the hippocampus,
gray matter, white matter, and cerebral cortex of the brain are
important features to distinguish AD and healthy people (Lee
etal., 2020; Gao, 2021). To classify AD MRI images, some studies
extract the volume information of the whole brain or part of
the brain. Some scholars segment different regions of the brain
and take the volume of each segment as features. According to
the anatomical automatic labeling brain region template, some
researchers divide the entire brain or part of the brain region
into multiple regions and then obtain the features for each
region. AD Patients often experience cerebral cortex atrophy
and ventricular enlargement, and early AD patients usually
have hippocampal atrophy (van Oostveen and de Lange, 2021).
Therefore, some scholars use the volume information of different
regions of interest such as the hippocampus as features based on
medical prior knowledge. Another common feature extraction
method is the morphometric measurement method, which is
often implemented based on MRI images and PET images. For
example, Al-Khuzaie and Duru (2021) took the overall shape of
the brain in MRI images as features. Katabathula et al. (2021)
used the shape information of the hippocampus as features. Brain
gully dilation is often seen in AD patients. Furthermore, texture
features are also widely used in MRI images. Gao (2021) extracted
the grayscale co-occurrence matrix of images as features. Hett
et al. (2018) used 3D Gabor filter to extract and classify multi-
directional texture features of MRI images.

Classifiers such as sparse representation classifier (SRC),
logistic regression (LR), support vector machine (SVM), and
decision tree (DT) are widely used in AD MRI image
classification. For example, Kruthika et al. (2019) used a multi-
level classifier to classify AD MRI images. They first used a naive
Bayes classifier, and then used SVM as secondary classification
to classify the data with confidence lower than the threshold.
Liu et al. (2015) proposed a multi-view learning algorithm based
on inherent structure of mild cognitive impairment (MCI) MRI
images, which used the multi-view features of MCI images to
train multiple SVMs, and then fused and discriminated each
classifier result. Altaf et al. (2018) used SVM, random forest, and

K-nearest neighbor (KNN) to train AD classifiers, respectively,
and the final classification result was the weighted sum of
the results of each classifier. Yao et al. (2018) used the idea
of hierarchical classification to classify AD MRI images. They
initially classified samples into four classes (AD, healthy, MCI,
converted MCI), then they trained several binary classifiers (AD
and converted MCI, healthy and MCI), and finally got a classifier
that can classify all samples into four classes. Pan et al. (2019)
proposed an algorithm to integrate multi-level features based
on FDG-PET images, and simultaneously considered the region
features and connectivity between regions to classify AD or MCI
from healthy people. Finally, multiple SVMs were used for voting
classification, and good results had been achieved in multiple
binary classification tasks.

Magnetic resonance imaging image features usually suffer
from high dimensionality and small sample size, which may
lead to overfitting in data-driven machine learning methods
(Jiang et al, 2019). To solve this problem, most existing
methods adopt feature selection or feature representation to
exploit the potential knowledge of data. Sparse representation is
one of the widely used feature representation methods. Sparse
representation can explore potential relationships within the data
(Gu et al, 2021). Chang et al. (2015) proposed a dictionary
learning algorithm based on sparse decomposition of stacked
prediction. They used the spatial pyramid matching method to
encode representation coefficients, and used SVM to classify
the pathological state of tumors. Shi et al. (2013) developed a
multi-modal SRC algorithm for lung histopathological image
classification, which used genetic algorithm to guide the learning
of three sub-dictionaries of color, shape and texture, and
then combined sparse reconstruction error and majority voting
algorithm for classification of lung histopathology images. He
(2019) proposed a spatial pyramid matching algorithm based
on joint representation coefficient, which utilized the three
color channel information of RGB, and converted the grayscale
description operator into a color description operator, which
improved the image classification performance. Jiang et al. (2019)
extracted features from breast cancer histopathological images
based on stacked sparse autoencoder, and used Softmax function
to detect cell nuclei in histopathological images. Zhang et al.
(2016) realized the fusion of global and local features of the
nuclear image, and then combined the ranking and majority
voting algorithm to classify the histopathological images of
breast cancer. The above algorithms can effectively extract image
features by introducing the sparsity of the image, and the
extracted features have good reconstruction properties, but they
do not have good discriminative ability.

To improve the diagnosis of MCI and AD based on
MRI images, we propose large margin and local structure
preservation sparse representation classifier (LMLS-SRC) in this
manuscript. The traditional SRC only uses the classification
error term to control the classification accuracy, and does not
fully consider the class label information of the representation
coefficients. Different from the traditional SRC, the LMLS-
SRC algorithm introduces the classification margin term
of representation coefficients into the sparse representation
classifier, so that the similar representation coefficients are
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compact in the representation space, and the dissimilar
representation coefficients are separated as much as possible
in the representation space. Experiments on the KAGGLE
Alzheimer’s dataset verify the advantages of our algorithm. Major
contributions of this manuscript are highlighted below: (1)
Considering the global information of the data by using the
large margin term, the obtained dictionary is discriminative,
and the representation coefficient has the small intra-class
distance and large inter-class distance. (2) The local structure
preservation term is introduced, which can inherit the manifold
structure of the original data. (3) The ¢, ;-norm term on the
representation coefficients is used, which can enhance the sparsity
and robustness of the representation coefficients.

BACKGROUNDS

Dictionary-Based Sparse Representation

Classifier

Using SRC algorithm in image classification, how to design
effective  dictionary and representation coefficient for
feature representation is the key factor to determine the
algorithm performance (Wright et al, 2009). There are three
aspects considered in the design of SRC algorithm: (1) The
reconstruction error of the representation coeflicients is small, so
that the samples are as close to the original samples as possible
in the sparse representation; (2) The representation coefficients
are constrained to make the representation coefficients as sparse
as possible; (3) The discrimination term should be considered
to better extract more discriminative information of data
(Jiang et al., 2013).

LetX = [X, ..., Xk] € R¥*N be the K-classes training sample
set, X = [x1, ..., X, ] be the k-th class training sample subset,
k=1,2,..., KN=N; +N;+---+ Ng. d is the dimensional
of samples. The SRC algorithm for image classification can be
represented as,

min || X-DA% + 1g(A) + 1/ (D,A,Y), (1)

where Y is the class label matrix of X. D € R¥*™ is the learned
dictionary, and A € R™¥ is the representation coefficient
matrix of X. m is the size of dictionary. In model training, the data
reconstruction item ||X—DA||% is to ensure the representation
ability of the dictionary D, so that the reconstruction error of
the training data is minimized, and the reconstructed image is as
close to the original sample as possible. The regularization term
is used to constrain the sparsity of the representation coefficients,
which is usually represented as,

g(A) = [|A]lp- 2

where || - ||, is the regularization term of the representation
coefficient A (p < 2), which makes the representation coefficient
as sparse as possible. f(D,A,Y) is the discriminative function
term of representation coeflicient for classification to ensure the
discriminative ability of D and A.

To obtain a discriminative dictionary, Yang et al. (2017)
developed a supervised Fisher discrimination dictionary learning

(FDDL), which associated the elements in the dictionary
with the class labels of the samples based on the Fisher
discrimination criterion. Jiang et al. (2013) proposed the
discriminative Label consistent K-SVD (LC-KSVD) algorithm.
Zhang et al. (2019) proposed a robust flexible discriminative
dictionary learning (RFDDL) algorithm based on subspace
recovery and enhanced locality. This algorithm improved image
representation and classification by enhancing representation
coefficient robustness. The computational complexity of the SRC
representation coeflicient is usually high. To quickly obtain the
representation coefficients, Ma et al. (2017) proposed the local
sparse representation algorithm, which used the KNN criterion
to select k samples adjacent to the current sample to build
a dictionary matrix. In this way, the size of the dictionary is
reduced and the process of representation coefficient is greatly
accelerated. Similarly, inspired by the KNN criterion, Zheng and
Ding (2020) developed a sparse KNN classifier based on group
lasso strategy and KSVD algorithm. Wang et al. (2018) proposed
a SRC algorithm based on the {;-norm, which replaced the ¢;-
norm with the £;-norm to constrain the coefficients. Ortiz and
Becker (2014) proposed an approximate linear SRC algorithm.
Authors used least square algorithm to select the training samples
corresponding to the absolute values of the k largest coefficients
to build a sub-dictionary.

KAGGLE Alzheimer’s Image Dataset

The experiments in this manuscript are carried out on the
KAGGLE Alzheimer’s image dataset (Loddo et al., 2022). The
KAGGLE Alzheimer’s dataset contains a total of four types of
MRI images: non AD (3,200 images), very mild AD (2,240
images), mild AD (896 images) and moderate AD (64 images),
with the resolution of 176 x 208. The KAGGLE Alzheimer’s
dataset does not provide detailed information on patient
status. Figure 1 shows some example images of the KAGGLE
Alzheimer’s dataset.

THE PROPOSED ALGORIHTM

Objective Function

The purpose of sparse representation is to represent the sample
with as few elements as possible on a given dictionary, so that
a more concise representation of the sample can be obtained,
and the useful information contained in the sample can be easily
obtained. Thus the core problem of sparse representation is
how to compute sparse coding coeflicients on a given learned
dictionary. Compared with the commonly used ¢;-norm and ¢5-
norm, {3 1-norm can improve the robustness of the model and
reduce the computational complexity. Thus, we introduce 5 ;-
norm constraint on representation coefficients in LMLS-SRC, i.e.,

1 = arg min| [ X-DA[Z + Ml |All3 1}, (3)

where )\ is a constant.

We define a large margin term on representation coefficient
that relies on a specific neighborhood size for intra-class
and inter-class representation coefficients. The large margin
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term minimizes the intra-class distance of the representation
coefficient and maximizes the inter-class distance of the
representation coefficient, so as to improve the difference
between the representation coefficients of different classes. The
large margin term on representation coefficient can be written as,

. lla; — ay]|? |lai — ajl?
f(a;) = arg min{ E 7Nk — E NN Ne L @)
teCy JECk

llai—a,|?
where ZtECk N

sparse representation of the same class. > j¢Ch

represents the distance between a; and the
llai—at|*
N—N;

the distance between a; and the sparse representation of the
different class. Cy is the index set of the k-th class sample.

We build the intra-class similarity matrix Q" and inter-class
similarity matrix Q based on representation coefficient. The
elements of the matrix Q" and matrix QY are expressed as,

I epresents

w_ I/Nk,lfl',jECk 5)
Yy 0, otherwise
y 0, otherwise

Then the large margin term on representation coefficient can
be expressed as,

My = argmin § 37, f(a)
=& 2%, 2L @) llai — ajl 2 — g5llai — ajl?)
% (2 Zfil aiz - ZZil jlil aiq:‘}laj) -
(Zil a? + ZJIL a]gq]bj -2 Zfil Zlil aiqf}aj) @)
= tr(LAT1 - 2Q")A) — tr(LATA + Q" — 2Q0)A)

= tr(LAT1 - 2Q" — Q" +2Q")A)
= tr(ATSA)

z|=

where S = %(I —2Q" — Qb + 2Qb). The matrix Qh is the

diagonal matrix with the element being the column-sum of Q’ .
Following the principle of local structure preservation, if two

images are close in the original space, they should also have

similar representation coefficients. To this end, we construct

a similarity 