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Editorial on the Research Topic

Targeting DNA damage response to enhance antitumor innate immunity
in radiotherapy
Radiotherapy is a mainstay of cancer treatment that is used to treat approximately half

of all cancers (1) with cure rates second only to surgery. The efficacy of radiotherapy has

been largely attributed to the direct killing of tumor cells. Yet, recent research efforts

highlighted considerable indirect effects of radiation on the tumor microenvironment

(TME), especially the immune compartment, with clinical implications. This active field of

research has revealed a complex relationship between radiation and the local/systemic

immune system, yielding both immunostimulatory and immunosuppressive effects.

Mechanistically, radiation creates a pro-immunogenic environment through the direct

release of damage associated molecular patterns (DAMPs) during immunogenic cell death

(2). Cells that survive after radiation modulate the immune system by: 1) intracellular

sensing of DAMPs by innate immunity sensors such as cGAS/STING and RIG-I-like

receptors followed by production of type 1 interferons, and 2) tumor-associated antigen

cross-presentation (3–5). However, these initial immunostimulatory effects are often

counterbalanced by immunosuppression. For instance, intracellularly, autophagy and

mitophagy contribute to the clearance of immunostimulatory DAMPs (6). In the TME,

longer-term immunosuppressive effects are driven by tumor-associated macrophages and

myeloid-derived suppressor cells (7, 8). In addition, immune cell repopulation can occur

post radiation as the irradiated tissue is driven towards a wound-healing

microenvironment (9). Thus, a complex balance of several factors determines whether

radiation induces a suppressed or stimulated immune environment. Current efforts are

focused on understanding how the interaction between radiation and immunity

plays out in the TME, with the goal of designing interventions to promote an

immunostimulatory environment.
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Shifting the balance toward the immune stimulatory effects of

radiation, requires an in-depth knowledge of the biological effects of

radiation on the tumor innate immune response and on the

different immune cellular compartments. Furthermore, the

contribution of tumor specific characteristics, like tumor type and

stage, needs also to be considered. In this special edition, Beach et al.

review the differential effects of radiation on macrophage

populations in the TME. Tumor associated macrophages can be

polarized by radiation into anti-inflammatory/pro-tumorigenic

macrophages or pro-inflammatory/anti-tumorigenic macrophages

depending on the context (Beach et al.). This exemplifies the dual

potential of a single immune cell population within the TME to

either promote or eradicate tumor cells, depending on factors

including radiation dose, the immune profile of the TME, and the

tumor type. Further insight regarding the interplay between the

tumor and immune response to radiation is described by Gehre

et al. Specifically, the authors demonstrate that radioresistant triple

negative breast cancer cells upregulate multiple immune checkpoint

molecules on their surface compared to radiosensitive cells upon

radiation (Gehre et al.). Whether or not radiation leads to immune

stimulation is dependent on a combination of factors including

tumor intrinsic properties and the broader immune landscape.

Beyond the direct interactions of radiation with tumor cells and

intratumoral immune cells, radiation may also have beneficial

effects on peripheral immune cells leading to an adaptive immune

response. Craig et al. comprehensively review the abscopal effect, a

phenomenon whereby radiotherapy efficacy is extended beyond the

tumor in the radiation field to tumor(s) outside of the radiation field

by engaging a systemic/adaptive immune response. The presence of

an abscopal effect has important implications in the context of

metastatic and recurrent disease. Although abscopal responses

remain rare in clinical settings, there is growing interest in

investigating strategies to enhance the presence and consistency

of abscopal responses. For instance, a recent study suggested

blocking CD47/SIRPa axis increases radiation-induced

phagocytosis and immune priming, leading to enhanced

systematic tumor control (10, 11).

Therapeutic strategies that enhance anti-tumoral immune

responses to radiotherapy such as those targeting the DNA

damage and replication stress responses as well as immune

checkpoints are currently an intense area of investigation with

potential to further improve patient outcomes to radiotherapy.

Daley et al. and Jungles et al. provide comprehensive reviews on

the biological rationale and current clinical investigation of

combining radiation with other treatment modalities in Ewing

sarcoma and breast cancer, respectively. For example, several

clinical trials are underway to evaluate the combination of PARP

inhibitors, radiotherapy, and immunotherapy in breast cancer

patients with or without BRCA deleterious mutations.

Inhibitors of the DNA damage response (DDR) are effective

radiation sensitizers targeting multiple protective pathways, such as

cell cycle checkpoints and DNA repair, that have recently emerged

as promising strategies for sensitizing to immunotherapy (12, 13).

Combining DDR inhibitors with radiation is an active area of both
Frontiers in Oncology 025
pre-clinical and clinical research reviewed by Carlsen and El-Deiry

and Chan Wah Hak et al. The ability of DDR inhibitors to enhance

radiation-induced immune effects including increased type 1

interferon production and immune cell infiltration is highlighted

(Chan Wah Hak et al.). Interestingly, inhibition of different DDR

targets enhances radiation efficacy with varying magnitudes by

synergizing with different pathways of innate immune signaling

(14–17). In this Research Topic, Mariampilla et al. describe how

ATR inhibition following radiation enhances interferon signaling

mediated by cGAS signaling in human lung cancer and

osteosarcoma cells. Additional radiosensitizers, including those

which target the replication stress response, are being investigated

clinically and are reviewed in Zhang et al. Based on the capacity for

DDR inhibitors to enhance the immune effects caused by radiation,

it is conceivable that these combinations may further sensitize

tumor cells to immunotherapy.

Future investigation into the foundational mechanisms behind

radiation-induced immune modulation, as well as the synergies with

existing treatment modalities, might provide a rationale for

leveraging combinatorial strategies in clinical settings aimed at

enhancing radiation-induced immune stimulation and sensitization

of tumors to immunotherapy. While these concepts are thoroughly

covered in the Research Topic, additional work should focus on

determining the differential properties of each treatment, alone or in

combination, to reveal which settings provide the best clinical

outcomes while minimizing toxicity that could arise in the presence

of excess systemic inflammation. This will provide clinicians with

needed information to accurately match patients with the most

effective treatment to ultimately improve the prognosis of the >18

million of new cancer patients diagnosed each year.
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DNA replication is a process fundamental in all living organisms in which deregulation,
known as replication stress, often leads to genomic instability, a hallmark of cancer. Most
malignant tumors sustain persistent proliferation and tolerate replication stress via
increasing reliance to the replication stress response. So whilst replication stress
induces genomic instability and tumorigenesis, the replication stress response exhibits
a unique cancer-specific vulnerability that can be targeted to induce catastrophic cell
proliferation. Radiation therapy, most used in cancer treatment, induces a plethora of DNA
lesions that affect DNA integrity and, in-turn, DNA replication. Owing to radiation dose
limitations for specific organs and tumor tissue resistance, the therapeutic window is
narrow. Thus, a means to eliminate or reduce tumor radioresistance is urgently needed.
Current research trends have highlighted the potential of combining replication stress
regulators with radiation therapy to capitalize on the high replication stress of tumors.
Here, we review the current body of evidence regarding the role of replication stress in
tumor progression and discuss potential means of enhancing tumor radiosensitivity by
targeting the replication stress response. We offer new insights into the possibility of
combining radiation therapy with replication stress drugs for clinical use.

Keywords: replication stress, DNA damage repair, radiation therapy, radioresistance, radiosensitizer
BACKGROUND

Although radiation therapy (RT) is used to treat ~50% of malignant tumors (1), it accounts for only
5% of the total cost of cancer patient care, making it the most cost-effective cancer treatment (2). RT
is also an effective treatment for patients exhibiting a poor performance status who cannot tolerate
surgery (3). Although new technologies, such as CyberKnife®, Tomotherapy®, and proton and
heavy ion radiotherapy have been developed, radioresistance remains a crucial factor limiting our
ability to cure cancer (4). Primary radioresistance can be caused by genomic or epigenetic changes
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in tumor cells, and radiation-induced genomic changes lead to
secondary radioresistance, which is the most common cause of
treatment failure and disease recurrence (5). Owing to
limitations associated with normal tissue tolerance, increasing
radiosensitivity in only cancer cells remains challenging.

Replication stress (RS) is the slowing or stalling of replication
fork progression and is a major cause of genomic instability in
cancer cells, which induces the accumulation of mutated and
damaged DNA (6). In normal tissues, RS is a factor in the natural
aging process (7). Cellular response to RS activates checkpoints
to arrest cell cycle and repair DNA damage. Importantly, RS is
selectively higher in cancer cells than in normal cells, and makes
cancer cells more dependent on RS response pathways to survive
(8, 9). Oncogene activation drives continuous proliferation,
which is the basis for the generation of RS known as
oncogene-induced RS. It is an important source of genome
instability and might therefore be the basis of intratumor
heterogeneity (10). Moreover, RS-induced DNA damage in
tumors activates specific DNA damage repair pathways due to
different genomic background cancer types. It also causes cells to
enter mitosis with under-replicated regions that can cause
genomic instability, thus potentially enhancing malignant
behaviors (11). If the cellular response to RS is ineffective, then
cells enter mitosis with an excess of damaged DNA, resulting in
genomic instability or cell death due to mitotic catastrophe (12).
These differences between normal and tumor cells suggest that
targeting RS may contribute to the specific elimination of
tumors (13).
Abbreviations: RT, radiation therapy; RS, replication stress; DDR, DNA damage
response; ATR, ataxia telangiectasia and rad3-related; CHK1, checkpoint kinase 1;
ssDNA, single-stranded DNA; RPA, replication protein A; DSBs, double-strand
breaks; UPR, unfolded protein response; HR, homologous recombination; T-LAK,
T-lymphoid-activated killer; TOPK, T-LAK cell-derived protein kinase; Mcl-1,
myeloid cell leukemia sequence 1; PARPs, poly (ADP-ribose) polymerases; IR,
ionizing radiation; ATM, ataxia telangiectasia mutated; MRE11, meiotic
recombination 11; MDM2, mouse double minute 2; POLQ, DNA polymerase
theta; BRCA, breast cancer related protein; mTOR, mammalian target of the
rapamycin; SUMO, small ubiquitin-like modifier; HIF, hypoxia inducible factor;
RSF-1, spacing factor-1; NHEJ, non-homologous end joining; CDC, cell division
cycle; SAC, spindle assembly checkpoint; APC/C, anaphase-promoting complex
or cyclosome; PI3K, phosphoinositide 3-kinase; Bcl-2, B-cell lymphoma-2; Bax,
Bcl-2-associated X protein; TAME, tosyl-L-arginine methyl ester; TOP3A,
topoisomerase IIIa; RMI, RecQ-mediated genome instability; BTR, BLM-
Topoisomerase IIIa-RMI1-RMI2; BLM, bloom syndrome helicase; MAC,
MOS4-associated complex; MRN, MRE11/RAD50/NBS1; hTERT, human
telomerase reverse transcriptase; RFWD3, RING finger and WD repeat domain
3; CHK1, checkpoint kinase 1; AKT, protein kinase B; mTOR, mammalian target
of rapamycin; GBM, glioblastoma; USP9X, ubiquitin-specific protease 9X;
KDM4C, lysine-specific demethylase 4C; TGF-b2, transforming growth factor-
b2; UBE2O, ubiquitin-conjugating enzyme E2O; Mxi1, MAX interactor 1; SENP,
SUMO-specific protease; 53BP1, p53-binding protein 1; Rnf4, Ring finger protein
4; MDC1, mediators of DNA damage checkpoint protein 1; ER, endoplasmic
reticulum; SETX, senataxin; PKR, protein kinase R; PERK, PKR-like ER kinase;
ATF4, activating transcription factor 4; PRRs, pattern recognition receptors;
DAMPs, damage-associated molecular patterns; PAMPs, pathogen-associated
molecular patterns; IFNs, interferons; cGAMP, cyclic GMP-AMP; STING,
stimulator of the interferon gene; cGAS, cGAMP synthase; IRF3, interferon
regulatory factor 3; NF-kB, nuclear factor kappa-light-chain-enhancer of
activated B cell; EVs, extracellular vesicles; TME, tumor microenvironment; PD-
L1, programmed death ligand 1; PD-1, programmed cell death protein 1.
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RS has been highlighted as a hallmark of malignant tumor
radiosensitivity (6, 14). Impaired responses to RS sensitize
tumors to radiation (15), highlighting the importance of RS-
aimed therapy for radiation treatment. Here, we summarize the
current body of evidence concerning RS in cancer
radiosensitivity, including known inhibitors and other potential
targets. Treatments targeting RS-related pathways are suggested
as an ideal radiosensitizer for cancer treatment.
RS

Accurate DNA information is crucial for ensuring genomic stability.
Conserving DNA integrity during DNA replication requires
coordination between multiple cis- and trans-acting factors, such
as regulating fork movement, nucleotide supply, transcription
machinery, cellular checkpoints, and DNA repair pathways (16,
17). Here, we briefly summarize how RS occurs in malignant cells
and the differences between cancer and normal cells, and then
reason why RS is an ideal target for cancer treatment.

Sources
Several major exogenous and endogenous factors that cause RS
are listed here. Endogenous factors include alternative structures
of DNA, centromeres, telomeres, DNA binding non-histones,
replication, and transcription conflicts. All replication stressors
affect the replication fork timing, causing the replication fork to
slow down or even stall. Exogenous factors including DNA
damage caused by radiation or cytotoxic substances, nucleotide
loss, and abnormal replication, which activate DNA damage
response (DDR) (Figure 1) (18).
RS Responses
Cells have several strategies for dealing with RS called “RS
responses”, including re-priming, fork reversal and restart,
translation synthesis, template switching, and break-induced
replication (16). RS response dysregulation is a typical
characteristic of tumors, which may be caused by the loss of
tumor suppressor factor or abnormal oncogene expression.
Chronic RS increases the chance of breakage or gap formation
in fragile sites, resulting in genomic instability, promoting
further activation of oncogenes, and inducing malignant
tumors in the early stage (8). Although mild or moderate levels
of RS may induce tumorigenesis and promote tumor progression
by accumulation genomic instability, in the event of severe and
persistent RS, cells will finally develop mitotic disaster,
senescence, or apoptosis (19). In the absence of active ataxia
telangiectasia and rad3-related (ATR) and checkpoint kinase 1
(CHK1), replication forks cannot be stalled and thus continue to
trigger dormant replication origins, leading to deoxynucleotide
triphosphate pool depletion as well as slowing and stalling
replication fork progression (12). When single-stranded DNA
(ssDNA) is no longer protected by replication protein A (RPA),
the replication fork collapses, resulting in double-strand breaks
(DSBs). When these cells enter mitosis, unduplicated
chromosomes trigger cell death through mitotic disasters
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(20, 21). Moreover, mutations produced during cancer
development enhance RS and cause tumor cells to be hyper-
dependent on RS response (18), which may be a potential target
for cancer therapy (Figure 2).
Frontiers in Oncology | www.frontiersin.org 39
RS AND RADIORESISTANCE IN CANCER

It is well-established that tumor radiation sensitivity greatly
varies among individuals. As a result, some drugs have been
FIGURE 2 | (A) Mild or moderate level of replication stress (RS) activates multiple mechanisms such as re-priming to repair DNA damage. (B) Severe and persistent
RS leads to double-stranded DNA (dsDNA) break accumulation and eventually causes mitotic catastrophe which triggers cell death.
A

B

D

E

C

FIGURE 1 | Typical exogenous and endogenous sources cause replication stress (RS), such as (A) DNA damage, (B) special DNA structures, (C) proteins tightly
bound to DNA, (D) R-loops, and (E) topological stress.
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reported to target multiple sensitivity or resistance factors
(18, 22–24). Tumor radiosensitivity is mainly related to
the intrinsic sensitivity of tumor cells and the cancer
microenvironment (25). Here, we summarize the well-known
mechanisms of radiation resistance and analyze the relationship
between RS and the resistance factors (Figure 3).

Hypoxia
Hypoxia is a common feature of malignant tumors resulting
from rapid cell proliferation coupled with abnormal vasculature
formation (26) and plays a pivotal role in tumor progression and
treatment resistance (27). Hypoxia inducible factor (HIF),
especially HIF-1, is the key regulator response to hypoxia.
Clinical data have shown that eliminating the hypoxic state of
tumors is an effective radiosensitizer (28, 29). Preclinical research
has shown that NVX-108 increases tumor oxygen levels by 400%,
significantly enhancing radio sensitivity (30). Phase I/II clinical
trials have indicated the safety of NVX-108, and studies
evaluating its efficacy are ongoing (29). Hypoxia also alters cell
cycle response to ensure survival and minimal errors throughout
cell division (31). Recent research claimed that hypoxia-induced
RS was linked to the unfolded protein response (UPR) (32).
There are few proteins that link hypoxic DDR and UPR, which
suggests that they could be novel therapeutic targets to improve
radiotherapy response (33, 34).

Cell Apoptosis
Apoptosis is a key part of the intrinsic tumor suppression
mechanism, which is triggered when proliferation becomes
aberrant (35, 36). Targeting tumor cell apoptosis also
contributes to radiosensitization. A high proportion of cells die
through apoptosis, which is a positive indicator of
radiosensitivity (37), and enhancing apoptosis effectively
enhances tumor radiosensitivity. Knocking down remodeling
and spacing factor-1 (RSF-1) enhanced the radiosensitivity of
Frontiers in Oncology | www.frontiersin.org 410
cervical cancer cells by redistributing the cell cycle, inducing cell
apoptosis, and eventually inhibiting cell proliferation (38).
Astaxanthin enhances irradiation-induced apoptosis in
esophageal squamous cell carcinoma cells (39). Deficient RS
response also leads to cell apoptosis, which suggests a role as a
synergistic factor to RT (40).

Cell Cycle Distribution
The cell cycle distribution of cancer cells affects radio
sensitization, especially for some cancer types that depend
more on other DDR pathways rather than homologous repair
(HR) (41). In different cell cycles, the differences in chromosome
structure lead to unequal radiosensitivity. Clinicians believe
G2/M is the most sensitive phase since the radiation induces
more complex damage that induce longer cell cycle arrest and
therefore need proficient HR for repair (42). Meanwhile, the
damage that occurs during G2/M can more easily cause
premature entry into mitosis, which can lead to a higher
possibility of passing incorrect genomic information to the
next generation, or even cause mitotic catastrophe directly
(43). Eurycomalactone, an active quassinoid isolated from
Eurycoma longifolia, has been shown to sensitize non-small cell
lung cancer cells to X-rays through a G2/M block (44). Further
studies have focused on the G2/M arrest after receiving radiation.
When DDR is activated, it temporarily stops the cell cycle to
provide more time for repair, or if the damage is too severe,
induces apoptosis. Eliminating the radiation-induced G2/M
arrest or forcing damage cells to enter into mitosis both
sensitizes cancer cells to radiation treatment (45, 46). This cell-
cycle-dependent radiosensitization mechanism provides
potential directions for further research into radiosensitizers.

DNA Damage and Repair
Cells respond to DNA damage by activating the DDR pathway.
Abnormal activation of DDR in tumor cells leads to the generation
FIGURE 3 | Radiosensitivity is associated with hypoxia, cell apoptosis, cell cycle distribution, and DNA damage response.
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of radiotherapy resistance (46). High RS also leads to DNA
damage and activate the DDR pathway. The five major DNA
repair pathways are base excision repair, nucleotide excision
repair, mismatch repair, HR, and non-homologous end joining
(NHEJ). Any impaired pathway can be compensated for by the
overactivation of other pathways (47). These compensatory
mechanisms in tumor cells lead to different responses to
treatment with DNA damage agents, as well as RT (1, 48). Both
RS and radiation activate a similar DDR pathway, providing the
possibility of a synergistic effect of targeting RS with RT (49, 50).
Frontiers in Oncology | www.frontiersin.org 511
TARGETING RS AS
RADIATION SENSITIZER

Cancer cells relying more on RS response than normal
cells to survive provides a potential target of anti-tumor
treatment sensitization (51). In this section, we summarized
and discussed the specific application of reagents targeting
the RS response or RS-induced DDR that have already been
demonstrated to be effective or have the potential to
enhance tumor radiosensitization (Table 1, Figure 4).
TABLE 1 | Targeting replication stress as radiation sensitizer.

Targeted
Marker

Mechanism Drug Phase Details (Including NCT Number) Status

Inducing exorbitant RS

CDC6 Decreased CDC6 expression in tumor cells
effectively inhibits tumor cell growth and promotes
apoptosis by preventing G1/S and S/G2
transition.

– – – –

TOPK TOPK sensitizes cancer cells to radiotherapy,
owing to the preservation of irradiation-induced
damage and reduced tolerance to RS.

– – – –

CDC20 Reduced CDC20 expression disrupts the APC-
CDC20 interaction and shows great effect on
suppressing tumor proliferating and metastasis.

TAME – – –

pro-TAME – – –

Apcin – – –

Mcl-1 Mcl-1 blocks radiation-induced apoptosis and
inhibits clonogenic cell death.

BAY1143572
(Atuveciclib)

Phase I Phase I Dose Escalation of BAY1143572 in Subjects With
Acute Leukemia (NCT02345382)

Completed

Phase I Open Label Phase I Dose Escalation Study With
BAY1143572 in Patients With Advanced Cancer
(NCT01938638)

Completed

UMI77 – – –

Targeting RS response

PARP Inhibition of PARP forces PARP to trap onto DNA
thus preventing replication restart, causing RS-
induced DNA damage.

Rucaparib
(AG014699)

Phase I A Study of Rucaparib Administered With Radiation in
Patients With Triple Negative Breast Cancer With an
Incomplete Response Following Chemotherapy
(NCT03542175)

Recruiting

Niraparib
(MK-4827,
Zejula)

Phase I/II A Safety Study Adding Niraparib and Dostarlimab to
Radiation Therapy for Rectal Cancers (NCT04926324)

Not yet
recruiting

Phase II The Efficacy and Safety of Radiotherapy Plus Niraparib
and Toripalimab in Patients With Recurrent Small Cell
Lung Cancer (NCT05162196)

Not yet
recruiting

Phase I/II Study of Niraparib With Radiotherapy for Treatment of
Metastatic Invasive Carcinoma of the Cervix
(NCT03644342)

Recruiting

Phase II Radiation, Immunotherapy and PARP Inhibitor in Triple
Negative Breast Cancer (NCT04837209)

Recruiting

Phase II Niraparib With Standard Combination Radiation Therapy
and Androgen Deprivation Therapy in Treating Patients
With High Risk Prostate Cancer (NCT04037254)

Recruiting

Phase II Androgen Ablation Therapy With or Without Niraparib After
Radiation Therapy for the Treatment of High-Risk
Localized or Locally Advanced Prostate Cancer
(NCT04947254)

Recruiting

Phase II Niraparib Combined With Radiotherapy in rGBM
(NCT04715620)

Recruiting

Phase II Niraparib + Dostarlimab + RT in Pancreatic Cancer
(NCT04409002)

Active, not
recruiting

Phase I/II A Multi-Center Trial of Androgen Suppression With
Abiraterone Acetate, Leuprolide, PARP Inhibition and

Recruiting

(Continued)
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TABLE 1 | Continued

Targeted
Marker

Mechanism Drug Phase Details (Including NCT Number) Status

Stereotactic Body Radiotherapy in Prostate Cancer
(NCT04194554)

Talazoparib
(BMN673,
Talzenna)

Phase I

Talazoparib and Radiation Therapy in Treating Patients
With Locally Recurrent Gynecologic Cancers
(NCT03968406)

Recruiting

Phase II A Study to Evaluate TAlazoparib, Radiotherapy and
Atezolizumab in gBRCA 1/2 Negative Patients With PD-L1
+ Metastatic Triple Negative Breast Cancer
(NCT04690855)

Recruiting

Phase I Talazoparib and Thoracic RT for ES-SCLC
(NCT04170946)

Recruiting

Olaparib
(AZD2281,
KU0059436)

Phase I Olaparib & Radiation Therapy for Patients Triple Negative
Breast Cancer (TNBC) (NCT03109080)

Active, not
recruiting

Phase I/II Phase I/IIa Study of Concomitant Radiotherapy With
Olaparib and Temozolomide in Unresectable High Grade
Gliomas Patients (NCT03212742)

Recruiting

Phase II Focal Radiation With Pulsed Systemic Therapy of
Abiraterone, Androgen Deprivation Therapy (ADT),
Lynparza Towards Castration Sensitive Oligometastatic
Prostate Cancer (FAALCON) (NCT04748042)

Recruiting

Phase II Radiation Therapy With or Without Olaparib in Treating
Patients With Inflammatory Breast Cancer (NCT03598257)

Recruiting

Phase I Study of Olaparib With Radiation Therapy and Cetuximab
in Advanced Head and Neck Cancer With Heavy Smoking
History (NCT01758731)

Completed

Phase I Olaparib and Radiotherapy in Inoperable Breast Cancer
(NCT02227082)

Completed

Phase I Olaparib and Radiotherapy in Head and Neck Cancer
(NCT02229656)

Active, not
recruiting

Phase II A Study of Radiation Therapy With Pembrolizumab and
Olaparib in Women Who Have Triple-Negative Breast
Cancer (NCT04683679)

Recruiting

Phase I A Study of Olaparib and Low Dose Radiotherapy for Small
Cell Lung Cancer (NCT03532880)

Recruiting

Phase I Radiotherapy & Olaparib in COmbination for Carcinoma of
the Oesophagus (NCT01460888)

Unknown

Phase I A Study of Olaparib With Concomitant Radiotherapy in
Locally Advanced/Unresectable Soft-tissue Sarcoma
(NCT02787642)

Recruiting

Phase I/II Olaparib and Durvalumab With Carboplatin, Etoposide,
and/or Radiation Therapy for the Treatment of Extensive-
Stage Small Cell Lung Cancer, PRIO Trial (NCT04728230)

Recruiting

Phase I Radiotherapy and Durvalumab/Durvalumab Combo
(Tremelimumab/Olaparid) for Small Cell Lung Cancer
(NCT03923270)

Recruiting

Phase I Olaparib Dose Escalating Trial + Concurrent RT With or
Without Cisplatin in Locally Advanced NSCLC
(NCT01562210)

Completed

Phase I A Study to Investigate Biomarker Effects of Pre-Surgical
Treatment With DNA Damage Repair (DDR) Agents in
Patients With Head and Neck Squamous Cell Carcinoma
(HNSCC) (NCT03022409)

Completed

Phase I A Platform Study of Novel Agents in Combination With
Radiotherapy in NSCLC (NCT04550104)

Recruiting

Phase I/II Lu-177-DOTATATE (Lutathera) in Combination With
Olaparib in Inoperable Gastroenteropancreatico
Neuroendocrine Tumors (GEP-NET) (NCT04086485)

Not yet
recruiting

Phase I Phase I Study of Olaparib With Cisplatin Based
Chemoradiotherapy in Squamous Cell Carcinoma of the
Head and Neck (NCT01491139)

Withdrawn

Phase II/III Refining Adjuvant Treatment IN Endometrial Cancer Based
On Molecular Features (NCT05255653)

Not yet
recruiting
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TABLE 1 | Continued

Targeted
Marker

Mechanism Drug Phase Details (Including NCT Number) Status

Veliparib
(ABT-888,
NSC 737664)

Phase I A Phase I Study of ABT-888 in Combination With
Conventional Whole Brain Radiation Therapy (WBRT) in
Cancer Patients With Brain Metastases (NCT00649207)

Completed

Phase I A Clinical Study Conducted in Multiple Centers Evaluating
Escalating Doses of Veliparib in Combination With
Capecitabine and Radiation in Patients With Locally
Advanced Rectal Cancer (NCT01589419)

Completed

Phase I Veliparib in Combination With Gemcitabine and Intensity
Modulated Radiation Therapy in Patients With Pancreatic
Cancer (NCT01908478)

Completed

Phase I/II Veliparib, Radiation Therapy, and Temozolomide in
Treating Younger Patients With Newly Diagnosed Diffuse
Pontine Gliomas ( NCT01514201)

Completed

Phase II Comparison of Veliparib and Whole Brain Radiation
Therapy (WBRT) Versus Placebo and WBRT in Adults
With Brain Metastases From Non-Small Cell Lung Cancer

Completed

Phase I Veliparib and Radiation Therapy in Treating Patients With
Advanced Solid Malignancies With Peritoneal
Carcinomatosis, Epithelial Ovarian, Fallopian, or Primary
Peritoneal Cancer (NCT01264432)

Completed

Phase I Veliparib With Radiation Therapy in Patients With
Inflammatory or Loco-regionally Recurrent Breast Cancer
(NCT01477489)

Completed

Phase I Pre-Operative Radiation and Veliparib for Breast Cancer
(NCT01618357)

Recruiting

Phase II Veliparib, Radiation Therapy, and Temozolomide in
Treating Patients With Newly Diagnosed Malignant Glioma
Without H3 K27M or BRAFV600 Mutations
(NCT03581292)

Active, not
recruiting

Phase I ABT-888, Radiation Therapy, and Temozolomide in
Treating Patients With Newly Diagnosed Glioblastoma
Multiforme (NCT00770471)

Completed

Phase I/II Veliparib With or Without Radiation Therapy, Carboplatin,
and Paclitaxel in Patients With Stage III Non-small Cell
Lung Cancer That Cannot Be Removed by Surgery
(NCT01386385)

Active, not
recruiting

Phase I/II A Study Evaluating the Efficacy and Tolerability of Veliparib
in Combination With Paclitaxel/Carboplatin-Based
Chemoradiotherapy Followed by Veliparib and Paclitaxel/
Carboplatin Consolidation in Adults With Stage III Non-
Small Cell Lung Cancer (NSCLC) ( NCT02412371)

Terminated

RPA Overexpression of RPA significantly increases the
radiation resistance in multiple cancer types.

– – – –

TopBP1 TopBP1 is known to form phase-separated
nuclear condensates that amplify ATR activity to
CHK1 and slow down replication forks.

– – – –

ATR-
CHK1

Inhibition of ATR-related signaling pathways
increases cell apoptosis and effectively improves
tumor radiosensitivity.

AZD6738
(Ceralasertib)

Phase I Phase I Study to Assess Safety of AZD6738 Alone and in
Combination With Radiotherapy in Patients With Solid
Tumours (NCT02223923)

Unknown

Phase I A Study to Investigate Biomarker Effects of Pre-Surgical
Treatment With DNA Damage Repair (DDR) Agents in
Patients With Head and Neck Squamous Cell Carcinoma
(HNSCC) (NCT03022409)

Completed

VE-821 – – –

SAR-020106 – – –

BAY1895344
(Elimusertib)

Phase I First-in-human Study of ATR Inhibitor BAY1895344 in
Patients With Advanced Solid Tumors and Lymphomas
(NCT03188965)

Active, not
recruiting

Phase I Testing the Addition of an Anti-cancer Drug, BAY1895344,
With Radiation Therapy to the Usual Pembrolizumab

Recruiting
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TABLE 1 | Continued

Targeted
Marker

Mechanism Drug Phase Details (Including NCT Number) Status

Treatment for Recurrent Head and Neck Cancer
(NCT04576091)

RAD51 Inhibition of RAD51 induces RS to promote
apoptosis.

Berberine – – –

Valproate Phase II Valproic Acid, Radiation, and Bevacizumab in Children
With High Grade Gliomas or Diffuse Intrinsic Pontine
Glioma (NCT00879437)

Completed

Phase I/II Preoperative Valproic Acid and Radiation Therapy for
Rectal Cancer (NCT01898104)

Recruiting

Phase II Valproic Acid With Temozolomide and Radiation Therapy
to Treat Brain Tumors (NCT00302159)

Completed

Phase I Phase I Study of Temozolomide, Valproic Acid and
Radiation Therapy in Patients With Brain Metastases
(NCT00437957)

Terminated

Phase I/II Valproic Acid With Chemoradiotherapy for Non-Small-Cell
Lung Cancer (NCT01203735)

Unknown

BLM The high expression of BLM is a poor prognostic
biomarker for multiple cancers. Though there’s no
data published about the links between BLM
inhibitor and radiation sensitivity till now, it’s a
promising target worth further research.

ML216 (CID-
49852229)

– – –

WEE1 Inhibition of WEE1 impairs RS response activated
by ATR, and thus increasing tumor cell
radiosensitivity.

AZD1775
(Adavosertib,
MK-1775)

Phase I Adavosertib, Radiation Therapy, and Temozolomide in
Treating Patients With Newly Diagnosed or Recurrent
Glioblastoma (NCT01849146)

Active, not
recruiting

Phase I Testing the Addition of an Anti-cancer Drug, Adavosertib,
to Radiation Therapy for Patients With Incurable
Esophageal and Gastroesophageal Junction Cancers
(NCT04460937)

Suspended

Phase I Adavosertib and Local Radiation Therapy in Treating
Children With Newly Diagnosed Diffuse Intrinsic Pontine
Gliomas (NCT01922076)

Active, not
recruiting

Phase I Testing AZD1775 inC Combination With Radiotherapy and
Chemotherapy in Cervical, Upper Vaginal and Uterine
Cancers (NCT03345784)

Active, not
recruiting

Phase I Dose-escalating AZD1775 + Concurrent Radiation +
Cisplatin for Intermediate/High Risk HNSCC
(NCT02585973)

Completed

Phase I/II Dose Escalation Trial of AZD1775 and Gemcitabine
(+Radiation) for Unresectable Adenocarcinoma of the
Pancreas (NCT02037230)

Completed

Phase I WEE1 Inhibitor With Cisplatin and Radiotherapy: A Trial in
Head and Neck Cancer (NCT03028766)

Completed

Targeting RS induced DDR

p53 Activation of p53 activates cell cycle block and
apoptosis.

– – – –

MRE11 Low MRE11 expression reduces phosphorylated
DNA-PKcs expression, further increases tumor
radiosensitivity.

Mirin – – –

Selenium Phase II Capecitabine, Oxaliplatin, Selenomethionine, and Radiation
Therapy in Treating Patients Undergoing Surgery For
Newly Diagnosed Stage II or III Rectal Adenocarcinoma
(NCT00625183)

Terminated

Phase II Carboplatin, Paclitaxel, Selenomethionine, and Radiation
Therapy in Treating Patients With Stage III Non-Small Cell
Lung Cancer That Cannot Be Removed by Surgery
(NCT00526890)

Terminated

Phase II Selenomethionine in Reducing Mucositis in Patients With
Locally Advanced Head and Neck Cancer Who Are
Receiving Cisplatin and Radiation Therapy (NCT01682031)

Terminated

Phase II Selenomethionine and Finasteride Before Surgery or
Radiation Therapy in Treating Patients With Stage I or
Stage II Prostate Cancer (NCT00736645)

Completed

Phase II Withdrawn

(Continued)
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Inducing Exorbitant RS
In this section, we summarized and discussed the known
factors that contribute to the normal DNA replication process.
Losing control of them triggers RS thus synthetically
sensitizing radiation.

CDC6
Cell division cycle 6 homologue (CDC6) is an important
regulator of DNA replication in eukaryotic cells (52, 53)
involved in replication complex assembly during G1 phase.
Replication fork stall accumulation caused by RS triggers
G2/M checkpoint activation. CDC6 promotes the response of
the G2/M checkpoint (54) and is positively correlated with
Frontiers in Oncology | www.frontiersin.org 915
tumor progression. Decreased CDC6 expression in tumor cells
effectively inhibits tumor cell growth and promotes
apoptosis by preventing G1/S and S/G2 transition (55).
CDC6 overexpression has been observed in radiation-
resistant cells, contributing to an increase in radiation
resistance in cancer cells (56). CDC6 downregulation
enhanced cisplatin-resistant bladder cancer cell sensitivity in
a clinical trial, which is also related to DSB damage (57).
Therefore, CDC6 inhibition in tumor cells might be an
effective target for enhancing tumor radiosensitivity.
Although CDC6 has druggable sites for a chemical molecular,
it is an essential protein in most cell lines that makes it difficult
for clinical transformation (58). Thus, further study on the
TABLE 1 | Continued

Targeted
Marker

Mechanism Drug Phase Details (Including NCT Number) Status

Selenomethionine in Treating Patients Undergoing Surgery
or Internal Radiation Therapy for Stage I or Stage II
Prostate Cancer (NCT00736164)

OBP-301
(Telomelysin)

Phase I A Study of OBP-301 With Radiation Therapy in Patients
With Esophageal Cancer (NCT03213054)

Unknown

ATM-
CHK2

Deficiency of ATM shows radiation sensitizer
effect in multiple cancer types. The effect of ATM
on radiation sensitivity is more depend on cell
cycle regulation rather than DDR pathway.

AZD0156 – – –

AZD1390 Phase I A Study to Assess the Safety and Tolerability of AZD1390
Given With Radiation Therapy in Patients With Brain
Cancer (NCT03423628)

Recruiting

Early
Phase 1

AZD1390 in Recurrent Grade IV Glioma Patients
(NCT05182905)

Recruiting

Phase I A Platform Study of Novel Agents in Combination With
Radiotherapy in NSCLC (NCT04550104)

Recruiting

Phase I Sarcomas and DDR-Inhibition; a Combined Modality Study
(NCT05116254)

Not yet
recruiting

MDM2 Inhibition of MDM2 phosphorylation leads to cell
apoptosis and cell cycle arrest, thus repressing
tumor cell proliferation.

MI-219 – – –

APG-115
(Alrizomadlin)

– – –

POLQ Reduced POLQ expression inhibits DSB repair
and tumor cell survival.

Novobiocin – – –

BRCA Mutations in BRCA is synthetic lethal with PARP
inhibition.

– – – –

PI3K/AKT/
mTOR

Inhibition of PI3K/AKT/mTOR signaling pathway
leads to cell cycle arrest in the G2/M phase and
reduces tumor cell radio-resistance.

Dactolisib
(BEZ235,
NVP-BEZ235)

– – –

Apitolisib
(GDC-0980,
RG7422,
GNE 390)

– – –

Torin2 – – –

Others

Ubiquitin
and
SUMO

SUMO/ubiquitin equilibrium at active DNA
replication forks controls CDK1 activation.

– – – –

UPR Activated UPR reduces the oxidative
phosphorylation thus impairing cell cycle arrest
and DNA repair factors after radiation also
enhance radiation induced cell death.

ONC201
(TIC10)

Phase II Combination Therapy for the Treatment of Diffuse Midline
Gliomas (NCT05009992)

Recruiting

Phase I ONC201 and Radiation Therapy Before Surgery for the
Treatment of Recurrent Glioblastoma (NCT04854044)

Withdrawn
July 2022 | Volume 12 |
 Article 83863
Data retrieved from: https://clinicaltrials.gov/ct2/home Retrieval data 04/19/2022.
RS, replication stress; DDR, DNA damage response; CDC6, cell division cycle 6 homologue; TOPK, t-lymphoid-activated killer (T-LAK) cell-derived protein kinase; CDC20, cell division
cycle protein 20 homologue; TAME, tosyl-L-arginine methyl ester; Mcl-1, myeloid cell leukemia sequence 1; PARP, poly (ADP-ribose) polymerases; RPA, replication protein A; TopBP1,
topoisomerase II-binding protein 1; ATR, ataxia telangiectasia and rad3-related; CHK, checkpoint kinase; MRE11, meiotic recombination 11; ATM, ataxia telangiectasia mutated; MDM2,
mouse double minute 2; POLQ, DNA polymerase theta; BRCA, breast cancer related protein; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; mTOR, mammalian target of
rapamycin; SUMO, small ubiquitin-like modifier; UPR, unfolded protein response.
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regulatory mechanism of CDC6 in radiation resistance will help
to develop clinical practical drugs in the future.

TOPK
T-lymphoid-activated killer (T-LAK) cell-derived protein kinase
(TOPK) is a mitogen-activated protein kinase kinase-like kinase
that plays an important role in cell cycle regulation. TOPK
overexpression is a pathophysiological feature in different
tumors (59).

TOPK knockdown does not change the radiation response of
normal tissues but significantly enhances cancer cell
radiosensitivity, and TOPK disruption may lead to tumor-
specific radiosensitivity (60). Thus, TOPK, as a cancer-specific
biomarker and biochemical target, may enhance the efficacy of
cancer treatment while causing minimal damage to normal
t i s sues (59) . TOPK was found to enhance tumor
radiosensitivity by enhancing intratumor RS (61). Further
experiments demonstrated that TOPK helps to restart the
stopped replication fork. However, when TOPK was depleted,
increased levels of stalled replication forks were observed, with or
without external DNA damage (61). Therefore, TOPK
suppression increases internal replication damage. Owing to
Frontiers in Oncology | www.frontiersin.org 1016
the preservation of irradiation-induced damage and reduced
tolerance to RS, TOPK sensitizes cancer cells to radiotherapy.

TOPK interacts with CHK1 and cell division cycle 25
homologue C (CDC25C) complex (key participants in the
replication of the damage induced) (61). It facilitates mitotic
progression at the G2/M checkpoint via cyclin-dependent kinase
1 (CDK1), and also occurs in response to replication stressors
(such as irradiation) by influencing the action of key
intermediates such as CHK1 (61). Therefore, the synergistic
effect of TOPK inhibition and radiotherapy is likely to produce
DSBs after replication. However, unlike CHK1, the toxicity of
TOPK inhibitors is limited in normal tissues due to low
expression. Therefore, TOPK appears to be a promising target
for further research.

CDC20
Cell division cycle 20 homologue (CDC20) has important functions
in chromosome segregation and mitotic exit. It is the target of the
spindle assembly checkpoint (SAC) and the key cofactor of the
anaphase-promoting complex or cyclosome (APC/C) E3 ubiquitin
ligase, thus regulating APC/C ubiquitin activity on specific
substrates for their subsequent degradation by the proteasome
FIGURE 4 | Potential targets and corresponding inhibitors of (A) the replication stress (RS), (B) the RS response, or (C) RS-induced DNA damage response (DDR)
that have been previously reported.
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(62). CDC20 is overexpressed in tumor cells and acts as a poor
prognostic factor in multiple cancers (63, 64). It further increased
after radiation and has been reported to increase radiation resistance
via regulating B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X
protein (Bax), forkhead box proteins O1 (FoxO1), or myeloid cell
leukemia sequence 1 (Mcl-1)/p-CHK1 in different cancer types (65–
67). Suppression of CDC20 expression reverses the radioresistance
(65–67). There are multiple available inhibitors of CDC20,
including tosyl-L-arginine methyl ester (TAME), Pro-TAME, and
apcin. Their main effects involve disrupting the APC-CDC20
interaction (68, 69). Some of them showed great efficacy in
suppress tumor proliferating and metastasis (70, 71). However,
there has been no evidence on the effects of the CDC20 inhibitors
on radiosensitivity. Therefore, CDC20 could be a potential target as
a radiosensitizer, but more evidence in future studies is needed.

Mcl-1
As the first anti-apoptotic protein in the Bcl-2 family, Mcl-1 is
regulated by the cell cycle and reach peak expression levels in the
S/G2 phase. It acts as a functional switch in selecting between HR
and NHEJ pathways after DNA damage (72). It blocks radiation-
induced apoptosis and inhibits clonogenic cell death (73).
Targeting Mcl-1 by a small molecule enhances RS sensitivity to
cancer therapy (72). BAY1143572 downregulated Mcl-1 by
inhibiting binding of HIF-1a to the Mcl-1 promoter (74).
UMI77 is a selective inhibitor of Mcl-1 that dissociates Mcl-1
from the pro-apoptotic protein Bak and produced significant
radiosensitization in pancreas cancers (75).

Targeting RS Response
Here, we summarize important RS response factors that are
essential for cells to survive. Inhibition of these factors leads to
uncontrolled replication collapse and even mitotic catastrophe,
which makes them ideal targets for radiosensitization.

PARP
Poly (ADP-ribose) polymerases (PARPs) are involved in DDR and
recruit DNA repair proteins to damaged sites by catalyzing ADP-
ribosylation, leading to the formation of poly (ADP-ribose)
polymers (76). PARP1, the most abundant PARP, plays a similar
role to PARP2 in the DDR process and is an important regulator of
fork reversal (77). Inhibition of PARP directly increases the speed
of fork elongation and does not cause fork stalling, which contrasts
with the accepted model in which inhibitors of PARP induce fork
stalling and collapse. Aberrant acceleration of fork progression by
40% above the normal velocity leads to DNA damage (78).

However, the effects of PARP inhibitor do not directly
decrease the expression of PARP. Rather, the inhibitor forces
PARP to become stuck on DNA, thus preventing replication
restart and causing RS-induced DNA damage (79). It was also
linked to decreased replication fork length with greater ssDNA
gaps, which in turn cause more genomic instability at G2/M (80).
With all the evidence of PARP inhibitors in RS-induced DNA
damage, researchers have reported on various preclinical models
of combination therapy with PARP inhibitors and ionizing
radiation (IR) (81). Olaparib, a PARP inhibitor that has been
widely used in cancer treatment, has been reported to have
strong tumor-specific radiosensitization effects (82, 83).
Frontiers in Oncology | www.frontiersin.org 1117
RPA
The RPA complex is one of the first responders to coordinate
DNA replication (18, 84). It consists of three subunits, RPA1
(RPA70), RPA2 (RPA32), and RPA3 (RPA14), which are
essential to protect ssDNA at replication forks and recruits
DNA polymerases a, d, and ϵ for the initiation and elongation
steps of DNA replication (84). It has been reported that RPA1
phosphorylation upon RS decreases the ubiquitination of
chromatin-loaded RPA1, leading to an accumulation of RPA1
on stalled replication forks. This helps the DNA-binding
domains of RPA2 to bind with RPA1-coated ssDNA, thus
contributing to increased RPA2 binding stability (85). Loss of
RPA accelerates fork breakage, whereas overexpression of RPA is
sufficient to delay a “replication catastrophe” (86). It also plays an
important role in DDR in relation to the HR pathway (87).
Furthermore, overexpression of RPA significantly increases the
radiation resistance in multiple cancer types (88–90). However,
there has been no reported inhibitors of RPA because it is an
essential protein to all cells. Furthermore, it is a downstream
factor of ATR, and thus the regulation of ATR may produce
similar effects (86). RING finger and WD repeat domain 3
(RFWD3)-mediated ubiquitination of RPA helps to remove
RPA from the damage site, which is a crucial step for HR (91),
and thus provides a possible target for increasing radiation
sensitivity via ubiquitination regulation.

TopBP1
DNA topoisomerase II-binding protein 1 (TopBP1) serves as a
scaffold to assemble protein complexes in a phosphorylation-
dependent manner via its multiple breast cancer C-terminal
(BRCT) repeats. It is repurposed to scaffold different processes
dependent on cell cycle-regulated changes in phosphorylation of
target proteins (92). It is known to form phase-separated nuclear
condensates that amplifies ATR activity to CHK1 and slow down
replication forks (93). TopBP1 also stabilized bloom syndrome
helicase (BLM) to maintain genome stability (94). It is often
overexpressed in cancer and can bypass control by CDK2 to
interact with treslin, leading to enhanced DNA replication (95).

However, it has been reported that at low levels, TopBP1
activates ATR/CHK1, but once TopBP1 protein accumulates
above an optimal level, it paradoxically leads to lower activation
of ATR/CHK1. This is due to the perturbation of ATR-TopBP1
interaction and ATR chromatin loading by excessive TopBP1.
Depletion of TopBP1 in some specific cancer cells enhanced
ATR/CHK1 activation and S-phase checkpoint response after RS
(96). Thus, simply inhibiting TopBP1 may lead to unexpected
results, which makes it not an ideal target for radiation sensitization.

ATR-CHK1
ATR of the phosphoinositide 3-kinase (PI3K) family is a central
regulator of RS. After ssDNA fragments are coated with PRA, ATR
and ATR-interacting protein are recruited and activated. It further
phosphorylates various proteins, including CHK1 kinase, which
inhibits mitotic entry and dormant origin activation.Mitotic entry is
inhibited by CDC25 phosphatase phosphorylation, which prevents
subsequent mitotic CDK activation (97). Cancer genome
sequencing showed a very low ATR or CHK1 mutation or
July 2022 | Volume 12 | Article 838637
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deletion frequency. Instead, these genes are often amplified in
cancer cells, probably because they need to process high levels of
RS to survive. ATR and CHK1 inhibition can increase RS, leading to
mitotic catastrophes that trigger cell death (98). Furthermore,
inhibition of ATR-related signaling pathways can increase cell
apoptosis and effectively improve tumor radiosensitivity (99).
ATR inhibitors, such as AZD6738 and VE-821 as well as the
CHK1 inhibitor SAR-020106 were effective radiosensitizers in
preclinical studies (100–102). An ongoing phase I clinical trial
(NCT03188965) is assessing the safety profile of ATR inhibitors
(BAY1895344) (103).

RAD51
RAD51 is a master regulator of DNA replication and plays
important roles in DSB repair, RS, and mitosis (104). RAD51 is a
core factor inovercomingRSbyslowingor stalling replication forks,
which threatens replication integrity (105). It facilitates fork
inversion, protects reverse forks, repairs and restarts broken
replication forks, and post-replication gap filling (104, 106).

RAD51 inhibit ion may lead to increased tumor
radiosensitivity, and it has been reported as a potential target
of berberine in osteosarcoma radiosensitization (107). Valproate
was found to increase tumor tissue cell radiosensitivity by
increasing levels of RFWD3 and inhibiting RAD51 (108). The
inhibition of nucleophosmin1 (NPM1) by YTR107, a small
molecule that binds with NPM1, inhibits pentamer formation
and represses RAD51 formation after IR. The synergistic effect of
YTR107 and the PARP1/2 inhibitor ABT-888 increased RS and
radiation-induced cell mortality (109).

BLM
BLMis a 3’-5’ATP-dependentRecQDNAhelicase that is one of the
most essential genome stabilizers involved in the regulationofDNA
replication, recombination, and both homologous and non-
homologous pathways of DSB repair (110). It interacts with
topoisomerase IIIa (TOP3A), RecQ-mediated genome instability
(RMI) 1, and RMI2 to form the BLM-Topoisomerase IIIa-RMI1-
RMI2 (BTR) complex, whichdissolves doubleHolliday junctions to
produce non-crossover HR products. It also promotes DNA-end
resection, restart of stalled replication forks, andprocessing ofultra-
fine DNA bridges in mitosis (111). BLM helicase-deficient cells
exhibit multiple defects in DNA replication, including
accumulation of abnormal DNA replication intermediates, slower
replication fork velocity, and excessive firing of dormant origins,
thus exhibit increased levels of chromatid breakage andHR(112). It
interacts directly with both RAD51 and RPA, and the function in
DNA replication is regulated by sumoylation (113).

The high expression of BLM is a poor prognostic biomarker
for multiple cancers (114, 115). Biallelic pathogenic variants in
BLM cause bloom syndrome with severe pre- and postnatal
growth deficiency, immune abnormalities, sensitivity to sunlight,
insulin resistance, and a high risk for many cancers that occur at
an early age (116). The symptoms of bloom syndrome including
sensitivity to ultraviolet damage, which is similar to radiation,
provide the possibility of transforming this genomic defect into a
treatment sensitizer. ML216 is a small molecule inhibitor of
Frontiers in Oncology | www.frontiersin.org 1218
BLM, and inhibits cell proliferation of BLM-proficient cells and
increases the frequency of sister chromatid exchanges (117).
Though there has been no data published on the links between a
BLM inhibitor and radiation sensitivity till now, it is a promising
target worth further research.

WEE1
When ssDNA accumulation at stalled replication forks activates
ATR, it phosphorylates CHK1, which in turn activates WEE1
kinase and inhibits CDC25 phosphatase. While WEE1 inhibits
CDKs, the key drivers of cell cycle progression, by phosphorylating
the conserved threonine 14 (Thr14) and tyrosine 15 (Tyr15)
residues, CDC25 activates CDKs by dephosphorylating the same
residues (118). Elevated WEE1 expression reduces RS and
activates G2/M checkpoints, conferring cell resistance to CHK1
inhibitors (98). Recently, it has been reported that the ATR-WEE1
module inhibits the MOS4-associated complex (MAC) to regulate
RS responses (118).

The evidence suggests that WEE1 inhibition impairs the RS
response activated by ATR, and thus increases tumor cell
radiosensitivity (119). WEE1 kinase inhibitors sensitize tumor
cells to proton and X-ray irradiation by inducing RS, independent
of TP53mutation status, such as AZD1775 (120–122). Clinical trials
have shown that the WEE1 inhibitor adavosertib could potentiate
the efficacy of RT; however, its clinical application is limited by its
unfavorable safety profile (123).

Targeting RS-Induced DDR
The RS response shares many biological pathways with DDR.
They are widely intertwined and thus hard to completely
distinguish (124). Here, we grouped the proteins that are
typically related to the DDR pathway but are not necessarily
involved in the RS response. Targeting these proteins usually
impairs the DDR processing to enhance radiosensitivity, which
makes them the most promising targets.

p53
The p53 signaling pathway plays a key role in determining
radiosensitivity in normal tissues but is often inactivated during
cancer. Loss of p53 in tumor cells allows them to escape cell cycle
arrest and apoptosis checkpoints and promotes the growth of
early-stage cancer cells by skipping the cell cycle checkpoint
caused by RS (125). During DNA replication, IR-induced DNA
damage stalls replication forks, and single-strand breaks (SSBs)
can be transformed into DSBs, thereby activating the ataxia
telangiectasia mutated (ATM)/ATR pathway. ATM and ATR
phosphorylate p53 to increase its stability and activate target
genes. RS induced by chemotherapy drugs such as trifluridine
leads to cell senescence or apoptosis of tumor cells according to the
state of p53 (126). Acetylation of p53 may modulate cancer cell
radiosensitivity, which provides a promising strategy for
radiosensitization (127).

MRE11
Meiotic recombination 11 (MRE11), the core of the MRE11/
RAD50/NBS1 (MRN) complex, is involved in DNA break end
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detection, phosphorylation-dependent signal amplification, and
DSB repair (128). The complex is critical for ATM activation of
DSBs and downstream activation of G2/M and p53-dependent
G1/S cell cycle checkpoints (129, 130). MRE11 also has
endonuclease and exonuclease activities residing in the
phosphodiesterase domain. These nuclease activities are crucial
for the pathway choice of HR and NHEJ (131). Cancer cells rely
on DNA repair for survival during cancer therapies, and thus
MRE11 might be a promising synergistic therapeutic target.

Dysfunction of it in neoplastic breast tumors results in the
accumulation of R-loops, replication-associated DSB, abundance
of genomic deletions, and uncontrolled proliferation (132).
Evidence suggests that its expression in cancer cells is critical
for radioresistance (133). Low MRE11 expression in colorectal
cancer cells reduced phosphorylated DNA-PKcs expression and
further increases tumor radiosensitivity (134). There are different
small and large molecular inhibitors targeting MRE11. Mirin is
the first inhibitor found to specifically target MRE11 exonuclease
activity with radiosensitizing properties (135). Lung cancer cells
treated with Selenium, which is an essential trace element,
showed decreased expression of MRE11 and significantly
reduced colony formation relative to IR (136). OBP-301, with
the insertion of the human telomerase reverse transcriptase
(hTERT) promotor, also showed reduced MRE11 expression
and thus enhanced radiosensitivity of lung cancer cells (137).
Therefore, MRE11 inhibitors are clinically significant
for enhancing radiosensitivity, and several clinical trials
investigating their potential are ongoing (131).

ATM-CHK2
ATM kinase is a member of the PI3K-like protein kinase (PIKK)
family with extensive roles in DDR signaling (138). Upon
recrui tment by the MRN complex to DSBs , ATM
autophosphorylates at different serine sites resulting in the
activation of CHK2, p53, and H2AX, which are involved in
DNA repair processes and cell cycle arrest (139). The most
important transducer of ATM signaling is CHK2, a kinase that
signals to DNA repair, cell cycle arrest, and apoptosis. ATM
phosphorylates CHK2 on threonine 68 (Thr68), thereby causing
CHK2 dimerization and autophosphorylation of the kinase
domain and is required for full activation (140).

ATM orchestrates the cellular DDR to cytotoxic DNA DSBs
induced by radiation (141, 142). Overexpression of ATM
indicates radiation resistance in breast cancer cells (143),
whereas deficiency of ATM showed radiation sensitizer effects
in multiple cancer types (144–147). Interestingly, more studies
have focused on the radiation sensitizer effects that are
dependent on the cell cycle and proliferation status (148, 149).
After inhibition of proliferation, ATM status did not alter cell
death or micronucleus formation after radiation, which suggests
that ATM in endothelial cells was immaterial if a cell cycle block
was present at the time of irradiation. It is consistent with other
data showing that the effect of ATM on radiation sensitivity is
more dependent on cell cycle regulation rather than the DDR
pathway (148,149). Considering that ATM is a large protein with
extensive regions of unknown function, the inhibition of its
Frontiers in Oncology | www.frontiersin.org 1319
kinase activity may produce better synergistic effect on
treatment. AZD0156, as a potent and selective bioavailable
inhibitor of ATM, showed strong radiosensitizer effects in vitro
and in a lung xenograft model (150). Specially, the ATM
inhibitor AZD1390 is optimized for penetration of the blood-
brain barrier with radiosensitizing effects on glioma and lung
cancer cell lines, even in a brain metastasis model (141, 151). All
of the evidence suggests that treatments targeting ATM may be
promising in clinical trials.

MDM2
Mouse double minute 2 (MDM2) protein is a major negative
regulator of p53 (152). When activated, p53 suppresses tumors in
response to cell damage by mediating cell proliferation, cell cycle
arrest, DNA repair, metabolism, angiogenesis, senescence, and
apoptosis (153). In normal cells, the self-regulating feedback loop
between MDM2 and p53 controls p53 expression (154, 155). The
rescue of p53 function in cancer cells by inhibiting the interaction
between p53 and MDM2 restored cycle arrest and apoptosis (156).
Furthermore, inhibition of MDM2 phosphorylation leads to cell
apoptosis and cell cycle arrest, thus repressing tumor cell
proliferation in esophageal cancer cells (157). Additionally,
MDM2 inhibitors, such as MI-219, increase tumor cell
radiosensitivity in a p53-dependent manner. MI-219 combined
with radiation resulted in increased p53-dependent DNA damage
(158). A novel small-molecule inhibitor, APG-115, was found to
enhance gastric adenocarcinoma cell radiosensitivity by blocking
the interaction between MDM2 and p53 (159). Therefore, blocking
the MDM2/p53 pathway has broad application prospects for
treating tumors and enhancing tumor radiosensitivity, especially
for tumors with low TP53 mutation levels, such as those of
myeloid leukemia.

POLQ
DNA polymerase theta (POLQ) is a DNA polymerase that
protects against error-prone transduction DNA synthesis and
error-prone DSB (160). It is involved in a major DNA repair
pathway that was initially named as alternative end-joining or
microhomology-mediated end joining, and was later termed
polymerase theta-mediated end joining because POLQ is
indispensable in this process (161). POLQ overexpression
reduces replication fork speed and impairs cell cycle
progression (162). Furthermore, breast cancer related protein
(BRCA) 2 and POLQ co-inhibition significantly improves tumor
cell sensitivity to cisplatin (163). Reduced POLQ expression
inhibits DSB repair and tumor cell survival. Several
hepatocellular carcinoma cell lines (Huh7, HepG2, MHCC-
92L, SK-HEP-1, and BEL-7404) with low POLQ expression
after knockdown were found to be significantly sensitive to
chemotherapeutic drugs (160). Depletion of POLQ in POLQ-
dependent cancers (i.e., malignancies deficient in HR) leads to
synthetic lethality. Furthermore, POLQ depletion was shown to
synergize with PARP inhibition (164, 165), and the antibiotic
novobiocin was recently reported as a selective POLQ inhibitor
(166). Thus, combining novobiocin with radiotherapy should be
a new research direction for targeting radioresistance.
July 2022 | Volume 12 | Article 838637
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BRCA
BRCAs (including BRCA1 and BRCA2) are thought to be the
predominant proteins involved in HR in the DDR pathway. In
addition, as a master regulator of HR, BRCA1 and BRCA2 also
mediate fork protection (167, 168). BRCA mutations increase the
susceptibility to various cancer types, including breast, ovarian,
prostate, and pancreatic cancers (167). It is also well known that
mutations in BRCA result in synthetic lethality with PARP
inhibition. The underlying mechanism includes HR deficiency
and increasing replication gaps. PARP inhibition results in
replication fork collapse, chromosomal instability, cell cycle arrest
in G2, and subsequent apoptosis in BRCA-deficient cells (169).
Therefore, targeting PARP has become a reliable therapeutic
strategy for eliminating BRCA1/2-mutated malignancies at
diverse sites including the breast, primary peritoneum, fallopian
tubes, ovaries, and pancreas (also see section 4.1.2) (170).

It has been reported that BRCA-deficient tumors are more
sensitive to chemotherapeutic agents that induce RS (171).
Furthermore, mutations in BRCA1/2 enhance radiosensitivity,
indicating the possibility of BRCA as a biomarker of radiation
sensitivity (172, 173). Since BRCA1/2 are both large proteins and
have complex multiple functions, the development of inhibitors
directly targeting BRCA1/2 is difficult to achieve. Therefore,
PARPi has been suggested to patients with BRCA1/2 mutations
for the synergistic lethal effects. The function of PARPi in
radiosensitization are summarized in 4.2.1. Further research may
focus on inhibitors that specifically affect the function of BRCA.

PI3K/AKT/mTOR
The PI3K/protein kinase B (AKT)/mammalian target of rapamycin
(mTOR) pathway activates the downstream mediator mTOR to
translate specific mRNA transcripts (174, 175). They synergistically
work with CHK1 to repress DSB-induced RAD51 foci, thus
impairing the HR process and enhancing RS in tumor cells. In
addition, PI3K/mTORi slows the fork speed by increasing cell
division cycle 45 homologue (CDC45) to promote a new origin of
replication, thus enhancing CHK1-induced RS (176). The PI3K/
AKT/mTOR signaling pathway is hyperactivated or altered in many
cancer types (177). Inhibition of the pathway reduces tumor cell
radioresistance (178, 179). For example, dactolisib, a dual PI3K/
mTOR inhibitor, causes cell cycle arrest in the G2/M phase and
improves the radiosensitivity of DU145 cell lines. Dactolisib also
inhibits radiation-induced DSB repair in glioblastoma (GBM) cell
lines by inhibiting DNA-PKcs and ATM and improves the
radiosensitivity of radioresistant prostate cancer cell lines (180).

Torin 2 is a special class of PI3K pathway drugs, which not
only inhibits the cell cycle at G1/S but also interferes with S phase
progression, causing ssDNA accumulation, DNA damage, and
increased checkpoint signaling in triple-negative BRCA cells
(181). Furthermore, the dual PI3K/mTOR inhibitor apitolisib
(GDC-0980) was demonstrated to inhibit growth and induce
apoptosis in human GBM cells (182).

Others
Despite all the classic proteins we discussed above, several novel
concepts have been suggested in recent research. A large number
of accessory factors involved in the assembly of replisomes have
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been reported, which includes multi-protein complexes that
monitor replication fork progression, generate checkpoint and
damage signals, and coordinate DNA synthesis with chromatin
assembly (183). We list below several newly identified processes
that may be related to RS and radiation sensitivity that may
provide ideas for translating basic research into clinical trials.

Ubiquitin and SUMO
Post-translational modification of the DNA replication machinery
by ubiquitin and small ubiquitin-like modifier (SUMO) plays key
roles in cell division, DNA replication/repair, signal transduction,
and cellular metabolism (184). Recent research revealed that
ubiquitin/SUMO pathways are essential regulators of DNA
replication during initiation, the S phase or elongation, and DNA
replication termination (185). SUMO/ubiquitin equilibrium at
active DNA replication forks controls CDK1 activation. An
increase in ubiquitination of the replisome results in premature
disassembly of the replication machinery and generation of CDK1-
dependent DNA damage in the S phase (186).

Our group has identified ubiquitination factors that affect
radiation sensitivity. We showed that ubiquitin-specific protease
9X (USP9X) mediates lysine-specific demethylase 4C (KDM4C)
deubiquitination, which activates transforming growth factor-b2
(TGF-b2)/Smad/ATM signaling to promote radioresistance in
lung cancer (142). Furthermore, ubiquitin-conjugating enzyme
E2O (UBE2O) facilitates tumorigenesis and radioresistance by
promoting MAX interactor 1 (Mxi1) ubiquitination and
degradation (187). The SUMO-specific protease (SENP)
pathway is also involved in tumor radiation sensitization (188).
SUMO E3 ligase PIAS4, which is an essential signal for p53-
binding protein 1 (53BP1) loading to the damage site, promote
radiation resistance by increasing DDR (189). Ring finger protein
4 (Rnf4), an E3 ubiquitin ligase that targets SUMO-modified
proteins, target SUMOylated mediators of DNA damage
checkpoint protein 1 (MDC1) and SUMOylated BRCA1
loading at sites of DNA damage. Rnf4-deficient cells and mice
exhibit increased sensitivity to IR by suppressing DDR (190).
These findings identify ubiquitylation/SUMO as possible
radiosensitization targets, but further research is needed.

UPR
UPR is the master regulator of endoplasmic reticulum (ER)
stress. A deficiency in UPR results in apoptosis (191). Recent
research revealed the link between hypoxia-induced RS and UPR
(192). The induction of RNA/DNA helicase senataxin (SETX) in
hypoxia is reliant on the protein kinase R (PKR)-like ER kinase
(PERK)/activating transcription factor 4 (ATF4) arm of the UPR
(32). Hypoxia is present in the majority of human tumors and is
associated with poor prognosis due to the protection it affords to
radiotherapy and chemotherapy (27). As we described earlier
(section 3.1), anti-hypoxia treatments provide additional
radiation benefits through cell apoptosis, which establishes a
link between UPR and radiation sensitivity.

UPR is widely involved in the establishment and progression of
cancers, including BRCA, prostate cancer, and GBM multiforme
(193). Elevated mitochondrial UPRmarkers (mtHSP70 and HSP60)
are associated with poor prognosis in patients with lung
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adenocarcinoma, which is activated by Maf1 through ATF5.
Suppressing IR-induced mitochondrial UPR activation by
rapamycin resulted in increased sensitivity to IR-mediated
cytotoxicity (194). ONC201, an UPR activator, reduced oxidative
phosphorylation and thus impairs cell cycle arrest, and the inhibition
of DNA repair factors after radiation also enhanced radiation-
induced cell death (34). As a new concept of radiosensitization,
the clinical significance of UPR still requires further studies.
RS-INDUCED INNATE IMMUNE
RESPONSE IN RADIATION SENSITIVITY

Nowadays, the immune microenvironment is the hotspot in
cancer research. It involves all processes of tumorigenesis, cancer
progression, and treatment resistance. Innate immunity refers to
nonspecific defense mechanisms that act immediately after
antigen appearance. The activation of innate immune
responses relies on pattern recognition receptors (PRRs). These
PRRs detect endogenous damage-associated molecular patterns
(DAMPs) or exogenous conserved pathogen-associated
molecular patterns (PAMPs) to initiate a signaling cascade
resulting in the production of interferons (IFNs) and
inflammatory mediators (195, 196).

RS-Induced Innate Immune Activation
As research progressed, some evidence revealed the relationship
between RS and innate immune response, which plays a key role
in cancer treatment resistance (197). In this study, we have
summarized and discussed the potential relationship between
targeting RS and innate immune activation.

Innate Immunity Activation by RS in Immune Cells
Excessive RS or RS deficiency leads to the accumulation of
replication blockage-derived DNA in the cytoplasm or the
formation of micronuclei, resulting in activating the cyclic
GMP-AMP (cGAMP) and the cGAMP receptor stimulator of
the interferon gene (STING) pathway. cGAMP synthase (cGAS)
is a DNA sensor that recognizes and binds with DNA fragments
in the cytoplasm, enabling cGAMP synthesis. cGAMP
subsequently activates STING. The activation of STING
further increases interferon regulatory factor 3 (IRF3) and
nuclear factor kappa-light-chain-enhancer of activated B cell
(NF-kB) levels (198). IRF3 and NF-kB act as transcription
factors to trigger the transcription of IFN-I and cytokines
(199). Apart from cGAS, g-interferon-inducible protein-16, a
cytosolic DNA sensor, can detect both self and non-self dsDNA
to promote IRF3 and NF-kB-dependent interferon production
via STING (195, 200, 201). IFN-1 plays a crucial role in both
basal and therapeutic-induced immune responses to cancer. It is
a potent immune cell activator, resulting in the activation and
maturation of antigen presenting cells (198). The promotion of
dendritic cell migration to the tumor site and their maturation
depends on IFN-1 signaling (202, 203). Innate immune cells
respond to IFN-1 by increasing antigen presentation and the
production of immune response mediators, such as cytokines
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and chemokines. These events help in antigen presentation and
chemokine production in innate cells as well as induce antibody
production and enhance T-cell responses (198).

Innate Immunity Activation by RS in Tumor Cells
Innate immunity activation by tumor cells is a complex
phenomenon. As we mentioned above, cancer cells usually
experience higher RS, leading to more cytoplasmic DNA and
micronuclei formation. They activate innate immunity by
secreting IFN-1 via the cGAS-STING pathway, exocrine
exosomes, or extracellular vesicles (EVs), which can be captured
by immune cells for inducing a further immune response.

Cancer cells exposed to RS-inducing agents or deficient in RS
response show the increased production of IFN-1 and
proinflammatory cytokines that can foster an innate immune
response (204, 205). One study found that the inhibition of the
ATM/CHK2DNAdamage checkpoint axis led to excessive RS and
cytosolic DNA accumulation, which subsequently activated the
DNA sensor STING-mediated innate immune response in
ARID1A-deficient tumors (206). Cytosolic DNA can also be
released in exosomes or EVs (207, 208). Exosomes/EVs
containing DNA works as DAMPs to innate immune cells. Study
found that EVs and exosome dsDNA promoted inflammation via
activating the STING pathway in macrophages (209).

The activation of STING in dendritic cells is essential for
radiation-induced antitumor immunity (210). In contrast,
cGAS-STING activation in tumor cells impairs HR in DDR,
which promotes tumorigenesis (211). Moreover, cGAS can act as
a decelerator of DNA replication forks, suppressing replication-
associated DNA damage (212). The complex network
mechanism made it hard to simply target or enhance cGAS-
STING to reverse cancer treatment resistance. In contrast, high
RS or RS-response deficiency always leads to simultaneous cell
damage and immune activation. Hence, it would be a better
choice for cancer treatment sensitization.

Targeting RS Response Enhances
Radiation Sensitivity by Innate Immunity
The immune response caused by RT remains controversial. The
inflammatory responses caused by RT are different depending on
the RT pattern (213). Immune cells are highly radiosensitive
compared with tumor cells (214). Conventional RT-induced
myeloid-derived suppressor cell filtering leads to the
suppressive tumor microenvironment (TME) rather than the
active TME (215). Though the hypothesis that the damage signal
released from tumor cells alone can activate a systemic antitumor
immune response called the abscopal effect has been observed in
a small-sample study (203), confirming the hypothesis without
combining the signal with checkpoint inhibitors is difficult. The
basic research revealed that RT may increase programmed death
ligand 1 (PD-L1) levels in tumor and immune cells, contributing
to immunosuppression and in part explaining the clinical success
of the combination of RT with programmed cell death protein 1
(PD-1)/PD-L1 immunotherapy (216). As basic research data are
available, more clinical trials regarding the combination of anti-
PD-1/PD-L1 antibody with radiation are going on (217–220).
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Polymorphonuclear neutrophils recruited in the TME post-RT
can facilitate tumor progression by forming neutrophil
extracellular traps (221). Taken together, the tumor immune
microenvironment is thought to be suppressed rather
than activated after radiation, which plays a key role in
radioresistance. Promoting immune response activation of
TME is the key to enhance radiosensitivity (Figure 5).

Enhancing RS and targeting RS response are good choices to
manage tumors. As mentioned above, excessive RS or RS
response deficiency results in more DNA damage, which is the
synergy effect of RS and RT from the direct tumor side. As they
lead to dsDNA accumulation in the cytoplasm and cell apoptosis,
which activate innate immunity, they may enhance radiation
sensitivity from the indirect immune side (215, 222).

RAD51-depleted cells accumulate more cytosolic DNA after
radiation, activating the STING pathway to increase innate immune
response (223). ATR inhibition and radiation drive immune cell
infiltration via tumor cell-intrinsic cytokine release to boost
immunogenic response to radiotherapy and modulate the
radiation-induced inflammatory TME (224). PARP inhibitor and
radiation work synergistically to kill lung cancer cells by activating
antitumor immunity in the form of increased CD8+ T lymphocytes
and the activated STING/TANK-binding kinase 1/IRF3 pathway
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(225). WEE1 inhibitor increases tumor-specific cytotoxicity and
shows a positive effect on immune response after radiation by
dendritic cell activation, which can be combined with immune
therapy (226, 227).

These studies indicate that the RS-induced activation of
innate immune response may be crucial to enhance the
radiosensitivity of tumor cells. However, more evidence is
needed to draw a general conclusion. Moreover, further studies
are needed on the interaction between the effect of RS-induced
innate immune response on tumor-cell radiosensitivity and
radiation-induced antitumor immunity to achieve the optimal
radiotherapy efficacy.

CONCLUSION

We have summarized the mechanisms of how RS response
affects tumor radiosensitivity from the direct tumor side and
indirect innate immune side and have further discussed potential
targets and drugs to increase radiosensitization. We have
reviewed several strategies including directly increasing RS,
targeting RS response or RS-induced DDR, and other novel
pathways. Although these strategies are predominantly based on
preclinical evidence, they provide promising new ideas for
FIGURE 5 | Replication stress-induced activation of innate immune response enhances radiosensitivity via cyclic GMP-AMP synthase–STING signaling.
July 2022 | Volume 12 | Article 838637

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Replication Stress and Radiation Sensitivity
enhancing radiosensitivity. As the relationship between RS and
tumor radiosensitivity will be explored in the future, we expect
these new strategies to bring substantial benefits to patients
suffering from radioresistant malignancies.
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Enhancing anti-tumour innate
immunity by targeting the
DNA damage response and
pattern recognition
receptors in combination
with radiotherapy

Charleen M. L. Chan Wah Hak1*, Antonio Rullan2,
Emmanuel C. Patin2, Malin Pedersen2, Alan A. Melcher1

and Kevin J. Harrington2

1Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom,
2Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
Radiotherapy is oneof themost effective and frequently used treatments for awide

range of cancers. In addition to its direct anti-cancer cytotoxic effects, ionising

radiation can augment the anti-tumour immune response by triggering pro-

inflammatory signals, DNA damage-induced immunogenic cell death and innate

immune activation. Anti-tumour innate immunity can result from recruitment and

stimulation of dendritic cells (DCs) which leads to tumour-specific adaptive T-cell

priming and immunostimulatory cell infiltration. Conversely, radiotherapy can also

induce immunosuppressive and anti-inflammatory mediators that can confer

radioresistance. Targeting the DNA damage response (DDR) concomitantly with

radiotherapy is an attractive strategy for overcoming radioresistance, both by

enhancing the radiosensitivity of tumour relative to normal tissues, and tipping

the scales in favourof an immunostimulatory tumourmicroenvironment. This two-

pronged approach exploits genomic instability to circumvent immune evasion,

targeting both hallmarks of cancer. In this review, we describe targetable DDR

proteins (PARP (poly[ADP-ribose] polymerase); ATM/ATR (ataxia–telangiectasia

mutated and Rad3-related), DNA-PKcs (DNA-dependent protein kinase, catalytic

subunit) andWee1 (Wee1-like protein kinase) and their potential intersections with

druggable immunomodulatory signalling pathways, including nucleic acid-sensing

mechanisms (Toll-like receptors (TLR); cyclic GMP–AMP synthase (cGAS)–

stimulator of interferon genes (STING) and retinoic acid-inducible gene-I (RIG-I)-

like receptors), andhow thesemight be exploited to enhance radiation therapy.We

summarise current preclinical advances, recent and ongoing clinical trials and the

challenges of therapeutic combinations with existing treatments such as immune

checkpoint inhibitors.

KEYWORDS

DNA damage, innate immunity, radiotherapy, immunotherapy, combination therapy,
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1 Introduction

Radiotherapy continues to be one of the most effective

treatments for a wide range of cancers since its discovery over

a century ago. Approximately half of cancer patients receive

radiotherapy at some point in their cancer treatment (1),

whether in the curative or palliative settings.

Radiotherapy exploits ionising radiation to cause cell death

or senescence via DNA damage. Broadly, necrotic or apoptotic

cell death occurs depending on cell type, radiotherapy dose and

fractionation schedule (2). Cancer cells that evade apoptosis and

continue to divide with accumulated DNA damage can die via

mitotic catastrophe. Also, excess autophagy can force the cell

into apoptotic or necrotic cell death (3, 4). Classically, the

response of tumours to conventional fractionated radiotherapy

is governed by the principles of the 4 “R”s of radiobiology: repair

of sublethal DNA damage after exposure to ionising radiation,

redistribution of cells in the cell cycle whereby cells in the G2/M-

phase are most radiosensitive and are preferentially killed in

comparison to the more radioresistant late S-phase, repopulation

of tumour cells and reoxygenation of previously hypoxic tumour

areas (5). A 5th “R” of intrinsic radiosensitivity has also

postulated by Steel, after observing the varying survival curves

of different tumour cell lines following irradiation, which is

thought to be independent of their DNA repair capacity (6).

Combining agents that can target DNA damage repair pathways,

as one of the 4 “R”s, with radiotherapy holds considerable

potential to enhance therapeutic outcomes.

In addition to direct cell killing, radiotherapy can induce

immunogenic cell death (ICD) and modulate the immune tumour

microenvironment to lead to anti-tumour innate immune

activation (7). Due to these immunostimulatory effects, there is

increased interest in radiotherapy as a promising combinatorial

agent with other immuno-oncology agents such as DNA-damage

response (DDR)-targeting agents (8). This two-pronged approach

exploits two hallmarks of cancer, namely genomic instability and

evasion of immune surveillance (9, 10). The DDR sensing and

signalling pathway are the collective mechanisms evolved by cells

to combat the threat of DNA damage, namely the detection of

DNA lesions, signalling of their presence and promotion of DNA

repair (11). Promising DDR druggable targets include those

within DNA repair pathways and cell cycle checkpoints, as well

as damage-associated molecular pattern (DAMP)-sensing

receptors which can amplify the DDR-induced immune

response when combined with radiotherapy.
2 Radiotherapy and the anti-tumour
immune response

Radiotherapy has both immunostimulatory and

immunosuppressive effects. The difference in the ability of
Frontiers in Oncology 02
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radiotherapy to initiate pro-immunostimulatory effects and

turn immunogenically “cold” (low T-cell infiltrated) tumours

“hot” (high T-cell infiltrated) may account for the enhanced

response to radiotherapy of some pre-clinical models and

clinical cancer histotypes.
2.1 Immunostimulatory effects mediated
by radiotherapy

2.1.1 Immunogenic cell death
As a defence against microbial infection, the innate immune

system has evolved pattern-recognition receptors (PRRs) that

detect microbial pathogenic molecules known as pathogen-

associated molecular patterns (PAMPs). However, these

pathways do not exclusively sense foreign molecules. Immune

activation can also occur in the absence of microbial infection,

instead being triggered by inflammatory signals released from

stressed or dying cells collectively known as damage-associated

molecular patterns (DAMPs) (12). Radiotherapy-induced

cellular stress and ICD can stimulate an immune response

through the generation of DAMPs (13) detected by their

cognate pattern recognition receptors (PRRs) (14). ICD has

been defined as the chronic exposure of DAMPs in the

tumour environment (TME), which can induce an innate and

adaptive anti-tumour immune response in the host (15).

A characteristic DAMP induced by ICD is the secretion of

adenosine triphosphate (ATP) from dying cancer cells into the

extracellular space. Extracellular ATP functions as a “find-me”

chemoattractant signal for the recruitment and activation of

dendritic cells (DCs) (15–17). High-mobility group box-1

(HMGB1), secreted from the nucleus during ICD, binds to

Toll-like receptor (TLR-4) and is critical for activating DCs

and facilitating antigen processing and presentation to T cells

(18). Translocation of calreticulin to the cell surface on dying

cells provides an “eat-me” signal to antigen-presenting cells

(APCs) and results in their phagocytosing target cells (19). In

the context of cancer, ICD leads to release of tumour-associated

antigens (TAA) and subsequent priming of a cancer-specific

immune response. Another characteristic of ICD is the

expression of heat shock proteins (HSP) HSP70 and HSP90 on

dying cell membranes that drives cross-presentation of tumour-

derived antigens on major histocompatibility complex class I

(MHC-I) (15).

2.1.2 Secretion of pro-inflammatory mediators
Radiotherapy-induced DNA damage can function as a viral

mimic through the accumulation of cytosolic DNA or RNA in

irradiated cells (20). Cytosolic DNA and RNA activate cyclic

GMP-AMP synthase (cGAS)/stimulator of interferon (IFN)

genes (STING) and retinoic acid-inducible gene I (RIG-I)/

mitochondrial antiviral-signalling protein (MAVS) pathways,

respectively (21). These pathways activate complex
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downstream signalling via interferon regulatory factor 3 (IRF3)/

TANK-binding kinase 1 (TBK1) and nuclear factor kappa B

(NF-kB) that results in production of Type I IFN and other

inflammatory cytokines (e.g. interleukin (IL)-1, tumour necrosis

Factor (TNF)-a) (20).
Radiotherapy is a form of ionising radiation that hydrolyses

water and forms reactive molecules, such as reactive oxygen

species (ROS) and nitric oxide species (NOS), which can directly

alter DNA, cellular components, and molecules in the

extracellular matrix (ECM) (22). ROS and NOS can be derived

both from these direct ionisation events or activated immune

cells, and work with other DAMPs to accelerate lymphocyte and

DC recruitment. These activated immune cells generate pro-

inflammatory cytokines (e.g. TNF-a, IL-1b, IL-6, IL-12) (14, 23,
24), chemokines and growth factors leading to a sustained

inflammatory response (22, 25).

2.1.3 Immune cell recruitment and tumour-
specific T-cell activation

Recent data suggest that radiation can enhance cancer cell

antigenicity through upregulation of genes involved in DNA

damage repair and cellular stress responses (20). Immune cell

recruitment is subsequently increased via expression of adhesion

molecules (e.g. intercellular adhesion molecule 1 (ICAM-1),

vascular cell adhesion molecule 1 (VCAM-1) and E-selectin)

(26) and chemokines (e.g. chemokine (C-X-C motif) ligand 16

(CXCL16)) (27). Within the appropriate inflammatory

environment, DCs take up antigens in peripheral tissues and

mature and migrate to draining lymph nodes, where they induce

activation of naïve T-cells and differentiation into effector T-cells

(28). Radiotherapy-induced ICD, as discussed above, increases

tumour-associated antigen presentation that can lead to specific

tumour-associated antigen T-cell priming, expansion of tumour

reactive CD8+ T cells and infiltration into the tumour

microenvironment (TME) (29). In summary, inflammatory

DAMP signalling generates a favourable environment for

activated DCs to process and cross-present tumour-derived

antigens from irradiated cells as a “tumour vaccine”, to naïve

T cells. These T cells subsequently can be primed and sustain a

systemic tumour-specific immune response. The T-cell receptor

(TCR) repertoire is also known to be shaped following

radiotherapy, including when used in conjunction with

immune checkpoint inhibitors (ICI) (30–32).
2.2 Immunosuppressive mechanisms
triggered by radiotherapy

2.2.1 Immunosuppressive cells within the
tumour microenvironment

Whilst pro-inflammatory signalling can lead to a positive

anti-tumour effect, cancer cells adapt to survive with

mechanisms such as hypoxia resistance and unrestricted
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proliferation that can result in a state of chronic inflammation

and evasion of immune surveillance (33–35). Evasion of

immune recognition or immune escape (36) is now a

recognised hallmark of cancer (9) and this inclination towards

pro-tumour growth is mediated by changes in cytokine

signalling (TNF-a, IL-1b, IL-6, IL-10 and TGF-b) (37, 38) and
recruitment of TME-immunosuppressive immune cells such as

tumour-associated macrophages (TAMs), myeloid-derived

suppressor cells (MDSCs) (39) and regulatory T cells (Tregs)

(40, 41).

PD-L1 (programmed death-ligand 1) expression is found to

be elevated on tumour cells following irradiation due to

interferon gamma (IFN-g) release from tumour-infiltrating

lymphocytes (TILs) (42) and TILs have increased expression

of PD-1 (programmed death-1) following ex-vivo irradiation

(43). A recent publication found that irradiation of colorectal

cancer cells triggered an ATR-mediated DNA repair signalling

pathway to upregulate CD47 and PD-L1, through engagement of

signal-regulator protein a (SIRPa) and PD-1, respectively, to

limit tumour-associated cross-presentation and suppression of

innate immune activation (44).

Recruited MDSCs and TAMs can suppress T-cell function

through antagonistic cytokine signals (45). Supporting data

includes that from a phase I/II clinical trial testing the

combination of radiotherapy and a primed DC vaccine in

which non-responders had significantly higher baseline

tumour levels of MDSCs (46).

Tregs are relatively more radioresistant than other

lymphocyte subsets and radiotherapy may increase the

infiltration by phenotypically and functionally suppressive

Tregs within the TME (40, 41, 47). In several pre-clinical

mouse models (B16/F10, RENCA and MC38), Tregs in

irradiated tumours expressed higher levels of cytotoxic T-

lymphocyte-associated antigen-4 (CTLA-4), 4-1BB (CD137,

tumour necrosis factor receptor superfamily 9) and Helios

compared with Tregs in non-irradiated tumours (47).

Cancer-associated fibroblasts (CAFs) can be the

predominant component of the stroma in the TME and

facilitate stroma-mediated radioprotection through multiple

mechanisms. Following radiotherapy, CAFs can survive

through formation of integrin-mediated attachments (48) and

radioprotective integrin b-1 signalling (49). CAFs can promote

an oxygen-rich, immunosuppressive and pro-inflammatory

TME (50–52) resulting in increased tumour growth, invasion

and metastasis (53).

Conversion of ATP to adenosine by CD39 and/or CD73 is a

mechanism by which tumour cells can escape immune-

surveillance by limiting the functionality of multiple

potentially protective immune infiltrates, while enhancing the

activity of immunosuppressive cell-types (54). CD39 and/or

CD73 (over)expression has been found on the surface of

tumour cells (55), CAFs (56) MDSCs (57), TAMs (58), Tregs

and exhausted conventional CD4+ and CD8+ T cells (59–61).
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2.2.2 Tumour repopulation
One of the 4 “R”s of radiobiology is repopulation (5), and

tumour repopulation during radiotherapy and chemotherapy is an

important cause of treatment failure (62). Some tumours exhibit

accelerated tumour repopulation following irradiation by paracrine

caspase 3-dependent prostaglandin E2 (PGE2)-mediated signalling

(63). Tumour repopulation may also be driven by a small number

of cancer stem cells (CSC) which promote tumour growth

following an insult, such as radiotherapy (64). Rapid proliferation

of cancer cells is generally accepted as a prerequisite for most

conventional chemotherapies and radiotherapy to be effective, and

any senescent and/or quiescent tumour cells, such as CSCs, may be

treatment-resistant (64). The CSC response to therapy may

underpin why macroscopic tumour response to (chemo)radiation

is not a robust predictor for clinical outcome, since small numbers

of these relatively resistant and less immunogenic CSCs may

survive to repopulate the tumour (64). However, in vitro pre-

clinical data from human breast cancer cell lines (MCF-7 and

T47D) have shown that radiotherapy can recruit CSC cells from a

quiescent state into the cell cycle (65) and a CSC-druggable target in

combination with radiotherapy would be useful.

As we have seen, radiotherapy can trigger key events leading

to potent anti-tumour immune responses via production of

immunostimulatory cytokines, DC recruitment, and T-cell

recruitment and activation. However, these are negatively

balanced by the potential for concurrent triggering of

immunosuppressive cells within the TME and accelerated

tumour cell repopulation. Targeting the DNA-damage response

pathway (DDR) is an attractive approach to tip the scales towards

maintaining positive immune anti-tumour states, which can be

characterised as ‘pro-immunogenic’ and ‘pro-inflammatory’.
3 Targeting the DNA-damage
response pathway

Radiotherapy causes cell damage, stress and death through

induction of DNA lesions in the form of crosslinking, single-

strand breaks (SSBs) and, most significantly, double-strand

breaks (DSBs) (66). These processes induce a plethora of

intracellular signalling pathways involved in detecting and

repairing DNA damage. Targeting both DNA damage repair

and DDR’s downstream cytosolic nucleic acid sensing pathways

with small molecules in combination with radiotherapy can lead

to increased immune activation and anti-tumour efficacy of

these treatments (Figure 1).
3.1 DNA damage repair pathways

Radiotherapy induces double-strand breaks (DSBs) in

cancer cell DNA, which results in genomic instability, cell
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cycle arrest, apoptosis or death via mitotic catastrophe (66). In

response to radiotherapy, cancer cells can respond to exploit

individualised DNA damage repair mechanisms for survival

(67). Three primary DNA repair pathways have evolved to

process DSB repair and maintain genomic integrity:

homologous recombination, non-homologous end-joining

(NHEJ) and alternative end-joining (68). Upregulation of these

pathways is a mechanism by which cancer cells may acquire

radioresistance and, accordingly, radiosensitisation strategies

which inhibit radiation-induced DNA damage repair are

expected to provide increased cancer control (66). When DNA

repair is inhibited in cancer cells, this leads to accumulation of

DNA damage, cellular stress and cell death which subsequently

increases the likelihood of these cells triggering innate immune

pa thway s and be ing r e cogn i s ed by an t i - t umour

immune surveillance.
3.1.1 ATM and ATR inhibitors
ATM and ATR are both key mediators of the DSB signalling

response that induce cell cycle arrest to facilitate DNA repair

(69). In addition, conditions that activate ATM and ATR as part

of DDR may also participate in regulating the innate immune

system and alert it to potentially ‘dangerous’ tumour cells (70).

In response to DSB, the MRE11-RAD50-Nibrin (NBS1)

(MRN) complex assembles at DSB sites to act as a DNA

damage sensor that activates and recruits ATM to DSB sites

(71). Briefly, when a cell triggers the DDR, ATM initiates a

massive signalling cascade with the phosphorylation of

hundreds of substrates, including p53 and checkpoint kinase 2

(Chk2). Activated p53 transactivates the expression of p21Cip1/

kip1, which inhibits Cyclin Dependent Kinase (CDK) 2 and

CDK4/6 to induce G1/S arrest (66). Chk2 in turn

phosphorylates and inactivates Cell Division Cycle 25

(CDC25C), maintaining the inhibitory phosphorylation of

CDK1 by Wee1-like protein kinase (Wee1) and Myelin

Transcription Factor 1 (Myt1) to induce G2/M cell cycle arrest

or apoptosis (66, 72). Inhibition of the ATM/Chk2 axis can lead

to replication stress and accumulation of cytosolic DNA that

subsequently activates the cGAS-STING-mediated innate

immune response (73).

ATM was recognised as the defective gene in the

inheritable human disorder, ataxia-telangiectasia (A-T) (74),

and these patients have characteristic features including

genomic instability and profound radiosensitivity (75).

Deficiency of ATM-mediated signalling reactions causes

sensitisation of cells to radiation (76), which has sparked

interest in ATM as a therapeutic target for cancer treatment

(69). Inhibition of ATM and ATR have the potential to

improve radiotherapy outcomes as they are both key

mediators of the DDR (69). Indeed, ATM inhibitors such as

caffeine (77), wortmannin (78), CP-466722 (79), KU-55933

(80), KU-60019 (81) and KU-59403 (82) increase cell
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radiosensitivity (83, 84), particularly in p53 low/deficient and

phosphatidylinositol 3-kinase (PI3K) highly-expressing cells

(77, 85). In a preclinical study in vivo with KU60019 and

radiotherapy, combination treatment enhanced TBK1 activity,
Frontiers in Oncology 05
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type I IFN production, antigen presentation and increased

CD8+ TILs; moreover, complete responders had established

immunological memory (86) (Table 1). The ATM inhibitor

(AZD1390) and radiotherapy is being investigated in a phase I
FIGURE 1

Druggable targets of the DNA damage response (DDR) pathway currently tested in clinical trials. Radiotherapy induces DNA damage and cell
death. Nucleic acid sensing pathways detect cytoplasmic DNA and RNA to stimulate downstream pathways. Cytoplasmic DNA activates the
Cyclic GMP–AMP synthase (cGAS) to produce cyclic GMP–AMP (cGAMP) that activates the stimulator of interferon genes (STING) pathway,
leading to type I interferon (IFN) production. Radiotherapy-induced type I interferon (IFN) can induce RNA sensor activation through RNA
polymerase III conversion of DNA to double-stranded RNA (dsRNA), radiotherapy-induced small non-coding RNA (sncRNA) or STAT1-induced
dsRNA synthesis from endogenous retroviral elements (ERVs). These activate (RIG-I)-like receptors (RLRs), melanoma differentiation-associated
protein 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I), which also drives pro-inflammatory signalling through type I IFN and pro-
inflammatory cytokine production. Toll-like receptors (TLRs) can recognise damage-associated molecular patterns (DAMPs) of single-stranded
RNA (ssRNA), dsRNA or unmethylated CpG DNA in intracellular compartments such as endosomes, to lead to activation of nuclear factor-kB
(NF-kB), mitogen-activated protein kinase (MAPKs) and interferon regulatory factors (IRFs). DNA damage repair mechanisms of single- (SSB) and
double-strand breaks (DSB) are often upregulated by cancer cells to avoid cell cycle arrest or death. Inhibitors of DNA damage repair
components, such as ataxia telangiectasia- mutated (ATM), ataxia telangiectasia and Rad3-related protein (ATR), DNA-dependent protein kinase,
catalytic subunit (DNA-PKcs), poly(ADP- ribose) polymerase 1 (PARP-1) and Wee1 (Wee1-like protein kinase) function to propel the cell through
the cell cycle, despite the presence of unrepaired damage, leading to accumulation of cytosolic DNA. This leads to cross-talk with the nucleic
acid sensing pathway via activation of the cGAS-STING pathway and dsRNA stress pathway via promotion of ERV expression. These two
pathways, through positive and negative cross-talk, shape the radiotherapy-induced DDR response that feeds into anti-tumour immune effects,
including recruitment of tumour-infiltrating CD8+ T-cells, natural killer (NK) cells and CD11b+ innate immune cells, such as macrophages and
neutrophils. Maturation and activation of dendritic cells (DCs) is increased, including DC cross-presentation of tumour-associated antigens to
naive T-cells, which can become activated leading to T-cell-mediated cytotoxic-killing of cancer cells. Furthermore, the immunosuppressive
effects of myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs) can be reversed and macrophages can be repolarised from
M2 to an M1 pro-inflammatory phenotype. Chk, checkpoint kinase; IKKi, inducible IkB kinase; IL, interleukin; IRAK, Interleukin 1 Receptor-
Associated Kinase; MAVS, mitochondrial anti-viral-signalling protein; MyD88, Myeloid differentiation primary response 88; TBK, TANK-binding
kinase 1; TNFa, tumour necrosis factor alpha; TRAF3, TNF Receptor-Associated Factor 3. Created with BioRender.com.
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TABLE 1 Preclinical RT and DDR combination studies.

Target (drug),
route

Additional
therapy

Radiotherapy
(RT)

Murine
tumour model

Immunological effects References

DNA repair inhibitors

ATR inhibitor
(AZD6738,
ceralasertib),
PO

- 2 Gy x 2 CT26 (colorectal
cancer)

Combination treatment increased TIL CD8+ T cell
infiltration, decreased TIL Treg cells, and promoted
immunological memory. AZD6738 blocked radiation-induced
PD-L1 upregulation to reduce number of TIL Tregs.

(87)

ATR inhibitor
(AZD6738,
ceralasertib),
PO

- 2 Gy x 4 TC-1 (HPV-
transformed
lung epithelial
cells)

Combination treatment showed enhanced type I and type II
IFN signature, increased PD- L1 expression, increased
numbers of DCs, T cells and NK cells.

(88)

ATR inhibitor
(AZD6738,
ceralasertib),
PO

Anti-PD-L1 18 Gy in 3
fractions on days 1,
3, and 5

Hepa 1–6 cells (a
C57/L murine liver
cancer cell line)
and H22 cells

AZD6738 further increased RT-stimulated CD8+ T cell
infiltration and activation and reverted the
immunosuppressive effect of radiation on the number of
Tregs in mice xenografts. Triple combination with anti-PD-L1
boosted the infiltration, cell proliferation, enhanced IFN-g
production ability of TIL CD8+ T cells, decreased trend in
number of TIL Tregs and exhausted T cells in mice
xenografts. Triple therapy led to more long-lasting immunity
with tumour rechallenge rejection.

(89)

ATR inhibitor
(AZD6738,
ceralasertib),
PO

Anti-TIGIT, Anti-
PD-1

20 Gy in four 5 Gy
fractions per day
(MOC2); 24 Gy in
three 8 Gy
fractions per day
over 5 days (SCC7)

MOC2 and SCC7
HPV-negative
murine oral
squamous cell
carcinoma cell lines

ATRi enhanced radiotherapy-induced inflammation in the
TME with NK cells playing a central role in maximizing
treatment efficacy. Anti-tumour activity of NK cells can be
further boosted with ICI targeting TIGIT and PD-1.

(90)

ATM inhibitor
(KU60019),
PO

Anti-PD- L1 8 Gy single
fraction

mT4 and KPC2
pancreatic cancer
cell lines

Combination treatment further enhanced TBK1 activity, type
1 IFN production, and antigen presentation. ATM inhibition
also increased PD-L1 expression, increased intratumoural
CD8+ T cells and established immune memory.

(86)

DNA-PK inhibitor
(M3814, peposertib),
PO

Anti-PD-L1 5 Gy or 8 Gy
single fraction

mT4 pancreatic
cancer cell line

Radiation with DNA-PK inhibition increased cytosolic
dsDNA and tumoural type 1 IFN signalling in a cGAS- and
STING-independent, but an RNA POL III, RIG-I, and
MAVS-dependent manner. Triple combination with anti-PD-
L1 potentiated anti-tumour immunity with a significant
increase in the number of CD4+ , CD8+ , and Granzyme B+
cells compared to radiation alone or radiation with M3814.

(91)

Wee1 inhibitor

MK1775/AZD177,
adavosertib,
PO

Anti-PD-1 8 Gy single
fraction

MOC-1 murine
oral squamous cell
carcinoma

Triple combination treatment efficacy is CD8-dependent.
Radiation alone reduced neutrophilic myeloid-derived
suppressor cells and increased Treg tumour accumulation,
unchanged with the addition of AZD1775. T-cells from
tumour-draining lymph nodes (TDLNs) from mice treated
with the triple therapy demonstrated the greatest activation
and IFNg production upon exposure to MOC1 tumour
antigen. Mice cured following triple agent treatment did not
engraft tumours following rechallenge.

(92)

STING agonists

Modified CDN
derivative molecules,
IT injection

- 10 Gy single
fraction

Panc02 murine
pancreatic
adenocarcinoma
cell line; SCC7
head and neck
cancer model,
MMTV-PyMT
mammary
carcinoma; 3LL
lung

Combination treatment showed early T-cell-independent and
TNFa-dependent haemorrhagic necrosis, followed by later
CD8+ T-cell-dependent control of residual disease.

(93)

(Continued)
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TABLE 1 Continued

Target (drug),
route

Additional
therapy

Radiotherapy
(RT)

Murine
tumour model

Immunological effects References

adenocarcinoma
model

Toll-like receptor agonists

Imiquimod,
topical

Cyclophosphamide 8 Gy x 3
consecutive days

TSA mouse breast
carcinoma

Increased tumour infiltration by CD11c+, CD4+ and CD8+
cells. Tumour control abolished by CD8+ depletion.
Combination treatment led to abscopal effect, long-term
tumour-free mice rejected rechallenge showing
immunological memory.

(94)

Imiquimod,
topical

- Whole-body RT 2
Gy single fraction

B16-F10 and B16-
F1 melanoma

Combination treatment led to enhanced cell death via
autophagy. Autophagy accelerated via ROS-mediated MAPK
and NF-kB signalling pathways. Combination increased
number of CD8+ T cells and decreased numbers of Treg and
MDSCs in the tumour lesions. Combination enhanced
systemic anti-cancer immunity by increasing the abundance
of T cell populations expressing IFN-g and TNF-a.

(95)

TLR7 agonist (R848),
IV

- 10 Gy single
fraction

B-cell lymphoma
line A20, the T-cell
lymphoma line
EL4, and its
ovalbumin-
expressing
derivative EG7

Combination treatment led to the longstanding clearance of
tumour in T- and B-cell lymphoma-bearing mice.
Combination therapy led to the expansion of tumour antigen-
specific CD8+ T. Mice that achieved long-term clearance of
tumour were protected from subsequent tumour rechallenge.

(96)

TLR7 agonist (DSR-
6434),
IV

- KHT and CT26
tumours received a
single dose of 25 or
15 Gy, or 5 daily
fractions of 2 Gy,
respectively.

CT26 colorectal or
KHT fibrosarcoma
tumours

Combination led to induction of type 1 interferon and
activation of T and B lymphocytes, NK and NKT cells.
Combination treatment primed an anti-tumour CD8+ T cell
response. Long-term surviving mice had significantly greater
frequency of tumour antigen-specific CD8+ T cells.

(97)

TLR7-selective agonist
(DSR-29133),
IV

- 2 Gy x 5 Syngeneic models
of renal cancer
(Renca), metastatic
osteosarcoma
(LM8) and
colorectal cancer
(CT26)

Administration of DSR-29133 led to the induction of IFNa/g,
IP-10, TNFa, IL-1Ra and IL-12p70.
Combined therapy resulted in curative responses in a high
proportion of mice bearing established CT26 tumours which
was dependent on the activity of CD8+ T-cells, but
independent of CD4+ T-cells and NK/NKT cells. Long-term
surviving mice treated with combination were protected from
subsequent tumour rechallenge.

(98)

TLR7/8 agonist (3M-
011 (854A)),
IP injection

- 2 Gy x 5 CT26 (murine
colorectal
carcinoma cell line)
or Panc-02 (murine
pancreatic
carcinoma cell line)

In vivo depletion identified NK and CD8 T cells as the cell
populations mediating the cytotoxic effects of treatment, while
in vivo depletion of CD11c+ dendritic cells (DC) in CD11c-
diphtheria toxin receptor (DTR) transgenic mice revealed DC
as the pivotal immune hub in this setting.

(99)

TLR9 agonist
(CpG
oligodeoxynucleotide
1826),
SC peritumoural or IT
injection

- Single dose
(unspecified) or
fractionated RT
delivered in 1-9 Gy
fractions twice
daily, separated by
6-7 hours for 5
consecutive days
for total dose of
10-90 Gy

Murine
immunogenic
fibrosarcoma
tumour

Mice cured of their tumours by combined CpG
oligodeoxynucleotide 1826 plus radiotherapy were highly
resistant to SC tumour take or development of tumour
nodules in the lung from IV injected tumour cells when
rechallenged with fibrosarcoma cells 100 to 120 days after the
treatment, suggesting the development of a memory response.
CpG oligodeoxynucleotide 1826 also increased the
radioresponse of the non-immunogenic fibrosarcoma tumour
by a factor of 1.41 and 1.73 when CpG oligodeoxynucleotide
1826 was given SC and IT, respectively.

(100)

TLR9 agonist
(CpG
oligodeoxynucleotide
1826),
peritumoural injection

- 20 Gy single
fraction

Immunogenic
sarcoma (FSa)

The CpG ODN-induced enhancement of tumour
radioresponse was diminished in tumour-bearing mice
immunocompromised by sublethal whole-body radiation.
Tumours treated with combination showed increased
necrosis, heavy infiltration by host inflammatory cells
(lymphocytes and granulocytes), and reduced tumour cell
density.

(101)

(Continued)
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clinical trial in brain cancer (NCT03423628). A dual ATM and

DNA-PKc inhibitor (XRD-0394) and radiotherapy phase I trial

is also recruiting (NCT05002140) (Table 2).

ATR is activated by single-stranded DNA (ssDNA)

structures that may arise at resected DNA DSBs or stalled

replication forks. ATR is recruited via interaction of ATR-

interacting protein (ATRIP) with ssDNA-bound replication

protein A (RPA) (105). RPA-ssDNA complexes stimulate

loading of the RAD9–HUS1–RAD1 (9–1–1) heterotrimer, that

recruits DNA topoisomerase II binding protein 1 (TopBP1)

which activates ATR (106). Once ATR is activated,

downstream targets, including checkpoint kinase 1 (Chk1),

promote DNA repair (107, 108), restart of stalled replication

forks (109) and intra-S and G2/M cell cycle arrest (110, 111). In

response to DNA damage, activation of the intra-S-phase cell

cycle checkpoint slows progression of DNA replication to allow

time for resolution (110, 111). In addition, the ATR-dependent

G2/M cell cycle checkpoint is activated through degradation of

cell division cycle 25A (Cdc25A) (111), and phosphorylation of

Cdc25C phosphatase inhibits its ability to activate nuclear cell

division cycle 2 (Cdc2) and, hence, mitosis entry (112). Most

cancer cells are defective in DNA damage-induced checkpoints

through e.g. p53 pathway mutations, which leads to dependence

on the intra-S-phase and G2/M checkpoints for cell survival

(69). Therefore, ATR inhibition will lead to accumulation of

DNA damage, premature entry into mitosis, mitotic catastrophe

and cell death (69).

ATR inhibitors include schisandrin B (113), NU6027 (114),

NVP-BEZ235 (115), VE-821 (116), VE-822 (117), AZ20 (118)

and ceralasertib (AZD6738) (119, 120). NVP-BEZ235 has been

reported to induce marked radiosensitivity in Ras-
Frontiers in Oncology 08
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overexpressing cancers (121), and NU6027 has been shown to

increase sensitivity to DNA-damaging agents in breast and

ovarian cell lines (114). VE-822 results in selective

sensitisation of pancreatic tumours to radiation in vivo by

increasing persistent DNA damage, decreasing cell cycle

checkpoint maintenance and reducing homologous

recombination repair (117). In vitro, ATR inhibition

downregulates radiotherapy-induced programmed death-

ligand 1/2 (PD-L1/2) expression to sensitise cancer cells to T-

cell killing, in addition to potentiating DNA damage (122).

Promising preclinical in vivo studies (Table 1) of the ATR

inhibitor ceralasertib (AZD6738) in combination with

radiotherapy have shown an enhanced type I/II interferon

response and increased immune cell infiltrate (88), increased

RT-stimulated CD8+ T cell infiltration (87, 89), NK-mediated

anti-tumour immunity (90), as well as reversal of the Treg

immunosuppressive effect (87, 89). In addition, further

addition of ICI (i.e. anti-PD-1, anti-PD-L1, anti-TIGIT (T-cell

immunoglobulin and ITIM domain)) to the ceralasertib

(AZD6738) and radiotherapy combination further improved

response and long-lasting immunity in a CD8+ (87, 89) and

NK-dependent manner (90).

There are, to date, three early phase clinical studies

investigating ATR inhibition and radiotherapy. PATRIOT, a

phase I study of ceralasertib (AZD6738) in combination with

palliative radiotherapy, has completed recruitment and is

awaiting report (NCT02223923). BAY1895344 in combination

with radiotherapy and pembrolizumab in recurrent head and

neck squamous cell carcinoma (HNSCC) (NCT04576091) and

M6620 with radiotherapy and chemotherapy in solid cancers

(NCT03641547) are ongoing studies (Table 2).
TABLE 1 Continued

Target (drug),
route

Additional
therapy

Radiotherapy
(RT)

Murine
tumour model

Immunological effects References

TLR9 agonist
(CpG
oligodeoxynucleotides),
peritumoural injection

30 Gy in 10
fractions of 3 Gy
over 12 days, or a
single dose (2, 6 or
10 Gy)

Rat glioma cell
lines 9L and RG2

Combination treatment efficacy was lost in nude mice
compared to immunocompetent mice, underlining the role of
immune cells in anti-tumour effects. Tumour infiltration by
immune cells and expression within tumours of the CpG
receptor, TLR9, were not modified by irradiation.

(102)

TLR9 agonist
CpG
oligodeoxynucleotides,
SC injection

- 20 Gy single
fraction

Lewis lung
carcinoma (3LL)
cells

TLR9 agonist alone expanded and activated B cells and
plasmacytoid dendritic cells in wild-type mice and natural
killer DCs (NKDCs) in B cell-deficient (B−/−) tumour-
bearing mice. Combined treatment led to a strong tumour-
specific humoral immune response with deposition of mouse
IgG auto-antibodies in tumour tissue in wild-type mice
whereas the number of tumour-infiltrating NKDCs increased
in B−/− mice.

(103)

(RIG-I)-like receptor agonist (RLR)

dsRNA mimic polyIC
by polyethylenimine
(PolyIC(PEI)),
IT cytoplasmic delivery

Low-dose
cyclophosphamide,
TLR agonist
(polyIC),
decitabine

Diffusing alpha-
emitting radiation
therapy (DaRT)
Intratumoural Ra-
224-coated seeds

4T1 triple-negative
breast tumours
Squamous cell
carcinoma (SCC)
tumour model SQ2

Splenocytes from PolyIC(PEI) and DaRT-treated mice,
adoptively transferred to naive mice in combination with 4T1
tumour cells, delayed tumour development compared to naïve
splenocytes. Delay in tumour development on re-challenge
was demonstrated.

(104)
fr
IV, intravenous; SC, subcutaneous; IP, intraperitoneal; IT, intratumoural; PO, oral.
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TABLE 2 Selected clinical trials investigating radiotherapy in combination with DDR inhibitor and/or other agents.

Target (drug) Additional Radiotherapy Phase Patient n Response Toxicity NCT ID

ecruiting NCT03423628

ctive, not recruiting NCT02223923

ecruiting NCT04576091

ecruiting NCT03641547

ot yet recruiting NCT04068194

ose-escalation results reported (n=16 patients enrolled).
he most frequent AEs were fatigue in 12/16 and nausea
/16. No patients discontinued due to DLTs. Four DLTs
ere reported: grade 3 mucositis lasting > 7 days in 3/16
nd odynophagia in 1/16, all recovered without sequelae.
ne fatal suspected unexpected serious AE considered as
adiation pneumonitis occurred.

NCT02516813

ecruiting NCT03770689

ecruiting NCT03724890

ecruiting NCT04555577

ecruiting NCT04533750

ecruiting NCT05002140

ecruiting NCT05002140
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DNA repair inhibitors

ATM kinase
inhibitor
(AZD1390)

N/A 35 Gy over 2 weeks;
30 Gy over two
weeks;
60 Gy over 6 weeks

I Brain cancer 120 Recruiting

ATR inhibitor
(AZD6738)

None 20 or 30 Gy I Solid tumours 46 Active, not recruiting

ATR kinase
inhibitor
(BAY1895344)

Pembrolizumab SBRT 3 fractions
with 2-3 days
between fractions

I Recurrent head
and neck
squamous cell
carcinoma

37 Recruiting

ATR inhibitor
(M6620)

Cisplatin;
capecitabine

Not specified I Oesophageal
cancer and other
solid cancers

65 Recruiting

DNA- PK
inhibitor
(M3814)

Avelumab Hypofractionated in
5 fractions

I/II Advanced
hepatobiliary
malignancies

92 Not yet recruiting

DNA- PK
inhibitor
(M3814)

Cisplatin 3 Gy x 10; 2 Gy x
33-35

I Locally advanced
tumours

52 Preliminary efficacy: in-field response (n=16): one patient
had pCR, 4 PR, 7 SD, and 3 have not yet been evaluated.
One patient was not evaluable.

DNA- PK
inhibitor
(M3814)

Capecitabine 45–50 Gy in 25–28
fractions
over 5 weeks

Ib/II Rectal cancer 165 Recruiting

DNA- PK
inhibitor
(M3814)

Avelumab 30 Gy in 10
fractions over 2
weeks

I Various
advanced
solid tumours

24 Recruiting

DNA- PK
inhibitor
(M3814)

Temozolomide 60 Gy in 30
fractions over 6
weeks

I MGMT
promoter
unmethylated
glioblastoma or
gliosarcoma

29 Recruiting

DNA- PK
inhibitor
(M3814)

N/A Not specified I Advanced head
and neck cancer

42 Recruiting

DNA-PK
inhibitor
(XRD-0394)

N/A 20 Gy in 5 fractions
over 1 week

I Various
advanced
solid tumours

38 Recruiting

Dual ATM
and DNA-PK

N/A 20 Gy in 5 fractions
over 1 week

I Metastatic,
locally advanced,

38 Recruiting
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cruiting NCT03923270

24 (8.7%) patients experienced acute grade 3 dermatitis
lated to RT. Olaparib-related toxicity grade 3-4
ematological toxicity was lymphopenia in 11/24 (45.8%)
tients.

NCT03109080

cruiting NCT03598257

cruiting NCT04728230

ctive, not recruiting NCT02229656

cruiting NCT03212742

cruiting NCT03945721

cruiting NCT04837209

ctive, not recruiting NCT03581292

dose-limiting AEs occurred: 4 moist desquamation, 1
utropenia. Crude Grade 3 toxicity was 10% at year 1,
.7% at year 2, and 46.7% at year 3. At year 3, 6 of 15
rviving patients had severe fibrosis in the treatment
ld.

NCT01477489
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inhibitor
(XRD-0394)

or recurrent
cancer

PARP
inhibitor
(olaparib)

Durvalumab;
Tremelimumab

30 Gy in
10 fractions over
2 weeks

I/II Extensive stage
small cell lung
cancer

54 Recruiting R

PARP
inhibitor
(olaparib)

N/A Not specified I Triple-negative
breast cancer

24 Awaiting report 2/
re
h
p

PARP
inhibitor
(olaparib)

N/A Unspecified
standard
radiotherapy
treatment 5 days
per week for 6
weeks

II Inflammatory
breast cancer

300 Recruiting R

PARP
inhibitor
(olaparib)

Durvalumab;
carboplatin;
etoposide

Not specified
consolidative
thoracic
radiotherapy

I/II Extensive-stage
small cell lung
cancer

63 Recruiting R

PARP
inhibitor
(olaparib)

N/A High-dose 70 Gy in
35 fractions; elective
neck 54.25 Gy in 35
fractions

I Head and neck
cancer

12 Active, not recruiting A

PARP
inhibitor
(olaparib)

Temozolomide 2 Gy per fraction
given once daily five
days per week over
6 weeks, for a total
dose of 60 Gy

I/IIa High-grade
gliomas

79 Recruiting R

PARP
inhibitor
(niraparib)

N/A Not specified I Triple-negative
breast cancer

20 Recruiting R

PARP
inhibitor
(niraparib)

Dostarlimab Not specified II Triple-negative
breast cancer

32 Recruiting R

PARP
inhibitor
(veliparib)

Temozolomide 30 daily fractions of
radiation therapy 5
days per week for 6-
7 weeks

II Newly diagnosed
malignant
glioma without
H3 K27M or
BRAFV600
mutations

115 Active, not recruiting A

PARP
inhibitor
(Veliparib)

N/A 50 Gy to the chest
wall and regional
lymph nodes plus a
10-Gy boost

I Inflammatory or
loco-regionally
recurrent breast
cancer

30 15 disease control failures during the 3 years of follow-up. 13
died (all after recurrence)

5
n
16
su
fi

39
e

a
a

e

e

e

e

e

e

e
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n Response Toxicity NCT ID

%) of 31
ogical

Common AEs included nausea in 17 patients (53%),
diarrhoea in 16 (50%), and fatigue in 16 (50%). Grade 3
diarrhoea in three (9%) of 32 patients; no Grade 4 events.

NCT01589419

Completed NCT03028766

Active, not recruiting NCT03345784

Completed NCT02585973

ths
ly

8/34 patients (24%) experienced a dose-limiting toxicity,
most commonly anorexia, nausea, or fatigue.

NCT02037230

ed site.
ated

Grade 1-2 drug-related AEs reported by all patients. Most
common treatment-related side effect was a flu-like
systemic reaction. 8/29 patients (27.6%) had grade 3 drug-
related AEs. No drug-related grade 4 or serious AEs.

NCT02266147

Recruiting NCT03410901

rior
ese
R was
/7), and
ients

Awaiting report NCT03322384

Recruiting NCT03007732
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PARP
inhibitor
(Veliparib)

Capecitabine 50·4 Gy in 1.8 Gy
fractions daily, 5
consecutive days per
week for 5·5 weeks

!b Locally advanced
rectal cancer

32 Tumour downstaging at surgery was noted in 22 (71
patients; nine (29%) of 31 patients achieved a pathol
complete response.

Wee 1 inhibitor

Adavosertib
(AZD1775)

Cisplatin IMRT 5 days a
week, once daily,
Monday to Friday,
for 6 weeks

I Head and neck
cancer

9 Completed

Adavosertib
(AZD1775)

Cisplatin 45 Gy or greater I Cervical, upper
vaginal and
uterine Cancers

33 Active, not recruiting

Adavosertib
(AZD1775)

Cisplatin 70 Gy at 2Gy per
fraction, 35
fractions, Monday
to Friday over 7
weeks

I Intermediate/
high risk
squamous cell
carcinoma of
head and neck

12 Completed

Adavosertib
(AZD1775)

Gemcitabine 52.5Gy in 25
fractions (2.1Gy/
fraction), using
intensity-modulated
radiation therapy
(IMRT) after
chemotherapy

I/II Unresectable
adenocarcinoma
of the pancreas

34 Median overall survival for all patients was 21.7 mon
(90% CI, 16.7 to 24.8 months) which was substantial
higher than prior results combining gemcitabine wit
radiation therapy.

Toll-like receptor agonists

TLR9 agonist
(SD-101)
intratumoural

N/A 4 Gy in 2 fractions
over 2 days

I/II Untreated
indolent
lymphoma

29 26/29 (89.7%) patients had tumour reduction at trea
24 (82.8%) patients had tumour reduction at non-tre
sites.

TLR9 agonist
(SD-101)
intratumoural

Anti-OX40 (BMS-
986178)

Low-dose not
specified over 2
fractions

I Low-grade B cell
non-Hodgkin
lymphoma

15 Recruiting

TLR9 agonist
(SD-101)
intratumoural

Epacadostat 24 Gy in 8 fractions,
20 Gy in 5 fractions,
4 Gy in 2 fractions

I/II Advanced
solid tumours

20 Early outcome reported for 7 patients refractory to p
therapy with anti-PD-L1 checkpoint inhibition. In th
patients, disease control rate (DCR) and abscopal DC
86% (6/7) and 100% (7/7), response rate was 43% (3
abscopal response rate was 29% (2/7) including 2 pa
with long-term durable complete responses.

TLR9 agonist
(SD-101)
intratumoural

Pembrolizumab;
leuprolide acetate;
abiraterone

35 Gy in 7 fractions II Oligometastatic
prostate cancer

42 Recruiting
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& route
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therapy

Radiotherapy Phase Patient
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n Response Toxicity NCT ID

orted for 13 patients treated with a median
onths. 6 of 12 evaluable patients had
response (50% ORR) and 3 had achieved
distal tumour burden. Eight of 12 patients
ienced at least a 30% reduction in distal

AEs were consistent with known effects of ibrutinib and of
CpG with no unexpected AEs to suggest synergistic
toxicity. There were no grade 4 or 5 events. AEs led to
ibrutinib dose reduction or discontinuation in 3 patients.

NCT02927964

ing Active, not recruiting NCT04050085

Recruiting NCT03507699

Completed NCT02254772

Completed NCT01421017

e response of treated tumour in 8/11
) had stable disease/minor regressions at
nd three (27.3%) showed significant
ression.

All AEs Grade 1 apart from 1 patient with G2 fever NCT01976585

t with complete clinical response, distant

(33.3%).

Mild injection site
reaction and mild
flu- like symptoms

NCT00185965
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Acetate;
prednisone

TLR9 agonist
(SD-101)
intratumoural

Ibrutinib Not specified Ib/II Lymphoma 30 Early outcome rep
follow-up of 7.7 m
achieved a partial
>50% reduction in
(66.7%) had expe
tumour burden.

TLR9 agonist
(SD-101)
intratumoural

Nivolumab 6-10 Gy per fraction
to the injected
lesion given on days
1, 3, 5, 8, and 10

I Metastatic
pancreatic
adenocarcinoma

6 Active, not recrui

CMP-001
intratumoural

Nivolumab;
ipilimumab

Radiosurgery I Colorectal
cancer
metastatic to
liver

19 Recruiting

SD-101
intratumoural

Ipilimumab Low-dose radiation
therapy to 1 site of
disease

I/II Recurrent low-
grade B-cell
lymphoma

9 Completed

Imiquimod
(topical)

Cyclophosphamide 30 Gy in 5 fractions I/II Metastatic
breast cancer

31 Completed

Poly(ICLC)
intratumoural

rhuFlt3L/CDX-301 2 Gy x 2 I/II Lymphoma 11 Partial or comple
(72.7%). Six (54.5
non-treated sites
distant disease reg

CpG-
enriched
TLR9
agonist (PF-
3512676)
intratumoural

4 Gy in 2 fractions
over 2 days

I/II Mycosis
fungoides

15 One (6.7%) patien
site
clinical response
seen in 5 patients

AEs, Adverse effects; DLTs, Dose-limiting toxicities; NCT, National Clinical Trial; N/A, Not Applicable.
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A downstream target of ATR, Chk1, has also been

investigated as a potential therapeutic target, due to its ability

to activate intra-S and G2/M cell cycle checkpoints and

modulate the replication stress response (123), particularly as a

sensitiser to radiotherapy (124). Chk1 inhibitors, to date, include

UCN-01 (125), LY2606368 (126), PF-00477736 (127), MK8776

(128) and CCT244747 (129), AZD7762 (130) and LY2603618

(131). Although there have been promising results in refractory

acute myeloid leukaemia and advanced cancer with MK-8776

(132, 133) and LY2606368 (134), unfortunately severe adverse

effects such as drug-related cardiac toxicity have also been

reported during the clinical development of these drugs, e.g.

AZD7762 (135). Thus far, no clinical trials are investigating the

combination of Chk1 inhibition and radiotherapy.

3.1.2 DNA-PKcs (DNA-dependent protein
kinase, catalytic subunit) inhibitors

DNA-PK is pivotal for the initiation of DNA repair

following DSBs, which ultimately results in recruitment of

proteins involved in DNA damage repair progressing and

ligating the broken DNA ends most recognised via the NHEJ

pathway (136). Various cancer cell lines with reduced levels of

DNA-PKcs show increased radiosensitivity compared to

unirradiated controls (137–139) due to defective DNA DSB

repair, inhibition of phosphorylated protein kinase B (Akt) on

Ser473 and reduction of radiotherapy-induced transcription

factor hypoxia-inducible factor-1 a levels (HIF-1 a) (138).
Given that DNA-PKcs is critical in radiotherapy-induced

DDR, DNA-PKcs inhibition is an emerging therapeutic target

for potentiating radiotherapy responses (140, 141), and many

agents have already been tested in clinical trials. Non-selective

DNA-PKcs inhibitors include wortmannin, which also inhibits

ATM (142), and LY294002, which has a similar structure (143,

144). More selective DNA-PKcs inhibitors include NU7026

(145), NU7441 (146), IC86621, IC87102, IC87361 (147),

vanillin (148), OK-1035 (149), SU11752 (150), BVAN08 (151),

IC486241 (152) and NK314 (153). More recently, novel

inhibitors have been discovered including M3814 (154),

AZD7648 (155) and VX-984 (156). Doxycycline was first

approved by US Food and Drug Administration (FDA) in

1967 as a broad-spectrum antibiotic and has recently been

recognised to function also as an DNA-PK inhibitor (157).

Mechanisms by which DNA-PKcs helps to sensitise to

radiotherapy include prolongation of radiotherapy-induced

G2/M phase arrest (158) and reduced repair of radiotherapy-

induced DSB (147, 150, 159) leading to the induction of

autophagic cell death and mitotic catastrophe (66).

In terms of DNA-PKcs inhibition leading to stimulation of

the innate immune system, a recent study showed that

combining radiation with M3814-induced DNA-PK inhibition

increased cytosolic dsDNA and tumour type I interferon

signalling in a cGAS-STING-independent, but RNA

Polymerase III-, RIG-I- and MAVS-dependent manner, in
Frontiers in Oncology 13
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pancreatic cancer models (91). Furthermore, radiotherapy and

M3814 increased PD-L1 expression and sensitised to anti-PD-L1

treatment in poorly immunogenic pancreatic cancers (91).

DNA-PKcs itself also functions as a DNA sensor that activates

innate immunity. It has been reported to function as a PRR by

binding to cytoplasmic DNA and can trigger a type I IFN

response in a STING/IRF-3/TBK1-dependent manner (160) as

well as a STING-independent manner via phosphorylation of

heat shock protein HSPA8/heat shock cognate HSC70 (161). It is

still unclear whether pharmacological inhibition of DNA-PKcs

kinase activity may dampen anti-tumour immunity in contrast

to inhibition of other DDR kinases described such as ATM

or ATR.

Clinical studies of DNA repair inhibitors, M3814

(NCT04533750) and XRD-0394 (NCT05002140), in

combination with radiotherapy are recruiting. In addition,

triple combination of M3814 with radiotherapy and

chemotherapy (NCT02516813, NCT03770689, NCT04555577)

or anti-PD-L1 (NCT04068194, NCT03724890) are also awaiting

report (Table 2).

3.1.3 PARP inhibitors
PARP-1 has been the most extensively studied of the PARP

superfamily and is a key regulator of DNA damage repair (162,

163). In response to DNA damage, such as that induced by

radiotherapy, an initial response is poly(ADP-ribosyl)ation

(PARylation) of proteins including nuclear DDR proteins,

such as DNA-PKcs, to provide a local signal of DNA damage

(163–165). Inhibitors of PARP generally function by inhibiting

PARylation or suppressing PARP-1 release by ‘trapping’. PARP-

1 inhibition has been reported to sensitise cancer cells to various

forms of ionising radiation including conventional gamma

irradiation (166, 167), proton-beam irradiation (167) and

radionuclide therapy (168, 169) (Table 2). Although SSBs are

primary repaired by PARP-1, its inhibition may not be lethal due

to other available repair pathways, such as homologous

recombination. However, deficiency in BRCA1/2 functionality,

which are key components in the HR pathway of DSB repair,

leads to synthetic lethality and selective sensitivity to PARP

inhibition (170).

B e y ond DNA r ep a i r , PARP - 1 a l s o p l a y s an

immunomodulatory role by regulating gene transcription of

several immune cell types, modulating the stimulatory ability

of DCs, and by directly affecting the differentiation and function

of T and B cells (171, 172). PARP-1 knockout mice show

reduced T helper type 2 (Th2) differentiation responses (172).

PARP-1 is also involved in the differentiation of Foxp3+

regulatory T cells (Treg) and promotion of Treg cell apoptosis

during inflammatory responses (172). PARP inhibitors generate

cytoplasmic chromatin fragments with micronuclei

characteristics which activate cGAS-STING, downstream type

I interferon signalling and chemokine ligand 5 (CCL5) secretion

in excision repair cross-complementation group 1 (ERCC1)-
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defective non-small cell lung cancer (NSCLC) cells (173). The

capacity of PARP1 inhibitors to upregulate innate immune and

inflammasome-like signalling events, such as cGAS-STING

signalling, closely depends on their PARP1-trapping abilities

(174, 175). In the context of viral infection, activated DNA-PK

has been reported to phosphorylate PARP1 leading to its

cytoplasmic translocation (176). Cytoplasmic PARP1 can then

interact with and directly PARylate cGAS to inhibit its DNA-

binding ability (176). This has implications to how PARP

inhibition, in the context of cancer-induced genome instability,

can positively modulate the host anti-tumour immune response.

Early PARP-1 inhibitors were non-specific and non-selective,

such as nicotinamide (177), AG14361 (178) and 4-amino-1,8-

naphthalimide (179). Newer PARP-1 inhibitors, such as olaparib

and niraparib, are now used in routine clinical practice following

approval by the FDA and European Union (180, 181). They are

licensed for use in patients with advanced BRCA-mutated ovarian

cancer, metastatic-castration-resistant prostate cancer with BRCA1/

2 or ATM mutation (182), suspected germline HR repair gene

mutated mCRPC who have progressed on enzalutamide or

abiraterone (183) and, most recently, recurrent epithelial ovarian,

fallopian tube or primary peritoneal cancer which has responded to

first-line platinum chemotherapy (184, 185).

Combining PARP-1 inhibition and radiotherapy has been

supported by preclinical studies. Particularly in BRCA1-mutant

cancers, PARP inhibition showed radiation hypersensitivity in

lymphoblastoid cells (186). In various models, PARP-1 inhibitors

KJ-28d (187), ABT-888 (188) and the PARP-1/2 inhibitor MK-

4827 (189) increased cancer cell radiation sensitivity.

Many clinical trials are underway investigating the combination

of PARP inhibitors and radiotherapy, with addition of

chemotherapy and/or immunotherapy agents (Table 1). The

mechanisms underlying radiosensitisation by PARP inhibitors are

still not completely clear and, indeed, recent studies have revealed a

wider immunological role for PARP-1 that could potentially be

exploited through new therapeutic approaches (190). For example,

one study showed through multiomics profiling that macrophage-

mediated immune suppression is a liability of PARP inhibition

(191). Following this evidence, the rationale for combining CSF-1R

blocking antibodies with PARP inhibitors led to reprogramming of

the TME and significantly enhanced innate and adaptive anti-

tumour immunity, which was CD8+-mediated in BRCA-deficient

tumours in vivo (191).

3.1.4 Wee1-like protein kinase (Wee1) inhibitors
Wee1 is a cell cycle checkpoint negative regulator at the G2/

M transition. The process by which Wee1 activation leads to

phosphorylation and inactivation of the cyclin B1/CDK1

complex blocking entry into mitosis is well described (192).

Emerging studies have highlighted the role of Wee1 directly

and indirectly in immune signalling (193). For example,

ineffective CDK-1-dependent nuclear laminin degradation
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abrogates apoptosis induction, leading to immune resistance in

tumour cells (194). Accordingly, Wee1 inhibition reconstitutes

CDK1 activity to reverse resistance of these cancer cells to

immune attack (194). In various cancer models, Wee1

inhibition promotes accumulation of cytosolic dsDNA, leading

to activation of the cGAS-STING pathway (Figure 1), increased

type I interferon target gene expression when delivered alone

(195), as well as in combination with ATR inhibitors (196) or

immune checkpoint blockade (197). A STING-independent

pathway by which Wee1 inhibition induces the interferon

response has also been reported. In cGAS-STING-defective

tumour models, Wee1 inhibition can upregulate immune

signalling through the dsRNA anti-viral defence pathway by

promoting expression of endogenous retroviral element (ERV)

(198). ERVs trigger dsRNA stress and the interferon response,

resulting in the recruitment of anti-tumour T-cells, and

increased expression of PD-L1 with sensitisation to anti-PD-

L1 blockade in multiple cancer models (198).

Wee1 inhibitors, some of which are concomitant CDK1

inhibitors, are promising as a combination partner with

radiotherapy (199). This combination has shown synergistic

effects in various cancer models (200–202). Wee1 inhibitors

such as 681641 (203), PD0166285 (204) and adavosertib

(MK1775/AZD1775) (92, 202, 205) have been reported to

increase the radiosensitivity of cancer cells. Cancer cells very

frequently harbour G1 checkpoint deficiencies and Wee1

inhibitor-mediated prevention of DNA repair following

radiotherapy may lead to premature entry into mitosis and,

ultimately, cell death via mitotic catastrophe (206). Other

mechanisms include blocking radiotherapy-induced DNA

damage repair (204) by impairing DNA repair protein RAD51

homolog 1 (RAD51) focus formation (202) and suppression of

Sirt1 (silent mating type information regulation 2 homolog 1).

Sirt1 interacts with and deacetylates HR-repair machinery

proteins including Nibrin (NBS1) and RAD51, thus, Wee1-

induced Sirt1 suppression impairs HR-repair activity (207).

Several clinical trials are exploring the combination of Wee1

inhibition by adavosertib (MK1775/AZD1775) with

r ad io the r apy and chemothe rapy (NCT03028766 ,

NCT03345784, NCT02585973, NCT02037230) (Table 2). The

emerging immune-mediating effects of Wee1 inhibition provide

a strong rationale for its combination with immune checkpoint

inhibitors (198).
3.2 Cytosolic nucleic acid
sensing pathways

The ability to detect cytosolic nucleic acids by PRRs, arising

from pathogens or disruption of cellular functions from

genotoxic stress such as DNA damage, is part of the protective

cellular response against infection or injury. These mechanisms
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are an evolutionary product of anti-microbial responses and can

trigger an inflammatory signalling cascade and subsequent

activation of the innate immune system. Targeting these

nucleic acid sensing mechanisms has the potential to further

amplify the DDR-induced anti-tumour innate immunity in

conjunction with radiotherapy.
3.2.1 Direct DNA sensing
3.2.1.1 STING agonists

Stimulator of interferon genes (STING) is an endoplasmic

reticulum adaptor that senses self and foreign cytoplasmic DNA,

via cyclic GMP–AMP synthase (cGAS), and is crucial for effective

innate immune signalling (208). Cytosolic DNA induces synthesis

of the cyclic dinucleotide (CDN) cyclic GMP–AMP (cGAMP)

from ATP and GTP by a cyclase enzyme called cGAS. cGAMP

directly binds to STING to cause its dimerization and activation

(209, 210), leading to activation of both NF-kB and IRF3

transcription pathways to induce expression of type I interferon,

recruitment of immune cells, promotion of DC maturation and

antigen-specific immune priming (211).

The cGAS-STING pathway is essential for anti-tumour T

cell responses (212). One proposed mechanism is that

CD8a+ DCs engulf apoptotic or necrotic tumour cells, and

tumour cell-derived DNA triggers STING signalling in DCs

(212–214). The subsequent type I IFN production by these DCs

facilitates antigen cross-presentation and T-cell priming

independent of the TLR or RIG-I/MAVS pathways (212).

Recent studies have also suggested that STING signalling in

the TME can suppress the immunosuppressive activity of

MDSCs (215, 216). STING signalling is critical for radiation-

induced anti-tumour responses (214) and, thus, it is an attractive

potential treatment combination with radiotherapy. Preclinical

data have shown that consideration needs to be given to

radiotherapy dose per fraction as doses above 12-18 Gy induce

the DNA exonuclease Trex1, which degrades the cytosolic DNA

required to stimulate an effective STING-dependent type I IFN

response (217).

The first generation STING agonist, 5,6-Dimethylxanthenone-

4-acetic Acid (DMXAA), was originally developed as a vascular-

disrupting agent (218, 219) and its anti-tumour effect is based on

vascular necrosis leading to tumour starvation and haemorrhagic

necrosis (218, 220). DMXAA has previously been shown to

synergise with radiotherapy in mouse models in a hypoxia-

preferential manner (221). However, the TME was found to

remain immunologically sterile and tumours eventually

progressed with time without durable protective anti-tumour

immunity (222, 223). High local STING concentrations can lead

to rapid T-cell apoptosis (224) whereas low-dose administration can

lead to ‘vascular normalisation’ and favourably transform the TME

to allow use of effective combinatorial anti-tumour immunotherapy

(225–227).
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There are two categories of STING agonists in clinical

development: synthetic cyclic dinucleotides (CDNs) or non-CDN

small molecules (228). These drugs are generally administered

intratumourally due to their poor stability and bioavailability.

This caveat limits their use to accessible tumours and recent

efforts have been focused on development of STING agonists for

systemic delivery (intravenously (228), orally (229, 230) and even as

an inhalable nanoparticulate (231)). In addition, novel STING

antibody-drug conjugates show promising preclinical results

(232). There have only been a handful of preclinical studies

investigating novel STING agonists with radiotherapy in vivo

(Table 1). In mouse models, STING agonists synergise with

radiotherapy to control local and distant disease and mediate

rejection of tumour rechallenge (93, 231) via early T-cell-

independent and TNF-a-dependent haemorrhagic necrosis,

followed by a later stage of CD8 T-cell-dependent control (93). A

number of clinical trials have looked into combining STING

agonists with ICI or conventional chemotherapy (233); however,

at the time of this review no radiotherapy and STING agonist

combination clinical trials are in progress.
3.2.2 Crosstalk with RNA sensors
3.2.2.1 Toll-like receptor agonists

Toll-like receptors (TLRs) are a form of PRR expressed on

sentinel immune cells which activate innate defence systems by

detecting PAMPs. Genotoxic stress and DNA damage are

increasingly recognised to signal through TLRs and cause the

upregulation of TLR expression (234) via p53 (235). TLR

signalling leads to maturation of APCs such as DCs, which are

key mediators of T-cell activation and subsequent adaptive

immunity. There is growing preclinical evidence that TLR

agonists in combination with radiotherapy may lead to

enhanced anti-tumour immunity, particularly through the

mechanism of enhanced DC-mediated T-cell priming

following radiotherapy (236). This occurs at various stages of

this pathway; for example, TLR activation enhances type I IFN-

signalling in many immune cells, modulates chemokine

expression to enhance DC migration to lymphoid tissues

(237–239) and upregulates CD80 and CD86 co-stimulatory

molecules on DCs, which bind to CD28 on naïve T-cells for

antigen/MHC-complex mediated TCR stimulation (240). TLRs

can also stimulate DC-mediated release of IL-6 to dampen Treg

suppressive signalling (241).

Given these observations, TLR agonists are seen as an

attractive combination partner with radiotherapy. There have

been numerous preclinical studies (Table 1) and early phase

clinical trials (Table 2) of different TLR agonists, particularly of

TLR3, TLR7/8 and TLR9, in combination with radiotherapy.

TLR3 senses dsRNA as a PAMP and polyinosinic-

polycytidylic acid or poly (I:C) is a synthetic mimic of dsRNA

which can stimulate TLR3-signalling pathways and lead to type

I-IFN-dependent (242, 243) DC antigen cross-priming in vivo
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(244, 245). Poly(I:C) also has several immunostimulatory effects,

including maturation and activation of DCs (246–248), T-cell

stimulation (249, 250), enhanced cytotoxicity of Natural Killer

(NK) cells (251–253), reprogramming of MDSCs (254) and

repolarisation of macrophage populations from an M2

(classically activated macrophages) to M1 (alternatively

activated macrophages) phenotype (255) (Figure 1). Pre-

clinical studies exploring TLR3 agonists with radiotherapy in a

radioresistant mouse model of lung cancer showed that poly(I:C)

enhanced radiotherapy anti-tumour effects (256). The results

from initial clinical trials have been disappointing, likely due to

the short half-life of poly(I:C) (257). To address this, a

degradation-resistant derivative polyinosinic-polycytidylic acid,

and poly-L-lysine or poly(ICLC) was developed that has shown

efficacy in clinical trials, although toxicity remains an issue

(257). Preclinical studies in a murine lymphoma model have

investigated the Fms-like tyrosine kinase 3 (Flt3)-ligand with

radiotherapy and poly(ICLC) (258). Flt3-ligand is a cytokine

which increases migration of DCs into the tumour and

radiotherapy then stimulates maturation of DCs via ICD and

HMGB-1 signalling for antigen uptake and processing (259).

This combination with the addition of poly(ICLC) further

maximises DC maturation and activation (246–248). There is

a clinical study investigating intratumoral delivery of poly

(ICLC) in combination with an in-situ vaccine rhuFlt3L/CDX-

301 and radiotherapy which was well-tolerated and showed

promising results (258) (NCT01976585) (Table 2). Two phase

2 studies in glioblastoma patients are also investigating the

efficacy of poly(ICLC) in combination with radiotherapy

(260, 261).

TLR7 and TLR8 detect guanosine or uridine-rich single-

stranded RNA and their activation can directly induce MDSCs

to lose their immunosuppressive function and acquire an APC-

like phenotype that can induce tumour-specific T-cell responses

(262), convert MDSCs to M1-like macrophages (263), activate

NK cells (264–267) and revert Treg immunosuppressive effects

(268). The imidazoquinolines are synthetic agonists for TLR7/8

of which topical imiquimod is the most extensively studied as

well as being currently licensed for the treatment of superficial

basal cell carcinoma (269). A preclinical study in breast cancer

has investigated topical imiquimod in combination with

radiotherapy and low-dose cyclophosphamide (94), and found

that this triple combination had synergistic anti-cancer effects at

both irradiated and unirradiated (abscopal) sites. Long-term

surviving mice were able to reject tumour rechallenge, likely

due to the establishment of anti-tumour immunological memory

(94) (Table 1). A phase 2 clinical trial in metastatic breast cancer

testing the efficacy of this triple therapy has finished recruiting

(NCT01421017) (Table 2). Synergistic effects of subcutaneous

TLR7 agonist and radiotherapy have also been observed in a

preclinical model of melanoma (95) (Table 1). The efficacy of

systemic delivery of the TLR7 agonists R848 (96), DSR-6434

(97), DSR-29133 (98) and 3M-011 (99), in combination with
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radiotherapy, has been explored in the treatment of several

preclinical models of solid cancers. Dual therapy works

synergistically to enhance tumour control, generate tumour-

antigen-specific T-cells, suppress tumour growth (96–99) after

rechallenge in long-term surviving mice (97) (98) and reduce the

formation of distant metastases (99). Systemically-administered

TLR7/8 agonists are not currently being investigated in a clinical

setting; notably a phase I clinical trial investigating systemic

TLR7 agonist ANA975 in chronic hepatitis C virus (270) had to

be withdrawn due to excessive toxicity in extended preclinical

studies (271), highlighting the need for caution when delivering

systemic TLR7/8 agonists, especially in combination with

radiotherapy (236).

Finally, TLR9 is expressed on APCs and B-cells and senses

unmethylated CpG oligonucleotides present in bacterial and viral

DNA (272–274). Again, TLR9 agonism can lead to activation and

maturation of DCs, cytokine release from T helper type 1 (Th1)

cells, differentiation of MDSC towards an M1 phenotype (275–279)

and inhibition of Treg immunosuppressive effects (280). Several

preclinical studies (281–284) have shown that TLR9 agonists can

lead to anti-tumour effects in an NK- and CD8 T-cell-dependent

manner (285). Preclinical studies showed enhanced tumour control

in combination with radiotherapy in a model of murine

fibrosarcoma and lung cancer (100–103), and induction of

immunological memory by mice rejecting tumour rechallenge

(102). The synergistic effects of radiotherapy and TLR9 agonists

are dependent on a competent host immune system (102). Early

clinical studies, although in small patient numbers, have tested

TRL9 agonists in combination with radiotherapy. CpG-enriched

oligodeoxynucleotide delivered intratumorally in combination with

radiotherapy, 4 Gy in two fractions, led to overall objective response

rates of 27% in the non-treated lesions of patients with relapsed

low-grade B cell lymphoma (286).

3.2.2.2 (RIG-I)-like receptor (RLR) agonists

RIG-I and melanoma differentiation-associated gene 5

(MDA5) are collectively (RIG-I)-like receptors (RLR) which

detect cytosolic RNA and are a key PRR in anti-viral responses

(287). RIG-I preferentially binds to short (>10 bp) dsRNAs

whereas MDA5 detects long accessible dsRNAs (>2 kbp) (288,

289), and downstream signalling of either activates IRF3 and

NF-kB pathways to induce type I IFN and other inflammatory

cytokines. In the context of DNA damage, RIG-I interacts with

X-ray repair cross complementing 4 (XRCC4) to impede

formation of the XRCC4/LIG4 (DNA ligase 4)/XLF (XRCC4-

like factor) at DSBs. High expression of RIG-I compromises

DNA repair and sensitises cancer cells to irradiation treatment.

In contrast, depletion of RIG-I renders cells resistant to

irradiation in vitro and in vivo (290).

In the anti-tumour response, there is increasing evidence

that RLR activation in various cancer models by RNA ligands

can induce cancer cell apoptosis in a type I IFN-dependent

(291), or -independent manner (292, 293). RIG-I signalling can
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induce ICD of ovarian and pancreatic cancer cells in vivo by

systemic activation of DCs, NK cells and CD8+ T cells (294,

295). In a pancreatic cancer model, tumour-derived type I IFN

activates DCs and CD8a+ DCs engulf apoptotic tumour material

and cross-present tumour-associated antigen to naïve CD8+ T

cells (296). RIG-I may also inhibit tumour growth indirectly

through regulation of tumour hypoxia (297) and the gut

microbiota (298). The efficacy of anti-cancer treatments such

as radiotherapy and many chemotherapy agents has also been

shown to depend on the RLR pathway through endogenous non-

coding RNAs, and depletion of RIG-I in human tumours confers

treatment resistance (299).

Harnessing the RLR-pathway through RLR agonists is an

attractive therapeutic target and several RLR mimetics or

agonists have been developed which have shown promise in

preclinical studies. For example, a unique RIG-I agonist in the

form of RNA stem-loop of 14 bp (SLR14), when delivered

intratumorally, significantly inhibited B16 tumour growth

locally and systemically in bilateral and tumour metastasis

models, with cured mice developing immunological memory

(300). SLR14 was mainly taken up by CD11b+ myeloid cells in

the TME leading to subsequent increase in the number of CD8+

T lymphocytes, NK cells, and CD11b+ cells in SLR14-treated

tumours (300). MK4621 (or RGT100), a synthetic RNA

oligonucleotide RIG-I activator is currently in phase 1 clinical

trials for the treatment of advanced/metastatic solid

tumours (NCT03739138).

Combining RLR agonists and radiotherapy is an attractive

strategy to activate multiple DDR pathways via cytosolic RNA

sensing and radiotherapy-induced cytosolic DNA/DNA damage

detection. In vitro, an RLR agonist Poly(I:C)-HMW (High

Molecular Weight)/LyoVec™ [Poly(I:C)-HMW] sensitised in

vitro human lung cancer cells to Fas ligand (FasL)-induced

apoptosis by radiotherapy (301). In vivo intratumoral

cytoplasmic delivery of the dsRNA mimic poly(I:C) by

polyethylenimine (PEI), prior to diffusing alpha-emitting

radiation therapy (DaRT), resulted in synergistic tumour and

metastatic disease control. Furthermore, immunological

memory was demonstrated, whereby splenocytes from treated

mice adoptively transferred to naïve tumour-bearing mice,

resulted in delayed tumour development and protection from

rechallenge (104). Combining RLR-agonists and radiotherapy

has not yet been translated into clinical practice and to the best

of our knowledge there are no clinical trials investigating

this combination.
4 Discussion

We have discussed in detail the various druggable targets

related to the DDR pathway, in particular agonists of the nucleic

acid sensing pathways and inhibitors of DNA damage repair

mechanisms. Next, this review will explore the clinical challenges
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and implications of combining radiotherapy with DDR-

targeted agents.
4.1 The role of
conventional chemotherapy

Conventional chemotherapy has historically been used in

the backbone of radical chemoradiation (CRT) in many locally

advanced tumours such as rectal, cervical and head and neck

cancers. Chemotherapy agents traditionally used as

radiosensitisers include platin salts (e.g. Cisplatin, Carboplatin)

or fluoropyrimidines (e.g. 5-fluorouracil or its prodrug

Capecitabine), which trigger cell death by instigating DNA

damage (302). Chemotherapy-induced cell death can lead to

DNA leakage into the cytosol and trigger intrinsic STING

pathway stimulation and activation of the immune system

(303). Some may argue that investigating novel DDR-pathway

specific agents is redundant given that chemotherapy may exert

its anti-cancer effects partly by stimulating the innate immune

system (303). However, it is recognised that chemotherapy

(304), radiotherapy (305) or concomitant CRT (306) in

various cancers can result in lymphocyte depletion which can

potentially negate a sustained effective anti-tumour response.

Lymphocyte depletion post-treatment is a poor prognostic factor

in patients who have undergone radiotherapy for Stage III lung

cancer (305) or CRT for newly diagnosed glioblastoma (306).

Furthermore, defects in DDR signalling may contribute to

chemoresistance in some cancer types (303) and, as such,

development of specific DDR-targeting agents remains an

important avenue for research.
4.2 Maintaining anti-tumour immunity
using ICIs

The anti-tumour innate immunity initiated by radiotherapy

and DDR inhibitors is likely to be complementary to the effect of

immune checkpoint inhibitors (ICIs), which can sustain and

maintain the adaptive arm of the anti-tumour immune response.

For example, preclinical studies in lymphoma have shown that

treatment with Flt3L, radiation and poly(ICLC) led to PD-L1

upregulation in both tumour cells and intratumoural DCs, and

that the further addition of anti-PD-1 antibody led to improved

local and systemic tumour control (258). There is an increasing

number of early phase clinical studies investigating the addition

of ICI with radiotherapy and DDR-targeted agents, such as TLR

agonists (NCT03007732, NCT04050085, NCT03507699,

NCT02254772) and DNA-PK inhibitors (NCT04068194,

NCT03724890, NCT04576091, NCT03923270).

Clinical response to ICIs is typically predicted by tumour

mutational burden and neoantigen load (307, 308). Preclinical

data suggests that radiotherapy and DDR inhibitors may
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replicate the phenotype of high mutational and neoantigen

burden and rationally direct therapeutic combinations with

ICIs. However, the caveat is that radiotherapy-induced

subclonal neoantigens may translate into poorer responses to

ICI in some tumour types (307). The combination of

radiotherapy and anti-CTLA-4 increases the diversity of TIL

TCR repertoire, leading to increased tumour control in vivo;

however, these tumours remain dominated by a small number

of high-frequency T-cell clones (30, 32). It is still unknown

whether it is more important to have an immune response

against pre-existing tumour antigens or new radiotherapy-

generated tumour antigens. As we await the results of the

ongoing triple combination treatments (RT + DDR agents +

ICI) in early phase clinical trials, further work is needed to

investigate such combinations in the context of creation of

subclonal neoantigens.
4.3 Tumour-specific radiosensitisation
and the safety profile of
combination therapy

A key principle of radiation oncology is that the dose

delivered to the tumour is limited by the surrounding normal

tissue organs-at-risk (OARs). Hence, strategies in designing

clinical trials arguably should have some basis for a selective

effect of any combination drug on the tumour (309). Preclinical

studies in mouse models, for example, show that M3814, a

DNA-PK inhibitor given with radiotherapy, shows marked

improvement in tumour control (310). However, when

translated into clinical practice, a clinical trial of M3814 with

radiation (NCT02516813) reported enhanced normal tissue

reactions including dysphagia, prolonged stomatitis and

radiation dermatitis (311). Pre-clinical models are also severely

limited in predicting long-term treatment toxicity in humans.

A further therapeutic challenge of using DDR pathway agents

with radiotherapy is that there may be high variability in drug

pharmacokinetics leading to varying degrees of radiosensitisation

between tumour versus normal tissues, which makes it difficult to

predict the therapeutic index for each individual patient (309).

Therefore, unless there is a clear mechanism for tumour-specific

radiosensitisation, clinical trials combining DNA repair inhibitors

and radiotherapy may be severely compromised by unacceptable

toxicity. Potential solutions may be an intratumoural route of drug

delivery, as taken by certain trials of TLR9 agonists and STING

agonists (Table 2), or conditional drug activation, such as with a

hypoxia-activated DNA-PK inhibitor (312, 313). Increased

knowledge of biomarkers and access to routine tumour profiling

may guide the best selection of which DDR agent to use in a

particular cancer subtype, for example PARP-inhibitors in BRCA-

mutant or ATM/ATR inhibitors in p53-mutant tumours.
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Advances in radiotherapy delivery techniques using stereotactic

techniques to irradiate tumour volumes highly selectively is a

further way to reduce off-target combination effects of DDR-

targeting agents. For example, a Phase I trial in recurrent head and

neck squamous cell carcinoma investigating combining an ATR

kinase inhibitor BAY1895344 with pembrolizumab and

stereotactic body radiotherapy (SBRT) (NCT04576091)

represents one such promising approach.
4.4 Radiotherapy planning, modality and
scheduling with DDR delivery

In some occasions, radiotherapy can result in the regression

of disease outside of the irradiated field in the so-called abscopal

effect, which is thought to be immune-mediated (314). Inducing

such systemic anti-tumour immune responses is likely highly

dependent on radiotherapy dose and fractionation and these

factors, therefore, need to be an important consideration in

combination treatments with DDR agents and/or ICI (315).

Irradiation of regional lymph nodes in cancer treatment is

common practice either with high doses in macroscopic disease or

prophylactic lower doses, if lymph nodes are deemed to be at risk

of harbouring micrometastatic disease. This approach has recently

become more controversial given that we know these lymphoid

organs have an important role in DC-mediated T-cell priming,

activation and subsequent tumour infiltration following

radiotherapy (31). Routine irradiation of regional lymph nodes

may potentially deplete important immune cells and have a

detrimental effect on the anti-tumour immune response (316).

The biological effects of radiotherapy, such as DNA damage

complexity, depend on radiation quality and degree of linear

energy transfer (LET). High LET radiation (e.g. protons, carbon

ions, a-particle-emitting radionuclides) can differentially affect

cell fate (317). For example, protons mainly induce apoptosis not

necrosis which may reduce the leakage of nucleic acids into the

cytoplasm to serve as danger signals, hence impacting on the

innate immune response (317). The effects of radiotherapy were

previously thought to be mainly due to nuclear DNA damage

and their repair mechanisms. However, the outcome of

irradiation depends also on the activation and regulation of

other organelles that determine cellular metabolism, survival

and immunological responses such as the mitochondria (318).

Recent studies have shown that mitochondrial DNA DSBs

activate a type I IFN response and mitochondrial RNA release

into the cytoplasm triggers a RIG-I-MAVS-dependent immune

response (319, 320). Low-dose versus high-dose radiation, as

well as radiation quality, can also have different effects on

mitochondria-mediated innate and adaptive immune

responses (318). Interestingly, high LET particle radiotherapy

which are more efficient in ROS production is reportedly more
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likely to lead to mitochondria-mediated apoptosis and anti-

tumour immune responses (318, 321).

The most appropriate scheduling of DDR agents with

respect to radiotherapy also needs to be investigated further.

For example, a study investigating a novel TLR7/8 agonist in

combination with radiotherapy showed that the optimal

combination efficacy required the drug to be administered

concurrently at the start rather than end of radiotherapy (98).

However, another investigation of a TLR9 agonist showed

maximum synergy was observed when mice received the agent

three days after radiotherapy in the adjuvant setting (102).

Clinical trials investigating TLR3 agonists used in the

concurrent or adjuvant setting with respect to radiotherapy

both showed activity (258, 260, 261, 322). More preclinical

studies investigating the biological basis of optimal scheduling

are required, although it may be that optimal scheduling may

ultimately be both treatment- and tumour-specific.
5 Conclusion

Our increasing knowledge of the mechanisms of how

radiotherapy-induced DDR interacts intimately with the host

immune response is critical to the discovery of novel therapeutic

targets and effective strategies against cancer. DDR-targeted

agents are an exciting avenue for overcoming radioresistance

and improving patient outcomes through enhancement of anti-

tumour immunity. Understanding the molecular mechanisms

and immunological effects of these DDR agents, through

rigorous preclinical testing and translational analyses, is key to

guiding rational clinical trial design in terms of drug route of

delivery, schedules and choice of additional combination

treatments, such as chemotherapy or immunotherapy.
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The efficacy of radiotherapy, a mainstay of cancer treatment, is strongly

influenced by both cellular and non-cellular features of the tumor

microenvironment (TME). Tumor-associated macrophages (TAMs) are a

heterogeneous population within the TME and their prevalence significantly

correlates with patient prognosis in a range of cancers. Macrophages display

intrinsic radio-resistance and radiotherapy can influence TAM recruitment and

phenotype. However, whether radiotherapy alone can effectively “reprogram”

TAMs to display anti-tumor phenotypes appears conflicting. Here, we discuss the

effect of radiation on macrophage recruitment and plasticity in cancer, while

emphasizing the role of specific TME components which may compromise the

tumor response to radiation and influence macrophage function. In particular,

this reviewwill focus on soluble factors (cytokines, chemokines and components

of the complement system) as well as physical changes to the TME. Since the

macrophage response has the potential to influence radiotherapy outcomes this

population may represent a drug target for improving treatment. An enhanced

understanding of components of the TME impacting radiation-induced TAM

recruitment and function may help consider the scope for future therapeutic

avenues to target this plastic and pervasive population.

KEYWORDS

radiotherapy, tumor microenvironment, hypoxia, extracellular matrix, macrophage
polarization, macrophage recruitment, tumor associated macrophages (TAM),
complement system
Introduction

Within neoplastic lesions, immune and mesenchymal cells interact with malignant

tumor cells and influence many facets of tumor progression (1–3). Tumor-associated

macrophages (TAMs) often make up a large proportion of the immune cell population

within the TME. Macrophages are a highly plastic immune cell population, and their
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phenotypes are shaped by the microenvironments in which they

reside (4, 5). In the context of cancer, macrophages are exploited

by the tumor cells to adopt phenotypes which counterintuitively,

help facilitate disease progression through providing a suitable

microenvironment for the progression of multiple carcinomas

(6). It is possible to consider the role of TAMs in tumor

progression as occurring in phases (Figure 1) which include

initial recruitment of TAM progenitors, subsequent polarization

to an immunosuppressive phenotype and prevention of anti-

tumor immune responses. TAMs can also facilitate angiogenesis

to meet the metabolic demands of the cancer while assisting the

passage of tumor cells into circulation and setting up the site for

secondary tumor growth (7–9). Interestingly, the TAM

population is phenotypically diverse to the extent that both

pro- and anti-tumoral phenotypes of these cells can reside in the

same tumor (10, 11). The prevalence of the TAM population

correlates with poor patient prognosis in all cancers (except

colorectal) (12–14) highlighting this population as a potential

therapeutic target in cancer.

Radiotherapy is still a mainstay of cancer treatment for

approximately 50% of all cancer patients. It is increasingly

recognized that radiotherapy is a strong immune modulator,

with the capacity to induce both pro- and anti-inflammatory

processes (15, 16). As such, radiation can elicit macrophage

recruitment into the tumor (17–20). TAM polarization away

from tissue-protect ion and towards ant i- tumoral /

immunostimulatory functions could be a potential approach to

boost the anti-cancer effects of radiotherapy and capitalize on

the immune-stimulating effects of this treatment (16, 19). Here,

the effect of radiation on TAM recruitment and polarization will
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be described. We will particularly focus on changes to soluble

and physical components of the tumor microenvironment

(TME) which may limit the positive effects of radiation on

macrophage plasticity and highlight key examples that could

be therapeutically targeted to improve radiation response.
Phase 1: Recruitment of TAMs

Recruitment overview

TAMs within the tumor are either present as tissue-resident

macrophages or are formed after circulating monocytes are

recruited and subsequently polarized into mature TAMs (21,

22). Resident macrophages are present during embryonic

development and tend to exist in specific tissues such as

Kupffer cells in the liver, and alveolar macrophages in the

pulmonary alveolus of the lungs (23). These macrophages can

provide a pro-tumorigenic niche and assist with initial tumor

growth from a very early stage (24).
Soluble factors impacting TAM
recruitment following radiotherapy

Soluble factors that mediate mobilization are critically

associated with recruiting monocytes/macrophages to the TME

(Figure 1). A well-documented signaling molecule involved in

this process is chemokine (C-C motif) ligand 2 (CCL2, also

known as monocyte chemoattractant protein 1; MCP1) (25–27).
FIGURE 1

Schematic representation of the role of TAMs in tumor progression. Radiation can contribute to recruitment and polarization as indicated by the
yellow arrows. Figure created in Biorender. Agreement number: RO24DGQPW4.
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Radiotherapy is known to induce the expression of CCL2 within

the TME (28, 29). Increased CCL2 expression can also be

regulated by components of the humoral arm of innate

immunity such as the complement system (30–32) and the

long pentraxin PTX3 (33). Both of these innate immunity

components appear to work in concert since PTX3 deficiency

results in complement-dependent TAM recruitment in 3-

Methylcholanthrene carcinogenesis models (33). Signaling of

complement anaphylatoxins C3a and C5a through their

respective receptors, C3aR and C5aR1, has been further

demonstrated to result in TAM recruitment and polarization

towards an immunosuppressive phenotype (30, 31). This

includes reduced CD206 expression and upregulation of

CD11c, major histocompatibility complex class II, CD80 and

CD86 in TAMs from C3 and C3aR1-/- mice (32). Interestingly,

expression of C3a, C5a and their receptors C3aR and C5aR1 is

induced in melanoma murine tumors following irradiation (20

Gy) (34). Furthermore, complement inhibition at the level of C3

(with a CR2-Crry fusion protein) in combination with radiation

has been demonstrated to enhance the numbers of macrophages

with an M1-like phenotype (F4/80+, CD11c+, CD206-) in

lymphoma tumor models (35).

In addition to chemokines and complement soluble factors,

cytokines are also involved in the recruitment of monocytes/

macrophages to the TME. Colony-stimulating factor 1 (CSF-1,

also known as macrophage colony stimulating factor; M-CSF),

which typically is associated with a differentiation/survival signal

for monocyte/macrophages, also has chemotactic properties for

the recruitment of these cells to a site of inflammation (36, 37).

In several tumor types and murine models, radiation has been

demonstrated to induce CSF-1 production which can facilitate

macrophage recruitment (17, 18). Following irradiation of

tumors the DNA damage-induced kinase ABL1 (c-Abl) is

recruited into the nuclei of tumor cells to enhance CSF1

transcription (38). CSF-1 production is also induced in

response to IL-8, which can be secreted by the macrophages

themselves, contributing to a positive feedback axis further

perpetuating macrophage recruitment. However, this axis is

not necessarily macrophage-specific as cancer cells can also

produce IL-8 themselves post-irradiation (39). IL-34 is a

cytokine that shares its receptor with CSF-1, binding CSF1-R,

and as such they have similar biological properties. Like CSF-1,

IL-34 expression is induced after irradiation (40). This induction

has also been demonstrated to promote monocyte recruitment

to the TME and subsequen t po l a r i z a t i on to an

immunosuppressive phenotype (41).

Furthermore, tumor cells produce IL-6 in response to

radiation-induced damage which promotes monocytes/

macrophage recruitment to the TME (42–44). In a double-

edged role for IL-6, once monocyte recruitment occurs, the

cytokine also blocks dendritic cell differentiation and promotes

monocytes to differentiate towards a TAM-like cell with an

immunosuppressive phenotype (6, 45).
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Physical changes in the TME affecting
TAM recruitment following radiotherapy

Hypoxia (low oxygen tension) is a common physical feature

of the TME that arises due to insufficient oxygen supply to

support rapidly growing tumors. Hypoxia is particularly relevant

to radiotherapy since cells irradiated under reduced oxygen

levels are more resistant to the lethal effects of radiation (46).

Hypoxia-inducible factors (HIFs) are key to the transcriptional

response to hypoxia. HIF heterodimers consist of an oxygen-

sensitive subunit (HIF-1a, HIF-2a or HIF-3a), and a

constitutively expressed HIF-b subunit. Under ambient oxygen

concentrations, HIF-a subunits are continually degraded by

ubiquitination and proteasomal degradation. However, under

low oxygen tensions, HIF-a subunits are stabilized and trafficked

to the nucleus where they modulate gene expression through

binding hypoxia-responsive elements of specific genes associated

with the hypoxic response (47–49). Both HIF-1a and HIF-2a
can accumulate in macrophages exposed to hypoxic conditions

in vitro (50, 51). In vivo, HIF-1a has been found to be essential

for maintenance of appropriate cellular ATP pools necessary for

myeloid cell motility and function (52). Furthermore, following

tumor irradiation, nitric oxide (NO) generation in TAMs results

in s-nitrosylation of HIF-1a at its oxygen-dependent

degradation domain which prevents its destruction.

Pharmacological inhibition of NO production is associated

with reduced tumor growth following irradiation (53).

Furthermore, studies using mice specifically lacking HIF-2a in

myeloid cells have demonstrated reduced TAM infiltration in

hepatocellular and colitis-associated colon carcinoma models

through regulation of cytokine receptor CSF-1R and chemokine

receptor CXCR4. Interestingly, this observed reduction in TAM

infiltration was associated with reduced tumor cell proliferation

(54). HIF-dependent induction of CCL2 also further supports

monocyte/macrophage recruitment (55). A recent study has

demonstrated that vascular endothelial growth factor-A

(VEGF-A), another HIF-regulated gene, also plays a key role

in both the recruitment of macrophages and the polarization

toward an immunosuppressive phenotype as shown by the

increase of the marker CD163 (56).
Extracellular matrix

The extracellular matrix (ECM), which constitutes the

protein scaffold around the tumor and stromal cells, has a role

in providing a platform for innate immune cell infiltration, with

many of its components and post-degradation fragments

sharing the ability to recruit monocytes. Much focus has been

directed to proteolytic fragments of the ECM which have been

demonstrated to represent endogenous ligands for binding and

activating toll-like receptors (TLRs). The release of

glycosaminoglycan hyaluronan (HA) after irradiation of the
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tumor has been documented (57). HA can also play a role in

facilitating macrophage infiltration into the tumor stroma

through an interaction with the HA receptor CD44 expressed

by macrophages (58). Monocytes/TAMs recruited by the CD44:

HA axis have an immunosuppressive phenotype. This is

facilitated by the upregulation of IL-10 expression while

concurrently downregulating NF-kB signaling (59).

In addition to HA, latent TGF-b (an inactive form of the

cytokine) is also released by the ECM post-irradiation. Once

activated, TGF-b has a potent influence on TAM recruitment.

This can occur directly through enhanced integrin expression

and type IV collagenase secretion (60) and indirectly through the

upregulation of CXCR4 on monocytes, with perivascular

fibroblast expression of CXCL12 attracting the monocytes to

the tumor bed (61).

Additionally, damaging the ECM leads to macrophage

recruitment due to the attraction of immunosuppressive

TAMs through the scavenger receptor CD206 (mannose

receptor). This allows the phagocytosis and degradation of

collagen fragments to form a strong chemoattractant for

macrophages (62, 63). This leads to a feedback loop where

initial radiation-induced damage to the ECM leads to

recruitment of TAMs that themselves facilitate a continuous

wound-healing state within the tumor site, further increasing

monocyte/TAM recruitment. In a similar fashion, elastin

fragments generated by the activity of macrophage-derived

MMPs (9 and -12) have been demonstrated to act as

chemotactic factors for monocytes, creating a positive feedback

loop which increases the prevalence of TAMs in the TME (64).
Phase 2: Macrophage polarization

Polarization overview

Previously, monocyte polarization into mature macrophages

was thought to be binary, with TAMs either acting as
Frontiers in Oncology 04
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inflammatory or immunosuppressive agents within the stroma

(65). However, it is becoming increasingly clear that, once

polarized, the TAMs phenotypically fall on a spectrum (4).

Data, mostly gathered from in vitro studies, has indicated that

polarization on this spectrum may depend on the presence of

specific factors such as IL-4, IL-10, IL-13, IFNg, and

lipopolysaccharide (LPS) (66, 67) (Figure 2). Once these

factors bind to their respective receptor, monocytes undergo

polarization and maturation into more specialised TAM

phenotypes through downstream signal transduction pathways

altering transcription within these cells (68). Recently, it has

been identified that TAM polarization can be refined to a three-

way polarization program in a spontaneous murine model of

breast cancer (11). This three-way program is broadly split into

an alternatively-activated-like, angiogenic/immunosuppressive,

and inflammatory phenotypic specialization of these cells (11).
Pathways involved in radiation-
induced polarization

Following irradiation, macrophage polarization towards

either pro- or anti-inflammatory sides of the spectrum may be

dependent on irradiation dose and which transcription factors

are formed to drive downstream gene expression (69, 70). NF-kB
is a key modulator of macrophage polarization and NF-kB p65-

p50 heterodimers can initiate transcription of pro-inflammatory

genes such as TNFa, IL1b, IL6, IL12, IFNg and CXCL10 (70).

Increased p65/RelA expression following 2 Gy irradiation of the

RAW264.7 macrophage cell line or CD11b+ peritoneal

macrophages, is associated with increased levels of inducible

nitric oxide synthase (iNOS, which is an M1-associated marker)

(71). Low dose (2 Gy) whole body irradiation has also been

demonstrated to induce iNOS, and concurrently reduce M2-

associated markers such as Ym-1 and Fizz-1 in peritoneal

macrophages. iNOS expressing TAMs in turn appear

important for effector T-cell recruitment into the tumor
FIGURE 2

Schematic representation of the effects of radiation on macrophage polarization. Macrophages can adopt both pro- and anti-tumoral
phenotypes across a spectrum of possible polarization states. Shown are the effects of radiation on these phenotypes and effector molecules.
Figure created in Biorender. Agreement number: LH24DGQ49Q.
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through vascular normalization (69). Irradiation of human

monocyte-derived macrophages with 2, 6 or 10 Gy, results in

increased RelB expression which is accompanied by reduced

expression of anti-inflammatory genes (such as CD163, and IL-

10) (72). Conversely, loss of NF-kB p50 expression has been

associated with a pro-inflammatory macrophage phenotype

including enhanced TNFa and reduced IL10 expression in

bone marrow-derived macrophages incubated with both LPS

and irradiated 4T1 cancer cells (10 Gy) (17) (Figure 2).

Enhanced radiation-induced NF-kB signaling can occur

following activation of the apical DNA damage kinase, ATM.

ATM-dependent NF-kB activation occurs following

ubiquitination of NEMO (NF-kB essential modulator) which

releases the cytoplasmic p50-p65 heterodimer allowing its

translocation to the nucleus to act as a transcriptional activator (73).

ATM activation can also occur downstream of reactive

oxygen species (ROS) production. NADPH oxidase 2 (NOX2)-

dependent ROS production was reported to be important in

ATM-dependent polarization of macrophages towards a pro-

inflammatory phenotype through regulation of IRF5 at the

mRNA and post-translational level. Therapeutically targeting

other DNA damage response components, such as poly (ADP-

ribose) polymerase (PARP) also appeared to activate

macrophages towards a pro-inflammatory phenotype following

increased ATM and IRF5 activation (74). Importantly enhanced

expression of iNOS+CD68+ and NOX2+CD68+ TAMs was

observed in resected specimens of rectal cancer patients with

good responses to neoadjuvant radiotherapy (74). A recent study

also suggested that targeting the angiogenic factor, fibroblast

growth factor 2 (FGF2), in combination with radiotherapy can

increase the iNOS+/CD206+ TAM ratio and improve tumor

responses following fractionated radiotherapy (75). These data

suggest that FGF2 could be considered as a therapeutic target to

be exploited in combination with radiotherapy.
Examples of potential barriers to
effective polarization by radiation

As previously mentioned, radiotherapy induces the expression

of CCL2 within the TME (28, 29). CCL2 acts to shift the recruited

monocytes towards a more immunosuppressive phenotypic type

directly by downregulating polarization-related gene expression

and indirectly via T helper 2 cells (Th2) releasing anti-

inflammatory cytokines such as IL-4, IL-6 and IL-10 (76). In a

preclinical pancreatic ductal adenocarcinoma model, the

inhibition of CCL2 in isolation had little impact on tumor

growth unless used in combination with radiotherapy (77). It

was found that irradiation of the tumor caused a significant

increase in CCL2 production and radiation-dependent

recruitment of monocytes/macrophages (77). Inhibiting this

CCL2/CCR2 recruitment axis led to a decrease in tumor growth

and vascularity (77). Additionally, the inhibition of CCL2 led to a
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decrease in TAM presence and a decrease in metastasis (78). This

decrease in metastasis was caused by CCL2 inhibition reducing

the production of CCL3 by immunosuppressive TAMs thereby

reducing the ability of these macrophages to assist with tumor

intravasation (78).

There has also been a lot of interest in therapeutically

targeting CSF-1 signaling to modulate macrophage polarization

following irradiation in a variety of cancers. In glioblastoma

tumor models, CSF-1R inhibition delays recurrence following

irradiation by reducing radiation-induced monocyte recruitment

and differentiation to immunosuppressive TAMs (40).

Interestingly, TAM survival in the context of CSF-1R

inhibition appears to be facilitated by granulocyte-macrophage

CSF (GM-CSF) and IFNg (79). Altered TAM polarization and a

reduction in macrophage migration was also seen in a preclinical

prostate cancermodel (38). Furthermore, in preclinical colorectal

and pancreatic models, macrophage depletion using CSF-1

blocking antibodies, enhances the effectiveness of combined

radiotherapy and immune checkpoint inhibitor (anti-PD-L1)

treatment suggesting that macrophages act to hinder

productive anti-tumor immune functions of radiotherapy (19).

Complement activation and signaling of complement

anaphylatoxins through their respective receptors can also

impact macrophage polarization. This is relevant in the

context of radiotherapy since irradiation has been found to

increase the local tumor expression of several complement

factors in murine models (following 5 and 20 Gy irradiation)

and in patient samples (treated with 1.5-2 Gy) (34). Of note, in

the TME, the presence of stromal CD34high fibroblasts

expressing high levels of central complement component C3

(which when cleaved will result in C3a production) may also

s uppo r t t h e r e c r u i tm en t o f ma c r oph a g e s w i t h

immunosuppressive phenotypes and results in attenuation of

T-cell mediated responses (80). Interestingly, C3aR activation in

TAMs can occur following intracellular production of C3a by

tumor cells; and activation of PI3Kg signaling downstream of

C3aR activation contributes to suppression of anti-tumor

responses (81). The effects of irradiation on intracellular C3a

or C5a levels across tumor cells, however, is still unclear.

Previously published work suggested that the presence of C5a

and C3a might be essential for effective tumor radiation

responses (34). However, the well-documented impact of C3a

and C5a on macrophage recruitment and polarization towards

immunosuppression may indicate that targeting the C3a-C3aR

or C5a-C5aR signaling axes might prove to be beneficial in

certain contexts. In combination with anti-PD-1 blocking

antibodies, blocking C5a/C5aR1 signaling has indeed proven

effective at improving primary and metastatic disease in lung

tumor models (82). Similarly, in the B16-F10 melanoma model,

blocking the PD-1/PDL-1 axis alongside C3a-C3aR or C5a-

C5aR resulted in improved tumor control (83). The effects of

radiotherapy in combination with immune checkpoint and C5a/

C5aR1 inhibition, however, has yet to be determined.
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The use of TGF-b inhibition in combination with PD-1/PD-

L1 inhibition has also found success in a multitude of clinical

trials, with phase two trials commencing in non-small cell lung

(NCT03631706), triple negative breast (NCT03579472),

colorectal (NCT03724851), and pancreatic (NCT02734160)

cancers. A summary of additional recent clinical trials

combining radiotherapy and macrophage targeting is shown in

Table 1. Interestingly, combining TGF-b and PD-1 inhibition

with radiotherapy in a preclinical colorectal cancer model

demonstrated improved survival plus reduced tumor growth

(84). Additionally, this study demonstrated a reduction in TAM

recruitment to both primary tumors as well as non-irradiated

bilateral lesions (84).
Conclusion

Effectively modulating the immunostimulatory effects of

radiation has the enticing potential to improve local and distant

tumor control (85). Given the relatively high numbers of

macrophages in the TME (relative to other cell types) and the
Frontiers in Oncology 06
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it is likely that combination therapies will have to consider how to

polarize this immune population to the pro-inflammatory,

tumoricidal side of the spectrum (86). Indeed, investigation into

targeting TAMs is currently at the forefront of cancer

immunotherapies and, a greater understanding of mechanisms of

recruitment and pro-tumor activity of these macrophages may

provide new therapeutic opportunities to improve the efficacy of

existing treatments (39). Targeting the soluble factor-receptor axes

interactions that may pose a barrier to the most effective

polarization could be considered. For example, CSF1-CSF1R,

C5a-C5aR1, FGF2 or TGFb/TGFbR blockade in combination

with immune checkpoint inhibitors such as PD1/PDL-1 could be

promising strategies (19, 84). Further research into the effect of

different radiation doses and fractionation regimes on macrophage

recruitment and plasticity will help optimize the timing and nature

of the most effective combination therapies. A consideration of the

effect of an altered macrophage response to normal tissue toxicity

following radiotherapy will also be important since maximal

therapeutic benefit relies on effective tumor control with minimal

normal tissue toxicity.
TABLE 1 Table summarizing latest clinical trials combining radiotherapy and approaches which may impact macrophage recruitment or function.

Target Drug Combination Cancer Type Phase Year Reference

ATM AZD1390 RT Glioblastoma I 2018 NCT03423628

CD47/SIRPa RRx-001 RT + Temozolomide Gliomas I 2016 NCT02871843

CD40 CDX-1140 RT + Poly-ICLC + FLT3-L Breast I 2020 NCT04616248

CSF-1R Cabiralizumab RT + Nivolumab Pan- I 2018 NCT03431948

Sunitinib RT Head and Neck, Pelvic, Nervous System, Thoracic I 2007 NCT00437372

Sunitinib RT Metastatic I/II 2007 NCT00463060

Sunitinib RT Soft Tissue Sarcoma I/II 2008 NCT00753727

Sunitinib RT Glioblastoma II 2010 NCT01100177

Sunitinib RT + Temozolomide Glioblastoma Multiforme II 2016 NCT02928575

Sunitinib RT + Surgery + Irinotecan + Cisplatin Esophageal II 2006 NCT00400114

Sunitinib RT + Leuprolide + Goserelin + Casodex Prostate I 2008 NCT00631527

Nilotinib RT Chordoma I 2011 NCT01407198

PLX3397 RT + Temozolomide Glioblastoma I/II 2013 NCT01790503

PLX3397 RT + Anti-hormone Therapy Prostate I 2015 NCT02472275

CCR2/CCR5 BMS-813160 RT + Nivolumab + GVAX Pancreatic Ductal Adenocarcinoma I/II 2018 NCT03767582

PI3Kg BYL719 RT + Cetuximab Head and Neck Squamous Cell I 2014 NCT02282371

BYL719 RT + Cisplatin Head and Neck Squamous Cell Carcinoma I 2015 NCT02537223

BKM120 RT + Temozolomide Glioblastoma I 2011 NCT01473901

BKM120 RT + Cisplatin Multiple I 2014 NCT02113878

TLR3 Poly-ICLC RT + Temozolomide Glioblastoma Multiforme II 2005 NCT00262730

TLR7/9 Imiquimod RT + Cyclophosphamide Breast I/II 2011 NCT01421017

TLR9 SD-101 RT B-Cell Lymphoma I/II 2014 NCT02266147

SD-101 RT + Ibrutinib Follicular Lymphoma I/II 2016 NCT02927964

SD-101 RT + Nivolumab Pancreatic I 2019 NCT04050085
f

Search conducted on ClinicalTrials.gov using search criteria “Cancer”, “Radiation” and “Macrophage”. CSF-1R, Colony Stimulating Factor Receptor 1; CCR2, C-C Chemokine Receptor;
PI3Kg, Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma; TLR, Toll-Like Receptor; RT, Radiotherapy.
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DNA damage response inhibitors are widely used anti-cancer agents that have

potent activity against tumor cells with deficiencies in various DNA damage

response proteins such as BRCA1/2. Inhibition of other proteins in this pathway

including PARP, DNA-PK, WEE1, CHK1/2, ATR, or ATM can sensitize cancer cells to

radiotherapy and chemotherapy, and such combinations are currently being tested

in clinical trials for treatment of many malignancies including breast, ovarian, rectal,

and lung cancer. Unrepaired DNA damage induced by DNA damage response

inhibitors alone or in combination with radio- or chemotherapy has a direct

cytotoxic effect on cancer cells and can also engage anti-cancer innate and

adaptive immune responses. DNA damage-induced immune stimulation occurs

by a variety of mechanisms including by the cGAS/STING pathway, STAT1 and

downstream TRAIL pathway activation, and direct immune cell activation. Whether

or not the relative contribution of these mechanisms varies after treatment with

different DNA damage response inhibitors or across cancers with different genetic

aberrations in DNA damage response enzymes is not well-characterized, limiting

the design of optimal combinationswith radio- and chemotherapy. Here, we review

how the inhibition of keyDNA damage response enzymes including PARP, DNA-PK,

WEE1, CHK1/2, ATR, and ATM induces innate and adaptive immune responses alone

or in combination with radiotherapy, chemotherapy, and/or immunotherapy. We

also discuss current progress in the clinical translation of immunostimulatory DNA-

damaging treatment regimens and necessary future directions to optimize the

immune-sensitizing potential of DNA damage response inhibitors.

KEYWORDS

DNA damage response (DDR), immunotherapy, cGAS/STING, DNA-PK, WEE1, CHK1/2,
ATR, ATM
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GRAPHICAL ABSTRACT
Introduction

The DNA damage response (DDR) involves several

pathways including base excision repair (BER) and nucleotide

excision repair (NER) to repair single-stranded DNA breaks as

well as homologous recombination (HR) and non-homologous

end joining (NHEJ) to repair double-stranded DNA breaks.

Activation of these pathways results in cell cycle arrest, DNA

repair, senescence, and/or apoptosis depending on the extent of

DNA damage (Figure 1) (15). Inhibition of DDR proteins

including poly-ADP ribose polymerase (PARP), DNA-
Abbreviations: ATM, ataxia telangiectasia mutated; ATR, ataxia

telangiectasia and Rad3 related; BER, base excision repair; cGAS, cyclic

GMP-AMP synthase; CHK1/2, checkpoint kinase 1/2; DCR, disease control

rate; DDR, DNA damage response; DNA-PK, DNA-dependent protein

kinase; DR5, death receptor 5; HR, homologous recombination; ICI,

immune checkpoint inhibition; IFN, interferon; ISG, interferon stimulated

gene; MDSC, myeloid-derived suppressor cell; MSI, microsatellite instable;

NER, nucleotide excision repair; NHEJ, non-homologous end joining; NK,

natural killer; ORR, overall response rate; PARP, poly-ADP ribose

polymerase; PD-1, programmed cell death-1; PD-L1, programmed death-

ligand 1; RT, radiation therapy; SASP, senescence-associated secretory

phenotype; STAT1, signal transducer and activator of transcription 1;

STING, stimulator of interferon genes; TNF, tumor necrosis factor; TRAIL,

TNF-related apoptosis-inducing ligand.
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dependent protein kinase (DNA-PK), WEE1, checkpoint

kinase 1/2 (CHK1/2), ataxia telangiectasia and Rad3 related

(ATR), or ataxia telangiectasia mutated (ATM) serine/

threonine kinase results in cell cycle progression and

accumulation of unrepaired DNA (16). This accumulation

eventually leads to cell death and/or DNA leakage into the

cytosol in the form of micronuclei (17). DDR inhibitor

(DDRi) therapy is used to treat cancer patients with tumors

that harbor alterations in DDR proteins such as BRCA1/2. In

these tumors, inhibition of additional DDR proteins renders the

cell incapable of any type of DNA repair, resulting in cell death

(18). This mechanism is known as synthetic lethality, a situation

in which inhibition or mutation of two proteins separately is

viable, but mutation or inactivation of both is lethal to the cell

(19). Even in the absence of DDRi agents, cancer cells with

defects in DNA repair pathways tend be more sensitive to anti-

cancer therapies (20) including chemotherapy as compared to

cells without genetic alterations in these pathways (21, 22). In

addition, cells with DNA damage repair defects tend to be

sensitive to immunotherapy as a result of enhanced

neoantigen generation, upregulation of programmed death

ligand 1 (PD-L1), and induction of the cyclic GMP–AMP

synthase (cGAS)/stimulator of interferon genes (STING)

pathway (23–26).

DDRi therapymay be used as a single agent or in combination

with DNA-damaging agents such as chemotherapy and radiation
frontiersin.org
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therapy (RT) (1) (Table 1). Certain PARP inhibitors (PARPi) are

FDA-approved to treat breast, prostate, and gynecologic cancers

including ovarian cancer (21–23), and there are numerous clinical

trials underway to extend their use to other malignancies

(Table 1). The WEE1 inhibitor ZN-c3 has been granted fast

track designation by the FDA for treatment of patients with

uterine serous carcinoma (27, 28) and is included in nine other

clinical trials testing its efficacy in various other types of cancer.

Additional clinical trials are ongoing to investigate other DDRi

therapies including inhibitors of DNA-PK, and CHK1/2, ATR,

and ATM.

In addition to inducing cancer cell death by synthetic

lethality, it is now well-recognized that DDRi therapy induces

innate and adaptive immune responses (29, 30). DDRi-induced

immune stimulation primarily occurs via the cGAS/STING
Frontiers in Oncology 03
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pathway (29), but also occurs through signal transducer and

activator of transcription 1 (STAT1) pathway activation (2) and

direct activation of immune cells including T cells, NK cells, and

anti-tumor macrophages (5, 6). As a result of extensive

preclinical evidence supporting DDRi-induced immune

responses, several clinical trials have been initiated to test the

combination of DDRi with immunotherapy, primarily immune

checkpoint inhibition (ICI) (Table 1). In this Review, we will

discuss the mechanisms of different DDR proteins, their

interactions with the immune system, and clinical translation

of DDRi + immunotherapy. We also discuss necessary future

directions for optimal clinical translation including clarification

of variation across different DDRi therapies and across cancer

types, as well as the need for a stronger focus on combining

DDRi + immunotherapy strategies with DNA-damaging agents

such as chemotherapy and RT.
cGAS/STING pathway

The cGAS/STING pathway is heavily implicated in the

immunomodulatory effects of DNA damaging drugs and

DDRi therapies. The first step of the pathway involves cGAS

interaction with double-stranded DNA in the cytosol (31). These

segments of DNA are often referred to as micronuclei (32).

Then, cGAMP acts as a second messenger to activate STING,

which activates TBK1 to recruit and activate IRF3. IRF3 then

translocates to the nucleus to induce transcription of immune-

stimulated genes (ISG) and type 1 interferons (IFNs). STING

also activates IKK and NIK to mediate the induction of

canonical and non-canonical NF-kB-driven inflammatory

genes (31).

cGAS/STING-mediated IFN signaling enhances the

infiltration of anti-tumor T cells and NK cells into the tumor.

Though further study is needed to confirm this mechanism, it is

also thought that cytosolic DNA from tumor cells can be

transferred to the cytosol of immune cells to induce cGAS/

STING signaling and enhance antigen presentation and cross-

priming in DCs and T cells, respectively (31). Lastly, c-GAS-

STING also promotes the senescence-associated secretory

phenotype (SASP), which is characterized by cancer cell

secretion of pro-inflammatory cytokines, chemokines,

proteases, and growth factors that induce senescence and

tumor control (31). However, it is important to mention that

SASP can also induce an immunosuppressive TME, promoting

cancer progression (33).

It is important to note that the effects of cytosolic DNA on

cancer progression are likely dependent on cancer stage. In early

stages, cytosolic DNA likely leads to immune surveillance

through mechanisms such as the cGAS/STING pathway. In

late stages, cancer cells are more likely to have lost functional

checkpoints of cell cycle and immune regulation, and therefore

cytosolic DNA can induce chronic inflammatory signaling that
FIGURE 1

Mechanism of immune activation by inhibition of DNA damage
repair proteins. PARP, ATR, CHK1/2, WEE1, ATM, and DNA-PK
play roles in DNA repair pathways including base excision repair
(BER), nucleotide excision repair (NER), homologous
recombination (HR), and non-homologous end joining (NHEJ) to
induce cell cycle arrest, apoptosis, senescence, and/or DNA
repair. Inhibition of DNA damage repair proteins (red inhibitor
lines) results in cell cycle progression, unrepaired DNA damage,
and accumulation of cytosolic micronuclei that contain
fragments of DNA (1). This results in activation of the STAT1
(2, 3), cGAS/STING (4), and TRAIL pathways as well as direct
activation of immune cells (5, 6) to induce an anti-tumor
immune response. The STAT1 pathway induces IFN-g, which can
increase levels of death receptor ligands including TRAIL (7), FasL
(8), and TNF (9). The cGAS/STING pathway induces an IFN-I
response, which also contributes to increased levels of death
receptor ligands (10–13) as well as contributes directly to anti-
tumor immunity (14). Created in BioRender.com.
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may be associated with survival and metastasis. Thus, the tumor

microenvironment should be carefully monitored during the

therapeutic induction of cytosolic DNA accumulation and

cGAS/STING pathway activation using DDRi therapy (31).

STING agonists are being investigated to treat many types of

cancer either as a single agent or combined with ICI or
Frontiers in Oncology 04
69
chemotherapy (34). STING-based therapeutics have yet to be

combined with DDRi therapy, though there is rationale for

combination to enhance DDRi-induced immune activation

(34, 35). STING agonists can activate the cGAS/STING

pathway in the absence of cytosolic DNA and therefore

circumvent the need for DNA damage to induce the type 1
TABLE 1 Ongoing, completed, and recruiting clinical trials testing the combination of DNA damage inhibitors with immunotherapy in various
cancer types.

DDR
target

Interventions Cancer type Phase Trial #

PARP Niraparib + Dostarlimab + RT TNBC II NCT04837209

Pembrolizumab + Olaparib Cervical cancer, cervical carcinoma II NCT04483544

Olaparib +/- Pembrolizumab Metastatic pancreatic adenocarcinoma, stage IV pancreatic cancer AJCC v8 II NCT04548752

Olaparib + Durvalumab +/- Carboplatin, Etoposide,
and/or RT

Extensive stage lung small cell carcinoma, stage IV, IVA, IVB lung cancer
AJCC v8

I/II NCT04728230

Olaparib +/- Tremelimumab Recurrent ovarian, fallopian tube or peritoneal cancer II NCT04034927

Pembrolizumab + Olaparib Breast cancer II NCT03025035

Durvalumab + Olaparib + RT Locally advanced, unresectable pancreatic adenocarcinoma, stage II & III
pancreatic cancer AJCC v8

I NCT05411094

Durvalumab + Olaparib Metastatic TNBC I NCT03544125

Atezolizumab +/- Niraparib & Temozolomide Advanced solid tumors I/II NCT03830918

Olaparib +/- Atezolizumab BRCA mutant non-HER2-positive breast cancer II NCT02849496

Olaparib+ Pembrolizumab + Paclitaxel Recurrent/advanced gastric and gastro-esophageal junction cancer with
HRR mutation and MSS

I/II NCT04592211

Durvalumab + Olaparib + Copanlisib HCl Advanced solid tumors with selected mutations I NCT03842228

Durvalumab + Olaparib Prostate cancer with high neoantigen load II NCT04336943

Niraparib + Dostarlimab BRCA-mutated unresectable or metastatic breast, pancreas, ovary, fallopian
tube, or primary peritoneal cancer

I NCT04673448

Cabazitaxel + Carboplatin + Cetrelimab + Niraparib Metastatic prostate cancer II NCT04592237

Atezolizumab + Talazoparib SLFN11 + small cell lung cancer II NCT04334941

Cediranib Maleate + Durvalumab + Olaparib Ovarian, primary peritoneal, or fallopian tube cancer after Pt therapy II NCT04739800

Niraparib + Dostarlimab HPV-negative head and neck squamous cell carcinoma II NCT04681469

Olaparib + Tremelimumab BRCA-deficient ovarian cancer I/II NCT02571725

Dostarlimab + Niraparib BRCA1/2 and PALB2-mutated metastatic pancreatic cancer II NCT04493060

Rucaparib + Nivolumab Solid tumors II NCT03824704

NK cells + Talazoparib Acute myeloid leukemia I/II NCT05319249

Olaparib + Pembrolizumab Advanced melanoma with homologous recombination mutation II NCT04633902

Paclitaxel + Olaparib + Pembrolizumab Advanced gastric adenocarcinoma II NCT04209686

Busulfan + Gemcitabine + Melphalan + Olaparib +
Rituximab + Vorinostat

Relapsed or refractory lymphomas undergoing stem cell transplant NCT03259503

DNA-PK M3814 + Avelumab +/- RT Solid tumors I NCT03724890

Avelumab + RT +/- Peposertib Advanced/metastatic solid tumors and hepatobiliary malignancies I/II NCT04068194

Radium 223 dichloride alone, + Peposertib, or +
Peposertib and Avelumab

Advanced prostate cancer not responsive to hormonal therapy I/II NCT04071236

WEE1 Adavosertib + Durvalumab Advanced solid tumors I NCT02617277

ZN-c3 + Pembrolizumab (27) Solid tumors NCT04158336

ATR Elimusertib + Pembrolizumab + RT Recurrent head and neck cancer I NCT04576091

M1774 + immune checkpoint inhibitor Metastatic or locally advanced unresectable solid tumors I NCT05396833

Elimusertib + Pembrolizumab Advanced solid tumors I NCT04095273

ATM None

CHK1/2 None
f

Search performed on 7/10/2022 using keywords “immunotherapy” and “PARP inhibitor, DNA-PK inhibitor, WEE1 inhibitor, ATR inhibitor, ATM inhibitor, or CHK1/2 inhibitor”.
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IFN response (35). Some limitations of targeting cGAS/STING

in cancer exist, including evidence of cGAS/STING silencing or

loss-of-function mutations in certain tumors (35, 36) and cGAS/

STING-driven IL-6-dependent survival of chromosomally

instable cancers (37). In these cases, administration of cGAS/

STING agonists may have limited to no efficacy or may be pro-

tumorigenic. Careful consideration of STING agonist

combination therapies and evaluation of patients who may not

benefit or be harmed by these therapies is needed prior to clinical

translation of cGAS/STING + DDRi combination therapies.
TRAIL pathway

The tumor necrosis factor (TNF)-related apoptosis-inducing

ligand (TRAIL) is primarily expressed on the surface of immune

cells including NK cells, T cells, NK tumor (NKT) cells, DCs,

and macrophages (38). It can also be expressed in soluble form

after proteolytic cleavage from the cell surface (39). Both

membrane-bound and soluble TRAIL bind to death receptor 5

(DR5) and death receptor 4 (DR4) on cancer cells to induce

apoptosis (39). TRAIL is induced by the IFN-g/STAT1 and

cGAS/STING pathways (7, 40–42) that are activated after

DDRi therapy. The TRAIL pathway is anti-tumorigenic, as

evidenced by the increased susceptibility of TRAIL receptor-

deficient mice to chronic inflammation and tumorigenesis

(43, 44).

In addition to its role in apoptosis, TRAIL also plays an

important role in the anti-cancer immune response. For

example, some immune cells kill cancer cells in a TRAIL-

dependent manner (38, 45) and targeted delivery of TRAIL to

cell surface antigens on T cells may enhance their cytotoxic

activity (46). TRAIL-TRAIL receptor interaction on MDSCs can

limit their lifespan, supporting an anti-tumor immune

microenvironment (47, 48). Due to its ability to induce both

apoptosis and anti-tumor immune responses, activation of the

TRAIL pathway is a promising clinical strategy (49). Various

therapeutic approaches have been considered including TRAIL

receptor agonists, DR4/5 agonistic monoclonal antibodies, and

different formulations such as PEGylated TRAIL (49). Other

exciting new directions are being pursued preclinically such as

engineering tumor-homing, TRAIL-expressing mesenchymal

stem cells (50, 51). TRAIL-based therapies have been studied

extensively in the clinic and some have shown early signs of

efficacy in non-Hodgkin’s lymphoma (52) and non-small cell

lung cancer (53, 54). Limitations include short half-life, limited

induction of receptor clustering, binding to decoy receptors such

as DcR1, DcR2, and osteoprotegerin (55, 56), and development

of resistance (49). There are some ongoing clinical trials with

TRAIL-based therapies such as the TRAIL-receptor agonists

ABBV-621 in combination with bortezomib and dexamethasone

(NCT04570631) and INBRX-109 alone (NCT04950075) or in

combination with DNA damaging agents (NCT03715933) (49).
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No trials are currently investigating the combination of TRAIL-

based therapy with DDRi agents.

Combination therapies may overcome some of these

limitations, and various preclinical investigations support the

combination of TRAIL-based therapies with DDRi. For example,

one study found that PARPi enhanced the efficacy of a DR5

antibody in a pancreatic cancer mouse xenograft model (57).

Others found that DNA-PKi potentiates p53-dependent

apoptosis after treatment with a DNA damaging agent in

AML cells, and that the TRAIL pathway plays a major role in

this apoptotic response (58). Others have described upregulation

of TRAIL-mediated apoptosis after ATMi treatment of

melanoma cells (59). These findings provide rationale for

combining TRAIL agonists and DDRi therapy in the clinic to

enhance induction of apoptosis. Whether or not these types of

combination treatments will enhance the anti-tumor immune

response remains to be investigated.
DDRi-induced upregulation
of PD-L1

PD-L1 is a ligand that binds programmed cell death protein

1 (PD-1) on activated T cells. Binding of PD-L1 to PD-1 inhibits

T cell activity (60) and elevated expression of PD-L1 is a major

biomarker of favorable response to immune checkpoint

inhibitors (61). Experimental evidence suggests that PARPi

agents can upregulate PD-L1 expression by blocking glycogen

synthase kinase-3 beta (GSK3b), a regulator of glycogen

metabolism, cell cycle, inflammation, and proliferation (62).

GSK3b also plays a role in the repair of both single- and

double-stranded DNA breaks. PARPi-induced inhibition of

GSK3b causes inhibition of DNA damage repair and

upregulation of PD-L1 (63–65).

ATR inhibitors, on the other hand, seem to upregulate PD-

L1 mRNA but downregulate PD-L1 protein expression (66–68).

Further, studies have shown that DNA damage-induced

upregulation of PD-L1 by cisplatin or ionizing radiation was

suppressed by co-administration with ATRi agents (67). DNA-

PK inhibitors seem to upregulate PD-L1 (69) along with WEE1

inhibitors (2) and Chk1/2 inhibitors (70, 71), likely by

preventing the repair of double-stranded DNA breaks, which

activates STAT1/3 signaling through ATM/ATR/Chk1 kinases,

resulting in an upregulation of PD-L1 levels (60).
PARP inhibitors

Poly-ADP ribose polymerase (PARP) is an enzyme that

plays a critical role in the DNA repair pathways NER and

BER, which repair DNA damage that is caused by therapeutic

agents such as alkylating agents and chemotherapy (72). The

PARP family contains 17 different proteins, but most studied are
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PARP1 and PARP2. PARP1 binds to DNA regardless of

phosphorylation state and PARP2 preferentially binds

phosphorylated DNA breaks, but otherwise these proteins

largely function similarly (73). PARP inhibitors (PARPi) lead

to death by synthetic lethality in cancer cells with deficiencies in

the homologous recombination (HR) DNA repair pathway (74).

PARPi is FDA-approved to treat breast cancer, prostate cancer,

and gynecologic cancers including ovarian cancer (75–77).

PARP plays an important role in the normal functioning of

the immune system. PARP2 contributes to the development of

mature CD4+ and CD8+ T cells and in vivo data suggests that

dual inhibition of PARP1 and PARP2 leads to a measurable

decrease in T cell populations. PARP1 and PARP2 also

contribute to normal T cell functioning as demonstrated by

experiments in which PARP1/2 inhibition resulted in decreased

IL-2 and IFN-g-secreting T cells. PARP1 is also responsible for

marking Foxp3-expressing T regulatory cells (T regs) for

degradation. Additionally, PARP1 regulates NFAT, a family of

transcription factors that that regulates CD4+ T cell

differentiation, but it is unclear if inhibition of PARP1 biases

CD4+ cells toward a Th1 or Th2 phenotype (73). Lastly, PARP1

may cooperate with IFI16 to induce noncanonical STING

activation in response to chemotherapy-induced DNA

damage (31).

Interestingly, in BRCA1-deficient ovarian cancer models,

PARP inhibition with olaparib increased CD4+ and CD8+ T

cells in the tumor and in circulation, reduced their expression of

inhibitory receptors PD-1, Tim-3, and Lag-3, and increased their

levels of TNF-alpha and IFN-g secretion. In dendritic cells,

PARPi upregulates costimulatory molecules CD80/CD86 and

MHC class II which enhances antigen presentation and

interactions with T cells. PARPi may increase expression of

cell death receptor ligands and NKG2D ligands, which increases

cancer cell sensitivity to NK cell-mediated killing. In

macrophages, the impact of PARPi is dependent on factors in

the tumor microenvironment including certain cytokines. The

DNA damage caused by PARPi leads to cytosolic DNA,

activating the cGAS/STING pathway and the type I IFN

response (73). PARPi can also increase the amount of DNA in

the cytosol, leading to the accumulation of neoantigens (78).

Due to the immune-stimulating properties of PARPi

therapy, there is clinical interest in combining PARPi with

immunotherapy. Clinical trials testing such combinations are

ongoing for ovarian, ovarian, lung, urothelial, prostate, and

gastrointestinal cancers (78). The results of these trials have

been most promising in ovarian and breast cancer. In ovarian

cancer, overall response rates (ORR) ranged from 45-63% and

disease control rate (DCR) was 73-81% depending on the patient

population. In breast cancer, ORR was 53% and DCR was 47-

83% depending on patient population. PARPi alone is effective

in patients with prostate cancer and has been combined with IT

in several clinical trials. Results of the completed trials have been

promising, with 9/17 patients with metastatic castration-
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resistant prostate cancer (mCRPC) treated with durvalumab

and olaparib experiencing a PSA decline of >50% and 4/17

patients experiencing a radiographic response. A combination of

pembrolizumab and olaparib in a cohort of patients with wild-

type HR proteins had slightly less exciting results, with 7%

partial response and 29% DCR. Studies in gastric cancer

combining durvalumab and olaparib have reported a 10%

ORR and 12-week DCR of 26% (78).
DNA-PK inhibitors

DNA-PK is a serine/threonine protein kinase that plays a

critical role in the DNA repair pathways classical NHEJ and HR.

DNA-PK inhibitors (DNA-PKi) interfere with its kinase

function and sensitize cells to DNA-damaging agents. DNA-

PKi can be used as a single agent in some cancers with ATM

deficiency by inducing synthetic lethality (79). No DNA-PKi

therapies are FDA approved, however there are several ongoing

clinical trials involving compounds such as XRD-0394, CC-115,

VX-984 (M9831), AZD7648, and M3814 (nedisertib, peposertib,

MSC-2490484A) to treat various type of cancer, typically

advanced solid tumors (80, 81).

DNA-PK phosphorylates cGAS and suppresses its enzymatic

activity. DNA-PK inhibition or deficiency correlates with

decreased levels of phosphorylated cGAS and promotes antiviral

immune responses (82). Additionally, as DNA-PK is critical to

maintaining genomic stability, the loss or inhibition of this kinase

may lead to high mutation load secondary to the development of

genomic instability. Mutation of the gene encoding DNA-PK

protein PRKDC is associated with high mutation load or

microsatellite instable (MSI)-high status in The Cancer Genome

Atlas pan-cancer cohort. Further, PRKDC knockout and DNA-

PKi enhanced the efficacy of ICI (83, 84). The DNA-PKi

AZD7648 sensitizes mice with colorectal tumors or melanoma

to radiotherapy and induces a tumor control that is dependent on

type I IFNs. There are phase I/II clinical trials involving AZD7648

in combination with chemotherapy (NCT03907969) and

radiotherapy (NCT04550104) currently ongoing (85). Due to

the dependence of AZD7648 on type I IFN responses, it would

be interesting to combine this drug with immunomodulatory

drugs that enhance the type I IFN response. Additionally, the

DNA-PKi peposertib enhanced RT-induced TGFb/PD-L1-

targeted immunotherapy in mice, further supporting the

combination of DNA-PKi, RT, and immunotherapy (69).

Three clinical trials are evaluating the combination of the

DNA-PKi M3814 combined with the anti-PD-L1 ICI avelumab

(86). M3814 has demonstrated monotherapy activity in several

tumor cell lines, and M3814 + radiotherapy (RT) combined with

avelumab significantly delayed tumor growth as compared to

either agent alone + RT in MC38 syngrafts, indicating the benefit

of combining DNA-PKi and immunotherapy (87). One trial is

investigating M3814 and avelumab +/- radiotherapy for
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treatment of patients with advanced sol id tumors

(NCT03724890) (87). Another is investigating avelumab and

RT +/- M3814 in advanced solid tumors and hepatobiliary

malignancies (NCT04068194) (88). Lastly, one trial is

evaluating RT vs. RT + M3814 vs. RT + M3814 + avelumab in

patients with advanced prostate cancer that is unresponsive to

hormonal therapy (NCT04071236) (89).
WEE1 inhibitors

The WEE1 kinase family consists of three serine/threonine

kinases: WEE1, PKMYT1, and WEE1B (WEE2). WEE1 and

PKMYT1 play a crucial role in cell cycle regulation and DNA

damage repair, while WEE2 regulates cell cycle progression and

largely regulates meiosis. WEE1 and PKMYT1 can act like

oncogenes and are a major focus in anti-cancer drug

development (90). One WEE1 inhibitor, ZN-c3, has been

granted fast track designation by the FDA for treatment of

patients with uterine serous carcinoma. AnotherWEE1 inhibitor

adavosertib (AZD1775, MK-1775) is highly developed and has

been included in over fifty clinical trials to treat various types of

cancer since 2008 (28).

WEE1 overexpression abrogates immune cell killing, for

example by protecting cancer cells from granzyme B/TNFa
induced cell death. One study found that cancer cells develop

resistance to granzyme B/TNFa-mediated cytotoxic T cell

killing by activating the G2/M cell cycle checkpoint. Further,

they found that administration of WEE1i adavosertib reversed

this effect, enhanced T cell killing, and synergized with an anti-

PD-1 monoclonal antibody in murine models of oral cavity

carcinoma, melanoma and colon adenocarcinoma with various

TP53 mutations (91). WEE1 inhibition activates the STING and

STAT1 pathways in SCLC and enhances the antitumor immune

response to PD-L1 inhibition (2). Like the STING pathway, the

STAT1 pathway is a major contributor to the anti-tumor

immune response. Along with STAT2, STAT1 induces IFN-

regulated genes, enhances antigen presentation, and contributes

to an inflammatory, anti-cancer response. It is important to

differentiate STAT1 and STAT2 from other STAT family

members such as STAT3 and STAT5, which contribute to

cancer cell survival, proliferation, and angiogenesis (3). It has

also been shown that WEE1 induces anti-tumor immunity by

activating endogenous retroviral elements and the dsRNA

pathway (92). WEE1i also sensitizes head and neck cancers to

natural killer (NK) cell therapies (93).

One ongoing clinical trial is evaluating adavosertib with the

anti-PD-L1 ICI durvalumab for treatment of patients with

advanced solid tumors (NCT02617277). DCR for the total

cohort was 36%, suggesting antitumor activity (94). Notably,

adavosertib + immunotherapy has a better safety profile

compared to adavosertib + chemotherapy, warranting

continued investigation (95). Another actively recruiting trial
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will test the safety, tolerability, efficacy, pharmacokinetics and

pharmacodynamics of ZN-c3 alone and in combination with

other drugs including the anti-PD-1 ICI pembrolizumab

(NCT04158336) (27). As p53 mutations and overexpression of

SKP2 and CUL1 may be biomarkers of a favorable response to

WEE1i, additional clinical trials in these patient populations in

combination with immunotherapy are needed (27, 91).
CHK1/2 and ATR inhibitors

ATR and its major downstream effector checkpoint kinase 1

CHK1 play a role in the DNA damage response. In response to

single-stranded DNA breaks, ATR activates CHK1 to trigger

intra-S and G2/M phase checkpoints. In response to double-

stranded DNA breaks, the MRE11/NBS1/RAD5 complex

activates ATM and CHK2 to trigger the G1/S-phase

checkpoint (96). Because ATR has a broader range of

biological functions than CHK1, it is thought that ATRi may

have greater toxicity in normal cells. Therefore, the clinical

development of CHK1i is more advanced than ATRi (96).

There are over twenty CHK1/2 and ten ATR inhibitors in

various stages of clinical trials for many different cancer types

mostly in combination with chemotherapy but also with RT and

histone deacetylase inhibitors (HDACi) (96). No CHK1/2 or

ATR inhibitors are FDA-approved yet (97).

One study found that in the leukemia cell line THP-1,

CHK1i increased TBK1 but did not increase IRF3

phosphorylation, induce IRF3 or NF-kB reporter activation,

nor induce a type 1 IFN response (98). The same group found

that in solid tumor cell lines, addition of CHK1i to

chemotherapy treatment such as gemcitabine or camptothecin

increased the accumulation of cytosolic DNA but decreased the

level of chemotherapy-mediated IRF1 and STAT1

phosphorylation. Interestingly, similar results as far as lack of

type 1 IFN response were found using ATRi and WEE1i,

indicating that context such as cancer type may affect the

ability of DDRi to induce the cGAS/STING pathway (99).

Another study found that in murine melanoma models,

CHK1i induces an immunogenic signaling and increased levels

and activity of CD8+ T cells (100). Similarly, others observed

that treatment of patients with head and neck squamous cell

carcinoma with CHK1i led to an upregulation of transcripts

associated with T-cell activation and inflammatory cytokines

and chemokines but also T regs (101). Interestingly, others have

shown that the combination of CHK1i and ionizing RT increases

micronuclei formation and induces an abscopal tumor

regression response in a murine melanoma model (102).

Despite the advanced preclinical development of CHK1i alone

or in combination with chemotherapy or RT, there are currently no

ongoing or completed clinical trials testing the combination of

CHK1/2i with immunotherapy. There are three trials that are

eva luat ing ATRi with immunotherapy. One study
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(NCT04576091) is investigating sensitization to pembrolizumab

with the ATRi elimusertib in combination with RT for treatment of

patients with recurrent head and neck cancer. As of February 2022,

no patients were enrolled in this study. Another trial is currently

recruiting patients with advanced solid tumors to evaluate

elimusertib + pembrolizumab without RT (NCT04095273).

Lastly, one trial will evaluate the combination of ATRi M1774

with immune checkpoint inhibition for treatment of patients with

metastatic or locally advanced unresectable solid tumors

(NCT05396833). The results of these trials are highly anticipated.
ATM inhibitors

ATM is activated by double stranded breaks in DNA, and cells

that are deficient in ATM experience abnormal DNA repair.

Activated ATM phosphorylates p53 at serine 15 to activate it

and phosphorylates MDM2 to prevent its inhibitory binding to

p53. ATM also phosphorylates and activates CHK2, which

phosphorylates p53 at another activating site (serine 20). p53

induces p21 to inhibit CDK2/cyclin E to induce arrest at the G1

phase of the cell cycle. Activated ATM also phosphorylates NBS1,

which is necessary for RT-induced S phase cell cycle arrest, but the

complete mechanism remains to be clarified (103).

In Drosophila models, ATR deficiency causes an innate

immune response (104). In murine and human cancer cell

lines, ATM deficiency induces ISG expression and tumor

infiltration of immune cells in a cGAS/STING-dependent

manner. Further investigation revealed this effect was

mediated specifically by leakage of mitochondrial DNA rather

than nuclear DNA into the cytoplasm. The same group found

that ATM expression levels negatively correlate with type 1 IFN

gene expression in human tumor tissues and that patients with

tumors harboring ATM mutations have a favorable response to

ICI (105). Similar findings as far as ATM mutations serving as a

biomarker of favorable response to ICI have been made in

bladder cancer (106). Other studies in pancreatic cancer have

shown that ATMi induces type 1 IFNs in a cGAS/STING-

independent manner, but this response was dependent on

TBK1 and SRC (107). Despite this preclinical evidence of

ATMi-induced immune stimulation, there are no clinical trials

testing the combination of ATMi and immunotherapy.
Inhibition of oxidative damage repair

Chemotherapy and radiation therapy are well-known

inducers of oxidative stress, a condition in the cell

characterized by excess reactive oxygen species and the

resulting processes that detoxify the cell and repair oxidative

damage (108). Oxidative stress plays a major role in inducing

cellular damage after treatment with DNA-damaging agents

(109). Oxidative stress increases levels of intracellular Ca2+,
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induces Fenton reaction DNA lesions, and triggers DNA

repair mechanisms (110). BER plays a major role in the

cellular response to oxidative DNA damage. During BER,

damaged bases are excised, generating apurinic/apyrimidinic

(AP) sites. At these sites, apurinic/apyrimidinic endonuclease 2

(APE2, APN2, or APEX2) creates a single-strand break which is

then fixed by other DNA repair enzymes. Thus, APE2 plays a

critical role in the repair of oxidative damage, and in fact

knockdown of APE2 led to increased micronuclei formation in

the PANC1 pancreatic cancer cell line (111). Oxidative stress

plays many roles in the immune microenvironment of the tumor

(112). For example, APE2 is involved in B cell development and

immunoglobulin class switch recombination and APE2-

knockout mice develop defects in immune responses. BER and

ATR pathways, both of which are heavily involved in regulating

PD-L1 expression, rely on APE2. APE2 involvement in the

response to immunotherapy is likely but has not been

investigated. There are no APE2 inhibitors in clinical trials for

the treatment of cancer. Future studies should investigate the

impact of APE2 and other oxidative damage repair enzymes on

the immune response and response to immunotherapy (113).
Conclusion and open questions

The clinical applicability of DDRi has been clearly

demonstrated for cancers with deficiencies in the DDR pathway.

The combination of DDRi with DNA-damaging agents has

improved the efficacy of these agents in certain contexts. It is

now well-recognized that DDRi compounds stimulate the

immune system against cancer and that this effect may be

enhanced by combinations with DNA-damaging agents. The

cGAS/STING pathway is a major regulator of DDRi-induced

immune stimulation, though the STAT1 pathway, TRAIL

pathway, and direct activation of anti-cancer immune cells also

play important roles. The effects of DDRi on the immune system

provide rationale for their combination with immunotherapy

such as ICI, as is being tested in various clinical trials.

TRAIL is induced by the IFN-g/STAT1 and cGAS/STING

pathways (7, 40–42) that are activated after DDRi therapy.

TRAIL-based therapies have therapeutic potential because of their

ability to induce both apoptosis and lasting anti-cancer immunity.

There are no FDA-approved TRAIL-based treatments (49),

however numerous clinical trials are continuing to investigate

new approaches and combination treatments (49, 55, 56). Many

preclinical investigations support the combination of TRAIL-based

therapies with DDRi (57–59), providing rationale for clinical

translation. The addition of ICI to this treatment regimen should

also be considered given the heavy involvement of both DDRi and

the TRAIL pathway in anti-cancer immune activation.

Less than half (12/33) of the clinical trials that are testing

combinations of DDRi and immunotherapy involve combination

with a DNA damaging agent such as chemotherapy or
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radiotherapy (Table 1). Most of the trials that do not include a

DNA damaging agent are for treatment of malignancies in which

alterations in DDR proteins are common, such as breast cancer

and ovarian cancer. While DDRi therapy can induce

accumulation of cytosolic DNA and stimulate the immune

system in the presence of these alterations, co-administration of

DNA damaging agents should be considered to expand the use of

this combination therapy to patients without such alterations.

Cancer stem cells are cancer cells with stem-like phenotypes

that are slow-cycling and have highly efficient DNA repair, which

grants them resistance to chemotherapy and radiotherapy (114).

Cancer stem cells present a major challenge as far as overcoming

drug resistance and cancer recurrence. Cancer stem cells may also

be able to evade the immune system (115), thus immunotherapy

alonemay not be active against this subset of the tumor. Inhibiting

the highly efficient DNA repair processes in cancer stem cells,

especially in combination with DNA-damaging agents, may be a

promising approach to eliminate this cell population (116). Bulk

tumor reduction and elimination of cancer stem cells with the

combination of DDRi and DNA damaging agents sequenced with

immunotherapy for lasting tumor regression may be a viable

treatment option for patients with tumors characterized by cancer

stemness. Optimization and validation of treatment dose, timing,

and sequencing is necessary in vivo.

Another area in need of further investigation is the

differential effects of various DDRi agents on the immune

system. Though inhibition of each DDR protein has similar

effects in most studies, there seem to be context-specific

differences especially for CHK1i. Similar context-dependency

may be found with complementary study of other DDR proteins.

Further investigation is critical to the application of DDRi +

immunotherapy to wider patient populations.
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Systemic benefit of radiation
therapy via abscopal effect

Daniel J. Craig1, Stephanie Ambrose2, Laura Stanbery2,
Adam Walter2,3 and John Nemunaitis2*

1University of Toledo, Department of Internal Medicine, Toledo, OH, United States, 2Medical Affairs,
Gradalis, Inc., Carrollton, TX, United States, 3Gynecologic Oncology, Promedica, Toledo, OH,
United States
Evidence of a systemic response related to localized radiation therapy (RT) in

cancer management is rare. However, enhancing the immune response via

immunotherapy followed by localized RT has shown evidence of tumor

shrinkage to non-irradiated metastatic disease thereby inducing an “abscopal

effect.”Combined induction of the cGAS-STING pathway and activation of IFN-

gamma signaling cascade related to RT within an activated immune

environment promotes neoantigen presentation and expansion of cytotoxic

effector cells enabling enhancement of systemic immune response. A

proposed mechanism, case examples, and clinical trial evidence of “abscopal

effect” benefit are reviewed. Results support strategic therapeutic testing to

enhance “abscopal effect.”

KEYWORDS

abscopal effect, irradiation, cancer management, immune response, autologous
tumor immunotherapy, radiation therapy
Abbreviations: AFP, alpha-fetoprotein; ATM, ATM serine/threonine kinase; CCL2, C-C Motif

Chemokine Ligand 2; CCL22, C-C Motif Chemokine Ligand 22; cGAMP, cyclic guanosine

monophosphate-adenosine monophosphate synthase; cGAS, cGAMP synthase; CIRT, carbon-ion

radiation therapy; CR, complete response; EBRT, external beam radiation therapy; Flt3-L, Fms Related

Receptor Tyrosine Kinase 3 Ligand; Gy, grey; HCC, hepatocellular carcinoma; ICI, immune checkpoint

inhibitor; IFI16, interferon gamma inducible protein 16; IMRT, intensity modulated radiotherapy; MDM2,

MDM2 proto-oncogene; MHC, major histocompatibility complex; OS, overall survival; PARP-1, poly

ADP-ribose polymerase 1; PFS, progression-free survival; PIVKA-II, protein induced by vitamin K absence

or antagonists II; RFS, recurrence-free survival; SBRT, stereotactic body radiation therapy; STING,

stimulator of interferon genes; TGFß, transforming growth factor beta; TNF, tumor necrosis factor;

TRAF6, TNF receptor associated factor 6; TP53, tumor protein P53; WBRT, whole-brain radiotherapy;

XRT, radiation therapy.
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Introduction

The abscopal effect is a phenomenon seen when irradiation

at a distinct anatomic site induces a systemic antitumor response

throughout the body. It was first described using cell lines and

was known as the “bystander effect.” Researchers found that in

addition to direct cellular damage via reactive oxygen and

nitrogen species induced by radiation therapy (RT), irradiated

cells could also induce changes in distant non-irradiated cells

through cell signaling molecules (1). Initial studies demonstrated

that cell culture media taken from irradiated cultures could be

transferred to non-irradiated cultures and induce DNA damage

(1). Similarly, tumor cells can elicit cellular and DNA changes

within normal cells when media used to grow tumor cells is

transferred to normal cultures. This conditioned media

demonstrates increased levels of many cytokines including

transforming growth factor beta (TGFß) and C-C Motif

Chemokine Ligand 2 (CCL2) (2, 3). In addition, in vivo

experiments using both C57BL/6 wild-type and CCL2-

knockout mice subjected to ionizing radiation identified six

differentially expressed genes implicated in the abscopal effect

in tissue outside the field of radiation. These include TGFß (4)

and CCL2 (5), as well as tumor protein P53 (TP53) (6), tumor

necrosis factor (TNF) (7), C-C Motif Chemokine Ligand 22

(CCL22) (8), and the proto-oncogene, MDM2 (9).

CCL2 is particularly important, as it is involved in the

propagation of the immune effects associated with abscopal

activity. Specifically, CCL2 is a member of the monocyte

chemoattractant protein family and not only serves an

important role in the recruitment of monocytes, but also has

been shown to recruit T cells, B cells, NK cells, macrophages, and

dendritic cells (10–14). It is induced by multiple pro-

inflammatory molecules (15–18) and by reactive oxygen and

nitrogen species generated by RT supporting the idea that it

contributes significantly to the immune response associated with

the abscopal effect (19).

While the precise mechanism for the abscopal effect is

complex and continues to be elucidated, current evidence

supports that it is primarily a T cell-mediated process.

Ultimately, irreparable DNA damage in tumor cells induced

by RT increases tumor immunogenicity by providing dendritic

cells with tumor-specific antigens to present to, and activate,

CD8+ T cells viamajor histocompatibility complex (MHC) class

1. Clinical case examples, which we summarize, have stimulated

ongoing preclinical and clinical trials focusing on strategies to

stimulate dendritic cell proliferation and T cell activation to

more consistently induce an abscopal effect concurrent with RT.

In an effort to understand abscopal activity, we can look at

the molecular mechanism behind RT-induced DNA damage and

the immune response. Specifically, RT of tumor cells induces

double-stranded DNA breaks and unique nucleotide adducts
Frontiers in Oncology 02
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that leak into the cytosol and bind to the DNA sensor cyclic

guanosine monophosphate-adenosine monophosphate

(cGAMP) synthase (cGAS) protein resulting in an increase in

intracellular cGAMP (20, 21). Increasing levels of cGAMP then

bind to the stimulator of interferon genes (STING) protein

leading to the production of type 1 interferons (IFN-1). (IFN-

1 binds to IFNAR1/2 receptors that result in a signaling cascade

that activates immune-stimulating genes that promote activation

of dendritic cell populations (22).

However, in addition to the anti-tumor and immunogenic

effects of the cGAS-STING pathway, this pathway has also been

shown to induce pro-tumorigenic factors, such as IL-6 through

activation of the NFkB pathway and PD-L1 through activation

of the JAK-STAT pathway (23, 24). This is important in the

context of induction of abscopal effect because IL-6 has been

implicated in resistance to RT by suppressing oxidative stress,

and efforts to pharmacologically block the production of IL-6, in

addition to PD-L1, may help increase the abscopal effect (25). In

addition to the canonical cGAS-STING pathway, an alternative

STING pathway is also capable of sensing DNA damage

independent of the cytosolic DNA receptor cGAS. Instead, this

non-canonical STING pathway utilizes a protein complex

consisting of a DNA binding protein called Interferon Gamma

Inducible Protein 16 (IFI16), DNA damage response factors

(ATM serine/threonine kinase [ATM] and Poly ADP-Ribose

Polymerase 1 [PARP-1]), tumor suppressor protein p53 (TP53),

and a E3 ubiquitin ligase called TNF Receptor Associated Factor

6 (TRAF6). This protein complex ultimately leads to the

activation of the NFkB pathway resulting in expression of

IFN-ß and thus its downstream targets (26). Each of these

unique pathways demonstrates the complexity of RT-induced

DNA damage and the diverse molecular mechanisms that play a

role in both anti-cancer and pro-cancer response.

Importantly, as the dose of radiation increases, larger

amounts of damaged DNA products precipitate in the cytosol

activating TREX1, a cytosolic DNA exonuclease that functions

to degrade and eliminate cytosolic DNA, precluding the

activation of the cGAS-STING signaling cascade that is

thought to trigger the abscopal effect. In an effort to fine-tune

induction of abscopal effect, Vanpouille-Box et al. sought to

determine an optimal radiation dose that maximized production

of IFN-1 while minimizing TREX1 expression using a mammary

carcinoma mouse model treated with RT and an antibody

against anti-cytotoxic T-lymphocyte-associated protein 4

(CTLA-4). CTLA-4 is a cell-surface protein expressed by

regulatory T cells to inhibit T cell functions by increasing the

activation energy necessary for T cell activation (27). This is

especially important in the context of cancer due to the weakly

immunogenic self- and tumor-antigens. Ipilimumab is an anti-

CTLA-4 antibody and was the first immune checkpoint inhibitor

approved for treating cancer (28, 29). Their results showed that
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an irradiation scheme of 8 grey (Gy) x 3 coupled with an anti-

CTLA-4 antibody did not result in TREX1 gene expression,

while a single large dose (20 and 30 Gy) coupled with an anti-

CTLA-4 antibody did (30). Activation of IFN-1 was preserved in

both examples.

In addition to optimizing expression of both immune-

stimulating and immune-suppressing genes, several studies

have demonstrated the importance of an intact T cell response

and a sufficient dendritic cell population to induce an abscopal

response. For example, Stone et al. published one of the first

preclinical experiments seeking to understand the abscopal effect

using a syngeneic fibrosarcoma mouse model. They showed that

the radiation dose necessary to reduce tumor size by 50% was

significantly smaller in T cell-competent mice compared to T

cell-depleted mice. In addition, they noticed that the likelihood

of metastasis was lower in T cell-competent mice compared to

their T cell-depleted counterparts (31). More recently, Demaria

et al. utilized a murine model with both wild-type and nu/nu T

cell-deficient BALB/C mice to compare (a) the effect of

irradiation alone or irradiation supplemented with the

dendritic cell stimulator, Fms Related Receptor Tyrosine

Kinase 3 Ligand (Flt3-L), and (b) the effect of tumor

immunogenicity using two cell lines (32). The two groups of

mice were injected at two distinct anatomic sites with either the

highly immunogenic 67NR BALB/C mouse-derived mammary

carcinoma cell line or the low immunogenicity A20 BALB/C

mouse-derived B-cell leukemia/lymphoma cell line creating a

pseudo-primary site that would receive direct RT (2 Gy, single

dose) and a secondary site that would not. Their results showed

that not only were T cells necessary to induce a response at the

secondary, non-irradiated site, the addition of Flt3-L

significantly increased the tumor response at the non-

irradiated site in the wild-type mice. In addition, the low

immunogenicity A20 B cell leukemia/lymphoma cell line did

not show a significant increase in response at the secondary site

in both the irradiation alone and irradiation + Flt3-L groups

demonstrating the importance of an immunogenic tumor in

activating a T cell response.

The combination of RT with immune checkpoint inhibition

(ICI)—pharmacologic agents has also resulted in a more potent

tumor response than either treatment alone in preclinical studies

examining head and neck cancer, metastatic melanoma,

metastatic pancreatic cancer, and lung cancer (33–35). This

has resulted in investigators examining ideal radiation dosing

and fractionation schemes when coupled with ICI to induce

abscopal responses. For example, Dewan et al. utilized a mouse

model of bilateral mammary adenocarcinoma to identify an

ideal radiation dose. In their study, they treated mice with either

3 fractions (8 Gy each) coupled with an anti-CTLA-4

monoclonal antibody (mAb), or a single dose (30 Gy) coupled

with the anti-CTLA-4 mAb. Their results showed an abscopal

response in the group treated with 8 Gy x 3 + anti-CTLA-4 mAb

but did not see the same response in the group treated with a
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single dose of RT (30 Gy) coupled with the anti-CTLA-4

mAb (36).
Clinical case reports of abscopal
effect following irradiation without
systemic treatment

Early evidence of abscopal activity has initially been

portrayed in published case reports which are described below.

Each demonstrate systemic clinical response following local site

RT as consistent with abscopal activity.

A 57-year-old male was diagnosed with multiple lung

nodules, vertebra metastases, and brain metastases (37). The

results of pathological examination suggested adenocarcinoma

of the lung. RT of 39 Gy in 13 fractions was administered to the

ninth thoracic vertebra for destructive extension. However, all

the lesions including the brain metastases spontaneously shrunk,

thereby supporting abscopal activity as no systemic therapy had

been administered. Two months after RT, complete regression to

the lung and other non-irradiated thoracic vertebra was

achieved. Whole-brain radiotherapy for a total dose of 36 Gy

in 12 fractions was performed. Unfortunately,15 months after

initial RT, the brain metastasis recurred.

A 61-year-old male with renal cell carcinoma and metastatic

lesions to the brain, bone, spine, lung, and lymph nodes

underwent stereotactic body radiation therapy (SBRT) to the

brain metastases and external beam radiation therapy (EBRT) to

the metastatic lesions in his bone and spine (38). 1 month later,

lesions that were not subjected to radiotherapy showed

regression as evidenced by CT scan. In addition, follow-up CT

scans taken 2 months later and 3 months later demonstrated

continued response of these untreated lung lesions suggesting

a possible abscopal response. Unfortunately, this patient went

on to develop new brain metastases requiring additional

stereotactic radiosurgery.

A 66-year-old female with clear cell renal cell carcinoma

was treated with a nephrectomy (39). Ten years later, the patient

had a metastatic lesion of the renal cell cancer in the neck,

and was treatment with pazopanib, but then terminated

due to intolerability. CT scans of the thorax and the neck

showed progression in the neck, portacaval lymph node,

hypochondrium subcutaneous node, and new and progressive

lung metastases. Palliative RT was given to the neck, but the

patient did not resume systemic therapy. Eleven months after

(radiation therapy) XRT, the patient had complete regression of

the lung metastases, the subcutaneous abdominal node

remained, but growth of the portacaval lymph node persisted.

17 months after XRT, the patient’s stable disease remained,

demonstrating abscopal activity.

A 93-year-old female with melanoma on the fifth metatarsal

(Breslow depth: 2.8 millimeters) underwent therapeutic
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amputation. Despite amputation, the patient demonstrated

disease progression 13 months later. He presented with a 4-

centimeter painful inguinal lymph node mass along with 5

cutaneous nodules located on the anterolateral leg below the

knee. These cutaneous nodules were hard to palpation and

macroscopically consistent with metastasis. The patient

underwent palliative RT to the inguinal lymph node for pain

management. Interestingly, the patient also demonstrated near

complete resolution of the non-irradiated cutaneous lesions one

month after RT. The patient was lost to follow-up 14 months

later due to relocation to a new city, but demonstrated stable

disease throughout that period (40).

A 75-year-old male with a history of stage IV colorectal

cancer with liver metastasis (November 2007) status post

anterior resection with partial hepatectomy and rectal cancer

(January 2010) status post anterior resection presented with

abdominal pain in November 2010. Abdominal imaging showed

two masses: a 35-millimeter mass located on the left side of the

abdomen and a 15-millimeter mass invading the right common

iliac artery. The left-sided mass was irradiated using carbon-ion

radiation therapy (CIRT) with a regimen of 73.6 Gy x 16

fractions over a 28-day period in January 2011. The mass

invading the right common iliac artery was not irradiated due

to its proximity to the small intestine. Interestingly, a PET-CT

scan performed 1 month after therapy showed significant

reduction in tumor size in both the irradiated and non-

irradiated tumors as evidenced by decreased fludeoxyglucose

accumulation. Unfortunately, the patient died 46 months after

CIRT due to myelodysplastic syndrome with no evidence of

progression of the two tumors as evidenced by annual PET-CT

scans. Taken together, it is likely that this patient had a durable

abscopal response to CIRT (41).

An 85-year-old male with a history of recurrent colon cancer

in the ascending colon presented with back pain in February

2009 after a 10-month stable period post hemicolectomy (April

2008). CT imaging revealed a 45-millimeter para-aortic tumor

along with two 10-millimeter tumors in the mediastinum and

right clavicle. The patient was not eligible for chemotherapy due

to comorbidities, so the decision was made to perform CIRT (Gy

x 12 fractions over 21 days) on the para-aortic mass as part of an

ongoing clinical trial. Following completion of therapy, there

was a significant reduction in size of the irradiated para-aortic

tumor as well as the non-irradiated mediastinal and subclavian

tumors as evidenced by both CT and PET-CT imaging. The

patient received no additional therapy, which suggests the

patient had an abscopal response to CIRT. The patient’s

condition has remained stable for 92 months at the time of

publication with no change in tumor size (41).

A 63-year-old male presented with a 10.5 cm x 9 cm x 11 cm

hepatocellular carcinoma (HCC) with 3 daughter nodules <1

centimeter each. He underwent an extended right lobectomy and

was stable for 18 months until metastatic nodules were found in

the right lower lobe of the lung and left mediastinal lymph node
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as evidenced by CT scan. This was confirmed to be HCC

metastatic disease due to an alpha-fetoprotein (AFP) of 4,869

ng/mL and a protein induced by vitamin K absence or

antagonists II (PIVKA-II) >20,000 mAU/mL. Trans-catheter

arterial embolization of the mediastinal tumor was attempted

but ultimately aborted due to risk of spinal artery embolism. The

decision was made to perform palliative external beam radiation

therapy (2.25 Gy x 27 fractions) on the mediastinal node.

Following RT, both the mediastinal lymph node and the right

lower lobe lung tumor demonstrated significant response as

evidenced by CT scan along with a decrease in AFP from 4,869

ng/mL to 23 ng/mL and a decrease in PIVKA-II from >20,000

mAU/mL to 13 mAU/mL. His disease remained stable for 4

years until a 3.5 cm lymph node was found near the left gastric

artery. He was treated with stereotactic body radiotherapy and

showed no additional disease after 6 months (42).

A 76-year-old female was diagnosed with pulmonary

adenocarcinoma (cT1bN0M0) in November 2015, and

subsequently underwent a right upper lobectomy with

confirmation of pathological pT1bN2M0, stage IIIA disease.

The patient did not receive adjuvant chemotherapy. In

February 2018, multiple new mediastinal and right hilar

lymph node metastases were identified. A total dose of 60.0 Gy

of RT was given over 6 weeks to selected lesions. The target area

included multiple mediastinal, and several (but not all) right

hilar lymph nodes. Twelve weeks after completion of RT, a chest

CT scan showed complete disappearance of the treated and

untreated pulmonary metastases. Another follow up CT scan

was completed (6 months after completion of RT) showing no

reappearance of multiple metastatic pulmonary nodules both

non irradiated and irradiated pulmonary nodules supportive of

abscopal effect (43).

An 81-year-old female was diagnosed with a pT2a, pN0 (0/

5), cM0, UICC stage IB squamous cell carcinoma of the left

upper lung lobe (44). She underwent a lobectomy with

lymphadenectomy, and subsequently had no relapse for 5

years during follow up. Thirteen years later, recurrence was

confirmed via biopsy, chest CT showed a mass in the left lung,

negative for brain metastasis on MRI, and PET showing left

sided pleural carcinomatosis, left sided periclavicular lymph

node metastases, and bone metastases in the 12th thoracic and

4th lumbar vertebra. The patient declined systemic treatment.

She thus underwent palliative radiotherapy to the symptomatic

pulmonary tumor. Four weeks after RT completion, restaging

was performed showing a partial remission of the tumor, the

nodal metastases and the previously untreated vertebral lesions.

During follow-up, further decrease in tumor size and complete

metabolic remission of the bone, pleural and lymph node

metastases was seen. 25 months after radiotherapy, the patient

still had evidence of stable disease, but remained free of

disease symptoms.

In June 2018, a 69-year-old male was diagnosed with

squamous cell carcinoma of the right lower lobe with
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involvement of mediastinal nodes (45). The patient was initially

treated with vinorelbine and cisplatin however, after four cycles,

his symptoms worsened, and chest CT scan confirmed

progressive disease. Hence, the chemotherapy regimen was

shifted to paclitaxel, but the primary lung lesion was still not

controlled, and he showed disease progression in the chest, and

as well as a bone scan that showed a new lesion in the right tibia,

indicating the occurrence of bone metastases. After initial

response, this patient showed progression on the PD-1

inhibitor, camrelizumab, and the tyrosine kinase inhibitor that

selectively inhibits VEGFR2, apatinib, and went on to receive

palliative CT-guided microwave ablation to the primary lung

tumor. One month later, chest CT scan showed the right lower

lobe mass and mediastinal lymph nodes were also reduced,

indicating an abscopal effect following local ablation.

These cases highlight systemic abscopal effect related to

localized RT. The effect involved a broad range of cancer

patients that include a robust age range up to 93 years old.
Case reports of abscopal effect
with irradiation and enhancing
immune modulation

Evidence of abscopal activity related to systemic immune

induction of RT may be enhanced with combination immune

modulatory therapy. The following case reports support

evidence of abscopal activity with combined RT in a setting of

failed systemic response prior to ongoing immunotherapy

followed by immune response with same immune therapy

(abscopal effect) after local RT.

A 54-year-old male patient presented with a stageT4N0M1b

disease. He had a pulmonary large cell neuroendocrine

carcinoma of the right upper lobe, associated with bilateral

adrenal metastases and a PD-L1 tumor proportion score of

20% (46). After four cycles of chemotherapy (pemetrexed,

cisplatin) and the VEGF inhibitor, bevacizumab, CT scans

revealed disease progression in the right upper lobe as well as

in both adrenal glands. Second-line therapy with nivolumab,

a PD-1 inhibitor, was started, but increasingly symptomatic

spinal cord compression, due to tumor invasion occurred.

Hemilaminectomy of the third thoracic vertebra combined

with resection of the epidural tumor mass was thus performed.

Postoperative radiotherapy (30 Gy) was applied targeting the

involved thoracic vertebrae. Nivolumab continued, CT scans 4

months after the first radiotherapy showed partial regression of

the lung tumor and adrenal metastases. The patient showed

disease progression 10 months after radiotherapy but is still
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alive, supportive of abscopal effect, 25 months after the

initial diagnosis.

A 64-year-old male patient presented with T2N3M1c disease

which included an adenocarcinoma of the left upper lobe,

mediastinal contralateral lymph nodes and distant metastases

(brain and ocular). The patient’s PD-L1 results are currently

blinded due to the requirements of a clinical trial (Impower130

trial: ClinicalTrials.gov identifier NCT02367781). The

radiological images after 5 months of treatment (four cycles of

nab-paclitaxel/carboplatin with atezolizumab, a PD-L1

inhibitor, followed by four cycles of atezolizumab alone)

showed an excellent response of the ocular metastasis, but

progression of the brain metastasis. The thoracic tumor

manifestations showed partial remission after four cycles of

combined chemotherapy and immunotherapy with no further

shrinkage after the four additional cycles of atezolizumab

monotherapy. Whole-brain radiotherapy (WBRT) was

performed and atezolizumab was continued. Radiological

follow-up 4 months after WBRT showed a partial response in

the brain (complete response [CR] of ocular disease and

remission of brain disease) as well as complete remission of

lung and mediastinal tumor masses, supportive of potential

abscopal effect. The patient is still alive with radiologically

nearly complete remission 28 months after the initial diagnosis

of metastatic lung cancer (46).

A 70-year-old male patient presented with a T3N2M1a

disease involving central adenocarcinoma of the middle lung

lobe, associated with positive mediastinal lymph nodes and a

malignant ipsilateral pleural effusion. There were no EGFR or

ALKmutations and the PD-L1 tumor proportion score was 70%.

First-line therapy with pembrolizumab, a PD-1 inhibitor, was

started, leading to a partial response. After a year of treatment,

pulmonary and pleural disease progression occurred, and a

clinically symptomatic brain metastasis associated with

perimetastatic cerebral edema appeared. Pembrolizumab was

continued and WBRT added (30 Gy in ten fractions).

Radiography of the thorax after radiotherapy showed partial

regression of the lung tumor and pleural effusion, supportive of

abscopal activity. The patient is still alive 19 months after the

initial diagnosis (46).

A 65-year-old female presented with mucosal melanoma in

June 2015 with no evidence of metastatic disease as evidenced by

CT scan of the neck and MRI with gadolinium. The decision was

made to perform a right partial maxillectomy to remove the

lesion followed by targeted intensity modulated radiotherapy

(IMRT). Unfortunately, the patient relapsed 9 months later, and

evidence of disease progression was found in the neck and lungs.

The patient was then enrolled in a trial comparing epacadostat +

pembrolizumab or placebo + pembrolizumab, which initially
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showed tumor response, but ultimately resulted in disease

progression. The treatment was stopped, and the patient

started a palliative course of IMRT to the neck due to

increased symptoms. Interestingly, both the neck lesion and

the pulmonary lesions responded to IMRT based on CT scans

before and after IMRT suggesting an abscopal response (47).

A 67-year-old female presented with metastatic pancreatic

uncinate carcinoma to the right liver lobe in August 2015 with a

CA 19-9 of 1,814 U/mL. The patient was initially treated with

single-agent gemcitabine, but this was discontinued due to poor

response and worsening abdominal pain. The patient was then

switched to albumin-bound paclitaxel, which demonstrated

partial response based on Response Evaluation Criteria in

Solid Tumors (RECIST 1.0), but ultimately demonstrated

disease progression with additional metastasis to the right

pleura and worsening side effects. The patient was then

switched to Apatinib, but this was quickly discontinued due to

severe gastrointestinal distress. The decision was made to initiate

palliative radiotherapy (45 Gy x 15 over 3 weeks) coupled with

GM-CSF to the primary pancreatic tumor due to abdominal

pain and jaundice requiring percutaneous transhepatic-

cholangial drainage. 1 month later, the patient demonstrated

significant response to the primary tumor as evidenced by CT

scan, but also demonstrated significant abscopal response to the

metastatic sites in the liver and pleura that were outside the cone

of radiation (48).

A 33-year-old female presented with a mole on her upper

back concerning for melanoma in April 2004. Biopsy of the

lesion revealed melanoma with a Breslow thickness of 1.53

millimeters. The decision was made to perform a wide local
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excision of the malignant lesion along with sentinel lymph node

biopsy. The patient remained disease free until 2008 when a

PET-CT revealed a 2-centimeter pulmonary nodule suggestive

of metastatic disease that was confirmed via CT percutaneous

biopsy. She was treated with cisplatin, vinblastine, and

temozolomide (CVT) chemotherapy due to lack of a targetable

mutation (e.g., BRAF) followed by surgical resection. The patient

demonstrated stable disease until surveillance CT scan showed a

metastatic paraspinal mass along with hilar lymphadenopathy in

August 2009. The decision was made to initiate 4 doses of

ipilimumab, a CTLA-4 inhibitor, (10 mg/kg) every 3 weeks

which resulted in an initial slight enlargement of the

paraspinal mass but effectively stabilized her disease for 14

months. Unfortunately, the patient demonstrated continued

enlargement of the paraspinal mass with additional evidence

of metastatic splenic lesions. The patient was experiencing

significant back pain due to mass effect from the paraspinal

mass, so the decision was made to initiate palliative RT to the

paraspinal mass (950 Gy x 3 fractions over 7 days). Ten months

after therapy, there was evidence of abscopal effect as evidenced

by CT-scan demonstrating significant reduction in size of both

the treated paraspinal mass and the splenic lesions that were

outside the cone of radiation (49).

A 71-year-old male was diagnosed with stage IV lung

adenocarcinoma, and began treatment with atezolizumab (50).

After 19 months of atezolizumab, there was a complete response

to the primary lung tumor. A brain metastasis then developed two

years later, which was treated with gamma knife radiotherapy.

However, after radiation, the patient’s lung disease recurred. Two

months later, the lesions in the lung had shrunk, indicating that the
TABLE 1 Abscopal case reports following irradiation without systemic treatment.

Patient Disease Sites of involvement Treatment Response Reference

57-year-old
male

Unknown
primary

Lung nodules, vertebra, and brain
metastases

Radiation (XRT) to 9th vertebra All lesions (37)

61-year-old
male

Renal Cell
carcinoma

Bone, spine, brain, lung
lymphadenopathy mets

XRT to brain, spine, and bone Regression of untreated lung metastases and
lymphadenopathy

(38)

66-year-old
female

Renal Cell
carcinoma

Neck, lung and portacaval node XRT to the neck Regression of irradiated neck mass and non-
irradiated lung metastases

(39)

93-year-old
female

Melanoma (toe) Thigh and inguinal node Surgery, RT to inguinal region Regression of thigh lesions (40)

75-year-old
male

Colorectal
cancer

Liver mets Resection and RT Reduction in both the treated and untreated
liver masses

(41)

85-year-old
male

Colorectal
Cancer

Nodes (near abdominal aorta,
mediastinal, and subclavian)

Resection and XRT to aortic
lymph node

Untreated subclavian node shrank, and
mediastinal node remained stable.

(41)

63-year-old
male

Hepatocellular
Carcinoma

Lung and mediastinal nodes XRT to mediastinal lymph
node

Mediastinal lymph node and untreated
lung mass

(42)

76-year-old
female

NSCLC Mediastinal and hilar lymph nodes,
lung disease

XRT only, to mediastinal and
hilar lymph nodes.

Complete response to multiple untreated
lung lesions

(43)

81-year-old
female

NSCLC Lung, pleura, periclavicular node,
and vertebra

XRT only Complete remission of untreated vertebral
lesions and periclavicular node

(44)
fro
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prior changes in the lung may have been pseudo-progression as

abscopal effect was later demonstrated.

Combination irradiation with immunotherapy may be

associated with more frequent abscopal effect as suggested by

preclinical testing and preliminary clinical results (31–36, 51). In

summary (see Tables 1, 2), these 17 case reports provide

evidence of abscopal effect and support combination with

immunotherapy is well tolerated and may enhance abscopal

activity related to RT.
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Current studies evaluating
abscopal effect

The clinical trial landscape for abscopal effect and

development of clinical trials is increasing. There are several

prospective clinical trials investigating the abscopal effect

(Table 3). However, consistent results regarding occurrence of

abscopal effect and level of benefit are highly variable. Moreover,
TABLE 2 Abscopal case reports of irradiation and systemic treatment following systemic treatment failure.

Patient Disease Sites of involvement Treatment Response Reference

69-year-
old male

NSCLC Lung, mediastinal and other
nodes

Vinorelbine/cisplatin, paclitaxel, camrelizumab/
apatinib, CT-guided microwave ablation of lung
lesion, following systemic treatment failure

After progression on systemic treatment
and then XTR, right lower lobe mass and
mediastinal lymph nodes reduced

(45)

54-year-
old male

Neuroendocrine Lung, adrenal glands, para-
spinal cord

After progression with systemic therapy,
Pemetrexed/cisplatin/bevacizumab, nivolumab,
XRT to para spinal vertebrae

Lung tumor and adrenal metastases
underwent regression

(46)

64-year-
old male

NSCLC Mediastinal contralateral
lymph nodes and distant
metastases (brain and
ocular)

Nab-paclitaxel/carboplatin/atezolizumab,
atezolizumab alone, after progression of all
lesions, WBRT (whole brain radiation therapy)

PR to brain, CR to lung and mediastinal
masses was seen after WBRT

(46)

70-year-
old male

NSCLC Mediastinal lymph nodes
and malignant pleural
effusion, PD-L1 70%

Failed Pembrolizumab, then WBRT added Partial regression of the lung tumor and
pleural effusion after WBRT

(46)

65-year-
old
female

Melanoma
(mucosal)

Neck and pulmonary mets Failed Pembrolizumab, then given XRT to neck Tumor regression of the pulmonary
metastases after XRT to the neck

(47)

67-year-
old
female

Pancreas
Cancer

Liver and right pleura Failed Gemcitabine, paclitaxel, apatinib, then
given palliative XRT (to pancreas)/GM-CSF

XRT to pancreatic tumor, non-irradiated
systemic metastases significantly
decreased

(48)

33-year-
old
female

Melanoma
(cutaneous)

Pulmonary nodule,
paraspinal mass, hilar node,
splenic lesion

Failed Cisplatin/vinblastine/temozolomide (CVT),
ipilimumab, XRT to paraspinal mass

Regression to non-irradiated hilar
lymphadenopathy and splenic lesions

(49)

71-year-
old male

NSCLC Brain mets, mediastinal
lymph nodes lung disease

Failed nedaplatin/paclitaxel, and Atezolizumab,
then given Atezolizumab/brain XRT

Primary lung lesion and hydrothorax
decrease after systemic treatment failure
and brain XRT

(50)
fro
TABLE 3 Select ongoing clinical trials involving radiotherapy and checkpoint inhibitors to achieve abscopal effect.

Cancer type Irradiation scheme/combination Clinical trial number

NSCLC 30-50 Grays in 5 fractions
Bevacizumab
toripalimab

NCT04238169

NSCLC 20 Gray
nivolumab

NCT03480334

NSCLC 20 x 2 Gray (daily for 4 weeks)
5 x 5 Gray (daily over 1 week)
3 x 8 Gray (every other day over 1 week)
Durvalumab

NCT04245514

Metastatic Cancer 1 dose of SBRT
Durvalumab and trememlimumab

NCT03212469

Hepatocellular 4 fractions over 8-15 days
Pemrolizumab

NCT03316872
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trials exploring expansion of abscopal effect looking at various

irradiation doses, schedules and immune modulating

combination therapy still only provide relatively low

occurrence rate of abscopal activity. In general, though, when

abscopal effect is observed compared to those receiving the same

regimen without abscopal effect clinical benefits with respect to

response, progression-free survival (PFS) and overall survival

(OS) is observed (52–54). In one early retrospective study

involving melanoma patients treated with ipilimumab followed

by RT, 52% showed evidence of abscopal activity and those who

did had significantly improved OS (54). Another retrospective

study involving melanoma showed similar results (55).

Moreover, in a third small trial of 10 prostate cancer patients

improved durable disease control was observed with combined

ipilimumab and irradiation (56). Although in a larger later Phase

3 trial of advanced prostate cancer undergoing irradiation and

ipilimumab vs. irradiation alone OS was not different (57).

Similarly, several combination PD-1/PD-L1 checkpoint

inhibitor treatments with RT have also demonstrated evidence

of abscopal activity. KEYNOTE-001 trial demonstrated

improved PFS and OS in NSCLC patients who received prior

RT and pembrolizumab compared to pembrolizumab alone

although actual abscopal events were not well defined (58).

Another retrospective study looking at PD-1 inhibitors

involving melanoma patients, some receiving RT, showed

significant improvement in response rate but no improvement

in PFS and OS with combination checkpoint inhibitors/RT.

However, only one patient of 59 demonstrated abscopal

activity (59). Not all clinical results have reproduced the same

result. For example, a Phase I clinical trial examining the ideal

radiation dose in patients with metastatic NSCLC or melanoma

on pembrolizumab showed abscopal responses in patients

treated with either 24 Gy x 3 fractionation scheme or a single

17 Gy fraction (NCT02303990) (60). This suggests that the

abscopal response to irradiation is multi-factorial and

radiation fractionation regimens may not be universal.

Interestingly, GM-CSF combination RT involving a general

group of 41 solid tumor patients showed a high fraction (over

25%) of patients with abscopal activity (breast cancer, NSCLC,

thymic cancer) when combined with localized irradiation (61).

In addition, Formenti et al. performed a proof-of-principle trial

where they supplemented RT with subcutaneous GM-CSF, a

cytokine that promotes dendritic cell differentiation and

expansion, in patients with metastatic tumors including breast

cancer, bladder cancer, and eccrine cancer (51, 62). Their results

showed that 30% of patients who received RT supplemented

with GM-CSF over the course of 2 weeks had an abscopal

response as evidenced by PET/CT. Also, breast cancer patients

receiving high dose vs. low dose TGFb blockade (fresolimumab)

along with RT had significantly prolonged OS (63).
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Consideration GM-CSF expression/
TGFb knockdown to induce
abscopal effect

There continues to be strong evidence that radiation is able

to activate the immune system although the mechanism for this

has not been fully elucidated (62). RT has also been shown to

promote the development of an immunosuppressive tumor

microenvironment, specifically by upregulation of PD-L1 (64,

65). Therefore, it has been hypothesized that radiation coupled

with immunotherapy would elicit an abscopal effect. However,

results have been limited with studies evaluating the dose of

radiation and sequencing of combination immunotherapy (66).

The abscopal effect has largely been observed in highly

immunogenic tumors including melanoma, renal cell, and

hepatocellular carcinoma. The tumor microenvironment in

these “hot” tumor types are characterized by T cell infiltration

and expression of proinflammatory cytokines (67).

In addition to combination with checkpoint inhibitor

therapy, autologous tumor cellular immunotherapy may also

be considered as a clinical testing direction. Vigil is a triple

function immune therapy constructed from patient tumor cells.

Vigil mechanism involves the introduction of bifunctional short-

hairpin RNA to knockdown furin in the autologous tumor cells.

Furin knockdown results in decreased cleavage of TGFb into

TGFb1 and TGFb2 (68). TGFb is an immune suppressive

cytokine associated with poor prognosis and therapeutic

resistance in many solid tumors (69–71). Vigil plasmid also

encodes for human GM-CSF which is also an immune

stimulatory cytokine that increases tumor antigen presentation

by dendritic cells (72). Moreover, Vigil provides personalized,

clonal cancer specific neoantigens to enable the immune system

to recognize tumor cells and mount an effective, targeted T-cell

mediated response. Vigil has demonstrated improved clinical

outcomes which correlated with IFNg-ELISPOT positivity (73,

74). IFNg is known to activate a multitude of immune cells,

including effector T cells. Vigil has shown clinical benefit in

advanced solid tumor patients with overall survival correlation

with TISHIGH vs. TISLOW (one year OS 75% vs. 25%, p=0.03795)

and elevated MHC-II expression (p=0.038). In recurrent ovarian

cancer patients, the OS rate was observed to be 58% compared to

historical rate of <20% with standard of care. In a Phase IIb

double-blind, randomized, placebo-controlled trial in frontline

ovarian cancer maintenance, Vigil patients demonstrated a trend

towards benefit (11.5 months vs. 8.4 months for placebo,

p=0.078). The result for the secondary endpoint of recurrence-

free survival (RFS) for the BRCA-wt subpopulation however,

was statistically significant, demonstrating benefit in RFS from

procurement (time of initial debulking surgery) and
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randomization (time of initial Vigil administration; 18.3 months

vs. 14.8 months, HR=0.478, p=0.02; 11.5 months vs. 8.0 months,

HR=0.514, p=0.02 respectively) and OS from procurement and

randomization (not reached vs. 48.3 months, HR=0.490,

p=0.047; not reached vs. 41.4 months, HR=0.493, p=0.049

respectively). Based on a post hoc exploratory analysis in the

BRCA-wt, HRP subpopulation, RFS and OS were increased in a

statistically significant fashion relative to the control arm,

demonstrating a benefit with Vigil in RFS from procurement

and randomization (18 months vs. 12 months, HR=0.363,

p=0.005; 10.6 months vs. 5.7 months, HR=0.386, p=0.007

respectively) and OS from procurement and randomization

(not reached vs. 37.3 months, HR=0.340, p=0.018; not reached

vs. 26.9 months, HR=0.342, p=0.019 respectively). Long term

follow up analysis also revealed that 83% of Vigil treated patients

were still alive three years after their initial debulking surgery

versus 40% who received placebo (p=0.0006). Clinical testing of

Vigil with RT to induce and augment the abscopal effect is

under consideration.

Conclusion

Clearly sufficient preclinical and clinical evidence exists

which support benefit to patients who incur abscopal effect

while undergoing RT. There does not appear to be any

concerning toxic effect related to abscopal activity. Benefit

associated with response, PFS, duration of PFS and OS has

been observed. However, results are inconsistent and hard to

predict. Biomarkers indicative of abscopal development are not

known. Combination of RT with immune modulatory therapy

appear to suggest enhancement in abscopal activity but results

are variable. Further research towards enhancement in abscopal

activity is warranted. Consideration in modulation of GM-CSF

expression and TGFb knockdown is justified.
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Breast cancer is the most prevalent non-skin cancer diagnosed in females and

developing novel therapeutic strategies to improve patient outcomes is crucial.

The immune system plays an integral role in the body’s response to breast

cancer and modulating this immune response through immunotherapy is a

promising therapeutic option. Although immune checkpoint inhibitors were

recently approved for the treatment of breast cancer patients, not all patients

respond to immune checkpoint inhibitors as a monotherapy, highlighting the

need to better understand the biology underlying patient response.

Additionally, as radiotherapy is a critical component of breast cancer

treatment, understanding the interplay of radiation and immune checkpoint

inhibitors will be vital as recent studies suggest that combined therapies may

induce synergistic effects in preclinical models of breast cancer. This reviewwill

discuss the mechanisms supporting combined approaches with radiotherapy

and immune checkpoint inhibitors for the treatment of breast cancer.

Moreover, this review will analyze the current clinical trials examining

combined approaches of radiotherapy, immunotherapy, chemotherapy, and

targeted therapy. Finally, this review will evaluate data regarding treatment

tolerance and potential biomarkers for these emerging therapies aimed at

improving breast cancer outcomes.

KEYWORDS

immune checkpoint inhibitors (ICI), radiotherapy, breast cancer, tumor immunology,
radiation biology, immunotherapy
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Introduction

Breast cancer (BC) is the most common non-cutaneous

malignancy diagnosed in females, accounting for nearly one-

third of all new cancer diagnoses (1). During 2022, in the United

States, approximately 287,850 females will be diagnosed with

breast cancer, while over 43,000 females will ultimately succumb

to their disease (1). Breast cancer incidence has increased in

female patients, coinciding with an increase in obesity and

decline in fertility rates (1, 2). Early detection and improved

loco-regional and systemic therapies have led to improved

outcomes among breast cancer patients in recent years (3).

However, breast cancer is a heterogenous disease with diverse

molecular subtypes, clinical classifications, and genetic

variations (3, 4). Using the most common definition, breast

cancer is divided into four molecular subtypes—luminal A,

luminal B, HER2+, and triple negative breast cancer (TNBC)—

based upon the presence or absence of important hormone

receptors, including the estrogen receptor (ER), progesterone

receptor (PR), and human epidermal growth factor receptor 2

(HER2) (4). This heterogeneity at the tumor level results in

different responses to therapy (3–5). Importantly, TNBC is the

most aggressive breast cancer subset that disproportionately

impacts patients of color and younger patients (4, 6–8).

Significantly, more effective therapies for TNBC are

desperately needed.

Locally advanced breast cancer is treated via a trimodal

approach that includes surgery, chemotherapy, and

radiotherapy. Recent advances in precision medicine have

been developed to target the molecular differences that exist in

breast cancer (3). Endocrine therapies, including the selective

estrogen receptor modulator (SERM) tamoxifen, selective

estrogen degrader (SERD) fulvestrant, or the aromatase

inhibitors anastrozole and exemestane, target the estrogen

receptor found in ER+ breast cancer (9). Other precision

medicine advancements used in the management of metastatic

breast cancer include small molecule inhibitors of key

modulators of breast cancer growth and survival. For example,

inhibiting the cyclin dependent kinases 4 and 6 (CDK4/6)

mechanistically prevents the progression of cancerous cells

through the cell cycle, while inhibiting poly (adenosine

diphosphate-ribose) polymerase (PARP) impairs DNA repair

(10, 11). While these targeted therapies improve survival,

therapeutic resistance is common, and the discovery of

additional treatment options are warranted.

An emerging therapeutic option for treating breast cancer is

immunotherapy, which enables a patient’s immune system to

recognize and eliminate cancerous cells. Cancer cells evade the

immune system by expressing immune checkpoints: inhibitory

molecules that hinder the immune system’s ability to eliminate

cancer. Immune checkpoint inhibitors (ICIs) block these

immune checkpoints or “brakes” on the immune system,
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resulting in an increase in antitumor immunity and the

eradication of cancerous cells. Currently, clinically utilized ICIs

target the programmed death receptor 1 (PD-1)-programmed

death ligand 1 (PD-L1) or cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4) axes (12). ICIs have been most clinically

successful in the management of melanoma (13), non-small cell

lung cancer (NSCLC) (14), and bladder cancer (15). Overall,

more than 40% of all cancer patients are eligible to receive ICIs

(16, 17). Importantly, recent studies suggest that ICIs are

effective for the treatment of breast cancer patients, although it

was originally believed that these patients would respond poorly

to immunotherapies due to this disease being a relatively

nonimmunogenic cancer (18). Of all breast cancer subtypes,

immunotherapy is particularly promising for the treatment of

TNBC that cannot be treated via hormone therapies due to not

expressing commonly targeted hormone receptors—including

the ER, PR, and HER2. Immunotherapy may also be promising

for treating this subset of breast cancer, since treatment

resistance to standard therapies—like chemotherapy and

radiotherapy—remains a significant clinical issue for TNBC

patients (19, 20).

Combining radiotherapy with immunotherapy for the

treatment of aggressive breast cancers may improve treatment

efficacy. Early preclinical studies demonstrate that radiotherapy

promotes antigen presentation in tumor cells by causing DNA

damage, altering transcription, and potentially leading to

presentation of immunogenic peptides (21, 22). By promoting

the presentation of immunogenic peptides, the recognition of

cancer cells by T cells can be enhanced to reactivate the body

against the tumor, thus, overcoming the immunosuppressive

effects of immune checkpoints. Clinical studies assessing the

effectiveness of multimodal approaches incorporating

radiotherapy and immunotherapy in breast cancer are

ongoing. While combining immunotherapy and radiotherapy

to treat aggressive breast cancers is clinically promising,

additional research is necessary to determine the mechanisms

underlying this therapeutic approach. This review will cover the

cellular and molecular regulators of antitumor immunity as well

as review the preclinical and clinical advances supporting

immunotherapy as a treatment option for breast cancer

patients. Throughout this review, we place a special emphasis

on emerging therapeutic approaches and clinical trials

combining immunotherapy with radiotherapy to treat

breast cancer.
Immune microenvironment in
breast cancer

The immune system is a powerful mediator in protecting the

body against foreign pathogens, and importantly plays a crucial

role in safeguarding the body from self-cells that become
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cancerous. Paradoxically, the immune system can play both

supportive and inhibitory roles in breast cancer progression and

is an important pharmacological target to improve patient

outcomes (23). Tumors are classified based upon the presence

and location of immune cells in the tumor microenvironment

(TME), where noninflamed (“cold”) tumors have a low

infiltration of lymphocytes and inflamed (“hot”) tumors have a

high infiltration of lymphocytes (24). Noninflamed tumors can

also have an absence of infiltrating lymphocytes or have

lymphocytes only on the peripheral edges of the tumor

(“excluded”) (25). Additionally, antitumor immunity is

dependent on the immune tone of the TME, with both

immunosuppressive and immunostimulatory milieu being

common. This is relevant in breast cancer carcinogenesis, where

both the innate and adaptive immune system contribute to cancer

development and immune evasion (26).

Tumor-associated macrophages (TAMs) are innate immune

cells found within the TME that have pro-tumorigenic and anti-

tumorigenic effector mechanisms in the context of cancer (27).

Macrophages are divided into M1-like macrophages that exert

antitumor effects and M2-like macrophages that exert pro-

tumorigenic effects; however, these phenotypes are plastic and

can be pharmacologically reprogrammed (27). In breast cancer,

it has been known for the past two decades that macrophages

can promote malignant transformation (28), while monocyte-

derived macrophages additionally contribute to breast cancer

metastasis (29). FOLR2+ macrophages are a specific subset of

TAMs enriched predominantly in healthy mammary glands that

positively correlate with CD8+ T cells (30). Contrastingly,

TREM2+ macrophages are a subset of TAMs expressed

primarily in cancerous breast tissue that contribute to tumor

development (30). Additionally, in both TNBC and hormone

receptor-positive (HR+) breast cancer, CD163+ TAMs are

derived from circulating monocytes and contribute to

immunosuppression (31). Neutrophils, another innate cell

lineage, can also exert multifaceted pro-tumorigenic and anti-

tumorigenic effects under different contexts (32). Within TNBC,

there are dichotomous neutrophil-enriched subtypes (NES) and

macrophage-enriched subtypes (MES). Specifically, the NES

subtype displays an abundance of immunosuppressive

neutrophils and is resistant to ICIs, whereas the MES subtype

demonstrates mixed responses to ICIs (33). Furthermore,

mye lo id-der ived suppressor ce l l s (MDSCs) are a

heterogeneous population of immature myeloid cells of the

innate immune system that suppress CD8+ T cells and other

immune cells in the TME, promoting tumor progression (34).

Elevated levels of circulating MDSCs were present more often in

breast cancer patients than in healthy volunteers and were even

higher in patients with metastatic disease (35). MDSC crosstalk

signaling promotes breast cancer progression in part through the

STAT3 and NOTCH signaling pathways (36). In all, these cells

of the innate immune system exert multifaceted effects in the
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TME and execute significant roles in cancer progression and

immune surveillance.

Tumor-infiltrating lymphocytes (TILs) collectively refer to the

populations of lymphocytes in the tumor. This population of white

blood cells includes T lymphocytes (T cells), B lymphocytes (B

cells), and natural killer (NK) cells (37, 38). T cells compose

approximately 75% of TILs and consist of different subsets

including cytotoxic CD8+ T cells, CD4+ T cells, and regulatory

T cells (Tregs) that all contribute to the adaptive immune response

(38, 39). The presence of TILs is associated with improved disease

outcomes in breast cancer patients (40, 41). CD8+ T cells are

directly cytotoxic to tumor cells, while CD4+ T cells can promote

antitumor immunity through the secretion of inflammatory

cytokines (42). Meanwhile, some immune cell populations may

induce immunosuppressive effects in the TME. For example,

CD4+ Tregs restrain the activation and function of CD8+ T cells

(43). While it is well-established that CD8+ TILs are a favorable

prognostic indicator and positively correlate with relapse-free

survival in breast cancer (44), the T cell subtypes present in

breast cancer are not fully understood (45). CD8+ tissue-resident

memory (TRM) cells are one subset of CD8
+ TILs contributing to

immunity that express cytotoxic molecules and immune

checkpoint proteins (46). Interestingly, CD8+ TRM cells are

associated with improved relapse-free survival (RFS) in TNBC

cancer patients (45). In early-stage TNBC patients, the presence of

TRMs is associated with improved patient outcomes—including

increased survival and decreased rates of recurrence (46).

Increased intra-tumoral expression of CD39+PD-1+CD8+ T cells,

another subset of CD8+ TILs, correlates with longer disease-free

survival in breast cancer patients (47). In breast cancer, FOXP3+

Tregs are a distinct population of T cells associated with more

aggressive forms of breast cancer, including a higher risk of relapse

and decrease in survival (48). Additionally, intratumoral Tregs

from breast cancer tumors have increased expression of the

chemokine receptor CCR8, suggesting a unique phenotype and

function of these cells in human breast cancer patients (49). B

lymphocytes are a humoral cell population of the adaptive

immune system that can contribute to both antitumor immune

responses and potentiate cancer development (50). B lymphocytes

are less prevalent in invasive breast cancers in comparison to early

ductal carcinoma in situ (50). Importantly, the presence of

immune infiltrates in the breast tumor may correlate to patient

response to therapy. In the SweBCG91RT trial, immune infiltrates,

in the form of CD8+ T cells and FOXP3+ T cells, were examined in

early-stage breast cancer patients that received breast-conserving

surgery (BCS) and postoperative radiotherapy. In this trial, early-

stage breast cancer patients with antitumoral immune infiltrates

had a decreased risk of recurrence, while the addition of

radiotherapy to these patients was found to have limited benefits

(51). In summary, a variety of lymphocytes are present in breast

tissue and many of these lymphocytes play dual roles in

carcinogenesis and immune recognition.
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Of the breast cancer subtypes, TNBC is associated with the

highest lymphocyte infiltration, followed by HER2+ breast

cancer, and finally by HR+, HER2- breast cancer (41).

Importantly, lymphocyte infiltration in breast cancer patients

varies significantly from 1.1% to 44%, which is independent

from tumor size (52). In a study that examined CD8+ T cell

infiltration among 12,439 breast cancer patients, the presence of

intratumoral CD8+ T cells was associated with a significant

reduction in risk of death in both ER- and ER+, HER2+ breast

cancer. Specifically, intratumoral CD8+ T cell expression was

associated with a 28% reduction in mortality for TNBC and

HER2+ tumors and 27% reduction in mortality for ER+, HER2+

tumors (53). Furthermore, there have also been differences

found in the tumor immune microenvironment of African

American breast cancer patients compared to non-African

American pat ients , which may be contr ibuted to

socioeconomic and ancestry factors. African American TNBC

patients display an increase in gene expression of immune

pathways and an increase in immune infiltration—providing

rationale for the application of immunotherapies for these

patient populations (54). Inflammatory breast cancer (IBC) is

a rare type of breast cancer which clinically presents with distinct

rapid and substantial inflammation of the breast (55). IBC has a

unique tumor microenvironment composition compared to

other breast cancers (56). Emerging evidence suggests that the

tumor microenvironments of IBC tumors is associated with an

increase in CD8+ T cell infiltration (57, 58) and tumor-

associated macrophages (59, 60); however, the effects of the

immune system and underlying molecular pathways of IBC

carcinogenesis are not fully defined (61). In summary, more

research is necessary to understand the implications of

immunotherapy for other breast cancer subsets, including HR+

breast cancers and IBC.
Regulators of immune responses in
breast cancer

The immunogenicity of tumors is influenced by multiple

factors, including the mutational load of the tumor. Cancerous

cells accumulate variable levels of somatic mutations, which

may result in the production of neoantigens and tumor-

specific antigens (TSAs) (62–64). These antigens are

recognized by the immune system to distinguish cancer cells

from healthy, noncancerous cells (62). The ability of cytotoxic

CD8+ T cells to recognize neoantigens produced by tumor

cells was reported in the early 1990s and provided an

important insight into the antitumor effects of T cells in

cancer (65, 66). Cancer immunotherapies are often

developed to target these neoantigens because they are

tumor-specific and, thus, an attractive target for minimizing

on-target, off-tumor effects (63, 67). Compared to other

malignancies, breast cancer has less than the median
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number of somatic mutations (64). Only 5% of all breast

cancers are hypermutated and carry a significant load of

somatic mutations. Additionally, in breast cancer, the

APOBEC signature, a signature that represents dysregulated

AID/APOBEC cytidine deaminases, is the primary mutational

process leading to these hypermutations (68). As tumor

mutational load correlates with response to immunotherapy,

from the perspective of antigen presentation, breast cancer is

deemed relatively non-immunogenic.

Disruption and dysregulation of the cancer immunity cycle

promotes carcinogenesis. Data from The Cancer Genome Atlas

(TCGA) and Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) breast cancer cohorts suggest that

malfunction of the cancer immunity cycle contributes to disease

progression and serves as a prognostic biomarker (69). Avoiding

immune clearance is an important hallmark of cancer that enables

cancer cells to expand independently from the inhibitory effects of

the immune system (65, 70). In the cancer immunity cycle, antigens

produced by cancer cells are sampled by antigen-presenting cells

(APCs) such as macrophages, dendritic cells, and B cells (65). APCs

then present the antigens via major histocompatibility complexes I

or II (MHCI/II) (65). Naïve T cells can recognize these antigens

when their T cell receptor (TCR) binds to the MHC on the APC,

and this interaction is stabilized by the co-receptors CD4 or CD8.

This TCR recognition of the peptide-MHC complex is insufficient

to fully activate T cells. An additional co-stimulation signal is

required, which occurs when costimulatory molecules, such as

CD28, on the T cell recognize signals, such as CD80/86, on the

APC. Following these two signals, the APC will release cytokines,

such as IL-2, to further direct the activation and differentiation of T

cells. Once activated, T cells egress from the lymph nodes, traffic

through the blood, and enter the TME (65). Trafficked T cells may

then utilize their tumor antigen-specific TCRs to bind to

neoantigens presented on MHC-I by the cancer cell, allowing for

granzyme and perforin driven cytotoxicity. The overall effect of this

pathway is dependent on which population of T cells is recruited to

the tumor microenvironment.

In breast cancer, there are several mechanisms utilized by

cancer cells to avoid recognition by the cancer immunity cycle

(71). One way tumor cells can avoid immune recognition is via

loss of MHC class I antigen presentation, which prevents the

tumor cells from being recognized by CD8+ T cells (72). In

breast cancer cells, this may occur in part through the protein

MAL2 that promotes endocytosis of tumor antigens (73).

Moreover, breast cancer cells can deplete the costimulatory

receptor needed for T cell activation when CTLA-4 on tumor

cells and CD80 on APCs promote trans-endocytosis of CD80

(74). Furthermore, by expressing immune checkpoints, cancer

cells can target and inhibit the effector functions of T cells,

including suppression of antitumor cytokine secretion and T cell

proliferation (71). Collectively, these studies illustrate the many

ways that breast cancer can avoid recognition by the cancer

immunity cycle.
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An immune pathway especially critical for modulating

immune responses to cancer is the cyclic GMP-AMP synthase-

stimulator of interferon genes (cGAS/STING) pathway, as

represented in Figure 1 (75). The stimulator of interferon genes

(STING) is an endoplasmic reticulum (EnR)-bound,

transmembrane protein that stimulates the transcription of

numerous immune pathways following the recognition of cyclic

dinucleotides (CDNs) and cytosolic DNA (cDNA) (75–77). CDNs

and cDNA can be produced from viruses, bacteria, and diseased

states including cancer (76). These cytoplasmic molecules of

genetic information are consequently recognized by cyclic

GMP-AMP synthase (cGAS), which produces cyclic GMP-AMP

(cGAMP) (76, 77). Chromosomal instability (CIN)—another

hallmark of cancer—occurs following chromosomal segregation

errors during mitosis and can also activate the cGAS/STING

pathway in cancer cells (70, 78). Moreover, in addition to

promoting an antitumor immune response through the cGAS/

STING pathway, CIN can also promote the activation of other

immune cells, including natural killer cells to promote antitumor
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immunity (79). Micronuclei formation can additionally promote

the cGAS/STING pathway to activate an immune response (80).

Production of cGAMP by such means activates STING via

binding with two STING molecules in the EnR, which leads to

STING interacting with TANK-binding kinase 1 (TBK1) (76, 77).

TBK1 can then phosphorylate type 1 interferon (T1IFN)

transcription factors including interferon regulatory factor 3

(IRF3) and nuclear factor-kB (NF-kB) that promote gene

transcription after translocation to the nucleus (76, 77). The

cGAS/STING pathway and activation of T1IFNs also plays

critical roles in cancer (81). For example, T1IFN production is

often associated with T cell infiltration that promotes immune

responses against tumors (76, 82, 83). In breast cancer, perinuclear

expression of STING was recently found to be associated with

improved prognosis in ER+ breast cancers (84). Consequently, the

development of STING agonists has been explored as a therapy

for the treatment of breast cancer to induce an antitumor response

and improve the efficacy of additional immunotherapeutic

approaches (85, 86). In short, the cGAS/STING pathway plays a
FIGURE 1

The Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS/STING) Pathway Plays a Critical Role in Antitumor Immunity. Following
DNA damaging events, DNA fragments enter the cytoplasm of cancer cells. This cytosolic DNA is then recognized by the cytoplasmic sensor
cGAS, which can then produce cyclic GMP-AMP (cGAMP). Consequently, cGAMP promotes the recruitment of STING molecules in the
endoplasmic reticulum, which leads to TANK-binding kinase 1 (TBK1) phosphorylating interferon regulatory factor 3 (IRF3), and nuclear factor-
kB (NF- kB). IRF3 and NF- kB then translocate to the nucleus to promote transcription of type I interferons, which can lead to an antitumor
response via the promotion of T cell infiltration into the tumor microenvironment.
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critical role in cancer and is a potential pharmacological target for

treating cancer patients.
The role of immunotherapy in
breast cancer

Immunotherapeutic approaches aimed at improving cancer

control rates in breast cancer patients include cancer vaccines,

adoptive cell transfer, and ICIs (87, 88). Cancer vaccines target

distinct antigens upregulated in the tumors of cancer patients

and provide immunological memory (89). Mechanistically,

cancer vaccines seek to trigger an immune response via

machinery that promotes the presentation of tumor antigens

to the immune system and via adjuvants that cause a

proinflammatory response to activate the immune system (89).

Current research is focused on developing vaccines that can

prevent the progression of aggressive breast cancers—such as

triple negative disease (NCT04674306)—and combining breast

cancer vacc ines wi th other treatment approaches

(NCT00082641, NCT03789097). For instance, mRNA vaccines

have recently been successful in the context of COVID-19 and

are currently being explored for use in breast cancer (90).

Significant work has been done to study the efficacy of breast

cancer vaccines both preclinically and clinically; however, most

studies have failed to produce significant responses in patients,

which may be attributed to the heterogeneity of breast cancer

(89, 91).

ICIs have revolutionized cancer therapeutics, leading to Dr.

James P. Allison and Dr. Tasuku Honjo being awarded the Nobel

Prize in Physiology or Medicine in 2018 (92). One class of ICIs

target programmed death-ligand 1 (PD-L1 or B7-H1), which

serves to inhibit the immune system by binding to PD-1 on T

cells and dampening their cytotoxic abilities (93). PD-L1 is

expressed on a myriad of immune cells, including antigen

presenting cells, T cells, and B cells, and interacts with its

receptor, PD-1, expressed on T cells (94, 95). Mechanistically,

PD-L1 and PD-1 interactions suppress tumor immunity by

causing T cell apoptosis, anergy, exhaustion, and IL-10

expression (94). Expression of PD-L1 and PD-1 in the tumor

microenvironment is a common cancer immune evasion

strategy (94). Cytotoxic T-lymphocyte-associated protein 4

(CTLA-4 or CD152) is another immune checkpoint receptor

expressed on T cells that has a high affinity for CD80 and CD86,

which are necessary for T cell co-stimulation (96, 97). CTLA-4

outcompetes the co-stimulatory molecule CD28 to induce

immune suppression (97, 98). In breast cancer, TCGA

analyses suggest that TNBC patients express higher levels of

PD-L1 as compared to patients with other breast cancer subtypes

with approximately 20% of TNBC samples expressing significant

levels of PD-L1 (99). While PD(L)-1 inhibition is clinically

efficacious in many cancer types, PD-L1 expression poorly

predicts clinical benefit, emphasizing the demand for clinical
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trials evaluating efficacy as well as the need for better biomarkers

of treatment response (100).

Importantly, clinical trials have tested the efficacy of ICIs in

TNBC. The Phase Ib KEYNOTE-012 cl inical tr ia l

(NCT0184883) tested whether pembrolizumab (anti-PD-1)

was tolerable in patients with PD-L1+ advanced TNBC. This

study found that pembrolizumab had an acceptable safety

profile, with an overall response rate of 18.5% (101). In the

Phase II KEYNOTE-086 trial (NCT02447003), 254 female

patients with metastatic TNBC received pembrolizumab in

either the second line setting or the first line setting. In the

second line setting, patients unselected for PD-L1 expression

had an objective response rate (ORR) of 5.3%, while in the first

line setting, PD-L1+ patients had an ORR of 21.4%. Tolerability

was reaffirmed in both cohorts (102, 103). This trial led to the

randomized , open- labe l Phase I I I KEYNOTE-119

(NCT02555657) trial that examined the efficacy of

pembrolizumab versus single agent chemotherapy in patients

with PD-L+ metastatic TNBC. In this trial, PD-L1+ status was

characterized by patient PD-L1 combined positive scores (CPS),

defined as the ratio of PD-L1+ tumor cells, lymphocytes, and

macrophages out of total tumor cells multiplied by 100.

Pembrolizumab improved the median overall survival (OS)

from 11.6 months to 12.7 months as compared to

chemotherapy in patients with a CPS of 10 or higher (104).

KEYNOTE-119 motivated the Phase III, double-blind,

randomized trials KEYNOTE-355 (NCT02819518) and

KEYNOTE-522 (NCT03036488) (105, 106). In KEYNOTE-

355, 847 patients with metastatic TNBC or previously

untreated, locally recurrent inoperable breast cancer were

randomized 2:1 to pembrolizumab and chemotherapy

(specifically, paclitaxel, nab-paclitaxel, or gemcitabine plus

carboplatin) or placebo and chemotherapy. The co-primary

endpoints of this trial were overall survival and progression-

free survival, and patients were stratified by PD-L1 expression.

Pembrolizumab and chemotherapy improved the median

progression-free survival from 5.6 months to 9.7 months for

patients with high PD-L1+ scores, providing the clinical rationale

for using this combined therapy as a first-line treatment for

metastatic TNBC (105). Furthermore, recent data supports that

in patients with advanced TNBC with a CPS of 10 or more, the

median overall survival increased from 16.1 months in the

placebo-chemotherapy group to 23.0 months in the

pembrolizumab-chemotherapy group. Similarly, in patients

with a CPS of 1 or more, the median overall survival increased

from 16 months in the placebo-chemotherapy group to 17.6

months in the pembrolizumab-chemotherapy group (107). In

KEYNOTE-522, 1,174 patients with either previously untreated

stage II breast cancer or stage III TNBC were randomly assigned

2:1 to receive neoadjuvant and adjuvant pembrolizumab with

chemotherapy (either carboplatin or paclitaxel) or placebo with

chemotherapy. All patients also received standard of care

neoadjuvant doxorubicin–cyclophosphamide or epirubicin–
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cyclophosphamide. KEYNOTE-522 had two primary endpoints

of pathological complete response (pCR, defined as the absence

of invasive disease) and event-free survival. Pembrolizumab and

chemotherapy significantly increased the pCR compared to

chemotherapy alone (51.2% to 64.8%), and these data were

foundational to the FDA-approval for pembrolizumab use in

combination with chemotherapy for this patient population

(106). Thus, these trials have established pembrolizumab as an

important treatment for both metastatic and non-metastatic

TNBC. Additionally, preliminary data suggests atezolizumab, a

humanized anti-PD-L1 IgG1 antibody, is active in PD-L1+

locally advanced or metastatic TNBC; however, accelerated

approval was later rescinded based on subsequent

demonstration of limited clinical efficacy (108–110).

Clinical trials have also assessed the efficacy of ICIs in the

management of HR+ breast cancers. In the Phase 1b KEYNOTE-

028 study, patients with ER+, HER2- breast cancer with PD-L1+

tumors received pembrolizumab and achieved an ORR of 12%

(NCT02054806) (111). Furthermore, in the Phase 1b JAVELIN

study, which tested the safety of avelumab, 43% of patients had

HR+, HER2- breast cancer and the ORR was 3% (NCT01772004)

(112). The combination of pembrolizumab with chemotherapy

(113) and cyclin-dependent kinase inhibitors (114) in this

patient population has also not led to improvements in clinical

outcomes. These trials highlight that ICIs have limited clinical

activity in HR+ breast cancer. The poor efficacy of ICIs for the

treatment of HR+ breast cancer may be, in part, due to the

limited immune cell infiltrate in these tumors (115). The effects

of ICIs are also currently being examined for the treatment of

inflammatory breast cancer (116). A Phase II study

(NCT02411656) is currently assessing the effects of

pembrolizumab in metastatic or recurrent inflammatory breast

cancer patients. Moreover, a Phase II study is currently

examining the effect of pembrolizumab in combination with

hormone therapy during or after radiotherapy for patients with

HR+ inflammatory breast cancer who did not respond to

neoadjuvant chemotherapy alone (NCT02971748). Clinical

trials are currently recruiting patients to assess the effect of

ICIs in combination with chemotherapy (NCT03515798,

NCT05093387) for the treatment of inflammatory breast

cancer. Furthermore, a recent case study suggests clinical

promise in combining pembrolizumab and chemotherapy for

treating inflammatory breast cancer (117), while additional

studies are underway to identify novel biomarkers for anti-

PD-1 therapy in this disease, including peripheral T cell

exhaustion and clonality markers (118). Moreover, beyond the

scope of immunotherapy, current clinical trials are also

examining combined therapies of radiotherapy and PARP

inhibition for the treatment of inflammatory breast

cancer (NCT03598257).

Adoptive cell transfer (ACT) therapy functions by

transferring immune cells into cancer patients. Chimeric

antigen receptor (CAR)-T cells enable improved T cell
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recognition of cancers via bypass of the common cancer

immune evasion strategies of MHC downregulation and co-

stimulation blockade (119). CAR-T cells are composed of single-

chain variable fragments (scFv) fused to a costimulatory

molecule which is fused to the intracellular CD3z signaling

domain. The scFv recognizes antigen expressed on the surface of

tumor cells. The CD3z immunotyrosine activation motif

(ITAM) generates T cell activation signal 1 and the

intracellular costimulatory domain generates signal 2. This

allows CAR-T cells to become fully activated following

recognition of peptide without the need for MHC presentation

or additional co-stimulation. CAR-T cells, are engineered for

each individual patient by first collecting T cells from the

peripheral blood of cancer patients, transducing them ex vivo

to express the appropriate CAR, expanding, and validating these

CAR-T cells, and then reintroducing these cells into patients

(120). CAR-T cell therapies are a powerful tool for treating

cancer patients in that these modified cells can also persist in

patients for extended periods, providing significant support to

the immune systems of patients undergoing CAR-T cell therapy

(119). Currently, there are six CAR-T cell therapies approved for

clinical use in hematologic malignancies (121). However, there

are no CARs currently approved for use in breast cancer. In

developing CAR-T cell therapies, it is important that the

antigens being targeted are enriched in the tumor and not the

healthy tissues of patients to prevent “on-target off-tumor”

adverse events (119, 120). Additionally, CARs are limited in

that they can only be directed towards surface-expressed

antigens. CAR-T cells have shown limited promise in solid

tumors due to a variety of challenges, including poor T cell

infiltration into tumors and immunosuppressive tumor

microenvironments, although there is significant work

underway to overcome these obstacles. For the treatment of

breast cancer, preclinical studies are ongoing to examine the

effects of CAR-T cell therapy on various tumor specific antigens

including mucin 1 (MUC1), HER2, Lewis Y, mesothelin, and

folate receptor alpha (FR-a) (119). Clinical trials are underway
to assess the effects of CAR-T cell therapy for treating breast

cancer, including CAR-T cells recognizing epithelial cell

adhesion molecule (EpCAM) (NCT02915445), cleaved MUC1

(NCT04020575, NCT02792114), and ROR1 (NCT05274451). In

addition to CAR-T cell therapy, tumor-infiltrating lymphocytes

(TILs) are being examined as a type of adoptive cell transfer for

the treatment of breast cancer. TIL therapy involves isolating

tumor-infiltrating lymphocytes from patients, expanding them

ex vivo with large amounts of IL-2 and other cytokines, then re-

infusing them into the patient (122). Importantly, TIL therapy

does not significantly modify the lymphocytes, and, unlike CAR-

T therapy, TIL therapy assumes patient lymphocytes are able to

recognize tumor neoantigens that exist in small quantities.

Whole exome sequencing of breast cancer tissues revealed

TNBC expresses more neoantigens than non-TNBC,

suggesting TNBC patients may be good candidates for TIL
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therapy (123). An ongoing clinical trial (NCT01174121) seeks to

use TIL therapy in metastatic breast cancer, and preliminary

data has shown tumor regression in a subset of patients (124).

Collectively, these studies suggest the importance of ACT

therapies as a potential therapeutic approach for breast cancer.

Despite promise of these therapies as single-agent

therapies, additional studies are underway to find ways to

increase patient responses to ACT by combining with

radiotherapy or other forms of immunotherapy. For

example, studies are currently examining combining

radiotherapy with CAR-T cell therapy as a means to improve

patient response to adoptive T cell transfer and overcome

resistance in solid tumors (125). The effect of CAR-T cell

therapy and internal radiotherapy are beginning to be

evaluated for the treatment of liver metastases in breast

cancer patients in a Phase 1b trial (NCT02416466), and

results demonstrated some efficacy of the combination

therapy with minimal toxicities (126). Moreover, a study

recently examined the impact of combining infusion of ex

vivo expanded NK cells into a human TNBC xenograft model

with radiotherapy and found that the combination therapy

significantly decreased primary tumor growth while

minimizing toxicity (127). Combining CAR-T cell therapy

with anti-PD-1 led to reduced tumor weight and improved

CAR-T cell infiltration into the TME in a murine breast cancer

model, demonstrating this combination therapy strategy may

also be promising for treating breast cancer patients (128).

While adoptive cell transfer strategies have shown some

promise in the treatment of breast cancer in preclinical

models, there has yet to be significant clinical efficacy in

these solid malignancies.

In addition to immunotherapy, monoclonal antibodies

(mABs) directed either towards tumor-specific antigens or

mediators of oncogenic signaling have been used in breast

cancer for more than twenty years. Monoclonal antibodies that

target growth signaling can prevent cancer cell proliferation and

ultimately lead to apoptosis. Additionally, these monoclonal

antibodies can mediate antibody-dependent cellular

cytotoxicity (ADCC), engaging the immune system to

recognize cancer cells coated with antibodies bound to the

surface of the cell (129). Trastuzumab is a clinically approved

anti-HER2 mAb which improves the overall survival of patients

with HER2+ breast cancers (130). Pertuzumab targets a distinct

epitope of HER2 and is another mAB used in the management of

HER2+ breast cancer. Consequently, mABs are a promising

immunotherapy strategy for the treatment of breast cancer

patients; however, these therapies are not efficacious for the

treatment of triple negative disease that does not express the

HER2 receptor. Interestingly, even in HER2-low expression

tumors, the DESTINY-Breast04 trial recently demonstrated

improved survival in women with metastatic HER2-low

expressing tumors using the HER2 targeted therapy

trastuzumab deruxtecan (131). Whether HER2-targeted
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therapies combined with ICIs will be even more effective

remains an area of active clinical interest.
The impacts of immunotherapy and
radiotherapy in breast cancer

Unfortunately, only 10% of patients with TNBC respond to

immune checkpoint inhibitor monotherapy (85). Thus, there is an

unmet need to develop more effective therapeutic strategies to

improve patient responses to ICIs. One strategy to improve

therapeutic efficacy of ICIs may be to combine immunotherapy

with other effective breast cancer treatment modalities such as

radiotherapy. For this review, we will primarily focus on combined

approaches with immunotherapy—in the form of ICIs—and

radiotherapy. However, other reviews have examined the effects

of combining radiotherapy with cancer vaccines (132, 133), anti-

HER2 therapies (134), or CAR-T cell therapy (135).

Radiotherapy is a mainstay breast cancer therapy first used to

treat breast cancer patients in as early as the 1800s (136, 137).

Clinical radiotherapy involves the delivery of fractionated doses of

ionizing radiation to the affected cancerous breast tissue while

sparing the surrounding benign tissues. This results in targeted

disruption of tumor cells through induction of DNA damage,

alterations in the cell cycle, and ultimately cancer cell death (138–

140). Multiple randomized clinical trials have effectively established

that radiotherapy reduces local recurrence in both invasive and

noninvasive breast cancers, in addition to reducing the risk of breast

cancer death (141–143). Specifically, after breast-conserving

therapy, radiotherapy reduced the 10-year risk of a local or

distant recurrence from 35.0% to 19.3% and reduced the 15-year

breast cancer death risk from 25.2% to 21.4% (141). Despite such

benefits, radiotherapy can have pleotropic effects on the immune

system. For instance, large field and total body irradiation, which is

clinically indicated in the management of hematologic malignancies

(144), is used to induce profound lymphopenia. Meanwhile,

localized radiotherapy may promote antitumor immune

responses. An early study in the 1950s first described a

phenomenon known as the “abscopal effect” that showed a

correlation between the immune system and localized

radiotherapy (145). The abscopal effect (in Latin, ab: away from,

scopus: target) postulates that radiotherapy delivered to one part of

the body can reduce tumor size systemically, in regions outside of

where radiation is delivered (145–147). Literature suggests that this

phenomenon occurs in part through the immune system (148–

150), and immunotherapy is believed to promote abscopal effects

(151). However, studies show that the abscopal effect is rare (146,

152) and unlikely to be broadly applicable clinically. An additional

hallmark study of the late 1970s further expanded upon the

connections between radiotherapy and the immune system to

show that the efficacy of RT is dependent upon the immune

system (153). Significantly, radiotherapy and immunotherapy

provide synergistic tumor control when combined in preclinical
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models (154, 155). In fact, radiotherapy can sensitize even poorly

immunogenic cancers including pancreatic cancer (156), head and

neck squamous cell carcinoma (157), and breast cancer (158) to

ICIs—which emphasizes the promise of combined radiotherapy

and immunotherapy treatment modalities.

Notably, the effects of combination radiotherapy with ICIs in

breast cancer models have been explored. A crucial study by

Demaria et al. in 2005 illustrated the effects of combined

radiotherapy and immune checkpoint inhibition in murine

models of breast cancer (159). Specifically, combined local

radiation with anti-CTLA-4 immune checkpoint inhibition in

a poorly immunogenic murine breast cancer model resulted in

prolonged survival and decreased lung metastases (159).

Furthermore, later studies suggest that fractionated

radiotherapy—as opposed to single-dose radiotherapy—

induces systemic antitumor effects in combination with anti-

CTLA-4 treatment in murine breast cancer models (160). These

studies mutually suggest that radiotherapy combined with anti-

CTLA-4 therapy promotes antitumor immunity in preclinical

breast cancer models—providing rationale for combined use in

the clinic (159, 160). Studies suggest that these effects of

combined therapy depend on the immune cells present. In

fact, in murine breast cancer models, the effects of

radiotherapy and anti-CTLA-4 immunotherapy are dependent

upon the presence of invariant natural killer T cells (161).

Radiotherapy has also been found to induce CXCL16 release

by breast cancer cells to attract effector T cells in murine models

(162). Moreover, it has been proposed that the synergistic effects

of radiotherapy and immune checkpoint inhibitors depend upon

MTOR signaling (163) and tumor heterogeneity (164) in murine

breast syngeneic models. While these studies display the

synergistic effects of combined radiotherapy and ICIs for the

treatment of breast cancer, more research is warranted to further

understand the implications of these combined therapies.

Radiotherapy has been found to improve innate antitumor

responses, deplete immunosuppressive cell types, and augment

adaptive immune responses in combination with PD-1 blockade

(165). Functionally, it is believed that radiotherapy activates the

innate immune system via a process known as cross priming

(166). As radiotherapy induces tumor cell death, these cells

release neoantigens (167) that may be phagocytosed by nearby

APCs. APCs can then activate the adaptive immune system,

specifically CD8+ effector T cells, to kill cancer cells (166, 168).

Consequently, the efficacy of radiotherapy specifically depends

upon the presence of these cytotoxic cells (169). Interestingly,

combining radiotherapy with immunotherapy has also been

shown to jointly promote tumoral lipid oxidation-dependent

ferroptosis via SLC7A11 (170). Radiotherapy can further induce

the DNA damage response often associated with the synergistic

effects of radiotherapy and immunotherapy. Targeting ataxia

telangiectasia mutated (ATM)—a kinase that plays a role in the

DNA damage response to double stranded DNA breaks induced
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by radiotherapy—sensitizes pancreatic cancer to ICIs, providing

a mechanistic link for this observed synergy (171). Additionally,

inhibition of DNA-dependent protein kinase (DNA-PK) has

been shown to synergize with radiotherapy and modulate the

immune system in pancreatic cancer models by increasing

cytosolic double-stranded DNA and type 1 interferon

signaling. Moreover, combined anti-PD-L1 with radiotherapy

and DNA-PK inhibition further potentiates antitumoral

immunity in preclinical pancreatic cancer models (172). These

studies emphasize the complexity underlying the synergistic

effects of combined radiotherapy and immunotherapy and can

importantly be extended into the breast cancer space to

determine the underlying mechanisms of such approaches.

While the precise mechanisms underlying the synergistic

effects of radiotherapy and immunotherapy are not well

established, studies have suggested that the cGAS/STING

pathway may contribute to these combined effects as

summarized in Figure 2. As discussed above, the cGAS/STING

pathway plays a critical role in the antitumoral immune response

by inducing interferon signaling following the recognition of

cytosolic DNA (76). It is also well established that radiotherapy

induces the cGAS/STING pathway to activate interferon signaling

(173, 174). Importantly, interferon signaling can promote

antitumor T cell responses (76, 81). It was also recently

discovered that STING regulates radiotherapy sensitivity in vivo

in part through the production of reactive oxygen species (ROS)

(175). In human breast cancer cell lines and murine breast cancer

models, inhibition of ectonucleotide pyrophosphatase

phosphodiesterase 1 (ENPP1), a hydrolase of cGAMP, was

recently found to increase extracellular cGAMP levels and

synergize with radiotherapy to prevent tumor growth. The

radiotherapy-induced increased production of extracellular

cGAMP was subsequently sensed by STING and promoted the

infiltration of dendritic cells and cytotoxic T cells into the tumor.

Furthermore, depletion of extracellular cGAMP abrogated this

immune cell infiltration in breast cancer models, suggesting that

these radiation-induced immune effects are dependent upon the

presence of extracellular cGAMP and the cGAS/STING pathway

(176). Mechanistically, in human breast cancer cell lines, it has also

been shown that the cGAS/STING pathway is required for

interferon activation induced by combined radiotherapy and

anti-CTLA-4 immune checkpoint inhibition (177). In addition to

studying the effects of combined radiotherapy with anti-CTLA-4

treatments, preclinical studies suggest that radiotherapy and anti-

PD-1/L1 therapy synergistically potentiate antitumor immunity in

murine breast cancer models (178–180). Specifically, this

antitumor immunity occurs in the form of reduced

accumulation of myeloid-derived suppressor cells in the tumor

(178), promotion of CD8+ T cell expansion (179), expansion of

antigen-specific T cell responses (180), and reduction in tumor

growth in non-irradiated tumor sites (181). Importantly, additional

work is required to understand the contribution of other innate
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immune sensors and immune signaling pathways governing the

synergistic interactions between radiotherapy and immunotherapy

in breast cancer.

STING-dependent cytosolic sensing of DNA has been found

to contribute to innate immunostimulatory responses following

radiotherapy (173). However, there are also other pathways that

link DNA damage to innate immune signaling. Nucleic acids can

also be sensed by retinoic acid inducible gene-I (RIG-I)-like

receptors (RLRs), Nod-like receptors (NLRs), and Toll-like

receptors (TLRs) (182). Furthermore, the recognition of
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cytosolic DNA following viral infection has been found to

activate a type I interferon response independently from toll-

like receptors—further adding to the complexity of such

pathways (183). When RIG-1 engages single and double

stranded RNA, RIG-I complexes with mitochondrial antiviral-

signaling protein (MAVS) and activates the TBK1 complex

which ultimately promotes interferon signaling (184). In breast

cancer, RIG-I agonists have been found to induce inflammatory

transcription factors, type I interferons, and lymphocyte-

recruiting chemokines (185).
FIGURE 2

Radiotherapy and Immunotherapy Synergistically Promote Antitumor Immune Responses. One potential combined therapeutic approach is to
combine radiotherapy with immune checkpoint inhibition. Radiotherapy promotes DNA damage within cancerous cells, which can
consequently be recognized by cGAS and lead to activation of the cGAS/STING pathway to promote antitumor immunity through interferon
signaling. Likewise, immune checkpoint inhibitors, such as anti-PD-1 monoclonal antibodies, can modulate an augmented antitumor immune
response by turning off immune checkpoints. Under normal conditions, these checkpoints result in a decrease in the cytotoxic abilities of T
cells; however, when turned off, this enhances the cytotoxic effects of T cells and results in enhanced antitumoral effects. Numerous preclinical
and clinical studies suggest synergy exists in combining radiotherapy and immune checkpoint inhibitors in breast cancer patients and studies are
currently underway to determine the best ways oncologists can implement these interactions.
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The DHA-dependent protein kinase (DNA-PK) which, is

required for nonhomologous end joining (NHEJ), also serves as

another STING-independent innate immune sensor. DNA-PK

can be activated by viral DNA leading to IRF3 and IRF7

dependent innate immune sensing (186). Interestingly,

inhibition of DNA-PK has also been shown to augment

radiation-induced interferon signaling in an RNA Polymerase

III, Rig-I, and MAVS dependent fashion (172). TLRs have also

been found to contribute to innate immune signaling in breast

cancer (187). Specifically, Toll-like Receptor 9 (TLR9) can detect

DNA released by tumor cells following chemotherapy leading to

enhanced antigen presentation and improved antitumor

immune responses (188). Consequently, TLR9 agonists have

been examined as potential cancer therapeutics delivered in

combination with other therapies (189). Combined TLR9

agonism and radiotherapy promotes systemic antitumor

immunity in models of metastatic lung cancer and colon

cancer (190). In a preclinical breast cancer mouse model

resistant to PD-1, TLR9 agonists increased infiltration of CD8+

T cells into tumors and promoted IFN signaling (191).

Collectively, these studies articulate the breadth of the

pathways linking DNA damage and innate immune signaling.

While preclinical studies have illustrated the importance of

combining radiotherapy with immunotherapy, clinical trials are

also underway to assess these combined approaches. The single-

arm Phase II clinical trial (NCT02730130) assessed the

combination of pembrolizumab and radiotherapy in patients

with metastatic TNBC and observed a 17.6% overall response

rate, with minor adverse events as a result of combined therapy

(192). In this study, radiotherapy was delivered at 30 Gy at five

daily fractions to both PD-L1+ and PD-L1- patients. Of the 9

patients observed through this trial, 3 patients with baseline PD-

L1+ expression received a complete, durable response, which was

similar to responses in studies where all patients had PD-L1+

metastatic TNBC (192). Phase II trials have also evaluated the

combination of pembrolizumab and radiotherapy in patients

with HR+, HER2- heavily pretreated metastatic breast cancer

(NCT03051672). This trial observed that pembrolizumab

delivered prior to palliative radiotherapy (20 Gy in 5 fractions)

did not result in any objective responses (193). These studies

suggest that combined radiotherapy and immunotherapy may

be more efficacious for patients with triple negative disease as

opposed to HR+ breast cancers; however, additional research is

necessary to fully determine the mechanisms of resistance in

luminal breast cancer to immunotherapy.

Clinical trials are underway to study the effects of

radiotherapy and ICIs in patients with breast cancer. These

trials are summarized in Table 1. In addition to examining the

effects of combined ICIs with radiotherapy in metastatic TNBC

as discussed above (NCT02730130), such clinical trials are also

examining combined therapies in metastatic HR+ breast cancer

(NCT04756505). Importantly, many clinical trials are aimed at

determining the survival outcome of combined therapies, as well
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as understanding the immune-enhancing effects of radiotherapy

and immunotherapy in breast cancer patients. For example,

preoperative delivery of radiation boost is being examined in

combination with ICIs to enhance ICI efficacy in operable breast

cancer (NCT04454528) and in TNBC and HR+/HER2- breast

tumors (NCT03366844) (194). Another study is assessing the

effects of ICIs on the tumor microenvironment of TNBC

patients prior to intraoperative radiotherapy (IORT)

(NCT02977468). Trials are also examining the effects of novel

therapeutic immune agents, including an antagonistic OX40

monoclonal antibody (NCT01862900) and the STING agonist

TAK-676 (NCT04879849) combined with radiotherapy for

the treatment of breast cancer patients. While many studies

are examining the effects of the ICI pembrolizumab, studies

are also examining the effects of the ICI nivolumab in

combination with radiotherapy for the treatment of metastatic

breast cancer brain metastases (NCT03807765) and patients

with TNBC (NCT03818685). Together, these studies will help

understand the effects of combined radiotherapy and ICIs in

breast cancer patients and provide clinical rationale for

combining these therapeutics with other available therapies

such as chemotherapy.
The clinical and preclinical promise of
combining immunotherapy,
radiotherapy, and chemotherapy in
breast cancer

Importantly, one potential multimodal therapeutic approach

is combining immunotherapy, radiotherapy, and chemotherapy.

This approach is summarized in Figure 3. The combination of

chemotherapy, radiotherapy, and surgery is the standard of care

for breast cancer treatment, while numerous studies support the

therapeutic potential of combining radiotherapy with

chemotherapy for treating breast cancer patients. The evidence

supporting the integration of radiotherapy with chemotherapy

has been more extensively reviewed elsewhere (140, 195, 196).

Importantly, many chemotherapies function by inducing DNA

damage, consequently resulting in synergistic effects when

combined with radiotherapy in the preclinical and clinical

setting (140, 197). Cytotoxic chemotherapeutic agents—such

as platinums, taxanes, and antimetabolites—have been found

to promote synergistic, radiosensitizing effects in breast cancer

(198). Platinum chemotherapies—such as cisplatin and

carboplatin—are alkylating agents delivered to breast cancer

patients that bind to and crosslink DNA to inhibit proper

replication, leading to the formation of double stranded breaks

in the DNA (199, 200). Consequently, when platinum therapies

are combined with radiotherapy, studies support that this

promotes radiosensitization in various subsets of breast cancer,

including metastatic IBC (201) and early-stage TNBC (202).

Taxanes—such as paclitaxel and docetaxel—inhibit microtubule
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TABLE 1 Trials examining the effects of combined radiotherapy and immune checkpoint inhibitors.

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic
agent(s)

Radiotherapy Phase and
patients

Status
(at time of
publication)

NCT02730130 A Multicenter Single
Arm Phase II Study to
Assess the Efficacy of
Pembrolizumab Plus
Radiotherapy in
Metastatic Triple
Negative Breast Cancer
Patients

- Breast cancer
- Metastatic triple negative
breast cancer

- Pembrolizumab
(200 mg
intravenous)
(anti-PD-1)

- 30 Gy radiotherapy
delivered in 5, 6 Gray (Gy)
× 5 fractions

- Phase II
- 17
participants
- Clinical trial

- Active, not
recruiting

NCT03051672 A Phase II Study Of
Pembrolizumab In
Combination With
Palliative Radiotherapy
For Metastatic
Hormone Receptor
Positive Breast Cancer

- Metastatic breast cancer - Pembrolizumab
(200 mg
intravenous)

- Palliative radiotherapy, 20
Gy in × 5 fractions

- Phase II
- 8
participants
- Clinical trial

- Terminated

NCT04756505 REINA: A Phase I Study
of Radiation Enhanced
IL 12-Necrosis
Attraction in Hormone
Receptor Positive, HER2
Negative Metastatic
Breast Cancer Patients

- Stage IV breast cancer
- Hormone receptor positive
breast adenocarcinoma
- Metastatic/ metastatic
HER2- breast carcinoma
- Stage IV breast cancer

- Bintrafusp Alfa
(intravenous)
-
Immunocytokine
NHS-IL12
(subcutaneous)

- Radiotherapy - Phase I
- 20
participants
- Clinical trial

- Recruiting

NCT04454528 Preoperative Use of
Radiation Boost to
Enhance Effectiveness of
Immune Checkpoint
Blockade Therapy in
Operable Breast Cancer

- Operable breast cancer - Pembrolizumab
(200 mg
intravenous)

- Hypofractionated
radiotherapy boost of 7 Gy
x 1 fraction

- Phase 1b/2
- 27
participants
- Clinical trial

- Recruiting

NCT03366844 Preoperative
Combination of
Pembrolizumab and
Radiation Therapy in
Patients With Operable
Breast Cancer

- Breast cancer - Pembrolizumab - Radiotherapy boost, 8 Gy
x 3 fractions

- Phase I and
II
- 60
participants
- Clinical trial

- Active, not
recruiting

NCT02977468 Effects of MK-3475
(Pembrolizumab) on the
Breast Tumor
Microenvironment in
Triple Negative Breast
Cancer With and
Without Intra-operative
RT: a Window of
Opportunity Study

- Triple negative breast
cancer

- Pembrolizumab
(MK-3475)
(intravenous)

- Intraoperative
radiotherapy (IORT) on
day of surgery

- Phase I
- 15
participants
- Clinical trial

- Recruiting

NCT01862900 Phase I/II Study of
Stereotactic Body
Radiation Therapy to
Metastatic Lesions in
the Liver or Lung in
Combination With
Monoclonal Antibody to
OX40 (MEDI6469) in
Patients With
Progressive Metastatic
Breast Cancer After
Systemic Therapy.

- Metastatic breast cancer
- Lung metastases
-Liver metastases

- Biological:
MEDI6469 (anti-
OX40) (0.4 mg/
kg intravenous)

- Stereotactic body
radiotherapy (SBRT)
- Three arms:
15 Gy, 20 Gy, or 25 Gy
SBRT

- Phase I/II
- 14
participants
- Clinical trial

- Completed

NCT04879849 An Open-label, Phase I,
Dose-escalation Study to
Evaluate the Safety and

- Triple negative breast
neoplasms
- Non-small-cell lung

- Pembrolizumab
(200 mg
intravenous)

- Image-guided
radiotherapy

- Phase I
- 65

- Recruiting

(Continued)
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function, inducing cell cycle arrest at the G2/M Phase,

consequently leading to cancer cell death (203). Combining

taxane chemotherapy with radiotherapy has been examined in

several settings. Combined paclitaxel and radiotherapy led to a

34% complete response in patients with early-stage breast cancer

(204). When tested in patients with locoregional recurrence,

radiotherapy combined with taxanes or with taxanes combined

with cisplatin found increased recurrence-free survival

regardless of whether cisplatin was added (205). In the context

of locally advanced breast cancer, paclitaxel treatment with

concurrent radiotherapy improved disease-free survival and

overall survival (206). Antimetabolite chemotherapeutic agents

—such as fluoropyridines or gemcitabine—are well-established

radiosensitizers that function by mimicking natural metabolites

found in the body to become incorporated into DNA or RNA,

leading to DNA damage (207, 208). These antimetabolite
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therapeutics have also been examined in combination

with radiotherapy. When treating breast cancer chest

wall recurrences with combined gemcitabine and radiotherapy,

100% locoregional control was achieved, although normal tissue

toxicity limits this combination clinically (209). Chemotherapy

resistant breast cancer treated with capecitabine and

radiotherapy was retrospectively analyzed to find that there

were no increased toxicities associated with the combination

therapy (210). Patients with advanced, non-TNBC treated with

capecitabine and radiotherapy led to 73% partial or complete

response (211). Collectively, these studies provide the rationale

for combining chemotherapy with radiotherapy for the

treatment of breast cancer patients.

Chemotherapy, like radiotherapy, has pleotropic effects on

the immune system. It is well established that chemotherapy is

immunosuppressive, rendering patients undergoing treatment
TABLE 1 Continued

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic
agent(s)

Radiotherapy Phase and
patients

Status
(at time of
publication)

Preliminary Antitumor
Activity of TAK-676
With Pembrolizumab
Following Radiation
Therapy in the
Treatment of Non-
small-cell Lung Cancer,
Triple-negative Breast
Cancer, or Squamous-
cell Carcinoma of the
Head and Neck That
Has Progressed on
Checkpoint Inhibitors

carcinoma
- Squamous cell carcinoma of
head and neck

- TAK-676 (0.2
mg and above
intravenous)

participants
- Clinical trial

NCT03807765 Phase Ib Study of
Stereotactic Radiation
and Nivolumab in the
Management of
Metastatic Breast
Cancer Brain Metastases

- Metastatic breast cancer
brain metastases

- Nivolumab
(anti-PD-1) (480
mg intravenous)

- Stereotactic radiosurgery
delivered to brain
metastases

- Phase I
- 14
participants
- Clinical trial

- Active, not
recruiting

NCT03818685 A Multicenter,
Randomised, Open-label
Phase II Study to
Evaluate the Clinical
Benefit of a Post-
operative Treatment
Associating
Radiotherapy +
Nivolumab +
Ipilimumab Versus
Radiotherapy +
Capecitabine for Triple
Negative Breast Cancer
Patients With Residual
Disease After
Neoadjuvant
Chemotherapy

- Breast cancer
- Triple negative breast
neoplasms

- Nivolumab
(360 mg
intravenous)
- Ipilimumab
(anti-CTLA4)
(1mg/kg
intravenous)
- Capecitabine
(1000mg/m2)

- Radiotherapy delivered
per standard practice

- Phase I
- 114
participants
- Clinical trial

- Active, not
recruiting
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more susceptible to infection (212). However, chemotherapy—

particularly in the neoadjuvant setting—has also been found to

result in pro-inflammatory, antitumor effects. Neoadjuvant

chemotherapy induces immune responses in breast cancer

patients, including increasing concentrations of TILs and

CD8+ T cells (213, 214). Furthermore, the immune response

induced by neoadjuvant chemotherapy predicts survival of

breast cancer patients and may prime tumors for treatment

with immunotherapy (213, 214). The presence of TILs is

predictive of response to chemotherapy in breast cancer,

further supporting the complex interaction between the

immune system and chemotherapy (215). DNA damage

immune response signatures have also been confirmed as

prognostic biomarkers in TNBC patients treated with adjuvant

doxorubicin and cyclophosphamide (216). Additionally,

activation of immune responses mediated by the cGAS/STING

pathway have been found to predict patient response to

neoadjuvant chemotherapy (217). Collectively, these studies

support the complex interactions that exist between

chemotherapy and the immune system in breast cancer

patients. Moreover, these studies also emphasize the
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importance of further understanding these complex

interactions in both preclinical and clinical breast cancer models.

Many clinical trials are currently evaluating the

combination of chemotherapy and immunotherapy in

breast cancer patients (218). While the focus of this review

is trimodal combinations, primarily with radiotherapy,

immunotherapy, and additional agents, others have

extensively reviewed the effects of combined chemotherapy

and immunotherapy (218–220) . The I-SPY2 tr ia l

(Investigation of Serial Studies to Predict Your Therapeutic

Response With Imaging And Molecular Analysis 2) is one

such important trial examining ICIs in combination with

chemotherapy. This randomized, adaptive clinical trial aims

to assess the effects of novel agents combined with standard

therapies for stage II or stage III breast cancer patients

(NCT01042379) with high-risk MammaPrint scores, a gene

signature used to predict breast cancer patient clinical

outcomes (221, 222). The primary endpoint for I-SPY 2 is

pCR. One arm of I-SPY 2 examined the therapeutic effects of

combining pembrolizumab with neoadjuvant chemotherapy

in approximately 250 patients. Pembrolizumab more than
FIGURE 3

Chemotherapy Has Immunomodulatory Effects on the Tumor Microenvironment and May Promote Synergy in Combination with Radiotherapy
and Immune Checkpoint Inhibitors. Chemotherapy is a standard of care therapy for the treatment of breast cancer and has significant
implications on the immune response. Studies suggest that single-agent chemotherapy can recruit immune cells to the microenvironment of
breast cancer tumors. Additionally, in breast cancer patients, response to chemotherapy is dependent upon the presence of tumor-infiltrating
lymphocytes. When chemotherapy is combined with radiotherapy, this can induce radiosensitization in preclinical and clinical models, resulting
in enhanced cancer cell death. Clinical promise may exist in combining immune checkpoint inhibitors, radiotherapy, and chemotherapy for the
treatment of breast cancer. When chemotherapy is combined with immunotherapy, this enhances its efficacy and increases patient survival.
Clinical trials are currently underway to ascertain the effects of combined approaches in breast cancer patients.
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doubled the pCR rate in the HR+, HER2-negative subset (13%

to 30%) as well as the TNBC subset (22% to 60%) (223).

Jointly, these studies support the clinical promise of

combining chemotherapy and immunotherapy.

Clinical trials are currently underway to assess the

effectiveness of combining chemotherapy with immunotherapy

and/or radiotherapy as summarized in Table 2. Trials are

currently evaluating the effects of preoperative pembrolizumab

combined with neoadjuvant chemotherapy (paclitaxel,

carboplatin, cyclophosphamide, doxorubicin, and/or

capecitabine) for TNBC or HR+, HER2- breast cancer

(NCT04443348), in addition to radiotherapy combined with

chemotherapy (nab-pacl i taxe l and pacl i taxe l ) and

pembrolizumab in PD-L1+ TNBC (NCT05233696). Moreover,

a Phase III trial is examining the effects of adjuvant

pembrolizumab in combination with radiotherapy on disease-

free survival in TNBC patients (NCT02954874). The priming

effects of radiotherapy on breast cancer patients prior to

neoadjuvant chemotherapy are also being examined to further

understand the role of the immune response following

radiotherapy (NCT03978663). The TONIC trial is a Phase II,

randomized, open-label trial examining whether chemotherapy

or radiotherapy prior to immune checkpoint inhibition with

nivolumab induces an inflamed tumor microenvironment in

metastatic TNBC patients (NCT02499367). In this study,

chemotherapy resulted in the most significant patient

responses, where cisplatin treated patients had an ORR of 23%

and doxorubicin treated patients had an ORR of 35% in addition

to an increase in immune cell infiltration. Interestingly, patients

pretreated with radiotherapy did not see an increase in immune

cell infiltration in the form of CD8+ T cells and TILs. However,

results from this study suggest that delivering chemotherapy

prior to PD-1/PD-L1 inhibition can prime tumors for response

to immune checkpoint inhibition (224). These studies highlight

the clinical promise of combining chemotherapy, ICIs, and

radiotherapy for treating breast cancer patients, and the

important research underway to understand the clinical effects

of these combined approaches.
The clinical and preclinical promise of
combining immunotherapy,
radiotherapy, and PARP inhibitors

Another approach for improving the efficacy of

immunotherapy exists in combining immunotherapy and

radiotherapy with DNA damage inhibitors, as summarized in

Figure 4. Poly(ADP-ribose) polymerase (PARP) proteins help

mediate effective DNA damage responses, and PARP inhibitors

hold promise for the treatment of breast cancer by inhibiting

this repair process (225). Mechanistically, PARP proteins are

recruited to sites of damaged DNA and complete a
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posttranslational modification termed PARylation (225, 226).

PARylation recruits DNA repair proteins to induce repair of

single-strand breaks (SSBs) (140, 225, 226). PARP inhibitors

prevent the accumulation of DNA damage repair proteins,

resulting in increased DNA double-strand breaks (DSBs) (225,

226). Approximately 5% of breast cancer patients carry a

deleterious mutation in the Breast Cancer (BRCA1/2) genes,

which are required for proper DNA damage repair and

correlate with increased risk of developing breast cancer

(225, 227, 228). In patients with BRCA deleterious

mutations, PARP inhibitors cause “synthetic lethality,”

wherein loss of multiple DNA repair pathways results in

synergistic tumor cell death (229). The PARP inhibitors

olaparib and talazoparib are currently FDA-approved for the

treatment of HER2-negative, BRCA-mutated breast cancer

(225). Combining PARP inhibitors with radiotherapy can

promote breast cancer cel l death. Mechanistical ly ,

radiotherapy induces DNA damage, while PARP inhibitors

prevent DNA damage repair (140). PARP1 inhibition was

found to radiosensitize breast cancer models to ionizing

radiotherapy preclinically (230, 231). Thus, there is a strong

preclinical rationale to combine radiotherapy and PARP

inhibitors for the treatment of breast cancer clinically.

Clinical trials have begun to evaluate the combination of

PARP inhibitors with radiotherapy and/or immunotherapy,

which are summarized in Table 3. The PARP inhibitor

veliparib has been combined with radiotherapy for breast

cancer patients with inflammatory disease or locoregionally

recurrent disease (NCT01477489) and is currently being

examined in breast cancer patients in combination with

preoperative radiotherapy (NCT01618357). The PARP

inhibitor rucaparib is also currently being investigated in

combination with radiotherapy for TNBC patients who do not

respond to chemotherapy (NCT03542175). Furthermore,

studies are also combining olaparib and radiotherapy

(NCT03109080, NCT03598257) . For example , the

RADIOPARP Phase I trial examined the effects of olaparib

combined with 50 Gy radiotherapy for patients with

inflammatory, metastatic, or locoregionally advanced TNBC

(NCT03109080) (232). While trimodality therapy can cause an

increase in acute self-limited adverse events, overall, the

combination is well tolerated (233). However, more research is

needed to continue monitoring potential toxicities caused by this

treatment modality in patients over time (232, 234).

In addition to contributing to radiation-induced DNA

damage, studies also suggest that PARP inhibition regulates

antitumor immunity (226). Many studies suggest a connection

between BRCA mutations, PARP inhibition, and the immune

system in breast cancer. In BRCA-deficient TNBCmodels, PARP

inhibition with olaparib induces a CD8+ T cell response in vivo

through the activation of the cGAS/STING pathway (235).

PARP inhibition also modulates immunosuppressive
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TABLE 2 Trials currently assessing combined immune checkpoint inhibition, chemotherapy, and/or radiotherapy.

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic
agent(s)

Radiotherapy Phase and
patients

Status
(at time of
publication)

NCT04443348 P-RAD: A Randomized Study
of Preoperative Chemotherapy,
Pembrolizumab and No, Low
or High Dose RADiation in
Node-Positive, HER2-Negative
Breast Cancer

- Triple negative breast cancer
- Hormone receptor positive
breast cancer
- Biopsy-proven, positive
lymph nodes

- Pembrolizumab
- Paclitaxel
- Carboplatin
-
Cyclophosphamide
- Doxorubicin
- Capecitabine

- Radiotherapy
boost

- Phase II
- 120
Participants
- Clinical trial

- Recruiting

NCT05233696 Phase II Study of Radiotherapy
in Combination With
Chemotherapy and
Immunotherapy in Patients
With PD-L1-Positive
Metastatic Triple-Negative
Breast Cancer

- Triple negative breast cancer
- Locally advanced breast
cancer
- Unresectable breast
carcinoma
- Metastatic breast cancer

- Nab-paclitaxel
(100 mg/m2
intravenous)
- Paclitaxel (80 mg/
m2 intravenous)
- Pembrolizumab
(200 mg)

- One to four
metastatic sites
will be treated at
the discretion of
the radiation
oncologist

- Phase II
- 29 participants
- Clinical trial

- Recruiting

NCT03978663 Evaluating the Use of
Stereotactic Radiation Therapy
Prior to Neoadjuvant
Chemotherapy for High-risk
Breast Carcinoma (a SIGNAL
Series Clinical Trial): Three
Fraction Radiation to Induce
Immuno-Oncologic Response
(TRIO Trial)

- High risk cancer
- Locally advanced breast
cancer

- Neoadjuvant
anthracycline and
taxane based
chemotherapy

- Neoadjuvant
radiotherapy
- 8 Gy x 3
fractions, with a
fall off dose of 4
Gy x 3 fractions

- N/A
- 40 participants
- Clinical trial

- Recruiting

NCT02499367 Adaptive Phase II Randomized
Non-comparative Trial of
Nivolumab After Induction
Treatment in Triple-negative
Breast Cancer (TNBC)
Patients: TONIC-trial

- Breast cancer - Nivolumab
(3 mg/kg)
- Low dose
doxorubicin
(15 mg)
-
Cyclophosphamide
(50 mg oral)
- Cisplatin
(40 mg/m2)

- Radiotherapy;
20 Gy to
metastatic lesions

- Phase II
- 84 participants
- Clinical trial

- Active, not
recruiting

NCT02954874 A Randomized, Phase III Trial
to Evaluate the Efficacy and
Safety of Pembrolizumab (MK-
3475) as Adjuvant Therapy for
Triple Receptor-Negative
Breast Cancer With &gt;/= 1
CM Residual Invasive Cancer
or Positive Lymph Nodes
(ypN1mi, ypN1-3) After
Neoadjuvant Chemotherapy

- Invasive breast carcinoma
- Stage 0-III breast cancer
- Triple negative breast
carcinoma

- Pembrolizumab
(intravenous)

- Radiotherapy
within 12 weeks
post treatment or
12 weeks of last
breast cancer
operation

- Phase III
- 1155
participants
- Clinical trial

- Active, not
recruiting

NCT02971748 A Phase II Study of Anti-PD-1
(Pembrolizumab) in
Combination With Hormonal
Therapy During or After
Radiation in Patients With
Hormone Receptor (HR)-
Positive Localized
Inflammatory Breast Cancer
(IBC) Who Did Not Achieve a
Pathological Complete
Response (pCR) to
Neoadjuvant Chemotherapy

- Stage III breast cancer
- Breast inflammatory
carcinoma

- Pembrolizumab
(intravenous)

- Radiotherapy - Phase II
- 37 participants
- Clinical trial

- Active, not
recruiting

NCT03515798 A Prospective Multicenter
Open-label, Randomized Phase
II Study of Pembrolizumab in
Combination With

- HER2-negative, inflammatory
breast cancer

- Epirubicine-
cyclophosphamide
(EC) paclitaxel
chemotherapy

- None - Phase II
- 81 participants
- Clinical trial

- Recruiting

(Continued
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macrophages in the TME of BRCA1-associated TNBC models

and treating these models with CSF-1R antibodies combined

with PARP inhibitors overcomes PARP inhibitor acquired

resistance (236). Moreover, knock down of BRCA2 in human

breast cancer cells activates the cGAS/STING pathway (237).
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Surprisingly, PARP inhibition in some BRCA proficient ovarian

and colorectal cancer models can also activate immune

responses through the STING pathway (238). Moreover,

combining PARP inhibitors with anti-PD-L1 improves tumor

control in preclinical breast cancer models (239). These
FIGURE 4

PARP Inhibitors Prevent DNA Damage Repair and May Synergize with Both Radiotherapy and Immune Checkpoint Inhibition. Mechanistically,
PARP proteins are recruited to regions of DNA damage to assist in the repair of single-strand breaks. When PARP proteins are inhibited, this
prevents proper DNA repair and promotes the accumulation of double-strand breaks. In patients that express the BRCA1/2 genes, this damage
can be repaired; however, in patients with a deleterious BRCA1/2 mutation, this results in synthetic lethality due to the absence of multiple DNA
repair pathways. It is well established that radiotherapy induces DNA damage. When radiotherapy is combined with PARP inhibitors, this
prevents DNA damage repair in BRCA mutant cancers. Furthermore, the DNA damage induced by radiotherapy that is then not repaired
following PARP inhibition can result in the production of cytosolic DNA molecules. As single agents, immune checkpoint inhibitors illicit immune
responses by turning off immune checkpoints, resulting in pro-inflammatory, antitumor effects. Studies are currently underway to determine
whether combined PARP inhibition, radiotherapy, and immune checkpoint inhibition will promote enhanced antitumor immunity and be
efficacious for the treatment of breast cancer patients.
TABLE 2 Continued

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic
agent(s)

Radiotherapy Phase and
patients

Status
(at time of
publication)

Neoadjuvant EC-Paclitaxel
Regimen in HER2-negative
Inflammatory Breast Cancer.

- Pembrolizumab
(MK3475)
(intravenous)

NCT05093387 A Pilot Study of SGT-53 With
Carboplatin and
Pembrolizumab in Metastatic
Triple Negative Inflammatory
Breast Cancer

- Metastatic, triple negative
inflammatory breast cancer

- Carboplatin
(intravenous)
- Pembrolizumab
(intravenous)
- SGT-53
(Transferrin
Receptor-Targeted
Liposomal p53
cDNA)
(intravenous)

- None - Phase I
- 9 participants
- Clinical trial

- Not yet
recruiting
fr
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TABLE 3 Clinical trials assessing the effects of PARP inhibitors combined with radiotherapy and/or immune checkpoint inhibitors.

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic
agent(s)

Radiotherapy Phase
and patients

Status
(at time of
publication)

NCT01477489 A Phase I Study of
Veliparib Administered
Concurrently With Chest
Wall and Nodal Radiation
Therapy in Patients With
Inflammatory or Loco-
regionally Recurrent Breast
Cancer

- Breast cancer - Veliparib (50
mg – 200 mg)

- Standard radiotherapy
(limited to 60 Gy)

- Phase I
- 33 participants
- Clinical trial

- Completed

NCT01618357 Pre-Operative PARPi and
Irradiation (POPI) in
Women With an
Incomplete Response to
Neo-Adjuvant
Chemotherapy for Breast
Cancer

- Breast cancer - Lumpectomy/
Mastectomy
- Veliparib

- Radiotherapy; 2.35 Gy
per fraction for 16
fractions for a total of
37.5 Gy

- Phase I
- 41 participants
- Clinical trial

- Suspended

NCT03542175 A Phase I Study of
Rucaparib Administered
Concurrently With
Postoperative Radiotherapy
in Patients With Triple
Negative Breast Cancer
With an Incomplete
Pathologic Response
Following Neoadjuvant
Chemotherapy

- Breast cancer - Rucaparib (300
mg, 400 mg, 500
mg, or 600 mg)

- Radiotherapy; 50 Gy
in 2 Gy per fraction,
plus 10 Gy boost to
lumpectomy cavity

- Phase I
- 30 participants
- Clinical trial

- Recruiting

NCT03109080 A Phase I of Olaparib With
Radiation Therapy in
Patients With
Inflammatory, Loco-
regionally Advanced or
Metastatic TNBC (Triple
Negative Breast Cancer) or
Patient With Operated
TNBC With Residual
Disease

- Malignant and triple-
negative breast neoplasms

- Olaparib - Radiotherapy - Phase I
- 24 participants
- Clinical trial

- Active, not
recruiting

NCT03598257 A Phase II Randomized
Trial of Olaparib (NSC-
747856) Administered
Concurrently With
Radiotherapy Versus
Radiotherapy Alone for
Inflammatory Breast
Cancer

- Breast inflammatory
carcinoma

- Olaparib (oral) - Radiotherapy - Phase II
- 300 participants
- Clinical trial

- Recruiting

NCT02657889 Phase 1/2 Clinical Study of
Niraparib in Combination
With Pembrolizumab (MK-
3475) in Patients With
Advanced or Metastatic
Triple-Negative Breast
Cancer and in Patients
With Recurrent Ovarian
Cancer

- Triple negative breast
cancer
- Breast cancer
- Metastatic breast cancer
- Advanced breast cancer
- Stage IV breast cancer
- Neoplasms
- Ovarian cancer
- Fallopian tube cancer
- Peritoneal cancer

- Niraparib (up
to 300 mg/day
oral)
- Pembrolizumab
(200 mg
intravenous)

- None - Phase I/II
- 122 participants
- Clinical trial

- Completed

NCT03544125 A Pilot Study of Olaparib
and Durvalumab in Patients
With Metastatic Triple
Negative Breast Cancer

- Stage IV breast cancer
- Estrogen receptor negative
- HER2 negative
- Progesterone receptor
negative
- Stage IV breast cancer

- Durvalumab
(intravenous)
- Olaparib (oral)

- None - Phase I
- 3 participants
- Clinical trial

- Completed

(Continued)
Frontiers in Oncology
 18
106
frontiersin.org

https://doi.org/10.3389/fonc.2022.1022542
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jungles et al. 10.3389/fonc.2022.1022542
preclinical data suggest that PARP inhibition may promote

antitumor immunity.

Furthermore, studies have examined the mechanisms

underlying the interactions between resistance to PARP

inhibitors and ICIs. PARP inhibitors have been found to

upregulate PD-L1 expression, resulting in immunosuppression

(240). Glycosylation of PD-L1 is required for its interaction with

PD-1 and subsequent suppression of T cell activity (240, 241).

However, inhibition of PD-L1 glycosylation via 2-deoxyglucose (2-

DG) promotes T-cell mediated cytotoxicity and potent antitumor
Frontiers in Oncology 19
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activity in combination with PARP inhibitors (240). Human and

murine TNBC cell lines resistant to PARP inhibitors display an

increase in epithelial-mesenchymal transition and upregulation of

PD-L1 (242). These effects are abrogated by the application of

metformin to block pAkt S473—potentially providing a synergistic

approach to increase PARP inhibition and immunotherapy

efficacy (242). In short, various studies suggest that PD-L1

upregulation may regulate PARP inhibitor resistance.

Clinical trials are beginning to report the efficacy of PARP

inhibition combined with ICIs in breast cancer patients. In the
TABLE 3 Continued

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic
agent(s)

Radiotherapy Phase
and patients

Status
(at time of
publication)

- Triple-negative breast
carcinoma

NCT03025035 Open Label, Phase II Pilot
Study of Immune
Checkpoint Inhibition With
Pembrolizumab in
Combination With PARP
Inhibition With Olaparib in
Advanced BRCA-mutated
or HDR-defect Breast
Cancers

- Breast cancer - Pembrolizumab
(intravenous)
- Olaparib (oral)

- None - Phase II
- 20 participants
- Clinical trial

- Recruiting

NCT02849496 A Phase II Open-Label,
Randomized Study of
PARP Inhibition (Olaparib)
Either Alone or in
Combination With Anti-
PD-L1 Therapy
(Atezolizumab;
MPDL3280A) in
Homologous DNA Repair
(HDR) Deficient, Locally
Advanced or Metastatic
Non-HER2-Positive Breast
Cancer

- Locally advanced -
unresectable breast
carcinoma
- Metastatic breast
carcinoma
- Stage III breast cancer
- Stage IV breast cancer

- Atezolizumab
(intravenous)
- Olaparib (oral)

- None - Phase II
- 81 participants
- Clinical trial

- Suspended

NCT04683679 A Phase II Study of
Pembrolizumab and
Ablative Radiotherapy With
or Without Olaparib in
Metastatic Triple-Negative
Breast Cancers : Initial Test
Cohorts of a Platform Trial
to Sequentially Investigate
Combinations of DNA-
Damage Response
Inhibitors and
Immunotherapy for the
Augmentation of Immune
Responses

- Triple negative breast
cancer

- Pembrolizumab
(200 mg
intravenous)
- Olaparib (600
mg oral)

- 8-9 Gy x 3 fractions or
30 Gy in 6 Gy per
fraction for larger
tumors

- Phase II
- 56 participants
- Clinical trial

- Recruiting

NCT04837209 A Phase II Study of
NirAparib, Dostarlimab and
Radiotherapy in Metastatic,
PD-L1 Negative or
Immunotherapy-Refractory
Triple-Negative Breast
Cancer (NADiR)

- Breast cancer
- Triple negative breast
cancer

- Niraparib (oral)
- Dostarlimab
(anti-PD-1)
(intravenous)

- Radiotherapy - Phase II
- 32 participants
- Clinical trial

- Recruiting
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TOPACIO/KEYNOTE-162 trial, the PARP inhibitor niraparib

was combined with pembrolizumab for the treatment of

advanced or metastatic TNBC (NCT02657889). Preliminary

results from this study suggest that combining PARP

inhibition with ICIs may be effective in metastatic TNBC

regardless of BRCA status (243). Additionally, ongoing studies

are examining the combination of olaparib and durvalumab for

patients with metastatic TNBC (NCT03544125) (244), as well as

examining the combination of pembrolizumab and olaparib in

patients with DNA damage response pathway mutations

(NCT03025035). Furthermore, a Phase II, open-label,

randomized trial was recently underway to assess the effects of

olaparib alone and in combination with atezolizumab in HDR

deficient locally advanced or metastatic non-HER2+ breast

cancer, although it was recently suspended (NCT02849496)

(245). To conclude, these clinical data suggest that PARP

inhibition may enhance patient responses to immunotherapy;

however, additional research is merited.

Based upon the promise of combining both PARP inhibition

with radiotherapy and PARP inhibition with immunotherapy,

trials are also examining trimodal approaches with radiotherapy,

ICIs, and PARP inhibition. A Phase II trial is currently recruiting

patients to ascertain the efficacy and safety of talazoparib

combined with radiotherapy and atezolizumab (anti-PD-L1)

for PD-L1+ metastatic TNBC patients (NCT04690855).

Additionally, a randomized, Phase II study is recruiting breast

cancer patients to understand the effects of radiotherapy in

combination with pembrolizumab and olaparib to treat

patients with triple negative disease (NCT04683679).

Moreover, a Phase II trial is currently assessing the effects of

combined niraparib, dostarlimab (anti-PD-1), and radiotherapy

in metastatic, PD-L1-, or immunotherapy-refractory TNBC

(NCT04837209). Importantly, more time is necessary to define

the tolerability and efficacy of these trimodal approaches in

breast cancer patients.
Safety, tolerability, and cost-effectiveness
of combined therapy approaches

Importantly, while combining targeted therapies with

radiotherapy and immune checkpoint inhibitors is a promising

approach for the treatment of breast cancer patients, more studies

are warranted to further examine the safety and tolerance of such

combinations. All pharmaceutical agents are associated with

potential adverse events and combining therapeutic agents and

modalities can heighten the risk of toxicity. Combining therapeutics

also has the potential of reducing toxicity if combined therapies are

synergistic and require lower doses of these agents in combination

compared to when delivered as monotherapies. Clinical and

preclinical studies are currently underway to screen for potential

adverse effects and unwanted toxicities of combined approaches for

the treatment of breast cancer.
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Collectively, in breast cancer patients, single agent targeted

therapies can result in various toxicities, including

cardiovascular (246, 247), endocrine, dermatologic, and

pulmonary toxicities (248). While advancements in the

delivery of radiotherapy as a monotherapy have allowed for

the precise delivery of radiation rays directly to cancerous

lesions, radiotherapy can also damage nearby, non-malignant

cells, resulting in acute and late-onset toxicities (249). ICIs are

associated with idiosyncratic inflammatory adverse events which

can occur in potentially any organ system, emphasizing the

importance of closely monitoring patients receiving such

therapies (250). Anti-CTLA-4 immunotherapies are associated

with a higher incidence of immune-related adverse events

(irAEs) compared to inhibitors of the PD-1 axis, which may

coincide with their different mechanisms of action (249). Anti-

PD-1 therapies (i.e., pembrolizumab) may be associated with

fewer adverse events than anti-PD-L1 therapies (i.e.,

atezolizumab) in breast cancer patients (250, 251). Collectively,

as more patients receive ICIs as part of their treatment regimens,

more screening is warranted to understand why these adverse

events take place and how these events can be prevented in

patients undergoing treatment.

Combination therapies involving the application of both

radiotherapy and ICIs may result in complex effects on the

immune system which may promote enhanced therapy efficacy

and also therapy toxicity. To date, the combination of

radiotherapy and ICIs has been found to be safe and well-

tolerated in patients undergoing treatment (249, 252).

Combined anti-PD-1 and anti-CTLA-4 ICIs with palliative

radiotherapy was found to be associated with few adverse events

in patients with non-small cell lung cancer, melanoma, renal cell

cancer, and breast cancer (192, 253). Toxicity can also occur in

studies combining chemotherapy with ICIs. For instance, in the

KEYNOTE-522 trials, while combination of chemotherapy and

pembrolizumab improved pathological complete response in

patients with early TNBC, this therapy resulted in 78% of

patients having grade 3 or higher adverse events, compared to

only 73% of patients in the placebo-chemotherapy group (106).

Targeted therapy can also cause adverse events. Single-agent

PARP inhibition has been found to be less toxic compared to

single-agent chemotherapy; however, when PARP inhibitors are

used in combination with radiotherapy, toxicity must be closely

monitored (248). In a study that combined PARP inhibition

(veliparib) with radiotherapy in patients with inflammatory or

locoregionally recurrent breast cancer, 1 year post treatment

resulted in grade 3 toxicity of 10%. However, 3 years following

combined therapy, 46.7% of patients experienced grade 3 toxicity,

with 6 out of a total 15 patients having severe fibrosis in the field of

treatment (233). Collectively, more studies are needed to screen

for such toxicities and determine the proper doses of targeted

therapies, ICIs, and radiotherapy that can be efficacious, while

inducing minor adverse events and low toxicities in patients with

aggressive forms of breast cancer,
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While the safety profiles of combined approaches are

important to consider when determining the optimal

treatment plan, another important aspect to consider is the

cost-effectiveness of such therapeutics. Financial toxicity is a

growing concern in breast cancer care (254). While ICIs are an

emerging and promising therapeutic option for cancer patients,

they are costly services for patients, which is a critical factor

when patients are deciding what course of therapy to pursue. In

a study assessing the cost effectiveness of immunotherapy in

non-small cell lung cancer, the median yearly cost of ICIs was

$148,431. Importantly, while the costs of ICIs may vary based

upon drug rand and mechanism of action, overall, prolonged

usage of such therapies beyond two years was not found to be

financially feasible for patients (255). Consequently, numerous

studies are focused on accessing the cost-effectiveness (CE) of

immunotherapies, which is often measured as the incremental

cost-effectiveness ratio (ICER), a ratio that represents the cost

required for one additional year of life (256). In breast cancer,

results from studies assessing the cost-effectiveness of

immunotherapies are often mixed and are drug-dependent—

supporting the need to further analyze the benefit of prescribing

ICIs to cancer patients—especially in combination with other

targeted therapies. In solid tumors, ICIs provide significant

clinical benefits to patients and certain types of ICIs have been

found to be cost-effective in different types of cancer compared

to chemotherapy treatment alone (256). In PD-1+, metastatic

TNBC, the combination of pembrolizumab with chemotherapy

was found to be cost-effective (257). Combined chemotherapy

and pembrolizumab was also cost-effective in high risk, early-

stage TNBC (258). Combining ICIs with radiotherapy is also

cost-effective in non-small cell lung cancer; however, this has not

been examined as thoroughly in the context of breast cancer and

more studies are warranted (259). More work is also necessary to

determine how cost-effective trimodal approaches are for breast

cancer patients—such as for combined ICIs, radiotherapy, and

targeted therapy. Furthermore, this also starts conversations

regarding the overall cost of therapeutics and accessibility to

affordable healthcare—which may vary based upon where

patients are receiving their cancer care and influence their

decisions to receive such therapies.
Future directions

Future clinical trials are focused on assessing whether

combination approaches increase immunotherapy efficacy in

patients with breast cancer as demonstrated in Table 4 (260).

CDK4/6 inhibitors are mainstay treatments for women with

metastat ic HR+, HER2- breast cancer and induce

radiosensitization in preclinical models of ER+ breast cancer

and TNBC (261, 262). Furthermore, the CDK4/6 inhibitor
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abemaciclib enhances the efficacy of anti-PD-L1 ICIs by

augmenting antigen presentation and T cell activation in

human breast cancer cells (263). These data motivate the

assessment of combining CDK4/6 inhibitors with radiotherapy

and ICIs in future studies. Currently, the effects of combined

stereotactic body radiation (SBRT), ICIs, and hormone therapies

are being examined in ER+ breast cancer (NCT04563507). In

addition to analyzing the effects of already developed

pharmacological agents with radiotherapy and ICIs, future

studies should investigate the combined effects of novel cancer

therapeutic agents. For instance, combining a phosphoinositide

3-kinase d (PI3Kad) inhibitor with radiotherapy and anti-PD-1

was found to increase CD8+ T cell accumulation and delay

tumor growth in a murine syngeneic TNBCmodel (264). STING

agonists are also currently being examined in preclinical breast

cancer models in combination with ubiquitinated protein

nanovaccines (265), anti-CD47 monoclonal antibodies (266),

and CAR-T cell therapy (267). These studies suggest that

combining STING agonists, ICIs, and radiotherapy may have

clinical potential.

Additional studies are crucial to determine the most effective

radiotherapy dose and fractionation in patients. The optimal

dose fractionation to induce effective antitumor immune

responses has not yet been determined, with preclinical

literature supporting both ablative single fractions (268) as

well as moderate hypofractionation (160, 166). For example,

ablative stereotactic body radiotherapy delivered at 15 Gy

delivered in 3 fractions or 30 Gy radiotherapy delivered in 1

fraction combined with immunotherapy decreased primary

tumor size in a 4T1 murine breast cancer model, while

ablative radiotherapy delivered at 1 fraction of 30 Gy

transforms the tumor suppressive microenvironment of colon

tumors into a pro-inflammatory, CD8+ T cell enriched

environment (268, 269). Hypofractionated radiotherapy

delivered at 9.18 Gy in 3 fractions or 6.43 Gy in 5 fractions

also induces systemic antitumor effects and promotes synergy in

combination with anti-PD-1 in syngeneic breast cancer models

(270). Conversely, radiotherapy delivered at doses above 12-18

Gy induces Trex1 in other breast cancer models, which can

hinder the pro-immune effects of radiotherapy by degrading

cellular DNA upstream of the cGAS/STING pathway (177).

Prospective clinical evaluations are needed to define the optimal

radiotherapy regimens in patients.

In addition to better understanding themechanisms involved in

radiotherapy, it is also critical to further understand the underlying

mechanisms involved in immunotherapy efficacy and patient

response to immunotherapy. Importantly, many factors play a

role in the efficacy of ICIs, such as age (85), sex (NCT04435964),

gut microbiome (NCT03383107, NCT05037825), and oncogenic

signaling/mutations (NCT01351103) (271). Immunotherapy

efficacy may also depend on sites of metastatic involvement. In
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TABLE 4 Additional studies assessing combinatorial therapies for the treatment of breast cancer.

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic agent(s) Radiotherapy Phase and
patients

Status (at
time of

publication)

NCT04563507 CIMER: Combined
Immunotherapies in
Metastatic ER+ Breast
Cancer

- Breast
cancer

- Letrozole (2.5 Mg tablet)
- Palbociclib (125 mg)

- SBRT at 50 Gy
× 5 fractions

- Phase II
- 102
participants
- Clinical trial

- Recruiting

NCT04435964 Gender Difference in sidE
eFfects of ImmuNotherapy: a
Possible Clue to Optimize
cancEr tReatment

- Breast
Cancer
- Melanoma
- Lung cancer
- Head and
neck cancer
- Urogenital
neoplasms

- Immune checkpoint inhibitors as a
monotherapy or in combination with
radiotherapy and/or chemotherapy

- Varies - 400
participants
-
Observational
trial

- Recruiting

NCT03383107 Effect of Radiotherapy
Variables on Circulating
Effectors of Immune
Response and Local
Microbiome

- Breast
cancer
- Prostate
cancer

- Radiotherapy (For breast cancer)
- Standard
fractionation breast
and nodal
radiotherapy to 50
Gy in × 25
fractions
- Partial breast RT
to 30 Gy in × 25
fractions and × 5
fractions

- 66
participants
-
Observational
trial

- Completed

NCT05037825 The Gut Microbiome and
Immune Checkpoint
Inhibitor Therapy in Solid
Tumors

- Triple-
negative breast
cancer
- Non-small-
cell lung
carcinoma
- Malignant
melanoma
- Renal cell
carcinoma

- Anti-PD-1, anti-PD-L1, or anti-
CTLA-4 in combination with other
checkpoint inhibitors or agents
including radiotherapy, surgery, and/
or chemotherapy

- Varies - 800
participants
-
Observational
trial

- Recruiting

NCT01351103 A Phase I, Open-label, Dose
Escalation Study of Oral
LGK974 in Patients With
Malignancies Dependent on
Wnt Ligands

- Triple
negative breast
cancer
- Pancreatic
cancer
- BRAF
mutant
colorectal
cancer
- Melanoma
- Head and
neck
squamous cell
cancer
- Cervical
squamous cell
cancer
- Esophageal
squamous cell
cancer
- Lung
squamous cell
cancer

- Drug: LGK974 (PORCN inhibitor)
- Biological: PDR001 (anti-PD-1)

- None - Phase I
- 185
participants
- Clinical trial

- Recruiting
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both patients and preclinical models, liver metastases are associated

with diminished immunotherapy efficacy (272). Moreover, it is

essential to continue investigating the effects of the cGAS/STING

pathway and its implications in both the radiotherapy response and

immune response in human cancers. Numerous studies are

currently investigating the preclinical implications of the cGAS/

STING pathway in cancer and how other mediators of this pathway

can be modulated to promote pro-immune, antitumor effects. In all,

the mechanisms underlying combined therapies are complex and

more research is justified to further understand these interactions.

Moreover, it is also critical to define treatment tolerance

since adverse events may occur following combined treatments.

Finally, another crucial future direction is developing predictive

and prognostic biomarkers indicative of response to

combination therapies. While studies suggest TILs, tumor

mutation burden (TMB), and immune gene signatures may be

potential biomarkers for response to ICIs in breast cancer,

biomarkers indicative of combined therapy efficacy have not

yet been identified (273, 274). In short, more research is

necessary to discover biomarkers to help identify which

patient populations will respond best to these novel

therapeutic approaches.
Discussion

Breast cancer is the leading non-cutaneous cancer diagnosed

among females and is a heterogeneous disease that can result in

poor clinical outcomes, especially in patients with triple negative

disease. Immunotherapy is an emerging therapeutic option for

aggressive forms of breast cancer and combining immunotherapy

with radiotherapy may hold clinical benefit. Preclinical studies are

underway to understand the potential benefit of combining

radiotherapy with immune checkpoint inhibitors and to examine

the molecular mechanisms that contribute to potential synergy

between these therapies. Additional studies are needed to develop

therapeutic approaches targeting canonical and noncanonical

regulators of innate immunity in conjunction with radiotherapy

and immunotherapy. Clinical trials are currently examining the

prognostic benefits of combined ICIs and radiotherapy with other

available cancer therapeutics in breast cancer patients. Collectively,

these studies support the importance of improving combined

therapy efficacy with the ultimate goal of improving outcomes in

breast cancer.
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Caspase activation counteracts
interferon signaling after G2
checkpoint abrogation by
ATR inhibition in irradiated
human cancer cells

Adrian Eek Mariampillai 1, Sissel Hauge1, Inger Øynebråten2,
Gro Elise Rødland1, Alexandre Corthay2,3

and Randi G. Syljuåsen1*

1Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway,
2Tumor Immunology Lab, Department of Pathology, Oslo University Hospital, Oslo, Norway, 3Hybrid
Technology Hub – Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo,
Oslo, Norway
Recent studies suggest that inhibition of the ATR kinase can potentiate

radiation-induced antitumor immune responses, but the extent and

mechanisms of such responses in human cancers remain scarcely

understood. We aimed to assess whether the ATR inhibitors VE822 and

AZD6738, by abrogating the G2 checkpoint, increase cGAS-mediated type I

IFN response after irradiation in human lung cancer and osteosarcoma cell

lines. Supporting that the checkpoint may prevent IFN induction, radiation-

induced IFN signaling declined when the G2 checkpoint arrest was prolonged

at high radiation doses. G2 checkpoint abrogation after co-treatment with

radiation and ATR inhibitors was accompanied by increased radiation-induced

IFN signaling in four out of five cell lines tested. Consistent with the hypothesis

that the cytosolic DNA sensor cGAS may detect DNA from ruptured

micronuclei after G2 checkpoint abrogation, cGAS co-localized with

micronuclei, and depletion of cGAS or STING abolished the IFN responses.

Contrastingly, one lung cancer cell line showed no increase in IFN signaling

despite irradiation and G2 checkpoint abrogation. This cell line showed a higher

level of the exonuclease TREX1 than the other cell lines, but TREX1 depletion

did not enhance IFN signaling. Rather, addition of a pan-caspase inhibitor

restored the IFN response in this cell line and also increased the responses in

the other cell lines. These results show that treatment-induced caspase

activation can suppress the IFN response after co-treatment with radiation

and ATR inhibitors. Caspase activation thus warrants further consideration as a

possible predictive marker for lack of IFN signaling.

KEYWORDS

cell cycle checkpoints, type I interferon (IFN) signaling, radiation therapy (radiotherapy),
micronuclei (MN), ATR, caspase, cGAS, TREX1
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Introduction

Local radiotherapy can increase tumor immunogenicity,

yielding systemic, abscopal effects on distal metastases in rare

cases (1, 2). However, the influence of radiotherapy on the

immune system is complex, and radiotherapy may also

stimulate immunosuppressive mechanisms (3). Immune

checkpoint inhibitors combined with radiotherapy has shown

promise in enhancing the antitumor immune effects (4–6).

Nevertheless, therapeutic responses remain limited, urging the

need for more knowledge and new, efficacious strategies.

The serine/threonine protein kinase ATR is a central

regulator of the G2 cell cycle checkpoint and DNA repair

following irradiation (7, 8). When ATR inhibitors (ATRi) are

combined with irradiation, cells will enter mitosis with

unrepaired DNA les ions , which ult imate ly causes

micronucleus formation and cell death (9). ATRi are therefore

promising radiosensitizers under clinical evaluation (10, 11).

Interestingly, recent studies suggest that ATRi, besides their

effects on cell cycle checkpoints and DNA repair, may also

increase radiation-induced antitumor immune responses.

Increased immune effects, such as activation of CD8+ T cells

and immunological memory, have been observed in murine

cancer models after treatment with the ATR inhibitor AZD6738

and ionizing radiation (IR) (12–14). Mechanistically, ATRi may

stimulate tumor immunogenicity through downregulation of

programmed cell death 1 ligand 1 (PD-L1) in irradiated cancer

cells (3, 14, 15). In addition, ATR inhibition can potentiate

radiation-induced type I IFN responses, likely through

generation of cytosolic DNA resulting from increased

micronucleus formation after abrogation of cell cycle

checkpoints (16, 17). In this scenario, the DNA sensor cGAS

recognizes de facto cytosolic DNA in ruptured micronuclei, and

triggers induction of type I IFN through the cGAS–STING–

IRF3–TBK1 signaling cascade (18–20). Noteworthy, the cGAS–

STING–IFN pathway is negatively regulated by three-prime

repair exonuclease 1 (TREX1), which degrades the DNA

substrates of cGAS (21, 22). In addition, this pathway can be

negatively regulated by caspase-mediated protein cleavage (23).

The potentiation of IFN responses after IR and ATRi were

mostly shown in murine cancer or human normal cells, and it

remains elusive whether similar effects commonly occur in

human cancer cells. Furthermore, in some cell lines, IFN

responses were rather stimulated through immune recognition

of cytosolic RNA (16, 17). Opposing results regarding whether

the IFN response was dependent on the cytosolic RNA sensor

RIG-I or the DNA sensor cGAS have even been reported for the

same cells (MCF10A) (16, 17), underlining the mechanistic

uncertainty of the response.

Here, we investigated the hypothesis that combined

treatment of human cancer cells with IR and ATRi stimulates

cGAS-mediated type I IFN responses, due to G2 checkpoint

abrogation and consequently enhanced generation of
Frontiers in Oncology 02
120
micronuclei. We found that the combined treatment caused

increased cGAS-mediated type I IFN secretion in all tested cell

lines except for one, which contained very high basal levels of the

exonuclease TREX1. However, downregulation of TREX1 in this

cell line did not restore IFN signaling. Rather, the IFN response

was restored upon co-treatment with a pan-caspase inhibitor.

The caspase inhibitor also further increased the IFN responses in

the other cell lines.
Results

Radiation-induced type I interferon
signaling declines at high radiation
doses, coinciding with a prolonged G2
checkpoint arrest

To explore how ATR inhibitors affect radiation-induced IFN

signaling, we first assessed the effects of irradiation alone. We

treated the human osteosarcoma cell line U2OS with different

radiation doses (2-20 Gy), and measured IFN signaling three to

six days post treatment by immunoblotting of phosphorylated

STAT1 (pSTAT1). STAT1 is phosphorylated upon autocrine

and paracrine type I IFN signaling, rendering pSTAT1 indicative

of IFN secretion (18, 24). At six days post treatment, a marked

increase in pSTAT1 was observed after lower radiation doses (2

and 5 Gy), whereas higher doses (>10 Gy) gave only minor

increases in pSTAT1 level (Figures 1A, B). Similar radiation dose

responses have been reported in a previous study, where the lack

of IFN secretion after higher doses (> 10 Gy) was attributed to

radiation-induced increases in TREX1 expression (25).

Contrastingly, we did not find any increase in TREX1 levels in

U2OS cells after irradiation with 10-20 Gy (Figure 1A). Our

results thus suggest other mechanisms to be responsible for

suppression of IFN responses after high-dose irradiation in this

cell line. Induction of type I IFN responses has been linked to

formation of micronuclei resulting from mitosis with unrepaired

DNA after irradiation (18, 19). As arrest at the G2 checkpoint

delays mitotic entry, we compared cell cycle progression after

low- and high-dose irradiation. The cells arrested notably longer

in the radiation-induced G2 checkpoint after higher doses than

after lower doses, as expected (Figure 1C). The lack of IFN

signaling after exposure to high doses of radiation thus coincides

with prolonged G2 checkpoint arrest, suggesting that the arrest

counteracts IFN signaling.
ATR inhibition-induced G2 checkpoint
abrogation accelerates micronucleus
formation after irradiation

We next investigated whether ATR inhibition can abrogate

the G2 checkpoint after irradiation with low and high doses. We
frontiersin.org
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employed the ATR inhibitor VE822 (berzosertib) at a high

concentration (250 nM), which caused ~80% reduction in cell

viability (Supplementary Figure S1A, left). Treatment with 250

nM VE822 efficiently abrogated the checkpoint after 2 and 5 Gy

irradiation, but less so after irradiation with 10 or 20 Gy

(Supplementary Figure S1B). Hence, ATR inhibition is less

effective in abrogating G2 checkpoint arrest after higher

radiation doses, in agreement with previous studies showing

that the G2 checkpoint is regulated by multiple factors (26–30).

In our subsequent studies with radiation and ATRi, we therefore

irradiated with 5 Gy. U2OS cells showed a pronounced G2

checkpoint arrest at 17 hours after 5 Gy, with the cell cycle

profile slowly beginning to redistribute at 22-41 hours post

treatment (Figure 2A). Cells co-treated with 5 Gy and 250 nM
Frontiers in Oncology 03
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VE822 showed no sign of checkpoint arrest, with no

accumulation of cells in G2 phase at 17-22 hours post

treatment (Figure 2A). Furthermore, the G2 checkpoint was

almost completely abrogated at 0-6 hours post treatment, as

detected by presence of mitotic cells (data not shown). The

checkpoint was correspondingly abrogated by a high

concentration (1250 nM) of the ATR inhibitor AZD6738

(ceralasertib) (Figures 2B, C). This concentration of AZD6738

caused ~50% reduction in cell viability (Supplementary Figure

S1A, right). We also tested lower, less toxic concentrations of

both VE822 and AZD6738 (50 nM and 250 nM, respectively),

yielding 5-10% reduction in viability (Supplementary Figure

S1A). The lower concentrations gave a partial abrogation of

the G2 checkpoint (Figures 2B, C). The effect of ATR inhibition
A B

C

FIGURE 1

Reduction of radiation-induced IFN signaling at high IR doses coincides with prolonged G2 checkpoint arrest. (A) Immunoblots of U2OS cells
harvested at three and six days after IR. Bar charts show pSTAT1 and TREX1 levels relative to total protein and normalized to mock. (B)
Quantification of pSTAT1 levels relative to the corresponding mock sample for multiple independent experiments with 5 and 20 Gy as in (A). (3
days: n = 5 for 5 Gy and n = 4 for 20 Gy; 6 days: n = 3) (C) DNA histograms from parallel samples in the same experiment as in (A). The ‘100K’
annotation marks the G2/M phase peak. Results in (A, C) are representative for three independent experiments performed at different time
points within 0-6 days post treatment.
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FIGURE 2

ATRi abrogates radiation-induced G2 checkpoint arrest, resulting in expedited generation of micronuclei and induction of type I IFN response in
U2OS cells. (A) DNA histograms after treatment with IR and VE822. (B) Quantification of proportion of cells in G2/M phase from the experiment
in (A). (C) Bar-plotted quantification of G2/M proportions from three independent experiments performed as in (A), at 17 hours after treatments.
(D) Micrographs showing anti-dsDNA immunofluorescence staining. ATRi: 250 nM VE822. Scale bars: 20 µm. (E) Immunoblot of phosphorylated
STAT1 (pSTAT1) and total STAT1 (STAT1) three and six days after IR with or without VE822 and AZD6738. Pan-actin and g-tubulin were used as
loading controls at three and six days, respectively. (F) Quantification of pSTAT1 levels relative to loading controls for experiments as in (E).
Values are normalized to 5 Gy. (G) Immunoblot of pSTAT1 and STING in U2OS cells at three days after the indicated treatments. Bar chart shows
STING level relative to total protein and normalized to mock. (H) ELISA of IFN-b in 20X up-concentrated growth media from U2OS cells
harvested three days after treatment. Dashed line indicates the lowest interferon-b concentration tested in the standard curve in Supplementary
Figure S1E (7.81 pg/ml). n.d. = not detectable.
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was also assessed by immunofluorescence microscopy. Cells

treated with 5 Gy IR and 250 nM VE822 generated

micronuclei already within 24 hours post treatment (consistent

with finalized mitosis), whereas micronuclei were observed at 72

hour post treatment for irradiated mock cells (Figure 2D). These

results indicate that ATR inhibitors at high concentrations

efficiently abrogate G2 checkpoint arrest and thereby

accelerate the generation of micronuclei.
Combined treatment with IR and ATRi
expedites radiation-induced interferon
response in U2OS cells

Type I IFN responses upon treatment of U2OS cells with IR

and ATRi were measured by pSTAT1 levels and IFN-b ELISA.

Irradiation (5 Gy) alone gave nearly no increase in pSTAT1

levels at three days post treatment (Figures 2E, F). Co-treatment

with IR and high concentrations of ATRi (250 nM VE822; 1250

nM AZD6738) markedly increased this response, whereas a

smaller increase was obtained with the lower concentrations

(50 nM VE822; 250 nM AZD6738) (Figures 2E, F). The biggest

effect was obtained with the high concentration of VE822 (250

nM), which also caused the highest reduction of cell viability

(Supplementary Figure S1A). At six days post treatment, IR

alone induced the highest pSTAT1 levels, but this induction

nevertheless appeared lower than after the aforementioned high-

concentration co-treatments at three days (Figures 2E, F;

Supplementary Figure S1C). ATRi thus causes an earlier and

more pronounced wave of IFN response, which declines with

time. The latter might be related to reduced kinase activities in

dying or dead cells. Indeed, the higher concentrations of ATRi

rendered measurements unattainable at six days due to too

much cell death (data not shown). We also observed increased

levels of total STAT1 after the treatments (Figure 2E;

Supplementary Figure S1D), consistent with previous work in

other cell lines showing that radiation-induced increase in

pSTAT1 is accompanied by increased levels of total STAT1

(18). Of note, a previous study has reported that the cGAS–

STING–IFN pathway is defective in U2OS cells due to very low

or undetectable expression levels of STING1 (31). However, we

consistently observed an increase in STING level after treatment

with IR and ATRi (Figure 2G), supporting that this pathway may

likely be active in U2OS cells after the treatment.

To verify that pSTAT1 levels represent an activated type I

interferon signaling cascade, we measured levels of IFN-b in growth
medium supernatants by ELISA three days post treatment.Whereas

the unirradiated mock samples and the samples treated with IR or

ATRi alone failed to give detectable levels of IFN-b, the combined

treatment with IR + 250 nM VE822 – which produced the highest

increase in pSTAT1 levels – gave clearly elevated IFN-b
concentrations in the medium (Figure 2H; Supplementary Figure

S1E). The ELISA measurements thus confirm that the increased
Frontiers in Oncology 05
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pSTAT1 levels correlated with IFN-b secretion. Altogether, these

results indicate that whereas IR alone induces an IFN response at

around six days, the combined treatment with IR and ATRi can

induce an expedited response at three days post treatment.
The effect of co-treatment with IR and
ATRi on interferon signaling varies
between human lung cancer cell lines

As done for U2OS, we next assayed pSTAT1 levels in the non-

small cell lung cancer (NSCLC) cell lines SW900, H1975, A549

and H460. Irradiation alone caused a small increase in pSTAT1

for SW900 and H1975 at three days post treatment, and in A549

at six days post treatment (Figures 3A–C). We detected further

increased pSTAT1 levels upon co-treatment with IR and ATRi for

SW900, H1975 and A549 (Figures 3A–C), albeit to a lesser extent

than for U2OS. The highest levels of pSTAT1 were observed after

treatment with IR + 250 nM VE822 for SW900 and A549

(Figures 3A, C), in concordance with the results for U2OS

(Figures 2F, H). For H1975, the differences between IR and IR

+ ATRi were not statistically significant, but nevertheless, the

pSTAT1 level was increased both after IR alone and in

combination with ATRi when compared to the non-irradiated

cells (Figure 3B). At six days post treatment, all the treatments of

H1975 resulted in pSTAT1 levels around or below the mock

sample background level (Supplementary Figure S2C). SW900, on

the other hand, showed a marked radiation-induced increase in

pSTAT1 level at six days, but still lower than after IR + ATRi at

three days (Supplementary Figures S2A, B), resembling the results

for U2OS.

Notably, no increase in pSTAT1 levels was observed for

H460 after treatment with either IR alone or in combination

with ATRi, neither at three nor six days post treatment

(Figure 3D; Supplementary Figure S2E). This was confirmed

by ELISA measurements of IFN-b in H460 (Figure 3E). H460

thus deviates from the other tested cell lines, all of which showed

an increase in pSTAT1 levels after treatment with IR and/or IR +

ATRi. To address whether H460 also deviated in terms of G2

checkpoint abrogation, we performed cell cycle analyses after

treatment with 5 Gy IR + 250 nM VE822. However, all four lung

cancer cell lines showed a clear G2 arrest at 17 hours after

irradiation, which was abrogated upon ATR inhibition

(Figures 3F, G; Supplementary Figures S3A, B). Of note is that

A549 had less accumulation of cells in G2 phase after irradiation,

likely due to a more pronounced G1 checkpoint (Supplementary

Figure S3A). Thus, A549 may cycle more slowly than the other

cell lines after the treatment, which could possibly explain the

delayed IFN response in this cell line relative to the others.

Together, these results show that ATRi can increase the IFN

response after irradiation in three out of the five cell lines tested,

and weakly in further one cell line, while the G2 checkpoint was

abrogated in all five cell lines.
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FIGURE 3

ATRi abrogates radiation-induced G2 checkpoint arrest in four human lung cancer cell lines, and gives increased IFN response in three of these.
(A–D) Immunoblots for indicated NSCLC cell lines after treatment with IR and ATRi. Bar charts show pSTAT1 levels relative to loading controls
and normalized to 5 Gy. (Results for A549 at three days after treatment and at six days for the other cell lines are shown in Supplementary Figure
S2). g-tubulin, PNUTS and pan-actin were used as loading controls. (E) ELISA of IFN-b in H460 cells treated and analyzed as in Figure 2H. (The
zero values are from an experiment where all IFN readings were equal to or lower than the lowest value of the standard curve). (F) Proportion of
cells in G2/M phase after treatment with IR and 250 nM VE822. The corresponding DNA histograms are shown in Supplementary Figure S3.
(G) Bar-plotted quantification of G2/M proportions from three independent experiments performed as in (F), at 17 hours after treatments.
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Increased pSTAT1 levels after combined
treatment with IR and ATRi are
dependent on cGAS

To investigate whether the treatment-induced increases in

pSTAT1 levels were dependent on the cytosolic DNA sensor

cGAS, we performed siRNA transfection to deplete cGAS in

U2OS, A549 and SW900. For all three cell lines, the increase in

pSTAT1 level was abolished or heavily diminished upon cGAS

depletion (Figure 4A). This result substantiates the hypothesis of

IFN secretion in response to detection of cytosolic DNA by

cGAS after treatment with IR and ATRi. To further elucidate

cGAS’ role in the response, we performed immunofluorescence

microscopy of U2OS at three days after treatment with IR with

and without 250 nM VE822. If cGAS initiates the type I IFN

response after detection of de facto cytosolic DNA in

micronuclei, cGAS should localize to the micronuclear lumen.

Indeed, cGAS formed distinct foci localized to micronuclei in

U2OS cells after the combined treatment (Figure 4B).

Transfection with siRNA targeting CGAS abolished this effect

despite presence of micronuclei (Figure 4C). Furthermore,

siRNA-mediated depletion of STING also abolished the IFN

response after IR and ATRi, highly consistent with activation of

the cGAS–STING–IFN pathway in U2OS cells (Supplementary

Figure S4A). In contrast, transfection with three different non-

targeting control siRNAs did not eliminate the IFN response

(Supplementary Figure S4A). Taken together, these results show

that the IFN response is dependent on cGAS–STING, and that

there is a link between micronuclear cGAS localization and

induction of the type I IFN response.
Caspase inhibition restores the IFN
response in H460 cells and increases the
responses in the other cell lines.

As H460 deviated from the other cell lines by the lack of IFN

response after treatment, and as TREX1 can degrade the DNA

substrate of cGAS, we assessed the protein level of TREX1 in all

the cell lines (Figure 5A). The level of TREX1 was considerably

higher in H460 than in the other cell lines (Figures 5A, B), which

could imply that TREX1 is responsible for the lack of IFN

response in H460. To address this, we depleted TREX1 by

siRNA transfection. However, depletion of TREX1 in H460

caused massive cell death and growth arrest, and did not

produce any IFN response upon treatment with IR and ATRi

(data not shown). We therefore titrated the siRNA concentration

to obtain a partial depletion of TREX1 in H460, reaching

approximately similar level of TREX1 as in the other cell lines

(Figure 5C). In this experiment we also included a pan-caspase

inhibitor (Q-VD-OPh) to address whether apoptotic cell death

might camouflage the effect of TREX1 depletion. Remarkably,
Frontiers in Oncology 07
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the caspase inhibition, but not the TREX1 depletion, resulted in

a high pSTAT1 level after treatment with IR and ATRi in H460

(Figure 5C). The magnitude of this response after the triple-

treatment was comparable to the IFN response in U2OS cells

after IR + ATRi (Figure 5D). The caspase inhibitor also increased

the pSTAT1 levels after IR + ATRi in U2OS, SW900 and A549

cells, but no increase was seen in H1975 cells (Figure 6A). Of

note is that these differences were not statistically significant for

U2OS and A549, but all the experiments anyway showed a

similar trend (Figure 6A). To further validate these findings, we

measured IFN-b by ELISA in H460, U2OS, H1975 and SW900

cells after treatment with ATRi and/or IR in the presence and

absence of the caspase inhibitor. The ELISA results confirmed

that caspase inhibition restores the IFN response in H460 and

increases the responses in U2OS and SW900 cells (Figures 6B,

C). Intriguingly, caspase inhibition also increased IFN-b
secretion in H1975 cells (Figures 6B, C), despite the lack of

increase in pSTAT1 level (Figure 6A). The amount of secreted

IFN-b was even higher for H1975 than for the other cell lines.

The pSTAT1 response occurring downstream of IFN-b secretion
must thus somehow be downregulated in H1975 cells.

Treatment-induced cleavage of caspase-3 and PARP1 were

detected in H460, U2OS and H1975 cells (Supplementary

Figure S4B), which also were the three cell lines showing

biggest increases in IFN response upon caspase inhibition.

Altogether, these results strongly suggest that treatment-

induced caspase activation is responsible for the lack of IFN

response in H460 cells after IR + ATRi. Furthermore, caspase

activation also counteracts the IFN response in the other

cell lines.
Discussion

Combined treatment with ATRi and radiotherapy is a

promising strategy under evaluation in clinical trials (10, 11,

32). While the rationale until recently has been ATR’s function

in DNA damage repair and cell cycle checkpoints, a new role for

ATR is also emerging in the suppression of antitumor immune

responses [reviewed in (33–35)]. However, the mechanisms of

how ATRi regulate immune effects, and to what extent these are

important in human cancers, have been unclear. We show that

the ATR inhibitors VE822 and AZD6738 can potentiate

radiation-induced, cGAS-dependent type I interferon signaling

in several cell lines from human osteosarcoma and NSCLC. On

the other hand, IFN signaling was not observed in one of the

NSCLC cell lines, H460, despite abrogation of the G2 checkpoint

and presence of micronuclei. Remarkably, upon addition of a

pan-caspase inhibitor, the IFN response was restored in this cell

line after irradiation and ATR inhibition. Moreover, the caspase

inhibitor also increased the IFN responses in the other cell lines.

Our results are consistent with a model where the ATR

inhibitors’ abrogating effect on the G2 checkpoint leads to an
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A

B

C

FIGURE 4

Increased IFN signaling after IR and ATRi is dependent on the cytosolic DNA sensor cGAS.(A) Immunoblots and quantifications of pSTAT1 levels
in non-transfected (N/T) and siCGAS-transfected cells at three (U2OS, SW900) or six (A549) days after treatment. Bar charts show pSTAT1 levels
relative to loading controls (g-tubulin or PNUTS) and normalized to 5 Gy. (B) Micrographs of U2OS cells stained with antibodies against cGAS
(red) and dsDNA (green) at three days after treatment. (C) Micrographs of U2OS cells transfected with siCGAS as in (A) and harvested at three
days after treatment with 5 Gy and 250 nM VE822. Arrows in Figure B-C indicate cGAS foci localized to micronuclei. Scale bars: 20 µm.
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IFN response via detection of micronuclear DNA by the

cytosolic DNA sensor cGAS. The ATR inhibitors thereby

accelerate and increase the radiation-induced IFN response.

However, treatment-induced caspase activation can suppress

this response (Figure 7).
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Our finding, that caspase inhibition increases interferon

signaling, is consistent with previous studies showing caspase-

dependent suppression of the cGAS–STING–IFN pathway

during DNA virus infection [reviewed in (23)]. A previous

study has reported that caspase inhibition also can increase
A B

D

C

FIGURE 5

Caspase inhibition restores IFN signaling in the H460 cell line, which initially lacked the IFN response after IR + ATRi. (A) Immunoblots showing
cGAS and TREX1 levels at three days after treatment. Three leftmost lanes: 10, 25 and 50% loading of the co-treated SW900 sample. ATRi: 250
nM VE822. (B) Quantification of immunoblots from three independent experiments as shown in (A) for TREX1, relative to total protein levels and
normalized to U2OS mock. (C) Left: Immunoblots of H460 cells at three days after treatment with IR (5 Gy), ATRi (250 nM VE822) and a pan-
caspase inhibitor (20 µM Q-VD-OPh). Cells were transfected with control siRNA (UNC; universal negative control) or siRNA targeting TREX1 at
six hours prior to the treatment. Right: Quantification of immunoblots for pSTAT1 and TREX1 from two independent experiments, relative to
total protein and normalized to the triple-treated non-transfected (N/T) cells (third lane). (D) Immunoblots of H460 cells and U2OS cells at three
days after the indicated treatments. The caspase inhibitor was present at 10 µM or 20 µM for 0-72 h or 24-72 h after irradiation, as indicated.
The ATR inhibitor (VE822) was present for 0-72 h. Bottom bar chart shows quantification of pSTAT1 levels from three (two for the two latter triple-
treatments for both cell lines) independent experiments, relative to g-tubulin and normalized to the co-treated U2OS sample (5 Gy + 250 nM
VE822). Dashed line is included to compare pSTAT1 levels for the triple treated H460 cells with the co-treated U2OS cells.
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radiation-induced IFN secretion (36). However, to our

knowledge, it has not previously been shown that caspase

inhibition increases the IFN response after combined

treatment with IR and ATRi. We propose that treatment-

induced caspase activation counteracts the IFN response

mediated by cGAS-detection of DNA from ruptured

micronuclei. This finding may partly explain why different

cancer cell lines show large variations in the extent of IFN
Frontiers in Oncology 10
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response after irradiation and ATR inhibition [this study and

(17)]. In some cell lines, the treatment induces strong caspase

activation which suppresses the response. The underlying

molecular mechanism of how pan-caspase inhibition increases

the IFN response after IR and ATRi remains to be elucidated.

Caspases may potentially cleave cGAS or other factors in the

cGAS–STING signaling cascade (23, 37). Furthermore, the

previous study with radiation-induced IFN suggested that
A B

C

FIGURE 6

Caspase inhibition increases secreted IFN-b. (A) Quantification of pSTAT1 levels from three independent immunoblot experiments in each cell
line at three days (H460, U2OS, H1975, SW900) or six days (A549) post treatment. Values are relative to g-tubulin or total protein and
normalized to the triple-treated sample. One sample t test was conducted for differences between co-treated (5 Gy + ATRi) and triple-treated
(5 Gy + ATRi + CASPi) samples. (B) ELISA measurements of secreted IFN-b in 20X upconcentrated growth medium supernatants from samples
three days after IR and ATRi. ATRi: 250 nM VE822, CASPi: 10 µM Q-VD-OPh (24–72 h). Top: U2OS and H460 with DMEM medium control;
bottom: H1975 and SW900 with RPMI medium control. Results from Figures 2H and 3E are included in the plots for U2OS and H460 without
CASPi. (C) The IFN-b values in (B) for co-treated (5 Gy + ATRi) normalized to the values for triple-treated (5 Gy + ATRi + CASPi) samples. (n.t.:
not tested (U2OS, n = 2), n.s.: not significant).
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caspase inhibition prevents breakdown of irradiated cells with

cytosolic DNA (36). Notably, the IFN response is regulated by

multiple factors. In addition to the micronuclei, mitochondrial

DNA or endogenous retroviruses can also cause IFN induction

after irradiation (38, 39). An important task for the future is

therefore to better understand the relative contribution from

each of these pathways.

The lack of IFN response in H460, after both irradiation

alone and co-treatment with IR and ATRi, coincided with a

higher baseline level of TREX1 in this cell line than in the

responding ones. We therefore hypothesized that TREX1 might

be a regulating factor for the cGAS–IFN signaling pathway in

H460. However, neither partial depletion nor full depletion of

TREX1 by siRNA transfection did increase IFN signaling in

H460. Furthermore, we failed to see an increase in TREX1 levels

after treatment with high radiation doses (10-20 Gy). The

observed reduction of IFN response after high doses did

therefore not correlate with an induction of TREX1 expression,

in contrast to the results of a previous study (25). However, while

we assessed TREX1 protein levels, the previous study examined

TREX1 mRNA levels and also applied other cell lines than us,

which might explain differences between the results.

In our study, we employed two different concentrations of

the ATR inhibitors. While the highest, most toxic concentrations

of the inhibitors (250 nM VE822; 1250 nM AZD6738) abrogated

the G2 checkpoint and induced IFN signaling, the lower

concentrations (50 nM VE822; 250 nM AZD6738), which

were less toxic, only moderately abrogated the checkpoint and

showed minor increases in IFN signaling. Of note is that the

higher inhibitor concentrations are toxic even without

irradiation, and the concentrations typically used for

radiosensitization of cancer cell lines are closer to the lower

concentrations in our study. Radiosensitizing effects have for

instance been reported with 25-50 nM VE822 in U2OS and
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A549 cells (40) and with 100-300 nM AZD6738 in A549 and

H460 cells (41), as measured by clonogenic survival.

Interestingly, in order to cause pronounced increases in IFN

signaling, the cells required higher concentrations of the

inhibitors than what is needed for a mere radiosensitizing

effect. The effects of ATRi in IFN signaling nevertheless

required co-treatment with radiation, as treatment with the

inhibitors in the absence of irradiation caused no or only small

increases in IFN response (Figures 2H; 3E; 6A, B).

The reduction in IFN response after high IR doses (10-20 Gy)

correlated with a prolonged G2 checkpoint arrest. This correlation

is in line with previous reports showing reduced IFN signaling and

a longer G2 checkpoint arrest after irradiation of DNA repair-

deficient cells, as compared to repair-proficient cells (16, 18). In

repair-deficient cells, the higher level of unrepaired DNA damage

with low radiation doses will cause a longer G2 checkpoint arrest,

analogous to the prolonged checkpoint arrest seen in repair-

proficient cells with high radiation doses. Our results thus

strongly support the notion that radiation-induced cell cycle

arrest functions to suppress the type I IFN response (16).

Previously, a phenomenon of checkpoint adaptation and G2

checkpoint imperfectness, allowing cells to escape checkpoint

arrest even with remaining DNA breaks, has been described (42,

43). Interestingly, the link between micronuclei and induction of

IFN signaling suggests an important functional role of checkpoint

adaptation in stimulating antitumor immune responses.

In conclusion, the combined treatment of irradiation and

ATR inhibition can potentiate radiation-induced type I IFN

responses, and thus be a candidate immunostimulatory

radiotherapeutic strategy. The clinically relevant immune effect

of such co-treatment will likely depend on the type of cancer, the

heterogeneity of the tumors and possibly also treatment-induced

caspase activation. Adding caspase inhibitors could potentially

also be a future strategy to increase antitumor immune effects,
FIGURE 7

Model for regulation of type I IFN response by G2 checkpoint arrest. Treatment with IR alone (top) can induce a delayed IFN response,
occurring after completion of the IR-induced G2 checkpoint arrest. When the G2 arrest is abrogated by ATRi (ATRi + IR; bottom), the IFN
response comes earlier, and it is also stronger (because more micronuclei are formed when there is less time for DNA repair prior to mitosis). In
both cases IFN is induced due to immune recognition of DNA from ruptured micronuclei, via the cGAS–STING–IFN pathway. This pathway can
be suppressed by treatment-induced caspase activation.
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although it is far from clear how they will affect both normal

tissue and other antitumor responses. Further in vivo

investigation will unveil the fuller potential of these combined

treatments, which may also be further combined with immune

checkpoint inhibition.
Materials and methods

Cell culture, irradiation and
inhibitor treatment

Human H460 and A549 NSCLC and U2OS osteosarcoma

cells were grown in DMEM with GlutaMAX-I, and SW900 and

H1975 NSCLC cells in RPMI 1640 medium with GlutaMAX-I

(both media from Gibco by Life Technologies), at 37°C with

humidified 5% CO2 atmosphere. The media were supplemented

with 10% fetal bovine serum (Biowest) and 1% penicillin–

streptomycin solution (50 IU/ml) (Gibco). Cells were tested

for Mycoplasma infection, and their identity was confirmed by

short tandem repeat analysis. ATR inhibitors VE822

(berzosertib/VX970, Selleckchem) and AZD6738 (ceralasertib,

Selleckchem) were added 10–30 minutes before irradiation

(160 kV X-rays, 1 Gy/min, Faxitron CP-160).
Cell cycle analysis

Cells were fixated with 70% ethanol, stained with Hoechst

33258 (Sigma-Aldrich) and analyzed with a LSR II flow

cytometer (BD Biosciences) coupled to the BD FACSDiva v8

software. DNA histograms were analyzed in FlowJo v10. Cell

cycle analysis was conducted by the Watson algorithm.
Immunoblotting

Cells were lysed in whole-cell lysis buffer (20 mM NaCl, 2

mM MgCl2, 50 mM Tris-HCl pH 7.5, 0.5% Triton X-100) with

protease and phosphatase inhibitor cocktails (cOmplete mini

(EDTA-free) and PhosSTOP EASYpack, Roche) and benzonase

(100 IU/ml; Merck/Sigma-Aldrich). Protein concentration was

measured by Micro BCA Protein Assay kit (ThermoFisher

Scientific), and adjusted. Lane Marker Reducing Sample Buffer

(Pierce) was added and the samples were boiled for 10 minutes

at 95°C. SDS-polyacrylamide 4-15% gradient gels (Bio-Rad)

were used for electrophoresis and nitrocellulose membranes

(Bio-Rad) for blotting. The resulting membrane was blocked

in 5% non-fat skimmed-milk powder in PBS with 0.1% Tween

(PBST) at room temperature for a minimum of 30 minutes.

Membranes were stained with primary antibodies at 4°C over-

night and secondary antibodies at room temperature for 30-45

minutes (antibodies were diluted in the aforementioned
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b lock ing so lu t ion) , be fore add i t ion o f enhanced

chemiluminescence solution (ThermoFisher Scientific).

Washing of membranes after transfer and antibody

incubations was done in room-tempered PBST. Images were

processed and quantifications were performed in Image Lab 4.1

(Bio-Rad). Range of detection was verified by excluding

saturated signals and by including a dilution series of one of

the samples (see Figure 5A). The resulting standard curve

allowed for accurate quantification. Antibodies are listed in

Supplementary Table 1.
Immunofluorescence microscopy

Cells were cultured on glass coverslips and fixated with 10%

formalin solution (Sigma-Aldrich) for 10 minutes at room

temperature. Cells were permeabilized with 0.2% Triton X-100

(Sigma-Aldrich) in PBS, and stained with primary antibodies for

1 hour followed by secondary antibodies for 30 minutes. For

blocking, the antibodies were diluted in room-tempered DMEM

with 10% FBS upon staining of coverslips. The coverslips were

washed three times in PBS after fixation, permeabilization and

antibody incubations. Coverslips were mounted with mowiol

solution (Sigma-Aldrich) . Antibodies are l isted in

Supplementary Table 2.
siRNA transfection for gene knockdown

For cGAS depletion, cells were transfected with 20 nM

siCGAS (M-015607-01-0005, SMARTpool, Dharmacon). For

STING depletion, cells were transfected with 10 nM siSTING1

(siTMEM173, ID 128591, Ambion). For partial TREX1 depletion,

cells were transfected with 5 nM siTREX1 (ID s535182, Ambion).

All transfections were performed with Lipofectamine RNAiMax

(Invitrogen), at six hours before treatment. For siRNA sequences,

consult Supplementary Table 3.
Enzyme-linked immunosorbent assay
(ELISA) of interferon-b

Growth medium supernatants were centrifuged to exclude

floating cells. Resulting supernatants were 20X up-concentrated

by centrifuge filtering through 10 kDa cut-off columns (Amicon

Ultracel-10, Merck). ELISA (Human IFN-beta DuoSET ELISA,

R&D Systems) was conducted according to supplier’s protocol.

Optical density was measured at 450 nm with pathlength

correction at 540 nm in a microplate spectrophotometer

(PowerWave XS2, BioTek) coupled to the Gen5 software

v2.09.1. IFN-b standards were included in all experiments, and

a best-fitting 2nd degree polynomial function was used for

calculation of measured IFN-b in the samples.
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Statistics

Error bars represent standard error of the mean (SEM; n ≥

3). Dots in bar charts indicate individual experiments. p values

(one-sample Student’s t test for pairs involving normalization

value (i.e. 5 Gy for most plots); two-tailed, paired-samples

Student’s t test for the remaining pairs) were calculated with

IBM SPSS Statistics v28, with significance level set to 0.05. *p ≤

0.05, **p ≤ 0.01, ***p ≤ 0.001.
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Ewing sarcoma is a fusion-oncoprotein-driven primary bone tumor most

commonly diagnosed in adolescents. Given the continued poor outcomes

for patients with metastatic and relapsed Ewing sarcoma, testing innovative

therapeutic approaches is essential. Ewing sarcoma has been categorized as a

‘BRCAness’ tumor with emerging data characterizing a spectrum of DNA

damage repair defects within individual Ewing tumors, including the

presence of EWSR1::FLI1 itself, recurrent somatic mutations, and rare

germline-based defects. It is critical to understand the cumulative impact of

various DNA damage repair defects on an individual Ewing tumor’s response to

therapy. Further, in addition to DNA-damage-directed therapies, subsets of

Ewing tumors may be more susceptible to DNA-damage/immunotherapy

combinations given the significant cross-talk between DNA damage and

inflammatory pathways in the tumor microenvironment. Here we review

potential approaches utilizing DNA-damaging agents as modulators of the

Ewing tumor immune microenvironment, with a focus on radiation and

opportunities during disease metastasis and relapse.

KEYWORDS

Ewing sarcoma, radiation, immunobiology, DNA damage, immunomodulation, relapse
Introduction

Ewing sarcoma is the second most common bone tumor diagnosed in adolescents

and young adults. Ewing sarcoma is driven by a fusion oncoprotein derived from the

translocation of EWSR1 on chromosome 22 with an ETS family member, most

commonly FLI1 on chromosome 11 (1). Patients with upfront metastatic or relapsed

Ewing sarcoma continue to have very poor outcomes (2), and new therapeutic

approaches continue to be in high demand. The exquisite sensitivity of Ewing tumors

to DNA damage has been recognized for decades and DNA damaging agents such as

chemotherapy and radiation continue to be the mainstays of Ewing sarcoma therapy,

even for aggressive disease (3).
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DNA damage can elicit significant alterations in tumor

biology, including modulation of the tumor immune

microenvironment (TIME). Historically, the impact of DNA

damage on the Ewing TIME has been understudied given a

paucity of tumor biopsies at the time of relapse and the lack of

syngeneic or transgenic (immunocompetent) mouse models of

Ewing sarcoma (4). DNA-damaging agents can promote

immunogenicity through multiple mechanisms including

increasing the neoantigen repertoire, increasing antigen

presentation, and shifting the cytokine profile to promote an

inflamed tumor microenvironment (5, 6). Understanding TIME

alterations elicited by DNA damage specifically in Ewing

sarcoma is a high priority, as TIME modulation during DNA

damage may offer a new avenue for therapy for patients with

aggressive disease. Therapeutically, it can be challenging to

increase chemotherapy doses or add additional marrow-

suppressive agents into existing chemotherapy backbones for

the treatment of Ewing sarcoma, also highlighting why multi-

modality approaches, such as TIME modulation, are in need.

Immunotherapy includes medications and cell-based

therapies that broadly act by enhancing the anti-tumor

immune response through various mechanisms (7) and have

been utilized successfully in many adult carcinomas and soft

tissue sarcomas (8, 9) (10). Clinical trials investigating single-

agent immunotherapy, such as PD1 inhibition, have not

demonstrated a significant clinical benefit in advanced Ewing

sarcoma (11, 12). Given the importance of immunotherapy type

and timing in disease response (13) such results are neither

surprising nor discouraging when currently so little is known

about the Ewing TIME. Primary Ewing sarcoma is known to

have low overall immune infiltration compared to other tumors

types. However, some studies have demonstrated a correlation

between increased infiltration of CD8+ T cells and improved

outcomes (14, 15). Our recent work demonstrated the Ewing

TIME can evolve and demonstrate enhanced immune cell

infiltration upon disease metastasis and relapse, possibly due

to a combination of prior chemotherapy exposure and changes

in tumor microenvironments (bone versus lung) (16). This work

again highlights the need to better understand Ewing tumor

immunobiology, especially in the setting of relapse.

In this mini-review we will discuss the layers of DNA

damage repair defects in Ewing sarcoma, how DNA damaging

agents can influence the TIME, and ways in which

immunomodulation during DNA damage could provide new

therapeutic opportunities for Ewing sarcoma in the future.
DNA damage and Ewing sarcoma

EWSR1::FLI1 and DNA damage sensitivity

Ewing tumors demonstrate high sensitivity to DNA damage.

DNA damaging agents , including doxorubicin and
Frontiers in Oncology 02
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cyclophosphamide, have formed the chemotherapy backbone

for the treatment of Ewing sarcoma since the first use of adjuvant

therapy in the 1970s (17). Ewing sarcoma is also sensitive to

radiation therapy (18). Decades later, a screen of hundreds of

cancer cell lines seeking to identify biomarkers for targeted

cancer agents discovered EWSR1::FLI1 was significantly

associated with sensitivity to the PARP [Poly (ADP-ribose)

polymerase] inhibitor (PARPi) olaparib (19). PARP1 is an

enzyme involved in DNA damage repair and a drug target in

BRCA-mutant cancers deficient in homologous recombination

repair (20). PARP1 drives transcription and accelerates base

excision repair (21, 22), and inhibition of PARP1 leads to cell

death in cancers deficient in homologous repair by causing

defects in the replication fork needed to repair DNA damage.

Further studies elucidated that EWSR1::FLI1 interacts directly

with PARP (20). Gorthi et al. demonstrated that expression of

the EWSR1::FLI1 fusion oncoprotein correlated with increased

chemosensitivity (23). Mechanistically, they found that EWSR1::

FLI1 promotes R-loop accumulation, and ultimately deranges

DNA damage repair machinery by impairing normal BRCA1

functionality. A study in 2002 by Spahn et al. also demonstrated

that the N-terminal portion of EWSR1::FLI1 can interact with

the C-terminal portion of BRCA1-Associated Ring Domain 1

(BARD1), thus providing another potential link between

EWSR1::FLI1 and BRCA1 biology (24). Such studies provided

rationale for phase II clinical trial of olaparib as single-agent

therapy in patients with refractory Ewing sarcoma (25) and

subsequent studies have demonstrated that sensitivity to PARP

inhibition in Ewing sarcoma is increased in the setting of other

DNA damaging agents (irinotecan, temozolomide) (26). Despite

this, the overall clinical response of Ewing tumors to PARPi has

been underwhelming. Lastly, elegant work has demonstrated the

importance of the level of EWSR1::FLI1 fusion oncoprotein

expression on Ewing cell behavior. EWSR1::FLI1 expression

can vary between cells within a tumor. It is plausible that

Ewing cells with low versus high EWS::FLI1 expression may

demonstrate altered sensitivity to DNA damage (27–29), thus

allowing for tumor cell subpopulation targeting.
Somatic and germline variants in
Ewing sarcoma

In addition to DNA-damage-repair defects imparted by

EWSR1::FLI1 in all Ewing tumors, there is the potential for

Ewing tumors to harbor additional defects in DNA damage

repair through the presence of somatic and germline variants or

post-transcriptional modifications resulting in loss of protein

expression. When comparing Ewing tumors to adult

carcinomas, and even other pediatric primary bone tumors

such as osteosarcoma, Ewing sarcoma demonstrates a very low

tumor mutational burden (30–32). A handful of recurrent

somatic variants, such as STAG2, CDKN2A, and TP53 have
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been reported in Ewing sarcoma (31, 32). Ewing tumors

harboring one or more of these somatic mutations may

demonstrate altered responses to DNA damage, as each of the

corresponding proteins have been shown to participate in DNA

damage repair through different mechanisms. For example, in

vitro studies of STAG2-deficient glioblastomas demonstrated

increased sensitivity to PARP inhibition (33). In Ewing sarcoma,

loss of STAG2 expression can be secondary to STAG2 somatic

mutations or loss of protein expression in the absence of a

mutation (34).

A third layer of DNA-damage-repair deficiency to consider

in Ewing sarcoma derives from germline pathogenic variants.

Multiple sequencing studies of pediatric cancers have noted a

small fraction of germline pathogenic variants in patients with

Ewing sarcoma (35, 36). In a germline variant analysis of

sequencing data from 175 patients with Ewing sarcoma, likely

pathogenic variants were identified in 13.1% of patients (37). In

the variants found, involving 22 different genes, a strong

enrichment for DNA repair pathways and DNA double-strand

break repair was noted on pathway analysis. Our work and

others continue to add to the growing number of germline

variants in DNA damage repair genes noted in patients with

Ewing sarcoma (38, 39). Our group’s prior work demonstrated

that loss of additional DNA damage repair machinery, such as

BARD1 expression, can indeed confer Ewing cells more

susceptible to DNA damage as compared wuth the sensitivity

imparted by the presence of EWSR1::FLI1 alone (40). Figure 1

depicts a brief summary of the spectrum of DNA damage repair

deficiencies in Ewing sarcoma.
DNA damaging agents used in Ewing
sarcoma therapy

Given the spectrum of DNA damage repair defects in Ewing

sarcoma, DNA damaging agents will continue to be a mainstay

of therapy. Following the original treatment schema with

doxorubicin and cyclophosphamide discussed above, in the

1980s it was noted that ifosfamide and etoposide, which also

exert their anti-neoplastic effect through induction of DNA

damage, were effective in treating patients with relapsed Ewing

sarcoma (41). This led to the development of the National

Cancer Institute protocol INT-0091 (CCG-7881 and POG-8850)

in which ifosfamide and etoposide were added to the

standard therapy backbone. Improved overall and event free

survival was seen in patients with newly diagnosed, localized

Ewing sarcoma using this five-drug approach (42). Alternating

cycles of VDC (vincristine, doxorubicin, cyclophosphamide)

and IE (ifosfamide and etoposide) thus remain the standard of

care for patients with upfront localized or metastatic Ewing

sarcoma. AEWS0031 later demonstrated that shortening the

time between cycles (interval compression) provides additional

benefit (43).
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In addition to chemotherapy, radiation is also an important

component of Ewing sarcoma treatment. Radiation is a curative-

intent treatment modality option for local control, either as

definitive treatment or as adjuvant treatment following surgical

resection. The commonly prescribed radiation dose for definitive

treatment of primary tumors is 55-60 Gy in 1.8-2 Gy fractions

(44). The most recent Children’s Oncology Group protocols for

Ewing sarcoma recommend 45 Gy be delivered to the original

tumor volume with an additional 10.8 Gy boost delivered to the

post-induction chemotherapy volume (3). Gross residual disease

post-surgical resection is treated with 55.8 Gy, and microscopic

disease treated with 50.4 Gy. There has recently been data

suggesting that dose escalation up to a total dose of 70.2 Gy

may be of benefit in improved local control (45), although this

strategy has not been widely adopted to date. More recent

studies show that hypofractionation (5-10 Gy doses over 5-10

fractions) may be as or more effective at treating sarcomas,

including Ewing sarcoma (46).

Radiation therapy is also a key component in the treatment

of metastatic and relapsed Ewing sarcoma. For patients

presenting with pulmonary metastases at diagnosis, there have

been multiple studies demonstrating the survival benefit of

whole lung irradiation after completion of chemotherapy (47).

For patients presenting with bony metastases, outcomes are

worse overall; however, radiation delivery to sites of metastatic

disease is beneficial (48). Patients with solitary bone metastases

benefited most from radiotherapy, with doses of up to 50 Gy to

sites of bony metastases being utilized. As patients with Ewing

sarcoma receiving radiation are often a higher-risk patient

population (incomplete resections, metastatic disease, relapse,

etc.), this is a group of high interest when considering

immunotherapy interventions following post-DNA damage

modulation of the Ewing TIME.
Immunomodulation through
DNA damage

Immunomodulation by chemotherapy

DNA damaging chemotherapeutic agents have been shown

to induce immunogenicity through a variety of mechanisms (5).

Given the low mutational burden of Ewing sarcoma, the

mutagenic potential of DNA damaging agents is an appealing

mechanism of enhancing immunogenicity by production of

tumor neoantigens (49). Tumor neoantigens can induce

increased anti-tumor T cell response which is again beneficial

when combined with immunotherapy agents. However,

increased neoantigens in the TIME are not always sufficient to

induce immune response (50). DNA damaging agents

additionally lead to release of damage associated molecular

patterns (DAMPs) after cell death. DAMPs stimulate the
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recruitment of antigen-presenting cells to the site of cell death

and further prime the TIME for an adaptive immune response.

Doxorubicin and cyclophosphamide are utilized in the

treatment of Ewing sarcoma and are known to induce

immunogenic cell death (51). Cyclophosphamide additionally

remains of particular interest as it has been shown to increase

antigen presentation on tumor cells and expand dendritic cell

populations that can promote T cell priming (52, 53).

An additional mechanism by which DNA damaging

chemotherapeutics can increase anti-tumor immune response

is through changes in the cytokine profile of the tumor

environment. Cellular response to DNA damage includes

activation of signaling pathways that lead to release of

proinflammatory cytokines including IFN-a and cytokines

triggered by activation of the NF-kB signaling pathway.

Specifically, cyclophosphamide has been shown to induce IFN-

g and IL-2, pro-inflammatory cytokines that promote

immunogenicity (53). Parkes et al. demonstrated that in a

breast cancer model DNA-damage-repair defects lead to

increased expression of the chemokines CXCL10 and CCL5

from tumor cells (16, 54).

The precise impact of chemotherapy commonly used in

relapsed Ewing sarcoma [irinotecan and temozolomide (IT),

topotecan and cyclophosphamide (TC), high dose ifosfamide

(IFOS), and gemcitabine and docetaxel (GD) (55)] on Ewing

tumor immunobiology is still largely unknown. PARP inhibitors

have been shown to induce infiltration of CD8+ T cells in breast

cancer, and the efficacy of PARP inhibition is due to recruitment

of these cytotoxic T cells through the cGAS/STING pathway

(56). In this model, depletion of CD8+ T cells decreased the

efficacy of PARP inhibition. In addition to recruiting cytotoxic T
Frontiers in Oncology 04
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cells, PARP inhibition has also been shown to increase the

expression of immune checkpoint ligand PD-L1 on cancer

cells (57). Our work has previously shown that PD-L1 and

PD-L2 expression can be manipulated in Ewing cell

subpopulations in response to inflammatory signaling (58).

In summary, the effect of DNA damaging chemotherapeutic

agents used in the treatment of Ewing sarcoma can, in theory,

manipulate the TIME; however, this is an understudied area.

While chemotherapy has the temporary ability to alter the

TIME, ultimately due to systemic effects, patients are largely

overall immunosuppressed during therapy. Thus, focal delivery

of DNA damage, such as radiation therapy, may be beneficial

when considering immunotherapy combinations.
Immunomodulation by radiation

The interest in the immune-mediated effects of radiation

date back to the 1980s when it was first noted that local radiation

can lead to anti-tumor effect at distant sites of disease (59, 60).

Subsequently, many studies have demonstrated that local

radiation can produce systemic immune-mediated anti-tumor

effects, though this is not a consistent finding in all studies (6, 61,

62). Studies examining the radiation anti-tumor effect in

immunocompetent vs immunodeficient mouse models of

melanoma have demonstrated that the presence of CD8+

cytotoxic T cells are necessary for this response (63). Radiation

enhances the immune response to tumors through release of

cytokines and chemokines in the tumor microenvironment

following cell death (64). These cytokines and chemokines

result in infiltration of effector immune cells (dendritic cells,
FIGURE 1

The spectrum of DNA damage repair deficiencies in Ewing tumors. Ewing tumors all have a level of DNA damage repair deficiency imparted by
EWSR1::FLI1. The presence of one or more recurrent somatic mutations or rare germline pathogenic variants have the potential to contribute an
additional level of DNA damage repair deficiency in a subset of Ewing tumors. Figure created by biorender.com.
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macrophages, cytotoxic T cells) as well as immunosuppressive

populations (Tregs, myeloid-derived suppressor cells) (65).

Similar to the effect of chemotherapy described above,

radiation induces immunogenic cell death leading to release of

DAMPs. This leads to increased production and recruitment of

proinflammatory cytokines and chemokines, including CXCL9,

CXCL10, and CXCL11 (66). The generation of this

proinflammatory environment is thought to lead to

recruitment of effector T cells and may enhance the priming

of T cells in the TIME. Recently, the essential role of natural

killer (NK) cells in controlling the radiation-induced anti-tumor

has been demonstrated (67).

In addition to promoting a proinflammatory TIME,

radiation can also exert immunosuppressive effects. Tregs are a

wel l descr ibed subset of CD4+ T cel ls that exert

immunosuppressive effects on the TIME. In some adult

carcinomas, radiation has been shown to increase Tregs and

the subsequent production of immunosuppressive cytokines

including TGF-b and IL-10 (68) TGF-b is known to be

increased following radiation and is converted from its latent

to active form by reactive species generated during radiation

(69). TGF-b exerts immunosuppressive effects on the TIME and

it has been shown that increase in TGF-b in the TIME can lead

to decreased efficacy of immunotherapy through the exclusion of

CD8+ T cells (70). Several studies have demonstrated that

inhibition of the immunosuppressive pathways activated by

localized radiation can improve radiation-induced tumor kill

and anti-tumor immunity (71, 72).

An additional immunosuppressive cell population that can

be induced/increased following radiation are myeloid-deprived

suppressor cells (MDSCs). MDSCs are well described to

promote tumor growth and survival and are known to be

recruited into the TIME of pancreatic and prostate cancer

immediately following radiation (73), with a decrease in this

population seen at 1-2 weeks post radiation. TGF-b is known to

induce differentiation of macrophages to an M2 phenotype

which is protumor and immunosuppressive. These

mechanisms of immunosuppression induced by radiation

represent potential targets to improve the anti-tumor immune

response induced by radiation.
Radiation therapy in Ewing sarcoma:
Untapped potential for multi-
modality therapies

Currently, relatively little is known about the specific impact

of radiation on the Ewing sarcoma TIME. New therapeutic

approaches for patients with metastatic and relapsed Ewing

sarcoma are long overdue. While agents that induce tumor

DNA damage clearly provide some benefit for the treatment of

relapsed disease, they are rarely curative. Understanding which
Frontiers in Oncology 05
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multi-modality therapeutic approaches may circumvent Ewing

tumor cell resistance to single- modality therapies is a priority. It

is possible that subsets of Ewing tumors in the DNA-damage-

repair deficiency spectrum (Figure 1) could demonstrate

differential responses to multi-modality therapy. Radiation

therapy is often utilized in patients with high-risk (metastatic

and relapsed) Ewing sarcoma, and given its potential to

modulate the TIME, it is a logical treatment modality to

consider in combination with immunomodulation (Figure 2).

There has been growing interest in oncology to combine

radiation with immunomodulatory agents to improve the anti-

tumor immune response (74–76). Given the concurrent

immune-stimulatory and immunosuppressive effects that

radiation therapy can trigger in the TIME, there has been

interest in combination therapies targeting both of these

sequalae (77). Broadly speaking, logical categories of

immunomodulators to preclinically study in combination with

radiation for the treatment of Ewing sarcoma include: 1)

immune checkpoint inhibitors (ICI), 2) cytokine modulators,

and 3) cell-based therapies. Here we will briefly address each of

these approaches.

The combination of radiation therapy and ICI in patients

with advanced solid tumors has demonstrated promising early

clinical results (74, 75). It has also been reported that the

presence of DNA damage repair defects, such as germline

BRCA 1/2 pathogenic variants, is correlated with increased

expression of immunosuppressive ligands such as PD-1/PD-L1

(78), considered one marker of response to immune checkpoint

inhibition. This association provides a rationale for preclinically

testing the response of Ewing tumors with additional DNA

damage repair defects to the combination of radiation and

immune checkpoint inhibition.

In addition to examining ICIs, modulation of cytokines in

the tumor microenvironment during radiation therapy is of

great interest. While not every cytokine can be addressed in

this mini-review, we will highlight two. TGF-b is an

immunosuppressive cytokine that is increased in tumor

microenvironments following radiation and has been shown to

confer resistance to radiation (72). Inhibition of TGF-b during

radiation has the potential to enhance the anti-tumor immune

response (79). A second cytokine, IL-6, is known to be secreted

by Ewing tumors (80, 81), and can be upregulated following

radiation-induced DNA damage. Further, it is thought that the

presence of IL-6 in the TME confers radiation resistance (82).

IL-6 inhibitors are active in clinical trials as monotherapy for

cancer (83), however, combination therapy with these inhibitors

during radiation offers another therapeutic avenue worthy of

preclinical testing.

Lastly, there is promise for delivering cell-based therapies in the

setting of radiation. Chimeric antigen receptor T-cells (CAR-T)

therapies have shown great success in the treatment of hematologic

malignancies but have not seen the same success in solid tumors

(84). Challenges have included identification of an ideal target
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antigen, cell trafficking to the tumor, and the overall

immunosuppressive environment of solid tumors. Therapies

targeting the DNA damage repair pathway have shown some

success in solid tumors in improving response to CAR-T therapy

through induction of a more pro-inflammatory TIME (85).

Additionally, radiation therapy delivered prior to administration

of CAR-T in a mouse model of glioblastoma demonstrated

improved trafficking and efficacy of the CAR-T cells post-

radiation (86). There is ongoing research in the field to identify a

targetable antigen for cell based therapies for the treatment of Ewing

sarcoma (87). In addition to CAR-T cell therapy, dendritic cell-

based immunotherapy is a cell-based therapy that could logically be

combined with DNA-damaging agents. Studies have demonstrated

improved efficacy of dendritic cell vaccination when given in

combination with radiation (88, 89). Lastly, as noted above,

recent work has demonstrated the key role of NK cells in the

radiation anti-tumor response. Understanding the role of NK cells
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in the TIME of Ewing tumors specifically during radiation is a

priority (67, 90).
Future directions and challenges

Significant historical impediments to studying the

influence of DNA damage on the immune microenvironment

in Ewing sarcoma include, but are not limited to, the lack of an

immunocompetent animal model of Ewing sarcoma (4) and

the sparsity of samples from disease relapse and pre-/post-

intervention biopsies. Recently, a genetically engineered

zebrafish model of Ewing sarcoma has been developed, which

may offer a new immunocompetent model (91), although

studies specifically investigating immune interactions in this

model have not yet been performed. A potentially valuable

model for studying the TIME of Ewing sarcoma is the
FIGURE 2

Radiation and the Ewing sarcoma tumor immune microenvironment. Radiation is often utilized for the treatment of Ewing sarcoma in the
setting of unresectable primary tumors, lung metastases, relapse to the bone, etc. The Ewing tumor immune microenvironment can
demonstrate differences in immune infiltration and cytokine abundance in these distinct microenvironments where radiation is utilized. Figure
created by biorender.com.
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development of humanized (presence of human immune cells),

immunocompetentmousemodels, a focus of ongoing work by our

group. Developing and validating a robust preclinical model to

study the impact of DNA-damaging agents used clinically for the

treatment of Ewing sarcoma on theTIME is a crucial and necessary

step toward determining promising immunomodulatory agents to

partner with radiation or chemotherapy in an attempt to improve

the outcomes for patients with advanced disease. While DNA

damage, such as radiation therapy, is the focus of this mini-

review, the impact of other novel agents, such as tyrosine kinase

inhibitors, agents targeting EWSR1::FLI1, etc., on the Ewing

sarcoma TIME are also worthy of exploration and represent a

limitation of this mini-review.
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Clonogenicity-based
radioresistance determines
the expression of immune
suppressive immune
checkpoint molecules after
hypofractionated irradiation
of MDA-MB-231 triple-
negative breast cancer cells

Simon Gehre1,2,3, Felix Meyer4, Azzaya Sengedorj1,2,3,
Fridolin Grottker1,2,3, Clara M. Reichardt1,2,3, Jannik Alomo1,2,3,
Kerstin Borgmann4, Benjamin Frey1,2,3, Rainer Fietkau2,3,
Michael Rückert1,2,3† and Udo S. Gaipl1,2,3*†

1Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2Department of Radiation
Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Erlangen, Germany, 3Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany, 4Laboratory
of Radiobiology and Experimental Radiooncology, Department of Radiotherapy and Radiation
Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Only a subset of patients with triple-negative breast cancer (TNBC) benefits from

a combination of radio- (RT) and immunotherapy. Therefore, we aimed to

examine the impact of radioresistance and brain metastasizing potential on the

immunological phenotype of TNBC cells following hypofractionated RT by

analyzing cell death, immune checkpoint molecule (ICM) expression and

activation of human monocyte-derived dendritic cells (DCs). MDA-MB-231

triple-negative breast cancer tumor cells were used as model system.

Apoptosis was the dominant cell death form of brain metastasizing tumor

cells, while Hsp70 release was generally significantly increased following RT

and went along with necrosis induction. The ICMs PD-L1, PD-L2, HVEM, ICOS-L,

CD137-L and OX40-L were found on the tumor cell surfaces and were

significantly upregulated by RT with 5 x 5.2 Gy. Strikingly, the expression of

immune suppressive ICMs was significantly higher on radioresistant

clones compared to their respective non-radioresistant ones. Although

hypofractionated RT led to significant cell death induction and release of

Hsp70 in all tumor cell lines, human monocyte-derived DCs were not

activated after co-incubation with RT-treated tumor cells. We conclude that

radioresistance is a potent driver of immune suppressive ICM expression on the
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surface of TNBC MDA-MB-231 cells. This mechanism is generally known to

predominantly influence the effector phase, rather than the priming phase, of

anti-tumor immune responses.
KEYWORDS

radiotherapy, breast cancer, radioresistance, immune checkpoint molecules, dendritic
cells, tumor cell death
1 Introduction
Triple-negative breast cancer (TNBC) is defined by the absence

of estrogen receptor (ER), progesterone receptor (PR) and human

epidermal growth factor receptor 2 (HER2) expression. It accounts

for 10-20% of all breast cancer cases and is characterized by high

invasiveness, early metastasis (esp. lung- and brain-metastases), and

high recurrence rate. Despite similar therapeutic approaches

(surgery, chemo- and radiotherapy), TNBC remains the breast

cancer subtype with the worst prognosis. High heterogeneity, the

lack of hormone receptors and chemoresistance (triple-negative

paradox) leave little room for targeted therapy approaches (1–3).

Therefore, therapeutic strategies leading to improved therapy

outcomes are urgently needed.

Adjuvant radiotherapy (RT) is perceived as standard of care in

patients with early-stage breast cancer undergoing breast-

conserving surgery and complete mastectomy. The goal of it is to

reduce the risk of locoregional recurrence and breast cancer

associated mortality (4, 5). In this context moderately

hypofractionated RT (HFRT) has gained importance over the last

years (6). It is characterized by increased dose per fraction and

simultaneously, decreased fractions in total (40 Gy in total, 15-16

fractions in 3-5 weeks). In comparison to conventional

fractionation schedules (50 Gy in total, 25-28 fractions in 5-6

weeks), this approach offers lower acute toxic effects while

maintaining local tumor control (7–9). Recently, the FAST-

Forward trial indicated that a super-hypofractionated five-day

treatment schedule of postoperative radiotherapy (26 Gy, five

fractions in one week) is non-inferior to moderately

hypofractionated adjuvant radiation therapy (40 Gy, 15 fractions

in three weeks) in terms of local tumor control and side effects in

women with early-stage breast cancer (10).

RT in general is attributed to both immune stimulatory and

immune inhibitory effects. On the one hand, it can enhance anti-

tumor immunity by cell death-triggered release of neoantigens,

damage-associated molecular patterns (DAMPs, e.g. HMGB1, ATP,

Hsp70) and proinflammatory substances (e.g. CXCL10 and

CXCL16). Additionally, the activation of the cGAS/STING

pathway including consequent type I interferon production and

increased MHC-I expression for antigen presentation on the cell

surface of cancer cells is also activated by RT (11). Besides the

control of the immune checkpoint PD-L1/PD1 axis by interferons,

also less well understood immune checkpoint molecules are
02143
triggered (12). Hypofractionated RT induces DNA damage and

impaired DNA repair results in transfer and accumulation of DNA

fragments in the cytoplasm of the tumor cells. As physiological

mechanisms for detection of cytosolic DNA (e.g. resulting from

invading pathogens), DNA sensing pathways as the cGAS/STING

pathway are triggered that activate the innate immune response

through a signaling cascade leading to upregulation of cytokine and

interferon production (13). This is also a common mechanism in

triple negative breast cancer that impacts on tumor cell survival and

immune modulation (14, 15). On the other hand it was shown by

Rückert et al., that HFRT in particular is predestined to induce

immunogenic cell death (ICD) (16), which is defined as “a form of

regulated cell death (RCD) that is sufficient to activate an adaptive

immune response in immunocompetent syngeneic hosts” (17)

leading to T cell-mediated immune responses against tumor

antigens. Based on that, RT has been reported to work as in situ

cancer vaccine making abscopal effects possible (18). On the other

hand, RT can also mediate immune suppressive effects, for example

by inducing an increased expression of immune suppressive

immune checkpoint molecules (ICMs), the release of immune

inhibitory cytokines (e.g. TGF-b) and the infiltration of T

regulatory cells (Tregs) as well as myeloid derived suppressor cells

(MDSC) into the tumor area (11). The T cell suppression in the

effector phase of the immune response mediated via immune

inhibitory ICM interactions, can be antagonized by immune

checkpoint inhibitors (ICIs). Consequently, a tumor-antigen

specific cytotoxic T cell response can be restored (19, 20). That

makes combinations of radiotherapy and immune checkpoint

blockade (ICB) reasonable.

Although breast cancer has been perceived historically as

immunologically “cold” tumor, it becomes more and more

evident that the different subtypes differ a lot regarding their

respective immunogenicity. TNBC seems to be the most

immunogenic subtype, because of its higher tumor infiltrating

lymphocyte (TIL) counts and tumor mutational burden (TMB)

(21). Supporting this, ICI therapy particularly benefits those breast

cancer patients suffering from TNBC (22). Therefore, a growing

number of clinical trials examining the efficacy of ICB in patients

with TNBC have recently been conducted. Unfortunately, only a

small minority of these patients has been shown to benefit from

anti-PD-(L)1 monotherapy in terms of overall response rate (ORR)

(23). However, Ho et al. reported that therapeutic approaches

combining RT and ICB could be superior to ICI monotherapy

(24). In this context radioresistant cancer cells remain a major
frontiersin.org
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challenge in TNBC treatment because of their capacity to form

local- and distant recurrence.

In the past, radioresistance of a cell has always been defined

based on the ability to form new cell colonies after being irradiated

(25, 26). Since presumably radiation-resistant (breast) cancer cells

are responsible for recurrence or metastasis after RT, it may not

only be radioresistance alone but rather the combination with

immune evasion allowing breast cancer cells to survive and form

clinically apparent tumors. Therefore, we hypothesized that

radioresistance itself could significantly drive the immunogenic

properties of breast cancer cells. To investigate this for the first

time, we treated two different radioresistant (RR) and two non-RR

MDA-MB-231 cell lines with hypofractionated RT (5 x 5.2 Gy) and

analyzed cell death induction by AnnexinV/Propidium iodide

staining, Hsp70 release and the activation of human monocyte-

derived dendritic cells (DCs) after previous co-cultivation.

Furthermore, the immune checkpoint molecule expression on the

tumor cell surface was examined. Our key finding was that the

expression of immune suppressive ICMs was significantly increased

in the radioresistant cell lines after RT.
2 Materials and methods

2.1 Cell lines and cell culture

Four different human MDA-MB-231 cell lines with differences

in radioresistance (according to their behaviour in the clonogenic

assays) were investigated (27). Besides the wildtype (WT), a brain-

metastasizing (BR) clone was used. It was created by Yoneda et al.,
Frontiers in Oncology 03144
2001 by inoculating the MDA-MB-231 WT cells into

immunodeficient mice. MDA-MB-231 cells in brain metastases

were isolated, grown in culture and reinoculated. This procedure

was repeated until only brain metastases occurred after injection

into immunodeficient mice (28). Radioresistant (sub)clones (WT

RR, BR RR) were generated by irradiation of the WT and BR clone

with 4 Gy, pooling of the surviving cells, cultivating them for 10-14

days and irradiating them again. This procedure was repeated to a

total dose of at least 40 Gy. Radioresistance was checked after the

last irradiation with clonogenic assay (Figures 1A, B).

All four cell lines were cultivated in Dulbecco’s modified Eagle’s

medium (DMEM, Pan-Biotech GmbH, Aidenbach, Germany)

supplemented with 10% fetal bovine serum (FBS, Biochrom AG,

Berlin, Germany) and 1% Penicillin-Streptomycin (PenStrep, Gibco,

Carlsbad, CA, USA). Peripheral blood mononuclear cells (PBMCs)

derived from healthy human donors were cultured in “DC medium”

consisting of RPMI-1640 (Merck, Darmstadt, Germany) supplemented

with 1% Pen/Strep, 1% L-Glutamine (Gibco, Carlsbad, CA, USA), 1%

Hepes buffer (Gibco Life Technologies, Waltham, MA, USA) and 1%

human serum heat inactivated (Gibco, Carlsbad, CA, USA). All cells

were cultivated in a standardized and humidified environment (37°C,

5% CO2 and 95% humidity).
2.2 Treatments and sampling

The day after seeding, the four MDA-MB-231 cell lines were

irradiated for five days with 5.2 Gy of X-rays (120 kV, 22.4 mA for

0.7 min; X-Ray tube Isovolt Titan, GE Sensing & Inspection, Boston,

USA), respectively. The cells were harvested with trypsin (Gibco Life
B

A

FIGURE 1

Generation of radioresistant breast cancer clones is done by repeated irradiation of MDA-MB-231 breast cancer cells. Radioresistant (sub)clones of
MDA-MB-231 cells were generated by repeatedly irradiating MDA-MB-231 wildtype (MDA-MB-231) and brain metastasizing MDA-MB-231 (MDA-MB-
231 BR) tumor cells (A). This resulted in more radioresistant clones (MDA-MB-231 RR and MDA-MB-231 BR RR), as verified by clonogenic survival
assay (B). Data are from three independent experiments. **p < 0.01; ***p < 0.001 (Student’s t-test).
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Technologies, Carlsbad, CA, USA) on day 6, 7 and 8 for cell death

analysis, on day 7 for ICM expression analysis and on day 6 to evaluate

the DC activation potential of untreated and treated tumor cells after

co-incubation. Hsp70 concentration in the cell culture supernatant was

determined 48 hours after irradiation (day 7) via ELISA.
2.3 Cell death analysis and clonogenic
survival assay

2 × 105 cells were stained with 100 ml of cell death staining solution
(1 ml of Ringer’s solution (Fresenius Kabi, Bad Homburg, Germany),

0.75 ml/ml of AnnexinV-FITC (AxV) (1 mg/ml) (GeneArt,

Regensburg, Germany), and 1.0 ml/ml of Propidium iodide (Pi) (1

mg/ml) (Sigma-Aldrich, Munich, Germany)). After incubation for 30

minutes, the measurement was performed on a CytoFLEX S flow

cytometer (Beckman Coulter, Brea, CA, USA) and analyzed with the

Kaluza Analysis software (Beckman Coulter, Brea, CA, USA).

To determine the clonogenic potential of the breast cancer cells,

250 tumor cells/well were seeded in a 6-well plate 6h before irradiation.

Afterwards they were irradiated with the indicated doses and cultured

for two weeks, fixed and stained with 1% crystal violet in ethanol

(Sigma-Aldrich, St. Louis, MO). Colonies with more than 50 cells were

counted and normalized to mock-treated samples. The survival curves

were calculated by adding a curve fit (dek(hx)). All calculations were

performed with GraphPad Prism.
2.4 Immune checkpoint molecule
expression analysis

2 × 105 cells were stained with staining solution containing FACS

buffer (PBS (Sigma-Aldrich, Munich, Germany), 2% FBS and 4% 0.5

mM EDTA (Carl Roth, Karlsruhe, Germany)) and Zombie NIR alone

or Zombie NIR and antibodies (Table 1). Before the measurement at

the CytoFLEX S flow cytometer, the cells were incubated for 30

minutes at 4°C. To correct for treatment-related autofluorescence,

the DMFI (mean fluorescence intensity) of every ICM was calculated

by subtracting the MFI of the Zombie-only-stained sample (AF ctrl)

from the MFI of the Zombie-and-antibody stained one.
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2.5 Quantitative measurement of Hsp70 in
the supernatant of untreated and treated
MDA-MB-231 cells

To examine the concentration of tumor cell released Hsp70, the

supernatant of the cell cultures was analyzed using a sandwich

ELISA assay (Human/Mouse/Rat Total HSP70/HSPA1A ELISA,

R&D Systems, Minneapolis, MN, USA). It was performed

according to the manufacturer’s instructions.
2.6 Isolation of human peripheral blood
mononuclear cells and differentiation to
human monocyte-derived dendritic cells

On day 0, human peripheral blood mononuclear cells (PBMCs)

were isolated from leukoreduction system chambers (LRSC) of

healthy human donors via density gradient centrifugation in

SepMate™ PBMC Isolation Tubes (Stemcell, Vancouver, Canada)

and Lymphoflot (Biotest AG, Dreieich, Germany). Consequently,

they were washed twice at 4°C with PBS (Sigma-Aldrich, Munich,

Germany)/0.5 mM EDTA (Carl Roth, Karlsruhe, Germany) and

RMPI-1640, respectively. After that, 30 × 106 cells each were seeded

on IgG-pre-coated cell culture dishes in 10 ml of DC medium and

incubated for 1 h. Subsequently, non-attached cells were removed

and 10 ml of fresh DC medium was added.

On day 1, the old DC medium was removed again and 10 ml of

RPMI containing 800 U/ml (0.57 ml/ml) of GM-CSF (MACS

Miltenyi Biotec, Bergisch Gladbach, Germany) and 500 U/ml (5

ml/ml) of IL-4 (ImmunoTools, Friesoythe, Germany) were added to

each cell culture dish. Two days later, on day 3, 4 ml of RPMI and

800 U/ml (0.57 ml/ml) of GM-CSF and 500 U/ml (5 ml/ml) of IL-4

were added. On day 5, 4 ml of RPMI with half of the previously used

amount of GM-CSF (400 U/ml = 0.285 ml/ml) and IL-4 (250 U/ml =

2.5 ml/ml) were added.
2.7 Maturation induction of immature DCs
via maturation cocktail or co-incubation
with untreated and treated MDA-MB-231
cell lines

Six days after the isolation of the PBMCs, the human monocyte-

derived immature DCs (iDCs) were harvested mechanically using a

serological pipette. After that, 0.75 × 105 iDCs were put into each 6-well

in 2 ml of DCmedium. In case of co-incubation with non-irradiated or

irradiated tumor cells, 1.5 × 105 tumor cells including 2 ml of their

respective cell culture supernatant were added. Positive controls

(without tumor cells) were established by using a maturation cocktail

(MC) containing 13.16 ng/ml of IL-1b (ImmunoTools, Friesoythe,

Germany), 1000 U/ml of IL-6 (ImmunoTools, Friesoythe, Germany),

10 ng/ml of TNF-a (ImmunoTools, Friesoythe, Germany) and 1 mg/ml

of PGE-2 (Pfizer, Berlin, Germany).
TABLE 1 List of antibodies used to analyze the expression of immune
checkpoint molecules on the surface of non-irradiated and irradiated
MDA-MB-231 tumor cells via multicolor flow cytometry.

Marker Fluorochrome Manufacturer

PD-L1 (CD 274) BV 605 Biolegend

PD-L2 (CD 273) APC Biolegend

ICOS-L (CD 275) BV 421 BD Horizon

HVEM (CD 270) APC Biolegend

TNFRSF9 (CD137-L) BV 421 Biolegend

OX40-L (CD252) PE Biolegend

Live/dead Zombie NIR Biolegend
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2.8 Maturation

The expression of common activation markers on the cell surface

of the DCs was analyzed 48 hours after co-incubation with untreated

and treated MDA-MB-231 cells using multicolor flow cytometry.

Therefore, the DCs were harvested mechanically at first. Then, the

first half of all DCs in each 6-well was stained with a Zombie-only

FACS buffer staining solution, the second half was stained with one

containing Zombie Yellow and antibodies in addition (Table 2). After

incubation for 30 minutes at 4°C, the MFI of the different samples was

measured at the CytoFLEX S flow cytometer. The DMFI of every

activation marker was calculated by subtracting the MFIs of the

Zombie-only from the fully stained sample.
2.9 Statistical analyses

For statistical analyses the Student’s t-test, the Mann-Whitney

U test and the Kruskal-Wallis test with multiple comparisons were

used as respectively indicated in the figure legends.
3 Results

3.1 Radioresistant clones of
MDA-MB-231 cells can be generated
by repeated irradiation

MDA-MB-231 wild type and brain metastasizing tumor cells were

repeatedly irradiated with 4 Gy to generate more radioresistant clones,

as being verified by standard clonogenic survival assay (Figure 1). The

four different human MDA-MB-231 cell lines, MDA-MB-231 WT,

MDA-MB-231 BR (brain metastasizing) and the corresponding more

radioresistant clones (RR) were used for the consecutive analyses.
3.2 Radiation-induced apoptosis of
MDA-MB-231 cells depends on
tissue origin of the tumor cells
rather than on radioresistance

We then analyzed cell death 24 h – 72 h after hypofractionated

irradiation of the fourMDA-MB-231 tumor cell lines (Figures 2A, B).
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Apoptosis, rather than necrosis (Figures 2C–E), was the predominant

cell death mechanism and, differed significantly between the

irradiated WT and its clones. Apoptosis increased over time,

whereas the ratio between the respective cell lines remained similar.

Both cell lines that had been derived from brain metastases (BR, BR

RR) were very radiosensitive in terms of apoptosis induction and

succumbed to it significantly more frequent in comparison to the

WT. BR RR even showed the greatest apoptosis rate of all four cell

lines despite its radioresistance in the clonogenic assay (Figure 1B),

closely followed by BR. This was different in the WT RR clone that

was significantly less sensitive to irradiation with regard to apoptosis.

Similarly, necrotic cell death (Figures 2F–H) was significantly

increased in cell lines derived from brain metastases (BR, BR RR)

compared to the WT cell line 24 h after the treatment. Further, only

the WT RR cell line showed significantly less necrosis than the WT.

However, 48 and 72 hours after irradiation necrotic cell death was

significantly decreased in all clones compared to the WT.
3.3 Radioresistance drives the expression
of immune suppressive checkpoint
molecules following irradiation
The expression of the investigated ICMs did not vary

considerably between the untreated WT and its clones. There was

a similar base level of ICM expression between all four different cell

lines, with just one exception: the immune stimulatory ICM

CD137-L was significantly lower expressed in all non-irradiated

clones that were originally derived from the WT.

Irradiation with 5 × 5.2 Gy resulted in a significant upregulation

of both immune suppressive (PD-L1, PD-L2 and HVEM)

(Figures 3C–E) and immune stimulatory (ICOS-L, CD137-L,

OX40-L) (Figures 3F–H) immune checkpoint molecules on the

cell surface of the treated cells compared to the untreated ones in all

examined cell lines. CD137-L as an exception thereof however, was

significantly downregulated on the WT after irradiation

(Figures 3A–H).

However, the radioresistant cell lines (WT RR, BR RR) were

characterized by a significantly increased expression of especially

the immune suppressive ICMs PD-L1, PD-L2 and HVEM in

comparison to the respective non-radioresistant clone.
3.4 Danger signal Hsp70 is released
after irradiation irrespective of the
tumor cell clone
The release of the damage-associated molecular pattern Hsp70

was significantly increased from the irradiated compared to the

respective non-irradiated MDA-MB-231 cells 48 hours after

irradiation (Figure 4). However, there was no significant

difference between the irradiated WT and its different clones.
TABLE 2 List of antibodies used to analyze the expression of various
activation markers on the surface of DCs via multicolor flow cytometry.

Marker Fluorochrome Manufacturer

CD70 FITC Biolegend

CD83 PE-Cy7 eBioscience

CD80 APC Miltenyi Biotec (MACS)

CD86 Briliant Violet BioLegend

Live/dead Zombie Yellow Biolegend
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3.5 Neither non-irradiated nor irradiated
MDA-MB-231 cells and their supernatants
increase the expression of common
activation markers on human
monocyte-derived DCs

To investigate the potential of treated and untreated RR and

non-RR tumor cells to prime DCs, they were co-incubated with

human monocyte-derived DCs (Figures 5A–C). Incubation of the

DCs with the maturation cocktail (MC) led to a significant up-

regulation of the four analyzed common activation markers CD70,

CD80, CD83 and CD86 (Figures 5D–G). However, DCs which were

co-incubated with either non-irradiated or irradiated WT, WT RR

or BR RR cells and their respective supernatants, did not increase
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the expression of common activation markers compared to

unstimulated, immature DCs (w/o MC).
4 Discussion

According to preclinical data, immunogenic cell death

induction has been attributed to hypofractionated irradiation

schedules (29, 30) which are more and more clinically applied for

RT of breast cancer. In contrast to apoptosis which is considered to

have a rather suppressive effect on the immune system (31),

necrotic cell death is more immune stimulatory because of the

release of potentially immunogenic neoantigens and DAMPs such

as Hsp70. Necrosis has been reported to be primarily activated by
A

B

D E

F G H

C

FIGURE 2

Cell death induction after irradiation of the four MDA-MB-231 cell lines is dependent on tissue origin rather than on radioresistance. (A) After seeding on
day 0, the four MDA-MB-231 cell lines, the WT and the WT-derived brain metastasis clone (BR) as well as the radioresistant (RR) clones derived from
those cells (WT RR, BR RR), were treated with 5 × 5.2 Gy. On day 6, 7 and 8, cell death forms were analyzed with Annexin V/Propidium iodide (AxVPi)
staining via multicolor flow cytometry. The gating strategy is shown in (B). After pre-gating on the singlets and consequently excluding the debris, the
remaining cells were identified as viable, apoptotic, or necrotic as presented. The percentage of apoptosis (C–E) and necrosis (F–H) of the different cell
lines 24 (C–F), 48 (D, G) and 72 hours (E–H) after irradiation is shown as median with interquartile range. The data are from nine independent
experiments. For statistical analysis, each treated clone was compared to the WT via Mann-Whitney U test (*p < 0.05, **p < 0.01, ***p < 0.001).
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higher doses of ionizing radiation (hypofractionation). It is the

desired form of cell death in the context of anti-tumor immune

response initiation (18, 32). Unlike other breast cancer subtypes,

TNBC is characterized by a rather high TMB. That in turn, leads to

the production of neoantigens (33). Consequently, its higher

immunogenicity makes it a potential candidate for ICB.

To get first hints about the immunogenic phenotype of MDA-

MB-231 breast cancer cells after hypofractionated irradiation and in

dependence of their radioresistant properties and tissue origin (e.g.

metastatic spread to the brain), cell death forms were determined of

the four different clones. Hypofractionated irradiation induced a
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mixture of apoptosis and necrosis in the four cell lines (Figure 2).

However, in comparison to the two WT cell lines, both brain-

metastasized clones showed to be more sensitive to X-rays leading

to strongly apoptosis-dominating cell death. It has been reported

that metastatic spread to the brain has an impact on radioresistance

of MDA-MB-231 cells as shown by a clonogenic assay (34) which

could be due to the influence of the brain microenvironment on

gene expression patterns of the tumor cells, as also indicated by the

findings of Park et al. (35). Radioresistance was verified as

previously described (27). The clonogenic survival (Figure 1)

confirms that the RR clones have enhanced potential to still form
A
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FIGURE 3

Radioresistance (RR) drives the expression of immune suppressive checkpoint molecules on the surface of the four presented MDA-MB-231 cell lines 48
hours after hypofractionated irradiation. The gating strategy is presented in (A) After pre-gating on the singlets, the debris was excluded. Then the viable
cells were detected via the Zombie NIR viable/dead stain. Immune checkpoint molecule (ICM) expression is presented in the graphs as DMFI (mean
fluorescence intensity). It was calculated by subtracting the MFI of the Zombie-only-stained samples (AF ctrl) from the respective Zombie-and-antibody-
stained samples of various ICMs expressed on the cell surface of the four cell lines. Exemplarily primary data are shown for PD-L1 and PD-L2 detection.
The WT and the WT-derived brain metastasis clone (BR) as well as the radioresistant (RR) clones derived from those cells (WT RR, BR RR) were treated
with 5 × 5.2 Gy. (B) The expression of immune suppressive (PD-L1: (C), PD-L2: (D), HVEM: (E) and immune stimulatory (ICOS-L: (F), CD137-L: (G),
OX40-L: (H) ICMs is presented as median with interquartile range. Data are from seven independent experiments. For statistical analysis, a Mann-
Whitney U test was performed to compare untreated and treated cells within one cell line. The same test was used to compare an irradiated
radioresistant cell clone with its respective non-radioresistant one. A Kruskal-Wallis test with multiple comparisons was used to examine statistical
differences between the ICM expression of the different clones compared to the WT within the respective untreated (#) and treated (*) group. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001, #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001.
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colonies after radiation exposure compared the non-RR clones.

Radioresistance was not generally correlated to the capability of

tumor cell death induction, as the BR clones had similar amounts of

apoptotic and necrotic cells after RT with 5 x 5.2Gy. The

relationship between surviving fraction after radiation exposure

and the percentage of apoptotic cells at the first days after the same

dose of exposure is complex (36). We conclude that radioresistance

of the BR cells might also be reflected by cell death forms at later

time points than 72 hours and this is already indicated by slightly

reduced percentages of necrotic cells of the BR RR clone.

Besides antigenicity, ICD also depends on adjuvanticity (37).

Therefore, in the context of cancer cell death, this was exemplarily

analyzed by quantifying the Hsp70 concentration in the

supernatant of non-irradiated and irradiated tumor cells. In

accordance with earlier examinations by Kötter et al., (38). Hsp70

release was significantly increased by irradiated cancer cells in

comparison to the respective untreated ones (Figure 4). In

sufficient quantities, Hsp70 can stimulate the uptake of tumor

antigens (39) and further activate dendritic cells (40). Linder et al.

suggested that extracellular Hsp70 is released predominantly by

active mechanisms and not mainly during cell death (41).

Compared to non-irradiated cells, our analyses showed that

triple-negative breast cancer cells after radiation therapy have an

increased secretion of HSP70 which is independent of the

radioresistance. This suggests, as already observed for other

tumor entities, that release of HSP70 is mostly connected to

necrosis induction (42) of tumor cells (see Figure 2G) rather than

to radiosensitivity being determined with clonogenic assays.
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However, radiosensitivity is linked to the immune surface

phenotype of the tumor cells, most likely being triggered by

activation of DNA sensing pathways in the cytosol of the cells (43).

DCs in general play a key role in T cell priming and therefore

provide the basis for T cell-mediated anti-tumor immune

responses. To get first hints whether the hypofractionated

irradiation of the MDA-MB-231 breast cancer cells affects the

priming capabilities of DCs, we examined the expression of DC-

specific activation markers after co-incubation with untreated and

treated tumor cells. However, although hypofractionated RT

induced cell death and the release of Hsp70 in all four cell lines,

we did not detect increased expression of any of the investigated

activation markers (CD70, CD80, CD83 and CD86) on the surface

of the DCs after co-incubation, neither with untreated nor with

treated cancer cells in this in vitro setting. This suggests that

irradiation of breast cancer cells might rather affects the effector

phase of anti-tumor immune responses than the priming phase.

However more detailed analyses are needed in the future such as

how certain DC subsets might be affected. Pilones and colleagues

recently discovered that Batf3-dependent conventional dendritic

cells type 1 (cDC1) are required for priming RT-induced of tumor-

specific CD8+ T cells (44).

Consequently, we analyzed whether the chosen treatment

schedule would influence the expression of ICMs on the tumor

cells. Most research on immune checkpoint molecules in breast

cancer has focused on the PD-1/PD-L1 pathway so far.

Monoclonal antibodies (mABs) which antagonize these immune

suppressive ICMs and consequently help to restore a potent anti-

tumor immune response, have recently led to remarkable long-lasting

benefits, but unfortunately just in a minority of (metastatic) cancer

patients (24). In this context, higher PD-L1 expression in the tumor

has been associated with improved response rates to anti-PD-(L)1

therapies in various cancer types, including TNBC (45–47). Given the

predictive value of PD-L1 expression, knowledge about the behaviour

of further ICMs in response to irradiation is currently missing but

may be beneficial to optimize future radioimmunotherapies (RITs).

Therefore, we did not only analyse the expression of PD-L1, but also

that of other key ICMs on MDA-MB-231 breast cancer clones.

Consistent with our data, the immune suppressive ICM PD-L1

has been reported to be expressed on the surface of many tumor

cells (19, 20, 48, 49). In line with previous in vitro and in vivo

examinations using various cancer cell lines and models, we

revealed that it is not just PD-L1 which is upregulated by RT, but

rather both immune inhibitory and immune stimulatory (50–53)

ICM expression is significantly increased on the surface of TNBC

cells following (hypofractionated) irradiation. This has already been

demonstrated in other settings and tumor entities (54, 55).

However, a key new finding of our analyses is that particularly

immune suppressive checkpoint molecules were significantly more

upregulated on the cell surface of radioresistant MDA-MB-231

clones. This indicates for the first time that radioresistant tumour

cells do not necessarily have a more stem cell-like phenotype, but

might rather suppress the immune system by upregulation of

immune suppressive molecules following radiation exposure.

This, together with reduction of the dsDNA content in the tumor

cells that attenuates the cGAS/STING pathway and consecutively
FIGURE 4

Hsp70 release was significantly increased from irradiated compared
to non-irradiated MDA-MB-231 cells. The graph shows the
concentration of Hsp70 per 105 cells (ng/ml) in the cell culture
supernatant of WT and the WT-derived brain metastasis clone (BR)
as well as the radioresistant (RR) clones derived from those cells (WT
RR, BR RR), either untreated (blue bars) or after irradiation with 5 ×
5.2 Gy (brown bars). Data is presented as median with interquartile
range. Data are from six independent experiments. For statistical
analysis, a Mann-Whitney U test was performed to compare
untreated and treated (5 × 5.2 Gy) cells within one cell line (*p <
0.05, **p < 0.01). Furthermore, a Kruskal-Wallis test with multiple
comparisons was used to compare Hsp70 concentrations between
the treated WT and its clones.
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the INFgamma-dependent immune activation (27), contributes to

immune suppression. Future analyses will have to deal with

connections between RT-induced intracellular modifications and

modulations on the tumor cell surface to obtain a complete picture

of immune suppressive mechanisms in more radioresistant tumor

cell clones. Similarly, Jang et al. found in their single cell RNA-based

investigation that PD-L1 expression was increased on radioresistant

– based on the radiosensitivity index (RSI) – breast cancer cells.

These cells included in particular basal, HER2 and luminal B
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subtypes and were associated with a higher risk of recurrence

(56). Based on our data, we conclude that the immunological

phenotype of (breast) cancer cells is strongly shaped by

radioresistance. To the best of our knowledge, the underlying

mechanisms therefore have not been described in the literature so

far and have to be addressed in even more detail in the future,

particularly in the context of innovative radiation oncology (57). As

TNBC is characterized by a higher infiltration of immune cells it has

be suggested that that these patients are more responsive to
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FIGURE 5

Neither untreated nor treated (5 × 5.2 Gy) MDA-MB-231 cells increased the expression of activation markers on dendritic cells (DCs) 48 hours after
co-incubation. (A) Human monocyte-derived DCs were differentiated from peripheral blood mononuclear cells (PBMCs) for 5 days before they were
co-incubated with untreated and treated wild type (WT) MDA-MB-231 cells or radioresistant (RR) clones. 48 hours later, the expression of common
DC activation markers was examined using multicolor flow cytometry. The gating strategy is presented in (B) After pre-gating on the singlets, the
viable cells were detected. Then, gating on CD11c positive cells identified DCs. CD70 (D), CD83 (E), CD80 (F), CD86 (G) expression on the cell
surface of DCs is presented in the graphs as DMFI. It was calculated by subtracting the Zombie-only-stained samples (AF ctrl) from the respective
Zombie-and-antibody-stained samples, here shown exemplarily for CD70 (C). The data is presented as median with interquartile range. Data are
from seven independent experiments. For statistical analysis, a Mann-Whitney-U test was used to compare activation marker expression on DCs
with and without (w/o) maturation cocktail (MC). Further, a Kruskal-Wallis test was performed to compare DCs w/o MC with DCs which had been
co-cultured with either untreated or treated cancer cells, respectively. (*p < 0.05, **p < 0.01, ***p < 0.001, #p < 0.05).
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immunotherapy, but, as already stated, only a minority of these

patients benefit from anti-PD-(L)1 monotherapy, which can be

improved by adding RT. To achieve further improvement, targeting

of additional immune checkpoint molecules should be envisaged

(58). Our analyses revealed that HVEM has similar expression

patterns such as PD-L1 and PD-L2 and it has been suggested that

HVEM negatively correlates with overall survival in breast cancer

patients (59). For exploration in clinical application double

blockade of the PD-1/PD-L1/2 axis and HVEM in combination

with RT should be taken into consideration.
5 Conclusion

Basically, there are twomainmodels used to explain tumorigenesis.

Both have challenged each other since their existence. On the one hand,

there is the cancer stem cell concept which states that so called “cancer

stem cells” (CSC) are responsible for cancer development due to their

capacity to differentiate into phenotypically diverse cancer cells. Many

properties have been attributed to CSCs, amongst others

radioresistance. On the other hand, there is the clonal evolution/

stochastic model. It assumes that normal cells can acquire distinct

mutations over time and become cancer cells (60, 61). Our data

indicate that – independent of the CSC concept with its

radioresistant stem cells – radioresistant TNBC clones could survive

radiotherapy and subsequently, evade the immune response by

increased immune suppressive ICM expression. During the last

decade it has become evident that the immune system plays an

important role in influencing the response to RT treatment and

prognosis in many solid tumor entities, including in breast cancer.

The most beneficial dose of radiation for induction of anti-tumor

immune responses could not be defined until today, but several

preclinical, first clinical observation and in silico simulations support

the hypothesis that hypofractionated RT is the most immunogenic one

(62). Following Stereotactic Ablative Body Radiotherapy (SABR), e.g.,

there is evidence of systemic immune activation in patients with

increased PD1 expression (63). Future studies should nevertheless

additionally investigate conventional radiation therapy and

moderately hypofractionated radiation therapy with regard to

radioresistance and immune phenotype of breast cancer cells. In our

analyses we aimed to refer to current clinical approaches focusing on

more hypofractionated schedules, as already outlined above (10).

Generally, the increased immune suppressive ICM expression could

then in turn form the basis for recurrence and newly emerging

metastases. Therefore, we speculate that the significance of ICB may

increase in parallel to the number of experienced radiotherapy sessions

and that targeting different ICMs at once might be necessary in breast

cancer. We finally want to stress that the key focus was set on the

immune phenotype of the radioresistant breast cancer cells in the here

presented analyses. Future work will have to focus on even more

detailed functional analyses with DC subsets and consecutive T cell

activation. Furthermore, analysis of the expression of ICMs in breast

cancer specimen tissue microarray with radiation sensitive- and
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radiation resistant-patient should provide deeper insights how

radiosensitivity might be connected to immune phenotypes of breast

cancer tumor cells.
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