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Editorial on the Research Topic
 Big Data analytics to advance stroke and cerebrovascular disease: a tool to bridge translational and clinical research




Big Data analysis has the potential to enhance the high through put processing required to better phenotype patient outcomes post treatment, select potential therapeutic targets, and refine biomarker selection for risk assessment and disease monitoring (1). With data registries, more advanced imaging, data storage tools, and more detailed electronic clinical documentation, robust analysis can be conducted with large datasets with very granular individual patient level data (1–3). Analysis of large datasets requires special considerations to ensure that the significant associations or findings are clinically meaningful and without bias (1).

Use of a Big Data approach can aid in the discovery of pertinent biomarkers for diagnosis and assessment of stroke risk. Wu et al., used regression modeling to determine which factors were associated with patients with brain infarction detected on magnetic resonance imaging (MRI) in a cohort of 1.4 million patients living in China, demonstrating that there were geographic, sex-related, and metabolic disease risk factors for having infarction detected on brain MRI. Efficacy of anticoagulant type was compared by Lee et al., demonstrating a lower risk of stroke and bleeding complications associated with non-oral vitamin K antagonists. Liao et al. conducted a study including over 5 million patients to confirm the increased risk of stroke in association with markers of insulin resistance. Shu et al. demonstrated that altitude has an increased risk of the development of ischemic changes on MRI and an inverse relationship with risk of clinical events of acute stroke. Yang W.-X. et al. studied the efficacy of several machine learning models to predict genetic stroke risk (LASSO, artificial neural network, random forest, and support vector machine - recursive feature elimination model), showing that there are limitations to using these approaches as their models were limited in their accuracy and specificity. Another approach that can be useful are Mendelian randomization models. Ma et al. were able to demonstrate that genetic variants previously demonstrated to be associated with elevated homocysteine levels were not associated with an increased risk of intracranial aneurysm detection by using several Mendelian randomization models. Zhou et al. were able to use random forest models to better predict risk of subarachnoid hemorrhage in patients with middle cerebral artery aneurysms. Combining imaging and clinical variables can improve patient phenotyping. Guo et al. investigated machine learning models as a diagnostic tool to diagnosis stroke by automation. For example, Li Y. et al. demonstrated that CT imaging features and markers of small vessel disease are predictive of the presence of >10 cerebral microbleeds on MRI. More research is needed before Big Data analysis such as artificial intelligence and machine learning can be more ubiquitously applied to clinical care (2–6).

Having practical models that allow for quick assessment of risk for hemorrhagic conversion and risk factors for hemorrhagic conversion have the potential to help with stratifying risk of revascularization therapies such as thrombolysis as there are still risks even after special considerations for eligibility for thrombolysis are made based on clinical factors such as duration of symptoms (7, 8), medications, imaging, and clinical comorbidities within 4.5 h window and in the extended time window per the American Heart Association Guidelines on acute ischemic stroke management (8). Ren et al. used modeling and area under the curve receiver operation characteristic curve analysis to develop a score for predicting risk of hemorrhagic conversion with thrombolysis with an area under the curve value of 0.82. Yang M. et al. created a nomogram that predicts stroke risk with thrombolysis using a combination of imaging, clinical, and blood biomarkers. Risk of ischemic hemorrhagic conversion associated with thrombolysis is further reviewed by Shao et al..

Machine learning can also be used to parse areas of cerebral hypoperfusion and areas of normal cerebral perfusion, which is information that has been useful in thrombectomy clinical trials and was incorporated into clinical guidelines for patient selection for thrombectomy (8) Machine learning has been investigated for its diagnostic utility. Lin X. et al. demonstrated that early patient characteristics available within the first 24 h of hospital admission can be predictive of early outcomes post thrombectomy. They were able to fine tune those predictions using different models such as a the SHapley Additive exPlanations approach (Lin X. et al.). Modeling can also be useful in investigations on posterior circulation infarction such as basilar artery occlusion. Zhao C. et al. confirmed that risk factors such as atrial fibrillation increase risk of recurrent stroke but do not influence basilar artery thrombectomy outcomes. While, Lin S. et al. developed a nomogram to help predict in which patient's with basilar artery occlusion recanalization would be futile. Zeng et al., also looked at futility, but they focused on thrombectomy outcomes in the anterior circulation using a combination of machine learning models combined with the stacking method. Currently, the American Heart Association only endorses volumetric analysis for thrombectomy patients in the extended 24 h window (8). However, several large core endovascular trials have subsequently demonstrated that even patients with large cores may still have some benefit from thrombectomy (9–11). More research is needed to optimize prediction tools for patient selection for thrombolysis and thrombectomy.

Cost of stroke care is projected to be over $90 billion dollars by 2035 (1, 12). Part of those costs are attributed to extra healthcare costs related to stroke associated morbidity (1, 12). Determining who is at risk of medical complications after a stroke and tailoring a post stroke recovery plan could be quite impactful (1). Ji et al. used modeling to develop a risk score to predict the risk of being diagnosed with a deep vein thrombosis in patients that were hospitalized with an intracerebral hemorrhage, and optimized their score using external cohort validation. Comparison of machine learning models can demonstrate which model provides the best sensitivity and specificity to predict the clinical outcome of interest. For example, Zheng et al. compared several machine learning models to determine which model would be most specific and sensitive for predicting which patients admitted with an intracerebral hemorrhage would have a post stroke course complicated by the development of pneumonia, showing that the Gaussian naïve Bayes and logistic regression models both performed well depending on whether the internal or external validation cohorts were used. Feng et al. demonstrated similar proteins were elevated during thrombotic events (acute myocardial infarction and acute ischemic stroke), identifying markers of inflammation. In a study including over 100,000 intracerebral hemorrhage patients, Zhao J. et al. combined regression analysis with causal mediation analysis to determine driving factors behind sex-related outcomes, showing the hemorrhage location and clinical severity were the strongest driving factors of mortality and morbidity. Gu et al. demonstrated that mortality rates are higher in critically ill patients with intracerebral hemorrhage and low calcium levels. Others have used Big Data analytic approaches to study length of stay, healthcare utilization, and healthcare costs (3). Currently, there are no widely accepted models for predicting morbidity and mortality for clinical purposes.

Big Data analysis has been studied to provide prediction models to improve management and coordination of post-acute care. Resource utilization post stroke and needs can vary in patients after hospital discharge, and best practices for managing stroke recovery can change over time (13). Prediction models can be used to determine which patient characteristics are the most associated with likelihood of hospital re-admission within 30 days (Chen Y.-C. et al.), which can used to better allocate resources and services for patients. Chen Y.-C. et al. compared multiple models and assessed the sensitivity and specificity of machine learning models to select the best machine learning model that predicted readmission within 30 days of hospital discharge. Yarfi et al. propose using mixed methods models and qualitative analysis to assess post stroke rehabilitation outcomes. Boutros et al. demonstrated that depression was associated with recurrent stroke and mortality 1 year after stroke. Another model that can be useful in analyzing clinical trial data is Bayesian Network Meta-analysis. Li Z. et al. evaluated several approaches for addressing post stroke cognitive dysfunction, and found that transmagnetic stimulation and acupuncture could be helpful. Chen R. et al. demonstrated that machine learning can be used to differentiate responses to transcranial magnetic stimulation between patient's during the post stroke recovery phase by using unsupervised hierarchical clustering, which could have utility in tracking post stroke recovery. In addition, several studies have used a Big Data approach for assessing quality of life indices (3).

Big Data analytics is a rapidly evolving field and there are important considerations and pauses that should be factored into data interpretation and application. It is important to be aware of biases that by be present in datasets as a result of patient recruitment (1–6). Even within large datasets, there may be unknown missing confounders. It is important to consider validation of results in different datasets (1–6).
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Background: Hemorrhagic transformation is one of the most serious complications in intravenous thrombolysis. Studies show that the existence of more than 10 cerebral microbleeds is strongly associated with hemorrhagic transformation. The current study attempts to develop and validate a clinical prediction model of more than 10 cerebral microbleeds.

Methods: We reviewed the computed tomography markers of cerebral small vessel diseases and the basic clinical information of acute ischemic stroke patients who were investigated using susceptibility weighted imaging from 2018 to 2021. A clinical prediction model of more than 10 cerebral microbleeds was established. Discrimination, calibration, and the net benefit of the model were assessed. Finally, a validation was conducted to evaluate the accuracy and stability of the model.

Results: The multivariate logistic regression model showed hypertension, and some computed tomography markers (leukoaraiosis, lacunar infarctions, brain atrophy) were independent risk factors of more than 10 cerebral microbleeds. These risk factors were used for establishing the clinical prediction model. The area under the receiver operating characteristic curve (AUC) was 0.894 (95% CI: 0.870–0.919); Hosmer–Lemeshow chi-squared test yielded χ2 = 3.946 (P = 0.862). The clinical decision cure of the model was higher than the two extreme lines. The simplified score of the model ranged from 0 to 12. The model in the internal and external validation cohort also had good discrimination (AUC 0.902, 95% CI: 0.868–0.937; AUC 0.914, 95% CI: 0.882–0.945) and calibration (P = 0.157, 0.247), and patients gained a net benefit from the model.

Conclusions: We developed and validated a simple scoring tool for acute ischemic stroke patients with more than 10 cerebral microbleeds; this tool may be beneficial for paradigm decision regarding intravenous recombinant tissue plasminogen activator therapy of acute ischemic stroke.

Keywords: cerebral microbleeds, prediction model, cerebral small vessel disease, intravenous thrombolysis, hemorrhagic transformation


INTRODUCTION

Cerebral microbleeds (CMBs) are small, round, or oval hypointense lesions found on susceptibility-weighted imaging (SWI) as subclinical hemosiderin deposits due to hemorrhage from microvascular lesions (1). The prevalence rate of cerebral microbleeds ranges from 15 to 71% (2, 3) in patients with acute ischemic stroke (AIS) and 50-80% in patients with hemorrhagic stroke (4). Symptomatic intracranial hemorrhage (sICH) caused by thrombolytic therapy is associated with CMB, and a heavier burden of CMB imparts a higher risk of hemorrhagic transformation (HT) (5–7). A CMB burden of more than 10 on baseline neuroimaging before intravenous thrombolytic therapy was independently associated with symptomatic hemorrhagic transformation, which ranges from 28.6 to 46.9% (8–11). Schlemm et al. also found that intravenous thrombolysis was associated with higher mortality in patients with >10 CMBs (8).

sICH is a severe therapeutic complication that greatly impedes functional recovery and increases mortality (12). sICH is observed in approximately 5% of patients treated with intravenous thrombolysis (13). Thus, early prediction of sICH before thrombolytic therapy is extremely necessary for guiding precise treatment paradigm decisions. In the event of acute cerebral infarction, thrombolytic therapy should be performed as soon as possible, except in patients with contraindications. SWI (14) is the preferred deterministic diagnostic technique for CMB, but it is not possible to conduct SWI before thrombolysis (15), as this would lead to a delay in the short time frame during which treatments should be initiated, thus violating the “time is brain” principle; furthermore, this cannot be performed in primary hospitals. Computed tomography (CT) scans must be completed before thrombolytic therapy for patients with AIS and can also reveal imaging manifestations of some cerebral small vessel disease (CSVD) such as leukoaraiosis, brain atrophy, lacunar infarctions, and recent small infarctions (16). As a CSVD marker, CMBs are related to the CSVD burden, which may be indicated by the number of CMBs. However, the relationship between the number of CMBs and CT markers of CSVD is unknown.

The purpose of this study was to develop and validate a practical and easily implemented operating clinical prediction model (CPM) to predict the probability of the presence of >10 CMBs on the basis of easily collected information such as CT markers of CSVD and past medical history.



MATERIALS AND METHODS


Participants

This study was conducted at the Tangshan Gongren Hospital and Tangshan Nanhu' Hospital. Patients with AIS who underwent SWI and head CT scans during hospitalization from January 2018 to December 2021 were recruited. The inclusion criteria were AIS without intravenous thrombolytic therapy and patient age of ≥18 years. The exclusion criteria were as follows: (1) coagulation disorders; (2) arteriovenous malformation; (3) moyamoya disease; (4) previous intracerebral hemorrhage and subarachnoid hemorrhage; (5) cerebral trauma; (6) infarct size greater than 2/3 of the territory of the middle cerebral artery supply; (7) previous history of anticoagulant therapy; (8) heart, liver, or kidney failure; or (9) active internal bleeding.

Demographic information (including sex and age), self-reported history of disease (such as hypertension, stroke, and diabetes), and unhealthy lifestyle factors were noted retrospectively.

This study was approved by the Ethics Committee of Tangshan Gongren Hospital (Approval Number: GRYY-LL-KJ2021-K93).



Imaging Examination

All patients underwent a brain magnetic resonance imaging (MRI) scan (Philips Achieva 1.5T) with a 12-channel head coil and a brain CT scanning of the brain with a 64-detector row (Siemens Germany). Scanning sequences included both MRI and SWI sequences.



Imaging Assessment

CMBs (17) present as small, rounded or circular, well-circumscribed, hypointense parenchymal lesions as large as 2–10 mm in size on the SWI. Participants were divided into two groups according to the number of CMBs: 0-10 and >10.

Imaging manifestations of CSVD on CT scanning were determined as follows. Leukoaraiosis was evaluated according to the Blennow scale (18) (scores ranged from 0 to 3). The global scale of cortical atrophy (19) was used to assess the degree of brain atrophy based on a five-point scale (0 = “none,” 1 = “mild,” 2 = “moderate,” and 3 = “severe”). We defined lacunar infarctions as round or ovoid hypodense lesions of 3-20 mm diameter in the basal ganglia, deep white matter, cerebellum, or pons on the CT scan. Lacunar infarctions were scored as follows: 0, no lacunar lesion; 1, 1–5 lacunar infarctions; 2, 5–10 lacunar infarctions; and 3, >10 lacunar infarctions (12).

The images were interpreted cooperatively by three neurologists who were blinded regarding the relationship of CT scan characteristics, CMBs on SWI, and clinical information. The three neurologists consisted of one neuroimagist and two neurologist clinicians.



Statistical Analysis

In the development and validation cohorts, we compared data between patients with 0–10 and >10 CMBs. Continuous variables are presented as means and standard deviations. Between-group comparisons were performed using Student's t-test if data were normally distributed and the Mann–Whitney test if data were not normally distributed. Categorical variables are presented as numbers and frequencies. We compared categorical variables between groups with the χ2 test or Fisher's exact test.

In the development cohort, univariate logistic regression was used to examine the relationship between a single covariate, such as CT scan characteristics and other clinical information, and the existence of >10 CMBs as indicated by SWI. Multivariate logistic regression was used to investigate independent risk factors using all risk factors selected. Independent risk factors were applied to construct the CPM for >10 CMBs, based on coefficients and odds ratios with 95% confidence intervals (CIs).

The clinical predictor efficiency of the CPM was evaluated by the following steps. First, we assessed discrimination using Harrell's C statistic, which was equivalent to the area under the receiver operator characteristic (ROC) curve (AUC). An AUC of 0.5 indicates no discrimination, whereas an AUC of 1.0 indicates perfect discrimination. Second, calibration was carried out to evaluate the accuracy of the model. The goodness-of-fit based on the Hosmer–Lemeshow chi-squared test of the CPM was performed for assessing the fit of the model. A P-value ≥ 0.05 was determined to show goodness-of-fit. Third, decision curve analysis (DCA) was generated on the basis of the multivariate prediction model using R software (version 4.0.3) and was used to evaluate the net benefit of the model.

P-values were two-sided, and values of <0.05 were considered statistically significant. All data were analyzed using SPSS software (version 22.0, IBM company, New York, USA).




RESULTS


Characteristics of the Development and Validation Cohorts

In total, 1,776 patients with AIS underwent head CT and SWI, 123 of whom were excluded, leaving 1,653 patients enrolled in the study. Among them, 836 patients from Tangshan Workers' Hospital were selected as the development cohort from January 2018 to December 2019 and 396 patients were selected as the internal validation cohort from January 2020 to December 2020. Four hundred and twenty one patients from Nanhu' Hospital were enrolled for the external validation cohort from October 2020 to December 2021 (Figure 1). Of the included patients, 483 exhibited >10 CMBs, accounting for 31.58, 25.00, and 28.50% of patients in the development, internal and external cohorts, respectively. Characteristics of the development and validation cohorts are shown in Table 1. There were statistically significant differences between the 0–10 CMB and >10 CMB groups in terms of age, history of hypertension, leukoaraiosis, brain atrophy, and lacunar infarction. The proportion of patients with stroke history in the >10 CMB group was higher than that in the 0–10 CMB group (P = 0.035 in the internal validation cohort), but there were no differences between the development and external validation cohorts.


[image: Figure 1]
FIGURE 1. Flow chart of the study.



Table 1. Characteristics in development cohort and validation cohort.
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CPM Development

Univariate risk factors for the presence of >10 CMBs are summarized in Table 2; having >10 CMBs was associated with age, hypertension, leukoaraiosis, brain atrophy, and lacunar infarctions and was closely related to the severity of leukoaraiosis, brain atrophy, and lacunar infarction. In contrast, sex, diabetes, alcohol consumption, coronary heart disease, and stroke were independent of >10 CMBs. Multivariate analyses were performed using the risk factors determined in the univariate analysis, such as age, hypertension, leukoaraiosis, brain atrophy, and lacunar infarction. Hypertension, leukoaraiosis, brain atrophy, and lacunar infarction were revealed as significant independent factors for >10 CMBs, whereas age was not an independent factor. The multivariate logistic regression model was established as follows (see Table 3):


Table 2. Univariate analysis of risk factors for more than 10 CMBs.

[image: Table 2]


Table 3. Multiariable logistic regression analysis.

[image: Table 3]

Logit P = −2.554 + 0.589 × (hypertension) + 1.090 × (2 score, leukoaraiosis) + 2.251 × (3 score, leukoaraiosis) + 1.303 × (2 score, brain atrophy) + 2.696 × (3 score, brain atrophy) + 0.866 × (2 score, lacunar infarction) + 1.311 × (3 score, lacunar infarction).

Risk factor scoring was as follows: hypertension, yes = 1 and no = 0; leukoaraiosis, 0–1 = 0, 2 = 1, and 3 = 2; brain atrophy, 0–1 = 0, 2 = 1, and 3 = 2; and lacunar infarction, 0–1 = 0, 2 = 1, and 3 = 2.



Simplified CPM Score

A simple scoring method was developed by assigning the independent risk factors a value expressed as a whole number. The value was obtained using coefficients as indicated in Table 3. The coefficients of leukoaraiosis, brain atrophy, and lacunar infarction were divided by the smallest coefficient of hypertension (0.589), the quotients and the divisor were converted into whole numbers according to the principle of rounding-up, and they were assigned values of corresponding independent risk factors. Assignment of independent risk factors in the model was as follows: hypertension was assigned as 1, a leukoaraiosis scale of 2 as 2, a leukoaraiosis scale of 3 as 4, moderate brain atrophy as 2, severe brain atrophy as 5, 2 lacunar infarctions as 1, and 3 lacunar infarctions as 2. The total scores ranged from 0 to 12, as summarized in Table 4.


Table 4. Simplified CPM.
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CPM Assessment

Based on the multi-factor analysis, the prediction accuracy of the CPM was 84.3%; as this was more than 80%, this implied that the CPM score could be used for clinical practice. The AUC of the CPM was 0.894 (95%CI, 0.870–0.919); as this was larger than 0.5, this indicated the CPM has good discrimination (Figure 2A).


[image: Figure 2]
FIGURE 2. Discrimination, Calibration, clinical practicability of CPM were exhibited. (A) AUC of ROC, which indicated discrimination ability of the CPM; (B) Calibration scatter plots, which assessed calibration of the CPM; (C) DCA, which evaluated clinical practicability of the CPM.


The χ2 value was 3.946 (P = 0.862) in the Hosmer–Lemeshow chi-squared test to assess the fit of the model. Calibration scatter plots are presented in Figure 2B. According to the scatter plot, values did not significantly deviate from the reference line, suggesting good discrimination and accuracy.

We used DCA to evaluate the clinical practicability of the CPM. The DCA of the CPM was higher than the two extreme lines, indicating that the CPM manifests practical clinical value (Figure 2C).



CPM Internal and External Validation

The prediction accuracy of the internal and external validation were 85.1 and 87.1%. The AUC of the internal and external validation, which indicates discrimination ability, were 0.902 (95% CI, 0.868–0.937) and 0.914(95% CI, 0.882–0.945); the ROC curves were shown in Figures 3A, 4A. The CPM still achieved good discrimination in the internal and external validation.


[image: Figure 3]
FIGURE 3. The internal validation: (A) AUC of the internal validation; (B) calibration scatter plots of the internal validation. (C) DCA of the internal validation.



[image: Figure 4]
FIGURE 4. The external validation: (A) AUC of the external validation; (B) calibration scatter plots of the external validation. (C) DCA of the external validation.


The χ2 value in the Hosmer–Lemeshow test of the internal and external validation group was 7.992 (P = 0.157), and 7.878 (P = 0.247), as displayed in Figures 3B, 4B. The P-values were >0.05, indicating that the predicted observation values showed good consistency with the actual observation values. Accordingly, the use of the CPM accurately predicted individual outcomes when applied to the internal and external validation.

The DCA of the internal and external validation was also higher than the two extreme lines, indicating that the CPM has practical clinical value and can be beneficial in patients, as shown in Figures 3C, 4C.



CPM Prediction Capability

All 836 subjects from the development cohort were enrolled into the predictive model scoring system for clinical analysis. According to the ROC curve, the cut-off point for the discrimination of >10 CMBs was 5, with a sensitivity and a specificity of 72.73 and 90.73%, respectively. The accuracy, positive predictive value, and negative predictive value of the CPM were 85.41, 78.36, and 87.82%, respectively. The sensitivity and specificity of CPM were 63.64 and 92.26%, respectively in the internal validation, 80.67 and 84.49% in the external validation (see Table 5).


Table 5. CPM prediction capability of the development cohort, the internal and external validation.

[image: Table 5]




DISCUSSION

Currently, thrombolysis is one of the most effective treatments for AIS. sICH is the most terrible and unpredictable complication of thrombolysis. To date, there is no accurate and practicable method to predict the probability of hemorrhagic transformation. The current study, through univariate analysis and multivariate logistic regression analysis, found that history of hypertension and CSVD manifestations of CT (leukoaraiosis, lacunar infarction, brain atrophy) were independent risk factors of >10 CMBs in the brain parenchyma. A CPM for >10 CMBs was established according to the independent risk factors. The clinical efficacy of the CPM was exhibited through good discrimination, accuracy, and clinical practicability; therefore, patients can benefit from the application of the CPM. The simplified score of the CPM ranged from 0 to 12, with a cut-off value of 5 for discrimination of >10 CMBs. Through the validation, it was verified that the CPM had good clinical predictive ability and stability. Accordingly, the CPM can accurately and effectively predict the probability of >10 CMBs, thus providing an easy and practical screening tool for physicians to make clinical decisions.

CMBs are one type of imaging characteristic of CSVD (20). Neuroimaging manifestations on MRI of CSVD include (1) recent subcortical small infarct: a small (<20 mm) subcortical infarction with T1-weighted hypointensity and T2-weighted and FLAIR image hyperintensity and identified by hyperintensity on diffusion weighted imaging (DWI); (2) lacunar infarction of presumed vascular origin: a cerebrospinal fluid-filled cavity (3–15 mm) surrounded by a hyperintense rim on FLAIR images and with a signal similar to cerebrospinal fluid on all sequences; (3) white matter hyperintensities (WMH) (21) of presumed vascular origin: white matter lesions commonly distributed in the deep brain parenchyma or periventricle with hyperintensities on T2-weighted and FLAIR imaging and hypointensities on T1-weighted imaging; (4) enlarged perivascular space (EPVS) (22, 23): small, round or linear (parallel to vessels) space (<3 mm) with cerebrospinal fluid-like signal on all MRI sequences without a hyperintense rim on T2-weighted or FLAIR imaging; (5) CMB (24): small (2–10 mm) hypointensity on SWI but no corresponding signal on other conventional MR imaging; and (6) brain atrophy: local or entire cortex. As a necessary examination for patients with AIS before thrombolysis, a CT scan also reveals some CSVD imaging features such as leukoaraiosis, brain atrophy, lacunar infarction, and recent small infarction. It has been suggested that standardized visual rating scales of leukoaraiosis, lacunar infarction, and brain atrophy display good agreement between CT and MRI (25); accordingly, the burden of CSVD can be speculated using CT scan results.

CMBs often present in the area of the basal ganglia and pons, where intracerebral hemorrhage of presumed hypertensive origin typically occur (26); another location of CMBs is the subcortical region, often resulting from cerebral amyloid angiopathy (27–29). The main pathological mechanisms of CMB are considered to be hypertensive microangiopathy (lipohyalinosis and fibrinoid necrosis) and cerebral amyloid angiopathy (30); this causes destruction of the vessel wall, microaneurysm formation, and blood-brain barrier damage (31). These findings are consistent with the vascular pathological changes of sICH (32, 33). Moreover, CMB (34) is considered to be an early warning signal of intracerebral hemorrhage. In addition, clinical vascular events can occur when CMBs burden reaches a certain degree (35), and it has been reported that >10 CMBs can accurately predict sICH risk (36).

In recent years, it was reported that CSVD is a dynamic, whole-brain disorder (37); these types of CSVD often coexist when the disease is advanced. First, CSVD effects on the whole brain interstitial fluid produce subtle changes in normal white matter (38), leading to white matter hyperintensity formation (39). Next, WMHs progress, leading to secondary cortical thinning, after which acute small subcortical infarcts might appear. Finally, these cause WMH, lacunar infarctions, microbleeds, secondary cortical thinning, and worsening of long tract degeneration (40), thus leading to a heavier burden of CSVD and higher possibility of coexisting CMBs (41). In the present study, 26.80% of participants manifested the coexistence of leukoaraiosis, lacunar infarction, cerebral atrophy, and CMBs. The burden of CSVD revealed on the CT scan may indicate the number of CMBs.

All types of CSVD presenting in neuroimages correlate with each other in disease pathogenesis (42). Furthermore, CMBs and leukoaraiosis may have the same risk factors, such as hypertension (43). Poels et al. (44) confirmed that the presence of lacunar infarction and leukoaraiosis were associated with microbleeds in the deep brain parenchyma. Additionally, some investigations (45, 46) demonstrated that leukoaraiosis is a strong predictor of cerebral microbleeds. Brain atrophy frequently occurs together with WMH in elderly patients (47). Some studies demonstrated that increased hyperintensities in the deep brain parenchyma or periventricle accelerate brain atrophy (48). In addition, Yamada et al. (49) found that high-grade leukoaraiosis was a significant independent predictor for CMBs and that leukoaraiosis grade was strongly associated with the number of CMBs. However, there was no report on the relationship between CMB burden and CSVD total load, especially the CSVD manifestation of CT. In the current study, CT scan markers of CSVD were graded. We found a significant correlation of >10 CMBs with leukoaraiosis grade, brain atrophy, and lacunar infarction; this relationship was more obvious when the grade leukoaraiosis was ≥2, brain atrophy ≥2, and lacunar infarction ≥2.

Previous studies have shown that CMB was associated with age, hypertension (45), diabetes (50), coronary heart disease, history of stroke (51), smoking, and alcohol consumption (52). Age and hypertension were the strongest risk factors for CMBs. The detection rate of CMBs increased with age and was extremely low in young patients, 6.5% in patients aged 45–50 years, and 35.7% in patients aged ≥80 years (44, 53). The incidence of CMBs tends to increase with aging, and the risk of developing CMBs increases by 3% for each additional year of age (40). However, Benedictus et al. found that after adjusting for the interference of risk factors, there was no significant correlation between CMBs and age (54). In the current study, the mean age of the >10 CMB group was higher than that of the <10 CMB group, and the difference was statistically significant in univariate analysis; however, age was not an independent risk factor in the multivariate logistic regression analysis. The relationship between the number of CMBs and age needs to be explored further. Hypertension results in continued damage to smooth muscle cells and arteriolar injury; long-term hypertension can cause abnormalities in arterioles, such as arteriolosclerosis, lipohyalinosis, fibrinoid necrosis, and blood extravasation, leading to lacunar infarction, WMH, CMBs, and cerebral hemorrhage (47). CMBs and hypertensive intracerebral hemorrhage are often located similarly at the basal ganglia, pons, and cerebellum, indicating a common pathogenesis. It is well known that in addition to intracerebral hemorrhage, hypertension is an important risk factor in the development of CMB (55).

It takes a relatively short time for neurologists to evaluate CT scans and consult the hypertension history of the patient. By interpreting CT scans and inquiring about the medical history, neurologists can quickly evaluate patients with AIS. When the CPM sum score is more than to 5, the patients will be more likely to have >10 CMBs. In the case of AIS, the CPM may be a useful tool to assess the likelihood of the presence of >10 CMBs and provide a more accurate prediction of hemorrhagic transformation to guide thrombolytic therapy (56).


Limitations

The CPM needs to be further validated externally in more medical institutions at different levels to verify the repeatability and universality of the model. Although hypertension is a recognized risk factor for CMBs, this study did not consider the grade and duration of hypertension. Furthermore, previous antiplatelet therapy and antiplatelet duration may affect CMB burden, but this was not discussed in this study. Maria et al. (2) found that the distribution of CMBs was significantly associated with sICH. Conversely, some studies found no significant correlation between the location of cerebral microbleeds and sICH (7). Therefore, the CMB anatomical distribution was not considered in the establishment of CPM. However, the relationship between CMB distribution and sICH remains to be further studied.



Conclusions

We established a simple, easily implemented operating scoring scale. When the CPM sum score is more than 5, the patient will be more likely to have >10 CMBs. Neurologists can quickly screen patients at high risk of hemorrhagic transformation without the use of MRI, guiding thrombolysis treatment and reducing the occurrence of sICH after intravenous thrombolytic therapy.
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Background: Machine learning algorithms for predicting 30-day stroke readmission are rarely discussed. The aims of this study were to identify significant predictors of 30-day readmission after stroke and to compare prediction accuracy and area under the receiver operating characteristic (AUROC) curve in five models: artificial neural network (ANN), K nearest neighbor (KNN), random forest (RF), support vector machine (SVM), naive Bayes classifier (NBC), and Cox regression (COX) models.

Methods: The subjects of this prospective cohort study were 1,476 patients with a history of admission for stroke to one of six hospitals between March, 2014, and September, 2019. A training dataset (n = 1,033) was used for model development, and a testing dataset (n = 443) was used for internal validation. Another 167 patients with stroke recruited from October, to December, 2019, were enrolled in the dataset for external validation. A feature importance analysis was also performed to identify the significance of the selected input variables.

Results: For predicting 30-day readmission after stroke, the ANN model had significantly (P < 0.001) higher performance indices compared to the other models. According to the ANN model results, the best predictor of 30-day readmission was PAC followed by nasogastric tube insertion and stroke type (P < 0.05). Using a machine learning ANN model to obtain an accurate estimate of 30-day readmission for stroke and to identify risk factors may improve the precision and efficacy of management for these patients.

Conclusion: Using a machine-learning ANN model to obtain an accurate estimate of 30-day readmission for stroke and to identify risk factors may improve the precision and efficacy of management for these patients. For stroke patients who are candidates for PAC rehabilitation, these predictors have practical applications in educating patients in the expected course of recovery and health outcomes.

Keywords: 30-day readmission, artificial neural network, feature importance analysis, post-acute care, stroke


INTRODUCTION

Globally, stroke is not only the second leading cause of death, but also the disease with the second largest healthcare burden as estimated in disability-adjusted life-years (1). Previous studies have estimated that as many as 21% of stroke patients are readmitted within 30 days and have found that unplanned Medicare readmission in 2004 estimated in excess of $17 billion in costs (2–4). Furthermore, the mortality rate for 30-day readmission after stroke is more than 2.5 times greater than index admissions and highest among those readmitted for recurrent stroke (2). Additionally, one current study found that ~25.4% of the venous thromboembolism (VTE)-related hospital readmissions occurred within the first 30 days of discharge and they also estimated the mean cost for a hospital readmission with a primary diagnosis of VTE was $18,681; for readmissions with a primary diagnosis of deep vein thrombosis and pulmonary embolism, mean costs were $14,719 and $23,305, respectively (5). Reducing readmission rates among hospitals has become a goal of national healthcare reform.

This prospective study evaluated the use of machine learning algorithms for predicting 30-day readmission after stroke, univariate analysis and feature importance analysis. This study presented a novel opportunity to evaluate the use of post-acute care (PAC) history, demographic characteristics, clinical characteristics, and functional status outcomes as predictors of 30-day readmission in patients with stroke. The results of this study could be used to improve precision and efficacy in managing these patients. These results not only validate the use of similar prediction models for clinical practice in other countries, they also indicate that both PAC and analysis of functional status outcomes should be routinely be integrated in the care for stroke patients.

Although prior works to stratify risk of stroke outcomes have utilized basic statistical models, such as logistic regression been proposed recently, models for predicting readmission have had three major shortcomings. Firstly, recently proposed machine learning models have shown superior area under the receiver operating characteristic (AUROC) curve compared to conventional regression models in predicting 30-day readmission (range: 0.729–0.834 vs. 0.714–0.828, respectively) (6–8). Secondly, proposed forecasting models require use of health insurance claims data, which would not be available in a real-time clinical setting (9). Thirdly, previous studies predicted the risk of readmission do not comprehensively consider baseline patient characteristics, including post-acute care (PAC) history, demographic characteristics, comorbidities, and functional status score (10–12). However, literature on their use for predicting 30-day readmission for stroke is relatively sparse. The current studies regarding to 30-day readmission for patients with cerebrovascular diseases by using machine learning are summarized in Table 1 (6–9, 13–15).


Table 1. The studies in predicting 30-day readmission for patients by using machine learning.
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To reduce 30-day readmission after stroke and subsequent mortality, identifying factors that predict readmission is crucial. Determining the risk factors for 30-day readmission may be useful for developing policies for preventing readmission after stroke. Therefore, the aims of this study were to compare forecasting accuracy in the artificial neural network (ANN), K nearest neighbor (KNN), random forest (RF), support vector machine (SVM), naive Bayes classifier (NBC) and Cox regression (COX) models and to explore significant predictors of readmission within 30 days after stroke. The key contributions of this study can be summarized as follows:

• Advances in artificial intelligence have been applied in clinical practice. However, machine learning algorithms have not been used to predict 30-day readmission for patients with stroke mainly because of the high complexity of prediction algorithms relative to diagnostic algorithms.

• The proposed machine learning algorithms exhibit strong potential for use in predicting readmission within 30 days after stroke.

• A feature importance analysis was also performed to determine the significance of the selected input variables.



MATERIALS AND METHODS


Study Design and Patients

The subjects of this prospective cohort study were 1,476 patients with a record of an ICD-9-CM (433.01, 433.10, 433.11, 433.21, 433.31, 433.81, 433.91, 434.00, 434.01, 434.11, 434.91 and 436 for ischemic stroke; 430 and 431 for hemorrhagic stroke), ICD-10 (I60–I62 were used to identify hemorrhagic stroke; I63 was used for ischemic stroke), and a history of admission to the PAC ward at one of four hospitals (three regional hospitals and one district hospital) or to a traditional non-PAC ward at one of two medical centers in south Taiwan between March, 2014, and September, 2019. The enrollment criteria were patients hospitalized for their first-ever stroke who were examined within 30 days with computed tomography (CT) or magnetic resonance imaging (MRI) and a Modified Rankin Scale (MRS) score of 2 to 4. Scores for the MRS range from 0 to 6, and a high MRS score indicates a high severity of disability. Patients were excluded if PAC beds were unavailable at the participating hospitals or if they had been transferred to PAC wards at other hospitals. In this scale, absence of symptoms is scored as 0. No significant disability, slight disability moderate disability moderately severe disability, and severe disability is scored as 1, 2, 3, 4 and 5, respectively (16). Another 167 stroke patients were recruited from October to December, 2019 (Figure 1). Figure 2 also depicts the conceptual framework of the proposed method for predicting readmission within 30 days after stroke. The study protocol was approved by the institutional review board at Kaohsiung Medical University Hospital (KMUH-IRB-20140308), and written informed consent was obtained from each participant.


[image: Figure 1]
FIGURE 1. Flowchart of the study.
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FIGURE 2. Conceptual framework of the proposed method for predicting readmission within 30 days after stroke.




Instruments and Potential Predictors

Functional disability was measured using the 10-item Barthel Index (BI) (17). The BI measures functional disability in terms of inability to perform certain daily life activities (e.g., dressing, performing self-care, and walking up and down stairs). A BI score of 10 indicates complete independence. In stroke patients who had dysphagia, functional oral intake was assessed with the Functional Oral Intake Scale (FOIS) (18), in which swallowing function is classified on a scale from 1 (nil by mouth) to 7 (total oral diet without restriction). Cognitive status was quantitatively assessed with the Mini-mental State Examination (MMSE) (19). The MMSE includes tests for orientation, memory, attention, calculation, language, and construction functions where higher scores indicate better functional status (total score range, 0–30). The Instrumental Activities of Daily Living (IADL) scale is most useful for assessing current function and improvement or deterioration in function over time (20). When the IADL scale is administered in women, all eight domains for function are scored. In men, the domains of food preparation, housekeeping, and laundering are not scored. The EuroQoL Quality of Life Scale (EQ-5D-3L) measures the total health state of the subject based on a self-assessment of 5 items: mobility, self-care, usual activities, pain or discomfort, and anxiety or depression (21). Each EQ-5D-3L item is scored as 1 (no problem), 2 (some problem), or 3 (extreme problem). The 14-item Berg Balance Scale (BBS) is used to measure functional balance (22). Each item is rated from 0 (poor) to 4 (good), and the maximum score is 56. The Chinese versions of all instruments used in this study have been validated and used extensively in both clinical practice and research (17, 23).

A research assistant collected the following data from medical records after index discharge: PAC program (PAC group or non-PAC group), patient attributes (age, gender, education, and BMI), clinical attributes [stroke type, NG tube, Foley catheter, hypertension, diabetes mellitus (DM), hyperlipidemia, atrial fibrillation, previous stroke, acute care LOS, and rehabilitation ward LOS]. In multivariate analysis, the potential predictors were the independent variables, and 30-day readmission was the dependent variable.



Machine Learning Algorithms

Machine learning algorithms are effective tools for identifying and classifying readmission within 30 days after discharge in patients with stroke. Previous studies have successfully used machine learning to classify stroke according to characteristics such as cardiac source and gait in various scenarios (24, 25). In the present study, machine learning algorithms used to predict 30-day readmission in patients with stroke included ANN, KNN, RF, SVM, NBC and COX models.



Statistical Analysis

The unit of analysis in this study was the individual patient with stroke. Statistical analysis was performed in the following steps. In the first step, the statistical significance of continuous variables was tested by one-way analysis of variance, and that of categorical variables was tested by Fisher exact analysis. Univariate analyses were performed to identify significant predictors (P < 0.05). In the second step, data for the study cohort of 1,476 subjects were randomly divided into two datasets: a training dataset containing data for 1,033 subjects (70%), which was used for model development, and a testing dataset containing data for 443 subjects (30%), which was used for internal validation. A validation dataset containing data for another 167 patients enrolled after September, 2019, was used for external validation. To identify the optimal hyper-parameters for the machine learning algorithms, we applied Bayesian optimization using the expected improvement as the acquisition function (26). To perform the hyperband method of optimization and to test different combinations of hyper-parameters, we used Optuna version 2.10.0 (27). A total of 1,000 trials were conducted, and the parameters with the greatest area under the receiver operating characteristic curve were saved. Additionally, since data used for model fitting tended to overestimate model performance on unseen subjects, we coupled 10-fold cross-validation (28) with the logistic loss metric to measure the generalizability of the model to unseen subjects during model selection. A total of six machine-learning classifiers were constructed in the training dataset and tested in the validating dataset. A confusion matrix is used to describe and visualize the performance of the machine learning algorithm classifier and also to provide insight on what the model misclassifies. In the present study, the performance of the machine learning algorithms for the best classification task was evaluated in terms of confusion matrix-based performance measuring metrics including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. In order to evaluate and select the most accurate machine learning algorithms, we used a confusion matrix and calculated the percentage of sensitivity, specificity, and accuracy of each forecasting model. In addition, the performance of the machine learning algorithms in the present study was also evaluated by the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUROC). The independent variables fitted to the forecasting models were significant predictors of 30-day readmission, and the dependent variable was 30-day readmission. After model training, model outputs were collected for each testing dataset. In the third step, bootstrapping, a machine learning technique, which involves taking random samples from the dataset with re-selection of 1,000 resamples was used to compare different machine learning algorithms employing the performance indices and the 95% confidence intervals. We used paired t-test to identify performance indices that significantly differed between the two models.

In the fourth and final step, feature selection method was calculated by using an algorithm to obtain an importance score for each potential predictor in the dataset (29). Feature importance analysis provides information about how each feature contributes to model prediction accuracy. The final weight of each feature is calculated by averaging the decrease in model accuracy after random permutation of the feature values within a testing set. Permutation of an important feature should decrease the score whereas permutation of a feature that is not very important to model prediction accuracy should increase the score. To obtain robust results with our small dataset, the train-test split was performed with a repeated stratified K fold cross validation. This technique has two advantages: first, it is model-agnostic; second, it can be performed repeatedly with different feature permutations. All statistical analyses were performed using the STATISTICA 13.0 software package (StatSoft, Inc., Tulsa, OK, USA). All statistical tests were two-sided; a P-value < 0.05 was considered statistically significant.




RESULTS


Study Characteristics

Table 1 shows that 1,283 patients (86.9%) joined the per-diem PAC program and the remaining patients selected the fee-for-service non-PAC program. The patients with stroke had a mean age of 65.5 years (standard deviation, SD 13.0 years), and most (62.5%) patients were male. During the study period, 120 patients with stroke were readmitted within 30 days. In univariate analysis, PAC program, age, gender, education, body mass index (BMI), stroke type, nasogastric (NG) tube, Foley, hypertension, diabetes mellitus (DM), hyperlipidemia, atrial fibrillation, previous stroke, acute care length of stay (LOS), rehabilitation LOS and functional status score before rehabilitation were significantly associated with 30-day readmission (P < 0.05). These significant predictors were included in the forecasting models (Table 2).


Table 2. Baseline characteristics of the study population (N = 1,476).
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Comparison of Forecasting Models

Significant predictors of 30-day readmission did not significantly differ between the training and testing datasets; therefore, samples were compared between the training and testing datasets to increase reliability of the validation results (Table 3). We used grid search to find the best hyperparameters for the neural networks. We searched for the following hyperparameters: the number of hidden layers (in the range of 1–6), the number of hidden neurons in each layer (in the range of 1–512), activation functions (“relu,” “logistic sigmoid”), and learning rate (in the range of 0.01–0.001). We used adam optimizer, constant learning rate, and the regularization rate of alpha = 0.01. The SVM model was configured with linear kernel, and regularization parameter C = 1.0. The RF model is an ensemble learning method combined of multiple decision tree predictors that are trained based on random data samples and feature subsets. We configured the RF algorithm with two trees in the forest. Hyperparameter optimization was then performed to improve the performance of the compact model, and the machine learning algorithms with the greatest AUROC values in 1,000 trials were obtained. Table 4 lists the final hyperparameter settings. The data in Table 5 indicate that the ANN model compared to KNN, RF, SVM, NBC, and COX models had significantly (P < 0.001) higher sensitivity, specificity, PPV, NPV, accuracy, and AUC values. Similar results also were shown in dataset for testing simultaneously. The receiver operating characteristic (ROC) curve results in Figure 3 show that the ANN model had significantly higher ROC values compared to other forecasting models (P < 0.001).


Table 3. Univariate analysis of selected risk factors for 30-day readmission in patients with stroke (N = 1,476).
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Table 4. Hyper-parameters and final settings in all machine learning algorithms.
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Table 5. Comparison of 1,000 pairs of forecasting models for predicting 30-day readmission in patients with stroke (N = 1,476).
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[image: Figure 3]
FIGURE 3. Performance indices of forecasting models used to predict 30-day readmission in patients with stroke when using (A) training dataset, (B) testing dataset. The box plot shows the median (centers) and interquartile range (borders). In analyses of accuracy and AUROC, the ANN model had significantly higher values compared to other forecasting models (P < 0.001). AUROC, area under the receiver operating characteristics; ANN, artificial neural network.




Significant Predictors in the ANN Model

Figure 4 shows the feature importance analysis results for the ANN model. The VSR value for predicting 30-day readmission in stroke patients was highest for PAC (permutation importance = 0.761) followed by NG tube (0.552), stroke type (0.448), BI score before rehabilitation (0.423), IADL score before rehabilitation (0.418), MMSE score before rehabilitation (0.409), BBS score before rehabilitation (0.408), FOIS score before rehabilitation (0.404), EQ5D score before rehabilitation (0.401), and others.


[image: Figure 4]
FIGURE 4. A permutation importance analysis of artificial neural network model in predicting 30-day readmission in patients with stroke. BI, Barthel Index; IADL, Instrumental Activities of Daily Living; MMSE, Mini-Mental State Examination; BBS, Berg Balance Scale; FOIS, Functional Oral Intake Scale; EQ-5D, EuroQoL Quality of Life Scale.




Sensitivity Analysis

Next, the validating dataset of 167 subjects was used to compare the predictive accuracy of the models. Table 6 also compares the performance indices obtained in external validation of the ANN, KNN, RF, SVM, NBC and COX models. For predicting 30-day readmission, the ANN model consistently achieved significantly higher performance indices (P < 0.001).


Table 6. Comparative performance indices of forecasting models when using 167 new validating datasets to predict 30-day readmission in patients with stroke.
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DISCUSSION

Accuracy in predicting 30-day readmission in patients with stroke was compared among five forecasting models. For a given set of clinical inputs, the ANN model clearly had superior forecasting accuracy compared to the other four. Notably, our prospective study collected longitudinal data from six different medical institutions, which provided a real-world depiction of current treatment for patients with stroke. In contrast, previous works have used data from a single medical center (10–13). Moreover, using registry data obtained from six hospitals mitigated the potential for referral bias or bias caused by analyzing the practices of a single physician or a single institution (30, 31).

Recent works have demonstrated the superior performance of machine learning-based models for predicting stroke outcomes (24, 25). One advantage of using an ANN model is that it enables appropriate and accurate processing of inputs that are incomplete or inputs that introduce noise (9, 32). Another advantage of ANN models, whether linear or non-linear, is their good performance in/effectiveness for analyzing large-scale medical databases constructed using data that are highly correlated but not normally distributed. The high robustness of the ANN model has been demonstrated in many clinical applications, particularly predicting prognosis in various diseases (32). In performance comparisons of the five models in this study, expanding the number of potential predictors apparently improved the performance of the ANN model in systematic analysis of outcome in various diseases.

Our current results indicate that ANN models can use clinical outcome data for predicting 30-day readmission after stroke. Prospective prediction performance and cross-validation performance were adequate when subjects were familiar with the task and when information from the previous test session was made available. However, larger scale studies are still needed to validate this approach.

A permutation importance analyses of the weights of significant predictors of 30-day readmission for stroke revealed that the best predictor was PAC. This finding is consistent with earlier reports that, in comparisons of independent predictors, PAC is the best predictor of stroke outcome, including overall treatment cost, functional status after stroke, and duration of hospital stay before transfer to rehabilitative ward (30, 33). In a quasi-experimental study of stroke patients, Wang et al. (30) investigated the longitudinal impact of PAC on functional status. The authors concluded that multidisciplinary rehabilitative PAC delivered on a per-diem basis substantially improved functional status compared to standard rehabilitation. Another study performed in a nationwide stroke cohort compared mortality and numerous functional domains between a PAC group and a well-matched non-PAC group (34). The PAC group had significantly lower 90-day hospital readmissions and stroke-related readmissions compared to the non-PAC group.

Dennis et al. (35) reported that, compared to nasogastric feeding, percutaneous endoscopic gastrostomy was associated with higher risk of death or poorer outcomes at 6 months after stroke. However, Ho et al. (36) noted that prolonged (i.e., longer than 2 weeks) nasogastric tube feeding was significantly associated with pneumonia and mortality. In the current study, NG tube insertion before rehabilitation was significantly associated with 30-day readmission (P < 0.001). During the study period, no patient with stroke required NG tube insertion after rehabilitation.

Compared to other stroke types, hemorrhagic stroke is reportedly associated with higher severity and with higher overall mortality in the first 3 months after stroke (37, 38). The current study further revealed that hemorrhagic stroke has a higher 30-day readmission rate for ischemic stroke.

This prospective observational cohort study of patients with stroke in Taiwan analyzed data from patients treated at six healthcare institutions. The predictive accuracy of the ANN model developed in this study outperformed the other four models in identifying predictors of 30-day readmission. Three implications of this study are noted. First, the proposed ANN model may be useful for guiding the clinical care of patients with stroke. Second, healthcare administrators and managers at medical institutions should facilitate prompt and appropriate PAC for patients with stroke. Third, the Taiwan National Health Insurance Administration should include PAC in its guidelines for clinical treatment of stroke in order to achieve a broad nationwide improvement in care for these patients. However, further studies are needed to confirm the clinical relevance of the proposed ANN model in terms of its efficacy in predicting prognosis and optimizing medical management for patients with stoke.

For further validation of the significant association observed between PAC and 30-day readmission for stroke, Table 7 compares six relevant studies performed in the United States or Taiwan (39–44). The six studies shared the following features: (1) a relatively large sample size, (2) a mean age of 65 years or more, (3) use of statewide or national datasets, and, most importantly, (4) investigation of 30-day readmission in patients with stroke. As in these previous works, out study demonstrated a significantly lower 30-day stroke readmission rate in a multidisciplinary PAC group compared to a non-PAC group (P < 0.001).


Table 7. Reported associations between post-acute care (PAC) for stroke and 30-day readmission.
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This study has several limitations inherent in a large database analysis. First, the validity of the comparisons in the study is limited by the exclusion of complications associated with stroke rehabilitation outcomes. Second, the analysis was limited to 30-day readmission, which reduces the subset of patients with stroke in which the ANN model is clinically applicable. Third, imbalance between positive and negative outcomes, i.e., class imbalance, is a common problem in analysis of medical data and has not been satisfactorily addressed (45, 46). Further studies are needed to investigate the use of ensemble algorithm for solving the class imbalance problem. Additionally, whether the timing or duration of the stroke treatment is a relevant prognostic predictor of readmission deserves further study. Nevertheless, the results can still be considered valid given the robustness and statistical significance of the results.



CONCLUSIONS

Based on the comparison results in this study, we conclude that the ANN model is superior to the other forecasting models in terms of accuracy in predicting 30-day readmission for stroke after a hospital discharge. The ANN model outperformed the other models in terms of both accuracy and AUROC curve. Using a machine-learning ANN model to obtain an accurate estimate of 30-day readmission for stroke and to identify risk factors may improve the precision and efficacy of management for these patients. Predictors of stroke can be discussed when educating PAC candidates in the expected course of recovery and health outcomes. Although the practical applicability of database studies such as this have been convincingly demonstrated in the literature, future studies can expand the range of clinical variables included in the analysis, which could obtain additional results and potentially improve prediction accuracy. Such data could be vital for developing, promoting, and improving health policies for treating patients with stroke.
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Objective: Small intracranial aneurysms are increasingly being detected; however, a prediction model for their rupture is rare. Random forest modeling was used to predict the rupture status of small middle cerebral artery (MCA) aneurysms with morphological features.

Methods: From January 2009 to June 2020, we retrospectively reviewed patients with small MCA aneurysms (<7 mm). The aneurysms were randomly split into training (70%) and internal validation (30%) cohorts. Additional independent datasets were used for the external validation of 78 small MCA aneurysms from another four hospitals. Aneurysm morphology was determined using computed tomography angiography (CTA). Prediction models were developed using the random forest and multivariate logistic regression.

Results: A total of 426 consecutive patients with 454 small MCA aneurysms (<7 mm) were included. A multivariate logistic regression analysis showed that size ratio (SR), aspect ratio (AR), and daughter dome were associated with aneurysm rupture, whereas aneurysm angle and multiplicity were inversely associated with aneurysm rupture. The areas under the receiver operating characteristic (ROC) curves (AUCs) of random forest models using the five independent risk factors in the training, internal validation, and external validation cohorts were 0.922, 0.889, and 0.92, respectively. The random forest model outperformed the logistic regression model (p = 0.048). A nomogram was developed to assess the rupture of small MCA aneurysms.

Conclusion: Random forest modeling is a good tool for evaluating the rupture status of small MCA aneurysms and may be considered for the management of small aneurysms.

KEYWORDS
 middle cerebral artery, rupture, random forest, small aneurysm, morphology


Introduction

Unruptured aneurysms have been increasingly detected with the development of computed tomography angiography (CTA) and magnetic resonance angiography (1–3). The majority of incidentally detected aneurysms are small (<7 mm) (4, 5). Unruptured small aneurysms are often considered stable and are recommended for conservative treatment with imaging surveillance (6–8). However, recent reports have found that the proportion of small aneurysms in patients with subarachnoid hemorrhage (SAH) was considerable; 75% of ruptured aneurysms were <7 mm (9). To avoid the consequences of SAH, an increasing number of novel preventive treatments have been applied for small unruptured aneurysms (10, 11). All these contradictions make the treatment of patients with unruptured small aneurysms controversial. Therefore, a novel methodology is necessary to construct a rupture prediction model for small aneurysms to facilitate clinical decisions. Recently, machine learning (ML) has been used to classify aneurysm rupture (12–14). It could not only detect important relationships of the risk factors for aneurysm rupture but could also be simply and rapidly applied to make predictions (12–14). Random forest, an important ML tool for prediction and risk analysis, has been widely used because of its good performance and relatively high accuracy (14–16). Xia et al. (17) showed that the random forest model achieved good performance in predicting the clinical outcome after rupture of anterior communicating artery aneurysms with areas under the receiver operating characteristic (ROC) curve (AUC) of 0.90 in the internal test and 0.84 in the external test. Lv et al. (18) found that a user-friendly nomogram incorporating clinical factors and scoring systems could be convenient for predicting mortality and facilitating physician decision-making. Aneurysm morphologies, such as size, size ratio (SR), aspect ratio (AR), and irregular shape have been reported as significant risk factors for aneurysm rupture (12, 19–21). However, the application of ML for predicting the rupture of small aneurysms in specific locations has not been reported.

This study aimed to develop a random forest model to predict the rupture status of small middle cerebral artery (MCA) aneurysms. In addition, we developed an easy and visualized nomogram to facilitate clinical application.



Materials and methods


Patient selection

This study was approved by our institutional ethics committee, which waived the requirement for written informed consent. Between January 2009 and June 2020, 426 consecutive patients with 454 small MCA aneurysms detected using CTA in a hospital were enrolled in this study. The MCA aneurysms with a diameter <7 mm were defined as small. A ruptured aneurysm is defined as a plain CT scan or cerebrospinal fluid examination showing SAH that is confirmed by CTA, digital subtraction angiography, or surgery (21). The exclusion criteria were as follows: patients with fusiform aneurysms, poor CTA image quality, aneurysms with a size ≥ 7 mm, aneurysms combined with other cerebrovascular diseases (such as, Moyamoya disease or arteriovenous malformations), and multiple aneurysms with failure to determine the responsible aneurysm. The flowchart of the study is shown in Figure 1. All aneurysms were randomly divided into the training and validation cohorts (n = 7:3). Additional independent datasets were used for external validation from four other hospitals (B, C, D, and E): hospital B (from September 2019 to March 2020), hospital C (from January 2017 to October 2019), hospital D (from January 2018 to June 2021), and hospital E (from January 2018 to June 2021). A total of 78 small MCA aneurysms were included in the final external validation cohort.


[image: Figure 1]
FIGURE 1
 The flowchart of this study.




CTA image acquisition

In hospital A, the CTA images were acquired using three CT scanners, including a 320-detector row CT scanner (Aquilion ONE, Toshiba Medical Systems, Japan) with a 0.5 mm section thickness, a 512 × 512 matrix size, a 0.5 mm reconstruction interval, a 100 kV tube voltage, and a 300 mAs tube current; a 64-channel multidetector CT scanner (Lightspeed VCT 64 General Electric Medical Systems, Milwaukee, WI, USA) with a 0.625 mm section thickness, a matrix size of 512 × 512, a 0.625 mm reconstruction interval, a 100 kV tube voltage, and a 500 mAs tube current; and a 16-channel multidetector CT scanner (Lightspeed pro16; General Electric Medical Systems, Milwaukee, Wisconsin, USA) with a 1.25 mm section thickness, a matrix size of 512 × 512, a 1.25 mm reconstruction interval, a 120 kV tube voltage, and a 300 mAs tube current. The CTA imaging protocol has been described in detail previously (22). The details of the CTA image scanning in the other four hospitals are described in Supplemental Digital Content 1.



Morphological parameters definition

Morphological parameters of the aneurysm, such as aneurysm size, aneurysm height, perpendicular height, neck size, width, vessel size, aneurysm angle, vessel angle, and flow angle, were measured using a CTA image reconstruction workstation (Version 4.6; GE Medical Systems). The measurement of aneurysm morphological parameters has been described in previous studies and is shown in Figure 2 (23). The aneurysm had the largest cross-sectional diameter. The aneurysm height was the greatest distance between the center of the aneurysm neck and the aneurysm dome. Vessel size was defined as the mean of all arteries' vessel diameters compared with the aneurysm. The diameter of a specific artery was determined by averaging the diameter of the cross-section of the vessel next to the aneurysm neck (D1) and the diameter of the cross-section at a 1.5 × D1 distance from the aneurysm neck. The bottleneck ratio was defined as the ratio of aneurysm width to neck size. The AR is the ratio of the perpendicular height to the neck size. The SR is the ratio of aneurysm height to vessel size. The aneurysm angle was the angle formed between the plane of the aneurysm neck and the vector of the aneurysm height. The flow angle was defined as the angle between the aneurysm height line and the vector of blood flow in the parent artery. The vessel angle was defined as the angle between the aneurysm neckline and the blood flow vector. The daughter dome had an irregular protrusion of the aneurysm wall.


[image: Figure 2]
FIGURE 2
 Measurements of aneurysm morphological parameters.




Feature selection and model development

Primary data from hospital A were randomly assigned to the training group (70%, n = 317) and the internal validation group (30%, n = 137). Feature selection in the training group was performed using univariate and multivariate logistic analyses. The hyperparameters of the random forest model were obtained by a 5-fold cross-validation. The n_estimators, max_depth, and min_samples_split values were 6, 6, and 12, respectively. The performance of the random forest model was evaluated using the AUC, sensitivity, specificity, and overall accuracy. The performance of the model was tested using training and validation cohorts. A nomogram was constructed based on multivariate logistic analysis.



Statistical analysis

The chi-squared test was used for categorical variables. Student's t-test or the Mann–Whitney U-test was used for continuous variables between the two groups, and an ANOVA test was used for continuous variables between the three groups. Continuous variables were expressed as mean ± standard deviation (SD), and categorical variables were expressed as frequency (percentage). The DeLong test and the Bonferroni correction were used to compare the AUCs of these models. All statistical analyses were performed using R 3.5.1, Python 3.5.6, and SPSS 23.0 (IBM Corp, Armonk, New, USA). Statistical significance was defined as a two-tailed p-value of <0.05.




Results


Baseline characteristics

In total, 426 patients with 454 small MCA aneurysms were enrolled in this study. A total of 294 patients with 317 small MCA aneurysms were randomly included in the training cohort, and 132 patients with 137 small MCA aneurysms were randomly selected in the internal validation cohort. Therefore, 78 patients with 78 small MCA aneurysms were included for external validation. Supplemental Digital Content 2 shows the baseline characteristics of the training and internal and external validation cohorts. Only the age was significantly different between the training and external validation cohorts. In the training cohort, 166 patients (56.5%) were women. The median age of the patients was 58.2 ± 12.1 years (range, 20–88 years). There were 164 ruptured and 153 unruptured aneurysms. Patients in the ruptured group were younger (55.4 vs. 61.8 years) and had a lower percentage of hypertension (56.2 vs. 71.8%) than those in the unruptured group. The distribution of patients who smoked (20.5 vs. 20.6%) was similar between the two groups (Supplemental Digital Content 3).



Morphologic characteristics between ruptured and unruptured small MCA aneurysms

The details of the small MCA aneurysms in the training cohort are presented in Table 1. A univariate logistic analysis revealed that 14 morphological parameters were significantly different between the ruptured and unruptured groups. The results of the multivariate logistic regression analysis are shown in Table 2. The independently significant discriminants were SR [odds ratio (OR) 1.774, 95% CI: 1.006–3.127; p = 0.047], AR (OR 7.667, 95% CI: 2.697–21.795; p < 0.001), aneurysm angle (OR 0.980, 95% CI: 0.964–0.997; p = 0.020), daughter dome (OR 4.307, 95% CI: 1.630–11.379; p = 0.003), and multi aneurysms (OR 0.243, 95% CI: 0.137–0.433; p < 0.001).


TABLE 1 The univariate analysis of morphological features of small middle cerebral artery (MCA) aneurysms in the training cohort.
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TABLE 2 The multivariate analysis of morphological features of small middle cerebral artery aneurysms in the training cohort.
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Performances of random forest models

The random forest model used five attributes for rupture prediction: SR, AR, aneurysm angle, daughter dome, and multiple aneurysms. Figure 3 shows the prediction performance of the random forest model. The AUCs of the random forest models in the training, internal validation, and external validation cohorts were 0.922 (95% CI, 0.899–0.945), 0.889 (95% CI, 0.842–0.934), and 0.92 (95% CI, 0.865–0.962), respectively. The random forest model outperformed the logistic regression model (p = 0.048). The calibration curve of the random forest model for the probability of ruptured small MCA aneurysms demonstrated better agreement between prediction and observation than that of the logistic regression model (Supplemental Digital Content 4).


[image: Figure 3]
Figure 3
 (A–C) Receiver operating characteristic (ROC) curves of the random forest and logistic regression models in training, internal, and external validation cohort. (D) The performance of the random forest and logistic regression models to predict the rupture of small middle cerebral artery (MCA) aneurysms. AUC, area under the receiver operating curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; and NPV, negative predictive value.




Nomogram for predicting rupture risk of small MCA aneurysms

A logistic regression model that incorporated the above five attributes was also developed and presented as a nomogram (Figure 4). The logistic regression model had satisfactory discrimination ability, with an AUC of 0.825 (95% CI, 0.785–0.862), 0.797 (95% CI, 0.732–0.857), and 0.805 (95% CI, 0.723–0.882) in the training, internal validation, and external validation cohorts, respectively (Figure 3).


[image: Figure 4]
FIGURE 4
 A nomogram for predicting small middle cerebral artery aneurysm rupture. The nomogram incorporated five attributes: SR, multi aneurysms, daughter dome, AR, and aneurysm angle. To use the nomogram, read the scoring points from the “Point” reference line in line with the variable, add the points from all the variables, and find the predicted probability of rupture risk at the bottom “Risk” line. AR, aspect ratio; SR, size ratio.





Discussion

In this study, we found that the SR, AR, and daughter dome were associated with aneurysm rupture, whereas aneurysm angle and multiplicity were inversely associated with small MCA aneurysm rupture. The ML method has excellent performance in quantitative individual risk assessments for small MCA aneurysms and may aid in choosing optimal management.

Aneurysm morphology has been reported to be associated with aneurysm rupture (20, 24). Previous studies have shown that SR and AR are consistently associated with aneurysm ruptures (23, 25). A larger SR may increase the area of low aneurysmal wall shear stress and result in more complex flow patterns within the aneurysm (26). These changes may lead to ruptured aneurysms (26). With the increase in AR, the velocity of blood flow in aneurysms slows down, and this hemodynamic change is associated with a higher rupture risk for aneurysms (24). These findings were consistent with those of our studies, which showed that aneurysms with larger SR or AR were more common in ruptured small MCA aneurysms. Another important risk factor for ruptured aneurysms in our study was the presence of a daughter dome. The development of the aneurysm dome may be due to the increased intra-aneurysmal pressure, which increases the risk of aneurysm rupture (23). Moreover, multiple aneurysms are more commonly observed in unruptured small aneurysms (27). We found that aneurysm multiplicity was inversely associated with small MCA aneurysms. Our findings are supported by the current results (28). Therefore, there is a lower risk of small MCA aneurysm rupture in patients with multiple aneurysms than in those with aneurysms in other locations.

In this study, we developed a model to predict the rupture of small MCA aneurysms using five attributes (SR, multiple aneurysms, daughter dome, AR, and aneurysm angle) based on a large dataset. Previous studies have attempted to build a scoring system based on clinical and morphological risk factors to predict the risk of aneurysm rupture. The PHASES score system (29), which was developed from the natural course of unruptured intracranial aneurysms, includes a history of SAH, hypertension status, age, aneurysm size, aneurysm location, and geographical region. Lin et al. (30) analyzed 638 MCA aneurysms and constructed a morphological risk-score model. However, there are distinctive pathophysiological presentations and clinical treatments for large and small intracranial aneurysms (10, 31, 32). Varble et al. (27) developed a model for small aneurysm rupture with an AUC of 0.84 in the training cohort by using the multivariate logistic regression. Apart from location-specific and size-specific intracranial aneurysms, we investigated the use of ML algorithms to assess morphological risk factors for the rupture instability of small MCA intracranial aneurysms and found that the performance of the random forest model was significantly better than that of the logistic regression model. Compared with traditional statistical methods, the ML algorithm-generated model has higher accuracy for aneurysm rupture risk prediction (33) and has become a tool of growing importance in aneurysm detection and stratification (34, 35). Recently, a convolutional neural network was applied to classify the unstable status of 272 patients with small intracranial aneurysms, and this model achieved a sensitivity of 78.76%, a specificity of 72.15%, and an AUC of 0.755 (36). The most important aspect of our study is that we verified our models using internal and external validation datasets, which further verified the robustness and generalizability of the results. We constructed a nomogram based on a logistic regression model and a model visualization figure. The logistic regression model achieved good prediction performance, and the calibration curves of the nomogram demonstrated good agreement between the predicted small MCA aneurysm rupture risk and the actual small MCA aneurysm status.


Limitations

Although large-scale small MCA aneurysms were analyzed in this study, there are several limitations. First, this was a retrospective study, and selection bias was inevitable. Unruptured aneurysms were incidentally found in hospitalized patients who were generally older and had a history of hypertension. Second, only the morphological features of aneurysms were analyzed in this study; other risk factors, such as hemodynamics, wall enhancement, and genetics, were not included. Third, morphological changes in aneurysms after rupture were not considered in our study. The model predicted only the current rupture status of the aneurysm rather than the future aneurysm risk. Further longitudinal studies are needed to identify whether this model can be used to predict the rupture risk of small aneurysms.




Conclusion

In summary, we developed a random forest model based on a large number of small MCA aneurysms from multiple centers. The model achieved good prediction performance in both the training and validation cohorts and significantly outperformed the conventional logistic regression model. Moreover, we constructed an easy-to-use nomogram tool for practical applications. Our findings may aid in individualized decision-making for patients with unruptured intracranial aneurysms.
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Introduction: According to the literature on anterior circulation, comorbid atrial fibrillation (AF) is not associated with a worse functional outcome, lower reperfusion rates, or higher rates of intracranial hemorrhage after mechanical thrombectomy (MT) compared to intravenous thrombolysis (IVT) or treatment with supportive care. However, data are limited for the effect of comorbid AF on procedural and clinical outcomes of acute basilar artery occlusion (ABAO) after MT. This study aimed to investigate the effect of atrial fibrillation on outcomes after MT and long-term ischemic recurrence in patients with ABAO.

Methods: We performed a registered study of the Endovascular Treatment for Acute Basilar Artery Occlusion Study (BASILAR, which is registered in the Chinese Clinical Trial Registry, http://www.chictr.org.cn; ChiCTR1800014759) from January 2014 to May 2019, which included 647 patients who underwent MT for ABAO, 136 of whom had comorbid AF. Prospectively defined baseline characteristics, procedural outcomes, and clinical outcomes were reported and compared.

Results: On multivariate analysis, AF predicted a shorter puncture-to-recanalization time, higher first-pass effect rate, and lower incidence of angioplasty and/or stenting (p < 0.01). AF had no effect on intracranial hemorrhage incidence [adjusted odds ratio (aOR), 1.093; 95% confidence interval (CI), 0.451–2.652], 90-day functional outcomes (adjusted common odds ratio, 0.915; 95% CI, 0.588–1.424), or mortality (aOR, 0.851; 95% CI, 0.491–1.475) after MT. The main findings were robust in the subgroup and 1-year follow-up analyses. Comorbid AF was the remaining predictor of ischemic recurrence (aOR, 4.076; 95% CI, 1.137–14.612).

Conclusions: The study revealed no significant difference in the safety and efficacy of MT for ABAO regardless of whether patients had comorbid AF. However, a higher proportion of patients with AF experienced ischemic recurrence within 1 year after MT.

KEYWORDS
  acute basilar artery occlusion, atrial fibrillation, mechanical thrombectomy, ischemic recurrence, recurrence


Introduction

Stroke remained the second leading cause of death worldwide in 2019 and is associated with the highest disability-adjusted life years lost to any disease in China (1, 2). Atrial fibrillation (AF) is an important contributor to ischemic stroke. The proportion of cardioembolic stroke in China (about 10%) remains lower than in high-income countries (about 30%) (3), which is apparently due to the underdiagnosis of AF. Considering the aging population and the high proportion of undertreated patients in clinical practice, AF has remained an important and common risk factor for acute ischemic stroke for a long time (4).

Large registry studies (Canada, 2013; Japan, 2005; Austria, 2004) and a retrospective study (America, 2011) have demonstrated that comorbid AF is an independent predictor of poor functional outcomes and increased mortality after an ischemic stroke after intravenous thrombolysis (IVT) (5–8), and one study (Turkey, 2016) has demonstrated that AF-associated acute ischemic stroke is related to a higher risk of unfavorable functional outcomes and a higher proportion of complications after mechanical thrombectomy (MT) (9). However, a recent retrospective (America, 2021) analysis showed that MT influences the effects of AF in ischemic stroke (10). Remarkably, these data were mainly from patients with either an anterior circulation stroke or unselected stroke, and studies of posterior circulation stroke have not been reported.

We speculate whether comorbid AF would have different effects on patients with acute basilar artery occlusion (ABAO) after MT, based on factors such as blood supply territory, heterogeneity of ischemic tolerance, and high variation in clinical manifestation as well as the presence of potentially rich collateral circulation, which might exert an impact on the neurological outcome (11, 12).

Additionally, AF remains a common high-risk condition for recurrent ischemic stroke. Anticoagulation is generally recommended in patients with AF and stroke or transient ischemic attack. Perioperative antithrombotic therapies are also associated with the risk of intracranial hemorrhage and recurrent ischemic events (13). Although we have observed this phenomenon in long-term follow-ups of patients, studies on real-world data emphasizing the characteristics, clinical outcomes, and ischemic recurrence of ABAO with AF are rare.

We, therefore, aimed to identify the relevant treatment profiles of MT in the Endovascular Treatment for Acute Basilar Artery Occlusion Study (BASILAR) registry; demonstrate differences in procedural efficiency, functional outcomes, and complications in patients who had AF and underwent MT for ABAO; and explore the potential risk factors for long-term ischemic recurrence.



Materials and methods


Study design and population

Patient data were drawn from the BASILAR registry, which was registered with the Chinese Clinical Trial Registry (http://www.chictr.org.cn; ChiCTR1800014759). Briefly, this nationwide, multicenter, prospective, investigator-initiated registry study was designed to investigate the efficacy and safety of endovascular treatment in patients with ABAO. For the present analysis, among 829 patients in the full registry cohort, we included 647 patients who underwent MT for ABAO at 45 comprehensive stroke sites between January 2014 and May 2019. Among the 647 patients, 136 had AF and 511 did not have AF. Only patients with available information on AF status before the stroke episode or during the hospital stay were included and followed up for 1 year. Further details of the BASILAR registry have been published previously (14).

Acute basilar artery occlusion was confirmed using computed tomographic angiography, magnetic resonance angiography, or digital subtraction angiography within 24 h of the estimated occlusion time. AF was diagnosed at the discretion of appropriately trained personnel at each site, usually based on the detection of different findings from routine electrocardiogram monitoring and 24-h Holter recording, per the current standard practice (15). Patients were, regardless of AF pattern or burden, divided into the AF group if they had a known or new diagnosis of AF or the non-AF group (16). Neurological deficit was quantified using the National Institutes of Health Stroke Scale (NIHSS) to assess stroke functional severity (17). Ischemic changes were quantified using the posterior circulation Alberta Stroke Program Early Computed Tomography Score (pc-ASPECTS, range 0–10, with scores of ≥8 being correlated with a favorable outcome) (18). The presumed stroke causative mechanism was assessed based on the Trial of ORG 10,172 in Acute Stroke Treatment (TOAST) classification (19).



Mechanical thrombectomy

Patient selection for MT was left to the discretion of each operator or his/her consultation and discussion with patient representatives, and this was performed independent of the present study. The frontline thrombectomy approach used was based on the operator's preference and included a stent retriever or, in a few cases, thromboaspiration, balloon angioplasty, stenting, or a combination of these approaches. The procedural outcome of MT was assessed using the modified thrombolysis in cerebral infarction (mTICI) scale (20). Successful recanalization was defined as an mTICI score of 2b or 3 at the end of the procedure, as confirmed by imaging core laboratory results according to individual angiography data. The first-pass effect (FPE), defined as achieving complete recanalization after a single thrombectomy device, was used without rescue therapy (21). Procedural notes were reviewed for technological complications, such as the type of arterial perforation, dissection, embolization in a new territory, vasospasm, and vascular rupture during the interventional procedures.



Follow-up and outcome measures

Clinical outcomes were assessed using modified Rankin Scale (mRS) scores by trained stroke neurologists at each site, during an outpatient visit, at 90 days (± 2 weeks), and at 12 months (± 4 weeks) after treatment either in the outpatient clinic or via telephone interviews if patients were unable to visit the outpatient clinic. Due to the incomplete follow-up data of stroke recurrence within 90 days, we obtained recurrence data from 90 days to 1 year.

Outcome measures at the 90-day follow-up were as follows: (1) the primary outcome was a shift in the mRS score [ordinal, adjusted common odds ratio (acOR), per point increase], which was estimated using ordinal logistic regression analysis (shift analysis). The mRS assesses the level of disability ranked between 0 and 6, with 0–3 indicating moderate functional outcome, 4–5 indicating an increased level of disability, and 6 indicating death (22). (2) Moderate functional outcome defined as an mRS score of 0–3 was also evaluated in the sensitivity analysis. (3) Symptomatic intracranial hemorrhage (sICH) within 48 h after MT was assessed using the Heidelberg Bleeding Classification (23). (4) Lastly, all-cause mortality was evaluated.

Outcome measures at the 1-year follow-up were as follows: (1) proportions of long-term moderate functional outcomes, (2) all-cause mortality, and (3) 1-year ischemic recurrence, defined as a composite of recurrent stroke, transient ischemic attack, and symptomatic systemic embolism. Although our definition of recurrent ischemic stroke was not identical to that in published literatures, it followed the definition used in cardiological practice, which corresponds to an acute focal neurologic deficit, presumably due to ischemia that either resulted in clinical symptoms lasting ≥ 24 h or was associated with evidence of relevant infarction on cerebral imaging (24).



Statistical analysis

Univariate comparisons of prospectively defined baseline characteristics, treatment profiles, and clinical outcomes between patients presenting with and without AF were summarized using the Mann–Whitney U test for independent numerical variables (all of which followed a non-normal distribution) or ordinally scaled variables, and the Pearson χ2 test or Fisher exact test for categorical variables.

To investigate whether the AF status was an independent predictor of the treatment profiles, a logistic regression model was used to assess the categorical outcomes [e.g., FPE and use of percutaneous transluminal angioplasty and/or stenting (PTA/PTAS)], and a linear regression model was used to evaluate continuous outcomes (e.g., procedure time), with adjustment of the following confounders: age (continuous), sex (categorical), diabetes mellitus (DM, categorical), dyslipidemia (categorical), the admission NIHSS score (continuous), admission pc-ASPECTS (continuous), location of ABAO (categorical; contrast type: comparator; indicator: distal third segment), intravenous thrombolysis (IVT, categorical), and time from symptom onset to vessel puncture (OTP, continuous).

Predictors were identified using two models for clinical outcomes and ischemic recurrence: (1) for the interventional model, the association of comorbid AF with all of the previously listed outcome measures was assessed using multivariable ordinal and binary logistic regression analyses adjusted for the following confounders: age, DM, the admission NIHSS score, admission pc-ASPECTS, location of the occlusion, IVT, time from groin puncture to vessel recanalization (PTR, continuous), and an mTICI score of 0–2a vs. a TICI score of 2b−3 (categorical). (2) To address the issue of ischemic recurrence, we added potential risk factors such as age, systolic blood pressure (continuous), glycated hemoglobin A1c level (continuous), and cigarette smoking (categorical) to the risk factor model.

Subgroup analyses were also performed to investigate the consistency of the AF conclusions of the primary analysis among different subpopulations based on various dichotomizations of baseline characteristics of patients with MT. Given center-to-center variability in patient demographics that may have introduced bias into the comparison of outcomes between cohorts, we sought to determine whether this variability affected the conclusions by including the treating centers [categorical, contrast type: comparator; indicator: largest center (n = 69)] as a variable in the multivariate analysis.

All analyses were based on the intention-to-treat principle. The rationale for the aforementioned models was the combination of prespecified variables of outcome following MT and some baseline variables (p < 0.05) in univariate testing (14). The enter method of logistic regression analysis was used in the multivariate analysis. The rates of missingness for key baseline variables and outcomes in this study were low [e.g., admission pc-ASPECTS and anticoagulation, 4/647 (0.6%); PTR, 3/647 (0.5%); sICH, 11/647 (1.7%); loss to follow-up at 1-year, 32/647 (4.9%)]; missing values for select key variables were analyzed with complete cases. All statistical significance values were set at p < 0.05, and all p-values were two-sided. All statistical analyses were performed using SPSS version 26.0 (IBM Corp., Armonk, NY).




Results


Baseline characteristics

Of the 647 patients [74.7% male, median age 64 years (range, 56–73)], 136 patients who had comorbid AF were more likely to be older and female, had vascular and valvular heart disease, and lower rates of dyslipidemia (p < 0.05) than the 511 patients without AF. The data also showed that patients with comorbid AF had a higher incidence of a maximum neurological deficit from the onset and more severe symptoms on admission than the 511 patients without AF, and the occlusion tended to occur in the distal basilar artery. A non-significantly shorter OTP and a significantly shorter PTR were found in the AF cohort than in the non-AF cohort (shown in Table 1).


TABLE 1 Baseline characteristics and treatment profiles according to AF status.
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Treatment profiles

Although there was a shorter OTP, shorter PTR, and lesser use of PTA/PTAS in the AF cohort than in the non-AF cohort, MT was similarly effective in both cohorts, with the achievement of an mTICI score of ≥ 2b in 81.6% and 80.4% of patients, respectively (p = 0.850). The proportion of FPE in the AF cohort was higher than that in the non-AF cohort (41.9% vs. 24.9%, p = 0.004) (shown in Table 1).

To better determine whether AF status was an independent predictor of treatment profiles, we performed multivariate analyses adjusted for age, sex, DM, dyslipidemia, the admission NIHSS score, admission pc-ASPECTS, location of ABAO, IVT, and OTP. Multivariate linear regression analysis showed that comorbid AF was significantly associated with shorter PTR (adjusted coefficient, −2.257; 95% CI, −19.442 to 14.929; p = 0.796) (shown in Figure 1A). In addition, comorbid AF was significantly associated with a less use of PTA/PTAS [adjusted odds ratio (aOR), 0.192; 95% CI, 0.091–0.406; p < 0.001] (shown in Figure 1B) but not with FPE (aOR, 0.565; 95% CI, 0.249–1.284; p = 0.173) (shown in Figure 1C). Other predictors of treatment profiles are presented in Figure 1.
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FIGURE 1
 Results of multivariate regression analyses of predictors of procedure time. (A) maneuver-pass count, (B) and first-pass effect, (C) the coefficients and adjusted ORs and their estimates are shown, with error bars representing 95% CIs. Significant estimates (p < 0.05) are highlighted in red. AF, atrial fibrillation; DM, diabetes mellitus; NIHSS, National Institutes of Health Stroke Scale; pc-ASPECTS, posterior circulation Alberta Stroke Program Early Computed Tomography Score; VA-V4, vertebral artery-V4 segment; IVT, intravenous thrombolysis; OTP, time from symptom onset to vessel puncture; PTA/PTAS, percutaneous transluminal angioplasty and/or stenting; OR, odds ratio; CI, confidence interval.




Ninety-day follow-up outcomes

All patients completed 90 days of follow-up. The univariate analysis showed that the AF cohort had similar efficacy outcomes to the non-AF cohort. The median [interquartile range (IQR)] values of the mRS score in the AF and non-AF cohorts were both 5 (2–6) (p = 0.902) in the univariate analysis (shown in Table 2). Likewise, the proportions of patients with moderate outcomes (35.3 and 31.1%, respectively; p = 0.409) and death (47.8 and 45.8%, respectively; p = 0.749) were comparable (shown in Figure 2). After adjustments were made in the interventional model, we observed an acOR for any improvement in the distribution of the mRS score (acOR, 0.915; 95% CI, 0.588–1.424, p = 0.694), favoring neither the AF nor the non-AF cohort. There were no significant differences in the moderate functional outcome (aOR, 1.093; 95% CI, 0.608–1.965, p = 0.765), mortality (aOR, 0.851; 95% CI, 0.491–1.475, p = 0.565), or sICH (aOR, 1.093; 95% CI, 0.451–2.652, p = 0.844) between the cohorts (shown in Table 2). After additionally adjusting the model for the treating centers, the main results showed no difference (acOR, 0.898; 95% CI, 0.563–1.433, p = 0.653) (reference: the largest center). Predictors associated with the improvement of the mRS score according to the shift analysis in patients with MT (n = 647) included age, DM, the admission NIHSS score, admission pc-ASPECTS, PTR, and an mTICI score of ≥ 2b, and age was no longer a predictor of functional outcome in the AF cohort (n = 136) (shown in Table 3).


TABLE 2 90-day and 1-year follow-up outcomes of AF on univariate and multivariate analysis.
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FIGURE 2
 Distribution of modified Rankin scale scores at 90 days in patients with MT. The distribution shows that there was no statistically significant difference in moderate outcomes and mortality between the AF and non-AF cohorts. AF, atrial fibrillation; MT, mechanical thrombectomy.



TABLE 3 Multivariate analysis for predictors of improvement in 90-day mRS in the full cohort and in the AF cohort.

[image: Table 3]

In almost all subgroups, including those based on age, sex, the admission NIHSS, admission pc-ASPECTS, location of ABAO, IVT, OTP, FPE, and geographic regions (to avoid bias of centric maldistribution: categorical, Eastern China [largest region] vs. other regions), subgroup analyses showed that no more information was extracted, but the remaining consistency of the primary analysis showed that comorbid AF did not affect the shift in the distribution of the mRS score; however, AF with moderate to severe ischemic change (admission pc-ASPECTS, −7) approached significance for increasing the odds of worse outcomes (acOR, 0.452; 95% CI, 0.191–1.071, p = 0.071) (shown in Figure 3).
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FIGURE 3
 Subgroup analyses of the effect of AF on functional outcome. The forest plot shows that the differences in the improvement of 1 point on the mRS at 90 days, analyzed with the ordinal logistic regression analysis, favored neither patients with AF nor patients without AF across all prespecified subgroups; however, AF with moderate to severe ischemic change (admission pc-ASPECTS, 0–7) approached significance for increasing the odds of worse outcomes. The thresholds for the baseline NIHSS score and baseline pc-ASPECTS were chosen at the median, and the thresholds for age were chosen at the 75th percentile. Regions were categorized into five regions: Eastern, Central, Southern, Southwestern, and Northeastern China. AF, atrial fibrillation; CI, confidence interval; NIHSS, National Institutes of Health Stroke Scale; pc-ASPECTS, posterior circulation Alberta Stroke Program Early Computed Tomography Score; ABAO, acute basilar artery occlusion; VA-V4, vertebral artery-V4 segment; IVT, intravenous thrombolysis; FPE, first-pass effect.




One-year follow-up outcomes

Of the 647 patients, 615 (95%) completed the 1-year follow-up visits and evaluations. No significant differences were found in moderate functional outcome (aOR, 0.908; 95% CI, 0.504–1.636, p = 0.747) or mortality between the AF and non-AF cohorts at 1 year (shown in Table 2). When adjusting for age, hypertension, DM, and cigarette smoking, we found that only ischemic recurrence was associated with long-term functional outcomes (aOR, 0.412; 95% CI, 0.193–0.876, p = 0.021).

During this follow-up period, only 316 cases remained after excluding 299 deaths within 90 days and 32 patients who were lost to follow-up at 1 year. Of these, 32 (10.1%) patients experienced ischemic recurrence, including 12 (17.6%) with AF and 20 (8.1%) without AF (shown in Table 2). Univariate comparisons of patients according to ischemic recurrence are presented in Table 4. The proportion of AF (37.5% vs. 19.7%, p = 0.024) and median age (72 vs. 63 years, p = 0.001) were significantly different between the AF and non-AF cohorts, and both comorbid AF and older age were associated with ischemic recurrence. However, after adjusting for baseline age and risk factors, we found that older age was not significantly associated with recurrence (aOR, 1.049; 95% CI, 0.991–1.111, p = 0.096). Among the risk factors, comorbid AF was the remaining predictor of ischemic recurrence (aOR, 4.076; 95% CI, 1.137–14.612, p = 0.031).


TABLE 4 Univariate and multivariate analysis of the demographics and risk factors in the cohort of ischemic recurrence (n = 316).
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Discussion

Contrary to the observations of increased hemorrhage rates and worse functional outcomes in patients with AF-associated stroke who underwent supportive care and/or IVT during the pre-endovascular era, when MT was not yet widely available (5–7), comorbid AF was associated with faster procedural time and increased rates of first-pass success without the increased risk of intracranial hemorrhage or worse functional outcomes for anterior circulation ischemic stroke treated with MT. However, whether these associations exist in posterior circulation ischemic stroke remains unclear.

Here, we found no significant difference in the safety and efficacy of MT for ABAO, regardless of whether patients had comorbid AF. Moreover, patients with AF had a higher rate of ischemic recurrence within 1 year after MT.

Despite a higher admission NIHSS score or pc-ASPECTS and a higher incidence of a maximum neurological deficit from the onset, there were not much worse functional outcomes for ABAO treated with MT. Surprisingly, patients with AF were more likely to have an intracranial hemorrhage, but we found that comorbid AF did not increase the rate of intracranial hemorrhage in patients undergoing MT, which is consistent with the results of the abovementioned studies on anterior circulation ischemic stroke. This is contrary to the common viewpoint in the pre-endovascular era that AF was a predictor of intracranial hemorrhage (25).

Specifically, in our study, the high odds of ischemic recurrence between the AF and non-AF cohorts were 17.6 and 8.1%, respectively (p = 0.020). In the univariate and multivariate analyses, AF status was significantly associated with recurrence. A previous study showed that medication for secondary prevention was insufficiently administered to eligible patients (26). Another study showed that anticoagulants could reduce the risks of ischemic stroke events in patients with ischemic stroke and AF (27). According to a review of stroke in China, only 30% of patients with ischemic stroke and AF received oral anticoagulants at discharge, and 10% received oral anticoagulants 1 year after stroke (2). Aside from the concern over bleeding risk among patients, the poor chronic disease management by both doctors and patients, inconvenient monitoring of vitamin K antagonists, ineffective warfarin dosing, and high costs might have also contributed to the unsatisfactory maintenance of medication for 1 year. This suggests that some developing countries or countries with a serious aging population should pay greater attention to the quality of AF management and secondary prevention of AF-associated stroke to prevent more serious clinical outcomes caused by recurrence.

The strengths of our study include leveraging real-world data from a large multicenter database with > 600 thrombectomies for ABAO, which is a rare intracerebral vascular disease. Moreover, to our knowledge, this is the first report on comorbid AF as a predictor of ischemic recurrence, and our findings stressed the importance of managing secondary prevention in relation to AF.

However, certain limitations should be considered. First, our study has all the inherent limitations of a non-randomized study. The reasons for clinicians to select a specific treatment option are more complex than can be met by the scope of a prospective observational study. Multivariable analyses can never adjust completely for systematic differences between AF and non-AF cohorts. Second, due to the rare occurrence of basilar artery occlusion, there was a large difference in the number of patients enrolled between the AF and non-AF cohorts. Nevertheless, there was an adequate number of cases to perform a statistical analysis and obtain a credible result. Third, due to the poor compliance of patients, we did not have available data on the anticoagulant strategies or detailed information on the dosages of anticoagulants after discharge. Therefore, we were not able to analyze ischemic recurrence simultaneously. Despite these limitations, our findings still constitute one of the best available data for ischemic stroke in patients with ABAO and comorbid AF.



Conclusions

Our findings revealed no significant difference in the safety and efficacy of MT for ABAO, regardless of whether patients had comorbid AF. However, patients with AF had a higher rate of ischemic recurrence within 1 year after MT. Reducing the recurrence rate of stroke by providing ongoing secondary prevention measures may be the crucial strategy to improve long-term outcomes for patients with ABAO.
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Background: Acute myocardial infarction (AMI) is one of the major causes of mortality and disability worldwide, and ischemic stroke (IS) is a serious complication after AMI. In particular, patients with ST-segment–elevation myocardial infarction (STEMI) are more susceptible to IS. However, the interrelationship between the two disease mechanisms is not clear. Using bioinformatics tools, we investigated genes commonly expressed in patients with STEMI and IS to explore the relationship between these diseases, with the aim of uncovering the underlying biomarkers and therapeutic targets for STEMI-associated IS.

Methods: Differentially expressed genes (DEGs) related to STEMI and IS were identified through bioinformatics analysis of the Gene Expression Omnibus (GEO) datasets GSE60993 and GSE16561, respectively. Thereafter, we assessed protein-protein interaction networks, gene ontology term annotations, and pathway enrichment for DEGs using various prediction and network analysis methods. The predicted miRNAs targeting the co-expressed STEMI- and IS-related DEGs were also evaluated.

Results: We identified 210 and 29 DEGs in GSE60993 and GSE16561, respectively. CD8A, TLR2, TLR4, S100A12, and TREM1 were associated with STEMI, while the hubgenes, IL7R, CCR7, FCGR3B, CD79A, and ITK were implicated in IS. In addition, binding of the transcripts of the co-expressed DEGs MMP9, ARG1, CA4, CRISPLD2, S100A12, and GZMK to their corresponding predicted miRNAs, especially miR-654-5p, may be associated with STEMI-related IS.

Conclusions: STEMI and IS are related and MMP9, ARG1, CA4, CRISPLD2, S100A12, and GZMK genes may be underlying biomarkers involved in STEMI-related IS.

KEYWORDS
  gene analysis, biomarker, ST-segment-elevation myocardial infarction, ischemic stroke, therapeutic targets


Introduction

Acute myocardial infarction (AMI) is a leading cause of disability and mortality worldwide, and ischemic stroke (IS) is a serious complication after AMI (1). Complex IS can cause significant pain and financial burden to patients, and the rate of mortality is two times higher in comparison with patients only experiencing AMI (1, 2). Pathophysiological mechanisms and common risk factors, including age, hypertension, and diabetes mellitus, are similar in cardiovascular and cerebrovascular diseases (3). The incidence of post-AMI strokes can be improved by providing more therapies for vascular risk factors, including treatments for diabetes mellitus and hypertension, lipid-lowering treatments, and reperfusion with PCI (4). Compared with other types of AMI, patients with ST-segment–elevation myocardial infarction (STEMI) have a more increased risk of IS (5–7). Guptill's group also showed that there was a relative long-term risk of IS in patients with STEMI treated with percutaneous coronary intervention (PCI) (8). Whereas there have been few studies of the prevalence and clinical outcomes associated with acute IS in patients with AMI, and existing studies have had small sample sizes and reported contrasting results (9–12). To better diagnose and treat IS after AMI, new biomarkers and therapeutic targets need to be identified. Bioinformatics analysis has been widely employed in exploring novel biomarkers for neurological disease (13) and cardiovascular disease (14). In this study, we identified co-expressed differentially expressed genes (co-DEGs) in STEMI and IS transcription data from GEO to clarify the molecular mechanisms and pathophysiology of STEMI-related DEGs (STEMI-DEGs) and IS-related DEGs (IS-DEGs). Moreover, we predicted microRNAs (miRNAs) specific for patients with STEMI prone to IS, which may serve as underlying biomarkers or therapeutic targets for STEMI-IS.



Methods


Materials and methods

Microarray data “Series Matrix File(s)” for GSE60993, GSE16561, and GSE60319 were downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/) and were generated using GPL6884, GPL6883, and GPL19071 (15). GSE60993 contains data from blood samples from 26 patients with acute coronary syndrome (7 patients with STEMI, 10 patients with non-STEMI, and 9 patients with unstable angina) and 7 normal controls. GSE16561 includes blood samples from 39 patients with IS and 24 healthy controls. The STEMI group and normal controls in GSE60993 and the IS group and healthy controls in GSE16561 were selected to explore potential biomarkers. A miRNA expression profile, GSE60319 (40 patients with IS and 10 controls), was then used for subsequent miRNA-mRNA network analysis.



DEG analysis

Before identifying DEGs, we performed boxplot analysis to evaluate the expression level of samples in each dataset and then used the normalize BetweenArrays function in the “limma” package of R to exclude batch effect. The criteria for selecting DEGs were |log2FC|>1.0 and false discovery rate (FDR) <0.05; the criteria for differentially expressed miRNAs (DE-miRNAs) were |log2FC| > 2.5 and P-value <0.05 to identify more important DE-miRNAs. The inverse of the total gene number (0.0006035) was less than the lowest P-value (0.0009911013) in GSE60319; hence, the adjusted P-values were unreliable. Probes matching multiple genes were removed. Volcanoplots and heatmaps were applied to visualize the DEGs in the downloaded datasets. A Venn diagram was constructed to show co-DEGs for STEMI and IS using Funrich (http://funrich.org/).



Interaction networks and functional analysis

DAVID (https://david.ncifcrf.gov/) was applied to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of STEMI- and IS-DEGs (16). KEGG pathways and GO biological function terms with a P-value < 0.05 were considered to be significantly enriched, and annotation visualization, as well as integrated discovery, was supplemented using REACTOME with the following criteria: P-value < 0.05 and count ≥ 5 (v77; http://www.reactome.org) (17). We used Cytoscape (v3.8.2; http://cytoscape.org/) to visualize the protein-protein interaction (PPI) networks and node degrees constructed by STRING (v11.5; http://string-db.org) (18), with the criterion confidence score >0.4.

In addition, AmiGO (v2.0; http://amigo.geneontology.org/amigo/) was employed to further verify the accuracy of the identified co-DEGs and annotate biological functions (19). TargetScan (v7.2; http://www.targetscan.org/vert_72/) (20), mirWalk (http://mirwalk.umm.uni-heidelberg.de/) (21), and mirDIP (http://ophid.utoronto.ca/mirDIP/) (22) were applied to predict miRNAs targeting co-DEGs. GO and KEGG enrichment analyses based on the selected miRNAs were conducted using Diana-miRPath (v3.0; http://www.microrna.gr/miRPa) (23).



Identification of co-DEGs related to nervous or cardiovascular diseases

The Comparative Toxicogenomics Database (http://ctdbase.org/) was employed to identify novel relationships between co-DEGs and cardiovascular diseases or nervous system diseases by calculating prediction scores (24).




Results


DEGs in STEMI and IS

After checking the quality of the data (Supplementary Figure 1), we identified 210 DEGs (172 upregulated and 38 downregulated) in GSE60993 and 29 DEGs (12 upregulated and 17 downregulated) in GSE16561 (Figures 1A,B, Supplementary Table 1). Expression heatmaps of STEMI-DEGs associated with immune and inflammatory responses and receptor activity are shown in Figures 2A–C. Figures 2D–F show the gene expression values of IS-DEGs related to immune response, inflammatory response, and protein binding.


[image: Figure 1]
FIGURE 1
 Volcano plots of mRNA and miRNA expression in GEO datasets. (A) The volcano plot of GSE-STEMI (GSE60993). (B) The volcano plot of GSE-IS (GSE16561). (C) The volcano plot of mi-GSE-IS (GSE60319).
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FIGURE 2
 Visualization of STEMI- and IS-DEGs expression with heatmaps. (A–C) STEMI-DEGs related to immune response, inflammatory response, and receptor activity. (D–F) IS-DEGs related to immune response, inflammatory response, and protein binding. Red: high expression, blue: low expression.




Analysis of PPI network, functional GO terms and pathway enrichment analyses

We identified 139 and 21 nodes from the PPI networks for the STEMI- and IS-DEGs, respectively (Figures 3A,B). The hub nodes, including CD8a molecule (CD8A, degree = 38), toll-like receptor 2 (TLR2, degree = 29), toll-like receptor 4 (TLR4, degree = 29), S100 calcium-binding protein A12 (S100A12, degree = 21), and triggering receptor expressed on myeloid cells 1 (TREM1, degree = 18), were considered to be hubgenes in the STEMI network. However, in the IS network, the hubgenes, interleukin 7 receptor (IL7R, degree = 9), C-C motif chemokine receptor 7 (CCR7, degree = 8), Fc fragment of IgG receptor IIIb (FCGR3B, degree = 6), CD79a molecule (CD79A, degree = 6), and IL2 inducible T cell kinase (ITK, degree = 6) had relatively higher degrees.
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FIGURE 3
 PPI networks and the Venn diagram. (A) PPI network for STEMI-DEGs. Blue, the greater degree; green, the lower degree (B) PPI network for IS-DEGs. Red, the greater degree; yellow, the lower degree. (C) The Venn diagram showing co-DEGs specific to STEMI-related IS.


We used the DAVID database to conduct GO and KEGG analysis. As shown in Figures 4A,B, the top five GO biological process (BP) terms associated with STEMI-DEGs were respiratory burst (p-value: 7.14E-08), immune response (p-value: 3.01E-07), innate immune response (p-value: 4.05E-07), inflammatory response (p-value: 9.80E-06), and defense response to bacterium (p-value: 3.67E-04). The significantly enriched cellular component (CC) terms were an anchored component of membrane (p-value: 7.96E-06), plasma membrane (p-value: 1.09E-04), NADPH oxidase complex (p-value: 1.46E-04), an integral component of membrane (p-value: 1.60E-04), and membrane (p-value: 9.50E-04). The following terms were found to be enriched in molecular function (MF):receptor activity (p-value: 3.84E-06), phosphatidylinositol-3,4-bisphosphate binding (p-value: 6.55E-05), superoxide-generating NADPH oxidase activator activity (p-value: 7.88E-05), protein heterodimerization activity (p-value: 0.003), and RAGE receptor binding (p-value: 0.004). With respect to IS-DEGs, BP terms associated with immune response (p-value: 2.83E-05), B cell proliferation (p-value: 0.001), adaptive immune response (p-value: 0.001), response to lipopolysaccharide (p-value: 0.002), and inflammatory response (p-value:0.002) were significantly enriched. For CC, the significant enrichment was observed for the extracellular region (p-value: 0.001), the external side of plasma membrane (p-value: 0.003), B cell receptor complex (p-value: 0.004), the intrinsic component of the plasma membrane (p-value: 0.038), and the plasma membrane (p-value: 0.039). For MF, protein binding was enriched (p-value: 0.049). The results of KEGG pathway analysis are shown in Figure 4C. STEMI-DEGs were mainly enriched in pathways, including hematopoietic cell lineage (p-value: 4.38E-05), leishmaniasis (p-value: 0.001), primary immunodeficiency (p-value: 0.006), complement and coagulation cascades (p-value: 0.007), and malaria (p-value: 0.017). There were no significant KEGG pathways enriched for IS-DEGs. Some additional associations were detected when using the REACTOME database to conduct GO term enrichment analysis (Figure 4D).
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FIGURE 4
 GO functional and pathway analysis. (A) GO functional analysis of STEMI-DEGs. (B) GO functional analysis of IS-DEGs. (C) KEGG pathway analysis of STEMI-related DEGs. (D) REACTOME pathway analysis of STEMI- and IS-related DEGs. Dot sizes represent counts of enriched DEGs, and dot colors represent negative log10 (P) values. Red: higher expression, blue: lower expression.


Six co-DEGs were observed, namely, matrix metallopeptidase 9 (MMP9), arginase 1 (ARG1), carbonic anhydrase 4 (CA4), the cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2), S100 calcium-binding protein A12 (S100A12), and granzyme K (GZMK) (Figure 3C, Supplementary Table 1). The AmiGO database was employed to further verify the accuracy of the identified co-DEGs and annotate their biological functions (Table 1). The analysis of the Comparative Toxicogenomics Database illustrated that co-DEGs were associated with several nervous system and cardiovascular diseases (Figure 5).


TABLE 1 GO terms of co-expressed genes specific for STEMI-related ischemic stroke.
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FIGURE 5
 Association of co-DEGs with nervous system and cardiovascular diseases. *indicates direct evidence of involvement in this disease.




Identification of miRNAs targeting co-DEGs and functional and pathway enrichment analysis

The TargetScan, mirDIP, miRWalk, and DIANA bioinformatic tools were applied to identify the top five miRNAs targeting each co-DEG for STEMI-related IS (Table 2). In addition, we used the GSE60319 dataset to identify DE-miRNAs in IS and determine the overlap between predicted miRNAs and DE-miRNAs (Figures 1C, 6). (GSE60319: hsa-miR-654-5p, log2FC = −2.67, p-value: 0.033).


TABLE 2 GO functional and KEGG pathway analysis of the predicted miRNAs targeting co-DEGs.
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FIGURE 6
 Heatmaps of the expression of DE-miRNAs. (A) The heatmap of upregulated IS-specific DE-miRNAs. (B) The heatmap of downregulated IS-specific DE-miRNAs.





Discussion

IS is a potential complication of AMI and poses a significant threat to patients (1). Patients with STEMI were found to be more susceptible to having a stroke than the general population (6). The most common confirmed stroke type in patients with STEMI treated with PCI is IS (8). The knowledge gained from identifying genes specifically expressed in STEMI-related IS and the relationships between them may be used to improve the outcomes of patients with STEMI. In this study, we detected that genes involved in the inflammatory and immune response, receptor activity, and protein binding were remarkably related to the maintenance of STEMI and IS occurrence.

Several hub genes regulating the nervous system were observed among the STEMI-DEGs through the analysis of the Comparative Toxicogenomics Database. For example, MMP9, also known as gelatinase B, was found to be an important factor in the occurrence of cardiovascular and nervous system diseases. The Chen's group illustrated that MMP-9 was upregulated in serum exosomes from patients with STEMI, making it a potential biomarker for diagnosis of STEMI (25). Moreover, a higher level of local MMP-9 was observed to be associated with poorer outcomes for patients with STEMI (26). To explore association between MMP-9 and the risk of IS, the Nie's group examined polymorphism of the MMP-9 gene between 400 healthy controls and 396 patients with IS, and found that the MMP-9-1562T allele was associated with an increased risk of IS (27). Another hub gene, ARG1, has been found to be continuously upregulated in patients with acute IS (28, 29). Endocytosis of STAT6/ARG1 can reduce inflammation and improve the outcome of stroke by regulating the phenotypes of macrophages/microglia (30). ARG1 was also observed to be significantly upregulated in patients with AMI and may be used to diagnose AMI (31). Carbonic anhydrase enzymes, which are expressed in mouse and human hearts, are associated with the prognosis of cardiac hypertrophy (32, 33). Although previous studies have illustrated that CA II is the only CA present in the brain, another study observed that CA4 was also located in the mouse brain and may be related to the blood-brain barrier (34). Research into nervous system diseases has identified CA4 as a novel therapeutic target for anxiety disorder and posttraumatic stress disorder (35). The hub gene S100A12 has been shown to have a regulatory role in carotid plaque instability and the occurrence of major cardiovascular events in patients with stable coronary artery disease (36). Furthermore, S100A12 could more accurately diagnose patients with STEMI than other identified biomarkers, and the levels of S100A12 were negatively correlated with the prognosis of IS (37, 38).

Additionally, previous studies have shown that post-treatment with sevoflurane may prevent myocardial ischemia/reperfusion damage through the upregulation of miR-145 and downregulation of GZMK expression (39). Moreover, GZMK was detected to play a significant role in regulating transendothelial cell exudation for central nervous system parenchymal immune surveillance, and it may be an underlying therapeutic target for age-related immune system dysfunction (40, 41). The hub gene CRISPLD2 has been previously found to be a GC and developmental regulatory gene and encodes a mesenchymal protein secreted in the lungs and other organs (42, 43). However, its role in cardiovascular and cerebrovascular diseases is unclear. A recent study has observed that it may be involved in cardiac ischemia/reperfusion injury (44). In addition, CRISPLD2 was found to be associated with several neurodegenerative diseases, but the specific mechanism is not certain (45). Hence, the identities of these hub genes indicate that there may be a potential association between nervous system and cardiovascular disease and that this association may be due to the same pathogenic genes.

It has been widely accepted that miRNA can be used as a biomarker and gene therapy for several diseases. We identified the overlap between predicted miRNAs and DE-miRNAs specific to patients with IS. In particular, hsa-miR-654-5p may be underlying biomarkers of STEMI-related IS. Previous studies have demonstrated that hsa-miR-654-5p is a biomarker of atherosclerosis with an area under the curve (AUC) score of 0.7308 (46). Atherosclerosis is a common pathogenic mechanism of STEMI and IS; hence, hsa-miR-654-5p may be a common therapeutic target. In clinical, the co-DEGs and hsa-miR-654-5p may be served as biomarkers to diagnose IS after patients underwent STEMI. And these co-DEGs may be beneficial to further explore the potential pathophysiological mechanisms between STEMI and IS. Moreover, the co-DEGs may also play an important role in detection of STEMI in patients with IS.

This study is the first data mining to identify co-DEGs between STEMI and IS. Our results give a reasonable speculation for the pathophysiological mechanisms of STEMI-related IS. Our study does have serval limitations. First, our work is a microarray analysis based on different datasets. Hence, the different pieces of clinical information of detected samples in two datasets may have a certain influence on our study. Additionally, validation should be conducted by PCR or Elisa to verify these markers. However, the technique of models for STEMI and IS was immature in vivo and in vitro. In the future, the larger clinical studies are needed to verify our results to some extent.



Conclusions

Based on our analyses, the hubgenes CD8A, TLR2, TLR4, S100A12, and TREM1 may be associated with STEMI, and IL7R, CCR7, FCGR3B, CD79A, and ITK may be related to IS. In addition, MMP9, ARG1, CA4, CRISPLD2, S100A12, and GZMK were found to be associated with STEMI-related IS. Lastly, the miRNAs targeting each co-DEG may serve as biomarkers or targets for treatment of STEMI-related IS, especially miR-654-5p.
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Background and purpose: Futile recanalization occurs when the endovascular thrombectomy (EVT) is a technical success but fails to achieve a favorable outcome. This study aimed to use machine learning (ML) algorithms to develop a pre-EVT model and a post-EVT model to predict the risk of futile recanalization and to provide meaningful insights to assess the prognostic factors associated with futile recanalization.

Methods: Consecutive acute ischemic stroke patients with large vessel occlusion (LVO) undergoing EVT at the National Advanced Stroke Center of Nanjing First Hospital (China) between April 2017 and May 2021 were analyzed. The baseline characteristics and peri-interventional characteristics were assessed using four ML algorithms. The predictive performance was evaluated by the area under curve (AUC) of receiver operating characteristic and calibration curve. In addition, the SHapley Additive exPlanations (SHAP) approach and partial dependence plot were introduced to understand the relative importance and the influence of a single feature.

Results: A total of 312 patients were included in this study. Of the four ML models that include baseline characteristics, the “Early” XGBoost had a better performance {AUC, 0.790 [95% confidence intervals (CI), 0.677–0.903]; Brier, 0.191}. Subsequent inclusion of peri-interventional characteristics into the “Early” XGBoost showed that the “Late” XGBoost performed better [AUC, 0.910 (95% CI, 0.837–0.984); Brier, 0.123]. NIHSS after 24 h, age, groin to recanalization, and the number of passages were the critical prognostic factors associated with futile recanalization, and the SHAP approach shows that NIHSS after 24 h ranks first in relative importance.

Conclusions: The “Early” XGBoost and the “Late” XGBoost allowed us to predict futile recanalization before and after EVT accurately. Our study suggests that including peri-interventional characteristics may lead to superior predictive performance compared to a model based on baseline characteristics only. In addition, NIHSS after 24 h was the most important prognostic factor for futile recanalization.
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Introduction

Endovascular thrombectomy (EVT) is standard-of-care in patients with large vessel occlusion (LVO) stroke of the anterior circulation according to the latest international guidelines (1). Its benefit and safety have been repeatedly underlined in a series of randomized clinical trials (RCTs) (2). The therapeutic target of EVT is to achieve recanalization to improve long-term functional outcomes. However, futile recanalization considered a poor long-term function outcome despite adequate vessel recanalization, remains a common phenomenon. Previous studies showed that the incidence of futile recanalization among LVO patients ranged from 47 to 67%, and these futile recanalization cases may occur due to poor microvascular compromise, poor collateral circulation, technology difference, and cerebral blood flow regulation (3–7). Patients with futile recanalization undergoing EVT may suffer reperfusion injury and consume resources and time, so early prediction of futile recanalization is critical.

Many predictors associated with futile recanalization in LVO patients undergoing EVT have been reported. Baseline clinical characteristics such as advanced age, female gender, and severe neurological deficits, have been reported to be correlated with futile recanalization (3, 8). Neuroimaging characteristics such as baseline Alberta Stroke Program Early Computed Tomography Score (ASPECTS), poor collateral circulation, and final infarction volume, have also been suggested as important factors (3–5). There are also peri-interventional characteristics such as general anesthesia and delayed puncture to reperfusion (9). However, all the predictors are based on traditional statistical algorithms and even if all those predictors are taken into account, it should be emphasized that they are not efficient in perfectly predicting futile recanalization in LVO patients. Therefore, to improve individual stroke care, it is crucial to establish a reliable and data-driven model that integrates information from various sources (clinical, neuroimaging, peri-interventional characteristics) to accurately predict futile recanalization in LVO patients and differentiate between them based on whether they will or will not benefit from EVT. Unfortunately, no reliable models are designed to predict futile recanalization in stroke patients subjected to EVT.

Machine learning (ML) can analyze kinds of characteristics and leverage the integrated predictive value of these characteristics. Moreover, the ML approach can detect non-linear relationships in clinical data and uncover new patterns from existing information. Indeed, ML algorithms have already been proven to help predict functional outcomes after endovascular treatment in ischemic stroke patients (10), classify stroke mechanisms (11), and detect early infarction from non-contrast-enhanced CT (12). Notably, these sophisticated computer algorithms have gained significant interest in the widespread use of electronic health record systems and the accessibility of data from patients.

Here, we aimed to evaluate the prognostic factors associated with futile recanalization using ML algorithms and develop a pre-EVT model (the “Early” model) and a post-EVT model (the “Late” model) to effectively predict the risk of futile recanalization, and more importantly, to improve stroke emergency care and provide patients' relatives with reliable information about the prognosis.



Materials and methods


Study design and population

Consecutive acute ischemic stroke (AIS) patients receiving EVT at the National Advanced Stroke Center of Nanjing First Hospital (China) between April 2017 and May 2021 were included in the study. All patients had a clinically confirmed diagnosis of AIS with LVO of the anterior circulation and underwent EVT according to the standard of care using stent-retrievers and/or aspiration catheters at the Department of Neurology at Nanjing First Hospital. Patients were selected if they fulfilled the following criteria: (1) age 18 years or older; (2) LVO in the anterior circulation, including the internal carotid artery (ICA), M1/M2 segment of the middle cerebral artery (MCA); (3) successful recanalization [defined as modified Thrombolysis In Cerebral Infarction (mTICI) scale grades 2b or 3]; (4) premorbid modified Rankin Scale (mRS) score ≤ 2; (5) known National Institutes of Health Stroke Scale (NIHSS), ASPECTS, and mRS score at 90 days; (6) time from onset to puncture ≤ 6 or 6–24 h with evidence of perfusion mismatch. Patients who missed more than one data were to be excluded. The flowchart is summarized in Supplementary Figure S1. We dichotomized eligible patients with mTICI ≥ 2b into two groups utilizing the 90-day mRS score, which included the futile recanalization (90-day mRS of 3–6) and meaningful recanalization (90-day mRS of 0–2). The 90-day mRS scores were assessed via telephone-based interview or outpatient visit 3 months after onset. The scientific use of the data was approved by the Ethics Committee of Nanjing First Hospital (document number: KY20130424-01) and all patients provided written informed consent.



Data collection and definitions

Demographics and clinical characteristics were recorded on admission. We also collected data on treatment information and complication. More details of the definition can be found in the Supplementary methods.



Feature selection and model development

To assess the accumulative predictive power of clinical, neuroimaging, and peri-interventional characteristics, we built two ML models to predict futile recanalization risk: The first “Early” model was based on baseline clinical and neuroimaging characteristics at admission. The second “Late” model was developed via all variables from the “Early” model + peri-interventional characteristics. For model development, the original dataset was randomly stratified into training and test sets per 8:2, which meant that the proportion of patients with futile recanalization in the two sets was consistent with the original dataset. Then, the least absolute shrinkage and selection operator (LASSO) regression, a sparse method, was performed to select the important features in the training set. Furthermore, all features determined by LASSO were introduced into the four ML models to assess futile recanalization risk. This included logistic regression with L2 regularization (LR with L2), random forest classifier (RFC), support vector machine (SVM), and extreme gradient boosting (XGBoost). To avoid overfitting, we utilized a grid search algorithm with 10-fold cross-validation to fine-tune the optimal hyperparameters (Supplementary Tables S1A, S1B) in the training set. A separate test set was used to assess the models' generalization performance. In addition, all continuous variables were standardized using Z-score normalization. The algorithms involved above were performed in Python 3.7 using Scikit-learn version 0.24.1 and XGboost version 1.2.1 libraries.



Model evaluation and interpretation

We focused on discrimination and calibration to evaluate the performance of the “Early” and the “Late” model. The discrimination was mirrored using the area under the receiver operating characteristic curve (AUC), and the Delong test (13) was applied to describe the statistical difference of AUC. In addition, the following metrics: sensitivity, specificity, positive predictive value, negative predictive value, and accuracy, were also calculated accordingly. Calibration ability was assessed by the Brier score, which calculated the difference between real-world and model-predicted index outcomes. A lower score indicated better calibration. Furthermore, the incremental benefit of ML model calibration was compared using the null model Brier score (14).

To better understand the predictive process of the ML model, we applied the model-agnostic interpretability techniques, including the feature importance and partial dependence plot (PDP) (15). The feature importance was performed by the Shapley Additive exPlanations (SHAP) algorithm (16). This sorting process is based on the mean of absolute SHAP values for all individuals. PDP was introduced to help understand how a single feature influences futile recanalization. These interpretability techniques were implemented in Python using SHAP version 0.39.0 and PDPbox version 0.2.0.



Statistical analyses

All analyses were conducted using SPSS version 25.0. Initially, missing values were supplemented per the multiple imputation method. Then continuous variables were tested for normality. Notably, premorbid mRS and NIHSS scores on admission were regarded as continuous variables in all analyses for increasing the model's efficiency. All variables were shown with descriptive statistics. Univariate analyses were performed using the Student t-test or Mann-Whitney U-test for continuous variables, when appropriate. And Fisher's exact test or the χ2 test were applied for categorical variables.




Results


General condition

Out of 569 patients, 312 patients were eligible. Overall, 179 developed futile recanalization. As shown in Table 1A, those who developed futile recanalization were more likely to be older {median age: 75 [interquartile range (IQR), 67–81] vs. 66 [IQR, 60–76]} and suffered from more severe strokes [median NIHSS score on admission: 16 (IQR, 12–20) vs. 11 (IQR, 8–16)] compared with patients with meaningful recanalization. Furthermore, as seen in Table 1B participants with futile recanalization spent more time in the procedure of groin to recanalization [median of 72 min (IQR, 53–95) vs. 56 min (IQR, 43–75)] and had greater postprocedural NIHSS after 24 h [median of 16 (IQR, 12–21) vs. 5 (IQR, 3–10)]. Furthermore, all characteristics were well-balanced between the training and test sets (Supplementary Tables S2A, S2B).


Table 1A. Demographics and clinical characteristics.

[image: Table 1]


Table 1B. Treatment information and complication.
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“Early” models

The details of the model's performance on the training set are shown in Supplementary Figure S2 and Supplementary Table S3A. In terms of discriminatory ability, there were no significant differences in AUCs in all the “Early” ML models, AUCs ranged from 0.738 to 0.799 on the test set. Nevertheless, when considering the calibration, the overall performance of the XGBoost model was better than other ML models revealed by a smaller Brier score. For the sake of simplicity, we only considered the XGBoost as a prediction model. A summary of the results is given in Figure 1, Table 2A, and Supplementary Table S4A.


[image: Figure 1]
FIGURE 1
 (A) The receiver operating characteristic curve and (B) the calibration curve of the “Early” machine learning models on the testing set. (C,D) Feature importance ranking based on Shapley Additive exPlanations (SHAP) values in “Early” XGBoost. AUC, area under the curve; LR with L2, logistic regression with L2 regularization; SVM, support vector machine; RFC, random forest classifier; XGBoost, extreme gradient boost. NIHSS, National Institutes of Health Stroke Scale.



Table 2A. Scores of each “Early” model on the test set.

[image: Table 2]

Next, the visual interpretation of the “Early” model (XGBoost) was provided. Sorted by the mean absolute SHAP value, the rank of feature importance in descending order was as follows: age, NIHSS score on admission, and smoking. A dot in Figure 1C represents an individual. Red indicates the larger distribution of SHAP values, while blue indicates smaller. The high SHAP values of age and NIHSS reveal positive contributions to futile recanalization, whereas smoking was negative. Additionally, PDP shows the impact of each feature on the predicted risk (Supplementary Figure S3). For the age feature, although the impact appears to be a little fluctuating, on average, the impact increases drastically with age from 63 to 71 years. And it remains stable at other ages. For the NIHSS score between 6 and 22, on average, the higher the NIHSS, the larger the risk. And then, the impact remains constant after NIHSS of 22.



“Late” models

The details of the model's performance on the training set are provided in Supplementary Figure S4 and Supplementary Table S3B. In the testing step, all “Late” model also scored a similar AUC since the statistical insignificant differences of AUCs were found {AUC of 0.910 [95% confidence intervals (CI), 0.837–0.984] for XGBoost vs. 0.905 [95% CI, 0.834–0.976] for LR, 0.905 [95% CI, 0.829–0.981] for RFC and 0.882 [95% CI, 0.801–0.962] for SVM}. And homoplastically, the overall performance of the XGBoost model outperformed other ML models with the consideration of the smaller Brier score (0.123 for XGBoost vs. 0.129 for LR, 0.159 for RFC, and 0.141 for SVM). A summary of the results is given in Figure 2, Table 2B, and Supplementary Table S4B.


[image: Figure 2]
FIGURE 2
 (A) The receiver operating characteristic curve and (B) the calibration curve of the “Late” machine learning models on the testing set. (C,D) Feature importance ranking based on Shapley Additive exPlanations (SHAP) values in “Late” XGBoost. AUC, area under the curve; LR with L2, logistic regression with L2 regularization; SVM, support vector machine; RFC, random forest classifier; XGBoost, extreme gradient boost. NIHSS, National Institutes of Health Stroke Scale.



Table 2B. Scores of each “Late” model on the test set.
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Next, the visual interpretation of the optimal “Late” model (XGBoost) was provided. Figure 2C shows that NIHSS after 24 h, age, groin to recanalization, and the number of passages were the four important features. And the high SHAP values of these four features revealed positive contributions to futile recanalization. Furthermore, from the PDP, we can see that for NIHSS after 24 h (Figure 3A), the increase in NIHSS score (3–22) is positively related to futile recanalization and remains stable when NIHSS is over 22. For the age feature (Figure 3B), on average, the increase in age (63–71) is positively related to futile recanalization, which performs similarly to the “Early” model but with less fluctuation. For the groin to recanalization feature (Figure 3C), on average, it (46–105) was positively related to futile recanalization, and then the impact remains constant after groin to recanalization of 105 min. For the number of passages feature (Figure 3D), the impact increased gradually with the number from one to three and remained stable when the number was over three.


[image: Figure 3]
FIGURE 3
 Partial dependence plots (PDP) of “Late” XGBoost model features. (A) NIHSS after 24 hours, (B) age, (C) groin to recanalization, and (D) the number of passages. The shaded blue region shows the magnitude of the confidence interval, and the Y-axis represents the change in the predicted outcome. NIHSS, National Institutes of Health Stroke Scale.




Comparison of models

We compared the performance of the “Early” and “Late” models (Figure 4; Supplementary Figure S5). All “Late” models substantially outperformed “Early” models on both the training and testing set.


[image: Figure 4]
FIGURE 4
 The comparison of the receiver operating characteristic curve of “Early” machine learning models and “Late” machine learning models on the test set. LR with L2, logistic regression with L2 regularization; SVM, support vector machine; RFC, random forest classifier; XGBoost, extreme gradient boost.





Discussion

In the present study, we derived and validated a series of ML models with the capacity to predict futile recanalization in LVO patients undergoing EVT. The XGBoost algorithm has optimal predictive performance in both the “Early” model and the “Late” model. As a result, we generated highly reliable futile recanalization risk estimates and made predictions at two points (pre- and post-EVT) in the care continuum with the explicit goal of improving stroke emergency care. In addition, results in our study suggest that the inclusion of peri-interventional characteristics may lead to superior predictive performance compared to a model based on baseline characteristics only. Although several pieces of literature have reported many prognostic factors associated with futile recanalization, none integrated those factors for building predictive models. Considering the hazards of futile recanalization, such models are important.

Using “Early” XGBoost may offer neurologists effective support in patient selection for EVT therapy. According to the HERMES meta-analysis, “the number needed to treat with endovascular thrombectomy to reduce disability by at least one level on Mrs for one patient was 2.6” if the clinical trial criteria were used (2). In real-world practice, however, a higher number would be needed given the potential benefit for a portion of patients. Hence, patient selection criteria for EVT tend to be more liberal, often accompanied by disastrous futile recanalization. Reliable pre-EVT prognostic tools can facilitate the process of patient selection by generating an accurate prediction of futile recanalization. However, it must be admitted that although the “Early” XGBoost constructed in our study achieved an AUC of 0.790, this model needs further improvement due to the existence of the “smoking paradox.” On the other hand, the “Late” XGBoost with the inclusion of peri-interventional characteristics outperformed the “Early” XGBoost by a margin of 12.0% for AUC. The accurate prediction provided reliable and objective prognostic after EVT and, in turn, can aid in the counseling of patients and their relatives.

There are two points to emphasize, with the expectation that the “Early” XGBoost and the “Late” XGBoost can be integrated into real-world practice. On the one hand, because of the irreplaceability of clinical judgment, the proposed use for the “Early” XGBoost and the “Late” XGBoost is to serve as adjuncts, rather than surrogates, to clinical judgment to facilitate evidence-based, prediction-driven, and personalized decision-making in the clinical workflow of LVO patients. On the other hand, this study represents only one component in the development of robust and reliable tools for the risk screening of futile recanalization in LVO patients. Further implementation, impact, and validation studies are essential if those models are going to be integrated into the clinical workflow.

In addition to clinical applications, results in our study can provide meaningful insights to reveal diverse and new predictors. The SHAP algorithm and PDP have discovered several predictors of futile recanalization. SHAP algorithm can provide feature importance scores from XGBoost, and explain the logic behind predictions; PDP was used to show the marginal effect of a single feature. When XGBoost integrated information from baseline clinical and radiological characteristics before EVT, the SHAP algorithm demonstrated that—in the present study—patients presenting with greater age and with severe neurological deficit on admission had higher rates of futile recanalization. Nevertheless, this of course does not suggest that EVT is not indicated in patients with a higher baseline NIHSS. It is essential to consider the results of a meta-analysis of five randomized trials, which provides evidence of no differential benefit from endovascular treatment across the entire NIHSS severity range (2). Although it might be surprising at first glance, current smoking was associated with decreased risk of futile recanalization in the present study. The so-called “smoking paradox” phenomenon has appeared in patients undergoing intravenous thrombolysis and EVT (17, 18). One assumption was that the negative relation between current smoking and futile recanalization was related to an age effect (19). Indeed, current smokers were younger than former smokers or never smokers in the present study (p < 0.001) (Supplementary Table S5). However, such a result must not be misinterpreted that the effect of smoking is beneficial due to the observational study design. Surprisingly, the ML algorithm did not select ASPECTS on admission as one of the predictors for futile recanalization. Such a result can be explained by the firm, linear, negative correlation between ASPECTS and NIHSS on admission and the higher univariate performance of the latter as compared with the former for predicting futile recanalization (20). Unfortunately, pre-treatment collateral status was not incorporated in the model building process due to its unavailability in the dataset. Previous studies have shown the positive effect of good collateral status on clinical outcomes after EVT (21, 22). Such results can be explained by the fact that more robust collateral flow can compensate for the brain areas with restricted blood flow and subsequently increase the recanalization and reperfusion rates (23). However, these studies did not consider the degree of revascularization achieved. According to a study published in the Stroke journal (23), reperfusion success is associated with good collateral status, which indicates that the effect of collateral status on clinical outcome is possibly indirect. In addition, patients in the present study who received EVT and recanalization achieved an mTICI score of >2a, which means that those patients are likely to have good collateral status.

Subsequent inclusion of peri-interventional characteristics into the XGBoost demonstrated that NIHSS after 24 h, age, groin to recanalization, and the number of passages were the key predictors for futile recanalization. As shown in the PDP, in the age group between 63 and 71, there was an abrupt rise of futile recanalization by around 20% independent of other patient characteristics, while it remains stable at other ages. Although age is known to be prominent for the efficacy of EVT (3, 4), the observed drastic change in the probability of futile recanalization has not been described before. Interestingly, the “late” XGBoost with peri-interventional characteristics shows that NIHSS assessed at 24 h replaced NIHSS on admission and became the strongest predictor of futile recanalization. Indeed, as demonstrated by previous studies, NIHSS after 24 h is strongly associated with long-term functional outcomes and is a great potential early surrogate clinical endpoint for clinical trials (10, 24). For the groin to recanalization feature (Figure 2C), on average, the increase in the groin to recanalization (46–105 min) is positively related to futile recanalization. Such results are in line with those from previous studies which flagged a time dependency to clinic outcome of LVO stroke treated with EVT (25, 26). Also, the likelihood of futile recanalization got sequentially higher as the number of passages increased. Although the technical expertise of the operator is important, the increased number of passages may be due to some uncontrollable factors such as increased clot fragmentation with distal embolization or accumulated endothelial damage (27). In addition, the impact of the groin to recanalization and the number of passages on futile recanalization supports the conclusion of previous studies that an angiographic recanalization does not necessarily lead to functional independence if it was achieved at the expense of longer procedural times (28).

The present study has some limitations. Firstly, the patients included in the present study were selected from a single-center, retrospective data set, leading to selection bias. For example, older age patients are more likely to be excluded from EVT. Indeed, such selection bias is inherent in any prediction model. Secondly, the definition of successful reperfusion itself should be challenged as it is assessed on the final angiogram. Because our study design was retrospective, we could not reliably confirm which patients went on to develop spontaneous re-occlusion or recanalization at 24–48 h. However, this phenomenon is only present in a small percentage of patients. Thirdly, other significant data sources, such as angiographic characteristics, are likely to add extra predictive value. We did not include these in our study because such data were unavailable and may be a logistical challenge when applied, especially in the primary stroke centers.



Conclusions

The “Early” XGBoost and the “Late” XGBoost allowed us to accurately predict futile recanalization in LVO patients before and after EVT. Our study suggests that the inclusion of peri-interventional characteristics may lead to superior predictive performance compared to a model based on baseline characteristics only. In addition, NIHSS after 24 h was the most important prognostic factor for futile recanalization. Although our results represent only one step in developing screening tools for futile recanalization, they can provide meaningful insights to reveal diverse and new prognostic factors.



Data availability statement

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding authors.



Ethics statement

The scientific use of the data was approved by the Ethics Committee of Nanjing First Hospital (document number: KY20130424-01) and all patients provided written informed consent.



Author contributions

XL formed the conception and study design. XC, QJ, YW, and RQ did the data collection. ZZ and XP did the data analysis. JZho and NC did the literature review. XZ and DZ did the model development. XL, XZ, and JZha drafted the manuscript. LT, CG, and JZo made significant revisions and supplied valuable improvement suggestions. All authors approved the final version. All authors have read and agreed to the published version of the manuscript.



Funding

This study was supported by the National Natural Science Foundation of China (82173899), and Jiangsu Pharmaceutical Association (H202108 and A2021024).



Acknowledgments

We gratefully acknowledge all the patients who participated in this study and those who have provided medical care for them.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur.2022.909403/full#supplementary-material



References

 1. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. (2019) 50:e344–418. doi: 10.1161/STR.0000000000000211

 2. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. (2016) 387:1723–31. doi: 10.1016/S0140-6736(16)00163-X

 3. van Horn N, Kniep H, Leischner H, McDonough R, Deb-Chatterji M, Broocks G, et al. Predictors of poor clinical outcome despite complete reperfusion in acute ischemic stroke patients. J Neurointerv Surg. (2021) 13:14–8. doi: 10.1136/neurintsurg-2020-015889

 4. Zhou T, Yi T, Li T, Zhu L, Li Y, Li Z, et al. Predictors of futile recanalization in patients undergoing endovascular treatment in the DIRECT-MT trial. J Neurointervent Surg. (2021) 14:752–5. doi: 10.1136/neurintsurg-2021-017765

 5. Pan H, Lin C, Chen L, Qiao Y, Huang P, Liu B, et al. Multiple-factor analyses of futile recanalization in acute ischemic stroke patients treated with mechanical thrombectomy. Front Neurol. (2021) 12:704088. doi: 10.3389/fneur.2021.704088

 6. Hussein HM, Georgiadis AL, Vazquez G, Miley JT, Memon MZ, Mohammad YM, et al. Occurrence and predictors of futile recanalization following endovascular treatment among patients with acute ischemic stroke: a multicenter study. Am J Neuroradiol. (2010) 31:454–8. doi: 10.3174/ajnr.A2006

 7. Nie X, Pu Y, Zhang Z, Liu X, Duan W, Liu L. Futile Recanalization after endovascular therapy in acute ischemic stroke. Biomed Res Int. (2018) 2018:5879548. doi: 10.1155/2018/5879548

 8. Hussein HM, Saleem MA, Qureshi AI. Rates and predictors of futile recanalization in patients undergoing endovascular treatment in a multicenter clinical trial. Neuroradiology. (2018) 60:557–63. doi: 10.1007/s00234-018-2016-2

 9. Xu H, Jia B, Huo X, Mo D, Ma N, Gao F, et al. Predictors of futile recanalization after endovascular treatment in patients with acute ischemic stroke in a multicenter registry study. J Stroke Cerebrovasc Dis. (2020) 29:105067. doi: 10.1016/j.jstrokecerebrovasdis.2020.105067

 10. Brugnara G, Neuberger U, Mahmutoglu MA, Foltyn M, Herweh C, Nagel S, et al. Multimodal predictive modeling of endovascular treatment outcome for acute ischemic stroke using machine-learning. Stroke. (2020) 51:3541–51. doi: 10.1161/STROKEAHA.120.030287

 11. Kamel H, Navi BB, Parikh NS, Merkler AE, Okin PM, Devereux RB, et al. Machine learning prediction of stroke mechanism in embolic strokes of undetermined source. Stroke. (2020) 51:e203–10. doi: 10.1161/STROKEAHA.120.029305

 12. Qiu W, Kuang H, Teleg E, Ospel JM, Sohn SI, Almekhlafi M, et al. Machine learning for detecting early infarction in acute stroke with non-contrast-enhanced CT. Radiology. (2020) 294:638–44. doi: 10.1148/radiol.2020191193

 13. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. (1988) 44:837–45. doi: 10.2307/2531595

 14. Karhade AV, Schwab JH, Bedair HS. Development of machine learning algorithms for prediction of sustained postoperative opioid prescriptions after total hip arthroplasty. J Arthroplasty. (2019) 34:2272–7.e2271. doi: 10.1016/j.arth.2019.06.013

 15. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. (2001) 29:1189–232. doi: 10.1214/aos/1013203451

 16. Singh R, Lanchantin J, Sekhon A, Qi Y. Attend and Predict: Understanding gene regulation by selective attention on chromatin. Adv Neural Inf Process Syst. (2017) 30:6785–95. doi: 10.1101/329334

 17. von Martial R, Gralla J, Mordasini P, El Koussy M, Bellwald S, Volbers B, et al. Impact of smoking on stroke outcome after endovascular treatment. PLoS ONE. (2018) 13:e0194652. doi: 10.1371/journal.pone.0194652

 18. Kvistad CE, Oeygarden H, Logallo N, Thomassen L, Waje-Andreassen U, Naess H. Is smoking associated with favourable outcome in tPA-treated stroke patients? Acta Neurol Scand. (2014) 130:299–304. doi: 10.1111/ane.12225

 19. Hussein HM, Niemann N, Parker ED, Qureshi AI. Searching for the Smoker's paradox in acute stroke patients treated with intravenous thrombolysis. Nicotine Tob Res. (2017) 19:871–6. doi: 10.1093/ntr/ntx020

 20. Kent DM, Hill MD, Ruthazer R, Coutts SB, Demchuk AM, Dzialowski I, et al. “Clinical-CT mismatch” and the response to systemic thrombolytic therapy in acute ischemic stroke. Stroke. (2005) 36:1695–9. doi: 10.1161/01.STR.0000173397.31469.4b

 21. Román LS, Menon BK, Blasco J, Hernández-Pérez M, Dávalos A, Majoie C, et al. Imaging features and safety and efficacy of endovascular stroke treatment: a meta-analysis of individual patient-level data. Lancet Neurology. (2018) 17:895–904. doi: 10.1016/S1474-4422(18)30242-4

 22. Leng X, Fang H, Leung TW, Mao C, Miao Z, Liu L, et al. Impact of collaterals on the efficacy and safety of endovascular treatment in acute ischaemic stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. (2016) 87:537–44. doi: 10.1136/jnnp-2015-310965

 23. Liebeskind DS, Jahan R, Nogueira RG, Zaidat OO, Saver JL. Impact of collaterals on successful revascularization in Solitaire FR with the intention for thrombectomy. Stroke. (2014) 45:2036–40. doi: 10.1161/STROKEAHA.114.004781

 24. Mistry EA, Yeatts S, de Havenon A, Mehta T, Arora N, De Los Rios La Rosa F, et al. Predicting 90-day outcome after thrombectomy: baseline-adjusted 24-hour NIHSS is more powerful than NIHSS score change. Stroke. (2021) 52:2547–53. doi: 10.1161/STROKEAHA.120.032487

 25. Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA. (2016) 316:1279–88. doi: 10.1001/jama.2016.13647

 26. Jahan R, Saver JL, Schwamm LH, Fonarow GC, Liang L, Matsouaka RA, et al. Association between time to treatment with endovascular reperfusion therapy and outcomes in patients with acute ischemic stroke treated in clinical practice. JAMA. (2019) 322:252–63. doi: 10.1001/jama.2019.8286

 27. Arai D, Ishii A, Chihara H, Ikeda H, Miyamoto S. Histological examination of vascular damage caused by stent retriever thrombectomy devices. J Neurointerv Surg. (2016) 8:992–5. doi: 10.1136/neurintsurg-2015-011968

 28. Kitano T, Todo K, Yoshimura S, Uchida K, Yamagami H, Sakai N, et al. Futile complete recanalization: patients characteristics and its time course. Sci Rep. (2020) 10:4973. doi: 10.1038/s41598-020-61748-y












	
	TYPE Study Protocol
PUBLISHED 24 August 2022
DOI 10.3389/fneur.2022.947289






The structure, processes, and outcomes of stroke rehabilitation in Ghana: A study protocol

Cosmos Yarfi1,2*, Gifty Gyamah Nyante3 and Anthea Rhoda1


1Department of Physiotherapy, Faculty of Community and Health Sciences, University of the Western Cape, Cape Town, South Africa

2Department of Physiotherapy and Rehabilitation Sciences, University of Health and Allied Sciences, Ho, Ghana

3Department of Physiotherapy, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana

[image: image2]

OPEN ACCESS

EDITED BY
Alexis Netis Simpkins, University of Florida, United States

REVIEWED BY
Paul Olowoyo, Federal Teaching Hospital Ido-Ekiti, Nigeria
 Sinforian Kambou, Institute of Applied Neurosciences and Functional Rehabilitation, Cameroon

*CORRESPONDENCE
 Cosmos Yarfi, cyarfi@uhas.edu.gh

SPECIALTY SECTION
 This article was submitted to Stroke, a section of the journal Frontiers in Neurology

RECEIVED 18 May 2022
 ACCEPTED 26 July 2022
 PUBLISHED 24 August 2022

CITATION
 Yarfi C, Nyante GG and Rhoda A (2022) The structure, processes, and outcomes of stroke rehabilitation in Ghana: A study protocol. Front. Neurol. 13:947289. doi: 10.3389/fneur.2022.947289

COPYRIGHT
 © 2022 Yarfi, Nyante and Rhoda. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.



Background: Conventional and complementary treatments are often used in rehabilitation for persons with stroke. The conventional treatment makes use of medications, physiotherapy, occupational, speech, and diet therapies, while the complementary treatment makes use of homeopathy, naturopathy, massage, and acupuncture. The structure, process, and outcomes of stroke rehabilitation using conventional or complementary treatments have not been empirically investigated in Ghana.

Aims: This study aims to investigate the structure, process, and outcomes of stroke rehabilitation at the Korle Bu Teaching Hospital (KBTH) in Accra and Kwayisi Christian Herbal Clinic (KCHC) in Nankese-Ayisaa, Ghana, and to explore the experiences of persons with stroke.

Methods: This study involves a mixed methods approach. This study will utilize three study designs, namely, cross-sectional, hospital-based cohort, and qualitative exploratory study designs. The objectives of the study will be achieved using three phases, namely, phase one will recruit health professionals and gather information on the structure and process of stroke rehabilitation at a conventional and complementary hospital using adapted questionnaires; phase two will determine the outcomes of stroke patients attending a conventional and complementary hospital facility at baseline, 2-, 3-, and 6-month follow-up using outcome measures based on the International Classification of Functioning, Disability and Health (ICF) model; and phase three will explore the experiences of stroke patients who use complementary or conventional treatment using an interview guide.

Data analysis: IBM SPSS Statistics Version 27 will be used to analyze the data using descriptive and inferential statistics. Repeated measures of ANOVA will be used to determine the differences between variables at baseline, 2-, 3-, and 6-month post-stroke. The qualitative data will be transcribed and entered into Atlas Ti version 9.0. The data will be coded and analyzed using thematic areas that will be generated from the codes.

Conclusion: The study protocol will provide a comprehensive overview of the structure, process, and outcomes of stroke rehabilitation in Ghana, incorporating both conventional and complementary treatment and rehabilitation into the stroke recovery journey. It will also inform clinical practice, with new insights on the experiences of stroke patients based on their choice of rehabilitation pathway.
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Introduction

Stroke rehabilitation is aimed at reducing the disability-related impact of stroke on individuals, enabling them to achieve independence, social integration, a better quality of life, and self-actualization (1). The importance of rehabilitation medicine in the attainment of optimal functioning after an injury or disease cannot be overemphasized (2). According to the World Health Organization, rehabilitation aims to enable persons with functional limitations to improve and maintain their optimal functional levels through the provision of tools to help attain independence (3).

Conventional medicine involves healthcare practices through which healthcare professionals treat symptoms and diseases in a medically supervised setting using therapy, drugs, radiation, and/or surgery (4). Complementary medicine involves healthcare practices that are not part of a country's conventional health practices and are not fully integrated into the dominant healthcare system, but are used along with mainstream healthcare (4, 5). Complementary medicine involves a health system that uses non-mainstream approaches together with conventional medicine in healthcare practice (4, 5). Conventional and complementary medicine treatments are often used in rehabilitation for stroke patients (6–10). The usage of complementary medicine and rehabilitation has a high prevalence in the treatment of stroke in Korea (54%) and India (67%) (11), as well as in developed countries such as the United States, Australia, France, and Canada, with its usage ranging from 42 to 70% (12). In Africa, complementary medicine and rehabilitation is widely used in most countries, and sometimes, it is the only source of primary healthcare (13–15); about 70% of the population in Ghana utilize complementary medicine and rehabilitation in one way or the other (16). Complementary medicine refers to a broad set of healthcare practices that are not part of the mainstream medical care in a country and are not fully integrated into the dominant healthcare system (17–19). It involves the use of non-mainstream approaches of healthcare such as chiropractic, acupuncture, homeopathy, herbal therapy, dietary, and psychological interventions (20, 21) together with conventional medicine (7, 22). Conventional medicine is the use of evidence-based treatments that are safe and effective, with rigorously tested procedures used as clinical practice guidelines (23). The focus of conventional medicine is more often on the treatment of existing ailments within the context of a specific scientific framework. Rehabilitation is a major part of conventional medicine treatment, forming a major part of patient care (24).

The structure, process, and outcomes (SPO) framework initially developed to assess the quality of healthcare has recently been used to examine outcomes related to differences in structure and process of rehabilitation and their association with outcomes post-stroke (8, 25, 26). The SPO framework will be utilized in this study in addition to the International Classification of Function, Disability and Health (27) to conceptualize outcomes post-stroke which include impairments, activity limitations, and participation restrictions of stroke patients utilizing conventional or complementary medicine and rehabilitation in Ghana.

By undergoing a specific stroke rehabilitation pathway, stroke patients can achieve their best possible functional independence, which ultimately improves their quality of life (7). Good outcomes after stroke have been seen in patients undergoing rehabilitation in the conventional setting (9, 28–32). Stroke outcomes have also been shown to be better in cases managed at the stroke units with multidisciplinary care (33). In the Ghanaian context, the coordination of stroke care after discharge from acute care is fragmented (34), with further rehabilitation after acute care poorly addressed due to accessibility of care issues such as inadequate medical facilities and financial constraints (34, 35). For this reason, some patients and/or their caregivers choose to use rehabilitation in a complementary or conventional setting as a treatment for stroke based on availability in the community and acceptability to their health beliefs or religious faith (7, 36), and sometimes as a substitute for the absence of conventional rehabilitation (7, 37). However, there is a paucity of information on the outcomes of stroke patients who use complementary medicine and rehabilitation in Ghana. In an era where complementary healthcare services are being introduced gradually to mainstream healthcare (16, 38, 39), it is important to investigate and document the structure, processes, and outcomes of complementary medicine and rehabilitation in a resource-constraint environment (40). At present, there are few studies on the outcomes of stroke patients who use conventional medicine and rehabilitation (41) and none on complementary medicine and rehabilitation in Ghana. Published literature has focused more on conventional medicine and rehabilitation, with less or no literature existing on complementary medicine and rehabilitation. This study will fill the gap by providing information on structure, process, and outcomes of stroke rehabilitation in a conventional and complementary hospital setting in Accra and Nankese-Ayisaa, Ghana.

The purpose of this study is to comprehensively describe the structure and processes of stroke rehabilitation to investigate the outcomes of stroke patients who utilize conventional or complementary medicine and rehabilitation. It is hoped that the findings can pave the way for more studies assessing the association between structure, process and outcomes of stroke rehabilitation in low-resource settings.



Objectives

The study will be guided by the following objectives:

1. To determine the structure of stroke rehabilitation using conventional and complementary medicine at KBTH in Accra and KCHC in Nankese-Ayisaa, Ghana.

2. To determine the processes of stroke rehabilitation using conventional and complementary medicine at KBTH in Accra and KCHC in Nankese-Ayisaa, Ghana.

3. To determine the outcomes of participants in relation to their impairments, activity limitations, and participation restrictions at baseline, 2-, 3-, and 6-month follow-up at KBTH in Accra and KCHC in Nankese-Ayisaa, Ghana.

4. To explore the experiences of stroke patients about the process and outcomes of their rehabilitation at a conventional or complementary rehabilitation after 6 months of rehabilitation at KBTH in Accra and KCHC in Nankese-Ayisaa, Ghana.



Methods


Study design

This study will adopt a triangulation, mixed-method approach with quantitative and qualitative methods (42). The quantitative part will involve a cross-sectional and hospital-based cohort study of health professionals and stroke patients, respectively, while the qualitative part of the study will be a descriptive exploratory study of stroke patients in a conventional and complementary hospital in Accra and Nankese-Ayisaa, Ghana. The study will be carried out in three phases. The data will be collected at the stroke unit and physiotherapy department, KBTH, and the outpatient department and physiotherapy department, KCHC. A hospital-based cross-sectional study will be conducted from November 2021 to April 2022 on health professionals to gather information about their numbers and availability of equipment for rehabilitation at the hospital and the compliance with the agency for healthcare policy and research (AHCPR) using adapted questionnaires. The cohort study will assess outcomes of stroke patients using outcome measures at baseline, 2-, 3-, and 6-month follow-up from December 2021 to April 2023. The baseline measurement will be within a month after the start of stroke treatment. The qualitative exploratory design will be used to explore the experiences of stroke patients regarding their rehabilitation process and outcomes in a conventional or complementary rehabilitation setting from June 2022 to August 2022.



Participants and setting

The study population will comprise all health professionals involved in stroke care at the study sites and all stroke patients at KBTH and KCHC during the study period fulfilling the inclusion criteria.



Inclusion criteria for health professional participants

Eligible participants should:

i. be health professionals at the study sites,

ii. be involved in stroke rehabilitation, and

iii. consent to participate in the study.



Exclusion criteria for health professional participants

Participants will be excluded from the study if they:

i. are students,

ii. are intern professionals, and

iii. do not consent to participate in the study.



Inclusion criteria for stroke patient participants

Eligible participants should:

i. be aged 18 years and above,

ii. be clinically diagnosed with stroke using clinical signs and CT scan or MRI confirmation,

iii. be those within a month after starting rehabilitation,

iv. have a modified Rankin score (MRS) of <4,

v. willing to come for follow-up assessment at 2-, 3-, and 6-month post-recruitment into the study, and

vi. speak either English, Ga or Twi (Ghanaian local languages).



Exclusion criteria for stroke patient participants

Participants will be excluded from the study if they:

i. have other neurological conditions such as previous head injury or spinal cord injuries, dementia, and seizures;

ii. have psychological or mental instability;

iii. have the inability to communicate verbally and comprehensively as a result of global aphasia;

iv. have stroke-like symptoms due to subdural hematoma, brain tumor, encephalitis, or head trauma; and

v. the patient or family do not provide informed consent.

Phase one of the study will be carried out at the stroke unit and physiotherapy department, KBTH and the out-patient department and physiotherapy department, KCHC; phases two and three will be carried out at the physiotherapy department of the two facilities. The KBTH is the premier and largest teaching hospital, located in the Greater Accra region of Ghana, with a population of 5.4 million (43). The Accra metropolis, in the Greater Accra region, has a population of 1,665,086 spread across 60 square kilometers, consisting of both urban and peri-urban areas (44). The KBTH is a 2,000-bed capacity referral hospital in the southern part of Ghana, with a stroke unit incorporating multidisciplinary professionals for stroke management (45).

The KCHC is a herbal clinic located in Nankese-Ayisaa, in the Eastern region of Ghana, which has a population of 2.9 million (43). Nankese-Ayisaa is part of the Suhum Municipality, ~60 km from Accra, the national capital. Suhum Municipality has a population of 90,358 spread across 359 square kilometers, consisting of both urban and rural areas (44). The hospital uses complementary medicine (herbal medicine) and nutritional supplements in the treatment of stroke patients. They also undertake outpatient rehabilitation services using massage therapy, herbs, exercise therapy, and dietary counseling. The facility focuses on stroke care using herbal preparations and food supplements under the standards set by the Traditional Medical Practice Council in Ghana (16).



Recruitment

All health professionals involved in stroke care at the study sites who sign the consent form will be recruited for the study. The estimated average monthly population of new stroke patients at the physiotherapy department of KBTH and KCHC is 20 and 10, respectively, during the 2021 mid-year performance review (46, 47). A power calculation at 80% power, 5% level of significance, and 95% confidence interval was used to determine the number of participants to be recruited. Assuming a 70 and 50% recovery rate for patients using conventional and complementary treatment, respectively, a 10% non-response rate and with standard approximations for loss to follow-up, a sample size of 200 is estimated. Therefore, a total of 100 participants will be recruited at each study site to retain statistical power. All eligible participants will be consecutively enrolled in the study. The study will be carried out over a window period of 18 months.

A sample size of up to 20 participants will be selected purposively, with 10 at each study site for the qualitative study. “Information power” meaning the amount of relevant information needed for the study will determine the number of participants for the study (48). The selection will be done based on the age and gender of the participants.



Data collection

The study will adhere to the ethical guidelines of the Declaration of Helsinki in 2013 (World Medical Association Declaration of Helsinki) (49). All study participants will be informed about the purpose and objectives of the study and asked to sign an informed consent form prior to participation. The right of participants to safeguard their anonymity and integrity will be respected. All participants will be adequately informed of the aims, methods, consent to participation, potential risk/benefits, voluntary participation, privacy/confidentiality, compensation, declaration of conflict of interest. Signing the informed consent is necessary for recruitment.


Data collection instruments

The data collection will involve three phases, namely, structure and process of care, outcomes post-stroke, and experiences with rehabilitation process and outcomes. The questionnaires for the quantitative study will be validated and tested for reliability by administering them to health professionals at the physiotherapy department of Komfo Anokye Teaching Hospital (KATH) and the outpatient department of Amen Scientific Herbal Hospital (ASHH) in Kumasi in a pilot study. The interview guide for the qualitative study will also be piloted on stroke patients at KATH and ASHH to determine whether it answers the research questions for the study and the time it will take to administer the interviews. The KATH and ASHH have similar characteristics as the study sites for the study in terms of structure and population required for the study.



Phase 1: Structure and process of care

An adapted questionnaire redesigned by Rhoda (8) based on the taxonomy developed by Hoenig et al. (50) will be used to collect data on the structure of stroke rehabilitation. The questionnaire consists of four main domains. Domain one consists of socio-demographic information of professionals such as age, gender, highest qualification, year of qualification; domain two consists of information on professional expertise such as the availability of professionals and the interventions used; domain three consists of capacity building of professionals such as attendance of continuous professional education, presence of team meetings, and use of outcome measures; and domain four consists of rehabilitation equipment available at the facility.

An adapted questionnaire will be used to measure the process of care for stroke patients by compliance with the agency for healthcare policy and research (AHCPR) and clinical guidelines for post-stroke rehabilitation (26). The questionnaire uses a Likert scale to gather information relating to multidisciplinary team coordination, baseline assessment of patients, monitoring and evaluating progress, and management of impairments and functional limitations of patients.



Phase 2: Outcomes of rehabilitation

Table 1 shows the outcome measures, their assessment methods, and assessment time points. Primary and secondary outcome measures will be assessed in each participant at different time points (baseline, 2-, 3-, and 6-month post-stroke). The primary outcome will be the improvement of voluntary movement of the limbs and basic mobility. The secondary outcome measures will be improvements in stroke-specific functional and quality-of-life measures based on the impairments, activity limitations, and participation restrictions: Montreal Cognitive Assessment Scale (MoCA), Stroke Rehabilitation Assessment Movement (STREAM), Time Up and Go (TUG) test, 10-meter walk (10 MW) test, Tinetti Scale (TS), Reintegration to Normal Living Index (RNLI), and Health Related Quality of Life for Stroke Patients (HRQOLSP). The instruments have been used in sub-Saharan Africa with good reliability measures (51–57).


TABLE 1 Summary of outcome measures and respective methodology.
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Phase 3: Experiences of participants

An interview guide will be developed by the authors from the literature. The guide will gather information on the experiences of stroke patients on the process and outcomes of their rehabilitation.




Data collection procedure
 
Phase 1: Structure and process of care

The study will commence after permission from authorities at the study sites has been granted and the necessary ethical clearances are given. Standardized training in all aspects of the study instruments will be provided to research assistants for 1 week on how to administer the instruments and score the participants. The first author will attend one of the clinical meetings for health professionals at the study sites. The purpose and objective of the study will be explained to them, and they will be invited to participate in the study by completing the questionnaires after signing a consent form. The adapted questionnaires will be administered to the health professionals after the clinical meeting and follow-up meeting with them. Weekly reminders and periodic visits will be conducted at the sites to increase the response rate of the questionnaires. An online generated version of the questionnaires will also be sent for participants who prefer that. The questionnaires will take about 15 min to complete and are available in English.



Phase 2: Outcomes of rehabilitation

The records unit of the study sites will be approached for the list of stroke patients and the contacts of those receiving care or attending physiotherapy at the facility. The patients will be contacted and the purpose of the study will be explained to them and their caregivers. An appointment will be set up for screening, and participants meeting the inclusion criteria are invited to participate in the study. Those who agree will be recruited into the study, after signing a consent. In addition, the first author will approach patients who report for physiotherapy services for recruitment into the study. The research assistants will administer the bio-demographic questionnaire first, followed by the stroke levity scale, to assess the severity of stroke (41), then the other self-reported questionnaires such as RNLI and HRQOLSP at baseline, and finally the observer-rated questionnaires such as STREAM, TS, and MoCA. Once the observer-rated instruments are completed, the first author will continue to conduct objective assessments such as the TUG and 10 MW tests.

The TUG will be performed with patients seated on a chair with arm rest and a measured distance of 3 m from the chair. The time taken for the patient to stand up from the chair and walk toward the 3-m mark and turn back and sit on the chair will be recorded. The participant may use the arms of the chair to stand up or sit down and walk as fast and safe as possible. The participant can wear their regular footwear, may use any gait aid or assistive device that they normally use during ambulation, but may not be assisted by another person. There is no time limit. They may stop and rest (but not sit down) if they need to. The time for two trials will be recorded.

The 10 MW test is performed by recording the time patients walk without assistance for a distance of 10 m. The time is recorded for intermediate 6 m to allow for 2 m of acceleration and deceleration. The use of assistive devices or physical assistance is allowed, but should be kept consistent and be documented. The documentation will include normal and fast walking speed. The time for three trials will be recorded, and the average will be calculated for normal and fast speed. Once the researcher and assistants have finished collecting the baseline data, the participants will be informed that they would be contacted for an appointment for the 2-, 3-, and 6-month follow-up assessments. The follow-up assessments will be done by the same researcher or assistant who had conducted the baseline assessments within a window period of 7 working days either before or after the actual date. The estimated duration for all the assessments will be 1 h. The questionnaires will be available in either English, Twi or Ga and will be administered in the language the participant prefers.



Phase 3: Experiences of participants

The first author will advertise phase 3 of the study to eligible participants who have completed 6 months of stroke rehabilitation at either the conventional or the complementary facility. The purpose and objectives of the study will be explained to the participants. Participants who agree to be part of the study will have either a written consent or an audio consent taken; permission will also be taken to record the interviews. The first author will administer a one-on-one audio interview with participants using an interview guide in a quiet venue, chosen by the participant, either in their homes or at the clinic. The first author will take notes during the interview, which will last for a maximum of 40 min. The interview guide will be available in either English, Ga or Twi and will be administered in the language the participant prefers.




Translation of the questionnaires

The outcome measures are available in English and will be translated from English to Twi and Ga (Ghanaian local languages) by a team of translators, with experience in questionnaire translation from the University of Ghana and Kwame Nkrumah University of Science and Technology. The translated questionnaires will be back translated into the original language (English) by another translator. All the translators will not be associated with the study, and the back translators will be independent of the first translators. Modifications and changes will be done taking into account the local context where needed (58) after agreement with the translators. The content of the translated items will be checked to see if it remained the same irrespective of the translation process.



Data analysis
 
Quantitative data

The data will be captured and stored in an encrypted Microsoft Excel file. Following data collection, the data will be cleaned and checked for accuracy. The data will be transferred into Statistical Package for the Social Sciences (SPSS) version 27 and analyzed using both descriptive and inferential statistics. Frequencies of socio-demographic and outcome variables will be determined. The frequencies will relate to data collected at baseline, 2-, 3-, and 6-month post-stroke. The frequencies will be presented in the form of means and standard deviations or medians and interquartile ranges depending on the distribution of the dataset. The Kolmogorov–Smirnov test will be used to assess the normality of the data. For participants who are unable to perform any of the items on the scales at baseline and at follow-up visits, a value of 0 will be assigned to them, because this score correctly reflects the subjects' inability to perform any of the items. A repeated measure ANOVA will be conducted on all outcome measures with time (pre-post) as within-subject variables and between-subject variables at each study sites. Comparisons will be made with the entire sample as well within each subgroup classified by scores on the stroke levity scale (mild, moderate, severe). Comparisons among all of the measures will be made for the 4-time intervals, namely, baseline, 2-, 3-, and 6-month assessments. An independent t-test will be used to compare the differences in age, gender, improvement of voluntary movement of the limbs, basic mobility, gait and balance, walking ability, cognitive function, walking speed, quality of life, and reintegration (activities of daily living, social, recreational activities, and interactions with others). To compare the changes at each site while adjusting the effect of confounding variables, the covariance analysis model or the relative change analysis will be used. Questionnaire scores between baseline, 2-, 3-, and 6-month post-stroke assessments will be compared using a generalized linear model. In all cases where differences occurred between baseline, 2-, 3-, and 6-month post-stroke assessments, post-hoc analyses with Bonferroni's adjustments for multiple comparisons will be done. For missing data imputation, the last value carried forward (LVCF) method will be used. A p-value of <0.05 will be considered statistically significant.



Qualitative data

The data collected will be analyzed using Atlas Ti version 9.0. The interviews in Ga and Twi will be translated into English and checked by an independent translator to make sure all the interviews are correctly translated until consensus in the final translation is agreed on. The interviews together with the translated one and the field notes will be transcribed into text (English). The text will be entered into Atlas Ti version 9.0 and analyzed using thematic analysis. The analysis will be performed by reading the text for familiarization with the data, establishing meaningful patterns, generating initial codes, searching for themes among the generated codes, reviewing the themes, defining and naming the themes, and producing the final report. Data from field notes will also be used for the analysis to enhance the results. The themes and sub-themes that will emerge from the data will be supported with verbatim quotes from the participants' transcribed data.



Trustworthiness of qualitative data

The credibility of the research will be ensured by explaining to the participants that participation in this study is completely voluntary, and they can choose not to participate in this research. The researcher will gather the required information from the participants during the interview process using additional probes. The credibility of the research will also be ensured by keeping a reflexive journal where the researcher's assumptions, thoughts, and ideas about the Research Topic and the disclosures of the participants during the interview process will be noted. Member validation will be done to ensure that the participants' experiences about stroke rehabilitation will be accurately represented in the data gathered. The transcribed data will be given to the participants to review during the data analysis and to provide feedback to ensure that their transcribed interviews were accurately recorded and the themes generated are meaningful to them. Transferability and dependability of the study will be ensured by giving detailed information about this study, as documented in the comprehensive methodology, and by keeping field notes using a reflexive journal. Lastly, conformability will be obtained through an audit trail of the procedures done.





Discussion

This study protocol offers an investigation of the structure, process, and outcomes of stroke patients in two different contexts 6 months post-stroke The research questions that this study aims to address are as follows:

1. The structure, processes, and outcomes of care for stroke patients using either conventional or complementary rehabilitation in Accra and Nankese-Ayisaa, Ghana.

2. The experiences of stroke patients about the process and outcomes of their rehabilitation at a conventional or complementary facility after 6 months of rehabilitation in Accra and Nankese-Ayisaa, Ghana.

Ghana has a vibrant pluralistic healthcare system made up of both mainstream biomedical (conventional) and complementary (herbal) health systems, which are all involved in stroke care and rehabilitation (59). In many rural and semi-urban areas in Ghana, most patients with stroke tend to use complementary medicine treatment either exclusively or in parallel with conventional medicine (40, 60) for varied reasons ranging from faith and cultural congruence to accessibility, cost, and belief that these approaches are safe (40, 61, 62).

Some stroke patients and their family members believe stroke is a spiritual illness caused by evil spirits or witches and as such the need to resort to herbal and faith healing clinics after discharge from conventional hospitals (36, 40, 62–64). Some of these reasons have led to the patronage of complementary rehabilitation among stroke patients in addition to conventional rehabilitation in Ghana (40, 62). In an era where complementary healthcare services are being introduced gradually to mainstream healthcare (16, 38), it is important to investigate and document the structure, processes, and outcomes of both conventional and complementary medicine treatment in a resource-constraint environment (40).

The study will provide information on the structure and process of stroke rehabilitation in a conventional and a complementary setting and explore the experiences of stroke patients who attend rehabilitation in two different settings. The study will also determine the outcomes of stroke rehabilitation in a conventional and complementary rehabilitation setting in Ghana after a 6-month follow-up. This study will inform clinical practice for stroke rehabilitation in Ghana and may improve stroke management.

In conclusion, the results will provide a comprehensive overview and insight into stroke rehabilitation in Ghana in terms of structure and process and outcomes of care, incorporating both conventional and complementary treatment and rehabilitation into stroke survivors' recovery journey. It will bring out the clinical and research implications of the different pathways of the current overview of the structure, process, and outcomes of stroke rehabilitation in Ghana by gathering data from both health professionals and persons with stroke.
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Background: Stroke-associated pneumonia (SAP) contributes to high mortality rates in spontaneous intracerebral hemorrhage (sICH) populations. Accurate prediction and early intervention of SAP are associated with prognosis. None of the previously developed predictive scoring systems are widely accepted. We aimed to derive and validate novel supervised machine learning (ML) models to predict SAP events in supratentorial sICH populations.

Methods: The data of eligible supratentorial sICH individuals were extracted from the Risa-MIS-ICH database and split into training, internal validation, and external validation datasets. The primary outcome was SAP during hospitalization. Univariate and multivariate analyses were used for variable filtering, and logistic regression (LR), Gaussian naïve Bayes (GNB), random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM), extreme gradient boosting (XGB), and ensemble soft voting model (ESVM) were adopted for ML model derivations. The accuracy, sensitivity, specificity, and area under the curve (AUC) were adopted to evaluate the predictive value of each model with internal/cross-/external validations.

Results: A total of 468 individuals with sICH were included in this work. Six independent variables [nasogastric feeding, airway support, unconscious onset, surgery for external ventricular drainage (EVD), larger sICH volume, and intensive care unit (ICU) stay] for SAP were identified and selected for ML prediction model derivations and validations. The internal and cross-validations revealed the superior and robust performance of the GNB model with the highest AUC value (0.861, 95% CI: 0.793–0.930), while the LR model had the highest AUC value (0.867, 95% CI: 0.812–0.923) in external validation. The ESVM method combining the other six methods had moderate but robust abilities in both cross-validation and external validation and achieved an AUC of 0.843 (95% CI: 0.784–0.902) in external validation.

Conclusion: The ML models could effectively predict SAP in sICH populations, and our novel ensemble model demonstrated reliable robust performance outcomes despite the populational and algorithmic differences. This attempt indicated that ML application may benefit in the early identification of SAP.

KEYWORDS
 pneumonia, predict, machine learning, ensemble model, intracerebral hemorrhage, stroke


Introduction

Stroke-associated pneumonia (SAP) is the most common infectious complication in spontaneous intracerebral hemorrhage (sICH) individuals, with an estimated incidence of 15–25% in overall stroke populations (1–3). SAP is usually adversely associated with increased mortality, prolonged hospital stays, and poor prognosis (3–5). The current large phase III clinical trials have not found the benefits of routine antibiotic prevention for general stroke individuals (6, 7). Therefore, the accurate prediction and early intervention of SAP might contribute to improving the prognosis. Thus, a reliable model is needed for predicting and monitoring potential SAP, so that exact prophylactic interventions or therapeutic antibiotics can be tailored promptly.

In recent decades, a few studies have indicated several independent risk factors for SAP, including older age (5, 8–13), male sex (8, 9, 13, 14), severe stroke (4, 5, 8–16), intubation (4, 15), nasogastric feeding or dysphagia (4, 8, 16), and deeper location and larger volume of sICH (4, 11, 15). Some of these variables were included in several predictive scoring systems for SAP risk stratifications, such as the A2DS2 and PNA scores in Germany (9, 12), and the AIS/ICH-APS scores in China (10, 11), and the ISAN score in the UK (13). However, most scoring systems are designed for acute ischemic stroke (AIS) populations (9, 10, 12, 13), and none of the SAP prediction scoring systems are widely accepted in routine clinical practice.

At present, prediction models based on machine learning (ML) have been applied to predict the occurrence and prognosis of various diseases, which greatly promoted diagnostic performance and facilitated more responsive health systems (17–19). In clinical applications, ML algorithms are applied for risk stratification and prognosis prediction of disease and guide clinicians to apply corresponding measures timely. Compared to traditional scoring systems, ML models show smarter, more accurate, more timely, and more convenient characteristics (18–21). While there is currently no ML model for SAP forecasting. Thus, we aim to derive and validate novel supervised ML models to predict SAP events in supratentorial sICH populations and expect to develop a superior and automatic tool for clinical practice.



Materials and methods


Study design and participants

The data for this analysis were obtained from the retrospective database of the Risk Stratification and Minimally Invasive Surgery in Acute Intracerebral Hemorrhage Patients (Risa-MIS-ICH) study (Clinical Trials Identifier: NCT03862729, https://www.clinicaltrials.gov), which was a multicenter ambispective cohort study. Two centers were involved in the retrospective cohort for this work, including the First Affiliated Hospital, Fujian Medical University (FAHFMU, Fuzhou, Fujian), and Anxi County Hospital (ACH, Quanzhou, Fujian). The FAHFMU subcohort (from January 2015 to July 2020) was for the variable filtrations and model derivations/validations. The ACH subcohort (from June 2019 to April 2021) was introduced into this work for external validation. The study protocol followed the principles of the Declaration of Helsinki and was approved by the ethics committee of FAHFMU (GN: MRCTA, ECFAH of FUM [2018]082) and documented in each center. No informed consent was required for the retrospective cohort. This work was reported in accordance with the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement (22).

The inclusion and exclusion criteria of the participants are shown as follows:

Inclusion criteria:

• Diagnosed with spontaneous sICH by computed tomography (CT)/CT angiography (CTA) scan, and the interval time from onset to recorded CT/CTA scan ≤ 48 h;

• Glasgow Coma Scale (GCS) score > 5 and no cerebral herniation at admission;

• Onset age ≥ 18 years.

Exclusion criteria:

• With any intracranial etiology of supratentorial hemorrhage of arteriovenous malformation (AVM), arterial aneurysm, hemorrhagic cerebral tumor stroke, hemorrhagic infarction, coagulation disorders, or any other potential organic lesions indicating nonspontaneous sICH;

• Occurrence of infratentorial hemorrhage;

• Evidence of pregnancy, or pre-stroke life expectancy < 3 months.

Additional criteria for SAP prediction model derivations/validations in this work:

• Interval time from onset to admission ≤ 24 h;

• Hospital stay ≥ 48 h;

• Receiving no mechanical ventilation or ventilation time ≤ 24 h before SAP events;

• Underwent recent pulmonary infectious disease or received any antibiotic therapy ≤ 4 weeks;

• Critical data loss about SAP in the laboratory, imaging, or other important clinical information.

According to the present guideline, the diagnosis of sICH participants required radiologic records and exclusion of other organic lesions causing hemorrhage. Only supratentorial sICH participants were enrolled in the Risa-MIS-ICH study, and the participants with the cerebral herniation or low GCS scores usually indicated poor prognosis, which was excluded from the study scope. The exclusion of the juvenile and the pregnant population is for ethical consideration. Furthermore, for the unbiased diagnosis of SAP and the precise analysis, the strict additional criteria had to exclude short-term hospitalization, infection associated with mechanical ventilation, and undefined participants.

The screening process of this work is presented in Figure 1A.


[image: Figure 1]
FIGURE 1
 Flowchart of the current work. (A) Participant enrollment in the retrospective cohort of the Risa-MIS-ICH study; (B) Data flow from the FAHFMU subcohort; (C) The prediction model derivations and internal/cross-/external validations for SAP events. sICH, supratentorial intracerebral hemorrhage; ML, machine learning; LASSO, least absolute shrinkage and selection operator; SAP, stroke-associated pneumonia.




Variable extractions and primary outcomes

Relevant information about participants were retrieved from the electronic medical record (EMR) systems from each neurological research center. The electronic data capture (EDC, http://61.154.9.209:8090/, RealData Corporation, Ningbo, Zhejiang, China) system was employed for database establishment and data collection. The trained professional clinical research coordinators (CRCs) were commissioned for data entry and follow-up. The Risa-MIS-ICH database included 665 variables and involved information on demographics, pre-stroke comorbidities, onset details, imaging features, laboratory results, complications during hospitalizations, interventions, discharge status, and follow-up information. The collation of the database was performed by professional statisticians, and data analysis was carried out after passing the third-party quality control.

The primary outcome of the current analysis was the occurrence of SAP events during hospitalization, and SAP was defined as a pneumonia not incubating during hospital admission and occurring ≥ 48 h after admission in acute stroke populations. Referring to the diagnostic criteria for hospital-acquired pneumonia (HAP), the diagnostic criteria for SAP were as follows (23, 24): the presence of a new or progressive infiltrate in a chest X-ray or CT scan, plus at least two of the following clinical manifestations: (1) fever (T > 38°C) or hypothermia (T < 36°C), (2) leukocytosis [white blood cell (WBC) count > 10 × 109/L] or leukopenia (WBC count < 4 × 109/L), and (3) nursing-recorded purulent airway secretion. Ventilator-acquired pneumonia (VAP), defined as a pneumonia event after ventilation time > 24 h, was excluded from this work.



Statistical analysis and variable filtration

All statistical analyses were performed using the SPSS software (version 22.0, IBM Corporation, Armonk, NY, USA) and Python (version 3.8.3, Anaconda Distribution, Austin, TX, USA). The current work mainly used the development environment of Jupyter Notebook (version 6.0.3) and invoked the key packaged libraries of NumPy (version 1.18.5), Pandas (version 1.1.5), Scikit-learn (version 0.24.2), SciPy (version 1.5.0), Matplotlib (version 3.4.3), and Lifelines (version 0.26.4). The continuous variables and categorical variables are presented as the mean and standard deviation (SD) or median and interquartile range (IQR) and quantities and percentages.

The screening of variables was performed in the FAHFMU subcohort. As shown in Figure 1B, the study variables were initially screened by univariate analyses. The independent sample Student's t-test was used for normally distributed data, the Mann-Whitney U test was used for nonnormally distributed data, and the chi-square test or Fisher's exact test was used for categorical data. All tests in this work were two-sided, and P < 0.05 was considered statistically significant. To prevent overfitting, the least absolute shrinkage and selection operator (LASSO) regression was used in multivariate analysis and further performed after univariate analyses. Each continuous variable was standardized before performing LASSO regression to improve generalizability. LASSO regression selects the optimal penalty value via the internally installed k-fold cross-validation module (k = 3) and recursively removes the least important variables by vanishing coefficients. Through the above steps, the independent significant variables had nonzero coefficients in LASSO regression and were selected as candidate variables for ML model derivations.

Survival analysis was additionally performed in this work, in which all-cause death after stroke onset was defined as the observed indicator. The survival time was defined as the time interval from stroke onset to all-cause death or follow-up. The survival curves were plotted using the Kaplan–Meier method, and survival rates were compared using the log-rank test.



Model derivations and validations

The flow diagram of the model derivations and validations is presented in Figure 1C. The FAHFMU subcohort was randomly split into the training and validation datasets (7:3), which were used for the model derivations and the internal validation, respectively. The model derivations were performed on the candidate variables by six common basic ML algorithms and one additional ensemble model, of which these six well-established algorithms represented various ML frames and are widely accepted at present (19). The ML models were invoked with mature Python packages, including logistic regression (LR), Gaussian naïve Bayes (GNB), random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM), extreme gradient boosting (XGB), and ensemble soft voting model (ESVM). None of these models was uncertain about demonstrating the optimal performance beforehand. In the training process, six basic ML algorithms were independently fitted with the candidate variables and virtual SAP classifications from the training dataset, and model hyperparameters were optimized with the grid-search algorithm to promote model performance. In detail, the grid-search algorithms tune optimal parameters by internally evaluating model performance repeatedly via the nested k-fold cross-validation module (k = 3 in this work). Before the above steps, ML prediction models with different characteristics were generated, and these processes were termed supervised ML. To improve the robustness of ML models, the additional ESVM was derived by incorporating the aforementioned six algorithms. The ESVM is simply a voting system on the weighted classified outputs of the six basic algorithms, and these processes were termed soft voting.

After model derivations, the validation dataset was automatically inputted into the seven models to obtain the predicted classifications in the internal validation. Receiver operating characteristic (ROC) curves were plotted, and the metrics of accuracy, sensitivity, specificity, and area under the curve (AUC) along with 95% CIs were calculated to evaluate the disease discrimination ability of each model. Further supplementary internal evaluation with advanced robustness was performed with n-repeated k-fold cross-validation (n = 3 and k = 5 in this work). This method repartitions the FAHFMU subcohort into k nonoverlapping folds, where the k-1 folds are used for the model derivations and the other fold is used for validation. After n repetitions, n × k combinations are finally generated for robust validation (25).

Furthermore, this work also introduced the external subcohort, which was not involved in variable filtrations and model derivations. In this process, the entire FAHFMU subcohort was considered the training dataset to retrain the prediction models, and the external subcohort was introduced as the exclusive validation dataset. The technical avenue of training and evaluating the models remained the same as above.




Results


Participants and characteristics

From January 2015 to April 2021, a total of 909 participants were included in the retrospective cohort of the Risa-MIS-ICH study, and 441 of these individuals were excluded due to ventilation > 24 h, ineligible time window, or incomplete data. Finally, 468 individuals (nFAHFMU = 324, nACH = 144) were included in this work. The overall average age was 60.44 (±12.51) years, and 308 (65.8%) of the individuals were male sex. SAP events during hospitalizations occurred in 135 (28.8%) [nFAHFMU = 97 (29.9%), nACH = 38 (26.4%)] individuals. The demographic characteristics, clinical manifestations, imaging features, laboratory tests, and prognostic indicators in the FAHFMU and external subcohorts are summarized in Tables 1, 2, respectively. Differences in the analyzed variables between the two centers are shown in Supplementary Table 1.


TABLE 1 Baseline characteristics.
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TABLE 2 Variables of laboratory results, imaging features, and early clinical interventions.
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Variable filtration and importance

According to previous literature and clinical experience (3–5, 8–16), 70 variables related to the study were retained for subsequent analyses. Twenty-five variables were identified as potential predictive factors for SAP by univariate analysis and further LASSO regression was performed (Tables 1, 2). LASSO regression showed that nasogastric feeding (coefficient = 0.14687), airway support (coefficient = 0.09609), unconscious onset (coefficient = 0.05304), surgery for external ventricular drainage (EVD, coefficient = 0.01923), larger sICH volume (estimated with the ABC/2 formula in imaging, coefficient = 0.00625), and intensive care unit (ICU) stay (coefficient = 0.00586) were considered independent influencing factors of SAP (Figures 2, 3).


[image: Figure 2]
FIGURE 2
 Importance ranking of six independent variables selected by LASSO regression: (1) nasogastric feeding, (2) airway support, (3) unconscious onset, (4) surgery for EVD, (5) larger sICH volume, and (6) ICU stay. EVD, external ventricular drainage; ICU, intensive care unit.
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FIGURE 3
 Multivariate analysis and variable filtrations with LASSO regression. The tuning parameter (λ) was selected for the minimized MSE in the LASSO model using 10-fold cross-validation. Features with nonzero coefficients were selected while the previous λ value was applied. (A) The MSE was plotted vs. log λ. An optimal λ value of 0.02477 was chosen via the minimum criteria and presented as a black vertical dashed line. (B) LASSO coefficient profiles of the features. Each colored line represents the coefficient of each feature, and six of them were selected as independent variables when λ equals 0.02477. MSE, mean-square error.




Model performance

The ROC curves of the seven models built on the internal validation set were shown in Figure 4A. Among the seven models, GNB demonstrated the optimal efficiency to predict SAP with the highest AUC value (0.861, 95% CI: 0.793–0.930), while the ESVM presented the highest accuracy (0.837, 95% CI: 0.764–0.910) and specificity (0.917, 95% CI: 0.862–0.971). The XGB was the most sensitive, with the highest value (0.692, 95% CI: 0.601–0.784) (Table 3A). The decision curve analyses were performed on both training and validation datasets with seven models, as shown in Supplementary Figure 1. The learning curves presented the evolutions of models with different characteristics and are illustrated in Supplementary Figure 2.
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FIGURE 4
 ROC curves for SAP on the (A) internal and (B) external validation datasets. A greater AUC value indicated a higher predictive ability of the models. ROC, receiver operating characteristic; AUC, area under the curve.



TABLE 3 Performance metrics of the ML models in the FAHFMU validation dataset and external subcohort.
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Three repeated five-fold cross-validation were established, and a total of 15 combinations were generated from three splits and five-folds. The AUC values of different models from combinations are summarized and presented as heatmaps in Supplementary Figure 3, and all quantified metrics are listed in Supplementary Table 2. In most random states, the ESVM (frequency = 9/15) and XGB (frequency = 8/15) models remained the optimal models in terms of accuracy and sensitivity, respectively. Unlike the results in internal validation, the LR (frequency = 6/15) and RF (frequency = 10/15) models most often had the highest AUC and specificity values, respectively, with robustness.



External validation

The metrics and ROC curves of each model in external validation are shown in Table 3B and Figure 4B. The LR was superior in AUC value (0.867, 95% CI: 0.812–0.923) in the external validation. While GNB had the highest accuracy (0.833, 95% CI: 0.772–0.894) and sensitivity (0.553, 95% CI: 0.471–0.634), the RF was the most specific (0.962, 95% CI: 0.931–0.993). There was no single algorithm with dominant ability and robustness in the external validation. It is worth mentioning that the ESVM had moderate but robust abilities and achieved AUC, accuracy, sensitivity, and specificity values of 0.843 (95% CI: 0.784–0.902), 0.812 (95% CI: 0.749–0.876), 0.447 (95% CI: 0.366–0.529), and 0.943 (95% CI: 0.906–0.981), respectively, in the external validation. The decision curves for predicting SAP on both FAHFMU and external subcohorts with seven models are illustrated in Supplementary Figure 1.



Outcome and survival analysis

In both the FAHFMU and external subcohorts, participants with SAP suffered from significantly higher hospital costs and prolonged hospital stays (both P < 0.001). Three hundred sixty-four (77.8%) of all eligible 468 participants were followed for survival, and 83 (25.3%) of them had experienced SAP during hospitalization. The mean survival times of participants in the two groups were 44.95 ± 2.78 (95% CI: 39.50–50.40) and 55.77 ± 1.26 (95% CI: 53.30–58.25) months, respectively. The median survival times were not available because mortality was < 50%. The 3-month and 1-year survival rates after onset were 86.9 and 78.3% in SAP participants and 96.7 and 94.2% in non-SAP participants. The Kaplan-Meier curves are plotted in Figure 5. There was a significant difference in survival times between the two groups (log-rank χ2 = 20.34, P < 0.001).
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FIGURE 5
 Kaplan–Meier curves of participants with/without SAP over 1-year follow-up. The colored area represents the 95% confidence intervals of the survival rates.





Discussion

It is critical to identify individuals at high risk for SAP and to further tailor timely prophylactic interventions or therapeutic antibiotics. However, for now, the early prediction of SAP in sICH populations is challenging due to the lack of widely accepted prediction tools, which are important for modern precision medicine and evidence-based medicine (EBM) in this field. Thus, we aimed to derive more effective and automatic sICH-SAP prediction tools in this work. The novel ML prediction models were derived and validated as an attempt to combine artificial intelligence (AI) medical engineering and clinical practice in this field. The major findings were as follows. (1) The incidence rate of sICH-SAP was close to 30%, and the sICH-SAP events significantly contributed to prolonged hospital stays, increased hospital costs, and higher mortality. (2) Six independent predictors for sICH-SAP were identified—nasogastric feeding, airway support, unconscious onset, surgery for EVD, larger sICH volume, and ICU stay. (3) ML prediction models were successfully derived and showed good disease discrimination ability. (4) There was no certain single algorithm with the dominant ability and robustness in cross- and external validations, while the ESVM was considered averaged in metrics and better in robustness in different populations after multiple validations.

Various predictors for SAP were identified in prior literature (4, 5, 8–16). This work screened for independent variables for sICH-SAP events by using univariate and multivariate analyses in the FAHFMU subcohort. Nasogastric feeding, airway support, and unconscious onset were identified as strongly associated risk predictors, which overlapped with the results of previous studies (4, 8–16). Nasogastric feeding and airway support measurement were recognized as SAP predictors, which might bring about secretion disturbances in nasal/oral/tracheal cavities, decreased air filtrations, and even aspiration events (4, 8, 15, 16). These early interventions were secondary to the manifestation of unconsciousness. Previous studies mainly included the ranked variable of the GCS score and rarely adopted the onset manifestations (4, 10, 11, 14–16). In this work, the admission GCS score and unconscious onset were simultaneously introduced into the analyses, and the categorical variable of unconscious onset was independently significant for sICH-SAP. The predictors of larger sICH volume and ICU stay were also reported in previous studies (4, 11, 15) and contributed the least to predicting SAP in this work. The larger sICH volume is a primary factor influencing stroke severity, and ICU stay was a comprehensive intervention secondary to stroke severity and resulted in infectious environments. These aforementioned predictors are usually uncontrollable for actively preventing SAP in clinical practice. However, there were still novel findings in the subgroup analysis that only the surgery for EVD was a significant independent predictor (P < 0.001 in FAHFMU/P = 0.001 in external subcohorts) of all surgical approaches in this work, while EVD was only previously reported as a univariate factor for overall infections (4). On the other hand, the surgery for sICH catheter evacuation did not significantly contribute to SAP events in any univariate analyses (both P = 0.089 in FAHFMU/external subcohorts), which was in accordance with the undifferentiated non-neurologic infections in the MISTIE III trial (26). This suggests that we should continuously focus on the stratification of surgical approaches in the prospective cohort of the Risa-MIS-ICH study for convincing evidence.

To date, apart from the ICH-APS score, none of the SAP prediction models is widely available in clinical practice (8–13). The validation dataset for the ICH-APS score was obtained from the Chinese National Stroke Registry (CNSR) with an AUC value of 0.74 (95% CI: 0.72–0.75). Both our optimal ML prediction models [internal validation: 0.861 (95% CI: 0.793–0.930); 0.867 (95% CI: 0.812–0.923)] and robust ESVM classifiers [internal validation: 0.830 (95% CI: 0.756–0.904); external validation: 0.843 (95% CI: 0.784–0.902)] achieved higher AUC values, indicating greater predictive ability.

Li et al. (26) developed ML models to predict SAP events in Chinese AIS populations, which presented better performance with the highest AUC value of 0.843 (95% CI: 0.803–0.882) than other AIS-SAP prediction scores (0.835 for A2DS2, 0.786 for PNA, 0.785 for AIS-APS, and 0.78 for ISAN scores). According to metrics from the literature and this work (27–32), the ML prediction models for SAP showed better performance metrics than traditional scoring systems in both sICH and AIS populations. However, due to incomplete variable collections, horizontal comparisons of different prediction models on the same validation dataset were not possible. Despite the defects, the prediction models usually performed better in internal validation than in external validation due to the intrinsic consistency of original datasets and populational heterogeneity, and the comparisons on their respective original validation datasets usually explained the significance (33).

The published research mainly focused on the mutually separated algorithms. Notably, only the optimal algorithm was mentioned in those articles, although ensemble ML models were reported as successful classifiers with greater performance outcomes in the literature (31, 32). The six basic algorithms used in this work have different characteristics as SAP predictors. RF and LR could identify non-SAP participants better, while XGB could identify SAP participants better. We noted that the predictive ability of one single algorithm was uncertain due to the inconsistent ML algorithmic performance outcomes among the internal/cross-/external validations, and the indeterminacy probably restricted the aforehand model selection and implementation in clinical practice. Therefore, a general and robust model is required for stable predictive ability. Based on the principle of soft voting, we additionally derived ESVM classifier incorporating six basic ML algorithms, which was moderate but surprisingly robust in each metric. Notwithstanding that the occupied machine sources of the ESVM equals the summation of the six basic algorithms, this disadvantage could be ignored by timed training and then pro re nata invoking.

Our current work explored the ML for SAP prediction in sICH individuals. During hospitalization, the clinicians could collect the predictive variables and input these variables into an ML model for a predictive suggestion, so that appropriate precautions and interventions would be timely tailored. While the present ML models are semi-automatic and required manual variable input for now. In the coming decades, the internally installed sophisticated algorithms in the EMR system would ceaselessly learn and then calculate the prediction for high-risk individuals in the prospect via dynamically evaluating the keyed-in clinical manifestations from clinicians, the resulting values from the laboratory information system (LIS), and the captured data from the picture archiving and communication system (PACS) (29, 34). The ML application may greatly improve the work efficiency of clinicians and the accuracy of judgment results.

We have strengths that deserve comments. An external subcohort and multiple forms of validation were introduced in this work. Therefore, there was populational and algorithmic robustness of convincing results. Based on the aforementioned circumstances, we derived novel ensemble models for generalizability, which showed moderate but robust predictive abilities in different populations and were fit for real-world practice. However, there are limitations that should be acknowledged in this work. First, the observational retrospective design might introduce unmanageable bias. Uncontrollable baseline characteristics in the observational study might confound SAP risks and further model derivations/validations. Second, some important variables were missing due to the retrospective collection of data in this work. The National Institute of Health Stroke Scale (NIHSS) score, uniform CT scan parameters, scanning timing, and other unrecorded details were unreachable in the retrospective cohort of the Risa-MIS-ICH study and resulted in the inability to perform horizontal comparisons with external models in this work. Third, not all variables were balanced across the centers, which may bias the results. Although we obtained consistent results based on these imbalanced variables, the influence of the heterogeneity still should not be underestimated. Fourth, there are defects in the deep analyses for SAP. The subgroup analyses on pneumonia severity, radiological features, or pathogenic agents were all absent. A simple overall SAP analysis might be rather rough for complex and heterogenetic pulmonary infections. Future studies on our prospective cohort should continue to resolve the aforementioned problems.



Conclusions

In this work, the authors derived SAP prediction models with ML algorithms in supratentorial sICH populations from multiple centers and performed multiple validations for effective and robust confirmations. The ensemble model was a novel application in this work and showed robust performance outcomes in different populations. Our attempt indicated that ML application may benefit in the early identification of SAP.
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Background and purpose: Futile recanalization occurs in a significant proportion of patients with basilar artery occlusion (BAO) after endovascular thrombectomy (EVT). Therefore, our goal was to develop a visualized nomogram model to early identify patients with BAO who would be at high risk of futile recanalization, more importantly, to aid neurologists in selecting the most appropriate candidates for EVT.

Methods: Patients with BAO with EVT and the Thrombolysis in Cerebral Infarction score of ≥2b were included in the National Advanced Stroke Center of Nanjing First Hospital (China) from October 2016 to June 2021. The exclusion criteria were lacking the 3-month Modified Rankin Scale (mRS), age <18 years, the premorbid mRS score >2, and unavailable baseline CT imaging. Potential predictors were selected for the construction of the nomogram model and the predictive and calibration capabilities of the model were assessed.

Results: A total of 84 patients with BAO were finally enrolled in this study, and patients with futile recanalization accounted for 50.0% (42). The area under the curve (AUC) of the nomogram model was 0.866 (95% CI, 0.786–0.946). The mean squared error, an indicator of the calibration ability of our prediction model, was 0.025. A web-based nomogram model for broader and easier access by clinicians is available online at https://trend.shinyapps.io/DynNomapp/.

Conclusion: We constructed a visualized nomogram model to accurately and online predict the risk of futile recanalization for patients with BAO, as well as assist in the selection of appropriate candidates for EVT.

KEYWORDS
 basilar artery occlusion, futile recanalization, endovascular thrombectomy, nomogram model, predictive model


Introduction

Basilar artery occlusion (BAO) strokes represent only 1% of all the ischemic strokes, but are devastating for patients (1). The American Heart Association/American Stroke Association guidelines indicated that endovascular thrombectomy (EVT) should be considered reasonable for carefully selected patients with BAO stroke (2). The therapeutic goal of EVT is to achieve endovascular recanalization to improve long-term functional outcomes. However, a substantial proportion of patients experience successful reperfusion, but fail to achieve favorable outcomes, defined as “futile recanalization.” Recently, several studies of literature have reported that futile recanalization occurred in more than half of the BAO (3–5). Prior studies in patients suffering from large vessel occlusion with anterior circulation stroke have demonstrated that futile recanalization depends on patient-specific factors, as well as procedural considerations, such as age, the admission National Institutes of Health Stroke Scale (NIHSS), and the number of stent retriever passes (6–9). However, those factors remain elusive in BAO.

Nomogram is a reliable and visual statistical instrument that has the ability to develop a continuous scoring system by incorporating different data. By creating an intuitive graph, a nomogram derives the risk probability of a clinical event and divides the patients into two different groups. Although the ATTENTION trial demonstrated a significant effect among patients with BAO with the baseline NIHSS ≥ 10 undergoing EVT, the efficacy of stroke thrombectomy is largely determined by patient selection (10). Therefore, a nomogram model to predict futile recanalization that aimed to inform decision support in selecting patients with BAO for EVT is important. However, there are no reliable nomogram models developed with this target in mind.

Here, we aimed to identify the predictors of futile recanalization in patients with BAO and to develop a visualized nomogram aimed to assist clinicians in evaluating the risk of futile recanalization in this population, and more importantly, providing individualized information in selecting the most appropriate candidates for EVT.



Materials and methods


Study population

We retrospectively collected all the patients who received BAO in the National Advanced Stroke Center of Nanjing First Hospital (China) from October 2016 to June 2021. Patients were included if they underwent EVT and had the Thrombolysis in Cerebral Infarction (TICI) score of ≥ 2b. Patients were excluded from the study in the case of lack of the 3-month Modified Rankin Scale (mRS), age <18 years, the premorbid mRS score > 2, and unavailable baseline CT imaging.

The present research was approved by the Ethics Committee of Nanjing First Hospital (document number: KY20130424-01) and informed consent was obtained for each participant.



Patient clinical and radiological variables

Related clinical and radiological variables were routinely recorded for individual patients. Demographic data included age, sex, body mass index (BMI), and years of education. Risk factors of vessels included hypertension, diabetes, dyslipidemia, coronary artery disease, and previous stroke history. Laboratory data included fasting blood glucose (FBG), systolic blood pressure (SBP), diastolic blood pressure (DBP), platelet count, and lipid testing indicators. Ischemic stroke etiology was classified by the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) criteria (11).

The extent of early infarct was measured by the posterior circulation Acute Stroke Prognosis Early CT Score (pc-ASPECTS) with CT or MRI, which was assessed by two independent neurologists. Measurements from the diagnostic modality provided scores ranging from 0 to 10, with the higher scores representing smaller early ischemic changes.

We recorded blood pressure data at 1, 3, 6, 12, and 24 h after EVT. Then, the SD and coefficient of variation (CV) of systolic and diastolic blood pressures were calculated using data from these five time points. In addition, we have collected the following five points: onset to emergency (OTE), onset to image (OTI), onset to puncture (OTP), onset to recanalization (OTR), and puncture to recanalization (PTR).



Patient outcome

We divided eligible patients with the mTICI ≥ 2b into two groups using the 90-day mRS score, which included futile recanalization (the 90-day mRS of 3–6) and meaningful recanalization groups (the 90-day mRS of 0–2). The 90-day mRS was collected by telephone interview or outpatient 3 months 90 days after onset.



Statistical analysis

The Shapiro–Wilk test was carried out to test the normality of continuous variables. Normally distributed continuous variables were presented by their mean and SD, while non-normally distributed continuous variables were presented by their median and interquartile range (IQR). The Mann–Whitney U-test and t-test were used for the comparison of normally distributed continuous variables with non-normally distributed continuous variables, respectively. Categorical data were tested using the Pearson's chi-squared test or Fisher's exact test, expressed as the percentages of events. Factors with more than 10% missing data were excluded and mean imputation was used with low missing data. All the tests were two-sided and p-values <0.05 were considered to be statistically significant.



Development and assessment of the models

Variables with a value of p < 0.05 in the univariate analysis were re-entered into the multivariate logistic regression model in a backward stepwise method. Also, the odds ratio and 95% CI were presented for potential predictors incorporated in the multivariate logistic regression models. Finally, the selected potential predictors were used to construct the nomogram model. Each variable in the nomogram was given a weighted score, which was then summed to create a total score and finally converted to individual risk of futile recanalization by the function between the total score and the probability of the outcome. The “rms” package with R software was used to build a conventional nomogram model.

The area under the receiver operating characteristic curves (AUCs) were used to assess the model's predictive ability and to determine the thresholds that separate the meaningful recanalization and futile recanalization groups. The Youden index (sensitivity + specificity −1) was calculated for different vs. thresholds, and the score at the greatest Youden index was used as the cutoff value. Based on the greatest Youden index, sensitivity and specificity were calculated. We assessed calibration through calibration plots and mean absolute error. A calibration plot was generated with 1,000 bootstrap resampling for depicting the correlation between the actual unfavorable outcome and the predicted probability of an unfavorable outcome. The “DynNom” package with R software was used to build dynamic nomogram models for the prediction of an unfavorable outcome in patients with BAO at 3 months on the Internet (12). The above data analysis was implemented with SPSS version 25.0 (IBM Corporation, Armonk, New York, USA) and R statistical software version 4.1.0.




Results


Study population

Of the 107 patients with BAO who were admitted to our institution and underwent EVT first registered, 23 patients were not included in the study population. The specific process of exclusion for 23 patients was shown in Figure 1 and a total of 84 patients were eventually included in the study population. Futile recanalization was observed in 42 (50.0%) patients at 3 months.


[image: Figure 1]
FIGURE 1
 Flowchart of patient inclusion and exclusion criteria.


The clinical and radiological characteristics of the whole cohort (n = 84), the meaningful recanalization cohorts (n = 42), and futile recanalization (n = 42) cohorts are given in Table 1A. The median age of the study population included was 65.87 (SD = 12.04) years and 68 (81.0%) patients were men. The median NIHSS score on admission, the pc-ASPECTS, and the premorbid mRS were 16.00 (IQR, 8.00–29.75), 8.5 (IQR, 7.0–10.0), and 0 (IQR, 0–0), respectively. A history of the previous stroke was observed in 21 of the 84 patients (25.0%).


Table 1A. Demographics and clinical characteristics.

[image: Table 1]

Patients' treatment information and complication are shown in Table 1B. In the whole cohort, thirty-two patients (38.1%) received intravenous thrombolysis. Twenty-two of the 84 patients (26.2%) achieved the TICI score of 2b and the remaining 62 patients (73.8%) achieved the TICI score of 3. The median number of passages in the study population was 1 (IQR, 1–2) and symptomatic intracranial hemorrhage (sICH) was observed in 6 (7.1%) patients from the entire cohort.


Table 1B. Treatment information and complications.

[image: Table 1]



Univariate and multivariate analyses

In the univariate logistic analysis, the NIHSS on admission (p < 0.001), previous stroke (P = 0.006), and the pc-ASPECTS (p < 0.001) were found to be significantly associated with futile recanalization (Tables 1A,B).

The multivariate logistic regression analysis identified previous stroke (OR, 4.421; 95% CI, 1.112–17.587), the NIHSS on admission (OR, 1.111; 95% CI, 1.051–1.174), and the pc-ASPECTS (OR, 0.519; 95% CI, 0.352–0.767) as prognostic factors of an unfavorable outcome at 3 months (Table 2). The logistic regression model resulted: Log [p(x)/1–p(x)] = 3.1062 + (1.4865 × Previous stroke) + (0.1052 × NIHSS on admission) + (−0.6549 × pc-ASPECTS); where p(x) was the probability of futile recanalization. Patients with previous stroke, the higher NIHSS on admission, and the lower pc-ASPECTS were more likely to experience futile recanalization.


TABLE 2 The multivariate logistic regression analysis.

[image: Table 2]



Development and assessment of nomogram model

A prognostic nomogram was established for futile recanalization before EVT by integrating independent significant risk factors based on the multivariate logistic regression, which is shown in Figure 2. In addition, we established a dynamic web-based nomogram for broader and easier access by clinicians and researchers, which is available online at https://trend.shinyapps.io/DynNomapp/. Clinicians and researchers can input the individual variables of patients on the web page to obtain the risk of futile recanalization effortlessly.


[image: Figure 2]
FIGURE 2
 The prognostic nomogram of futile recanalization. Pc-ASPECTS, posterior circulation Acute Stroke Prognosis Early CT Score.


As shown in Figure 3A, the predictive performance was observed in the prognostic nomogram (AUC, 0.866; 95% CI, 0.786–0.946), which demonstrated the superior discriminatory ability of our model. The maximum Youden index was 0.507 with 81% sensitivity and 81% specificity. In addition, the points of the calibration plot for the probability of futile recanalization for patients with BAO are close to the 45° line, suggesting a positive correlation between predictions by nomogram and actual observations (Figure 3B). The mean squared error of the prognostic model was 0.025, also showing a strong level of calibration performance of the nomogram model we built.


[image: Figure 3]
FIGURE 3
 The receiver operating characteristic curve (ROC) of the nomogram (A) and the calibration plot of the nomogram (B).





Discussion

In the present study, we developed a visualized nomogram for the evaluation of futile recanalization in patients with BAO. We found that previous stroke, the NIHSS on admission, and the pc-ASPECTS are potential predictors of futile recanalization via EVT in patients with BAO. Therefore, our nomogram model to quantify the risk of futile recanalization could aid in identifying risk factors, as well as a prediction for futile recanalization after EVT.

A major strength of our study is that our prediction model demonstrated favorable predictive (AUC, 0.866; 95% CI, 0.786–0.946) and calibration capabilities (mean squared error = 0.025). Besides, in a previous study of a scoring scale for the prediction of futile recanalization of the posterior circulation (13), its predictors included the pons-midbrain index and bilateral thalamic infarction on diffusion-weighted imaging. These are difficult variables to obtain and are not widely used in clinical practice, especially in primary care, which limits the clinical dissemination of this scoring scale. In contrast, the three variables of our model are easily accessible and the visualized model is readily available for use. In addition, we provided an example to facilitate clinicians and researchers to better understand the utility of our web-based nomogram. If a patient had a history of stroke, the initial NIHSS score of 18, and the pc-ASPECTS of 8, as shown in Figure 4, the web page would calculate a 3-month nullification risk recanalization of 0.777 (95% CI, 0.505–0.922), which considered as a high-risk patient because the predicted probability is greater than the threshold of our model (0.507). When the “Graphical Summary” button was clicked, the site would display a graph of the predicted probabilities and their 95% CIs, and as we click on the “Model Summary” button, the site would provide information on the specific parameters of our model.


[image: Figure 4]
FIGURE 4
 The example diagram of the visualized nomogram model.


Although the baseline variables we included in the study at the outset were those of demographics, clinical characteristics, and treatment information, it so happened that all the variables that were eventually included in the model were preoperative. Thus, our model can be used preoperatively as a clinical decision support tool to assist physicians in deciding whether to perform EVT. Specifically, a patient may have undergone a successful thrombectomy with no improvement in prognosis, which results in a waste of medical resources and money. In addition, ineffective treatment will increase pain and discomfort at the end of patients' life, reducing the quality of patient survival and delaying palliative care. Therefore, futile recanalization does not confer actual benefit to the patient. In patients predicted by our model to be at high risk of futile recanalization, physicians may need to consider the need for EVT in the context of the individual patient's situation. For primary care hospitals, in particular, consideration should be given to whether patients should be advised to be transferred to undergo EVT. Furthermore, in addition to constructing a traditional nomogram model, the dynamic nomogram was also developed on a web page to facilitate accessibility for clinicians. Certainly, we need to emphasize that our nomogram model is only part of the decision system for EVT in patients with BAO. Our model can only assist the physician, who has to decide on the specific treatment modality, taking into account the individual patient's situation and his own experience.

In the present study, the rate of “futile recanalization” after EVT was up to 50% (42 out of 84 patients), which was similar to previous studies of successful recanalization in patients with BAO (13, 14). Several predictors of futile recanalization in patients with BAO undergoing EVT have been established in our study. The multivariate logistic regression analyses demonstrated that previous stroke was associated with a higher likelihood of futile recanalization, supposedly due to their greater age (15) and preexisting disabilities (16). Therefore, the overall potential for neurological rehabilitation was low. The present study indicates that a previous stroke was a predictor of poor clinical outcomes despite successful reperfusion, namely, was associated with the effectiveness of EVT. Although systemic thrombolysis was not effective in patients with the previous medium to large stroke, data on the effectiveness of EVT in patients with BAO with a previous stroke are lacking (17). EVT is a safe and effective procedure for patients with BAO with the previous stroke that remains to be better studied in future studies.

Generally, age and the NIHSS were recognized to be a predictor of prognosis in BAO stroke (3, 18). As shown in Table 2, the higher NIHSS on admission was significantly associated with a higher rate of futile recanalization in the present study. Such results are easy to understand because the NIHSS is a standardized stroke scale to quantify the degree of neurological deficit. The potential for neurological rehabilitation of the elderly was comparably lower compared with younger persons because of the preexisting cognitive and/or physical disabilities, and a higher rate of serious complications during hospitalization (19–21). It is of surprise that age was not independently associated with futile recanalization. This might be due to the differences in patient characteristics and a selection bias during treatment decisions. Although our findings challenge the data of the Endovascular Stroke Treatment (ENDOSTROKE) registry (3), they are in line with the results of Son et al. (14). It should be pointed out that age is a factor that physicians need to consider carefully when making decisions.

Our analysis also shows that the pc-ASPECTS was an independent predictor of futile recanalization. The pc-ASPECTS, first proposed by Puetz et al. (22), has been validated for grading irreversible ischemic in the posterior circulation and is often used to select patients with BAO who would most likely benefit from EVT, thus helping to improve clinical prognosis in patients with BAO. Several studies have reported that the pc-ASPECT score ≥ 8 on the initial image increases the benefit of EVT (23–25). Nevertheless, there are different views on the treatment threshold. A recent study conducted by Sang et al. (26) provided evidence for the efficiency of EVT with the pc-ASPECTS ≥ 5. The present study bypasses the use of the statistical expedient of the artificial cutoff at the non-categorical by introducing a linear equation to calculate the coefficient of the ASPECTS score and drafting a concise chart to aid decision-making for EVT.

There are several limitations to our study. First, although our study collected a certain number of variables at different points in time, some possible risk factors are missing associated with adverse outcomes in patients with BAO, such as posterior circulation collateral status and the pons-midbrain index. However, these variables are not widely used in the clinical setting and are not readily available. Second, patients with BAO were all collected from the same hospital; therefore, our model suffered from a lack of external validation and the generalizability performance of the model still needs to be tested on patients from other institutions. In addition, as with other retrospective studies, our study has the drawback of selection bias such as patient exclusion due to missing data. So, we provided as much detail as possible about the patient's baseline information to facilitate further use or comparison of our model by other institutions or researchers. Third, the dichotomy of the mRS scores ignores the differences between the mRS scores 3, 4, 5, and 6; thus, this approach may not reflect subtle differences in functional outcomes of patients.



Conclusion

This study demonstrated that the construction of our dynamic and visualized nomogram model could be applied preoperatively and online to accurately predict the risk of futile recanalization in patients with BAO and, thus, assist in the selection of clinical treatment modalities. In the future, subsequent multicenter studies will be more beneficial to the utility of our model in the clinical setting.
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Background: Hemorrhagic transformation (HT) is the most serious complication of ischemic stroke patients after intravenous thrombolysis and leads to a poor clinical prognosis. This study aimed to determine the independent predictors associated with HT in stroke patients with intravenous thrombolysis and to establish and validate a nomogram that combines with predictors to predict the probability of HT after intravenous thrombolysis in patients with ischemic stroke.

Method: This study enrolled ischemic stroke patients with intravenous thrombolysis from December 2016 to June 2022. All the patients were divided into training and validation cohorts. The nomogram was composed of the significant predictors for HT in the training cohort as obtained by the multivariate logistic regression analysis. The area under the receiver operating characteristic curve was used to assess the discriminative performance of the nomogram. The calibration performance of the nomogram was assessed by the Hosmer–Lemeshow goodness-of-fit test and calibration plots. Decision curve analysis was used to test the clinical validity of the nomogram.

Results: A total of 394 patients with intravenous thrombolysis were enrolled in the study. In the training cohort (n = 257), 45 patients had HT after intravenous thrombolysis. Multivariate logistic regression analysis demonstrated early infarct signs (OR, 7.954; 95% CI, 3.553-17.803; P < 0.001), NIHSS scores (OR, 1.110; 95% CI, 1.054-1.168; P < 0.001), uric acid (OR, 0.993; 95% CI, 0.989–0.997; P = 0.001), and albumin-to-globulin ratio (OR, 0.109; 95% CI, 0.023–0.508; P = 0.005) were independent predictors for HT and constructed the nomogram. In the training and validation cohorts, the AUC of the nomogram was 0.859 and 0.839, respectively. The Hosmer–Lemeshow goodness-of-fit test and calibration plot showed good concordance between predicted and observed probability in the training and validation cohorts. Decision curve analysis indicated that the nomogram was significantly useful for predicting HT in the training and further confirmed in the validation cohort.

Conclusion: This study proposes a novel and practical nomogram based on early infarct signs, NIHSS scores, uric acid, and albumin-to-globulin ratio that can well predict the probability of HT after intravenous thrombolysis in patients with ischemic stroke.
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Introduction

Ischemic stroke is the main cause of long-term disability and mortality worldwide (1, 2). Currently, intravenous thrombolysis with alteplase is the preferred method for patients with ischemic stroke within 4.5 h after onset (3). Hemorrhagic transformation (HT), especially symptomatic intracranial hemorrhage (SICH), is the most serious complication of intravenous thrombolysis that could lead to an increased probability of early neurological deterioration, severe disability, and death (4, 5). Therefore, assessing the risk of HT after intravenous thrombolysis in patients with ischemic stroke may help to improve clinical outcomes.

In recent years, several predictive scores have been reported to predict the risk of HT after intravenous thrombolysis, including the HAT score based on NIHSS score, glucose level, extent of hypodensity, and history of diabetes (6), SPAN-100 score based on age and NIHSS score (7), SENDA score based on age, early infarct signs, hyperdense cerebral artery sign, NIHSS score, and glucose level (8), and STARTING-SICH nomogram based on systolic blood pressure, hyperdense artery sign, current infarction sign, glucose, onset-to-treatment time, age, NIHSS scores, oral anticoagulant or aspirin or aspirin plus clopidogrel (9). Most of these studies were mainly focused on SICH after intravenous thrombolysis in Western patients with ischemic stroke. Yet, both symptomatic and asymptomatic intracerebral hemorrhage could lead to poor clinical outcomes (10, 11). In addition, previous studies reported that Asian patients with ischemic stroke have a higher risk of HT after intravenous thrombolysis compared with Western patients (12, 13). Several prognostic scores or nomograms for Asian stroke patients have been proposed to predict the risk of HT after intravenous thrombolysis in the past few years (14–16), but the effect of baseline neuroimaging or laboratory variables on HT after intravenous thrombolysis in these studies has been ignored. And nomograms may have better predictive performance than prognostic scores (9).

The nomogram is a graphical statistical tool that can assess and calculate the probability of a special clinical outcome for patients by using a continuous score, which has been used as a predictive method in stroke in recent years (9, 17). Therefore, the current study aimed to determine the independent predictors associated with HT in stroke patients with intravenous thrombolysis and to establish and validate a nomogram that combines neuroimaging and laboratory variables to predict the probability of HT after intravenous thrombolysis in patients with ischemic stroke.



Materials and methods


Study design and data source

This retrospective cohort study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of the Second Xiangya Hospital of Central South University. The review board waived written informed consent due to the retrospective nature of the study.

In this study, we continuously enrolled patients diagnosed with ischemic stroke from December 2016 to June 2022 at the Second Xiangya Hospital of Central South University. Inclusion patients satisfied the criteria as follows: (1) age ≥ 18 years; (2) ischemic stroke was diagnosed with persistent neurological impairment and without any type of intracranial hemorrhage on non-contrast computed tomography (NCCT); (3) onset-to-treatment time <4.5 h; (4) patients received rt-PA intravenous thrombolysis; (5) diagnosis of with or without hemorrhagic transformation (HT) confirmed by non-contrast computed tomography (NCCT) or magnetic resonance imaging (MRI) within 22–36 h after rt-PA treatment. Patients who met the following criteria were excluded: (1) diagnosis of stroke mimics; (2) treatment with intra-arterial thrombolysis or endovascular thrombectomy after intravenous thrombolysis; (3) lack of complete data on all variables. All enrolled patients were divided into the training cohort and validation cohort based on the patients' years of diagnosis. The training cohort enrolled patients from December 2016 to December 2020. The validation cohort enrolled patients from January 2021 to June 2022. To avoid exposing patients' privacy, their identities were removed from the whole dataset before analysis.



Clinical data collection

Baseline characteristics include demographic data (including age and gender), clinical data (including the history of hypertension, atrial fibrillation, diabetes mellitus, hyperlipidemia, previous stroke, smoking, drinking, and current use of anticoagulants or antiplatelet agents), early infarct signs on computed tomography (CT), onset-to-treatment time (OTT), National Institutes of Health Stroke Scale (NIHSS) scores, systolic/diastolic blood pressure, and laboratory data [blood glucose level, white blood cell (WBC) counts, neutrophil-to-lymphocyte ratio (NLR), platelet, prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen, uric acid, albumin-to-globulin ratio (AGR), triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL)] were collected for patients at admission. The hemorrhagic transformation (HT) was defined as any type of intracranial hemorrhage that was detected on follow-up CT or magnetic resonance imaging (MRI) within 22–36 h after intravenous thrombolysis, according to the criteria of the European Cooperative Acute Stroke Study II (18). All images were judged by two experienced neurologists blinded to the clinical data and final diagnosis.



Statistical analysis

Continuous variables were described as mean ± SD or median (interquartile range, IQR), and categorical variables were expressed as frequency (percentage). The Student t-test or non-parametric Mann-Whitney U test was used for continuous variables, and the Chi-square test or Fisher's exact test was used for categorical variables. Variables with a P-value of <0.05 in the univariate analysis were included in the multivariate logistic regression analysis. Collinearity between each variable was assessed by the tolerance (<0.2 being considered significant) and variation inflation factors (>5 being considered significant). Finally, the odds ratio (OR) and 95% confidence interval (CI) of each variable were calculated by the multivariate logistic regression analysis.

A novel nomogram was used to establish the prediction model, which is based on the significant predictors of HT by the multivariate logistic regression analysis with the forward-section method. The area under the receiver operating characteristic curve (AUC–ROC) was used to assess the discriminative performance of the nomogram in the training cohort and validation cohort. The calibration performance of the nomogram in the training cohort and validation cohort was tested by using the Hosmer–Lemeshow goodness-of-fit test and a calibration plot with bootstraps of 1,000 resample, which described the concordance between the predicted and observed probabilities.

Decision curve analysis (DCA), a method for assessing the utility of prediction models, was further used to estimate the clinical validity of the nomogram in the training and validation cohorts. A detailed description of DCA was previously reported (19). Statistical analysis was performed using the statistical software IBM SPSS (version 26.0) and STATA (version 15.1). The significance level was set at a two-tailed P < 0.05.




Results

The flow chart of patient selection is shown in Figure 1. A total of 469 patients with ischemic stroke received rt-PA intravenous thrombolysis treatment. Patients treated with intra-arterial thrombolysis (n = 16) or endovascular thrombectomy (n = 32) and lack of complete data (n = 27) were excluded. Finally, 394 patients were included in the study and divided into the training cohort (n = 257) and validation cohort (n = 137) for further analysis. The median age of all patients was 65 (55–73) and 143 (36.3%) patients were female. Detailed information about the baseline characteristics of all patients is exhibited in Table 1. No significant differences in variables were observed between the training cohort and the validation cohort.


[image: Figure 1]
FIGURE 1
 Flow chart of patient inclusion.



TABLE 1 Comparison of baseline characteristics between the training cohort and validation cohort.
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As shown in Table 2, 45 (17.5%) were post-thrombolysis HT in the training cohort. The univariate analysis revealed that atrial fibrillation, early infarct signs, current use of antiplatelet agents, NIHSS scores, NLR, PT, fibrinogen, uric acid, and AGR were related to HT (P < 0.05). No significant statistical collinearity was observed among the nine variables (Supplementary Table 1). After multivariate logistic regression analysis, the early infarct signs (OR, 7.954; 95% CI, 3.553–17.803; P < 0.001), NIHSS scores (OR, 1.110; 95% CI, 1.054–1.168; P < 0.001), uric acid (OR, 0.993; 95% CI, 0.989–0.997; P = 0.001), and AGR (OR, 0.109; 95% CI, 0.023–0.508; P = 0.005) were independent predictors for HT after intravenous thrombolysis in patients with ischemic stroke. In the validation cohort, we found significant differences in the early infarct signs, NIHSS scores, uric acid, and AGR between the HT and non-HT groups (Supplementary Table 2).


TABLE 2 Baseline characteristics and logistic regression analysis between the HT group and non-HT group in the training cohort.
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All independent predictors for HT after intravenous thrombolysis were used to construct the novel nomogram (Figure 2). The nomogram consisted of the preliminary value of predictors, preliminary score range (0–11), total score, and probability of HT. Drawing a line downward from the preliminary value to the corresponding preliminary score, and then summed all the preliminary scores to obtain a total score. Finally, the percentage corresponding to the total score was the individual probability of HT after intravenous thrombolysis.


[image: Figure 2]
FIGURE 2
 Nomogram for predicting HT after intravenous thrombolysis. The nomogram consists of four predictors, each of which is given a preliminary score (0 – 11). The total scores were obtained by summing all the preliminary scores of each of the four predictors. The estimated probability of hemorrhagic transformation was obtained from the nomogram according to the total score. For example, a patient with an early infarct sign, baseline NIHSS scores of 10, a uric acid level of 295 μmol/L, and an albumin-to-globulin ratio of 1.05 would have a total of 15.7 scores. The probability of HT after intravenous thrombolysis was approximately 70% for the patient. NIHSS, National Institute of Health Stroke Scale; HT, hemorrhagic transformation; CT, computed tomography.


The AUC-ROC was used to evaluate the discriminative ability of the nomogram, which demonstrated a moderate predictive power in the training cohort (AUC, 0.859; 95% CI, 0.798–0.920) (Figure 3A) and validation cohort (AUC, 0.839; 95% CI, 0.727–0.951) (Figure 3B). The Hosmer–Lemeshow goodness-of-fit test showed good concordance between predicted and observed probability for the training cohort (χ2 = 6.213, df = 8, P = 0.623) and the validation cohort (χ2 = 9.668, df = 8, P = 0.289). The calibration plot also revealed significant predictive accuracy of the nomogram to predict HT after intravenous thrombolysis in the training (Figure 4A) and validation cohorts (Figure 4B).


[image: Figure 3]
FIGURE 3
 The ROC curve of the nomogram for predicting HT in the training cohort (A) and the validation cohort (B). The AUC value is 0.859 in the training cohort and 0.839 in the validation cohort. HT, hemorrhagic transformation; ROC, receiver operating characteristic; AUC, the area under curve.
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FIGURE 4
 Calibration plot for predicting HT after intravenous thrombolysis in the training cohort (A) and the validation cohort (B).


The DCA demonstrated that the novel nomogram had a greater net benefit to predict HT than “treat all” or “treat none” strategies when the threshold probabilities ranged between 5.0% to 80.0% in the training cohort (Figure 5A) and between 3.0% and 60.0% in the validation cohort (Figure 5B), which indicated the good clinical validity of the nomogram in the training and validation cohorts.
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FIGURE 5
 Decision curve analysis (DCA) of the nomogram predicting HT after intravenous thrombolysis in the training cohort (A) and the validation cohort (B). The x-axis demonstrates the threshold probability. The y-axis indicates the net benefit. The black line displays all patients are negative and have no treatment, the net benefit is zero. The dotted line means all patients who accept intravenous thrombolysis will develop HT. The green line indicates the net benefit of the nomogram.




Discussion

In this retrospective single-center study, we presented and validated a practical nomogram based on four predictors including early infarct signs, NIHSS scores, uric acid, and albumin-to-globulin ratio (AGR), which is considered a reliable visual scoring system for predicting HT after intravenous thrombolysis in patients with ischemic stroke. All of these predictors are easily and quickly obtainable before or during treatment. The overall predictive performance of the nomogram was well in the training cohort (AUC-ROC, 0.859) and validation cohort (AUC-ROC, 0.839), which can help neurologists identify ischemic stroke patients who have a higher risk of developing HT after intravenous thrombolysis. Our nomogram has an excellent calibration capability due to the predicted risk for HT being close to the actual risk both in the training cohort, and further confirmed in the validation cohort. Finally, the decision curve analysis (DCA), a special tool to evaluate the clinical application value of a nomogram, suggested that our nomogram was very useful for predicting post-thrombolysis HT in clinical practice.

To identify the probability of post-thrombolysis HT in patients with ischemic stroke, several prediction models have been established in recent years (6–9). Consistent with these previous studies, it was found that NIHSS scores and early infarct signs were conventional predictors for HT in patients who were undergoing rt-PA intravenous thrombolysis. Uric acid, one of the most important endogenous antioxidants, is the final product of purine metabolism that plays a neuroprotective role by scavenging free radicals, inhibiting neuroinflammatory cascades, and reducing the blood-brain barrier permeability (20–22). Previous studies indicated that a lower uric acid level was independently associated with a high risk of HT after intravenous thrombolysis (23, 24). Our study also found that lower uric acid could increase the risk of HT after intravenous thrombolysis.

Notably, our study ascertained that AGR might be a protective factor for post-thrombolysis HT in patients with ischemic stroke. Few previous studies have reported this conclusion. Serum albumin is a multifunctional protein that is synthesized in the liver. Albumin has been shown to have antioxidant, anti-inflammation, and anti-apoptosis in endothelial cells effects (25). Previous studies have shown that the decrease in albumin level or increase in globulin level might be associated with post-thrombolysis HT in ischemic stroke patients (26, 27). Our study also showed that serum AGR (P < 0.001) was related to post-thrombolysis HT in univariate analysis. After multivariate analysis, the AGR was an independent predictor for post-thrombolysis HT, which had not been reported in previous studies. We speculated that the possible mechanism of post-thrombolysis HT is the result of the combined influence of albumin and globulin. Lower AGR indicates the decrease in serum albumin or the increase in globulin, which is significantly associated with the increased occurrence of HT after intravenous thrombolysis.

Yet we failed to find the relationship between atrial fibrillation and post-thrombolysis HT in contrast to previous studies (14, 15, 28). In the present study, the difference in atrial fibrillation was statistically significant in univariate analysis. After multivariable adjustment, no significant statistical difference was observed between HT and atrial fibrillation. We also failed to find the relationship between blood glucose and post-thrombolysis HT in contrast to previous studies (6, 8, 14, 15). In addition, previous clinical studies reported that higher fibrinogen level was significantly related to the occurrence of post-thrombolysis HT in acute ischemic stroke (29, 30). In our study, fibrinogen was a risk factor for HT after intravenous thrombolysis. However, the relationship between fibrinogen and HT did not exist after adjusting for confounding factors. Therefore, atrial fibrillation, blood glucose, and fibrinogen were not included in our final nomogram.

There are several limitations to our study that should be considered. First, it was a single-center retrospective cohort study with a small sample size. We only include variables showing a P-value <0.05 in the univariate analysis as candidates for the multivariate regression analysis to improve the statistical power of our results. Second, this nomogram was not validated in external cohorts. Therefore, the multicenter prospective study should be established to validate the applicability of our nomogram before applying it in clinical practice. Third, although we controlled for many variables in establishing our prediction model, we cannot rule out some unmeasured baseline variables (including microbleed, glycosylated hemoglobin, homocysteine, and so on) that may influence the development of HT after intravenous thrombolysis. Future prospective studies should further evaluate whether combining with other variables can help to enhance the accuracy of our nomogram prediction. In addition, another limitation is that the uric acid and albumin to globulin ratio could not be obtained before intravenous thrombolysis in some stroke centers, which may limit the application of the nomogram before intravenous thrombolysis in these centers. Due to the narrow time window for the treatment of ischemic stroke, the emergency green channel has been widely opened in many countries to ensure that patients with ischemic stroke can receive intravenous thrombolysis quickly and benefit from it. According to the Chinese guideline, all patients with ischemic stroke should receive NCCT, blood glucose, and laboratory tests including uric acid and albumin to globulin ratio before intravenous thrombolysis. With the establishment of the green channel, uric acid and albumin to globulin ratio can be obtained before intravenous thrombolysis in most stroke centers in our country. Therefore, the nomogram may have good clinical application in our country. However, clinicians in other countries cannot use our nomogram to assess the risk of post-thrombolysis HT in patients with acute ischemic stroke without obtaining the availability of laboratory test results before intravenous thrombolysis. But it could help clinicians assess the probability of HT in patients who are receiving intravenous thrombolysis. For patients with a high risk of post-thrombolysis HT by the evaluation of our nomogram, clinicians may consider using a lower concentration of alteplase or discontinuing intravenous thrombolysis to improve the safety of intravenous thrombolysis.



Conclusions

Our study proposes a novel and practical nomogram based on early infarct signs, NIHSS scores, uric acid, and albumin-to-globulin ratio that can well predict the probability of HT after intravenous thrombolysis in patients with ischemic stroke. The calibration and discrimination of the nomogram were verified in internal validation. This nomogram can be useful for predicting the probability of HT after intravenous thrombolysis, and help clinicians assess whether to continue intravenous thrombolysis in patients with a high risk of HT. However, further studies are needed to confirm the validity of the nomogram.
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Objective: To identify sex-related differences in the outcome of hospitalized patients with spontaneous intracerebral hemorrhage (SICH), and to identify potential causal pathways between sex and SICH outcome.

Methods: A total of 111,112 medical records of in-hospital patients with SICH were collected. Data- and expert-driven techniques were applied, such as a multivariate logistic regression model and causal mediation analysis. These analyses were used to determine the confounders and mediators, estimate the true effect of sex on the SICH outcome, and estimate the average causal mediation effect for each mediator.

Results: (1) Failure (disability or death) rates in women with SICH were significantly lower than in men with SICH. On the day of discharge, the odds ratio (OR) of failure between women and men was 0.9137 [95% confidence interval (CI), 0.8879–0.9402], while the odds ratio at 90 days post-discharge was 0.9353 (95% confidence interval, 0.9121–0.9591). (2) The sex-related difference in SICH outcome decreased with increasing age and disappeared after 75 years. (3) Deep coma, brainstem hemorrhage, and an infratentorial hemorrhage volume of >10 ml accounted for 62.76% (p < 0.001), 33.46% (p < 0.001), and 11.56% (p < 0.001) of the overall effect on the day of discharge, and for 52.28% (p < 0.001), 27.65% (p < 0.001), and 10.86% (p < 0.001) of the overall effect at the 90-day post-discharge.

Conclusion: Men have a higher failure risk than women, which may be partially mediated by a higher risk for deep coma, brainstem hemorrhage, and an infratentorial hemorrhage volume of >10 ml. Future work should explore the biological mechanisms underlying this difference.

KEYWORDS
 stroke, outcome, factor, sex, data


Introduction

Sex differences in nervous system disease outcomes have received increasing attention, such as recent work in patients with stroke and cerebral amyloid angiopathy (1). However, the effects of sex-related differences in outcomes of spontaneous intracerebral hemorrhage (SICH) remain unclear; this knowledge could facilitate an understanding of the mechanisms underlying SICH and the development of new treatment and prevention approaches (2–5). Only a few studies have explored the effect of sex on SICH prognosis, and these have yielded inconsistent findings (3, 6–9). Such inconsistencies could be explained by limitations, such as small sample sizes and the presence of confounding bias (2, 7, 10–13). Furthermore, the causal pathways underlying sex-related outcomes remain unknown. These gaps in knowledge impede the development of preclinical research models and therapies for SICH; further studies with larger sample sizes and more causal considerations are thus necessary. To this aim, the present study used the largest number of in-hospital medical records to date (i.e., 111,000) to investigate the effect of sex on SICH outcomes. Moreover, we put forward some possible causal pathways between sex and SICH, which could be further examined in future research.



Materials and methods


Study design and participants

This study is a retrospective cross-sectional study of consecutive patients referred to the governmental hospital in the Sichuan province. Data- and expert-driven techniques were applied, including a multivariate logistic regression model and causal mediation analysis.

The data were collected from the database of the Comprehensive Data Collection and Decision Support System for health statistics of Sichuan Province, which has a jurisdiction area of 485,000 km2 and a population of about 83 million. This database was constructed by the Sichuan government on 1 January 2017 and includes information about all SICH hospital admissions to date, including medical records from all general hospitals and community hospitals in Sichuan. The database contains clinical data, such as demographic characteristics, diagnoses, comorbidity, treatment, and the medical record home page.

Patients were identified by the International Classification of Diseases, Tenth Revision, Clinical Modification, and only the patients with nontraumatic intracerebral hemorrhage (I61) were included in the study. To avoid measuring the effect of other secondary causes of hemorrhage, such as aneurysm, vascular malformations, and coagulopathy, patients with an intracranial tumor, aneurysm, or other vascular malformation presumed to be the cause of the hemorrhage and patients with hemorrhagic conversion of acute brain infarction and secondary ICH were excluded, even though they were in the I61 group.

Detailed information on patient demographics (age, sex, and ethnicity), brain imaging, stroke severity, diagnosis, treatment, complications, comorbidities, instant discharge outcome, and 90-day outcome was collected. Brain imaging included location [lobar (predominantly cortical or subcortical white matter), depth (predominantly basal ganglia, internal capsule, or periventricular white matter), cerebellum, brainstem, and ventricle]. The time hospitalized variable was the hospitalization history of patients prior to the current SICH hospitalization. Stroke severity was described as severe coma, moderate coma, and minor coma, according to the Glasgow Coma Scale (GCS; sober, GCS score = 15; shallow coma, GCS score = 12–14; mediate coma, GCS score = 9–11; and deep coma, GCS score ≤8). Complications and comorbidities included hypertension, diabetes, and infections. The SICH outcome was dichotomized as “success” or “failure.” A successful outcome was defined as a score of 2 or more on the Glasgow Outcome Scale (GOS), and failure was defined as discharge to a hospice or a GOS score of 1. The SICH outcome was measured two times, one time on the day of discharge and the other at 90 days post-discharge. The first outcome was obtained from the database, and the second one was verified through the Ministry of Civil Affairs through personal identification numbers.

Furthermore, since the unstructured variables (such as diagnosis) in this study were all in sentence forms, we carried out natural language processing to transform them into a structured form for further analysis. We first pre-processed the unstructured data, including word segmentation and the removal of stop words. Then, the Tagged Document in the Gensim package was used to wrap the input sentence and change it to the input sample format required by Doc2vec. After that, we loaded the Doc2vec model with a window size of three and began model training. Finally, the unstructured data were transformed into numeric codes.



Standard protocol approvals, registrations, and patient consent

The study was approved by the West China Hospital's institutional review board, and informed consent was obtained from all participants.



Statistical analysis

To explore the sex differences in SICH outcomes, two types of variables (i.e., confounders and mediators) needed to be fully considered. Confounders can cause spurious associations that conceal the true effect of sex on SICH outcomes and were therefore adjusted before the analysis. On the other hand, mediators form part of the causal pathway between sex and SICH outcome. Given that there might be multiple causal pathways and corresponding mediators, we assessed the extent to which the effect of sex on the SICH outcomes was mediated through a particular pathway and mediator. Therefore, the statistical analysis was carried out in the following three steps:

(1) Determination of confounders and mediators using the mixture-driven method.

By definition, both confounders and mediators are correlated to the exposure and outcome, but they differ in that confounders are not part of the causal pathway and mediators are. Given this distinction, we used a mixture of data- and expert-driven methods to identify the confounders and mediators. Specifically, the data-driven method included association analysis to first select candidate variables that were correlated with both sex and SICH outcomes. Then, for every candidate variable, three experienced neurologists were asked to decide whether it was a confounder or mediator according to the current research and their clinical experience. As a result, sets of confounders and mediators were defined for further analysis.

(2) The control of confounders using a multivariate logistic regression model.

This study built two multivariate logistic regression models that contained two observation time points—the day of discharge and 90 days after discharge. Other than sex, all confounders were included in the regression models to control for confounding bias.

(3) Pathway exploration using causal mediation analysis.

After determining the effect of sex on the SICH outcome, we examined the underlying causal pathway(s) between sex and SICH outcome that could explain the observed effect from a mechanical point of view. However, identifying the precise mechanisms underlying this association was beyond the scope of this study because the biological and pathological data were unavailable. That said, using a causal mediation analysis, we were able to at least provide some clues to pathway construction. The goal of the causal mediation analysis was to assess the direct and indirect effects of sex on SICH outcomes and estimate the average causal mediation effect for each mediator. After this, each mediator was ranked by its corresponding average causal mediation effect such that their relative importance could be established. This relative importance points to the most likely causal pathways between sex and SICH outcome, which provides a platform for future research.

In addition, we identified variables that were unevenly distributed across the sexes and may be associated with clinical outcomes. Using correlation analysis and expert consultation, confounding factors and mediating variables were defined. The influence of confounding factors on the association between sex and outcome variables was corrected by using multivariate regression analysis, which ensured that this imbalance would not affect the results.

All analyses were performed in R 3.5.0, using R packages {stats} (4, 14) and {mediation} (9), which were downloaded from the Comprehensive R Archive Network at http://cran.r-project.org/ and installed in advance. The default significance level (α) was 0.05 unless otherwise specified.




Results

From 1 January 2017 to 30 June 2019, a total of 117,227 patients with SICH were screened and 111,112 met the inclusion criteria [68,326 (58.3%) women and 42,786 (41.7%) men]. Table 1 shows the explanations for each variable.


TABLE 1 Explanations for each variable.
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The crude effect of sex on SICH prognosis

As shown in Table 2, on both the day of discharge and the 90-day post-discharge, female patients had a lower failure risk than male patients. Furthermore, this phenomenon was found for all age groups overall as well as the age subgroups of 40–54, 55–64, and 65–74 years.


TABLE 2 The univariate estimation of sexual effect on prognosis outcomes.
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Determination of confounders and mediators

The data-driven method for the determination of confounders and mediators included a correlation analysis between candidate variables and sex groups, a univariate logistic regression analysis that examined the effect of each candidate variable on the SICH outcome on the day of discharge, and a univariate logistic regression analysis that examined the effect of each candidate variable on the SICH outcome at the 90-day post-discharge time point. The correlation analysis revealed that the age group (χ2 = 663.97, ν = 4; p < 0.001), number of in-hospital stays (χ2 = 214.41, ν = 1; p < 0.001), operation (χ2 = 28.23, ν = 1; p < 0.001), infection (χ2 = 99.06, ν = 1; p < 0.001), deep coma (χ2 = 35.17, ν = 1; p < 0.001), location (χ2 = 311.80, ν = 4; p < 0.001), supratentorial hemorrhage volume of >30 ml (χ2 = 27.38, ν = 1; p < 0.001), and infratentorial hemorrhage volume of >10 ml (χ2 = 28.99, ν = 1; p < 0.001) were significantly correlated with sex. Tables 3, 4 summarize the results of the univariate logistic regression models, which revealed that these above-mentioned variables were significantly associated with the SICH outcome both on the day of discharge and at the 90-day post-discharge time point. After discussions with experienced neurologists, the age group, number of in-hospital stays, operation, and infection were defined as confounders, and deep coma, location, supratentorial hemorrhage volume of >30 ml, and infratentorial hemorrhage volume of >10 ml were defined as mediators. These determinations are described in more detail in the Discussion section.


TABLE 3 The effect of each candidate variable on the spontaneous intracerebral hemorrhage (SICH) outcome on the day of discharge.
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TABLE 4 The effect of each candidate variable on the SICH outcome at the 90-day post-discharge.
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The effect of sex on SICH outcomes after confounder adjustment

In the next step, we added confounders as covariates into the logistic regression model of sex on SICH outcome. As shown in Table 5, female patients had lower risks of failure both on the day of discharge and at 90-day post-discharge than did male patients [day of discharge: odds ratio (OR) = 0.91, 95% confidence interval (CI), 0.89–0.94; and 90-day post-discharge: odds ratio = 0.94, 95% confidence interval, 0.91–0.96].


TABLE 5 The multivariate estimation of sex on the SICH outcome.
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The causal mediation analysis for direct effect of sex on SICH prognosis

After estimating the overall effects of sex on SICH outcomes on the day of discharge and the 90-day post-discharge, we performed a causal mediation analysis. This analysis allowed us to further decompose the overall effect into direct and indirect effects, and to estimate the average causal mediation effect for each mediator. As shown in Figure 1, the causal mediation analysis results were highly consistent, regardless of whether SICH outcome was measured on the day of discharge or at the 90-day post-discharge. Deep coma was the most likely mediator in the relationship between sex and SICH outcome, and accounted for ~50–60% of the effect of sex on SICH outcome. Brainstem hemorrhage was another mediator deserving of attention, with an average mediation effect of 20–30%. In addition, an infratentorial hemorrhage volume of >10 ml contributed ~10% to the effect of sex on the SICH outcome, and this could be examined further in future mechanical pathway studies.


[image: Figure 1]
FIGURE 1
 (A) Causal mediation analysis for sex association with spontaneous intracerebral hemorrhage (SICH) outcome on the day of discharge. (B) Causal mediation analysis for sex association with SICH outcome at the 90-day post-discharge. PM, proportion mediated.





Discussion

This study calculated the effect of sex on SICH outcomes using the largest sample of real-world data to date, which guarantees representativeness and statistical power (15). Our results revealed that female patients had better prognostic outcomes than male patients. Moreover, this prognostic difference between the sexes attenuates with increasing age. Namely, for patients aged ≥75 years, there was no protective effect of the female sex. Causal mediation analysis revealed that the association between sex and SICH outcomes was probably mediated by the male frequency of deep coma, brainstem hemorrhage, and an infratentorial intracerebral hemorrhage volume of >10 ml.

Deep coma was found to play a key role in the relationship between sex and SICH outcomes. We found that patients with brainstem hemorrhage or an infratentorial intracerebral hemorrhage volume of >10 ml frequently suffered from a deep coma. The brainstem reticular formation has been considered essential for wakefulness, which can explain why deep coma is more commonly a result of brainstem hemorrhage than of hemorrhage in other brain areas (16–18). Additionally, given the narrow confines of the posterior fossa, a hernia can appear quickly in cerebellar hemorrhage with obstructive hydrocephalus (19). Consequently, significant infratentorial intracerebral hematoma could cause a deep coma through the hernia. Brainstem and cerebellum hemorrhage usually take place in small non-branching perforating arteries that have a diameter of 50–200 μm (20), which branch directly from larger arteries. According to a study, microatheroma is likely to form in these small arteries due to endothelial injury (20). Hence, endothelium injury could explain the sex-related difference in SICH prognosis found in the current study.

It is complicated to determine sex-related differences in endothelium injury, for which there are several potential biological pathways. One plausible explanation for the sex-related protection effect in SICH is that women's female gonadal hormones affect the endothelium. The endothelium-protective effects of estrogen could occur through various pathways, such as regulation of MAPK/PI3K/AKT signaling pathways, a decrease in prostaglandin E2 and cyclooxygenase 2 to reduce the inflammatory response, and modulation of nitric oxide synthase to reduce oxidative stress (21–24). Furthermore, the alteration of hormone levels during menopause has been associated with the incidence and outcomes of ischemic stroke and SICH. Although more than half of the female patients in the present study were postmenopausal, we cannot determine whether female gonadal hormones (especially estrogen) caused the sex-related differences in SICH prognosis. Nonetheless, we suspect that female gonadal hormones militate to some extent. Specifically, we found that the effects of sex on prognosis attenuated with increasing age. Moreover, the age-stratified analysis revealed that the sex-related difference in SICH prognosis was limited to patients younger than 75 years, and this tendency is in accordance with an endothelium protective effect of estrogen. Animal experiments have revealed that the administration of estrogen and progesterone improves ICH outcomes. However, hormone replacement therapy has been reported to make limited contributions to prognosis. Various aspects of animal experiments and clinical trials could account for the conflicting results, such as duration of exposure, dose, and administration route (24). With a limited understanding of female gonadal hormones, it is difficult to successfully perform hormone replacement therapy. Additionally, Gibson found that both short-term and long-term estrogen deficiency reduces the expression of estrogen receptors (25). This suggests that SICH in male patients could be improved through drugs that interact with estrogen receptors. Thus, future studies should investigate how female gonadal hormones protect the function of the endothelium, as well as the consequence of hormones in the pathogenesis and prognosis of SICH. The present findings could therefore assist the development of more effective therapies for patients with SICH. Additionally, our results hold significance for the prevention and prognosis prediction of ICH in both men and women and could support the formulation of community health policies.


Strengths and limitations

This study has several strengths. First, our study included data from the largest sample size, which ensured statistical representativeness. Then, we used causal inference to explore the effects of sex on SICH prognosis, and adjusted for confounders to reduce bias, which revealed a widespread effect of sex on the SICH outcome. Finally, we proposed possible mediators for the relationship between sex and SICH prognosis, as well as the corresponding pathways, based on what is known in the field of neurology.

This study has some limitations that should be noted. First, we did not examine the effect of intracerebral hemorrhage expansion, even though this is an essential factor for the prognosis of SICH. The heterogeneity of the SICH expansion measurement method obstructed an analysis of the effects of hematoma expansion. However, results not reported here showed that the estimated effects of sex on SICH outcomes were robust when ICH expansion was included in the model. Second, we proposed some possible mediators in the relationship between sex and SICH outcomes, but clear insights on this have yet to be obtained and some questions remain. For example, how do these mediators perform in the pathway? Do they act independently or jointly? Are there interaction effects? Future studies should address these questions and this, together with our results, could shed light on sex-related biological pathways in SICH.




Conclusion

We found that male patients had a higher risk of a poor SICH prognosis than female patients, and this was partially associated with deep coma, brainstem hemorrhage, and an infratentorial hemorrhage volume of >10 ml. It is necessary to further explore the biological mechanisms underlying the sex-related differences in SICH prognosis, which could facilitate the development of individual-based treatment.
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Background: As a common sequela after stroke, cognitive impairment negatively impacts patients' activities of daily living and overall rehabilitation. Non-pharmacological therapies have recently drawn widespread attention for their potential in improving cognitive function. However, the optimal choice of non-pharmacological therapies for post-stroke cognitive impairment (PSCI) is still unclear. Hence, in this study, we compared and ranked 5 non-pharmacological therapies for PSCI with a Bayesian Network Meta-analysis (NMA), to offer a foundation for clinical treatment decision-making.

Methods: PubMed, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials, Chinese Biomedical Medicine, China National Knowledge Infrastructure, Wangfang Database, and China Science and Technology Journal Database were searched from database inception to December 31, 2021, to collect Randomized Controlled Trials for PSCI. All of the studies were assessed (according to Cochrane Handbook for Systematic Reviews) and then data were extracted by two researchers separately. Pairwise meta-analysis for direct comparisons was performed using Revman. NMA of Bayesian hierarchical model was performed by WinBUGS and ADDIS. STATA was used to construct network evidence plots and funnel plots.

Results: A total of 55 trials (53 Two-arm trials and 2 Three-arm trials) with 3,092 individuals were included in this study. In the pair-wise meta-analysis, Transcranial Magnetic Stimulation (TMS), Virtual Reality Exposure Therapy (VR), Computer-assisted cognitive rehabilitation (CA), Transcranial Direct Current Stimulation (tDCS), and Acupuncture were superior to normal cognition training in terms of MoCA, MMSE, and BI outcomes. Bayesian NMA showed that the MoCA outcome ranked Acupuncture (84.7%) as the best therapy and TMS (79.7%) as the second. The MMSE outcome ranked TMS (76.1%) as the best therapy and Acupuncture as the second (72.1%). For BI outcome, TMS (89.1%) ranked the best.

Conclusions: TMS and Acupuncture had a better effect on improving cognitive function in post-stroke patients according to our Bayesian NMA. However, this conclusion still needs to be confirmed with large sample size and high-quality randomized controlled trials.

Registration: https://inplasy.com (No. INPLASY202260036).

KEYWORDS
  cognitive function, stroke, post-stroke cognitive impairment (PSCI), non-pharmacological therapies, network meta-analysis (NMA)


Introduction

Post-stroke cognitive impairment (PSCI) is a common comorbidity of stroke, and the prevalence of it varies enormously across studies (17.6–83%), depending on the time of assessment, the study environment, the demographic variables, and the numerous cognitive tests and cut-offs that were utilized (1). PSCI is defined as a clinical syndrome characterized by any sort of cognitive neurodegeneration after stroke, ranging from mild impairment to a more severe form: post-stroke dementia (2, 3). Disruptions in advanced brain functions such as attention, language, memory, executive, and visuospatial function are the most common symptoms of PSCI, which not only have a negative impact on patients' activities of daily living and overall rehabilitation (4–6) but also linked closely to a higher risk of recurrent ischemic stroke (7) and a lower 5-year survival rate (2). In addition, the ongoing care and support needs required by PSCI patients are closely related to the increased physical and psychological burden of family caregivers (8) and the medical and economic burden on society (9). To sum up, PSCI has become a major public health concern that has to be addressed promptly as the great burden of stroke continues to climb (10, 11).

Currently, pharmaceutical interventions such as Acetylcholinesterase inhibitors, memantine, galantamine, etc., which are mainly approved for use in Alzheimer's disease have shown some clinical benefits in vascular dementia (12, 13). Unfortunately, a recent study revealed that little evidence demonstrates they helped symptoms or slowed dementia progression down in PSCI patients (14). On the contrary, side effects and adverse reactions such as gastrointestinal issues (diarrhea or constipation), headaches, dizziness, and so on, do exist in pharmaceutical interventions (15). Therefore, non-pharmacological therapies such as Transcranial Magnetic Stimulation (TMS) (16), Transcranial Direct Current Stimulation (tDCS) (17), Computer-assisted cognitive rehabilitation (CA) (18), Virtual Reality Exposure Therapy (VR) (19), and Acupuncture (20), which have been found have a positive impact on cognitive function of PSCI patients in several systematic review and meta-analysis, have gradually aroused people's attention (21).

However, due to a lack of manpower and resources, most studies to date have only compared individual therapy to traditional cognition training or, at most, two therapies. Direct comparisons provide little useful information for determining which therapy is more appropriate for PSCI patients. It is obvious that a deeper exploration to assess the relative value between different interventions will be greatly helpful for medical decisions and the rehabilitation of PSCI patients. Network meta-analysis is an extension of pairwise meta-analysis that allows data from multiple clinical trials evaluating at least two treatments to be pooled. The incorporation of both direct and indirect information strengthens inferences about each treatment's relative efficacy (22, 23).

Therefore, in the present study, we included 55 RCTs and used Bayesian Network Meta-analysis (NMA) to assess and rank the efficacy of the 5 different alternative strategies listed above, in order to find the best treatment plan for PSCI patients and to provide an evidence-based foundation for clinical treatments decision-making.



Materials and methods

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension statement for Network Meta-Analyses (Supplementary Material), and the study protocol has been registered on the INPLASY (Registration number: INPLASY202260036).


Search strategy

Four English databases (EMBASE, Web of Science, PubMed, Cochrane Central Register of Controlled Trials) and four Chinese databases [China National Knowledge Infrastructure (CNKI), Wangfang Database, China Science and Technology Journal Database, and Chinese Biomedical Medicine (CBM)] were comprehensive searched systematically. MeSH terms, subject words, and keywords such as “Stroke,” “Cerebrovascular Accident,” “Brain Ischemia,” “Cognition Disorders,” “Cognitive Impairment,” “Cognitive Dysfunction,” “Transcranial Magnetic Stimulation,” “Transcranial Direct Current Stimulation,” “Transcranial Direct Current Stimulation,” “Virtual Reality,” “Computer-assisted rehabilitation,” and “Randomized controlled trial” were retrieved to identify potentially eligible studies. The retrieval time was specified from the database's inception to December 31, 2021, and the languages were limited to English and Chinese. We also looked through the references in the included literature to see if there were any other research that fit the criteria. Supplementary Table 1 contains a list of the comprehensive search strategies.



Eligibility and exclusion criteria

The following criteria were used to select literature: (1) Study design: randomized controlled trials (RCTs); (2) Participants: Adults, regardless of nationality, ethnicity, sex, age, or educational background, who have experienced an ischemic or hemorrhagic stroke recently or in the past, and whose diagnosis was made in accordance with well-defined or globally accepted diagnostic criteria. (3) Intervention and control measures: The experimental group underwent non-pharmaceutical treatments such as acupuncture, VR, TMS, tDCS, or CA. The interventions of the control group consisted of normal rehabilitation (NOR), which is a catch-all term for traditional rehabilitation mixed with cognitive training. Other therapies indicated above but distinct from those used in the intervention group are also included. (4) Outcome indicators: Both the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment Scale (MoCA), which have been used extensively to measure cognitive function, were utilized as the principal measures of cognitive performance. Lower MMSE and MoCA scores are indicative of impaired cognitive function. The Barthel Index (BI) was utilized to evaluate functional independence in activity of daily living as a secondary outcome indicator. A lower BI score suggests a reduced capacity for daily life.

Literature that met the following characteristics was excluded: (1) Studies in which the manner of intervention or control is unclear, or in which drugs that may treat cognitive impairment are used in combination. (2) Studies in which the intervention combined two or more of the aforementioned non-pharmacological therapies in a single intervention. (3) Studies with insufficient data on the results that could not be gathered. (4) Repeated studies, clinical protocols, case reports, animal studies, reviewed articles, and non-randomized controlled trials. (5) The language of studies is not English or Chinese.



Data extraction

Data were retrieved from the publications by two researchers who reviewed them separately. A standard form table constructed by Microsoft Excel 2019 which includes publication information (authors, publish date), demographic data (gender, age, sample size, the duration of disease), intervention measures, the course of treatment, and outcomes (MOCA, MMSE, BI) was used to manage the data. Due to the possibility of variation in baseline conditions for MoCA, MMSE, and BI among studies, the outcome data finally included in the analysis was approximated using the following formula, as suggested by the Cochrane Handbook for Systematic Reviews of Interventions (version 5.1). And r, the correlation coefficient, has a value of 0.5 in this case.
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Quality assessment

Studies were evaluated for quality using a technique to identify and quantify the potential for bias, as detailed in the Cochrane Handbook for Systematic Reviews of Interventions. Two researchers independently examined each other's work after data extraction and quality evaluation, while a third researcher dealt with any differences of opinion.



Statistical analysis

Revman (version 5.4, Cochrane Collaboration, Oxford, UK) was used to conduct pairwise meta-analyses for the purpose of making side-by-side comparisons. I-square (I2) and P-values for the test of heterogeneity were used to determine the degree of heterogeneity between the results. To be more precise, we used fixed-effects models when I2 < 50% and p > 0.1, and we used random-effects models otherwise. As ways to measure the effects, the mean differences (MD) and 95% confidence interval (CI) were calculated.

WinBUGS (version 1.4.3) and the Aggregate Data Drug Information System (ADDIS, version 1.16.5) were used for the Bayesian framework network meta-analysis. Markov chain Monte Carlo (MCMC) was used to calculate the model with the following parameters: four chains, 50,000 sample iterations, 20,000 burns, and a lean interval of 10. For the purpose of evaluating the model's convergence, the potential size reduction factor (PSRF) was employed. Convergence of a model is better when the PSRF is closer to 1. Considering the anticipated heterogeneity, a random-effects model was used to synthesize study effect sizes. The combined results were presented as MD and 95% CI. If the 95% CI of MD did not contain 0, then the MD was regarded to suggest a statistically significant difference. To provide a probability ranking to the various interventions of each outcome, the surface under the cumulative ranking area (SUCRA) was calculated. The SUCRA values might be anything from 0 to 100%, with larger values suggesting more effectiveness. Further, publication bias and small study effects for each outcome in the included RCTs were evaluated using comparison-adjusted funnel plots generated in STATA software (version 5.2).

Distributional comparisons of clinical data were used to test the transitivity assumption (age, sample size, publication year, etc.), which could be modifiers of treatment efficacy. Heterogeneity was assessed with common tau2 statistics and predictive intervals, and sensitivity analysis was used to detect potential studies that increase heterogeneity significantly. We used a node-splitting model for the analysis of the inconsistency test, and the results suggest no statistically significant difference between direct and indirect comparisons when p < 0.05. What is more, a loop-specific inconsistency test was performed, in which the 95% CI included zero, indicating good consistency between direct and indirect evidence. Furthermore, determining whether or not two models (consistent and inconsistent) are well-fit was done using the deviance information criterion (DIC).




Results


Literature selection

From those 8 databases, we were able to compile a total of 3,567 articles that met our criteria. Once duplicates were taken out, there were still 2,087 articles. Two independent reviewers then screened the titles and abstracts, excluding 1,902 papers that did not meet the inclusion criteria (non-randomized controlled trials, animal studies, case reports, reviews, procedures, and studies that were manifestly irrelevant). By reviewing the remaining articles' entire texts, we were able to weed out another 130 that did not meet our inclusion criterion, including 26 Non-RCTs, 56 unrelated interventions, 31 unrelated outcomes, 8 Non-post-stroke participants, 6 data duplication, and 3 data missing. Finally, 55 published RCTs were included in this NMA. Figure 1 shows a thorough flowchart of the article-screening procedure.


[image: Figure 1]
FIGURE 1
 Flow diagram of eligible studies selection process. CBM, Chinese Biomedical Literature Service System; CNKI, China National Knowledge Infrastructure; WanFang, WanFang Knowledge Service platform; VIP, Chinese Scientific Journals Database; n, number of publications.




Study characteristics

Fifty-five articles met the criteria for inclusion; 53 were randomized controlled trials (RCTs) with two arms and 2 were RCTs with three arms. There were a total of 3,092 patients included in the sample (1,496 in the control group and 1,596 in the treatment group). These studies were from China (45), Portugal (4), Korea (3), Russia (1), Australia (2), and Italy (1) and were published from 2008 to 2021. There were 3 studies that only provided the overall gender ratio, 3 studies that did not give patient age, and 2 studies that did not report treatment courses. There was a wide range in length of therapy, from 2 weeks to 12 weeks. There were 33 studies that reported MOCA results, 35 that provided MMSE results, and 23 that reported BI results. Supplementary Table 2 provides a comprehensive summary of relevant research.



Quality evaluation

For Random sequence generation, 24 studies reporting the use of a random number table and 14 studies reporting the use of network programming tools were assigned a low risk of bias, and 17 studies not reporting how randomization was performed were assigned an unclear risk of bias. For Allocation concealment, there were 9 studies that met the criteria and were assigned a low risk of bias. For the Blinding of participants and personnel, 2 trials mentioned single blindness and were assigned a low risk of bias, other 21 studies in which intervention measures involving VR and CA were assigned a high risk of bias due to the inability to be blinded. For the Blinding of outcome assessment, 12 trials were assigned a low risk of bias. For Incomplete outcome data, all studies were assigned a low risk of bias as no studies reported severe cases dropped. For Selective reporting, 5 trials that mentioned the study protocol were assigned a low risk of bias. For Other bias, 11 trials that reported disclosure of conflict of interest were assigned a low risk of bias. Figure 2 depicts the summary risk of bias for selected studies.


[image: Figure 2]
FIGURE 2
 Quality assessment of selected studies by the Cochrane risk of bias tool. (A) Risk of bias graph: review authors' judgments about each risk of bias item presented as percentages across all included studies. (B) Risk of bias summary: review authors' judgments about each risk of bias item for each included study.




Pairwise meta-analysis

Following the synthesis of studies that had the same treatments and outcomes, we carried out eight direct pairwise meta-analyses to compare the MOCA score, 9 to compare the MMSE score, and 6 to compare the BI score, respectively, which can be summarily seen in Table 1. As for the MOCA outcome, TMS (MD = 3.42, 95% CI: 1.86–4.98), tDCS (MD = 2.89, 95% CI: 1.15–4.63), VR (MD = 0.95, 95% CI: 0.09–1.81), CA (MD = 2.17, 95% CI: 0.74–3.60) and Acupuncture (MD = 3.70, 95% CI: 1.51–5.89) were more efficient than NOR. However, there was no statistical difference in efficacy between Acupuncture and CA, tDCS and CA. For MMSE score, TMS (MD = 2.27, 95% CI: 0.18–4.36), tDCS (MD = 1.37, 95% CI: 0.13–2.61), VR (MD = 1.68, 95% CI: 0.49, 2.87) and Acupuncture (MD = 2.31, 95% CI: 0.65–3.97) were more efficient than NOR. However, there was no statistical difference in efficacy between CA and NOR, ACU and CA, tDCS and CA, TMS and CA, VR and ACU. For BI score, TMS (MD = 11.22, 95% CI: 2.53–19.90), tDCS (MD = 10.46, 95% CI: 8.29–12.64), VR (MD = 5.52, 95% CI: 4.24–6.80), CA (MD = 5.44, 95% CI: 2.78, 8.11) and Acupuncture (MD = 9.86, 95% CI: 6.22–13.50) were more efficient than NOR. However, there was no statistical difference in efficacy between VR and Acupuncture. The detailed forest plots of the pairwise meta-analysis results are shown in Supplementary Figures 1–3.


TABLE 1 Pairwise meta-analysis.
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Network meta-analysis

Network meta-analyses in the consistency model were conducted in the Bayesian framework to assess the efficacy of MOCA, MMSE, and BI, respectively. As shown in Supplementary Table 3, for each outcome, the PSRF value was equal to 1, indicating that the model had converged and that the findings were relatively stable.

As shown in network diagrams (Figure 3A), MoCA data were available from 33 studies that included 2,316 patients, of whom 1,102 in the NOR group, 293 in TMS, 109 in VR, 318 in CA, 138 in tDCS, and 356 in Acupuncture. The pooled MOCA data indicated that TMS (MD = 3.46, 95% CI: 2.01–4.84), tDCS (MD = 2.94, 95% CI: 1.19–4.63), CA (MD = 2.28, 95% CI: 0.94–3.61) and Acupuncture (MD = 3.66, 95% CI: 2.16–5.17) were more beneficial in patients compared with that of NOR. In addition, TMS and Acupuncture are better than VR when comparing the efficacy of the various therapies (Figure 4A). Based on the pooled data, the best therapies for MOCA were ranked as follows: Acupuncture, TMS, tDCS, CA, VR, and NOR (Figure 5A). The best SUCRA value for Acupuncture was 84.7%, which was close to that of TMS with a value of 79.7% (Supplementary Table 4).


[image: Figure 3]
FIGURE 3
 Network meta-analysis diagrams of eligible comparisons. (A) MOCA, (B) MMSE, (C) BI. Width of the lines is proportional to the number of trial. Size of every circle is proportional to the number of randomly assigned participants (sample size). TMS, Transcranial Magnetic Stimulation; VR, Virtual Reality Exposure Therapy; CA, Computer-assisted cognitive rehabilitation; tDCS, Transcranial Direct Current Stimulation; Acu, Acupuncture; NOR, Normal rehabilitation (including conventional rehabilitation and routine cognition training).



[image: Figure 4]
FIGURE 4
 Network meta-analysis of head-to-head comparisons. (A) MOCA, (B) MMSE, (C) BI. Data are MD (95% CI) in the column-defining treatment compared with the row-defining treatment. Significant results are highlighted in red and bold. TMS, Transcranial Magnetic Stimulation; VR, Virtual Reality Exposure Therapy; CA, Computer-assisted cognitive rehabilitation; tDCS, Transcranial Direct Current Stimulation; Acu, Acupuncture; NOR, Normal rehabilitation.
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FIGURE 5
 Cumulative probability ranking curve of different interventions. (A) MOCA, (B) MMSE, (C) BI. The vertical axis represents cumulative probabilities, while the horizontal axis represents ranks. TMS, Transcranial Magnetic Stimulation; VR, Virtual Reality Exposure Therapy; CA, Computer-assisted cognitive rehabilitation; tDCS, Transcranial Direct Current Stimulation; Acu, Acupuncture; NOR, Normal treatment (including conventional rehabilitation and routine cognition training).


In terms of MMSE, 35 studies with 2,573 patients were included in the network meta-analysis, of whom 1,191 were in the NOR group, 180 in TMS, 202 in VR, 216 in CA, 93 in tDCS, and 691 in Acupuncture (Figure 3B). The pooled data demonstrated a significant improvement for TMS (MD = 2.54, 95% CI: 0.08–4.91) and Acupuncture (MD = 2.28, 95% CI: 0.81–3.78) compared with that of NOR. Besides, significant differences were not observed between the other pairwise comparisons (Figure 4B). The best therapies for MMSE were ranked as TMS, Acupuncture, VR, tDCS, CA, and NOR (Figure 5B). And the best SUCRA value of TMS was 76.1%, which was close to that of Acupuncture with a SUCRA value of 72.1% (Supplementary Table 4).

For the outcome of BI, 23 studies with 1,496 patients were included in the network meta-analysis, of whom 726 were in the NOR group, 130 in TMS, 136 in VR, 119 in CA, 105 in tDCS, and 280 in Acupuncture (Figure 3C). The pooled data of all the 5 therapies demonstrated a significant improvement compared with that of NOR. However, when it comes to pairwise comparisons, no significant differences were found between the 5 therapies (Figure 4C). Despite this, SUCRA was performed, demonstrating that the best therapies for BI ranked as TMS, tDCS, Acupuncture, VR, CA, and NOR (Figure 5C). And the best SUCRA value of TMS was 89.1%, which was far higher than that of the others (Supplementary Table 4).



Safety assessment

Adverse effects were reported only in 7 of the 55 included randomized controlled trials (Supplementary Table 5). The adverse effects reported were mild, such as dizziness and headache during TMS, itching, tingling and burning at the site of tDCS, and scalp hematoma after acupuncture. And there are no adverse effects reported in VR and CA.



Publication bias

Comparison-adjusted funnel plots and Egger's test were performed to evaluate publication bias and small-study effects for MoCA, MMSE, and BI, respectively. Both the MMSE (Egger's test p = 0.064) and BI (Egger's test p = 0.533) comparison-adjusted funnel plots were rather symmetric, indicating that little publication bias likely occurred (Figures 6B,C). However, the MoCA (Egger's test p = 0.025) funnel plot was not well symmetrical and suggested a publication bias (Figure 6A).


[image: Figure 6]
FIGURE 6
 Comparison-adjusted funnel plots. (A) MOCA, (B) MMSE, (C) BI. Labels: A, NOR(Normal rehabilitation); B, TMS (Transcranial Direct Current Stimulation); C, VR (Virtual Reality Exposure Therapy); D, CA (Computer-assisted cognitive rehabilitation); E, tDCS (Transcranial Direct Current Stimulation); F, Acupuncture.




Transitivity, heterogeneity, and inconsistency assessment

Variables about patients known to affect how well a therapy works, such as age, percentage of male participants, sample size, publication year, percentage of ischemic stroke, education years, time post-stroke, course of treatment, and baseline indicators, were evaluated and visualized using box plots to assessed the transitivity assumption. As shown in Supplementary Figure 4, these characteristics across comparisons were relatively similar. The results of the test for inconsistency derived from the node-splitting model indicated that there was no significant difference in any of the comparisons across any of the outcomes, with the exception of the comparison of NOR vs. VR in BI (Supplementary Table 6). Similarly, when looking at the loop-specific inconsistency test, every loop included a value of 0, suggesting that no major contradiction was observed, with the exception of the NOR-VR-Acupuncture comparison in BI (Supplementary Figure 5). We then examined the goodness of fit between the inconsistency model and the consistency model to ensure there was no inconsistency at the treatment level. The DIC of the consistency model was 173.57 for MOCA, 188.21 for MMSE, and 227.48 for BI, which was similar to the DIC of the inconsistency model (174.11, 188.45, and 227.70, respectively), suggesting no evidence of inconsistency was found in the network. Low heterogeneity was found across most comparisons for all three outcomes, as measured by the prediction interval (Supplementary Figure 6). For comparisons with high heterogeneity, sensitivity analyses were performed and no studies that significantly increase heterogeneity was found (Supplementary Figures 7–9).



GRADE evaluation on the quality of evidence

According to GRADE, the quality of the evidence is in the range of very low and moderate. In terms of TMS vs. ACU, the quality was moderate for MoCA, low for MMSE and BI. As for TMS vs. tDCS, the quality was low for BI. The details are shown in Supplementary Table 7.




Discussion

According to the “Global Stroke Fact Sheet 2022” (10) published by the World Stroke Organization (WSO), reporting that stroke remains the second leading cause of death and the third leading cause of death and disability combined in the world. Although the development of effective acute treatments has resulted in global trends showing improvement in stroke outcomes (24), PSCI remains highly prevalent (25, 26) and associated closely with disability, dependency, and morbidity (6, 27), posing a major burden to patients, caregivers, and health care systems (8, 9). Thus, viable treatments are needed critically to help slow or stop the progression of PSCI. Unfortunately, there is no pharmacological treatment approved for PSCI, and prospective pharmaceutical medicines have yet to show significant efficacy in decreasing or preventing cognitive deterioration following a stroke (13, 28). Non-pharmacological interventions such as TMS, tDCS, VR, CA, and Acupuncture (16–20) have shown promise in several studies. However, there is continued uncertainty on the benefits due to methodological limitations that exist in most meta-analyses above, such as the unclear definition of PSCI, mixing of controlled groups, and combination of interventions in different groups. Besides, neither do we know whether there is a difference in efficacy among the non-pharmacological interventions mentioned above.

In this study, we conducted a Bayesian statistics NMA of 5 potential non-pharmacological therapies for PSCI patients. By comparing and ranking the treatments' curative effects on various outcomes, we were able to identify the treatment strategy that was most widely regarded as effective. In order to make the results more reliable, the participants in eligibility studies were limited to PSCI patients, the control interventions were limited to conventional rehabilitation combined with cognition training, and the 5 non-pharmacological interventions should not be applied in combination. Finally, two important findings have been obtained. Firstly, compared with the NOR, all five therapies had positive effects on some outcomes more or less. Secondly, TMS and Acupuncture are superior to NOR in all outcome indicators, with TMS being by far the most effective method for the improvement of MMSE and BI, and improvements in MoCA are most strongly associated with Acupuncture.

For the treatment of cerebral dysfunction brought on by a variety of disorders, TMS has shown to be an effective, painless, and non-invasive method of activating or modulating cortical targets in the central nervous system (CNS) (29, 30). Motor weakness, aphasia, and dysphagia have all been shown to improve with TMS treatment in clinical studies for individuals recovering from a stroke (31, 32). Furthermore, it has been recommended as “level A evidence” to use in the neurorehabilitation after motor stroke by the evidence-based guidelines (33). Evidence from the animal study suggests that the neuroprotective and pro-cognitive effects of TMS may exert by enhancing neurogenesis and activating BDNF/TrkB signaling pathway. A prospective pilot study conducted recently demonstrate that the scores of several cognitive evaluations increased after completion of the TMS session (34), which is similar to the results of pooled data in our study. However, it is worth noting that the stimulus parameters for TMS of the studies included in our network meta-analysis were not entirely consistent and subgroup analyses were not performed due to the limited literature, which may affect the reliability of the results to some extent.

Acupuncture, a well-known alternative treatment of traditional Chinese medicine with advantages of safety, reliability, and easy operation have been broadly applied to post-stroke patients. The positive effectiveness and safety of acupuncture in PSCI have been evaluated in a meta-analysis conducted recently (20). Studies in rats demonstrate that the improvement of the cognitive function performed by acupuncture may be associated with suppression of NF-κB-p53 activation and oxidative stress (35). Although acupuncture has been applied widely and a large number of articles have been published, just as the large number of articles related to acupuncture included in our network meta-analysis. However, we found that acupuncture ranked first only in terms of the probability of improving MoCA scores, with a tiny advantage compared with TMS. This may be related to the slow onset of acupuncture, and the evaluation time points of most studies included in our network meta-analysis in this study were at 4 weeks. In addition, the data from different types of acupuncture were pooled in the study, which may skew the results to some extent. However, more in-depth comparative studies are needed to verify this.

As shown in our study, tDCS and CA were effective only in improving MoCA scores but had no significant effect in improving MMSE, which may be related to the different characteristics between MoCA and MMSE scales. Studies have shown that compared with MMSE, MoCA is more sensitive to recognizing mild cognitive impairment, while MMSE is more suitable for the diagnosis of moderate to severe cognitive impairment (36, 37). In other words, MoCA is more likely to identify mild changes in cognitive function. This also implies, to some extent, that CA and tDCS are less effective in improving cognitive function in PSCI patients.

Furthermore, we were surprised to find that VR did little in improving MoCA and MMSE scores. Virtual reality (VR), a relatively new practical technology developed in the 20th century, allows for the seamless integration of training tasks into a simulated environment (such as a home, sports training facility, or social setting). This creates a more realistic, intuitive, and interactive feedback environment (38–40). Which is regarded as a conducive way of improving the neuroplasticity of the brain (41). However, the effectiveness of VR in improving global cognitive function in PSCI patients remains uncertain, just as demonstrated by several meta-analyses (41, 42). This may be related to the fact that current VR rehabilitation content is more focused on various immersive games that require more physical mobilization to cooperate. Additional factors, such as specific rehabilitation content of VR and the estimation of different dimensions of cognitive function should be taken into consideration in future studies, to get a more reliable and instructive result.


Limitations

Our research has a number of drawbacks. First, the majority of the research included was conducted in China, which may have introduced bias and made the overall findings less compelling. Second, several of the RCTs included in the present study contained samples with < 30 people in each group, which raises concerns about the robustness of the findings. Fortunately, our network meta-analysis did not reveal any glaring inconsistencies or heterogeneities. Third, the study did not evaluate the scores of various dimensions of cognitive function, which may underestimate the effectiveness of some interventions. Finally, some baseline data related closely to cognitive function, such as volume and location of cerebral infarction, were not fully collected, which may reduce the credibility of the results. Fortunately, other important baseline data such as age, years of education, course of duration, etc., were collected and compared, and no significant differences were found.




Conclusion

The results of this study provide some evidence that the 5 included therapies have positive effects for cognitive function on certain outcomes more or less. TMS may be the preferred therapy for improving MMSE and BI of PSCI patients, while acupuncture may be the preferred therapy in MOCA. CA and tDCS are also beneficial with less effective. The effects of VR are still waiting for more research to confirm.
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Purpose: To establish an ensemble machine learning (ML) model for predicting the risk of futile recanalization, malignant cerebral edema (MCE), and cerebral herniation (CH) in patients with acute ischemic stroke (AIS) who underwent mechanical thrombectomy (MT) and recanalization.

Methods: This prospective study included 110 patients with premorbid mRS ≤ 2 who met the inclusion criteria. Futile recanalization was defined as a 90-day modified Rankin Scale score >2. Clinical and imaging data were used to construct five ML models that were fused into a logistic regression algorithm using the stacking method (LR-Stacking). We added the Shapley Additive Explanation method to display crucial factors and explain the decision process of models for each patient. Prediction performances were compared using area under the receiver operating characteristic curve (AUC), F1-score, and decision curve analysis (DCA).

Results: A total of 61 patients (55.5%) experienced futile recanalization, and 34 (30.9%) and 22 (20.0%) patients developed MCE and CH, respectively. In test set, the AUCs for the LR-Stacking model were 0.949, 0.885, and 0.904 for the three outcomes mentioned above. The F1-scores were 0.882, 0.895, and 0.909, respectively. The DCA showed that the LR-Stacking model provided more net benefits for predicting MCE and CH. The most important factors were the hypodensity volume and proportion in the corresponding vascular supply area.

Conclusion: Using the ensemble ML model to analyze the clinical and imaging data of AIS patients with successful recanalization at admission and within 24 h after MT allowed for accurately predicting the risks of futile recanalization, MCE, and CH.

KEYWORDS
  acute ischemic stroke, machine learning, futile recanalization, malignant cerebral edema, cerebral herniation


Introduction

Stroke is a leading cause of mortality and disability worldwide. The global deaths caused by ischemic stroke increased by 60.68% over 30 years, from 2,049,670 in 1990 to 3,293,400 in 2019 (1). Acute ischemic stroke (AIS) is characterized by a sudden reduction or cessation of blood flow in a brain artery that results in ischemia and hypoxia of the brain tissue in the corresponding blood supply area. According to current international guidelines and related research, endovascular mechanical thrombectomy (MT) combined with recombinant tissue-type plasminogen activator (rt-PA) thrombolysis is the standard treatment in patients with AIS due to occlusion of the proximal anterior intracranial region, while MT is one of the most important forms of endovascular treatment (EVT) for large vessel occlusion (2–4).

However, despite recent improvements in MT procedure, futile recanalization, defined as a 90-day modified Rankin Scale (mRS-90) score >2 after adequate vessel recanalization, remains a serious clinical problem (5). The incidence of futile recanalization after MT is approximately 49–67% (5). The primary risk factors for patients with AIS include large infarct volume, poor collateral circulation, and high National Institutes of Health Stroke Scale (NIHSS) score (6–8). While the mRS and NIHSS scores are among the methods used to evaluate AIS functional outcomes, few studies have focused on the functional outcomes and potentially lethal complications in patients with AIS who have undergone an MT and for whom recanalization was achieved. Although computed tomography-angiography and magnetic resonance imaging (MRI) can be used to accurately evaluate the entire ischemic lesion (core and penumbra), non-contrast computed Tomography (NCCT) is common for patients with AIS after MT, due to its widespread availability, low cost, and rapid scanning speed (9).

Malignant cerebral edema (MCE) and cerebral herniation (CH) are relatively common and serious complications that lead to rapid deterioration of patient's condition, coma, poor prognosis, or even death. Therefore, being able to rapidly recognize which patients are at high risk for futile recanalization and potentially lethal complications after an MT can help clinicians make individualized treatment decisions.

The machine learning (ML) method can accurately process complex nonlinear relationships among a large number of variables, which is difficult to accomplish with traditional statistical models (10, 11). This technology has been applied to predict the outcomes of patients with AIS; however, a drawback of complex ML algorithms is its interpretability has limitations, which are commonly referred to as black-box models for clinicians. Previous researchers have attempted to solve this problem using simple ML algorithms, but more complex and improved models, such as the support vector machine (SVM), deep neural network, and ensemble ML algorithms, which may perform better in stroke-related tasks have not been fully utilized (12, 13). In addition, few studies have focused on the ability of applied complex ML methods to predict the occurrence of malignant complications in patients who undergo MT and recanalization.

Therefore, in this study, ensemble ML models were constructed to predict futile recanalization, MCE, and CH in patients with AIS treated with MT and in whom successful recanalization was achieved. The model we constructed can accurately identify and display the high-risk factors of each patient.



Methods


Study population

We recruited 110 patients with confirmed AIS and large vessel anterior circulation occlusion who underwent MT and in whom successful recanalization was achieved, modified Thrombolysis in Cerebral Infarction (mTICI) score 2b-3, in the Department of Neurology at Nanfang Hospital between June 2016 and November 2019. All the included patients had a unilateral internal carotid or middle cerebral artery (M1, M2) occlusion that was confirmed using digital subtraction angiography. A femoral artery puncture was performed within 6 h of stroke onset unless the ischemic and infarction areas were mismatched found by imaging evaluation (CTP and MRA) and MT was deemed necessary; the puncture could be performed within 6–24 h. The patients underwent an NCCT examination within 24 h after the MT. Figure 1 shows the inclusion and exclusion criteria. The decision to perform MT and administer rt-PA was made individually for each patient through a consensus of therapeutic neurologists and neurointerventionalists and by following national and international guidelines (3). The exclusion criteria were as follows: (1) age >80 years; (2) premorbid mRS >2; (3) history or evidence of cerebral hemorrhage, subarachnoid hemorrhage, venous malformations, or brain aneurysms or tumors; (4) high risk of bleeding, such as platelet count < 100 × 109/L, active bleeding, trauma, or surgery within 2 months before the onset of stroke; (5) mental abnormalities before stroke that affected neurological function assessments; (6) comorbid hematological conditions, malignant tumors, severe heart, lung, liver, renal failure, or life expectancy of < 1 year.


[image: Figure 1]
FIGURE 1
 The inclusion and exclusion criteria.




Image acquisition and feature extraction

Using the NCCT scan that was acquired for each patient with AIS, we calculated the volume (mm3) and maximum area (mm2) of the hypo- and hyperdense lesions on the picture archiving and communication system workstation using manual segmentation and automatic measurement tools. All the images were independently studied by two experienced neurologists who were blinded to the clinical characteristics. Differences of opinion were resolved through discussion. The proportion of hypodense lesions in the responsible vascular supply area was categorized into one of the following four levels: 0: no hypodense lesions; 1: proportion < 1/3; 2: proportion between 1/3 and 2/3; 3: proportion >2/3. The proportion of hyperdense lesions in the responsible vascular supply area was categorized into one of the following four levels: 0: no hyperdense lesions; 1: scattered punctate hyperdensity lesions were observed; 2: fused hyperdensity, but the area was < 1/3 of the corresponding vascular supply area, with or without a space-occupying effect; 3: fused hyperdensity and area >1/3 of the corresponding vascular supply area, with or without a space-occupying effect (14, 15). We also observed hyperdensity in the subarachnoid space and calculated the Alberta Stroke Program Early CT Score (ASPECTS) based on the NCCT images that were acquired at admission and within 24 h after the MT (16).



Clinical assessments and outcomes

Baseline demographic and clinical characteristics (sex, age, smoking, NIHSS score, Glasgow Coma Scale (GCS) score, blood pressure, and blood sugar on admission), history of cardiovascular diseases (hypertension, hyperlipidemia, coronary heart disease, atrial fibrillation, and diabetes), time from stroke onset to femoral artery puncture, and thrombolytic therapy were each considered in the present study. The feature set also included interventional surgical-related characteristics (time interval from stroke onset to vascular recanalization, duration of surgery, thrombolysis or not, and times of embolectomy), and blood testing results before and after MT (D-dimer, fibrinogen, leukocytes, neutrophils, and lymphocytes).

The mRS-90 is used to indicate a patient's functional outcome; therefore, meaningful recanalization was defined in this study as mRS-90 of 0–2, and futile recanalization was defined as mRS-90 of 3–6. We used the same feature set to predict the risk of MCE and CH. MCE was defined as meeting the following two criteria: (1) an increase in the NIHSS score ≥4 or an increase of the consciousness evaluation part of the NIHSS score ≥1; (2) the range of the hypodense lesions was >50% of the supply area of the middle cerebral artery, and it was accompanied by signs of local brain edema, such as lateral ventricle compression, disappearance of the sulcus, midline displacement of the septum pellucidum, or a pineal layer >5 mm with basal cistern occlusion (17). CH was defined as meeting the following two criteria: (1) one or more of the following clinical symptoms occur the presence of vomiting: decreased consciousness, or mydriasis with the disappearance of the light reflex; (2) CT- or MRI-confirmed brain tissue displacement (18).



Model development

A dataset was constructed, which included baseline demographic and clinical characteristics, clinical information before and after interventional surgery, and brain NCCT features after MT. To preprocess the data, the missing dataset values were filled by averages calculated based on the complete dataset, and the dataset was randomly divided into a training set and a test set at a ratio of 7:3. We normalized the quantitative data to a 0–1 range to accelerate and improve model training. When the level of each indicator varies greatly, the role of the indicator with high value in the comprehensive analysis will be highlighted, and the role of the indicator with a low-value level will be relatively weakened. Data standardization can effectively prevent gradient explosion and overfitting (19, 20). The multiclassification data were processed using one-hot encoding. To solve the problem of the unbalanced sample size of the patients with MCE and CH, we used the upsampling method, synthetic minority oversampling technique (SMOTE), to balance the training dataset (21). The SMOTE algorithm is implemented by imblearn package in Python 3.7.4.

In the present study, five common ML algorithms, including SVM, random forest classifier (RFC), extreme gradient boosting (XGBoost), k-nearest neighbor (KNN), and gradient-boosting machine (GBM), were developed and validated using the scikit-learn and XGBoost packages in Python 3.7.4 to predict futile recanalization, MCE, and CH in the patients with AIS. Ten-fold cross-validation was used for model derivation and internal validation. The grid search algorithm was used during the training process for each model to optimize model's hyperparameters on the training set as the standard of the area under the receiver operating characteristic curve (AUC).

We used the five basic ML models as base learners and developed a stacking ensemble model using the logistic regression (LR-Stacking) algorithm as the meta-learner. The model development pipeline is shown in Figure 2 and the detailed process for constructing the LR-Stacking model is shown in Supplementary Figure 1.
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FIGURE 2
 The model development pipeline. First, data were randomly divided into training and test sets without duplication. Next, using the training set, the five basic ML algorithms were internally trained, and their predictive ability was validated by applying a 10-fold cross-validation and hyperparameter optimization using the grid search method. Subsequently, the basic ML models were integrated into the LR-Stacking model, and the optimal model was evaluated in test set.




Model evaluation

The AUC, sensitivity, specificity, accuracy, and F1-score of the five basic ML models and LR-Stacking model were calculated in the test set, and used to assess the performance of the models. The superiority of the ensemble ML algorithm over the conventional statistical method was evaluated by comparing the performance of the ensemble ML models and LR model. The AUCs of the models were compared using the Delong test in MedCalc 19.0.7 (MedCalc Software Ltd., Ostend, Belgium).

The Shapley Additive Explanations (SHAP) local explanatory technique explained the optimal model by calculating each feature's contribution to the predictive results individually and globally (22, 23). According to this model interpretation method, the feature importance of each prediction task can be observed, and the basis of the prediction results obtained by the model for each patient.



Statistical analysis

Univariate analyses were performed using the Mann–Whitney U test for continuous variables and the chi-squared test for categorical variables. All the tests were two-sided, and statistical significance was set at P < 0.05. Statistical analyses were performed using SPSS version 25.0 (IBM Corp., Armonk, NY, USA) and R Studio 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria).




Results


Study population

A total of 110 patients with AIS (average age, 58.16 ± 12.57 years; 78 males and 32 females) were included in this study. Among them, 61 (55.5%) patients experienced futile recanalization, 34 (30.9%) developed MCE, and 22 (20.0%) developed CH. The dataset was randomly divided into a training set (n = 77, 70%) and a test set (n = 33, 30%). In the training set, there were 44 (57.1%) patients with futile recanalization, 24 (31.2%) with MCE, and 15 (19.5%) with CH. In the test set, there were 17 (51.5%) patients with futile recanalization, 10 (30.3%) with MCE, and 7 (21.2%) with CH. For MCE, SMOTE algorithm generated 29 cases in the training set, including 19 MCE and 10 non-MCE. For CH, SMOTE algorithm generated 47 cases with CH in the training set. The demographic data including the generated data are shown in Supplementary Tables 1–3.

Table 1 displays several significant differences in characteristics across the two groups of meaningful recanalization and futile recanalization. The patients with futile recanalization had lower GCS scores at admission, higher D-dimer levels after undergoing embolectomy, lower ASPECTS within 24 h after embolectomy, and greater prevalence of hyperdensity in subarachnoid than meaningful recanalization. The complete characteristic distribution differences among the three groups are shown in Supplementary Tables 4–6. The patients with MCE were older, and they had lower GCS scores and ASPECTS at admission, higher D-dimer, WBC, and neutrophil levels, and a higher frequency of the large artery atherosclerosis (LAA) TOAST classification than non-MCE patients. The patients with CH had a shorter interval from onset to puncture, lower ASPECTS at admission, and higher D-dimer, WBC, and neutrophil levels than non-CH. Furthermore, the patients with AIS and either futile recanalization, MCE, or CH had broad hyper- and hypodense lesions, and they generally accounted for a large proportion of the responsible vascular supply area.


TABLE 1 Summary of the important characteristics comparing AIS patients with futile recanalization vs. meaningful recanalization.
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Model performance

Each basic ML algorithm performed well in the binary category classification of mRS-90, MCE, and CH. The AUC, sensitivity, specificity, accuracy, and F1-score of each model using the independent test set are presented in Table 2. Figures 3–5 show the receiver operating characteristic curve (ROC), decision curve analysis (DCA), and feature importance of each basic ML and LR-Stacking model for the three classification tasks. The optimal basic ML models (KNN, RFC, and RFC) predicting futile recanalization, MCE, and CH had AUCs of 0.927, 0.883, and 0.940, respectively, sensitivities of 88.2, 90.0, and 71.4%, respectively, specificities of 87.5, 87.0, and 96.2%, respectively, accuracies of 87.9, 87.9, and 90.9%, respectively, and F1-scores of 0.879, 0.864, and 0.856, respectively.


TABLE 2 The AUC, sensitivity, specificity, accuracy, and F1-score comparisons.
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FIGURE 3
 The results from the ML models and contributions of various features to predicting futile recanalization. (A) The ROC curve of five ML models and LR-Stacking model. (B) The net benefit of the various models. (C) The features are listed in descending order according to the contributions from the LR-Stacking model. (D) The effects of the features on prediction. The colors indicate the value of each feature, from high (red) to low (blue). The horizontal location shows whether the effect of the value leads to a prediction of futile recanalization. Each point is a SHAP value of a feature for a case.
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FIGURE 4
 The results of the ML models and the contributions of various features to predicting MCE. (A) The ROC curve of five ML models and LR-Stacking model. (B) The net benefit of the various models. (C) The importance of the features for the LR-Stacking model. (D) The effects of the features on the predictions of the LR-Stacking model.
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FIGURE 5
 The results of the ML models and contributions of various features to predicting CH. (A) The ROC curve of five ML models and LR-Stacking model. (B) The net benefit of the various models. (C) The importance of the features for the LR-Stacking model. (D) The effects of the features on the predictions of the LR-Stacking model.


For predicting the futile recanalization, MCE, and CH, the LR-Stacking models had AUCs of 0.949, 0.885, and 0.904, respectively, sensitivities of 88.2, 90.0, and 85.7%, respectively, specificities of 87.5, 91.3, and 96.2%, respectively, accuracies of 87.9, 90.9, and 93.9%, respectively, and F1-scores of 0.882, 0.895, and 0.909, respectively. Compared with the optimal basic ML models for predicting futile recanalization and MCE, the Delong test showed that the AUC of the LR-Stacking model improved by 0.022 (p = 0.457) and 0.002 (p = 0.927), respectively. For predicting CH, the AUC of the LR-Stacking model decreased by 0.036 (p = 0.635) compared with that of the RFC model. Moreover, the LR-Stacking models performed better than all five basic ML models in terms of their sensitivity, specificity, accuracy, and especially F1-score.

Under the same conditions, for predicting futile recanalization, MCE, and CH, the LR models had AUCs of 0.908, 0.852, and 0.929, respectively. Comparing the performance of the ensemble ML method against the generalized statistical method for predicting futile recanalization and MCE demonstrated that the AUC of the LR-Stacking model improved by 0.041 (p = 0.324) and 0.032 (p = 0.395), respectively. For predicting CH, the AUC of the LR-Stacking model decreased by 0.025 (p = 0.739). Similarly, the LR models show a similar trend to the basic ML models in that their accuracy, F1-score, and other statistical are lower than those of the LR-Stacking models. The model comparison results are shown in Table 3.


TABLE 3 The AUC, sensitivity, specificity, accuracy, and F1-score comparisons of generalized LR and LR-Stacking method.
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DCA demonstrated that if the threshold probability in the clinical decision was >20%, the ML models provided a greater benefit than the treat-all models. For classifying MCE and CH, the overall net benefit of the LR-Stacking model was greater than that of the other ML models. For example, at the 40% risk cutoff, the net benefits from the LR-Stacking model were 23 and 16%, respectively, which are equivalent to performing clinical interventions for 23 MCE patients and 16 CH patients per 100 patients without any of the interventions being unnecessary and 21 (MCE) and 25 (CH) fewer unnecessary interventions with no increase in the number of clinically significant missed MCE and CH diagnoses.



Feature importance analysis

For predicting the outcomes of the patients with AIS, the LR-Stacking model indicated that the most important characteristics were the hypodensity volume and proportion of the responsible vascular supply area, NIHSS score at admission, and maximum layer area of hyperdensity. For predicting MCE and CH, the LR-Stacking model primarily classified patients by their hypodensity volume. The SHAP values for all the basic ML models are shown in Supplementary Figures 2–4.

We displayed the LR-Stacking models' decision-making processes for two patients from the test set. The models' prediction processes for the mRS-90, MCE, and CH are shown in Figure 6. Case #1 (Figure 6A) was a patient who had an mRS-90 of 5, indicating futile recanalization; this patient developed MCE and CH. Case #2 (Figure 6B) was a patient who had an mRS-90 of 2, indicating meaningful recanalization; this patient did not develop MCE or CH. We found that the LR-Stacking models output the classification results for case #1 primarily based on the hypodensity volume; however, the other features that supported a futile recanalization prediction were different from those for case #2. The LR-stacking model incorrectly classified case #2 as having an mRS-90 >2, primarily due to the high hypodensity proportion in the responsible vascular supply. The LR-Stacking model also determined that MCE and CH would not occur in case #2 due to the TOAST being classified as LAA and the presence of a relatively small hypodense volume.
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FIGURE 6
 The force plot for the LR-Stacking model decision process for evaluating the risk of futile recanalization, MCE, and CH in two patients with AIS in the test set. (A) A patient with mRS-90 of 5, indicating futile recanalization and developed MCE and CH. (B) A patient with mRS-90 of 2, indicating meaningful recanalization and did not develop MCE or CH. Each feature provides a SHAP value for the base value of the model. The final prediction value, f(x), is obtained using to the weight of the features and the model processing. When f(x) > 0, the model determines that the case is positive; otherwise, it is considered negative.





Discussion

The present study demonstrated that the predictive models based on clinical and NCCT- characteristics and ensemble ML algorithm allows to accurately predict the risk of futile recanalization, MCE, and CH in patients with AIS who were treated with MT and for whom successful endovascular recanalization was achieved. In terms of overall prediction performance, the ensemble ML method in predicting these three adverse events is better than that of the basic ML models and generalized statistical method. We added SHAP algorithm to show the top features and how they impact the models' output. The results of SHAP analysis showed that hypodensity volume and proportion of the responsible vascular supply area, NIHSS at admission, and maximum slice area of hyperdensity was the top-5 predictors for predicting futile recanalization. Meanwhile, hypodensity volume and proportion, TOAST-LAA were the top-3 predictors for predicting MCE, and hypodensity volume and proportion, and smoking history were the top-3predictors for predicting CH.

Most studies demonstrated that ML can be used as an auxiliary means of clinical evaluation to predict the functional outcomes after EVT of AIS patients (24–26). However, most of the research cohorts were AIS patients with anterior circulation infarction, regardless of the efficacy of EVT, and only their mRS-90 was concerned. Despite complete endovascular recanalization, a significant percentage of patients with AIS do not achieve a good clinical outcome (5). The characteristics of the present study are that it focused on patients with AIS who underwent MT and completely recanalization (mTICI score 2b-3), and three adverse outcomes including mRS-90, MCE, and CH were predicted. Moreover, the prediction models could display the specific decision-making process of each patient, which indicated that it may have the potential for clinical application. It means that the models can identify the patients with a high risk of adverse outcomes as early as possible and help doctors to be alert and take the high-risk factors suggested by the model as the target of personalized intervention.

According to the results, we can easily observe that the performance of the ensemble ML models was better than the basic ML models and the generalized LR models in the prediction of futile recanalization and MCE. Early identification of high-risk patients with MCE or CH is of great significance in treatment decisions. Prediction models require excellent sensitivity and net benefits due to the severe consequences of misclassifying MCE and CH. Although the AUC of LR-Stacking model was lower than that of RFC, we chose the LR-Stacking model as the final prediction model for evaluating the risk of CH after considering additional scores, particularly the F1-score and DCA results.

The more complex and accurate the ML model, the worse its interpretability. The primary obstacle to the application and popularization of AI prediction models in the clinical setting is the difficulty clinicians experience understanding, trusting, and using ML model prediction results and applying them to each patient. Although some ML algorithms have embedded modules of feature importance, they are still insufficient to support clinical applications. Therefore, we added SHAP algorithm to visualize the decision-making process of the ML models. According to the analysis results, we can easily observe that clinically severe AIS has a high probability of producing adverse outcomes according to the severity and extent of the initial ischemia. However, although hypodensity volume and proportion showed a strong correlation with the three adverse events, it should be emphasized that they alone were not enough to reliably complete the prediction tasks. A pooled analysis of 7 randomized multicenter trials on EVT demonstrated that only 12% of the treatment benefit according to mRS-90 could be explained by the follow-up infarct volume, which is not a valid proxy for estimating treatment effect in phase II and III trials of AIS (27). On this point, the basic ML algorithms in this study could integrate hypodensity volume and proportion and other meaningful predictors of adverse outcomes because it is good at finding and processing complex relationships between numerous input variables to make more accurate predictions (28). After that, by integrating the advantages of five basic ML algorithms, the optimal models were constructed.

Several studies have shown that a large infarct volume is associated with worse functional outcomes for patients with AIS, indicating that the infarct volume is an independent predictor of functional outcomes for these patients (29–31). Furthermore, multiple factors, including clinical and imaging features and MT-related information, may affect whether futile recanalization occurs. Analyzing these factors will help clinicians make individualized decisions about the necessity of an MT for their patients. Hypertension, LAA, older age, hyperglycemia, and lower GCS scores at admission support the model to predict poor functional prognosis. Hypertension and age over 70 may increase the risk of futile recanalization (32–34). Hyperglycemia is related to larger infarct volumes and reduced salvage of perfusion-diffusion mismatch tissue (35). On the other hand, hyperglycemia may cause a larger increase in the infarct volume leading to a worse clinical outcome despite complete recanalization (36). Functional outcomes of AIS patients after MT were similar among different TOAST subtypes, but it is still unknown whether the subtype has an impact on the patients with complete recanalization (37). Some studies also suggested that the functional outcomes of patients with LAA were worse than other TOAST criteria, which may be related to inflammation and metabolic response (38, 39). Moreover, previous studies have shown that for patients with AIS, large infarct volume, poor collateral circulation, and high NIHSS score are significant predictors of functional outcomes and indicators of the severity of the neurological injury (6–8). However, unlike in other studies, our results show that the symptom onset time and interval from puncture to recanalization did not play a particularly strong role in predicting futile recanalization (12, 40).

The infarct volume can be used to predict MCE by measuring it on early MRI scans accurately; however, MRI scans may not be readily available to patients with AIS (41). In contrast, hypodensity is easily available and measurable in CT. Although it may be a variable combination of infarction and edema, hypodensity is also closely correlated with the mRS-90, potentially lethal MCE, and CH (41–43). The SHAP values for the LR-Stacking models indicate that the NCCT-based infarct volume is an important risk factor for predicting MCE and CH. Interestingly, the model considered that the history of smoke is a protective factor against MCE and CH after MT, which was contrary to our common sense and some previous research. Smoking severely affects the cerebrovascular reserve and induces intracranial atherosclerotic changes, and it may impair cerebrovascular reactivity and lead to poor collateral circulation (44, 45). However, a meta-analysis based on 45,826 AIS patients showed a similar result that smoking was a protective factor against MCE (46). According to a relevant study, the activation of endogenous cannabinoid system may play a significant role in the neuroprotective effect of nicotine (47). It may be due to nicotine promoting the release of endocannabinoids, resulting in hypothermia, which inhibits the inflammatory response and alleviates cerebral edema (48, 49). Despite the SHAP values for other features being much lower than the infarct volumes, it cannot be assumed that other features are not essential or useful. In addition, we found that the patients with CH had shorter groin puncture time in this cohort, but there was no statistical difference in groin puncture time between the cohorts of futile recanalization and non-futile recanalization. We think it is caused by the small sample size of data because there was no special treatment performed for this group of patients before MT. This feature also did not play a significant role in our ML models. As the base learners of the LR-Stacking model, the great performances of the SVM, RFC, and KNN algorithms are facilitated by the interactions among multiple features. Overall, the NCCT-based cerebral infarct volume was the most stable and robust predictor in each basic ML model.

Our study had some limitations. First, this was a single-center study with a small sample size, and the constructed models need further external validation. Second, the low MCE and CH proportions may have affected the statistical power of the study; therefore, we applied SMOTE to the data segmentation and model training to reduce the influence of the unbalanced data. Finally, this study did not distinguish between the ischemic core and penumbra, and their impact on ML is unknown.



Conclusion

This study demonstrates that comprehensive analysis of clinical and NCCT characteristics using ML algorithms allowed for the accurate prediction of clinical outcomes and malignant complications following MT for patients with AIS. We designed interpretable LR-stacking models constructed using five basic ML algorithms and used them as final prediction models. The hypodensity volume and proportion in the responsible vascular supply area were the most important imaging predictors, and the NIHSS score at admission was the most important clinical predictor of futile recanalization, whereas the hypodensity volume was the most important predictor of both MCE and CH. We utilized SHAP technology to show the ensemble model evaluation process for each case, which enabled us to promptly determine the individual risk factors for adverse outcomes and design corresponding clinical interventions to improve the prognosis and reduce the risk of malignant complications in the patients with AIS.
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Objective: To investigate the link between genetic variants associated with plasma homocysteine levels and risk of intracranial aneurysm (IA) using two-sample Mendelian randomization.

Methods: We used single-nucleotide polymorphisms associated with human plasma homocysteine levels as instrumental variables for the primary analysis in a genome-wide association study of 44,147 subjects of European ancestry. Summary-level statistics were obtained for 79,429 individuals, including 7,495 IA cases and 71,934 controls. To enhance validity, five different Mendelian randomization methods (MR-Egger, weighted median, inverse variance weighted, simple mode, and weighted mode) were used for the analyses.

Results: The inverse variance weighted analysis method produced P-values of 0.398 for aneurysmal subarachnoid hemorrhage [odds ratio (OR): 1.104; 95% confidence interval (CI): 0.878–1.387], 0.246 for IA (OR: 1.124; 95% CI: 0.923–1.368), and 0.644 for unruptured IA (OR: 1.126; 95% CI: 0.682–1.858). The MR-Egger analysis showed no association between IAs and homocysteine, with all P > 0.05.

Conclusion: Using gene-related instrumental variables, the Mendelian randomization analyses demonstrated a lack of an association between plasma homocysteine levels and IAs or aneurysmal subarachnoid hemorrhage.

KEYWORDS
  Mendelian randomization, intracranial aneurysm, hyperhomocysteinemia, causality, cerebrovascular disease


Introduction

Intracranial aneurysm (IA) is confined, pathological dilatations of the walls of intracranial arteries that are at risk of rupture. About 85% of spontaneous subarachnoid hemorrhage (SAH) is due to ruptured IA (1). The incidence of IA was reported to be about 3.2% in a worldwide study with a mean age of 50 years (2). Aneurysmal SAH (aSAH) often has a poor prognosis, with high disability and mortality rates (3, 4). However, the etiopathology of IAs remains unclear.

Hyperhomocysteinemia has been widely reported to be associated with the development of cerebrovascular disease (5–8). Excessive homocysteine levels lead to inflammation of the vessel wall, atherosclerotic plaque formation, endothelial cell damage, smooth muscle cell proliferation, and altered oxidative stress response (9–11). These pathological changes play a critical role in the formation and rupture of IAs (12, 13). We, therefore, speculated that the formation and rupture of IAs may be associated with homocysteine.

Recent studies have shown an association between IAs and hyperhomocysteinemia in the Chinese Han population (14, 15). In 2011, a study reported that hyperhomocysteinemia in a rat model accelerated IA formation (16). However, it has been reported that homocysteine is not associated with the IAs in other races (17). Therefore, the association between IA formation and homocysteine remains unresolved.

Mendelian randomization (MR) is the use of genetic variation in non-experimental data to estimate the causal link between exposure and outcome, and it can reduce the impact of behavioral, social, psychological, and other factors (18). And in recent years, many MR studies have emerged to provide clinical evidence (19–21). This proves that MR is a reliable research method to solve some problems. Using recently published summary data for plasma homocysteine levels and summary data for IA in a genome-wide association study (GWAS), we aimed to analyze the causal connection between homocysteine and IA using two-sample MR.



Materials and methods


Genetic instruments and data sources

We used single-nucleotide polymorphisms (SNPs) associated with human plasma homocysteine levels as instrumental variables (IVs) for the primary analysis in a GWAS of 44,147 subjects of European ancestry (22).

We extracted SNPs associated with IA from a large GWAS involving 7,495 IA cases and 71,934 controls (23). The MR analysis was performed on three summary datasets from this GWAS. The three pooled datasets were GWAS of IA (ruptured, unruptured, and unknown rupture status) (n = 7,495), UIA-only (n = 2,070), and aSAH-only (n = 5,140) vs. controls (n = 71,934) in individuals of European ancestry.

The following steps were applied to select the best IVs to guarantee the accuracy and validity of the inferences on the causal relationship between the risk of IA and plasma homocysteine. The first step was to select SNPs with thresholds of significant association with the plasma homocysteine levels as IVs. A set of genome-wide statistically significant (P < 5 × 10−8) SNPs were used as IVs. Second, linkage disequilibrium (LD) must not exist between the selected IVs, because it can lead to interpretation bias. Among the selected SNPs, we performed a clumping step (clumping distance = 10,000 kb, R2 < 0.001) to reduce the LD during our MR analysis. Third, guaranteeing that the impact of SNPs on outcome and exposure is related to only one allele during MR analysis is an important condition, and in accordance, SNPs with a palindromic structure were removed.



Standard protocol approval, registration, and patient consent

All the data used in this MR analysis were based on summary data publicly available from the GWASs. Ethical approval and participant consent were not needed as they were previously obtained for each of the original GWASs.



The assumptions of MR

To investigate the causal impact of the plasma homocysteine on IA, genetic variation was used as an IV in MR. To serve as an IV, the following criteria must be met: the variation must be related to the plasma homocysteine; it must not be related to any confounding factor related to the plasma homocysteine or IA; it must not affect the outcome, except possibly through association with exposure (24). The F-statistic, whose formula is F = [image: image], is commonly used to evaluate the strength of the correlation between exposure and IVs. Here, n represents the number of samples in the GWAS related to exposure, k represents the number of IVs, and R2 is the extent to which IVs explain exposure. When the F-statistic is < 10, we usually consider the IVs as weak, which may bias the results somewhat.



Statistical analysis

We used the inverse variance weighted (IVW), MR-Egger, weighted median, simple mode, and weighted mode methods to evaluate the causal link between IAs and plasma homocysteine. The IVW method is characterized by an analysis that does not take into account the presence of an intercept term and uses the inverse of the outcome variance (quadratic of the standard error) as a weight to provide a comprehensive estimate of the impact of the plasma homocysteine on the incidence of IA. Ensuring these SNPs are not pleiotropic when using the IVW method is important, otherwise, the results will be highly biased. The MR-Egger method can provide causal estimates that are unaffected by breaches of standard IV assumptions and can detect whether standard IV assumptions are violated (25). The weighted median method combines information from various hereditary variations into a solitary causal gauge, and that gauge is predictable even when half of the IVs are null (26).

To test whether horizontal pleiotropy was present among the included SNPs, we performed MR-Egger regression. To examine for a potentially strong impact of an SNP and whether causal effect estimates were reliable, a leave-one-out analysis was performed. In addition, Cochran's Q-statistic was applied to examine whether heterogeneity was present among the selected SNPs. We calculated MR power through a web-based tool (https://shiny.cnsgenomics.com/mRnd/) (27). The statistical power under each odds ratio (OR) value was calculated by combining the proportion of cases with IA GWAS, the variance jointly explained by the instrumental variable single nucleotide polymorphisms (SNPs), and the sample size together (Supplementary Table 1). For the primary analysis using serum homocysteine, a relative difference of 21.2% was detected with 80% power (OR: 1.212/0.795) and an alpha value of 5% (Supplementary Table 1). The MR analyses were performed utilizing the TwoSampleMR package for R (version 4.1.2).




Results

First, we screened 18 SNPs as IVs (genome-wide statistical significance threshold, P < 5 × 10−8) from a GWAS of plasma homocysteine levels (22). After the removal of SNPs with LD, 13 SNPs remained as IVs (P < 5 × 10–8) (rs7422339, rs12134663, rs957140, rs12921383, and rs2851391 were removed). When homocysteine was analyzed against IAs and aneurysmal subarachnoid hemorrhage, two SNPs (rs838133 and rs548987) were found to be absent in the IA and aneurysmal subarachnoid hemorrhage datasets, and when homocysteine was analyzed with unruptured aneurysms, four SNPs (rs838133, rs548987, rs234709, and rs1801133) were absent in the unruptured aneurysm dataset. None of these SNPs have a proxy SNP. The SNPs we used and their association with IAs are shown in Table 1.


TABLE 1 Characteristics of the single nucleotide polymorphisms used as instrumental variables for plasma homocysteine and their association with intracranial aneurysm.

[image: Table 1]

The MR-Egger regression indicated no horizontal pleiotropy in the analysis of the relationship between homocysteine and aneurysms (P = 0. 622 for IA, P = 0. 491 for aSAH, P = 0. 975 for UIA). Furthermore, there were no weak instrumental variables (F-statistic: 100.340 for IA and aSAH, and 47.203 for UIA [all >10]). The Chochran's Q-statistics showed no significant heterogeneity (P = 0.849 for IA, P = 0.943 for aSAH, P = 0.998 for UIA). The limited number of SNPs included prevented examination of horizontal pleiotropy and heterogeneity.

The results of all MR analyses showed no association between IAs and homocysteine, with all P > 0.05 (Figure 1). The results of the IVW analysis for aSAH [OR: 1.104; 95% confidence interval (CI): 0.878–1.387, P = 0.398], IA (OR: 1.124; 95% CI: 0.923–1.368, P = 0.246), and UIA (OR: 1.126; 95% CI: 0.682–1.858, P = 0.644) showed no association between IAs and homocysteine.
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FIGURE 1
 Mendelian randomization analyses of plasma homocysteine levels and the risk of IA. CI, confidence interval; IVW, inverse variance weighted; OR, odds ratio; SAH, subarachnoid hemorrhage; SNP, single-nucleotide polymorphism; UIA, unruptured intracranial aneurysm.




Discussion

This MR study provides evidence that IAs are not associated with homocysteine in Europeans. To our knowledge, this is the first MR study on the association between plasma homocysteine levels and IAs.

Based on the data from the Global Burden of Disease Study 2019 (https://www.healthdata.org), stroke is the second leading cause of disability and mortality worldwide (28). Hyperhomocysteinemia has long been recognized as an independent risk factor for stroke (29). Hyperhomocysteinemia is common in the Chinese population (30). Hyperhomocysteinemia can lead to elevated inflammatory factors in blood vessels, damage to the vascular endothelium, and proliferation of vascular smooth muscle cells (31, 32). High homocysteine has been reported to promote atherosclerosis and increase the risk of ischemic strokes (11, 33, 34). Because mechanisms such as inflammation are involved in the formation and rupture of IAs, pathological changes caused by homocysteine may contribute to their formation and rupture. Xu et al. found accelerated IA formation in rats with methionine diet-induced hyperhomocysteinemia (16). Another study showed that methionine-induced hyperhomocysteinemia from excessive methionine intake promotes aneurysmal rupture in orchiectomized rats (35). However, such studies are lacking in humans, and therefore, the relationship between homocysteine and IAs has remained unknown. While some observational studies have reported that IAs are associated with hyperhomocysteinemia in the Chinese population, there is no evidence of a causal link (14, 15). In a Brazilian case-control study, IAs were reported to occur independently of hyperhomocysteinemia, and another study reported that hyperhomocysteinemia is not associated with abdominal aortic aneurysms (17, 36). Thus, the association between IAs and homocysteine remains questionable.

Elevated levels of serum homocysteine mainly cause a decrease in the antithrombotic effect of the vessel wall, increasing the risk of stroke (37). In contrast, aneurysm formation and rupture are mainly considered to be related to damage to the vessel wall and the release of inflammatory factors, and may not be related to the level of homocysteine. Serum levels of homocysteine can be elevated by nutritional deficiencies of folic acid, vitamin B6, and vitamin B12 in the diet. Dietary effects have not been considered in most studies of intracranial aneurysms and homocysteine. Elevated homocysteine levels may also be the result of a ruptured aneurysm; therefore, large prospective studies are still needed to confirm the relationship between aneurysms and homocysteine.

The fundamental benefit of this MR analysis is that estimates of the causal effect of MR were not affected by confounding factors or reverse causal associations found in traditional epidemiological studies. Therefore, compared with observational studies, our current findings may be more reliable. Yet, several limitations remain. First, Genotypic variants in enzymes associated with blood homocysteine levels increase the risk of unprovoked pulmonary embolism (38). Due to the differences in genetic characteristics among different populations, our results may only apply to European populations because all participants in the GWAS were of European origin. Second, not all SNPs were examined, as some were removed because of LD (and no proxy SNPs were found), which may have impacted the results.

At the genetic level, the present MR study suggests that there is no causal relationship between hyperhomocysteinemia and IA or IA rupture. However, further studies are needed to more comprehensively assess the relationship between homocysteine and IAs.
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Background: Few studies have explored the prevalence and risk factors of brain infarcts (BI) detected by magnetic resonance imaging (MRI) in China. The purpose was to evaluate the prevalence and risk factors of brain infarcts (BI) detected by magnetic resonance imaging (MRI) in 1.4 million Chinese adults.

Methods: This was a multicenter cross-sectional study conducted on 1,431,527 participants aged ≥18 years (mean age: 46.4 years) who underwent MRI scans in health examinations from 28 provinces of China in 2018. MRI-defined BI was defined as focal parenchymal lesions ≥3 mm. Multivariable logistic regression analyses were performed to evaluate risk factors associated with MRI-defined BI.

Results: The age- and sex-standardized prevalence of MRI-defined BI, lacunar and non-lacunar infarcts were 5.79% (5.75–5.83%), 4.56% (4.52–4.60%), and 1.23% (1.21–1.25%), respectively. The sex-standardized prevalence of MRI-defined BI ranged from 0.46% among those aged 18–29 years to 37.33% among those aged ≥80 years. Men (6.30%) had a higher age-standardized prevalence of MRI-defined BI than women (5.28%). The highest age- and sex-standardized prevalence of MRI-defined BI was observed in the Northwest (8.34%) and Northeast (8.02%) regions, while the lowest prevalence was observed in the Southwest (4.02%). A higher risk of MRI-defined BI was associated with being male [odd ratio (OR) 1.17, 95% CI 1.15–1.19], older age (OR per 10-year increments 2.33, 2.31–2.35), overweight (1.12, 1.10–1.14) or obesity (1.18, 1.16–1.21), hypertension (1.80, 1.77–1.83), diabetes (1.24, 1.21–1.26), and dyslipidemia (1.07, 1.05–1.08).

Conclusion: MRI-defined BI is highly prevalent in China, even among young adults. MRI-defined BI was associated with being male, older age, living in the northern region, and metabolic conditions.

KEYWORDS
 prevalence, risk factors, MRI, brain infarcts, epidemiological study


Introduction

China currently carries the world's largest burden of stroke, which has become a major public health challenge (1, 2). However, overt stroke, easily recognized clinically, represents only the tip of the iceberg. In contrast, silent brain infarcts (SBI) are often ignored and represent the larger below the surface of the water (3). With the development of brain-imaging techniques, brain abnormalities are commonly found using brain magnetic resonance imaging (MRI) (4, 5). The prevalence of MRI-defined BI exceeds, by far, the prevalence of symptomatic stroke (6). Although the majority of MRI-defined BI were covert without clinical stroke symptoms (7), they are highly valuable in predicting subsequent risk of symptomatic stroke, dementia, and mortality (8, 9). However, few studies regarding the epidemiology of MRI-defined BI have been conducted in China, and previous studies were limited by small sample sizes or certain geographic regions only (7, 10). Meanwhile, the association among age, hypertension, and MRI-defined BI has been widely accepted, but the association between obesity, dyslipidemia, and MRI-defined BI remains unclear (10).

The total number of people undergoing routine health examinations in China reached 575 million in 2018, accounting for 42% of the total population of China (11). It would be of great interest to explore the epidemiology of MRI-defined BI for early prevention and control of stroke and dementia. Therefore, we conducted this study to investigate the prevalence and risk factors of MRI-defined BI among 1.4 million participants who underwent MRI scans.



Methods


Study design and participants

The study was a nationwide, multicentric, population-based study using data from the Meinian Onehealth Healthcare, which is a largest health screening organization covering nearly all provinces on Chinese mainland. Descriptions of the database have been reported previously (12, 13). Each health screening center provides annual routine health examinations to its members. A unified standard examination protocol was established in each center. In fact, most of the health examinations in the health screening centers were paid for by companies or group and provided to employees free of charge as a kind of welfare. Whether to do a brain MRI scan or not was determined by the company or group, not based on their pre-clinical or clinical symptoms or other risk factors. We extracted participants who had MRI scans from the whole database. From January 1, 2018 to December 31, 2018, a total of 1,442,518 participants without contraindications to MRI underwent a brain MRI. For those who attended more than two health examinations, only the most recent checkup data were included. We excluded participants < 18 years of age, and those with missing data on age, sex, and health screening center, leaving 1,440,738 participants for analysis. For the stability of the results, we further excluded data from newly opened 71 health screening centers (< 500 participants for a brain MRI). A total of 1,431,527 participants (725,261 men and 706,266 women) aged ≥18 years from 254 health screening centers in 161 cities in 28 provinces of China were included in the final analysis.

The study was approved by the Peking University Institutional Review Board with a waiver of informed consent (IRB00001052-19077). Identifiable data of participants were removed and only unidentifiable data was used for the study.



Assessment of MRI-defined brain infarcts

Each participant underwent MRI scans in adherence to a standardized scan protocol. The MRI scans were performed by a certified imaging technician at each health screening center. All brain scans were performed on a 1- or 1.5-T MRI scanner (more than 85% of MRI scanners in health screening centers are 1.5-T scanners), which comprised at least T1 weighted images, T2 weighted images, and proton density or fluid attenuated inversion recovery (FLAIR) sequences. MRI images were read by one experienced radiologist and confirmed by another experienced radiologist in each health screening center, and any disagreements were solved by consensus through discussion. These radiologists were blinded to clinical and demographic data. Infarcts on MRI scans were defined as an area of abnormal signal intensity in a vascular distribution that lacked mass effect with a size ≥3 mm (7, 14). Lacunar infarcts were distinguished from Virchow-Robin spaces based on their irregular shape, non-vascular appearance, and presence of a hyperintense rim. According to the criteria of the standards for reporting vascular changes on neuroimaging (STRIVE) (4), lacunar infarcts were defined as focal lesions of < 15–20 mm in diameter in the territory of penetrating arteries, located in subcortical areas with the same signal characteristics as cerebrospinal fluid on all MRI-sequences, and other infarcts were considered as non-lacunar infarcts. All participants were categorized as having or not having at least 1 infarct. MRI-defined BI included lacunar infarcts and non-lacunar infarcts.



Assessment of covariates

Face-to-face interviews were conducted by trained health professionals to collect information on the demographic characteristics and medical history of each participant. Body weight, height, and blood pressure were measured for all participants using standard methods. Overnight fasting blood samples for each participant were used to measure glucose and lipid levels.

We divided the mainland of China into seven geographic regions: northeast China, north China, northwest China, central China, east China, south China, and southwest China, which were divided based on the geographical divisions of China. Geographical variations in 12 leading risk factors related to cardiovascular disease (15) and in stroke burden in China have been reported previously (1).

Body mass index (BMI) was calculated as body weight (kg) divided by the square of height (m). Overweight (BMI ≥24.0 and ≤ 27.9 kg/m2) and obesity (BMI ≥28.0 kg/m2) were defined according to the BMI classification for Chinese adults (16). Hypertension was defined as systolic blood pressure ≥140 mm Hg, or diastolic pressure ≥90 mm Hg, having a history of hypertension or use of blood pressure lowering medications. Diabetes was determined by a fasting level of plasma glucose ≥7.0 mmol/L, having a history of diabetes, or use of antidiabetic medications. According to 2016 Chinese guidelines for the management of dyslipidemia in adults, dyslipidemia was defined as having any of the following: triglyceride level ≥2.3 mmol/L, total cholesterol level ≥6.2 mmol/L, high-density lipoprotein cholesterol level < 1.0 mmol/L, low-density lipoprotein cholesterol level ≥4.1 mmol/L, having a history of dyslipidemia, or use of lipid-regulating medications.



Statistical analysis

The characteristics of study participants were presented as mean [standard deviation (SD)] for continuous variables, and percentages for categorical variables. The statistical significance of differences was performed using analysis of variance (ANOVA) for continuous variables and the Chi-square test for categorical variables. The prevalence and 95% confidence intervals (CI) standardized by age and sex were calculated among different sub-groups of characteristics, using the 2010 National Population Census as the standard population. The age-standardized prevalence was calculated by sex and the sex-standardized prevalence was also calculated by age group. Choropleth maps were produced using R software (version 3.6) to visually examine geographical variations in the prevalence of MRI-defined BI. The data illustrated in the maps were age-and sex-standardized prevalence with 95% CIs. Multivariable logistic regression analyses were conducted to investigate risk factors for MRI-defined BI adjusted for age, sex, geographical region, BMI, hypertension, diabetes, and dyslipidemia in the models.

All statistical analyses were performed using R version 3.6 (http://www.r-project.org/) and SAS version 9.4 (SAS Institute, Cary, NC). Statistical significance was defined as two-sided P-values < 0.05.



Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.




Results


Characteristics of study participants

A total of 1,431,527 participants were included in the study. The characteristics of the study participants are shown in Table 1. The mean age of study participants was 46.4 (SD 12.4) years; approximately three-quarters (75.2%) were aged between 30 and 59 years and 50.7% (n = 725,261) were men. Nearly half of the participants (49.2%) had overweight or obesity, and 26.3, 7.0, 36.8% of the study participants had hypertension, diabetes, and dyslipidemia, respectively. Participants with MRI-defined BI were more likely to be older, male and had a higher prevalence of overweight or obesity, hypertension, diabetes, and dyslipidemia compared to those without MRI-defined BI (all P < 0.05).


TABLE 1 Characteristics of study participants by MRI-defined brain infarct statusa.

[image: Table 1]

Among participants with MRI-defined BI, the prevalence of hypertension, diabetes, and dyslipidemia were 54.8, 15.2, and 43.0%, respectively. The prevalence of hypertension, diabetes, and dyslipidemia among participants with MRI-defined BI was significantly greater in men than in women (P < 0.001; Table 1).



Prevalence of MRI-defined brain infarcts

Of the 1,431,527 study participants, 100,245 (7.00%; 95% CI: 6.96–7.05%) were identified as having an MRI-defined BI. The mean age of participants with MRI-defined BI was 58.7 (SD 10.4) years and was similar among men and women: 58.7 (SD 10.6) years in men and 58.7 (SD 10.2) years in women. The crude prevalence of lacunar infarcts was 5.57% (n = 79,724, 95% CI: 5.53–5.61%) and non-lacunar infarcts was 1.43% (n = 20,521, 95% CI: 1.41–1.45%). The age- and sex-standardized prevalence of MRI-defined BI, lacunar infarcts, and non-lacunar infarcts were 5.79% (95% CI: 5.75–5.83%), 4.56% (95% CI: 4.52–4.60%), and 1.23% (95% CI: 1.21–1.25%), respectively (Table 2).


TABLE 2 The age- and sex-standardized prevalence of brain infarcts in the Chinese health examination population in 2018.
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The sex-standardized prevalence of MRI-defined BI was positively associated with age, ranging from 0.46% in 18–29 years and 0.98% in 30–39 years to 30.30% in 70–79 years and 37.33% for those ≥80 years. A particularly marked increase was noted among those 60 years or older (Table 2). The increasing trend with age was significant for both lacunar infarcts and non-lacunar infarcts. Men (6.30%; 95% CI: 6.24–6.37%) had a significantly greater age-standardized prevalence of MRI-defined BI than women (5.28%; 95% CI: 5.21–5.34%; P < 0.001), and the age-specific prevalence of MRI-defined BI was significantly higher among men than women across all age groups (Table 2).

The age- and sex-standardized prevalence of MRI-defined BI, lacunar infarcts and non-lacunar infarcts in seven major geographic regions are shown in Figure 1, depicting geographic variations in BI. In the seven geographic regions, the highest standardized prevalence of MRI-defined BI was observed in the Northwest (8.34%, 95% CI: 8.17–8.51%); followed by the Northeast (8.02%, 95% CI: 7.87–8.18%), and the lowest prevalence was observed in the Southwest (4.02%, 95% CI: 3.92–4.13%). The highest standardized prevalence of lacunar infarcts was also found in the Northwest (7.33%, 95% CI: 7.18–7.50%); followed by the Northeast (7.23%, 95% CI: 7.08–7.38%), and the lowest prevalence was observed in the Southwest (3.28%, 95% CI: 3.19–3.38%). The highest standardized prevalence of non-lacunar infarcts was observed in the North (2.63%, 95% CI: 2.53–2.73%); followed by the Central region (1.74%, 95% CI: 1.69–1.80%); and the lowest prevalence was observed in the South (0.61%, 95% CI: 0.56–0.67%).


[image: Figure 1]
FIGURE 1
 Age-and sex-standardized prevalence of brain infarcts among 28 provinces in China by geographical regions. The statistical data mentioned here do not include Heilongjiang, Ningxia, Tibet, Hong Kong, Macao and Taiwan.




Multivariable analysis results

In the multivariable-adjusted analysis, men (OR, 1.17; 95% CI, 1.15–1.19), older age (OR per 10 year increment 2.33; 95% CI, 2.31–2.35), overweight (OR, 1.12; 95% CI, 1.10–1.14) or obesity (OR, 1.18; 95% CI, 1.16–1.21), hypertension (OR, 1.80; 95% CI, 1.77–1.83), diabetes (OR, 1.24; 95% CI, 1.21–1.26), and dyslipidemia (OR, 1.07; 95% CI, 1.05–1.08) were all significantly associated with higher risk of MRI-defined BI (P < 0.05; Table 3). The associations were also significant for both lacunar infarcts and non-lacunar infarcts, respectively.


TABLE 3 Multivariable adjusted odds ratios of MRI-defined brain infarcts in the Chinese health examination population in 2018.
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Discussion

Among this population of 1.4 million participants for health examinations across China, we found that the age- and sex-standardized frequency of MRI-defined BI was 5.79% (95% CI, 5.75–5.83%) in 2018, and the majority of these infarcts was lacunar infarcts. We observed that the sex-standardized frequency of MRI-defined BI is strongly associated with increasing age. Sex differences and geographical variations in the frequency of MRI-defined BI were also observed in our study with greater frequency in men and in northern regions. Overweight/obesity, hypertension, diabetes, and dyslipidemia were significantly positively associated with the risk of MRI-defined BI. To the best of our knowledge, this study is the largest investigation of the distribution and risk factors of BI detected by MRI. Our findings provide solid evidence of a substantial burden of MRI-defined BI in the health examination population.

Previous studies have reported the prevalence of BI with a wide range globally (7, 10, 17). A systematic review of 27 studies showed that the prevalence of BI in most studies ranged from 10 to 20% (10). The sample size of these studies ranged from 219 to 3,397, with the mean age ranging from 49 to 79 years (10). Most of the studies (20 of 27 studies) were conducted among participants over 60 years of age. In the Rotterdam Scan Study of 1,077 community residents (mean age of 72 years), Vermeer et al. (6) observed that 217 (20%) participants had SBI. In a survey of 994 Korean adults (mean 49.0 years of age) who underwent routine health examinations, SBI lesions were observed in 58 (5.84%) participants (18). The age- and sex-standardized prevalence of MRI-defined BI in our study (5.79%) was lower than most previous studies, largely due to relatively healthy health examination participants in our study (mean age of 46.4 years).

Although the reported prevalence of BI varies widely in previous studies, the prevalence is significantly higher among older individuals, which is consistent with findings from our study (7, 10). The SBI prevalence in the Rotterdam Scan Study increased from 8% in the 60–64 age group to 35% among those ≥80 years (6). In the study based on health examination data from Korean adults, Lee et al. (18) observed no SBI among those aged 20–39 years, however, SBI prevalence increased to 1.7% among those aged 40–49 years and to 43.8% in those aged 70–79 years. MRI-defined BI is considered a common radiological finding among the older population. However, in our study with a large sample size and a wide range in age, a proportion of MRI-defined BI was detected even among the younger population (prevalence of MRI-defined BI was 0.46% in 18–29 years, 0.98% in 30–39 years and 3.40% in 40–49 years). Previous epidemiological studies have shown a rising trend of overt stroke among younger age groups in recent years, which may drive morbidity and mortality among young and middle-age groups, posing a substantial burden to health-care systems and the economy due to the long-lasting consequences (19). As an early predictor of overt stroke, covert MRI-defined BI should not be neglected, especially among young adults. More effective guidelines and policies are needed to prevent and manage clinically unrecognized BI (7).

Our study suggests the significant association of hypertension, diabetes, and other metabolic disorders with BI. Apart from age, hypertension has been widely accepted as a risk factor for BI (10). Previous studies have suggested that hypertension plays an important role in the pathogenesis of BI (10). A meta-analysis found a significant association between diabetes and the risk of MRI-defined BI (7), which is consistent with our findings. However, the association between being overweight or obese with a risk of BI has been controversial with inconsistent results reported in previous studies (10). These inconsistencies might be due to the limitations of BMI for defining overweight or obesity, which does not distinguish between fat and lean mass (20, 21). Inconsistent findings have also been reported for the association between dyslipidemia (total cholesterol, high-density lipoproteins, low-density lipoproteins, and triglycerides) and BI (7, 10). Chauhan et al. (7) have concluded that a higher risk of MRI-defined BI was significantly associated with higher triglyceride levels but no association was observed with cholesterol levels. Triglyceride levels have been associated with inflammatory markers, blood-brain barrier dysfunction, β-amyloid synthesis, and the promotion of β-amyloid delivery to the brain, which could contribute to the pathogenesis of the cerebrovascular disease (22–24). In two large French population-based studies, no association between cholesterol levels and MRI markers of cerebral small vessel disease, white matter hyperintensity volume, and lacunes was found (24). In contrast to these previous studies limited by small sample sizes, our study with a substantially large sample size had the statistical power to detect associations between MRI-defined BI and metabolic risk factors including among different sub-groups.

Our study showed geographical variation in the epidemiology of MRI-defined BI in China, with the highest prevalence of BI observed in the northern and central regions, which is consistent with a nationally representative study of stroke burden (25). Geographical variations in BI burden may be related to differences in risk factors for BI across these regions. As our study observed that hypertension, diabetes, and obesity were associated with a higher risk of MRI-defined BI, we also observed that the highest prevalence of hypertension, diabetes, and obesity were reported in the northern compared to other regions (26–28). Geographical variations in BI burden might be partly attributable to location-associated lifestyle and genetic background (7, 29). Finally, lower socioeconomic status and poor access to health care services have been associated with a higher risk of cerebrovascular disease (30), and differences in socioeconomic status between these regions might have contributed to geographical variations in BI burden. Geographical variations in BI imply that specific geographical regions should prioritize the allocation of healthcare resources. It is crucial to track spatial trends in the BI burden to reduce geographical disparities in BI. The finding that geographical distribution differed between lacunar and non-lacunar brain infarcts could be explained by differences in distinct etiology and risk factors between lacunar and non-lacunar brain infarcts (23, 31, 32), which warrants further investigation.

This study has several strengths. First, our study was the largest survey to date to assess the burden of MRI-defined BI and provided sufficient power to examine the prevalence of MRI-defined BI in a wide variety of subgroups. Second, the wide range in age of participants in our study allowed us to evaluate the burden of MRI-defined BI in the younger adults, which was not feasible in previous studies that primarily focused on older participants. Finally, to the best of our knowledge, our study was the first investigation to evaluate the geographical variation of MRI-defined BI nationwide, which provides vital information for allocating healthcare resources from a multilevel geographical perspective to reduce the burden of MRI-defined BI.

Our study had several potential limitations. First, we did not systematically collect information about the education level, income level, smoking status, alcohol consumption, diet, or physical activity of health examination participants. This limited our ability to explore these potential risk factors in association with MRI-defined BI. Second, data on the history of clinically defined stroke or stroke symptoms were not collected in our study, thus we did not distinguish between SBI and clinical stroke in the study. Previous studies have shown that the vast majority of MRI-defined BI were SBI, especially in the preventive health examination population (7, 10, 17). Third, because the MRI scan is relatively expensive, the socioeconomic status of our population may have left out the group whose socioeconomic status is relatively low. Furthermore, the participants who received health examinations in our study cannot represent the overall Chinese population due to available data from real-world health screening practices.

In conclusion, the study indicates that MRI-defined BI is highly prevalent among the health examination population in China and that MRI-defined BI is also prevalent among younger adults. The prevalence is higher among men than women and in the northern and central regions of the country. Overweight/obesity, hypertension, diabetes, and dyslipidemia are preventable risk factors for MRI-defined BI. Public health strategies that consider sex and geographic disparities are needed to develop BI prevention strategies in China.
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In the treatment of ischemic stroke, timely and efficient recanalization of occluded brain arteries can successfully salvage the ischemic brain. Thrombolysis is the first-line treatment for ischemic stroke. Machine learning models have the potential to select patients who could benefit the most from thrombolysis. In this study, we identified 29 related previous machine learning models, reviewed the models on the accuracy and feasibility, and proposed corresponding improvements. Regarding accuracy, lack of long-term outcome, treatment option consideration, and advanced radiological features were found in many previous studies in terms of model conceptualization. Regarding interpretability, most of the previous models chose restrictive models for high interpretability and did not mention processing time consideration. In the future, model conceptualization could be improved based on comprehensive neurological domain knowledge and feasibility needs to be achieved by elaborate computer science algorithms to increase the interpretability of flexible algorithms and shorten the processing time of the pipeline interpreting medical images.
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1. Introduction

Stroke is the most common neurological disease (1) which can be defined as an acute central nervous system injury with an abrupt onset. Stroke is the third leading cause of death and chronic disability globally (1). As a leading cause of adult disability, up to 74% of stroke survivors are dependent on activities of daily living (2), which causes a huge burden to society, both in finance and human resources. Among different types of stroke, ischemic stroke is the most common, accounting for 87% compared to hemorrhagic stroke (3). The etiology of ischemic stroke is the obstruction of cerebral arteries due to multiple reasons, which could be classified as five subtypes according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria (4). Because of the TOAST mechanisms, the decreased blood perfusion to the brain leads to ischemic stroke.

In the treatment of ischemic stroke, timely and efficient recanalization of occluded brain arteries can successfully salvage ischemic brain (5). An intravenous (IV) injection of recombinant tissue plasminogen activator(rtPA)—also called alteplase—is the first-line treatment for ischemic stroke (6). For patients with acute ischemic stroke, a prompt treatment with thrombolytic drugs could restore blood flow before major brain damage has occurred and greatly improve short-term and long-term recovery after stroke (7), as a result largely reducing the burden stroke brings to the society.

In most cases, IV thrombolysis therapy is subject to the latest guidelines. The guidelines are drawn up based on large quantities of clinical evidence, therefore, the proposed eligibility and dosage consideration for thrombolysis treatment should normally be safe and efficient for most of the patients. However, in real clinical practice, still, several patients present unpredictable outcomes after the IV thrombolysis treatment, including symptomatic hemorrhage (13% among patients receiving rtPA) (8) and failed recanalization (37% among patients receiving rtPA) (9), suggesting that a more accurate patient-tailored clinical decision support tool based on guidelines to improve IV thrombolysis safety and efficiency is needed.

The literature on machine learning models to assist in stroke thrombolysis has yet to be systematically synthesized and assessed for accuracy and feasibility. Most of the existing reviews have focused on the accuracy of clinical outcome prediction models for patients with acute ischemic stroke, albeit not focused on thrombolysis specifically (10). Some reviews focusing on thrombolysis did not analyze the feasibility of these models in hyperacute clinical stroke settings (11).

To address this gap, we reviewed the literature on the accuracy and feasibility of machine learning models to assist in stroke thrombolysis. This review aims to address the following research questions: (1) What criteria should a machine learning model meet in order to be accurate and feasible in real clinical practice? (2) Have previous machine learning models met these criteria? (3) What improvements could be proposed to increase the accuracy and feasibility of previous models?



2. Search methods and results

PubMed, Embase, and Scopus (inception to July 2022) were searched to identify studies developing machine learning models to assist in deciding the personalized safety and efficiency of thrombolysis therapy. We used Medical Subject Headings (MeSH) terms in multiple combinations, including stroke thrombolysis/machine learning and stroke thrombolysis/prediction model, to retrieve papers. The search was limited to human studies with English restrictions applied. The inclusion and exclusion criteria of each study were reviewed. We excluded studies where: (1) The full paper was not available. (2) The paper presented review findings instead of original research. (3) Participants enrolled did not receive thrombolysis therapy. (4) The objective was to infer the association between thrombolysis clinical outcome and biomarkers rather than predict the outcome accurately. (5) The prediction model can only be applied to patients with a specific subtype of ischemic stroke. In the end, we retrieved 29 representative research papers (Figure 1). The detailed information of the representative papers is presented in Supplementary Table 1.


[image: Figure 1]
FIGURE 1
 Selection of studies. The five exclusion criteria were explained in detail in Section 2.




3. Feasibility and accuracy

Machine learning models are computer algorithms developed to imitate the human learning process. The training of machine learning models consists of a phase where models improve their accuracy by discovering patterns and associations within huge datasets. This training principle allows machine learning models to generate satisfactory results, especially in evidence-based practices, such as medicine. Given the fact that in real clinical practice, thrombolysis therapy respecting guideline has a relatively low percentage of successful recanalization, some experienced clinicians might decide the eligibility and dosage for certain patients based on their own clinical experiences (12). According to Dr. Patrick D. Lyden's review article: The decision to use thrombolytic therapy is—among the most difficult treatment decisions in medicine, given the risks involved and the compressed time frame available (13). Machine learning models with high accuracy and feasibility have the potential to acquire clinical experience from real world large datasets of patients undergoing thrombolysis and assist in improving the safety and efficiency of IV thrombolysis therapy. Figure 2 provides a blueprint of the criteria a machine learning model should meet in order to be accurate and feasible in assisting thrombolysis therapy.
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FIGURE 2
 Blueprint of the criteria a machine learning model should meet in order to be accurate and feasible in assisting thrombolysis therapy. In terms of accuracy, a model should be able to predict risks and benefits and select target patients who could benefit the most from thrombolysis therapy with high accuracy. The accuracy of the model largely depends on the conceptualization, which consists of reasonable clinical goal definition, optimal clinical input selection, and appropriate feature engineering if necessary. In terms of feasibility, in order to pass the clinical validation, a model should have high interpretability; in order not to delay the door-to-needle time, the model needs to calculate the output in a short time.


In the thrombolysis setting, a model is conceptualized in order to (1) predict risks and benefits, which can be considered respectively as poststroke symptomatic intracerebral hemorrhage and long-term outcome, as well as (2) select patients with stroke who could benefit the most from thrombolysis therapy in high accuracy. The accuracy of a machine learning model largely depends on appropriate model conceptualization. The widely accepted formal definition of machine learning as stated by field pioneer Mitchell (14): A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E. When conceptualizing a machine learning model, a clinical data scientist generally answers two questions: what the goal of the machine learning model is (clinical goal definition) and what clinical variables capture the experience required to achieve the goal (clinical feature selection). In some cases, if raw clinical features are not able to capture the semantics that the human brain understands from the dataset, such as some radiological features representing penumbra and proximal/distal arterial occlusion information, feature engineering is required to create/extract features using domain knowledge. Feature Engineering can use data mining techniques to preserve these semantics and help machine learning algorithms to understand data and determine patterns that can improve the performance of machine learning algorithms.

Besides accuracy, feasibility is also an important, however often ignored, factor to consider when developing clinical machine learning models. We here identify two factors that will hinder the implementation of models in the thrombolysis setting: the interpretability and processing time of the model. The interpretability of the algorithm is critical since all clinical decision support tools must go through clinical trials to be approved by the local authority before being used in real clinical practice. The interpretability of the algorithm allows telling which predictors the algorithm leverages as important factors to be considered when predicting the clinical outcome or deciding the thrombolysis eligibility. These predictors then need to be confirmed related to the clinical outcome of patients going through thrombolysis by previous clinical trials or following clinical trials in case the algorithm generates new features during training. Furthermore, given the fact that human nervous tissue is rapidly lost as stroke progress and longer thrombolytic door-to-needle time is associated with higher mortality (15), the processing time of a thrombolytic clinical decision support tool should be measured and the tool should be able to produce the outcome shortly so as not to delay the treatment.

In the following sections, we are going to analyze previous studies based on these criteria and propose improvements to increase the accuracy and feasibility of previous models.



4. Clinical goal definition

In a thrombolysis setting, a model is conceptualized in order to (1) predict risks and benefits, as well as (2) select patients with stroke who could benefit most from thrombolysis therapy in high accuracy. Previous studies achieved the goal by developing an efficiency and safety prediction model. Among all the literature reviewed, 11 developed models with the objective to assess thrombolysis efficiency and 16 developed models with the objective to assess thrombolysis safety. Only two assessed both efficiency and safety. The clinical outputs of models predicting safety are all poststroke symptomatic intracerebral hemorrhage (16–33) while the clinical outputs of models predicting efficiency vary: the most common is the 3-month modified Rankin Scale(mRS) (25, 34–38). Huang et al. (39) used an even longer 6-month mRS. Saposnik et al. (22) leveraged a composite 3-month outcome of mRS, National Institutes of Health Stroke Scale (NIHSS), and Barthel index and Glasgow Outcome Scale score. Some models provided both predictions on early clinical outcomes and a long-term 3-month mRS (40, 41). A recent model in 2021 (42) predicted the final infarct volumes for patients after thrombolysis therapy. Zhu et al. (43) only predicted 1-h NIHSS after thrombolysis. The early outcome advantage of thrombolysis does not necessarily persist during long-term follow-up. To provide a comprehensive thrombolysis efficiency assessment, both early and long-term outcome predictions are required.

Most of the models were built on a data cohort where all patients received thrombolysis therapy with standard dosage, ignoring the impact of treatment options on the outcome. Only five of the previous studies took treatment options into consideration: they achieved the patient selection by introducing the treatment option into the input features (thrombolysis or placebo, using standard or low dosage): by predicting favorable/non-favorable outcome for each patient, the machine learning model could give insights into what is expected to the patient under certain treatment option, as a result helping a clinician to decide the safety and efficiency of thrombolysis therapy for the patient: Kent et al. (34, 36), Sung et al. (25), and Tang et al. (40) developed a model to predict expected outcome for patients with placebo treatment vs. thrombolysis treatment. A study from Taiwan in 2020 (30) forecasted the poststroke SICH and 3-month mortality for patients receiving standard thrombolytic dosage vs. lower thrombolytic dosage.

By defining the objective of the machine learning model as foreseeing what is expected of the patient under certain treatment options, previous studies considered treatment options as an input. Together with all the other clinical variables, treatment option was processed by the machine learning classification algorithm as predictors of patients' outcome. However, a treatment option in a real clinical situation is a decision made by neurologists based on the patient's clinical profile, financial condition, and a clear understanding of the current evidence (44). Therefore, treatment options should be statistically correlated with all the other clinical variables in the input data, which will influence the prediction and inference ability of machine learning models. On the one hand, machine learning models become unstable in the presence of high feature correlations (45): for linear models, multicollinearity can yield solutions numerically unstable; for tree-based models which are good at detecting interactions between different features, highly correlated features can mask these interactions. Besides, high correlation can lead to unreliable inference conclusions. For example, the result of the study from Taiwan in 2020 (30) showed a high correlation between aging and a lower dosage of thrombolysis. Meanwhile, the model also inferred that patients who received a lower dosage had a higher mortality rate in a 3-month follow-up. The inference conclusion is not reliable due to the unclear cause of the higher mortality rate during 3-month follow-up: given the high correlation between two input variables: the aging and the lower dosage, we are not certain whether the age or the lower dosage results in the higher mortality rate. We propose that before constructing the outcome prediction model, an inference machine learning model to statistically test if the treatment option is correlated with certain clinical features is necessary. If a high correlation is found, the treatment option should be excluded from the input variable set and the inference model could also help to summarize the treatment option making experience from the large dataset and infer the important clinical factors to be considered when deciding thrombolysis eligibility and dosage. If a high correlation is not found in the dataset, the treatment option could be maintained as an input.

Another point to be noted is that previous studies did not include thrombectomy following thrombolysis as a treatment option. Since 2015, randomized clinical trials have demonstrated that mechanical thrombectomy improves functional outcomes in patients with stroke over intravenous thrombolysis alone (46). The latest European thrombolysis guidelines published in 2021 also suggested that further clinical trials are needed to inform clinical decision-making with regard to the use of thrombolysis before thrombectomy in patients with large vessel occlusion (47). The emergence of mechanical thrombectomy raises interest in thrombolytic strategies for ischemic stroke in the thrombectomy era. To be eligible in real clinical situations in the future, a machine learning based thrombolysis therapy decision support tool needs to stay tuned to this thrombectomy trend.



5. Clinical feature selection

Selecting significant input variables, in other words, feature selection is an important prerequisite for machine learning model construction. Feature selection is the process of choosing an optimal subset of features that best captures the human experience required to achieve the clinical goal of the machine learning model, among all the available features in the patient's clinical profile. Feature selection serves to decrease the number of input variables to both reduce the computational cost of modeling and avoid overfitting. Previous studies performed feature selection with a combination of clinical and statistical judgment: initially selected clinical features were identified by neurologists with clinical expertise or based on related studies, feature engineering was then adopted by some studies to transform raw data (we will explore feature engineering in details in the Section 6); stepwise model building (19, 25, 27, 29, 34, 39), univariate analysis (17, 20, 28, 30, 33, 38, 43, 48), multivariable analysis using logistic regression (16, 21, 24, 26, 31, 32), plots displaying the pattern of predictors, and outcome (21), and Least Absolute Shrinkage and Selection Operator (LASSO) (25, 40), was performed to further select statistically significant features among initially selected features and new features generated in feature engineering.

Figure 3 summarizes the prevalence of initially selected clinical features identified by neurologists with clinical expertise or based on related studies, respectively, in models assessing thrombolysis safety and thrombolysis efficiency. Age, Baseline NIHSS, Systolic blood pressure (SBP), Diabetes, and Glucose were the five most commonly used predictors to predict safety while Age, Baseline NIHSS, Gender, Diabetes, and Onset time were the five most commonly used predictors to predict efficiency.
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FIGURE 3
 Prevalence of initially selected clinical features identified by neurologists with clinical expertise or based on related studies as predictors, respectively, in models assessing thrombolysis safety and thrombolysis efficiency. NIHSS, National Institutes of Health Stroke Scale; SBP, systolic blood pressure; DBP, diastolic blood pressure; CT, computed tomography; LDL-c, Low-density-lipoprotein cholesterol; BMI, body mass index; Hb A1C, hemoglobin A1c; MRI, magnetic resonance imaging; mRS, modified Rankin Scale.


We noticed that only a moderate number (8 in models assessing safety and 5 in models assessing efficiency) of studies included radiological features [computerized tomography (CT) scan, magnetic resonance imaging (MRI) sequences] as model predictors. The lack of inclusion of radiological features might lead to a risk of model overfitting due to the valuable information radiological features provide regarding thrombolysis safety and efficiency (49, 50). For example, the research published in 2020 (30) developed a machine learning model predicting SICH and mortality at 3 months without any medical image based information. The cohort used to train the deep learning neural network model consists of 331 patients, a moderate sample size given the relatively large number of parameters in the neural network, while the model predicts the outcomes with a high Area under the Receiver Operating Characteristic curves (AUC) of 0.974. Given the massive information, the medical images contain regarding the thrombolysis outcome prediction (51), a model without any medical image input will normally fail to predict outcome accurately due to an incomplete patient's clinical profile and the high performance of the model in this research might be due to overfitting.



6. Feature engineering

In some cases, if raw clinical features are not able to capture the semantics that the human brain understands from the dataset, such as some radiological features representing penumbra and proximal/distal arterial occlusion information, feature engineering is required to create/extract features using domain knowledge.

Bentley et al. (24) leveraged a rather simple feature engineering technique for example: CT scan radiological characteristics, blood sugar, age, and baseline NIHSS are both important factors to predict the risk of SICH after thrombolysis (52). However, these separate input variables might not be able to capture the way we humans understand how these factors influence SICH. As a result, Bentley et al. (24) included a new variable SEDAN score synthesized by all the independent variables above. SEDAN score is a prediction rule for assessment of the risk of SICH (53) and can be considered as a result of feature engineering on CT scan radiological characteristics, blood sugar, age, and baseline NIHSS.

When we reviewed past related studies, we found that most of the previous models did not pay much attention to feature engineering. There is either no feature engineering (16, 22, 23, 26, 29, 30, 32, 37–39, 41–43, 48), or simple feature engineering by calculating clinical assessment scores based on past studies (18, 24, 31, 34), creating interaction terms (21, 25, 34, 36), creating dummy variables using different cutoff points (17, 19, 20, 33, 35), visual detection of radiological features (17–20, 24, 27, 28, 35). Tang et al. (40) performed an advanced radiological feature engineering by first dividing the brain into six gray matter regions plus a white matter area and then calculating the mismatch ratio between diffusion lesion and perfusion lesion in each of these seven brain areas. The newly generated mismatch features based on diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) represent penumbra information. We suggest that the division of the brain, especially the white matter area, could be more detailed given the fact that the infarct topography in different white matter regions could have significantly different influences on the outcome (54).

The fast progression of computer vision in recent years allows computers to better understand medical images and sometimes to extract radiological features that humans cannot see. There have already been large quantities of studies investigating the relationship between traditional clinical data and thrombolysis outcomes. Because of computer technology limitations, in the past, we could not extract advanced radiological features from medical images and there are limited studies in this field. Advanced radiological features which cannot be easily identified by human eyes can possibly offer critical information related to penumbra and, therefore, contribute immensely to early thrombolytic strategies (55). Further efforts need to be made to perform feature engineering on medical images by applying computer vision techniques to extract advanced radiological features.

We would like to propose a new penumbra related radiological feature based on a modified clinical-diffusion mismatch principle. The conventional clinical-diffusion mismatch (CDM) has been proposed as an easier alternative to the perfusion-diffusion mismatch (PDM) for selecting patients with salvageable ischemic tissue (56). It is based on the assumption that patients with severe clinical deficits, but with relatively small lesion volumes on DWI, are likely to have an ischemic penumbra (57). However, besides the infarct volume, the infarct topography can also influence the initial ischemic stroke severity dramatically. For example, according to the research by Ona WU in 2015 (54), injury to certain important functional areas, in particular motor pathways and white matter tracts, insula and putamen are associated with more severe initial symptoms and higher baseline NIHSS scores. If the lesion occupies these important functional areas, the patient can still present a rather high baseline NIHSS score without a large infarct core or a penumbra. Therefore, we propose a modified clinical-diffusion mismatch approach to better assess the penumbra: our solution will first quantify the infarct core volume in each brain functional and structural region based on Harvard-Oxford cortical and subcortical structural atlases and JHU DTI-based white-matter atlases from FSL software (58), then learn the weight of DWI infarct core volume of each brain region in the mismatch model through the machine learning algorithm that we designed. Furthermore, we propose that quantification of infarct core volume in each vascular territory could also be included as a radiological feature. Previous studies have demonstrated that if the DWI infarct lesion is found in a wide range in one large artery territory, it is very likely that the thrombus evoking the stroke is located in the large artery and endovascular treatment instead of thrombolysis is highly recommended since rtPA can hardly resolve a large thrombus (47). This vascular territory related radiological feature might contain critical information for outcome prediction for patients undergoing thrombolysis before thrombectomy.

In recent years, an increasing number of studies have investigated the impact of clot composition on the efficiency of thrombolysis.The clot/thrombus are highly heterogenous and vary in composition and organization. Fibrin-rich clots might have increased stiffness and decreased deformability compared with red blood cell-rich clots, therefore, correlating to less favorable clinical outcomes (59). The composition of a clot depends on multiple factors, including but not limited to time (60), primary sites of clot formation (61), and level of plasma Von Willebrand factor (VWF) (62). Currently, imaging evidence of clot characteristics was limited, including hyperdense middle cerebral artery sign on CT and blooming artifact on susceptibility weighted imaging (SWI) (60). The interaction term between biomarkers, clot characteristics, and imaging manifestation could be generated. We believe machine learning has the potential in inferring more hidden associations and interactions between these clot composition related features, thus providing new insights into the management of thrombolytic treatment.

A detailed illustration of our proposed feature engineering can be found in Figure 4.
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FIGURE 4
 Schema of new model algorithm based on the improvements that we proposed summarized in Table 1. The fast pipeline to calculate advanced radiological features in FE was published in our previous research (68). Penumbra related features are calculated based on clinical-diffusion mismatch: [image: image] where i is the index of brain region affected by ischemic lesion; vi is the lesion volume in region i; wi is the contribution of region i to the initial ischemic stroke severity provided by previous studies (54); [image: image] is a weighted lesion volume corrected by anatomic correlates of admission stroke severity: in cases when lesion occupies important functional area such as Internal Capsule, wi will increase the value of weighted lesion volume and avoid the false clinical-diffusion mismatch. NIHSS is the initial ischemic stroke severity score; α and β need to be tuned during machine learning training process. P is the product of two indicator functions. Vascular territory related features are lesion volume, respectively, in anterior cerebral artery (ACA) territory, middle cerebral artery (MCA) territory, posterior cerebral artery (PCA) territory, and basilar artery (BA) territory.




7. Model algorithm development

Model algorithm development is a process where we leverage computer science and statistics to design an algorithm that is able to achieve the predefined clinical goal using a training dataset. Of the many algorithms used by previous thrombolysis outcome prediction studies, some are more flexible, others are more restrictive. The more estimated parameters the model algorithm depends on, the more flexible the model is considered to be. The algorithms used by previous studies, from the most restrictive to the most flexible, were risk score (16, 17, 19–23, 33, 35), nomogram (27, 31, 32, 37–39), logistic regression (25, 26, 28, 29, 34, 36, 40, 43, 48), tree-based machine learning models (18, 29, 43, 48), support-vector machine (SVM) (18, 24, 29), and deep learning neural network (29, 30, 41, 42, 48).

In fact, when developing a machine learning algorithm, there is usually a trade-off between flexibility and interpretability (63): Inflexible algorithms have a restrictive ability to estimate the boundaries between different outcome classes, therefore, producing the predicted outcome with lower accuracy. But Inflexible algorithms are often easy to be interpreted. On the other hand, flexible algorithms generate more accurate predicted outcomes but suffer from low interpretability. Most of the previous models have a preference for restrictive models (risk score, nomogram, logistic regression, and tree-based machine learning models) for high interpretability. Regarding the flexible algorithms, there are two common ways to increase the interpretability: (1) A reactive approach to calculate individual predictor importance using the SHapley Additive exPlanations (SHAP) framework proposed by Lundberg and Lee (64). (2) A proactive approach to increasing model prediction accuracy by boosting interpretability, where a very popular example is the attention mechanism introduced in 2014 (65) to allow the deep learning neural network decoder to leverage the most relevant parts of the input vectors in a flexible manner. The latter approach is recommended however requires efforts in developing new algorithms. In order to further improve the performance of models, future studies could stay tuned to the new findings in the machine learning field and try to develop new algorithms which maintain interpretability while improving prediction accuracy compared with current machine learning algorithms.



8. Processing time consideration

The processing time of a thrombolytic clinical decision support tool covers three parts: time for automatic data preparation, time for automatic feature engineering, and time for machine learning algorithm running. Automatic data preparation is quite mature nowadays in the industry with the emergence of Data Engineering and can be easily and fast done through well-written Structured Query Language (SQL) script and Big Data frameworks such as MapReduce (66). A machine learning algorithm requires a long time to be trained in Developing Pipeline if the dataset is big. However, obtaining an outcome using a well-trained algorithm usually requires seconds. More attention needs to be paid to the processing time of feature engineering to extract advanced radiological features from medical images.

As we reviewed past studies, we found that only nine past studies mentioned the processing time consideration, (16, 19, 20, 22, 33–37): they chose clinical input easy to obtain in the emergency situation. However, neither of these nine studies included advanced radiological features from medical images due to the difficulty to calculate these features in emergencies.

We noticed that in previous studies, the radiological features, such as penumbra and infarct core volume from DWI and PWI (40), ASPECT scores from CT (18), and SICH-prognostic SEDAN/HAT scores (24), were extracted manually using traditional pipeline in open-source software. Using the traditional pipeline to interpret medical images is accurate but slow. Recent computer vision studies designed some deep learning based pipelines to automatically interpret medical images. These deep learning pipelines are able to achieve an acceptable similarity with the traditional pipeline while greatly shortening the processing time (67). Regarding the feature engineering that we proposed in Figure 4, we have also developed deep learning based fast-processing pipeline to calculate the lesion volume in each brain structural region and vascular territory (68). Our study has been published in the Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine. Our pipeline takes diffusion sequences of raw MRI images in Digital imaging and communications in medicine (DICOM) format as input: DWI and its associated apparent diffusion coefficient (ADC), and can calculate the lesion volume in each brain structural region and vascular territory much faster than baseline pipeline in average 138 s on a normal PC CPU with processor 2.6 GHz Intel Core i5 and memory 8 Go 1,600 MHz DDR3. In terms of dice score, our study is able to achieve on average 80.3% similarity with the baseline pipeline. In the future, more efforts could be made to shorten the radiological pipeline processing time.



9. Discussion and conclusion

Previous personalized predictive models employed in the decision-making of thrombolysis basically stay in the research stage and have a long way to go before being applied in real clinical practice. In Table 1, we made a summary of previous studies in terms of the five criteria a machine learning model should meet in order to be accurate and feasible in assisting thrombolysis therapy (Figure 2), as well as the corresponding proposed improvements. In Figure 4, we also provide a schema illustrating the new model algorithm based on the improvements we proposed.


TABLE 1 Summary of previous studies in terms of the five criteria a machine learning model should meet in order to be accurate and feasible in assisting thrombolysis therapy (Figure 2), as well as the corresponding proposed improvements.

[image: Table 1]

The accuracy of a machine learning model largely depends on appropriate model conceptualization, requiring a reasonable definition of the clinical goal, clinical input, and feature engineering based on comprehensive neurological domain knowledge summarized from past clinical trials. Efficiency and safety assessment are both required to better select patients who could benefit the most from thrombolysis. Poststroke symptomatic intracerebral hemorrhage is an appropriate indicator for thrombolysis safety. To provide a comprehensive thrombolysis efficiency assessment, both early and long-term outcome predictions are required. Given the possible high correlation between treatment option and clinical profile, an inference machine learning model to statistically test if treatment option is correlated with certain clinical features is necessary before constructing the outcome prediction model. The possible treatment options are placebo, thrombolysis with a low dosage, thrombolysis with standard dosage, and thrombolysis followed by thrombectomy. The lack of advanced radiological features representing penumbra and proximal/distal arterial occlusion information are commonly found in previous studies. In recent years, with an increasing number of studies investigating the impact of clot composition on the efficiency of thrombolysis, the interaction term between biomarkers, clot characteristics, and imaging manifestation could be generated to represent clot composition.

The feasibility of a machine learning model, on the other hand, needs to be achieved by elaborate computer science algorithms to increase the interpretability of flexible algorithms and shorten the processing time of the pipeline interpreting medical images. Previous models tend to adopt a passive way in terms of feasibility: they chose restrictive models with low accuracy for high interpretability and avoided advanced radiological features due to the difficulty to calculate them in an emergency. Recent advancements in computer science would allow future models to achieve feasibility while not compromising accuracy.

In summary, an accurate and feasible machine learning model in assisting thrombolysis therapy should be both clinical-evidence orientated and algorithm orientated, thus requiring interdisciplinary collaboration between neurologists, who could provide comprehensive domain knowledge, and computer scientists, who could improve the performance of current algorithms.
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Background and purpose: Studies showed that patients with hemorrhagic stroke are at a higher risk of developing deep vein thrombosis (DVT) than those with ischemic stroke. We aimed to develop a risk score (intracerebral hemorrhage-associated deep vein thrombosis score, ICH-DVT) for predicting in-hospital DVT after ICH.

Methods: The ICH-DVT was developed based on the Beijing Registration of Intracerebral Hemorrhage, in which eligible patients were randomly divided into derivation (60%) and internal validation cohorts (40%). External validation was performed using the iMCAS study (In-hospital Medical Complication after Acute Stroke). Independent predictors of in-hospital DVT after ICH were obtained using multivariable logistic regression, and β-coefficients were used to generate a scoring system of the ICH-DVT. The area under the receiver operating characteristic curve (AUROC) and the Hosmer–Lemeshow goodness-of-fit test were used to assess model discrimination and calibration, respectively.

Results: The overall in-hospital DVT after ICH was 6.3%, 6.0%, and 5.7% in the derivation (n = 1,309), internal validation (n = 655), and external validation (n = 314) cohorts, respectively. A 31-point ICH-DVT was developed from the set of independent predictors including age, hematoma volume, subarachnoid extension, pneumonia, gastrointestinal bleeding, and length of hospitalization. The ICH-DVT showed good discrimination (AUROC) in the derivation (0.81; 95%CI = 0.79–0.83), internal validation (0.83, 95%CI = 0.80–0.86), and external validation (0.88; 95%CI = 0.84–0.92) cohorts. The ICH-DVT was well calibrated (Hosmer–Lemeshow test) in the derivation (P = 0.53), internal validation (P = 0.38), and external validation (P = 0.06) cohorts.

Conclusion: The ICH-DVT is a valid grading scale for predicting in-hospital DVT after ICH. Further studies on the effect of the ICH-DVT on clinical outcomes after ICH are warranted.

KEYWORDS
  intracerebral hemorrhage, deep vein thrombosis, risk model, discrimination, calibration


Introduction

Spontaneous intracerebral hemorrhage (ICH) accounts for approximately 15% to 20% of all strokes and is one of the leading causes of mortality and morbidity worldwide (1, 2). Despite advances in medical knowledge, the treatment of ICH remains strictly supportive with not many evidence-based interventions currently available (3, 4).

Venous thromboembolism (VTE) is a common and potentially life-threatening complication after stroke (5). VTE includes deep vein thrombosis (DVT) and pulmonary embolism (PE). The former is the most prevalent presentation, and the latter is the most severe form of VTE (6). Studies have indicated that patients with hemorrhagic stroke are at significantly higher risk of DVT than those with ischemic stroke (7–10). DVT prophylaxis might be a potential target to improve clinical outcomes after ICH. In addition, the optimal approach for DVT prophylaxis in an ICH patient is a challenge of balancing the reduction in the incidence of DVT and pulmonary embolus (PE) without risking an increase in catastrophic hemorrhages.

Several risk factors for DVT after stroke have been identified, such as age (11–15), gender (11–13, 16), race (11, 12, 17), heart failure (8), atrial fibrillation (7, 18), hemiparesis (13–15), immobility (13, 19), disorder of consciousness (8), stroke severity (7, 14), stroke subtypes (7, 13, 15), infections (20–22), hematoma volume (14), and length of hospital stay (7, 22, 23). However, no reliable scoring system is currently available to predict in-hospital DVT after ICH in routine clinical practice or clinical trials. An effective risk stratification model for in-hospital DVT after ICH would be helpful to identify high-risk patients and implement tailored preventive strategies. In addition, for clinical trials, it could be used in nonrandomized studies to control for case-mix variation and in controlled studies as a selection criterion.

In the study, we aimed to derivate and validate a clinical score (intracerebral hemorrhage-associated deep vein thrombosis score, ICH-DVT score) for predicting in-hospital DVT after ICH following the TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) guideline (24).



Methods


Derivation and validation cohorts

The derivation and internal validation cohorts were derived from the Beijing Registration of Intracerebral Hemorrhage, which was a multicenter, prospective, and observational cohort study. Thirteen hospitals in Beijing area participated in the study. To be eligible for the study, subjects had to meet the following criteria: (1) age 18 years or older; (2) hospitalized with a primary diagnosis of spontaneous ICH confirmed by brain CT or MRI; (3) time from stroke onset to hospital admission of < 24 h; and (4) written informed consent from patients or their legal representatives. The study protocol was approved by the Institutional Review Board (IRB) of the Beijing Tiantan Hospital (KY2014-023-02). The eligible patients were randomly divided into derivation cohort (60%) and internal validation cohort (40%).

The external validation cohort was based on the iMCAS study (In-hospital Medical Complication after Acute Stroke) (7), which is a prospective registry of stroke patients admitted to Beijing Tiantan Hospital from January 2014 to December 2016. To be eligible for the iMCAS, subjects had to meet the following criteria: (1) age 18 years or older; (2) hospitalized with a primary diagnosis of AIS, ICH, or SAH confirmed by brain CT or MRI; (3) time from stroke onset to hospital admission of < 7 days; and (4) written informed consent from patients or their legal representatives. The iMCAS was approved by the Ethics Committee of Beijing Tiantan Hospital. For this study, only patients with ICH were included.



Data collection and definition of variables

Standardized electronic case report forms were used for data collection in both the Beijing Registration of Intracerebral Hemorrhage and iMCAS. For the study, the following candidate variables were included and analyzed: (1) demographics; (2) time from onset to hospital; (3) stroke risk factors; (4) pre-admission antithrombotic medications; (5) pre-stroke modified Rankin scale (mRS) score (this information is obtained from patients or their legal representatives); (6) National Institutes of Health Stroke Scale (NIHSS) score and Glasgow Coma Scale (GCS) score on admission; (7) admission systolic and diastolic blood pressure (mmHg); (8) admission laboratory tests; (9) neuroimaging variables: intracerebral hemorrhage volume (measured using the ABC/2 method), hematoma location (supratentorial or infratentorial ICH), intraventricular extension (presence or absence), and subarachnoid extension (presence or absence); (10) etiology diagnosis (primary or secondary ICH); (11) ambulation within 48 h after admission; (12) DVT prophylaxis within 48 h after admission [intermittent pneumatic compression (ICP) vs. anticoagulation (unfractionated heparin, low-molecular-weight heparin, or non-vitamin K antagonist oral anticoagulants)]; (13) surgical treatment (craniotomy evacuation, minimally invasive surgical therapy, or brain ventricle puncture and drainage); (14) withdrawal of medical care; (15) in-hospital pneumonia after ICH; (16) in-hospital gastrointestinal bleeding (GIB) after ICH; and (17) length of hospital stay (LOS).



Diagnosis of in-hospital DVT after ICH

In this study, in-hospital DVT was diagnosed by the treating physicians based on clinical manifestations, such as swelling, pitting edema, redness, tenderness, and presence of collateral superficial veins, and D-dimer and verified by sequential compression Doppler ultrasound. Only DVT that developed after hospital admission was counted.



Statistical analysis

Categorical variables were expressed as proportions. Continuous variables were expressed as mean and standard deviation (SD) or median and interquartile range (IQR). Chi-square or Fisher's exact test was used to compare categorical variables between groups, and Mann–Whitney test or independent t-test was employed to compare continuous variables between groups.

Model building was performed exclusively in the derivation cohort. In univariate analysis, Mann–Whitney test was employed to compare continuous variables and Chi-square test was used to compare categorical variables. A multivariable logistic regression with stepwise backward was performed to determine independent predictors of in-hospital DVT after ICH. Candidate variables were those with biologically plausible link to DVT after ICH on the basis of prior publication and those associated with in-hospital DVT after ICH in univariate analysis (P < 0.1). The tolerance and variance inflation factor (VIF) were calculated to test collinearity between the predictors of final multivariable model. The β-coefficients of predictors from the final model were used to generate a scoring system of the ICH-DVT. To derive an integer value for each predictor, the β-coefficients were multiplied by 4 and were rounded to the closest integer. The resulting ICH-DVT was validated by assessing model discrimination and calibration. Discrimination was assessed by calculating the area under the receiver operating characteristic curve (AUROC). Meanwhile, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated at the maximum Youden index. Calibration was assessed by plotting the observed vs. predicted risk according to 10 deciles of the predicted risk. In addition, the Hosmer–Lemeshow goodness-of-fit test was performed and the Snell R-square and Nagelkerke R-square were calculated.

All tests were two-tailed, and statistical significance was determined at an α level of 0.05. Statistical analysis was performed using SAS 9.1 (SAS Institute, Cary, NC, USA), SPSS 21.0 (SPSS Inc., Chicago, IL, USA), and MedCalc 12.3 software (MedCalc ®, Belgium).




Results


Baseline characteristics

The baseline characteristics of the derivation and validation cohorts are listed in Table 1. From December 2014 to September 2016, a total of 1,964 patients were enrolled in the Beijing Registration of Intracerebral Hemorrhage. The mean age was 56.8 ± 14.4, and 67.6% were male. The median time from onset to hospital was 4.0 hours (IQR: 1.90–11.1). The median GCS and NIHSS score on admission was 14 (IQR: 8–15) and 11 (IQR: 3–21), respectively. The median LOS was 16 days (IQR: 8–22). A total of 122 (6.2%) patients were diagnosed with in-hospital DVT after ICH. The eligible patients were randomly divided into derivation cohort (60%, n = 1,309) and internal validation cohort (40%, n = 655), which were well matched with regard to baseline characteristics and an overall rate of in-hospital DVT after ICH (Table 1).


TABLE 1 Baseline characteristics.
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A total of 314 patients with ICH in the iMCAS were included for external validation. The mean age was 54.7 ± 14.2, and 70.4% were male. The median time from onset to hospital was 3 days (IQR: 1–4 days). The median NIHSS and GCS scores on admission were 4 (IQR: 1–10) and 15 (IQR: 14–15), respectively. The median LOS was 14 days (IQR: 12–18). A total of 18 (5.7%) patients were diagnosed with in-hospital DVT after ICH (Table 1).



Predictors of in-hospital DVT after ICH

The results of univariate analysis for predictors of in-hospital DVT after ICH in the derivation cohort are given in Supplementary Table 1, and the multivariable predictors are listed in Table 2. Age (P < 0.001), hematoma volume (P = 0.01), subarachnoid extension (P < 0.001), pneumonia (P < 0.001), gastrointestinal bleeding (P = 0.003), and length of hospitalization (P < 0.001) were significantly associated with in-hospital DVT after ICH. The tolerance of covariates in the final model ranged between 0.81 and 0.98, and the VIF ranged between 1.02 and 1.23.


TABLE 2 Multivariable predictors of in-hospital DVT after ICH in the derivation cohort (n = 1,309).
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Derivation of the ICH-DVT

The β-coefficients of predictors of the final multivariable model were used to generate a scoring system of the ICH-DVT. To derive an integer value for each predictor, the β-coefficients were multiplied by 4 and were rounded to the closest integer. The scoring system of the ICH-DVT is shown in Figure 1. The risk categories were assigned in six-point increments, and the magnitude of the score had predictive implication. The risk of in-hospital DVT after ICH increased steadily with a higher ICH-DVT score (Figure 2). Due to that, it is hard to clarify whether patients with a longer length of stay are more likely to develop DVT or whether occurrence of DVT leads to a longer hospitalization. We established a risk model without LOS (Supplementary Table 3).


[image: Figure 1]
FIGURE 1
 Scoring system of intracerebral hemorrhage-associated deep vein thrombosis score (the ICH-DVT score).
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FIGURE 2
 Proportion of in-hospital DVT after ICH according to the ICH-DVT score in the derivation, internal validation, and external validation cohorts. The risk categories were assigned in six-point increments. The potential risk of in-hospital DVT after ICH increased steadily with a higher ICH-DVT score.




Internal validation of the ICH-DVT

The predictive performance (AUROC) of the ICH-DVT in the derivation (n = 1,309) and internal validation cohorts (n = 655) was 0.81 (95%CI = 0.79–0.83) and 0.83 (95%CI = 0.80–0.86), respectively (Table 2). The predicted and observed risks of in-hospital DVT after ICH were in close agreement according to 10 deciles of predicted risk in the derivation and internal validation cohorts (Supplementary Figure 1). The Hosmer–Lemeshow test was not significant in derivation (P = 0.53), internal validation (P = 0.38), and overall (P = 0.61) cohorts. The Snell R-square and Nagelkerke R-square of the Hosmer–Lemeshow goodness-of-fit test in the internal validation cohort were 0.08 and 0.22, respectively (Supplementary Table 2).



External validation of the ICH-DVT

In the external validation cohort (n = 314), the ICH-DVT showed good discrimination with an AUROC of 0.88 (95%CI = 0.84–0.92) (Table 2). The plot of observed vs. predicted risk of in-hospital DVT after ICH showed a high correlation between the observed and predicted risks in the external validation cohort (Supplementary Figure 1). The Hosmer–Lemeshow test was not significant (P = 0.06). The Snell R-square and Nagelkerke R-square of the Hosmer–Lemeshow goodness-of-fit test were 0.11 and 0.32, respectively (Supplementary Table 2).




Discussion

In the study, we aimed to derive and validate a risk score for predicting in-hospital DVT after ICH. Age, hematoma volume, subarachnoid extension, pneumonia, GIB, and length of hospitalization were predictive of in-hospital DVT after ICH. A 31-point ICH-DVT score was developed from the set of independent predictors, which showed good discrimination and calibration in the derivation, internal validation, and external validation cohorts.

Several risk factors have been identified for in-hospital DVT after stroke. Consistent with these studies, we found that in-hospital DVT after ICH was significantly associated with age, hematoma volume, subarachnoid extension, pneumonia, GIB, and length of hospitalization. Previous studies showed that pneumonia was significantly associated with in-hospital DVT after stroke (20, 21). Similar results were verified in both ischemic and hemorrhagic stroke (21). Patients with GIB are at increased risk of developing venous thromboembolism (25). In addition, a study showed an increased risk of thromboembolic events in patients whose anticoagulation was stopped after hospitalization for index GIB (26). Organ crosstalk is an emerging, interesting, and clinically relevant field. Currently, little is known about the pathophysiological mechanisms of medical complications crosstalk after acute stroke. A study indicated that pneumonia might play an important role in the development of several non-pneumonia medical complications (including DVT) after acute stroke (21). There would be a sequential response involving activation of the coagulation cascade, platelet plug formation, and upregulation of endogenous defense mechanisms after hemorrhagic stroke (27–29). Similarly, we speculated that activation of endogenous coagulation system might play an important role in the association between GIB and risk of in-hospital DVT after ICH. Further studies to clarify the molecular mechanisms underlying the interrelationship between pneumonia, GIB, and DVT after ICH are warranted.

When assessing model discrimination, the ICH-DVT showed good predictive performance with regard to in-hospital DVT after ICH in the derivation, internal validation, and external validation cohorts (Table 3). In addition, the ICH-DVT score was well calibrated in the derivation, internal validation, and external validation cohorts (Supplementary Table 2). It was noteworthy that the ICH-DVT score had higher NPV than PPV for in-hospital DVT after ICH (Table 3), which meant that lower values more consistently predict patients without in-hospital DVT than higher values that predict those developing in-hospital DVT after ICH. Development of future models might benefit from attempts to make them more balanced in this regard.


TABLE 3 Discrimination of ICH-DVT with regard to in-hospital DVT after ICH.
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DVT prophylaxis after ICH is highly recommended by clinical guidelines from different countries (3, 4, 30, 31). A study showed that the median time from onset to diagnosis of DVT after ICH was 7 days (IQR = 4–9) (7). Therefore, the first week after onset might be a critical time window for preventing DVT after ICH. According to the AHA/ASA guidelines for ICH management, patients with ICH should have intermittent pneumatic compression for the prevention of VTE beginning the day of hospital admission (Class I; Level of Evidence A). After documentation of cessation of bleeding, low-dose subcutaneous low-molecular-weight heparin or unfractionated heparin may be considered for the prevention of VTE in patients with a lack of mobility after 1–4 days from onset (Class IIb; Level of Evidence B) (3). There can be difficulty in balancing the increased risk of further intracranial hemorrhage vs. the benefit of starting anticoagulation to prevent VTE in daily clinical practice. The ICH-DVT score could be helpful to identify high-risk patients of developing in-hospital DVT after ICH, which would be useful for implementing tailored preventive strategies. In addition, for clinical trials, ICH-DVT could be used in nonrandomized studies to control for case-mix variation and in controlled studies as a selection criterion. Randomized controlled trials on efficacy of DVT prophylaxis and ICH outcomes with stratification of patients' potential risk are warranted. Clinical trials conducted in this way would allow clarifying more accurately which prevention strategies will work in which risk stratification patients.

Clinical practice of DVT prophylaxis after stroke is considerably variable and practitioner dependent (32). We recommended R–P–R (risk–prevention–reassessment) model to prevent in-hospital DVT after ICH. The R–P–R model could be summarized in three steps: Step 1 (risk): to stratify potential risk of developing DVT by using the ICH-DVT; Step 2 (prevention): to apply tailed preventive strategies based on a potential risk of in-hospital DVT and hemorrhagic events. Therapeutic decision (pharmacologic vs. mechanical prophylaxis) could be based on an individual benefit–risk ratio assessment. Pharmacologic agents are the preferred agents for prophylaxis as they reduce VTE more effectively than mechanical prophylaxis (33, 34). Mechanical prophylaxis should be reserved for those patients who have an absolute bleeding risk or a relative bleeding risk where the risk of bleeding outweighs the risk of developing VTE. Step 3 (reassessment): to reassess the status of VTE parodically (e.g., each 3three days) or when the patient's condition changes (e.g., recurrence of stroke or occurrence of pneumonia, etc.) and feedback to modify DVT prevention strategies. With the R–P–R model, we look forward to improving ICH outcome by preventing DVT individually, effectively, and economically.

To the best of our knowledge, we are the first to derive and validate a risk score for predicting in-hospital DVT after ICH. The ICH-DVT score is unique in that it was derived from a large, multicenter, and prospective ICH cohort, which included consecutive patients of ICH, was outside of clinical trials, and was more reflective of real-world clinical practice. However, our study had some limitations that deserve comment. First, we only have information on new-onset DVT during hospitalization without documentation of the exact date of in-hospital DVT after ICH. Our data allow no conclusion as to whether patients with a longer length of stay per se are more likely to develop DVT or whether occurrence of DVT leads to a longer hospitalization. Second, the study included only hospitalized stroke patients and those patients died in emergency department, shortly after admission, or treated in outpatient clinics were not included. Third, the ICH-DVT needs to be further validated in additional populations and larger samples.



Conclusion

The ICH-DVT is a valid grading scale for predicting in-hospital DVT after ICH. Further studies on the effect of the ICH-DVT on clinical outcomes after ICH are warranted.



Research in context


Evidence before this study

We did a systematic review of studies of prognostic model of spontaneous intracerebral hemorrhage published in OVID MEDLINE (from January 1, 1990, to December 31, 2020) using a comprehensive search strategy, limited to humans, combining terms for intracerebral hemorrhage (“intracerebral hemorrhage/,” “intracranial hemorrhages/,” “cerebral hemorrhage/,” “intracranial hemorrhage, hypertensive/,” and other text words) with key words suggesting deep vein thrombosis (DVT), venous thromboembolism (VTE), or pulmonary embolism (PE) prediction (“risk models,” “score,” “equation,” “predictive model”), with no language restriction.

Despite advances in medical knowledge, the treatment of ICH remains strictly supportive with not many evidence-based interventions currently available. Medical and surgical treatments, such as blood pressure control, hematoma evacuation, hemostatic therapy, and neuroprotection, have not shown a definite benefit in improving ICH functional outcome.

Venous thromboembolism (VTE) is a common and potentially life-threatening complication after stroke. VTE includes deep vein thrombosis (DVT) and pulmonary embolism (PE). The former is the most prevalent presentation, and the latter is the most severe form of VTE. Studies have indicated that patients with hemorrhagic stroke are at significantly higher risk of DVT than those with ischemic stroke. DVT prophylaxis might be a potential target to improve clinical outcomes after ICH.

Currently, no reliable scoring system is available to predict in-hospital DVT after ICH in routine clinical practice or clinical trials. An effective risk stratification model for in-hospital DVT after ICH would be helpful to identify high-risk patients and implement tailored preventive strategies. In addition, for clinical trials, it could be used in nonrandomized studies to control for case-mix variation and in controlled studies as a selection criterion.



Added value of this study

To the best of our knowledge, we are the first to derive and validate a risk score for predicting in-hospital DVT after ICH. It was found that age (P < 0.001), hematoma volume (P = 0.01), subarachnoid extension (P < 0.001), pneumonia (P < 0.001), gastrointestinal bleeding (P = 0.003), and length of hospitalization (P < 0.001) were significantly associated with in-hospital DVT after ICH. A 31-point ICH-DVT score was developed from the set of independent predictors. The ICH-DVT showed good discrimination and calibration in the derivation (n = 1,309), internal validation (n = 655), and external validation (n = 315) cohorts. The predictive performance (AUROC) of the ICH-DVT in the derivation, internal validation, and external validation cohorts was 0.81 (95% CI = 0.79–0.83), 0.83 (95% CI = 0.80–0.86), and 0.88 (95% CI = 0.84–0.92). The Hosmer–Lemeshow test was not significant in derivation (P = 0.53), internal validation (P = 0.38), and external validation (P = 0.06) cohorts.



Implications of all the available evidence

The ICH-DVT is a valid grading scale for predicting in-hospital DVT after ICH. The ICH-DVT score could be helpful to identify high-risk patients of developing in-hospital DVT after ICH, which would be useful for implementing tailored preventive strategies. In addition, for clinical trials, ICH-DVT could be used in nonrandomized studies to control for case-mix variation and in controlled studies as a selection criterion.
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Objectives: This study aimed to develop a score including novel putative predictors for predicting the risk of sICH and outcomes after thrombolytic therapy with intravenous (IV) recombinant tissue-type plasminogen activator (r-tPA) in acute ischemic stroke patients.

Methods: All patients with acute ischemic stroke treated with IV r-tPA at three university-based hospitals in Chongqing, China, from 2014 to 2019 were retrospectively studied. Potential risk factors associated with sICH (NINDS criteria) were determined with multivariate logistic regression, and we developed our score according to the magnitude of logistic regression coefficients. The score was validated in another independent cohort. Area under the receiver operating characteristic curve (AUC-ROC) was used to assess the performance of the score. Calibration was evaluated using the Hosmer–Lemeshow goodness-of-fit method.

Results: The SON2A2 score (0 to 8 points) consisted of history of smoking (no = 1, yes = 0, β = 0.81), onset-to-needle time (≥3.5 = 1,<3.5=0, β = 0.74), NIH Stroke Scale on admission (>10 = 2, ≤10 = 0, β = 1.22), neutrophil percentage (≥80.0% = 1, <80% = 0, β = 0.81), ASPECT score (≤11 = 2, >11 = 0, β = 1.30), and age (>65 years = 1, ≤65 years = 0, β = 0.89). The SON2A2 score was strongly associated with sICH (OR 1.98; 95%CI 1.675–2.34) and poor outcomes (OR 1.89; 95%CI 1.68–2.13). AUC-ROC in the derivation cohort was 0.82 (95%CI 0.77–0.86). Similar results were obtained in the validation cohort. The Hosmer–Lemeshow test revealed that predicted and observed event rates in derivation and validation cohorts were very close.

Conclusion: The SON2A2 score is a simple, efficient, quick, and easy-to-perform scale for predicting the risk of sICH and outcome after intravenous r-tPA thrombolysis within 4.5 h in patients with ischemic stroke, and risk assessment using this test has the potential for early and personalized management of this disease in high-risk patients.

KEYWORDS
 ischemic stroke, symptomatic intracranial hemorrhage, thrombolytic therapy, risk score, retrospective cohort study


Introduction

From 2013 to 2019, the prevalence of stroke in China increased significantly from 2.28–2.58% (1), posing a serious challenge to the public health, and a broad-based nationwide strategy in stroke prevention, screening, and consulting as well as effective intervention is urgently needed. Intravenous thrombolysis within 4.5 h of symptom onset with recombinant tissue-type plasminogen activator (r-tPA) has been proven to be the most effective evidence-based medical treatment for acute ischemic stroke patients (2). Nevertheless, not all individuals benefit from the thrombolytic therapy, due to narrow therapeutic windows and severe treatment complications. What clinicians and patients' dependents fear most of r-tPA treatment is thrombolysis-related symptomatic intracranial hemorrhage (sICH). The reported frequencies of sICH differ between trials according to the definition selected (3, 4). Post-thrombolytic sICH, a life-threatening intracerebral hemorrhage, alters the outcomes of acute ischemic stroke patients, resulting in a high in-hospital mortality and disability at discharge (5). Therefore, stratification of the risk of sICH might facilitate patient selection for thrombolytic therapy.

Increasing evidence showed that baseline factors and individual variables played a predominant role in affecting the risk of post-thrombolytic sICH (5–11). These include baseline National Institutes of Health Stroke Scale (NIHSS) score (6–11), ethnicity (6), gender (6, 9), age (6–11), high blood pressure (6, 10), high baseline serum glucose (6–8, 10, 11), and onset-to-treatment time (OTT) (10, 11), all of which are immediately available at emergency department. Based on the above factors, several scales including GRASPS scores (6), HAT (7), SEDAN (8), THRIVE (9), SITS-SICH (10), DRAGON (11), and other particular scores, in which each variable was ascribed according to its weight in the nomogram (12), had been proposed for predicting the risk of sICH following thrombolysis. The predictive performance of these risk scores has been externally validated and compared, and they appear to have fairly good predictive power (13). However, none of them has been extensively used in clinical practice for some reasons.

Alberta Stroke Program Early CT score is a generally accepted predictor for both functional outcomes and symptomatic hemorrhage in AIS patients, which has never been incorporated into score systems. It was found that in patients with an extended time window, the incidence of sICH was similar among NCCT ASPECT score, CTP, and MRI-guided endovascular treatment population (14). It may indicate that ASPECT score is associated with ischemic penumbra and collateral status (15). Moreover, ASPECT score can be immediately obtained by prethrombolysis noncontrast CT, which is less time-consuming and cost-effective. Therefore, we included ASPECT score as a putative predictor into the score system.

In this study, we aimed to develop and validate a simple and reliable scoring tool for predicting the risk of sICH and outcomes in AIS patients with IVT in Chinese population, which may help certain patients receiving IVT avoid fatal thrombolytic complications. We present the SON2A2 score, derived from our multi-center cohorts for acute AIS patients treated with IV r-tPA.



Methods


Derivation cohort

All patients with acute ischemic stroke treated with IV r-tPA from June 2014 to June 2019 at the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China, and the Yongchuan Hospital of Chongqing Medical University, Chongqing, China, were included in this study. The inclusion criteria were as follows: (1) All patients had to meet the diagnostic criteria of acute ischemic stroke according to Guidelines in China 2018; (2) R-tPA was administrated at the standard dose (0.9 mg/kg of body weight) within 4.5 h after the onset of symptoms; (3) cerebral CT scans were performed at admission and within 24 h after thrombolysis or whenever ICH was suspected; and (4) all patients had to be hospitalized more than 3 days [almost all sICHs occurred within 36 h after thrombolysis (16)] or diagnosed as sICH. Patients with bridging therapy (IVT followed by endovascular treatment) were not included in our population. The exclusion criteria were as follows: (1) patients with incomplete data; (2) patients with brainstem and cerebellum stroke (the accuracy of the ASPECT score may be influenced by the structure of basalis skull); (3) patients receiving incomplete pre-calculated doses of r-tPA; and (4) patients with severe concomitant diseases, such as severe heart, liver, or kidney diseases or systemic diseases. A research flowchart is demonstrated in Figure 1.


[image: Figure 1]
FIGURE 1. Flowchart of our study.




Construction of scoring system

Baseline demographics, vascular risk factors, medical history, stroke type, baseline NIHSS score, OTT, laboratory parameters, and radiologic data of the eligible patients were obtained by reviewing electronic medical records. The ASPECT score based on noncontrast CT before treatment was reviewed by two independent neuroradiologists without any knowledge of patients, and inter-rater reliability was tested by Spearman's rank correlation coefficient; any dispute was resolved by negotiation. Functional outcome at discharge was evaluated using mRS. Good short-term outcome was defined as mRS score 0 to 2, and poor short-term outcome was defined as mRS score 3 to 6. Eligible patients were dichotomized into two groups, namely, the non-sICH and sICH group, according to the NINDS criteria. Independent risk factors were considered to be predictors of sICH, and point values assigned to predictors were based on their magnitude of regression coefficients by rounding off to the nearest integer value. For each patient, the total risk score was calculated as the sum of points assigned to the predictors.



Internal cross-validation with bootstrap and external validation

After the SON2A2 score system was established, internal cross-validation of the regression model between parameters of the SON2A2 score and short-term outcome was performed based on 1,000 bootstrap replicates. External validation was performed in an independent cohort of 160 patients receiving thrombolysis from the Ninth People's Hospital of Chongqing, Chongqing, China (2014–2019). All the patients in the validation cohort met the same inclusion and exclusion criteria of the derivation cohort.



Statistics

We performed descriptive statistics for all available baseline variables including patients with or without sICH. Normally distributed continuous variables were presented as the mean ± SD, and continuous variables with abnormal distribution were presented as the median (IQR). Categorical variables were presented as percentages. Differences between sICH and non-sICH groups were compared using Student's t-test or Mann–Whitney U test for continuous variables and Pearson's χ2 tests or the Fisher's exact test for categorical variables, as appropriate. Continuous data were divided into two categories using receiver operating characteristic curve (ROC) combined with clinical practicality. Univariate logistic regression was used to identify risk factors for sICH, and variables associated with sICH at the P ≤ 0.10 level in the univariate analysis were incorporated as potential predictive factors into the multivariate logistic regression model. In this analysis, independent risk factors for sICH were determined by a backward regression procedure. Confounding factors were excluded in the backward regression procedure. This process is presented in Supplementary Table.

We stratified the total risk scores into the following four tiers according to the predicted probability: low, moderate, high, and extremely high risk. Then, binary logistic regression was conducted to test the efficiency of the SON2A2 score in predicting short-term outcomes. The discrimination capacity of the risk score was assessed by area under the receiver operating characteristic curve (AUC-ROC), and calibration was evaluated using the Hosmer–Lemeshow goodness-of-fit method. Statistically significant differences were set at P < 0.05. All analyses were performed using SPSS statistical software version 24.0 for Windows.




Results

A total of 883 acute ischemic stroke patients treated with IV r-tPA met the inclusion criteria, and 167 patients were eventually excluded for not meeting the predetermined study criteria. Finally, 716 patients (395 males, 55.2%) were eligible for analysis. Prevalence of sICH was 10.3% (95%CI 8.3–12.3%) according to the NINDS criteria (91 of 883). The overall median age was 72 years (IQR, 63–78 years), the median baseline NIHSS score was 11 (IQR, 5-17), and the median time from symptom onset to therapy was 2.5 h (IQR, 2.0–3.2 h). The median mRS at discharge was 2 (IQR, 1-4). The inter-rater reliability was 0.82, indicating high inter-rater consistency and reliability. The detailed baseline characteristics of the patients in the derivation and validation cohorts are presented in Tables 1, 2, respectively.


Table 1. Demographics and baseline characteristics of patients with and without sICH in the derivation cohort.
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Table 2. Demographics and baseline characteristics of patients with and without sICH in the validation cohort.
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Compared with the counterparts, patients with sICH in the derivation cohort tended to be older (74 vs. 71, P < 0.01), were more likely to have a longer time delay from stroke attacks (2.9 vs. 2.5, P < 0.05) and a higher NIHSS score (17 vs. 10, P < 0.01), as well as were inclined to have a poorer ASPECT score (12 vs. 13, P < 0.01). Additionally, patients with an elevated neutrophil percentage, prolonged PT, and reduced blood platelet count were more frequent to progressing to sICH (72.63% vs. 68.83%, P < 0.01, 13.1 vs. 12.7, P < 0.01, and 174 vs. 188, P < 0.05, respectively). The risk of sICH according to gender, medical comorbidities, and medication use is illustrated in Table 1. In univariate logistic regression, sex, age, hypertension, atrial fibrillation, smoking history, drinking history, OTT, NIHSS, ASPECTS, neutrophil percentage, PT, and blood platelet count showed an association with sICH. After adjusting for confounding variables, age, smoking history, baseline NIHSS, OTT, neutrophil percentage, and ASPECTS independently predicted sICH in multiple logistic regression. Regression coefficients and point value assigned to predictors are illustrated in Table 3.


Table 3. SON2A2 score (0–8) for predicting the risk of symptomatic intracranial hemorrhage after IV r-tPA and the final regression model.
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The SON2A2 score, calculated as the sum of each predictor's scores, ranged from 0 to 8. A strong association between SON2A2 score and sICH was shown in a binary logistic regression procedure in the derivation, validation, and the entire population (OR 1.98; 95% CI, 1.67–2.34, P < 0.01; OR 2.63; 95% CI, 1.67–4.13, P < 0.01; OR 2.07; 95% CI, 1.77–2.43, P < 0.01, respectively). Prediction probability for sICH per increasing point in the above three cohorts is shown in Figure 2. The median SON2A2 score was 3, and the best threshold for the SON2A2 score to diagnose sICH was 3.5 with a positive likelihood ratio of 2.46. Moreover, our risk scores strongly correlated with poor short-term outcomes in the entire population (OR 1.89; 95% CI 1.62–2.10, P < 0.01). The proportion of patients with good and poor outcomes for each SON2A2 point is illustrated in Figures 3, 4. Based on the prediction probability, the SON2A2 score was divided into four levels, which are 0–1, 2–4, 5–6, and 7–8 for low (1.7%), moderate (7.4%), high (26.9%), and extremely high risk (62.7%), respectively.


[image: Figure 2]
FIGURE 2. Risk of sICH per SON2A2 score point.



[image: Figure 3]
FIGURE 3. Proportion of patients with good and poor outcomes for each SON2A2 point.
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FIGURE 4. ROC curves of the derivation cohort.


Discrimination power of the score evaluated by AUC-ROC was similar in the derivation cohort, the internal cross-validation cohort, and the external validation cohort (AUC 0.82, 95%CI 0.77–0.86, P < 0.01, vs. 0.82, 95%CI 0.77–0.87, P < 0.01, and 0.88, 95%CI 0.80-0.96, P < 0.01). ROC curve of the derivation cohort is presented in Figure 4. The Hosmer–Lemeshow test revealed that predicted and observed event rates in the derivation and validation cohorts were very close (χ2 = 4.6, df = 5, P = 0.47 vs. χ2 = 0.61, df = 5, P = 0.99), indicating that the model was well calibrated.



Discussion

In this study, we identified independent risk factors for sICH and on this basis we developed and validated a risk score for predicting sICH and outcomes after thrombolysis. The SON2A2 score comprised history of smoking, ASPECTS, onset-to-therapy time, baseline NIHSS score, neutrophil percentage, and age. All of these factors are part of routine assessments for r-tPA treatment candidates, which can be easily and rapidly determined at emergency departments. And this study was the first one to include ASPECTS as a predictor to develop a risk score. For bedside practicality, we also converted continuous variables into categorical variables and obtained cutoff values for each variable, making the score easy-to-perform. The AUC-ROC of 0.82 indicates the score has good discriminatory capacity to predict sICH. Our score also has good calibration, which implies the predicted incidence of sICH is consistent with that of the observed incidence. Moreover, the SON2A2 score strongly correlated with discharge mRS, signifying it has good predictability of short-term functional outcomes. Similar results of external validation support the generalization of the score. If confirmed in prospective studies, it is expected to be widely used in clinical practice.

Apart from an elevated percentage of neutrophils and history of smoking, the remaining components of the SON2A2 score had been reported to be independent risk factors for sICH (5–11). In a previous study, Gautier and his coworkers found pharmacological depletion of polymorphonuclear neutrophils reduced the risk of ICH, in parallel with a decrease in endothelial dysfunction in cerebral blood vessels (17). Moreover, Maestrini et al. reported higher neutrophil counts independently related to sICH and worse outcome (18). Unfortunately, no similar results were obtained in our study. However, a weak correlation was found between neutrophil percentage and sICH in univariate analysis (crude OR 1.03; 95%CI 1.00–1.05, P < 0.05). We subsequently dichotomized neutrophil percentage into more than and equal to 80% and <80%, and then, we found a high neutrophil percentage independently predicted sICH after adjusting confounders (adjusted OR 2.25; 95% CI 1.24–4.09, P < 0.05). Smoking is a recognized risk factor for ischemic stroke. To be intriguing, in our study history of smoking was found to be a protective factor for sICH. Coincidentally, smoking was independently associated with recanalization and reperfusion, indicating that thrombolytic therapy acts more effectively in smokers (19). This may be explained by smoking associated with increased plasma levels of carbon monoxide and episodic hypoxia, which could lead to ischemic preconditioning and may trigger adaptive cellular responses to ischemia (20).

High blood pressure and high blood glucose at admission before treatment had been confirmed to be associated with sICH and included in several risk scores as predictors (6–10). As a matter of fact, these studies only focused on the initial value at admission without longitudinal evaluation of blood pressure and blood glucose levels. As is well known, blood glucose and blood pressure may fluctuate dramatically over time and are probably merely a stress reaction after stroke (21, 22). For the absence of standard guidelines, clinicians may manage blood glucose and blood pressure at different levels at their discretion, which may modify the effect of blood pressure and hyperglycemia on outcomes after thrombolysis. It may prestroke glycemic variability and early-stage blood pressure variability, be associated with hemorrhagic transformation and worse outcomes (23, 24), and not necessarily be glucose and blood pressure at admission, in patients receiving intravenous thrombolysis. Hence, we think it is controversial to incorporate these two factors to develop a risk score, and more relevant studies are needed to clarify this issue. This also reminds us that blood glucose, blood pressure levels, and other indicators can be continuously monitored in the following research to obtain optimal cutoffs.

Stroke outcomes have improved in the past decade, caused by the improvements in in-hospital stroke care. According to a big data study from Singapore (25), there has been a decreasing incidence of AIS in Asia, but the rate of thrombolysis in Asian patients is still much lower than that in developed countries (26, 27) (9.5% in China vs. 11.7–18.2% in the USA). Due to poor or low r-tPA reperfusion rate and because patients receiving thrombolytic therapy have a higher ICH rate and consequently worse outcomes compared with the counterparts, it is necessary to identify patients who are more likely to develop sICH after thrombolysis. The SON2A2 score is strongly associated with sICH and poor outcomes; hence, we suppose our score system could facilitate patients selection. We classified the risk of sICH after thrombolysis into four levels, namely, low with SON2A2 score 0–1, moderate with SON2A2 score 2–4, high with SON2A2 score 5–6, and extremely high with SON2A2 score 7–8. The rate of sICH increased 37-fold and 8.5-fold, respectively, in patients with extremely high risk (62.9%), compared with those with low risk (1.7%) and moderate risk (7.4%). Therefore, we think it might not be rational to perform thrombolysis therapy among patients with extremely high risk of sICH. As for whether to withhold thrombolysis in patients with high risk (26.9%) of sICH, an assessment of potential net benefit to the patients is required.

According to the established score systems, for developing a clinical risk score for predicting the risk of post-thrombolytic sICH, any combinations of the following aspects of predictors could be used: (1) demographic characteristics; (2) medical history; (3) baseline neurological examination; (4) laboratory findings; (5) neuroradiologic features; and (6) specific therapy. To our knowledge, the more aspects a score covers, the higher accuracy and precision it may have. Compared with three aspects in GRASPS (6) and HAT (7) scores and four aspects in SEDAN (8) and SITS-SICH risk scores (10), our SON2A2 score comprises five aspects. This may be one of the possible reasons why our risk score has a higher AUC-ROC over other four scores (0.82 vs. 0.71, 0.72, 0.77, and 0.70, respectively). Without practice application and head-to-head comparison, we cannot say our scores have a better performance than other established scores. We have to declare that we do not propose withholding r-tPA treatment for patients at high risk of sICH according to the SON2A2 score before prospective evidence is available. However, clinicians could quantify risks based on our score and tell patients and their relatives what potential risks may involve in thrombolytic treatment. For patients at high risk of hemorrhagic transformation, more positive and effective medical care measures, such as longer stay in stroke unit, more frequent assessments of neurological deficit, and shorter CT scan intervals, should be taken.

This study has limitations attributed to its retrospective nature. All of our data came from teaching hospitals, and the number of patients experiencing ICH, especially sICH, was relatively small. We only included patients for whom all required elements were available, and 18.9% patients were excluded for not meeting the predetermined study criteria. These can only be addressed in a prospective study. Stratification of continuous variables and conversion of correlation coefficients to score point values, although convenient to clinical applications, are likely to cause a loss of information and decrease model accuracy.



Conclusion

In conclusion, the SON2A2 score is easy to perform and time-saving, is well calibrated and validated, and has good predictive ability for the risk of sICH and outcomes in patients with ischemic stroke treated with IVT, providing clinicians, patients, and relatives an understanding of the risks involved in the current treatment.
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Ischemic stroke has become a severe disease endangering human life. However, few studies have analyzed the radiomics features that are of great clinical significance for the diagnosis, treatment, and prognosis of patients with ischemic stroke. Due to sufficient cerebral blood flow information in dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) images, this study aims to find the critical features hidden in DSC-PWI images to characterize hypoperfusion areas (HA) and normal areas (NA). This study retrospectively analyzed 80 DSC-PWI data of 56 patients with ischemic stroke from 2013 to 2016. For exploring features in HA and NA,13 feature sets (Fmethod) were obtained from different feature selection algorithms. Furthermore, these 13 Fmethod were validated in identifying HA and NA and distinguishing the proportion of ischemic lesions in brain tissue. In identifying HA and NA, the composite score (CS) of the 13 Fmethod ranged from 0.624 to 0.925. FLasso in the 13 Fmethod achieved the best performance with mAcc of 0.958, mPre of 0.96, mAuc of 0.982, mF1 of 0.959, and mRecall of 0.96. As to classifying the proportion of the ischemic region, the best CS was 0.786, with Acc of 0.888 and Pre of 0.863. The classification ability was relatively stable when the reference threshold (RT) was <0.25. Otherwise, when RT was >0.25, the performance will gradually decrease as its increases. These results showed that radiomics features extracted from the Lasso algorithms could accurately reflect cerebral blood flow changes and classify HA and NA. Besides, In the event of ischemic stroke, the ability of radiomics features to distinguish the proportion of ischemic areas needs to be improved. Further research should be conducted on feature engineering, model optimization, and the universality of the algorithms in the future.

KEYWORDS
 ischemic stroke, hypoperfusion area, radiomics, feature selection, DSC-PWI


Introduction

Ischemic stroke is a significant cause of death worldwide and has a heavy toll on death and disability (1). Therefore, the warning symptoms, clinical features, and prognostic evaluation around stroke have always been the subject of clinical and scientific research. Research shows that the initiating presentation of ischemic stroke is the occlusion of a blood vessel that impairs blood flow to a certain degree, leading to infarction of brain tissue in the part of the brain supplied by that blood vessel (2, 3). That means the state of cerebral blood flow has become a significant factor for the early warning and status assessment of stroke, and the early detection of abnormal blood flow is of great significance for timely treatment and excellent prognosis of patients.

To identify the presence of reduced regional blood flow, studies and physicians have combined diverse modalities of images with various analysis methods to detect abnormal states and identify hypoperfusion areas (HA) that may cause a stroke. In most imaging modes, perfusion images, such as dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) and computed tomography perfusion (CTP), play a vital role in stroke analytics in clinical practice and trials due to their ability to evaluate cerebral blood flow state. When the contrast agent arrives at the ill-perfused tissue of the brain, the signal intensity values barely change since there is no or less propagation of the contrast agent to the damaged tissue (4). Thus, the time to the maximum tissue residual function (Tmax) obtained from DSC-PWI, a highly commonly used parameter, has been used in clinical trials to identify the HA (5, 6). Generally, the region recognized from the condition Tmax >6s is defined as HA (7). In addition, other single-modality images except for DSC-PWI, or in combination with it, can also provide much medical information on ischemic stroke. A study (8) shows that the mismatch between DSC-PWI and diffusion-weighted imaging (DWI) has been used to estimate the ischemic penumbra and provides a valuable tool in the clinical treatment of stroke, which helps guide the selection of the clinical therapeutic plan. Lu et al. (9) evaluated the volume of the ischemic penumbra using susceptibility-weighted imaging and mapping (SWIM) of patients with asymmetrical prominent cortical veins. Wang et al. (10) discussed the value of susceptibility-weighted imaging (SWI) in evaluating the ischemic penumbra of patients with acute cerebral ischemic stroke. Bhattacharjee et al. (11) verified that the quantitative assessment of the penumbra using the SWI-DWI mismatch ratio performs equivalently to the ASL, PWI-DWI mismatch ratio. Furthermore, continuously developed artificial intelligence models can interpret and analyze the manifestations of stroke (12–14). Although many previous studies have been committed to evaluating the HA from multimodal imaging manners, multidimensional analysis methods, and advanced artificial intelligence technology, there are few methods to analyze the image features themselves to discover the association between the image features and cerebral blood flow state.

Radiomics is an emerging methodology that quantifies high-dimensional features from imaging data and has been used to investigate tumor heterogeneity (15, 16) and for clinical decision support systems to improve treatment decision-making and accelerate advancements toward precision medicine in cancer (14, 17–21). Recently, only a tiny minority of studies have investigated the role of radiomics in identifying ischemic stroke lesions (22), evaluating prognostic biomarkers based on the penumbra (23), and predicting functional outcomes (24). However, these studies combined medical images with clinical text information to perform the above tasks but ignored the features themselves. Currently, few studies have explored the association between imaging characteristics in the temporal dimension of DSC-PWI and blood flow status in ischemic stroke. However, with abundant and distinct blood flow information in DSC-PWI data, it is possible to extract these features to explain the blood flow state.

As for classification tasks, machine learning models and neural networks have been widely used for a long time. However, each method has its rules and algorithms to perform tasks. For example, Logistic Regression (LR) (25–27) quantifies the coefficients of variables to predict a logit transformation of the probability of the presence of the event. Support Vector Machine (SVM) (28) learns an optimal hyperplane that separates the classes as widely as possible. SVM can also perform nonlinear classification using the “kernel” to map to higher dimensional feature space (29). Random Forest (RF) is created based on decision trees (DT). Their methods resemble human reasoning by representing hypotheses as sequential if-then. The AdaBoost algorithm (Ada) (30) corrects the misclassifications made by weak classifiers, and it is less susceptible to overfitting than most learning algorithms. Gradient Boosting Decision Tree (GBDT) adapts the boosting algorithm, and it uses the error rate of the previous iteration weak learner to update the weight of the training set (31). Besides, the k-nearest neighbor (KNN) is a non-parametric classification method that forms the k neighborhood for features (32). The Naive Bayes classifier (NB) is a simple probabilistic classifier based on Bayes's theorem under solid independence between components (33). In addition to numerous machine learning models, neural networks, such as Multilayer Perceptrons (MLP) and Convolutional Neural Networks (CNN) (34–36), are commonly used to perform classification tasks. Generally, a single model is usually selected for task execution in the current classification tasks. However, as there are more or fewer differences between the algorithms of different models, the comprehensive evaluation of the results through multiple models will increase credibility. Thus, if we can verify the performance of the image features of DSC-PWI data in identifying ischemic stroke through models with different preferences, it will undoubtedly improve the validation accuracy and enhance the persuasiveness.

The purpose of this paper mainly consists of two aspects. The first is to discover the image features hidden in DSC-PWI data that can accurately distinguish normal tissues from abnormal tissues. The second is to explore the changes in the classification task when the proportion of abnormal tissues is different.



Materials and methods

Detailed materials and methods are introduced in the following. The procedures in this study include making HA and normal area (NA), computing radiomics features, selecting excellent features, and evaluating radiomics feature sets.


Materials

This retrospective study was approved by the Institutional Review Boards of Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine and exempted from informed consent. The datasets in our study were collected by the neurology department of Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, China, from 2013 to 2016. In total, 80 DSC-PWI images of 56 patients with ischemic stroke were retrospectively reviewed and included. All patients were imaged within 24 h of symptom onset, and 22 patients were screened at least twice during pre and post treatment. Of all the patients, 26 patients presented with ischemic lesions in the left hemisphere, 28 in the right, and 26 in both. At least two experienced clinicians determined these diagnoses. The DSC-PWI image for each patient was scanned on a 1.5T MR scanner (Siemens, Germany), and Table 1 shows the details.


TABLE 1 Summary of patient information and the scanning parameters of DSC-PWI images.
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Methods

Figure 1 shows the flowchart of the proposed method in this study, including preprocessing datasets and making ROIs, computing radiomics features, selecting outstanding features, and evaluating radiomics feature sets. The following is a detailed description of the process.


[image: Figure 1]
FIGURE 1
 The flowchart of the proposed method in this study. (A) Shows the process of preprocessing images and making ROIs of HA and NA, wherein the red area is HA and the green is NA. (B–D) Show the process of computing radiomics features, outstanding feature selection, and evaluating the performance of feature sets.



Preprocessing DSC-PWI images and making regions of interest (ROIs)

Preprocessing the datasets is intended to reduce noise and position deviation impacts. Firstly, we corrected DSC-PWI datasets for potential patient motion by registering all the volumes in the time series with the multiplicative intrinsic component optimization algorithm (37, 38). Then, we performed a data smoothing filtering to decrease the noise interference while preserving signal accuracy. In detail, the triple moving average filter was selected to smooth the data voxel-by-voxel with a 1 × 3 filtering kernel. In the DSC-PWI data, the intensity of each pixel in the time dimension forms a time-intensity sequence I(t) with noise generated from the equipment and other factors, while the smoothed I(t) decreased this trouble.

In addition, the necessary condition for comparative analysis of HA and NA is to detect both locations accurately. In this study, we used a fully automated Rapid Processing of Perfusion and Diffusion (RAPID) software (iSchemaView, CA, USA) (39) to segment the HA in the brain, and the segment condition was Tmax > 6 s. In contrast with HA, we determined the healthy area in the symmetrical region of HA as NA. Therefore, 80 ROIs for HA and NA were generated from the DSC-PWI datasets.



Calculating radiomics features

Radiomics refers to the high-throughput extraction and analysis of many advanced and quantitative imaging features from medical images such as computed tomography (CT), positron emission computed tomography (PET), or magnetic resonance imaging (MRI). This study innovatively applied the Radiomics technology to DSC-PWI images to obtain the image features on the time dimension in each NA and HA. In detail, the DSC-PWI datasets are the four-dimensional (4D) images composed of N three-dimensional (3D) images with the size of S×H×W. Wherein N is the total number of the 3D images in the time dimension, and S, H, and W represent the slice numbers, height, and width of the 3D image, respectively. By decomposing the 4D data into N (50 in this study) single 3D images, the radiomics features for each 3D image can be computed separately. Then, a total of 65,800 radiomics features (50 3D images ×1316 features) can be calculated from each DSC-PWI data. These radiomics features were divided into nine groups: (1) Shape-based (Shape, 14 features × 50 = 700 features), (2) First Order Statistics (First-order, 18 features × 50 = 900 features), (3) Gray Level Co-occurrence Matrix (GLCM, 24 features × 50 = 1,200 features), (4) Gray Level Run Length Matrix (GLRLM, 16 features × 50 = 800 features), (5) Gray Level Size Zone Matrix (GLSZM, 16 features × 50 = 800 features), (6) Neighboring Gray Tone Difference Matrix (NGTDM, 5 features×50 = 250 features), (7) Gray Level Dependence Matrix (GLDM, 14 features × 50 = 700 features), (8) Log-sigma (Log-sigma, 465 features× 50 = 23250 features), (9) Wavelet-based (Wavelet, 744 features × 50 = 37,200 features). Feature calculations were automatically performed using the PyRadiomics package implemented in Python (40, 41). In this study, the definition of each radiomics feature was combined with the name of the radiomics feature itself and the time value of the 3D image connected by the underline, wherein n is the time value corresponding to the 3D image, n ∈ [0,49]. Each 3D image in DSC-PWI data can be defined as S(n), where n is the time value of the 3D image and ranges from 0 to 49. For example, “log-sigma-1-0-mm-3D_firstorder_Skewness_17” represents the radiomics feature “log-sigma-1-0-mm-3D_firstorder_Skewness” of S(3), which is the fourth 3D image in DSC-PWI data, and the feature belongs to the Log-sigma group. In this study, the p-value of each radiomics feature was obtained from the T-test operation, and their statistics (mean, std, minimum, median, and maximum) can be calculated by the Origin 2021 software.



Selecting outstanding radiomics features
 
Selecting significant features

T-test analysis was performed to reduce the feature dimensionality while retaining significant features to the greatest extent. By the T-test analysis, the significant features between NA and HA can be extracted. Before the T-test analysis, a normalization operation was performed according to Equation (1). Finally, 19857 significant features with p-values lower than 0.05 remained to complete subsequent feature selection processing.

[image: image]

Wherein Fi is the ith feature in all the 65,800 radiomics features, the variables Fi, Fimax, and Fimin are the mean, maximum, and minimum of Fi, respectively.



Selecting multiple feature sets from diverse methods

One purpose of feature selection was to find the most compelling feature representing the target variable; the other was to compress feature space. This study used multiple feature selection methods based on diversity principles to select outstanding features from the 19,857 significant features. The feature selection methods contained four types: the methods based on theoretical Information [FI, including Conditional Mutual Information Maximization (CMIM), Joint Mutual Information (JMI), Mutual Information Feature Selection (MIFS), Mutual Information Maximization (MIM), and Minimal Redundancy Maximum Relevance (MRMR)], based on similarity features [SIF, including Fisher-score (Fisher), Lap-score (Lap), and (ReliefF)], based on the statistical features [STF, including F-score (FS), T-score (TS)], and based on sparse learning and steaming [SSL, including multi-cluster feature selection (MCFS), Alpha-investing (Alpha), the least absolute shrinkage and selection operator (Lasso)]. The above methods were introduced in reference (42–47), described in Table 2, and implemented in Python 3.6.


TABLE 2 Descriptions of the 13 feature selection methods used in this study.

[image: Table 2]

During the implementation of each method, except that Lasso selects features with coefficients more prominent than 0.02 to control the number of features within the set max feature-length 20, the others obtained the features whose score exceeded 0.9 and the total number was <20. To distinguish between features obtained from the 13 method, the features extracted from them were regarded as feature set Fmethod, wherein the “method” represents the name of the technique (CMIM, JMI, MIFS, MIM, MRMR, Fisher, Lap, ReliefF, MCFS, Alpha, Lasso, FS, TS). Besides, the features obtained from techniques in the same type were regarded as Ftype, the “type” was the category to which the method belongs, type∈{FI, SIF, STF, SSL}, and all the selected features were named Fall.




Performance evaluation of the selected features

This study evaluated the feature sets in two aspects, including the performance of identifying HA from NA on multiple models and the classification ability to determine the proportion of stroke regions in the brain hemispheres.


Evaluating the performance of classifying HA from NA

We applied ten commonly used supervised machine learning models to identify HA and NA by learning each feature set Fmethod. The machine learning models included support vector machines (SVM), decision tree (DT), Adaboost classifier (Ada), neural network (NN), random forest (RF), k nearest neighbors (KNN), logistic regression (LR), linear discriminant analysis (DA), gradient boosting classifier (GBDT), and GaussianNB (NB) (seen in Table 3). By training the ten models with the 13 Fmethod, 130 (13 × 10) classifiers were created. These classifiers were defined by combining the learning machine model and the feature selection method. For example, the CSVM_MIM represents the classifier fitted by SVM and feature sets FMIM, while CSVM_SIF means the classifier generated from SVM and all the feature sets FSIF.


TABLE 3 Descriptions of 10 models in this study.
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The precision (Pre), accuracy(Acc), the area under the curve score (Auc), F1-score (F1), and Recall are the five commonly used indexes to evaluate classifiers (48). Generally, the higher the index value is, the more predictive the model is. Therefore, we applied these indexes to calculate each feature set's composite score (CS) to evaluate the ability of the feature set to classify HA from NA. We designed CS as the result of the coefficient times the mean score of the five indexes on the ten learning models. The coefficient was the average score of the five indexes on the models of all features obtained by methods in the same category [seen in Equation (2)].
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Wherein K and M are the total numbers of indexes and learning models, respectively, K = 5, M = 10, and k∈{Pre, Acc, Auc, F1, Recall}, m∈{SVM, DT, Ada, NN, RF, KNN, LR, DA, GBDT, NB}; index (k, model(m, Fmethod)) represents the kth index of the mth model fitted by Fmethod; Htype is the coefficient of the Fmethod, and type is the category to which the method belongs, type∈{FI, SIF, STF, SSL}.

We used the 13 Fmethod to perform tenfold cross-validation on the ten learning models for computing the Pre, Acc, Auc, F1, and Recall. During the tenfold cross-validation, the StratifiedKFold function imported from sklearn package was used to ensure the same proportion of NA and HA samples in the training and test sets. Besides, the CS measured according to Equations (2)–(3) were subsequently used to determine the top six feature sets Ftop6.



Verifying the ability to identify the degree of stroke in the brain tissue

Since the feature sets are obtained entirely on pure ischemic and normal tissue, the appearance of these features is worth studying when the tissue is impure, in the case of the region containing both normal and abnormal tissue. Therefore, this study further explored the relationship between the proportion of abnormal tissue in the brain and the representation of radiomics feature sets.

To expand the datasets, we split the brain into left and right sides and merged the data from both sides for an adequate analysis. Then, 160 samples can be generated from 80 images. First, for the process of verifying, we segmented the brain into left and right by split function in python 3.6. Secondly, the features in Ftop6of the middle S slices in the two sides of brain tissue were computed by Radiomics technology; S was 3, 4, and 5 in this study. Specifically, we extracted the Ftop6from the middle three, four, and five layers from DSC-PWI data. And then, the labels, representing whether the volume proportion of the ischemic region in these S slices of brain tissue was beyond the set reference threshold (RT), were made according to the results of the Rapid software. The label was 1 when the volume proportion of the ischemic region in the S slices was more than RT and 0 in the opposite situation. In this study, the RT was a sliding variable that came from the set starting at 0, ending at 0.39, and spaced at 0.01, RT∈{0, 001, 0.02, …, 039}. Therefore, Ftop6in each S were configured with 40 label groups, and each one in these 120 (40 ×3) combinations was regarded as FRT_S. Then, for each FRT_S, the best feature selection method concluded above was used to extract matched features with labels from the corresponding Ftop6, and the extracted results were defined as F'RT_S. Finally, tenfold cross-validation was performed on the ten models introduced in section 2.2.4 (A) with the F'RT_S. As RT gradually increases from 0 to 0.39, the proportion of ischemic area in the middle S slices will grow. Therefore, the test in this step could verify the ability to recognize the presence of stroke in differentiated degrees of ischemia. In this section, we also got the five indexes to evaluate the performance of F'RT_S on each model.






Results

Results are provided in three parts, including extracted significant radiomics features, selected outstanding features, and the performance of the selected feature sets. The details are shown in the following.


Extracted significant radiomics features

Of all the 65,800 features computed by radiomics technology, in 19857 (30.2%) significant features were extracted with the T-test operation. Figures 2A,B show the p-value distribution of each radiomics feature group, and Table 4 illustrates their statistics. Features in the Shape of the nine radiomics groups were insignificant. However, the Wavelet and Log-sigma had the most salient features of 11,612 and 5,551, and their p-values ranged from 0.0092 ± 0.013 (mean ± std) and 0.01 ± 0.0138, respectively. The NGTDM group had minor significant features of 139, with p-values of 0.0090 ± 0.0107. The significant features in GLCM, First-order, GLRLM, GLSZM, GLRLM, and GLDM were from 419 to 619, with p-values of nearly 0.006 ± 0.011. Combining Figures 2A,B, it can be seen that among all feature groups, the p-values of significant features in the eight radiomics feature groups can reach 0.05 at most. In addition, with the increasing number of significant features, the distribution range of them will decrease. That is, the distribution of the p-values excluding outliers will become more concentrated.


[image: Figure 2]
FIGURE 2
 The information on significant features and 128 outstanding features. (A,B) Show the counts and p-values of significant features in each radiomics feature group; (C,D) show the time values of the 128 selected features and their counts in each radiomics feature group. The orange box in (B) indicates the distribution range of 25–75% p-values; The long horizontal line '—' above the box indicates 1.5 times the interquartile range value (1.5 IQR), and the discrete points above the short horizontal line are abnormal points.



TABLE 4 The statistics of significant Radiomincs features groups.

[image: Table 4]



Selected outstanding features

With the 13 feature selection methods, 128 outstanding features were selected and renamed by combining the letter F and serial number (see Appendix A in Supplementary material). As an analysis result, the 128 features included 70 Wavelet features, 2 GLDM features, 16 GLCM features, 12 First-order features, and 28 Log-sigma features (seen in Figures 2C,D). In addition, we computed four attributes between the label and each feature, including the coefficient of determination (R squared) based on the Pearson coefficient, p-value, Gain, and Gain ratio. The following were details described according to every single method.

In the methods based on FI (seen in Table 5), 64 excellent features with p-values = 0.009 ± 0.014, R squared = 0.090 ± 0.067, Gain = 0.077 ± 0.05 and Gain ratio=0.112 ± 0.072 were chosen, wherein CMIM, MM, JMI selected 20 features, respectively; MRMR and MIFS selected 18 features, respectively. Besides, the features in the five feature sets were highly repeatable.


TABLE 5 The counts of features and four attributes of 13 Fmethod.

[image: Table 5]

The methods in SIF selected 18 features (seen in Table 5). The attributes of them were R squared = 0.4 ± 0.232, p-values = 0.004 ± 0.012, Gain =0.293 ± 0.171, and Gain ratio=0.423 ± 0.247, respectively. Of these 18 features, only four came from the FFisher, while FLap and FReliefF contributed 6 and 16 features. The features in these sets had the lower p-values and the higher R squared, Gain, and Gain ratios.

In the methods based on STF (seen in Table 5), 11 features were obtained. These 11 features all belong to the FTS, and FFS included only 6 of them. In addition, the R squared, Gain and Gain ratio ranged from 0.582 ± 0.018, 0.43 ± 0.064, and 0.621 ± 0.093, respectively. And the p-values of them were <0.0001. Besides, FFS and FTS got similar results on the four attributes, among which the index value of FFS was slightly higher than that of FTS.

In the methods based on SSL (seen in Table 5), there were 47 selected features. The features in the three feature sets were scattered and independent. FMCFS screened out 20 features independent of FLasso and FAlpha, while FLasso and FAlpha shared a few members in common. The 47 features configured with R squared = 0.179 ± 0.148, p-values = 0.006 ± 0.011, Gain = 0.13 ± 0.101, and Gain ratio=0.188 ± 0.146.



Performance of feature sets

In this study, we evaluated the 13 feature sets in two aspects. One was to identify HA and NA, and the other was to determine the proportion of ischemic lesions in brain tissue.


The performance of identifying HA and NA

Based on the tenfold cross-validation results on the ten models, we calculated the five indexes of the five Ftype and 128 selected features Fall on the ten models and then got their Htype. Figure 3 shows their performance in detail. According to the mean of five indexes (mAcc, mAuc, mPre, mF1, mRecall), SSL got the best score of mAcc = 0.952, mPre = 0.964, mAuc = 0.980, mF1 = 0.953 and mRecall= 0.948, while FI got the lowest score of mAcc = 0.82, mPre = 0.817, mAuc = 0.888, mF1 = 0.831 and mRecall = 0.874. Besides, SIF and STF got similar scores, and SIF was slightly better than STF. The results also showed that the performances of Fall were lower than that of FSSL, but generally better than other feature sets, which means that although the total features achieved good performance, it was still slightly inferior to the combination of the best feature sets. In addition, the coefficients Htype of Ftype were computed according to Equation (3). As a result, FSSL obtained the highest coefficient of 0.959, and the coefficient values of Fall, FSIF, FSTF, and FFI decreased successively, which were 0.944, 0.932, 0.931, and 0.846.


[image: Figure 3]
FIGURE 3
 The performance of each Ftypeand Fallon the ten models. (A–E) Show the five indexes (Acc, Pre, Auc, F1, Recall) of Ftypeand Fall, and (F) show the coefficients Htypeof them.


Figure 4 shows the tenfold cross-validation scores of 13 feature sets on the ten models. For the 13 feature sets, the mAcc, mPre, mAuc, mF1, and mRecall were 0.849, 0.851, 0.893, 00853, and 0.872, respectively. And the CS of them were from 0.624 to 0.925. In general, the performance of a single feature set was consistent with the result of the Ftypeto which it belongs. Similar to statistics by types of features, the feature sets in FSSL performed better than those in the other Ftype, and sets in FFI got a result that left much for improvement. Specifically, using CS as a reference (seen in Figure 4F), the best one was FLasso(CS = 0.925) in the FSSL, and FAlpha got a comparable CS of 0.904. In particular, FLasso achieved an Auc of 1 on multiple models. In contrast, FMRMR, FMRMR, and FMIFS in FFI performed relatively poorly. The other feature sets scored differently, ranging from 0.70 to 0.874. In general, the top six feature sets Ftop6with the highest CS were FLasso, FAlpha, FFS, FFisher, FTS, and FReliefF, including 41 features. Besides, the Lasso algorithm became the best method for subsequent feature selection processing based on the highest CS.


[image: Figure 4]
FIGURE 4
 The performance of 13 feature sets on the ten models. (A–E) Show the five index (Acc, Pre, Auc, F1, Recall) results, and (F) shows the corresponding CS.




The ability to identify the proportion of ischemic stroke

In the 120 FRT_S formed by the Ftop6 of the three S slices under 40 RT, positive samples (label=1) indicated that ischemic stroke volume greater than RT differed. Figure 5A shows the distribution of positive samples in each S with different RT values. In each case, positive samples decreased gradually as RT values increased. In general, the ratio of positive samples in 160 patients ranged from 15 to 61.25% in S = 3, 17.5–61.88% in S = 4, and 11.88–63.13% in S = 5. When RT was in the range of 0–0.04, the proportion between positive and negative samples was >1:1; when RT was in 0.05–0.1, the proportion was about 2:3; when RT was in 0.11–0.25, the proportion was nearly 1:3, and when RT was >0.25, the proportion was <0.3.


[image: Figure 5]
FIGURE 5
 The information of samples and F[image: image]. (A) Shows the distribution of positive samples with ranging S and RT and the features in F[image: image], and (B–D) show the selected features under different RT values when S = 3, 4, and 5 respectively, wherein blue indicates that the corresponding features are selected.


Subsequently, with RT from 0 to 0.39 and S from 3 to 5, we selected outstanding features F[image: image] by the Lasso algorithm. As a result, there were slight differences between the features in 140 F[image: image]. There were 20 features in F[image: image], 18 in F'RT_4, and 21 in F'RT_5, and most of these features came from FLasso and FAlpha (seen in Appendix A in Supplementary material). Figures 5B–D show the detailed features. We got the five indexes on the ten models by performing the tenfold cross-validation with the selected F[image: image]. As Figures 6–8 show, whatever the S value was, with the increase of RT, the Acc of the ten models showed a gradual growth trend; Pre and Auc represented a state of steady first and then slow decline nearly at RT∈[0.24, 0.3], while F1 and Recall gradually decreased. Among them, the mAcc ranged from 0.6 to 0.875 in F[image: image], 0.531 to 0.856 in F[image: image], 0.644 to 0.881 in F[image: image]; the mAuc ranged from 0.523 to 0.892, 0.533 to 0.893, 0.497 to 0.935; and the mPre ranged 0 to 0.888, from 0 to 0.856, 0 to 0.917; the mF1 ranged from 0 to 0.85, 0 to 0.845, 0 to 0.844, and mRecall from 0 to 0.87, from 0 to 0.896, 0 to 0.874, respectively. Furthermore, the CS of F[image: image] stayed stable and then dropped rapidly. And the CS ranged from 0.759 to 0.341 in F[image: image], from 0.78 to 0.437 in F[image: image], and from 0.786 to 0.28 in F[image: image]. According to Figure 9, the drop point was at the stage when RT was >0.25, and that of S = 3 was later than that of S = 4 and 5.


[image: Figure 6]
FIGURE 6
 The five indexes of F[image: image] with S = 3 on the ten models, wherein the dark purple lines represent the mean indexes (mAcc, mPre, mAuc, mF1, mRecall), and the other colors represent the performance of the ten models.



[image: Figure 7]
FIGURE 7
 The five indexes of F[image: image] with S = 4 on the ten models, wherein the dark purple lines represent the mean indexes (mAcc, mPre, mAuc, mF1, mRecall), and the other colors represent the performance of the ten models.



[image: Figure 8]
FIGURE 8
 The five indexes of F[image: image] with S = 5 on the ten models, wherein the dark purple lines represent the mean indexes (mAcc, mPre, mAuc, mF1, mRecall), and the other colors represent the performance of the ten models.



[image: Figure 9]
FIGURE 9
 The box plots of the five index under the three situation (S = 3–5). (A–E) The box plots of mACC, mPre, mAuc, mF1, and mRecall in the three situations, respectively. (F) The relationship between CS and RT at varying S.






Discussion

An ischemic stroke is a vascular event characterized by reducing regional blood flow. Few studies explored the changes among DSC-PWI images in the time dimension, although the parameter Tmax obtained from them was commonly used to discriminate HA and NA. Some studies (49–51) have shown that the time-intensity curve of HA in the DSC-PWI images of patients with ischemic stroke has a much smaller brightness decrease than the curve of NA (seen in Figure 10). Therefore, the data of DSC-PWI in the time dimension are correlated with the blood flow state of brain tissues to a certain extent. This study successfully extracted multi-level feature selection processing and the radiomics features distinguishing HA and NA from DSC-PWI. Of all the methods, the FLasso reached the best CS of 0.925, and the five indexes were mAcc of 0.958, mPre of 0.96, mAuc of 0.982, mF1 of 0.959, and mRecall of 0.96. Besides, we effectively verified the ability of these features to evaluate the ischemic area ratio in the brain. According to the results, with the increase of the proportion of ischemic tissue, the mAcc increased, while Pre stabilized and then decreased. And the best Pre and Acc can reach 0.888 and 0.863. In general, the radiomics features of 3D images in the time dimension of DSC-PWI have an optimistic ability to distinguish normal brain tissue from abnormal brain tissue and indicate the proportion of ischemic tissue in brain tissue.


[image: Figure 10]
FIGURE 10
 The difference of HA and NA in the DSC-PWI image. (A) The ROIs of HA and NA in the DSC-PWI image, the HA is shown in red and the NA is shown in green. (B) The mean time-intensity curve I(t) of HA and NA, the black represents the mean I(t) of HA, and the orange is that of NA.


This study used 13 feature selection methods with different preferences to obtain outstanding features. As a result, there were 128 excellent features selected from the original 65,800 radiomics features. Their time values are mainly concentrated at the initial moment (0–3), the stage through which the contrast agent passes (17–22), and a few features located at the end of the reaction (time >30) (seen in Figure 2C). The results indicate that the initial intensity of the tissue, as well as the amount of intensity change, and the time producing the change, are essential to distinguish between normal and abnormal tissues. Besides, the features of Shape, GLRLM, GLSZM, and NGTDM were missing in the 128 selected features (seen in Figure 2D). This means that the shape, gray of neighboring voxels, and length in the number of pixels with the same gray make little contribution to characterizing the changing of blood flow, and features in the other groups are significant. Among 13 feature sets, FLasso and FAlpha in FSSL achieved the best CS of 0.925 and 0.904, while FFI performed worst, and FSIF and FSTFperformed in the middle (seen in Figure 4). From the four attributes (p-value, R squared, Gain, and Gain ratio), the p-value of FFI is more significant than the others. In contrast, the R squared, Gain, and the Gain ratio are less than the others, suggesting that the effect of features extracted by FI may not be ideal. In addition, the feature selection methods (CMIMI, JMI, MIFS, MIM, and MRMR) in the FI mainly select features based on the conditions of information entropy, redundancy, and similarity between radiomics features to obtain feature sets. Among the 65,800 original radiomics features, there may be a large number of features that meet the above screening conditions. However, in this study, the number of selected features of the feature selection method is limited to 10. Although this study ranks features according to their scores, the selected features may not be complete, resulting in the unsatisfactory performance of FFI. This can be further improved and verified in subsequent experiments. Different from FI, other feature selection methods in SIF, STF, and SSL selected features through the linear relationship, contributions, and statistical scores between features and sample categories. When sorting features with scores, excellent features will be selected first, so it is reasonable that they got a relatively higher performance than FI. In detail, For the feature sets in FSIF, the attributes of FLS have less correlation and information than the others, and they got a matching result that the CS of FFisher and FReliefF are better than FLap. FFS and FTS in FSTF got similar attributes and achieved the closer CS of 0.874 and 0.865. For feature sets in FSSL, although FLasso and FAlpha obtained a minor R squared, Gain and Gain ratio than feature sets in FSTFand FSIF, they achieved the best performance. For the long term, Lasso has been used to select excellent features and has been validated in the fields of classification (52–54), prediction (55, 56), and survival analysis (57, 58). In this study, Lasso got the best feature set FLasso to prove its competence in screening features. Thus, although the lower p-value, higher correlation, information gain, and information gain ratio can achieve a better classification result to a certain extent, they cannot be used as complex indicators to evaluate their effectiveness. The 13 Fmethod are a great deal of diversity, and these selected features are highly significant. No matter what selection method is used, they can obtain the characteristics of DSC-PWI from the aspects of intensity variation, drop time of intensity, initial state, and recovery state.

Furthermore, this study analyzed the classification ability of radiomics features in different proportions of ischemic lesions. With the increase of RT, the region of ischemic tissue increases, and the difference between features whose RT is above the set threshold and those of the opposite class decreases. When RT was <0.25, regardless of S = 3, 4, or 5, the Acc and Pre can reach >0.8. However, when RT was >0.25, the performance will decrease with the increase of RT. On the one hand, the decline of these two indexes may be due to the imbalance in the proportion of positive and negative samples when RT reaches 0.25. If sufficient data are available, in-depth reason analysis can be performed in the future. Nevertheless, these results demonstrate that the radiomics features can effectively distinguish normal tissue from ischemic tissue, provide support for the differentiation of volume proportion of ischemic lesions and provide information for clinical guidance.

In addition, ten models with different principles were used to verify the performance of selected features. The ten models included regression models (LR, NB), nonlinear classifiers (SVM, DT, RF), linear classifiers (KNN, DA), ensemble models (Ada, GBDT), and neural networks (NN). According to the classification results of these models, the classification effect of selected features can be verified comprehensively. Figures 4, 6–8 show little difference in the performance of the same feature set in different models. Still, there is a significant difference in the performance of different feature sets in the same model, and SVM, LR, NN, RF, and DA performed better than the others. For the classification of HA and NA, SVM performed best in almost all feature sets, with an mAUC of 0.929. In particular, the Auc, Pre, Acc, F1, and Recall of CSVM_Lasso were all >0.987. Using a nonlinear kernel 'RBF' in SVM, the nonlinear relationship between the selected radiomics features and the target (stroke tissue or not) can be found, thus obtaining accurate classification results. Besides, DA, RF, NB, LR, and NN also achieved satisfactory results. Regarding identifying the proportion of ischemic stroke, DA and SVM also performed better than the other models in all three situations, RT_2, RT_3, and RT_3. Although the performance of different models on the same feature set and the same situation had good consistency, SVM was a better choice in both evaluation tasks, classifying HA and NA and identifying the proportion of ischemic stroke. Besides, we used CS computed by the mean indexes (mAcc, mPre, mAuc, mF1, and mRecall) of the ten models as the benchmark for the evaluation to reasonably analyze their performance. Depending on the diversity features, the 13 Fmethod acquired different CS ranging from 0.624 to 0.925, F[image: image], F[image: image], and F[image: image] got CS in [0.34,0.76], [0.40, 0.78] and [0.28,0.78], respectively. On the one hand, the strong robustness and applicability of the Lasso algorithm can be proved by the fact that, although the features extracted by the algorithm were slightly different under different RT values, the extracted features generally achieved stable performance. On the other hand, the selected radiomics features at different slices have little influence on the classification results, but the proportion of ischemic tissue does.

There are some limitations to this study. First, the size of the datasets is relatively small, and all data come from a single hospital, which may lead to biased results and a lack of generalizability. To address the limitation, we segmented hypoperfusion areas (HA) from DSC-PWI images and defined normal tissue in the symmetrical areas of HA as NA in making ROIs. This way, one group of HA and NA can be generated from one DSC-PWI image. This way, the double samples (160) can be obtained from 80 DSC-PWI images, and the positive and negative sample sizes are equal. The expanded balanced samples can help extract accurate features, and the sample imbalance can be reduced when classifying NA and HA. Besides, when evaluating the performance of the selected features in section Performance evaluation of the selected features, the tenfold cross-validation was performed to reduce the influence of sample size. The composite scores (CS) were computed to obtain reliable results. Second, the feature selection methods, optimal features, and learning models can be further optimized. This paper uses various existing learning models to verify the classification performance. Although the results have shown some features such as FLasso and FAlpha had achieved excellent performance, the further optimization of the models, such as deep learning and transferred learning, can be regarded as one of the future works. The ischemia area ratio classification needs to be further improved. The results in this study do not mean that the models can be used alone for stroke treatment decision-making. Instead, it should be considered a support tool for stroke treatment guidance. We will validate our improved method's performance with more data before applying it to clinical trials in future work.



Conclusions

This study used prominent radiomics features extracted from 3D images in the DSC-PWI time series to explore their ability to classify HA and NA and recognize the proportion of ischemic lesions in brain tissue. The 13 Fmethod achieved the CS ranging from 0.624 to 0.925 in distinguishing HA from NA. The FLasso in the 13 Fmethod performed best with mAcc of 0.958, mPre of 0.96, mAuc of 0.982, mF1 of 0.959, and mRecall of 0.96. Besides, the 120 F[image: image] reached the best CS of 0.786 in identifying the proportion of the ischemic region, and the best Acc and Pre reached 0.888 and 0.863, respectively. In general, the combination of various radiomics features accurately reflected the varying degrees of changes in cerebral blood flow in the initial state, the contrast agent response stage, and the recovery stage. For classifying the proportion of ischemic areas, the classification effect is relatively stable when RT is <0.25. Otherwise, when RT was >0.25, the accuracy will gradually decrease as its increases. Further future research should be conducted on excellent feature extraction, feature combination, model optimization, and comprehensive verification.
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Background: To date, despite the application of secondary prevention worldwide, first-ever stroke survivors remain at imminent risk of stroke recurrence and death in the short and long term. The present study aimed to assess the cumulative risk rates and identify baseline differences and stroke characteristics of Lebanese survivors.

Methods: A prospective longitudinal study was conducted among survivors ≥18 years old who were followed-up for 15 months through a face-to-face interview. Kaplan–Meier method was used to calculate the cumulative rates of stroke mortality and recurrence. Cox-regression univariate and multivariable analyses were performed to identify the predictors of both outcomes.

Results: Among 150 subjects (mean age 74 ± 12 years; 58.7% men vs. 44.3% women; 95.3% with ischemic stroke vs. 4.3% with intracerebral hemorrhage), high cumulative risk rates of stroke recurrence (25%) and death (21%) were highlighted, especially in the acute phase. Survival rates were lesser in patients with stroke recurrence compared to those without recurrence (Log rank test p < 0.001). Older age was the main predictor for both outcomes (p < 0.02). Large artery atherosclerosis was predominant in patients with stroke recurrence and death compared to small vessel occlusion (p < 0.02). Higher mental component summary scores of quality of life were inversely associated with stroke recurrence (p < 0.01). Lebanese survivors exhibited the highest percentages of depression and anxiety; elevated Hospital Anxiety and Depression Scale (HADS) scores were seen in those with stroke recurrence and those who died (≥80% with mean HADS scores ≥8). Lower Mini-Mental State Examination scores at the acute phase increased the risk of both outcomes by 10% (p < 0.03). Three out of 13 mortalities (23.1%) were presented with early epileptic seizures (p = 0.012). High educational level was the protective factor against stroke recurrence (p = 0.019). Administration of intravenous thrombolysis decreased the risk of both outcomes by 10% (p > 0.05).

Conclusion: Higher rates of stroke recurrence and death were observed in the first year following a stroke in Lebanon. Various factors were identified as significant determinants. Thus, health care providers and officials in Lebanon can use these findings to implement effective preventive strategies to best address the management of these factors to reduce the stroke burden and improve the short and long-term prognosis of stroke survivors.
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  stroke, recurrence, death, cumulative risk rate, Lebanon, survivors, factors, burden


Introduction

Stroke is a cerebrovascular disorder characterized by the sudden onset of symptoms and clinical signs caused by the disruption of blood supply to parts of the brain (1). It is a major health concern and is considered one of the most devastating neurological diseases worldwide (2). In Lebanon, as in several countries, stroke is one of the leading causes of death and morbidity (3, 4). Fifteen million people worldwide suffer from stroke annually, of which five million die, and another five million are left permanently disabled, placing a burden on the family and community (5). Normal life for the majority of stroke survivors is disrupted and they experience major disabilities affecting their physical and psychological wellbeing, resulting in long-term invalidity or death.

Stroke recurrence is highly prevalent in survivors and is one of the main functional outcomes in the short and long-term post-first-ever stroke (6). A recent global systematic review by Lin et al. including 37 studies conducted over the last 10 years, including 1,075,014 stroke patients, has shown an increasing pooled stroke recurrence rate ranging from 7.7% at 3 months, 9.5% at 6 months, 10.4% at 1 year to 39.7% at 12 years after the initial stroke (7). Neurological deficit caused by a recurrent stroke is more severe than the initial stroke, with a high percentage of prolonged disability and death. Hence, secondary prevention after the first stroke is crucial to reduce stroke recurrence and mortality (8).

The cause of stroke recurrence and mortality is multifactorial (8, 9). Various international papers have identified modifiable and non-modifiable risk factors, including age (10, 11), gender (12, 13), vascular events like hypertension (HTN) (14), hyperlipidemia and atherosclerotic cardiovascular diseases (15), diabetes mellitus (DM) (16), atrial fibrillation (AF) (17), previous history of cerebrovascular events and stroke subtypes (18), lifestyle factors like smoking habits (19), alcohol consumption (4), use of contraceptive pills, obesity and physical inactivity (18, 20, 21), and psychological complications post-first stroke (22, 23). It is imperative and necessary to identify the patients who are at high risk of stroke recurrence and mortality and who may benefit from a close and regular assessment and rapid implementation of preventive treatments (24).

Although the Global Burden of the Disease tends to provide regular worldwide data regarding stroke burden (25), there is still uncertainty in stroke estimates in low to middle-income countries without national-based health surveillance systems. In recent years, extensive data were published on stroke recurrence and fatality determinants worldwide but there is a scarcity of related studies from the Middle East and North Africa (MENA) region (26–30). However, the burden of stroke in low and middle-income countries, including Lebanon, is higher than in high-income countries and is still rising (31, 32). Stroke types, risk factors, knowledge, and adherence to medication were addressed in various Lebanese papers (2, 3, 33–35) but there are no research studies yet which investigate the recurrence of stroke and death after first-ever stroke. The purpose of this study was to measure the cumulative risk rates of stroke recurrence and death in a time-to-event survival analysis at 3, 6, and 12 months post-first-ever stroke and to identify their determinants among Lebanese first-ever stroke survivors.



Methods

We followed The Strengthening the Reporting of Observational studies in Epidemiology (STROBE) guidelines for a proper reporting of this work (36).


Study design and population

An epidemiological observational multicenter prospective longitudinal study was conducted in five private and five public medical centers within two big governorates of Lebanon: Mount Lebanon and Beirut. The study period lasted 15 months, from February 2018 until May 2019. Approval of the protocol from ethics committees of all participating centers was granted before initiating any study procedure while abiding by the World Medical Association Declaration of Helsinki in 2013 (37).

The participants included first-ever ischemic or hemorrhagic stroke survivors who were admitted to the hospitals between February and May 2018. The inclusion criteria were as follows: (1) age ≥18 years, (2) Lebanese nationality, (3) having experienced first-ever stroke, well-identified by the following codes of the International Classification of Diseases-10 (ICD-10) (I60-I64) (38): cerebrovascular accident, stroke, ischemic stroke, hemorrhagic stroke, intracerebral hemorrhage or embolic/cerebral vascular thrombosis, and (4) a diagnosis confirmed clinically and through brain imaging. The exclusion criteria were the following: (1) admission for a recurrent stroke or transient ischemic accident or (2) a medical history of neurological and cognitive disorders. The participants (or their legal representatives) provided written informed consent to be enrolled in the study.



Sample size

Expected sample size was calculated using the Epi-Info 7 program estimating 116 participants, depending on the stroke prevalence of 3.9% obtained by Jurjus et al. (39). After accounting for missing data and lost follow-up data, a total of 150 subjects were included in the study.



Study procedures

Written consent from the eligible participants was gathered through an interview conducted by three well-trained investigators. Afterward, the participants were followed up for data collection at 3-, 6-, and 12-months post-stroke.

Clinical information was collected through a data collection form. It included the following: (1) age, gender, place of residence, marital status, number of kids, age of subject's custodian, level of education of the subject and his/her custodian, employment status, number of household members, number of rooms and type of health insurance, (2) lifestyle (eating habits, smoking, practice of physical activity, alcohol and other substances consumption, social support), (3) health indicators (anthropometric indices, family/medical/surgical history, comorbidities, treatment taken by subjects), (4) the disease and its severity (types/subtypes/location/symptoms, length of hospital stay, severity of disease, degree of disability, evaluation of the quality of life (QoL) and (5) the stroke consequences (neuropsychiatric disorders, cognitive disorders, hyperglycemia, fatigue, post-stroke pain, falls, pressure ulcers, pulmonary and urinary infections, deep vein thrombosis, pulmonary embolism, seizures, recurrence of stroke, and death).



Definitions

The initial Stroke or “Jalta Dimaghia,” the Arabic synonym, is the most familiar and most specific term for the disease in Lebanon. According to the World Health Organization, “it is a clinical syndrome consisting of rapidly developing clinical signs of focal (or global in case of coma) disturbance of cerebral function lasting more than 24 h or leading to death with no apparent cause other than that from a vascular origin” (40). Ischemic stroke was classified using the Trial of Org 10172 in the Acute Stroke Treatment (TOAST) criteria, which is divided into five subtypes: (1) large-artery atherosclerosis (LAA), (2) cardioembolism, (CE) (3) small-vessel occlusion (SVO), (4) stroke of other determined etiology (OE), and (5) stroke of undetermined etiology (UE) (41).

Stroke recurrence was the main outcome, which was defined the same criteria as that of the initial stroke. Both ischemic and hemorrhagic stroke recurrences were recorded. Only recurrences that occurred 21 days after the initial event was considered (12). Mortality was defined as death from any cause within 12 months after the first-ever stroke onset. If a patient died within the year of follow-up, the cause of death was researched in the hospital or primary care medical records.

To determine the initial stroke characteristics, the Questionnaire for Verifying Stroke-Free Status (QVSFS) was used. This questionnaire was used to investigate if the subjects ever had the following stroke symptoms: sudden painless weakness on one side of the body, sudden numbness or a dead feeling on one side of the body, sudden painless loss of vision in one or both eyes, sudden loss of one-half of vision, sudden loss of the ability to understand what people are saying; and sudden loss of the ability to express ideas verbally or in writing (42). Stroke severity was measured by the National Institutes of Health Stroke Scale (NIHSS), which identifies the level of consciousness, vision (demonstrated by horizontal eye movements and visual field), facial palsy, motor function extremities, ataxia, sensations, speech dysarthria, or aphasia, and attention to multiple types of stimuli. The scale is divided into 2 levels: <21: non-severe stroke, ≥21: severe stroke; however, a NIHSS cutoff score ≤5 predicts a favorable outcome among survivors during the follow-up periods (43, 44). [Cronbach's alpha of (r) = 0.942]. We utilized the validated Arabic translation of NIHSS (45). Disability and dependence in Activities of Daily Living (ADL) were measured by the modified Rankin Scale (mRS), which is the most commonly used scale, with mild disability (independence) graded 0–2 and moderate to severe disability graded ≥3 (46) [Cronbach's alpha of (r) = 0.946]. The QoL was assessed by the short form (SF12), which consisted of 12 items including eight scales: physical functioning (PF), role limitations due to physical problems (RP), bodily pain (BP), general health (GH), vitality (VT), social functioning (SF), role limitations due to emotional problems (RE), and perceived mental health (MH), and was divided into two summary scores [physical (PCS) and mental component summaries (MCS)]. They demonstrated the mental and physical functions and overall health-related QoL. PCS and MCS were computed through the scores 12 questions and ranged from 0 (lowest level of health) to 100 (highest level of health) with a cut-off of 50 for PCS and 42 for MCS. The scoring was calculated using the United States (US) norm-based scoring algorithm in the Statistical Package for the Social Sciences software (SPSS) (47, 48). The Arabic version of the SF-12 was used (49). A recent study by Haddad et al. was conducted for the validation of the Arabic version among Lebanese adults (50). The cognitive function was evaluated by the Mini-Mental State of Examination (MMSE), with a total score of 30 points where the cut-off point was set at 24, and a higher score defines a normal cognitive function (51). It has been classified into three levels: 24–30 = no cognitive impairment; 18–23 = mild cognitive impairment; and 0–17 = severe cognitive impairment (52) [Cronbach's alpha of (r) = 0.882]. Previous research has validated the use of the Arabic version of MMSE among the Lebanese population (53). The severity of psychological disorders, such as anxiety and depression, was assessed using the Hospital Anxiety and Depression Scale (HADS), which was divided into two scales of seven elements: a scale for depression and a scale for anxiety. Scores ranged from 0 to 7 = normal, 8 to 10 = borderline, 11 to 21 = abnormal (54), [Cronbach's alpha of (r) = 0.906], the Arabic validated version was utilized in this study (55). In addition, other scales and scores were utilized, such as the Social Support Rating Scale (SSRS) (56), the Fatigue Severity Scale (FSS) (57), the Modified Ashworth Scale (MAS)(58), “Douleur Neuropathique4” (DN4) questionnaire (59), and the Visual Analog Scale (VAS) (60).



Data processing and analysis

Continuous variables were presented as means ± Standard Deviation (SD) and categorical variables as numbers and percentages. A Survival (Time-to-Event) Analysis was utilized, and the Kaplan–Meier method was used to obtain the cumulative risk rates of stroke recurrence and any cause of death at 3-, 6-, and 12-month follow-up. Univariate and multivariable cox proportional hazards regressions were analyzed to determine the predictors of stroke recurrence and death depending on the time of the event occurrence. The explanatory variables were first tested individually against the dependent variable for the presence of a significant association. Variables for which no significant association was found were removed from the model. Regression analyses were then performed. In the multivariable logistic regression model, we included variables reported in the literature to be associated with 1-year stroke recurrence and death post-stroke considering them as potential confounders, such as age, gender, educational level, and stroke severity, in addition to the variables that showed a significant association at p ≤ 0.05 across any category in the univariate analysis. The logistic regression models were examined for the goodness of fit. Deviance values were calculated to analyze how well the model fitted each case. In all cases, it was concluded that the model fit was adequate, and the experimental removal of outliers did not violate the model. The strength of association was interpreted using the adjusted hazard ratio (AHR) with a 95% confidence interval (CI). Statistical significance was set at p ≤ 0.05. All these analyses were carried out using the SPSS software, version 25 (SPSSTM Inc., Chicago, IL USA).



Ethical considerations

The study protocol was reviewed and approved by the ethics committees and directors of the participating hospitals (NEUR-2018-001, HDF-1152). Ethical clearance was obtained through a formal letter granted in line with the World Medical Association Declaration of Helsinki in 2013 (37). Written consent was obtained from the subjects after explaining all details of the study. Participants were also informed that there will be no risks or direct benefits from their collaboration with this study. The participation was completely voluntary and enrolled subjects retained the right to withdraw at any time throughout the study. In addition, to maintain confidentiality, all data were coded in the questionnaire, and the materials will be discarded once the legal retention period expired.




Results


Baseline characteristics

The study population consisted of 150 participants admitted to 10 medical centers in Mount Lebanon and Beirut between February and May 2018. A total of 117 subjects completed the whole follow-up period (3-, 6-, and 12-month), 32 died and one was lost to follow-up at 12 months post-stroke (Figure 1).


[image: Figure 1]
FIGURE 1
 Flow diagram of the steps followed to obtain the sample of the study.


Baseline characteristics for all patients, no stroke recurrence/no death groups, and stroke recurrence/death groups are shown in Table 1. The participants had a mean age of 73.69 ± 12.11 years. The population included 88 men (58.7%) and 62 women (44.3%). Stroke recurrence and death were high in subjects with old age (51.4 and 59.4%, respectively), with low educational level (91.4 and 84.4%, respectively), with no employment post-stroke (94.3 and 100%, respectively), and in subjects with a sedentary duration of ≥12 h (58.3 and 83.3%, respectively).


TABLE 1 Baseline characteristics of the study population.
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Stroke characteristics and their severity

The median interval between the onset of stroke symptoms to admission was 2 h (ranging from 0 to 48 h) for all subjects (mean of 3.43 ± 5.94 h). In addition, the median duration of hospital stay was 7 days (ranging from 2 to 45 days) (mean of 9.69 ± 8.35 days) for all subjects.

A total of 95.3% of subjects suffered from ischemic stroke compared to 4.7% who suffered from intracerebral hemorrhagic stroke (Figure 2). No subarachnoid hemorrhage was found in the present study. Ischemic stroke cases were categorized into 3 subtypes: LAA (58, 45.7%), CE (6, 4.7%), and SVO (63, 42%). A total of 46.7 and 40% of cases involved the left and right hemispheres, respectively. A majority (70.7%) of subjects were not able to express themselves verbally or in writing at the time of stroke and 70% experienced unilateral weakness.


[image: Figure 2]
FIGURE 2
 The percentage of stroke types and subtypes according to TOAST classification.


Stroke severity was estimated as a percentage of NIHSS categories at every follow-up. At 3-month post-stroke, 16.8% of subjects were found to have a severe stroke (NIHSS score ≥ 21). Regarding the degree of disability, a significant proportion of subjects (18%) died (mRS = 6) 3 months post-stroke, whereas, 16% were bedridden (mRS = 5). These percentages decreased from 9.8 and 9.3% (mRS = 5), to 1.6 and 0.8% (mRS = 6) respectively, in the 6- and 12-month follow-ups. The QoL scores are summed up in Table 2, showing decreased PCS and MCS components of QoL (means between 28 and 40) at 3-, 6-, and 12-month follow-up periods. These levels were less than the theoretical averages (cut-off of 50 for PCS and 42 for MCS). At index admission, 47 (31.3%) subjects were already on antiplatelet and anticoagulation agents. At index discharge, these drugs were prescribed to 141 (94%) subjects.


TABLE 2 The quality of life measured by the SF-12 (short form health survey).
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Risk rates of stroke recurrence and death

Figure 3 shows a high probability of stroke recurrence and death in the first 3 months post-stroke and a significant reduction in these consequences 6 to 12 months (p < 0.001) post-stroke. A total of 38 recurrent strokes occurred during the study period, 22 (14.7%) during 3 months post-stroke, nine (7.3%) from 3 to 6 months post-stroke, and seven (5.9%) from 6 to 12 months post-stroke. Additionally, a total of 32 mortalities were reported, 27 (18%) in the 3 months, three (2.4%) in the 3–6 months, and two (1.7%) in the 6–12 months following the first stroke. The reported causes of death were as follows: recurrent stroke (n = 18, 56.3%), brain herniation (n = 5, 15.6%), myocardial infarction (n = 3, 9.4%), complications post-stroke (n = 3, 9.4%), ARDS post-stroke (n = 1, 3.1%), and pulmonary embolism (n = 1, 3.1%).


[image: Figure 3]
FIGURE 3
 Risk rates of stroke recurrence (A) and any-cause of death (B) at 3, 6, and 12 month post-stroke. *p-value < 0.001.


Figure 4 represents the Kaplan–Meier curves of cumulative risk rates over 1 year of follow-up. Cumulative recurrence risk rates among first-ever stroke survivors increased from 15% at the 3 months to 22% at 6 months and 25% at 12 months follow-up. A similar trend was observed for the cumulative any-cause of death risk, which increased from 18% at 3 months to 20% at 6 months to 21% at 12 months post-stroke. The difference between patients with and without 1-year stroke recurrence is shown in Figure 5. The survival rates decreased in patients with stroke recurrence compared to those without recurrence (log rank test p < 0.001).


[image: Figure 4]
FIGURE 4
 Cumulative risk rates of stroke recurrence (A) and any-cause of death (B) at 3, 6, and 12 month post-stroke.



[image: Figure 5]
FIGURE 5
 Kaplan Meier estimates of 1-year probability of survival after a first-ever stroke among subjects with and without stroke recurrence. Log rank test P < 0.001.




Predictors of outcomes: Stroke recurrence and any-cause of death

Univariate and Multivariable analyses were performed using Cox proportional unadjusted (UHR) and adjusted hazard ratios (AHR).


One-year stroke recurrence predictors

Tables 3, 4 show the UHR of stroke recurrence according to the baseline characteristics, in-hospital course, and post-stroke consequences. Adjusted hazard risks of stroke recurrence are presented in Table 5.


TABLE 3 The association of baseline characteristics with 1-year stroke recurrence using cox proportional hazard regression univariate analysis.
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TABLE 4 The association of stroke in-hospital course and complications post-stroke with 1-year stroke recurrence using Cox Proportional Hazard regression univariate analysis.
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TABLE 5 Independent predictors of 1-year stroke recurrence using cox proportional hazard regression multivariable analysis.
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The baseline factors associated positively with stroke recurrence were the older age with a mean of 77 ± 11 years [p = 0.016, UHR = 1.042, 95% CI (1.008–1.077)], and the sedentary duration of ≥12 h [p = 0.032, UHR = 3.926, 95% CI (1.128–13.667)]. Whereas, living with family members was negatively associated with stroke recurrence [p = 0.038, UHR = 0.277, 95% CI (0.083–0.930)], and a high educational level was the independent protective factor against stroke recurrence [p= 0.019, AHR = 0.164, 95% CI (0.036–0.745)].

Regarding hospital course, survivors with stroke recurrence had a longer duration of hospital stay than those without stroke recurrence (12.89 ± 11.16 days vs. 8.72 ± 7.07 days, respectively) [p = 0.004, UHR = 1.041, 95% CI (1.012–1.070)]. Moreover, subjects with SVO had 60% lower risk of stroke recurrence than those with LAA [p = 0.019, UHR = 0.4, 95% CI (0.186–0.861)].

Regarding post-stroke consequences, we studied the severity of the stroke, QoL, and functional, mental, neurological, and cognitive outcomes post-stroke. The stroke recurrence was positively associated with severe stroke (NIHSS ≥ 21) at 6-month post-stroke [p = 0.011, UHR = 3.777, 95% CI (1.359–10.498)]. Moreover, higher PCS and MCS scores of QoL at 3, 6, and 12 months post-stroke were inversely related to stroke recurrence; however, after adjusting for age and other explanatory factors, the mental dimensions and higher MCS scores at 3- and 6-month follow-up had strong independent opposite relations with stroke recurrence [p = 0.008, AHR = 0.927, 95% CI (0.876–0.980); p = 0.004, AHR = 0.904, 95% CI (0.843–0.969), respectively]. Similarly, elevated MMSE scores had a significant adjusted low risk of stroke recurrence [p = 0.033, AHR = 0.908, 95% CI (0.831–0.992)]. On the other hand, elevated HADS scores for anxiety and depression had a 1-fold increase of the stroke recurrence risk, especially, depression at 6 months post-stroke presented a significant adjusted higher risk [p = 0.002, AHR = 1.176, 95% CI (1.060–1.305)].

Furthermore, concerning the functional outcome and post-stroke complications, the high disability degree at 3-, 6-, and 12-months post-stroke predicted a 1-year stroke recurrence, with the largest risk in the acute phase at 3 months. Higher mRS at 3 months post-stroke increased two times the stroke recurrence risk [p < 0.001, UHR = 2.243, 95% CI (1.643–3.062); p < 0.001]. The following factors affecting the functional outcome were all found as risk factors for 1-year stroke recurrence: fatigue at 3-, 6-, and 12-month post-stroke [p = 0.025, UHR = 1.676, 95% CI (1.068–2.632); p = 0.006, UHR = 1.746, 95% CI = (1.175–2.593); p = 0.041, UHR = 1.337, 95% CI (1.012–1.765), respectively], joint contractures at 6-month post-stroke [p = 0.009, UHR = 3.556, 95% CI (1.378–9.179)], falls at least one time at 3-month post-stroke [p = 0.015, UHR = 2.701, 95% CI (1.213–6.014)], pressure ulcers (level ≥ 1) at 3- and 12-month post-stroke [p = 0.016, UHR = 2.635, 95% CI (1.196–5.806); p = 0.047, UHR = 2.701, 95% CI (1.013–7.204), respectively], confirmed pneumonia at 3-month post-stroke [p = 0.025, UHR = 2.543, 95% CI (1.123–5.758)], and confirmed urinary tract infections at 6-month post-stroke [p = 0.013, UHR = 3.068, 95% CI (1.270–7.411)].



One-year any-cause of death predictors

The univariate analysis is tabulated in Tables 6, 7. Table 8 summarizes the multivariable analysis.


TABLE 6 The association of baseline characteristics with 1-year any-cause of death post-stroke using cox proportional hazard regression univariate analysis.
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TABLE 7 The association of stroke in-hospital course and complications post-stroke with 1-year any-cause of death post-stroke using cox proportional hazard regression univariate analysis.
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TABLE 8 Independent predictors of 1-year any-cause of death using cox proportional hazard regression multivariable analysis.
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The death rate increased within the first year of stroke with the advanced age (mean of 80 ± 13 years) [p = 0.040, AHR = 1.039, 95% CI (1.002–1.078)]. Patients who died within the first year post-stroke had a longer duration of hospital stay at index stroke (mean of 13.78 ± 9.67) [p = 0.018, AHR = 1.037, 95% CI (1.006–1.069)], and 71.4% (20/28) were affected by LAA ischemic stroke vs. 21.4% with SVO [p = 0.003, UHR = 0.249, 95% CI (0.100–0.621)].

Regarding the post-stroke course, various factors were significant. Higher PCS and MCS of QoL scores were inversely associated with the 1-year mortality post-stroke [p = 0.044, UHR = 0.740, 95% CI (0.0552–0.992), p = 0.012, UHR = 0.837, 95% CI (0.729–0.961), respectively]. Furthermore, higher MMSE scores at 3 months post-stroke were negatively associated with the 1-year mortality [p = 0.034, AHR = 0.866, 95% CI = (0.758–0.989)], whereas elevated scores of mRS for disability and HADS for depression 3-month post-stroke were positively associated with mortality within the first year post-stroke. Death cumulative risk rate had a 3-fold increase among subjects with high disability than those without [p= 0.039, UHR = 3.568, 95% CI = (1.067–11.926)]. As for the depression that occurred 3 months post-stroke, a higher HADS score was independently associated with a higher risk of 1-year death post-stroke [p = 0.029, AHR = 1.302, 95% CI = (1.027–1.650)].

Subjects with confirmed pneumonia 3-month post-stroke significantly had an increased risk of death 1-year death post-stroke [p = 0.005, UHR = 4.848, 95% CI (1.629–14.430)].

Moreover, after adjusting for age and other explanatory factors, the risk of death in the first year following initial stroke was independently associated with epileptic seizures at 3-month post-stroke [p = 0.012, AHR = 7.313, 95% CI (1.538–34.768)] and with recurrent stroke at 3- month post-stroke [p = 0.001, AHR = 3.557, 95% CI (1.679–7.537)].





Discussion

The current study is the only hospital-based study in Lebanon that provides data on long-term stroke recurrence and death rates over 1 year of follow-up post-first-ever stroke and to identify the associated risk factors. High rates of stroke recurrence (25%) and death (21.3%) in the first year post-stroke were highlighted in our population. Older age was the main predictor of both these outcomes. Subjects with stroke recurrence and death were more likely to have a poor QoL with low scores of MCS and PCS, moderate to severe disability and motor deficit, and severe cognitive impairment, associated with high levels of anxiety and depression. Early recurrent stroke and epileptic seizures were the main independent predictors of 1-year mortality following a stroke.

The cumulative risk rate of stroke recurrence over 1-year of follow-up was 25%, exceeding the 10–20% rates reported in previous studies in different countries, including Japan (61, 62), China (63), Spain (64, 65), U.S. (66–68), U.K. (12), Turkey (69), and Iran (27). This can be explained first by inappropriate re-education and poor knowledge in patients regarding post-stroke healthy habits for survival and improving overall lifestyle to ensure a better QoL and functional outcome. A recent study by Khalil H. et al., 2020 conducted a community-based survey targeting Lebanese adults aged 50 years and above to assess their stroke-related knowledge and concluded that there is a lack of adequate stroke-related knowledge among Lebanese older people (3). Higher levels of education were a significant predictor of better knowledge (3, 70); Almost 69.3% (104/150) of our study population had a low level of education, of whom 32 had experienced a stroke recurrence (32/35, 91.4%). Second, genetic makeup may be a possible reason for high stroke recurrence. Stroke prevalence in Lebanon may be higher than in other developing countries in the region (34) and population aging in Lebanon is higher than in any other Arab country (71, 72). Third, for the background behind this higher recurrence rate, increased vascular risk factors such as HTN, AF, DM, and DL (32, 73, 74) were remarkable in this study but were not statistically significant. The highest rate of recurrence found in this study was in the early stage, which is relatively comparable with the reported rates by previous literature (27, 75–78). Age and stroke severity at the time of the index stroke are important determinants of stroke recurrence and are associated with early and long term prognosis (27).

Regarding mortality post-stroke, the cumulative risk rate of all-cause of mortality was 21.3% at 1-year of follow-up, which was similar to the results of the study by Abdo et al. in Lebanon in 2019 (79). Various studies worldwide have assessed the long-term post-stroke mortality rate. A cumulative risk rate of death of 40.8% 1-year post-stroke was reported in East Africa (80), with rates of 34.5% in Iran (81), 26.9% in Saudi Arabia (82), 15% in China (76), 28% in Brazil (78), 16% in the US (77), 22% to 29% in the UK (83), and 29.4% in Czech Republic (84). Compared with these rates from different countries, the mortality rate over 1-year post-stroke in Lebanon was less than the rate obtained in East Africa, Iran, Saudi Arabia, Brazil, the U.K., and the Czech Republic, but a little greater than those obtained in China and the U.S. Among Middle Eastern countries, Lebanon represents the lowest 1-year fatality rate following a stroke, which might be because of the difference in patient characteristics or the health-care system.

Most of the 32 deaths observed in the follow-up period were caused by cardiac or neurovascular complications. However, recurrence of stroke was responsible for 56% of these deaths in our study, 41% in the 3 months, 9% during the 3 to 6 months, and 6% at 12 months post first-ever stroke, where the possible reason is older age (72% were ≥80 years old). Similar to other results (79, 85–88), stroke recurrence increases the risk of death four times among stroke survivors.

Several factors are known to influence short- and long-term stroke recurrence and mortality.

Age was found as the main predictor of recurrence and death (64, 89). In our population, we found a significantly higher risk of 1-year stroke recurrence and 1-year mortality with advanced age. Elderly individuals were more likely to have a more severe stroke and increased comorbidities, especially HTN, which was found to be higher in those with stroke recurrence but this difference was not statistically significant and could be attributable to the low sample size.

Men were more exposed to stroke recurrence than women (68.6 vs. 31.4%, respectively); however, this difference was statistically significant neither for stroke recurrence nor for death post-stroke. Several studies from U.S., Europe, and China showed similar outcomes for the sexes (68, 90–92).

Similarly, there was no significant association between comorbidities, such as HTN, DM, AF, and dyslipidemia, and stroke recurrence and death within the first year post-stroke. This may be due to the fact that the majority of the patients were on the lipid-lowering and antithrombotic drugs after the stroke; hence, the non-modifiable risk factors were controlled. Saade et al. in 2021, conducted a study to evaluate the adherence to medication in secondary prevention post-stroke and found that 83% of stroke patients were adherent to their medications (35).

The risk of stroke recurrence in subjects with prolonged sitting hours (≥12 h) was four times higher than in those with shorter sitting hours, thus indicating that physical inactivity increases the risk of stroke relapse (93, 94). Most stroke survivors are engaged in physical inactivity and sedentary behavior, due to many barriers including depression, low motivation, poor to moderate social support, and physical impairment (95). The American Heart Association and the American Stroke Association recommend the following: at least 30 min of moderate-intensity physical exercise (i.e., gait, upper extremity function, balance, muscle strength, motor skills, efficiency in self-care, occupational, and leisure-time activities), sufficient to break a sweat or raise heart rate, one to three times a week (93, 95, 96).

Inversely, a higher educational level was a strong independent protective factor against stroke recurrence. Individuals with a higher level of education were 18% less likely to have a secondary stroke over 1 year after the initial stroke. Previous findings suggested that educational level is an important predictor of long-term prognosis of stroke (97, 98). This group of participants understands and has the knowledge of stroke outcome and recurrence risk factors, as well as secondary preventive habits including practicing physical activity, and adopting a healthy lifestyle after stroke i.e., decreased consumption of alcohol and salt and increased consumption of fruits and vegetables, compliance to medications, and relevant rehabilitation process (97, 99).

Living with family members was found to have a significant negative association with 1-year stroke recurrence, which was consistent with previous studies (98, 100). The important step in the continuum of care for stroke survivors is receiving care from family members while living at home (101, 102).

Interestingly, our study highlighted the significant relationships between ischemic stroke subtypes and the cumulative risk rates of stroke recurrence and death, which showed a predominance of LAA stroke subtype in patients with 1-year stroke recurrence and 1-year all-cause of death compared to SVO. We found that almost 63% of patients with stroke recurrence and 71% of deceased patients were affected by LAA at index stroke. One-year mortality and 1-year stroke recurrence were the lowest for SVO stroke. This major difference was also reported by Kolmos et al. in a newly published systematic review comprising 26 studies conducted between 1997 and 2019 worldwide with similar inclusion criteria (103). Pre-existing conditions, specifically vascular risk factors, including HTN, DL, DM, and AF, in LAA patients with stroke recurrence and death were higher than those with SVO stroke in our study and previous studies (103, 104). A study in Egypt showed that SVO was significantly higher among patients with late recurrence (1 year after stroke or more), while LAA was significantly higher among those with early recurrence (within 1 year) of stroke (6).

Although we did not find any statistical significance in the effectiveness of intravenous thrombolysis as a first line treatment in the reduction of stroke recurrence and mortality as per the stroke index in our study, a higher survival rate and a lesser stroke relapse within 1 year were observed in patients who were treated with intravenous thrombolysis. Only nine LAA patients received intravenous thrombolysis, of whom 7 patients aged between 45 and 78 years survived for 1-year post-stroke and were free of stroke recurrence. This finding shed the light on the efficacy of intravenous thrombolysis on post-stroke prognosis (105, 106). Previous studies suggested that the main barrier against receiving intravenous thrombolysis in Lebanon and other developing countries was delayed in-hospital presentation to recombinant tissue plasminogen activator administration (107, 108). A standardized stroke protocol is lacking in Lebanese hospitals and should be implemented (109).

The patients with stroke recurrence or mortality within 1 year post-stroke had prolonged hospital stay at stroke index (initial stroke occurrence) more than those without stroke recurrence or mortality, which was statistically significant in our study (110). Ween et al., in 2000, studied the impact of early recovery rates after stroke on the functional outcome prediction among stroke survivors and found that the length of hospital stay was significantly prolonged in patients with a poor outcome, thus helping us to estimate the stroke prognosis and guide them for efficient rehabilitation programs (111).

Stroke survivors' health-related QoL is one of the important outcomes of rehabilitation. Stroke has a major impact on the QoL of survivors even among those who have no or minimal post-stroke disability (112). Although the outcomes of most patients with minor symptoms, defined by a low NIHSS score, are favorable, the incidence of permanent stroke-related sequelae, recurrent stroke, or medical complications of stroke is still possible (113). Most stroke survivors perceive their QoL as low compared to their pre-stroke status (114). Several factors such as functional status, ADL, anxiety, depression, neurological and cognitive functions, and environmental and other personal factors have been reported to predict the QoL in stroke survivors, which can worsen the long-term prognosis (115–120). In low resource countries (121, 122), such as Lebanon (108, 123, 124), additional factors like health costs, employment status, and emotional disorders have been reported to influence the stroke survivors' QoL.

The present study findings showed low scores of PCS and MCS components of QoL in all subject; however, the scores were lower in survivors with stroke recurrence and those who died over 1 year of follow-up, especially in the early stage.

The MCS of the QoL (SF, MH, RE, and VT) was found as an independent determinant of stroke recurrence. Hence, percentages of anxiety and depression post-stroke, measured by HADS, were 51.2, 48.3, 36.5%, and 77.2, 74.2, and 56.5% at 3-, 6-, and 12-month post-stroke, respectively. A systematic review conducted by Rafsten et al., in 2018, revealed an overall pooled prevalence of post-stroke anxiety disorders of 29.3% during the first year (125). While the present study has shown a high level of post-stroke anxiety among Lebanese survivors compared to the rate in the aforementioned review.

On the other hand, reviews by Ayerbe et al. and Hacket et al., revealed a cumulative rate of post-stroke depression of 33% (126, 127). Furthermore, a systematic review conducted in the MENA region by Kaadan and Larson, included 34 studies with the lowest rates reported in Saudi Arabia (17%), and Iran (18%), whereas, higher rates are reported in Algeria (56.1%), Jordan (64%), and Morocco (73.2%) (128). Lebanese survivors showed the highest rate of post-stroke depression, which is close to the rate in Moroccan people. This could be due to the general poor QoL following stroke among the Lebanese population, lack of proper care, rehabilitation services, and additional training for healthcare professionals on the symptoms of depression. Another possible explanation could be the use of different methods of assessment (123). There is evidence of a strong relationship between the common psychological disorders post-stroke, anxiety and depression, and the stroke recurrence and death over 1 year following stroke (22, 129–131). Elevated HADS scores for anxiety and depression (80–90% with mean HADS scores ≥8) were seen in subjects with stroke recurrence and death.

Other studies have shown that cognitive impairment after stroke increases the risk of long-term stroke recurrence and shortens long-time survival, especially in the acute phase (90, 132, 133). Almost half (53.7%) of the Lebanese stroke survivors complained of severe cognitive impairment (MMSE ≤ 17) in the early stage post-stroke (3 months post-stroke), 28.3% at 6 months, and 18.8% at 12 months post-stroke. Higher MMSE scores were inversely associated with stroke recurrence and death. Furthermore, after adjusting for age and other explanatory factors, Higher MMSE score found to strong protective factor predictor for both outcomes.

Subjects with stroke recurrence were positively associated with an occurrence of a severe stroke 6 months post-stroke and with moderate to severe disability and high mRS scores (85 and 100% with mean mRS scores >3, respectively), which are consistent with previous study results (80, 134, 135). Subjects with motor deficits, such as fatigue (mean FSS scores > 4), joint contractures (61.1%), falls (60%) and pressure ulcers (33–56%) had a greater risk of stroke recurrence as the risk increased by two to three times in them. The control of motor movement in executing ADL is the main problem after stroke and is one of the factors contributing to a low survival' QoL (136). A Swedish study, conducted in 2014 among 35,000 stroke patients (81% with first-ever stroke), followed up at 3 and 12 months, found a 16% decline among survivors, from a level of independence in ADL to a level of dependence in ADL (137). On the contrary, despite the motor deficits mentioned previously that were mainly in the acute phase, our findings reported a slight improvement of the motor function and level of independence from 3 to 12 months of follow-up. These findings are in agreement with the findings of a review by Wondergem et al. conducted in 2017 that included 28 studies (138), and those of Langhorne et al. conducted in 2011 (139).

Pulmonary infections at 3 months post-stroke were positively associated with stroke recurrence and death over 1 year of follow-up. Almost one-third of subjects with stroke recurrence and half of the subjects who died post-stroke presented with early pulmonary infections. In addition, urinary tract infections at 6 months post-stroke were significantly higher in subjects with stroke recurrence (38.1%). It was found that the majority of these subjects (70–80%) had a severe stroke (NIHSS ≥ 21) and increased disability with high mRS scores (mRS ≥ 3), which were similar to the results of previous studies (110, 140). Stroke may affect the immunological status and level of independence of survivors; thus, severe stroke patients are prone to infections leading to post-stroke readmissions because of recurrent aspiration pneumonia and urinary catheterizations. This condition causes an increase in disability, immobility, and elevated inflammatory markers that contribute to atherogenesis and thrombosis, leading to long-term sequelae, recurrent stroke, and subsequent death (110, 140–145).

Finally, epileptic seizures at 3 months post-stroke (8/131, 6.1%) were reported in one-fifth of subjects who died (3/13, 23.1%) over 1 year of follow-up, including two subjects who died after 4–5 months and one subject at 11 months post-stroke. Stroke recurrence was the primary cause of death among the three subjects. When adjusting for age, stroke severity, and recurrence of stroke, epileptic seizures remained associated with mortality post-stroke. The risk of mortality in the first year post-initial stroke was 7-fold higher in subjects with seizures than those without seizures at 3 months post-stroke. Seizures were linked with severe cognitive impairment and with moderate to severe disability post-stroke (60%). The AHR in the current study is higher than the reported HR in previous studies (146–148). This could be explained by the smaller number of patients with epileptic seizures in this study which could have negatively affected the precision of results. Further large cohort studies are needed to confirm our findings.


Strengths and limitations

This study has several limitations. First, the small sample size recruited following the previous study considering a low prevalence of stroke in Lebanon of 3.9% according to other countries (39). Second, participating hospitals were limited to the regions of Beirut and Mount Lebanon, even though subjects came from all governorates, they were not representative of the overall population of Lebanon. Third, other recurrence correlates, such as carotid artery sclerosis, imaging findings, and medication adherence may need to be studied to provide more insight into the process of recurrence and death. Therefore, this study could function as a preliminary study for stroke recurrence and death post-stroke and their predictive factors among Lebanese survivors.

However, the prospective multicenter longitudinal study design that was conducted may have decreased recall and selection bias. In addition, we used standardized validated reliable international measuring instruments, and the study was performed by highly qualified and well-trained investigators face-to-face with the subjects, which may have lowered the degree of bias usually resulting from self-completed questionnaires. Furthermore, we used the Arabic-validated version of the measuring instruments, which could have prevented information bias. Nevertheless, future studies with larger sample sizes are required to confirm the current study results.




Conclusion

Stroke recurrence and death were commonly found in the first year post-stroke, with the largest rates recorded in the acute phase. The risk of stroke recurrence in Lebanon is higher compared to those in western and other eastern countries. A large number of the patients died or had recurrent events due to poor functional, neurological, cognitive, and mental prognosis. Lower cognitive scores, and greater neuropsychological, disability, and severity scales were positively associated with both these outcomes among the Lebanese population. Therefore, the primary public goal is to reduce stroke complications. Implementing effective therapies for secondary prevention is necessary in the acute phase (stroke unit management, thrombolytic, and other reperfusion therapies), as well as rehabilitation and long-term follow-up efforts are needed in order to cope with the burden of stroke in people who have developed or survived a stroke.
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Background: The incidence, prevalence, and mortality of ischemic stroke (IS) continue to rise, resulting in a serious global disease burden. The prediction models have a great value in the early prediction and diagnosis of IS.

Methods: The R software was used to screen the differentially expressed genes (DEGs) of IS and control samples in the datasets GSE16561, GSE58294, and GSE37587 and analyze DEGs for enrichment analysis. The feature genes of IS were obtained by several machine learning algorithms, including the least absolute shrinkage and selector operation (LASSO) logistic regression, the support vector machine-recursive feature elimination (SVM-RFE), and the Random Forest (RF). The IS diagnostic models were constructed based on transcriptomics by machine learning and artificial neural network (ANN).

Results: A total of 69 DEGs, mainly involved in immune and inflammatory responses, were identified. The pathways enriched in the IS group were complement and coagulation cascades, lysosome, PPAR signaling pathway, regulation of autophagy, and toll-like receptor signaling pathway. The feature genes selected by LASSO, SVM-RFE, and RF were 17, 10, and 12, respectively. The area under the curve (AUC) of the LASSO model in the training dataset, GSE22255, and GSE195442 was 0.969, 0.890, and 1.000. The AUC of the SVM-RFE model was 0.957, 0.805, and 1.000, respectively. The AUC of the RF model was 0.947, 0.935, and 1.000, respectively. The models have good sensitivity, specificity, and accuracy. The AUC of the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models was 1.000, 0.995, and 0.997, respectively, in the training dataset. However, the AUC of LASSO+ANN, SVM-RFE+ANN, and RF+ANN models was 0.688, 0.605, and 0.619, respectively, in the GSE22255 dataset. The AUC of the LASSO+ANN and RF+ANN models was 0.740 and 0.630, respectively, in the GSE195442 dataset. In the training dataset, the sensitivity, specificity, and accuracy of the LASSO+ANN model were 1.000, 1.000, and 1.000, respectively; of the SVM-RFE+ANN model were 0.946, 0.982, and 0.964, respectively; and of the RF+ANN model were 0.964, 1.000, and 0.982, respectively. In the test datasets, the sensitivity was very satisfactory; however, the specificity and accuracy were not good.

Conclusion: The LASSO, SVM-RFE, and RF models have good prediction abilities. However, the ANN model is efficient at classifying positive samples and is unsuitable at classifying negative samples.

KEYWORDS
 ischemic stroke, machine learning, artificial neural network, diagnostic model, transcriptomics


Introduction

The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) showed that there were 12.2 million incident cases of stroke, 101 million prevalent cases of stroke, and 6.55 million deaths from stroke in 2019 (1). Globally, the incidence and mortality of stroke are on the rise, and stroke remains the second leading cause of death (2). Especially in China, cerebrovascular disease is the first cause of death, and the lifetime risk of stroke in the Chinese population ranks first in the world (3). In 2019, there were 3.94 million new stroke cases, 2.19 million deaths from stroke, and 28.76 million prevalent cases of stroke, of which ischemic stroke (IS) accounted for 84.1% in China (4).

The etiology and pathogenesis of IS are not fully understood. According to epidemiological investigations, IS may be associated with hypertension, high BMI, hyperglycemia, environmental particulate matter pollution, and smoking (1, 5). As modern medicine tends to be individualized, prevention and treatment strategies based on patient genetic information have always been ideal treatment methods for medical practitioners. Studies (6) have found that genetic factors also play a very important role in the occurrence of IS. At present, more and more studies believe that the occurrence and poor prognosis of IS are related to the abnormal expression of genes (7). However, multiple genes are often involved in the occurrence of IS. This inspired us to explore diagnostic and prognostic methods for IS by using multiple disease-specific genes.

At present, there are some limitations to the IS diagnostic techniques commonly used in clinical practice. The diagnosis of IS mainly relies on typical clinical symptoms and brain imaging (8), while approximately 50% of early IS diagnoses lack specificity in imaging (9). In addition, most patients are irreversible by the time the diagnosis is confirmed, resulting in a poor prognosis. Although scholars have done a great deal of work in finding biomarkers for IS diagnosis or prognosis, few biomarkers are available in clinical practice (10). Existing predictive models are mostly based on demographic data and clinical parameters, which may have a high risk of bias and fail to make reliable clinical decisions (11). Machine learning research is developing rapidly and has become one of the important topics in the field of artificial intelligence. At present, machine learning has become a research hotspot in the field of medical and health data mining (12). Machine learning algorithms such as the least absolute shrinkage and selector operation (LASSO), support vector machine-recursive feature elimination (SVM-RFE), Random Forest (RF), and the neural network have been proven to be of great value in diagnosing stroke (13–15).

In this study, we screened differentially expressed genes (DEGs) between IS and control samples in the Gene Expression Omnibus (GEO) database; used LASSO, SVM-RFE, and RF to screen out IS feature genes; and constructed a disease diagnosis model of IS to evaluate the performance of different models on predicting IS.



Methods


Microarray data and processing

The expression profile data and corresponding platform annotation information of microarray datasets, such as GSE16561, GSE58294, GSE37587, GSE22255, and GSE195442, were downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). GSE16561, GSE58294, and GSE37587 were integrated as training datasets, and GSE22255 and GSE195442 were used as test datasets, as shown in Table 1. The R software (version 4.1.0) was used to transform the probe names of GSE16561, GSE58294, GSE37587, GSE22255, and GSE195442 matrix data into gene names. After the integration of the GSE16561, GSE58294, and GSE37587 datasets, the data were normalized by log2 transformation for data with large values and averaging for repeated probes. The “sva” package was used to calibrate batch effects. The principal component analysis (PCA) diagram before and after calibration was drawn using the ggplot2 package. Since there are 47 control samples and 176 IS samples in the integrated training dataset, there is a class imbalance. We used the SMOTE algorithm (16) to adjust for class imbalance. The R software “UBL” package was used.


TABLE 1 Ischemic stroke datasets from the GEO database.
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Screening for differentially expressed genes (DEGs)

The “limma” package was used to screen DEGs of the integrative data of GSE16561, GSE58294, and GSE37587. The screening criteria were set as |log2FC| > 0.6 and the adjusted P-value was <0.05. The heatmap and volcano plot of DEGs were drawn using the “pheatmap” and “ggplot2” packages, respectively.



Enrichment analysis

To understand the functions of DEGs, we used the R software “clusterProfiler” package to conduct a Gene Ontology (GO) enrichment analysis and a Gene Set Enrichment Analysis (GSEA) on DEGs. An adjusted P-value of <0.05 was considered statistically significant. GO enrichment analysis includes a biological process (BP), a cellular component (CC), and a molecular function (MF).



Feature selection and model evaluation

To screen out the feature genes of IS, the R was used to perform machine learning analysis on DEGs. The “glmnet” package was used to construct the LASSO model with penalty parameter tuning conducted by ten-fold cross-validation. The response type was set as binomial, and the alpha was set as 1. We selected the feature genes with the minimum error. Besides, the “e1071” package was used to establish the SVM-RFE model to screen out the genes with the minimum cross-validation error. k = 10 was the setting for the k-fold cross-validation, and the parameter of halving above was identified as 50. The “randomForest” package was used to establish the RF model. The RF model was established to find out the number of random forest trees with the minimum error. We selected 272 trees as the parameter of the random forest model. The “pROC” software package was used to draw the receiver operating characteristic (ROC) curve to validate the accuracy of the model. The dimensionality importance value of the RF model was obtained using the decreasing accuracy method (Gini coefficient method). The performance of prediction models generated by machine learning classifiers was assessed using classification sensitivity, specificity, and the area under the curve (AUC).



Construction and validation of the ANN model

To build and evaluate the performance of the artificial neural network (ANN) model, we performed gene scoring for feature genes, and the scoring rule was set as follows: if the expression of upregulated genes was greater than the median value, the score was 1; otherwise, the score was 0. If the expression of downregulated genes was greater than the median value, the score was 0; otherwise, the score was 1. The R software package “neuralnet” was used to construct the ANN model of feature genes according to the gene score. We set the hidden layer of the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models as 1. The number of neurons in the hidden layers of the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models was set as 8, 5, and 6, respectively. The activation function “logistic” was used. The IS disease classification model was constructed using the obtained gene weight information.




Results


Batch calibration and SMOTE algorithm

The GSE16561, GSE58294, and GSE37587 datasets were integrated. To reduce the differences between batches, batch calibration was performed on the two datasets, and PCA was used to verify the effect of data calibration (Figures 1A,B). The class distribution in the integrated dataset is not equal, which is prone to class imbalance. Training classification algorithms with imbalanced data provide inefficient prediction models, which may perform poor classification on a smaller number of samples. Hence, we used SMOTE to fix class imbalance (Figures 1C,D).


[image: Figure 1]
FIGURE 1
 PCA diagram. (A) PCA diagram of GSE16561, GSE58294, and GSE37587 datasets before calibration. (B) PCA diagram of GSE16561, GSE58294, and GSE37587 datasets after calibration. (C) PCA diagram of class distribution before SMOTE. (D) PCA diagram of class distribution after SMOTE.




Differential gene analysis

To identify the DEGs from IS and control samples, we conducted a Bayesian test on the training dataset and obtained a total of 69 DEGs, of which 46 were upregulated and 23 were downregulated (Figures 2A,B).


[image: Figure 2]
FIGURE 2
 The DEGs between ischemic stroke and control group in the GSE16561, GSE58294, and GSE37587 datasets. (A) Heatmap of DEGs. The red and blue represent the significantly upregulated and downregulated DEGs. (B) Volcano plot of DEGs. These genes consist of 46 upregulated genes and 23 downregulated genes. The screening criteria were set as |log2FC|> 0.6 and adjusted P- value of < 0.05.




Function and pathway enrichment analysis

The R software was used to perform enrichment analysis on 69 DEGs, as shown in Figure 3. DEGs were mainly enriched in the immune response and the inflammatory response. The biological process involved immune response-regulating signaling, negative regulation of cytokine production, and negative regulation of immune response. The cellular component mainly focused on some granule lumens and granule membranes. The molecular function analysis showed that most of the genes were involved in immune receptor activity, serine-type peptidase activity, serine hydrolase activity, pattern recognition receptor activity, and cytokine receptor activity (Figure 3A).


[image: Figure 3]
FIGURE 3
 Function enrichment analysis. (A) GO enrichment analysis of DEGs. The size of the circle indicates the number of genes. The screening criterion was set as adjusted P < 0.05. (B,C) Enrichment plots from GSEA analysis in the control group and IS group.


The GSEA analysis indicated that the most enriched pathways in the control group were allograft rejection, antigen processing and presentation, primary immunodeficiency, ribosome, and spliceosome (Figure 3B). In contrast, complement and coagulation cascades, lysosome, PPAR signaling pathway, regulation of autophagy, and toll-like receptor (TLR) signaling pathway were enriched in the IS group (Figure 3C).



Screening for feature genes via machine learning

We used R software to perform machine learning analysis on 69 DEGs. The feature genes selected by LASSO (Figures 4A,B) and SVM-RFE (Figures 4C,D) were 17 and 10, respectively. The number of random forest trees with the minimum error of the RF model was 272 (Figure 4E). The 12 genes with an importance value >3 were selected as disease-specific genes (Figure 4F). The feature genes screened by the algorithms are shown in Table 2.


[image: Figure 4]
FIGURE 4
 Screening for feature genes. (A) Identification of the optimal penalization coefficient lambda (λ) in the LASSO model. (B) Cross-validation for tuning parameter selection in the LASSO model. (C,D) A plot of genes selection via SVM-RFE algorithm. (E) The influence of the number of decision trees on the error rate. The x-axis represents the number of decision trees, and the y-axis indicates the error rate. (F) Results of the Gini coefficient method in RF model. The x-axis indicates the genetic variable, and the y-axis represents the importance index.



TABLE 2 Feature genes screened by machine learning algorithms.
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Effectiveness of machine learning models

To evaluate the prediction performance of the machine learning model, we first constructed the model by LASSO, SVM-RFE, and RF. In the training dataset and GSE22255 and GSE195442 test datasets, the AUC of the LASSO model was 0.969, 0.890, and 1.000, respectively (Figures 5A–C); the AUC of the SVM-RFE model was 0.957, 0.805, 1.000 (Figures 5D–F), respectively, and the AUC of the RF model was 0.947, 0.935, 1.000 (Figures 5G–I), respectively. In addition, the models have good sensitivity and specificity (Table 3).


[image: Figure 5]
FIGURE 5
 Model accuracy evaluation. (A–C) The ROC curves for using LASSO to estimate accuracy in training, GSE22255, and GSE195442 datasets. (D–F) The ROC curves for using SVM-RFE to estimate accuracy in training, GSE22255, and GSE195442 datasets. (G–I) The ROC curves for using RF to estimate accuracy in training, GSE22255, and GSE195442 datasets.



TABLE 3 Comparison of ischemic stroke diagnosis models based on machine learning.

[image: Table 3]

To further evaluate the prediction performance of the combination of machine learning algorithms, we constructed and validated the LASSO+SVM-RFE and SVM-RFE+RF models. The AUC, sensitivity, and specificity of the LASSO+SVM-RFE and SVM-RFE+RF models were also satisfactory, as shown in Table 3.



Construction and validation of the ANN model

To evaluate the prediction performance of the ANN model, we constructed and validated ANN models for feature genes screened by LASSO, SVM-RFE, and RF, respectively. The visualization of the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models is shown in Figures 6A,E,H. The AUC of LASSO+ANN, SVM-RFE+ANN, and RF+ANN models in the training dataset was 1.000, 0.995, and 0.997, respectively (Figures 6B,F,I). The AUC of LASSO+ANN, SVM-RFE+ANN, and RF+ANN in the GSE22255 dataset was 0.688, 0.605, and 0.619, respectively (Figures 6C,G,J). The AUC of LASSO+ANN and RF+ANN in the GSE195442 dataset was 0.740 and 0.630, respectively (Figures 6D,K).


[image: Figure 6]
FIGURE 6
 Development and validation of ANN models. (A,E,H) Visualization of the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models. (B–D) ROC analysis for model prediction of the LASSO+ANN in the training, GSE22255, and GSE195442 datasets. (F,G) ROC analysis for model prediction of the SVM-RFE+ANN in the training, GSE22255, and GSE195442 datasets. (I–K) ROC analysis for model prediction of the RF+ANN model in the training, GSE22255, and GSE195442 datasets.


In the training dataset, the sensitivity, specificity, and accuracy of the LASSO+ANN model were 1.000, 1.000, and 1.000, respectively; of the SVM-RFE+ANN model were 0.946, 0.982, and 0.964, respectively; and of the RF+ANN model were 0.964, 1.000, and 0.982, respectively. In the test datasets, the sensitivity (true positive rate) was very satisfactory; however, the specificity (true negative rate) and accuracy were not good. This shows that the ANN model is very efficient at classifying positive samples and is unsuitable at classifying negative samples (Table 3).




Discussion

In this study, the 69 DEGs identified were mainly involved in the immune response and inflammatory response. Inflammation is one of the initial responses of the immune system to a stimulus. Studies have shown that the immune system plays a very important role in the acute and chronic stages of ischemic damage and in the long-term sequelae of stroke (22). The pathways enriched in the IS group were complement and coagulation cascades, lysosome, PPAR signaling pathway, regulation of autophagy, and TLR signaling pathway. A sudden interruption of IS blood flow can lead to vascular endothelial changes, local retention of blood cells, platelet-leukocyte adhesion, and activation of the coagulation cascade, whereas thrombin induces the expression of adhesion molecules on endothelial cells, disrupts endothelial barrier function, and activates complement C3 and C5 (23). TLR, as part of the innate immune system, plays an important role in the immune response of IS (24). After the occurrence of hypoxic-ischemic events, part of the TLRs present in the endothelial cell membranes is involved in endothelial dysfunction and plays an indispensable role in the activation of inflammatory cascades (25). The autophagy-lysosomal pathway participates in the clearance of aberrant cellular components to maintain protein homeostasis and normal cellular function. Evidence indicated that the impairment of this pathway during cerebral ischemia led to ischemia-induced neuronal necrosis and apoptosis (26).

Stroke is the second leading cause of disability and death worldwide. Currently, there are no effective treatments to improve stroke survival and quality of life. Early diagnosis and intervention of IS play an essential role in reducing deaths.

A great deal of effort has been put into post-IS management, and there are many methods that play a role in assessing unfavorable post-IS outcomes, such as real-time biosignaling (27), quantitative electroencephalography (qEEG) (28), and electromyography (29). Noninvasive qEEG has good discriminative power in the quantitative evaluation of neurological outcomes after stroke compared with known demographic, clinical, and radiographic prognostic markers. Electromyography (EMG) is also considered a potential predictive tool for post-stroke gait and rehabilitation management because it is sensitive to neuromuscular changes induced by IS. Myoelectric biomarkers will help detect gait changes in stroke-impaired patients and determine post-stroke rehabilitation. There are also many methods that can assist in the diagnosis of IS. The imaging biomarker of carotid plaque can also be used to predict stroke risk (30). To date, most studies examining stroke have used MRI or CT images, which can be difficult to diagnose in advance. Studies have found that electrocardiography (31) and echocardiography (32) can also predict IS risk. Although electrocardiography and echocardiography are noninvasive and low-cost diagnostic methods, their low sensitivity can easily lead to misdiagnosis. Therefore, it is necessary to develop a highly sensitive and accurate method for the early diagnosis of IS.

This study aimed to construct prediction models of IS based on transcriptomics using machine learning methods. Overall, among the eight models, the LASSO, SVM-RFE, and RF performed best with the highest values in performance (AUC, sensitivity, specificity) in the training dataset and test datasets, followed by LASSO+SVM-RFE and SVM-RFE+RF, the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models performed worst. It demonstrated that the LASSO, SVM-RFE, and RF models could be used independently to predict the risk of IS.

At present, many IS risk prediction models have been established. In 2021, a case-control study in China developed a LASSO model to better identify IS. The prediction model showed good discrimination, with an AUC of 0.916 for the LASSO method using 14 features (33). In this study, the LASSO, SVM-RFE, and RF models performed well, and the AUC value reached more than 90%. The sensitivity, specificity, and accuracy of LASSO, SVM-RFE, and RF models were still very satisfactory in the test datasets. This indicated that the LASSO, SVM-RFE, and RF diagnostic models have diagnostic robustness and potential utility in detecting IS.

A radiomics study identified the selection of the LASSO combined with the SVM as the optimal method for differentiating gliosarcoma and glioblastoma (34). This result suggested that models constructed by combining several machine learning algorithms may result in better prediction ability than a single algorithm. Therefore, we constructed and validated the LASSO+SVM-RFE and SVM-RFE+RF models of IS. Although the AUC, sensitivity, and specificity of LASSO+SVM-RFE and LASSO+RF models were still very satisfactory, they were still slightly inferior to LASSO, SVM-RFE, and RF models. This result was the opposite of what was expected.

The neural network of deep learning enables the models to scale exponentially with the growing quantity and dimensionality of data, which makes deep learning particularly useful for solving complex problems (35). The growing popularity of deep learning in healthcare has accelerated research into its utility in the complex biology of cancer (36). A study found that ANN is the most suitable diagnostic model based on machine learning in skin cutaneous melanoma (37). In this study, to evaluate the prediction performance of the ANN model, we constructed and validated ANN models for feature genes screened by LASSO, SVM-RFE, and RF, respectively. The sensitivity value, that is, the true positive rate, reached more than 70% in the test dataset. However, the specificity value reached <50% in the test dataset. This showed that the ANN model is efficient at classifying positive samples and is unsuitable at classifying negative samples. This study obtained the predictive ability of each model by constructing and comparing the multiple models of IS, which provided a new method for the early diagnosis and prediction of IS.

This study also had some limitations. First, due to the lack of clinical data on IS in the GEO database, the clinical features of IS were not included in the diagnostic models. In addition, the insufficient sample size of IS in the GEO database may affect the diagnostic effect of the IS model.



Conclusion

In this study, we constructed and validated the LASSO, SVM-RFE, RF, and ANN disease classification models. The AUC, sensitivity, and specificity indicated that the LASSO, SVM-RFE, and RF models performed well for IS diagnosis and prediction. However, the ANN model is efficient at classifying positive samples and is unsuitable at classifying negative samples. Nevertheless, large-scale and multiple-center studies will be needed to verify our findings.
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Background: Insulin resistance (IR) is involved in the pathogenesis of atherosclerosis. As a new indicator, the triglyceride-glucose (TyG) index has greater operability for the evaluation of insulin resistance. Previous studies have shown inconsistent results in evaluating the association between the TyG index and stroke incidence in people without stroke at baseline. Therefore, this study aimed to systematically assess this association through a meta-analysis.

Methods: Cohort studies with the multivariate-adjusted hazard ratio (HR) association between the TyG index and stroke were obtained by searching the PubMed, Cochrane Library, and EMBASE databases before 16 December 2021. We pooled the adjusted HR along with 95% CI using a random-effects model. The primary outcome was stroke including ischemic and hemorrhagic stroke. We conducted subgroup analyses stratified by study design, ethnicity, characteristics of participants, weight of studies, and length of follow-up duration. Review Manager 5.3 and Stata 17 were used to perform the meta-analysis.

Results: Eight cohort studies with 5,804,215 participants were included. The results showed that participants with the highest TyG index category at baseline compared to those with the lowest TyG index category were independently associated with a higher risk of stroke (HR: 1.26, 95% CI: 1.24–1.29, I2 = 0%, P < 0.001). This finding was consistent with the results of the meta-analysis with the TyG index analyzed as a continuous variable (HR per each-unit increment of the TyG index: 1.13, 95% CI 1.09–1.18, I2 = 0%, P < 0.001). Subgroup analysis had no significant effects (for subgroup analysis, all P > 0.05). No significant heterogeneity was observed among the included cohort studies.

Conclusion: A higher TyG index may be independently associated with a higher risk of stroke in individuals without stroke at baseline. The aforementioned findings need to be verified by a large-scale prospective cohort study to further clarify the underlying pathophysiological mechanism between the TyG index and stroke.
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 triglyceride-glucose index, insulin resistance, stroke, meta-analysis triglyceride-glucose index, meta-analysis


1. Introduction

Stroke is one of the most devastating diseases in the world. Globally, it is the second leading cause of the increase in years of life lost (1). In addition, the increasingly youthful trend of stroke deserves our great attention (2). Ischemic stroke is the result of blood circulation disorders in the cerebral blood vessels caused by occlusion of the large cerebral arteries, which occurs more commonly in the middle cerebral artery (3) or cerebral small vessel disease (4). Previous studies have demonstrated that insulin resistance plays an important role in the pathogenesis of ischemic stroke (5).

The hyperinsulinemic–euglycemic clamp test (HIEC) is the gold standard for assessing insulin resistance. Due to the complexity of the test process, the extensive time required, and the high cost, its clinical application is very limited (6). The homeostasis model assessment of insulin resistance (HOMA-IR) index is not very convenient and economical in clinical application, although it is the most accessible indicator for evaluating insulin resistance in clinical practice (7).

As a novel surrogate indicator of insulin resistance, the triglyceride-glucose (TyG) index, derived from the fasting triglyceride and glucose levels, is convenient and quick to obtain, economical, and reliable (8). The TyG index can be calculated as follows: ln [triglyceride level (mg/dL) ×fasting blood glucose level (mg/dL)/2] (9, 10). Studies have confirmed that the TyG index is significantly correlated with both HIEC and HOMA-IR (11). Therefore, the TyG index can be used as an easily accessible and operational index of insulin resistance.

Observational studies have revealed a relationship between a high TyG index and stroke in their populations. However, most of them were cross-sectional studies (12, 13). Recently, as an increasing number of cohort studies on stroke and the TyG index have been published, we have found inconsistent results (14–17). Therefore, our study aimed to summarize the association between the baseline TyG index and stroke incidence in patients without stroke at baseline.



2. Methods

This meta-analysis was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (18) (http://www.prisma-statement.org/) and Cochrane Handbook (19, 20). Electronic databases including PubMed, the Cochrane Library (CENTRAL), and EMBASE were searched for relevant studies and literature.


2.1. Study selection

Studies adhering to all the following criteria were included: (1) Participants were adults with no stroke at baseline; (2) cohort studies were published as full-length articles in English; (3) the TyG index was measured at baseline; (4) the outcome included the occurrence of a stroke or ischemic stroke; (5) risk factors adjusted for potential confounders were reported; and (6) hazard ratios (HRs) were reported. In contrast, studies were excluded from the meta-analysis if they met at least one of the following criteria: (1) participants were <18 years of age; (2) the studies were not cohort studies; (3) there was no reporting of stroke; (4) there was no measurement of the TyG index; (5) reported data were based on univariate analysis rather than multivariate analysis; and (6) HRs were not reported.

Two researchers (CL and KX) used the PICOS principles to search for related literature and independently evaluated the literature. Disputes were resolved after a discussion with a third researcher (LZ).



2.2. Data extraction

Two researchers (CL and KX) independently extracted data from the articles. The extracted content included the names of the authors, publication year, study design, country, participant characteristics, average age, proportion of male participants, proportion of patients with diabetes, TyG index analysis, follow-up duration, and result validation. After data extraction, the two researchers exchanged data for verification.



2.3. Literature search

The PubMed, Cochrane Library (CENTRAL), and EMBASE databases were searched using a combination of the following terms: (1) “triglyceride and glucose index” OR “triglyceride-glucose index *” OR “TyG index” OR “triglyceride glucose index” OR “triacylglycerol glucose index”; (2) “stroke” OR “Cerebrovascular Accident” OR “Cerebrovascular Accidents” OR “CVA” OR CVAs; OR “Apoplexy” OR “Brain Vascular Accident” OR “Brain Vascular Accidents” (Supplementary Table S1). Reference lists of original and review articles that are related were manually searched for potentially eligible studies. The final literature search was conducted on 16 December 2021.



2.3. Literature screening

The search results obtained from the PubMed, Cochrane Library (CENTRAL), and EMBASE databases were exported to Endnote X9, whose function of “duplicate finder” was used to identify and remove repetitive literature. Literature screening was divided into two stages. First, we conducted a preliminary screening based on the titles and abstracts of the literature to obtain possibly eligible, eligibility-unknown, and clearly eligible literature. For literature that might be eligible and those whose eligibility was unknown, their full-length texts were obtained and further selected according to the inclusion and exclusion criteria, thus obtaining eligible studies. Titles, abstracts, and full-length texts were selected by two researchers (ZX and LZ), strictly and independently, based on the inclusion and exclusion criteria. When the screening results were inconsistent, the two researchers discussed and negotiated with each other to reach a consensus. If the negotiation failed, we consulted a third researcher (TJ) and adopted his opinion.


2.3.1. Quality evaluation

The Newcastle–Ottawa Scale (20) was used to evaluate the quality of each study according to the selection of the study groups, comparability of the groups, and ascertainment of the outcome of interest. The scale ranges from 1 to 9, and studies with test results of more than six are classified as high quality. The assessment was performed independently by two researchers (LZ and ZX). Any disagreement between researchers was resolved by consensus. If the negotiation failed, we consulted a third researcher (TJ) and adopted his opinion.



2.3.2. Data analyses

Hazard ratios and their corresponding 95% confidence intervals (CIs) were used as a general measure of the association between the TyG index and stroke in people who had no stroke at the baseline examination. For the study that analyzed the TyG index as a categorical variable, the HRs of the incidence of stroke in participants with the highest TyG index level compared to those with the lowest TyG index level were extracted. For studies where the TyG index was analyzed as a continuous variable, the HRs of stroke incidence were extracted for each-unit increment of the TyG index. The Cochran Q-test and I2 estimation were used to assess the heterogeneity of the included cohort studies (21). If I2 was <50%, it was considered that there was no significant heterogeneity. In addition, a random-effect model was used to synthesize HRs data, as this model was considered a more general method that could incorporate potential heterogeneity into the study (19). Furthermore, sensitivity analyses, excluding one individual study at a time, were conducted to test the stability of the results (22). Predefined subgroup analyses were also performed to evaluate the impact of study characteristics, including study design, participant characteristics, participant ethnicity, weight of studies, and follow-up duration on the association between the TyG index and stroke incidence. All studies included adjusted variables. The baseline TyG index was analyzed as categorical variables The median, quartile, or quintile was used to divide the research participants into a higher TyG index group and a lower TyG index group. After adjusting for variables, the HRs and 95% CIs of stroke or ischemic stroke were calculated in the higher TyG index group during the follow-up period, with the lowest TyG index group as a reference. Potential publication bias was assessed by visual inspection of the funnel plot symmetry. Review Manager (version 5.3; Cochrane Collaboration, Oxford, UK) and Stata 17 (Stata Corp., College Station, Texas, USA) were used to perform the statistical analyses.





3. Results


3.1. Process and results of the literature screening

The search strategy retrieved 129 articles through PubMed, Cochrane Library (CENTRAL), and EMBASE databases (Figure 1). A total of 114 articles were obtained after excluding 15 duplications. Eight studies comprising 5,804,215 participants were included in the meta-analysis after further evaluation of the abstract and full-length text twice, according to the inclusion criteria.


[image: Figure 1]
FIGURE 1
 Flowchart of the databases search and study identification.




3.2. Study characteristics and quality evaluation
 
3.2.1. Study characteristics

The characteristics of the eight cohort studies (14–17), included the name of the author(s), publication year, study design, country, participant characteristics, number of participants, average age of participant, proportion of men, proportion of patients with diabetes, TyG index analysis, follow-up duration, result verification, outcome reported, and adjusted variables (Table 1). Overall, eight cohort studies with 5,804,215 participants were included. Four out of the eight were prospective cohort studies (16, 17, 25, 26), and the remaining four were retrospective cohort studies (14, 15, 23, 26). The research participants of four studies were participants without stroke in the community (14, 16, 23, 24), while those of the other studies were outpatients or inpatients in hospitals (15, 17, 25, 26). The studies were performed in China (14–16, 24–26), South Korea (23), and Spain (17). These studies were published from 2016 to 2021, where patients at baseline were followed up for time ranging from post-intervention to 11.02 years. Five studies (14, 16, 17, 23, 24) were followed for more than 5 years and three studies (15, 25, 26) for less than 5 years. The two articles produced by the Kailuan study provided different variables, with one for categorical (16) and the other for continuous (24).


TABLE 1 Characteristics of the included cohort studies.
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3.2.2. Quality evaluation

Eight studies included in this meta-analysis were cohort studies. The Newcastle–Ottawa Scale (20) was used to evaluate their quality, and the results showed that three studies scored seven points and the other five studies scored nine points. All included cohort studies were judged high quality (Table 2).


TABLE 2 Details of quality evaluation via the Newcastle–Ottawa Scale.
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3.2.3. Results of the meta-analysis of the cohort studies

Using a random-effects model, the pooled results of seven cohort studies (14–17, 23, 25–27) showed that compared to participants with the lowest TyG index category at baseline, those with the highest TyG index category had a significantly increased incidence of stroke during the follow-up (HR: 1.26, 95% CI: 1.24–1.29, I2 = 0%, P < 0.001; Figure 2A). This finding was consistent with the TyG index analyzed as a continuous variable (four studies, HR per each-unit increment of the TyG index: 1.13, 95% CI 1.09–1.18, I2 = 0%, P < 0.001; Figure 2B). Subgroup analyses showed a consistent association between the prospective studies (HR: 1.33, 95% CI: 1.22–1.45, I2 = 0%, P < 0.001; Figure 3A) and retrospective studies (HR: 1.26, 95% CI: 1.23–1.29, I2 = 0%, P < 0.001; Figure 3A); the community population (HR: 1.26, 95% CI: 1.24–1.29, I2 = 0%, P < 0.001; Figure 3B) and outpatient or inpatient populations (HR: 1.76, 95% CI: 1.19–2.60, I2 = 0%, P = 0.005; Figure 3B); Chinese (HR: 1.33, 95% CI: 1.22–1.44, I2 = 0%, P < 0.001; Figure 3C), non-Chinese participants (HR: 1.26, 95% CI: 1.23–1.29, I2 = 0%, P < 0.001; Figure 3C); higher weight (HR: 1.26, 95% CI: 1.23–1.29, I2 = 4%, P < 0.001; Figure 3D) and lower weight (HR: 1.43, 95% CI: 1.10–1.86, I2 = 0%, P = 0.008; Figure 3D); follow-up duration more than 5 years (HR: 1.26, 95% CI: 1.24–1.29, I2 = 0%, P < 0.001; Figure 3E) and less than 5 years (HR: 1.86, 95% CI: 1.09–3.19, I2 = 0%, P = 0.02; Figure 3E). The leave-one-out analysis showed similar results (Supplementary Figure S1).


[image: Figure 2]
FIGURE 2
 Forest plots for the meta-analysis of the association between the TyG index and the risk of stroke. (A) Meta-analysis with the TyG index analyzed as a categorical variable. (B) Meta-analysis with the TyG index analyzed as a continuous variable.
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FIGURE 3
 Subgroup analysis for the Meta-analysis of association between the TyG index and the risk of stroke. (A) Subgroup analysis according to study design. (B) Subgroup analysis according to characteristics of participants. (C) Subgroup analysis according to the ethnicity of the population. (D) Subgroup analysis according to the weight of studies. (E) Subgroup analysis according to the length of follow-up duration.




3.2.4. Publication bias

Funnel plots were drawn using stroke as an outcome indicator to observe publication bias in the eight cohort studies. Funnel plots were symmetric on visual inspection, suggesting a low risk of publication bias (Figure 4). As only eight studies (14–17, 23–26) were included, < 10 studies were required, and the Egger regression test could not be performed in this study (28).


[image: Figure 4]
FIGURE 4
 Funnel plot for the publication bias underlying the metaanalysis of the associtation between TyG index and stroke.






4. Discussion

This meta-analysis of cohort studies showed that a higher TyG index at baseline was independently associated with an increased incidence of stroke regardless of whether the TyG index was analyzed as a categorical or continuous variable. Moreover, consistent results were obtained in subgroup analysis according to the study design, ethnicity, characteristics of participants, weight of studies, and length of follow-up duration. These results suggest that a higher TyG index may be an independent predictor of increased stroke incidence in the general adult population without stroke at baseline.

Our meta-analysis has some advantages and is included below. First, only cohort studies were included; thus, potential recall bias associated with the cross-sectional design was avoided. In addition, in order to have a more accurate statistical description and significance for cohort studies, we included only studies with multivariate-adjusted HR, which not only avoids potential confounding biases but also provides an independent association between the TyG index and stroke. Moreover, all the included studies are high-quality cohort studies with large numbers of participants. Otherwise, sensitivity and subgroup analyses were performed for all included studies to ensure the robustness of the results. Finally, all the I2 in the meta-analysis were lower than in previous studies, and no significant heterogeneity was observed among the included cohort studies. Our meta-analysis demonstrated the association between the TyG index and the increased incidence of stroke which indicates underlying pathophysiological mechanisms between insulin resistance and stroke exists. Insulin resistance not only enhances the adhesion, activation, and aggregation of platelets, but it also causes hemodynamic disturbances, all of which are conducive to the occurrence of ischemic stroke (5). In addition, it can cause an imbalance in glucose metabolism, leading to chronic hyperglycemia. This, in turn, triggers oxidative stress and inflammation, leading to cell damage and atherosclerotic plaque formation (29).

The TyG index, as a result of triglycerides and fasting blood glucose, has been recognized as a simple and reliable surrogate indicator of insulin resistance (30). In clinical applications, it is economical to measure blood triglycerides and fasting blood glucose, and the TyG index can be obtained through simple calculations. A previous study proved that the TyG index has high sensitivity and specificity in detecting insulin resistance (10), and it is superior to HOMA-IR (31). Moreover, compared with HOMA-IR, the TyG index, which does not require measurement of insulin levels, can be conveniently and economically used for all patients and healthy people and is also suitable for large-scale screening of insulin resistance. However, further studies are needed to conduct whether the TyG index could be added to stroke prediction tools such as the Framingham Stroke Risk Profile (32) and measure the critical value of the TyG index in the general adult population.

When the results of the meta-analysis are interpreted, some limitations should be observed. First, in the subgroup analysis, only the study design, participant characteristics, participant ethnicity, weight of studies, and follow-up duration were analyzed. More research is needed to determine whether other research characteristics will affect the results, such as sex, diabetes status, and concurrent medications used. Third, among the studies we eventually included, there were six Chinese studies and only two non-Chinese studies, one from Asia and the other from Europe. Data from other countries such as the United States, Australia, and Africa are still scarce, thus, a more detailed ethnic subgroup analysis should be conducted. Fourth, owing to the limitations of the research data, hemorrhagic stroke cannot be evaluated in a systematic manner. Fifth, although the cohort studies included were all adjusted for in the multivariate analysis, the influence of unadjusted participating factors in the cohort studies could not be ruled out based on the HR of the study and the association between the TyG index and the incidence of stroke. Similarly, we do not know whether the data before the multivariate adjustment had an impact on the study. Finally, even though we conducted a subgroup analysis, we found a significant effect after excluding two larger studies (16, 23), which had a combined weight of 99.4% and had a major influence on the meta-analysis.



5. Conclusion

A higher TyG index may be independently associated with a higher risk of stroke in individuals without stroke at baseline. The aforementioned findings need to be verified by a large-scale prospective cohort study to further clarify the underlying pathophysiological mechanism between the TyG index and stroke.
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Background and purpose: There was little evidence to study the relationship between hypocalcemia and mortality among critically ill patients with intracerebral hemorrhage (ICH) aged ≥16 years. This study aimed to determine the potential association between hypocalcemia and in-hospital and ICU mortality in patients with ICH in the United States.

Methods: We analyzed 1,954 patients with ICH from the e-Intensive Care Unit Collaborative Research Database and divided them into hypocalcemia and non-hypocalcemia groups. Hypocalcemia was defined as albumin-adjusted total calcium below 8.4 mg/dl. The primary and secondary outcomes were hospital and ICU mortality, respectively. We performed multivariable regression and subgroup analyses to evaluate the association of hypocalcemia with hospital and ICU mortality. Cumulative survival rate analysis was performed using Kaplan–Meier curves with log-rank statistics.

Results: We enrolled 1,954 patients with ICH who had been hospitalized in ICU for >24 h and were older than 16 years (average age, 61.8 years; men, 56.7%). We noted that 373 (19%) hospital mortality occurred, including 235 (12%) ICU mortality. In this sample, 195 patients had hypocalcemia. Multivariable logistic regression analyses showed that hypocalcemia was associated with a 67% increased risk of in-hospital and a 72% increased risk of ICU mortality. This association was consistent across subgroup analyses.

Conclusions: Hypocalcemia was associated with a high risk of hospital and ICU mortality among critically ill patients with ICH. Future prospective, randomized, controlled studies are needed to confirm our results.

KEYWORDS
 hypocalcemia, mortality, intracerebral hemorrhage, intensive care unit, hospital


1. Introduction

Intracerebral hemorrhage (ICH) is a life-changing event for patients and their families, and it is a potentially life-threatening medical emergency in hospitalized, critically ill patients (1). ICH has multiple pathophysiological etiologies and is associated with high morbidity and mortality rates (2, 3). However, early identification, accurate diagnosis, and aggressive treatment can improve the chances of recovery in patients with ICH.

Many factors play an important role in biological processes, and calcium (Ca) is such a nutrient for the human body (4). It plays an important role in blood coagulation, blood pressure regulation, platelet function, muscle contraction, hormone regulation, and enzyme activation. Ca plays an essential role in brain injury following ICH by affecting coagulation, regulating blood pressure, and other mechanisms (5, 6). Hypocalcemia is common in pediatric patients and critically ill adults (7–9). It appears to promote coagulopathy and increase blood pressure (10, 11).

Several studies have demonstrated that hypocalcemia is strongly associated to hematoma expansion and worse short-and long-term outcomes in patients with ICH (12–14). Based on these findings, hypocalcemia may be a potential prognostic factor during hospitalization in critically ill patients with ICH; however, studies in this area are lacking. Therefore, we conducted a retrospective cohort study to investigate the association between hypocalcemia and in-hospital and ICU mortalities in critically ill patients with ICH.



2. Methods


2.1. Data source

All data were drawn from the e-Intensive Care Unit Collaborative Research Database (eICU-CRD), a large multicenter ICU database that includes data on more than 200,000 patients admitted to the ICU at 208 United States hospitals in 2014 and 2015 (15). All data were stored and retrieved electronically and provided by Philips Healthcare in collaboration with the MIT Computational Physiology Laboratory (15). All data were anonymized prior to our analysis using the eICU protocol. Eicu-crd.mit.edu is the web address of this database. The use of this database was approved by PhysioNet review boards. One of the authors (Wenyan Zhao) gained access and was responsible for downloading the data (certification number: 42608104).



2.2. Study population

All patients diagnosed with ICH upon ICU admission were included in this study. The diagnoses of ICH include hemorrhagic stroke, subarachnoid hemorrhage, and intraventricular hemorrhage. The following exclusion criteria were used: (1) age <16 years, (2) total Ca and albumin data missing from 12 h before to 24 h after ICU admission, (3) missing in-hospital death data, and (4) ICU stay ≤24 h. A flowchart of the study is depicted in Figure 1.


[image: Figure 1]
FIGURE 1
 Flow chart of participants.




2.3. Study variables

In this study, hypocalcemia was the exposure variable. The primary and secondary outcomes of our study were in-hospital and ICU mortalities, respectively. All patients were divided into hypocalcemia and non-hypocalcemia groups. Hypocalcemia was defined as an albumin-adjusted total Ca level below 8.4 mg/dl. The albumin-adjusted total Ca level was calculated based on the following formula: albumin-adjusted total Ca (mg/dl) = total Ca (mg/dl) + 0.8 × [4-measured albumin (g/dl)] (16). Total Ca and albumin were first measured from 12 h before to 24 h after ICU admission. Hospital and ICU stay durations were also calculated in this study.



2.4. Other variables

Further, we also collected additional data from the eICU-CRD. Sex, age, ethnicity, and region were acquired from the patient and apache patient result tables. Physiological variables, including diastolic blood pressure (DBP), systolic blood pressure (SBP), and body mass index (BMI), were obtained from the Apache Aps Var table. The laboratory indices were platelet (PLT), white blood cell (WBC) count, hemoglobin (Hb), glutamic pyruvic transaminase (GPT), prothrombin time (PT), creatinine (Cr), international normalized ratio (INR), blood urea nitrogen (BUN), magnesium (Mg), glucose (GLU), and lactate. Comorbidities, including coronary artery disease, hypertension, atrial fibrillation, diabetes, and congestive heart failure, were extracted from the APACHE IV score. Patients with ICH, including those diagnosed with hemorrhagic stroke, subarachnoid hemorrhage, and intraventricular hemorrhage, were extracted from the diagnosis table. The severity of ICU admission was evaluated by using the sequential organ failure assessment (SOFA) score. The causes of ICH include traumatic and spontaneous hemorrhage. The information on the use of vasopressor and sedatives on the first day was gathered from Treatment table. All covariates were collected on the first day of ICU admission.



2.5. Statistical analysis

Categorical variables were analyzed using percentages, whereas continuous variables were expressed using the means (standard deviation, SD). Firstly, this study used linear regression models and chi-square tests to compare the patients' baseline characteristics and outcomes in different groups. Secondly, we calculated three multivariable logistic regression models simultaneously as follows: model 1, not adjusted; model 2, adjusted for sex, age, and race/ethnicity; model 3, adjusted for model 1+ region, causes of ICH, BMI, SBP, WBC, PLT, Hb, GPT, INR, PT, GLU, BUN, Cr, Mg, lactate, SOFA score, first-day vasopressor, first-day sedative, atrial fibrillation, and congestive heart failure. The covariates selected for adjustment were based on the fact that the addition of covariates to the model changed the regression coefficient by at least 10%. 95% confidence interval (CI) and odds ratios (OR) were estimated for all the models. Thirdly, we performed stratified analyses and interactions in the light of age, sex, region, causes of ICH, SOFA score, histories of hypertension, diabetes, and BMI. Finally, Kaplan–Meier curves were constructed for primary and secondary outcomes.

To confirm the robustness of our results, we quantified unmeasured confounders of hypocalcemia and ICU mortality by calculating E-values (17), because unmeasured confounders may affect the observed correlation between hypocalcemia and mortality. The E-value allows estimation of the required validity of a confounder.

All tests were two-sided, and P < 0.05 was considered statistically significant. All analyses were performed using the R statistical software package (http://www.R-project.org, The R Foundation for Statistical Computing, Vienna, Austria) and Free Statistics software versions 1.5 (18).




3. Results


3.1. Patient selection

The selection process for the study population was depicted in Figure 1. Firstly, we excluded patients aged ≤16 years (n = 200). Secondly, we excluded patients without total Ca (n = 379) or albumin (n = 1,682) data. Thirdly, we excluded patients without hospital death data (n = 33). Fourthly, we excluded patients with an ICU stay time ≤24 h (n = 514). Finally, a total of 1,954 eligible patients were enrolled in the analyses.



3.2. Baseline characteristics

The selected patients' characteristics were shown in Table 1. Based on the albumin-adjusted total Ca levels, we divided all patients into the hypocalcemia and non-hypocalcemia group. The average age was 61.82 years (men: 56.76%). Among 709 patients with traumatic and 1,245 patients with spontaneous ICH, 108 and 87 patients developed hypocalcemia, respectively. Patients with traumatic ICH had a higher incidence of hypocalcemia. Compared with patients without hypocalcemia, those with hypocalcemia had a higher WBC count, GPT, and SOFA score and lower BMI, SBP, PLT, INR, PT, and BUN. In addition, the hypocalcemia group had a lower proportion of patients with histories of chronic disease such as hypertension, diabetes, chronic pulmonary disease, atrial fibrillation, stroke, coronary artery disease, and congestive heart failure. However, there were no differences in age, region, DBP, Hb, Mg, or GLU between the two groups.


TABLE 1 Characteristics of study participants.
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3.3. The outcomes

The primary and secondary outcomes of our study were shown in Table 2. In-hospital mortality was 28.72% in the hypocalcemia group and 18.02% in the non-hypocalcemia group, and the difference was statistically significant (P < 0.001). The ICU mortality in the hypocalcemia group was 21.03%, while it was 11.03% in the non-hypocalcemia group (P < 0.001). The patients with hypocalcemia had higher in-hospital and ICU mortality than those without hypocalcemia. In the hypocalcemia group, the total length of the hospital stay and ICU stay were 13.33 and 7.91 days, respectively, which were longer than that in the non-hypocalcemia group.


TABLE 2 The outcomes of patients in hypocalcemia and non-hypocalcemia group.
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3.4. Association of hypocalcemia with in-hospital and ICU mortalities

Hypocalcemia was associated to an increased risk for in-hospital and ICU mortalities in patients with ICH, as shown in Table 3. In the model 1, ICH patients with hypocalcemia had an 83% increased risk of in-hospital mortality (OR = 1.83, 95% CI: 1.31–2.56, P = 0.004) and a 115% increased risk of ICU mortality (OR = 2.15, 95% CI: 1.48–3.13, P < 0.001). Compared to patients without hypocalcemia, the risk of in-hospital mortality in patients with hypocalcemia increased by 67% (OR = 1.67, 95% CI: 1.09–2.56, P = 0.018) in the model 3, and the risk of ICU mortality in patients with hypocalcemia increased by 72% (OR = 1.72, 95% CI: 1.06–2.77, P = 0.027).


TABLE 3 Association of hypocalcemia with mortality in critically ill patients with ICH.
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3.5. Subgroup analysis

The stratification and interaction analyses of the association between hypocalcemia and in-hospital and ICU mortalities were depicted in Figures 2, 3. Subgroup analysis results were in concordance with those of the multivariable logistic regression analysis. The results of the interaction analysis revealed that there were no significant interactions in the subgroups of age, sex, region, causes of ICH, SOFA score, histories of hypertension and diabetes, and BMI.


[image: Figure 2]
FIGURE 2
 Association between hypocalcemia and hospital mortality according to subgroup. Analyses were adjusted for gender, age, region, race, BMI, systolic blood pressure, diastolic blood pressure, white blood cell count, hemoglobin, platelet, glutamic-pyruvic transaminase, INR, prothrombin time, blood urea nitrogen, creatinine, magnesium, glucose, lactate, SOFA, trauma, first day vasopressor, first day sedative, hypertention, coronary artery disease, atrial fibrillation, congestive heart failure, diabetes, chronic pulmonary disease, and stroke.
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FIGURE 3
 Association between hypocalcemia and ICU mortality according to subgroup. Analyses were adjusted for gender, age, region, race, BMI, mean systolic, mean diastolic, white blood cell count, hemoglobin, platelet, glutamic-pyruvic transaminase, INR, prothrombin time, blood urea nitrogen, creatinine, magnesium, glucose, lactate, SOFA, trauma, first day vasopressor, first day sedative, hypertention, coronary artery disease, atrial fibrillation, congestive heart failure, diabetes, chronic pulmonary disease, and stroke.




3.6. Kaplan–Meier survival curve

Patients in the hypocalcemia group had a significantly lower survival rate than those without hypocalcemia within 30 days of hospital stay (P = 0.016) and 30 days of ICU stay (P = 0.036), as shown in Figure 4.


[image: Figure 4]
FIGURE 4
 Kaplan–Meier analysis for (A) hospital mortality and (B) ICU mortality in hypocalcemia and non-hypocalcemia group.




3.7. Sensitivity analyses

To test the robustness of the main results, we calculated E-values to assess the effect of unmeasured confounding factors. The correlation between hypocalcemia and the risk of ICU mortality was found to be robust, unless the OR of the risk of ICU mortality of an unmeasured confounder was >2.83.

In addition, we performed a sensitivity analysis using data from our own hospital. Patients who were diagnosed with hemorrhagic stroke, subarachnoid hemorrhage, and intraventricular hemorrhage transfered to ICU in our institute were screened retrospectively. A total of 244 patients aged 16–70 years admitted to our institute from January 2010 to October 2022 were analyzed. We attached the results to the Supplementary Tables 1–3 and Supplementary Figure 1. The results of the multivariable logistic regression analysis in the cohort of our institute were in concordance with those in the cohort of eICU-CRD (Supplementary Table 3).




4. Discussion

In this retrospective cohort study, we examined the association between hypocalcemia and in-hospital and ICU mortalities in critically ill patients with ICH. We included 1,954 confirmed patients with ICH and divided them into hypocalcemia and non-hypocalcemia groups according to albumin-adjusted total Ca levels. Adjusted for major confounders, our results suggested that hypocalcemia patients with ICH at ICU admission have an increased risk of in-hospital and ICU mortalities. In patients with hypocalcemia, we observed a 67% increased risk of in-hospital mortality and a 72% increased risk of ICU mortality compared to those without hypocalcemia.

In recent years, studies had found that hematoma expansion in patients with spontaneous ICH is related to the serum Ca level at admission (19). A single-center retrospective cohort study from Japan included 273 patients with non-traumatic ICH divided into quartiles based on admission serum Ca levels. After adjusting for other variables, they found that patients in the low serum calcium levels had significantly larger hematoma volumes (18 ml), when compared with that in the higher serum Ca levels group (P = 0.025) (20). Another prospective cohort study analyzed 2,103 patients with primary ICH (12). They reported that patients with hypocalcemia had a higher baseline hematoma volume than patients without hypocalcemia. In a subgroup of 1,309 patients, a higher blood Ca concentration was associated to a decreased risk of ICH expansion (OR = 0.55; 95% CI, 0.35–0.86; P = 0.01). According to another study, low ionized Ca levels were associated with a poor prognosis following early hematoma expansion in 111 patients with hypertensive ICH (21).

The causal relationship and precise mechanism between hypocalcemia and mortality are unclear. According to previous studies, the mechanism might be as follows: Firstly, Ca plays a crucial role in the coagulation cascade (22). Therefore, hypocalcemia patients with ICH may have impaired hemostasis, promoting ICH progression, and increasing the risk of mortality. Secondly, serum Ca levels are correlated with PLT function and several steps of PLT aggregation (23, 24). Hypocalcemia may be accompanied by PLT dysfunction and a poor prognosis. Thirdly, activation of the systemic immune response after ICH leads to PTH-vitamin D axis dysfunction, low serum Ca levels, or hypocalcemia (25). Hypocalcemia is common in patients requiring ICU admission and is associated to increased mortality (26). The specific mechanism requires further research.

Subgroup analyses based on the causes of ICH revealed that traumatic ICH patients with hypocalcemia had a 147% elevated risk of ICU mortality (OR = 2.47, 95% CI: 1.07–5.69, P = 0.034). Vinas-Rios et al. (27) conducted an ambispective comparative case-control study and suggested that traumatic hypocalcemia patients with ICH had an increased risk of mortality (OR = 5.2; 95% CI: 4.48–6.032). Our results were consistent with their findings. Patients with traumatic ICH have a higher incidence of hypocalcemia. The mechanism may be as follows: in patients with traumatic ICH, the decrease in serum Ca is related to bonding with the complex Calcium/calmodulin-dependent protein kinases II and lactic acid (28, 29). Transmembrane Ca input after traumatic cell membrane deformation leads to acute elevation of intracellular Ca levels, which can cause neurological disorders, along with death (30).

Subgroup analyses also revealed that hypocalcemia patients with diabetes had a significantly increased risk of ICU mortality compared to those without hypocalcemia. ICH is a subtype of stroke associated to higher mortality (31), particularly in the population with diabetes mellitus (DM) (32). The pathophysiological processes underlying ICH-induced brain damage are highly influenced by the presence of DM (33). DM promotes massive blood-brain barrier destruction after ICH by affecting pericytes, endothelial cells, and tight junction proteins, leading to vasogenic edema and hematoma expansion (34–36). Future studies should aim to provide a better understanding of pathophysiological changes in patients with ICH and DM. These patients deserve more attention, and it is important to develop an appropriate treatment strategy for patients with ICH and DM.

In this study, we also found that ICH complicated by hypocalcemia was not correlated with the underlying disease but was correlated with the severity of the condition since patients with ICH, complicated by hypocalcemia, had higher SOFA scores. Previous studies have clarified that for organs other than the liver, the SOFA score of each organ has a significant correlation with in-hospital mortality during the patient's ICU period (37, 38); in particular, the neurological score has the greatest impact on prognosis (38). This is consistent with the conclusions of our study.

The present study has several strengths. Firstly, this was the first study based on the association between hypocalcemia and hospital mortality in patients with ICH using multicenter ICU data from the United States. Secondly, a relatively large sample was used in this study; therefore, subgroup analysis could be conducted. The results were stable in each subgroup, and no interactions were found. However, this study also has several limitations. First, our analyses are retrospective and based on observational studies; therefore, they cannot establish a causal association between hypocalcemia and hospital mortality in patients with ICH. Second, although the E-value analysis suggested that certain confounding factors were unlikely to effect the risk of ICU mortality, the possibility of confounding effects of incomplete adjustment for some ICH risk factors such as hematoma volume, ICH score and oral anticoagulation cannot be excluded. Third, since the cohort participants were ICU patients, our conclusions may not generalize to other populations.



5. Conclusions

In this multicenter cohort, we found that hypocalcemia was associated with an elevated risk of in-hospital and ICU mortalities in critically ill patients with ICH. Further randomized clinical trials and prospective studies are needed to validate our findings.
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Introduction: Non-vitamin K antagonist oral anticoagulants (NOACs) has been the drug of choice for preventing ischemic stroke in patients with atrial fibrillation (AF) since 2014. Many studies based on claim data revealed that NOACs had comparable effect to warfarin in preventing ischemic stroke with fewer hemorrhagic side effects. We analyzed the difference in clinical outcomes according to the drugs in patients with AF based on the clinical data warehouse (CDW).

Methods: We extracted data of patients with AF from our hospital's CDW and obtained clinical information including test results. All claim data of the patients were extracted from National Health Insurance Service, and dataset was constructed by combining it with CDW data. Separately, another dataset was constructed with patients who could obtain sufficient clinical information from the CDW. The patients were divided NOAC and warfarin groups. The occurrence of ischemic stroke, intracranial hemorrhage, gastrointestinal bleeding, and death were confirmed as clinical outcome. The factors influencing the risk of clinical outcomes were analyzed.

Results: The patients who were diagnosed AF between 2009 and 2020 were included in the dataset construction. In the combined dataset, 858 patients were treated with warfarin, 2,343 patients were treated with NOACs. After the diagnosis of AF, the incidence of ischemic stroke during follow-up was 199 (23.2%) in the warfarin group, 209 (8.9%) in the NOAC group. Intracranial hemorrhage occurred in 70 patients (8.2%) among the warfarin group, 61 (2.6%) of the NOAC group. Gastrointestinal bleeding occurred in 69 patients (8.0%) in the warfarin group, 78 patients (3.3%) in the NOAC group. NOAC's hazard ratio (HR) of ischemic stroke was 0.479 (95% CI 0.39–0.589, p < 0.0001), HR of intracranial hemorrhage was 0.453 (95% CI 0.31–0.664, p < 0.0001), and HR of gastrointestinal bleeding was 0.579 (95% CI 0.406–0.824, p = 0.0024). In the dataset constructed using only CDW, the NOAC group also had a lower risk of ischemic stroke and intracranial hemorrhage than warfarin group.

Conclusions: In this CDW based study, NOACs are more effective and safer than warfarin in patients with AF even with long-term follow-up. NOACs should be used to prevent ischemic stroke in patients with AF

KEYWORDS
 atrial fibrillation, NOAC, warfarin, ischemic stroke, intracranial hemorrhage, gastrointestinal bleeding


Introduction

Atrial fibrillation is the most dangerous comorbidity of ischemic stroke as it causes more than five-fold increase in the risk of developing ischemic stroke compared to individuals without atrial fibrillation (1). The prevalence of atrial fibrillation is ~1–1.6% (2), and it increases to ~8.15% in patients at least 80 years of age (3). In Asian countries where the elderly population is growing rapidly, the prevalence is also increasing rapidly (3, 4). Furthermore, atrial fibrillation occurs in ~15–20% of patients with ischemic stroke (5). Approximately 36–40% of patients with ischemic stroke aged ≥80 years have atrial fibrillation (6, 7). Therefore, medical treatment to prevent ischemic stroke in patients with atrial fibrillation is essential to reduce the incidence of ischemic stroke.

In the past, warfarin, a vitamin K antagonist, was the only anticoagulant treatment used to prevent ischemic stroke secondary to atrial fibrillation. However, achieving the target blood concentration of warfarin that provides anticoagulant effects is challenging and may result in hemorrhagic side effects that are more common in Asians (8, 9). Several randomized controlled trials (RCTs) have reported that new non-vitamin K oral anticoagulants (NOACs) have similar efficacy in ischemic stroke prevention and fewer side effects (including bleeding) than warfarin (10–13). As NOACs were first recommended in 2014, the current guidelines suggest that they be used as an anticoagulant in patients with atrial fibrillation instead of warfarin unless contraindications to NOACs exist (14).

Several studies based on claim data comparing the effectiveness and safety of NOACs to those of warfarin have reported similar results as the previous RCTs (15, 16). However, since these studies were conducted not long after NOAC was recommended, the long-term follow-up results were unknown. Claim data studies have the advantage of analyzing several individuals based on big data; however, they cannot accurately reflect patient test results or clinical information such as weight, alcohol intake, and smoking status. As hospital electronic medical records (EMR) contain such data, clinical studies have been conducted using EMR. EMR-based studies are designed similarly to cohort studies and can include long-term follow-up data (17). In addition, although retrospective, the data can be analyzed without selection bias. However, some EMR-based studies are limited to a single institution. In this study, dataset combining our hospital's EMR-based clinical data warehouse (CDW) and claim data including the whole medical record was also constructed in order to compensate for the disadvantages of using data from a single institution. This study aimed to compare and analyze the risk of developing ischemic stroke and hemorrhagic side effects during long-term follow-up in patients with atrial fibrillation treated with warfarin to those of patients treated with NOACs.



Methods


Data source and study population

Data were extracted from the CDW that was established using the medical records of the National Health Insurance Service Ilsan Hospital. All data used in this study were dated between 2009 and 2020. Patients aged ≥20 years who were diagnosed with International Classification of Diseases 10th revision (ICD-10) code 148 (atrial fibrillation) as a principal diagnosis or a first secondary diagnosis who had been treated more than once were included in this study. Patients with rheumatic mitral valve diseases (ICD-10 code I05) and those who underwent heart valve surgery (ICD-10 code Z95.2-4), which is not included in the indications of NOACs, were excluded from the study.

The CDW+C data was constructed by combining patient data extracted from the CDW with whole claim data. To investigate the occurrences of ischemic stroke or hemorrhagic side effects after a diagnosis of atrial fibrillation, patients diagnosed with atrial fibrillation prior to 2009 (when the CDW was established) were excluded. As the medication administration records were available within the claim data, patients whose anticoagulant medication was changed during the follow-up period were excluded from this analysis. The patients with no anticoagulant were excluded. The follow-up period was from the time of diagnosis of atrial fibrillation to December 31, 2020.

The CDW-O data were constructed by selecting patients with sufficient clinical information. Patients with no available data regarding medications and those who were administered anticoagulant medications for <30 days were excluded from the study. The patients who were administered antiplatelet medication only were excluded. Patients diagnosed with concomitant atrial fibrillation and ischemic stroke were excluded from the analysis. Patients who were initially administered warfarin but whose medication changed to NOACs during their treatment period were identified. The follow-up period was from the time of diagnosis of atrial fibrillation to December 31, 2021.

Patients were divided into the warfarin group and the NOAC group based on the administered medication. Common comorbidities of atrial fibrillation and cardiovascular disease, such as hypertension (HTN), diabetes mellitus (DM), dyslipidemia, chronic kidney disease (CKD), peripheral arterial occlusive disease, liver disease, heart failure, and previous myocardial infarctions, were identified prior to the diagnosis of atrial fibrillation using ICD-10 codes of claim data (Supplementary Table 1). Blood test results and blood pressure measurements within 1 year before and after the diagnosis of atrial fibrillation were extracted from the CDW data, and HTN, DM, dyslipidemia, CKD, and liver disease were identified based on these data. HTN was defined as systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg. Blood pressure was checked at the closest time point within 1 year from the diagnosis of atrial fibrillation. An HbA1c of 6.5% or higher was used to diagnose DM. Dyslipidemia was diagnosed as a low-density lipoprotein ≥140 mg/dL. CKD was defined as an estimated glomerular filtration rate (eGFR) <60 mL/min. Liver disease was diagnosed as aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase >120. The CHA2DS2-VASc and HAS-BLED scores were calculated using the patient data (Supplementary Tables 2, 3). This study was conducted in accordance with the Declaration of Helsinki (as revised in 2013) and approved by the Institutional Review Board of the National Health Insurance Service Ilsan Hospital (NHIMC 2021-07-022). The need for written informed consent was waived as patient identification data were removed from the database used.



Study outcomes

Four outcome variables were investigated: ischemic stroke, intracranial hemorrhage, gastrointestinal bleeding (GI bleeding), and death. In the CDW+C data, the occurrence of the outcome variables was identified using the corresponding operational definitions and death was determined (Supplementary Table 1). In the CDW-O data, brain magnetic resonance imaging data indicating an ischemic stroke and intracranial hemorrhage were used additionally to identify patients with outcomes was determined.



Statistical analysis

The analysis period was from the first diagnosis of atrial fibrillation to the occurrence of the outcome variable or the end of the observation period. Continuous data, such as age and blood test results, are presented as mean and standard deviation. Data such as the frequency of comorbidities and the incidence of outcome variables are presented as percentages. We calculated crude incidence as the event numbers by 100 person-years (percentage/years). A chi-square test was conducted to compare and analyze the frequencies of the comorbidities, and a t-test was used to compare continuous variables such as age, CHA2DS2-VASc score, and HAS-BLED score. A time-dependent Cox-regression analysis was performed using observed items collected at 95% confidence intervals (CIs) as independent variables to calculate the hazard ratios (HRs) of the occurrence of outcome variables in the warfarin and NOAC groups. Cox proportional regression analysis was performed by including the same independent variables for all outcome variables as a multivariate model. First, it was analyzed by including all comorbidities along with age and sex. Second, when the CHADS2VASC2 score was included, the components of heart failure, HTN, DM, stroke, thromboembolism, and vascular disease were excluded from independent variables. Third, when the HASBLED score was included, the components; HTN, Renal disease, Liver disease, stroke, and prior bleeding were excluded from independent variables. Schoenfeld residuals to check the proportional hazards assumption. For the outcome variable ICH that did not satisfy the proportional hazards assumption, time dependent covariate was added and analyzed. The incidence of each outcome was estimated by use of the Kaplan–Meier estimator. Comparisons between warfarin and NOAC groups were made using a log-rank test. Statistical significance was set at p < 0.05 and was two-sided. All statistical analyses were performed using SAS 9.4 (SAS Institute Inc., San Francisco, CA, USA) and R software (version 4.2.0 R Core Team, R Foundation for Statistical Computing, Vienna, Austria).




Results

A total of 7,774 patients with atrial fibrillation treated more than once from 2009 to 2020 were identified in the CDW. Ninety-eight (1.26%) patients with valvular disease were excluded from the study. Of the 7,676 patients whose data were extracted from the CDW, 1,159 (15.10%) who were treated for atrial fibrillation at least once before 2009 were excluded. Patients whose medication was changed during the follow-up period were also excluded. Patients who did not receive anticoagulants were excluded. Of the 3,201 (41.7%) patients included in the analysis of CDW+C data, 858 (26.8%) were administered warfarin and 2,343 (73.2%) were administered NOACs (Figure 1). The proportion of patients ≥75 years old was 1,222 (52.2%) in the NOAC group, which was higher than that of the warfarin group (p < 0.0001). The rates of previous ischemic stroke, heart failure, and CKD were significantly higher in the warfarin group. The incidence of ischemic stroke, intracranial hemorrhage, GI bleeding, and death were all significantly lower in the NOAC group than in the warfarin group (p < 0.0001) (Table 1). The risks of ischemic stroke (HR: 0.479; 95% CI: 0.39–0.589, p < 0.0001), intracranial hemorrhage (HR: 0.453; 95% CI: 0.31–0.664, p < 0.0001), GI bleeding (HR: 0.579; 95% CI: 0.406–0.824), and all-cause death (HR: 0.502; 95% CI: 0.435–0.58) were lower in the NOAC group than in the warfarin group (Table 2).


[image: Figure 1]
FIGURE 1
 The process of extracting patients with atrial fibrillation from the clinical data warehouse (CDW), combining them with claim data, and selecting study subjects (CDW+C data).



TABLE 1 Clinical characteristics and outcomes of patient groups divided according to medications.
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TABLE 2 Hazards for ischemic stroke, intracranial hemorrhage, GI bleeding and all cause death (CDW+C data).
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Of the 7,676 patients, 2,542 (33.12%) had sufficient clinical data and were included in the analysis of CDW-O data. The warfarin group included 788 (31.00%) patients and the NOAC group included 1,754 (69.00%) patients (Figure 2). As in the CDW+C data, the mean age of the warfarin group was significantly lower than that of the NOAC group (p < 0.0001). A total of 153 (19.4%) of patients in the warfarin group were <65 years of age, which was significantly lower than that of the NOAC group (15.7%) (p < 0.0001). As in the CDW+C data, the rates of previous ischemic stroke, heart failure, and CKD, and additionally HTN and DM were significantly higher in the warfarin group than in the NOAC group. The mean CHA2DS2-VASc (p = 0.001) and HAS-BLED (p < 0.0001) scores were significantly higher in the warfarin group than in the NOAC group. In the warfarin group, the mean international normalized ratio (INR) was 1.67, the mean eGFR was 65.6 mL/min, and the mean HbA1c was 6.59%. The INR of the warfarin group were statistically greater than those in the NOAC group due to drug effect (p < 0.0001). Regarding the higher comorbidities of DM and CKD, HbA1c in the warfarin group was higher and eGFR in the warfarin group was lower than those in the NOAC group significantly (p = 0.001, p < 0.0001). The median follow-up period was 2.3 years (interquartile range 0.8-4.9 years) in warfarin group and 2.4 years (interquartile range 1.2-4.2 years) in the NOAC group. The outcome events were identified at a lower rate than the CDW+C data, except for GI bleeding. All outcome events occurred significantly lower in the NOAC group than in the warfarin group, as in the CDW+C data (Table 1). The incidence of ischemic stroke, intracranial hemorrhage and GI bleeding was 2.75, 1.01, and 2.22/100 person-years in the warfarin group and 1.14, 0.36, and 1.57/100 person-years in the NOAC group, respectively. The mortality was 5.42/100 person-years in the warfarin group and 2.47/100 person-years in the NOAC group. The NOAC group had lower risks of ischemic stroke (HR: 0.399; 95% CI: 0.282–0.565), intracranial hemorrhage (HR: 0.430; 95% CI: 0.236–0.785), and death (HR: 0.671; 95% CI: 0.515–0.873) than the warfarin group (Table 3). The Kaplan-Meier survival curve demonstrated a significant higher cumulative incidence of stroke and death in the warfarin group (Figure 3).
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FIGURE 2
 The process of extracting patients with atrial fibrillation from the clinical data warehouse (CDW) and selecting subjects for the analysis (CDW-O data).



TABLE 3 Hazards for ischemic stroke intracranial hemorrhage, GI bleeding and cardiovascular death (CDW-O data).
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[image: Figure 3]
FIGURE 3
 The incidence of each outcome was estimated using the Kaplan–Meier estimator. Comparisons between groups were made using a log-rank test (A) Ischemic stroke, (B) Intracranial hemorrhage, (C) Gastrointestinal bleeding, and (D) Death.




Discussion

In this study, two datasets (CDW+C and CDW-O) were constructed by using CDW and claim data to identify clinical outcomes. The results of each dataset in this study were similar. Patients administered NOACs had a lower risk of ischemic stroke, intracranial hemorrhage, and death than those administered warfarin. The risk of GI bleeding was not statistically lower in the NOAC group than in the warfarin group in the CDW-O data but was statistically lower in the CDW+C data. CKD was shown to increase the risk of intracranial hemorrhage, GI bleeding, and death in the CDW-O data. CKD is a major risk factor for cardiovascular disease and death and increases the bleeding risk (18). However, patients with CKD may have been identified more accurately in the CDW-O data than in the CDW+C data, which may have contributed to these results. The HAS-BLED score was associated with the risk of developing GI bleeding in both datasets.

The findings of this study are consistent with those of previous studies. The first study comparing and analyzing ischemic stroke, intracranial hemorrhage, and all-cause death between warfarin and NOACs based on claim data in Korea found that patients administered NOACs had a similar risk of developing ischemic stroke as patients administered warfarin, and the cause of intracranial hemorrhage and all-cause death was lower in the NOAC group (15). A follow-up study reported that patients administered NOACs have a lower risk of ischemic stroke and GI bleeding than those who were administered warfarin (19).

In this study, more clinical outcomes were identified in the CDW+C data than in the CDW-O data. Ischemic stroke occurred in 8.6% of patients in the warfarin group and 3.4% of patients in the NOAC group in the CDW-O data and in 23.2% of patients in the warfarin group and 8.9% of patients in the NOAC group in the CDW+C data. Although these differences are significant, the ratio of ischemic stroke in the two groups is similar in each dataset. Intracranial hemorrhage occurred in 3.2% of patients in the warfarin group and 1.1% of patients in the NOAC group in the CDW-O data and in 8.2% of patients in the warfarin group and 2.6% of patients in the NOAC group in the CDW+C data, which was a similar ratio between the two groups in each dataset. GI bleeding occurred in 7.1% of patients in the warfarin group and 5.1% of patients in the NOAC group in the CDW-O analysis and in 8.0% of patients in the warfarin group and 3.3% of patients in the NOAC group in the CDW+C data. These values were similar between the two datasets.

In previous claim data studies, the annual incidence of ischemic stroke was ~1.5% in both the warfarin and NOAC groups during a 2-year follow-up period and 2.96% in the warfarin group and 2.07–2.36% in the NOAC group in a subsequent follow-up study (15, 19). The median follow-up period of in these past studies were 0.8 years, but we followed a longer period, median 2.3–2.4 years, in this study. The incidence of ischemic stroke in our study was lower than that of previous study, and the difference was confirmed to be greater in the warfarin group. The CDW-O data does not reflect the medical records of patients treated at other hospitals. However, since the occurrence of stroke was determined based on magnetic resonance imaging results, the definition of stroke in this analysis may be more accurate than the occurrence of stroke based on the operational definition. The incidence of ischemic stroke in previous studies may have been overestimated if based on the operational definition of the claim data, whereas the incidence in this study may have been underestimated as data from other hospitals was not available in the CDW-O data.

In the CDW+C data, the follow-up period of the NOAC group was a maximum of 4 years and 6 months, and ischemic stroke occurred in 8.9% of patients, which was consistent with the incidence of ischemic stroke reported in a previous study (19). This may be because the studies used the same operational definition for ischemic stroke. The incidence of ischemic stroke is higher in the warfarin group in this study as the follow-up period of the warfarin group is longer than that of the NOAC group. The warfarin group had a maximum follow-up period of 12 years, and ischemic stroke occurred in 23.2% of patients. As the annual incidence rate of ischemic stroke in the warfarin group has been reported as 2.61%, the incidence rate in this study should not be considered to be high. In addition, after chronic warfarin use, the INR deviates from the treatment target range, which may increase the incidence of ischemic stroke. Among our study subjects, the number of patients whose INR was adjusted within the target range was 141 (23.7%), and 182 (30.5%) including the subtherapeutic range (INR > 1.7). Although the risk of ischemic stroke was higher in patients whose INR was not within the target range, statistical significance could not be confirmed due to the small number of patients. As the incidences of GI bleeding were based on the same operational definitions in the CDW-O and CDW+C data in this study, the differences in the results of the analyses may be because the CDW+C data included the treatment history of the patients treated at other hospitals and a longer follow-up period.

In this study, the warfarin group had more comorbidities than the NOAC group. In the CDW-O data, HTN and DM were identified at a higher rate in the warfarin group than in the NOAC group, but in the CDW+C data, there was no difference in the rate of HTN and DM between the two groups. Since many patients were treated in primary care institutions for HTN and DM, discrepancies may have occurred in the CDW+O data, which is based on the EMR of referral hospital. In the CDW+C data, which combines the treatment history of all medical institutions, there was no difference in the rate of HTN and DM as comorbidities, and it is thought to be close to the actual clinical data. Old ischemic stroke was confirmed about 1.7 times more in the warfarin group than the NOAC group in both CDW-O and CDW+C data. However, old ischemic stroke was not a significant predictor of ischemic stroke after diagnosis of atrial fibrillation. Among the comorbidities, dyslipidemia and CKD showed the largest difference between the CDW+C and CDW-O datasets. Since dyslipidemia drugs are frequently prescribed in primary care clinics other than in our hospital, from where CDW data were extracted, dyslipidemia can be accurately identified at a higher rate in CDW+C data. CKD was more frequent in the CDW-O data than in the CDW+C data. The rate of CKD in the CDW-O data may be more accurate as it was based on the results of blood tests. Patients with stage 3 CKD may have been difficult to identify using claim data. A claim data study conducted in other Asian countries reported that CKD occurred in 20–29% of patients, which is similar to the results of the CDW-O data in this study (20).

This study has several limitations. First, although the patients' clinical information was obtained from the CDW, several patients had missing information. The patients' test results were used to account for the missing comorbidity data. Second, the NOAC group could not be analyzed further based on the four different medications due to a small patient population. Larger multi-center studies should be conducted. Last, a selection bias cannot be ruled out in this study as the patients were from a single institution in one country, which may have resulted in a higher incidence of clinical outcomes. Future studies with similar follow-up periods should be conducted using claim data.



Conclusion

In conclusion, this study combined data from the CDW with claim data, resulting in more accurate clinical findings. The findings indicated that NOACs are more effective than warfarin for the prevention of ischemic stroke and reduction of hemorrhagic side effects in patients with atrial fibrillation at long-term follow-up. Patients with atrial fibrillation should be treated with NOACs to reduce the incidence of ischemic stroke.
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Background and purpose: Cerebral small-vessel disease (CSVD) is prevalent worldwide and one of the major causes of stroke and dementia. For patients with CSVD at high altitude, a special environmental status, limited information is known about their clinical phenotype and specific neuroimaging change. We investigated the clinical and neuroimaging features of patients residing at high altitude by comparing with those in the plain, trying to explore the impact of high altitude environment on CSVD.

Methods: Two cohorts of CSVD patients from the Tibet Autonomous Region and Beijing were recruited retrospectively. In addition to the collection of clinical diagnoses, demographic information and traditional vascular risk factors, the presence, location, and severity of lacunes and white matter hyperintensities were assessed by manual counting and using age-related white matter changes (ARWMC) rating scale. Differences between the two groups and influence of long-term residing in the plateau were analyzed.

Results: A total of 169 patients in Tibet (high altitude) and 310 patients in Beijing (low altitude) were enrolled. Fewer patients in high altitude group were found with acute cerebrovascular events and concomitant traditional vascular risk factors. The median (quartiles) ARWMC score was 10 (4, 15) in high altitude group and 6 (3, 12) in low altitude group. Less lacunes were detected in high altitude group [0 (0, 4)] than in low altitude group [2 (0, 5)]. In both groups, most lesions located in the subcortical (especially frontal) and basal ganglia regions. Logistic regressions showed that age, hypertension, family history of stroke, and plateau resident were independently associated with severe white matter hyperintensities, while plateau resident was negatively correlated with lacunes.

Conclusion: Patients of CSVD residing at high altitude showed more severe WMH but less acute cerebrovascular events and lacunes in neuroimaging, comparing to patients residing at low altitude. Our findings suggest potential biphasic effect of high altitude on the occurrence and progression of CSVD.

KEYWORDS
cerebral small-vessel disease, white matter hyperintensity, plateau, plain, stroke, lacune of presumed vascular origin


Introduction

Cerebral small-vessel disease (CSVD) is one of the most prevalent syndromes worldwide which was thought contributing to ~25% of strokes and 45% of dementia cases (1). Various pathophysiological changes such as hypoxic-ischemic injury (2, 3), breakdown of the blood–brain barrier (4), loss of autoregulation (2), activation of the innate immune system (3), and protein elimination failure (5) have been found to be involved in the development of disease, which lead to landmark neuroimaging changes such as white matter hyperintensity (WMH), lacune of presumed vascular origin and microbleed. Age and hypertension are the most recognized risk factors of CSVD. Other traditional vascular risk factors, such as cigarette smoking, diabetes mellitus, dyslipidemia, obstructive sleep apnea, and chronic kidney disease, have been fully studied although the conclusions were controversial (1). Environmental factors such as the hypobaric hypoxia at high altitude have been reported to have an effect on CSVD (6, 7), but it has been rarely investigated.

It is estimated that over 500 million humans (6.58% of the total population) live above 1,500 m (8). As altitude increases, the amount of gas molecules in the air decreases, resulting in a drop in barometric pressure and partial pressure of oxygen. People who ascend to high altitude and exposed to hypobaric hypoxia will suffer a significant decrease of arterial and tissue partial pressure of oxygen in the brain (9). A series of physiological responses will be triggered. In acute phase, cerebral blood flow increases firstly and an increase in vascular permeability may occur, due to hypoxia-induced endothelial dysfunction, which could lead to headache and even cerebral edema in unacclimatised individuals (10, 11). During chronic hypoxia, cerebral blood flow returns toward the baseline level gradually, and oxygen delivery to brain will be compensated by other adaptation including an increase in hemoglobin concentration, hematocrit, red blood cell count and vascular density, resulting in an increase in tissue partial pressure of oxygen of the brain at an equal atmospheric partial pressure of oxygen, as suggested by animal experiments (11). The changed hematological and hemodynamic state after chronic exposure to hypoxia has been considered to play a role in the occurrence of CSVD, especially on WMH and lacunar infarction, which are closely related to endothelial dysfunction and oxygen supply (3, 4). However, the limited research data mainly focus on the association between high altitude exposure and the occurrence, subtype or outcome of stroke (12–16), while the other changes due to small vessel impairment are rarely involved (17). To explore the impact of chronic high altitude exposure on CSVD, we conduct the study comparing clinical and neuroimaging difference of CSVD between patients from the plain and the plateau.



Methods


Study design and population

Two cohorts of CSVD patients were retrospectively recruited from Peking University First Hospital (altitude between 0–50 m) and the People's Hospital of Tibet Autonomous Region (altitude between 3,000–5,000 m) in China. We searched the medical records in the database of the Inpatient Department of Neurology and selected eligible patients as our study population. Patients in Beijing were recruited between 2013–2019 from the neurology ward of Peking University First Hospital, while patients in Tibet were recruited between 2017–2019 from the neurology ward of the People's Hospital of Tibet Autonomous Region. All studies were performed with approval from the Ethics Committee of Peking University (IRB00001052-17018) and the Tibet Autonomous Region (ME-TBHP-19-37). Informed consents were obtained from all patients.



Inclusion criteria

According to the International Classification of Diseases 10th Revision, patients diagnosed with cerebrovascular disease (code I61–I69) were included if the following criteria were met.

First, the patients have received head magnetic resonance imaging (MRI) examination and the images of MRI showed more than 1 characteristic neuroimaging changes of CSVD, including recent small subcortical infarcts, lacunes of presumed vascular origin, WMH of presumed vascular origin, enlarged perivascular space, and cerebral microbleeds, following the definition of STandards for Reporting Vascular changes on neuroimaging (STRIVE) (18).

Second, the patients have not been found with noteworthy stenosis of large vessels (defined as a stenosis more than 50%) or vascular malformation after adequate vascular assessments (including carotid ultrasound or computed tomography angiography for the extracranial arteries and transcranial Doppler sonography, magnetic resonance angiography, or computed tomography angiography for the intracranial arteries).

Third, the patients have resided locally for more than 10 years.



Exclusion criteria

Patients who lacked information of head MRI or vascular assessments, or complicated by other diseases including atrial fibrillation, hemopathy, inflammatory demyelinating disease, tumor, or leukodystrophy which can cause similar neuroimaging changes other than CSVD, were excluded. Besides, patients who resided in Beijing for more than 10 years but had a history of tourism or residence in plateau were also excluded.



Clinical data collection

Clinical diagnosis, demographic information, and common vascular risk factors, including hypertension, diabetes, dyslipidemia, coronary heart disease, and smoking, were collected from medical records. The clinical diagnoses were categorized into four clinical conditions when summarized: transient ischemic attack (TIA) or ischemic stroke, cerebral hemorrhage, vascular cognitive impairment or vascular parkinsonism, and CSVD with non-specific symptoms (such as dizziness, headache, numbness, depression, insomnia, etc.). Serum homocysteine concentrations were documented and were defined as hyperhomocysteinemia when more than 15 μmol/L. A family history of stroke was identified as positive when either of the patient's parents had suffered from hemorrhage or ischemic stroke.



Neuroimaging evaluation

All patients included have received a head MRI scan. Basic scanning sequences included T1-weighted imaging, T2-weighted fluid-attenuated inversion recovery imaging, and diffusion weighted imaging. It is noteworthy that about half of the patients in Beijing lack T2-weighted images because of setting of the scan protocol. Besides, gradient-recalled echo or susceptibility-weighted imaging was performed in most patients in Beijing, but only in a few patients in Tibet. MRI data in Beijing were acquired on two scanners (SIGNA EXCITE 1.5T; General Electric Medical Systems, Milwaukee, WI, USA; Achieva 3.0T; Philips Medical Systems, Netherlands) with a slice thickness of 6.0 mm. MRI data in Tibet were acquired on a 3.0T scanner (Magnetom Verio; Siemens Healthcare, Erlangen, Germany) with a slice thickness of 6.0mm.

Two independent raters (JZ, WF), blinded to the patients' clinical information or outcomes, evaluated the MRI data. Due to the difference in the scanning sequence of the head MR images provided by the two hospitals, only lacunes and WMH were evaluated. Lacunes were detected according to the definition in the consensus of STRIVE (18), with the different anatomical regions documented and classified into frontal, parieto-occipital, temporal, basal ganglia, brainstem, and cerebellum. The age-related white matter changes (ARWMC) rating scale (19) was used to evaluate the presence and severity of WMH, in which the white matter lesions were scored 0, 1, 2, and 3 in different brain regions, including the frontal, parieto-occipital, temporal, infratentorial/cerebellum, and basal ganglia regions, and a sum of all regional scores called ARWMC Score (ranges from 0 to 30) was adopted to show the load of WMH in the whole brain. Evaluations were performed in the picture archiving and communication system of each hospital. Unified training was initially conducted via video conference by a senior neurologist (JLS) with more than 5 years' experience in neuroimaging. Consensus was achieved after training and before formal evaluation. The intraclass correlation coefficient of intra-rater reliability was 0.95 [95% confidence interval (CI), 0.92–0.98] and the inter-rater reliability was 0.90 (95% CI, 0.86–0.92).



Statistical analysis

Statistical analyses were performed using statistical software (Statistical Package for Social Sciences, version 24.0; IBM SPSS Statistics, Armonk, NY, USA). Data are presented as frequency, mean ± standard deviation, or median (quartiles), depending on the nature of the data. The χ2 test and the Fisher's exact test were used to test for differences in the listed risk factors and the presence and anatomic distribution of lacunes or WMH between the two groups. The student's t-test was used to compare age, while the Mann–Whitney U-test was used to test the disparity of the ARWMC score and the lacune count, between the two groups. Binary logistic regression was performed to determine the impact of various risk factors on severe WMH and occurrence of lacunes (including age, sex, hypertension, diabetes, coronary heart disease, cigarette smoking, hyperhomocysteinemia, dyslipidemia, family history of stroke, and residing in the plateau) using the forward stepwise regression method based on the maximum likelihood estimation to screen the independent variables. For all analyses, p < 0.05 was considered statistically significant.




Results


Clinical and neuroimaging information of study population

A total of 2,978 patients in Beijing and 478 patients in Tibet who were diagnosed with cerebrovascular disease were included in our screening. Finally, 310 patients (10.4%) in Beijing (low altitude group) and 169 patients (35.4%) in Tibet (high altitude group) were enrolled in the two cohorts (Figures 1, 2). The average age was 63 ± 12 years old, and 300 (62.6%) were male. The proportion of traditional vascular risk factors are shown in Table 1. A total of 457 (95.4%) patients were found with WMH, and 303 (63.3%) had been detected to have lacunes. The median ARWMC score was 7 (interquartile range, 4–13), while the median count of lacunes was 2 (interquartile range, 0–4).


[image: Figure 1]
FIGURE 1
 Flowchart of patient recruitment in Beijing. CSVD, cerebral small-vessel disease.



[image: Figure 2]
FIGURE 2
 Flowchart of patient recruitment in Tibet. CSVD, cerebral small-vessel disease.



TABLE 1 Clinical and neuroimaging information of study population.

[image: Table 1]

The anatomical distributions of different neuroimaging change are shown in Table 2. WMH tended to appear in subcortical areas, especially the frontal and parieto-occipital regions, and was found in the basal ganglia in more than half of the patients (Figure 3). Lacunes were most often found in the basal ganglia, followed by the frontal lobe (Figure 4).


TABLE 2 Distribution of white matter hyperintensity and lacune in study population.
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[image: Figure 3]
FIGURE 3
 Distribution of white matter hyperintensity in different anatomical regions.



[image: Figure 4]
FIGURE 4
 Distribution of lacune in different anatomical regions.




Comparison of high and low altitude groups

The clinical and neuroimaging characters of two groups are also shown in Table 1. More than half of the patients in low altitude group were diagnosed with TIA or ischemic stroke (65.2%), followed by CSVD found with non-specific symptoms (21.9%), while 143 of the 169 patients (84.6%) in high altitude group were CSVD found with non-specific symptoms and only 10.1% of the patients had TIA or stroke. The low altitude group had a higher proportion of male patients (67.4 vs. 53.8%, p = 0.003), and also a higher proportion of traditional vascular risk factors, such as hypertension (83.2 vs. 52.1%, p < 0.001), diabetes (30 vs. 12.4%, p < 0.001), cigarette (44.2 vs. 24.9%, p < 0.001), etc. In neuroimaging, patients in high altitude group had more severe WMH than patients in low altitude group [ARWMC score 10 (4, 15) vs. 6 (3, 12); p < 0.001], although nearly all patients in both groups were found to have WMH (97.6 vs. 94.2%, p = 0.086). On the contrary, the detection of lacune in patients of high altitude group was fewer than in patients of low altitude groups (46.2 vs. 72.6%), with significant difference (p < 0.001). Detailed ordinal distributions of ARWMC score and lacune count in the two groups are shown in Figures 5, 6, showing the tendency of more severe WMH and less lacunes in high altitude group.


[image: Figure 5]
FIGURE 5
 Ordinal distribution of age-related white matter change (ARWMC) Scores for cerebral small-vessel disease patients. The severity of white matter hyperintensity was evaluated using ARWMC rating scale. The distribution of scores in each group is shown by accumulating bar charts. There is a significant shift to left in the plateau group, suggest patients in the plateau group tend to have more severe white matter hyperintensity.



[image: Figure 6]
FIGURE 6
 Ordinal distribution of Lacune count for cerebral small-vessel disease patients. The distribution of lacune count in each group is shown by accumulating bar charts. There is a significant shift to right in the plateau group, suggest patients in the plateau group tend to have less lacunes compared with patients in the plain group.


For the anatomical distribution, patients in high altitude group shared a similar mode with patients in low altitude group in distribution of WMH and lacune. Subcortical area and basal ganglia were the main susceptible areas of WMH and lacune. Comparing with patients in low altitude group, patients in high altitude group were more likely to have WMH in basal ganglia (73.4 vs. 43.9%, p < 0.001) and lacune in cerebellum (18.9 vs. 3.2%, p < 0.001; Table 2).



Impact of multiple risk factors on severe WMH and lacune

According to the median ARWMC score of all patients, an ARWMC score >7 was identified as severe WMH. Logistic regression analysis showed that age, hypertension, family history of stroke, and residing in the plateau were independently associated with severe WMH (Table 3). Patients residing in the plateau were four times more likely to suffer from severe WMH compared with patients residing in the plain [odds ratio (OR), 4.083; 95% CI, 2.496–6.680; p < 0.001]. Meanwhile, logistic regression analysis using the occurrence of lacune as a dependent variable demonstrated that age, hypertension, cigarette smoking, and hyperhomocysteinemia were independent-related factors, while residing in the plateau was negatively correlated with occurrence of lacune (OR, 0.430; 95% CI, 0.276–0.670; p < 0.001; Table 4).


TABLE 3 Logistic regression analysis for risk factors associated with severe WMH (ARWMC Score >7).
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TABLE 4 Logistic regression analysis for risk factors associated with lacune.
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Discussion

China encompasses a vast area of high altitude with four plateaus, among which the Qinghai –Tibet plateau is the highest plateau of earth and sometimes called “the roof of the world.” Approximately 80 million people live above 2,500 m in China, among whom nearly 3.7 million living around 4,000 m in Tibet. Previous studies have reported increased cerebral blood flow and blood–brain barrier damage in individuals following ascent to high altitudes, which may result in vasogenic edema and microhemorrhages (20), and indicate a higher risk of cerebrovascular disease. As an important part of cerebrovascular disease, CSVD can not only cause stroke, but also lead to many other chronic symptoms such as cognitive decline and gait disorder, increasing the risk of disability and hospitalization. Viewing from the constitution of cerebrovascular disease in our study, the ratio of CSVD seem to be much higher in high altitude area (35.4 vs. 10.4%) than low altitude area. Many factors could be associated with this disparity, such as the selective admission of inpatients, insufficient in-hospital assessment, restriction of CSVD in inclusion criteria of the study. However, we noted that in the screening, 478 of 2,978 (16.1%) patients with cerebrovascular disease in the low altitude group find no neuroimaging change of CSVD in MRI, while there was only one of 478 patients in the high-altitude group. It indicates the tendency that CSVD might be more prevalent in high altitude area, although no conclusion can be drawn due to the selection bias and further epidemiological investigation is needed. Anyway, the relatively high proportion of CSVD reflects the actual status of inpatients in high altitude area, and more attentions are deserved for this population.

In this study, we chose the inpatients as study population, in which we could obtain more sufficient clinical and neuroimaging information compared with the outpatient and community residents. Strict criteria were used to select the patients of CSVD. We excluded other diseases that may cause similar neuroimaging changes, especially the large vessel stenosis and atrial fibrillation, to reduce the possible confounding in the mechanism or evaluation and get two cohorts of pure CSVD patients relatively. Local residence is necessary to keep the basic difference between the two groups. Since the mobility of patients in Beijing is much higher than that in Tibet, we set the long-term limit of 10 years that was easy for patients to report and excluded the one who had history of tourism or residence in plateau when screening patients for low altitude groups, to ensure the patients enrolled in each group residing at same altitude all the year round.

There are significant differences in the proportions of traditional vascular risk factors between the two groups, especially hypertension, which has been confirmed as the most important risk factor for CSVD other than age (1). Fewer patients were found to have traditional vascular risk factors in high altitude group. Because of the study design, it is arbitrary to conclude that people residing at high altitude have a lower prevalence of traditional risk factors than those residing at low altitude. On the contrary, a systematic review have reported a 2% increase in the prevalence of hypertension in Tibetans with every 100 m increase in altitude (21). Two hypotheses we considered may explain the difference. First, other non-traditional vascular risk factors were introduced, such as the hypobaric hypoxia, low temperature or unique dietary habit at high altitude and ambient particulate matter pollution at low altitude. A part of patients in high altitude group may be affected only by these non-traditional vascular risk factors, which reduced the impact of traditional vascular risk factors on CSVD competitively, resulting in a lower proportion than those in low altitude group. Second, selective bias may exist. It is possible that patient of CSVD who had hypertension or other traditional risk factors in high altitude area were more prone to severe stenosis of large vessels than those in low altitude area, whose data were not collected for our analysis. If it happened, it would lead to a reduction in proportion of traditional vascular risk factors in the final high altitude group. Further research and analysis are needed.

More severe WMH and less lacunes were found in high altitude group. Further logistic regression analysis showed that patients of CSVD residing in plateau had about three times risk increase for suffering from severe WMH and more than 50% risk decrease for lacune after adjusting for potential confounding factors such as age, hypertension, cigarette, compared with those residing in plain. Chronic hypoxia at high altitude seems to have affected CSVD in opposite directions. For one thing, hypoxia may cause and aggravate white matter damage, as suggested in previous research about obstructive sleep apnea (22) and chronic obstructive pulmonary disease (23), which could also keep the patients in a state of hypoxia for a long time. In these conditions, sympathetic activation, altered cerebral blood flow and velocity, and endothelial dysfunction were reported contributing to small-vessel damage and formation of WMH (22–25). However, there was no comparable study about chronic hypoxia patients residing at high altitude before us.

On the other hand, chronic hypoxia seems to be a protective factor of lacune. As a neuroimaging marker of CSVD, lacune marks the healed stage of a small deep brain necrosis (18). The cause of most lacunes is presumed to be small subcortical infarcts or so-called lacunar infarction, although some might be the result of small deep hemorrhages. Fewer patients with lacunes were found in high altitude group in contrast to the more severe WMH. It means that patients of CSVD residing in Tibet might suffer from less lacunar infarctions, or milder even if it happened, which halted the formation of lacune, and indicate a potential protective effect on lacune or lacunar infarction from chronic hypoxia. Selective bias may have a great impact. Most of the patients included in low altitude group had an acute cerebrovascular event, while the most in high altitude group showed only non-specific symptoms. As this is a comparative study based on patients in a single hospital, there is a possibility that some patients with acute ischemic events in Tibet and some patients with only non-specific symptoms in Beijing were not included in the study if they were not admitted to the hospitals we chose, resulting a reduction in the ratio of lacune and stroke in patients at high altitude. However, similar finding was reported in study on subtypes of ischemic stroke at high altitude, with a lower proportion of small-vessel occlusion in patients from Tibet than in those from the plain (3.0 vs. 23.7%; p < 0.001) (13). A probable explanation for this phenomenon is the hypoxic acclimation. When humans are continuously exposed to hypoxia, compensatory mechanisms will developed to maintain the oxygen supply, including erythrocytosis, angiogenesis, capillary remodeling and improved ventilatory response (11, 26), which may enhance the brain's resistance to hypoxic-ischemic injury. In studies about stroke and chronic high altitude exposure, Ortiz-Prado E. and colleagues found that prolonged residing at high altitude will reduce the risk of developing stroke and is associated with lower stroke-related mortality (12, 26). This protective effect is stronger if the altitudes range from 2,000 to 3,500 m while residing above 3,500 m may be associated with an increased risk of developing stroke. It is consistent with the high stroke incidence reported in the epidemiological data of Tibet (13), as most of its cities or towns are located above 3,500 m. However, in this study, we found that this protection seems to be effective for lacunar infarction still, even when the patients reside at a very high altitude (Tibet). Angiogenesis or capillary remodeling in the brain may be the key reasons. Because when a small vessel approaches to occlusion, the newborn or remodeling capillary around it can provide a good compensate for its supply area, but it may be invalid when large vessels are occluded due to blood stasis or thrombogenesis caused by the significantly high hematocrit and polycythemia at a very high attitude. More studies about the prevalence of CSVD at different elevations may be helpful.

The anatomical distribution of neuroimaging makers of CSVD is also an important consideration. In both groups, WMHs were mainly distributed in the subcortical regions dominated with frontal white matter, followed by the basal ganglia region, while the lacunes were mainly distributed in the basal ganglia, followed by the frontal cortex and subcortical area, which was more consistent with arteriolosclerosis type of CSVD other than cerebral amyloid angiopathy (27) or cerebral autosomal dominant arteriopathy (28, 29). Patients of CSVD in high altitude group had a higher proportion of WMH in basal ganglia than those in low altitude group, reflecting a more extensive white matter destruction. The relatively sparse distribution of small vessels and the high tissue oxygen demand are proposed to contribute to the distribution pattern of CSVD lesions (3). In patients residing in the plateau, the additional chronic hypoxic conditions make this distribution pattern more prominent, especially WMH in the basal ganglia, which suggests a more severe small vessel involvement (30). Besides, patients residing in plateau were detected to have more lacunes in cerebellum but fewer in temporal region. Poor hypoxic acclimation in cerebrum and angiogenesis around bilateral posterior cerebral arteries might explain this discovery barely, as found in moyamoya disease or syndrome (31). What is more, genetic or ethnic disparities may also make a difference. In the previous study, we found a certain difference in the spatial distribution of lesions between patients of CSVD in China and Germany (32). Yakushi and colleagues also reported a different anatomical distribution of cerebral microbleeds between Eastern and Western populations (33). Further research is needed to verify the correlation and explore detailed mechanism.



Limitations

Limitations exist in this study. First, as it was a hospital-based comparative study with a limited sample size, our findings may not be generalizable to the whole population that resides in the plateau or the plain. Second, the neuroimaging evaluations of each group were completed separately by two independent raters because of image transmission and privacy protection restrictions, which might have an impact on the reliability of neuroimaging evaluation. Nevertheless, unified training and reliability analysis were performed before the formal evaluation. Third, because of the lack of gradient-recalled echo or susceptibility-weighted sequence imaging in the plateau group, we were unable to assess the impact of high altitude environment on cerebral microbleeds, which is another key neuroimaging marker of CSVD.



Conclusions

In this comparative study of CSVD patients at different altitudes, we have found that patients residing at high altitude have suffered from less acute cerebrovascular events, owned a lower proportion of traditional vascular risk factors and shown more severe WMH but less lacunes in neuroimaging, comparing to patients residing at low altitude. Hypobaric hypoxia at high altitude seems to have multiple effects on the occurrence and progression of CSVD, which represent as an aggravating factor in white matter impairment but a potential protective factor in lacunar infarction. Further studies are required to understand the prevalence of CSVD at different elevations and confirm the effect of chronic high altitude exposure on the incidence and outcome of CSVD.
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An improved understanding of the neuroplastic potential of the brain has allowed advancements in neuromodulatory treatments for acute stroke patients. However, there remains a poor understanding of individual differences in treatment-induced recovery. Individualized information on connectivity disturbances may help predict differences in treatment response and recovery phenotypes. We studied the medical data of 22 ischemic stroke patients who received MRI scans and started repetitive transcranial magnetic stimulation (rTMS) treatment on the same day. The functional and motor outcomes were assessed at admission day, 1 day after treatment, 30 days after treatment, and 90 days after treatment using four validated standardized stroke outcome scales. Each patient underwent detailed baseline connectivity analyses to identify structural and functional connectivity disturbances. An unsupervised machine learning (ML) agglomerative hierarchical clustering method was utilized to group patients according to outcomes at four-time points to identify individual phenotypes in recovery trajectory. Differences in connectivity features were examined between individual clusters. Patients were a median age of 64, 50% female, and had a median hospital length of stay of 9.5 days. A significant improvement between all time points was demonstrated post treatment in three of four validated stroke scales utilized. ML-based analyses identified distinct clusters representing unique patient trajectories for each scale. Quantitative differences were found to exist in structural and functional connectivity analyses of the motor network and subcortical structures between individual clusters which could explain these unique trajectories on the Barthel Index (BI) scale but not on other stroke scales. This study demonstrates for the first time the feasibility of using individualized connectivity analyses in differentiating unique phenotypes in rTMS treatment responses and recovery. This personalized connectomic approach may be utilized in the future to better understand patient recovery trajectories with neuromodulatory treatment.
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1. Introduction

Stroke has remained a leading cause of death worldwide which has increased in both incidence and prevalence over recent decades (1, 2). Of the patients who survive, few make a complete recovery and most patients are left with significant disability (3). Despite this, many patients remain highly open to rigorous recovery treatments and training services to improve the quality of life and integration back into society (4, 5), and as such, neurological rehabilitation treatments to facilitate functional recovery after stroke have remained a key priority in stroke research (1). In particular, an improved understanding of the neuroplastic potential of the human brain connectome has facilitated increased use of non-invasive neuromodulatory treatments for stroke patients (1, 6–11).

Non-invasive neuromodulatory treatment, delivered through transcranial magnetic stimulation (TMS), is a recognized and safe treatment that works primarily through modulating cortical and corticospinal excitability across the human cerebrum. While a number of studies in the literature have suggested clear benefits of this therapy in regard to post-stroke functional recovery (7, 12, 13), these benefits have also been contested in recent large scale studies suggesting limited improvements (1, 14). Notably, differences in outcomes across controlled trials may be related to differences in the recovery scale utilized (15, 16), the specific neuromodulatory protocols and targets selected (17, 18), and importantly, unique inter-individual differences in patient physiology (19). Nonetheless, a poor understanding of the variable responses to TMS treatments has disbarred the effective application and recommendation of this safe treatment for stroke patients in larger clinical and research settings (1), and thus requires further study.

It has become clear that human physiological and pathophysiological functioning can be best understood in the context of underlying neural connections across the human brain connectome (8, 20, 21). More recently, these connections can now be rigorously analyzed with the recent advancements in neuroimaging capabilities and high-throughput approaches (22). Similar to what has been seen in a number of other neurological disorders (20, 23), connectomic analyses have revealed that stroke disrupts structural and functional neural connections both near and spatially distant from the lesion site (24, 25), and these disruptions are highly related to functional outcomes (19, 26). This has caused some to suggest the need for a connectomic-based approach to stroke treatments and analyses (27).

It is also important to consider that stroke patient recovery varies significantly between individuals (19). A connectome-based TMS approach that considers individual connectivity disturbances post-craniotomy can facilitate effective improvements in motor and speech deficits for individual brain tumor patients (11). Therefore, it is reasonable to hypothesize that similar patient-specific connectomic analyses may offer additional novel information to understand and predict individual recovery from stroke (19). Utilization of this information may help track the patient recovery course following acute stroke, which could assist in physician decisions regarding treatment parameters and regimens by stratifying patients into different TMS treatment recovery groups (9, 11).

In this pilot study, we attempted to examine how patients could be grouped into specific clusters according to their clinical treatment phenotypes, and how connectomic information may provide additional important insight into understanding these phenotypes.



2. Methods


2.1. Participants

The study was completed with the first affiliated hospital of Hainan medical university ethics committee approval. Twenty-two patients with acute strokes provided informed consent to the use of rTMS treatment from 2020 to 2021.

Inclusion criteria included: ① being between the ages of 18 and 90; ② having the first and unilateral onset within 1 week; ③ being able to cooperate with physical examination, scoring, and treatment; ④ met the diagnostic criteria of the 2018 China guidelines for the diagnosis and treatment of acute ischemic stroke, as confirmed by cranial CT or MRI; and ⑤ were diagnosed with infarct lesions in the cerebral hemisphere. Exclusion criteria included: ① hemorrhage stroke and progressive stroke; ② intravenous thrombolysis or vascular interventional therapy; ③ metal or foreign matter in the body; and ④ other important organ failure, intracranial hypertension symptoms, or malignant tumor.



2.2. Functional outcome assessment

Appropriate demographic data and relevant medical history were collected from each patient. Patient functional status scores were assessed according to: (1) National Institutes of Health Stroke Scale (NIHSS), which is an 11-item neurological examination stroke scale used to evaluate the effect of acute cerebral infarction on the levels of consciousness, language, neglect, visual-field loss, extraocular movement, facial palsy, motor strength, ataxia, dysarthria, and sensory loss. The total scores range from 0 to 42, with higher scores indicating greater severity. (2) Fugl-Meyer Assessment (FMA) is a 5-domain and 155-item scale to assess motor functioning, balance, sensation, and joint functioning in patients with post-stroke hemiplegia at all ages. Each item is scored by a 3-point ordinal scale, with lower scores indicating greater severity. (3) Barthel Index (BI), which is a 10-item scale describing the activities of daily living (ADL) and mobility, and includes 10 personal activities: feeding, personal toileting, bathing, dressing and undressing, getting on and off a toilet, controlling bladder, controlling bowel, moving from wheelchair to bed and returning, walking on a level surface (or propelling a wheelchair if unable to walk), and ascending and descending stairs. Total scores are 100, with lower scores indicating greater dependency. (4) Wolf Motor Function Test (WMFT) includes 15 task performances to measure the upper extremity function after stroke. The total score is 75 with a higher score indicating stronger ability to complete the upper limb tasks (28–31). Each patient's scores were assessed at four-time points in order to obtain long-term data: (1) at admission day, (2) 1 day after treatment, (3) 30 days after treatment, and (4) 90 days after treatment. All the personally identifiable information has been removed. There were no adverse and unanticipated events reported.



2.3. Image acquisition

Imaging acquisition was performed within after 48–72 h after the functional outcome assessment and was performed on a Philips 3T Achieva MRI scanner. Diffusion-weighted imaging (DWI) was acquired with: 2 × 2 × 2 mm3 voxels, field of view (FOV) = 256 mm, matrix = 128 × 128 mm2, slice thickness = 2.0 mm, one non-zero b-value of 1,000, 40 directions, gap = 0.0 mm. Resting-state functional MRI (rs-fMRI) was acquired as a T2-star EPI sequence, with 3 × 3 × 3-mm3 voxels, 128 volumes/run, TE = 27 ms, TR = 2.8 s, FOV = 256 mm, flip angle = 90°. The sequence time is 230 s. The patient was requested to close their eyes without thinking or any movement during the scan.



2.4. rTMS treatment

rTMS treatment was performed the day after imaging acquisition. rTMS was delivered daily, and the patients were treated twice a day for 5 days, a total of 10 times throughout the hospital stay.

The rTMS was performed with a TMS stimulator (YINGCHI Technology, China) using a flat circular coil for accurately targeted stimulation. The coil were placed tangentially to the scalp with the handle posterior at 45° from the mid-line. In order to record surface electromyography (EMG), electrodes were placed on the abductor pollicis brevis (AFB) on the unaffected side. Resting motor threshold (RMT) is defined as the minimum intensity required eliciting at least five out of 10 MEPs that are >50 μV in a relaxed target muscle. The coil positioning was guided throughout a positioning cap with pre-defined brain regions.

Patients were randomly divided into three intervention groups using an automated random lot drawing technique. Based on randomization, patients received different TMS treatments as described in Table 2. The three treatment options were selected based on previous rTMS evidence-based guidelines that recommended that low-frequency or high-frequency TMS could be used as a Class A or B recommendation for the treatment of post-stroke motor dysfunction in the acute (subacute) stage (32). While less stated in previous guidelines, intermittent theta burst stimulation (iTBS) has also been shown to provide benefits in this context with sustained benefits for at least 3 months and therefore was also utilized in our study (33, 34). Information on the TMS protocol used in the current study is presented in Table 1.


TABLE 1 TMS protocols.

[image: Table 1]



2.5. MRI image processing

All MRI scans were processed using Infinitome software (produced by Omniscient Neurotechnology), which has been described previously (23, 35). Diffusion tractography preprocessing includes standard processing steps (36), which include motion correction, elimination of excess movement, gradient distortion correction, eddy correction, and constrained spherical deconvolution-based deterministic tractography. An individualized, parcellated brain connectome was then created according to the Human Connectome Project (37) parcellation scheme, and structural connectivity is measured between each parcel pair. Resting-state fMRI image preprocessing steps include similar steps as outlined above in addition to the removal of high variance confounds according to the CompCor method and the regression of motion confounds out of the image and spatial smoothing (38).



2.6. Statistical analyses

Analyses were completed using R 4.1.3 (R Foundation for statistical computing).

Data were analyzed for mean or median for continuous variables and as frequency or percentages for categorical data. Continuous variables were assessed for normality with the Shapiro–Wilk's test and homogeneity of variance with the F-test of variance and then subsequently compared with unpaired t-tests or Wilcoxon rank-sum tests (with Bonferroni correction for multiple comparisons) and univariate linear regression analysis as appropriate. Categorical variables were assessed with chi-squared tests with Yate's continuity correction or Fisher's exact tests as appropriate. Paired subjects at different time points [(1) at admission day, (2) 1 day after treatment, (3) 30 days after treatment, and (4) 90 days after treatment] were assessed using the non-parametric Friedman's test for all four scales. The effect size for possible differences was measured with Kendall's W and Dunn's pairwise post hoc analyses.



2.7. Structural and functional connectivity analyses

After completing tractography-based individual patient connectomes, structural and functional connections between parcels in the motor network were assessed.

Possible structural connectivity disturbances in the cortical-spinal tracts (CSTs), cortical–subcortical projection fibers, and subcortical connections were assessed according to their structural integrity on a 3-point scale (0 = intact, 1 = visible injured, and 2 = absent) as well as the lesion proximity to these structures (0 = not adjacent, 1 = adjacent (<1 cm), and 2 = inside the fibers). These structural connectivity analyses were completed by two independent reviewers (YZ and MES) similar to what has been completed by others (39).

Functional connectivity disturbances within the motor network were assessed by identifying individual “anomaly” parcels, referring to regions functioning outside of the normal range compared to 200 healthy adults. The source of the data is from healthy subjects of similar but not age-matched adults from the publicly available OpenNeuro (https://openneuro.org/) and SchizConnect (http://schizconnect.org) datasets as previously discussed by our team (35, 40). The personalized atlas created in previous steps was registered to the T1 image and localized to the gray matter regions. Although the entire human connectome according to the atlas published by the Human Connectome Project authors demonstrates a total of 360 cortical parcellations (37) as well as an additional 19 subcortical structures (35), we sought to focus on the motor network and subcortical regions alone. Therefore, in the current study, the average BOLD time series from parcellations confined to the motor network and subcortical structures were extracted, including a total of 45 regions (see the details of 45 regions in Supplementary Table 1). In order to create individual functional connectivity anomaly matrices that identify outliers (“anomalies”), a tangent space connectivity matrix was performed to determine the range of each functional connectivity pair in the matrix and create an individual raw functional connectivity matrix. Then, anomaly matrices were created by identifying abnormally connected parcels defined as a 3-sigma outlier for that correlation compared to the normative connectivity matrix. Connections that were 3-SD above the normative mean were labeled “hyperconnected,” within 3-SD labeled “normal connectivity,” and 3-SD below the mean “hypoconnected” (23). Furthermore, the highest variance 1/3 of pairs were excluded to further reduce the false discovery rate. This was based on the hypothesis that since these areas had the highest inter-subject variance in a normal cohort, these areas may be more prone to false discovery and therefore should be excluded, as previously elucidated elsewhere (23, 41).



2.8. Hierarchical clustering

An unsupervised machine learning algorithm was utilized to group patients into similar, unique clusters according to their recovery profile and treatment response. Namely, an agglomerative hierarchical clustering method was utilized which groups objects into clusters based on their similar characteristics in a “bottom up” approach (42, 43). Each node (object) represents a cluster, and then clusters are subsequently merged based on their dis(similarity) until the optimal number of clusters K is obtained. Information about (dis)similarity between clusters is calculated using the pairwise Euclidean distances between every pair of clusters in a data matrix. The optimal number of clusters K based on this distance information is then determined according to the Silhouette method. In brief, a Silhouette coefficient, which presents a metric to calculate the goodness of a clustering technique, is obtained and ranges between −1 and 1, with higher scores representing more coherent clusters. Mathematically, it models the difference between cluster separation and cohesion in order to identify the optimal quality of clustering according to a specific number of clusters generated (44).

The individual features utilized in the algorithm included the individual stroke scale scores at four-time points (pre-TMS at baseline and 1-day, 30-day, and 90-day post-TMS). These values were chosen for the current clustering analysis in order to identify individual phenotypes in recovery trajectory (45), rather than identifying clinical presentation phenotypes first and then subsequently assessing their relevance to treatment responses (46). Importantly, we completed this clustering technique for each individual scale separately. This was done secondary to the observation that combining elements from each scale into the same analysis on this relatively small cohort with heterogenous data resulted in poor statistical fitting consisting of clustering into more than 14 groups of 1–2 patients per cluster.




3. Results

The 22 patients included in the study were of a median (IQR) age of 64 (56, 68) years, and split equally of male (n = 11) and female (n = 11) patients. All patients suffered from a stroke, and the median (IQR) hospitalization duration was 9.5 (9, 11) days. The stroke most occurred in the right hemisphere (n = 15, 68%). The average baseline score on the NIHSS scale was 11.1, on FMA 16.5, on BI 8.9, and on WFMT 11.8. These data are presented in Table 2.


TABLE 2 Demographics by stroke scale and cluster.

[image: Table 2]

The rTMS treatment targeted the primary motor cortex (M1) in all patients. The targets were at equal proportions of the right (n = 11) and left hemispheres (n = 11), although varied based on the frequency of rTMS targeting ipsilateral or contralateral to the lesion varied further by rTMS protocol (Table 3). Decisions on which hemisphere rTMS was delivered to relative to the lesion site were made by two independent stroke neurologists based on radiographic findings at patient presentation. The treatment intensity was most commonly of high frequency (n = 10, 45%). The type of TMS protocol was not associated with scores at any time point on the NIHSS, BI, or WFMT scales (p > 0.05 each). However, the use of iTBS was associated with lower scores on the FMA scale at 1-day (p = 0.03) and 30-day (p = 0.02) post-stroke.


TABLE 3 Patient demographics by TMS protocol.
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3.1. Functional assessment outcomes

Functional outcomes were examined between four standardized stroke scales between four-time points (baseline pre-TMS and 1-day, 30-day, 90-day post-TMS). A significant improvement between all time-points was demonstrated according to the NIHSS (Kendall's W = 0.51, large), FMA (Kendall's W = 0.59, large), and WFMT (Kendall's W = 0.02, small) scales (each p < 0.0001). The change in the BI scale was non-significant (p = 0.67). Mean values at each time point are presented in Figure 1. Post hoc testing demonstrated significant differences between the time points of baseline before TMS and 1-day (p = 0.001) as well as 30-day post-TMS (p < 0.0001) on the NIHSS scale; significant differences between the time points of baseline before TMS and 30-day (p = 0.001) as well as 90-day post-TMS (p < 0.001) and also between 1-day post-TMS, 30-day post-TMS (p = 0.02), and 90-day (p < 0.001) post-TMS on the FMA scale; significant differences between the time points of baseline before TMS and 1-day (p = 0.006), 30-day post-TMS (p < 0.0001), and 90-day post-TMS (p < 0.0001) as well as between 1-day post-TMS and 90-day post-TMS (p = 0.002).


[image: Figure 1]
FIGURE 1
 Changes in functional outcomes after rTMS treatment. Patient functional status scores for each scale (NIHSS, FMA, BI, and WMFT) were assessed at four-time points: baseline at presentation, 1-day after rTMS, 30 days after rTMS, and 90 days after rTMS. Top lines connect each time point. *p < 0.05, **p < 0.001, and ***p < 0.0001.




3.2. Connectivity outcomes

Structural and functional connectivities were measured based on individualized connectomic analyses. A case example is presented in Figure 2. These outcomes were addressed below in the next section based on clustering analyses.


[image: Figure 2]
FIGURE 2
 Case example. (A) Patient with right-sided stroke presented significant left upper and lower extremity motor deficits. (B) Structural tractography revealed the lesion was directly inside the CST and cortical–subcortical projection fibers and an appreciable visual decrease in the integrity of the right CST fibers was identified (represented by yellow arrows). Subcortical fibers were relatively intact from the lesion. (C) Functional connectivity revealed a number of hyperconnected (red) and hypoconnected (blue) cortical and subcortical regions compared to the normative functional connectivity of healthy adults. As detailed in the methods, the highest variance 1/3 of pairs were excluded to further reduce the false-discovery rate given these areas may be prone to false discovery due to inter-individual variability in normal subjects. These areas are represented as black in the connectivity matrix. White boxes represent areas within the normative distribution compared to healthy subjects.




3.3. Cluster analysis based on standardized stroke scales

Cluster analyses based on total scores at four-time points revealed unique clusters, suggesting the presence of different types of patient recovery trajectories in this cohort. These ML-based clustering analyses were completed for each standardized stroke scale (Figure 3). According to the optimal number of unique clusters by the silhouette coefficient, six unique patient trajectories existed for the NIHSS scale, two for the FMA scale, five for the BI scale, and two for the WFMT scale. The silhouette coefficients for each of these scales were 0.59 (NIHSS), 0.52 (FMA), 0.57 (BI), and 0.57 (WFMT). A table comparing patient demographics in the total study sample and by individual clusters is presented in Table 2. There were no significant differences between individual clusters according to individual patient demographics alone except a higher length of hospital duration for cluster 2 compared to cluster 1 on the WFMT scale.
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FIGURE 3
 Unique stroke recovery trajectories. Different groups are presented according to cluster analyses using outcomes on the four standardized stroke scales at four-time points. Patient functional status scores were assessed according to: (1) National Institutes of Health Stroke Scale (NIHSS) (top left), (2) Barthel Index (BI) (top right), (3) Fugl-Meyer Assessment (FMA) (bottom left), and (4) Wolf Motor Function Test (WMFT) (bottom right). Each patient score was assessed at four-time points in order to obtain long-term data: (1) at presentation, (2) 1-day after treatment, (3) 30-days after treatment, and (4) 90-days after treatment. While our sample included n = 22, individual clusters contained occasional overlapping lines in patients with the same scores. On the NIHSS panel, two patients in cluster 3 had the same score. On the BI panel, two patients in cluster 5 had the same score. On the WMFT, two patients in cluster 1 had the same score.


Further inspection of the recovery trajectory profile of each of these scales reveals some important trends. Most importantly, despite some similarities between clusters for each scale (e.g., high- or low-functional status prior to TMS and at the final 90-day time point following TMS), individual clusters varied significantly in terms of whether or not they experienced transient 1- and 30-day declines. These trends in trajectories can be seen in Figure 3. As an example, visually clusters 1 and 4 had similar baseline stroke impairment and 1-day post-TMS scores on the NIHSS scale, but cluster 1 then went on to improve 30 days and 90 days later, while cluster 4 remained the same. Interestingly, while there were no significant differences on the BI scale overall for the cohort, ML-based analyses were able to highlight those patients who did respond (e.g., cluster 3), and how other groups who had similar initial scores to these patients then go on to decline (e.g., clusters 1 and 5).



3.4. Connectivity differences between individual clusters

After ML-based analyses were able to identify individual stroke recovery trajectories according to each scale, we next sought to examine differences in structural and functional connectivities between these trajectories. Although some observable trends were noted between clusters on the NIHSS, FMA, and WFMT scales in structural and functional connectivity elements, these visual trends did not reach statistical significance (p > 0.05). However, a number of significant differences in structural and functional connectivity changes were identified between clusters on the BI scale. Importantly, these differences prominently differed for the patients who did improve on this scale compared to other clusters. Given our ML-based analyses identified individual trajectories according to each scale regardless of how the overall cohort responded on that specific scale, we focus on connectivity differences for the BI scale below in further detail.

We provide a heatmap of these connectivity differences for each scale and related clusters in Figure 4 as well as expanded results in the Supplementary material.
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FIGURE 4
 Dysfunctional connectivity between patient clusters. Connectivity anomalies are demonstrated on a heat map between patients according to clustering analyses for the (1) National Institutes of Health Stroke Scale (NIHSS) (top left), (2) Barthel Index (BI) (top right), (3) Fugl-Meyer Assessment (FMA) (bottom left), and (4) Wolf Motor Function Test (WMFT) (bottom right). Hyperconnected parcels are demonstrated in red, with a higher mean number of hyperconnections in dark red and a lower mean number of hyperconnections in light red. Hypoconnected parcels are demonstrated in blue, with a higher mean number of hypoconnections in dark blue and a lower mean number of hypoconnections in light blue. Each brain region, ipsilateral or contralateral to the stroke site, is labeled on the y-axis. Individual patient clusters are on the x-axis. These outcomes are further demonstrated in the Supplementary material.



3.4.1. Functional connectivity differences between BI clusters

The number of functional connectivity 3-sigma outliers (“anomalies”) between clusters was investigated for both cortical and subcortical connections and the total number of hypoconnected and hyperconnected anomalies.

When investigating specific individual cortical parcels, a number of significant motor regions differed between clusters. Individual groups differed in the mean number of ipsilateral hyperconnected supplementary and cingulate eye field (SCEF) areas of the pre-supplementary motor area (cluster 3 = 0.7 anomalies, cluster 1 = 1 anomaly, no anomalies for other clusters; p = 0.04). Although, these differences were not statistically significant between individual clusters on post hoc analyses but rather just for all groups together. Similar overall differences were found for SCEF on the ipsilateral side for hypoconnections, where only cluster 1 demonstrated an anomaly (p = 0.04). Post hoc testing revealed that these ipsilateral hypoconnections were significantly different between group 1 with all other clusters, including clusters 2 (p = 0.02), 3 (p = 0.02), 4 (p = 0.04), and 5 (p = 0.04). Differences were also present for the number of hypoconnections with area 24dd contralateral to the lesion side (p = 0.02), although post hoc analyses revealed differences between individual groups did not reach statistical significance (p > 0.05).

When examining subcortical structures, differences mostly existed between groups for subcortical connections which were hypoconnected rather than hyperconnected, specifically with the pallidum, caudate, and thalamus. Significant differences were found for the number of hypoconnections with the contralateral pallidum (cluster 1 = 1.0 anomaly, 2 = 1.0, 3 = 0, 4 = 3.0, 5 = 0.7; p = 0.02). Post hoc analyses revealed clusters 3 and 4 significantly differed the most (p = 0.007). Significant differences were found for the number of hypoconnections with the contralateral thalamus (cluster 1 = 3.5 anomalies, 2 = 1.0, 3 = 0, 4 = 0.3, 5 = 1.0; p = 0.02). Post hoc analyses revealed that clusters 1 and 3 significantly differed the most (p = 0.05). Significant differences were found for the number of hypoconnections with the ipsilateral caudate (cluster 1 = 0.5 anomalies, 2 = 0.4, 3 = 0, 4 = 2.7, 5 = 0.5; p = 0.02). Post hoc analyses revealed that clusters 3 and 4 significantly differed the most (p = 0.02).

The mean number of contralateral cortical parcels which were hypoconnected differed between clusters (cluster 1 = 12 anomalies, 2 = 4.4, 3 = 3.8, 4 = 10, 5 = 4.2; p = 0.05). The mean number of hypoconnected ipsilateral cortical parcels between clusters followed a similar trend but did not reach statistical significance (cluster 1 = 19 anomalies, 2 = 6.6, 3 = 4.0, 4 = 9.0, 5 = 5.3; p = 0.09).

Differences between other individual parcellations are demonstrated in Figure 4 and in the Supplementary material which did not reach statistical significance.



3.4.2. Structural connectivity differences between BI clusters

Differences in the visual appearance and lesion proximity of different clusters were examined given the importance of white matter integrity in post-stroke outcomes and treatment responses (47–49). When examining the proximity of the lesion to white matter fibers on DTI, there was a significant difference between groups for cortical–subcortical projection fibers (p = 0.03), but not for subcortical fibers (p = 0.71) or the CST (p = 0.68). For cortical–subcortical projection fibers, proximity was significantly different between clusters (p = 0.033). Proximity was not a predictor of 90-day BI score alone (p > 0.05). Similarly, when examining the disruption of white matter fibers on DTI, there was a significant difference between groups regarding the visual integrity of cortical–subcortical projection fibers (p = 0.04), but not for subcortical fibers (p = 0.52) or the CST (p = 0.38). For cortical–subcortical projection fibers, visual integrity was significantly different between clusters (p = 0.047). Visual integrity was not a predictor of 90-day BI score alone (p > 0.05).





4. Discussion

Despite a clear understanding that stroke patients vary significantly in regard to their recovery trajectory, there remains a poor understanding of how to gain further insight into this process during motor recovery treatment. Many scales which assess patient functional outcomes (motor, sensory, and cognitive) have been developed to predict individual stroke recovery in order to guide treatment decisions; however, these scales remain heterogenous and there is little consensus on their clinical value across the field (50). In this study, a novel approach was taken to identify different recovery phenotypes following rTMS treatment for acute stroke patients and specifically with unique insight from personalized connectomic information. Namely, a reverse approach was taken which clustered patients with machine learning analyses according to baseline and post-rTMS functional scores on validated stroke scales, rather than just grouping patients according to clinical presentation characteristics alone (45). While we found significant improvements in functional recovery for patients from baseline up to 90-day post-rTMS treatment across our entire sample, evidence was found for clusters of specific patients with distinct recovery trajectories. Furthermore, these treatment response phenotypes could partially be differentiated according to their unique structural and functional connectivity disruptions in the motor network despite all suffering from “similar” acute strokes.

In many controlled trials, stroke patients are largely treated as if they have the same underlying problem, despite it being known that there are unique neurobiological differences between patients (19). Thus, it is unsurprising to find that there have been many conflicting results in functional outcomes for similar stroke treatments, such as TMS, across different trials (1, 14). What is interesting in the current study is that despite not being a largely powered study, a number of quantitative differences were found existing in structural and functional connectivity between individuals and this information could differentiate unique phenotypes in rTMS treatment responses and recovery on a standardized stroke scale. Thus, functional and structural connectivity analyses may allow for additional assistance in determining the prognosis of the patient as well as for trial designs in more appreciable ways at the single subject level than many other predicting tools which do not account for neurobiological differences between individuals (51).

Spontaneous stroke recovery in functional ability, such as motor functions, has been reiteratively demonstrated to be dependent on underlying brain network damage and the network's capacity for functional re-organization (19, 24–26). Based on our study, different phenotypes according to the Barthel scale varied in their total number of abnormal functional connections to cortical parcellations. The connectivity of these parcellations in the sensorimotor network has been well-described previously (52, 53) and are well-known regions involved in motor functioning (54). In particular, the mean total of hypoconnected parcels contralateral to the lesion side differed between specific trajectories. Similar results have been found in previous study with less anatomic specificity (55, 56), although early identification of the specific contralateral hypoconnected sensorimotor connections which can be normalized with neuromodulatory treatments is important for facilitating clinical improvements in the functional activity and motor impairments (48). Furthermore, significant abnormalities included dysfunctional connectivity of ipsilateral pre-supplementary motor (pre-SMA) areas, ipsilateral caudate connections, and contralateral pallidum connections. As an example, patients in Barthel clusters 1 and 2 were similar in their lower long-term 90-day scores but differed in their trajectory such that cluster 1 had a transient improvement at 30 days before declining in function. Simultaneously, cluster 1 had a greater number of hypoconnected ipsilateral connections to the supplementary and cingulate eye field (SCEF) of the pre-SMA. SCEF is a motor planning and initiation area believed to be a likely a major point of informational outflow from higher-order networks into the motor system due to shared network affiliation (57), and damage to its connections may be a major cause of problems with the initiation of goal-directed behaviors, such as in SMA syndrome (58–60). Another example can be seen with clusters 3 and 4 which had similar low Barthel starting points but varied in their long-term scores (high vs. low). Cluster 4 had high functional scores at 90 days, and also had a greater number of abnormally decreased connections with the ipsilateral caudate and contralateral pallidum compared to cluster 4. Damage to each of these structures has been extensively correlated with a variety of functional deficits (48, 61), and therefore, identifying these functional connections may provide important connectomic features to model stroke severity and recovery moving forward.

In addition to the insight provided by functional connectivity, structural connectivity analyses have also been suggested to provide additional information to better understand stroke recovery (19, 62, 63). In the current study, individual clusters on the Barthel scale were significantly different in regard to their projection fiber integrity. Projection fibers are white matter connections that link cortical and subcortical structures and facilitate a variety of motor and non-motor functions. Although stroke studies incorporating structural connectivity analyses focus on the CST and its connections in the motor network (64), projection fibers are also extensively damaged in stroke patients and are important in understanding post-stroke deficits despite not being extensively studied to date (47). In our sample, the integrity of these fibers alone was not predictor of post-TMS scores; although this is not entirely surprising given, these connectomic elements are just one important structure that likely contributes to overall function and recovery ability. Tools may be created which can model the severity of white matter integrity of projection fibers in addition to the CST and other white matter connections (e.g., commissural fibers) to better understand motor impairment (47), but additional studies should also examine their non-motor correlates post-stroke. By mapping this lesion topography to white matter connections, structural anatomic correlates can be identified for overall stroke severity and post-stroke outcomes which may aid in decisions for early rehabilitation strategies tailored to specific patients but also perhaps for individual symptoms in future studies (11, 48, 65).

An increase in the number of studies has attempted to incorporate structural–functional analyses to predict motor recovery following stroke. These studies have mainly focused on the CST in relation to predicting motor impairment with variable outcomes (66–69), and have also suggested the volume of the acute lesion (70) may be less important to motor recovery compared to the actual lesion location (71) and integrity of specific underlying white matter bundles (19, 72). These observations highlight one of the main benefits of our analyses, namely the utilization of an anatomically fine surface-based, multi-modal parcellation scheme published by the Human Connectome Project. Parcel-guided analyses may improve our ability to better analyze underlying pathophysiological mechanisms and communicate more anatomically fine results between studies for hypothesis generation (18). Furthermore, parcel-guided treatments can provide us a step forward to more accurate therapeutic targeting (9–11, 73). The efficacy of rTMS treatment is highly dependent on the target location, which can be incorrectly estimated with standard craniometric measurements that often underestimate the localization of underlying structures that often only have millimeter differences across the human scalp (74). While parcel-guided TMS was not utilized in the current study, and rather only to analyze and report our data, this study provides an example of the feasibility and importance of such specific analyses which should be examined further in future study for the clinical relevance of such analyses.

The current study sought to use machine learning to identify unique patient trajectories following acute stroke and then to examine how connectivity information may provide additional insight into these differences. While accomplishing this goal in this current study, it is important to note that the current study did not attempt to examine the intricacies and mechanisms of TMS treatment or associated patient responses. It is well-known that differences in TMS parameters may affect patient responses (75, 76), but this was not examined in the current study and instead, our results may at most in this context point to the need to identify precise anatomic neuromodulatory targets, but not the efficacy in targeting these regions. Furthermore, an obvious point brought out by our analyses is how stroke patients may have unique recovery trajectories but also that these trajectories may vary between different scales such that a select group of patients “responding” on one scale may or may not be a responder on a different scale. Although not the focus of study in the current work a large body of research has also attempted to look at these differences which presents an important area of research moving forwards which connectomics may also provide valuable information (77). Nonetheless, our results instead highlight the ability of ML-based analyses to identify and highlight trajectories irrespective of a responder or non-responder status, and then how connectomic features can differentiate some of these patients, as seen with the Barthel Index.

Our study included a small sample size of patients from a single institution. Thus, while individualized connectivity analyses produced a large amount of data for each single patient, these biases could have influenced our statistical analyses and therefore although connectivity differences may have existed between clusters on other scales, these differences may not have been identified in the current dataset. Our methods utilized a unique way to investigate functional connectivity analyses using connectivity “anomalies.” Given small changes in functional connectivity can be difficult and too vague to interpret, our use of 3-sigma anomalies provides a novel way to highlight likely meaningful changes in a patients connectome in response to pathology or intervention; however, our structural connectivity-based analyses relied on the visual inspection of DTI as other have completed (39) and therefore may have been subject to additional bias. Structural connectivity provides a meaningful way to examine major differences in a patient's white matter bundles and identify gross patterns between individuals, but when examined alone without additional information these data should not be over-interpreted. In light of these limitations, future studies with larger datasets and additional statistical power should look to examine individual scale subcomponents with greater statistical certainty as it relates to precise connectivity features (65). This is an important area of future research as we transition toward a period where technology now exists for highly specialized targeting according to individual deficits (9, 11, 73).

Despite having limited power, a number of quantitative differences in structural and functional connectivity were identified which could differentiate unique patient recovery trajectories on a standardized stroke scale and provide insight into their treatment response. A larger sample size may have allowed us to more confidently identify more specific individual parcellations for each cluster and among varying scales. Instead, the current results demonstrate the value of including additional connectomic information on individual patients that may have unique pathophysiological profiles despite similar injuries in order to appropriately guide clinical decision-making and understand treatment capabilities moving forward.



5. Conclusion

This study demonstrates the ability to identify unique patient rTMS recovery trajectories between patients and how functional and structural connectivity features can provide additional information in this context. Additional personalized connectivity analyses may allow for an improved understanding of the patient's disease burden or estimate their trajectory and capability for neuromodulatory treatments and therefore represents an important area for future study in larger prospective studies.
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S, National In

tes of Health Stroke

ndard deviation; NA, not available

Univariate analysis

OR (95%CI)

1,022 (0.995-1.049)
0.588 (0.307-1.127)

1162 (0.574-2.355)
2,943 (1.517-5.711)
1021 (0.483-2.161)
0.726 (0.205-2.564)
1076 (0.441-2.623)
0.808 (0.414-1.578)
1.036 (0.426-2.522)
3.070 (1.136-8.301)
1.406 (0.618-3.198)

1.002 (0.997-1.006)
7.306 (3.644-14.648)
1.122 (1.070-1.176)
1.007 (0.994-1.019)
1.004 (0.982-1.025)

1003 (0.999-1.008)
1042 (0.957-1.135)
1,057 (1.000-1.117)
0.997 (0.991-1.002)
1.215 (1.002-1.473)
1039 (0.991-1.090)
1.577 (1.125-2.208)
0.994(0.990-0.998)
0.088 (0.022-0.344)
0.731 (0.498-1.073)
0.369 (0.108-1.256)
0.737 (0.510-1.065)

he bold values me:

P-value

0.109
0.110

0676
0.001
0956
0618
0873
0533
0938
0.027
0416

0523
<0.001
<0.001

0309

0741

0.162
0342
0048
0.199
0.048
0.116
0.008
0.002
<0.001
0.109
0111
0.104

Multivariate analysis
OR (95%CI) P-value
NA 0073
NA 0294

7.954 (3.553-17.803)
1.110 (1.054-1.168)

NA

NA

NA

0993 (0.989-0.997)
0109 (0.023-0.508)

<0.001
<0.001

0.886

0408

0587

0.001
0.005

SBE, systolic blood pressure; DBP, diastolic blood pressure; WBC, white
, activated partial thromboplastin time; AR, albumin-to-globulin ratio; HDL, high-density lipoprotein;
s P < 0,05,
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Variables AHR (95%CI) p-value

Age 1,039 (1.002-1.078) 0040
Length of hospital stay 1.037 (1.006-1.069) 0018
Depression at 3 months post-stroke 1302 (1.027-1.650) 0029
Recurrent stroke at 3 months post-stroke 3557 (1.679-7.537) 0.001
MMSE at 3 months 0.866 (0.758-0.989) 0034
Epileptic seizures at 3 months post-stroke  7.313 (1.538-34.768] 0012

AHR, Adjused Hazard Ratios Cl, Confidence Interval; MMISE, Mini-Mental State
included all variables and confounding
factors that had a value of p < 0.05 in the univariate analysis.
of the variables which has been chosen here is the backward stepwise method.

The method of selec
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Stroke characteristics

Symptoms during the initial stroke
Duration between onset of symptoms and the
arrival to the hospital

Sudden painless weakness on one side of the
body

Sudden numbness on one side of the body

Sudden painless loss of vision in one or both
eyes

Sudden loss of one half of the vision

Sudden loss of the ability to understand what
people are saying

Sudden loss of the ability to express verbally

orin writing

Administration of intravenous thrombolysis
Duration of hospital stay

ICU STAY

‘Type of stroke

Intracerebral hemorrhage

Ischemic stroke

TOAST classification

LAA

UE
Location of stroke

Right hemisphere

Left hemisphere

Bilateral hemisphere

Cerebellum

Treatment post-stroke

Use of lipid lowering drug

Use of antihypertensive drug

Use of hypoglycemic drug

Use of antiplatelet agent or anticoagulant
Use of cardiac treatment

Stroke severity post-stroke

NIHSS at 3 months

NIHSS at 6 months

Quality of life at 3 months post-stroke
PCS

MCs

Quality of life at 6 months post-stroke
PCS

MCs

Cognitive function post-stroke
MMSE at 3 months

MMSE at 6 months

Anxiety and depression post-stroke
HADS-A at 3 months

HADS-A at 6 months

HADS-D at 3 months

HADS-D at 6 months

Disability post-stroke (mRS at 3 months)

Spasticity at 3 months (MAS >3)

Joint contractures at 3 months

Falls at least 1 time at 3 months
Confirmed pneumonia at 3 months
post-stroke

Confirmed UTI at 3 months post-stroke

Epileptic seizures at 3 months post-stroke

Confirmed DVT at 3 months post-stroke

Recurrent stroke at 3 months

N, Frequency; %, Percentage; SD, Standard D
Stroke Treatment; LAA, Large Artes

Overall N (%)

or mean
(£SD)

343 (£5.94)

105 (70.0)

47 (31.3)

23(153)

16 (10.7)
74 49.3)

106 (70.7)

9(6.8)
969 (£8.35)
63 (42.0)

7(47)
143 (95.3)

58(45.7)
6(47)
63 (49.6)
0(0.0)
0(0.0)

60 (40.0)

70 (46.7)
10(67)
9(6.0)

106 (70.7)
116 (77.3)
61(407)
141 (94.0)
66 (44.0)

1074 (£8.57)
7.32 (47.46)

28.96 (£7.31)
32.65 (£9.41)

34.92 (£9.21)
35.17 (£10.44)

16.29 (£7.95)
2067 (&8.07)

8.20 (£3.90)
7.98 (£4.19)
12,15 (£5.31)
1142 (£5.32)
2.98 (£143)

26(203)
45 (369)
49 (37.7)
27(208)

36(27.5)
8(6.1)

15(11.5)
22(147)

n; HR, Hazard Rati

No death N
(%) or mean

(£SD)

3.76 (£6.64)

78 (66.1)

42(35.6)

19(16.1)

14(11.9)
55 (46.6)

81(68.6)

7(6.7)
8.58 (£7.63)
45(38.1)

5(42)
113(95.8)

38 (38.4)
4(4.0)
57(57.6)
0(0.0)
0(0.0)

46 (39.0)
55 (46.6)
8(68)
8(68)

83(70.3)
91(77.1)
51(43.2)
111 (94.1)
49 (41.5)

1043 (£8.32)
7.19 (£7.32)

2931 (£7.36)
3326 (£9.21)

35.11 (&£9.16)
35.30 (£10.43)

16.64 (7.90)
20,97 (£7.79)

8.08 (+3.91)
7.97 (£4.22)
1191 (5.19)
1131 (£5.29)
292 (£1.42)

24(203)
42(362)
44(37.3)
20(17.1)

3207.1)
5(42)

12(102)
9(7.6)

Death N (%)
or mean
(£SD)

220 (£1.06)

27 (84.4)

5(156)

4(12.5)

2(63)
19(59.4)

25 (78.1)

2(69)
13.78 (£9.67)
18 (56.3)

2(63)
30 (93.8)

20 (71.4)
2071
6(21.4)
0(0.0)
0(0.0)

14 (43.8)
15 (46.9)
2(63)
131

23(71.9)
26 (813)
10 (31.3)
30 (93.8)
18(56.3)

15 (£12.04)
15 (£15.56)

23.02 (£1.61)
2240 (£6.70)

23.44 (£0.80)
27.49 (£11.92)

8 (£3.39)
3(£4.24)

11 (&2.55)

8.50 (2.12)

18 (£5.20)
17.50 (£4.95)
460 (£0.55)

2(200)
3(50.0)
5(41.7)
7(53.8)

4(308)
3(3.0)

3(3.0)
13 (40.6)

CI, Confidence Interval; Ref, Reference; ICU, Intensive Care Unit; TOA
CE, Cardioembolism; SVO, Small-Vessel Occlusion; OF, Other determined Etiology; UE, Undetern
Mental Component Summary; MM:
; Mrs, modified Rankin Scale; MAS, Modified Ashworth Scale; UTI, Urinary |

. Mi

i-Mental

Unadjusted
HR (95%CI)

0933 (0.833-1.045)
2.504 (0.964-6.503)

0376 (0.145 -
1.016)
0.777 (0.272-2.214)

0519 (0.124-2.170)
1519 (0.750-3.075)

1536 (0.664-3.551)

0993 (0.236- 4.177)
1045 (1.016-1.074)
1973 (0.981-3.967)

Ref
1648 (0.394-6.901)

Ref
0991 (0231-4.241)
0.249 (0.100-0.621)

Ref
0916 (0.442-1.897)
0.864 (0.196-3.804)
0.456 (0.060-3.469)

1029 (0.476-2.224)
1052 (0.455-2.432)
0662 (0.313-1.399)
0.848 (0.203-3.549)
1.755 (0.873-3.530)

1052 (0.975-1.135)
1.107 (0.951-1.290)

0.740 (0.552-0.992)
0.837 (0.729-0.961)

0646 (0.402-1.037)
0.921 (0.786-1.081)

0.866 (0.758-0.989)
0.738 (0.528-1.032)

1219 (0.950-1.564)
1029 (0.741-1.428)
1.308 (1.028-1.663)
1.304 (0.908-1.873)
3568
(1.067-11.926)
0961 (0.204-4.528)
1719 (0.347-8.516)
1188 (0.377-3.743)
4848
(1.629-14.430)
1162 (0.358-3.772)
4769
(1.311-17.345)
2,475 (0.681-8.999)
4.885 (2.398-9.954)

of ORG 1017:
ed Etiology; NIHSS
Examination; HADS-A/HADS-D, Hos
act Infections; DV, Deep Vein Thrombos

p-value

0231
0.059
0.055
0.636

0368
0246

0316

0993
0.002
0.057

0.494

0990
0.003

0812
0.847
0.448

0942
0.906
0280
0821
0.114

0.189
0.190

0.044
0.012

0070
0314

0.034
0076

0.120
0865
0.029
0.150
0.039

0960
0507
0769
0.005

0803
0.018

0.169
<0.001

in Acute
. National
ital Aniety
he bold values
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Baseline characteristics Overall N (%) No death N Death N (%) Unadjusted p-value

or Mean (%) Or Mean Or Mean HR (95%CI)
(£SD) (£SD) (£SD)
Age 73.69 (£12.11) 72,05 (£11.37) 79.77 (12.98) 1021 (1.021-1.098) 0.002
Female gender 62(413) 47 (39.8) 15 (46.9) 1303 (0.651-2.610) 0455
Marital status, Married 117 (78.0) 89 (75.4) 28(87.5) 2.077 (0.728-5.921) 0.172
Education level, secondary or university education 46.(30.7) 41(347) 5(156) 0.400 (0.154-1.039) 0.060
Professional status
Person without any profession/retired 101 (67.3) 75 (63.6) 26 (813) Ref
Unemployed 30(20.0) 24(203) 6(188) 0.714 (0.294-1.736) 0458
Social security 125(83.3) 99 (83.9) 26 (81.3) 0.878 (0.361-2.133) 0.774
Presence of a guardian 52(34.7) 39(33.1) 13 (40.6) 1263 (0.624-2.558) 0516
Household members
ingalone 5(9) 464 1(10.0) Ref
Living with family members 123 (96.1) 114 (96.6) 9(90.0) 0.379 (0.048-2.990) 0.357
Mediterranean diet 105 (84.0) 99.(83.9) 6(85.7) 1128 (0.136-9.367) 0912
Smoking status
Non-smoker 60(40.5) 44(373) 16/(53.3) Ref
Ex-smoker 35(236) 3207.1) 3(10.0) 0.306 (0.089-1.050) 0.060
Current smoker 53(35.8) 42 (35.6) 11(36.7) 0.822 (0.382-1.772) 0618
Sedentary lifestyle
1-6 h/day 35(28.0) 34(30.1) 1(83) Ref
7-11 h/day 42(336) 41(363) 1(83) 0827 0.893
(0.052-13.218)
>12h/day 48 (38.4) 38(33.6) 10(83.3) 7.768 0.051
(0.994-60.693)
Moderate level of social support (23 < SSRS < 44) 95 (73.1) 86(729) 9(75.0) 1.108 (0.300-4.095) 0877
Comorbidities
History of AF 26(17.3) 21(17.8) 5(15.6) 0.703 (0.316-1.564) 0.388
History of MI 6(4.0) 4G4 2(63) 1562 (0.702-3.477) 0275
History of DL 74(49.3) 58(49.2) 16 (50.0) 0.895 (0.448-1.790) 0755
History of CVD* 20(13.3) 16 (13.6) 4(12.5) 0.913 (0.320-2.604) 0.865
History of HTN 113(75.3) 88(74.6) 25(78.1) 1302 (0.536-3.162) 0.561
History of DM 60 (40.0) 50 (42.4) 10 (31.3) 0.683 (0.323-1.442) 0317
Family history of CVD. 101 (82.8) 92 (829) 9(818) 0.961 (0.208-4.449) 0.960
Family history of stroke 4247.7) 38 (48.1) 4(44.4) 0,880 (0.236-3.277) 0849
N, Erequency; %, Percentage; SD, Standard Deviation; HR, Hazard Ratio; CI, Confidence Interval; Ref, Reference; SSRS, Social Support Rating Scale; brillation; MI, Myocardial

Infarction; HTN, Hypertension; CVD,
* CVD: coronary artery disease, cardiomyopath;

ardiovascular Discases; DM, Diabetes Mellitus; DL, Dys
arthythmia, chronic heart failure, and thoracic aortic aneurysm. The bold values indicate significant p-valy

0.05.
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Variables AHR (95%CI) p-value

Education level, secondary or university education 0.164 (0.036-0.745) ~ 0.019

MCS at 3 months 0,927 (0876-0.980)  0.008
MCS at 6 months 0,904 (0.843-0.969)  0.004
MMSE at 6 months 0.908 (0.831-0.992) 0,033
Depression at 6 months post-stroke 1176 (1.060-1.305) 0,002

AHR, Adjusted Hazard Ratios CI, Confidence Interval; MCS, Mental Component
Mi State Examination. All these multivariable analyses
included all variables and confounding factors that had a value of p < 0.05

univariate analys

Summary; MM

n the

. The method of selection of the variables which has been chosen here
is the backward stepw
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Comparison

MOCA
TMS - NOR
DCS - NOR
VR - NOR
CA -NOR
ACU - NOR
ACU - CA
DCS - CA
MMSE
TMS - NOR
DCS - NOR
VR - NOR
CA-NOR
ACU - NOR
ACU - CA
DCS - CA
TMS - CA
VR - ACU
BI

TMS - NOR
DCS - NOR
VR - NOR
CA -NOR
ACU - NOR
VR - ACU

MD (95% CI)

342 (1.86,4.98)
289 (1.15,4.63)
095 (0.09,1.81)
2.17(0.74, 3.60)
370 (1.51,5.89)
0.06 (=228, 2.4)
083 (~1.17,2.83)

227 (0.18,4.36)
1.37 (0,13, 2.61)
1.68 (0.49, 2.87)
073 (~1.81,3.26)
2.31(0.65,3.97)
022 (=150, 1.94)
—0.17 (=207, 1.73)
—0.70 (~2.64, 1.24)
0.41 (~1.24,2.06)

11.22(2.53,19.90)
10.46 (8.29, 12.64)
552 (4.24, 6.80)
5.44 (278, 8.11)
9.86(6.22,13.50)
194 (~0.57,4.45)

Number of patients

341
107
403
339
1,382
103

Number of studies

N e oo s o

Heterogeneity test
12 (%) P-value
92 <0.0001
93 <0.0001
2 026
85 <0.0001
94 <0.0001
9 <0.0001
0 044
75 0.0003
89 <0.0001
97 <0.0001
95 <0.0001
13 012
0 0.69
41 017
87 <0.0001
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Variables

Sex
Age group
‘Times of in-hospital
Operation

Infection

OR

09137
11272
1.4002
1.0671
12050

‘The day of discharge
95% CI

(0.8879,0.9402)
(1.1138, 1.1407)
(1.2519, 1.5660)
(1.0234, 1.1125)
(1.1699,1.2412)

OR

09353
10516
11565
12433
L1719

‘The 90-day post-discharge
95% CI

(09121,09591)
(1.0405, 1.0628)
(1.0412, 1.2846)
(11986, 1.2898)
(1.1413,1.2033)
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Name

Tao Zhang

Jieyi Zhao

Hongli Wan

Yang Yu

Jin Wen

Xiaoyu Wang

Locations

West China School of Public Health, Sichuan
University, Chengdu, China

Department of Neurosurgery, West China Hospital,
Chengdu, China

West China School of Public Health, Sichuan
University, Chengdu, China

Department of Neurosurgery, West China Hospital,
Chengdu, China

Institute of Hospital Management, West China
Hospital, Sichuan University, Chengdu, China
Department of Neurosurgery, West China Hospital,
Chengdu, China

Roles

Research design, data analysis, and
article writing

Research design, data analysis, and
article writing

Data analysis and article writing
Data analysis and article writing

Research design

Research design

Contributions

Research design, data analysis, and article writing

Research design, data analysis, and article writing

Data analysis and article writing

Data analysis and article writing

Research design

Research design
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'BAO patients with a TICI score 0f2b and EVT
=107)

Excluded (1= 23)
1. Premorbid mRS score>2:n = 6

2. Age<isin=2

3. Unavalable baselne CT imaging: n=7
4. Lack of 3-month mRS:

Patients included
s
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Variables

Age (years)

Sex

Male ()

Female ()
Pre-stroke history
Hypertension (1)
Diabetes mellitus (n)
Heart disease (1)
Smoking ()
Alcohol abuse (1)
Previous surgery ()
Onset form
Neurological dysfunction ()
Unconsciousness (1)
Epileptic attack ()
Headache (1)
Others (n)

Interval time from onset to admission (h)

Admission examination
Temperature (°C)

Heart rate (min™")
Respiratory rate (min~")

Systolic BP (mmHg)

Dilated BP (mmHg)

Admission GCS Score

15 (n)

13-14 (n)

9-12(n)

5-8 (n)

Hospital costs (thousand CNY)*
Hospital stay (d)*

Discharge status*

Home/nursing or rehabilitation (1)
Care withdrawal or hospital death ()
Mortality (since onset)*

Survival > 1 year (n)

3 Months—1 year (1)

<3 Months (1)

Loss of follow-up ()

“These prognostic variables were not included in further multi
ias BP, blood pressus 3

SAP, stroke-associated pneume

FAHFMU subcohort
Without SAP With SAP

(n=227) (n=97)
58.6 (£11.8) 60.0 (£12.6)
155 (68.3%) 69.(71.1%)
72(31.7%) 28 (28.9%)
163 (71.8%) 74(76.3%)
29(12.8%) 13 (13.49%)
8(3.5%) 4(41%)
59 (26.0%) 24 24.7%)
59(26.0%) 23(23.7%)
48 (21.1%) 19 (19.6%)
201 (88.5%) 72(74.2%)
54(23.8%) 71(73.2%)
4(1.8%) 4(4.19%)
71(31.3%) 24 (24.7%)
93 (41.0%) 39.(40.2%)
120(7.0,24.0) 100 (65, 16.0)
365 (365, 36.8) 367 (36.5,36.9)
77 (£14) 83 (&17)
0(19, 20) 20(19, 21)
158 (24) 162 (425)
93 (£15) 92 (£14)
106 (46.7%) 12 (12.4%)
77 (33.9%) 33 (34.0%)
31(13.7%) 19 (19.6%)
13 (5.7%) 33 (34.0%)
17.0 (12.5,25.8) 497 (34.4,91.0)
15 (11,20) 17 (13,24)
96 (42.3%) 46 (47.6%)
131(57.7%) 51(52.6%)
168 (74.0%) 63 (64.9%)
4(1.8%) 6(6.2%)
7 (3.1%) 10 (10.3%)
48 (21.1%) 18 (18.6%)

GCS, Glasgow

P-value

0370

0694

0416
1.000
1.000
0890
0679
0768

0002
<0.001
0246
0287
0903
0022

0115
0.002
0.008
0.145
0610

<0.001

<0.001
0.003

0.463

0.009

External subcohort
Without SAP With SAP
(1 =106) (n=38)
627 (£127) 660+ (13.5)
59 (55.7%) 25(65.8%)
47 (44.3%) 13 (34.2%)
65 (61.3%) 27 (71.7%)
4(3.8%) 3(7.9%)
2(1.9%) 2(53%)
2(1.9%) 4(10.5%)
91 (85.8%) 31 (81.6%)
27 (25.5%) 27 (71.1%)
2(1.9%) 0
91(85.8%) 21(55.3%)
94 (88.7%) 29/(76.3%)
3.0(20,83) 3.0(20,45)

36.6 (365, 36.8)
81(£12)
20/(20,20)
170 (£24)
100 (15)

80 (75.5%)
8(7.5%)
14/(13.2%)
4(3.8%)
7.7 (655, 10.8)
14(12,15)

97 (91.5%)
9(8.5%)

77 (72.6%)
2(1.9%)
1(0.9%)

26/(24.5%)

36.6(36.5,36.7)
84 (x14)
20(20,20)
174 (£27)
101.8 (£16)

10 (26.3%)
5(13.2%)
15 (39.5%)
8(21.1%)
25.1(14.6,35.7)
23(15,29)

29(76.3%)
9(23.7%)

20/(52.6%)
2(5.3%)
4(10.5%)

12 (31.6%)

P-value

0.182

0339

0329
0381
0284

0042

0.600
<0.001
1.000
<0.001
0.105
0.103

0.667
0237
0998
0473

0.453

<0.001

<0.001
<0001

0022

0013
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Variables FAHFMU subcohort External subcohort
Without SAP ~ With SAP  P-value Without SAP  With SAP  P-value

(n=227) (n=97) (n=106)  (n=38)

RBC (102 L") 4.66(4.30,4.94) 459 (4.15,4.87) 0.097 4.66(4.29,5.08)  4.64(430,5.11) 0928

Hemoglobin (gL~") 1422 (£142) 1402(£153) 0278 1399 (£172)  1379(4202) 0553

Hematocrit 0.41 (£0.04) 041 (£0.04) 0.681 042 (£0.03) 0.41(£0.05) 0335

WBC (10° L™')* 852(661,1064) 10.17(7.54,1301) <0001  827(662,10.83) 995(7.77,1228) 0014
Neutrophil (10° L~ 6.46(4.42,872)  846(549,11.61)  <0.001 586 (441,845 7.49(503,1038) 0016
Lymphocyte (10° L") 129(086,1.66)  1.04(0.70,139) 0001  137(099,1.82)  146(099,190) 0724

Platelet (10° L") 2074 (£623)  2148(£633) 0897 2351 (624)  2202(#557) 0227

PT(s) 11.1(10.8,11.7) 11.1 (10,6, 11.9) 0925 11.3 (109, 11.8) 11.4(10.9,12.2) 0.307

PT-INR 097(094,1.02)  097(093,1.04) 0554 098(0.94,103) 0.99(0.94,107) 0294

APTT (5) 250(222,27.9)  241(218,272) 0200  253(239,27.1) 248(232,268)  0.385

Fibrinogen (gL ") 264(223,300)  269(230,3.13) 0677  262(220,3.12) 268(2353.18)  0.607

Serum creatinine (umol-L~") 67.0(540,783)  660(547,782) 0769  660(57.0,82.0) 715(588,950)  0.098

Serum urea nitrogen (mmol-L™") 502(413,594)  515(427,659) 0259  485(400,583) 5.10(428,685 0276

Serum sodium (mmol-L~') 1395 (£3.9) 139.9 (4.6) 0486 1387 (£3.5) 1381 (£31) 0386

Serum potassium (mmol-L~") 3,80 (£0.42) 384 (047) 0474 388 (+£0.53) 3.92(x061) 0723

Serum calcium (mmol-L™ 228 (£054) 220 (£0.13) 0.158 236 (£0.12) 236(x0.15) 0802

Serum chloride (mmol-L~ 102.0(99.0,1050) 1026(99.0,105.0) 0743  100.6(97.8,102.5) 99.4(963,101.4) 0058

SICH volume (cc) 87(39,172)  22504,379) <0001  68(35134)  217(63,404)  <0.001

Lobar Involvement ()" 38 (16.7%) 25 (25.8%) 0.067 2321.7%) 12 (31.6%) 0271
Frontal lobe (1) 17(7.5%) 14 (14.4%) 0.063 8(7.5%) 5(132%) 0328
Parietal lobe (1) 15 (6.6%) 13 (13.4%) 0.054 10 (9.4%) 4(105%) 1000
Temporal lobe (1) 17 (7.5%) 14 (14.4%) 0.063. 10 (9.4%) 9(23.47%) 0.047
Occipital lobe (n) 7 (3.1%) 3(3.1%) 1.000 5(4.7%) 2(5.3%) 1.000

Deep Involvement (n)* 204 (89.9%) 87 (89.7%) 1.000 87 (82.1%) 31(81.6%) 1000

Basal ganglia (n) 174 (76.7%) 74 (76.3%) 1.000 66 (62.3%) 29(76.3%) 0.162

Thalamus (n) 56 (24.7%) 33 (34.0%) 0.103 33(31.1%) 11(28.9%) 0841

Corona radiata () 5(22%) 4(4.1%) 0552 6(5.7%) 6(158%) 0.082

Insular lobe (1) 4(1.8%) 1(1.0%) 1.000 9(8.5%) 6(15.8%) 0223

Intraventricular involvement (n)* 60 (264%) 47 (48.5%) <0.001 37 (34.9%) 15 (39.5%) 0.695
Unilateral ventricle (1) 26 (11.5%) 13 (13.4%) <0.001 21(19.8%) 7 (18.4%) 0.227
Bilateral ventricles (1) 33 (14.5%) 33 (34.0%) 15 (14.2%) 8(21.1%)

‘Third ventricle (1) 29 (12.8%) 26 (26.8%) 0.003 17 (16.0%) 10 (26.3%) 0224
Fourth ventricle (1) 24.(10.6%) 22(227%) 0.006 14(13.2%) 7 (18.4%) 0593

Subarachnoid involvement () 7(3.1%) 8 (8.2%) 0,050 3(28%) 1(26%) 1000

1CU Stay (n) 14(6.2%) 39 (40.29%) <0.001 4 8(21.1%) <0.001

Nasogastric feeding (1) 59 (26.0%) 4 (86.6%) <0.001 11 (10.4%) 24/(63.2%) <0.001

Airway support

None (1) 215 (94.7%) 48 (49.5%) <0.001 105 (99.1%) 30 (78.9%) <0.001

Endotracheal Intubation < 24 h or Naso-/oropharyngeal airway (n) 2(0.9%) 13 (13.4%) 0 4(10.5%)

Endotracheal intubation > 24 h or tracheotomy (1) 10 (4.4%) 36 (37.1%) 1(0.9%) 4(105%)

Surgery® 18 (7.9%) 50 (51.5%) <0.001 14(13.2%) 22(57.9%) <0.001
Only sICH evacuation (1) 11(4.8%) 20 (206%) <0.001 0 4(105%) 0.004
Only endoscopic sICH evacuation (1) 1(0.4%) 1(1.0%) 0510 0 0
Only sICH catheter evacuation (1) 0 2(2.1%) 0.089 9 (8.5%) 7(18.4%) 0.089
Only EVD approach (n) 4(1.8%) 15 (15.5%) <0.001 3(2.8%) 9(23.7%) <0.001
Ensemble approaches (n) 2(0.9%) 12 (12.4%) <0.001 2(19%) 2(53%) 0573

“These prognostic variables were not included in further mult
RBC, red blood cell; WBC

‘hemorrhage; ICU, int

iate analysis and model derivations/validations.
INR, international normalized ratio; APTT, activated partial thromboplasti

me; SICH, supratentorial intracerebral
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AUC (95% CI)

(A) Internal validation

LR 0.838 (0.765,0911)
GNB 0.861 (0.793, 0.930)
RE 0,837 (0.763,0910)
KNN 0.807 (0.729, 0.885)
SVM 0.770 (0.687, 0.854)
XGB 0.839 (0.766,0912)
ESVM 0.830 (0.756,0.904)
(B) External validation

IR 0.867 (0.812,0923)
GNB 0856 (0.798,0913)
RE 0844 (0.784,0.903)
KNN 0.734 (0,662, 0.806)
SVM 0.730 (0.638, 0.803)
XGB 0,856 (0.799, 0913)
ESVM 0.843 (0.784,0.902)

AUC, area under the curve; LR, logi

boos

soft voting model.

regression; GNB, Gaus

Accuracy (95% CI)

0.827 (0752, 0.901)
0.816 (0.740, 0.893)
0.816 (0.740, 0.893)
0.786 (0.704, 0.867)
0.786 (0.704, 0.867)
0.827 (0.752, 0.901)
0.837 (0.764, 0.910)

0.812 (0.749, 0.876)
0.833 (0.772, 0.894)
0.806 (0.741, 0.870)
0.778 (0.710, 0.846)
0.778 (0.710, 0.846)
0.792 (0.725, 0.858)
0.812 (0.749, 0.876)

an naive Bayes; RE, random forest; KNN,

Sensitivity (95% CI)

0615 (0.519,0712)
0615 (0.519,0712)
0462 (0.363, 0.560)
0500 (0.401,0.599)
0500 (0.401,0.599)
0,692 (0.601,0.784)
0615 (0.519,0712)

0447 (0.366, 0.529)
0553 (0.471,0.634)
0368 (0.290, 0.447)
0395 (0.315,0.475)
0395 (0.315,0475)
0421 (0.340,0.502)
0447 (0.366, 0.529)

Specificity (95% CI)

0.903 (0.844, 0.961)
0.889 (0.827, 0.951)
0.944 (0.899, 0.990)
0.889 (0.827, 0.951)
0.889 (0.827,0951)
0,875 (0.810, 0.940)
0917 (0.862,0.971)

0.943 (0.906, 0.981)
0.934 (0.893,0.975)
0962 (0.931,0.993)
0915 (0.870,0.961)
0915 (0.870,0.961)
0925 (0.881,0.968)
0.943 (0.906, 0.981)

ighbor; SVM, support vector machine; XGB, extreme gradient
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Previous stroke
NIHSS on admission

Pc_ASPECTS

OR
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L1
052

95% CI
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Total
(n=84)

Baseline characteristics
Age, years, mean (SD) 65.87 (12.04)
Male sex, 1 (%) 68(81.0)

BMI, kg/m’, mean (SD) 24.67 (3.49)
Education, years, n (%)

0-6 38(452)
6-9 17(202)
9-12 18(214)
>12 11(13.1)
Premorbid mRS (IQR) 0(0-0)

NIHSS on admission, median (IQR)
Baseline SBP, mmHg, mean (SD)
Baseline DBR, mmHg, mean (SD)
Platelet count, 109/L, mean (SD)
EBG, mmol/L, median (IQR)

TC, mmol/L, median (IQR)

TG, mmol/L, median (IQR)

HDL, mmol/L, median (IQR)

LDL, mmol/L, median (IQR)

Risk factors of vessels

140.89 (24.42)
82.67(15.35)
200.19 (55.089)
6.62 (5.60-8.29)
473 (3.90-5.42)
1.17 (0.81-1.85)
1.07 (0.86-1.25)
3.05 (2.43-3.44)

Hypertension, (%) 65(77.4)
Diabetes mellitus, 7 (%) 27 (321)
Dyslipidemia, n (%) 35(417)
Coronary artery disease, n (%) 13131
Atrial fibrillation, 7 (%) 20(238)
Previous stroke, 1 (%) 21(250)
Smoking, n (%)

Never smoker 34(405)
Former smoker 10(11.9)
Current smoker 40 (47.6)
Drinking, 1 (%)

Never drinker 52(61.9)
Former drinker 3(3.6)
Current drinker 29(34.5)
Radiological baseline characteristics

Pc-ASPECTS on admission, median (IQR) 8.5 (7.0-10.0)
Cause of stroke, 1 (%)

LAA 61(726)
CE 16 (19.0)
SAO 1(1.2)
soC 3(3.6)
suc 3(3.6)
Vascular occlusion site, n (%)

Vertebral artery 36 (429)
Basilar artery 48(57.1)
Medication use history

Previous antiplatelet, 7 (%) 7(83)
Previous anticoagulation, (%) 5(60)
Previous statin, 7 (%) 5(60)

IQR, interquartile range;
diastolic blood pressure; Pe-ASPE
SOC, stroke of other determined cause; SU(

16.00 (8.00-29.75)

Meaningful recanalization
(n=42)

64.40 (13.10)
32(762)
24.48 (3.74)

19(452)
11(262)
7(16.7)
5(11.9)
0(0-0)
1150 (5.00-18.25)
142.93 (23.87)
82.43 (15.69)
204.52 (58.94)
663 (5.46-7.73)
4.74(4.05-5.33)
1.19 (0.84-1.76)
1.11(083-1.29)
3.09 (2.54-3.44)

32(762)
14(333)
17 (40.5)
6(14.3)
10 (23.8)
5(11.9)

18 (42.9)
5(11.9)
19(45.2)

24(57.1)
3(7.1)
15(35.7)

9.0 (8.0-10.0)

32(762)
5(119)
1(24)
2(48)
2(48)

15 (35.7)
27(64.3)

4095)
3(7.0)
124

SD, standard deviation; BMI, body mass index; mRS, modified Ranking Scale; NIHSS, National Institutes of Health Stroke Scale;
, posterior circulation Acute Stroke Prognosis Early CT Score; LAA, large artery atherosclerosis; C
stroke of undetermined cause.

Futile recanalization
(n=42)

6733 (10.84)
36 (85.7)
24.85 (3.26)

19 (45.2)
6(14.3)
11(262)
6(14.3)
0(0-0)
25.00 (16.00-35.00)
138.86 (25.08)
82,90 (15.18)
195.86 (51.30)
662 (5.76-8.67)
471(3.74-5.85)
1.05 (0.79-1.97)
106 (0.86-1.20)
2.85(2.28-3.44)

33 (78.6)
13 (31.0)
18 (42.9)
5(119)
10(23.8)
16 (38.1)

16 (38.1)
5(11.9)
21(500)

28(66.7)
0(0.0)
14(333)

7.5(6.0-9.0)

29(69.0)
11(262)
0(0.0)
1(24)
1(24)

21(50.0)
21(50.0)

3.1
2(48)
4095

p-value

0268
0.266
0631
0.863

0.081
<0.001
0.448
0.888
0474
0.408
0.865
0.668
0.806
0393

0794
0815
0825
0746
1.000
0.006
0952

0239

<0.001

0463
0.095
1.000
1.000
1.000

0.186
0.186

1.000
1.000
0360

B, systolic blood pressure; DBE,
:, cardioembolism; SAO, small artery occlusions
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Total Meaningful recanalization Futile p-value

(n=284) (n=42) (n=42)
Treatment information
Intravenous thrombolysis, 7 (%) 32(38.1) 18 (42.9) 14(33.3) 0369
Number of passages, 1 (%) 10-2) 10-2) 101-2) 0444
Onset to emergency, min, median (IQR) 180.00 (105.00-325.00) 207.50 (83.75-336.25) 17750 (112.50-316.25) 0816
Onset to image, min, median (IQR) 271.00 (160.25-380.00) 287.50 (157.50-407.25) 22800 (163.25-369.25) 0447
Onset to groin, min, median (IQR) 328.00 (230.00-458.75) 335.00 (229.00-535.75) 281.50 (230.00-413.50) 0310
Onset to recanalization, min, median (IQR) 402.50 (309.75-542.75) 424.00 (330.25-613.25) 381,00 (297.50-520.25) 0398
Groin to recanalization, min, median (IQR) 78.00 (57.75-105.75) 76.00 (60.00-102.75) 80.00 (55.00-115.00) 0458
miTICI score, n (%) 0.620
2b 22(262) 12(28.6) 10(23.8)
3 62(7338) 30(71.4) 32(76.2)
Post-treatment blood pressure variability
SBP
SD, median (IQR) 13.12 (8.59-18.54) 11,62 (7.60-19.01) 1389 (9.92-17.52) 0269
CV, median (IQR) 9.87 (6.76-14.03) 9.00 (6.14-15.44) 10.70 (7.55-12.66) 0262
DBP
SD, median (IQR) 7.5 (5.19-11.60) 6.86(5.01-10.07) .52 (5.50-12.98) 0222
CV, median (IQR) 1035 (6.49-16.13) 957 (6.16-12.46) 1183 (6.79-16.84) 0222
Complications
sICH, n (%) 6(7.1) 0(0) 6(14.3) 0.026
Death in hospital 9(10.7) 0(0) 9(214) 0.002
Respiratory infections, n (%) 59(702) 28 (47.5) 31(73.8) 0474
Secondary epilepsy, 1 (%) 101.2) 0(0) 124 1.000
Gastrointestinal bleeding, n (%) 3(.6) 0(0) 3(7.1) 0241

IQR, interquartile range; il

, modified Thrombolysis in Cerebral Infarction; SBE, systolic blood pressure; DBP, diastolic blood pressure; SD, standard deviation; CV, coefficient of
intracranial hemorrhage.
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Models

LASSO

SVM-RFE

LASSO+SVM-RFE

SVM-RFE+RF

LASSO+ANN

SVM-RFE4+ANN

RE+ANN

Datasets

Train
GSE22255
GSE195442
Train
GSE22255
GSE195442
Train
GSE22255
GSE195442
Train
GSE22255
GSE195442
Train
GSE22255
GSE195442
Train
GSE22255
GSE195442
Train
GSE22255
Train
GSE22255
GSE195442

AUC

0.969 (0.942-0.989)
0.890 (0.768-0.975)
1.000 (1.000-1.000)
0.957 (0.930-0.979)
0.805 (0.650-0.922)
1.000 (1.000-1.000)
0.947 (0.907-0.980)
0.935 (0.855-0.988)
1.000 (1.000-1.000)
0.898 (0.853-0.934)
0.692 (0.522-0.840)
0.920 (0.730-1.000)
0.899 (0.854-0.939)
0.647 (0.473-0.820)
0.850 (0.640-1.000)
1000 (0.999-1.000)
0.688 (0.510-0.845)
0.740 (0.490-0.950)
0.995 (0.988-0.999)
0.605 (0.420-0.771)
0.997 (0.991-1.000)
0.619 (0.429-0.787)
0.630 (0.360-0.860)

Sensitivity

0.929
0.850
1.000
0.857
0.950
1.000
0.893
0.817
1.000
0.777
0.617
1.000
0.777
0.850
0.800
1.000
0.850
0.800
0.946
0.700
0.964
0.750
0.700

Specificity

0.946
0.850
1.000
0.946
0.550
1.000
0.982
0.883
1.000
0.866
0.683
0.900
0.973
0.500
0.900
1.000
0.500
0.500
0.982
0.400
1.000
0.450
0.400

Accuracy

0.938
0.850
1.000
0.902
0.750
1.000
0.938
0.850
1.000
0.822
0.650
0.950
0.875
0.675
0.850
1.000
0.675
0.650
0.964
0.550
0.982
0.600
0.550
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Algorithms

LASSO

SVM-RFE

Genes

CPD, CLEC4D, CD163, CD19, ANKRD22, CD79B,
HIST1H4D, HIST1H4H, TIMMSA, CLIC3, HTRAL,
MAOA, LY96, PRSS33, FCGR3B, METTL7B, FOLR3
CLECA4D, ZNF439, PGLYRP1, HECW2, FAIM3,
ANKRD22, CD79A, EVL, LY96, CD72

ID3, EVL, FLT3LG, CPD, CD163, S100A12, SRPK1,
KCNJ15, SLC22A4, ARG1, HECW2, CD19
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Group

Training dataset
Training dataset
Training dataset
Test dataset

Test dataset

Dataset

GSE16561
GSE58294
GSE37587
GSE22255
GSE195442

Reference

Barr (17)
Stamova (18)
Barr (19)
Krug (20)
Yang (21)

Data type

Microarray
Microarray
Microarray
Microarray

Microarray

Platform

GPL6883
GPL570
GPL6883
GPL570
GPL31275

Stroke

39
69
68
20
10

Control

24
23
0
20
10





OPS/images/fneur-13-1014346/fneur-13-1014346-g006.gif





OPS/images/fneur-13-1014346/fneur-13-1014346-g005.gif
o
H
z
g

GSE22255

GSE195442

e | ]|
s

pr

it






OPS/images/fneur-13-1014346/fneur-13-1014346-g004.gif
N






OPS/images/fneur-13-1033385/fneur-13-1033385-g003.gif





OPS/images/fneur-13-1033385/fneur-13-1033385-g002.gif





OPS/images/fneur-13-982783/fneur-13-982783-g006.gif





OPS/images/fneur-14-1058781/fneur-14-1058781-t002.jpg
Ischemic stroke Intracranial hemorrhage
unadjusted HR (95% CI)  P-value Adjusted HR (95% CI) = P-value unadjusted HR (95% CI) P-value Adjusted HR (95% CI)  P-value

Warfarin 1 1 1 1

NOAC 0.467 (0.384-0.568) <0.0001 0.479 (0.39-0.589) <0.0001 0.452 (0.319-0.639) <0.0001 0.453 (0.31-0.664) <0.0001
<65 1 1 1 1

65~74 0.99 (0.762-1.287) 09415 0.997 (0.755-1.397) 0.9853 1,554 (0.983-2.457) 0.0593 1.833 (1.105-3.039) 0.0189
75~ 1.257 (0.983-1.608) 0.0679 1.248 (0.943-1.65) 0.1207 1365 (0.855-2.179) 0.1926 1574 (0.919-2.697) 0.0985
CHADS2VASC2 score 1.089 (1.03-1.151) 0.0028 1.096 (0.997-1.205) 0.0582 1.209 (1.095-1.336) 0.0002 *

HASBLED score 1.022 (0.92-1.136) 06817 * 1.363 (1.133-1.64) 0.001 1.139 (0.901-1.438) 02765

Gl bleed All cause

Warfarin 1 1 1 1

NOAC 0.573 (0.413-0.795) 0.0009 0.579 (0.406-0.824) 0.0024 0.501 (0.438-0.573) <0.0001 0502 (0.435-0.58) <0.0001
<65 1 1 1 1

65~74 1.49 (0.883-2.514) 0.1348 1.46 (0.844-2.523) 0.1759 2.328 (1.762-3.076) <0.0001 2.549 (1.912-3.399) <0.0001
75~ 3.083 (1.917-4.96) <0.0001 3.045 (1.799-5.153) <0.0001 7.096 (5.504-9.15) <0.0001 7.746 (5.902-10.166) <0.0001
CKD 2.691 (1.597-4.533) 0.0002 1287 (0.596-2.782) 05209 3.191 (2.61-3.902) <0.0001 1546 (1.168-2.046) 0.0023
CHADS2VASC2 score 13 (1.181-1.43) <0.0001 0994 (0.841-1.176) 0.9469 1.418 (1.363-1.475) <0.0001 1.09 (1.019-1.165) 0.0123
HASBLED score 1.691 (1.421-2.012) <0.0001 1,572 (1.256-1.968) <0.0001 1586 (1.476-1.704) <0.0001 1.145 (1.034-1.268) 0.0091

NOAGC, non-vitamin K antagonist oral anticoagulant; HR, hazard ratio; CI, confidence intervals; GI, gastrointestinal; CKD, chronic kidney disease. Adjusted for age, sex and comorbidities. *not included as an adjustment variable.
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CDW-0 dataset CDW+C dataset

Warfarin NOAC Warfarin NOAC
n 788 1754 858 2343
Male 429 54.4% 876 49.9% 0.039 453 52.8% 1186 50.6% 02748
Age 727 £ 104 74.3 £ 10.0 <0.0001 7055 £ 12.43 7344 £10.52 <0.0001
<65 153 19.4% 275 15.7% <0.0001 247 28.8% 437 18.7% <0.0001
65~74 253 32.1% 525 29.9% 253 29.5% 684 292%
75~ 382 48.5% 954 54.4% 358 417% 1222 52.2%

Comorbidities

Cancer 45 5.7% 126 7.2% 0.172 67 7.8% 243 10.4% 0.0299
Previous ischemic stroke 123 15.6% 158 9.0% <0.0001 282 32.9% 454 19.4% <0.0001
Previous intracranial hemorrhage 20 2.5% 38 2.2% 0.567 13 1.5% 32 1.4% 0.7505
Hypertension 552 70.1% 1107 63.1% 0.001 658 76.7% 1750 74.7% 0.2458
Diabetes Mellitus 254 32.2% 415 23.7% <0.0001 325 37.9% 814 34.7% 0.1006
Dyslipidemia 82 10.4% 211 12.0% 0.254 438 51.0% 1261 53.8% 0.1641
Previous Ischemic heart disease 21 2.7% 50 2.9% 0.798 252 29.4% 638 27.2% 0.2321
Heart failure 157 19.9% 219 12.5% <0.0001 91 10.6% 162 6.9% 0.0006
Chronic kidney disease 228 28.9% 284 16.2% <0.0001 111 12.9% 88 3.8% <0.0001
ESRD 30 3.8% 5 0.3% <0.0001 65 7.6% 10 0.4% <0.0001
Peripheral arterial occlusive disease 28 3.6% 49 2.8% 0317 94 11.0% 320 13.7% 0.0436
Liver failure 61 7.7% 119 6.8% 0.403 78 9.1% 173 7.4% 0.1115
Previous pulmonary thromboembolism 14 1.8% 30 1.7% 0.906 12 1.4% 54 2.3% 0.11
Previous deep vein thrombosis 17 22% 21 1.2% 0.077 13 1.5% 26 1.1% 0.3543
Previous systemic thromboembolism 1 0.1% 4 0.2% 0.684 13 1.5% 18 0.8% 0.056
Previous upper GI bleeding 34 4.3% 58 3.3% 0.251 47 5.5% 79 3.4% 0.0066
Previous other GI bleeding 3 0.4% 14 0.8% 0.299 6 0.7% 16 0.7% 0.9603
Previous any bleeding 54 6.9% 143 8.2% 0.263 47 5.5% 172 7.3% 0.0644
CHADS2VASC2 score 337+ 1.61 3.15£ 1.55 0.001 359+ 1.84 359+ 1.7 <0.0001
HASBLED score 2,604 1.20 226+ 1.12 <0.0001 1.87 £0.97 1.83 £0.85 0.0025

Outcome event

Ischemic stroke 68 8.6% 60 3.4% <0.0001 199 23.2% 209 8.9% <0.0001
Intracranial hemorrhage 25 32% 19 1.1% <0.0001 70 8.2% 61 2.6% <0.0001
Gastrointestinal bleeding 55 7.0% 83 47% 0023 69 8.0% 78 3.3% <0.0001
All-Cause death 134 17.0% 130 7.4% <0.0001 439 512% 433 18.5% <0.0001
BMI (kg/m*m) (n = 1787) 2430 £3.53 n=443 24.54 %+ 3.80 n=850 0272

Laboratory data*

Hb (n = 1926) 13.04+2.33 n=481 1320 £ 2.09 n=880 0.187

Platelet (n = 1926) 209.6 £ 74.1 216.1£70.8 n=880 0.108

PT (INR) (n = 1824) 167 £ 116 114 £0.47 n=742 <0.0001

NT-pro BNP (n = 791) 8529 = 10564 4774 £ 6726 n=380 <0.0001

D-dimer (1 = 323) 378508 n=66 2.85 4 3.90 n=204 0117

free T4 (n = 1120) 1.36 £ 0.80 n=271 1.36 £ 0.74 n=>506 0.951

TSH (n = 1136) 236+ 3.64 n=278 237 £5.00 n="511 0.984

BUN (n = 1927) 23+156 n=480 199+ 110 n=888 <0.0001

Creatinine (n = 1928) 136+ 142 n=480 0.95 £ 0.47 n=888 <0.0001

eGER (CKD-EPI) (n = 1928) 65.6+£27.7 n=480 727 £212 n=888 <0.0001

AST (GOT) (n = 1789) 443£708 4394 102.0 n=808 0951

ALT (GPT) (n = 1789) 32.6£55.4 3334589 n=3808 0.848

ALP (n = 550) 744 £31.0 1014 % 104.5 n=242 0.001

Cholesterol (n = 966) 1512+ 405 n=275 159.2 £ 40.7 n=431 0012

HDL-Cholesterol (1 = 881) 39.8+13.9 n=251 46.0 £ 13.2 n=400 <0.0001

LDL-Cholesterol (1 = 651) 91.1+33.4 n=195 97.6 £ 30.0 n=294 0.026

Triglyceride (1 = 909) 106.0 652 n=261 106.7 £ 54.1 n=406 0.894

HbAIc (n = 788) 659+ 1.50 n=230 624+ 11 n=370 0.001

Glucose, AC (1 = 906) 138.8 £ 64.3 n=297 138.8 £ 643 n=358 0324

NOAC, non-vitamin K antagonist oral anticoagulant; G, gastrointestinal; ESRD, end-stage renal disease; PAOD, peripheral arterial occlusive disease; BMI, body mass index; Hb, hemoglobin; PT, prothrombin time; INR, international normalized ratio; NT-pro BNP,
N-terminal pro-brain natriuretic peptide; TSH, thyroid stimulating hormone; BUN, blood urea nitrogen; GER, glomerular filtration rate; CKD-EPI, chronic kidney disease epidemiology collaboration; AST, aspartate amino-transferase; ALT, alanine aminotransferase; ALP,
alkaline phosphatase; HDL, high density lipoprotein; LDL, low density lipoprotein. * n, number of patients with available data.
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OR (95%Cl), P-value

Model 1 Model 2 Model 3

In-hospital mortality

Non- Ref Ref Ref

hypocalcemia

Hypocalcemia 1.83 (1.31, 2.56) 2.17 (1.52,3.08) 1.67 (1.09, 2.56)
0.004 <0.001 0.018

ICU mortality

Non- Ref Ref Ref

hypocalcemia

Hypocalcemia 2.15(1.48,3.13) 2.23(1.50, 3.31) 1.72(1.06,2.77)
<0.001 <0.001 0.027

Model 1: no covariates were adjusted.

Model 2: adjusted for age, gender, race/ethnicity.

Model 3: adjusted for: age, gender, race/ethnicity, region, causes of ICH, body mass index,
systolic blood pressure, white blood cell count, hemoglobin, platelet, glutamic-pyruvic
transaminase, international normalized ratio, prothrombin time, blood urea nitrogen,
creatinine, magnesium, glucose, lactate, sequential organ failure assessment score, first
day vasopressor, first day sedative, atrial fibrillation, congestive heart failure.

OR, odds ratio; 95%CI, 95% confidence interval; ICU, intensive care units.
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Albumin-corrected total calcium, mg/dl

Non-hypocalcemia Hypocalcemia
>8.4 <84
N 1,954 1,759 195
In-hospital mortality, N (%) 373 (19.09) 317 (18.02) 56 (28.72) <0.001
ICU mortality, N (%) 235 (12.03) 194 (11.03) 41(21.03) <0.001
Hospital stay time, dy 11.13 (15.02) 10.89 (15.03) 13.33 (14.72) 0.031
ICU stay time, dy 6.16 (7.41) 597 (7.37) 7.91(7.61) <0.001

Continuous variables were presented as mean (D), categorical variables were presented as numbers (%).

ICU, intensive care unit.
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Characteristics Albumin-adjusted total calcium, mg/dl

Total Non-hypocalcemia Hypocalcemia

>84 <84
N 1,954 1,759 195
Age, years 61.82 (17.17) 63.11 (16.66) 50.25 (17.47) <0.010
Gender, N (%)
Male 1,108 (56.76) 990 (56.31) 118 (60.82) 0229
Race/ethnicity, N (%)
Caucasian 1,424 (72.88) 1,278 (72.65) 146 (74.87) <0.001
African American 225 (11.51) 211 (12.00) 14(7.18)
Hispanic 104 (5.32) 96 (5.46) 8(4.10)
Asian 56 (2.87) 49 (2.79) 7(3.59)
Native American 12 (061) 6(0.34) 6(3.08)
Other/unknown 133 (6.81) 119(6.77) 14(7.18)
Region, N (%)
Midwest 654 (33.47) 582 (33.09) 72(36.92) 0.037
South 463 (23.69) 420 (23.88) 43 (22.05)
West 535 (27.38) 484 (27.52) 51(26.15)
Northeast 169 (8.65) 145 (8.24) 24(1231)
Missing 133 (6.81) 128 (7.28) 5(2.56)
Causes of ICH, N (%)
Trauma 709 (36.28) 601 (34.17) 108 (55.38) <0.001
Spontaneous 1,245 (63.72) 1,158 (65.83) 87 (44.62) <0.001
SOFA score 499 (3.36) 4.81(3.32) 6.62 (3.29) <0.001

Physical examination

BMI, kg/m? 27.89 (6.76) 28.05 (6.86) 26.43 (5.55) 0.002
SBP, mmHg 131.45 (16.40) 132.02 (16.50) 126.44 (14.63) <0.001
DBP, mmHg 70.21 (11.28) 70.17 (11.26) 70.49 (11.46) 0716
Laboratory data

WBC count, x 10°/pul 11.64 (8.78) 11.47 (9.10) 13.17 (4.60) 0.011
Hb, g/ml 12,62 (2.14) 12.64 (2.16) 12.46 (2.00) 0249
PLT, x 10/l 21153 (77.69) 212.75 (78.65) 200.43 (67.47) 0.037
GPT, U/L 39.55 (72.18) 37.54 (69.29) 57.48 (92.36) <0.001
BUN, mg/dl 18.98 (13.75) 19.48 (14.06) 14.48 (9.36) <0.001
Creatinine, mg/dl 117 (1.19) 1.18 (1.18) 1.10 (1.27) 0371
Magnesium, mg/dl 1.89 (0.30) 1.90 (0.30) 1.85 (0.27) 0.058
Glucose, mg/dl 145.15 (51.61) 145.20 (52.39) 144.69 (44.12) 0.896
Lactate, mmol/L 257 (1.95) 254 (2.01) 2.77 (1.60) 0314
INR 1.19 (0.38) 1.19 (0.39) 1.13 (0.20) 0.024
Prothrombin time, s 14.15 (3.85) 14.22 (3.99) 13.48 (2.19) 0.016
First day vasopressor, N (%) 111 (5.68) 92(5.23) 19(9.74) 0.01
First day sedative, N (%) 338 (17.30) 284 (16.15) 54(27.69) <0.001

Comorbidities

Hypertension, N (%) 1,024 (52.41) 963 (54.75) 61(31.28) <0.001
Coronary artery disease, N (%) 163 (8.34) 156 (8.87) 7(3.59) 0011
Atrial fibrillation, N (%) 206 (10.54) 204 (11.60) 2(1.03) <0.001
Congestive heart failure, N (%) 134 (6.86) 130 (7.39) 4(2.05) 0.005
Diabetes, N (%) 394 (20.16) 378 (21.49) 16 (8.21) <0.001
Chronic pulmonary disease, N (%) 114 (5.83) 110 (6.25) 4(2.05) 0.018
Stroke, N (%) 263 (13.46) 251 (14.27) 12 (6.15) 0.002

Continuous variables were presented as mean (SD), calculated by linear regression model. Categorical variables were presented as numbers (%), calculated by chi-square test.
SD, standard deviation; BMI, body mass index; SBR, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell; PLT, platelet; INR, international normalized ratio; SOFA,
Sequential Organ Failure Assessment; GPT, glutamic-pyruvic transaminase; BUN, blood urea nitrogen.
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Patients
Age

NIHSS at admission

GCS atadmission

DBP

Blood glucose at admission
TOAST-LAA

Hyperdensity proportion

0

1

2

3

Hyperdensity volume
ASPECTS after embolectomy
Hyperdensity in subarachnoid
Hyperdensity in anyposition
Maximum slice area of hyperdensity
Hypodensity proportion

1

2

3

Hypodensity proportion > 2/3
Hypodensity proportion > 1/3
Hypodensity volume

D-dimer after embolectomy

mRS

0, 90-day modified Rankin Scale; NC

mRS-90 < 2 (Mean-sd/IQR/N)

19 (44.5%)
56.0413.08
11.73(2-23)
1267 (6-15)
79.29 £ 16.07
644 (5.62-8.55)
19
32
12
5
0
0(0-1.43)
9.43 (7-10)
1
23
0(0-95.48)
0
4
5
5
9

15.16 (5.21-31.98)
131 (0.78-2.57)

on-contrast computed tomography; ASPE

*Significant difference between the two groups (p < 0.03).

mRS-90 > 2 (Mean-sd/IQR/N)

61 (55.5%)
59.87 £ 11.98
15.62(3-28)
1094 (3-15)
80.95 £ 12.25
7.21(6.50-8.82)
2

23
5
17
16
2.90 (0-13.19)
8.38 (4-10)
27
4
260.98 (0-1097.02)

14
16
31
31
47
9781 (34.43-177.63)
3.18 (1.48-6.86)

alberta stroke program early CT s

All (Mean-sd/IQR/N)

110
58.16 £ 12,57
13.89 (2-28)
1171 (3-15)
80.21 £ 14.04
7.11(6.11-8.69)
2

55

17

2

16
0.20(0-4.55)
885 (4-10)

38

66

15.26 (0-430.41)

54
20
36
36
56
3979 (12.67-127.83)
225(1.02-5.52)

p-value

0.144
0.059
0.021%
0284
0.168
0354
<0.001*

<0.001*
0.029°
0.017*
0.012*

<0.001*

<0.001*

<0.001*

<0.001*

<0.001"
0.004*
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Study (Publication Year) Selection of cohorts Comparability of cohorts Outcome of cohorts Total

Sanchez-Inigo et al. (17) 1 1 1 1 1 1 1 1 1 9
Lietal. (14) 1 1 1 1 1 1 1 1 1 9
Hongetal. (23) 1 1 1 1 1 1 1 1 1 9
Mao etal. (25) 1 1 1 1 1 1 1 0 0 7
Wang etal. (16) 1 1 1 1 1 1 1 0 0 7
Wang etal. (16) 1 1 1 1 1 1 1 1 1 9
Zhao etal. (15) 1 1 1 1 1 1 1 0 0 7
Liuetal. (24) 1 1 1 1 1 1 1 1 1 9

a. Representativeness of the exposed cohort. b. Sclection of the non-exposed cohort. c. Ascertainment of exposure. d. Demonstration that outcome of interest was not present at start of
study. e. Comparability of cohorts on the basis of the design or analysis (adjusted for age and gender). f. Comparability of cohorts on the basis of the design or analysis (adjusted for any
other factor). g. Assessment of outcome. h. Was follow-up long enough for outcomes to occur (>5 years). i. Adequacy of follow-up of cohorts (>5 years). The scale ranges from one to nine
in total, and judge studies above six as high-quality cohort studies.
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eported

Sanchez-Inigo et al. Eom
an

PC

Spain

First-time attendee
outpatients to an internal
medicine department without
ASCVDs

61.2

Q5:Ql

ICD-10

stroke (157)

IAge, sex, BMI, smoking,
alcohol intake, lifestyle
)pxt!em, HIN, T2DM,
antiplatelet, therapy,
HDL-C, and LDL-C

Lietal. (14) 2019

RC

China

Participants aged over 60
ears without stroke who

Earticipated in aroutine
ealth check-up program

6,078

70.5

53.1

Q4: Q1

ICD-10

stroke (234)

IAge, sex, living, alone,
ccurrent, smoker, alcohol,
consumption, exercise,
BMI, SBP, HDL-C,
LDLC, and T2DM

a0 etal. (25) 12019

PC

China

atients diagnosed with
STE-ACS without stroke

791

62.5

67.4

326

M2:M1

Clinical
evaluation

Stroke (5)

IAge, sex, metabolic

yndrome, LDL-C,
HDL-C, SYNTAX score,
CRP, basal insulin,

ulfonylurea, metformin,
a-glucosidase inhibitor,
ACEI/ARB, beta-blocker,
and PCI/CABG.

Hongetal. (23) 2020

RC

Korea

‘Community population
ithout stroke

5,593,134

53.0

50.5

Q4:Q1

8.2

ICD-10

Stroke (89,120)

IAge, sex, smoking,

alcohol, consumption,

regular physical activity,

low socioeconomic,

Fatus, BMI, HTN, and
C

angetal. (16) 2020

RC

China

consecutive patients with
diabetes who underwent
coronary angiography for
ACS

3,428

66.3

55.9

100

T3:T1

Clinical
evaluation

non-fatal stroke
(46)

ge, male, smoker,

revious MI, previous
CABG, BMI, AMI, LVEE
left main disease,
multi-vessel disease,
HbAlc, hs-CRP, statin,
insulin

Zhao etal. (27) 2020

RC

China

atients with NSTE-ACS, who|
Feceived elective PCI without

diabetes

1,576

M2:M1

Clinical
evaluation

non-fatal
ischemic stroke
@7)

Age, gender, smoking.
history, hypertension,
dyslipidemia, previous
’history of MI, PCI,

troke and PAD, eGFR,
LVEE LM disease,
three-vessel disease,
[SYNTAX score, number
of stents, statins at
discharge and
ACEI/ARB at discharge
ACEI/ARB

angetal. (16) 2021

PC

China

Community population
ithout stroke

97,653

51.67

79.62

2.93

Q4:Q1

11.02

Clinical
evaluation

Stroke (5122)
ischemic stroke
(4277)

Age, gender, level of
education, income,
moking, alcohol abuse,
E&hysical activity, BMI,
‘SBR, DBP, history of MI,
dyslipidemia, HDL-C,
LDL-C, Hs-CRP,
antidiabetic drugs,
ipid-lowering drugs,
HTN, DM,
antihypertensive drugs

Liu et al. (24) 2021

PC

China

‘Community population
ithout stroke

96,541

51.19

79.61

9.06

Q4:Q1

1033

Clinical
evaluation

Stroke (5083)
ischemic stroke
(4266)
Ischemic stroke
(677)
Hemorrhagic
stroke (1024)

IAge, gender, current
moking status, current
drinking status, physical
activity, education, BMI,

hypertension, diabetes,
HDL-C, LDL-C,
Hs-CRP, lipid-lowering
medication, antidiabetic
medication, and
antihypertensive
medication. Age, gender;
marital status, income,
education level,
'smoking, alcohol
drinking, physical
activity, family history of
stroke, SBP, DBP, resting
eart rate, BMI, WC, TC,
HDL-C and LDL-C.

TYG, triglyceride-glucose index; PC, prospective cohort; RC, retrospective cohort; Q5:Ql, the 5th quintile vs. the Ist quintile; Q4:Q1, the 4th quartile vs. the Ist quartile; T3:T1, the 3rd tertile vs. the It tertile; M2:M1, the 2nd median vs. the 1st median;
T2DM, type 2 diabetes mellitus; ICD-10, International Classification of Diseases, tenth edition; PAD, peripheral artery disease; HTN, hypertension; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; BMI, body
mass index; WC, wrist circumference; eGFR, estimated glomerular fltrating rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; hs-CRP: high-sensitivity C-reactive protein; CABG, coronary artery bypass grafting; PCI,
percutaneous transluminal coronary intervention; AMI, acute myocardial infarction; MI, myocardial infarction; LVEE, left ventricular ejection fraction.
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Characteristic Low frequency, N

Lesion side

Left 4(40%) 1(20%) 2(29%) 0.9
Right 6 (60%) 4(80%) 5(71%)

Gender

Female 5(50%) 4(80%) 2(29%) 03
Male 5(50%) 1(20%) 5(71%)

Age 66 (64, 70) 53(52,58) 65 (56, 68) 0.035
Hospitalization duration (days) 9.00 (9.00, 10.00) 1100 (10.00, 12.00) 9,00 (8.50, 11.00) 03

History of cerebrovascular disease

No 10 (100%) 5 (100%) 7 (100%)

History of hypertension 8 (80%) 0(0%) 4(57%) 0.020
History of diabetes 6(60%) 1(20%) 2(29%) 03
History of coronary heart disease 2 (20%) 0(0%) 0(0%) 0.5
History of hyperlipidemia 6 (60%) 1(20%) 2 (29%) 03
TMS side

Contralateral 3 (30%) 1(20%) 6(86%) 0.041

Ipsilateral 7 (70%) 4(80%) 1(14%)
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Characteristic NIHSS cluster FMA clusters Bl cluster WMFT clusters

Lesion side
Left 7(32%) | 1(25%) | 1(33%) | 3(38%) | 2(50%) | 0(0%) | 0(0%) >09 6(33%) | 1(25%) >0.9 0(0%) | 3(60%) | 1(17%) | 2(67%) | 1(17%) 03 5(31%) | 2(33%) >09
Right 15 (68%) | 3(75%) | 2(67%) | 5(62%) | 2(50%) | 2(100%) | 1 (100%) 12 (67%) | 3 (75%) 2(100%) | 2 (40%) | 5(83%) | 1(33%) | 5(83%) 11(69%) | 4 (67%)
Gender
Female 11(50%) | 3(75%) | 1(33%) | 4(50%) | 2(50%) | 0(0%) | 1(100%) 0.6 8 (44%) | 3 (75%) 0.6 | 2(100%) | 2 (40%) | 2(33%) | 2(67%) | 3(50%) 0.7 7 (44%) | 4(67%) 0.6
Male 11(50%) | 1(25%) | 2(67%) | 4(50%) | 2(50%) |2(100%) 0 (0%) 10 (56%) | 1 (25%) 0(0%) | 3(60%) | 4(67%) | 1(33%) | 3(50%) 9(56%) | 2(33%)
Patient age 64(56, | 58(55, @ 49(48, | 64(62, | 64(55, | 78(77, | 67(67, 0.2 64 (56, | 69 (64, 02 57(55, | 66(65 | 69(52, = 64(61, = 60 (56, 08 64 (58, | 62(54, >09
68) 62) 59) 66) 72) 80) 67) 67) 72) 59) 68) 74) 65) 66) 67) 70)
Hospitalization (days) 9.50 10.00 9.00 10.00 11.50 8.50 8.00 0.073 9.00 10.50 0.5 11.50 9.00 9.00 12.00 9.50 0.2 9.00 11.50 0.045
(9.00, (9.00, (8.50, (8.75, (10.75, (8.25, (8.00, (9.00, (9.50, (11.25, (9.00, (8.00, (10.50, (9.00, (8.75, (10.25,
1075) | 11.25) | 9.00) | 10.00) | 1200) = 875) | 8.00) 10.00) | 11.25) 1175) | 9.00) | 1075 | 12.00) | 10.00) 10.00) | 12.00)

History of cerebrovascular disease

No 22 (100%) | 4 (100%) | 3 (100%) | 8 (100%) | 4 (100%) | 2 (100%) | 1 (100%) 18 (100%)| 4 (100%) 2(100%) | 5 (100%) | 6 (100%) | 3 (100%) | 6 (100%) 16 (100%)| 6 (100%)
Hypertension 12.(55%) | 2(50%) | 1(33%) | 5(62%) | 3(75%) | 1(50%) | 0(0%) 09 | 10(56%) | 2(50%) | =09 | 0(0%) | 4(80%) | 3(50%) | 1(33%) 4(67%) = 04 | 9(56%)  3(50%) | =09
Diabetes 9(41%) | 1(25%) | 2(67%) | 4(50%) | 1(25%) @ 1(50%) | 0(0%) 0.9 8 (44%) | 1(25%) 0.6 0(0%) | 4(80%) | 2(33%) = 0(0%) | 3(50%) 02 8(50%) | 1(17%) 0.3
Coronary Heart 2(9.1%) | 1(25%) | 0(0%) | 1(12%) | 0(0%) | 0(0%) | 0(0%) | =09 | 2(11%) | 0(0%) | >09 | 0(0%) | 1(20%) | 0(0%) | 1(33%) | 0(0%) 04 2(12%) | 0(0%) | >09
Disease

Hyperlipidemia 9(41%) | 0(0%) | 2(67%) | 5(62%) | 1(25%) | 1(50%) | 0(0%) 03 | 8(44%) | 1(25%) | 06 0(0%) | 4(80%) | 2(33%) | 0(0%) | 3(50%) | 02 | 8(50%) 1(17%) & 03

TMS protocol

High freq 10 (45%) | 2(50%) | 0(0%) | 4(50%) | 2(50%) = 1(50%) | 1(100%)| 0.7 | 7(39%) | 3(75%) | 0.3 0(0%) | 2(40%) | 3(50%) | 1(33%) | 4(67%) | 05 | 7(44%) | 3(50%) | 0.7
iTBS 5(23%) | 2(50%) | 1(33%) | 1(12%) | 1(25%) = 0(0%) | 0(0%) 4(22%) | 1(25%) 2(100%) | 0(0%) | 1(17%) | 1(33%) | 1(17%) 3(19%) | 2(33%)

Low freq 7(32%) | 0(0%) | 2(67%) | 3(38%) | 1(25%) | 1(50%) | 0(0%) 7(39%) | 0(0%) 0(0%) | 3(60%) | 2(33%) @ 1(33%) | 1(17%) 6(38%) | 1(17%)

TMS side

Contralateral 10 (45%) | 2(50%) | 2(67%) | 4(50%) | 1(25%) | 1(50%) = 0(0%) | >09 | 10(56%) | 0(0%) 0.1 1(50%) | 3(60%) | 2(33%) | 2(67%) | 2(33%) | 09 | 9(56%)  1(17%) | 02
Ipsilateral 12(55%) | 2(50%) | 1(33%) | 4(50%) | 3(75%) | 1(50%) | 1(100%) 8 (44%) | 4 (100%) 1(50%) | 2(40%) | 4 (67%) | 1(33%) | 4(67%) 7 (44%) | 5(83%)

*n (%); median (IQR).
PFisher’s exact test; Kruskal-Wallis rank-sum test.
<Fisher’s exact test; Wilcoxon rank-sum test.
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Previous researches

Proposed

mprovements

Reasonable clinical goal
definition

(1) Only 2 studies assessed both
efficiency and safety; (2) The clinical
outputs of models predicting safety are

all poststroke symptomatic intracerebral

hemorrhage while the dlinical outputs of
models predicting efficiency varys (3)
Only five of previous researches took

treatment option

o consideration by
introducing the treatment option into
the input features (thrombolysis or

placebo, using standard or low dosage)

(1) A model assisting in thrombolysis

therapy needs to assess both efficiency
and safety; (2) To provide
comprehensive thrombolysis efficiency
assessment, both early and long-term
outcome prediction are required; (3)
Before constructing the outcome
prediction model, an inference machine
learning model to statistically test if

treatment option is correlated with

certain clinical features is necessary,
thrombectomy following thrombolysis
needs to be considered as a treatment

option as well

Optimal clinical input
selection

Feature selection was performed with a

combination of clinical and statistical
judgement, only a moderate number
(eight in models assessing safety and five
in models assessing efficiency) of
researches included radiological features
(CT scan, MRI sequences) as model

predictors

Inclusion of radiological features are
needed. The lack of inclusion of
radiological features might lead to a risk
of model overfitting due to the valuable

inform:

n radiological features
provide regarding to thrombolysis safety

and efficiency

Feature engineering

Most of previous models did not pay
much attention to feature engincering.
There s either no feature engincering,
or simple feature engineering by
calculating clinical assessment score,
creating interaction terms, creating
dummy variables, visual detection of

radiological features

Advanced radiologial features
representing penumbra and
proximal/distal arterial occlusion

information could be computed using

computer
between biomarkers, clot characteristics,

and imaging manifestation could be

generated to represent clot composition

Model with high
interpretability

Most of previous models have a
preference for restrictive models (risk
score, nomogram, logistic regression

and tree-based machine learning

models) for the high interpretability

Flexible algorithms have higher
accuracy. A proactive approach could be
adopted to increase flexible model

prediction accuracy by boost

3
terpretability

Model with short processing
time
Only nine past studies mentioned the

processing time consideration: they

chose clinical input easy to obtain in the
emergency situation. Neither of these

e studies included advanced

radiological features from medical
images due to the difficulty to calculate

these features in emergency

Decp learning based pipelines could be
used to automatically interpret medical
images to obtain advanced radiological

features in a short time
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TMS

protocol

Motor
threshold

Stimulation
frequency
(Hz)

Trains

Pulses/
LET)

Intervals
between
trains (s)

Total
pulses

Duration
(Min)

iTBS 80% 5Hzburst 20 30 8 600 3 Ipsilesional M1 5(23%)
frequency, 3
pulses/burst at
50 Hz pulses
frequency
High- 90% 10Hz 100 10 10 1,000 18 Ipsilesional M1 10 (45%)
frequency
Low-frequency 90% 1Hz 100 10 2 1,000 20 Contralesional | M1 7 (32%)
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Characteristics MRI-defined brain infarcts Lacunar infarcts Non-lacunar infarcts

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Age (10-year increments) (2.50-253) 233 (231-2.35) 233 (2.32-2.35) 2.18 (2.16-2.20) 248 245-2.51) 230 (2.27-2.34)
Sex

Women 100 1.00 100 1.00 1.00 1.00

Men 126 (1.24-1.28) 117 (L15-1.19) 122 (120-1.23) 113 (111-115) 132 (128-136) 125(1.21-1.29)
Geographical region

Southwest 1.00 1.00 100 1.00 1.00 1.00
Northeast 249 (2.42-2.56) 2.38 (231-2.46) 275 (2.67-2.84) 2,63 (254-2.72) 1.09 (L01-1.17) 1.06 (097-1.15)
North China 176 (1.70-1.82) 187 (1.80-1.94) 122 (1.17-1.26) 111 (1.06-1.16) 3.7 (3.55-4.00) 4.85 (4.53-5.20)
Northwest 267 (2.59-2.75) 281 271-2.91) 282 (2.73-291) 299 (2:88-3.10) 147 (1.37-1.58) 137 (1.26-1.49)
East China 121 (1.18-124) 122 (1.18-1.26) 116 (1.12-1.19) 116 (1.12-1.19) 1,39 (131-147) 146 (1.37-1.56)
Central China 174 (1.69-1.79) 1.93 (1.87-1.99) 151 (1.46-1.56) 166 (1.60-1.72) 239 (2.25-2.53) 270 (2.52-2.88)
South China 117 (113-121) 130 (1.25-1.35) 125 (120-1.29) 1.35 (1.29-1.40) 0.84(0.77-091) 101 (092-1.11)
Body mass index (kg/m?)

< 100 1.00 1.00 1.00 1.00 1.00
24.0-27.9 128 (1.26-130) 112 (1.10-1.14) 125 (1.23-1.27) 111 (1.09-1.13) 1.36 (1.32-141) 115 (1.11-1.20)
2280 152 (1.49-155) 118 (1.16-1.21) 143 (1.40-1.46) 115 (1.12-1.18) 1.75 (1.68-1.83) 129(1.23-1.35)
Hypertension

No 100 1.00 100 100 1.00 100

Yes 191 (1.88-1.94) 1.80 (1.77-1.83) 177 (1.74-1.79) 167 (1.64-1.70) 224 217-231) 2,07 (2.00-2.14)
Diabetes

No 100 100 100 100 1.00 1.00

Yes 1.39 (1.36-1.42) 1.24 (1.21-1.26) 1.32(1.29-1.35) 1.20 (1.17-1.23) 1.48 (1.43-1.55) 1.27 (1.21-1.32)
Dyslipidemia

No 100 100 100 100 100 100

Yes 1.21 (1.19-1.23) 1.07 (1.05-1.08) 1.22(1.20-1.24) 1.07 (1.05-1.09) 114 (L.11-1.18) 1.07 (1.04-1.11)

Model 1 adjusted for age (10 year increments) and sex.
Model 2 adjusted for all co-variables listed in the table. ORs of 1.00 indicate reference values
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Risk factors B SD OR 95%Cl p-value
Age 0.028 | 0.009 | 1028 | 1.010-1.046  0.002
Hypertension 0675 | 0243 | 1964 | 1219-3.164  0.006
Cigarette 0787 | 0231 | 2196 | 1.396-3.453 | 0.001
Hyperhomocysteinemia | 0.548 | 0.253 | 1.730 | 1.055-2.838 | 0.030
Resided in plateau —0.844 | 0.226 | 0.430 | 0.276-0.670 = <0.001

B, beta; SD, standard deviation; OR, odds ratio; CI, confidence interval.
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Risk 95%Cl

factors
Age 0.046 | 0.009 | 1.047 | 1.029-1.066 <0.001
Hypertension | 0.619 | 0248 | 1857 | 1.142-3.020 0013

Family history 1.050 0.262 2.857 1.711-4.770 <0.001
of stroke

Resided in 1.407 0.251 4.083 2.496-6.680 <0.001
plateau

B, beta; SD, standard deviation; OR, odds ratio; CI, confidence interval.
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Characteristics

Total

Age group
18-29

30-39

40-49

50-59

60-69

70-79

>80
Geographical region
Northeast
North China
Northwest
East China
Central China
South China
Southwest
Body mass index (kg/m?)
<185
18.5-23.9
24.0-279
2280
Hypertension
No

Yes

Diabetes

No

Yes
Dyslipidemia
No

Yes

Data are represented as percentage (95% confidence interval). The age- and sex-standardized prevalence of brain infarcts was calculated based on Chinest

Participants with MRI-defined brain infarcts

Total
(N = 100,245)

579 (5.75-5.83)

046 (0.43-0.50)
098 (0.95-1.02)
3.40 (3.35-3.46)
939 (9.29-9.49)
1952 (19.31-19.73)
30.30 (29.74-30.87)
3733 (35.87-38.84)

802 (7.87-8.18)
6.57 (6.42-6.73)
8.34(8.17-8.51)
463 (456-4.70)
6.47 (6.36-6.58)
449 (4.35-4.63)
4.02 (3.92-4.13)

471 (4.43-5.00)
525 (5.18-5.33)
6.18 (6.10-6.26)
693 (6.80-7.07)

463 (4.56-4.71)
7.69 (7.57-7.80)

5.64 (5.59-5.69)
7.92(753-8.32)

5.56 (5.51-5.62)
620 (6.12-6.27)

Men
(N =56,196)

630 (6.24-637)

0.51 (0.45-0.56)

1.06 (1.01-1.11)

391 (3.82-4.00)
10.62 (10.47-10.77)
21,12 (20.82-21.43)
31.47 (30.70-32.26)
39.05 (37.22-40.95)

8.80 (8.58-9.03)
7.47 (7.24-7.70)
8.59 (8.37-8.82)
489 (4.79-499)
7.24(7.10-7.40)
5.17 (4.97-5.37)
435 (422-449)

4.88 (4.48-5.29)
5.66 (5.56-5.76)
660 (6.5¢ )
7.48 (7.30-7.67)

4.98 (4.89-5.08)
8.16 (8.04-8.27)

6.09(6.03-6.16)
8.07 (7.75-8.41)

6.07 (6.00-6.15)
6.64(6.53-6.75)

Women
(N = 44,049)

5.28(5.21-5.34)

042 (0.37-0.47)
090 (0.86-0.95)
2.88(2.81-2.96)
8.13(8.00-8.25)
17.87 (17.59-18.15)
29.09(28.29-29.91)
3556 (33.29-37.95)

7.23(7.02-7.45)
5.68 (5.46-5.90)
8.09(7.84-8.35)
436 (4.26-4.47)
5.69 (5.54-5.85)
3.83 (3.64-4.03)
3.69 (3.54-3.84)

455 (4.17-4.96)
4.86 (4.75-4.96)
5.77(5.65-5.89)
638 (6.18-6.58)

4.30 (4.19-4.40)
7.22(7.02-7.43)

5.18 (5.11-5.25)
7.78 (7.08-8.56)

5.06 (4.98-5.14)
576 (5.65-5.87)

Parti

Total
(N =79,724)

456 (4.52-4.60)

0.42(0.39-0.46)
085 (0.82-0.89)
287 (2.82-2.93)
7.62(7.53-7.71)
15.03 (14.85-15.21)
2268 (22.19-23.17)
27.71(26.45-29.01)

7.23(7.08-7.38)
3.94(3.82-4.06)
7.33(7.18-7.50)
3.58 (3.52-3.65)
472 (4.63-4.82)
388 (3.75-4.01)
328(3.19-338)

3.69 (3.44-3.95)
4.18 (4.12-4.25)
4.88 (4.81-4.95)
5.34(5.22-5.46)

374 (3.68-3.80)
5.96 (5.86-6.06)

4.46 (4.41-4.50)
6.25 (5.87-6.64)

4.36 (4.31-4.41)
4.92 (4.85-4.99)

ipants with lacunar infarcts

Men
(N = 44,260)

4.93 (4.88-4.99)

0.46 (0.41-0.51)
0.91 (0.87-0.96)
324 (3.16-332)
8.54 (8.41-8.67)
16.07 (15.81-16.34)
23.41 (22.75-24.09)
29.46 (27.87-31.11)

7.90 (7.69-8.11)
4.58 (4.41-4.77)
7.43 (7.22-7.64)
3.7 (3.69-3.86)
5.26 (5.13-5.39)
449 (4.31-4.68)
351 (3.39-3.64)

3.66 (3.32-4.02)
4.49 (4.40-4.58)
5.17 (5.08-5.26)
577 (5.61-5.93)

3.98 (3.90-4.06)
630 (620-6.41)

479 (4.73-4.85)
621(592-6.52)

473 (4.66-4.80)
524 (5.15-5.34)

‘Women
(N = 35,464)

419 (4.13-4.24)

038 (0.33-0.43)
079 (0.75-0.84)
250 (2.43-2.57)
667 (6.55-6.79)
13.96 (13.71-14.21)
2192 (21.22-22.63)
2591 (23.97-27.96)

655 (6.35-6.76)
330 (3.14-3.47)
7.25(7.01-7.49)
339(330-3.48)
419 (4.06-4.33)
328 (3.11-3.46)
3.05(291-3.19)

3.72(3.37-4.09)
388 (3.80-3.97)
459 (4.48-4.70)
4.90 (4.72-5.08)

351 (3.41-3.60)
5.61(5.44-5.80)

4.12 (4.06-4.19)
6.30 (5.61-7.07)

399 (3.92-4.06)
460 (4.50-4.70)

sus 2010,

Participants with non-lacunar infarcts

Total
(N =20,521)

1.23(1.21-1.25)

0.05(0.03-0.06)
0.13 (0.12-0.14)
0.53 (0.51-0.55)
177 (1.73-1.81)
449 (4.39-4.59)
7.62 (7.35-7.91)
9.62 (8.89-10.41)

079 (0.74-0.84)
2,63 (2.53-2.73)
1.00 (0.94-1.07)
1.05 (1.01-1.08)
1.74 (1.69-1.80)
0.61(0.56-0.67)
0.74(070-079)

1.02 (0.89-1.16)
1.07 (1.04-1.11)
1.30 (1.27-1.34)
1.60 (1.53-1.66)

0.89 (0.86-0.93)
1.73 (1.68-1.79)

118 (1.16-1.21)
167 (1.58-1.78)

121 (1.18-1.23)
128 (124-1.31)

Men
(N =11,936)

1.37 (1.34-1.40)

0.05(0.03-0.07)
0.14(0.13-0.16)
067 (0.64-0.71)
208 (2.01-2.14)
5.05 (4.90-5.20)
8.06 (7.67-8.46)
9.60 (8.70-10.56)

0.91(0.84-0.98)
2.88 (275-3.02)
1.16 (1.08-1.25)
112 (1.07-1.17)
1.99 (1.91-2.07)
0.68 (0.60-0.75)
0.84 (0.78-0.91)

1.22 (1.02-1.43)
1.17 (1.13-1.22)
1.43 (1.38-1.48)
1.71 (1.63-1.80)

100 (0.96-1.05)
1.86 (1.80-1.91)

130 (1.27-1.33)
186 (1.73-2.02)

135 (1.31-1.38)
139 (1.35-1.44)

Women
(N =8,585)

1.09 (1.06-1.12)

0.04 (0.03-0.06)
0.11(0.09-0.13)
0.38 (0.36-0.41)
1.46 (1.40-1.51)
3.91(3.78-4.05)
7.17 (6.78-7.59)
9.65 (8.49-10.93)

0.68 (0.61-0.75)
238 (2.24-2.53)
084 (0.76-0.93)
0.97 (0.92-1.03)
150 (1.42-1.58)
055 (0.48-0.64)
0.64 (0.58-0.70)

0.83 (0.67-1.02)
0.97 (0.92-1.02)
118 (1.12-123)
1.48 (1.39-1.58)

0.79 (0.74-0.84)
161 (1.51-1.71)

106 (1.03-1.10)
1.48 (1.37-1.66)

1.07 (1.03-1.11)
1.16 (1.11-121)
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Characteristics Overall Without brain infarcts Participants with MRI-defined brain infarcts

All MRI-defined Lacunar infarcts Non-lacunar

brain infarcts infarcts
N 1,431,527 (100) 1,331,282 (93.0) 100,245 (7.0) 79,724 (5.6) 20,521 (14)
Sex
Men 725,261 (50.7) 669,065 (50.3) 56,196 (56.1) 44,260 (55.5) 11,936 (582)
Women 706,266 (49.3) 662217 (49.7) 44,049 (43.9) 35,464 (44.5) 8585 (41.8)
Age (years), mean  SD 164%124 4554121 5874104 582104 60.5 %100
Age group
18-29 135,597 (9.5) 134,969 (10.1) 628 (0.6) 567 (0.7) 61(0.3)
30-39 315,480 (22.0) 312,379 (23.5) 3,101 (3.1) 2,699 (3.4) 402 (2.0)
10-49 381,901 (26.7) 368,880 (27.7) 13,021 (13.0) 10,992 (13.8) 2,029 (99)
50-59 380,033 (26.5) 344435 (25.9) 35,598 (35.5) 28,890 (36.2) 6,708 (32.7)
60-69 174,489 (12.2) 140,480 (10.6) 34,009 (33.9) 26,194 (32.9) 7,815 (38.1)
70-79 37,092 (2.6) 25,823 (1.9) 11,269 (11.2) 8,430 (10.6) 2,839 (13.8)
280 6,935 (0.5) 4316(0.3) 2,619 (2.6) 1952 (2.4) 667 (3.3)
Geographical region
Northeast 134,747 (9.4) 118,844 (8.9) 15,903 (15.9) 14,390 (18.0) 1,513 (7.4)
North China 117,393 (8.2) 107,176 (8.1) 10217 (102) 6,106 (7.7) 4,111 (200)
Northwest 138,009 (9.6) 124,440 (9.3) 13,569 (13.5) 11,968 (15.0) 1,601 (7.8)
East China 448,345 (31.3) 423,178 (31.8) 25,167 (25.1) 19,779 (24.8) 5,388 (26.3)
Central China 263,787 (18.4) 243,430 (18.3) 20,357 (20.3) 14,897 (18.7) 5460 (26.6)
South China 140,240 (9.8) 133,618 (10.0) 6,622 (6.6) 5736 (7.2) 886 (4.3)
Southwest 189,006 (13.2) 180,596 (13.6) 8,410 (8.4) 6,848 (8.6) 1,562 (7.6)
BMI (kg/m?)
<185 37,852 (2.6) 36,609 (2.7) 1243(12) 984 (1.2) 259(1.3)
18.5-23.9 563,638 (39.4) 532211 (40.0) 31,427 (31.4) 25,478 (32.0) 5,949 (29.0)
240-27.9 506,269 (35.4) 463,599 (34.8) 42,670 (42.6) 33,868 (42.5) 8,802 (42.9)
2280 198,202 (13.8) 179957 (13.5) 18,245 (18.2) 14,130 (17.7) 4,115(20.1)
Hypertension
No 985,368 (68.8) 944,291 (70.9) 41,077 (41.0) 34071 (42.7) 7,006 (34.1)
Yes 375,836 (26.3) 320,887 (24.1) 54,949 (54.8) 42,331 (53.1) 12,618 (61.5)
Diabetes
No 1,278,540 (89.3) 1,196,503 (89.9) 82,037 (81.8) 65,731 (82.4) 16,306 (79.5)
Yes 100,698 (7.0) 85,448 (6.4) 15,250 (15.2) 11,697 (14.7) 3,553 (17.3)
Dyslipidemia
No 857,214 (59.9) 802,817 (60.3) 54,397 (54.3) 43,071 (54.0) 11,326 (55.2)
Yes 526,230 (36.8) 483,075 (36.3) 43,155 (43.0) 34,557 (43.3) 8,598 (41.9)

BMI, body mass index; MRI, magnetic resonance imaging; SD, standard deviation.
*Data were presented as N (%) or mean 4 SD, and all P < 0.001. There were 125,566 (8.8%), 70,323 (4.9%), 52,289 (3.7%), and 48,083 (3.4%) missing values for body mass index,
hypertension, diabetes, and dyslipidemia, respectively.
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Low altitu i p-value

(n = 310)

White matter hyperintensity

Subcortical (frontal), 7 (%) 444 (92.7) 281 (90.6) 163 (96.4) 0.020
Subcortical (parieto-occipital), 7 (%) 359 (74.9) 225(72.6) 134(79.3) 0.105
Subcortical (temporal), 1 (%) 220 (45.9) 143 (46.1) 77 (45.6) 0.905
Basal ganglia, n (%) 260 (54.3) 136 (43.9) 124 (73.4) <0.001
Infratentorial/cerebellum, 7 (%) 80 (16.7) 59 (19.0) 21(12.4) 0.064

Presence of lacune

Frontal lobe, 1 (%) 171 (35.7) 139 (44.8) 32(18.9) <0.001
Parieto-occipital lobe, n (%) 64 (13.4) 48 (15.5) 16 (9.5) 0.064
Temporal lobe, n (%) 71(14.8) 66(21.3) 5(3.0) <0.001
Basal ganglia, n (%) 238 (49.7) 172 (55.5) 66(39.1) 0.001
Brainstem, 1 (%) 78 (16.3) 57 (18.4) 21 (12.4) 0.091

Cerebellum, 1 (%) 42(88) 10 (3.2) 32(189) <0.001
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TIA/ischemic stroke (%) 219 (45.7) 202 (65.2) 17 (10.1)
Clinical condition Cerebral hemorthiags (%) 3603 30415 ° <0.001
VCIor VP (%) 13 (2.7) 4(1.3) 9(53)
CSVD found with non-specific symptoms (%) 211 (44.1) 68 (21.9) 143 (84.6)
Age, mean & SD 6312 631117 62.1+ 139 0.389
Male, 1 (%) 300 (62.6) 209 (67.4) 91 (53.8) 0.003
Hypertension, n (%) 346 (72.2) 258 (83.2) 88 (52.1) <0.001
Diabetes, 11 (%) 114 (23.8) 93 (30) 21 (12.4) <0.001
Coronary heart disease, 1 (%) 58 (12.1) 45(14.5) 13(7.7) 0.029
Dyslipidemia, n (%) 214 (44.7) 184 (59.4) 30 (17.8) <0.001
Hyperhomocysteinemia, 1 (%) 129 (27.5) 100 (32.3) 29(182) 0.001
Cigarette, 1 (%) 179 (37.4) 137 (44.2) 42 (24.9) <0.001
Family history of stroke, 1 (%) 103 (21.5) 100 (32.3) 3 (1.8%) <0.001
White matter hyperintensity, 7 (%) 457 (95.4) 292 (94.2) 165 (97.6) 0.086
ARWMC score, median (quartiles) 7 (4,13) 6(3,12) 10 (4, 15) <0.001
Presence of lacune, 1 (%) 303 (63.3) 225 (72.6) 78 (46.2) <0.001
Lacune count, median (quartiles) 2(0,4) 2(0,5) 0(0,4) <0.001

TIA, transient ischemic attack; VCI, vascular cognitive impairment; VP, vascular parkinsonism; CSVD, cerebral small-vessel disease; SD, standard deviation; ARWMC, age related white
matter change.
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rsID

159369898
rs7130284
154660306
rs42648
15234709
152275565
152251468
rs1801222
rs1801133
15154657
1512780845

Gene

MUT
NOX4
MMACHC
GTPBI10
CBS
MTR
HNFIA
CUBN
MTHER
DPEP1
CUBN

B

0.045
—0.124
0.044
—0.040
0072
~0054
—0051
0.045
0.158
0.096
0.053

SAH, aneurysmal subarachnoid hemorrhage; IA, i

plasma Hcy level

SE

0.007
0013
0.007
0.007
0.007
0.009
0.007
0.007
0.007
0.007
0.009

tracrani:

p-value

217E-10
1.88E-20
233E-09
197E-08
390E-24
196E-10
128E-12
8.43E-10
434E-104
174E-43
7.80E-10

aneurysm; Hey, homocy

IA (unruptured and ruptured)

B SE p-value B
~0.010 0.023 0.669 0.004
~0.020 0.040 0.609 ~0.018
~0.004 0.023 0.868 —0.011
—0.002 0.023 0918 —0.004
~0.030 0023 0.190 N/A
~0.066 0.026 0010 —0.058
~0.019 0022 0390 —0.003

0.017 0022 0431 0029
0.034 0024 0165 N/A
~0018 0.023 0434 0.008
~0.007 0024 0780 0.005

Unruptured IA
SE

0.040
0070
0041
0.040
N/A

0.047
0040
0041
N/A

0040
0.042

p-value

093
0.80
078
091
N/A
022
0.95
048
N/A
0.83
091

Ruptured IA (aSAH)

B SE p-value
—0016 0.027 0.56
—0017 0.046 0.72

0.001 0.028 0.99
—0.002 0027 0.94
—0.022 0.026 0.39
~0.062 0.030 0.04
—0.021 0025 039

0.010 0.025 070

0.035 0.028 021
~0016 0.027 056
—0015 0.029 0.59
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mRS-90
LR
LR-stacking
MCE

LR
LR-stacking
CH

LR
LR-stacking

AUC

0.908 (0.7914, 1.0000)
0.949 (0.882, 1.000)

0.852 (0.6551, 1.0000)
0.885 (0.738, 1.000)

0.929 (0.8263, 1.0000)
0904 (0.715, 1.000)

Sensitivity
0.882 (0.6356, 0.9854)

0.882 (0.64, 0.99)

0.900 (05550, 0.9975)
0,900 (0.555, 0.998)

0714 (0.2904, 0.9633)
0857 (0.421, 0.996)

The AUCs of three groups of models were compared by Delong test.

AUC, area under the re

Specificity
0.875 (0.6165, 0.9845)

0.875 (0.617,0.985)

0.870 (0.6641,0.9722)
0,913 (0.720, 0.989)

0.923 (0.7487, 0.9905)
0962 (0.804, 0.999)

°E, malignant cerebral edema; CH,

Accuracy

0.879 (0.7180, 0.9660)
0.879 (0.718,0.966)

0.879 (0.7180, 0.9660)
0.909 (0.757, 0.981)

0.879 (0.7180, 0.9660)
0.939 (0.798, 0.993)

Fl-score

0879
0882

0864
0895

0819
0909

bral herniation; LR, logi

p-value

0324

0395

0739
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mRS-90
SVM

REC
XGBoost
KNN

GBM
LR-stacking
MCE

SVM

REC
XGBoost
KNN

GBM
LR-stacking
CH

SVM

REC
XGBoost
KNN

GBM
LR-Stacking

AUC, area under the receiver operating characteristic curve; mRS-90, 90-day modified rankin
extreme gradient boosting; KNN,

‘machine; REC,

AUC

0.882 (0.751, 1.000)
0.897 (0.782, 1.000)
0.879 (0.734, 1.000)
0.927 (0.828, 1.000)
0.875 (0747, 1.000)
0.949 (0.882, 1.000)

0.826 (0.628, 1.000)
0.883 (0.725, 1.000)
0.867 (0.690, 1.000)
0.857 (0.714,0.999)
0.848 (0671, 1.000)
0.885 (0.738, 1.000)

0.890 (0756, 1.000)
0.940 (0.851, 1.000)
0.857 (0.654, 1.000)
0.915 (0.827, 1.000)
0.890 (0.760, 1.000)
0.904 (0715, 1.000)

XGBoos

Sensitivity

0.882 (0.64,0.99)
0882 (0.64,0.99)
0882 (0.64,0.99)
0.882 (0.64,0.99)
0882 (0.64,0.99)
0882 (0.64,0.99)

0700 (0.348, 0.933;
0.900 (0555, 0.998;
0.800 (0.444, 0.975;
0.800 (0.444, 0.975,
0500 (0.187, 0.813)
0.900 (0555, 0.998)

)
)
)
)

0571 (0.184,0.901)
0714 (0.290,0.963)
0571 (0.184,0.901)
0.857 (0.421,0.996)
0714 (0.290, 0.963)
0857 (0.421,0.996)

carest neighbor; GBM, gradie:

Specificity

0.875 (0.617,0.985)
0813 (0.544, 0.960)
0875 (0,617, 0.985)
0875 (0.617,0985)
0813 (0.544, 0.960)
0875 (0.617, 0.985)

0826 (0.612,0951)
0.870 (0.664, 0.972)
0913 (0.720,0989)
0.870 (0.664, 0.972)
0.870 (0.664,0.972)
0913 (0.720,0989)

0.962 (0.804, 0.999)
0.962 (0.804, 0.999)
0.923 (0749, 0.991)
0.885 (0.699, 0.976)
0.885 (0.699, 0.976)
0.962 (0.804,0.999)

le; M

nant cerebral edema; CH, cerebral hen
-boosting machis

Accuracy

0.879 (0.718, 0.966)
0.849 (0.681,0.949)
0.879 (0718, 0.966)
0.879 (0718, 0.966)
0.849 (0.681,0.949)
0.879 (0718, 0.966)

0.788 (0.611,0910)
0.879 (0718, 0.966)
0.879 (0718, 0.966)
0.849 (0.681, 0.949)
0.758 (0.577,0.889)
0,909 (0.757,0.981)

0.879 (0718, 0.966)
0,909 (0757, 0.981)
0.849 (0.681,0.949)
0.879 (0718, 0.966)
0,849 (0.681,0.949)
0,939 (0.798, 0.993)

Fl-score

0879
0.857
0.882
0879
0.848
0.882

0.756
0.864
0856
0.825
0.694
0.895

0.796
0.856
0.761
0.835
0.784
0909

ion; SVM, support vector
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Ischemic stroke Intracranial hemorrhage

Unadjusted HR (95% CI) = P-value Adjusted HR (95% CI) P-value unadjusted HR (95% CI) P-value Adjusted HR (95% Cl)  P-value

Warfarin 1 1 1 1

NOAC 0.401 (0.284-0.568) <0.0001 0399 (0.282-0.565) <0.0001 0380 (0.212-0.684) 0.001 0.430 (0.236-0.785) 0.006
<65 1 1 1 1

65~74 1.654 (1.293-2.117) <0.0001 1.505 (0.860-2.635) 0.152 2228 (1.543-3.216) <0.0001 0.666 (0.299-1.481) 0319
75~ 2017 (1.6-2.544) <0.0001 2.037 (1.191-3.483) 0.009 1.925 (1.329-2.786) 0.0005 0.608 (0.270-1.368) 0229
CKD 1.371 (0.901-2.086) 0.14 0.985 (0.625-1.551) 0.947 2.947 (1.614-5.379) <0.0001 2258 (1.214-4.199) 001
CHADS2VASC2 score 1.145 (1.028-1.276) 0014 0.997 (0.849-1.170) 097 1.188 (0.992-1.424) 0.062 1.236 (0.975-1.567) 0.08
HASBLED score 1.288 (1.111-1.493) 0.001 1.223 (1.055-1.419) 0.008 1.335 (1.043-1.709) 0.022 1330 (1.004-1.763) 0.047

Gl bleeding All cause deat|

Warfarin 1 1 1 1

NOAC 0.788 (0.564-1.102) 0.164 0.787 (0.555-1.117) 0.18 0.655 (0.506-0.848) 0.001 0671 (0.515-0.873) 0.003
<65 1 1 1 1

65~74 1.654 (1.293-2.117) <0.0001 1,370 (0.720-2.607) 0337 1.717 (0.966-3.052) 0.065 1,557 (0.873-2.779) 0.134
75~ 2017 (1.6-2.544) <0.0001 3357 (1.858-6.065) <0.0001 5281 (3.119-8.941) <0.0001 1479 (2.627-7.638) <0.0001
CKD 2.142 (1.498-3.061) <0.0001 1.612 (1.119-2.322) 0.01 3055 (2.388-3.907) <0.0001 2.070 (1.600-2.677) <0.0001
CHADS2VASC2 score 1.336 (1.208-1.477) <0.0001 1.097 (0.949-1.268) 021 1.337 (1.238-1.443) <0.0001 1.106 (0.995-1.229) 0.062
HASBLED score 1.423 (1.237-1.635) <0.0001 1.260 (1.079-1.470) 0.003 1.432 (1.294-1.585) <0.0001 1.249 (1.101-1.416) 0.001

NOAGC, non-vitamin K antagonist oral anticoagulant ; HR, hazard ratio; CI, confidence intervals; GI, gastrointestinal; CKD, chronic kidney disease. Adjusted for age, sex and comorbidities.
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Darabi et al.
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(Sweden) (9)
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(Canada) (13)
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No. of subjects Deep learning algorithms

2,855 patients with stroke 1. Logistic regression (LR)
2. Naivve Bayes (NB)
3. Support vector machines (SVM)
4. Random forests (RF)
5. Gradient boosting machines (GBM)
6. Extreme gradient boosting (XGBoost)
3,184 patients with 1. Logistic regression (LR)
ischemic stroke 2. Random forest (RF)
3. Gradient boosting machine (GBM)
4, Extreme gradient boosting (XGBoost)
5. Support vector machines (SVM)
1
2

. Extreme gradient boosting (XGBoost)
. Logistic regression (LR)

6,070 patients with
ischemic stroke

149,447 patients with acute 1. Randorn forests (RF)
myocardial infarction k-nearest neighbor (k-NN)

Naive Bayes Classifier (NBO)
Gradient Boosted Trees (XGBoost)
Logistic regression (LR)

Extreme gradient boosting (XGBoost)
Gradient boosting machine (GBM)
AdaBoost

CatBoost

Light gradient boosting machine
Support vector machines (SVM)
Gaussian naive Bayes (GNB)
Random forest (RF)

L1 logistic regression

Logistic regression (LR)

Random forest (RF)

Extreme gradient boosting (XGBoost)

9,845 patients with heart
failure

47,498 eligible heart failure
with reduced ejection
fraction patients

WA 0ENEN R DN

16,745 patients with carotid 1. Logistic regression (LR)
artery stenting Support vector machine (SVM)
Deep neural network (DNN)

. Random forest (RF)

Decision tree (DT)

osen

Major findings

Advanced machine learning (ML) methods along with natural language
processing (NLP) features out performed logistic regression for all-cause
readmission [areas under the curve (AUC), 0.64 vs. 0.58; P < 0.001) and
stroke readmission prediction (AUC, 0.62 vs. 0.52; P < 0.001)

. GBM provided the highest AUC (0.68), specificity (0.95), and positive
predictive value (PPV) (0.33) when compared to the other models.

2. In terms of AUC, specificity, and PPV, the LR had poor performance

ccompared to XGBoost and GBM models

The AUC values of the XGboost model and logistic model for predicting
readmission were 0.782 (0.729-0.834) and 0.771

(0.714-0.828), respectively

The fulllogistic regression model with 25 predictors had a G-index of 0.67
as compared with the best-performing ML model (Random Forest) with only
10 predictors and a C-index of 0.73

1. The boosted tree-based ML algorithms had the highest AUC with
X@Boost compared to the L1 logistic regression (0.685 vs. 0.591) in
predicting 30-day readmission

2. Calibration plots for XGBoost showed that predicted readmission was
aligned with observed risks and that low predicted risks were associated
with fewer actual outcomes highlighting higher negative predicted values
at lower predicted risks

. The best AUCs of deep leamning (DL) models without a buffer window in
predicting heart failure hospitalizations and worsening heart failure events
in the total patient cohort were 0.977 and 0.972, respectively

2. The best AUCs in predicting 30-day readmission in all adult patients were

0597 and 0,614, respectively

3. For all outcomes assessed, the DL approach outperformed tracitional

machine learning (ML) models

1. The artificial intelligence machine learning DNN prediction model has a
C-statistic value of 0.79 in predicting the patients who might have all-
cause unplanned readmission within 30 days of the index carotid artery
stenting discharge

2. The DNN model showed a significant higher receiver operating
characteristic (ROC; 0.802 vs. 0.680, 0.670, 0.607, and 0.586,
respectively) and precision-recall (0.383 vs. 0.140, 0.140, 0.380, and
0.269, respectively) than the LR, SVM, RF, and DT in predicting 30-day
readmission among patients with carotid artery stenting
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Post-acute care

No 193 (13.1)
Yes 1,283 (86.9)
Patient attributes

Age (years) 655+ 18.0
Gender

Female 554 (37.5)
Male 922 (62.5)
Education (years) 89421
Body mass index (kg/m?) 24026
Clinical attributes

Stroke type

Ischemic 1,224 (82.9)
Hemorthagic 252(17.1)
Nasogastric tube

No 1,187 (80.4)
Yes 289 (19.6)
Foley catheter

No 1,342 (90.9)
Yes 134.9.1)
Hypertension

No 449 (30.4)
Yes 1,027 (69.6)
Diabetes melitus

No 906 (61.4)
Yes 570 (38.6)
Hyperlipidemia

No 967 (65.5)
Yes 500 (34.5)
Atral fibrilation

No 1,354 (91.7)
Yes 122 (8.3)
Previous stroke

No 1,250 (84.7)
Yes 226 (15.9)
Acute care length of stay (days) 152:£90
Rehabiitation length of stay (days) 449212
Readmission in 30 days

No 1,856 (91.9)
Yes 120(8.1)
Functional status scores before rehabilitation

Bl score 39.0+237
FOIS score 55+2.1
EQSD score 104£19
IADL score 1214
BBS score 156+ 158
MMSE score 194 £89

*Data are frequencies (percentages), as indicated, for categorical variables and mean +
standard deviation for continuous variables of baseline characteristics.

SD, standard deviation; B, Barthel Index; FOIS, Functional Oral Intake Scale; £Q-5D,
EuroQol. Quality of Life Scale; IADL, Instrumental activities of Daily Living Scale; BBS,
Berg Balance Scale; MMSE, Mini-Mental State Examination.
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Post-acute care (yes vs. no) 52.074 <0.001
Patient attributes

Age (years) 7.890 0005
Gender (female vs. male) 23657 <0001
Education (years) 10.870 <0001
Body mass index (kg/m?) 7.944 0005
Clinical attributes

Stroke type (ischeric vs. hemorthagic) 32,053 <0001
Nasogastric tube (yes vs. no) 49.361 <0.001
Foley catheter (yes vs. no) 5590 0018
Hypertension (yes vs. no) 4564 0083
Diabetes melltus (yes vs. no) 7.324 0007
Hyperlipidemia (yes vs. no) 5777 0016
Atal fibrilltion (yes vs. no) 6114 0013
Previous stroke (yes vs. no) 6899 0,009
Acute care length of stay, days 30,008 <0.001
Rehabiltation length of stay, days 26,508 <0001
Functional status score before rehabilitation

Bl score 37.494 <0.001
FOIS score 26508 <0.001
EQSD score 16.712 <0.001
IADL score 22.726 <0.001
8BS score 14.908 <0.001
MMSE score 34.665 <0001

*One-way analysis of variance and Fisher exact analysis were performed to assess for
associations between the variables and 30-0ay readmission.

BI, Barthel Index; FOIS, Functional Oral Intake Scale; EQ-5D, EuroQoL Quality of Life
Scale; IADL, Instrumental Activities of Daily Living Scale; BBS, Berg Balance Scale; MMSE,
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Variable Subgroup B SE Wald/y? Univariate analysis
OR 95%Cl P-value
Age 0.036 0.007 22,977 1.086 1.021-1.051 <0.001
Male 0.145 0.181 0805 1.156 0843-1.585 0369
Diabetes 0.134 0.190 0502 1.144 0.789-1.659 0.479
Hypertension 0.787 0.180 19.069 2197 1.543-3.127 <0.001
Drinking 0311 0.166 3509 1.338 0.986-1.888 0.061
Coronary heart disease -0.047 0.186 0.064 0954 0.662-1.374 0.800
Stroke 0279 0.161 3.004 1.322 09641814 0,083
Leukoaraiosis 183823 <0001
0-1 score 1.000
2 score 2.108 0203 107.634 8.231 5.507-12.257 <0001
3 score 3280 0311 111,020 26587 14.443-48.943 <0001
Brain atrophy 230,549 <0001
0-1 score 1.000
2 score 2797 0233 88918 9.000 5.700-14.210 <0001
3 score 3305 0223 220633 27.257 17.622-42.159 <0001
Lacunar infarction 144.484 <0.001
0-1 score 1.000
2 score 1.625 0.189 74.103 5.080 3500-7.354 <0001
3 score 2.477 0220 126,567 11.904 7.732-18.326 <0001
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3 score
Brain atrophy

0-1 score
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3 score
Lacunar infarction

0-1 score

2 score

3 score
Constant

Coefficients

-0.011
0.589

1.000
2.261

1.308
2.696

0.866
1311
—2.564

SE

0.010
0.248

0.264
0.364

0.275
0.248

0.243
0.291
0.852

Wald

1.107
5723

44.450
17.074
38.244

118.612
22.446
117.812

28.425
12,743
20.306
15.368

P-value

0.293
0.017

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000
0.000

OR

0.989
1.802

2975
9.489

3.681
14.823

2377
3712
0.079

95%Cl

0970
1.112

1774
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Variable Development cohort [n (%)] Internal validation cohort [n (%)] External validation cohort [n (%)]

0-10CMBs >10 CMBs P-value 0-10CMBs >10 CMBs P-value 0-10CMBs >10 CMBs P-value
[572 (68.42)] [264 (31.58)] [297 (75.00)] [99 (25.00)] [301 (71.50)] [120 (28.50)]
Age (X£'s) 59.99 + 10.68 63.89 + 1048 <0001 6061 10.97 64.10+9.81 0,005 6123+ 12.82 62.26 % 10.85 0445
Male [ (%)) 384 (67.18) 184 (69.70) 0.369 186 (62.69) 69 (69.70) 0.204 181 (60.13) 84(70.00) 0,058
Medical history
Diabetes [n (%)) 101 (17.65) 56 (21.21) 0479 80 (26.99) 20(20.20) 0.183 84(27.91) 25(2083) o0.127
Hypertension [ (%)] 378 (66.08) 214 (81.44) <0001 184 (61.95) 88 (88.89) <0.001 181 (60.13) 103 (85.83) <0001
Drinking [ (%)) 138 (24.13) 81(30.68) 0.061 73 (24.58) 28 (28.28) 0558 47 (15.61) 26(21.67) 0.140
Coronary heart disease [ (%)] 129 (22.55) 30(11.36) 0954 50 (16.84) 16(16.16) 0876 45 (14.95) 26(21.67) 0.104
Stroke [n (%)) 155 (27.10) 95 (35.98) 0.083 68 (22.90) 35(35.35) 0,035 78 (25.91) 42 (35.00) 0072
Characteristics of CT
Leukoaraiosis <0001 <0001 <0001
0-1 score [n (%) 503 (89.94) 101 (38.26) 255 (85.86) 26 (26.26) 283 (77.41) 18 (15.00)
2 score [ (%) 55 (9.62) 89(33.71) 39(13.19) 50 (50.50) 62 (20.60) 60 (50.00)
3 score [ (%) 14 (2.45) 74(28.03) 3(1.01) 23(23.23) 6(1.99) 42 (35.00)
Brain atrophy <0001 <0.001 <0001
0-1 score [n (%) 477 (83:39) 60 (22.73) 208 (76.77) 19(19.19) 194 (64.45) 22(18.39)
2 score [n (%)) 53(9.27) 56 (21.21) 46 (15.49) 27 (27.27) 64 (21.26) 29 (24.17)
3 score [ (%) 42 (7.34) 148 (56.06) 23(7.74) 53 (53.54) 43(14.29) 69 (57.50)
Lacunar infarction <0.001 <0.001 <0001
0-1 score [n (%)) 401 (70.10) 66 (25,00) 228 (76.77) 20 (20.20) 231 (76.74) 32 (26.67)
2 score [ (%) 122 (21.39) 101 (38.26) 52(17.51) 23(23.23) 51(16.94) 23(19.17)

3 score [n (%)) 49 (8.57) 97 (36.74) 17 (7.74) 56 (66.57) 19 (6.31) 65 (64.17)
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AUROC 95%CI Pvalue¥ Youdenindex Cutoff Sensitivity Specificity PPV NPV

In the derivation cohort (n = 1,309) 081 079-0.83  <0.0001 0.463 16 0711 0733 0153 0974
In the internal validation cohort (n = 655) 083 080-0.86  <0.0001 0.537 16 0.795 0742 0163 0983
In the overall cohort (n = 1,964) 082 080-0.83  <0.0001 0.474 16 0.738 0736 0156 0.977
In the external validation cohort (n = 314) 088 084092 <0.0001 0.688 16 0.944 0743 0183 0995
DV, deep vein thrombosis; ICH, intracerebral hemorrhage; AUROC, area under the receiver oper 21, confidence interval; PPV, positive predictive value; NPV,
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Variables B-coefficients SE adjusted OR* 95% CI P

Model intercept —4913

Age (1-year increase) 0.025 0.007 103 1.01-1.04 <0.001
Hematoma volume (1-ml increase) 0.006 0.003 101 1.00-1.01 001
Subarachnoid extension (yes) 0874 0238 239 13503.82 <0.001
Occurrence of pneumonia (yes) 1.034 0223 281 1.82-436 <0.001
Occurrence of GIB (yes) 0748 0253 211 129-3.47 0.003

Length of hospitalization (1-day increase) 0018 0,004 102 1.00-1.03 <0.001
*Multivariable logistic regression adjusted for demographics, time from onset to hospital, stroke risk factors, pre-admission antithrombotic medications, pre-stroke dependence, admission
NIHSS and GC sion, etiology, ambulation within 48h after admission, DVT
prophylaxis with
DVT, deep vein thrombosi
Joma Scale; GIB, gastroin

alar and subarachnoid exter

ores, blood pressure, blood glucose, hematoma volume, location, intravent

48 hours after admission, surgical treatment, withdrawal of medical care, in-hospital medical complications, and length of hospital stay.
1C , standard error; OR, odds ratio; CI, confidence interval; NIHSS, N al Institutes of Health Stroke Scale; G
nal bleeding.

, intracerebral hemorrhage Glasgow
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Overall cohort Derivation Internal validation Py value External

(n=1,964) cohort cohort (n = 655) validation cohort
(n=1,309) (n=314)
Demographics
Age, y, median (IQR) 5684 144 568+ 146 569 13.9 019 547 +14.2
Gender (male), n (%) 1,327 (67.6) 866 (67.7) 441 (67.3) 087 221 (70.4)
Onset to hospital (hours), median (IQR) 40 (1.90-11.0) 40 (1.92-11.0) 3.9(1.97-11.0) 076 78 (24-96)
Risk factors, n (%)
Hypertension 1,367 (69.6) 908 (69.4) 459 (70.1) 075 208 (66.9)
Diabetes mellitus 289 (147) 196 (15.0) 93(14.2) 065 41(13.1)
Dyslipidemia 184 (9.4) 109 (8.3) 75 (11.5) 0.03 36 (11.5)
Arial fibrillation 30(1.5) 20(1.5) 10(1.5) 099 10(32)
History of stroke/TIA 309 (157) 208 (15.9) 101 (15.4) 079 48 (15.3)
Myocardial infarction 38(1.9) 20(1.5) 18(2.7) 0.06 26(8.3)
Heart failure 8(0.4) 6(0.5) 2(03) 062 3(10)
Current smoker 628 (32.0) 403 (30.8) 225 (34.4) o1 120(38.2)
Alcohol consumption 716 (36.5) 470 (35.9) 246 (37.6) 047 166 (52)
Pre-admission anticoagulation, 1 (%) 21(1.1) 14 (1.1) 7.1 099 5(1.6)
Pre-admission antiplatelet, 7 (%) 277 (14.1) 181 (13.8) 96 (14.7) 062 25(79)
Pre-stroke mRS score, median (IQR) 0(0-0) 0(0-0) 0(0-0) 036 0(0-0)
Admission NIHSS score, median (IQR) 11(3-21) 11(3-21) 11 @-21) 089 4(1-10)
Admission GCS score, median (IQR) 14 (8-15) 14 (8-15) 14 (9-15) 0.26 15 (14-15)
Admission dysphagia, 7 (%) 666 (33.9) 441 (33.7) 225 (34.4) 077 24(76)
Admission SBP (mm Hg), median (IQR) 165 (147-186) 164 (146-186) 167 (150-187) 010 158 (140-171)
Admission DBP (mm Hg), median (IQR) 96 (82-109) 95 (81-108) 98 (84-110) 010 93 (83-104)
Admission WBC, 10°/L, median (IQR) 9.79(7.35-13.0) 9.68 (7.29-12.9) 10.0(7.56-13.0) 026 .83 (7.34-11.0)
Admission glucose (mmol/L), median (IQR) 7.31(6.08-9.20) 7.26 (6.05-9.10) 7.49 (6.13-9.40) 020 5.04 (4.37-6.07)
Admission creatinine (mol/L), median (IQR) ~ 63.4 (52.7-77.0) 63.1(52.3-76.6) 63.9(53.8-77.0) 017 617 (52.1-72.1)
Hematoma location 091
Supratentorial ICH, 1 (%) 1,752 (89.2) 1,167 (89.2) 585 (89.3) 282 (89.8)
Infratentorial ICH, n (%) 212(108) 142 (10.8) 70(10.7) 32(102)
Hematoma volume (cm?), median (IQR) 158 (6.0-38.6) 155 (5.9-37.0) 167 (6.6-40.0) 020 15 (10-30)
Intraventricular extension, 1 (%) 655 (33.4) 430 (32.8) 225 (34.4) 051 109 (34.7)
Subarachnoid extension, # (%) 264 (13.4) 182 (13.9) 82(12.5) 039 30(96)
Etiology diagnosis, 1 (%) 036
Primary ICH 1,785(90.9) 1,193 (91.1) 592 (90.4) 277 (88.2)
Secondary ICH 159 (8.1) 103 (7.3) 56 (8.5) 34(108)
Primary IVH 20(1.0) 13(1.0) 7(1.1)
Ambulatory within 48 h after admission, n (%) 467 (23.8) 318 (243) 149 (22.7) 047
DVT prophylaxis within 48 h after admission
icp 96 (4.9) 69(53) 2740 032 11235.7)
Anticoagulation 5(0.3) 4(02) 1(0.8) 046
Withdrawal of medical care, n (%) 139.(7.1) 99(7.6) 40(6.1) 024 21(67)
Surgical treatment, 1 (%) 366 (18.6) 251 (192) 115 (17.6) 039 43(137)
Length of hospital stay, median (IQR) 16 (8-22) 16(9-22) 16 (8-22) 099 14(12-18)
In-hospital pneumonia, 1 (%) 575(29.3) 390 (29.8) 185 (28.2) 049 59(18.3)
In-hospital GIB, 7 (%) 194 (9.9) 128 (9.8) 66 (10.1) 087 20 (6.4)
In-hospital DV, n (%) 122(62) 83(63) 39(6.0) 073 18(57)

IQR, interquartile range; TIA, transi ic attack; mRS, modified Ra
blood pressure; DBP, diastolic blood pressure; WBC, white cell count; ICH,
gastrointestinal bleeding; DV'T, deep vein thrombos

in scale; NIHSS, National Institutes of Health Stroke Scale score; G
racerebral hemorrhage; IVH, intraventricular hemorrhage;

Glasgow Coma §
termittent pneumati

Scale; SBP, systolic
 GIB,

compres
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Definition in python 3.6

sklearn.svm SVC(kernel="rbfprobability=Truc)
sklearn.tree. DecisionTreeClassifier()

sklearn.ensemble.AdaBoostClassifier()

sklearn.neural_network. MLPClassifier (hidden_layer_size$ = (400, 100), alphs
sklearn.ensemble.RandomForestClassifier(n_estimator$ = 200)
sklearn.neighbors. sklearn.neighbors()

sklearn linear_model logisticRegressionCV (max_iter=100000, solver="liblincar")

sklearn.discriminant_analysis.()
sklearn.ensemble GradientBoostingClassifier()

sKlearn.naive_bayes. GaussianNB()
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Description

Evaluating features by the
correlation between features
and classes measured by the
mutual information
Evaluating features by the
correlation between features
and classes, and redundancy
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Evaluating features by the
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and classes, and redundancy
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the ability to distinguish
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Computing feature score with
the average and variance of
features

Combing cluster with feature:
coefficients of combinatorial
classes to compute feature
score

Evaluating features by
dynamically adjusting the
threshold on the error
reduction to obtain selection
results

Using L1 regularization to
make the weight of some
learned features 0, to achieve
the purpose of sparse and

feature selection

Equation

MIM(f) = I(f; ©)

MIFS(f) = 1(f: C) = B 3 1(fis f5)

prd

MRMR(f) = I(f;: C©) — § ¥ I(fi: fs)

b=l
5

JMI) = 1(:0) = 10 O = 1 O]

=

CMIM(f)) = min 1(f; CI)

g _ E(/u»/m)’ Wy

Fisher() = T LS() = *——

ReliefF(f;, RI,R2) = JRIA-RAL

max(A)-min(A)

FS(i) =

TS() =

MCFS() = 25 (fl

E(N)/E(M;) < aea /(1 - eta)






OPS/images/fneur-13-889090/fneur-13-889090-t001.jpg
Information of patients

Numbers of patients

Datasets (sets)

Number of female patients (%)
Age (Mean = Std)

HAin Left (%)

HA in right (%)

HA in both (%)

Volume of HA (Mean  Std, ml)
NHISS (Mean = Std)

56
80
15(26.79%)
HESH

26 (32.5%)
28 (35%)

26 (32.5%)
95.58 7523
9.225£7.135

Scanning parameters of DSC-PWI images

TE/TR 32 ms/1,590 ms
Matrix 256 x 256
FOV 230 x 230 mm?
Thickness 5mm

Number of measurements 50

Spacing between slices 65mm

Pixel bandwidth 1,347 Ha/pixel
Number of slices 20
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Outcome

Improvement of voluntary
movement of the limbs and basic
mobility

Gait and balance
Walking ability

Cognitive function

Walking speed

Reintegration in terms of ADL,
social and recreational activities

and interactions with others

Quality of life

Measurement Time points

method

STREAM

TS test

TUG test

MOoCA test

10 MW test

RNLI

HRQOLISP

(months)
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6-months post-stroke
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Total Meaningful recanalization Futile recanalization p-value

(n=312) (n =133, 42.6%) (n =179, 57.4%)
Baseline characteristics
Age, years, median (IQR) 7200 (63.25-79.00) 66 (60-76) 75 (67-81) <0001
Male sex, n (%) 186 (59.6) 89(66.9) 97 (54.2) 0023
BMI kg/m?, median (IQR) 2388 (21.48-26.67) 2422 (22.04-26.70) 23.66 (21.22-26.12) 0.167
Education, years, 7 (%) 0280
0-6 174 (55.8) 67 (50.4) 107 (59.8)
6-9 67 (215) 29(21.8) 38(212)
9-12 42(135) 22(165) 20(112)
>12 2909.3) 15(11.3) 14(78)
Premorbid mRS (IQR) 0(0-0) 0(0-0) 0(0-0) <0.001
NIHSS on admission, median (IQR) 14 (11-18) 11(8-16) 16 (12-20) <0001
Baseline SBP, mmHg, mean (SD) 138.02 (23.24) 137.36 (23.36) 13851 (2321) 0.665
Baseline DBP, mmHg, mean (D) 84.02(15.01) 83.09 (14.44) 84.70 (15.42) 0348
Risk factors of vessels
Hypertension, 7 (%) 236 (75.6) 95 (71.4) 141(78.8) 0135
Diabetes mellitus, 1 (%) 101 32.4) 39(293) 62(34.6) 0321
Dyslipidemia, n (%) 76 (24.4) 35(26.3) 41(229) 0.488
Coronary artery disease, 1 (%) 62(19.9) 25(188) 37(207) 0.682
Arial fibrillation, 7 (%) 9 (17) 37(278) 62(316) 0201
Previous ischemic stroke/TIA, 1 (%) 67(215) 24(18) 4304 0204
Previous hemorrhagic stroke, 1 (%) 4013) 0(0) 102 0139
Smoking, 1 (%) 0.002
Never smoker 191 (61.2) 67 (50.4) 124(693)
Former smoker 23(7.4) 11(8.3) 12(6.7)
Current smoker 98 (31.4) 55(41.4) 4324
Drinking, n (%) <0001
Never drinker 224 (718) 85(63.9) 13977.7)
Former drinker 15 (4.8) 3(23) 12(67)
Current drinker 73 (23.4) 45(338) 28(15.6)
Radiological baseline characteristics
ASPECTS on admission, median (IQR) 5(4-7) 5(4-7) 5(-7) 0.083
Cause of stroke, 7 (%)
LAA 121 (38.8) 58(43.6) 63(35.2) 0.131
CE 158 (50.6) 58 (43.6) 100 (55.9) 0.032
SAO 1(13) 323 1(06) 0316
soc 8026 7(53) 1(06) 0012
suc 21(67) 7(53) 14(78) 0372
Vascular occlusion site, 1 (%)
ca 97 (31.1) 39(293) 58(32.4) 0.561
MCA M1 194 (62.2) 84(632) 110 (61.5) 0759
MCA M2 21(67) 10(7.5) 11(6.1) 0632
Side of occlusion, 1 (%)
Left 147 @47.1) 64 (48.1) 83(46.4) 0759
Right 151 (48.4) 63(47.4) $8.(49.2) 0754
Both side 14(45) 6(43) 8(45) 0.986
Medication use history
Previous antiplatelet, 7 (%) 43(138) 17 (12.8) 26 (145) 0.659
Previous anticoagulation, (%) 26 (8.3) 10(7.5) 16(8.9) 0654
Previous statin, 1 (%) 29(93) 14(10.5) 15(8.4) 0518

IQR, interquartile range; SD, standard devi
diastolic blood pressure; TIA, trans
occlusic o

ion; BMI, body mass index; mRS, modified Ranking Scale; NIHSS, N:
attacks; ASPECTS, Alberta Stroke Program Early CT Score; LAA, large artery atheroscleros
SUC, stroke of undetermined cause; ICA, internal carotid artery; MCA, middle cerebral artery.

ional Institutes of Health Stroke Scale; SBE, systolic blood pressure; DBP,
CE, cardioembolism; SAO, small artery

SOC, stroke of other detes
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Total Meaningful Futile p-value

(n=312) recanalization recanalization
(n=133,42.6%) (n =179, 57.4%)
Treatment information
Intravenous thrombolysis, 1 (%) 138 (44.2) 63 (47.4) 75 (419) 0336
Number of passages, 1 (%) 2(1-3) 10-2) 2(1-3) <0.001
Onset to emergency, min, median (IQR) 150.00 (60.50-287.50) 150 (60-295) 145 (65-278) 0.894
Onset to image, min, median (IQR) 194,00 (12075-331.50) 215 (120-347) 190 (123-320) 0420
Onset to groin, min, median (IQR) 259.00 (185.00-406.75) 270 (185-420) 251 (185-380) 0444
Onset to recanalization, min, median (IQR) 342,50 (249.25-474.00) 340 (240-510) 344 (259-460) 0.926
Groin to recanalization, min, median (IQR) 64,50 (49.00-89.00) 56 (43-75) 72 (53-95) <0.001
Later than 6 h from onset to puncture, n(%) 93(29.8) 45 (33.8) 18(268) 0.180
Later than 8 h from onset to puncture, n(%) 55(17.6) 25(18.8) 30(168) 0.640
mTICl score, n (%) 0.387
2 126 (40.4) 50 (37.6) 76 (42.5)
3 186 (59.6) 83 (624) 103 (57.5)
NIHSS after 24 h 12(6-17) 5(3-10) 16 (12-21) <0.001
Post-treatment blood pressure variability
SBP
SD, median (IQR) 1154 (742-1691) 11.06 (7.54-16.36) 1189 (7.33-17.24) 0351
CV, median (IQR) 0.09 (0.06-0.13) 0.09 (0.06-0.12) 0.09 (0.06-0.13) 0.591
DBP
SD, median (IQR) 8.48 (5.63-11.21) 8.73(5.59-11.61) 8.17(5.79-11.15) 0.809
CV, median (IQR) 0.11(0.08-0.15) 0.11(0.08-0.15) 0.11(0.08-0.14) 0932
Complications
Brain edema, 1 (%) 14 (4.5) 0(0) 14 (7.8) 0.001
END, 7 (%) 39(12.5) 5(8) 34(19) <0.001
SICH, 1 (%) 9029) 0 9(5) 0012

range; mTICL modified Thrombolysis in

rebral Infarction; SBP, systolic blood pressure; DBR, diastolic blood pressure; SD, standard deviation; CV, coefficient of
variation; NIHSS, National Institutes of Health Stroke Scale; i

D, early neurological deterioration; sICH, intracranial hemorrhage.
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Model AUC (95% CI)

LR with L2 0.784 (0.671-0.898)
REC 0.799 (0.686-0.913)
SVM 0.738 (0.606-0.870)
XGBoost 0.790 (0.677-0.903)

AUC, the area under the receiver operating characteristic curve;
random forest classifi

12 regularization; RFC

SVM, support ve

Sensitivity

0.806
0722
0.750
0556

Specificity

0593
0704
0.704
0889

PPV

0725
0765
0771
0.870

NPV

0.696
0.655
0679
0.600

Accuracy

0714
0714
0.
0.698

0

Brier score

0.194
0.191
0.195
0.191

, confidence intervals; PPV: positive predictive value; NPV, negative predictive value; LR with L2, logistic regression with
tor machine; XGBoost, extreme gradient boosting.
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AUC (95% CI)

0.905 (0.834-0.976)
0.905 (0.829-0.981)
0.882 (0.801-0.962)
0910 (0.837-0.984)

Sensitivity

0.889
0917
0.889
0.861

Specificity

0704
03815
0630
03815

PPV

0.800
0.868
0762
0861

NPV

0826
0.880
0810
0815

Accuracy

0810
0.873
s
0.841

0.

Brier score

0.129
0.159
0.141
0.123
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Short form health 3 months
survey (SF-12) Mean (£SD)

Physical component summary (PCS)

General Health (GH) 435 (0.80)
Physical Functioning 2,64 (0.99)
(PF)

Role limitations due to 227 (£0.61)
physical health (RP)

Bodily Pain (BP) 3.66 (£1.26)
PCS 28.96 (£7.31)
Mental component summary (MCS)
Vitality (VT) 458 (£1.29)
ioning (SF) 2.22 (£0.89)

Role limitations dueto 232 (:0.66)
emotional health (RE)

Mental health (MH) 7.25 (£1.11)
MCs 32.65 (£9.41)

6 months

Mean (£SD)

3.78 (£097)
3.22(£129)

250 (£0.81)

294 (£1.24)
3492 (#9.21)

4.15 (£1.37)
249 (£1.10)
250 (£0.81)

7.10 (£1.23)
35.17(£10.44)

12 months
Mean (£SD)

3.42(£1.17)
372 (£1.65)

2.82 (0.96)

237 (£1.34)
39.49 (£11.30)

370 (£1.55)
3.03 (£1.43)
2,84 (0.96)

7.02 (£1.50)
40.12 (£12.85)

PCS, Physical Component Summary; MCS, Mental Component Summary; SD,

tandard Deviation.
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Baseline characteristics Overall N (%) No stroke Stroke No death N Death N (%)

or Mean recurrence N recurrence N (%) or Mean or Mean
(£SD) (%) or Mean (%) or Mean (£SD) (£SD)
(£SD) (£SD)

Gender
Male 88(58.7) 64(55.7) 24(68.6) 71(602) 17(53.1)
Female 62(41.3) 51(44.3) 11(314) 47(39.8) 15 (46.9)
Mean age 73.69 (£12.11) 72.56 (£12.17) 7742 (11.28) 7205 (£11.37) 79.77 (12.98)
Age group
30-39 years 1007 1(09) 0(0.0) 0(0.0) 16.1)
40-49 years 7(47) 6(52) 129 7(59) 0(0.0)
50-59 years 15(10.0) 11(9.6) 4(114) 13(11.0) 2(63)
60-69 years 30(20.0) 26 (226) 4(114) 28(237) 2(63)
70-79 years 43(287) 35 (30.4) 8(229) 35(29.7) 8(25.0)
80-89 years 47(313) 31(27.0) 16 (45.7) 34(288) 13 (40.6)
90-99 years 7(47) 5(43) 2(57) 1(08) 6(1838)
Marital status
Single/widowed/divorced 3320 29(252) 4(11.4) 29(246) 1(125)
Married 117 (78.0) 86 (74.8) 31(88.6) 89 (75.4) 28(87.5)
Area
Urban 140(93.3) 106 (92.2) 34(97.1) 108 (91.5) 32(99)
Rural 10(6.7) 9(7.8) 129 10 (8.5) 0(0.0)
Household members
Living alone 5(12.5) 2019 3(125) 4(34) 1(10.0)
Living with family members 123(96.1) 102 (98.1) 21(87.5) 114 (96.6) 9(90.0)
Presence of a caregiver
No 98(65.3) 79(68.7) 19 (54.3) 79(66.9) 19(59.4)
Yes 52(347) 36 (31.3) 16 (45.7) 39 (33.1) 13 (40.6)
Educational level
Tliterate/primary or complementary 104(69.3) 72(62.6) 32(914) 77(653) 27 (84.4)
education
Secondary or University education 46 (30.7) 43(37.4) 3(86) 41(347) 5(156)
Professional status post-stroke
Person without any profession/retired 101(673) 76 (66.1) 25(71.4) 75 (63.6) 26(81.3)
Unemployed 30(20.0) 22019 8(229) 24(203) 6(18.8)
Employed 19012.7) 17(14.8) 2(57) 19(16.1) 0(0.0)
Comorbidities
AF 47 (313) 37(322) 10 (28.6) 39 (33.1) 8(250)
ML 29(19.3) 21(183) 8(229) 21(17.8) 8(25.0)
HIN 116(77.3) 90(78.3) 26(74.3) 90(76.3) 26(81.3)
Other CVD* 20(13.3) 17(14.8) 3(8.6) 16 (13.6) 1(125)
DM 60 (40.0) 50 (43.5) 10 (28.6) 50 (42.4) 10(31.3)
DL 78 (52.0) 61(53.0) 17 (48.6) 62(52.5) 16 (50.0)
Social Security
No 25(167) 18 (15.7) 7(200) 19(16.1) 6(18.8)
Yes 125(833) 97 (84.3) 28 (80.0) 99(83.9) 26(81.3)
BMI
Normal (BMI < 25) 53 (41.1) 140 (38.8) 13 (50.0) 48 (41.0) 5(41.7)
Ovenweight (26 < BMI < 30) 46 (35.7) 40 (38.8) 6(23.0) 41(35.0) 5(417)
Obesity (31 < BMI < 40) 28(21.7) 21(204) 7(269) 26(22.2) 2(16.7)
Morbid obesity (BMI = 41) 2(16) 2(1.6) 0(0.0) 2(1.7) 0(0.0)
Mediterranean diet
No 20 (16.0) 16 (15.5) 4(18.2) 19 (16.1) 1(14.3)
Yes 105 (84.0) 87 (84.5) 18 (81.8) 99(83.9) 6(85.7)
Smoking status
Never smoker 60 (40.5) 15 (39.5) 15 (44.1) 44(37.3) 16(53.3)
Former smoker 35(23.6) 28 (24.6) 7(206) 327.1) 3(10.0)
Current smoker 53(35.8) 41 (36.0) 12(353) 42(35.6) 11(36.7)
Physical activity practice
No daily practice for >30n 32 (69.6) 24(64.9) 8(88.9) 30(68.2) 2(99)
Daily practice for > 30 min 14 (30.4) 13 (35.1) 1L 14(31.8) 0(0.0)
Sedentary duration
1-6 h/day 35(28.0) 32(317) 3(125) 34(30.1) 1(83)
7-11 h/day 42(336) 35(34.7) 7(292) 41(363) 1(83)
>12 h/day 48 (38.4) 34(337) 14 (58.3) 38(336) 10(83.3)
Family history of CVD and neurological diseases
No 210172) 17(16.8) 4(19.0) 1917.1) 2(182)
Yes 101 (82.8) 84(83.2) 17 (81.0) 92(82.9) 9(81.8)
Family history of stroke
No 46 (52.3) 37 (49.3) 9(69.2) 41(51.9) 5(55.6)
Yes 42(47.7) 38(50.7) 4(308) 38 (48.1) 4(44.4)

%, Percentage; SD, Standard Deviation; AF, Atrial Fibrillation; MI, Myocardial Infarction; HTN, Hypertension; CVD, Cardiovascular Diseases; DM, Diabetes Mellitus; DL,
BMI, Body Mass Index.

coronary artery dise:

cardiomyopathy, arthythmia, chronic heart failure, and thoracic aortic aneury
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Variable Sample Unruptured (n = 153) Ruptured (n = 164) P-value

Multi aneurysms (%) 110 76 (49.67%) 34(20.73%) <0.001
Irregular (%) 82 21 (13.73%) 61(37.20%) <0001
Daughter dome (%) 0 6(3.92%) 34 (2073%) <0001
Aneurysm location (%) 0.185
M1 125 65 (42.48%) 60 (36.59%)

Mbif 180 80 (52.29%) 100 (60.98%)

Mdist 12 8(5.23%) 4(2.44%)

Projection in axial (%) 0.306
Anterior 169 76 (19.67%) 93(56.71%)

Posterior 55 26 (16.99%) 29 (17.68%)

Neutral 93 51(33.33%) 42(2561%)

Projection in coronal (%) 0.801
Superior 105 51(33.33%) 54(32.93%)

Inferior 101 51(33.33%) 50 (30.49%)

Neutral m 51(33.33%) 60/(36.59%)

Vessel size (mm) 317 2414058 2284049 0.06
Size (mm) 317 4.06 £ 1.34 4.75£1.20 <0.001
Aneurysm height (mm) 317 2674124 3684118 <0.001
Perpendicular height (mm) 317 234+ 109 3104107 <0.001
Width (mm) 317 32+122 3534099 0.001
Neck size (mm) 317 349+ 108 3214080 0.01
AR 317 0.69 %032 1.01 £0.42 <0.001
SR 317 117070 1734082 <0.001
Bottleneck ratio 317 0934025 1144036 <0001
Height width ratio 317 0733021 0894027 <0.001
Aneurysm angle (°) 317 7142 % 1661 65.87 1653 0.004
Vessel angle () 317 4920£2522 53.97 2618 0.106
Flow angle (°) 317 135.63 2698 135.63 +29.81 0797
Parent daughter angle (°) 317 87.4329.64 79.66 423,17 0.005

M1, proximal segment of middle cerebral artery; Mbif, main middle cerebral artery bifurcation; Mdist, distal middle cerebral artery; AR, aspect ratie
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Stroke characteristics Overall N (%) or No stroke Stroke recurrence  Unadjusted HR p-value

mean (£SD) recurrence N (%) N (%) or mean (95%CI)
or mean (£SD) (£SD)

Symptoms during the initial stroke
Duration between onset of symptoms 343 (£5.94) 3.62 (£6.39) 2.8 (4.16) 0.974 (0.908-1.046) 0474
and the arrival at the hospital
Sudden painless weakness on one side of 105 (70.0) 80/(69.6) 25(714) 1166 (0.560-2.428) 0.681
the body
Sudden numbness on one side of the 47(31.3) 38(33.0) 9(25.7) 0661 (0.310-1.410) 0284
body
Sudden painless loss of vision in one or 23(153) 17(148) 607.1) 1.074 (0.446-2.587) 0874
both eyes
Sudden loss of one half of the vision 16 (10.7) 13(11.3) 3(8.6) 0.704 (0.216-2.299) 0.561
Sudden loss of the ability to understand 74(49.3) 56/(48.7) 18(51.4) 1110 (0572-2.154) 0758
what people are saying
Sudden loss of the ability to express 106 (70.7) 77(67.0) 29(82.9) 2.160 (0.897-5.203) 0.086
verbally or in writing
Administration of Intravenous 9(6:8) 7(658) 2(69) 0.997 (0.237-4.184) 0.996
thrombolysis
Duration of hospital stay 9.69 (8.35) 8.72(£7.07) 1289 (11.16) 1.041 (1.012-1.070) 0.004
ICU stay 63(42.0) 51(44.3) 12(343) 0823 (0.410-1.654) 0.585
Type of stroke
Intracerebral hemorrhage 7(47) 6(5.2) 1(29) Ref
Ischemic stroke 143(95.3) 109 (94.8) 34(97.1) 1468 (0.201-10.727) 0705
TOAST classification
LAA 58 (45.7) 39 (40.2) 19(63.3) Ref
CE 6(47) 5(52) 1(33) 0.465 (0.062-3.478) 0456
svo 63(49.6) 53(54.6) 10 (33.3) 0.4(0.186-0.861) 0.019
OE 0(0.0) 0(0.0) 0(0.0)
UE 0(0.0) 0(0.0) 0(0.0)
Right hemisphere 60 (40.0) 44(38.3) 16 (45.7) Ref
Left hemisphere 70 (46.7) 53 (46.1) 17 (48.6) 0.866 (0.437-1.714) 0.679
Bilateral hemisphere 10(6.7) 8(7.0) 2(57) 0.708 (0.163-3.080) 0.645
Treatment post-stroke
Use of lipid lowering drug 106 (70.7) 79(68.7) 27(77.1) 1317 (0.598-2.898) 0.494
Use of anti-hypertensive drug 116 (77.3) 90(783) 27 (77.1) 0.983 (0.446-2.164) 0.966
Use of hypoglycemic drug 61(407) 51(44.3) 10(28.6) 0535 (0.257-1.114) 0.095
Use of Antiplatelet agent or 141(94.0) 106 (92.2) 35(99) 22,019 (0.042-11641.17) 0334
Anticoagulant
Use of cardiac treatment 66 (44.0) 50 (43.5) 17 (48.6) 1302 (0.671-2.526) 0436
NIHSS at 3 months
<21 104(83.2) 87(85.3) 17 (73.9) Ref
=21 21(1638) 15(14.7) 6(26.1) 1732 (0.683-4.393) 0248
NIHSS at 6 months
<21 109 (73.7) 95(94.1) 14(73.7) Ref
>21 1192) 6(59) 5(26.3) 3777 (1.359-10.498) 0.0.11
NIHSS at 12 months
<21 109 (94.0) 94(94.9) 15(88.2) Ref
221 7(6.0) 5(5.1) 20118 2,266 (0.518-9.913) 0277
Quality of life at 3 months
PCS 28.96 (&7.31) 29.70 (£7.64) 25.68 (£4.35) 0.915 (0.844-0.991) 0.029
MCs 3265 (£9.41) 3413 (£8.96) 26.09 (£8.67) 0.904 (0.856-0.956) <0.001
Quality of life at 6 months
PCS 3492 (4921) 3561 (£9.23) 3122 (£835) 0.949 (0.896-1.006) 0.077
Mcs 3517 (£10.44) 36.56 (£10.11) 27.79 (£9.22) 0,920 (0.874-0.969) 0.002
Quality of life at 12 months
PCS 39.49 (£11.30) 40.43 (£11.00) 3371 (£11.76) 0,949 (0.903-0.997) 0.039
MCs 4012 (£12.85) 4130 (£12.06) 32.88 (£15.42) 0,953 (0.916-0.993) 0.021
Anxiety score post-stroke
HADS-A at 3 months 820 (£3.90) 7.82 (£3.95) 9.95 (£3.18) 1132 (1012-1.265) 0.030
HADS-A at 6 months 7.98 (4.12) 7.64 (4.21) 979 (3.65) L111 (0.997-1.238) 0.056
HADS-A at 12 months 6.46 (4.75) 6.17 (4.62) 8.40 (&5.32) 1.085 (0.980-1.201) 0117
Depression score post-stroke
HADS-D at 3 months 1215 (£531) 1135 (&5.12) 15.86 (£4.63) 1.166 (1.066-1.276) 0.001
HADS-D at 6 months 1142 (5.32) 1072 (5.09) 15.11 (5.10) 1.163 (1.058-1.280) 0.002
HADS-D at 12 months 9.57 (£6.78) 8.94 (46.35) 1380 (£8.20) 1103 (1.020-1.193) 0.014
Cognitive impairment post-stroke
MMSE at 3 months 16.29 (£7.95) 17.18 (&7.78) 1223 (£7.62) 0.938 (0.889-0.988) 0.016
MMSE at 6 months 2068 (+8.07) 2190 (£7.14) 14.16 (£9.70) 0.919 (0.876-0.963) <0.001
MMSE at 12 months 23.26 (£7.93) 24.30 (£6.81) 17.12 (&11.01) 0,925 (0.882-0.969) 0.001
Disability degree post-stroke
mRS score at 3 months 353 (&1.74) 321 (£1714) 457 (41.399) 2243 (1.643-3.062) <0.001
MRS score at 6 months 2.50 (£152) 225 (£1.374) 3.64 (£1.677) 1.688 (1.269-2.245) <0.001
MRS score at 12 months 2.16 (£155) 1.96 (1.414) 321 (£1813) 1518 (1.155-1.994) 0.003
Fatigue post-stroke
FSSat 3 months 564 (£133) 5.51 (1.38) 627 (+0.82) 1.676 (1.068-2.632) 0.025
FSSat 6 months 490 (1.44) 473 (&1.45) 5.81(&1.07) 1.746 (1.175-2.593) 0.006
FSSat 12 months 3.64 (£2.01) 349 (&1.93) 467 (£2.23) 1337 (1.012-1.765) 0.041
Pain level post-stroke
Moderate to severe pain at 3 months 75 (61.5) 58(57.4) 17 (81.0) 2.754(0.927-8.186) 0.068
Moderate to severe pain at 6 months 57(48.3) 46 (45.5) 11(64.7) 1.990 (0.736-5.380) 0175
Moderate to severe pain at 12 months 31072) 24(242) 7 (46.7) 2445 (0.886-6.742) 0.084
Neuropathic pain score post-stroke
DN4 > 4at 3 months 31252) 22(22.0) 9(39.1) 2,029 (0.878-4.690) 0.098
DN4 > 4 at 6 months 19.(16.0) 16 (16.0) 3(158) 0.947 (0.276-3.250) 0931
DN4 > 4at 12 months 10(8.7) 8(8.1) 2(125) 1552 (0.353-6.828) 0.561
Headache post-stroke (nofyes)
Headache at 3 months 45 (369) 35(35.4) 10(43.5) 1329 (0.583-3.030) 0.499
Headache at 6 months 33(280) 28(28.3) 5(263) 0.884 (0.318-2.454) 0812
Headache at 12 months 17(14.7) 14 (14.3) 3067 1116 (0.323-3.853) 0.863
Limb pain (nofyes)
Limb pain at 3 months 40 (32.8) 30(303) 10 (43.5) 1643 (0.720-3.747) 0238
Limb pain at 6 months 40(32.8) 30 (303) 10 (43.5) 1.643 (0.720-3.747) 0238

imb pain at 12 months 20(17.2) 15(15.3) 5(27.8) 1874 (0.668-5.257) 0233
Spasticity score post-stroke
MAS > 3at 3 months 26(203) 20(19.4) 6(24.0) 1175 (0.469-2.942) 0731
MAS > 3 at 6 months 2107.1) 1716.7) 4(19.0) 1092 (0.367-3.246) 0.874
MAS > 3at 12 months 13(113) 12(122) 1(59) 0.487 (0.065-3.675) 0486
Joint contractures post-stroke (no/yes)
Joint contractures at 3 months 45(36.9) 33(33.0) 12 (54.5) 2,171 (0.938-5.026) 0.070
Joint contractures at 6 months 38(322) 27(27.0) 11(61.1) 3.556 (1.378-9.179) 0.009
Joint contractures at 12 months 20(17.4) 17(17.2) 3(188) 1.106 (0.315-3.880) 0875
Falls at least one time post-stroke
At3 months 49(37.7) 34(324) 15 (60.0) 2,701 (1.213-6.014) 0015
At6 months 22(183) 16(15.8) 6(31.6) 2,066 (0.785-5.437) 0142
At12 months 9(7.6) 8(8.0) 1(5.6) 0.744 (0.099-5.595) 0774
Pressure ulcers post-stroke (level >1)
Pressure ulcers at 3 months 45 (34.6) 31(295) 14(56.0) 2,635 (1.196-5.806) 0016
Pressure ulcers at 6 months 33(27.3) 24(238) 9(45.0) 2.224(0.921-5.368) 0.076
Pressure ulcers at 12 months 19(16.1) 13(13.0) 6(333) 2,701 (1.013-7.204) 0.047
Confirmed pneumonia at 3 months 27(20.8) 18(17.1) 9(36.0) 2.543 (1.123-5.758) 0.025
post-stroke
Confirmed UTI at 3 months post-stroke 36(27.5) 28(26.4) 8(32.0) 1188 (0.512-2.753) 0.688
Confirmed UTI at 6 months post-stroke 22(18.0) 14(139) 8(38.1) 3.068 (1.270-7.411) 0013
Confirmed UTI at 12 months 7(59) 6(6.0) 1(5.6) 0.890 (0.118-6.685) 0.909
post-stroke
Epileptic seizures at 3 months 8(6.1) 5(47) 3(12.0) 2,079 (0.622-6.951) 0234
post-stroke
Epileptic seizures at 6 months 9(74) 7(6.9) 2(95) 1312 (0.306-5.635) 0715
post-stroke
Confirmed DVT at 3 months 15(11.5) 10(9.4) 5(20.0) 2.125 (0.797-5.664) 0132
post-stroke
Confirmed DVT at 6 months 541 4(4.0) 1(4.8) 1120 (0.150-8.348) 0912

post.stroke

N, Frequency; %, Percentage; D, Standard Deviation; HR, Hazard Ratio; Cl, Confidence Interval; Ref, Reference; ICU, Intensive Care Unit; TOAST, Trial of ORG 10172 in Acute
Small-Vessel Occlusion; OF, Other determined Etiology; UE, Undetermined Etiologys NIHSS,
Physical Component Summary; MCS, Mental Component Summary; HADS-A/HADS-D, Hospital Anxiety and Depression Scale ~
Severity Scale; DN4, “Douleur Neuropathique “4 questionnaire; MAS, Mo
0.05.

reatment; LAA, Large Artery Atherosclerosis; CE, Cardioembolism; SVO,

itutes of Health Stroke Scale;
sion; MM
UTI, Urinary Tract Infectior
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Baseline characteristics Overall N (%) No stroke Stroke Unadjusted p-value

or Mean recurrence N recurrence N HR (95%CI)
(£SD) (%) or Mean (%) or Mean
(£$D) (£SD)
Age 73.69 (£12.11) 72.56 (£12.17) 77.42 (£11.28) 1.043 (1.009-1.078) 0.013
Gender, female 62(41.3) 51(44.3) 11(314) 0.698 (0.342-1.424) 0323
Marital status, married 117 (78.0) 86(74.8) 31(88.6) 2417 (0.853-6.848) 0.097
Secondary or university 46 (30.7) 43(374) 3(86) 0.181 (0.055-0.590) 0.005
education
Stop work after stroke
Person without any profession 101 (67.3) 76 (66.1) 25(71.4) Ref
Unemployed 30(20.0) 22(19.1) 8(229) 0,929 (0.419-2.061) 0.857
Employed 19(12.7) 17(14.8) 2(57) 0,345 (0.082-1.458) 0.148
Presence of a guardian 52(347) 36(31.3) 16 (45.7) 16 (0.823-3.113) 0.166
Living with family members 123 (96.1) 102(98.1) 21(87.5) 0,277 (0.083-0.930) 0.038
Smoking status
Non-smoker 60 (10.5) 15(39.5) 15 (44.1) Ref
Ex-smoker 35(23.6) 28(24.6) 7(20.6) 0.630 (0.257-1.546) 0313
Current smoker 53(35.8) 41(36.0) 12(35.3) 0,801 (0.375-1.712) 0.567
Daily PA practice for >30 min 14(304) 13(35.1) 1(11.1) 0,259 (0.032-2.074) 0203
Sedentary lifestyle
1-6 h/day 35(28.0) 32(31.7) 3(125) Ref
7-11 h/day 42(336) 35(34.7) 7(292) 1,979 (0.512-7.652) 0323
>12 h/day 48 (38.4) 34(337) 14(58.3) 3.926 0.032
(1.128-13.667)
Moderate level of social support 95(73.1) 79(74.5) 16 (66.7) 0.768 (0.328-1.794) 0541
(23 < SSRS < 44)
Mediterranean diet 105 (84.0) 87 (84.5) 18 (81.8) 0.889 (0.301-2.627) 0832
History of AF 26(17.3) 21(18.3) 5(14.3) 0.832 (0.400-1.733) 0.623
History of MI 6(4.0) 5(43) 1(29) 1469 (0.667-3.234) 0340
History of CVD* 20 (13.3) 17(14.8) 3(86) 0.576 (0.176-1.881) 0.361
History of HIN 113 (75.3) 88(76.5) 25(71.4) 0.855 (0.401-1.826) 0.686
History of DM 59.(39.3) 49 (42.6) 10(28.6) 0.553 (0.266-1.153) 0114
History of DL 74 (49.3) 57 (49.6) 17 (48.6) 0.789 (0.406-1.531) 0483
Family history of stroke 4247.7) 38 (507) 4(308) 0.470 (0.145-1.527) 0209
N, Erequency; %, Percentage; SD, Standard Deviation; HR, Hazard Ratio; CI, Confidence Interval; Ref, Reference; SSRS, Social Support Rating Scal illation; MI, Myocardial

Infarction; HTN, Hypertension; C
*CVD, coronary artery di

rdiovascular Diseases; DM, Di
rrhythmia, chroni

s Mellitus; DL, Dy
heart failure, and thoracic aortic

. The bold values indicate

ificant p-valug

<0.05.
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Model Sensitivity Specificity PPV NPV Accuracy Auc

Training dataset (n = 1,033)

ANN (95% CI) 0.73(0.65, 0.82) 0.98(0.95,0.99) 0.88 (0.84,092) 0.77 (0.70,0.84) 0.92 (0.89, 0.95) 0.94(0.91,0.97)
KNN (95% C)) 059050, 0.68) 0.86(0.82,0.90) 0.56 (0.47, 0.65) 064 (056,0.72) 083 (0.78, 0.89) 0.76 (0.68, 0.84)
RF (96% CI) 0.70 (0.64, 0.76) 092 (0.87,097) 0.79(0.75, 0.83) 0.71(0.64,0.78) 088 (0.84,0.92) 0.85 (0.80, 0.90)
SVM (95% Cl) 0.49 (0.39, 0.59) 0.96 (0.93, 0.99) 0.76 (0.68, 0.84) 0.62 (0.54,0.70) 0.89 (0.85, 0.93) 0.74 (0.66, 0.82)
NBC (95% Cl) 0.48 (0.38, 0.59) 096 (0.93,0.99) 0,50 (0.40, 0.60) 069 (0.61,0.77) 0.81(0.75,0.87) 0.73(0.65, 0.81)
COX (95% C) 051 (0.42,0.61) 097 (0.95,099) 0.77 (0.69, 0.85) 0.71(0.63,0.79) 0.85 (0.80, 0.90) 0.88(0.83, 0.98)
P-value® <0001 <0001 <0001 <0.001 <0.001 <0001
Testing dataset (n = 443)

ANN (95% C) 070 (0.62,0.78) 097 (0.95,0.99) 0.89(0.85,0.93) 0.82(0.76,0.88) 093 (0.90, 0.96) 0.89(0.85, 0.93)
KNN (95% Cl) 0.53 (0.44, 0.62) 0.88 (0.84, 0.92) 0.60 (0.51, 0.69) 0.71 (0.63, 0.79) 0.71 (0.63, 0.79) 0.81(0.75, 0.87)
RF (95% CI) 069 (0.62,0.76) 094 (0.92, 0.96) 0.85 (0.82,0.88) 079 (0.76,0.82) 088 (0.84,0.92) 087 (0.83, 0.91)
SVM (95% Cl) 053 (0.44,0.62) 093 (0.90, 0.96) 0.75 (0.67,082) 0.78 (0.71,0.85) 082 (0.73,0.89) 0.80(0.74, 0.86)
NBC (95% Cl) 050 (0.40, 0.60) 093 (0.90, 0.96) 0.63(0.54,0.72) 079 0.72,0.86) 0.83(0.76, 0.90) 0.84(0.78, 0.90)
COX (95% C) 054 (0.45,0.64) 0.96 (0.94,098) 0.88 (0.83,0.99) 061 (0.53, 0.69) 087 (0.82,0.92) 087 (0.82,0.92)
P-value* <0.001 <0.001 <0.001 <0001 <0.001 <0001

ANN, ertiiciel neural network; KNN, K nearest neighbor; R, random forest; SVM, support vector machine; NBC, naive Bayes clessifier; COX, Cox regression; PPV, positive predictive
value; NPV, negative predictive value; AUC, area under the curve; Cl, confidence itervel.
“The P-value is the statistical significance of the forecasting models and performance indices calculated using a Chi-squared test.
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Models Sensitivity Specificity PPV NPV Accuracy Auc

ANN (95% C) 074 (0.66, 0.82) 097 (0.95,0.99) 0.89(0.85,0.94) 087 (0.82,0.92) 0.93 (0.90, 0.96) 0.94(0.91,0.97)
KNN (95% Cl) 050 (0.40, 0.49) 087 (0.83,091) 0.61(0.52,0.70) 0.70 (0.62,0.78) 0.80 (0.74, 0.86) 0.83(0.78,0.88)
RF (95% CI) 070 (0.66, 0.74) 095 (0.91,098) 0.84 (0.80, 0.88) 085 (0:81,0.89) 0.90 (0.87, 0.93) 0.90(0.86, 0.94)
SVM (95% Cl) 051 (0.41,0.61) 0.96 (0.94,098) 0.76 (0.69, 0.89) 079 (0.72,0.87) 0.88(0.84,0.92) 0.81(0.76,0.86)
NBC (95% C)) 050 (0.40, 0.60) 0,93 (0.90,0.96) 0.61(0.52,0.70) 080(0.73, 0.87) 084(0.79,0.89) 080(0.75,0.85)
COX (96% C) 058 (0.49, 0.67) 092 (0.89, 0.95) 0.84(0.78,0.90) 069 (0.61,0.77) 0.88(0.84,0.92) 0.88(0.84,0.92)
P-value* <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

ANN, artificial neural network; KNN, K nearest neighbor; RF; random forest; SYM, support vector machine; NBC, naive Bayes clessifier; COX, Cox regression; PPV, positive predictive
value; NPV, negative predictive value; AUC, area under the curve; Cl, confidence interval.
“The P-value is the statistical significance of the forecasting models and the performance indices calculated using a Chi-squared test.
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Findings

Post-acute care (PAC) program was the best
predictor of 30-day readmission

Using Instrumental Variable analysis to control for
endogeneity bias, an increase in institutional PAC
use was associated with a decrease in 30-day
readmission rate by 0.19 percentage points

In most rural counties, 30-day readmission rates
were 0.3 (95% Cl, ~0.6 to ~0.1) percentage points
fower in a non-PAC group compared to a PAC group
Clnical predictors of 30-day readmission included
comorbidities (e.g., iver disease, hypertension) and
discharge to a PAC faciity

Anincrease in quarterly PAC use was significantly (P
< 0.001) associated with a decrease in 30-day
tisk-standardized readmission rates for acute
myocardial infarction, heart failure, and hip/femur
fracture

It showed that discharge to inpatient postacute care
facilty (adjusted odds ratio 1.61,95% C 1.07-2.41)
was significantly associated with a higher likelihood
of 30-day readmission after discharge

The 30-day readmission rates were 15.5% for the
PAC group vs. 80.4% in the non-PAC group
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Outcome Available of AF (n =136) No-AF (n =511) p-value

n=647 Median (IQR)/N Median
(%) (IQR)/N (%)

Baseline characteristics
Age (years) 647 73 (65-78) 63(55-70) <0.001
Sex (female) 647 63 (46.3) 101 (19.8) <0.001
Maximum deficit from onset 647 78 (57.4) 192 (37.6) <0.001
Admission NIHSS 647 30 (22-34) 25 (16-32) 0.001
Admission pe-ASPECTS 643 8(7-10) 8(7-9) 0082
Hypertension 647 92(67.6) 359 (703) 0556
DM 647 27 (19.9) 122(239) 0322
Dyslipidemia 452 33(37.5) 189 (51.9) 0015
Previous TIA/AIS 647 25(18.4) 120 (23.5) 0249
CHD 647 48 (35.3) 57(11.2) <0.001
VHD 647 16 (11.8) 2(04) <0.001
INR 557 1.06 (1.00-1.15) 102 (096-1.09) <0.001
Medication history
Antiplatelet 644 34(25.0) 135 (26.6) 0794
Anticoagulation 643 12(2.0) 1002) <0.001
Statin 644 20 (14.7) 74 (14.6) 0967
Stroke causative mechanism 647 <0.001
LAA 3(22) 415 (81.2)
CE 130 (95.6) 43 (8.4)
Otherst 322 53 (104)
Location of ABAO 647 <0.001
Distal third 104 (76.5) 118 (23.1)
Middle third 17 (125) 178 (34.8)
Proximal third 7(5.1) 100 (19.6)
VA-Va} 8(59) 115 (22.5)
Treatment profiles
VTS 647 25(18.4) 94 (18.4) 0997
OTP (min) 644 315 (221-462) 329 (220-501) 0277
PTR (min) 644 91 (60.5-128) 109 (75-155) 0.001
PTA/PTAS 647 16 (11.8) 289 (56.6) <0.001
Type of mechanical 0012
thrombectomy
Stent retriever 482 113(23.4%) 369 (76.6%)
Aspiration 20 4(20%) 16(80%)
PTA/PTAS 66 4(3.1%) 62(96.9%)
Intra-arterial medication 75 61(81.3%) 14(18.7%)

and/or mechanical

fragmentation

Combination of mechanical an 55(40.4%) 367(71.8%) <0.001
thrombectomy
mTIC 2 2b 647 111 (81.6) 411 (80.4) 085
st pass effect 291 36 (41.9) 51(249) 0.004

Craniectomy/Craniopuncture 647 6(4.4) 8(1.6) 009
Technological complications 66 19 (14.0) 49(9.6) 0141
Complications © 2 Arterial Perforation © 5 Arterial Perforation

o 2 Dissection o 8 Dissection

o § Distal Embolization .19

o 5 Vasospasm Distal Embolization

o 2 Vascular Rupture o 13 Vasospasm

o 4 Vascular Rupture

AR, atrial fibrillation; IOR, interquartile rage; N, numbs
Tomography Scorg A/A
Normalized Ratio; LAA, large artery atherosclerosis;
from symptoms onset to vessel puncture; PTR,
hrombolysis in Cerebral Infarction; FPE, first pass effect.

{The definition of the distal vertebral artery (VA-V4 segment) occlusion included in th
The definition of others included small-vessel occlusion,stroke of other determined etiology, and undetermined etiology.
§The definition of IVT is administration of intravenous alteplase within 4.5 h or intravenous urokinase within 6 h of the

IS, posterior circulation-Alberta Stroke Program Early Computed
HD, coronary heart dis
cardioembolism; ABAO, acute basilar artery occlusion; VA-V4, Vertebral artery-V:

VHD, valvular heart discase; INR, International
TP, time
me from groin puncture to vessel recanalization; PTA/PTAS, percutancous transluminal angioplasty and/or stenting; miTICI, modifi

DM, Diabetes mellitus

IVT, intravenous thrombolysi

study referred to V4 segment occlusion of isolated vertebral artery.
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Outcome Available of AF (n=136) No-AF p-value <OR (95% CI) p-value aOR* (95% CI) p-value

n=647 Md (IQR)/N (n=511)
(%) Md
(IQR)/N (%)
90-day follow-up
mRS 647 5(2-6) 5(2-6) 0902 0.978 (0.692-1.382) 0899 0915 0,694
(0.588-1.424)F
mR$ 0-3 647 48 (35.3) 159 (31.1) 0.409 1.208 (0.811-1.799) 0.354 1.093 (0.608-1.965) 0.765
Mortality 647 65(47.8) 234 (45.8) 0749 1.084 (0.742-1.583) 0677 0.851 (0.491-1.475) 0.565
SICH (Heidelberg 636 11(82) 34(68) 0.699 1.231 (0.606-2.499) 0565 1,093 (0.451-2.652) 0.844
definition)
1-year follow-up
mRS 0-3 615 43(323) 176.(36.5) 0372 0,831 (0.552-1.249) 0373 0.908 (0.504-1.636) 0.747
Mortality 615 79 (59.4) 257 (533) 0213 1281 (0.868-1.891) 0213 1216 (0.697-2.123) 0.491
Ischemic recurrence 316% 12 (17.6) 20(8.1) 0.020 2443 (1.128-5.292) 0.024 4.076 0.031
(beyond 90 days) (1L137-14.612)§

AR atrial fibrillation; Md, median; IOR, interquartile rage; N, number; cOR, crude odds rati
*Adjusted estimates of effect were calculated

1, confidence interval; aOR, adjusted odds ratio. mRS, modified R ; SICH, Symptomatic intracranial hemorrhage.
fon pe-ASPE of ABAO, IVT, PTR, ¥
n ordinal logistic regression model and indicates the odds of improvement of 1 point on the mRS, with a common odds ratio greater than 1 indici
#The number of ischemic recurrences in AF and No-AF cohort was 68 and 248 respectivel
and 32 cases who were lost to follow-up at 1 year.

$Adjusting for AE age, SBP, HbA ¢, cigarette.

ion nihss, ad

multiple regr
1The adjusted common odds ratio was estimated from

ion taking the following variables into account: age, DM, adn
AFbetter.
Because of the incomplete follow-up data of ischemic recurrence within 90 days, there were only 316 cases remained after excluding 299 deaths within 90 days

e number of ischemic recurrences in AF and No-AF cohort was 68 and 248 respectively.
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Variable Full cohort (n = 647) AF cohort (n = 136)
ccOR (95%CI)  p-value acOR (95%CI) pvalue ccOR (95%CI) pvalue acOR (95%CI) pvalue

age 1.019 (1.007-1.031) 0002 1.019 (1.005-1.033)  0.007 1.04(1.008-1.073) 0013 1.003 (0.968-1.039) 0864
DM 1.887 (1.329-2.68)  <0.001 1.783 (1.214-2.617)  0.003 5.123(1.948-13.472)  0.001 5909 (2.056-16.982)  0.001
AF 0.978 (0.692-1.382)  0.899 0915 (0.588-1.424)  0.694 NA NA

Admission NIHSS 1.096 (1.079-1.114)  <0.001 1.095 (1.077-1.114) <0001 L118(1078-1.16) ~ <0.001  1102(1059-1.147)  <0.001

Admission pc-ASPECTS 0642 (0.583-0.707)  <0.001  0.69 (0.622-0.765) ~ <0.001 0597 (0.48-0.743) ~ <0.001 0755 (0.591-0965)  0.025

Location

Distal third* Ref Ref Ref Ref

Middle third 1.229 (0.865-1.746) 0250 1.194 (0.784-1.819)  0.409 0901 (0.352-2.308) 0828 0850 (0.295-2.450) 0763
Proximal third 1.262 (0.827-1.927) 0280 1.069 (0.654-1.747) 0791 0707 (0.178-2.815)  0.623 0283 (0.058-1.389)  0.120
VA-V4 1.291 (0.862-1.934) 0216 1.223 (0.765-1.960)  0.402 0721(0.197-2.644) 0,622 0852 (0.204-3.549) 0826
T 0.946 (0.658-1.36)  0.763 0.916 (0.618-1.358)  0.663 1451 (0.639-3.298) 0374 1768 (0.708-4.417) 0223
PTR 1.006 (1.004-1.009)  <0.001 1007 (1004-1.01) <0001 1015(1.008-1.022) <0001  1015(1.006-1023)  0.001
mTICI >2b 0.157 (0.09-0.25) <0001 0.174(0.106-0.286) <0001  0.114(0.036-0.358)  <0.001 0252 (0.074-0.858) ~ 0.027

mRS, modified Rankin Scales AR, atrial fibrillation; ccOR, crude common odds ratio; acOR, adjusted common odds ratio; DM, Diabetes mellitus; NIHSS, Nati
cale; pe posterior circulation-Alberta Stroke Program Early Computed Tomography Score; VA-V4, Vertebral artery-V4; IV
from groin puncture to vessel recanalization; mTICI, modified Thrombolysis in Cerebral Infarction.

*Distal third of the b: as a reference.

nal Institutes of Health
ravenous thrombolysis; PTR, time

ilar artery was tak
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Variables

Age (years)

AF

SBP (mmHg)
HbA Lc (%)

Cigarette

Md, median; IOR, interquartile rage; N, number; cOR, crude odds ratio; aOR, adjusted odds ratio; AF, atrial fib
ing for AE, age

*Adj

Recurrence (n = 32)
Md (IQR)/N (%)

72 (60-79)
12(37.5)

148 (134-161)

56(54-62)
13 (40.6)

SBP, HbA 1, ci

No recurrence (n
=284)
Md (IQR)/N (%)

63 (54-71)
56 (19.7)

148 (130-162)
5.9 (5.5-6.6)
102 (35.9)

p-value

0.001
0.020

0700
0.176
0.600

cOR (95% CI)

1.052 (1.015-1.089)
2443 (1.128-5.292)

1.004 (0.989-1.02)
0652 (0.343-1.238)
1.221(0.579-2.574)

p-value

0.005
0.024

0578
0.191
0.600

llation; SBE, systolic blood pressure.

aOR* (95% CI)

1.049 (0.991-1.111)
4076
(1.137-14.612)
1014 (0.993-1.036)
0707 (0.368-1.358)
1346 (0.413-4.379)

p-value

0.096
0031

0.184
0298
0622
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Variables

SR
AR

Aneurysm angle
Daughter dome

Ml aneurysms

OR, odds ratio; CI, confidence interval; AR, aspect ratio; and SI

OR

1774
7.667
0980
4307
0243

95% CI

1.006-3.127
2.697-21.795
0.964-0997

1.630-11.379.
0.137-0.433

P-value

0.047
<0.001
0.020
0.003
<0.001





