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Editorial on the Research Topic
Pattern formation in biology

Cells can self-organize in time and space forming biological patterns [1]. Examples of pattern
formation in biology are very diverse and can be found in a wide variety of tissues and organisms.
For instance, the segmentation process along the longitudinal axes of vertebrates and invertebrates
[2, 3], the fine-grainedmixtures of different cell types appearing in both plant and animal tissues [4],
the regular arrangement of organs along the plant shoot [5], and the cell polarity patterns appearing
in multiple cell types [6], among many others. Pattern formation arises from the coordination and
interplay of several mechanisms and processes across molecular, cellular and tissue scales. At the
cellular level, growth, cell fate specification,migration and cell–cell interactions can be important and
influence each other during the formation of a tissue. All these processes are finely orchestrated in
space and time by gene expression, which in turn can also be affected by these processes. Over the
past two decades, the study of pattern formation in biology has attracted the attention of many
scientists fromdiversefields, ranging fromdevelopmental biology, cell biology and synthetic biology,
to physics, mathematics and computer science. Quantitative and interdisciplinary approaches have
become essential for understanding these challenging phenomena [7, 8].

This Research Topic contains a collection of articles and reviews that use quantitative and
interdisciplinary perspectives to understand the underlying mechanisms driving biological pattern
formation.Modelingmorphogenetic processes, gene regulatory network dynamics andmorphogen
gradients link the articles of this Research Topic, with a focus on three research areas: 1) underlying
mechanisms of patterning processes; 2) cross-talk of morphogenetic and pattern formation
processes, and 3) mathematical methods for modeling and quantifying biological patterning
and morphogenesis. Below, each of the present Research Topic papers is briefly discussed.

One of themost celebratedmechanisms to explain self-organizing spatial structures is known as
the Turing instability [9–13]. Lacalli’s review provides a history of the application of Turing’s ideas in
developmental biology, which he has been a part of since the 1970’s. In particular, Lacalli emphasizes
the progress that can be made by investigating and understanding the role of such physicochemical
systems that canmake patterns de novowithin the context of evolved biochemical or gene regulatory
networks and that confer some degree of “programmatic assembly” on developmental phenomena.
Lacalli details ways in which the relative contribution of de novo and programmatic elements may
manifest in the generation of robust body and brain structures, including consciousness.

Certainly, although today there are no doubts about the Turing instability as a source of
symmetry breaking in biological patterning, the molecular mechanisms behind Turing
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remain difficult to validate experimentally, as many of the kinetic
parameters cannot be reliably assessed in biological tissues.

Experiments and modeling have continued to reveal new
extensions or alternatives to Turing for periodic pattern
formation. The spatial patterns driven by Turing instabilities are
stable structures historically associated with stable fixed points of the
system [9–12]. However, exploring a known morphogenetic model
[14], Guisoni and Diambra find that Turing patterns can also exist
associated to unstable fixed points, enabling in this case the
emergence of transient and also metastable spatial patterns.

In line with Turing ideas, Casanova-Ferrer et al. describe former
and more recent quantitative modeling studies of heterocyst
patterning in filamentous cyanobacteria in an in-depth review. In
this case, in addition to an activator-inhibitor system, a particular
type of Turing system, there exists another inhibitor gen, hetN,
whose production is restricted to the heterocysts. This cell–cell scale
inhibition provides an additional dynamics in the pattern formation,
extending the diffusion-based Turing mechanism.

Iber and Mederacke offer a detailed state-of-the-art report on
tracheal ring formation, reviewing recently elucidated molecular
regulatory interactions. Despite these advances, the mechanism
forming periodic rings in the trachea remains poorly understood. In
this regard, the authors describe several putativemechanisms that could be
better explored, such as chemotaxis, differential adhesion, and differential
growth of two adjacent tissue layers, in addition to Turing instabilities.

A classic example of patterning is the periodic structure formed
during somitogenesis resulting from the interplay of oscillatory gene
expression and a maturation wavefront [2]. Carraco et al. provide an
extensive bibliography on the embryonic clock of vertebrates over the
last 25 years, with special emphasis on the understanding of species-
specific oscillation periods, where similar gene architectures produce
different periods in different contexts. Fernández Arancibia et al.
propose a modified reaction wavefront model [15] which sequentially
produces segments in the zebrafish notochord in a periodic manner,
even in the presence of noise. In particular, the new model adds a
reaction wavefront that sequentially activates the chemical reactions
of the FitzHugh–Nagumo model [12].

Besides mechanisms based on biochemical interactions, there is
a great deal of interest in how mechanical cues also drive biological
patterning [16, 17]. Song et al. study the formation of the
gastrovascular canal network in jellyfish through a combination
of anatomical studies and mechanical modeling. The authors
propose that mechanical stress acts as a trigger of differential
growth of the canal network. Contraction during swimming is
different for different parts of the tissue, and depends on the
stiffness of the canal network itself. In this way, differential
stiffness influences the growth direction of the canals and biases
the connectivity of the canal network, affecting morphogenesis.

In addition, Moreno and Alonso address the interaction between
pattern formation and locomotion at the cellular level. They performed
a numerical analysis of a model of amoeboid cell morphology dynamics
proposed in [18] and found that polarization, based on bistability, is
sensitive to changes in parameter values. The authors introduce mass
conservation constraints to increase the robustness of the model.

How cells are geometrically organized and packed in space is
crucial in the formation of tissues and organs. Iber and Vetter review
and discuss the physical principles driving 3D cellular organization and
packing in tissues, focusing on the case of pseudostratified epithelia, a

type of epithelia found in animal tissues where nuclei are positioned
along the apical–basal axis. The authors propose a new geometrical
shape, which they term “punakoid”, whose irregular shape is
reminiscent of the rocks at the beach of Punakaiki in New Zealand.

Finally, adequatemathematical tools andmethodologies are critical
for ensuring robust and reliable predictions from biological patterning
models. From a more methodological and theoretical perspective,
Mjolsness presents a fundamental study about dynamical graph
grammars. In this work, the author extends the framework
introduced in [19] and proposes a general expression that reduces
products of rewrite rule operators to sums of such operators, resulting in
two theorems that comprise a general modeling framework. Mjolsness
presents an application of this multiscale mathematical method for
modeling microtubule dynamics of the cytoskeleton in plant cells.

The spatial patterns of Min proteins on bacterial cells have been
extensively studied with respect to pattern-formation mechanisms [20].
However, the transient and irregular nature of these patternsmakes image
processing and extraction of pattern quantities, such as wavelength,
challenging. Meindlhumer et al. introduce a new analysis pipeline that
quantifies temporal and spatial information from data images, which
could provide a more reliable support for model development.

Pattern formation has been classically modeled and simulated in
systems that are continuous in space [9, 10]. Yet, it has been increasingly
important to have computational frameworks that can simulate biological
pattern formation taking into account the underlying cellular spatial
structure [7, 21] a feature that is limited in continuous models. In the last
few years, several agent-based modeling frameworks have emerged, in
which cells are treated as individual agents whose dynamics are governed
by rules. Pleyer and Fleck discuss the use of agent-based modeling on
cellular systems and multicellular pattern formation, and review different
available computational frameworks of interest.

We hope this Research Topic will stimulate further studies from
mathematical biologists and theoreticians interested in modeling
biological patterning.
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Tracheal Ring Formation
Dagmar Iber1,2* and Malte Mederacke1,2

1Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland, 2Swiss Institute of Bioinformatics, Basel,
Switzerland

The trachea is a long tube that enables air passage between the larynx and the bronchi.
C-shaped cartilage rings on the ventral side stabilise the structure. On its esophagus-
facing dorsal side, deformable smooth muscle facilitates the passage of food in the
esophagus. While the symmetry break along the dorsal-ventral axis is well understood, the
molecular mechanism that results in the periodic Sox9 expression pattern that translates
into the cartilage rings has remained elusive. Here, we review the molecular regulatory
interactions that have been elucidated, and discuss possible patterning mechanisms.
Understanding the principles of self-organisation is important, both to define biomedical
interventions and to enable tissue engineering.

Keywords: trachea, cartilage rings, symmetry break, SOX9, Turing pattern, chemotaxis, differential adhesion,
differential growth

1 INTRODUCTION

The trachea is a long (6 mm in mice, 10–15 cm in human), almost cylindrical tube that serves as a
passage of air to the bronchial system Kishimoto andMorimoto (2021). Its wide diameter (1.5 mm in
mice, 2–3 cm in human) poses little resistance to air flow. C-shaped cartilage rings on its ventral side
prevent the collapse or obstruction of the tube (Figure 1A). Smooth muscle on the dorsal side allows
for the expansion of the adjacent esophagus during the consumption of food or liquid. The
separation into distinct domains that form cartilage and smooth muscles, and the subsequent
emergence of cartilage rings reflects two separate symmetry breaks. While the first one is well
understood, the molecular mechanism behind the second has remained elusive. In the following, we
will discuss the regulatory interactions that are involved in these symmetry breaks.

2 DORSAL-VENTRAL POLARITY

The separation of cartilage and smooth muscles domains follows the already established dorsal-
ventral polarity. Fibroblastic growth factor (FGF) from the cardiac mesoderm induces the Nkx2.1-
expressing lung field on the ventral side of the mouse foregut Serls et al. (2005). Bone morphogenetic
protein 4 (Bmp4) expression is restricted to the ventral foregut from early stages (E8.5) Li et al.
(2008), and the BMP antagonist NOGGIN is secreted from the dorsally located notochord Fausett
et al. (2014). BMP4 signalling surpresses SRY (sex determining region Y)-box transcription factor
(Sox)2 expression in the ventral foregut Domyan et al. (2011). Mutual repression between NKX2.1,
which is restricted to the ventral foregut endoderm, and SOX2, which is expressed in the dorsal
foregut endoderm, defines the border between the trachea, and the future esophagus Que et al.
(2007). NKX2.1 directly represses Efnb2, which establishes an EPH/EPHRIN boundary that results in
the physical separation of tracheal and esophageal cells Lewis et al. (2022). Nkx2.1 null mice, and
endodermal mutants for the BMP type I receptor genes Bmpr1a and Bmpr1b upregulate Sox2 and
form a continuous ring of smoothmuscle and no cartilage rings Que et al. (2007); Minoo et al. (1999);
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Yuan et al. (2000); Li et al. (2008); Domyan et al. (2011).
Conditional ablation of Bmp4 from the foregut endoderm
from E8.5 and from the mesenchyme by E9.5 does not
prevent the ventral expression of Nkx2.1 at E9.5, but by
E12.5 Nkx2.1 is absent, and expression of the cartilage marker
Collagen Type II Alpha 1 Chain (Col2a1) is not observed Li et al.
(2008).

Once the trachea has split from the future esophagus, it
maintains the dorsal-ventral polarity, with Nkx2.1 expression
restricted to the ventral side, and Sox2 and Sonic Hedgehog (Shh)
expression higher on the dorsal side (Figure 1B). This polarity is
observed also in mutants (Noggin null) that fail to split the tubes
Que et al. (2006). The epithelial dorsal–ventral polarity translates
into a mesenchymal polarity. Mesenchymal cells derived from the
splanchnic mesoderm, positioned ventral to the developing
tracheal tube express the transcription factor Sox9 as early as
E10.5 Hines et al. (2013). From E11.5, dorsal mesenchymal cells
express Acta2, a smooth muscle marker Hines et al. (2013).
Removal of Sox9 or a key smooth muscle gene does not alter
the expression domain of the other in the trachea Hines et al.
(2013). The spatial restriction is thus not maintained by mutual
repression between SOX9 and smooth muscle genes. Rather,
signals from the tracheal epithelium appear important for the
spatial restriction in the mesenchyme. Blockage of WNT
secretion from the tracheal epithelium in Wls conditional
mutants blocks Sox9 expression and results in smooth muscle
formation also on the ventral side Snowball et al. (2015);
Kishimoto et al. (2020). Epithelial WNT secretion thus seems
to be required in translating the epithelial polarity to the
mesenchyme. Canonical WNT signalling appears to be
important in both layers as conditional removal of β-catenin
in either the epithelium (Shh-Cre driven) or mesenchyme
(Dermo1-Cre driven) results in loss of mesenchymal
expression of the chondrogenic factor Tbx4 Kishimoto et al.
(2020). In Shh null mice, the ventral restriction of Sox9
expression is lost, and until E13.5, Sox9 is transiently weakly
expressed in a circumferential expression pattern on both the
dorsal and ventral sides Park et al. (2010). Even though Shh is
expressed more strongly dorsally, overexpression of Shh does not

affect the relative cartilage and smooth muscle domains Sala et al.
(2011). Addition of BMP4 or Noggin to lung explant cultures
induces patches of cartilage formation and Sox9 and Bmp4
expression around the entire tracheal epithelium Park et al.
(2010).

In summary, the separation of the smooth muscle and
cartilage domains along the dorsal-ventral axis is controlled by
the already existing embryonic dorsal-ventral polarity. The
dorsal-ventral polarity is first induced along the epithelial tube,
and later translated to the mesenchyme via diffusible
morphogens.

3 EMERGENCE OF PERIODIC PATTERNS
ALONG THE TRACHEA

The positions of the future cartilage rings in the ventral tracheal
mesenchyme first become apparent between embryonic day (E)
12.75 and E13 as periodic patterns in Sox9 and type II collagen
(Col2a1) expression Miller et al. (2004); Elluru et al. (2009); Park
et al. (2010); Sala et al. (2011); Hines et al. (2013); Turcatel et al.
(2013); Boucherat et al. (2014); Young et al. (2020). Lineage
tracing experiments with Col2a1-mTmGmice show that Col2a1-
expressing cells do not transdifferentiate into non-cartilage cells
Young et al. (2020). Rather, the Col2a1-expressing cells condense
in the cartilage rings, and the intervening space becomes filled by
other mesenchymal cells. The Col2a1 gene encodes the pro-
alpha1 (II) chain component of type II collagen, which is
primarily found in cartilage. At E11.5, collagen type II is
restricted to the lamina propria on the ventral side of the
trachea Sala et al. (2011). By E12.5, collagen type II has spread
into the ventral mesenchyme, but no staining is observed in the
ventral half of the ventral mesenchyme. By E13.5, collagen type
II-positive condensations are observed. At the same time,
phosphorylated extracellular signal-regulated kinase (ERK) is
found mainly on the boundary of the cartilage condensations
and at lower levels between the condensations, and is largely
absent from the condensations Yoshida et al. (2020). Expression
of the SHH receptor Ptch1 appears to be restricted to the nascent

FIGURE 1 | Tracheal cartilage ring formation. (A) Cartilage rings (red) emerge in the mesenchyme on the ventral (V) side of the trachea. (B) Cross-section of the
developing trachea. (C) Regulatory interactions that control the emergence of cartilage rings (CR) in the ventral and airway smooth muscle in the dorsal (D) tracheal
mesenchyme. Black arrows indicate positive regulation, red arrows negative regulation. For details see text.
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cartilage condensations from E13.5 Miller et al. (2004). In
parallel, the expression of Shh assumes a periodic pattern on
the ventral, but not on the dorsal side of the tracheal epithelial
tube Sala et al. (2011). Around E13.5 or slightly after, Tbx5
disappears from the cartilage condensations Tiozzo et al.
(2009); Arora et al. (2012). From E14.5, Fgf10 expression
becomes restricted in between the nascent cartilage
condensations, but its receptor Fgfr2b remains uniformly
expressed in the epithelial tube Sala et al. (2011). The cartilage
condensations secrete BMP4 by E17.5 Park et al. (2010); it is not
known at what time the spatial restriction of Bmp4 emerges.

4 MUTANTS WITHOUT CARTILAGE RINGS

Functional genetics can help to identify the components of the
core mechanism as their null mutations should result in the loss
of cartilage rings. In the following, we will focus on mutants that
do not show any periodic Sox9/Col2a1 expression patterns or
tracheal cartilage ring formation, even though the trachea forms
with correct dorsal-ventral polarity. This analysis thus necessarily
excludes potential core components that are involved also in
processes upstream of periodic pattern formation as their
contribution to periodic patterning cannot be evaluated by this
approach. The following mouse mutants have so far been
reported that lack tracheal cartilage rings, even though the
trachea forms with correct dorsal-ventral polarity: Shh null
Miller et al. (2004); Park et al. (2010), Sox9 null Hines et al.
(2013); Turcatel et al. (2013), mesenchymalMek1/Mek2 removal
Boucherat et al. (2014), and endodermal Wls removal Snowball
et al. (2015). Finally, in mouse double mutants of R-spondin2 and
lipoprotein receptor related protein 6 (Rspo2Tg/Tg;Lrp6−/−)
tracheal rings were absent on the shortened tracheal structure
Bell et al. (2008), and Dermo1-Cre-driven conditional removal of
β-catenin, a core component of canonical WNT signalling, result
in loss of mesodermal Tbx4, impaired mesenchymal growth, and
lack of cartilage rings at E16.5 Kishimoto et al. (2020). Amutation
in human FGFR2 (S351C) prevents visible tracheal ring
formation, but the cartilaginous tracheal sleeve still forms
Gonzales et al. (2005). Alternative mRNA splicing in one of
the extracellular immunoglobulin (Ig)-like domains results in
different FGF receptor isoforms, known as FGFR (IIIb), and
FGFR (IIIc) Johnson and Williams (1993). The isoforms differ in
their ligand specificity and expression pattern. FGFR2(IIIb) is
produced predominantly in epithelial cells and binds to FGF7 and
FGF10, while FGFR2(IIIc) is found in the mesenchyme. Fgfr2b
and Fgf10 null mice have a different phenotype from that
reported for human FGFR2 (S351C) in that they develop
shorter tracheas with 6–8 distorted cartilage rings Min et al.
(1998); Sekine et al. (1999); Sala et al. (2011), suggesting that the
phenotype of human FGFR2 (S351C) results from defects in the
mesenchymal isoform. Ectopic mesenchymal expression of
FgfR2b in FgfR2c heterozygous mouse mutants results in
overgrowth of the tracheal rings and absence of
noncartilaginous mesenchyme Tiozzo et al. (2009).

BMP4 and its antagonist NOGGIN can both rescue cartilage
formation as well as Sox9 and Bmp4 expression in Shh null lung

explants, but cartilage formation is then no longer restricted to
the ventral side; it has not been reported whether periodic
patterns are obtained Park et al. (2010). BMP4 and Noggin
induce additional cartilage formation also in wildtype lungs,
and cartilage then forms also on the dorsal side. In Bmp4
conditional mutants, Nkx2.1 is restricted to the ventral side at
E9.5, but is lost by E12.5, and no Col2a1 expression and cartilage
ring formation is observed Li et al. (2008). Mice with inactivated
Bmpr1b and Sox2, and a SHH-driven endodermal conditional
knockout of Bmpr1a develop a ventral NKX2.1 domain that
forms disorganized isolated cartilage pieces/nodules, but not
rings at later stages Domyan et al. (2011). Epithelial BMP
signalling thus appears not to be necessary for the emergence
of the periodic cartilage pattern. It is unclear whether
mesenchymal BMP signalling is required for periodic cartilage
formation as a combined mesenchymal knockout of Bmpr1a and
Bmpr1b has so far not been reported.

While perturbations in many other pathways affect tracheal
ring formation or tracheal growth, no other pathway has been
described that is necessary for cartilage ring formation once the
tracheal mesenchyme has emerged Iber (2021).

5 CONTROL OF CARTILAGE RING
FORMATION

SOX9 controls all steps of the cartilage differentiation process,
and is a necessary factor for cartilage ring formation such that
cartilage rings are absent in mesenchymal Sox9 knockout mice
Hines et al. (2013); Turcatel et al. (2013). If doxycycline-driven
Sox9 removal is stopped at E13.5, then some cartilage nodules are
observed by E18.5 in the most proximal part Turcatel et al.
(2013). Progressively more distal nodules are observed if
doxycycline induction is stopped already at E12.5 or
E11.5 Turcatel et al. (2013). Secretion of endodermal WNT via
WLS is required for mesenchymal Sox9 expression Snowball et al.
(2015), and Sox9 expression appears strongly reduced or absent in
Rspo2Tg/Tgmutant tracheal mesenchyme Bell et al. (2008). More
generally, epithelial WNT ligands includingWNT7b andWNT5a
activate WNT/β-catenin in the mesenchyme of the developing
trachea to influence expression of chondrogenic factors including
Tbx4, Tbx5,Msx1,Msx2, Sox9, and Col2a1 Snowball et al. (2015);
Kishimoto et al. (2020). SHH signalling induces the expression of
Wnt5a and its receptor Ror2, and ablation of Wnt5a or its
receptor Ror2 results in shorter trachea with fewer cartilage
rings Li et al. (2002); Oishi et al. (2003). Deletion of Wnt7b,
expressed by the respiratory epithelium and known to mediate
Wnt/β-catenin signaling, does not affect trachea length or width,
but results in incomplete cartilaginous rings Rajagopal et al.
(2008). Deletion of Wnt4 does not affect tracheal length, but
results in 12 distorted rather than 14 tracheal rings, and results in
reduced Sox9 and increased Fgf10 expression at 13.5 Caprioli et al.
(2015).

SOX9 is a direct regulator of Col2a1 expression (Figure 1C), a
necessary factor for cartilage formation Rockich et al. (2013);
Boucherat et al. (2014). Despite the direct regulation, the
expression of Sox9 and Col2a1 is largely independently
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regulated. Thus, Col2a1 rings emerge in Tbx4/Tbx5 conditional
mutants even though Sox9 expression is rather weak, and Sox9
rings are barely visible Arora et al. (2012). Vice versa, Col2a1 is
absent in Shh null mice, even though Sox9 is expressed until
E13.5 Park et al. (2010). While Sox9 is weakly expressed in Shh
null mice until E13.5, the ventral restriction of Sox9 expression is
lost, and Sox9 expression is completely lost by E15 Pepicelli et al.
(1998); Park et al. (2010). One group reported disorganised
cartilage ring formation in Shh null mice Pepicelli et al.
(1998), but other groups failed to observe cartilage rings Park
et al. (2010); Miller et al. (2004).

A study in chondrocytes showed that SOX9-GLI directly and
cooperatively regulate many genes such as Sox9, Col2a1, Ptch1,
Gli1,Gli2, Fgfr3, Igf1r, and Bmp6 Tan et al. (2018). SHH signalling
may thus engage in a positive feedback with SOX9. SHH
signalling represses Fgf10 expression, and Fgf10 disappears
from the mesenchymal condensations by E14.5 Bellusci et al.
(1997); Park et al. (1998); Abler et al. (2009). In the absence of
Sox9, the expression of Fgf10, Tbx4, and Tbx5 remains uniform
Turcatel et al. (2013). Conditional removal of Tbx4, and Tbx5 has
similar effects on trachea development as removal of Fgf10, but,
even though TBX4/5 promote Fgf10 expression Cebra-Thomas
et al. (2003); Sakiyama et al. (2003), they appear to act also
independently of FGF10 during trachea development Arora et al.
(2012). Bmp4,Wnt2/2b, and Sox9 are strongly reduced in Tbx4/5
conditional mutants, but Col2a1 levels appear normal.

Mesenchymal removal of Mek1/Mek2 results in a thinner
trachea with continuous, but lower Sox9 expression at E14.5
and without cartilage rings by E18.5 Boucherat et al. (2014).
Epithelial removal ofMek1/Mek2 results in a shorter trachea with
fewer cartilage rings. Culturing lung explants with PD0325901, an
inhibitor for MEK, results in increased Col2a1 expression and a
widening of the cartilage condensations, but has no impact on
Sox9 expression Yoshida et al. (2020). This is consistent with
reports in other systems that show that mesenchymal
phosphorylated ERK (a kinase downstream of MEK) opposes
cartilage formation Oh et al. (2000); Ibarra et al. (2021). The
differences between the culture experiments and the
mesenchymal knockouts likely reflect differences in dosage
and spatial restriction.

Despite its importance for cartilage ring formation, the
upstream regulators of the MEK/ERK cascasde have remained
elusive. FGFs signal via ERK, and overexpression of Fgf18 results
in abnormal tracheal cartilage formation Elluru et al. (2009), but
the knockout of Fgf18 does not result in a tracheal phenotype
Usui et al. (2004). The FGF10 receptor, FGFR2b, is restricted to
the tracheal epithelium Sala et al. (2011), and can therefore not
trigger mesenchymal ERK activation. BMP4 appears to be the
main inducer of ERK1/2 activation in the E9.25 ventral endoderm
and mesoderm Li et al. (2008), but it is not known whether it
remains so also at later stages when mesenchymal condensations
form (E12.5-E13.5). A cell culture study concluded that BMP2
induces Sox9 transcription mainly via p38 MAP Kinase (MAPK),
while regulating SOX9 transcription factor activity via pSMAD1/
5/8 and p38 Pan et al. (2008). A number of other mechanisms has
been found to activate ERK in other contexts. For one,
mesenchymal WNT signalling has recently been shown to

activate pERK in the cranial mesenchyme, which then blocks
Sox9 and Col2a expression and cartilage formation Ibarra et al.
(2021). Non-canonical SHH signaling has been suggested to
trigger calcium-induced extracellular signal-regulated kinases
(ERK) activation Robbins et al. (2012); Carballo et al. (2018).
ERK may also respond to pressure and/or curvature, as reported
for the lung epithelium Hirashima and Matsuda (2021). In
epithelial cells from the mammary gland, ERK activity has
been found sensitive to the stiffness of the surrounding matrix
Farahani et al. (2021). Whether any of this plays a role in the
tracheal mesenchyme is not known.

Interestingly, upon conditional removal of Myorcardin, the
cartilage rings fail to expand towards the dorsal side, and the
trachael lumen is reduced Young et al. (2020). Considering that
smooth muscles and peristalsis are undetectable, and the
expression of two BMP inhibitors is decreased and pSMAD
signalling is increased in the mutants, this could be the
consequence of either mechanical and/or signalling defects.

In summary, WNT signalling (WLS, R-spondin2/LRP6) is
essential for mesenchymal Sox9 expression, and SOX9 is essential
for cartilage formation. Sox9 is still expressed weakly in Shh and
mesenchymal Mek1/Mek2 mutants, but fails to organise into
rings. As such, SHH and MEK1/2 are either part of the core
mechanism that results in periodic Sox9 patterning, or periodic
patterning fails because Sox9 expression is too weak in those
mutants. Myocardin, a master regulatory of smooth muscle
differentiation, is necessary for the dorsal expansion of the
nascent cartilage rings to their characteristic C-shape. But
what leads to the periodic Sox9 pattern?

6 CANDIDATE MECHANISMS FOR
PERIODIC PATTERN FORMATION

Awide range of chemical and/or mechanical instabilities can result
in biological pattern formation. The Swift-Hohenberg equation has
been shown to recapitulate the complex tracheal cartilage pattern
also at the tracheobranchial juncture, if coupled with a gradient to
achieve the correct stripe orientation Kingsley et al. (2018). While
the Swift-Hohenberg equation can be derived from fundamental
equations for the Rayleigh-Benard convection in an heated fluid
Swift and Hohenberg (1977), it has remained difficult to find a
mechanistic explanation for the forth-order spatial derivative in
biology Oza et al. (2016). Given its patterning versatility, Turing
mechanisms Turing (1952) (Figure 2A) have been proposed for a
large number of biological patterning processes, including tracheal
cartilage ring formation Sala et al. (2011); Kingsley et al. (2018).
While the mathematical properties of Turing mechanisms are well
understood Murray (2003), and Turing patterns have been
confirmed in chemical reaction systems Horvath et al. (2009),
the molecular mechanism behind biological Turing mechanisms
remains unknown. The experimental validation of proposed
molecular implementations of Turing mechanisms remains
impossible as kinetic parameters cannot be measured reliably in
biological tissues and pattern likeness is insufficient proof. As such,
only the experimental rejection of Turing mechanisms is possible
to date. A well-known example are the stripes in the Drosophila
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blastoderm, whichwere initially accounted to a Turingmechanism,
but have since been shown to result from cross-repressive
transcription factor cascades downstream of opposing
morphogen gradients Meinhardt (1986); Lacalli et al. (1988);
Akam (1989); Jaeger (2011). In many other complex, stereotypic
patterning systems, Turing models have remained the only
candidate mechanism that is consistent with the experimental
data. In its simplest form, Turing patterns require a negative
feedback between at least two components that diffuse at
different speed. Turing patterns can be obtained also with a
single morphogen or growth factor if its binding to the cell-
bound receptor upregulates the receptor concentration
(Figure 2A), as is the case for SHH, FGF10, and BMP
Menshykau et al. (2012); Badugu et al. (2012); Celliere et al.
(2012); Kurics et al. (2014); Menshykau et al. (2014). Candidate
networks for Turing models that yield periodic cartilage patterns
have been studied extensively in limb development, where the
cartilage condensations mark future digits and phalanges Iber and
Germann (2014). The patterns in wildtype and perturbed
conditions could be explained with a variety of biological
mechanisms, including a 3-node network composed of BMP,
SOX9, and WNT Raspopovic et al. (2014), a negative feedback
between TGF-β and either the extracellular matrix (ECM) or TGF-
β antagonists Zhu et al. (2010), and the interaction between BMPs
and its receptor Badugu et al. (2012). Thesemechanisms have so far
not been explored in the trachea. Mesodermal β-catenin appears
necessary also for tracheal Sox9 expression Kishimoto et al. (2020),
but this makes it difficult to assess the role ofWNT signalling in the
subsequent periodic patterning of SOX9. In case of a ligand-
receptor-based Turing mechanism, the receptor would have to
be upregulated in the tracheal cartilage condensations. This has

indeed been reported for the SHH receptor PTCH1 Miller et al.
(2004). The expression patterns of Bmpr1a and Bmpr1b are not
known. Unlike in lung branching morphogenesis Menshykau et al.
(2014); Kurics et al. (2014), FGF10 is unlikely to be part of the core
Turing mechanism as its receptor remains uniformly expressed in
the tracheal epithelium, and periodic collagen type II patterns are
still observed in Fgf10 mice, if delayed and less uniformly shaped
compared to the wildtype Sala et al. (2011). In case of a SHH-based
ligand-receptor-based Turingmechanism, uniform SHH signalling
on the dorsal side of the trachea could be explained with the higher
Shh expression levels Que et al. (2009) that can take the regulatory
system out of Turing parameter space and thereby ensure uniform
patterns Kurics et al. (2014). The one-day patterning delay
observed in Fgf10 null mice Sala et al. (2011) may then reflect a
delay in the ventral downregulation of Shh expression. Apart from
chemical signalling, cell-cell interactions can also result in Turing
instabilities Watanabe and Kondo (2015). Given the movement
and aggregation of Col2a1-expressing cells Young et al. (2020), the
periodic pattern could, in principle, also arise from chemotaxis
Keller and Segel (1971); Hillen and Painter (2009) (Figure 2B), or
differential adhesion of cartilage progenitors in the ventral
mesenchyme, though additional mechanisms would need to be
in place to ensure reproducible stripe formation from noisy initial
conditions Armstrong et al. (2006); Canty et al. (2017); Carrillo
et al. (2019) (Figure 2C). Finally, differential growth of the ventral
epithelium and mesenchyme (Figure 2D) could result in periodic
patterning Sultan and Boudaoud (2008); Marin-Riera et al. (2018);
Carrillo et al. (2019); Tozluoglu and Mao (2020). Expansion of a
thin, incompressible layer with elastic modulus EEpi and thickness h
relative to a thick, incompressible substrate with modulus EMes

results in buckling with wavelength λ � 2πh( EEpi

3EMes
)1/3 Sultan and

FIGURE 2 | (A) Repetitive patterns can emerge via a Turing mechanism when two regulatory factors that diffuse at different speeds engage in a negative feedback
Turing (1952). In case of the ligand-receptor based Turing mechanism, the binding of the rapidly diffusing ligand (L) to the slowly diffusing receptor (R) results in up-
regulation of the receptor and removal of the ligand. This system can bemodelled with two coupled partial differential reaction diffusion equations. This system can yield a
large variety of patterns, dependent on the reaction parameters and the tissue geometry. (B) Chemotaxis can result in periodic patterning when motile cells (C)
produce and consume the diffusible chemoattractant or chemorepellent (L), as modelled for instance by the Keller-Segel model Keller and Segel (1971). (C) Differential
adhesion between the blue and the red cells can result in periodic pattern formation. The mixture of cells is dependent on their relative surface tension (CT1 for the red,
CT2 for the blue population). This results in three different relative surface tensions (T1 between red cells, T2 between blue and T12 between the two populations) Canty
et al. (2017). To achieve separation in the displayed formCT1must be larger than CT2 and T1 larger than T12 which is larger than T2. (D)Differential growth of two adjacent
tissue layers can result in buckling. The wavelength λ of the periodic pattern depends on the thickness, h, of the expanding epithelial layer (blue layer), and the relative
Young modulus EEpi/EMes of epithelium (blue) and mesenchyme (red) Sultan and Boudaoud (2008).
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Boudaoud (2008). To obtain the ratio of patterning wavelength, λ,
and epithelial thickness, h, that is observed in the trachea Yoshida
et al. (2020), the Young moduli of epithelium, EEpi, and
mesenchyme, EMes, would need to be similar. However, even if
the epithelial folds arise from epithelial buckling, theymay well be a
consequence rather than a driver of mesenchymal condensations.
After all, mesenchymal condensations reduce spatial expansion.
Given this wide range of possibilities, more quantitative
experimental studies and mathematical modelling are required
to delineate the mechanism by which the cartilage rings form.

7 CONCLUSION AND OUTLOOK

Despite the simplicity of the pattern and the importance of the
structure, tracheal cartilage ring formation remains poorly
understood. Conditional mutants in combination with explant

cultures, organoids, quantitative imaging, and mathematical
modelling may help to unravel this patterning mechanism.
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Mass-Conservation Increases
Robustness in Stochastic
Reaction-Diffusion Models of Cell
Crawling
Eduardo Moreno and Sergio Alonso*

Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain

The process of polarization determines the head and tail of single cells. Amechanism of this
kind frequently precedes the subsequent cell locomotion and it determines the direction of
motion. The process of polarization has frequently been described as a reaction-diffusion
mechanism combined with a source of stochastic perturbations. We selected a particular
model of amoeboid cell crawling for the motion of Dictyostelium discoideum and studied
the interplay between pattern formation and locomotion. Next, we integrated the model in
a two-dimensional domain considering the shape deformations of the cells in order to
characterize the dynamics. We observed that the condition of pattern formation is finely
tuned and we propose a modification based on the use of a mass-conservation constraint
to substantially increase the robustness of the mathematical model.

Keywords: bistability, stochastic partial differential equations, pattern formation, Dictyostelium discoideum, cell
polarization, amoeboid motion

1 INTRODUCTION

An intensive use of physical and mathematical theories on pattern formation in extended systems [1,
2], gave rise to valuable arguments to explain the formation of certain biological structures. Such
mathematical mechanisms have permitted the modeling of processes on very different spatial and
temporal scales: from the formation of the skin in fishes [3], to the definition of the direction in
embryonic developing [4]. Such mechanisms have to be robust to small changes of parameters in
order to be reliable. Robustness is a generic feature of living cells. It ensures that specific cellular
functions are maintained despite external and internal change on the conditions. System control and
feedback control are some of the characteristic mechanisms that allow robustness [5, 6].

Cell migration is an example of robust phenomenon that is present both in prokaryotic and
eukaryotic cells. Living cells migrate to perform different tasks such as food targeting, wound healing
and immune response. Independently of the presence of an external signal, before moving, cells need
to define the direction to follow. To do so, they first define the front and the back of the cell. The
process of formation of a polar direction inside a single cell is commonly known as cell polarization
[7] and it is a typical example of pattern formation at the cellular level [8].

Several mathematical models have been developed to explain polarization of single eukaryotic
cells [9–11]. Some models rely on a local excitation, which, combined with global inhibition makes
the cell respond to external gradients [12], others rely on the accumulation of a certain biochemical
components to guide the motion of the single cells [13]. The accumulation responsible for this
second mechanism is frequently combined with a conservation constraint because the process of
polarization is fast in comparison to the production of new biochemical components. With this
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restriction, the mechanism of pattern formation inside living
cells, together with the constraint of mass conservation, is
analogous to a process of coarsening of the initial nucleus of
components [14] and gives rise to phase separation [15] and to
models of pattern formation [16]. Several simple models of
intracellular pattern formation have appeared including the
conservation restriction [13, 17, 18].

Once the axes and direction of movement are defined in
amoeboid cells, small projections (defined as protrusions) are
formed at the membrane of the cells [19]. These projections,
which extend and retract periodically, are responsible for pushing
the cell, and therefore, to move in the typical amoeboid motion.
Dictyostelium discoideum is a species of soil-dwelling amoeba,
frequently employed to characterize amoeboid locomotion.
Inside the amoeba several signaling events are triggered, for
example the activation of the Ras proteins and PI3K enzymes
and accumulation of PIP3 at the front of the cell, while activation
of PTEN and myosin occur at the rear of the cell [20, 21].
Membrane areas where the protrusion activity is greater are
typically characterized by the presence of Ras-GTP protein
patches [22]. The appearance of Rac regions around the
membrane with high protrusion activity [23, 24] has been
observed in the slime mold organism Dictyostelium
discoideum, where it is related to cytoskeletal dynamics [25].

A reaction-diffusion model with bistable dynamics is one of
the commonmodels of cell motility and particularly employed for
Dictyostelium discoideum. Some dimensional bistable models are
based on the formation of a finite lifetime and localized patches of
high protein concentration [26, 27] while others are based on
membrane dynamics of moving connected points [28]. Bistable
conditions for cellular processes can be obtained by the coupling
of a mass control regulating condition in the biochemical
components present around the cytosol and the membrane of
the cell, for example proteins, phospholipids and enzymes [13,
16, 29].

A common technique to model pattern formation inside a cell
and the shape evolution of the membrane is the addition of a
phase field with a sharp interface to distinguish the interior and
exterior of the cell. This field maintains the correct boundary
conditions while the borders are moving [30]. Some studies have
applied phase field modeling to study keratocyte motility [31–33]
and amoeboid motility [34] which can be divided into diffuse and
persistent migration depending on the starvation level [35, 36].
There are also some intermediate cases observed in Dictyostelium
discoideum cells for certain types of genetic variants [37] which
have also been modelled with a phase field and variation of some
parameters [38–40]. Other properties of Dictyostelium
discoideum cells modeled employing a phase field are the
viscoelasticity of the cells [41] and cell division [42]. Finally,
we would like tomention that interactions among cells can also be
considered for keratocyte [43, 44] and amoeboid cells [45].

Here, first, we transform a one dimensional model of the
polarization at the membrane of a single Dictyostelium
discoideum cell [23] into a two-dimensional domain for the
waves in the basal membrane, in contact with the surface, using
an additional phase field for the shape of the cell. We observe a
strong dependence of the numerical dynamics on the explicit

parameter values of the original model. Cell motion occurs
only in a small window of parameter values, which indicates
that the model is not robust to small variations of the
parameters. Therefore, we propose a constraint on the
conservation of a component of the signal pathway,
controlling the autocatalytic mechanism, in order to
increase the robustness of the model in representing
changes in parameter values [46]. Similar types of
conservation have previously been employed in other
models of motion of Dictyostelium discoideum cells [34, 38,
47, 48], and we show here that a constraint of this kind is an
useful and reasonable condition to systematically increase the
robustness of the crawling mechanism, increasing the window
of parameter values allowing cell migration.

2 MATERIALS AND METHODS

2.1 Biochemical Model for Ras Activation
and Pseudopod Extension
Biochemical components inside the Dictyostelium discoideum
amoeba self-organized to follow chemical signals in the
exterior by the accumulation of Ras-GTP in the front of the
cell. Next, F-actin molecules accumulates also at the front
triggering push of the cytoskeleton and the motion of the amoeba.

We investigate a simple reaction-diffusion model [23] for Ras-
GTP (R) patches that consists on the next partial differential
equation:

zR

zt
� 1 − R( ) k0 + k1S + k2R

n1

Rn1 + Kn1
R

− k3GR − k4LR( )
− k5R

1 + k6P
+DR∇

2R + ξR x, t( ),
(1)

wherewehave a basal production, the stimulationproductionRby local
occupied receptor S, an autocatalytic stimulation of R, an inhibition
R by global and local inhibitors (GR and LR), the degradation of
R, the diffusion of R and, a Gaussian spatio-temporal distributed
white noise ξR(x, t) with zero mean 〈ξR(x, t)〉 = 0 and correlation
〈ξR(x, t)ξR(x9, t′)〉 = 2σRδ(x − x9)δ(t − t′). The external S can

FIGURE 1 | Sketch of the biochemical model of polarization due to
chemotaxis and locomotion modules. Blue solid lines corresponds to the
interactions and red dashed lines to auto-catalytic processes. The mass-
conservation constrains control the auto-catalytic interactions.
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significantly increase the response of Ras [23], see diagram in
Figure 1, therefore, we keep here S = 0.

The variables LR and GR correspond, respectively, to local and
global inhibitors of R:

zGR

zt
� k7 �R − k9GR, (2)

zLR

zt
� 1 − LR( )k10R − k11LR +DLR∇

2LR; (3)

where both are produced by R and degrade, and only the local
inhibitor diffuses. Note that the quantity �R corresponds to the
spatial average in the whole space of the field R.

At the same time we included a quantity related to the
formation of protrusions (P) such as F-actin and Rac-GTP
molecules; see diagram in Figure 1. This variable P was
coupled with its respective inhibitors:

zP

zt
� 1 − P( ) k12 + k13R + k14P

n2

Pn2 +Kn2
P

+ k15M
n3

Mn3 +Kn3
M

− k16GP − k17LP( )
−k18P +DP∇

2P + ξP x, t( ),
(4)

where we have a basal production, the stimulation
production by R, an autocatalytic stimulation of P, a
production by an extra term M, an inhibition of P by global
and local inhibitors (GP and LP), the degradation of P, the
diffusion of P and, a Gaussian spatio-temporal distributed
white noise ξP(x, t) with zero mean 〈ξP(x, t)〉 = 0 and
correlation 〈ξP(x, t)ξP(x9, t′)〉 = 2σPδ(x − x9)δ(t − t′).

Similar to the previous set of equations, the variables LP andGP

correspond, respectively, to local and global inhibitors of P:

zGP

zt
� k19 �P − k20GP, (5)

zLP

zt
� 1 − LP( )k21P − k22LP +DLP∇

2LP; (6)

where both are produced by P and degrade, and only the
local inhibitor diffuses. Note that the quantity �P
corresponds to the spatial average in the whole space of
the field P.

Finally, the model takes into account the inclusion of a variable
of memory (M) which is coupled with P; this variable stimulates
the formation of new protrusion zones and represents the results
observed in some experiments:

zM

zt
� k23P − k24M +DM∇

2M. (7)

which is produced by P, degrades and diffuses. The memory term
is related to the probability of identifying when and where the
signaling cascade is activated to generate new pseudopods. At a
molecular level, such term is identified with the mechanisms of
how information is collected, stored and used to bias future
pseudopods [49, 50].

A more exhaustive description of the model is shown in the
original study [23]. However, note that the noise description in
the original study was different and we have adapted to an
equivalent description based on physical derivations of
stochastic fluctuations [51]; for more details see
Supplementary Material.

One dimensional simulations were made using periodic
boundary conditions in a grid of 120 points. The cell was
considered as circular and having a radius of 6.25 μm. The
pixel size for this case was set at Δx = 0.32 μm and the time
step Δt = 0.03 s. The definition and the value of the parameters of
the model can be found in Supplementary Table S1.

2.2 Physical Phase Field Model for Cell
Shape Deformations
The original model did not include deformable cells. Therefore,
we expanded the model to 2D geometry and introduced an
auxiliary phase field ϕ with the purpose of describing the
evolution of the cell shape. The use of a phase field permits a
smooth variation between the values of ϕ = 1 inside and ϕ = 0
outside of the cell.

The phase field equation is the result of a force balance
involving several types of forces of different origins acting in
the cell body. The equation for the phase field is as follows

τ
zϕ

zt
� γ ∇2ϕ − G′ ϕ( )

ϵ2( ) − β ∫ ϕ dA − A0( ) ∇ϕ
∣∣∣∣ ∣∣∣∣ + α ϕP ∇ϕ

∣∣∣∣ ∣∣∣∣,
(8)

The first term on the right side in Eq. 8 is related to the surface
energy of the cell membrane, where γ is the surface tension and
G(ϕ) = 18ϕ2(1 − ϕ)2 is a double well potential. The second term
keeps the area close to the value of A0. And the third term
represents the active force generated by the Rac-GTP (P)
molecules when pushing on the cell membrane [34]. The
inclusion of the phase field permits to mimic the shape of the
ventral membrane of crawling cells.

We consider a deformable cell of 122 μm2 in area
corresponding to a circle with radius equal to 6.25μm. The
pixel size used was the half as in the 1D case Δx = Δy =
0.16 μm. Also, to increase accuracy, the time discretization was
reduced to Δt = 0.003s. We integrated Eqs 1–8 using periodic
boundary conditions and standard finite differences. The rest of
parameters are as displayed in Supplementary Table S1.

2.3 Mathematical Description of the
Mass-Conservation Constraint
The mathematical model represented in Eqs 1–7 has several
conservation terms which affect the dynamics of the system; see
for example Eqs.2–5. However, we further modify the original
model to include a new feedback through parameters k14 to create
a more robust model by the control of the bistable properties,
which are discussed in following sections. Therefore, the
parameter k14 is dynamically controlled depending on the total
amount of the protein of the inducer P at the cell. A new control
term related to k14 is incorporated, following previous similar
approaches in simple models [32, 38, 47]:

k14 � kp14 + η �P − CP( ), (9)
where k14* is a new constant that take the values of the original
value of k14. It is important to note that the new constrain
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precludes the cell to be fully covered with the component P or
emptying of the component P. Both extreme conditions are rare
during cell crawling.

Parameter CP is the target value of the fraction of the cell area
occupied by patches of pseudopod inducer P. When, the total
concentration �P is larger (lower) than Cp the parameter value of
k14 is larger (lower) than k14* and the bistable conditions implies
the reduction (increase) of the �P. It corresponds to a feedback
control of the parameter to keep a particular stable solution in Eq.
9. Note that for η = 0 we recover the original model.

3 RESULTS

3.1 Mechanism of Cell Motion in the
Mathematical Model Is Based in Stochastic
Generation of Patches
In a one-dimensional system, mimicking the membrane of a
crawling cell, the generation of a single local patch of high
biochemical concentration is equivalent to cell polarization. A
stable domain in a specific location of the membrane is related
with actin accumulation and produces persistent motion of the
cell in that direction. The random appearance and disappearance
of small domains is related with amoeboid motion, where two or
three pseudopods compete for a certain time. The alternation of
direction gives rise to random motion of the virtual cell.

Stochastic reaction-diffusion equations, as in Eqs 1–7, and
previously developed [23], can be numerically integrated into a
one-dimensional domain as in the original study, where
kymographs are shown for a certain window of parameter values.

If we vary the parameters k14 and k18, we obtain the phase
diagram; see Figure 2. For large values of k14 and small values of
k18 the membrane is completely covered by P, while for small
values of k14 and large values of k18 the concentration of P
strongly decreases. Locomotion is, therefore, expected for
intermediate values of these two parameters as shown in
Figure 2. For the evaluation of the mechanism of the
simulations shown in Figure 2, we fixed the stochastic source
of perturbations of the additive noises in Eqs 1–7 to σR = 0.04 and
σP = 0.025.

3.2 Mechanism of Cell Motion Is Based in
Bistability
For the evaluation of the mechanism of pattern formation we
found the stationary solutions for the deterministic version of Eqs
1–7 by removing the additive noise. We have slowly increased the
parameter k14 by small intervals (0.05 s−1) and integrated the
model for a considerable amount of time to permit the model
reach the equilibrium (180 s). Subsequent increase of the
parameter permits the observation of the evolution of the
stationary value of P by obtaining a value for P in every
interval in k14; see Figure 3A. Once the system of equations

FIGURE 2 | Spatio-temporal plots of P (in red) for different values of k14
and k18. For each panel times goes from bottom to top and horizontal direction
corresponds to membrane position in the cell circumference. Variances of
noise intensity were fixed at σR = 0.04 and σP = 0.025.
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saturated to a certain value of P ~ 0.75 − 0.80 we stopped and
reduced the value of k14, giving rise to a hysteresis cycle; see
Figure 3A. The hysteresis cycle shows that the system actually is
bistable for certain window of parameter values. Equivalent
dynamics of P can be observed under a similar change in k18;
see Figure 3B. Therefore for low and large values of k14 and k18
there is a single stable solution and for intermediate values the
model shows bistability.

It is known that the combination of a bistable dynamics with
an appropriate noise intensity produces the formation of
localized patches in reaction-diffusion equations [52, 53].
This formation is the mechanism responsible for the
formation of localized domains of P. The localized pattern
observed in Figure 2 is not due to excitable dynamics but
rather to a delicate equilibrium between bistable dynamics
and noise.

3.3 Stochastic Bistability Provides a
Mechanism of Cell Crawling Motion in Two
Dimensional Systems
For the coupling of the polarization mechanism to the cell motion
we used a phase field. This additional field is employed for the
definition of the interior of the cell. In this case, the two
dimensional phase field permits the use of different biochemical
concentrations in the ventral membrane of a crawling cell.

The extension of the stochastic reaction-diffusion described in
the previous section to two dimensions permits numerical
simulations of the shape of the crawling cell and the
corresponding motion responding to the dynamics of the
patches. In Figure 4 we showed snapshots of the in silico cells
with the parameter values corresponding to the values shown in
Figure 2. We reproduced the dynamics expected from the one

FIGURE 3 | Hysteresis curves of the deterministic model (σR = 0 and σP = 0). The value of the homogeneous solution of P is shown as function of the parameter
increasing and, subsequently, decreasing of k14, keeping k18 = 7 s−1 (A) and k18 keeping k14 = 10.2 s−1 (B). Increase and decrease of the both parameters are done by
steps of 0.05 s−1 and, after each step, permitting to relax to the new solution for 180 s.

FIGURE 4 | Snapshots of the virtual cells showing P (in red) obtained from computer simulations and applying the phase field technique to the model for different
values of k14 and k18. Variances of noise intensity were fixed at σR = 0.04 and σP = 0.025. The rest of them are consistent with Supplementary Table S1.
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dimensional simulations, and the crawling dynamics can be
clearly studied. Again, for high values of parameter k14 and
small values of k18 the concentration of P is mostly high and
homogeneously distributed along the membrane; see Figure 4.
On the other hand, in the opposite limit, for small values of k14
and high values of k18 the concentration of P disappears from the
ventral membrane. However, for a small window of values of the
parameters the cell moves and inspects the surrounding region.
The shape of the resulting cell depends on the particular
realization and the parameter values; in the snapshots shown
in Figure 4 we obtain fan-shaped cells, a typical mode of
Dictyostelium discoideum cell crawling [37].

The dependence of locomotion on the parameters k14 and k18 is
strong as shown inFigure 4. Persistentmotion is observed only for an
intermediate window of values of the two parameters. For very small
or very large amounts of �P cells do not move. Such quantity is
determined by the parameters k14 and k18, and small changes on their
values prevent the cell motion, making the whole model non-robust.

3.4 Noise Intensities Determine the Type of
Motion
The variation of the type of cellmotion is determined by the intensity
of the noise. Low levels of both noises do not permit the formation of
the domains of P needed to give rise to cell movement; see Figure 5.
Aswe increase the amplitude of noise for P, we reach a single domain
that fills the front part of the cell and persistent motion is shown; see
middle column and right hand snapshots in Figure 5. This type of
motion is reminiscent of the fan-shaped amoeboid cells previously
reported [37] and also reproduced with simpler models [38]. An
increase in the noise intensity produces an increase in the
appearance and disappearance of pseudopods and therefore a
transition to amoeboid movement; see fifth column in Figure 5

for higher noise intensities. There are some noise intensities which
produce patterns and dynamics similar to the characteristic patterns
observed in the experiments, however, as previously mentioned, and
shown in Figure 4, small variations in the parameter values k14 and
k18 may completely change the movement dynamics.

3.5 Inclusion of Mass-Conservation
Constrain Qualitatively Increases
Robustness
In order to reduce the high sensitivity of the appearance of
motion on the parameter values, we included a conservation
constraint on the total inducer P, see Eq. 9, in the biochemical
rates responsible for the bistable transition in Eq. 4. Following
similar previous approaches [34, 47], we included this
conservation as a global feedback condition in the reaction-
diffusion equations of the model, see Section 2.3.

In Figure 6, we show several realizations incorporating the
conservation constraint of P proteins, for different k14 and k18
parameter. A direct comparison can be made with the results
displayed in Figure 4 showing the effects of the inclusion of the
mass conservation feedback. Results in Figure 6 show that for a
wide range of parameter values, the variation of the parameters
does not affect either the bistability of the model or the quantity of
inducer P inside the cell phase field, which was kept constant. The
inclusion of this global condition permits the use of a larger range
of parameter values, increasing the robustness of the mechanism
in comparison with the original model.

The shape and type of motion were affected by the noise
intensity. Using the same parameters of Figure 5 we studied the
effects of varying the noise variance in the new mass-conserved
model. When the noise intensity related to the pseudopod
inducer P increases, changes the shape from persistent fan-

FIGURE 5 | Map of snapshots of the virtual cell taken from different variance values of noise intensity for the original model [23]. For each column, snapshots
indicate P distribution (red) inside the cell. The value of the parameter of the simulations are k14 = 10.2 s−1 and k18 = 7 s−1. The rest of them are consistent with
Supplementary Table S1.
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shape to random amoeboid phenotype, see Figure 7. This change
is present because while small values of σP generates less blurred
patches, an increment of σP drives the opposite effect, the
appearance of more blurred and distributed patches for P.

3.6 Inclusion of Mass-Conservation
Constrain Quantitatively Increases
Robustness
We measured the speed of the resulting cells for different
parameter conditions for the original and the new mass-

conserved models. We observed that the dynamics of the
simulated cells are more robust for the mass-conserved version
of the equations; see Figure 8.

For the original model the speed and shape drastically changes
when varying the parameters, and only a particular combination
of parameters gives rise to cell crawling (see Figure 4). On the
other hand, for the new mass-conserved version both velocities
and shapes are more similar to each other for a much larger
window of parameter values, as we can see in the speeds
calculated in Figure 8. Such results were obtained by changing
k18 to correspond to simulations shown in the third row of

FIGURE 6 |Map of snapshots of the virtual cell taken from different values of k14 and k18 for the newmass-conserved model. For each column, snapshots indicate
P distribution (red) inside the cell. Variances of noise intensity were fixed at σR = 0.04 and σP = 0.025. The rest of them are consistent with Supplementary Table S1.

FIGURE 7 | Map of snapshots of the virtual cell taken from different variance values of noise intensity for the new mass-conserved model. For each column,
snapshots indicate P distribution (red) inside the cell. The value of the parameter of the simulations are k14 = 10.2 s−1 and k18 = 7 s−1. The rest of them are consistent with
Supplementary Table S1.
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Figure 4 for the no mass conservation case and for Figure 6 for
the mass-conservation system.

In Figure 9 we show the dependency of the speed on the noise
σP for different values of σR. The speed of the cells employed for the
calculation comes from the dynamics shown in Figures 5, 7. We
observe that the speed obtained from both conditions decreases for
greater noise intensities. However, for the original model almost
null velocities appear for low noise magnitude. As we increase the
noise intensity, values of the speed are more similar.

4 DISCUSSION

We studied the dynamics of a one-dimensional Dictyostelium
Discoideum cell model consisting in the stochastic dynamics of

Ras activation (R) and pseudopod inducer (P). The deterministic
version of the model reveals the emergence of bistability. This
conclusion appears from the visible hysteresis transition under
the change of the parameters. In contrast, the stochastic version of
the model permits the transition between two stable regimes. The
extension of the model into two dimensions with the use of the
addition of a phase field, allowing cell deformation, shows similar
dependence on the parameters, in agreement with [23].

Since for typical experimental conditions the total
concentration barely changes despite environmental
perturbations, we chose to incorporate global feedback for the
pseudopod inducer inside the cell. Such inclusion increases the
robustness of the model and expands the parameter range where
cell motion is observed without affecting the shape and dynamics.

The idea behind the approach is to dynamically control the
velocity of the border between the clusters of P (orange domains)
and the empty region. When the size of the orange domain is
above (below) a certain threshold the border contracts (expands)
keeping the global size of the domain of P and therefore the
polarization of the cell. Such control does not substantially
depend on the rest of the parameters because it is defined to
maintain the size of the domain close to a certain value, and
ensures that small modifications of the parameter do not destroy
the structure of the domains and the polarization. Therefore, the
described mechanism is more robust that a pure parameter
fitting.

A bistable dynamics together with diffusion typically produces
the motion of a front in reaction-diffusion equations. Under
certain fine tuned parameter values, the front velocity becomes
zero [54]. If we consider such bistable variable the concentration
at the membrane and we, therefore, couple its dynamics with a

FIGURE 8 | Box plot representation for the cell speed of the original
model (blue color) and the newmass-conservedmodel (red color). Results are
for when k18 is varied. using a fixed value of k14 = 10.2 s−1, σR = 0.04 and σP =
0.025. Ten realizations for each case were performed.

FIGURE 9 | Speed bar plots measured by the original model (blue bars) and the new mass-conserved model (red bars) by varying the noise variance σP. In each
panel the variance associated to σR was fixed for different values.
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second variable, related with the concentration of the same
protein in the cytosol, where diffusion is faster, the condition
of zero velocity spontaneously appears, and the front is frozen at a
particular position giving rise to wave pinning [13, 29]. Such a
pinned condition appears because the coordinated balance
between the membrane and the cytosol concentrations
maintains constant the total amount of the protein inside the
cell. Therefore, some other new models consider only a single
variable for the membrane together with a global feedback to
account for the mass-conservation condition for a single
concentration [17, 32, 38]. When the dynamics of the
concentration at the membrane is combined with other
membrane concentrations more complex models including
also excitable signalling networks are developed [39, 47, 48,
55]. In contrast with such models, in this study we chose an
existing complex model where the condition of bistability is finely
tuned [23] and add the global feedback condition to account for
the conservation of the protein. Such modification highly
increases the robustness of the model and, therefore, its
applicability to other conditions.

Two of the parameters k14 and k18 can show hysteresis loops in
the concentration of P, see Figure 3. We have employed the
global feedback in the condition of parameter k14, see Eq. 9,
however we could have employed a similar condition for
parameter k18 or any other parameter which exhibits a
hysteresis behavior on the concentration P. Actually, note that
other global feedback were already considered in the original
version of the model [23]; see the dynamics of the global
inhibitors, defined by GR and GP in Eqs 2–5 respectively,
similarly to other models of the motion of Dictyostelium
discoideum cells based on global cytosolic quantities [12, 48].
The addition of global control quantities which can determine the
available concentration inside the cell has previously been
employed in other models [32, 38, 47].

Instant speed was measured, highlighting that for the original
model a considerable set of parameters driven to velocities of
close to zero, while for the set of parameters for the new mass-
conserved model the speed remained almost constant around
0.45 μm/s.

Note that we have shown that the original model is based on a
bistable conditions with the appropriate noise intensity. We
have previously used simple stochastic bistable models for the
description of the motion of Dictyostelium discoideum cells [34,
38] based on the same concept together with a mass-
conservation constraint. There are also other models based
on similar constraints [24, 40, 47] where some of the key
differences relies in the inherent oscillatory dynamics of the
models, the specific parameters that need to be change to
generate different types of cell motion (e.g., amoeboid or
keratocyte) without affecting the biochemical signaling
dynamics; apart from the number of membrane
concentrations involved in the cell dynamics as already
mentioned. Therefore, the addition of a mass conservation
constraint is a convenient mechanism to increase robustness
in the delicate equilibrium between stochastic fluctuations and a
bistable condition.

The coupling of the Ras activation R on the pseudopod
inducer P is weak. The coupling is produced by the term
proportional to k13 and it increases the probability of the
generation of patches of P. A chemotactic concentration can
enhance R and, therefore, polarize the field P and direct the
locomotion [23]. In the absence of chemotaxis the coupling is
small, while more physiological conditions may require larger
couplings. In Figure 10 we increased parameter k13 to
demonstrate the increase in the coupling of both field R and P
through the parameter. Intermediate values can be compared
with experimental measures to fit an appropriate value; however
such evaluation is outside the scope of this work.

FIGURE 10 | Spatio-temporal plots of R (in green) and P (in red) for different values of the coupling parameter between R and P: k13 = 0.1 s−1 (A), k13 = 0.5 s−1 (B),
k13 = 1 s−1 (C), and k13 = 2 s−1 (D) in the new mass-conserved model. Results are for a fixed values of σR = 0.04 and σP = 0.025.
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An extension of the new mass-conserved model is possible
with the inclusion of an external chemo-attractant gradient to
analyze the response, known as chemotaxis and already
considered in the original model [23]. Future simulations
should study the relation of the chemotactic motion of
Dictyostelium discoideum cells with the stochastic
fluctuations and the rest of the parameters. They should
also measure the effects on the shape and speed caused by
the gradient.

In summary, we have shown that the inclusion of a mass-
conservation constraint in the correct position substantially
increases the robustness of a computational model of a
crawling cell.
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Patterning, From Conifers to
Consciousness: Turing’s Theory and
Order From Fluctuations
Thurston C. Lacalli *

Biology Department, University of Victoria, Victoria, BC, Canada

This is a brief account of Turing’s ideas on biological pattern and the events that led to their
wider acceptance by biologists as a valid way to investigate developmental pattern, and of
the value of theory more generally in biology. Periodic patterns have played a key role in this
process, especially 2D arrays of oriented stripes, which proved a disappointment in
theoretical terms in the case of Drosophila segmentation, but a boost to theory as applied
to skin patterns in fish and model chemical reactions. The concept of “order from
fluctuations” is a key component of Turing’s theory, wherein pattern arises by selective
amplification of spatial components concealed in the random disorder of molecular and/or
cellular processes. For biological examples, a crucial point from an analytical standpoint is
knowing the nature of the fluctuations, where the amplifier resides, and the timescale over
which selective amplification occurs. The answer clarifies the difference between
“inelegant” examples such as Drosophila segmentation, which is perhaps better
understood as a programmatic assembly process, and “elegant” ones expressible in
equations like Turing’s: that the fluctuations and selection process occur predominantly in
evolutionary time for the former, but in real time for the latter, and likewise for error
suppression, which for Drosophila is historical, in being lodged firmly in past evolutionary
events. The prospects for a further extension of Turing’s ideas to the complexities of brain
development and consciousness is discussed, where a case can bemade that it could well
be in neuroscience that his ideas find their most important application.

Keywords: pattern formation, reaction-diffusion theory, irreversible processes, neurocircuit assembly, error
suppression in evolution and development

INTRODUCTION

As graduate students in the early 1970s, we were aware of Turing’s reaction-diffusion theory of pattern
formation, but it was at that time more a curiosity than a part of mainstream developmental thinking.
Fifty years on, Turing’s ideas have been successfully applied to a number of developmental systems (Maini
et al., 2006; 2012; Othmer et al., 2009; Kondo and Miura, 2010; Davidson and Baum, 2012; Chatterjee
et al., 2020; Green, 2021), though the mechanistic details often differ from his original proposal, with
chemical autocatalysis being replaced by other self-enhancing molecular or cellular processes, and
distance effects by other means of material transport, or by mechanochemical effects (for the latter, see
Murray and Oster, 1984; Howard et al., 2011; Brinkmann et al., 2018; Veerman et al., 2021). For theorists,
there have been disappointments along the way, in that patterns that appeared to match theoretical
prediction were shown to arise by other mechanisms. But despite this, the theoretical enterprise has now
reached a healthy middle age, with expectations of a vigorous and productive future. This review is
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designed as a broad survey with a focus less on mechanistic details
than on what I consider themain turning points in the acceptance of
Turing’s insight regarding the kinetic basis of pattern selection,
whether specifically by reaction and diffusion, or via other means of
self-enhancement and action over distance.While my account of the
subject is retrospective, the intent is not, as my interest is in part to
consider how Turing’s ideas might be extended in future, notably to
neuroscience, as a way of accounting for the precise construction of
the neurocircuitry required to support consciousness in the brain
(Lacalli, 2020; Lacalli, 2021). Among scientific problems in search of
a solution, this must surely be among the most daunting, and it
remains a distinct possibility that the acknowledged importance of
Turing to computer science (De Mol, 2021) will be equaled or
surpassed in biology should his ideas on patterning prove applicable
to the problem of biological consciousness.

EARLY DAYS

The publication of Turing’s paper on morphogenesis (Turing, 1952)
resulted in a brief period of interest among biologists, due in part to
the efforts of C.W.Wardlaw, then Professor of Cryptogamic Botany
at Manchester University (Wardlaw, 1953). Wardlaw would have
been familiar with diverse examples of whorl formation and
dichotomous branching in algae, ferns and the like, and that
comparable patterns occur at both the unicellular and
multicellular level (Figure 1). This latter feature probably
accounts, at least in part, for the greater willingness of
developmental botanists, in contrast to their zoological
counterparts, to consider pattern as an entity in its own right
irrespective of mechanistic details. So, for example, one can study
whorl formation in a single cell, like the dasyclad alga Acetabularia,

FIGURE 1 | Turing-type patterns in plants: branching and whorl formation in uni- and multicellular examples, and leaf venation. (A). Dichotomous branching in one
dimension: the freshwater desmidMicrasterias rotata, (cell diameter 230 μm) where form is generated following cell division by branching tip growth along the edge of the
expanding semicell. The effective pattern scale (wavelength) declines during this process from ca. 30 μm at the beginning to 5 μm for the distal branches; see Lacalli &
Harrison (1987) for quantitative details. (B). Alternating dichotomous branching in two dimensions: the shoot apex of Psilotum nudum, a basal fern whose simple
aerial shoots originate through repeated dichotomous branching and only elongate, together, secondarily. Distance between adjacent primordia at this stage is in the
150–200 μm range (Takiguchi et al., 1997), but the pattern wavelength has not beenmeasured through the branching sequence, and could well vary; specimen supplied
by T. A. Steeves. (C). Whorl formation in a single cell: the pattern of hair initials (top) and their outgrowth (bottom) in the dasyclad alga Acetabularia. The distance between
initials, typically 20 μm in culture, can range between 16 and 28 μm in a predictable way depending on temperature and calcium concentration, and from this one can
make useful inferences about the mechanism; see Harrison & Hillier (1985), Dumais & Harrison (2000) for details. (D). Whorl formation in conifers: the cotyledons (primary
needles) of cultured white spruce embryos; stem diameter is ca. 750 μm compared with 400 μm when the initials are first evident (inset), with a spacing of ca. 95 μm
(Fowke et al., 1994). The most detailed statistical information available on cotyledon spacing is for larch, where the pattern wavelength has been measured precisely, at
98 ± 4 μm (Harrison & von Aderkas, 2004; Holloway et al., 2018). (E). Leaf venation in a young Arabidopsis leaf, where distance between secondary veins (arrows) in part
reflects a spacing mechanism that acts along the leaf margin as the primordium develops. The leaf blade is ca. 2 mm long at the stage shown, but the first secondary
veins appear when it is 20-fold smaller (100–120 μm long) with an effective wavelength between secondaries as they develop in the 20 μm range, down to a few cell
diameters (10–15 μm) in some instances (Scarpella et al., 2006, Wenzel et al., 2007, Verna et al., 2019; see Holloway & Wenzel, 2021 for relevant modeling). The
mechanistic basis of the discrepancy between vascular patterning at this scale and that of primordia across the apical meristem is as yet unresolved. (F). The shoot apical
meristem of lupin (Lupinus polyphyllus), one of the largest among the angiosperms, with a central dome ca. 250 μm across at its base. The overall pattern of primordia,
typical of angiosperms (with some exceptions, e.g., of decussate pattern), is one of spiral phyllotaxy, but the leaves are palmate, developing as partial whorls as can be
seen here in three examples, where spacing would appear to be on a scale somewhere below 30 μm; see Runions et al. (2017) for a further discussion of leaf shape in
relation to spacing mechanisms acting along the leaf margin. Photo credits: (A, B) T. C. Lacalli, (C) Jacques Dumais, (D) L. C. Fowke, (E) Enrico Scarpella, (F) V. K.
Sawhney.
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where distance effects are likely due to diffusion (Dumais et al.,
2000), or in the apical meristem of conifers (Harrison and von
Aderkas, 2004), where distance effects arise through polar transport
of auxin between cells (Reinhardt et al., 2003; Shi and Vernoux,
2019). Auxin transport can also produce patterns suitable for
explaining both phyllotaxis (Jönsson et al., 2006) and leaf veins
(Mitchison, 1981; Scarpella et al., 2006; Biedroń and Banasiak, 2018)
where, for the latter, regularity of spacing along the leaf margin
appears to play an important role (Holloway and Wenzel, 2021;
Lavania et al., 2021). Yet for all these examples, themathematical and
computational problems of dealing with material flow, growth and
mechanistic redundancy will be much the same.

Developmental zoologists, faced with a more diverse range of
patterning situations, have tended to focus more on identifying the
proximate causal agents in each case than on the general features of
broadly based theories like Turing’s. And in any case, the
conventional wisdom in the early days, expressed by C. H.
Waddington (see Waddington, 1956; page 423), was that a
reaction-diffusion mechanism, being “inherently chancy” could
at most account for the dapplings and mottlings filling otherwise
unimportant spaces. It did not help that the specific equations
Turing devised did not always produce regular patterns (Bard and
Lauder, 1974), or that the one 2D pattern Turing included in his
1952 paper (his Figure 2) was itself rather irregular. But that
example was computed for what Turing himself considered the
least interesting case [his case (a), stationary waves of moderate
wavelength being case (d)], and his preliminary attempts to
document the formation of regular 2D patterns were
unpublished at his death (Dawes, 2016). Hence, by default, it
was left largely to physical chemists to explore Turing’s ideas more
fully, and the energy-dissipative, far-from-equilibrium
thermodynamics they embody. This was carried forward
initially by Illya Prigogine and his Brussels research group
(Prigogine and Lefever, 1968; Nicolis and Prigogine, 1977),
using a hypothetical reaction system, the Brusselator, that was
subsequently widely used and adapted by others (Tyson and Light,
1973; Harrison, 1987; Subramanian and Murray, 2021). On the
experimental side, there was increasing interest in the Belousov-
Zhabotinsky reaction, renowned for the production of oscillations
and moving waves (Field and Burger, 1985; Zhabotinsky, 2007), a
phenomenon so striking at the time as to be met frequently by
disbelief among chemists when first encountered. This led, on the
theoretical side, to an interest in model reaction systems that
produced periodic oscillations that could be used to model
biological processes, notably circadian rhythms (Winfree, 1980),
segmentation (Cooke and Zeeman, 1976; Newman, 1993;
Pourquié, 2003), and the mitotic oscillator, where Tyson has
continued to make important contributions (e.g., see Tyson and
Novák, 2015).

Interest in Turing’s ideas was reignited among developmental
zoologists by two developments, first the work of Gierer and
Meinhardt (1972) modeling pattern formation and regeneration
in hydra, and second, by Murray’s comparatively well-received
(for theory) account of animal coat patterns (Murray, 1981;
Murray, 1988). Neither of these efforts, however, led
immediately to a reassessment of the relevance of Turing’s
theory to a wider range of developmental examples. This was

perhaps in part because a role in specifying coat patterns
reinforced the existing notion that the theory was applicable
only to irregular surface patterns, but also because the Gierer-
Meinhardt model, designed to amplify an existing prepattern
rather than generating well-controlled patterns ab initio, was not
at first widely recognized for being a Turing model in disguise.
There was also, for a time, a degree of suspicion verging on
hostility towards Turing’s theory on the part of some proponents
of other mechanisms, where it should have been obvious from the
start that Turing-type mechanisms could well be acting in concert
with, for example, position-specific signaling, but at a different
stage in the patterning process, as has proved to be the case
(Miura, 2013; Green and Sharpe, 2015; Newman et al., 2018).

Even so, the main impediment to wider acceptance of Turing’s
ideas among biologists has always been, and remains, a matter of
expectations: that theory was to be judged in strictly reductionist
terms, as to whether it either does, or does not provide a route
towards identifying the proximate entity responsible for the pattern
in question, be this a gene, a diffusible morphogen, or something
else. This is different from the biomathematical focus, towards
anything in biology that yields interesting mathematics, and from
preconception of the physical chemistry community, that progress
is first and foremost a matter of understanding principles and
process, a point of view well represented in Harrison’s account of
the subject (Harrison, 1987; Harrison, 1993). Here the details
matter less than identifying the range of possible classes of
explanation and establishing ground rules for distinguishing
between them. Harrison identifies three such classes, of kinetics,
self-assembly, and equilibrium, where Turing’s model belongs to
the first. But among the broad class of kinetic processes, the subset
of importance to patterning are those able to act as selective
amplifiers, extracting a signal from the statistical noise of real-
time molecular behavior. This is in fact the essence of Turing’s
conception, explicit in the form of the solutions, and it precisely on
this point, the form of the solutions, that he begins his
mathematical account (Turing, 1952, pg. 39). The issue of the
sensitivity (i.e., instability) of the un-patterned, homogeneous
situation to fluctuations is then raised at various points in the
text (e.g., pp. 56–57), using oscillatory electrical circuits as a point
of reference. It is this feature I want specifically to highlight as
distinguishing Turing’s theory (here Turing-type models or, in
Harrison’s usage, kinetic theory and the kinetic preconception
more broadly, or the “Turing problem” referred to by Kang et al.,
2012), from other ways of accounting for biological pattern. And,
for macro-scale biological pattern, kinetic mechanisms with the
properties described by Turing would seem to have a distinct edge:
“but what else could do it?” Harrison quotes a colleague as saying.
The question here is rhetorical, and I return to it below (see section
Inelegance and Ratchets, Error Suppression and Time) because,
when it is indeed something else that “does it”, that something else
needs to be characterized and understood. Applying the order-
from-fluctuations principle more generally, there are three things
to consider when distinguishing classes of patterning models in
terms of what they do and how they do it: the nature of the
fluctuations, the identity of the amplifier, and the time scale on
which these both operate, where more than one notion of what we
mean by “time” may be required.
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FLEXIBILITY IN PATTERN SELECTION:
SPOTS, STRIPES AND IN-BETWEEN

Of various inaccurate notions about Turing’s theory, the first that
needs addressing is Waddington’s objection, that it accounts only for
irregular dapplings and mottlings. To do more than this, what is
needed is a mechanism that is sufficiently flexible in the patterns it
produces that it can be adapted by evolution as required. So, for
example, on a two-dimensional surface the Gierer-Meinhardt model
produces an irregular array of peaks frozen in place, which is not
particularly useful for producing regular patterns of spots or stripes,
let alone anythingmore elaborate. But theGierer-Meinhardtmodel is
rather idiosyncratic in this respect, because other models, including
the Brusselator, generate regular hexagonal arrays of spots with ease.
Turing’s own notes show preliminary calculations approaching this
result, where there were parallels with contemporary observations in
fluid dynamics (Dawes, 2016), but the first fully developed
computational examples using reaction-diffusion equations, so far
as I am aware, came from my own work on pattern in unicellular
algae (Lacalli, 1981). The ability to produce a modulated, well-
controlled pattern in two and three dimensions means also the
ability to respond to changing influences throughout the non-linear
phase of pattern development, including boundary conditions,
imposed gradients and the presence of neighboring pattern

elements (Hiscock and Megason, 2015), as well as the ability to
subdivide cell and tissue domains in an orderly way (Lacalli and
Harrison, 1978; Hunding, 1984). In stark contrast to Waddington’s
view, and depending on themechanistic details, boundary conditions
and the like, a Turing model can in principle produce almost any
pattern one cares to choose, and will do so in a reliable and
reproducible fashion: “bespoke” patterning to borrow a phrase
from Woolley et al. (2021), with evolution as the customer.

The ability to generate orderly patterns of stripes, in particular,
quickly became a focus of attention with the discovery of the pair-
rule pattern that precedes the formation of morphologically
distinct segments in Drosophila embryos (Hafen et al., 1984
for the fushi-tarazu gene; see also Pick, 2016). The precision
of this pattern at the cellular level (Figure 2A), with multiple
stripes appearing essentially simultaneously, was astonishing at
the time, and was interpreted by some, including myself, as strong
circumstantial evidence for the involvement of a kinetic
mechanism. The link between Turing and Drosophila stripes
proved to be a bridge too far, as position-specific molecular
events involving complex assemblages of transcriptional
modulators responsive to graded signals along the length of
the embryo were soon thereafter shown to be the means by
which pattern was specified (Štanojević et al., 1989; Struhl et al.,
1989, Struhl et al., 1992; Rivera-Pomar and Jäckle, 1996). This has

FIGURE 2 | Selected animal and chemical patterns: stripes, spots, and digits. (A). The Drosophila pair-rule pattern. Left: an embryo at stage 5 (length 505 μm,
anterior to the left), nearing the completion of cellularization; nuclei in blue, even-skipped (eve) protein in red, with an enhancer tag (green) showing specificity for some
stripes rather than others, a clear demonstration of stripe-specific control over eve expression. Right: detail of the eve transcript pattern; stripe spacing (centre-to-centre
distance) is ca. 40 μm. (B). Chemical patterns, showing arrays of spots (left) and labyrinthine stripes (right) produced by the TuIS (thiourea-iodate-sulfite) reaction in
a gel medium, a variant of the better known CIMA reaction. Spacing between pattern elements is ca. 2 mm; see Horvath et al. (2009) for details. (C). The ornate boxfish,
Aracana ornata, native to waters off South Australia; female (left) and male (right) showing mixed stripe and spotted patterns characteristic of boxfishes, which often vary
between the sexes despite, presumably, a common underlying mechanism. (D). Digit development in mouse embryos, showing patterns of the marker Sox9 in wild type
limb (top) and the expanded fan of digits produced by the homozygousGli3 null mutant (bottom). The pattern here is realized as a series of cartilaginous elements, but is a
result of a one-dimensional periodicity along the limb margin that lays down a two-dimensional pattern as the limb grows (Hiscock et al., 2017), a 1D to 2D transition
comparable to that seen in Micrasterias. The number of digits increases further in Hox11/13 mutants, but the underlying pattern results from Turing-type interactions
between the protein products ofBmp, Sox9 andWnt genes; see Raspopovic et al. (2014) for details; Onimaru et al. (2016), Stewart et al. (2017), Newman et al. (2018) for
evolutionary perspectives. Photo credits: (A, left) Thomas Gregor, (A, right) Erik Clark, (B) Istvan Szalai, (C) the Birch Aquarium at Scripps, (D) Rushikesh Sheth and
Marian Ros.
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been characterized as an inelegant solution to the patterning
problem (Akam, 1989), in contrast to simplicity of global control
over pattern, with pattern landmarks being preset by the action of
maternal and gap genes (Diaz-Cuadros et al., 2021). A greater
degree of hierarchical control is thereby imposed over what was
previously, in more basal arthropods, a self-organizing process of
sequential segmentation relying, as in vertebrates, on molecular
clocks and moving wavefronts (Salazar-Ciudad et al., 2001;
Pourquié, 2003; Hunding and Baumgartner, 2017). A
sequential mode of segmentation is characteristic of basal
arthropods and short germ band insects like the beetle
Tribolium, and there are plausible scenarios for linking this to
the Drosophila condition through a complicated series of
transitional steps (Clark et al., 2019; Clark, 2021). If there is
elegance here, it is well hidden.

Even though the Drosophila pair-rule pattern proved not to
depend on a Turing-type mechanism, the striking regularity of
the pattern was a significant spur to theorists to understand the
conditions under which model systems would generate stripes as
opposed to spots or other patterns, in other words, to define the
rules for pattern selection. This was first addressed in two nearly
simultaneous publications, by Lyons and Harrison (1991) and
Ermentrout (1991), making it immediately clear why symmetry
features of the non-linear phase of pattern development are
important, in that matched positive and negative departures
from the steady state favored stripes (Lyons and Harrison,
1992). Further fueled by interest among chemists in the CIMA
reaction (Lengyel and Epstein, 1991; Abdelmalek and
Bendoukhu, 2020), which forms regular arrays of spots,
stripes, and intermediate reticulate or labyrinthine patterns
(Figure 2B), a burgeoning experimental literature appeared on
pattern in chemical reaction systems (e.g. Ouyang and Swinney,
1991; Boissonade et al., 1995; Konow et al., 2021), with parallel
advances in the theory (e.g. Dufiet and Boissonade, 1992; DeWit,
1999; Cross and Greenside, 2009). On the biological side, striking
observations on fish pattern by Kondo and Asai (1995) made the
likely involvement of a Turing-type mechanism of some kind
increasingly hard to deny. And, while fish patterns arise through
dynamics operating at the cellular level rather than diffusing
reactants (Kondo et al., 2021), this does not matter when the
point of the exercise is to validate the theory for kinetic processes
as a class. Zebrafish have proven a useful model system here as
well (Singh and Nüsslein-Volhard, 2015; Kondo et al., 2021), and
even more dramatic patterns, combining arrays of spots, stripes
and reticulate intermediates, are seen in coral reef fishes, amongst
which boxfishes are noteworthy examples (Figure 2C; see
Pearson, 1993, and Othmer et al., 2009 to compare with a
range of computed examples). Combining these observations
with more recent work on digit patterns (Figure 2D; see
Newman and Frisch, 1979; Sheth et al., 2012; Raspopovic
et al., 2014; Newman et al., 2018; and Chatterjee et al., 2020
for the basic theoretical case), it appears that two of the main
objections to Turing’s ideas as applied to animal systems have
been answered, at least for vertebrates, that 1) kinetic theory is
perfectly capable of explaining a range of surface patterns that are
regular, highly controlled and flexible in their adaptive
capabilities, and 2) not only surface pattern, but skeletal

patterns lodged within the body depend at least in part on
Turing-type mechanisms (see Painter et al., 2021 for other
examples of internal patterning).

A final, perennial objection to Turing’s reaction-diffusion
mechanism is a supposed lack of robustness, that pattern
formation depends on the parameters being adjusted within a
narrow range. While this is true to a degree of 2-component
models, more recent work has shown that having more
components, especially if some are non-diffusing (Marcon et al.,
2016; Diego et al., 2018; Landge et al., 2020; Krause et al., 2021), and
discrete rather than continuous systems (Leyshon et al., 2021),
yields models far more robust than previously supposed possible,
and there is now a better understanding of how pattern stability is
maintained in the non-linear regime (Subramanian and Murray,
2021). The burden of past misconceptions concerning kinetic
theories has thus now, in large part, been removed.

INELEGANCE AND RATCHETS, ERROR
SUPPRESSION AND TIME

The idea of the inelegance of the mechanisms underlying
developmental pattern captures both a superficial truth and a
deeper one. On the one hand, inelegance in this context refers to
the complexity of developmental phenomena at the molecular level,
which verges on the illogical (Lewin, 1984). Elegance equates to
simplicity, in that patterning by a Turing-type mechanism can be
encapsulated in a few lines of mathematical symbols, whereas
accounting for the pair-rule pattern requires a detailed inventory of
molecular components and their myriad functional interactions. But
while the Drosophila stripe issue was resolved largely in favor of
inelegance, the failure of theory, as often in science, proved a more
interesting and informative result than success. In this instance, it led to
anewappreciationof the problemof achieving a reliable developmental
result in the face of the random noise that characterizes molecular
events in the real world (Rao et al., 2002; Balázsi et al., 2011). The
question was first posed in theoretical terms (Holloway and Harrison,
1999; Kang et al., 2012), and then addressed experimentally in
considerable detail using Drosophlia, initially in work carried out by
EricWieschaus and collaborators (e.g., Houchmandzadeh et al., 2002).
This was part an emerging trend that has since made biomolecular
science more quantitative (Maddox, 1992; Davidson and Baum, 2012;
Gregor et al., 2014), and there is now both a much increased
appreciation of the importance of error suppression in
developmental systems at the molecular level, with the production
of theDrosophila pair-rule pattern as a keymodel (Petkova et al., 2019;
Bauer et al., 2021), and a far better understanding of how this is
achieved.

Conceptually, the questions that need addressing, of precision,
reliability and robustness, are more general than any one
example, or any one pattern. And, if a Turing-type
mechanism is not involved, we return to the chemist’s
question, above, but now applied to error suppression: “but
what else could do it?” The answer from Drosophila is that we
have left the realm of microscopically reversible kinetic processes,
where Turing models reside, but neither is this structural self-
assembly of a jigsaw-puzzle type, e.g., of a virus particle. Instead,
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the Drosophila pair-rule pattern depends on macromolecular
complexes that decode and implement a set of genetic
instructions, and are assembled in a series of steps that are, in
effect, thermodynamically irreversible (Carey, 1998; Poss et al.,
2013). At the level of transcriptional control, this involves multiple
enhancer elements that act at the level of the gene in a
combinatorial way to optimize the response to graded inputs
that convey information on cell position (Chen et al., 2018;
Furlong and Levine, 2018; Petkova et al., 2019; Bauer et al.,
2021), but there are strategies at all levels of the process, from
the shape of the gradients (Song and Hyeon, 2021) to mechanisms
for sharpening the stripes (Munteanu et al., 2014), that have been
likewise optimized by evolution to ensure that patterning proceeds
in a way that minimizes errors. To emphasize the programmatic
aspect of the molecular assembly part of the process, I suggest the
term “programmatic assembly”, which is also ratchet-like, to use a
mechanical analogy (Oster, 2002), while being both combinatorial
and synergistic, and there is a graph-theoretical formulation, of
micro-states linked by unidirectional edges representing the
irreversible assembly steps (Ahsendorf et al., 2014; Martinez-
Corral et al., 2021) that is especially promising as an analytical
methodology going forward. Implicitly all such approaches face the
same problem, that, to quote fromAhsendorf et al., “history cannot
be ignored away from thermodynamic equilibrium”, where by
history, we mean the sequence of steps by which the machinery in
question is assembled and operates. But there is a second history,
and a second time scale, of the evolutionary sequence by which the
machinery itself was refined and perfected over many generations,
with all the contingency that implies. Taking the molecular level
equivalents of coding and decoding as an example (e.g., Jarzynski,
2008; 2011), fully accounting for the thermodynamic driving forces
behind each step in such cases is a complex and sometimes
counterintuitive exercise. The same is true at a more abstract
level, for a concept like positional information, since a device
able to read and interpret such information will necessarily, like a
human reader, be an energy dissipative product of evolution
operating irreversibly far from equilibrium.

To go yet further, to the level of physics, the issue becomes one of
time, of whether, in the terminology of Cortês and Smolin (2014), one
is dealing with passive time or generative time. Passive time in this
context is the “t” that appears in a typical set of equations, whether for
Turing’smechanismor for calculating a ballistic trajectory, and solving
such equations yields the same answer each time.Drosophila segments
also form the sameway each time, but there is a difference. To see this,
consider error suppression yet again, and how a developmental
outcome can be produced as precisely realized as a pair-rule stripe.
For a Turing mechanism, error suppression depends on feedback
steps in the mechanism that amplify fluctuations and, together with
diffusion, select one pattern over all others, including over background
noise, doing so in real time as the pattern develops. For the
transcriptional machinery employed in Drosophila segmentation, in
contrast, the feedback step is evolution itself, in its role as a generator of
gene sequences for the enhancers and transcriptional regulators
required to produce the pattern in question, and to suitably refine
their interactions. So in this case error suppression is in large part
historical, that is, it has already occurred. And, because it is then
embedded in the codes and structures that implement the genetic

program, it does not appear explicitly in equations that model change
in real time. Similarly, if we think about the fluctuations on which the
amplifier acts, for a programmatic assembly process these are not
spatial in character, but arise from genetic variation at the population
level, because different individuals will vary as to the precision with
which they replicate pattern, and it is by eliminating the more error-
prone individuals, generation by generation, that the genome evolves
in ways that reduce developmental errors for the population as a
whole. It is then this mix of time scales and of history-dependent and
history-independent features, which in analytical terms must be dealt
with separately, rather than complexity per se, that precludes an
elegant solution. From an error-suppression standpoint, this means
that the problemof statistical noise at the level of positional cues can be
dealt with analytically in a straightforward way (as by Tkačik and
Gregor, 2021), but reliability and accuracy at the level of the interpreter
cannot, as the evolutionary steps by which that interpreter was
conjured into existence are inescapably part of the story. This also
means, for the experimentalist, that quantitative tests of reliability for
examples of programmatic assembly are less a measure of the physical
limits of a given class of mechanisms, than they are of the effectiveness
of evolution in its choice of an error-suppression strategy for each step
in the assembly process.

A further lesson from Drosophila is, or would seem to be, that
where evolution has replaced one mechanism by another, the
transition is more likely than not to be in the direction of
increased reliance on programmatic control, so that development
becomes more complex, and hence inelegant, over time. For
Drosophila in particular, the proximate advantage of making this
change can be measured in the developmental time saved, as segment
specification is significantly faster in Drosophila than in basal
arthropods and short germ-band insects. This is a distinct
advantage for insects like fruit flies, whose larvae compete with
fungi and nematodes for a rapidly depleting food resource. But
there is a potential cost in the loss of one key feature of oscillatory,
clock-based segmentation mechanisms, in that errors accumulated
from past steps in the developmental program are no longer
overwritten by the new pattern and reset to zero. That this cost is
not paid in reduced developmental reliability inDrosophila shows that
programmatic assembly solves the problem of error suppression by
other means, namely through structural innovations and enhanced
specificity in the molecular machinery that implements the
developmental program. This then begs the question of whether
this same solution has been employed in the past, perhaps
repeatedly, in multiple development pathways as a means of
speeding the overall process of embryogenesis. Germ layer
specification, for example, depends on highly complex gene
regulatory networks (Loose and Patient, 2004; Kiecker et al., 2016),
and is hence a good candidate for having imposed a programatic
overlay on simpler,more purely kinetic ancestralmechanisms in order
to achieve the same result more rapidly. There are implications here
also on the botanical side, in providing a rationale for why
mechanisms for plant patterning are generally more conserved
across taxa than is typical of animals: that growth and patterning
are tightly integrated in plants (Dumais and Kwiatkowska, 2002;
Harashima and Schnittge, 2010; Rebocho et al., 2017), and so long as it
is growth rather than patterning that is rate-limiting, there is little to be
gained by reducing the time required to specify pattern. Ancestral
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mechanisms are then more likely to be retained rather than being
replaced.

CONCLUSIONS, AND SOME FINAL
THOUGHTS, ON THOUGHT

It has been gratifying, over the last 2 decades, to see Turing’s ideas
gaining acceptance and proving their worth in specific biological
situations. But this is only part of a larger enterprise, in the past a
concernmainly of themore physico-chemicallyminded, but nowmore
widely recognized, which is to better understand the essential
underlying features of kinetic mechanisms as a class. A key concept
here, featured in Turing’s own account, is the idea of generating order
from fluctuations, that is, of extracting a meaningful signal from the
underlying noise of the system, which can be at amolecular, subcellular
or cellular level. The issue has relevance across a range of examples: from
purely chemical systems, such as theCIMAreaction, to hybrid ones, like
Drosophila, relying more on programmatic assembly than simple
kinetics. Examples of programmatic assembly are then inherently
less elegant than purely kinetic mechanisms because real time events
play a lesser role than evolutionary ones. So, for example, achieving a
precise outcome reliably depends on processes unfolding largely in real
time for a kinetic mechanism like Turing’s, but for programmatic
assembly these are embedded in the past, in the evolutionary sequence
that produced themachinery that executes the program. Programmatic
assembly cannot therefore be fully understood except in the context of
an extended sequence of evolutionary events, which begs an analytical
question, of how to deal in practice with events unfolding in two
mutually exclusive time scales.

A final point I want to address is whether we have been missing
what is potentially themost important application of Turing’s ideas, to
controlling the assembly of neural circuits in the developing brain. If
we consider the various cellular level activities needed to correctly
configure the neural circuitry underpinning complex brain functions,
there are many opportunities for competitive dynamics of the kind
envisioned by Turing, but played out at a structural level, of cells,
synapses and dendrites, rather than diffusingmolecules (Lacalli, 2020).
Turing himself had considered this issue, as is evident from a letter to
J. Z. Young in February of 1951 (see Hodges, 1983, pg. 436), and his
ideas have potential application to the period of synaptic remodeling
that occurs in the neonatal nervous system, including in the cortex,
whereby excess neurons and synaptic connections are removed in an
activity-dependent way in response to sensory feedback (Le Bé and
Markram, 2006; Low and Cheng, 2006; Kano and Hashimoto, 2009).
But this is also the period when the newborn begins to develop a
conscious awareness of its surroundings (Lagercrantz and Changeux,
2010), and for the circuits responsible for the basic sensations of
phenomenal consciousness, i.e. qualia in most formulations, there is a
problem. To illustrate this, consider a newborn hearing a sound, or
experiencing pain, for the first time. The problem here is the absence
of feedback mechanisms to correct any errors that may occur in the
quality and character of the sensation evoked by the neural circuitry to
which this task has been assigned. In other words, if the circuits
evoking a particular sensation, of pain for example, or sound or light,
have been incorrectly assembled in the embryonic period, the resulting
sensations, whether they are the correct sensations or not, simply

become the nature of experience for that individual. The brain thus
faces the same problem that an insect does in correctly forming its
segments, that it has one chance to get it right. The developmental
options for doing so should then also be the same: to develop in a
programmatic way to yield what is essentially a deterministic result, as
inDrosophila, or to instead employ a Turing-type process of dynamic
competition, either during the initial phase of circuit development or
later remodeling, to amplify some circuitry variants at the expense of
others. There may in fact be no single answer, as mechanisms by
which brain circuitry is assembled will undoubtedly vary across taxa,
from being more programmatic in the brains of small rapidly-
developing invertebrates, to less programmatic in the brains of
larger animals showing more flexible modes of learning and
behavior, most notably cephalopods and vertebrates. For the
circuits responsible for consciousness more specifically, there could
in fact be a sequence, similar to that in insect segmentation, with global
kinetic mechanisms being the ancestral way of generating the circuits
responsible for phenomenal sensations as these first emerged in
evolution, with more streamlined, programmatic ways of achieving
the same result evolving secondarily.

We have, in sum, three options as to how the neural circuitry
responsible for conscious sensation is assembled: that 1) it originated
and remains a product of a global Turing-type patterning system
operating at a structural, neurocircuitry level, or 2) like insect
segmentation, it began that way but has since been converted, as
inDrosophila, to some form of programmatic assembly, or 3) that the
efficiencies inherent in programmatic assembly were themselves an
essential part of the ability to evolve consciousness in the first place. It
may be a mammalian bias to suppose that flexibility in behavior
depends on more flexible, non-programmatic modes of development
than is typically encountered in small invertebrates likeDrosophila, but
the general point remains valid in any case: that there are multiple
scenarios under which mechanisms like those devised by Turing
would lie at the very root of consciousness, and hence of the abilities of
members of our species to engage in such activities as meaningful
speech, logical thought and, not least, formulating and solving
equations like Turing’s.
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3D Organisation of Cells in
Pseudostratified Epithelia
Dagmar Iber1,2* and Roman Vetter1,2*

1Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland, 2Swiss Institute of Bioinformatics
(SIB), Basel, Switzerland

Pseudostratified epithelia have smooth apical and basal surfaces, yet along the apical-
basal axis, cells assume highly irregular shapes, which we introduce as punakoids. They
interact dynamically with many more cells than visible at the surface. Here, we review a
recently developed new perspective on epithelial cell organisation. Seemingly random at
first sight, the cell packing configurations along the entire apical-basal axis follow
fundamental geometrical relationships, which minimise the lateral cell-cell contact
energy for a given cross-sectional cell area variability. The complex 3D cell neighbour
relationships in pseudostratified epithelia thus emerge from a simple physical principle.
This paves the way for the development of data-driven 3D simulation frameworks that will
be invaluable in the simulation of epithelial dynamics in development and disease.

Keywords: epithelial organisation, cell shape, neighbour number, computationalmodel, physical principle, punakoid

INTRODUCTION

Epithelia are common to all animals and plants, and play a key structural role in tissue
morphogenesis and the development of organ shapes. With more than 90% of cancers being of
epithelial origin [1], there is an urgent need to uncover the principles of epithelial organisation and
understand the basis for epithelial integrity and homeostasis. Epithelia achieve their structural
function via their polarity (Figure 1A). On the outward-facing apical side, cells form a virtually
impermeable barrier via a cadherin-based adhesion belt and tight junctions, while, on their basal
side, they bind tightly to the basal lamina, a thin sheet composed of extracellular matrix (ECM)
proteins [2–5]. Additional cell-cell junction complexes along the lateral sides provide further
mechanical stabilisation. Recent advances in imaging provide insight into the physical principles
according to which cell connectivity is organised in epithelia, and how it changes during
morphogenesis and concomitant cell shape transitions.

3D Epithelial Cell Shapes
Since the advent of light microscopy, epithelial surfaces have been studied in great detail, and this has
revealed tight cell packing in polygonal lattices along the entire apical-basal axis [6–19]. As 3D
segmentation of cells has become possible only very recently [17, 18, 20–25], 3D cell shapes have long
been depicted as prisms, which retain the same size and neighbour relationship along the entire
apical-basal axis (Figure 1B). Cells in curved epithelial monolayers are commonly pictured as frusta
(also termed bottle cells) as the apical and basal areas must differ. Differences in neighbour
arrangements between the apical and basal side point to neighbour changes along the apical-
basal axis in a range of epithelia [26]. Prismatoids accommodate the neighbour change at either
surface. If the neighbour relationships change somewhere in between (Figure 1C), the cell shape is
reminiscent of that formed by beetle scutum, scutellum and wings (Figure 1D), which led to the new
term scutoid [15]. With up to 14 neighbour changes along the apical-basal axis [18], pseudostratified
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epithelial cells in developing mouse lungs, however, resemble
more the pancake rock formations in Punakaiki at New Zealand’s
west coast (Figure 1E) than the back of beetles (Figure 1D). This
novel complex geometry may therefore better be referred to as

punakoid (Figure 1F). The defining characteristics of punakoids
are 1) a quasi-polygonal surface, 2) a well-defined cell axis (in the
pseudostratified epithelia reviewed here, the apical-basal axis),
and 3) multiple neighbour changes along the axis. Like scutoids,

FIGURE 1 | 3D epithelial cell shapes. (A) Pseudostratified epitheliumwith cell boundaries wrapping aroundwider nuclei. (B) Schematic depiction of cell shapes. (C)
Cells alter their neighbour arrangements via T1L processes along the apical-basal axis. In a T1L process, two vertices that share an edge (orange) merge and decompose
in a different direction such that neighbour relationships change. (D) The term scutoid was coined based on the shape of beetle scutum, scutellum and wings. (E)
Pancake rocks at the beach of Punakaiki, NZ. (F) 3D segmented cells in the developing pseudostratified mouse lung epithelium (E12.5) resemble the Punakaiki
rocks. (G) 3D shapes of 6 cells and their nuclei in an E12.5 pseudostratified mouse lung epithelium. (H) Neighbour relationships change predominantly at the apical and
basal limits of the nuclei. (I) The lateral T1L processes are largely uniformly distributed along the apical-basal axis. Neighbour numbers tend to increase as cross-sectional
cell area variation increases, and vice versa. (J) 3D cell neighbourship extends further than apparent on the surface. (K) Time evolution of the contact areas between the
central cell (orange) and its neighbours in a patch of 15 epithelial cells (left) over 60 min of explant culture. (A, G–K) reproduced with modifications from [18], panel D from
[15], published under the Creative Commons Attribution Non-Commercial 4.0 International License (CC BY-NC 4.0; https://creativecommons.org/licenses/by-nc/4.0/).
Further reproduction of these panels would need to comply with the terms of this license.
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the faces of punakoids are not necessarily planar, the edges not
necessarily straight, and the entire shape not necessarily convex.
So far, punakoids were found in the embryonic mouse lung, and
their prevalence in other pseudostratified epithelia, although
likely, remains to be demonstrated.

As characteristic for pseudostratified epithelia [27], nuclei are
found distributed along the entire apical-basal axis (Figure 1G)
[18]. Neighbour changes occur mainly at the limits of the nuclei
(Figure 1H), where the cross-sectional area changes the most
[18]. An increase in the cross-sectional area correlates with a
neighbour increase, and vice versa (Figure 1I). If the number of
cells remains the same, neighbour relationships change via so-
called T1 processes [28] (also referred to as rosette formation if
more than four cells are involved [29]). We will refer to a
neighbour transition along the apical-basal axis as lateral T1
process (T1L for short) (Figure 1C). The potentially large
number of neighbour intercalations along their long axis lets
the cells be in physical contact with others that, on the apical or
basal surface, appear to be several cell diameters apart (Figure 1J).

Cell-cell signalling can thus spread further than previously
anticipated, and cells can read and average morphogen
gradients over distances that were previously expected to
require cell protrusions [30–33]. Much as on the apical surface
[34], cell neighbour relationships further change dynamically
over time along the entire apical-basal axis [17, 18]
(Figure 1K), thereby further increasing the distance over
which signals can be sensed, exchanged, and averaged. But
what leads to these unexpectedly complex and dynamic 3D
cell shapes, and what determines cell neighbour relationships?

Surface Area Minimisation
Epithelial cells are often compared to soap bubbles. Soap bubbles
famously minimise their surface area and assume a spherical
shape in isolation. Motivated by the tight packing of soap bubbles
in foams, there has been a long-standing interest in optimal
packing solutions that minimise the overall surface area. In the
19th century, Lord Kelvin proposed that tetrakaidekahedra
minimise the overall surface area if all soap bubbles have the

FIGURE 2 | Phenomenological laws in epithelial cell arrangements. (A) Slicing through a mouse embryonic lung epithelium (shaded cells [18]) repeatedly along the
apical-basal axis reveals the complex shape and packing structure of punakoids. Even over short distances, numerous T1L transitions occur, leading to vastly different
cell neighbourships. Colours in the last column indicate cell identity, values are cross-sectional neighbour numbers. (B) The average neighbour number, �n, is (close to) six
in all epithelia, even though the hexagon fraction and the neighbor number distribution vary. (C) All quantified epithelial tissues follow Aboav-Weaire’s law. (D) All
quantified epithelial tissues follow either Lewis’ law (grey line), or the quadratic law (green line), or lie in between. (E) The hexagon frequency declines for increasing area
variability according to the magenta curve.
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same volume. Flattened 14-sided tetrakaidecahedra with
hexagonal apical and basal surfaces are found in the multi-
layered, stratified epidermis of the skin [22]. However, a more
efficient packing of equally sized cells has since been described
[35], and the complex shapes of cells in single-layered
pseudostratified epithelia (Figure 2A) certainly do not
minimise the overall surface area for the given cell volume.
What then governs their shape and neighbour relationships?

Striking Regularities in Cell Arrangements
The 3D cell neighbour relationships can be understood by
considering single 2D planes, perpendicular to the apical-basal
cell axis [18]. In the following, we will therefore first discuss the
neighbour relationships in these 2D planes (Figure 2).

Striking regularities that have long been known and that are
found on all apical and basal surfaces studied to date [6–16, 19],
have recently been reported also in all planes along the apical-
basal axis (Figure 2A), even though neighbour relationships
change between individual cells [18]. First and foremost, cells
in any 2D plane have on average (close to) six neighbours, albeit
the neighbour number distributions (Figure 2B) differ
significantly among epithelia and between planes. This can be
accounted to topological constraints in 2D contiguous polygonal
lattices, and follows directly from Euler’s polyhedron formula [10,
36]. If three edges meet at each junction, the mean neighbour
number in infinite lattices is exactly six, �n � 6. The average
declines as the number of edges per vertex increases, to �n � 4
if four edges meet in each junction. Locally, the average deviates
from six in epithelia (Figure 2C) and follows a phenomenological
relationship known as Aboav-Weaire’s law [37],

m � 1
n
∑n
i�1
ni � a + b

n
(1)

which relates the number of neighbours, n, of a central cell to the
average one of its neighbours, m (Figure 3C, inset). In epithelia,
the parameter values fall into the range a ∈ [4.5, 5.5] and b
∈[4.5, 9.5] [38]. Finally, the relative average apical area, An, of
cells with n neighbours with respect to the average area of all cells,
�A, linearly increases with n (Figure 2D, black line), a
phenomenological relation termed Lewis’ law [6],

An

�A
≈
(n − 2)

4
. (2)

Initially, Lewis’ law has been accounted to entropy maximisation
[36], but this has subsequently been ruled out [39, 40]. Many
other hypotheses have been explored to explain epithelial
organisation. According to topological arguments, sequential
cell division results in the observed frequencies of neighbour
numbers (Figure 2B) [10, 41]. However, this argument does not
explain the emergence of cells with less than five neighbours, and
predicts proliferative epithelial tissues to have about 45%
hexagons. The hexagon frequencies, however, decrease with
increasing variability in the cell cross-sectional areas
(Figure 2E), and reported values range from 30 to 80% [14].
Contrary to the assumptions of the topological model, cells
rearrange their boundaries until they reach a mechanical

equilibrium [9]. By altering the relative cell-cell adhesion
strength and cortical tension, the full range of neighbour
relationships can be reproduced in vertex models and similar
model setups [9, 14, 41–46]. In a small subset of the parameter
space, Lewis’ law emerges [9, 43, 44]. Lewis’ law and the entire
range of measured neighbour frequencies can be reproduced also
using Voronoi tessellations, but again only for the subset of the
parameter space that yields the right level of tessellation
irregularity [13, 47]. So, why do all epithelia follow those two
phenomenological laws?

Minimisation of the Lateral Cell-Cell
Contact Energy Determines Cell Neighbour
Relationships
As cells reach the mechanical equilibrium quickly (in less than a
minute [9]), the polygonal lattices that one observes when cutting
the epithelium in any plane (Figure 2A) represent a mechanical
equilibrium, i.e., a state of minimal energy. At first sight, the
highly irregular shapes of epithelial cells may appear inconsistent
with surface energy minimisation, as observed in foam. However,
by following Lewis’ law and Aboav-Weaire’s law, epithelial cells
still minimise the lateral surface area for the given irregular cell
volume distribution [14, 38]. Thus, in each plane along the apical-
basal axis (Figure 2A), cells minimise the total perimeter for the
enclosed cross-sectional areas.

As regular polygons have the smallest perimeter per enclosed
area, a lattice composed of regular polygons will have the smallest
total perimeter. If all cells had the same cross-sectional area, a
regular hexagonal lattice would be most favourable. However,
cellular processes constantly alter the cross-sectional areas, and
the combined cell-cell contact surface energy is lower with mixed
cross-sectional cell areas [14]. Even the hexagonal ommatidia in
the Drosophila eye are each composed of 21 differently-sized
apical cell areas, which are predominantly not hexagonal [48].
The arrangement into hexagonal ommatidia relies on the careful
adjustment of cell adhesion, cortical tension, and cell dilation
[49–51]. As mixed cross-sectional cell areas are most favourable,
epithelial cells easily disperse from a clone with smaller cells,
while they remain clustered without such a cell size difference
relative to the surrounding tissue, potentially facilitating the
spreading of tumour cells [16].

For the distribution of cross-sectional cell areas found in
epithelial tissues, perfectly regular contiguous lattices cannot
form. By following Aboav-Weaire’s law, the internal angles of
the polygons are closest to those of a regular polygon while still
adding up to 360° at each junction [38]. By following Lewis’ law,
the side lengths are most similar [14]. Equal side lengths are
obtained if the cross-sectional cell areas follow a quadratic
relation (Figure 3D, green line) of the form

An

�A
≈
n

6
tan (π/6)
tan (π/n) ≈ (n

6
)2

. (3)

The quadratic relationship, however, emerges only at a high area
variability, as found on the apical side of embryonic lung tubes
[14, 18]. Finally, a novel relationship that all epithelia follow
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emerges from the drive to the most regular polygonal shape, and
relates the fraction of hexagons to the apical area variability,
measured by the coefficient of variation (CV = std/mean)
(Figure 2E) [14]. Interestingly, even puzzle cells in plants,
which derive their name from their highly irregular shape,
reminiscent of puzzle pieces, follow Lewis’ law [52]. This is
still consistent with a minimisation of the cell perimeter
because the puzzle shape emerges in an effort to minimise
stress in large cross-sections only after the cells have stopped
dividing and the neighbour relationships have been fixed by the
rigid cell walls [53]. In summary, the minimisation of lateral cell-
cell contact energy defines the polygonal shape of each cell cross-
section, and thus the cell neighbour relationships. Changes in the
relative cross-sectional areas along the apical-basal axis or over
time drive cell neighbour changes [14, 18]. But why do the cross-
sectional areas change–or differently put, what defines the 3D cell
shape?

Impact of Tissue Curvature on Cell
Neighbour Relationships
If the two principal curvatures of the tissue surface change
differently along the apical-basal axis, such as in sufficiently
thick epithelial tubes, then the cell aspect ratio changes along
the apical-basal axis. To maintain a regular polygonal cross-
sectional cell shape, neighbour relationships have to change. This
curvature effect has been proposed to result in scutoid cell shapes
in epithelial tubes [15]. Curvature-driven T1L processes should
then on average occur more frequently, i.e., for lesser curvature
fold-changes κ2/κ1, the higher the cell neighbour number, n, in
local cross sections [18]:

κ2
κ1

(n) � (1 − α (2 + cos α)
n sin α (1 + 2cos α))

±π
2

, α � 2π
n
. (4)

In the tubular embryonic mouse lung epithelium, no such
systematic n-dependency is observed [18]. Moreover, in planar
monolayers and in spherically shaped epithelia, where the
principal curvatures change equally, T1L transitions are
nonetheless still found [15, 18, 19]. Effects other than tissue
curvature must thus dominate in these epithelia.

Determinants of 3D Cell Shape and
Neighbour Relationships
The shape of cells in single-layered epithelia can range from a
cuboidal to highly elongated columns with large aspect ratio, and
apical or basal constriction can further affect the cell shape [20,
21, 54]. In highly elongated cells, the diameter of a spherical
nucleus would be larger than the diameter of a cylindrical cell.
Accordingly, both the cells and the nuclei deform [55]. The cell is
wider where the nucleus is present, and the remaining part of the
cell is necessarily much thinner (Figure 1G). At the apical and
basal limits of the nucleus, there is a sharp change in the cell
cross-sectional areas, and most changes in neighbour
relationships are found in this transition zone (Figure 1H).
Epithelia with an average cell diameter smaller than the

maximal nuclear diameter can thus be expected to have many
more neighbour changes than those with wider cells.

Given the narrow columnar shape, there is insufficient space to
accommodate all nuclei simultaneously in the same plane.
Accordingly, the nuclei of neighbouring cells are found at
different positions along the apical-basal axis (Figures 1A,G)
[18], a configuration referred to as pseudostratification [27]. As
mitosis is restricted to the apical side [27, 56], nuclei actively move
towards the apical side during the G2 phase, and are pushed towards
the basal side as the cell exits mitosis, in a process called interkinetic
nuclear migration (IKNM) [55, 57, 58]. As the nuclei translocate
between the apical and basal side during the cell cycle, the cell cross-
sectional areas and connectivities continuously change (Figure 1K).
An increase in the cross-sectional area increases the chance of a
neighbour increase and vice versa (Figure 1I). Neighbour changes
are less frequent close to the basal surface of tube segments, where
cells remain wider throughout the cell cycle, but are otherwise
uniformly distributed along the apical-basal axis [18]. Consistent
with a stochastic basis to the 3D organisation of epithelial cells, the
number of T1L per cell is Poisson-distributed [18].

But why would epithelial cells adopt such an elongated cell
shape? Independent of the increased number of dynamically
changing cell contacts, a smaller cell diameter can increase the
precision of morphogen-based patterning [30]. Interestingly,
several diffusible morphogens and growth factors, including
Fibroblastic Growth Factor (FGF), Sonic Hedgehog (SHH),
Bone Morphogenetic Protein (BMP)/transforming growth
factor-beta (TGF-β), and WNT, have been observed to affect
cell height, presumably via an effect on cell tension and/or cell-
cell adhesion [59–65]. Epithelial pseudostratification may thus
have evolved to enable higher developmental patterning precision.

Discussion: Towards 3D Cell-Based Tissue
Simulations of Epithelial Dynamics
As the complex, dynamic 3D organisation of cells in growing
epithelia is governed by simple physical concepts, computer
simulations present powerful tools to understand the emergent
properties of epithelia [66], including IKNM and its effects
[67–71]. Cellular Potts models, which represent a
generalisation of the Ising model to cells, have long been used
to simulate complex 3D cell shapes [72–74]. Vertex models have
been developed to specifically represent epithelia in 3D, but
without resolving the complex irregular shapes of epithelial
cells [64, 75–77]. In 2D, several vertex-based models with
higher cell boundary resolution have been developed to enable
more complex cell shapes [78–82], and to represent individual
cell boundaries and the interstitial volume [83–86]. A recent
hybrid version between a spheroid and a vertex model allows for a
3D vertex model with an intermediate vertex that enables a
neighbour transition along the apical-basal axis [87]. To make
full use of the available 3D imaging data, efficient, high-resolution
vertex-based simulation frameworks are now required. A first
such simulation framework that represents cells by individual,
deformable meshes has recently been developed [88, 89]. In
combination with quantitative 3D imaging data, this now paves
the way to a more detailed understanding of epithelial cell
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dynamics in development and disease. Vice versa, cell shape data
can be used to infer force fields and to predict bias in cell division as
cells divide perpendicular to the longest axis of their apical surface
[41, 90–94]. With such tools at hand, it may become feasible to
address open questions regarding the maintenance and loss of
epithelial integrity and cell polarity, for instance in tumour growth
and mesenchymal-to-epithelial transitions.
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Transient Turing patterns in a
morphogenetic model

Nara Guisoni* and Luis Diambra*

Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata (UNLP)–CONICET, La Plata,
Argentine

One of the most surprising mechanisms to explain the symmetry breaking

phenomenon linked to pattern formation is known as Turing instabilities.

These patterns are self-organising spatial structures resulting from the

interaction of at least two diffusive species in specific conditions. The

ideas of Turing have been used extensively in the specialised literature

both to explain developmental patterns, as well as synthetic biology

design. In the present work we study a previously proposed

morphogenetic synthetic circuit consisting of two genes controlled by

the same regulatory system. The spatial homogeneous version of this

simple model presents a rich phase diagram, since it has a saddle-node

bifurcation, spirals and limit cycle. Linear stability analysis and numerical

simulations of the complete model allow us to determine the conditions for

the development of Turing patterns, as well as transient patterns. We found

that the parameter region where Turing patterns are found is much smaller

than the region where transient patterns occur. We observed that the

temporal evolution towards Turing patterns can present one or two

different length scales, depending on the initial conditions. Further, we

found a parameter region where the persistence time of the transient

patterns depends on the distance between the parameters values on

which the system is operating and the boundary of Turing patterns. This

persistence time has a singularity at a critical distance that gives place to

metastable patterns. To the best of our knowledge, transient and metastable

patterns associated with Turing instabilities have not been previously

reported in morphogenetic models.

KEYWORDS

Turing instability, biological pattern, morphogenesis, transient pattern, metastable
pattern, saddle-node bifurcation, morphogenetic modelling, synthetic biology

1 Introduction

Pattern formation in morphogenetic system is one of the central problems in

developmental biology. One of the best-known mechanism of autonomous pattern

formation is the Turing instability. This symmetry breaking mechanism was

introduced in 1952 by Alan Turing in the context of models for morphogenesis [1].

The basic idea is that Turing instability arises from the coupling between diffusion and

reaction which can destabilize spatially homogenous equilibrium and lead to the

formation of patterns. The minimum biological system able to present Turing
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instabilities consists in only two interacting diffusible

components: an activator with a slow diffusion rate and an

inhibitor with a fast diffusion rate [2].

There is a large body of literature focused on the mechanism

proposed by Turing to explain the patterns of self-organization

during the animal development [3–11]. However, the

identification of the molecular agents driving Turing patterns

remains an unsolved issue in most cases.

Thanks to recent progress in synthetic genetic circuit

engineering, several researchers have embarked on the

implementation of Turing ideas on cell culture [12–17]. To

engineer such biological systems, one needs to know the

mandatory properties and genetic circuit that support the

biological patterning process. It is well known that two key

factors underlying the Turing model are the differential

diffusion between activator and inhibitor, and also the non-

linearity in the reactive terms. In addition, it has been shown that

the latter can be as important as the differential diffusion [18, 19].

In this sense, a Turing model has been proposed where the

activator and inhibitor are under the control of the same

promoter, a simplification that can be exploited in the design

of synthetic morphogenetic circuits. This biological

simplification allows a mathematical analysis which has

highlighted the role of cooperative regulation as source of

non-linearity [18]. However, beyond this contribution, the

single-promoter model has not been explored to its full

potential in either theoretical or experimental studies. In this

paper we present a deep theoretical analysis of this simple model

and report that it has a rich phase diagram that include: saddle-

node, limit cycles and Turing patterns. We also observe transient

patterns, driven by Turing instability, which hereafter will be

referred to as transient Turing patterns. Previous reports about

transient Turing patterns have been done in the context of closed

systems, when chemical species are being consumed [20–22] and

for noise-driven stochastic patterns in a multicellular

cyanobacterial organism [23]. Moreover, out of the reaction-

diffusion context, transient Turing patterns have been reported

in a neural field model of working memory [24]. Except for the

last case, the reaction-diffusion systems associated with transient

Turing patterns are composed by several species, which posses

the additional challenge to derive analytical predictions or to

associate a phase diagram to study them. On the other hand, the

present model can be associated with biological systems [25, 26]

and the analysis of the associated reaction-diffusion equations are

feasible for some values of the Hill exponent of regulatory

function. The present results show that in this model the

transient patterns are due to the presence of a saddle node

which have associated spatial modes with no-null

amplification rate. Patterns initiated around this steady state

can experiment a transition to Turing pattern associated with a

stable steady state, or disappear. The existence of transient

patterns brings with it the question of their persistence. This

question is especially important given that in the biological

context Turing patterns are associated with spatial

distributions of molecules that induce morphogenetic

processes whose time scales must be finely orchestrated.

Interestingly, we observe that the persistence time of the

transient patterns suffers a critical transition when parameters

values approaches at a critical distance of the boundary that

separate Turing stable patterns. This critical distance defines a

region for metastable patterns, where the spatial pattern remains

stable over large time scales while no disturbances operate.

Metastable transient patterns have been previously reported in

the context of 1D reaction-diffusion systems [27, 28]. To the best

of our knowledge, metastable Turing patterns are a novel feature

as far as morphogenetic models are concerned, because are

related to unstable nodes, which have not been considered in

previous studies on Turing instability.

2 The morphogenetic model

The minimum biological system able to present Turing

instabilities consists of two interacting diffusible proteins,

named morphogens. In the case of the model considered here,

the self-activating morphogen A also activates the morphogen H,

which in turn inhibits both morphogens (see the sketch in

Figure 1A). The activator and the inhibitor morphogens are

coupled through the regulatory functions associated with the

genes that encode them. The regulatory functions describe

mathematically how the protein synthesis rate depends on the

concentration of activators and inhibitors. A morphogenetic

model was recently introduced which considers that both

morphogens are regulated by the same promoter [18]. That

means that regulatory functions that control the synthesis rate

of both morphogens will be the same. Thus, in this case, the

temporal evolution of the system is described by a couple of

reaction-diffusion equations of the form.

za

zt
� Da∇

2a + ρaf a, h( ) − μaa (1)
zh

zt
� Dh∇

2h + ρhf a, h( ) − μhh, (2)

Where a (x, t) and h (x, t) denote the concentration of the

activator A and the inhibitor H, respectively, as a function of

spatial position and time. The last term on the right hand side of

each equation describes the degradation process and was

assumed to be linear. The function f corresponds to the

regulatory function that controls the expression of both

activator and inhibitor. As in the previous study [18], we

consider a sigmoidal regulatory function where activator and

inhibitor compete for the same regulatory site in the form:

f a, h( ) � anH

1 + h/kh( )nH + a/ka( )nH , (3)
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where nH is the Hill exponent that describes the steepness of the

sigmoidal function (considered equal for both activator and

inhibitor), while ka and kh are related to the effective dissociation

constant for the activator and inhibitor, respectively. However, non-

competitive regulatory function can also be used [29, 30]. At this

point it is convenient to introduce dimensionless variables for time t̂,

position x̂, and the concentrations â and ĥ as follow:

x̂ � x
������
μa/Dh

√
, t̂ � tμa, â � a/ka, ĥ � h/kh.

To simplify the notation we introduced the abbreviations d = Da/

Dh, μ = μh/μa, ra � ρak
n−1
a /μa and rh � ρhk

n
a/(μakh). Thus, Eqs. 1,

2 can be rewritten as:

zâ

zt
� d∇2â + F â, ĥ( ), (4)

zĥ

zt
� ∇2ĥ + G â, ĥ( ). (5)

Where.

F â, ĥ( ) � raf â, ĥ( ) − â, (6)
G â, ĥ( ) � rhf â, ĥ( ) − μĥ. (7)

Next, we carried out a detailed mathematical analysis of local

stability of this dimensionless model for the case without

diffusion. After that, we presented the Turing-instability

conditions. From now on we will write new variables without the

FIGURE 1
Bifurcation diagram and nullclines, (A) Schematic representation of the two-component system, A is the activator morphogene (activates both
reactants), H is the inhibitormorphogene (inhibits both reactants). (B) Bifurcation diagram showing the behavior of concentrations a (blue) and h (red)
as a function of μ, with ra=10 and rh=5. The trivial fixed point S0=(0,0) is present for all μ values. The saddle-node bifurcation atμ= μc ≈0.10marks the
emergence of two new fixed points (S1 and S2). Continuous and dashed curves represent respectively regions of stable and unstable steady state
solutions. Black vertical dashed lines refer to μc and the stability of steady-state S2, indicating regions of unstable node (white area, where TrA <0,
detA >0 and Δ >0), unstable spiral (green area, where TrA <0, detA >0 and Δ <0) and stable spiral (yellow area, where TrA >0, detA >0 and Δ <0). For
μ = μ2 the system displays a limit cycle (TrA =0 and detA >0). For visualisation in the phase diagram, see horizontal line in Supplementary Figure S1B.
(C) Black and grey curves represent F andG functions (nullclines) for the parameters value (μ, ra, rh)=(0.24,10,5) (S2 is an unstable spiral). (D)Nullclines
for the parameters value (μ, ra, rh)=(1,10,5) (S2 is a stable node). Red points represent fixed points.
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hat in order to simplify the notation. The Hill exponent on the

regulatory function f is usually associated with the number of

regulatory sites in the promoter, but as a consequence of the

finite free energy involved in the interaction between regulators

molecules [31, 32], the exponent is not an integer number. Despite

that, hereafter we set nH = 2 for mathematical convenience since it

allows the derivation of analytical expressions which will help to

obtain the results on the next Section.

3 Results

3.1 Stability analysis for the non-spatial
model

In order to determine the general conditions for diffusion-

driven instabilities, it is necessary to study the temporal evolution

of the diffusion-less system:

za

zt
� F a, h( ), (8)

zh

zt
� G a, h( ). (9)

The homogeneous steady states S = (ass, hss) system of (Eqs. 8,

9) are the positive solutions of equations F (ass, hss) = 0 and G (ass,

hss) = 0. The system can present up to three fixed points: the

trivial solution S0 = (0, 0), and two non-trivial solutions,

identified as S1 = (a1, h1) and S2 = (a2, h2) with.

a1 �
μ2r3a − μra

����������������
μ2r4a − 4 μ2r2a + r2h( )√

2 μ2r2a + r2h( ) , h1 � a1
rh
μra

, (10)

a2 �
μ2r3a + μra

����������������
μ2r4a − 4 μ2r2a + r2h( )√

2 μ2r2a + r2h( ) , h2 � a2
rh
μra

. (11)

The non-trivial steady-states, S1 and S2, are real in a parameter

region defined by

μ2r4a − 4 μ2r2a + r2h( )> 0. (12)

Hence, μ2c r
4
a − 4(μ2c r2a + r2h) � 0 defines a surface in the parameter

space where a saddle-node bifurcation is found. In that way, for

fixed values of ra and rh, it is possible to define a critical value

for μ

μc �
2rh
ra

�����
1

r2a − 4

√
with ra > 2. (13)

For μ > μc the three steady-states are real, while for μ < μc only the

trivial one is found. For μ = μc the two non-trivial solutions merge

together (see Figure 1B). Similarly, we can obtain analytical

expressions for critical values of ra and rh as a function of the

remaining parameters.

In Figure 1B it is possible to appreciate the activator and

inhibitor concentrations as a function of μ for the three steady

states, when ra and rh are kept as constants. Note that μ = μc is a

saddle-node bifurcation and the non-trivial stead-states S1 and S2
are present only for μ > μc. Similarly, Supplementary Figure S1A

shows a and h as a function of rh keeping constants μ and ra.

Supplementary Figure S1B depicts a stability phase diagram for

S2 in the plane μ-rh with ra = 10, where the different regions of

stability are indicated by colors. Horizontal dashed line shows the

section of the parameter region explored in Figure 1B (ra = 10

and rh = 5), with dots indicating the dashed lines of Figure 1B.

Vertical dashed line shows the section of the parameter region

explored in Supplementary Figure S1A.

Typical phase planes can be seen in Figures 1C,D, for

different values of μ. Note that increasing μ brings S0 and S1
closer together, as it can also be seen in Figure 1B.

Linearising the system about the steady-states S = (ass, hss) it

is possible to determine the stability of each state S. Therefore, we

define

v � a − ass
h − hss

( ). (14)

For the case of |v| small, it is possible to approximate Eqs. 8 and

9 as

zv
zt

� Av, A � Fa Fh

Ga Gh
( )

ass,hss

(15)

where A is the Jacobian matrix, with Fa � zF
za, Fh � zF

zh, Ga � zG
za

and Gh � zG
zh. Where the partial derivatives of F and G are

evaluated at the steady-state S = (ass, hss) under consideration.

For each steady state, the eigenvalues are given by

λ1,2 � 1
2

TrA ±
��
Δ

√[ ], (16)

with Δ � (TrA)2 − 4detA. Following Routh–Hurwitz criterion, a

fixed point is linearly stable if the real part of the eigenvalues of

the associated Jacobian matrix A are negative. According to Eq.

16 this is guaranteed if

TrA< 0 and detA> 0. (17)

The trivial steady-state S0 is always a stable node, whereas S1
is an unstable saddle-point for the parameter region delimited by

the inequality (Eq. 12). S2 has a more intricate behaviour, as it is

discussed below.

The stability of S2 depends on the values of ra, rh and μ, as

shown in Figure 2A. As it can be seen, the region where S2 is

stable becomes smaller as the inhibitor production rate rh
increases. On the other hand, this region rises with the

activator production rate ra and the relative degradation rate

μ. We observe that a and h concentrations in S2 can present

oscillations, which can be stable or unstable (see Figure 2B).

Interestingly, in the region of unstable spirals (where TrA > 0 and

Δ < 0), oscillations drive the system to the trivial steady-state S0
(see Figure 2C and the phase-plane of Figure 1C). Otherwise,
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when TrA < 0 (with Δ < 0) the stable spirals around S2 are

damped until the system reaches the stable steady-state (see

Supplementary Figure S1C). On the boundary of unstable and

stable spirals, when Reλ = 0 and Imλ ≠ 0 (TrA = 0 and detA > 0),

a stable limit circle is found, as shown in Supplementary Figure

S1D. The rich behaviour of the system around S2 can also be seen

in the μ-rh phase diagram of Supplementary Figure S1B: four

regions indicate when S2 is an unstable node, unstable spiral,

stable spiral or stable node. Besides, the saddle-node bifurcation

line and the limit-circle line are shown.

In Figure 1B the stability of S2 for increasing μ is presented: it

changes from an unstable node to unstable and stable

oscillations. In the phase-plane of Figure 1C, S2 is an unstable

spiral while for Figure 1D it is a stable node. The stability of S2 as

a function of rh is shown in Supplementary Figure S1A. In this

case, greater values of rh lead the system towards instability. The

points μ = μc and rh = rhc shown respectively in Figure 1B and

Supplementary Figure S1A, where S1 = S2, are saddle points.

3.2 Conditions for Turing patterns

As it was mentioned in the previous section, the fixed point S2 is

stable in a region of the parameter space. The addition of diffusive

terms to the system of (Eqs. 8, 9) can destabilise the spatially

homogeneous equilibrium and lead to the formation of patterns,

known as Turing patterns. To obtain the mathematical conditions

for Turing instability let us consider a one-dimensional version of

Eq. 15, that includes the diffusive process,

zv
zt

� A v +D
z2v
zx2

, D � d 0
0 1

( ), (18)

FIGURE 2
Stability and instability of the fixed point S2. (A) Yellow volume delimits, in the parameters space (μ, ra, rh), the region where the steady state S2 is
stable. (B) The green region corresponds to the values of the parameters where the system develops a spiral source behaviour in the steady state S2
(see panel C), while in the yellow region there is a spiral sink behaviour at S2. Only at the interface of these two regions does the system exhibit a limit
cycle. (C) Example illustrating of unstable oscillatory behaviour for a and h, as function of time, for (μ, ra, rh)=(0.24,10,5), the amplitudes increase
until they reach the stable trivial fixed point S0.
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and the boundary conditions. We are interested in the zero-flux

boundary condition, i.e., that morphogens cannot diffuse beyond

the boundaries [0,L]. This implies that the wave number k of

solutions of Eq. 18 takes discrete values kn = nπ/L, with n = 0, 1, 2,

. . .. As usual, the steady solution S is perturbed with

δn(x, t) � (δa, δh)e(ωt−iknx). Substituting v � δn(x, t) in Eq. 18

we obtain

ωδn � Aδn −Dk2nδn. (19)

The perturbation δn(x, t) can be different from zero (non-trivial

solution), if and only if

det ωI − A +Dk2n( ) � 0. (20)

Therefore, for the stable homogeneous state to

become unstable upon perturbation δn it is required that

Re(ω) > 0. This is fulfilled if any of the conditions below are

satisfied

Tr A − k2nD( )> 0 (21)
det A − k2nD( )< 0 (22)

As (Eq. 21) is never true for a stable fixed point, the only

necessary condition is (Eq. 22). Taking into account that

detA > 0 on stable fixed point, condition (Eq. 22) implies in

Fa + d Gh > 0. (23)

The condition for a non-trivial solution Eq. 20 leads to the

relation of the eigenvalues as function of the wave number k,

knows as dispersion relation

ω± k( ) � −α k( ) ±
������������
α k( )2 − 4β k( )

√
2

, (24)

where α(k) and β(k) are functions of k2 and given by

α k( ) � d + 1( )k2 − TrA, (25)
β k( ) � d k4 − Fa + d Gh( )k2 + det A, (26)

where the partial derivatives of F and G are evaluated at the

steady-state S under consideration. In the following we will

consider only the dispersion relation ω+ because ω− is negative

in the parameter region of interest.

Furthermore, we are looking for positive k2 such that β(k) < 0

for some nonzero k. Thus it is necessary that the minimum of β

be negative. By differentiating with respect to k2 we obtain that

the minimum of β is at k2min � (Fa + d Gh)/2d, and the condition
for β negative can be written as:

Fa + d Gh( )2 > 4d detA. (27)

Thus, the necessary and sufficient conditions for Turing

instability can be summarised by the conditions for the

existence of a stable homogeneous state in the absence of

diffusion (Eq. 17), and conditions (Eq. 23) and (Eq. 27). These

four conditions determine that the system will develop Turing

patterns when a stable fixed point is disturbed by a

perturbation with a certain wave number.

Figure 3A depicts the region of the parameter space

spanned by parameters μ, ra and rh where the reaction-

diffusion system of (Eqs. 8, 9) satisfies the conditions for

Turing instabilities for d = 0.01. However, we observe that

some perturbations can also propagate even when the fixed

point in question is unstable, given rise in this case to

transient patterns, or transitions between spatial patterns

with different wave numbers. To analyse this aspect lets us

remark that the temporal evolution of a spatial perturbation

is dominated by the value of the wave number associated with

the largest amplification rate, i.e., k value which maximises

ω+(k). This wave number, denoted here by kmax, is related to

FIGURE 3
3Dparameters space. (A)Blue volumedelimits, in the space spannedbyparameters (μ, ra, rh), the regionwhere the four Turing conditions are verified for
steady state S2. (B) Red volume delimits, in the space spanned by parameters (μ, ra, rh), the region where k2>0 and ω >0 for the steady state S1.

Frontiers in Physics frontiersin.org06

Guisoni and Diambra 10.3389/fphy.2022.927152

5049

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.927152


the size of the emergent pattern, and the characteristic

pattern size is given by π/kmax. Note that spatial patterns

will be developed when k2max and ω+(kmax) are positive. In

fact, these conditions are implicit in the derivation of Turing

conditions (Eq. 23) and (Eq. 27). Therefore, referring to the

stable fixed point S2, the parameter region where k2max and

ω+(kmax) are positive is the same that the region where the

four Turing conditions are verified, and will be denoted by R2

(Figure 3A). On the other hand, the parameter region where

k2max and ω+(kmax) are positive for the unstable saddle-point
S1, gives a finite region showed in Figure 3B, and will be called

R1. In region of overlap between R1 and R2, there are two

characteristic pattern sizes related to the unstable and stable

fixed points S1 and S2, respectively. Depending on the initial

conditions, unidirectional transitions between spatial

patterns with different wave numbers are expected.

Furthermore, in the region of R1 that extends beyond of

R2, we expect to observe transient patterns related to the

unstable fixed point S1. In the next subsection we will

exemplify these possibilities by numerical simulations

considering a diffusion rate value of d = 0.01 in all cases.

For the sake of simplifying the notation, hereafter, the

expression ω+(kmax) computed over steady state Si will be

denoted by ω(Si).

FIGURE 4
Different spatial scales. (A) 2D phase diagram shows the parameters region where the system presents stable Turing patterns (blue area) and
unstable or transient Turing patterns (red area) for ra=6.0. Black dots correspond to different triplet of parameters values (μ, ra, rh) where numerical
simulationwere performed:P1=(1.0,6,10),P2=(1.2,6,10) in the Turing pattern region,P3=(1.5,6,10), P4=(3.0,6,10) in the transient Turingpattern region, and
P5=(5.0,6,10) in the region for uniform distributions. (B) 1-D numerical simulations showing the temporal evolution of activator concentration
distribution a for parameters value P2 with two different initial conditions. Top (bottom) panel corresponds to the temporal evolutionwhen fixed point S1
(S2) is perturbed by a small perturbation at x =40, note the different spatial scales of patterns on the panels. The temporal evolution of a for parameters
values P1, P3 and P5 are shown in Supplementary Figure S2. (C) 1-D numerical simulations showing the temporal evolution of a for parameters values P3
(top panel) and P4 (bottom panel) when the same fixed point S1 is perturbed at x = 40. (D) Red and blue surfaces correspond to ω-value as function of μ
and rh associatedwith fixed points S1 and S2, respectively. (E) k

2-values as functionofμ and rh associatedwith S1 (red surface) and S2 (blue surface). In both
panels D and E, ra =6.0, and the red and blue dots indicate ω and k2 values for P1, P2, P3 and P4 in each case.
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3.3 Stable and transient Turing patterns

To illustrate some features of stable and transient Turing

patterns, we perform 1D simulations of the reaction-diffusion

equations at different values of the parameters μ, ra and rh. In

Figure 4A we superpose Figures 3A,B on the plane spanned by

parameters μ and rh for ra = 6. In this way, we identify the

region where stable Turing patterns are found (overlap

between R1 and R2, light blue); and the region where only

transient patterns are observed (R2, red). Black points in the

plane correspond to parameter values used in different

numerical simulations. Figure 4B depicts the Turing

patterns developed by the activator, for parameters (μ, ra,

rh) = (1, 6, 10). In both simulations the spatial perturbation is

the same, ∝ exp [ − (x − 40)2/0.25], however the simulations

differ in the initial spatial distribution to be perturbed. The top

panel of Figure 4B corresponds to a perturbation of

homogeneous distribution associated with the fixed point

S1 (saddle node), while the bottom panel corresponds to a

perturbation of homogeneous distribution associated with the

stable fixed point S2. In the first case the system develops

quickly a central pattern, with small wave number. Over time,

the ridges split in two, increasing the wave number of the

pattern. These splits evidence the transition to a stable Turing

pattern with the same wave number as that observed in the

bottom panel. We also see in Figure 4B that the amplification

FIGURE 5
Different time scales. (A) 2D phase diagram shows the parameters region where the system presents stable Turing patterns (narrow blue area)
and unstable or transient Turing patterns (blue area) for ra =2.5. Black dots correspond to different triplet of parameters values (μ, ra, rh) where
numerical simulation were performed: P1=(3.9,2.5,7), in the Turing pattern region, P2=(4.1,2.5,7) and P3=(5.0,2.5,7) in the transient Turing pattern
region. The crosses indicate parameters values used on Figure 6. (B) 1-D numerical simulations showing the temporal evolution of activator
concentration distribution a for parameters value P1 with two different initial conditions. Top (bottom) panel corresponds to the temporal evolution
when fixed point S1 (S2) is perturbed by a small perturbation at x =40, note the different timescales on the panels. (C) 1-D numerical simulations
showing the temporal evolution of a for parameters values P2 (top panel) and P3 (bottom panel) when the same fixed point S1 is perturbed at x =40,
note the different timescales on the panels. (D) Red and blue surfaces correspond to ω-value as function of μ and rh (ra =2.5) associated with fixed
points S1 and S2, respectively. (E) k

2-values as function of μ and rh associated with S1 (red surface) and S2 (blue surface). Red and blue dots indicate k2

values for P1, P2 and P3 in each case.
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rate of the perturbation of S2 is lower than in the case where S1
is perturbed.

We also perform numerical simulations in the region of

transient patterns for μ = 1.5 and 3.0 (top and bottom panels of

Figure 4C), when a small perturbation is applied on fixed point

S1. In these cases the system makes a transition to a stable

homogeneous distribution associated with state S2. These

transitions occur in a spatially heterogeneous manner, as long

as ω(S1) and k2max computed over S1 are positive. One can also

note in Figure 4C that the decay times to homogeneous state S2 in

top panel is lower than in bottom panel. This aspect will be

discussed in the next section. Illustrative simulations,

corresponding to the points μ = 1.2 and 5.0, showed in the

parameter space Figure 4A, can be appreciated in Supplementary

Figure S2. Figure 4D shows ω as function of μ and rhwith ra = 6.0,

computed for steady states S1 (red sheet) and S2 (blue sheet).

Similarly, Figure 4E depicts k2max for these steady states, for the

same parameters. The points/bars at μ = 1.0, 1.2, 1.5 and

3.0 indicate the values at which numerical simulations were

performed. For all cases, we can see that ω(S1)≥ω(S2).
Further, ω(S2) can present positive and negative values, while

ω(S1) is always positive. Thus, only simulations for μ = 1.0 and

1.2 fall in the region of stable Turing patterns, since ω(S2) > 0 is

required. Transient Turing patterns are observed for μ = 1.5 and

3.0, i.e., when ω(S1)> 0 and ω(S2)< 0 (red region of Figure 4A).

In addition, we can also note in Figure 4E that

k2max(S1)≤ k2max(S2), indicating that the characteristic size of

the initial pattern is greater than that one related to the stable

Turing pattern, which agrees with the simulations shown in

panels of Figure 4B.

3.4 Metastable spatial patterns

In an effort to further understand the transient patterns

exhibited by our model, Figure 5 depicts analyses and

simulations for ra = 2.5 where there is a narrow region for

Turing instabilities (light blue region) and a large region for

transient Turing patterns (red region). In this case, the k2max is

highly folded and the predicted wave number values associated

with S1 and S2 are very close. However, the rate ω(S1) has a higher

dynamic range than in the case shown in Figure 4. Figure 5B

depicts numerical simulations in the region of stable Turing

patterns, near the stable-transient patterns interface (P1 = (3.9,

2.5, 7)). Patterning is reached quickly when the unstable fixed

point S1 is perturbed (top panel of Figure 5B), while a very long

transient is observed when the same perturbation is applied to the

stable steady state S2 (bottom panel). Figure 5C depicts numerical

FIGURE 6
Persistence time. (A–E) These panels depict the temporal evolution of a, when the uniform distribution associated with fixed point S1 is
perturbed at x =40, for different values of the parameters (μ, ra, rh)=(4.89,2.5,7) (A) (4.9, 2.5,7) (B) (5.1,2.5,7) (C) (5.5,2.5,7) (D) and (5.1,2.5,6) (E). These
parameters values were indicated by crosses on 5A. (F) Raster-plot of persistence time τ and distance b for the numerical simulations (A–E) and also
P3=(5.0,2.5,7) depicted in bottom panel of 5C. Blue line corresponds to the rational function A+ B/(b − bc), where the value of parameters were
obtained by nonlinear fitting (A =92.1, B =7.2 and bc =0.85). Letters a-e indicated the corresponding panel.
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simulations for P2 = (4.1, 2.5, 7) (top panel) and P3 = (5, 2.5, 7)

(bottom panel), both in the region of transient Turing patterns,

when a small perturbation is applied on homogeneous

distribution at S1. In the first case, the system develops a

spatial pattern that does not end on the course of simulation,

while the bottom panel shows a short-lived pattern that finishes

in the homogeneous distribution associated with the steady state

S2. The time to reach the patterns showed in Figures 5B,C, and

also their sizes, are in agreement with the functions ω and k2 (see

Figures 5D,E). However, they do not provide information on

what determines the duration of the transient patterns.

Regarding the pattern on Figure 5C, we hypothesise that

when the parameter values approach to the boundary between

regions of stable and transient Turing patterns (blue line in

Figure 5A), the resulting transient patterns would be associated

with larger half-lives. Let us define the persistence time of a

transient pattern, τ, as the duration of the central ridge, that is

before it merges with the neighbours ones; and b as the Euclidean

distance from actual parameters value to the boundary between

regions of stable and transient Turing patterns. Following our

ansatz, we compute the persistence time τ on several transient

patterns, depicted on panels A–E of Figure 6, obtained for ra =

2.5, and different values of rh and μ. Also, Figure 6F depicts the

persistence time as function of the distance b. Interestingly, the

plot suggests that near Turing-patterns boundary the persistence

time exhibits a singularity at bc. This means that, in this region of

the parameters space (ra = 2.5 and rh ≈ 7.0), a system operating

with parameters value corresponding to b smaller than bc will

present patterns with infinite persistence time, i.e. metastable

patterns. This is the case of the top panel of Figure 5C. This could

be a particular characteristic of this region, since no metastable

patterns were observed in the parameter region

FIGURE 7
Turing patterns in 2D. (A) Parameter region where stable Turing patterns (blue) and unstable Turing patterns (red) can be found, for ra =10. Black
dot corresponds to (μ, ra, rh)=(0.25,10,5)= P1, in the stable Turing pattern region. (B) Snapshots from space-temporal 2D simulations showing
activator concentration pattern for parameters value P1 at different time t. These panels corresponds to the casewhen fixed point S2 is perturbed by a
small perturbation at the centre of the field. (C) Snapshots from space-temporal 2D simulations showing a for the same parameters value, when
uniform distribution associated to fixed point S1 is perturbed by the same perturbation. The region considered is 40×40 with periodic conditions.
Animated Movies associated to these simulations are available as Supplementary Movies S1 and S2.
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studied in Figure 4 (ra = 6), where transient patterns were also

observed.

These results suggest the existence of a new interface

separating two types of transients Turing patterns

associated to S1: those with finite τ and the metastable

patterns. Although establishing the mechanisms that

determine this interface is beyond the scope of this work,

we believe that the morphogenetic model proposed by

Diambra et al. could be suitable for such study. To the best

of our knowledge, transient and metastable patterns arising

from Turing instability mechanism have not been previously

reported.

3.5 Turing patterns in 2D

As noticed in the previous subsections, the trajectory of

the system upon perturbation depends on whether the system

is initially on state S1 or S2, however the final states after a

transient are the same (as shown in Figure 4B, Figure 5B). We

wonder if this also happens in two dimensions. And to answer

this question we performed numerical simulations of Eqs. 4

and 5 in a 2D region Ω = [0, 40] × [0, 40] with periodic

boundary conditions. In order to solve the equations, we

discretized space and time using NDSolve routine in

Mathematica 12.1, in which we take Δx = Δy = 0.01. The

temporal step size used is adaptative so that the estimated

error in the numerical solution is lower than 10–6. We

consider the same perturbation exp[−((x − 20)6 +
(y − 20)6))/1.5] at the centre of Ω applied to two different

initial conditions: 1) uniform distributions of a and h, at

concentrations fixed by steady point S2; and 2) in a similar

fashion but considering the steady point S1. The parameters

value used in this numerical experiment are (μ, ra, rh) = (0.25,

10, 5) which fall in the region of stable Turing patterns (blue

region in Figure 7A). Figure 7B depicts the density plots of a

at different times when the stable steady point S2 is perturbed.

In this case the perturbation propagates from the centre,

forming radial stripes (Supplementary Movie S1B). On the

other hand, when the initial condition corresponds to the

steady point S1, the system develops a pattern based on spots

with splitting dynamics. In this case, the initial perturbation

first divides in four spots, each of which in turn splits

tangentially into two other spots. Each of the resulting

eight spots split again, but now in radial manner. The

spots are distributed in a circular shape with the same

radius as the circular bands of the previous case

(Supplementary Movie S2). The stripes (spots) stabilise

after formation (splitting) and the activity concentrate at

expanding Frontier. Although the characteristic sizes are

preserved, the resulting 2D patterns are different

depending on whether the initial condition is close to S1 or S2.

4 Discussion and conclusion

In this paper we have analysed a two-gen reaction–diffusion

system that operates under only one regulatory function, as

previously proposed by [18]. The non-diffusive model

presents three fixed points. One of them corresponds to the

trivial solution and is referred to as S0, while the other two non-

trivial solutions, identified as S1 and S2, are originated in a saddle-

node bifurcation. We obtain analytically that the saddle-node

bifurcation defines a surface in the 3D parameter space. The

trivial solution S0 is a stable node and S1 is an unstable saddle-

point for all the parameter region studied. On the other hand, S2
is stable for a certain region of the parameter space and when

perturbed can also present oscillations and a stable limit circle. In

the region of unstable spirals of S2, oscillations drive the system to

the trivial steady-state S0, while stable spirals are damped until

the perturbed system reaches S2.

To derive the Turing-instability conditions, one requires an

stable homogeneous steady state, like S2, to guarantee that

instabilities will be solely spatially dependent. However,

diffusion-driven patterns can also raise up from an unstable

steady state, like S1. In fact, by linearizing the spatial version of

the model around these steady states we found that both points

have associated a dispersion relation where ω > 0 and k > 0,

indicating the presence of a spatial patterns. We denote the

parameter region where S1 has ω > 0 and k > 0 as R1. Similarly, in

R2 the steady state S2 has ω > 0 and k > 0. We observe that R1 is

greater than R2 and R2 is included in R1.

The final state of the system, when a small spatial

perturbation is applied to S1 or S2 fixed points, depends on

where the parameters value falls relative to R1 or R2. As expected,

we observe that a spatial perturbation of the S2 state, for

parameters values belong to R2, leads to stable Turing

patterns. On the other hand, if S2 is perturbed for parameters

values outside R2, no pattern will be developed. When S1 is

perturbed for parameter values that are in the intersection region

of R1 and R2, then a spatially heterogeneous transition to stable

Turing patterns with sizes typical of the S2 state develops. In this

sense we have seen examples where the initial peaks with typical

size of the state S1 split. But if the values of the parameters fall

outside R2 and inside R1, the system develops in the face of

disturbance a transient spatial pattern whose typical size is

predicted by the dispersion relation in S1. In the region of the

parameter space with low ra-value, the system can present

transitory patterns, as well as metastable patterns. In the

former case, we observed that the persistence time of these

transitory patterns is related to the distance between the value

of the system parameters and the boundary between regions of

stable and transient Turing patterns. We found that this

dependence has a singularity which delimits a new boundary

between metastable patterns and transient patterns with finite

time life. However, the present analysis did not allow to
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determines the boundary, in the parameters space, separating

metastable patterns and short transients.

Furthermore, in the synthetic patterning endeavour is

critical the range of kinetic parameters, Hill coefficient and

diffusion ratio between activator and inhibitor, that support

Turing patterns development [18]. Consequently, alternatives

to reduce the requirement for differential diffusion are always

welcomed. The present results show that transient patterns

can expand the parameter space for an initial breaking-

symmetry. These initial patterns, although transient, could

induce other gene regulatory circuits able to stabilise

patterning but without breaking-symmetry ability. In this

manner, transient patterns could play a role in

developmental biology as breaking-symmetry triggers

rather than to be responsible for the whole patterning

process. We believe that the current findings open the door

to further theoretical studies which can offer new insights into

the nature of patterning mechanisms in developmental

biology.
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Quantitative analysis of surface
wave patterns of Min proteins

Sabrina Meindlhumer, Jacob Kerssemakers and Cees Dekker*

Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology,
Delft, Netherlands

TheMin protein system is arguably the best-studiedmodel system for biological

pattern formation. It exhibits pole-to-pole oscillations in E. coli bacteria as well

as a variety of surface wave patterns in in vitro reconstitutions. Such Min surface

wave patterns pose particular challenges to quantification as they are typically

only semi-periodic and non-stationary. Here, we present a methodology for

quantitatively analysing such Min patterns, aiming for reproducibility, user-

independence, and easy usage. After introducing pattern-feature definitions

and image-processing concepts, we present an analysis pipeline where we use

autocorrelation analysis to extract global parameters such as the average spatial

wavelength and oscillation period. Subsequently, we describe a method that

uses flow-field analysis to extract local properties such as the wave propagation

velocity. We provide descriptions on how to practically implement these

quantification tools and provide Python code that can directly be used to

perform analysis of Min patterns.

KEYWORDS

min proteins, pattern formation, image analysis, surface protein waves, quantification,
python

1 Introduction

Pattern formation is a fascinating basic phenomenon that occurs across many scales,

from galaxy formation all the way down to embryology and beyond. In chemistry and

biology, self-organizing patterns emerge from the combination of specific intermolecular

interactions and molecular transport processes [1]. Acting together, reaction and

diffusion can result in inhomogeneous concentrations of molecules that constitute

spatiotemporal patterns. Such patterns provide useful functions as they impose

directional or positional preferences on processes in cells and tissues [2–5]. Indeed,

pattern formation is of vital importance for the description of a multitude of biological

phenomena, ranging from bacterial and eukaryotic cell division [4], to embryonic

development of multicellular organisms [3, 5], up to entire ecosystems [6].

For example, in E. coli bacteria, a pattern-forming mechanism acts to determine the

central position of the rod-shaped cell, ensuring that the required protein-machinery is

guided to the correct location to start a fully symmetric division into daughter cells. This

particular pattern-forming system, formed by the Min proteins, relies on a reaction-

diffusion mechanism and is widely considered to be the best-studied model system for

intracellular pattern formation [4, 7]. As the moment of cell division approaches, Min

proteins will periodically bind and unbind the inner membrane at the poles of the

OPEN ACCESS

EDITED BY

David M Holloway,
British Columbia Institute of
Technology, Canada

REVIEWED BY

Petra Schwille,
Max Planck Society, Germany
Eldon Emberly,
Simon Fraser University, Canada

*CORRESPONDENCE

Cees Dekker,
c.dekker@tudelft.nl

SPECIALTY SECTION

This article was submitted to Biophysics,
a section of the journal
Frontiers in Physics

RECEIVED 28 April 2022
ACCEPTED 30 June 2022
PUBLISHED 03 August 2022

CITATION

Meindlhumer S, Kerssemakers J and
Dekker C (2022), Quantitative analysis of
surface wave patterns of Min proteins.
Front. Phys. 10:930811.
doi: 10.3389/fphy.2022.930811

COPYRIGHT

© 2022 Meindlhumer, Kerssemakers
and Dekker. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Methods
PUBLISHED 03 August 2022
DOI 10.3389/fphy.2022.930811

5857

https://www.frontiersin.org/articles/10.3389/fphy.2022.930811/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.930811/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.930811&domain=pdf&date_stamp=2022-08-03
mailto:c.dekker@tudelft.nl
https://doi.org/10.3389/fphy.2022.930811
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.930811


bacterium. When visualized by fluorescent labelling, the Min

proteins are observed to oscillate from pole to pole with a period

of approximately 1 minute. As a result, their temporally averaged

concentration is minimized at the mid-cell location. One

component of the Min system, MinC, exerts an inhibitory

effect on a component of the cell division machinery. As the

lowest concentration of MinC is found at mid-cell, the proteins

that facilitate cell division will preferably bind there, and the cell

gets divided evenly [8].

While MinC is important for this downstream process, the

pattern as such is formed by only two proteins, MinD and MinE.

MinD is an ATPase that upon binding ATP can attach to the

membrane, while MinE is its ATPase activator. MinE can bind to

the membrane upon recruitment by membrane-bound MinD

and subsequently facilitate MinD’s ATP-consuming membrane

detachment [7, 9–11]. The Min proteins thus constitute a

pattern-forming model system with only 2 essential

components, which is appealingly simple for both theoretical

and experimental studies. A wide range of experiments have been

reported that explore particular features of the Min system [9, 12,

13]. A multitude of Min protein models [14, 15] have been

proposed, and continue to be developed as new molecular details

are discovered [10, 16–18].

Arguably, the most iconic images of Min protein patterns

present themselves in in vitro studies of these proteins. Such

experiments typically reconstitute Min proteins on supported

lipid bilayers on a glass slide, with a fraction of Min proteins

carrying a fluorescent label [9]. Min proteins exhibit

mesmerizing dynamic membrane patterns in such an artificial

in vitro environment: Over a wide range of concentrations, one

encounters characteristic patterns such as rotating spirals or

travelling planar wave fronts, with typical wavelengths in the

order of tens of micrometers [9, 12]. An example is given in

Figure 1A, showing a snapshot image for labelled MinE.

FIGURE 1
Min protein surface patterns are dynamic in space and time. Min pattern acquisitions are 3D (x, y, t) matrices, containing the measured
fluorescence intensity values for different coordinates. The information contained within this matrix can be accessed and visualized differently,
dependent onwhat parameters are of interest. (A) Left: example of a real MinE protein surface pattern. Middle: fluorescence intensity over time at the
surface position highlighted by orange cross in the image, for an image stack comprising of 20 frames. Right: fluorescence intensity trace along
surface cross-section highlighted in magenta in the image. (B) 3D view of a Min protein acquisition stack with four example images (standard x-y
slices) shown for demonstration. (C) 3D view of slice from A, resliced along constant y-directions, creating t-x slices. (D) 3D view of slice from A,
resliced along constant x-directions, creating t-y slices.
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Examination of this image reveals various features that are typical

for Min patterns. For example, Min proteins exhibit planar

waves, but these occur only locally and become less correlated

on longer length scales. Min patterns thus organize in surface

domains with one dominating type of pattern, such as spiral or

planar wave fronts travelling in a certain direction. Boundaries

between domains are recognizable by phase shifts.

Thorough quantitative analysis of Min patterns is nontrivial.

While visual inspection is often sufficient to deduce the basic Min

pattern, quantitative information is required to extract trends in

the patterns’ characteristic parameters, such as the average or

local wavelength, oscillation period, or propagation velocity. For

perfectly periodicMin patterns with only one type of pattern with

a set orientation over the entire imaged surface, analysis can

easily be achieved by Fourier analysis. However, this is most often

not possible due to the fact that real Min patterns are usually a

patchwork of domains separated by phase-shift boundaries. The

semi-periodic nature of Min patterns makes image analysis

challenging, and so far there are no clear guidelines or

standards on how to realise this without user bias. Extraction

of quantitative parameters is typically performed by manual

selection of individual surface positions [19], line traces [20],

or rectangular regions-of-interest [12, 21]. Plotting of

fluorescence intensity along a defined axis allows to determine

the pattern’s local wavelength. Similarly, the temporal

characteristics such as its oscillation period and wave

propagation velocity can be measured by monitoring the

intensity versus time at one spot [19], see Figure 1A for an

illustration of these possible practices.

While these approaches are widely used, such manual

selection is cumbersome, prone to user bias, and it underuses

the vast amount of data in videos of Min patterns that could

improve data accuracy. In the example given in Figure 1A, the

intensity profile of denoted line trace (magenta) shows

approximately equidistant peaks that indicate the wavelength.

However, selection of another spot or a slightly different trace

that is not perpendicular to the wave fronts would have led to a

deviating result. Furthermore, note how extending the trace over

the region of the spiral domain would erroneously lead to the

inclusion of shorter or longer wavelengths. Notably, these

domain boundaries do not always remain stationary over the

time of acquisition, and hence line traces would have to be

carefully adapted for every single frame so as to adapt to possible

reorientations of wave fronts (compare for example the domain

variation over time in Supplementary Figure S1A). In view of all

these limitations, we conclude that an automated user-

independent analysis of large regions is preferable, as it allows

to obtain solid statistics on the patterns’ characteristic features.

In this paper, we present a methodology for analysing Min

patterns that aims for thorough quantitation, easy usage,

reproducibility, and user independence. We start by briefly

proposing strategies for image cleaning. After that, we proceed

to presenting strategies for global and local analysis of Min

protein surface patterns. For extracting global parameters, we

rely on calculating autocorrelation maps to examine the average

periodic features of Min patterns, following other groups [16] as

well as our own [18].We treat aMin pattern acquisition stack as a

threedimensional matrix containing information in space and

time (x, y, t), and we propose strategies on how to efficiently

access this information. Subsequently, we introduce an analysis

pipeline which allows to quantify local properties of Min

patterns, such as the wave propagation speed and direction of

propagation. The approach we present here relies on the

identification of individual wave crest points and their

movement from one frame to the next. While other tools

have been used to extract the directional preferences of Min

surface wave propagation [22], our approach allows not only for

obtaining large distributions of parameters, but also for accessing

multiple parameters at the same time. For both global and local

analysis, we offer guidance to researchers who would like to

implement similar strategies for their own applications. Code is

openly available and provided in Python 3 [23].

2 Image processing methodology

Min patterns are phenomena that occur at lipid membranes.

Accordingly, the most suitable forms of microscopy for

in vitro experiments are those that acquire an image along the

membrane-coated surface. Examples are total internal reflection

fluorescence (TIRF) microscopy [12, 16, 19, 24], laser scanning

confocal microscopy [20–22, 25] or spinning disc confocal

microscopy [18, 26]. Epifluorescence microscopy [27] is

generally not suitable as it leads to high background signal

from the fluorescent molecules in the bulk, significantly

reducing the pattern’s quality or even making it unrecognizable.

“Image cleaning” includes procedures and operations

performed on microscope data that improve the overall quality

of the image by making the features of interest better recognizable,

while not distorting or removing essential components. Good image

cleaning, where background and spurious contributions are

removed, is important for successful quantitative analysis of Min

protein patterns, as insufficient cleaning can lead the algorithms to

fail to recognize the pattern as such. There are multiple imaging

artefacts that need to be corrected. For example, local fluorescent

impurities such as protein aggregates may give a static signal that is

not part of the Min pattern. Depending on the microscope,

illumination is typically inhomogeneous across the field-of-view.

In many cases, researchers are interested in the time-dependent

behavior of Min patterns, and for this, they acquire images at the

same spatial positions at regular time intervals ranging from seconds

to minutes. Consequently, Min proteins may bleach due to

prolonged imaging [18]. Flow-cell setups with constant bulk flow

may pose additional challenges in the form of objects entering and

passing through the field-of-view or adhering to and spontaneously

detaching from the surface [26]. We empirically found that the
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occurrence of imaging artefacts can vary strongly, depending on the

experimental setup (specifically, the type of sample chamber and the

surface preparation), protein concentration (higher concentrations

may result in more aggregates), and experiment duration (the

longer, the more aggregates occur).

With image cleaning, we aim to tackle all of these issues.

Here, we propose a sequence of standard actions that we found to

yield overall good results for a time series (several frames of the

same sample position saved sequentially in an image stack) of

images Imovie of in vitro Min surface patterns. Our protocol

involves the following steps:

− Correct for fluorescence bleaching by normalizing each

frame to its mean intensity value.

− Create an ‘illumination correction map’ Iillum by smoothing

and averaging all movie images, and normalizing the images

to their maximum intensity.

− Create a static background image Istat by averaging over all

the moving (surface pattern) features of all images in the stack.

This background image then only contains static fluorescent

features such as local specks, holes, and scratches.

− Correct each image via the following image operation: Icor =

(Imovie − Istat)/Iillum.

− At this point, there may still be some artefacts left, for

example, those that appeared during the acquisition time and

might thus not have been included in the static background

image. Therefore, remaining bright or dark artefacts can be

removed manually or by thresholding.

− Images can finally be slightly smoothed to diminish effect of

sharp edges and artefacts from the latter cropping.

In cases where it is required to explore Min patterns across very

large areas, it may furthermore be of interest to stitch multiple fields-

of-view ofMin patterns into larger images [26, 28]. If themicroscope’s

software does not offer an automatized solution for this, stitching can

be achieved by good bookkeeping and a few lines of code. When

planning to stitch images, it can be helpful to choose individual field-

of-views in such a way that there is a bit of an overlap (e.g. 5% of the

width) between adjacent areas, as this makes it easier to correctly

reassemble the full image afterwards. Note that in general, adjoining

areas may not have exactly the same median intensity. Therefore,

differences inmedian intensity levels between individual field-of-views

need to be corrected for when assembling the stitched image. This

way, the resulting large image will appear more homogeneous in

brightness and stitching borders will be less visible.

3 Pattern analysis strategies

3.1 Global parameters

In many cases, researchers are interested in quantifying

parameters such as the average spatial wavelength and

oscillation period of a Min pattern. For this purpose, they

acquire image stacks of Min patterns at a certain surface

region (x, y in pixel or distance units) and at regular time-

intervals (t in time units or frames). However, the existence of

domains within and dynamics of patterns make manual

extraction of these parameters a laborsome task, and the

results of such analyses (cf. Figure 1A) may suffer from poor

statistics and user bias. Here, it is important to realize that what

we are interested in are essentially global, image-averaged

parameters. In this section, we describe how quantification of

such global parameters can be achieved by performing

autocorrelation analysis [29] for different slices along time or

space coordinates (x-y frames such as in Figure 1B, t-x slices such

as in Figure 1C or t-y slices as in Figure 1D). We start with spatial

autocorrelation, aiming to quantify the wavelength, and then

continue to present how temporal autocorrelation can be used to

quantify the oscillation period of a pattern.

3.1.1 Global wavelength
Spatial autocorrelation analysis of an image essentially

compares each pixel to other pixels around it, quantifying

their (dis)similarity as a function of distance [29]. Starting

from a single image frame as shown in Figure 2A, an

autocorrelation map can be calculated using routines from

scientific libraries provided for most programming languages.

Before performing these operations, the image should be

normalized by a series of actions (subtraction of minimum

intensity, division by summed-up total intensity and

subtraction of mean intensity). Using standard functions

supplied within most environments, a twodimensional

autocorrelation map crmx can be calculated for an image

frame image by the transformation

crmx � real iff t2 ff t2 image( ) · conj ff t2 image( )( )( )( ) (1)

with fft2 calculating a two-dimensional discrete Fourier

Transformation, ifft2 calculating its inverse and real and conj

returning the real part and complex conjugate of the input,

respectively. The four quadrants of the autocorrelation map

can be re-arranged so as to place the position (Δx = 0, Δy =

0) in the center of the image, rather than having four partial peaks

in the corners.

Close examination of the autocorrelation map in Figure 2B

reveals a general speckled pattern as well as a ring-shaped feature

that is present around the center, which is characterized by a peak

in intensity. As this central peak corresponds to a distance of

zero, its high intensity is a consequence of the self-correlation of

each pixel with itself. Moving radially outward from the center,

one observes a decrease in intensity (negative autocorrelation)

followed by a peak (positive autocorrelation). An easy way to

extract the pattern’s dominant wavelength is to perform an

angular averaging of the profile around the central peak,

where the radial line profiles are averaged over all angles, as

illustrated by the red arrow in panel Figure 2B. This leads to a
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profile as shown in Figure 2C. Here, the first peak after the central

peak identifies the pattern’s global wavelength λ (magenta dashed

line). The first minimum corresponds to the dark value from the

autocorrelation map. The valley in fact corresponds to ~ λ/2

(black dashed line). Note that this value is not exactly half the

wavelength, since Min profiles are typically somewhat

asymmetrical (cf. Figure 1A).

If, as often is the case, Min patterns display steady-state

dynamics, then multiple time frames can be used to provide

better statistics in estimating the global wavelength. Min patterns

are routinely acquired at constant time intervals, which provides

a series of sequential image frames, as represented in Figure 1B.

Calculating and analysing autocorrelation maps for several

frames within such an image stack allows to collect a

distribution of wavelengths, such as the histogram shown in

the inset in Figure 2C, summarising results for 20 consecutive

frames. Indeed, for dynamic patterns, we recommend

performing this analysis strategy for multiple (e.g. 10) frames

and averaging the results to obtain a reliable value for the

pattern’s spatial wavelength. As Min patterns are typically

dynamic, it is also possible that their wavelengths change over

time, e.g. due to changes in external parameters. The spatial

autocorrelation analysis presented here is however equally

applicable to static patterns.

Identifying the peaks shown in Figures 2C,F, see following

section) is trivial to the human eye, but not necessarily

FIGURE 2
Overview of the autocorrelation analysis pipeline to obtain global parameters. (A) Example of a Min protein surface pattern, single frame. Color
brightness indicates fluorescence intensity (a.u.). (B) Autocorrelation map of the frame shown in A. Color brightness indicates intensity. Red dashed
line indicates radial averaging. (C) Averaged radial profile for the autocorrelationmap shown in B. The first maximum after the central peak at distance
zero is a measure of the patterns global characteristic wavelength. The identified wavelength λ is highlighted by the magenta dashed line. The
first valley is positioned at approximately λ/2 (black dashed line). Inset: the analysis presented in (A–C) can be performed for all individual frames
within an image stack. Here, the collected results for 20 consecutive frames (image stack also represented in Figure 1B) are shown in a histogram. A λ
of 54 pixels is deduced. (D) Resliced image for fixed x; same as shown in Figure 1D. (E) Selected temporal traces for the y-positions indicated in D. All
point-traces shown in the kymograph in D will be included in the autocorrelation trace shown in F. (F) Line-averaged autocorrelation trace from
point-traces (such as shown in E) in blue, cubic spline fit used for peak-detection in green. The firstmaximum after the central peak atΔt=0measures
the average characteristic oscillation period of the pattern. The identified global oscillation of τ =4 frames is highlighted by the magenta dashed line.
The first valley is positioned approximately at τ/2 (black dashed line). The analysis pipeline illustrated in (D-F) can be performed for multiple slices
(fixed x or y) of the image stack.
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straightforward to automate. For our data, we achieved this via a

simple algorithm that identifies the second local maximum of the

trace. In doing so, we implicitly assume that the trace is fine

enough to achieve sufficient accuracy and upsampling is not

required. While a curve such as shown in Figure 2C looks smooth

to the eye, the original image data had a finite resolution, and

accordingly, this curve contains small rags which an algorithm

may erroneously detect as a local maximum. In many cases, this

issue can be solved by smoothing the curve slightly before

subjecting it to peak analysis. This can be achieved by

applying a smoothing kernel stretching over a few pixels, for

example a small fraction of the image dimension.

To avoid erroneous results, it is recommendable to plot at

least one example trace (for one frame) and inspect whether the

detected (averaged) wavelength position correctly co-localizes

with the valley position. If no clear valley can be identified

(characterized by a small or even vanishing intensity

difference between the local minimum and maximum), the

pattern may lack a recognizable periodicity, which could be

an intrinsic property of the given pattern. Alternatively, this

issue can also be encountered if insufficient image cleaning has

been applied to the stack before analysis and the pattern is

superimposed with too many artefacts, resulting in low

autocorrelation. However, we find that this method is

generally quite robust towards noise, as shown in

Supplementary Figure S2B.

Further, the ratio between image size and spatial wavelength

is of importance. In Supplementary Figure S3, a large-scale image

stack is sequentially cropped to smaller sizes and global

autocorrelation analysis as presented here is performed on

randomly selected areas. Based on these results, we find that

the standard deviation increases as the image sizes gets smaller,

and estimate that the image dimension should be large enough to

contain at least 5–10 full wavelengths for the presented algorithm

to provide reliable results.

3.1.2 Global oscillation period
Another global property of interest is the average oscillation

period. This parameter describes how at any given point within

the imaged region, the membrane protein density (which is

proportional to the fluorescence intensity) can be expected to

change over time. We quantify the global oscillation period of a

Min pattern following a strategy that closely resembles the one

presented for obtaining the global wavelength in the preceding

section.

To obtain quantitative information on the temporal

dynamics of Min patterns, they are typically acquired as time

series. A time series such as the one shown in Figure 1B is

essentially a threedimensional (x, y, t) matrix, containing

information on fluorescence intensity as a function of space

and time. Notably, for temporal analysis to be reliable, image data

has to be acquired at a rate above the Nyquist rate. Min patterns

are characterized by point-wise temporal periodicity (compare

the time evolution at a random sample position in Figure 1A).

Hence, when acquiring a time series, intervals have to be chosen

short enough to ensure the acquisition of enough data to

adequately depict the pattern’s temporal dynamics. If

consecutive acquisition times in a series are chosen very far

apart, the pattern may even appear to travel towards the opposite

direction. According to Nyquist theorem, for patterns of an

oscillation period τ, consecutive images in a series have to be

acquired at intervals spaced no longer than τ/2 apart. In

principle, the shorter these intervals are, the better the

temporal dynamics can be characterized. Min protein patterns

in lipid bilayer reconstitutions will typically exhibit

wave propagation velocities of several 100 nm s−1 [12] and

wavelengths around 50 µm [9]. This leads to an expected

oscillation period in the order of minutes. Acquiring sufficient

images to fulfill Nyquist theorem should therefore not be an issue

in most microscope setups. In practice, finding the optimal

imaging rate is a trade-off between achieving a high temporal

resolution and minimizing fluorescence bleaching.

Upon analysing a given Min pattern stack with respect to its

temporal characteristics, we found that reslicing the stack along

fixed spatial coordinates simplifies data processing and makes it

more straightforward to access the temporal information

contained within the stack. Figure 2D shows a (t, y) slice

through our example image stack at fixed pixel position x.

These t-x or t-y slices are collections of kymographs for all

points along the cross-section at the fixed spatial coordinate.

In Figure 2E, we show example traces of these kymographs along

selected y positions, which then correspond to individual surface

locations (x, y) on the field-of-view shown in Figure 2A.

Analogous to the strategy presented for spatial global analysis,

Eqn. 1. can be used to obtain an autocorrelation map for this slice

(cf. Supplementary Appendix DEMO_MinDE_global_analysis).

To extract the pattern’s global oscillation period, we consider the

autocorrelation map’s trace at Δy = 0 for Δt ≥ 0, plotted in

Figure 2F. Including the Δt ≤ 0 trace (going back in time) of the

curve would not yield additional resolution, as it contains the

same information as the positive trace. This profile then

immediately provides the averaged temporal autocorrelation

trace for all points along one fixed spatial coordinate (as

indicated for fixed x by the vertical line in Figure 2A). If the

line-averaged autocorrelation trace does not provide sufficiently

high resolution to identify a minimum indicative of the

oscillation period, imaging over a longer time and/or at

shorter intervals could be necessary.

The first maximum of this curve beyond the central peak

again identifies the predominant global oscillation period τ

(magenta dashed line), while the first minimum is located at

approximately τ/2 (black dashed line). Statistics on τ can be

collected by performing the analysis pipeline illustrated in

Figures 2D–F for multiple cross-sections at fixed y or x, that

is, for multiple resliced frames as shown in Figures 1C,D.

Compared to the traces obtained from spatial autocorrelation,
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FIGURE 3
Overview of analysis pipeline for determining local wave propagation velocities. (A) Local analysis relies on sequential pairwise comparison of
frames within an image stack. Example frames are here referred to as frame 1 and frame 2. (B) The Horn-Schunck algorithms is used to compute
optical flow of the image pair (from frame 1 to frame 2) These return one vector per pixel, indicating the shift. Brightness indicates the vector
magnitude. (C) Phase image of frame 1. The phase is determined by whether the wave intensity goes up (“front” of the wave, bright color) or
down (“wake” of the wave, dark color) following the direction of the vector obtained from the optical flow analysis. (D)Wave crests can be identified
by the transitions from front to wake as denoted in panel C. Red lines show the identified wave crest locations. Selected arrows indicate the direction
of movement of the crests as determined from the optical flow. (E) Left: Zoom-in of frame 1 at the location highlighted in panel D. Wave crest points
are indicated by red dots; direction of movement as identified by optical flow analysis are indicated by arrows. Right: Zoom-in of frame 2 at the same
location. Crest points of frame 1 are indicated by red dots. In both images, 3 crest point positions are highlighted by white line traces parallel to the
direction of propagation at these points (i.e., normal to the wave fronts). (F) Intensities versus distance along the white lines in panel E. Starting from
the crests identified for frame 1 (red dots), intensities are sampled at discrete sub-pixel positions perpendicular to the wave front. Smoothed intensity
traces are shown in red for frame 1 and in blue for frame 2. The translocation d of each crest position is then determined from the peak shift, allowing
to calculate a velocity vector with magnitude v. Wave crest velocities can be calculated for each crest and each sequential pair of frames in an image
stack. (G) Velocity distribution of a pattern can be visualized as a 2D histogram. (H) Velocity histogram that provides the average velocity magnitude v
as well as the distribution of velocities within a given pattern. (I) Histogram of angles of the wave propagation vector (left) and an angular diagram
denoting the occurrence of various pattern velocities (right). From the list of velocity vectors, we have immediate access to the propagation
directions present within a pattern, the occurrence of which can be visualized in a histogram (left). The information can be represented as a polar
histogram (right).
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which are calculated via radial averaging, these temporal

autocorrelation traces may appear rather coarse. A more

advanced peak detection can be performed with cubic-spline

fitting and subsequent extreme point analysis. Further, the

presented method for temporal autocorrelation analysis is less

robust towards noise than spatial autocorrelation, as shown in

Supplementary Figure S2C Adequate image preprocessing and

cleaning is again of high importance. Image smoothing was

found to slightly increase the detected oscillation period, albeit

not above the error margins obtained for unsmoothed images, as

shown in Supplementary Figure S4.

Note furthermore that the propagation speed of a pattern

may depend on the concentrations of all components, and may

change over time. Therefore, for very long time series, it can

make sense to split the stack up into multiple stacks of shorter

total duration and perform analysis for subsequent sub-stacks

(compare Supplementary Figure S8). However, we estimate that

an image stack needs to span the duration of a minimum length

of 3 oscillation periods for the presented method to yield reliable

results (cf. Supplementary Figure S4).

3.2 Local parameters

In this section, we present an analysis strategy that aims to

quantify local parameters ofMin patterns. These parameters include

the local wave propagation velocity or characteristic local distances

such as the distance between MinD and MinE wave crests. As we

will describe in more detail, local parameters can be quantified by

implementing two steps: 1) identification of wave crests for each

frame within an image stack, and 2) comparison of intensities at and

around the identified crest points from one frame to the next.

3.2.1 Local wave propagation velocity
The local wave propagation velocity is determined as the shift

of individual crest points from one frame to the next. To calculate

the local velocity, we first need to identify these crest points, and

then determine their positional difference. We achieve this by

applying optical flow analysis. Optical flow is defined by how

brightness patterns move from one image to another [30, 31]. For

our Min patterns, we estimate an optical flow vector field using

Horn-Schunck algorithm [30, 32]. This algorithm works on a

pair of sequential image frames (see Figure 3A for example data,

recorded for MinE) and returns a vector field, describing the

estimated optical flow for each pixel from the first to the second

frame. Figure 3B shows the magnitude (indicated by image

brightness) of the optical flow vectors obtained for our

example image pair from Figure 3A. Note that the collected

optical flow vectors do not necessarily represent the local wave

propagation velocities. The relation between the two measures

will depend on the wave shape, making it hard to generalize.

As a first step to identifying the positions of the wave crests

within the first frame, we use the information obtained from

optical flow analysis to create a phase image. This phase image is

essentially a binary map over the whole image, which indicates

whether at any given point we are at the “front” (‘ahead of the

wave’) or “wake” region of the wave (‘behind the wave’). These

regions are characterized by a decrease or increase in

fluorescence intensity, respectively, along the direction of

movement. If we consider any specific surface location and its

corresponding vector obtained from optical flow, we can follow

the direction of that vector over a short distance (say 3 pixels)

within the same frame, and determine whether the fluorescence

intensity is decreasing or increasing. The outcome of this

procedure for our example frames is shown in Figure 3C.

Using this phase image, we can identify those positions in the

image that make up the wave crests – which form the backbone

structure of the pattern. Wave crests are identified by the

positions at which a transition from the front to a wake

region occurs. Figure 3D shows the wave crests identified for

the first frame in red. Subsequently, we need to determine the

direction of wave propagation for these individual crest points.

While we have a set of vectors available for distinct (x, y)

positions from optical flow analysis, their directions will in

general not be exactly normal to the wave crests due to noise.

Therefore, we calculate vectors which are perpendicular to the

lines of wave crests, and determine their correct directionality

(pointing towards the front of the wave) using the information

already present in the phase image. In Figure 3D the direction of

propagation is indicated by vectors at distinct crest points

throughout the image for illustration. Following the procedure

outlined here and in Figures 3A–D, we thus effectively obtained

1) a list of positions, identifying the wave crest point positions,

and 2) a list of vectors, describing their direction of movement

from the current to the next frame.

The next step is to quantify how far these crest points moved

during the transition from the current to the next frame. Upon

quantifying this positional shift, the velocity magnitude is given

by this distance divided by the time that passed between the

acquisition of subsequent frames. The procedure is illustrated in

Figures 3E,F for three example crest points. For each crest point,

we considered the fluorescence intensity traces along the

direction of movement at the given position

(i.e., perpendicular to the wave front). Starting from the crest

position, we plotted this trace up to a distance corresponding to

roughly half the (global) wavelength of the pattern. Choosing this

distance should ensure that the next frame’s peak is still within

the sampling range (provided that the time resolution of the

acquisition stack is sufficiently high, cf. Section 3.1.2). In

Figure 3E, the example traces along which intensities are

plotted are highlighted in white. For sampling positions along

this trace that are located off the pixel grid, intensities can be

estimated by interpolation. This yields an intensity trace at sub-

pixel resolution. This intensity trace will have a maximum

located very close to the center of the originally determined

crest position, with a small offset that can be attributed to the

Frontiers in Physics frontiersin.org08

Meindlhumer et al. 10.3389/fphy.2022.930811

6564

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.930811


additional smoothing step performed before optical flow analysis,

and is generally not significant (cf. Supplementary Figure S5 and

adjoined table).

Next, we performed exactly the same procedure at the same

positions on the next frame. As shown in Figure 3E and

Figure 3F, these positions are now no longer centered around

the maximum of the intensity trace, but offset from them by a

certain distance. This distance is the positional shift that we need

to obtain for quantification of the local wave propagation

velocity. Performing peak fitting allows to identify the two

traces’ peak values and measure the shift d in crest peak

position at sub-pixel resolution.

Performing this analysis for all identified crest points along all

sequential pairs of frames in an stack eventually yielded a list of

velocity vectors with components (vx, vy) at frame n for a wave crest

at position (x, y). Image smoothing is an important technical aspect

of the local analysis presented here. We first perform a light image

smoothing (with a limited initial smoothing kernel) to de-noise the

image and to simplify peak detection such as shown in Figure 3F.

For optical flow analysis (Figure 3B), we perform an additional

smoothing step with a more extensive secondary smoothing kernel.

The effect of different initial smoothing kernels is illustrated in

Supplementary Figure S6, the effect of increasing image noise in

Supplementary Figure S2D,E. Further, applying Horn-Schunck

algorithm [30] requires setting a few parameters, particularly the

regularization constant and the number of iterations. Here, we

determined their values by trial-and-error from evaluating

simulated as well as real Min protein pattern data and kept both

constant from then on.

Depending on what kind of information is of interest, the

obtained distribution of velocity vectors can be represented in

different ways. A representation that combines information on

the magnitude and directional preference is a 2D histogram such

as the one shown in Figure 3G for an example image stack of

MinE data. If the magnitude of the wave propagation velocity is

most important, the velocity magnitudes v can be plotted in a

histogram to visualize their distribution and peak value, as shown

in Figure 3H. In other cases, the directional information may be

of prime interest, for example, when studying the influence of an

external bulk flow [26] or physical environmental parameters on

the pattern [22]. For each vector component, an angle α can be

calculated that corresponds to the wave crest point’s direction of

movement with respect to the direction of applied flow. The

occurrence of different directions can then be plotted in a regular

or polar histogram, as shown in Figure 3I. As shown

Supplementary Figure S7, the method can be applied to a

wide range of image sizes. Decreasing the area on which

analysis is performed generally leads to smaller standard

deviation in velocity magnitude distribution, which is linked

to a loss in directional information. The full local velocity

pipeline is also presented in the Supplementary Appendix

DEMO_MinDE_local_analysis.

3.2.2 Local MinD/MinE crest shift
When studying Min protein patterns, researchers routinely

acquire data in two channels, for fluorescently-labelled MinD

andMinE, respectively. Both these proteins exhibit a peak in their

surface density, but these two peaks do not coincide in space and

time (an example is given in Figure 4A).

To determine these differences, the analysis pipeline

presented in Section 3.2.1 for obtaining wave propagation

velocity between sequential frames can be slightly adapted for

measuring the difference in crest position between MinD and

MinE waves. This can be achieved by first performing crest

detection (analysis pipeline shown in Figures 3A–D) for one

stack, e.g. the MinD stack. The crest points attributed to the

MinD stack can then be compared to the corresponding frame of

theMinE stack, analogous to the comparison shown in Figure 3E.

The collected peak shifts d can be visualized in a histogram, such

as shown in Figure 4B for our example data.

4 Discussion

In this paper, we proposed protocols that can be applied to

analyse data on E. coli Min protein surface patterns with respect

to quantitative parameters such as the spatial wavelength,

oscillation period, or wave crest propagation velocities. Our

primary goal was to develop user-independent and largely

automatized strategies for pattern analysis in order to 1)

improve comparability of results obtained from different

studies and research groups, and 2) provide tools for

quantification of experimental data for comparing results to

theoretical studies. We presented global and local analysis

methods which both can be valuable depending on what kind

of pattern information is of interest. All of the routines that we

suggested and described can be further modified to better fit the

requirements posed by a particular research question – thus

providing a framework that others can build upon.

The methodology we describe can be combined with many of

the aspects and practices of Min pattern analysis which we did

not cover here. For example, in studies investigating absolute or

relative local concentrations or concentration gradients of MinD

and MinE on the surface, fluorescence calibration can be

important. Calibration allows to relate fluorescence intensity

to the local membrane protein density [12, 16, 19, 21].

However, in many cases the patterns as such – their shapes,

domains, wavelength, or dynamics – can be studied without this

step, using the acquired fluorescence intensity data in arbitrary

units, and this is what we focused on in this paper.

The global analysis that was presented here provides

parameters averaged over entire image frames (spatial analysis)

or slices along fixed spatial coordinates (temporal analysis). We

found that for well-cleaned images, spatial autocorrelation robustly

quantifies the main dominant wavelength within an image frame,
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as identified by the distance at which maximum self-correlation is

present. This yielded results that are very comparable to those

obtained by manual quantification, albeit with higher statistical

reliability (see Supplementary Figure S1 for an example

comparison of manual and automatic analysis). For temporal

autocorrelation, we recommend re-orienting the image stack

into slices of fixed x- or y-coordinates and calculating

autocorrelation-maps along sets of kymographs, as described.

We found this to be an efficient way to access large parts of

the information provided within the image stack. Pixelwise

analysis of intensity traces at distinct surface location,

autocorrelation thereof and subsequent averaging is a more

straightforward approach. However, we found that taking this

detour via reslicing as presented in this paper reduces

computational time by about two orders of magnitude, and

hence, allows for easier processing of large amounts of data (cf. SI).

In many cases, parameters obtained from spatial and temporal

analysis can be averaged for several frames/slices. However, whether

this is justified depends on the time evolution of the pattern over the

course of the acquisition. Supplementary Figure S8 shows the

temporal autocorrelation results for an example image stack which

shows a decline in oscillation period over time. This is visible from the

spreading of peaks in the resliced image (cf. Supplementary Figure

S8A) as well as in the variation in the shape of the Δx = 0 traces (cf.

Supplementary Figure S8B). In such a case, averaging is only justified

over the part of the stack that shows a constant temporal periodicity. If

required, the routines can be expanded to include peak analysis of

single traces in the kymograph set and automatically determine up to

which point averaging is permitted.

Local analysis, in contrast to global analysis, directly provides

large-number distributions of parameters even when analysing only

two consecutive images. Our approach to local analysis relies on the

identification of wave crests and quantification of the positional shift

thereof from one frame to the next. The first step can in principle be

achieved by various strategies. For example, one could implement an

algorithm that relies on thresholds of fluorescence intensity to

identify peaks. Here, we presented a strategy that relies on

established algorithms for optical flow analysis, as it offers certain

advantages, in particular access to directional information. We have

already successfully used this local analysis methodology to examine

and quantify the response of Min protein patterns to hydrodynamic

bulk flow [26]. Numerous other applications can be imagined, in

which a surface pattern is either exposed to an external stimulus and

responds to it, or in which the time evolution of its characteristic

properties is relevant. Using the local analysis pipeline presented

here (or modifications thereof) allows to systematically quantify

properties of interest with proper statistics rather than relying on

qualitative description alone.

As our local analysis routine essentially offers a way to acquire a

high number of intensity traces that are locally perpendicular to the

wave fronts, it opens up possibilities for further in-depth analysis.

Our brief illustration of a MinD-MinE crest distance detection is

only one example of a parameter that can be extracted using an

optical-flow-based routine. For example, it is imaginable to modify

our local analysis pipeline such that it facilitates fast visualization of

local fluorescence intensity profiles for bothMinD andMinE waves.

Upon fluorescence calibration, the fluorescence intensity can be

converted to membrane protein density, and hence the relative peak

heights can be connected to the protein ratio at the surface. Further,

information obtained from local and global analysis can be

combined, and local velocity analysis can provide an alternative

to global methods if their requirements are not met. For example,

while we found that a certain minimum number of entire

oscillations is required for global temporal analysis to yield

results (cf. Supplementary Figure S4), local analysis can already

be performed on only two consecutive frames, and can be combined

with global spatial analysis to serve as an alternative route to

determining the predominant oscillation period.

Finally, we note that the general strategies presented within

this paper are not restricted to application to the analysis of E. coli

Min protein surface patterns. Min protein patterns have some

properties that are very specific to them – such as their quasi-

FIGURE 4
Using the local analysis pipeline to determine local MinE-MinD crest positions shifts. (A)MinD (magenta) andMinE (green) patterns. The pipeline
for local analysis shown in Figures 3A–F can be used to quantify other properties of the pattern, such as the MinE-MinD crest point distance in a
simultaneous dual-channel acquisition. Here, crest point detection was performed for each frame of the MinD stack. Subsequently, the intensity
traces at these positions were compared to those of the corresponding MinE frame. (B) Distribution of MinE-MinD crest point distances.
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periodic nature, dynamic oscillatory behavior, and their

organization within domains – and our routines are

designed for these specific properties. However, the

routines presented here may very well be modifiable and

applicable to quantify other types of semi-periodic surface

patterns, biological or not, for example to the fascinating

reaction-diffusion patterns of chemical systems like the BZ-

AOT system [33]. We hope that our analysis toolbox will

help to further disentangle the intriguing mechanisms that

underlie pattern formation.
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The vertebrate Embryo Clock:
Common players dancing to a
different beat
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Vertebrate embryo somitogenesis is the earliestmorphological manifestation of

the characteristic patterned structure of the adult axial skeleton. Pairs of somites

flanking the neural tube are formed periodically during early development, and

the molecular mechanisms in temporal control of this early patterning event

have been thoroughly studied. The discovery of a molecular Embryo Clock (EC)

underlying the periodicity of somite formation shed light on the importance of

gene expression dynamics for pattern formation. The EC is now known to be

present in all vertebrate organisms studied and this mechanism was also

described in limb development and stem cell differentiation. An outstanding

question, however, remains unanswered: what sets the different EC paces

observed in different organisms and tissues? This review aims to summarize

the available knowledge regarding the pace of the EC, its regulation and

experimental manipulation and to expose new questions that might help

shed light on what is still to unveil.

KEYWORDS

temporal control, embryo clock, somitogenesis, negative feedback regulation, notch
signalling, HES

1 Highlights

• The vertebrate Embryo Clock oscillates with species-specific periodicity

• Embryo Clock periodicity is tissue-specific within the same organism

• A comprehensive concept of the Embryo Clock is presented

2 The somitogenesis Embryo Clock

Vertebrate embryo development comprises several processes that are highly regulated

in time. One such process is somitogenesis, which is characterized by the periodic

formation of metameric structures, the somites, along the anterior-to-posterior (A-P) axis

of the early embryonic body. Somites are formed in pairs from the anterior-most portion

of the presomitic mesoderm (PSM), on each side of the neural tube, and they are the first

morphological manifestation of the characteristic segmented structure of the adult
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vertebrate axial skeleton. In fact, somites not only give rise to the

axial skeleton and skeletal musculature, but also impose the

segmented organization of the peripheral nervous system

(Keynes and Stern, 1988). Most importantly to the subject of

this review, somite pairs are formed sequentially, over time, while

the embryonic body is elongating in an A-P direction. This is

characteristic of all vertebrates, although the pace at which

somites are formed varies among species (Table 1).

In 1976, Cooke and Zeeman proposed a theoretical model

that aimed to explain the formation of periodic structures

during vertebrate development. In their Clock and Wavefront

model (Cooke and Zeeman, 1976), the authors proposed the

existence of two players: a molecular oscillator (clock),

responsible for the rhythmic generation of a cell responsive

state, and a maturation wavefront, moving slowly in an

anterior-to-posterior direction. Exposure of a clock-induced

cell population to the wavefront signal would promote a rapid

change in cell properties, leading to the formation of a somite.

Together, these two components would translate temporal

information into a spatial pattern. According to this model,

somite size and number are jointly determined by the period

of the clock’s oscillations and the speed of the moving

wavefront (Cooke and Zeeman, 1976; Oates et al., 2012).

However, breakthroughs regarding the identity of the

molecules comprising the Clock and the Wavefront were

only made 20 years later.

The Embryo Clock (EC)—or the developmental clock, as it

was first termed–arose from the discovery that the mRNA of

chick hairy1 (now termed hes4), a member of the Hairy Enhancer

of Split (HES) transcription factor family, oscillated in the

chicken embryo PSM with a 90 min periodicity, concomitant

with the formation of a new pair of somites (Palmeirim et al.,

1997). In their study, the authors first observed that chicken

embryos with the same number of somites (i.e., within the same

developmental stage) displayed very different patterns of hairy1

expression, leading them to hypothesize that its expression could

be cyclic. Indeed, by bisecting the embryo, and culturing one half

for a given time while the other was immediately fixed, hairy1

expression recapitulated after 90 min. Moreover, hairy1

oscillations in the PSM were found to be an intrinsic property

of the system, as they were maintained even when the PSM was

sectioned in smaller pieces or isolated from the surrounding

tissues (Palmeirim et al., 1997). Since then, many genes that

display an oscillatory behaviour during somitogenesis have been

identified in multiple organisms, evidencing that the EC

underlying somitogenesis is a conserved mechanism among

vertebrates (Krol et al., 2011).

The first evidence for a Wavefront in control of somite

formation was provided soon after (Dubrulle et al., 2001 in

chick; Sawada et al., 2001 in zebrafish). A gradient of fgf8

mRNA (chick) and signalling activity (zebrafish) was

described, with high levels at the embryo tail bud

decreasing towards the anterior PSM. Local inhibition of

FGF8 signalling in the anterior PSM resulted in longer

somites, suggesting an instructive role for FGF signalling in

positioning the somitic boundary (Dubrulle et al., 2001;

Sawada et al., 2001). This was consistent with what was

previously proposed for the wavefront activity (Cooke and

Zeeman, 1976). Further studies elucidated that the chick fgf8

mRNA gradient resulted from the production of stable mRNA

transcripts in the tail bud region alone, that degraded over

time as the embryo elongated posteriorly, leading to less

mRNA levels in the anterior PSM relative to the posterior

region (Dubrulle and Pourquié, 2004). Graded Wnt activity

and an opposing, anterior-to-posterior gradient of retinoic

acid signalling were further shown to have wavefront activity

in defining somite boundary positioning (reviewed in Resende

et al., 2014).

This review reunites and summarizes key findings on

Embryo Clock operation over the last 25 years, since hes4

oscillations in the chicken embryo were first described

(Palmeirim et al., 1997). Originally termed “developmental

clock” (Palmeirim et al., 1997), then “segmentation clock”

(McGrew et al., 1998) and “somitogenesis clock” (Leimeister

et al., 2000), herein we employ a more comprehensive concept

of “Embryo Clock,” since oscillations in clock gene expression

have been described in cells and developmental stages that are

not associated with embryo somite formation (discussed

below). We propose the term Embryo Clock to refer to the

system of molecular oscillators operating in embryonic cells

undergoing temporally controlled morphogenetic processes

and/or cell fate specification. These genetic (or, in some cases,

biochemical) oscillators exhibit periodic alterations (in

contrast to stochastic pulses) that are maintained by

negative feedback regulation. Due to the extensive and

growing number of studies performed on the subject, we

have focused our attention on the temporal dynamics of

the EC. We aim to provide an overview of the main factors

contributing to the exquisite temporal properties of this

TABLE 1 Time of somite formation in different vertebrate organisms.

Organism Time References

Human 4—5 h Müller and O’Rahilly, (1986)

Mouse 2–3 h Tam, (1981)

Chicken 90 min Palmeirim et al. (1997)

Quail 90 min Packard, (1980)

Emu 100—110 min Nagai et al. (2011)

Zebrafish 30 min Kimmel et al. (1995)

Medaka 60 min Iwamatsu, (2004)

Xenopus 40 min Cooke and Zeeman (1976)

House snake 60 min Gomez et al. (2008)

Corn snake 100 min

Whiptail lizard 4 h
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TABLE 2 Periodicity of gene expression oscillations.

Organism Gene Tissue/cell line Period Technique References

Human HES1 UCB1 Mesenchymal stem cells 5 h qPCR/Microarray William et al. (2007)

HES7 iPSC 5 h Live imaging Diaz-Cuadros et al. (2020)

PSM-like cells derived from iPSC ~5 h Luciferase reporter assay Matsuda et al. (2020b)

5.37 h Luciferase reporter assay Matsuda et al. (2020a)

ESC ~5 h Luciferase reporter assay Chu et al. (2019)

Mouse Axin2 PSM 2 h In situ hybridization (ISH) Aulehla et al. (2003)

Dact1 PSM 2 h ISH Suriben et al. (2006)

Dll1 PSM 2 h ISH Bone et al., 2014; Maruhashi et al., 2005

NPC 2 h Live imaging Shimojo et al. (2008)

Dusp4 PSM 2 h ISH Niwa et al. (2007)

Hes1 Myoblasts, fibroblasts, neuroblastoma
and teratocarcinoma cells

2 h qPCR Hirata et al. (2002)

C2C12 myoblasts 2 h qPCR/Microarray William et al. (2007)

Fibroblasts (C3H 10T1/2) 2.03 h Bioluminescence imaging Masamizu et al. (2006)

PSM 2.67 h

Dissociated PSM cells 2.58 h

NPC 2—3 h Live imaging Shimojo et al. (2008)

ESC (MG1.19 cell line) 3—5 h Live imaging Kobayashi et al. (2009)

Hes5 Spinal cord cells 3.3 h Live imaging Manning et al. (2019)

Hes7 PSM 2 h ISH Bessho et al. (2001)

Induced PSM from ESC 2.5–3 h Live imaging Matsumiya et al. (2018)

PSM-derived cells form iPSC 2.03 h Luciferase reporter assay Matsuda et al. (2020a)

Lfng PSM 2 h ISH Aulehla and Johnson, 1999

Forsberg et al. (1998)

Nkd1 PSM 2 h ISH Ishikawa et al. (2004)

Notch1 PSM 2 h ISH Bone et al. (2014)

Nrarp PSM 2 h ISH Sewell et al. (2009)

Smad6 Fibroblasts (C3H 10T1/2) 2 h qPCR Yoshiura et al. (2007)

Snail1 PSM 2 h ISH Dale et al. (2006)

Sprouty4 PSM 2 h ISH Hayashi et al. (2009)

(a) PSM (a) qPCR/microarray Dequéant et al. (2006)

(a) PSM (a) qPCR/microarray Krol et al. (2011)

Chicken hairy2 PSM 1.5 h ISH Jouve et al. (2000)

Limb bud 6 h Pascoal et al. (2007)

HES4 limb bud micromass cells 6 h qPCR Bhat et al. (2019)

HES4 PSM 1.5 h ISH Palmeirim et al. (1997)

snail2 PSM 1.5 h ISH Dale et al. (2006)

HEY2 PSM 1.5 h ISH Leimeister et al. (2000)

LFNG PSM 1.5 h ISH McGrew et al. (1998)

NRARP PSM 1.5 h ISH Wright et al. (2009)

(a) PSM (a) qPCR/microarray Krol et al. (2011)

Medaka her1/11 PSM 1 h ISH Gajewski et al. (2006)

her5 PSM 1 h ISH

her7 PSM 1 h ISH Elmasri et al. (2004)

Xenopus hes5.5 PSM 0.67 h ISH Li et al. (2003)

hes9.1 PSM 0.67 h ISH

Zebrafish DeltaC PSM 0.5 h ISH Jiang et al. (2000)

her1 PSM 0.5 h ISH Holley et al. (2000)

her7 PSM 0.5 h ISH Oates and Ho, (2002)

her11 PSM 0.5 h ISH Sieger et al. (2004)

her12 PSM 0.5 h ISH Gajewski et al. (2006)

Shankaran et al. (2007)

(Continued on following page)

Frontiers in Cell and Developmental Biology frontiersin.org03

Carraco et al. 10.3389/fcell.2022.944016

7271

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.944016


biological oscillator and anticipate this will be a useful

roadmap for researchers interested in this increasingly

exciting scientific field.

3 Gene expression oscillations

3.1 Embryo Clock genes in the PSM

After the description of the first segmentation clock gene,

hairy1, in the chicken embryo (Palmeirim et al., 1997), similar

oscillatory patterns of expression were identified for other genes,

and in multiple organisms (Table 2). The use of genome-wide

approaches identified a wide range of genes with oscillatory gene

expression during somitogenesis and evidenced that the embryo

clock is an intricate oscillatory genetic network, that comprises

genes belonging to multiple signalling pathways, notably, Notch,

Wnt and FGF (Dequéant et al., 2006; Krol et al., 2011)

(Figure 1A). These include Wnt-dependent Axin2, FGF

signalling pathway genes Dusp1/2/4/6, Snail1/2, Spry2/4, and

Notch pathway genes of the Already defined earlier. HES

family, Lfng and Nrarp, among others. Strikingly, only two

genes–the Hes1 and Hes5 orthologs–were conserved in mouse,

chicken and zebrafish. Otherwise, the identity of the pathway-

specific oscillating genes varied considerably, evidencing

evolutionary plasticity of the conserved oscillations in

signalling pathway activity (Krol et al., 2011). Several studies

have shown that these intercellular communication pathways

cooperate during embryo body segmentation. Niwa et al. (2007),

(2011) showed that the onset of Hes7 expression in the mouse

tailbud is FGF-dependent, while its maintenance and

propagation throughout the PSM requires Notch signalling. A

gradient of nuclear Wnt-related β-catenin was shown to control

key features of PSM maturation and somite formation (Aulehla

et al., 2008). Notch- and Wnt-dependent gene expression

oscillations are coupled in the PSM and undergo a phase shift

towards the anterior PSM. Inhibition of this phase shift in an

in vitro setting delayed the arrest of EC waves and impaired tissue

TABLE 2 (Continued) Periodicity of gene expression oscillations.

Organism Gene Tissue/cell line Period Technique References

her15 PSM 0.5 h ISH Shankaran et al. (2007)

hey1 PSM 0.5 h ISH Winkler et al. (2003)

nrarp-a PSM 0.5 h ISH Wright et al. (2009)

(a) PSM (a) qPCR/microarray Krol et al. (2011)

aHigh throughput study (please refer to original paper for complete gene list); iPSC, induced Pluripotent Stem Cells; ESC, embryonic stem cells; ISH, in situ hybridization; PSM, presomitic

mesoderm; NPC, neural progenitor cells.

FIGURE 1
Embryo Clock (EC) gene expression oscillations. (A) The EC encompasses oscillatory genes belonging to the Fgf, Wnt and Notch signalling
pathways (representative genes are indicated); (B) Negative feedback regulation of hairy-enhancer-of-split (HES) oscillations. In PSM cells, hes
transcription is induced by pulses of intercellular Notch-Delta signalling, leading to HES protein production. HES protein enters the nucleus and
represses its own promoter. HES protein andmRNA are rapidly degraded allowing for a new cycle of expression. HES also inhibits delta and lfng
expression ensuring coupled oscillations in neighbour cells of the tissue. Dashed line represents a delay imposed on Delta integration in the cell
membrane (Yoshioka-Kobayashi et al., 2020). NICD: Notch intracellular domain.
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segmentation (Sonnen et al., 2018). Identification of EC

oscillatory dynamics at the protein level has lagged behind,

mostly due to the lack of appropriate antibodies and because

it is technically more challenging than the well-established in situ

hybridization protocols for RNA detection. However,

corresponding cycles of protein expression with the same

periodicity have been reported and are summarized in Table 3.

3.2 Negative feedback regulation

Several studies have identified negative feedback regulation

as a fundamental feature of EC oscillations (Hirata et al., 2002;

Bessho et al., 2003; Lewis, 2003; Chen et al., 2005). Figure 1B

presents a simplified view of the negative feedback regulatory

mechanisms underlying HES gene expression oscillations,

whereby hes oscillations are maintained by an inhibitory

action of the HES protein on its own promoter. HES also

inhibits delta expression and/or expression of the Notch-

modulator Lunatic fringe–Lfng, which contributes to

synchronized oscillations of Notch-dependent gene expression

in neighbour cells. Rapid degradation of the molecular products

produced, mRNAs and proteins, ensures propagation of the

oscillatory behaviour (reviewed in Kageyama et al., 2012).

Using mathematical modelling, Lewis (2003), Monk (2003)

and Jensen et al. (2003) independently postulated that

oscillations in gene expression are influenced by delays in the

various steps of the regulatory negative feedback loop. Indeed,

further experimental evidence showed that the EC mechanism

depends on Delayed Negative Feedback loops and that the

temporal delays are introduced in multiple steps of the

process. Namely:

3.2.1 Transcriptional delay
Lewis (2003) proposed that the time it takes to synthesize a

transcript was one of the major accountants for transcriptional

delay, so one would assume lengthier genes would have larger

transcriptional delays. Elongation was, however, not found to

have a major contribution to these delays–RNA polymerase II

elongation rate measured in intact zebrafish embryos showed

that the time needed to transcribe her1 and her7 is negligible and

elongation kinetics of Hes7 and Lfng determined using mouse

TABLE 3 Periodicity of cyclic protein expression.

Organism Protein Tissue/cell line Period Technique References

Mouse Delta1 PSM 2 h Immunohistochemistry Bone et al. (2014)

2.45 h Live imaging Shimojo et al. (2016)

NPC 2.38 h Live imaging

Pancreas ~1.5 h Live imaging Seymour et al. (2020)

Dusp4 PSM 2 h Immunohistochemistry Niwa et al. (2007), (2011)

Hes1 Myoblasts 2 h Western Blot Hirata et al. (2002)

NPC 2.5 h Live imaging Imayoshi et al. (2013)

Pancreas ~1.5 h Live imaging Seymour et al. (2020)

Hes5 NPC 2.5 h Live imaging Imayoshi et al. (2013)

Hes7 PSM 2 h Immunohistochemistry Bessho et al. (2003)

NICD PSM 2 h Immunohistochemistry Huppert et al. (2005)

Niwa et al. (2011)

Notch1 PSM 2 h Immunohistochemistry Bone et al. (2014)

Morimoto et al. (2005)

p-ERK Fibroblasts (CH3 10T1/2) 2 h Western Blot Nakayama et al. (2008)

PSM Immunohistochemistry Niwa et al. (2011)

p-Smad1/5/8 Fibroblasts (CH3 10T1/2) 2 h Western Blot Yoshiura et al. (2007)

Ascl NPC 2.92 h Live imaging Imayoshi et al. (2013)

Olig2 NPC 6.26 h Live Imaging

Smad6 Fibroblasts (CH3 10T1/2) 2.5 h Western Blot Yoshiura et al. (2007)

Chicken LFNG PSM 1.5 h Western Blot Dale et al. (2003)

Zebrafish DeltaC PSM 0.5 h Immunohistochemistry Giudicelli et al. (2007)

Her6 Neural progenitors 1.2–1.4 h Live imaging Soto et al. (2020)

Hes6 PSM 0.5 h Immunohistochemistry Schröter et al. (2012)

Tbx6 PSM 0.5 h Immunohistochemistry Wanglar et al. (2014)

PSM, presomitic mesoderm; NPC, neural progenitor cells.
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cells also occurred at a fast rate (Hanisch et al., 2013; Hoyle and

Ish-Horowicz, 2013). Besides the elongation rate, however, there

are other factors that significantly influence the transcriptional

delay, namely mRNA nuclear export and mRNA splicing.

Giudicelli et al. (2007) experimentally observed a delay from

nuclear mRNA production to mature mRNA detection in the

cytoplasm of her1, her7 and deltaC–zebrafish’s key clock

components. Takashima et al. (2011) addressed the

contribution of mRNA splicing to gene expression oscillations.

They used transgenic mice carrying all or none of Hes7 introns,

together with a luciferase reporter, and assessed the time of Hes7

transcription and protein production in both conditions. Mice

carrying allHes7 introns showed a delay of approximately 19 min

in Hes7 expression, when compared to the intron-null mice.

When abolishing this delay in a mathematical model, Hes7

oscillations were abolished, and this was confirmed in the

mutant animals. Hoyle and Ish-Horowicz (2013) corroborated

that mRNA splicing and nuclear export account for most of the

EC transcriptional delay. Additionally, they compared the

splicing and export delays in mouse, chicken and zebrafish,

and concluded that organisms that have longer delays in these

processes also present longer clock periods.

3.2.2 mRNA degradation delay
Another aspect to take into consideration are the half-life

times of EC mRNAs and proteins. Due to the inhibitory action of

EC products on their own transcription, the time required for

their clearance from the cell will directly impact the rate at which

a new cycle of gene expression is initiated. Multiple factors that

contribute to differential mRNA stability were experimentally

assessed for their involvement in EC regulation. These include

the mRNA 3′ untranslated region (3′UTR), polyA tail length and

microRNA-mediated degradation.

While studying the mechanisms that control segmental gene

expression in Xenopus, Davis et al. (2001) found that hes4

(formerly known as hairy2a) expression dynamics was

influenced by its 3′UTR sequence. When the 3′UTR of hes4

was substituted by the 3′UTR of other hes genes (either from

Xenopus or other vertebrate species), hes4 expression retained its

characteristic striped pattern in the PSM, unlike what happened

when the 3′UTR of constitutively expressed genes was used. The

authors further identified a phylogenetically conserved 25 bp

sequence in the 3′UTR of EC genes which was necessary and

sufficient to confer instability to these transcripts (Davis et al.,

2001). Similar findings were reported by Hilgers and colleagues

(2005) using an in vivo inducible system to halt transcription and

measure mRNA degradation rate in the chicken embryo. They

clearly showed that the 3′UTR of the EC gene Lfng promoted

rapid mRNA decay, while the 3′UTR of fgf8 mRNA contributed

to stabilization of the reporter mRNA (Hilgers et al., 2005), which

is compatible with fgf8 graded expression pattern in the PSM

(Dubrulle and Pourquié, 2004). Similar findings were reported

for zebrafish EC genes (Fujino et al., 2018), evidencing that

3′UTR-mediated regulation of EC gene expression oscillations

is a conserved feature in vertebrates. The Amacher lab went on to

specify that mRNA decay of both zebrafish her1 and deltaC relies

on the Pumilio response- and AU-rich-elements present in their

distal 3′UTRs, in a Pnrc2-dependent manner (Gallagher et al.,

2017; Tietz et al., 2020).

Different EC genes with the same periodicity in the PSM can

nevertheless present very different expression patterns. Nitanda

et al. (2014) explored this feature focussing on Hes7 and Lfng in

the mouse PSM. After bisecting the PSM and culturing one half

in actinomycin D to inhibit transcription, while the other was

immediately fixed, quantitative PCR analysis showed that Lfng

mRNA is less stable thanHes7mRNA. This was attributed to the

3′UTR, as demonstrated using cells transfected with a reporter

vector containing either Hes7 or Lfng 3′UTRs and monitoring

mRNA degradation. The authors then generated transgenic mice

lines, both containing a reporter gene driven by the Hes7

promoter, but with different 3′UTRs–one from Hes7, and

another from Lfng. The transgenic line with the Lfng 3′UTR
showed a severe reduction in reporter mRNA, further confirming

the role of the 3′UTR in promoting rapid mRNA decay.

Importantly, the reporter mRNA presented the same

expression pattern as its 3′UTR-donor gene, i.e., the Lfng

3′UTR-reporter displayed the same pattern as endogenous

Lfng, and this was also true for the Hes7 3′UTR-transgene
(Nitanda et al., 2014). These results strongly suggest that

3′UTR-mediated mRNA stability defines both the temporal

and spatial properties of EC oscillations in the PSM.

Fujimuro et al. (2014) showed that Hes7 3′UTR is also

required for the production of proper amounts of

Hes7 protein to maintain oscillations. In the absence of the

3′UTR, Hes7 mRNA no longer displayed cyclic expression

patterns. The authors found that transcription levels of Hes7

mRNA were reduced, and that Hes7 protein was hardly

detectable in the mouse PSM, compared to wild-type

embryos. As expected, since the protein was not being

correctly produced, Hes7 transcription inhibition was

impaired, which compromised the maintenance of the

oscillations (Fujimuro et al., 2014).

Work performed by Fujino and colleagues (2018) suggested

that poly(A) tail length could also be important for EC mRNA

rapid turnover. These authors measured the lengths of the

poly(A) tails of zebrafish her1, her7 and hes6, and observed

that the first two genes, that display cyclic expression in the

PSM, have shorter poly(A) tails, while hes6 that is expressed in a

gradient has a longer one. Through the inhibition of the

deadenylase complex CCR4-NOT, the authors were able to

lengthen the poly(A) tails of her1 and her7, and this resulted

in a 2-3-fold increase in mRNA levels, indicating an increase in

mRNA stability (Fujino et al., 2018).

Finally, EC mRNA degradation rate is also regulated by

microRNAs (miRNAs). Xie et al. (2007) were the first to

theoretically propose a role for miRNAs in EC delayed

Frontiers in Cell and Developmental Biology frontiersin.org06

Carraco et al. 10.3389/fcell.2022.944016

7574

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.944016


negative feedback regulation. Experimental evidence for

oscillatory gene modulation by miRNAs was provided by

Bonev et al. (2012), who reported that mouse Hes1 mRNA is

a direct target of microRNA-9 (miR-9). Hes1 oscillations were

dampened either when mir-9 was overexpressed or its binding to

Hes1 was inhibited, suggesting that Hes1 oscillations are

maintained within a certain range of miR-9 levels. This is

ensured by negative feedback of Hes1 on the production of

miR-9 primary transcripts, generating a double-negative

feedback loop. Although the pri-miR-9 and pre-miR-9 are

processed and cleared at a fast rate, the same is not true for

the mature miR-9 which accumulates in the cell over time.

Hence, a self-limiting oscillator model was proposed, whereby

when miR-9 levels reach a certain threshold,Hes1 is permanently

downregulated and NPC differentiation occurs (Bonev et al.,

2012). Similar findings were further reported in zebrafish

hindbrain development. Here, miR-9 acts on her6 to ensure

robust oscillatory expression during neural progenitor cell

differentiation (Soto et al., 2020).

During somitogenesis, miR-125a-5p is expressed in the

chicken PSM where it targets the Lfng 3′UTR (Riley et al.,

2013). Inhibition of chicken miR-125a-5p activity resulted in

abnormal somite segmentation, resembling the phenotype

obtained when Lfng was ubiquitously expressed in the chicken

PSM (Dale et al., 2003). This is consistent with a role for miR-

125a-5p in promoting Lfng mRNA decay. Moreover, Lfng and

hairy1 lost their oscillatory expression pattern, further

evidencing that miRNA-mediated regulation is necessary for

EC gene expression oscillations (Riley et al., 2013). A

regulatory action of miR-125a-5p on Lfng mRNA degradation

and expression dynamics was also documented in the mouse

embryo (Wahi et al., 2017). Mathematical modelling performed

by Jing et al. (2015) provided important insights regarding

miRNA role in the segmentation clock. Their work suggests

that the interaction between Lfng and miR-125a-5p affects both

the amplitude and period of the oscillations, thus acting as a fine-

tuning mechanism to Notch activity during somitogenesis.

Despite the established importance of miRNAs for mRNA

decay, the extent of their relevance for EC oscillations is still

unclear. Recent work from our group showed that different

miRNA species are expressed in the PSM and in the forelimb

distal cyclic domain. These tissues have very different EC

periodicities (discussed below), which suggests that miRNAs

may play a role in establishing different paces of the EC

(Duarte et al., 2022).

3.2.3 Protein turnover delay
Even though translational delays are not accounted to

influence oscillations (Hoyle and Ish-Horowicz, 2013), protein

stability plays a crucial role. Hirata et al. (2004) addressed what

would happen if Hes7 protein half-life time increased from

20 min (wild-type conditions) to 30 min and found that this

provokes a dampening in both Hes7 mRNA and protein

oscillations over time. Interestingly, lysine residues were found

to play a key role in Hes7 protein stability. The authors generated

Hes7 protein mutants, by introducing lysine-to-arginine

mutations for each of the seven lysine residues in

Hes7 sequence and found that different mutations gave rise to

proteins with a half-life that differed from the wild-type. Ishii

et al. (2008) reported that some of the lysine mutants lost

transcriptional repressor activity, although they were more

stable than the wild-type counterpart, thus evidencing the role

of these lysine residues in Hes7 protein stability. Studies done by

Lewis (2003) and Giudicelli et al. (2007) also stated that her

protein half-life time should be short, compared to the zebrafish’s

segmentation clock pace. Mathematical modelling performed by

Ay et al. (2013) reiterated the finding that proteins with a short

half-life time are an essential requirement for the maintenance of

the period of oscillations in the wild-type zebrafish segmentation

clock. They further confirmed this by determining that

Her7 protein has a half-life time ~10 times inferior to the

zebrafish segmentation clock period (Ay et al., 2013).

3.3 Cell autonomous vs. tissue level
oscillations

Embryo Clock gene expression oscillations are a cell

autonomous property. This was first hinted by dissecting the

chicken PSM in multiple portions and observing that the overall

expression pattern of hes4 (Palmeirim et al., 1997) and Lfng (Maroto

et al., 2005) remained intact. The same was observed in dissected

mouse PSMs (Masamizu et al., 2006). Cyclic Lfng gene expression

even persisted in dissociated chicken PSM cells, but it occurred

asynchronously among cells, evidencing the need for cell-cell contact

to ensure synchrony and establish robust cyclic expression patterns

at the tissue level (Maroto et al., 2005). In dissociated mouse PSM

cells, Hes1 oscillations also occur cell-autonomously (Masamizu

et al., 2006) and Webb et al. (2016) further reported that

zebrafish her1 gene retains oscillatory expression in isolated

tailbud cells. In this case, oscillations in individual cells presented

a longer period andwere less robust, comparedwith the intact tissue.

Altogether, these results suggest that cell-cell communication is a key

requirement for oscillations to be in phase within the vertebrate PSM

tissue. This was corroborated by the work of Tsiairis and Aulehla

(2016), that showed that a re-aggregation of mouse PSM cells is able

to synchronize oscillations. Cell-autonomous EC gene expression

oscillations have also been described in other cell types, such as

mouse embryonic stem cells (ESC) (Kobayashi et al., 2009),

individual fibroblasts (Masamizu et al., 2006) and neural

progenitor cells (Shimojo et al., 2008; Bonev et al., 2012;

Manning et al., 2019). These can be synchronized in vitro by the

application of a serum shock or by Notch activation (Hirata et al.,

2002). However, cell-specific distinct phases of EC oscillations may

also play important roles in vivo. This will be discussed further

below.
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EC synchronization between PSM cells is required for proper

somite formation. Local synchrony within the PSM tissue is

achieved through Delta-Notch signalling (Jiang et al., 2000;

Horikawa et al., 2006; Riedel-Kruse et al., 2007), which also

functions to overcome the effect of “noise” introduced by other

biological processes, such as cell division (Horikawa et al., 2006;

Riedel-Kruse et al., 2007). Riedel-Kruse and colleagues found that

EC synchrony in the zebrafish embryo is achieved by

simultaneous (Notch-independent) activation immediately

prior to gastrulation and is then maintained by Notch-

dependent self-organized synchronization. The latter was

elegantly shown by incubating embryos with the Notch-

inhibitor DAPT until complete EC desynchronization. Then,

DAPT washout alone was sufficient to completely restore both

dlc oscillations and somite formation (Riedel-Kruse et al., 2007).

Delaune et al. (2012) applied single cell live-imaging of her1

expression in zebrafish wild-type andmutant embryos for deltaC,

deltaD and notch1a to study the role of Delta-Notch signalling in

EC synchronization. In the mutants, her1 dynamics persisted in

PSM neighbour cells, but in different oscillation phases (Delaune

et al., 2012). Interestingly, deltaC and deltaD work together to

ensure synchrony of the zebrafish segmentation clock in distinct

portions of the PSM. While deltaD is responsible for the onset of

the oscillations at the tailbud level, deltaC plays in role in

maintaining and amplifying the oscillations in adjacent cells

along the PSM tissue (Mara et al., 2007).

Soza-Ried et al. (2014) provided conclusive evidence for the

role of oscillations of Notch-Delta signalling in maintaining the

EC synchronized in neighbour cells for somite segmentation.

Using a deltaC zebrafish mutant line, the authors were able to

rescue both her1 oscillations and somite formation by applying

short artificial pulses of deltaC expression, evidencing that Notch

signalling is indeed maintaining cell synchrony during

somitogenesis. Accordingly, longer intervals between deltaC

pulses generated larger somites (Soza-Ried et al., 2014). This

was confirmed by Isomura et al. (2017) who developed an

optogenetics-based system to monitor Notch-Delta signalling

dynamics in neighbour cells. Light-induced Dll1 pulses in sender

cells were able to generate synchronized oscillations of Hes1

expression in receiver cells. Furthermore, they were able to

determine the time from the induction of Dll1 to the cleavage

of NICD, which was ~50.9 min, followed by an additional

~77 min until maximum Hes1 levels were reached (Isomura

et al., 2017). More recently, Yoshioka-Kobayashi et al. (2020)

used this system to show that LFNG in sender cells introduces a

15 min-delay in the transport of Dll1 protein to the cell

membrane, without which HES7 oscillations are severely

dampened in individual cells of the PSM. These studies

corroborate the importance of delays in cell-cell

communication for EC oscillations and illustrate the power of

optogenetics-based tools for dissecting these intricate regulatory

mechanisms.

Notch-Delta signalling was shown to require non-muscle

myosin II (NM II)-dependent contractility in both signal-

sending and -receiving cells (Hunter et al., 2019). Recently,

our lab evaluated the importance of fibronectin (FN)

extracellular matrix assembly and signalling through the

integrin-ROCK-NM II axis for somite segmentation and EC

oscillations in chick PSM. We found that experimental

treatments targeting FN matrix assembly, cell-FN interactions

and actomyosin contractility significantly perturbed somite

formation and EC gene expression, highlighting the

importance of the PSM tissue’s mechanical properties for EC

oscillations (Gomes de Almeida et al., 2022).

Hes7 and her1 oscillations slowdown in the anterior PSM in

mouse (about 1.5-fold) (Niwa et al., 2011) and in zebrafish

(Giudicelli et al., 2007; Delaune et al., 2012). Shih et al. (2015)

corroborated these findings using live imaging in a transgenic

zebrafish line with a her1-venus reporter. They saw that the

periodicity of the segmentation clock increases by 1.5-fold in the

anterior PSM, comparatively to the posterior PSM. SSoroldoni

et al. (2014) had previously described this as a Dynamic

Wavelength effect that, together with a Doppler effect

resulting from the relative motion of the anterior PSM

towards the posterior end due to tissue shortening over time,

explains the rhythm of embryo body segmentation. To better

understand the dynamics of EC deacceleration in the anterior

PSM, Shih et al. (2015) assessed her1-venus reporter expression

in cells that would form either side of a somite boundary. Within

the same presumptive somite, clock oscillations were arrested in a

posterior-to-anterior direction, i.e., cells that were incorporated

in a posterior somite boundary ceased oscillations prior to cells

that were incorporated in the anterior boundary of the same

somite. Moreover, the authors reported that cells at a one-somite

distance are initially synchronized in the posterior PSM and, as

the clock slows down in the anterior PSM, they assume opposite

phases of EC expression (Shih et al., 2015).

Another important alteration that cells experience as they

transition from the posterior to anterior PSM is the relative

timing of Notch- and Wnt-dependent EC oscillators (Sonnen

et al., 2018). In fact, Lfng (Notch) andAxin2 (Wnt) oscillated out-

of-phase in the posterior PSM and were progressively coupled

towards the anterior PSM, where their synchronization was

critical for somite segmentation. This was shown using an

ingenious microfluidics-based system, which allowed for

precise manipulation of gene expression oscillations by

applying temporally controlled pulses of Wnt/Notch-specific

activator molecules (Sonnen et al., 2018). Recently, it was

shown that the distinct levels of FGF signalling experienced in

the anterior and posterior regions of the PSM could underlie the

differences in EC dynamics observed in these cells (Diaz Cuadros

et al., 2020; Yaman et al., 2022). Yaman et al. (2022) further

reported that the posterior-to-anterior FGF gradient in the PSM,

classically solely associated with the wavefront activity, is also
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controlling the anterior propagation of the EC oscillations

(Yaman et al., 2022).

There is also evidence of significant spatiotemporal metabolic

changes along the PSM axis. Microarray analysis performed in PSM

and tailbud samples of zebrafish embryos revealed that cell cycle/

DNA metabolic functions are enriched in the posterior PSM, while

translation/oxidative metabolism is enriched in anterior PSM and

somites. The authors also reported a 2-fold increase in ATP content,

as well as 2.5-fold decrease of Cytochrome C oxidase activity in the

posterior PSM compared to anterior tissues (Özbudak et al., 2010).

A posterior-to-anterior gradient of glycolytic activity was also linked

to presomitic mesoderm development inmouse (Bulusu et al., 2017)

and chicken (Oginuma et al., 2017) embryos. To test the functional

relevance of thesemetabolic differences, PSM explants were cultured

in glucose- or pyruvate-supplemented medium. While explants

cultured in glucose supplemented medium developed normally,

pyruvate-cultured explants displayed several defects

concomitantly with loss of Lfng gene expression in the posterior

PSM. Using a genetically encoded sensor for pyruvate to monitor

metabolic transitions during PSM differentiation in real-time, the

authors reported that pyruvate levels, i.e., glycolytic activity,

decreased as cells transited towards an anterior PSM-like, more

differentiated, state. Consistent with these findings, chicken embryos

treated with 2-deoxy-D-glucose (2DG), a competitive inhibitor of

the glycolytic enzyme hexokinase, displayed severe elongation

defects, even though somite formation occurred normally. On

the other hand, embryos treated with sodium azide (NaN3)—a

respiration inhibitor, had impaired somite segmentation (Oginuma

et al., 2017).

4 Embryo clock periodicity

4.1 Different species

The time each pair of somites takes to form is species-specific

and displays great variability between organisms, ranging from

30 min in zebrafish to approximately 5 h in Human (Table 1).

Similarly, the expression of segmentation clock genes oscillates

with a periodicity characteristic of each species, which closely

matches the time of somite formation (Figure 2; Table 2). The

signalling pathways that comprise these genes are conserved;

however, data suggests that cyclic genes display an evolutionary

plasticity, since the specific genes involved in each pathway differ

in the studied organisms (Krol et al., 2011).

A curious aspect of somite formation time is that the size

of the organism does not significantly influence the time a pair

of somites takes to form. For instance, somites have a

relatively similar time of formation in the chicken and the

emu, although dimension-wise these two birds are very

distinct (Nagai et al., 2011). Likewise, the time of somite

formation does not depend on phylogenetic relationships,

since vertebrates belonging to different phyla can have the

same somitogenesis period: 60 min for medaka and the house

snake (Gomez et al., 2008).

Recent work started shedding light into the molecular

mechanisms underlying divergent EC periodicity among

organisms. Using in vitro models to compare EC gene

expression dynamics in mouse vs. human cells, two

independent studies found that the near 2-fold difference in

oscillation periodicity could be explained by the different speeds

in biochemical reactions within human and mouse cells, in

particular mRNA and/or protein decay rates (Matsuda et al.,

2020a; Rayon et al., 2020). This was documented in different cell

types, which suggests that global temporal scaling mechanisms

are a cell-autonomous property of the organism (Rayon and

Briscoe, 2021).

4.2 Different axial levels of the same
organism

EC oscillations underlying the formation of somites

positioned at different A-P levels of the vertebrate body axis

FIGURE 2
The somitogenesis clock ticks with different paces among
vertebrates. The periodicity of somitogenesis clock gene
expression in different organisms correlates with somite formation
time. Danio rerio: 30 min (blue); Xenopus laevis: 40 min
(green); Gallus gallus: 90 min (orange); Mus musculus: 120 min
(brown); Homo sapiens: ~5 h (pink).
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have different periodicities. In the chicken embryo,

somitogenesis and EC oscillations occur with a 90 min-

periodicity for somites 15–20 (HH12-13+) (Palmeirim et al.,

1997). However, the final 5-8 somites (HH23) form with a

periodicity of 150 min, matched by correspondingly slower

cycles of Lfng gene expression (Gibb et al., 2009; Tenin et al.,

2010) (Figure 3). In the opposite end, knowledge on the EC in the

formation of the anterior-most somites is scarce. Rodrigues et al.

(2006) characterized the expression of Notch-related EC genes in

somites 1–10 and reported that, while they were dynamically

expressed in the PSM, they did not present somite A-P polarity,

as occurs in caudal somites. The EC was proposed to already be

active even earlier in development, during gastrulation. In fact,

Jouve et al. (2002) reported the existence of pulses of gene

expression of hairy2 and Lfng in the prospective PSM of early

chicken embryos. In zebrafish gastrulation stages, the EC already

oscillates with 30-min periodicity (Riedel-Kruse et al., 2007) and

in mouse, with a ~2-h period (Falk et al., 2022). What triggers the

onset of the Embryo Clock, and the existence of a clear

periodicity in the early developmental stages of chick

development, however, remains elusive.

Differences regarding segmentation clock operation in

anterior and posterior regions of the zebrafish body axis have

also been described (Choorapoikayil et al., 2012; Schröter et al.,

2012; Hanisch et al., 2013). Although the double-mutant and

-morphant for her1 and her7 exhibit defects throughout the

entire body axis (Henry et al., 2002; Oates and Ho, 2002; Lleras-

Forero et al., 2018), disrupting her1 or her7 gene expression has a

different impact depending on the somites that are being formed.

In fact, segmentation defects in her1mutants are restricted to the

anterior trunk, while in her7 mutants somites become defective

only posterior to somite 8 (Choorapoikayil et al., 2012; Schröter

et al., 2012; Hanisch et al., 2013).

4.3 Different tissues of the same organism

Throughout development, the same gene regulatory

networks can be employed in different tissues to produce

multiple outcomes. Besides the segmentation of the axial

vertebrate body plan, EC oscillations also participate in other

developmental processes, where their dynamics differs from the

one presented in the PSM during somitogenesis.

Embryonic stem cells (ESC) differentiate into cell types

belonging to all three germ layers–mesoderm, endoderm and

ectoderm. Evidence that oscillatory gene expression played an

important role in ESC differentiation was first provided by

Kobayashi et al. (2009). The authors identified

unsynchronized cycles of Hes1 gene expression in mouse

ESCs with a periodicity of 3–5 h–longer than the 2-h Hes1

period described for other cell types from this organism (see

Table 2). Under the same culture conditions, Hes1-high cells

differentiated more efficiently into mesodermal cells, while Hes1-

low cells into neurons, suggesting that unsynchronized gene

expression oscillations might potentiate heterogeneous cell fate

specification within the same population of cells (Kobayashi

et al., 2009).

Oscillatory EC expression was also described inmouse neural

progenitor cells (NPC). Using real-time imaging, Hes5 and Dll1

mRNA were determined to oscillate with a 2 h-periodicity

(Imayoshi et al., 2013; Shimojo et al., 2008, 2016), and for

Hes1 this period was 2–3 h (Shimojo et al., 2008; Imayoshi

et al., 2013) (Table 2). Likewise, Hes1 and Delta1 proteins

display an identical period of oscillation (Table 3; Imayoshi

et al., 2013). Studies performed in mouse NPCs reiterated the

importance of gene expression oscillations for cell fate

determination. During neurogenesis, the NPC population is

maintained due to the repression of neural fate determination

factors, such asNeurogenin2, Ascl1/Mash1 andOlig2 byHes1 and

Hes5 oscillatory expression levels. As a consequence,

Neurogenin2 and Ascl1 also display oscillatory mRNA

expression (Shimojo et al., 2008; Imayoshi et al., 2013). Unlike

somitogenesis, oscillations during neural development are

asynchronous. While undergoing differentiation, neural cells

impede their neighbours to differentiate into the same cell

type through lateral inhibition mediated by the Notch

signalling pathway. Imayoshi et al. (2013) reported that the

expression level of gene oscillations plays an important role in

FIGURE 3
The pace of Gallus gallus Embryo Clock (EC) oscillations in
different tissues. During somitogenesis (red and orange), the EC
pace ranges from 1.5 to 2.5 h, while during forelimb development
(green) a cycle lasts 6 h. EC dynamics in the early stages of
somitogenesis (blue) and in neural development (purple) remain
unknown.
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NPC differentiation. Upon segregating NPC according to their

levels of expression of Hes1, Ascl1 and Olig2 and culturing them

in differentiation medium, the authors found that high or low EC

expression levels dictated different differentiation outcomes. For

instance, Hes1-high NPCs differentiated into an astrocyte

lineage, while Hes1-low NPCs into neurons (Imayoshi et al.,

2013).

Similar to what is observed during neural development, Hes1

expression is required for the maintenance of multipotency in

pancreatic progenitors, and undifferentiated neighbour cells

undergo a mechanism of lateral inhibition to give rise to

different cell types (de Lichtenberg et al., 2018). Even though

pancreas development shares common players with

somitogenesis and neural development, it was unknown if

they displayed an oscillatory behaviour in this tissue. Recently,

Seymour and colleagues (2020) reported that Hes1 and Dll1

proteins oscillate with a 90-min periodicity in cultured mouse

pancreatic explants, and that this stimulates progenitor

proliferation. The periodicity is different from the average

150 min period of Hes1 oscillations in NPC, which could be

explained by lower levels of Notch activation in pancreatic

progenitors. Importantly, extending the Hes1 oscillation

period to ~120 min by inhibiting NICD degradation altered

cell fate specification (Seymour et al., 2020).

Oscillatory gene expression was also reported during chicken

limb development (Pascoal et al., 2007) (Figure 3). Oscillations of

hairy2 expression were first described in the chicken PSM, with

the same periodicity as somite formation–90 min (Jouve et al.,

2000). To study hairy2 expression dynamics in the developing

chick forelimb, Pascoal et al. (2007) microsurgically removed one

limb from HH22-26 embryos in ovo and reincubated the embryo

for different periods of time. hairy2 expression was then assessed

in each limb pair using in situ hybridization, revealing that hairy2

has very dynamic expression in the distal limb field, that is

recapitulated every 6 h. The authors then determined that the

time required to form a new autopod skeletal element is 12 h,

suggesting that the limb chondrogenic precursor cells undergo

two cycles of hairy2 expression for the formation of each autopod

segmented element (Pascoal et al., 2007). This was the first

evidence that a molecular clock is operating during limb

development, a process where temporal control is also

fundamental. hes4 is also expressed in the distal mesenchyme

of the avian limb (Vasiliauskas et al., 2003) and recent work

suggests that its expression is also cyclic during limb

development Bhat et al. (2019). cultured cells from chicken

pre-cartilage leg mesenchyme and observed oscillations of

hes4 expression with a period of 6 h, suggesting that EC

periodicity is a tissue-specific property.

The cases mentioned above clearly exemplify that the EC can

play very distinct roles in different cells and tissues. For the

formation of segmented structures such as somites and autopod

limb elements, cells need to be synchronized to aggregate and

give rise to a new segment. In multipotent cells, such as ESC,

NPC and pancreatic progenitors, asynchronous EC oscillations

function to allow heterogeneous cell fate responses of the

population to a differentiation signal, ensuring the

simultaneous specification of multiple cell types required for

normal development.

5 Experimental manipulation of the
Embryo Clock

Many attempts have been made to manipulate EC gene

expression levels and/or temporal dynamics in order to obtain

a clear understanding of the mechanisms underlying ultradian

biological rhythms and their impact on embryo development.

Although EC periodicity can be significantly altered throughout

the developmental program (Figure 3)–chicken hairy2 oscillates

with a periodicity of 90 min in embryos with 48 h (PSM)

(Palmeirim et al., 1997) and 6 h in the forelimb of older

embryos (4–5 days) (Pascoal et al., 2007)–it has been extremely

challenging to produce such significant alterations in an

experimental setting. Most of the attempts to date completely

disrupted EC expression or oscillatory dynamics (Table 4). In the

most cases, only slight alterations to its rhythmicity were obtained

(Table 5). The knowledge gained by such approaches, however, has

been invaluable, and is patent in the topics described in the

previous sections of this review.

Genetic manipulation of EC genes and associated

intercellular signalling pathways provided the main framework

of what we know today. Figure 4 offers a graphical overview of

the alterations to EC gene expression imposed by genetic

manipulation in the mouse and zebrafish models (references

listed in Tables 4, 5). An interesting observation is that

manipulation of Notch-dependent EC genes has limited

impact on the dynamics of oscillatory genes associate with the

FGF orWnt signalling pathways, while the other Notch-EC genes

are significantly altered. The major effects on FGF clock genes

were observed when Hes7 or Lfng were expressed at constant

levels and only the latter altered Wnt-related Axin2 oscillations.

On the contrary, modulation of key components of FGF andWnt

pathways significantly impacted the expression of EC genes

pertaining to all signalling pathways (Figure 4). The available

information in zebrafish regards only to Notch-pathway EC

genes and provides complementary knowledge to what is

described for mouse. As can be easily perceived from

Figure 4, many more studies are required to make full sense

of the information gathered to date and to allow a clear inter-

species comparison of the EC mechanism. It is worth

highlighting that conclusive evidence for the functional

relevance of the dynamic nature of EC gene expression, in

opposition to EC expression levels, was provided by Shimojo

et al. (2016). These authors succeeded in abolishing Dll1

oscillations while ensuring physiological expression levels of

the protein and this led to defective somitogenesis.
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TABLE 4 Experimental disruption of Embryo Clock dynamics.

Organism Tissue Manipulation Somitogenesis
phenotype

Altered gene
expression

References

Mouse Embryo Hes7 KO Segmentation and
skeletal patterning
defects

Hes1, Hey2, Lfng, Sprouty4, Nrarp and
Nkd1 disrupted oscillations. Steady
expression of NICD and MESP2

Besho et al. (2001), Besho et al.
(2003); Hayashi et al. (2009),
Ferjentsik et al. (2009), Ishikawa
et al. (2004), Niwa et al. (2007),
(2011)

Embryo Hes7 overexpression n/a Sprouty4 absent in the posterior PSM
and static expression in the
anterior PSM

Hayashi et al. (2009)

PSM hes7 ± and Mesp2+/−mutants in
mild hypoxia

Segmentation and
skeletal patterning
defects

Notch pathway and FGF are
downregulated

Sparrow et al. (2012)

Embryo Hes7 intron deletion Fused somites and
skeletal patterning
defects

Sustained Hes7 expression Takashima et al. (2011)

Embryo Hes7 3′UTR insertion of 5, 10 or
20 kb

Segmentation and
skeletal patterning
defects

LFNG and Hes7 dampened oscillations Fujimuro et al. (2014)

Embryo Dll1 KO Segmentation and
skeletal patterning
defects

Lfng and Hes7 expression absent Barrantes et al. (1999), Chen et al.
(2005), Niwa et al. (2007), Zhang
et al. (2002)

Embryo Dll1 gene shortening/elongation Fused somites Steady Dll1 protein expression and
dampened oscillations of Hes1 and
Hes7

Shimojo et al. (2016)

Embryo Dll3 KO Severe segmentation
defects

Lfng, Hes1 and Hes5 absent expression.
Steady Hes7 and Nrarp expression

Chen et al. (2005), Dunwoodie et al.
(2002), Sewell et al. (2009)

Embryo RBPJκ KO n/a Lfng expression absent Barrantes et al. (1999)

Tailbud
explants

Uncoupled notch and wnt
oscillations

Halted segmentation Delayed arrest of oscillations Sonnen et al. (2018)

Embryo Lfng KO Somite defects and axial
strutures defects

Hes7, NICD and Nrarp with disrupted
oscillatory expression

Chen et al. (2005), Ferjentsik et al.
(2009), Morimoto et al. (2005),Niwa
et al. (2007), (2011), Sewell et al.
(2009), Shifley et al. (2008)

Embryo Lfng overexpression Segmentation and
skeletal patterning
defects

Steady Hes7 expression Serth et al. (2003)

Embryo LFNG dominant alele (RLFNG)
resistant to Golgi degradation
and non secreted

Absent or disorganized
intersomitic boundaries

Abolished Dll1, Notch and
Hes7 oscillations

Williams et al. (2016)

Embryo wnt3a vt mutant Segmentation and
skeletal patterning
defects

Axin2 and Nrarp expression absent.
Lfng and Hes7 oscillations abolished

Aulehla et al. (2003), Nakaya et al.
(2005), Niwa et al. (2007), Sewell
et al. (2009)

Embryo Ctnnb1 KO Defective somites and
boundaries

Axin, Dusp6/Mkp3, Spry2, Lfng and
Hes7 with very low or no expression

Dunty et al. (2008)

Embryo Fgfr1 cKO (driven by T
promoter)

Segmentation and
skeletal patterning
defects

Hes7 expression absent; Lfng steady
expression; Dusp4, Sprouty4,
Axin2 and Snail1 are downregulated

Niwa et al., 2007; Wahl et al., 2007

Embryo Psen1 KO; Psen2 KO Do not form any somites NICD, Snail1 and Sprouty2 with absent
expression; Hes7, Axin2 and Dusp6 are
expressed only in the tailbud

Ferjentsik et al. (2009)

Chicken Embryo Mir-125-5p manipulation
(target protection assay)

Absent or disorganized
intersomitic boundaries

Steady hairy1 expression and absent
Lfng expression

Riley et al. (2013)

Forelimb Abrogate FGF signaling via AER
ablation or inhibiting drugs

n/a Absent hairy2 expression in the Distal
Cyclic Domain

Sheeba et al. (2012)

Forelimb Abrogate Shh signaling via ZPA
ablation or inhibiting drugs

n/a Absent hairy2 expression in the Distal
Cyclic Domain

(Continued on following page)
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Besides genetic manipulation, other factors, such as

environmental hypoxia or alterations to reactive oxygen

species (ROS) levels, can impact EC operation in the PSM.

Exposure of pregnant mice to mild hypoxia disrupted EC

oscillations and induced vertebral malformations in

heterozygous pups for Hes7 or Mesp2, which otherwise

developed normally (Sparrow et al., 2012). Ventre et al. (2015)

suggested that this effect could be mediated by ROS, since

pharmacological modulation of ROS levels in Medaka

(Oryzias latipes) impaired somite formation and

TABLE 4 (Continued) Experimental disruption of Embryo Clock dynamics.

Organism Tissue Manipulation Somitogenesis
phenotype

Altered gene
expression

References

Medaka Embryo Pharmacological modulation of
ROS levels (NAC and DPI
treatment)

Defective somites and
boundaries

her4 and hey1 downregulated Ventre et al. (2015)

Zebrafish Embryo her1 MO Somite boundary defects Steady deltaC, her7 and
mesp2 expression

Gajewski et al. (2003), Sieger et al.
(2004), Shankaran. (2007); Holley
et al. (2002)

Embryo her7 MO Somite boundary defects Steady deltaC, her1, her 11, her12, her
15 and mesp2 expression

Gajewski et al. (2003), Sieger et al.
(2004), Shankaran et al. (2007),
Trofka et al. (2012)

Embryo her1 and her7 double mutant Defective somite shape Constant deltaC expression in the
anterior PSM

Lleras-Forero et al. (2018)

Embryo her1, her7 and hes6 triple
mutant

Defective somite shape Constant deltaC expression in the
anterior PSM

Embryo her1, her7 and Tbx6 triple
mutant

Defective somite shape Constant deltaC expression throughout
the PSM

Embryo her1 and her7 double MO Defective somites and
boundaries

deltaD, Mesp2 and Notch expression
disrupted

Henry et al. (2002), Oates and Ho
(2002)

Embryo her1 mutant disrupts the three
anterior-most somite
borders

Steady deltaC, her1, her7 and
mesp2 expression

Choorapoikayil et al. (2012),
Schröter et al. (2012), Hanisch et al.
(2013)

Embryo her7 mutant somite border defects
from somite 8 to 17

Steady deltaC, her1, her7 and
mesp2 expression

Embryo her1 and deltaC double mutant Defective somites and
boundaries

Her7 expression through all PSM Choorapoikayil et al. (2012)

Embryo deltaC MO Defective somites and
boundaries

Constant Her1 expression Holley et al. (2002)

Embryo deltaC mutant (bea) Defective somites and
boundaries

Constant Her1 expression Choorapoikayil et al. (2012), Holley
et al. (2000),(2002)

Embryo deltaD mutant (aei) Defective somites and
boundaries

her12 and her15 absent expression.
her1 and her11 with static expression

Sieger et al. (2004), Shankaran et al.
(2007), Holley et al. (2000)

Embryo her12 overexpression Defective somites and
boundaries

Constant her1, her7 and deltaC
expression

Shankaran et al. (2007)

Embryo her15 overexpression Defective somites and
boundaries

Constant her1, her7 and deltaC
expression

Embryo her12 MO n/a Constant her1, her7 and deltaC
expression

Embryo Notch1 mutant (des) Defective somites and
boundaries

her12 and her15 downregulation. Static
her1, her7 and her11 expression

Sieger et al. (2004), Shankaran et al.
(2007), Holley et al. (2000)

Embryo NICD activation Somite boundary defects difuse her1 and her7 expression Ozbudak and Lewis. (2008)

Embryo Su (H) MO Defective somites and
boundaries

her12 and her15 downregulation. Static
her1, her7 and her11 expression

Sieger et al. (2003), (2004)

Shankaran et al. (2007)

Embryo Greb1 MO Defective somites and
boundaries

Downregulated her7 Prajapati et al. (2020)

Embryo/
hindbrain

Mutation of the miR-9 target
site on her6 3′UTR

n/a Stabilized her6 levels Soto et al. (2020)

Embryo her1/her7 disrupted
chromossomal linkage

Defective somites and
boundaries

Constant her1 and her7 expression Zinani et al. (2021)
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downregulated her4 and hey1, two EC genes in this organism

(Ventre et al., 2015). Recent studies using in vitro-derived PSM-

like tissues showed that graded levels of Fgf ligands are required

to ensure the EC dynamics (pace, amplitude and phase) (Diaz

Cuadros et al., 2020; Yaman et al., 2022) and directionality of EC

oscillation waves in the PSM (Yaman et al., 2022).

Sheeba et al. (2014) studied the regulation of hairy2

oscillations in the chick distal forelimb. When the Apical

Ectodermal Ridge (AER) or the Zone of Polarizing Activity

(ZPA), the key sources of FGF and Shh, respectively, were

surgically removed from developing limbs, hairy2 expression

was abolished from the distal cyclic domain. This suggested that

the EC could represent a functional intersection of these key

molecules for limb proximal-distal outgrowth and patterning.

5.1 Strategies for accelerating/delaying
the Embryo Clock

As described above, most attempts to modify the EC led to a

complete disruption of the oscillations. However, an increasing

number of experimental approaches have succeeded in altering

the pace of the EC, which is key to understanding how this

biological oscillator is regulated and the functional significance of

its temporal dynamics (Table 5).

Following the work of by Takashima et al. (2011), Harima

and colleagues generated a mouse mutant lacking only the first

two introns of the Hes7 gene. This resulted in Hes7 oscillations

with an 11 min-faster periodicity than theWTmice. This shorter

cycle did not abolish EC oscillations nor somite formation. As

predicted by the Clock and Wavefront model, since the EC

presented a faster pace, this culminated in more and smaller

somites (Harima et al., 2013). Recently, a similar approach was

used to modify the tempo of Hes1 oscillations in NPCs (Ochi

et al., 2020). Deleting all the introns of the mouse Hes1 gene

accelerated expression oscillations by 13.6 min. On the other

hand, by substantially increasing the primary transcript length

the authors obtained exactly the opposite result, delayed EC in

13.5 min (Ochi et al., 2020). These are powerful examples of how

transcriptional delays of EC genes can be modulated to tinker

gene expression dynamics.

In the EC negative feedback regulatory loop, HES proteins

are imported to the nucleus and repress their own transcription.

Repression is lifted upon protein degradation, allowing a new

TABLE 5 Embryo Clock pace manipulation.

Organism Manipulation wt pace Altered pace Δ pace References

Mouse Deletion of Hes7 introns 1 and 2 123 min 112 min (-) 8,94% Harima et al. (2013)

Hes1 type-1 mutant (NPC) 173.5 ±
4.4 min

159.9 ± 2.6 min (-) 7,8% Ochi et al. (2020)

Hes1 type-2 mutant (NPC) 187.0 ± 4.3 min (+) 7,8%

Hes7 K14Rmutation (HES7 prot half-life increase from 20 to
30 min)

121.4 min 131.6 min (+) 8,4% Hirata et al. (2004)

KO of Nrarp 106 min 111 min (+) 4,5% Kim el al. (2011)

LiCl 20 mM treatment 2.5 h 2.9 h (+) 16% González et al. (2013)

LiCl 40 mM treatment 2.5 h 3.6 h (+) 44%

CKI-7 100 µM treatment 2.5 h 3.3 h (+) 32%

pancreatic dorsal bud, MLN4924 treatment (NICD
stabilization)

~90 min ~120 min (+) 33% Seymore et al. (2020)

PSM-like tissue (iPSM) 159.6 min a 123.3–203.3 min a (-) 22.7% -
(+) 25.7%

Yoshioka-Kobayashi et al.
(2020)

Zebrafish Damascus mutant (~100 deltaD copies) 24.7 ± 0.6 min 23.1 ± 0.8 min (-) 6.4% Liao et al. (2016)

MO hes6 n/a n/a (-) 6.5% ± 1.2% Schroter and Oates. (2010)

Mib1 mutant n/a n/a (+) 19% Herrgen et al. (2010)

aei/deltaD mutant n/a n/a (+) 23%

des/notch1a mutant n/a n/a (+) 7%

Notch inhibition with saturating DAPT concentrations (R
40 mM)

n/a n/a (+) 18%

Her7 hetero:hes6 mutant n/a n/a (+) 6% Schröter et al. (2012)

Her7 Mutant:hes6 mutant n/a n/a (+) 5%

Chicken CKI-7 100 µM treatment 90 min 115–120 min (+) 33% Gibb et al. (2009)

Shh inhibition/notochord removal 90 min ~2 h 45 min (+) 85% Resende et al. (2010)

Blebbistatin 50 µM treatment 90 min 120 min (+) 33% Gomes de Almeida et al. (2022)

n/a: data not available.
aChemical library screening; maximum range is indicated (please refer to original paper for complete list and respective alterations).
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transcription cycle to begin. Hence, by changing protein stability

the repressive time on the gene promoter also changes,

culminating in an overall alteration in the tempo of the EC.

Through replacement of a Lysine for an Arginine in position 14,

Hirata and colleagues were able to increase the half-life of the

HES7 protein by 10 min, which led to an increase of 10,2 min in

the global pace of the Embryo Clock (Hirata et al., 2004). A

similar approach was applied by Kim et al. (2011) by knocking-

out Nrarp, a negative effector of Notch signalling. This approach,

suggested to delay NICD turnover, extended the EC pace by

5 min and resulted in the formation of fewer and defective

vertebrae (Kim et al., 2011). Wiedermann et al. (2015) also

accomplished to delay EC oscillations by stabilising NICD in

the chick embryo, further corroborating these findings.

A wealth of knowledge on EC pace manipulation has also

been provided using the zebrafishmodel. The Oates lab produced

mutants in genes belonging to the Notch signalling pathway that

displayed slower EC oscillations (Herrgen et al., 2010; Schröter

and Oates, 2010). Knock-out of notch1a, mib1, and deltaD

slowed the EC pace by 7%, 19%, and 23%, respectively

(Herrgen et al., 2010), and mutating hes6 delayed the EC by

6.5% (Schröter and Oates, 2010). Finally, chemical inhibition of

the notch signalling pathway using DAPT delayed the EC by 18%

(Herrgen et al., 2010). Corresponding delays in somitogenesis

periodicity and a reduced final somite number corroborated the

importance of Delta-Notch coupled oscillations for timely

embryo body segmentation. Accordingly, elevation of Delta-

Notch signalling accelerated EC oscillations and somite

formation (Liao et al., 2016). Liao et al. (2016) created fish

lines with 7 (Dover) or 100 (Damascus) extra copies of deltaD.

Only the Damascus mutant displayed alterations to the EC,

where oscillations were 1.6 min (6.4%) faster than in the wild-

type. This increased the number of trunk segments by 7,6% and,

despite the dramatic overexpression of deltaD, segmentation

defects were rarely observed (Liao et al., 2016).

Other intercellular communication pathways contribute to

the proper timing of the Embryo Clock. Sonic hedgehog (Shh)

was shown to participate in EC tempo regulation. By comparing

chicken PSM explants cultured with and without a source of Shh

(notochord tissue and/or SHH-expressing cells), Resende et al.

(2010) showed that the absence of Shh significantly delayed both

EC oscillations and somite formation. Absence of Shh signalling

FIGURE 4
Summary of the effects of genetic manipulation on mouse and zebrafish EC gene expression. EC genes were grouped by the main signalling
pathways they are associated with.
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led to an 85% increase of the EC period, from 90 min to

approximately 2 h and 45 min. Similar experimental

approaches showed that Wnt pathway inhibition by CKI-7

extended the EC pace from 90 to 120 min (Gibb et al., 2009).

Comparable results were further obtained in the mouse model.

Here, both CKI-7 treatment and activation of Wnt signalling

using LiCl delayedHes7 oscillations (González et al., 2013). Using

PSM-like tissues induced from mouse ESC, Yoshioka-Kobayashi

et al. (2020) performed a high throughput chemical library

screening and identified multiple small compounds capable of

altering the period of Hes7 oscillations by up to 40 min

(Yoshioka-Kobayashi et al., 2020). These included modulators

of a wide range of cellular processes and signalling pathways and

further characterization of these alterations will surely improve

our knowledge on EC operation.

Recently, we showed that the fibronectin-integrin-ROCK-

NM II signalling axis regulates EC dynamics in the chicken PSM.

Importantly, inhibition of actomyosin-mediated contractility

delayed the period of hairy1 (hes4) oscillations from 90 to

120 min (Gomes de Almeida et al., 2022), unveiling a

previously unappreciated biomechanical regulation of the EC

periodicity.

6 Pressing questions and future
perspectives

Great attention has classically been dedicated to studying the

molecular mechanisms involved in correct spatial positioning of

cells/tissues/organs during embryo development, while the

dynamics of gene expression over time was an under-

represented concern. The discovery of a molecular Embryo

Clock underlying somite formation gave way to a dramatic

shift in this trend. Since it was first described in 1997, the EC

has been characterized in multiple vertebrate species, evidencing

a phylogenetically conserved mechanism. However, there are two

aspects that differ depending on the organism: the pace of the EC

and the specific oscillatory genes, although common signalling

pathways are involved. The EC biological function has been

tightly correlated with the segmentation of paraxial mesoderm,

and mutations in Human EC genes give rise to severe congenital

malformations of the axial skeleton, such as the phenotypes

associated with spondylocostal dysostosis (Sparrow et al.,

2012; Nobrega et al., 2021).

There is great interest in clarifying the EC clock dynamics

and regulatory mechanisms in tissues other than the paraxial

mesoderm and in different species, since this should help

evidence what constitutes the central mechanism(s) of the

clock, and which components are species/tissue-specific.

Hairy-enhancer-of-split oscillatory expression is conserved in

all species and tissues analysed, which has suggested their role as

“core” members of the EC, but conclusive evidence for such

fundamental clock components remains elusive. Studies on the

mechanism(s) associated with the onset of gene expression

oscillations during development might help elucidate whether

EC operation is the output of a limited set of “core” clock genes or

if it is an emergent property of the developing biological system,

reverberating the oscillatory nature of the very first events during

fertilization (e.g., Ca2+ oscillations induced upon sperm-oocyte

fusion).

For many years, only hairy2 was described to have cyclic

expression in the chicken limb bud. More recently, Bhat et al.

(2019) reported oscillations of hes4 expression in chick limb

micromass cultures. Here, hes4 oscillates with a 6 h periodicity

(Bhat et al., 2019), which matches the rate of limb hairy2

oscillations in vivo (Pascoal et al., 2007). This suggests that

the expression dynamics of both hairy2 and hes4 may be

regulated by common mechanisms in the developing limb,

further reinforcing the existence an EC-like mechanism

operating during limb development (Sheeba et al., 2016).

However, it is still unknown if this is conserved in other

vertebrates and if altering hairy2 or hes4 expression may

impact limb outgrowth and patterning. Clues arise from

recent work evidencing that Hes1 is a critical downstream

effector of the Shh/Gli3 pathway in mouse limb development,

where it regulates mesenchymal cell proliferation (Sharma et al.,

2021). Importantly, Hes1 overexpression promoted

supernumerary digit formation and the authors concluded

that Hes1 regulates anterior boundary formation for digit

development. Together, these studies suggest that

synchronized Hes oscillations in the distal limb field could be

functioning to prepattern the tissue for segment (digit)

formation, which is reminiscent of the EC function in the

PSM. Hence, the developing limb bud represents an

additional extraordinary model system to further study EC

regulation and function.

Despite the effort put into characterizing the EC, many

fundamental questions remain unanswered. What triggers the

onset of EC oscillations? What sets the tempo of the clock? What

is the functional relevance of EC oscillations in different cell types

and embryonic tissues? Is there a core component common to all

vertebrates? Answering these and other pressing questions would

allow us to understand how TIME is set and perceived for pattern

formation during embryo development. Currently, there is a

growing number of researchers employing novel experimental

in vitro model systems that bring great promise to dissecting the

ECmechanism in ways that have been hindered in vivo (reviewed

in Diaz-Cuadros and Pourquié, 2021). These include the recently

described Human somitoids derived from induced pluripotent

stem cells (iPSC), which display segment formation and Hes7

gene expression oscillations with the same periodicity as that

previously describe for Human somitogenesis: ~5 h (Sanaki-

Matsumiya et al., 2022). After 25 years since the somitogenesis

Embryo Clock was first described, the scientific community is

more aware than ever of the existing knowledge gaps, but is also

more equipped than ever to tackle the challenges ahead.
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The vertebrate axis is segmented into repetitive structures, the vertebrae. In fish,

these segmented structures are thought to form from the paraxial mesoderm

and the adjacent notochord. Recent work revealed an autonomous patterning

mechanism in the zebrafish notochord, with inputs from the segmented

paraxial mesoderm. The notochord pattern is established in a sequential

manner, progressing from anterior to posterior. Building on this previous

work, here, we propose a reaction wavefront theory describing notochord

patterning in zebrafish. The pattern is generated by an activator–inhibitor

reaction–diffusion mechanism. Cues from the paraxial mesoderm are

introduced as a profile of inhibitor sinks. Reactions are turned on by a

wavefront that advances from anterior to posterior. We show that this

reaction wavefront ensures that a pattern is formed sequentially, in register

with the cues, despite the presence of fluctuations. We find that the velocity and

shape of the reaction wavefront can modulate the prevalence of defective

patterns. Normal patterning is supported in a wide range of sink profile

wavelengths, while a minimum sink strength is required for the pattern to

follow the cues. The theory predicts that distinct defect types occur for small or

large wavelengths. Thus, the reaction wavefront theory provides a possible

scenario for notochord patterning, with testable predictions that prompt future

experiments.

KEYWORDS

vertebrate segmentation, pattern formation theory, reaction–diffusion,
activator–inhibitor, noise

1 Introduction

Biological pattern formation underlies the structure of tissues and organs that form

during embryonic development [1]. The formation of these structures results from an

interplay between gene expression patterns and cell movements [2–5]. In developing

tissues, cells regulate the expression of different genes and communicate with neighboring

cells by means of signals. Biochemical noise due to fluctuations in molecule number and

the stochastic nature of gene expression hamper the formation of patterns [6]. However,
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embryonic development is a very reproducible process. Thus, a

general question is how patterns form reliably despite the

presence of biochemical fluctuations.

The vertebrate body plan is organized around the vertebral

column, a structure of repetitive segments—the

vertebrae—running from the head to tail. An early pattern of

axial segments is laid out during somitogenesis. Somites form

from the paraxial mesoderm tissue on both sides of the embryo

midline. Somitogenesis occurs from anterior to posterior in a

rhythmic manner and is controlled by a molecular genetic

oscillator called the segmentation clock [7–11]. Later in

development, the bone-forming cells derived from the somites

are reorganized in a process termed re-segmentation, and this

pattern is eventually translated into an array of vertebrae [12].

In some vertebrates, such as amniotes, it is thought that the

segmented vertebral structure derives entirely from previously

established somites [13]. However, fish mutants that have an

impaired segmentation clock show normal formation of the

majority of their vertebral centra [14–16]. This suggests that,

at least in fish, normal somites are not required to determine the

structure of the vertebral centrum. Still, a mutant which has a

slower segmentation clock produces fewer vertebrae [17],

indicating that vertebral structure does receive information

from segmentation clock-derived somite segments.

Recently, it was shown that vertebral patterning is

concomitantly driven by the notochord in zebrafish [16]. The

notochord is an unsegmented cylinder formed bymesoderm cells

that lie along the anteroposterior axis of the embryo and is

flanked to both sides by somites (Figure 1A). In teleosts—fish

with bones—the notochord comprises a layer of epithelial sheath

cells, called chordoblasts, enveloping a column of large

vacuolated cells that provide mechanical support [18, 19].

New evidence indicates that there is an autonomous

patterning mechanism in the notochord that is influenced but

not determined by the pre-existing somite pattern in the adjacent

tissue [16].

Although the nature of the zebrafish notochord

patterning mechanism remains unknown, an autonomous

reaction–diffusion system with an activator and an inhibitor

operating in the notochord sheath cells has been proposed

[16]. The cues provided by the paraxial mesoderm pattern

were introduced as a distribution of inhibitor sinks. Starting

from an anteriorly localized perturbation, this theory proved

capable of producing an autonomous pattern, sequentially

adding notochord segments from anterior to posterior in

register with the cues. However, this theory did not explicitly

account for random perturbations and their effects on

patterning.

Here, we extend this previous theory, introducing a

wavefront that moves from anterior to posterior, turning on

reactions in its wake. Such reaction wavefront could have a

biological origin in a molecular maturation gradient invading

the notochord from the anterior. Introducing measures to

characterize defective patterns, we analyze the robustness of

the reaction wavefront theory upon random initial

perturbations and dynamic fluctuations. We explore how the

shape and velocity of the reaction wavefront modulate defect rate

and analyze the effects of fluctuations in the sink positions and

strength.

2 Theory

Here, we describe the notochord as a one-dimensional

system. To describe pattern formation in the notochord

sheath cells, we propose a reaction–diffusion system with an

activator U and an inhibitor V. As we do not know the molecular

components involved and their interactions, here, we follow [16]

and consider a generic FitzHugh–Nagumo model to describe

activator and inhibitor dynamics [20].

zU

zt
� DU

z2U

zx2
+ k1U − k3U

3 − k4V + k0 (1)
zV

zt
� DV

z2V

zx2
+ k5U − k6V − SV, (2)

where DU and DV are diffusion coefficients, and ki are reaction

rate constants. The effective variables U (x, t) and V (x, t) depend

on position x and time t and represent activity levels that could be

associated with actual physical concentrations through an

unknown non-linear mapping.

FIGURE 1
(A) Scheme showing the dorsal view of a portion of the
segmented notochord (green bands) extending from anterior (A)
to posterior (P). In the embryo, somites (gray squares) are located
on the left and right sides relative to the notochord. The sink
profile (light blue line) matches somite boundaries. (B) Interactions
between activator U, inhibitor V, and the inhibitor sinks S. Pointed
arrows indicate activation, and blunt-ended arrows indicate
inhibition. (C) Activator (green line) and inhibitor (red line) activities.
Inhibitor sinks profile (light blue line) of sink strength S0,
wavelength λ, steepness α, and width 2δS. (D) Reaction wavefront
profile f(x) of steepness β.
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Both species have positive linear terms for the activator

and negative linear terms for the inhibitor. There is a cubic

term for the activator that limits growth and enables

stabilization of steady states (Figure 1B). The effect of the

segmentation clock input is introduced as an additional

degradation term for the inhibitor, spatially modulated by

S = S(x) (Figures 1A–C). This spatial modulation takes the

form of an inhibitor sinks profile S(x) = S0s(x), where S0 is a

rate constant representing the sink strength and s(x) is a

dimensionless profile shape.

In order to reduce the number of parameters of the model, we

introduce an activity scale U0 and a timescale T0 and define new

dimensionless variables u, v, x′, and t′ that verify

U � U0u, V � U0v, x � L0x′, t � T0t′, (3)

where L0 is a fixed length that relates the notochord length with

the dimensionless system size. We can rewrite Eqs 1, 2 in terms of

the new variables. Dropping primes to simplify the notation and

setting the source term k0 = 0,

U0

T0

zu

zt
� DUU0

L2
0

z2u

zx2
+ k1U0u − k3U

3
0u

3 − k4U0v, (4)

U0

T0

zv

zt
� DVU0

L2
0

z2v

zx2
+ k5U0u − k6U0v − S0s x( )U0v. (5)

These two equations have units of activity over time, so we

multiply both by T0/U0 to render them dimensionless.

Regrouping parameters:

zu

zt
� DUT0

L2
0

z2u

zx2
+ k1T0 u − k3U

2
0

k1
u3 − k4

k1
v( ), (6)

zv

zt
� DVT0

L2
0

z2v

zx2
+ k1T0

k5
k1

u − k6
k1

v − S0
k1

s x( )v( ). (7)

Selecting a timescale and an activity scale through the relations

DUT0

L2
0

≡ 1 and
k3U

2
0

k1
≡ 1 (8)

and introducing definitions for the remaining dimensionless

groups

δ ≡
DV

DU
, γ ≡

k1L
2
0

DU
, κi ≡

ki
k1

s0 ≡
S0
k1
, (9)

we obtain

zu

zt
� z2u

zx2
+ γ u − u3 − κ4v( ), (10)

zv

zt
� δ

z2v

zx2
+ γ κ5u − κ6v − s0s x( )v( ). (11)

For the inhibitor sinks profile shape s(x), we choose a

combination of opposing tanh (. . .) functions that compose

localized peaks of steepness α = 100 and width 2δs = 0.1

separated by a wavelength λ:

s x( ) � 1
2
∑
i

−tanh α −xi + x − δs( )( )+(
tanh α −xi + x + δs( )( )).

(12)

A first sink is placed at λ/2, and positions xi of consecutive sinks

are determined by the wavelength λ (Figure 1C).

Starting from an anteriorly localized perturbation in

otherwise uniform, vanishing initial conditions, the theory

described so far is capable of producing an autonomous

pattern, sequentially adding notochord segments from anterior

to posterior in register with the cues [16]. However, it appears

unlikely that activity values for the activator and inhibitor are

perfectly uniform across the notochord. Random perturbations

to the initial activities may occur, for example, due to leaky

transcription causing stochastic bursts [21]. In the presence of

such random initial perturbations, the theory cannot account for

the observed sequential segmentation [16]. Moreover,

stochasticity in gene expression may introduce noise in the

dynamics of both the activator and the inhibitor [6, 22]. To

account for such dynamic fluctuations, we include a white noise

term

zu

zt
� z2u

zx2
+ γ u − u3 − κ4v( ) + σξu x, t( ), (13)

zv

zt
� δ

z2v

zx2
+ γ κ5u − κ6v − s0s x( )v( ) + σξv x, t( ), (14)

where ξu (x, t) and ξv (x, t) are Gaussian processes with zero mean

and uncorrelated in space, time, and between themselves, and σ

sets the noise strength.

Here, we extend this theory to restore sequential patterning

in the presence of noise in the initial condition and dynamics.

With the scaling that we chose in Eq. 8, all reaction rates are

weighted by the dimensionless parameter γ, which sets the

relative strength of reaction terms. By allowing γ to depend

on position and time, this dimensionless formulation permits a

spatiotemporal control of the balance between reaction rates and

diffusion. We use this feature to introduce a wavefront that

moves from anterior to posterior, turning reactions on in its

wake. Ahead of such wavefront, reactions are disabled and

cannot trigger spontaneous patterning from random

fluctuations. Behind the wavefront, reactions turn on and can

generate patterns. Thus, we implement a reaction wavefront in

the theory through the space and time dependence in

parameter γ:

zu

zt
� z2u

zx2
+ γ x, t( ) u − u3 − κ4v( ) + σξu x, t( ), (15)

zv

zt
� δ

z2v

zx2
+ γ x, t( ) κ5u − κ6v − s0s x( )v( ) + σξv x, t( ), (16)

where γ(x, t) is a wavefront of invariant shape

f x( ) � 1
2

1 − tanh β −X0 + x( )( )( ), (17)
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moving from anterior to posterior with a velocity ]. Thus,
γ(x, t) = γ0f (x − ]t), where γ0 is the relative strength of

reactions. The wavefront profile f(x) is a dimensionless

sigmoidal function that takes values between 0 and 1, with

front steepness β, and centered at X0 (Figure 1D).

Next, we solve partial differential equations using a custom

Python implementation of the Heun method [23]. Spatial

discretization length is Δx = 0.01, and time discretization is

Δt = 0.9Δx2/(2.103). Unless something else is specified, default

parameter values are given in Table 1.

Solutions to the reaction wavefront theory with random

initial conditions and noise can produce a segmented pattern

sequentially (Figure 2A). Without a reaction wavefront, random

perturbations are quickly amplified in the entire domain and

trigger non-sequential defective pattern formation (Figure 2B

and Supplementary Video S2). This suggests a possible test for

the wavefront scenario that could, in principle, be implemented

in an embryonic experiment. A small perturbation within the

posterior region of the domain representing the notochord dies

out in a reaction wavefront scenario (Figure 3A). In contrast, in

the absence of a reaction wavefront, such perturbation is

amplified and trigger segment formation occurs in both

directions, disrupting the sequential segmentation from

anterior to posterior and likely generating a defective pattern

(Figure 3B and Supplementary Video S3). Thus, introducing a

bead soaked in the activator within the posterior region of the

unsegmented notochord would provide a test for the wavefront

hypothesis. In the next section, we study how fluctuations induce

pattern formation defects in the reaction wavefront theory.

3 Noise and initial conditions

A normal pattern is here defined by a one-to-one

correspondence between sinks and activator peaks

(Figure 2A). When this correspondence is broken, we call

the pattern defective (Figure 2B). One source of defects is

local pattern inversions, where a trough occurs at a sink

position in place of a peak (Figure 4A). These pattern

inversions occur because solutions to the partial

differential Eqs. 15 and 16 have an inversion symmetry: if

(u, v) is a solution, then so is (−u, − v). Consequently, in the

presence of noise, the pattern may switch locally between

peaks and troughs at sink positions. Solutions and their

inverses are separated by an unstable vanishing solution

(0, 0). For initial conditions with a vanishing mean value

μ = 0, the resulting patterns often switch between the two

solutions. Thus, the value of μ may affect the formation of

normal patterns. We also expect that increasing noise

strength σ will interfere with the formation of normal

patterns. Thus, we first set to explore pattern robustness

when these parameters change, with the aim of

constructing quantitative maps that we can use to guide

further exploration of the theory (Figure 4).

Two types of pattern defects occur: 1) misplaced peaks are

not aligned with any inhibitor sink, and 2) unmatched sinks

do not have a matching activator peak (Figure 4A). In this

work, we have set a threshold distance between sinks and

peaks for segments to be classified as normal or defective.

When the distance between an activator peak and a sink is less

than 10% of the mean distance between sinks, we consider

this a match, and it is classified as a normal segment. Peaks

without a match are defined as misplaced peaks, and sinks

without a match are defined as unmatched sinks. The

frequencies of these two defect types provide measures for

the number of errors in the resulting pattern: fmp is the ratio

between the number of misplaced peaks and the total number

of peaks in the pattern, and fus is the ratio between the

number of unmatched sinks and the total number of sinks.

Both these measures take values between zero and one. We

assess the effects of noise and initial activities on individual

patterns by counting the occurrence of these defect types

(Figures 4B–G). The fraction of misplaced peaks fmp and

unmatched sinks fus increases with noise strength (Figures

4C,F). This means that individual patterns deteriorate

with increasing noise. However, defect frequencies fmp and

fus decrease with increasing initial activity μ (Figures 4D,G).

While fmp and fus characterize the frequency of defects in

individual patterns, we are also interested in quantifying

defective patterns at the population level. Thus, we

introduce the fraction of defective patterns fd as the ratio

between the number of realizations that contain at least one

defect to the total number of realizations. This fraction of

defective patterns increases with noise strength σ and

TABLE 1 Reaction wavefront theory dimensionless parameters:
default values and description.

Model parameters

Parameter Value Description

δ 100 Relative diffusion coefficient

γ0 1,000 Relative reactions strength

κ4 1 Reaction rate constant Eq. 15

κ5 10 Reaction rate constant Eq. 16

κ6 5 Reaction rate constant Eq. 16

μ 0.01 Mean initial activity of u and v

σ0 0.01 Initial standard deviation of u and v

σ 0.1 Noise strength

] 81.77 Wavefront velocity

β 5 Wavefront steepness

X0 0 Wavefront initial position

λ 0.57 Sink profile wavelength

Δλ 0 Sink position fluctuation amplitude

s0 80 Sink strength

Δs0 0 Sink strength fluctuation amplitude
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decreases with increasing initial activity μ (Figures 4H–J). We

observe that fd can become large while fmp and fus remain

relatively low (Figures 4B,E,H). In embryological terms, the

fraction of defective patterns is a measure of phenotype

penetrance at the population level, and the frequency of

defects in individual patterns provides a measure of

phenotype expressivity within individual embryos. While

these quantities should be related to some extent, this

relation is not straightforward since the occurrence of a

defect in a pattern might favor further defects.

In summary, these results show how increasing noise causes

more pattern defects and defective patterns. In contrast, shifting

the mean of the initial condition away from the boundary of the

unstable vanishing solution reduces defect prevalence (Figure 4).

In the following sections, we use these maps to choose values of σ

and μ to further explore other sources of noise and variability in

the theory.

4 Wavefront velocity and shape

In addition to dynamic activity fluctuations, the other novel

component in the theory is the reaction wavefront γ(x, t). This

reaction wavefront moves with velocity ], and its shape is

determined by the wavefront profile steepness β (Eq. 17 and

Figure 1D).

In the absence of noise and reaction wavefront, starting

from a small anterior perturbation with otherwise vanishing

initial conditions, a pattern forms sequentially, invading the

unpatterned region with a natural propagation velocity ]0
[16]. To determine the value of ]0, we set a threshold activity

value for the activator and determine the trajectory of the

posterior-most position where the pattern activity

exceeds this threshold. A linear fit of this

trajectory returns the value ]0 = 81.77 that we use to scale

velocities.

FIGURE 2
Reaction wavefront theory can produce a sequential pattern without defects in the presence of noise. Snapshots of solutions (A) of reaction
wavefront theory Eqs 15, 16, and (B) Eqs 13, 14 lacking a reaction wavefront. Activator (green line) and inhibitor (red line) dimensionless activities (left
axis scale) together with reaction wavefront γ(x, t) (purple line and shade, right axis scale) at different times. The bottom panel shows the inhibitor sink
profile (light blue line). Position is scaled by the dimensionless system size, L= 30λ= 17.1, which is chosen to accommodate 30 segments, similar
to the 31 segments in zebrafish [17, 24]. Time is expressed in frames and 1 frame ≈ 0.0004 time units. Random initial conditions have mean μ = 0.01
and standard deviation σ0 = 0.05. Other parameters are as in Table 1.
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We find that decreasing the reaction wavefront velocity

below ]/]0 = 1 can reduce the fraction of defective patterns

(Figure 5A). This indicates that retarding pattern propagation

may be favorable for normal pattern formation. Normal pattern

formation is also affected by the shape of the reaction wavefront

(Figure 5B). The fraction of defective patterns peaks around β =

2, decaying both above and below this value. However, for small

β, the wavefront profile becomes too gradual and sequential

pattern formation is lost, compromising a key role of the reaction

wavefront (Supplementary Video S5). Thus, a steeper reaction

wavefront would be beneficial for normal pattern formation.

In summary, both the velocity and shape of the reaction

wavefront critically affect the fraction of defective patterns. A

slower and steeper wavefront could have a dual role: 1)

allowing for sequential pattern formation and 2) rendering

patterning more robust in the presence of random

fluctuations.

5 Sink profile wavelength and
strength

The forming notochord segments should align with

previously formed somites in the adjacent tissue. It is thought

that the adjacent paraxial mesoderm provides signals that

influence notochord segment formation to be in register with

somites [16]. In the theory, paraxial mesoderm signals are

introduced as an inhibitor sinks profile s(x) with a

characteristic wavelength and strength s0 (Eq. 12). In the

following section, we explore how the reaction wavefront

theory responds to changes in this sinks profile. To decouple

defects due to dynamic noise while perturbing sink wavelength

and strength, we set parameters σ = 0.1 and μ = 0.01 with a very

low fraction of defective realizations fd ≈ 0.02 (Figure 4H).

Alterations to the segmentation clock can induce changes

in somite length, as in the case of hes6mutant [17]. Therefore,

FIGURE 3
A perturbation in the posterior region of the notochord vanishes in a reaction wavefront scenario. Snapshots of solutions (A) of reaction
wavefront theory Eqs 15, 16, and (B) Eqs 13, 14 with σ = 0, without a reaction wavefront. A perturbation is introduced in the activator at frame t = 75.
Color coding and plot layout are as in Figure 2. Initial conditions are (A) randomwithmean μ=0.01 and standard deviation σ0 = 0.05 and (B) vanishing
except for the anterior perturbation. Other parameters are as in Table 1. Time is expressed in frames and 1 frame ≈ 0.0004 time units.

Frontiers in Physics frontiersin.org06

Fernández Arancibia et al. 10.3389/fphy.2022.933915

9695

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.933915


FIGURE 4
Effects of initial activity and noise in pattern formation. (A) Activator (green line), inhibitor (red line) patterns, and inhibitor sink profile (light blue
line) showingmisplaced peaks (blue triangles) and an unmatched sink (orange dot). (B) 〈fmp〉 for different values of μ and σ. (C) fmp vs. σ for fixed μ =
0.05. (D) fmp vs. μ for fixed σ = 0.7. (E)〈fus〉 for different values of μ and σ. (F)fus vs. σ for fixed μ = 0.05. (G)fus vs. μ for fixed σ = 0.7. (H) fd for different
values of μ and σ. (I) fd vs. σ for fixed μ = 0.05. (J) fd vs. μ for fixed σ = 0.7. (I and J) Errors in fd (dark cyan shade) are the standard deviation
determined using a statistical bootstrap. (C,D,F, and G) Middle line marks the median, box limits are 25 and 75 percentiles, and whiskers are 5 and
95 percentiles. Brackets 〈.〉 denote average over realizations. Other parameters are as in Table 1. In all cases, we performed 300 realizations for each
parameter combination.
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we next explore whether pattern formation can adapt to

different sink profile wavelengths. In the absence of a

wavefront and noise, Eqs 10, 11, and for a vanishing sink

profile s0 = 0, the unforced reaction–diffusion system selects a

natural wavelength λ0 = 0.398 that is determined by

parameters values (Supplementary Material). Thus, we

compute defect fractions for different sink profile

wavelengths λ, taking this natural wavelength as a

reference (Figure 6C). We find that for small profile

wavelengths, the predominant type of defect is unmatched

sinks (Figures 6A,C and Supplementary Video S6A). The

reason for this may be that the system often fails to produce

activator peaks at the short distances imposed by the sinks. In

contrast, for sufficiently large wavelengths, the predominant

type of defect is misplaced peaks (Figures 6B,C and

Supplementary Video S6B). Here the reason maybe that,

with enough space in between sinks, the system tries to

produce a segment of the shorter natural wavelength, so

activator peaks are often intercalated. For intermediate

profile wavelength values, we find a broad range where no

defects occur (Figure 6C). It is interesting that this defect-free

range is centered at λ/λ0 ≈ 1.4, which is away from the natural

wavelength λ0. This may result from a non-trivial interplay

between sinks and the unforced reaction–diffusion system,

which alters the patterning mode.

In addition to wavelength fluctuations, another possible

source of sink profile variability is the sink strength s0. To

characterize the effects of sink strength on pattern formation,

we first alter s0 uniformly across the axis. For large sink strength,

the fractions of defects are vanishing (Figures 6E,F). As the sink

strength is reduced, defect fractions abruptly grow to large values

(Figures 6D,F). When the sink strength is small, it may be

insufficient to entrain the formation of a segment at that

position. With this resolution, the onset of defects appears to

occur at a sink strength threshold s0 = 30.

Thus, segments form normally above a critical sink strength

and for a wide range of sink profile wavelengths. This tolerance

for different wavelengths is consistent with the hes6 mutant

phenotype. For short sink profile wavelengths, defects are

predominantly unmatched sinks, while for large wavelengths,

misplaced peaks dominate the defective patterns.

6 Sink profile fluctuations

So far, we have considered sink profiles with a fixed

wavelength, where sink positions are regularly spaced.

However, the segmentation clock that drives somite formation

is subject to fluctuations that may cause segment length

variability [16, 24, 25]. Thus, we next ask how the pattern

responds to local fluctuations in individual sink positions. To

introduce sink position fluctuations, we generate the sink profile

sequentially, placing sinks at perturbed positions a distance λ + δλ
from the previous sink. Here, δλ is a random variable uniformly

distributed in the interval ±Δλ, and Δλ controls the amplitude of

sink position fluctuations. We find that the reaction wavefront

theory is robust against small position fluctuations (Figure 7A).

Up to Δλ/λ = 0.25, we see a vanishing fraction of both defect

types, which then appear to grow gradually (Figures 7B and C).

Here, fluctuations in sink position are relative to a mean

wavelength λ = 0.57, so λ/λ0 ≈ 1.43 is close to the midpoint

of the defect-free region in Figure 6C. The defect-free region

spans a range that extends about 20% above and below this

midpoint, so fluctuations of up to 25% of the mean wavelength

are mostly included in the defect-free region of Figure 6C. Thus,

the observed onset of defects in Figure 7C may be due to the fact

that fluctuations of about 25% can cause consecutive sinks that

are either closer or further apart than the supported wavelengths

in the defect-free region.

In the embryo, the information provided by the paraxial

mesoderm could be variable along the segmenting axis. Thus, a

relevant question is how the reaction wavefront theory responds

to sink strength variability. We set individual sink strengths to s0
+ δs, where δs is a random variable uniformly distributed in the

interval ±Δs0, and Δs0 controls the amplitude of sink strength

fluctuations. The fraction of defects is vanishing or very small for

a wide range of the relative fluctuations amplitude Δs0/s0 (Figures
7D–F). For relatively large fluctuations Δs0/s0 = 1, the pattern can

correctly entrain to the sink profile even when individual sink

strength falls way below the critical threshold for uniform

profiles, asterisk in Figure 7E.

In summary, the system can buffer fluctuations in sink

position up to 25%. Stronger sink position fluctuations can

FIGURE 5
Reaction wavefront can modulate defect rates. Fraction of
defective patterns fd vs. (A) relative velocity ]/]0 and (B) steepness
β. Errors in fd (dark cyan shade) are the standard deviation
determined using a statistical bootstrap. Other parameters
are as in Table 1, except μ = 0.05 and σ = 0.7. In all cases, we
performed 300 realizations of each simulation.
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disturb the patterns inducing defects of both types.

Additionally, the median of defective fractions vanishes up

to a relative sink strength fluctuation Δs0/s0 = 0.85

(Figure 7F). With this value, sinks may be as weak as s0 =

12, which in uniform patterns generate large defect fractions

(Figure 6F). This indicates that nonuniform sink

profiles display a high tolerance for large sink strength

fluctuations.

7 Discussion

We presented a reaction wavefront theory describing

notochord pattern formation in zebrafish. Building on a one-

dimensional activator–inhibitor reaction–diffusion system

subject to external cues [16], we introduced a reaction

wavefront that travels from anterior to posterior and enables

reactions in its path. Although we do not know the nature of this

FIGURE 6
Sink profile wavelength and strength. Activator (green line) and inhibitor (red line) patterns together with the scaled sink profile (faint light blue
line) are shown for sink profiles of wavelength (A) λ/λ0 = 0.86 and (B) λ/λ0 = 2.086. Here, λ0 = 0.398 is the wavelength of the unforced pattern. Sink
profile (light blue line) is also shown separately in the top panels for clarity. (C) Fraction ofmisplaced peaks fmp (blue box plot) and unmatched sinks fus
(orange box plot) vs. relative sink profile wavelength λ/λ0. Activator and inhibitor patterns for sink profiles of strength (D) s0 = 10 and (E) s0 = 80.
Color coding and plot layout are as in panels (A and B). (F) Fraction of misplaced peaks fmp (blue box plot) and unmatched sinks fus (orange box plot)
vs. sink profile strength s0. Box plots in (C) and (F) are as in Figure 4. Other parameters are as in Table 1. In all cases, we performed 300 realizations for
each parameter combination.
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reaction wavefront, we can speculate that a maturation gradient

progressing posteriorly could trigger synthesis reactions. The

gradient progression could control the synthesis of an adaptor

molecule that binds DNA at the promoter of the activator and the

inhibitor, allowing binding and action of the activator.

Alternatively, the gradient could be an inhibitor of U and V

that is initially present across the notochord and then gradually

degraded as cells stop synthesizing it—or start degrading it

actively. Such mechanisms would make the activation terms

turn on when the maturation wavefront arrives at the cell. In

the context of our model, this could be described effectively by

parameters k1, k3, and k5 in Eqs 1and 2. In the dimensionless

FIGURE 7
Fluctuations in sink position and strength. Activator (green line) and inhibitor (red line) patterns together with the scaled sink profile (faint light
blue line) are shown for sink profiles with relative sink position fluctuation amplitudes (A) Δλ/λ=0.2 and (B) Δλ/λ=0.4.We choose ameanwavelength
λ=0.57, so λ/λ0 ≈ 1.43 is close to the center of the defect free region in Figure 6C. Sink profile (light blue line) is also shown separately in the top panels
for clarity. (C) Fraction of misplaced peaks fmp (blue box plot) and unmatched sinks fus (orange box plot) vs. relative sink position fluctuation
amplitudes Δλ/λ. Activator and inhibitor patterns for sink profiles with relative sink strength fluctuation amplitudes (D) Δs0/s0 = 0.1 and (E) Δs0/s0 = 1,
with mean sink strength s0 = 80. Color coding and plot layout are as in panels (A and B). (E) Asterisk marks a sink of strength s0 ≈ 15. (F) Fraction of
misplaced peaks fmp (blue box plot) and unmatched sinks fus (orange box plot) vs. relative sink strength fluctuation amplitude Δs0/s0. Box plots in (C)
and (F) are as in Figure 4. Other parameters are as in Table 1. In all cases, we performed 300 realizations for each parameter combination.
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theory, since γ ∝ k1, the wavefront γ(x, t) could be caused by a

posteriorly decreasing synthesis rate for the activator and other

coupled reactions.

First put forward by Turing [26] and later rediscovered by

Gierer and Meinhardt [27], reaction diffusion systems have been

applied to a variety of biological pattern formations [20]. Specific

molecular components and their interactions have been

proposed in some cases, such as for skin patterns in angelfish

[28] and zebrafish [29] and the primary hair follicle pattern

formation in the skin of vertebrates [30, 31], among other

examples [32]. While the conditions for pattern formation in

reaction–diffusion systems have been thought to be very

restrictive, recent efforts have shown that these conditions

may be relaxed in a wide range of cases. Along this line is a

proposal for a synthetic circuit architecture capable of patterning

with quenched oscillators that might be implemented in

synthetic multicellular systems or cell aggregates [33]. In

another study, the presence of a binding immobile substrate

was shown to relax the constraints on reaction kinetics for

diffusion-driven instability [34]. The need for constraints on

diffusion rates for Turing patterns was also challenged in a study

that used an automated framework to identify cell autonomous

features that allow for pattern formation [35]. More recently, the

plausibility of network motifs to give rise to reaction–diffusion

patterns was systematically surveyed by means of graph theory

[36]. Here, we have not chosen a specific network motif to

implement the cell autonomous component. Instead, we

choose a generic model to describe the dynamics, given that

we do not know the molecular components involved and their

interactions. It may be interesting future work to study howmore

specific networks respond to the presence of cues and a

wavefront.

In this article, we have considered a theory that can generate a

pattern from an unstable homogeneous state. Another possibility

could be a pushed front invading a stable homogeneous state that

is perturbed beyond unstable fixed points and is attracted by non-

vanishing stable fixed points [37, 38]. This can occur in the

context of an amplitude equation with a quintic term introducing

the possibility of a subcritical bifurcation. In our theory, the only

nonlinear term is the stabilizing cubic term in the activator

equation, so we expect that the amplitude equation will have

only up to third-order terms [39]. We expect that an additional

fifth-order term in the equation that contains the cubic

nonlinearity would cause a subcritical bifurcation and allow

patterning from a stable homogeneous state, without requiring

a wavefront. This could constitute an alternative scenario for the

notochord patterning, and it would be interesting to study how

this instability responds to an external input source providing the

cues for the segments.

In addition to the reaction wavefront, the theory accounts for

stochastic gene expression incorporating both noise in the initial

condition for the activities of the components and a dynamic

noise term in the differential equations. The theory describes the

sequential patterning of the notochord in register with cues, from

anterior to posterior, as observed in zebrafish [16], even in the

presence of noise (Figure 2). A perturbation in the posterior

region of the notochord should die out in the presence of a

reaction wavefront but grow and generate a non-sequential

defective pattern in its absence (Figure 3). Thus, the reaction

wavefront hypothesis could be tested by introducing a bead

soaked in the activator within the posterior notochord region.

In the embryo, the wild-type notochord segments are in

register with the previously patterned paraxial mesoderm: one

notochord segment is formed for each adjacent pair of somites.

Thus, in the theory, we hypothesize that cues from somite

boundaries instruct the notochord patterning mechanism,

taking the form of a sink profile for the inhibitor. A normal

pattern is defined by a one-to-one correspondence between

individual activator peaks and inhibitor sinks. Two types of

defects can occur in the theory: an inhibitor sink without a

corresponding peak and a peak that does not have a

corresponding inhibitor sink. Such defects may be amenable

to observation in the embryo since somite boundaries can be seen

as morphological landmarks with a bright field microscope or the

DMD transgenic line [40], and notochord segment precursors

can be revealed using a reporter for entpd5 [16].

In the dimensionless theory that we considered here, the sink

profile appears under the control of the wavefront γ(x, t) (see Eq.

16). However, note that if the spatiotemporal dependence of γ(x,

t) is given by k1 as we hypothesize above, the sink term would be

time-independent, since s0 = S0/k1 in the dimensionless theory

(Eq. 9). This could be made explicit by keeping the sink term out

of the wavefront in Eq. 7, by introducing an additional

dimensionless parameter ζ = T0S0 that is constant in time and

uniform in space, that is, not wavefront controlled.

Both wavefront velocity and steepness can modulate defect

rate (Figure 5). We observe an interesting non-monotonic

relation of the fraction of defective patterns with the

wavefront steepness, peaking at β = 2. However, below this

vale of β, the wavefront becomes very gradual, causing the

pattern to trigger ahead of the wavefront middle point, with

more than one activator peak forming simultaneously. We

speculate that this might allow the reaction system to read the

information of more than one sink in advance and accommodate

the activator peaks more reliably. We also observe that slower

wavefront velocities cause a decrease in the fraction of defective

patterns, suggesting that this could be beneficial for embryonic

patterning. A slower wavefront may allow the reaction system to

average out fluctuations introduced by the dynamic noise source,

and this may prevent defect formation. It is intriguing that while

zebrafish somitogenesis takes about 12 h, notochord patterning is

relatively much slower, taking about 3 weeks [16]. The theory

predicts that accelerating the wavefront in a wild-type context

may induce segment defects. A possible test of this prediction

could be to slow down the wavefront in an experimental

condition that is prone to making defects. Presumably,
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transcriptional noise levels would be increased in a heterozygous

mutant for a component of the notochord patterning system. In

this context, the notochord pattern would be expected to make

more defective segments, and we could ask whether a slower

wavefront can partially rescue the phenotype.

The hes6mutant has larger somite segments and still patterns

the notochord in register with these [17]. Consistent with this,

here, we find a broad range of sink profile wavelengths where no

defects occur (Figure 6C). Different defect types dominate for

large and small wavelengths. For sufficiently small wavelengths,

the system fails to produce peaks at such short distances, so it

often misses every other sink. For large wavelengths, the pattern

often intercalates a peak in between sinks. These characteristic

defective patterns could be tested experimentally in conditions

with altered somite lengths. Very small somites would cause

notochord defects that skip adjacent somite boundaries, while

large somites would cause misplaced notochord segments to

happen more often. The transient modulation of Fgf or Wnt

signaling during somitogenesis may provide a means to locally

induce the formation of a small number of somites with altered

length [41, 42], offering a way to test these predictions for

segment lengths outside the range observed in the known

segmentation clock period mutants.

We found an abrupt transition to defective patterns as a

function of sink strength (Figure 6F). To decouple defects due to

dynamic noise while perturbing sink strength, in this work, we

have chosen a low dynamic noise strength σ = 0.1. There may be

an interplay between sink strength and dynamic noise strength in

determining both the onset and shape of this transition. This

remains an interesting open question for future work.

Sink profile alterations may involve sink strength and

wavelength fluctuations. There is a minimum sink strength

required for the pattern to follow sink cues normally

(Figure 6). However, in a sink profile with fluctuating

strengths, sink strength values below the threshold do not

cause pattern defects as long as they are surrounded by

stronger sinks (Figure 7). Furthermore, fluctuations of up to

20% in the distance between sinks do not cause pattern defects

(Figure 7). This is important because, in the embryo, we can

expect some variability both in the intensity of cues provided by

somite boundaries and in the distances between them [25]. We

have not considered the changes to sink width and steepness, that

is, sink shape fluctuations, which may be an interesting topic for

future work.

The role of the notochord in vertebral column

development seems to differ in different species, such as

amniotes and teleosts [19]. The amniote notochord lacks

the layer of epithelial cells and is formed by vacuolated

cells only, surrounded by an extracellular matrix [43]. In

chicks, vertebrae are thought to derive entirely from somite

cells, while a cross-talk between somites and notochord

ensures that the notochord contribution to vertebral discs

is in register with vertebral bodies [43]. In teleosts, the inner

part of the vertebral bodies derives from notochord cells [13].

In particular, zebrafish notochord sheath cells are the initial

substrate for the vertebral bodies patterning and formation. A

sequential ring-like pattern of entpd5 expression is observed

in the notochord sheath cells as the first sign of vertebral

patterning [16]. In this work, we considered the notochord as

a one-dimensional tissue for simplicity. In future work, it

would be interesting to study ring pattern formation

considering the notochord as a cylindrical surface. This

geometry might support a richer variety of patterns, for

example, helical defects.

The notochord tissue has remarkable mechanical properties.

It is thought that the notochord serves as a hydrostatic scaffold

during embryonic development [44, 45]. The particular

structural configuration of the notochord, with the central

vacuolated cells and its enveloping sheath cells, provides it

with mechanical support as well as elasticity [18, 46].

Caveolae located in the vacuolated cells are essential for

notochord structural integrity [47]. The arrangement of

vacuolated cells is achieved by a self-organizing mechanical

process and has been realized in a physical notochord model

[48]. Here, we have considered a purely biochemical mechanism

of notochord patterning. An interesting question for future

enquiry is whether mechanical signaling has a role in

providing either the sink cues or some other aspect of the

patterning mechanism.

In summary, we have presented a possible scenario for an

autonomous notochord patterning mechanism. The reaction

wavefront theory is consistent with the observed

spatiotemporal pattern in the notochord. We expect that this

work will motivate future experimental designs to test the distinct

predictions from this theory.
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Many emergent, non-fundamental models of complex systems can be described naturally
by the temporal evolution of spatial structures with some nontrivial discretized topology,
such as a graph with suitable parameter vectors labeling its vertices. For example, the
cytoskeleton of a single cell, such as the cortical microtubule network in a plant cell or the
actin filaments in a synapse, comprises many interconnected polymers whose topology is
naturally graph-like and dynamic. The same can be said for cells connected dynamically in
a developing tissue. There is a mathematical framework suitable for expressing such
emergent dynamics, “stochastic parameterized graph grammars,” composed of a
collection of the graph- and parameter-altering rules, each of which has a time-
evolution operator that suitably moves probability. These rule-level operators form an
operator algebra, much like particle creation/annihilation operators or Lie group
generators. Here, we present an explicit and constructive calculation, in terms of
elementary basis operators and standard component notation, of what turns out to be
a general combinatorial expression for the operator algebra that reduces products and,
therefore, commutators of graph grammar rule operators to equivalent integer-weighted
sums of such operators. We show how these results extend to “dynamical graph
grammars,” which include rules that bear local differential equation dynamics for some
continuous-valued parameters. Commutators of such time-evolution operators have
analytic uses, including deriving efficient simulation algorithms and approximations and
estimating their errors. The resulting formalism is complementary to spatial models in the
form of partial differential equations or stochastic reaction-diffusion processes. We discuss
the potential application of this framework to the remodeling dynamics of the microtubule
cytoskeleton in cortical microtubule networks relevant to plant development and of the
actin cytoskeleton in, for example, a growing or shrinking synaptic spine head. Both
cytoskeletal systems underlie biological morphodynamics.
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1 INTRODUCTION

Many emergent, non-fundamental models of complex systems
can be described naturally by the temporal evolution of spatial
structures with some nontrivial discretized topology, such as a
graph with suitable discrete and/or continuous state-
determining parameter vectors labeling its vertices. In
materials science, there can be dynamic networks of fractures
or extended crystal defects. Biological examples include the
network of adjacent cells in a tissue or the dynamic
polymeric cytoskeleton within a single cell. Such biological
examples arise in development, where one has
morphodynamics (dynamics of the form) at both the tissue
and cellular level, and they are interrelated. In this study, our
examples will mainly be taken from the domain of graph-like
structural dynamics in the cytoskeleton, in these two domains of
biological pattern formation and morphodynamics (Vos et al.,
2004; Hotulainen and Hoogenraad, 2010; Sampathkumar et al.,
2014; Chakrabortty et al., 2018; Bonilla-Quintana et al., 2020).

In previous work [(Mjolsness, 2019a), Propositions 1 and 2],
we showed that the parameterized or labeled graph rewrite rule
operator semantics specified there (in two versions, one without
and one with hanging edge removal) is contained within a
somewhat larger operator algebra closed under addition, scalar
multiplication, and operator multiplication (and hence under
commutation, as in a Lie algebra).

The purpose of this study is to show explicitly and
combinatorially what this operator algebra is: under either
semantics (hanging edges removed or not), the vector space
spanned by the graph rewrite rule operators previously defined
form an operator algebra and a Lie algebra among all such graph
rewrite rule operators, under an explicit formula to be presented
in Section 2.4. In particular, the product of the state-changing
portions of two such operators can be written as a sum of such
operators with nonnegative integer weights, and the full product
and commutator of two such operators can be written as a sum of
such operators with integer weights.

These results arise within a larger scientific scope discussed at
length in Mjolsness (2019a), including grammar-like or rule-
based structured models of molecular complexes (Blinov et al.,
2004) and of tissues with dividing cells (Mjolsness et al., 1991;
Prusinkiewicz et al., 1993). Potential applications include
cytoskeletal dynamics in cellular and developmental biology,
neurobiology, and smart materials, as well as the dynamics of
more abstract, non-spatial graphs in a wide variety of fields. We
will illustrate with subcellular cortical microtubule biophysical
dynamics that are important at the cellular and tissue level of
plant development.

Given state-changing operators Ŵr for the rules in grammar,
for example, as outlined in Section 2.2, the Master Equation for
the stochastic dynamics is as follows (Mjolsness and Yosiphon,
2006):

dp

dt
� W · p, probability flows according toW( ), where (1a)

W �∑
r

Wr, rule operators sumup( ) (1b)

Wr ≡ Ŵr-Dr, rules conserve probability( ) (1c)
Dr ≡ diag 1 · Ŵr( ) total probability outflow per state( ) (1d)

[generalizing (Doi, 1976a; Doi, 1976b; Mattis and Glasser, 1998)
for stochastic chemical reaction networks], where probability is
defined over a suitable Fock space for varying numbers of graph
nodes (with labels) and graph edges. Supplementary Section SC
discusses how this framework can be used to model stochastic
chemical reaction networks, using the algebras of elementary and
compound Wr operators.

In this study, the goal is to explicitly calculate the key operator
algebra identity for such operators Ŵr, as exhibited in Eq. 16 of
Section 2.4, with important corollaries in Sections 3.4, 3.5, and
proven in Section 3 and Supplementary Material SA, and to
extend it to the differential equations case. The exposition will be
organized in three successive levels of detail: first a statement of
the main results (Section 2), then a sketch of the general
computations and theorems, including their corollaries
(Section 3), then a collection of examples (Section 3.7),
followed by Supplementary Material, which refines the
explicit operator semantics and contains the full calculations.

2 PROBLEM STATEMENT

We first recapitulate the required operator algebra definitions and
then state our problems. In Section 2.1, we will define graphs,
labeled graphs, and graph grammars. In Section 2.2, we will use
operator algebra to define the semantics of graph grammar rules
and graph grammars. Then, in Section 2.3, we will state the
operator algebra problems, and in Section 2.4, we will preview
the main results of the study. The methods in this study will be
purely theoretical: performing operator algebra calculations that
establish concise results that solve the stated problems.

2.1 Graph Grammar Rule Syntax
The definitions of this section informally summarize the more
systematic definitions of Mjolsness (2019a) (Supplementary
Material). A graph is an unordered set V of “vertices” or
“nodes,” together with a set E of “edges” or “links,” each of
which is, or corresponds to, either 1) an unordered pair of vertices
{u, v}, for an “undirected edge,” 2) an ordered pair of vertices (u,
v), for a “directed edge,” or 3) a singleton vertex {v} (or
equivalently the ordered pair (v, v)), for a “self-edge.” An
unordered pair of vertices cannot have both directed and
undirected edges, except in the sense that a pair of oppositely
directed edges can represent an unordered edge. An “undirected
graph” has only undirected edges; a “directed graph” has only
directed edges; either kind can allow self-edges or not. This notion
of a graph encompasses undirected graphs and directed graphs,
with or without self-loops, in a way that is compatible with the
computational representation of a graph as an adjacency matrix.

A labeled graph adds the extra structure of a mapping from
vertices in V to labels in label set Λ. Labeled graphs (with node
labels as above) can be used to encode and implement many other
kinds of graphs, such as multigraphs, edge-labeled graphs
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mapped to bipartite- (node-) labeled graphs, hypergraphs, and
abstract cell complexes.

More technically, a numbered graph is a labeled graph in
which the label set is an initial subset Λ′ = {1, . . .n} of the natural
numbers, and the assigned node labels are unique (so |Λ′|≥|V|).
In this case, there is an induced total ordering on the vertex set V,
breaking the prima facie permutation invariance of the vertices
of the graph. If all numbers in |Λ′| are assigned (so |Λ′| = |V| by
1-1 correspondence), then such a numbered graph can be
represented uniquely by a 0/1-valued adjacencymatrix recording the
presence or absence of directed edges (i= λ(u), j= λ(v)), where i and j
are integer-valued “index” labels, with undirected edges encoded by
the presence of two oppositely directed edges and self-edges recorded
by diagonal matrix entries. The case |Λ′| > |V| is required just to
define a consistent numbering of several graphs, not all of whose
vertices can be identified across graphs.

A labeled graph can be represented (perhaps nonuniquely) by
a numbered graph G together with a vector of labels 〈〈λ1, . . .λi,
. . .λn〉〉 that map vertex indices i to vertex labels; the resulting
labeled graph combination is denoted G〈〈λ1, . . .λi, . . .λn〉〉.
Elements λ of the label set Λ can themselves take the form of
a vector or tuple with d components; if d = 0, then there is only
one label and the labeled graph is equivalent to an unlabeled
graph again.

Given these definitions, the “syntax” of a graph grammar
rewrite rule takes a form involving two labeled graphs that have
been decomposed into two consistently numbered graphs and
their label maps:

G〈〈λ1, . . . λn〉〉 → G′〈〈λ1′, . . . λn′′ 〉〉 with ρ λ1, . . . λn, λ1′, . . . λn′′( ).
(2)

Such an expression represents a discrete local transformation that
can act or “fire” anywhere that the left-hand side (LHS) labeled
graph G〈〈λ1, . . .λi, . . .λn〉〉 matches (occurs as a labeled
subgraph, with matching edge structure and labels) within
a potentially much larger system graph that comprises the
current state of a system model. Of course, many rule firings
may be possible for a given rule and system graph; it is up to
the semantics outlined below to determine what actually
happens with what probability and when. That will depend
on the non-negative function ρ, the propensity, or rule firing
probability per unit time. By making ρ a function of the λs, we
allow that one syntactic rule, as above, can specify many
grounded rules, each of which has all λs replaced with
constant values, as in the integration semantics provided
in the next section. The integrable measure spaces in
which labels λi live were outlined in Mjolsness and
Yosiphon (2006).

Such a graph rewrite rule is expressed in terms of a single
consistent numbering of the vertices of the two numbered graphs.
Therefore, vertices in G and G′ that share a vertex number are
regarded as “the same” vertex v, before and after rewriting, and
any graph edges contacting v but not mentioned in the rewrite
rule are preserved. In this way, graph rewrite rules can operate
within a broader graph context. On the other hand, the particular
consistent numbering chosen is arbitrary and does not matter.

The semantics in the next section will be invariant with respect to
permutations of the consistent numbering.

For example, Eq. 3 below specifies a part of the refinement
process for 2D triangular meshes. Each graph node bears an
integer parameter l denoting a local level number for the depth of
refinement. This rewrite rule is one of four that suffice to
implement a standard triangular mesh refinement scheme. The
other three rules handle partially refined triangle edges, an
unavoidable consequence of the previous refinement of
adjacent triangles. Further details are provided by Mjolsness
(2019a). The labeled graph rewrite rule is

(3)

with some constant propensity ρ (omitted). Of course, it is also
possible to provide a linear, textual representation of a numbered
graphG, if only as a list of its edges between ordered pairs of index
values.

2.2 Graph Grammar Rule Semantics
Let indices i1, . . .ik range over many graph nodes that can each be
allocated to model the state of some object in a modeling domain.

In the following, as elaborated in Mjolsness (2010) and
Mjolsness (2013), stochastic labeled graph grammar (SLGG)
rule semantics with vectors λ, λ′ of incoming and outgoing
graph node labels can be thought of as stochastic
parameterized graph grammar (SPGG) semantics when the
labels are taken to be functions λ(X) and λ′(X) of some vector
of parameters or variables X. The rule semantics is obtained by
integrating over all possible values of a vector of rule variables X
that appear in the graph labels λ, λ′; as a special case, some labels
and/or parameters could be constant. Then,

Ŵr � ∫ dμr X( )Ŵr λ X( ), λ′ X( )( ), (4)

where μr(X) is a suitable measure that could be discrete in one or
several dimensions (so, the integral becomes a sum or multiple
sum) or continuous in one or several dimensions (so the integral
may be a multiple integral), or a multidimensional combination
of discrete and continuous components. However, any
continuous measures can be approximated by discrete ones to
retain the essentially combinatorial nature of the proofs below. In
addition, the label functions λ(X) and λ′(X) can include extra
components, which are constant, for the given rule number r.
These are not to be integrated over, so they are not part of the
variable X.

We provided examples of such graph grammar rules for mesh
refinement in Mjolsness (2019a) and will exhibit graph grammar
rules for coarse-grained models of plant cortical microtubule
dynamics in Section 3.7.1.
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Consider a graph rewrite rule expressed, in part, as Gr in(λ(X))
→ Gr out(λ′(X)), where Gr in and Gr out are graphs with the given
vectors of labels and an arbitrary but shared numbering of their
nodes. Define “∑〈i1 ,...ik〉≠ . . .” to be a sum over indices (i1, . . .ik)
constrained so that each il is unequal to all the others. Then, in the
simplest case (but see Supplementary Section SA.4.3), we define
the time-evolution operator of a graph rewrite rule:

Ŵr � 1
Cr Nmax free( )∫ dμr X( ) ρr λ X( ), λ′ X( )( )
× ∑

〈i1 ,...ik〉≠
âi1 ,...ik Gr out( )ai1 ,...ik Gr in( ) (5)

where, as explained by Mjolsness (2019a), the graph grammar
rule operator first annihilates all the edges and labeled nodes in
the incoming “left hand side” graph G = Gr in and then, but
uninterruptibly and with zero time delay, creates the
corresponding elements of the outgoing “right-hand side”
graph G′ = Gr out:

âi1 ,...ik G′( ) � âi1 ,...ik Glinks′( )âi1 ,...ik Gnodes′( )
� ∏

s′,t′∈rhs r( )
âis′ it′( )g′s′t′⎡⎣ ⎤⎦ ∏

v′∈rhs r( )
âiv′λ′v′

⎡⎣ ⎤⎦

� ∏
s′,t′( )∈Glinks′

âis′ it′
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∏

v′∈Gnodes′
âiv′λ′v′

⎡⎣ ⎤⎦

ai1 ,...ik G( ) � ai1 ,...ik Glinks( )ai1 ,...ik Gnodes( ) � ∏
s,t∈lhs r( )

ais it( )gs t⎡⎢⎢⎣ ⎤⎥⎥⎦ ∏
v∈lhs r( )

aivλv
⎡⎢⎢⎣ ⎤⎥⎥⎦.

� ∏
s,t( )∈Glinks

ais it[ ] ∏
v∈Gnodes

aivλv[ ].

(6)

The sets lhsr and rhsr comprise the nodes or vertices in the left-hand
side and right-hand side graphs,G andG′, with adjacencymatrices g
and g′, of rule r. The creation and annihilation operators âα and aα
are the 2 × 2 {0, 1}-valuedmatrices that add or remove a “particle” (a
graph node or link) if possible and, otherwise, yield a probability
vector of zero in a many-particle-type Fock space (Mjolsness and
Yosiphon, 2006, Sections 3.2, 3.3), simplified from Reed and Simon
(1980). They are closely related to the Doi formulation of chemical
reaction networks (Doi, 1976a; Doi, 1976b;Mattis andGlasser, 1998)
described in SupplementaryMaterial SC, as discussed byMjolsness
and Yosiphon (2006), except that the maximum number of identical
“particles” of each subscript combination is taken to be one rather
than countable infinity. Node labels λv take values in a discrete set or
a continuum well approximable in computational implementations
by discrete sets such as the set of floating-point numbers. The
“probabilistic Fock spaces” comprising probability distributions over
graph nodes and edges, on which all these operators act, apply to
discrete and/or continuous node labels, including edge information.

The two matrices g and g′ share the same consistent
numbering of graph nodes (i.e., graph vertices) so that a given
node number s can be directionally connected to other nodes t in
graph g iff gs t = 1, graph g′ iff g′s t � 1, or both; and the
corresponding individual links (i.e., graph edges) given by
nonzero entries in these two matrices can be independently
present or absent. Because of the “∑〈i1 ,...ik〉≠ . . .” form of this
operator (Eq. 5), each such operator is invariant under any global
permutation Σ operating on the object-modeling domain graph
nodes indexed by is, and it is also invariant under any
permutation σ operating on the consistent graph numbering of

the graph rule nodes indexed by s, t. This permutation invariance
is essential in making the rewrite rule apply to graphs, which do
not have an intrinsic ordering to their vertices. However, the
permutation symmetry can be and usually is partially broken by
graph labels and/or connectivity. The normalizing factor of 1/
Cr(Nmax free) in Eq. 5 may be required to account for the
numbering degeneracy of possible new graph nodes added by
the right-hand side graph, as shown in Supplementary
Section SA.2.

The denominator 1/Cr(Nmax free) in Eq. 5, like the sum over
permutations “∑〈i1 ,...ik〉≠ . . .,” helps account for the change of
representation between abstract graphs with their unordered
nodes, and computer-representable nodes that are associated
with an arbitrary but ordered integer index ik such as location
in computer memory. In particular, the representation of one
or more new graph nodes required by the firing of rule r must
be drawn from some available pool of one or more available
indexed nodes. This is an arbitrary choice. Cr(Nmax free) counts
the number of ways this choice can be made, weighted equally,
and ensures their total propensity adds up to what is required
by the rest of the expression in Eq. 5. The actual count depends
on the details of memory management as discussed in
Supplementary Sections SA.2, SA.4.2; it could be as low as
Cr = 1, but that may require a serial implementation of the
simulation computation.

Undirected graphs can be encoded as a special case in which
matrix g is symmetric. Node- and edge-labeled graphs can be
encoded as a special case in which node labels come in two colors,
the graph is bipartite (alternating node-colored with edge-colored
nodes), and all the edge-colored nodes have degree two.

Another useful form of Eq. 5 is to factor out any graphK that is
completely unchanged. This form is exhibited in Supplementary
Section SA.1.

Returning to Eqs 5, 6, we can combine them to write out more
explicitly

Ŵr � 1
Cr Nmax free( )∫ dμr X( ) ρr λ X( ), λ′ X( )( )
× ∑

〈i1 ,...ik〉≠
∏

s′,t′∈rhs r( )
âis′it′( )g′s′t′⎡⎣ ⎤⎦ ∏

v′∈rhs r( )
âiv′λ′v′

⎡⎣ ⎤⎦

× ∏
s,t∈lhs r( )

aisit( )gs t[ ] ∏
v∈lhs r( )

aivλv[ ].
(7)

Two models defined by the Master Equation (ME) will be
“equivalent” if their state variables can be identified so that
solutions of the Master Equation are identical in all
statistically observable respects: in all moments of all number
operators at all choices of observation times. If α indexes the
observable numbers nα of objects and relationships and Nα is the
corresponding number operator, then we can read out a broad
range of joint probabilities with the moments of Kronecker delta
functions:

PrME nα q( ) tq( )|q[ ]( ) �〈∏
q

δ Nα q( ) tq( ) − nα q( )Iα q( )( )〉
ME

(8)
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where a collection indexed by q of values nα(q) of number
operators Nα(q) are measured at times tq and the ensemble
average taken. As the operative definition of equivalence, we
demand equality of all such moments. Other observables
〈f([Nα(q)(tq)|q])〉ME (where f is applied component-wise to
diagonal matrices) follow from Eq. 8 as a linear basis.

2.2.1 Application to ODE Rules
There is a natural application of the foregoing class of operator to
incorporate ordinary differential equation (ODE) dynamics on
parameters appearing in the graph labels, for example, the
positions and other continuous state information of particles
denoted by labeled graph nodes. We define a stochastic
parameterized graph grammar incorporating differential
equation bearing rules as dynamical graph grammar (DGG).
Suppose the concatenated vector x of real-valued node
parameters in a local graph neighborhood matching graph
Gr(x), which is otherwise unchanged from the left-hand side
to right-hand side of the rule, obeys the coupled differential
equation system dx/dt = v(x). As shown by Eq. 21 in Mjolsness
(2013), using Dirac delta functions in a physicist’s style of
calculation rather than a mathematical analyst’s, it suffices to
consider an operator of an especially simple form, with the same
graph nodes and edges on the left and right sides, and changes
only to node labels:

ŴODE r � Ŵr � ∫ dμr x( )dμr y( ) ρr y, x( )
∑

〈i1 ,...ik〉≠
âi1 ,...ik Gr y( )( )ai1 ,...ik Gr x( )( ), where (9a)

ρr y, x( ) � −▽y · v y( )δ y − x( )( )
� −∑

a

▽ya va y( )∏
b

δ yb − xb( )⎛⎝ ⎞⎠. (9b)

It is important that the combined definitions of integration
measure μ, derivative ▽, and Dirac delta function δ should
support integration by parts in Eq. 9, as, for example,
Lebesgue does with the usual derivative operator and Dirac
delta choices. We will assume the same can be said for
whatever finite approximation of differential equation solving
is to be run on a computer implementation, noting in support of
this assumption the extensive literature on summation by parts
and its generalization to memetic differential equation solution
methods satisfying the identities of vector differential and integral
calculus (Corbino and Castillo, 2020); as further support, we have
noted the existence of a DGG simulation algorithm with a
running implementation (Yosiphon, 2009; Mjolsness, 2013).

Clearly, the top line of Eq. 9 is a special case of our general
algebraic form for Ŵr if Dirac delta functions are admitted into
the expressions for ρr. Moreover, if not, we can take a suitable σ→
0 parametric limit of width-σ Gaussians to approach all the Dirac
deltas at the end of all other calculations. This expression (Eq. 9)
is already flux-balanced, so the corresponding DODE r = 0 and
WODE r � ŴODE r. However, an important mathematical
difference is that these ρ functions can no longer be
guaranteed to be non-negative because velocities v in the

ODEs have no sign restriction. A second important
mathematical difference will be encountered in the
commutation relations for creation/annihilation operators
parameterized by the below real-valued labels: Kronecker
deltas become Dirac deltas. The resulting approach based on
Eq. 9 leads to Proposition 1 of Section 3.6.

In this way, the proofs of Theorems 1 and 2 remain essentially
unchanged, but their function spaces are reinterpreted to yield a
nontrivial generalization in the expressive power of the rules,
generalizing from stochastic parameterized graph grammars to
dynamical graph grammars. A simulation algorithm for dynamic
graph grammars is described in Mjolsness (2013). Mjolsness and
Yosiphon (2006) and Mjolsness (2010) also show how to further
extend this approach of Eq. 9 to stochastic differential equations
(SDEs).

2.2.2 Products and Commutators of Graph Rewrite
Operators
From Eqs 5, 6, we can compute the product:

Ŵr2Ŵr1 �
1

Cr1 Nmax free( )
1

Cr2 Nmax free( )∫∫ dμr1 X1( )dμr2 X2( ) ρr1 λ1 X1( ), λ1′ X1( )( )
× ρr2 λ2 X2( ), λ2′ X2( )( ) ∑

〈j1 ,...jk2〉≠
∑

〈i1 ,...ik1〉≠
âj1 ,...jk2 Gr2 out

links( )
× âj1 ,...jk2 Gr2 out

nodes( )aj1 ,...jk2 Gr2 in
links( )aj1 ,...jk2 Gr2 in

nodes( ) × âi1 ,...ik1 Gr1 out
links( )

× âi1 ,...ik1 Gr1 out
nodes( )ai1 ,...ik1 Gr1 in

links( )ai1 ,...ik1 Gr1 in
nodes( ), (10)

and consequently,

Ŵr2Ŵr1 �
1

Cr1 Nmax free( )
1

Cr2 Nmax free( )∫∫ dμr1 X1( )dμr2 X2( ) ρr1 λ1 X1( ), λ1′ X1( )( )
× ρr2 λ2 X2( ), λ2′ X2( )( ) ∑

〈j1 ,...jk2〉≠
∑

〈i1 ,...ik1〉≠
âj1 ,...jk2 Gr2 out

links( )
× aj1 ,...jk2 Gr2 in

links( )âi1 ,...ik1 Gr1 out
links( )[ ]ai1 ,...ik1 Gr1 in

links( )
× âj1 ,...jk2 Gr2 out

nodes( ) aj1 ,...jk2 Gr2 in
nodes( )âi1 ,...ik1 Gr1 out

nodes( )[ ]ai1 ,...ik1 Gr1 in
nodes( ).

(11)

We now discuss the emergence of a new combined propensity
function ρr2;1(Y2, Z,X1) for the product of rule operators in Eq. 11,
which will arise from delta functions that appear in commutators of
elementary operators. The form of ρr2;1 is given in Eq. 14.

In general, the commutator of elementary operators will either
be zero or proportional to a Kronecker or Dirac delta function,
which removes one of the multiple summations or integrations
over parameters in the foregoing expression. For example, in the
case of continuous parameters X, we may have dμ(X) = Lebesgue
measure, encountering Dirac delta functions arising from the
operator algebra:

∫dy2dx2 ∫dy1dx1ρr2 y2 , x2( )ρr1 y1 , x1( )δDirac x2 − y1( )O y2 , x2 , y1 , x1( )
� ∫dy2dzdx1ρr2;1 y2 , z, x1( )O y2 , z, z, x1( ). (12)

Likewise, for discrete label variables, we will have dμ(X) = a
discrete measure so that the integral is a sum, together with
Kronecker deltas arising from the operator algebra:

∑
α2 β2

∑
α1 β2

ρr2 β2, α2( )ρr1 β1, α1( )δKronecker α2, β1( )O β2, α2, β1, α1( )
� ∑

β2 γ α1

ρr2;1 β2, γ, α1( )O β2, γ, γ, α1( )
(13)
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where O is a suitable operator expression and where scalar
functions combine simply by multiplication and delta-induced
parameter substitution:

ρr2;1 Y2, Z, X1( ) ≡ ρr2 Y2, Z( )ρr1 Z,X1( ), (14)
where the capital letter parameters are vectors of discrete and/or
continuous parameters. Eq. 14 preserves the non-negativity of ρ
scalar functions if rules r1 and r2 have it. Following Eq. 10, the
variables Z will subsequently be integrated out. This parallelism
between discrete and continuous versions of the identity∫dμ(x)δ(x − y)f(x) = f(y) is the fundamental reason that
Theorems 1 and 2 can be extended to the continuous case
described in Proposition 1.

Given a formula for the product Ŵr2Ŵr1 of two (in general
non-elementary) graph rewrite rule operators, their commutator
is of course just

Ŵr2, Ŵr1[ ] � Ŵr2Ŵr1 − Ŵr1Ŵr2 (15)
The products and commutators of full probability-conserving
rule operators of the form Wr � Ŵr −Dr also follow directly.
Nevertheless, the operator commutator is mathematically a
fundamental object.

2.3 Three Problems to Solve
We can now state the central problems of this study:

(1) Up to equivalence, can the product of two graph grammar
rewrite rule operators be expressed in terms of a sum of such
operators, and if so, how?

(2) Likewise for the commutator of such operators: up to
equivalence, can the commutator of two graph grammar
rewrite rule operators be expressed in terms of a sum of such
operators, and if so, how?

(3) Do these results extend to dynamical graph grammars, which
by definition include rules that bear differential equations?

2.4 Preview of Main Results
After a calculation and several arguments, the main result that
answers the foregoing questions will be an operator algebra
equivalence that turns a product of graph rewrite operators
into a sum of other graph rewrite operators. The required sum
is taken over two sets of recognizable combinatorial objects: first,
the possible edge-maximal subgraphs H in the output side of rule
r1 that match the structure and labels of some subgraph Ĥ of the
input side of rule r2, representing their possible overlap of rule
firing action, and second, the one or more possible distinct maps
h along which such a one-to-one matching can occur. The
equation is

ŴGr2 in→Gr2 outŴGr1 in→Gr1 out ≃ ∑
H⊆Gr1 out ≃ ~H⊆Gr2 in

| edge-maximal

∑
h:H-

1–1
~H

ŴG1;2 in ~H( ) →
h

G1;2 out H( ) (16)

where the new labeled graphs, roughly given by

G1;2 in ~H( ) � Gr1 in _∪ Gr2 in\ ~H( )
G1;2 out H( ) � Gr2 out _∪ Gr1 out\H( ), (17)

and their labeled graph overlap will be defined more carefully in
Section 3. The binary set difference “\” and disjoint union “ _∪”
operators apply directly to the vertices in the respective graphs but
extend to all associated edges to result in valid graphs. Scalar
functions ρr will combine by multiplication and parameter
substitution, as in Eq. 14. Note that all integer weights on the
left-hand side of Eq. 16 are nominally zero or one. However, because
the same or equivalent operators could arise multiple times, the
weights are actually nonnegative integers.

In this way, the operator algebra of graph rewrite rules is
“lifted” from the level of creation/annihilation operators on
elementary binary random variables to the more abstract and
structural level of well-formed labeled graph rewrite rules.

This result will be shown without (Theorem 1, Section 3.4, and
Supplementary Section SA.5) and with (Theorem 2, Section 3.5, and
Supplementary Section SA.6) hanging edge cleanup semantics.
First (Sections 3.1–3.3 and Supplementary Sections SA.2–SA.4),
we will discuss some of the used operator algebra calculational
techniques and strategies without claiming any optimality for them.

As direct corollaries (Corollaries 1 and 5, Sections 3.4, 3.5),
the full operators Wr � Ŵr −Dr obey a similar product ≃
integer-weighted sum operator equivalence, except that the
integer-weighted sum over graph rewrite rule operators on the
right-hand side can have both positive and negative integer
weights. Also, as direct corollaries (Corollaries 2 and 6,
Sections 3.4, 3.5), the same is true for the commutators:

ŴGr2 in→Gr2 out , ŴGr1 in→Gr1 out[ ] ≃ ∑
H⊆Gr1 out ≃ ~H⊆Gr2 in

H≠∅ ∧ edge−maximal

∑
h:H-

1-1
~H

ŴG1;2 in ~H( ) →
h

G1;2 out H( )

− ∑
H⊆Gr2 out ≃ ~H⊆Gr1 in

H≠∅ ∧ edge−maximal

∑
h:H-

1-1
~H

ŴG2;1 in ~H( ) →
h

G2;1 out H( )

(18)

except that the integer-weighted sum over graph rewrite rule
operators on the right-hand side can have both positive and
negative integer weights, and the H = ∅ terms always drop out.

In addition, in the course of proving these two theorems, we
exhibit in each case a constructive mapping (Corollaries 3 and 7,
Sections 3.4, 3.5) from the graph rewrite rule operator algebra
semantics to the elementary bitwise (two-state) operator algebras
of Supplementary Section SA.3.1.

Finally, Corollaries 4 and 8 (Sections 3.4, 3.5) point out that
H = ∅ cancels out all the commutators of Corollaries 2 and 6.

Theorems 1 and 2 will extend straightforwardly, as stated in
Proposition 1, to the dynamical graph grammar (DGG) case, in
which some rule operators express dynamical systems in the form
of systems of ordinary differential equations, as sketched in
Section 2.2.1 and Eq. 14. In like manner, some rules could be
SDE-bearing rules whose operator expression is given in
Mjolsness and Yosiphon (2006) and Mjolsness (2010).

3 RESULTS

In this section, we will sketch the main calculations of this study,
which appear in much greater detail in Supplementary Material
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SA, interleaved with mathematical statements of the results of
those calculations. The sketch will take the following form: 1)
preliminary definitions and notation, including the two different
graph grammar operator semantics that differentiate Theorem 1
from Theorem 2 (Sections 3.1–3.3); 2) an operator product
problem statement for the first semantics, followed by the
statements of Lemma 1 and Theorem 1 each followed by a
link to Supplementary Material SA for its proof, followed by
a series of four corollaries with short proofs (Section 3.4); 3) an
operator product problem statement for the second semantics,
followed by a proof sketch for the removal of hanging edges,
followed by the theorem statement of Theorem 2 and a link to
Supplementary Material SA for its full proof, which expands on
but does not depend on the proof sketch, followed by a series of
four corollaries with short proofs (Section 3.5); 4) further
observations based on earlier equations that are gathered
together to prove Proposition 1, followed by the statement of
Proposition 1 (Section 3.6). In addition, we will provide selected
example calculations (Section 3.7) involving cytoskeleton in
plant cells and synapses.

For the sketch, we will set 1/Cr(Nmax free) = 1 by using a choice
function for the next-needed unallocated graph node. This choice
is, of course, multiplicative, but other ways of achieving that
property are discussed in Supplementary Section SA.2.

3.1 Algebra of Binary and Mutual Exclusion
State Changes
The expressions [. . .] in square brackets in Eq. 11 for Ŵr2Ŵr1

need to be restored to normal order, with annihilators aα to the
right of (preceding) creation operators âα. To this end, we need
various operator rules for 2 × 2 elementary operators:

â � 0 0
1 0
( ), a � 0 1

0 0
( ) implies (19a)

âa � N ≡ 0 0
0 1
( ), aâ � Z ≡ I −N � 1 0

0 0
( ), and (19b)

aα, âβ[ ] � δαβ Iα − 2Nα( )I Alternative for normal form calcs :

(19c)
aαâβ � âβaα − 2δαβâαaα + δαβIα (19d)
aαâβ � 1 − δαβ( )âβaα + δαβZα. (19e)

Delta functions δαβ are by default Kronecker deltas or products
thereof, but if α indexes a (node, label) pair and the label
includes continuous variables, then δαβ for continuous
variables should receive Dirac delta factors instead so that
the composition rule of Eq. 14 is equally valid for discrete and
continuous variables. It is important not to use
anticommutators for these 0/1-valued random state vectors,
even though, in the case α = β, the foregoing commutation
relations are equivalent to anticommutation relations for
fermions in quantum mechanics because, in the case α ≠ β,
the corresponding operators commute and therefore do not
anticommute.

For edges at least, we will also need the 2 × 2 “erasure”
operator:

Eα � Zα + aα � 1 1
0 0
( ), (20)

which is a projection operator to the nα = 0 state.
We can enforce a higher-level mutual exclusion (“winner-

might-take-all” or “one or zero hot”) logic of binary labels by fiat
using axioms

ai, λai, λ′ � 0
âi, λâi, λ′ � 0
ai, λâi, λ′ � δλ λ′Yi, λ′.

(21)

where N(a)
i, λ′ and Yi, λ′ are diagonal in the number basis and

idempotent. This leads to a crucially more constraining version of
Eq. 19e in the case of labels

aj, λâi, λ′ � 1 − δij( )âi, λ′aj, λ + δijδλλ′Yj, λ. (22)
Here, operator Yj, λ has eigenvalue 1 if node j is in the undecided
state and also is not in the label λ state; otherwise, it is 0. The
detailed mapping from Eqs 19–22 is discussed in Supplementary
Section SA.4.1.

3.2 Removal of Hanging Edges
The hanging edge removal variant of graph grammar rule
semantics is

Ŵr � 1
Cr Nmax free( )∫ dμr X( ) ρr λ X( ), λ′ X( )( )
× ∑

〈i1 ,...ik〉≠
Ecleanup Gr( )âi1 ,...ik Gr out( )a i1 ,...ik Gr in( )

(23)
where, as in Eq. 6,

Ecleanup Gr in , Gr out( ) � ∏
p∈Gr in

nodes
\Gr out

nodes

∏
i∈U

Eip i
⎛⎝ ⎞⎠ ∏

p∈Gr in
nodes

\Gr out
nodes

∏
i∈U

Ei ip
⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

âi1 ,...ik G′( ) � âi1 ,...ik Glinks′( )âi1 ,...ik Gnodes′( ) ≡ ∏
s′,t′( )∈Glinks′

âis′ it′
⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∏

v′∈Gnodes′
âiv′λ′v′

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

ai1 ,...ik G( ) � ai1 ,...ik Glinks( )ai1 ,...ik Gnodes( ) ≡ ∏
s,t( )∈Glinks

ais it
⎡⎢⎢⎣ ⎤⎥⎥⎦ ∏

v∈Gnodes

aivλv⎡⎢⎣ ⎤⎥⎦,
(24)

A \ B is again the set difference, that is, the subset of A not
containing members of B, and U is the universe of object-
modeling domain graph nodes.

3.3 Index Notation
In order to calculate operator products, we introduce systematic
index set notation as follows.

Define Lχ, Rχ, Lχ , Rχ , for χ ∈ {1, 2}:

lhs nodes r1( )↦I I G1 in
nodes( ) ≡ L1 rhs nodes r1( )↦I I G1 out

nodes( ) ≡ R1

lhs nodes r2( )↦J J G2 in
nodes( ) ≡ L2 rhs nodes r2( )↦J I G2 out

nodes( ) ≡ R2;

lhs links r1( )↦I I G1 in
links( ) ≡ L1 rhs links r1( )↦I I G1 out

links( ) ≡ R1

lhs links r2( )↦J J G2 in
links( ) ≡ L2 rhs links r2( )↦J I G2 out

links( ) ≡ R2.

(25)

In this notation, the no-edge-cleanup semantics of Eq. 6
becomes (making the parameter integrals implicit now, to
limit the notational expansion):
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Ŵrχ � 1
Crχ Nmax free( )ρrχ λ χ( ) , λ′ χ( )( ) ∑

I χ : Lχ∪Rχ-
1−1U

× ∏
i1 ,i2( )∈Rχ

âi1 i2⎡⎣ ⎤⎦ ∏
i5∈Rχ

â
i5 , λ
′ 1( )

I−1 i5( )
⎡⎣ ⎤⎦ ∏

i3 ,i4( )∈Lχ

ai3 i4⎡⎣ ⎤⎦ ∏
i6∈Lχ

ai6 , λ 1( )
I−1 i6( )

⎡⎣ ⎤⎦
(26)

for χ ∈ {1, 2}, where I χ�1 ≡ I and I χ�2 ≡ J . Notation “-
1−1

”
denotes any one-to-one map from whole of the stated domain
into the stated range. Note that the middle square-bracketed
terms commute trivially as elementary node and link operators
operate in different spaces.

Also in this notation, node maps I and J can have
overlapping images in U . This relationship is parameterized by
a set S (the inverse image of the overlap, under I) and an induced
map h from S into the domain ofJ (from the inverse image of the
overlap under I to the inverse image of the overlap under J ):

S � rhs1 ∩ h−1 lhs2( ) � Gr1 out
nodes ∩ h−1 Gr2 in

nodes( )
h S( ) � lhs2 ∩ h rhs1( ) � Gr2 in

nodes ∩ h−1 Gr1 out
nodes( )

I S( ) � J h S( )( ) � L2 ∩ R1

I S( ) � L2 ∩ R1 � L2 ∪ R1.

(27)
Note also that

Lχ ⊆ Lχ × Lχ[ ] andRχ ⊆ Rχ × Rχ[ ] (28)
should be preserved inductively by rule firing semantics.

DefinePχ(i1, i2) = a predicate that determines which edgesEi1 ,i2

are hanging, if present, and should be deleted, where χ ∈ {1, 2}. It
may be a predicate function: Pχ[Lχ , Rχ , . . . , G

χ in
links, G

χ out
links ](i1, i2).

Also, PT(i1, i2) ≡ P(i2, i1). We will use one of several equivalent
possibilities:

Pχ � Lχ\Rχ( ) × U[ ] ↔dual Pχ* � PT
χ � U × Lχ\Rχ( )[ ] (29)

As before, U = the universe of possible node indices i.

3.4 Sketch of Commutation Calculation: No
Edge Cleanup
The product of two such operators is (omitting for now the
integral over parameters X)

Ŵr2Ŵr1 �
1

Cr1 Nmax free( )
1

Cr2 Nmax free( )ρr1 λ 1( ) , λ′ 1( )( )ρr2 λ 2( ) , λ′ 2( )( ) ∑
J : L2∪R2-

1−1U

× ∑
I : L1∪R1-

1−1U

∏
j1 ,j2( )∈R2

âj1j2
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∏

j3 ,j4( )∈L2

aj3j4
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ⎡⎣ ∏

j5∈R2

â
j5 , λ
′ 2( )

J −1 j5( )
⎤⎦

× ∏
j6∈L2

aj6 , λ 2( )
J −1 j6( )

⎡⎢⎢⎣ ⎤⎥⎥⎦ ∏
i1 ,i2( )∈R1

âi1 i2⎡⎢⎣ ⎤⎥⎦ ∏
i3 ,i4( )∈L1

ai3 i4
⎡⎢⎢⎣ ⎤⎥⎥⎦

× ∏
i5∈R1

â
i5 , λ
′ 1( )

I−1 i5( )
⎡⎢⎣ ⎤⎥⎦ ∏

i6∈L1

ai6 , λ 1( )
I−1 i6( )

⎡⎢⎣ ⎤⎥⎦ (30)

Then, we will use the relevant commutation relations to
calculate the following:

Lemma 1. Let H(S, h) be the maximal common subgraph of
both Gr1 out and Gr2 in, for any given choice of nodes S in Gr1 out

and 1-1 corresponding nodes h(S) in Gr2 in. We can restrict S to

sets of nodes whose labels match in Gr2 in
nodes and Gr1 out

nodes . For any
such H, we can commute the link operators as follows:

∏
j3 ,j4( )∈L2

aj3j4
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦⎡⎣ ∏

i1 ,i2( )∈R1

âi1 i2⎤⎦

� ∏
i1 ,i2( )∈I G

r1 out
links

\Hlinks( )
âi1 i2

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ∏
j3 ,j4( )∈J G

r2 in
links

\h−1 Hlinks( )( ) aj3j4
⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦

× ∏
j7 ,j8( )∈I Hlinks( ) ≡ L2∩R1

Zj7j8
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

(31)
The last factor above implements the edge-checking or link
correspondence portion of graph matching between a
subgraph H(S, h) of the output graph of rule r1 and a
corresponding subgraph of the input graph of rule r2.

Note that the 1-1 and onto node map h : H → ~H preserves
edges and labels of labeled subgraphs H and ~H and thus is an
isomorphism of labeled subgraphs.

By further calculation and careful interpretation of terms, we
arrive at the main result, except limited to the case in which
hanging edges are not removed by the rule semantics: for the
hanging edge permissive semantics of Eqs 5, 6, or equivalently
Eq. 26,

ŴGr2 in→Gr2 outŴGr1 in→Gr1 out ≃ ∑
H⊆Gr1 out ≃ ~H⊆Gr2 in

| edge−maximal

∑
h: H-

1-1
~H

ŴGr1 in _∪ Gr2 in \ ~H( ) →
h

Gr2 out _∪ Gr1 out \H( )

(32)

In more detail, the summand graph rewrite rule is then defined
by Theorem 1. Under the definitions of the compound label
graphs in Eqs 34, 35, one can write the graph rewrite rule algebra
as announced in Section 2.4.

Theorem 1. For the hanging edge-permissive semantics of Eqs 5,
6 or equivalently Eq. 26 and assuming multiplicative
normalization Cr, then

ŴGr2 in→Gr2 outŴGr1 in→Gr1 out ≃ ∑
H⊆Gr1 out ≃ ~H⊆Gr2 in

| edge−maximal

∑
h: H-

1–1
~H

ŴG1;2 in ~H( ) →
h

G1;2 out H( )
(33)

where the compound labeled graphs G1;2 in( ~H) and G1;2 out(H)
are defined by

G1;2 in
nodes

~Hnodes( ) � Gr1 in
nodes

_∪ Gr2 in
nodes\ ~Hnodes( ) G1;2 out

nodes Hnodes( ) � Gr2 out
nodes

_∪ Gr1 out
nodes \Hnodes( )

≡ Gr1 in
nodes ∪ h−1+ Gr2 in

nodes\ ~Hnodes( ) ≡ Gr2 out
nodes ∪ h+ Gr1 out

nodes \Hnodes( )
G1;2 in

links
~Hnodes( ) � Gr1 in

links ∪ h−1+ Gr2 in
links \ ~Hlinks( ) G1;2 out

links Hnodes( ) � Gr2 out
links ∪ h+ Gr1 out

links \Hlinks( )
(34)

and their label overlaps K1;2 are defined by

Ka � Gra in
nodes ∩ Gra out

nodes

K1;2 � K1\Hnodes( ) ∪ h−1 K2\ ~Hnodes( ) ∪ K1 ∩ h−1+ K2( )( ).
(35)

The coefficients in Eq. 33 are all nonnegative integers (as the
same graph grammar rule could arise several times by different
means). Rate factors ρmultiply with parameter substitution, as in
Eq. 14. Here, symbol _∪ denotes disjoint union, and

Frontiers in Systems Biology | www.frontiersin.org September 2022 | Volume 2 | Article 8988588

Mjolsness Dynamical Graph Grammar Commutator Calculation

112111

https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles


h+: Gr1 out → G1;2 out extends h: H ⊆ Gr1 out → ~H ⊆ Gr2 in by
remapping the nodes of Gr1 along h if possible and to the
disjoint union nodes if not, preserving all possible links except
those in Hlinks, likewise for h−1: ~H ⊆ Gr2 in → H ⊆ Gr1 out and
h−1+: Gr2 in → G1;2 in.

Proof: The proof of this theorem is provided in
Supplementary Material SA, with Theorem 1. It follows the
proof sketch above but is written out in detail.

Note that Eqs 34, 35 reflect a time-reversal L ↔ R duality.
Examples of graph numbering and disjoint union _∪ are given in
Section 3.7. We now derive a series of corollaries presented only
here, not in the detailed calculation sections.

Corollary 1. There is an algebraic reduction of operator products
to sums, similar to Theorem 1, which applies to the Wr operators
that subtract diagonal operators from Ŵr to conserve probability
as in Eq. 1, except that the coefficients can be any integer.

Proof: Note that substituting Zα = Iα − Nα in each elementary
operator in Eq. 54 of Supplementary Section SA.1 and
distributing multiplication over addition, yields an integer-
weighted sum of operators of the form of Eq. 53 of
Supplementary Section SA.1 or equivalently Eq. 5. Therefore,
Wr2Wr2 is equivalent to a sum of Ŵs operators for a set of labeled
graph grammar rules indexed by s. As Wr2 preserves probability,
1 ·Wr2Wr1 � 0 ·Wr1 � 0. We can therefore subtract zero in the
form of diag(1 ·Wr2Wr1), applied term by term with the same
sum of graph grammar rules substituted in for Wr2Wr1, and find
thatWr2Wr2 is equivalent to a sum of fullW � Ŵs − diag(1 · Ŵs)
operators for a set of labeled graph grammar rules indexed by s.

Corollary 2. There is an algebraic reduction of commutators of
labeled graph grammar rule state-change operators Ŵr to sums of
the same form, similar to Theorem 1, with integer coefficients and
cancellation of H � ∅ � ~H summands:

ŴGr2 in→Gr2 out , ŴGr1 in→Gr1out[ ] ≃ ∑
H⊆Gr1 out ≃ ~H⊆Gr2 in

H≠∅ ∧ edge−maximal

∑
h: H-

1−1
~H

ŴG1;2 in ~H( ) →
h

G1;2 out H( )

− ∑
H⊆Gr2 out ≃ ~H⊆Gr1 out

H≠∅ ∧ edge−maximal

∑
h: H-

1−1
~H

ŴG2;1 in ~H( ) →
h

G2;1 out H( )

(36)

Also, there is a similar algebraic reduction of commutators of
labeled graph grammar rule full operator Wr commutators to
sums of the same form, with integer coefficients.

Proof: As in Corollary 1, but with extra minus signs on some of
the rule operators. Cancellation of H � ∅ � ~H summands
follows from the r1 ↔ r2 symmetric definitions of G1;2 in and
G1;2 out in Eq. 34 in that special case.

Corollary 3. There exists (as exhibited in the proof of Theorem
1) a constructive mapping from the graph rewrite rule operator
algebra semantics to the elementary bitwise operator algebras of
Supplementary Section SA.3.1. Because it depends on an index
allocation scheme which can be done in many ways, this mapping
is not unique.

Corollary 4. One particular subgraph that always contributes
to the product is H � ∅ � ~H, the empty graph. Its
contribution always cancels out of the commutator
[Ŵr2, Ŵr1] � Ŵr2Ŵr1 − Ŵr1Ŵr2 because H = ∅ and then
nothing is shared between the two rule firings so their
order does not matter.

3.5 Sketch of Commutation Calculation:
With Edge Cleanup
We now turn to the hanging edge cleanup semantics and prove
(Theorem 2) that the same algebra as in Theorem 1 and Eqs 34
and 35, and 33 still applies.

An elaboration of rule operators Ŵr can clean up
hanging edges that may otherwise be left behind by a rule
firing:

Ŵ
cleaned

r � ∏
k1∈Lr\Rr

∏
k2∈U

Ek1k2Ek2k1( )Ŵbare

r

≃ ∏
k1 ,k2( )∈S

Ek1k2
⎛⎝ ⎞⎠ ∏

k1 ,k2( )∈S
Ek2k1

⎛⎝ ⎞⎠Ŵbare

r (37)

where S is the set of indices specified by

S � Lr\Rr( ) × UA*[ ] (38)
where UA* = all node indices that have ever been allocated in a
memory block, hence all memory-live node indices, and U = the
whole universe of node indices, so that UA* ⊆ U .

The semantics is now

Ŵrχ �
1

Crχ Nmax free( )∫ dμrχ X( ) ρrχ λ X[ ], λ′ X[ ]( ) ∑
Iχ : Lχ∪Rχ-

1−1U

∏
i′, i( )∈Pχ

Ei′ i
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ ∏

î, î′( )∈Pχ
*

Eî î′
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦

× ∏
i1 ,i2( )∈Rχ

âi1 i2
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∏

i3 ,i4( )∈Lχ

ai3 i4
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∏

i5∈Rχ

âi5 , λI−1χ i5( )′
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∏

i6∈Lχ

ai6 , λI−1χ i6( )
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (39)

We now work to replace the product of Eij factors above with
the exponential of a sum:

Eα � Zα + aα � Iα + aαNα( ) � Iα +Wα→∅ (40)
Defining ϵ = τ/m, we will see that

exp τ∑
α∈S

Wα→∅⎛⎝ ⎞⎠ � lim
m→+∞,ϵ−>0+ ∏

α∈S
I + ϵWα→∅( )⎛⎝ ⎞⎠

m

. (41)

and we will compute that therefore asymptotically as τ =
ρeraset → +∞,

exp τ∑
α∈S

Wα→∅⎛⎝ ⎞⎠ �∏
α∈S

Eα. (42)

So, complete erasure is the limiting behavior of this edge-by-edge
stochastic erasure process, and it can be achieved simply by taking
the limit ρerase → +∞.

Now, we apply these calculations to the actual hanging edge
erasure operator:
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exp τ ∑
i1 ,i2( )∈S

W i1 ,i2( )→∅⎛⎝ ⎞⎠ � exp τ ∑
i1 ,i2( )∈S

Ei1 ,i2 − Ii1 ,i2( )Ni2Zi1
⎛⎝ ⎞⎠

(43)
Here, the node operator Zi checks for unallocated nodes i with no
label.

Then, asymptotically as τ = ρeraset → +∞,

exp τ∑
α∈S

Wα→∅⎛⎝ ⎞⎠ � ∏
i,j( )∈S

Ei,jNjZi ≃ ∏
i,j( )∈P

Ei,j. (44)

So again, we get the product of forward edge erasures by an
incremental process of deletion, run for a long effective time τ.

In Eq. 37,

Ŵ
cleaned � ∏

k1 ,k2( )∈S
Ek1k2Ek2k1( )Ŵbare

� lim
n→+∞,ϵ→0+

I + ϵ ∑
k1 ,k2( )∈S

ak1 ,k2Nk1 ,k2( )Nk2Zk1
⎡⎢⎢⎣ ⎤⎥⎥⎦

n

× I + ϵ ∑
k1 ,k2( )∈S

ak2 ,k1Nk2 ,k1( )Nk1Zk2
⎡⎢⎢⎣ ⎤⎥⎥⎦

n

Ŵ
bare

(45)

The core calculation within Ŵ
cleaned
r2

· Ŵcleaned
r1

is thus

Ŵ
bare

r2
ϵ ∑

k1 ,k2( )∈S
ak1 ,k2 −Nk1 ,k2( )Nk2Zk1

⎡⎢⎢⎣ ⎤⎥⎥⎦

� ϵ
Cr2

∑
I

∑
k1 ,k2( )∈S

∏
i1 ,i2( )∈R2

âi1 i2⎡⎢⎣ ⎤⎥⎦ ∏
i3 ,i4( )∈L2

ai3i4
⎡⎢⎢⎣ ⎤⎥⎥⎦ ak1 ,k2 −Nk1 ,k2( )

× ∏
i5∈R2

âi5 ,λI−1 i5( )[ ] ∏
i6∈L2

ai6 ,λI−1 i6( )[ ]Nk2Zk1

(46)
By operator algebra calculation, we find

∏
i1 ,i2( )∈R2

âi1 i2[ ] ∏
i3 ,i4( )∈L2

ai3 i4[ ] ak1 ,k2Nk1 ,k2( )

�

− ∏
i1 ,i2( )∈R2

âi1 i2[ ] ∏
i3 ,i4( )∈L2

ai3 i4[ ] if k1 , k2( ) ∈ L2

Nk1 ,k2 ∏
i1 ,i2( )∈R2

âi1 i2⎡⎢⎣ ⎤⎥⎦ ∏
i3 ,i4( )∈L2

ai3 i4
⎡⎢⎢⎣ ⎤⎥⎥⎦ if k1 , k2( ) ∈ R2\L2

ak1 ,k2Nk1 ,k2( ) ∏
i1 ,i2( )∈R2

âi1 i2[ ] ∏
i3 ,i4( )∈L2

ai3 i4[ ] if k1 , k2( ) ∈ �R2 ∩ �L2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

Further arguments in the detailed calculation section will
show that all surviving terms behave as in the third line of
Eq. 47, and the factor of a − N to the right of the second rule
firing simply joins the infinite supply of such factors to
its left.

Intuitively, this means that hanging edges can be eliminated
nonspecifically by an overactive syntax-checking process
rather than surgically in a way that depends on the details
of each rule firing because the assumed form of the graph
rewrite rules does not recognize or respond to hanging edges;
all edges are verified to have two vertices before a rule can fire.
As an aside, this explanation would not remain valid if the
semantics were changed to allow things like the
nonconforming operator W(i1,i2)→∅ above, so as to allow

hanging edges as part of the normal graph grammar
operation. Then, a more complex algebraic operator
equation might result.

Thus, we find no change to the algebraic formula of Theorem
1 for the hanging edge removal semantics.

Theorem 2. For the hanging edges removal semantics of Eqs. 23,
24, or equivalently Eq. 39, assuming finiteness of rules, index
allocation blocks, and number of rule firings, and assuming
multiplicative normalization Cr, then

ŴGr2 in→Gr2 outŴGr1 in→Gr1 out ≃ ∑
H⊆Gr1 out ≃ ~H⊆Gr2 in

| edge−maximal

∑
h: H-

1–1
~H

ŴG1;2 in ~H( ) →
h

G1;2 out H( )
(48)

where the compound labeled graphs G1;2 in( ~H) and G1;2 out(H), and
their label overlaps K1;2 are defined by Eqs 34, 35 in Theorem 1. The
coefficients in this expression are all nonnegative integers (as the same
graph grammar rule could arise several times by different means).
Rate factors ρ multiply with parameter substitution, as in Eq. 14.

Proof: The proof of this theorem is provided in
Supplementary Material SA, with Theorem 2. It follows the
proof sketch above but is written out in detail.

We now derive another series of corollaries presented only
here, not in the detailed calculation section.

Corollary 5. There is an algebraic reduction of operator products
to sums, similar to Theorem 2, that applies to the Wr operators
that subtract diagonal operators from Ŵr to conserve probability,
except that the coefficients can be any integer.

Proof: Exactly as for Corollary 1.

Corollary 6. There is an algebraic reduction of commutators of
labeled graph grammar rule state-change operators Ŵr to sums of
the same form, similar to Theorem 2, with integer coefficients.
Also, there is a similar algebraic reduction of commutators of
labeled graph grammar rule full operator Wr commutators to
sums of the same form, with integer coefficients.

Proof: As in Corollary 5 or 1, but with extra minus signs on
some of the rule operators.

Corollary 7. There exists (as exhibited in the proofs of Theorems
1 and 2) a constructive mapping from the graph rewrite rule
operator algebra semantics to the elementary bitwise operator
algebras of Supplementary Section SA.3.1. As it depends on an
index allocation scheme that can be done in many ways, this
mapping is not unique.

Corollary 8. One particular subgraph that always contributes to
the product is H � ∅ � ~H, the empty graph. Its contribution
always cancels out of the commutator [Ŵr2, Ŵr1] � Ŵr2Ŵr1 −
Ŵr1Ŵr2 because nothing is shared between the two rule firings so
their order does not matter.

We note here that a previous attempt to prove Theorem 2
directly using the large product of E operators and P, L, R,L, R,
among others, by Boolean logic ran aground in notational
complexity. The method used here, with the exponential of a
sum of E − I operators, seems more tractable.
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3.6 Application to ODEs and Dynamical
Graph Grammars
In Section 2.2.1, we showed that a graph grammar rule that
expresses a differential equation by not adding or removing
any graph edges and by changing only the node labels, not
the presence or absence of graph nodes, can be expressed
within the general framework by applying Theorems 1 and 2
using a particular form of rule rate function ρ which,
however, may take values of either sign. All steps of
Theorems 1 and 2 remain valid. The signs of the
commutator-induced coefficients that multiply the rate
functions ρ remain as stated in these theorems and their
corollaries.

The only change is that when the time to derive a simulation
algorithm for these semantics comes, the functions ρr for
differential equation rules cannot be interpreted as
propensities (unnormalized probabilities per unit time)
because they can be negative. That is all right because
Mjolsness (2013) derived a separate kind of algorithm for
stochastic parameterized grammars that contain such rules,
calling an ODE solver as a subroutine. Of course, Section 2.2.1
together with Eq. 49 below suggests another algorithm under a
limiting procedure for small but discrete changes in parameter
values.

Thus, we show the following:

Proposition 1. Theorems 1 and 2 extend to rules that express
differential equations by way of semantics incorporating Dirac
delta functions as in Eq. 9.

For example, we will see in Supplementary Material SB.3 that
the operators [ODE2,ODE 1] of two differential equations for the
same variables dx/dt = v1(x) and dx/dt = v2(x) have a commutator
ODE [2, 1] equivalent to a third differential equation dx/dt= v[2, 1](x)≡
(v1 · gradx)v2(x) − (v2 · gradx)v1(x). In the same section, we will use
the notation of Theorem 1 to exhibit the commutator of anODE rule
and a (non-ODE) SPG rule.

Alternatively to Eq. 9, one could eschew continuous
parameters until the very end of a calculation by taking
continuous “motion” of each real-valued parameter
component xa under an ODE to consist of many small
discrete uniform-sized steps ±Δx, with Δx > 0, with the sign
chosen to be that of v in each component, and each step having
a continuous-time propensity to occur given by |v(x)|. Then,
after integration by parts and assuming suitable boundary
conditions can be imposed on v,

ŴODEdiscr r �∑
x,a

va x( )| |
Δx ∑

〈i1 ,...ik〉≠
âi1 ,...ik Gr x + sign va x( )( )Δxea( )( )ai1 ,...ik Gr x( )( )[

−âi1 ,...ik Gr x( )( )ai1 ,...ik Gr x( )( )]
(49)

where ea is the unit vector along axis a of the local parameter
vector space containing x. On timescales Δt≪Δx/maxa|va(x)|,
parameter jumps occur one at a time and add up in the expected
manner. Again, one would take a parametric limit, this time in the
limit Δx→ 0. This approach has the advantage of non-negative ρ
functions and, thus, a probabilistic interpretation of the rule
operator.

By either of these means, mixed stochastic graph dynamics
and differential equation dynamics can be approximated
arbitrarily closely by operators of graph grammar
dynamics of the algebraic form we have assumed. Eq. 49
also hints at a different family of stochastic simulation
algorithms, which may or may not lead to something
efficient. Alternatively, as in Eq. 9 and Proposition 1, one
can simply admit Dirac delta functions into the allowed
expressions for ρr and selected commutators, and no
parametric limit is needed; this will be our preferred
approach.

3.7 Examples
Several biological models have been formulated in terms of
structural rewrite rules for graphs and cell complexes
(Mjolsness et al., 1991; Spicher and Michel, 2007; Giavitto and
Spicher, 2008; Lane, 2015) and the literature on L-systems, all
reviewed from the present operator algebra point of view in
Mjolsness (2019a).

Here, we will take as a working example a highly simplified
stochastic parameterized graph grammar (SPGG) for
microtubule dynamics, including treadmilling, bundling/
zippering, and katanin-mediated severing in cytoskeleton
dynamics as it appears in current plant biology.

3.7.1 MT Stochastic Graph Grammar
A diagrammatic presentation of a small subset of a plant cortical
microtubule (MT) graph grammar, with subscripts for the rule-
local arbitrary but consistent numbering of vertices in left- and
right-hand side graphs of each rule, is shown below. These rules
and calculations are a subset of those presented in Supplementary
Material SB. Discrete parameters will include a four-valued
categorical label s ∈ {internal, grow_end, retract_end, junct} (or
s ∈ {◦, •, ■,▲}) for status as interior segment, growth-capable end
segment, retraction-capable end segment, or bundling junction
segment, respectively:

(50)

Here, Yg is a diffusible MT growth factor such as tubulin itself
or a catalyst or regulator of tubulin polymerization and/or
nucleation, such as (perhaps) XMAP215 (Hamant et al., 2019),
and Yr plays the same role in catastrophe/retraction.

In working out the commutators, we will drop the propensity
functions ρ, but they just multiply the results with appropriate
variable identifications.
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Further MT rules are provided in Supplementary
Section SB.1.

3.7.2 Example MT Commutator Calculation
The commutator calculations for this minimal MT graph
grammar’s Lie algebra can be outlined as follows:

[Ŵ3, Ŵ1]:
Ŵ3 · Ŵ1: shared same-label vertex sets run over byH and their

mappings under h are∅; {(1↦1′)}; {(1↦2′)}; {(1↦3′)}; {(1↦1′),
(2↦4′)}; {(1↦2′), (2↦4′)}; {(1↦3′), (2↦4′)}.

Ŵ1 · Ŵ3: shared same-label vertex sets run over byH and their
mappings under h are ∅.

H = ∅ always cancels in the commutator:

(51)

The reason the second line above involves a “rare coincidence”
is that its left-hand side represents a collision of two long MTs
very near to the growing end of both, assuming the MTs are
generically quite long and thus have many internal nodes (open
circles). Likewise, the fourth line requires a high bending energy
(can thus be disfavored in a more detailed model) because of the
loop of three small MT segments, two interior and one junction,
in the RHS graph.

Further commutators are calculated in Theorems 1 and 2 and
Proposition 1 in Supplementary Section SB.

For the restricted case in which one of the operators is a diagonal
“observable,” a rule commutator calculation has been exhibited
independently in the “double pushout” formalism (Section 4.2)
for a particular set of basic biochemical binding/unbinding rules
expressed in Kappa (Behr et al., 2020). The general combinatorial
formula of Theorems 1 and 2 and the extension of Proposition 1
remain unique as far as we know.

The special case in which no graph edges are present, only
graph nodes, corresponds to a well-mixed stochastic chemical
reaction network. The commutation relations for such models
are calculated in Supplementary Section SC, in the
conventional representation in which all particles of a given
type lose their identity and only their population numbers
matter.

3.7.3 Actin Cytoskeleton Stochastic Graph Grammar
Examples
Actin filament polymerization and depolymerization rules can be
analogous to those for MTs. Branching occurs in a different way
than the bundling rule for MTs, as for example in this two-
dimensional rule:

(52)

Here, ○2 represents actin or short polymers of actin (which
have a sense of directionality), • represents the Arp2/3 complex in
solution, and ■ represents the Arp2/3 complex bound to actin
and can serve as the nucleation site for a new actin filament. Also,
the e parameters measure biomechanical energy owing to
geometry, which can drive mechanics using differential
equation rules. A simple prototype model of this sort has been
simulated using the software of Yosiphon (2009).

In fact, MTs also have branching nucleation dynamics
facilitated by other molecular players such as the augmin complex.

Other actin grammar rules, including polymerization-driven
growth, can be modeled in a very similar manner toMT rules. For
example, both kinds of filaments undergo catalyzed severing.
Growing actin filaments may also acquire an end-cap,
preventing further growth.

3.7.4 Related Kinds of Rewrite Rules
We have analyzed the semantics and given examples of stochastic
parameterized graph grammar (SPGG) models.

Mjolsness and Yosiphon (2006) demonstrated how to use
integer-valued Object ID (OID) parameters to encode such graph
grammars within stochastic parameterized grammars (SPG)
comprising parameter-bearing stochastic rewrite rules with
operator algebra semantics. This reduction requires the use or
dynamical emulation of a source of novel OIDs. Because the
reverse inclusion is trivial, SLGGs, SPGGs, and SPGs are
essentially different syntactic presentations for the same
semantics; SPGGs may be easier to write since the OID
encoding step is unnecessary.

Nevertheless, Mjolsness and Yosiphon (2006) showed how to
add to SPG rules with ordinary and/or stochastic differential
equation syntax and differential operator semantics, obtaining
“dynamical grammars” (DGs). DGs can be a continuum limit (in
label space and in time) of SPGs. If we allow differential equation
rules and stochastic parameterized graph grammar rules, we
arrive at dynamical graph grammars (DGGs), as defined here
and the subject of Proposition 1.

Many other notational conveniences are possible while
maintaining or generalizing the operator algebra semantics.

3.7.5 Cell Complex Rewrite Rules
In Mjolsness (2019a), the operator algebra semantics for a labeled
graph rewrite rule is generalized in several ways. One of these
generalizations is to cell complexes (each of some maximal
dimension d), which have been applied to developmental
modeling (Spicher and Michel, 2007; Lane, 2015). Mjolsness
(2019a) also provided a constructive implementation mapping
from the generalized rewrite rules back to graph grammar rewrite
rules. In principle, the graph grammar operator algebra of our
Theorems 1 and 2 apply to these generalized settings—but
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whether the sum of graph grammar operators resulting from a
higher-level product is also a sum of higher-level rewrite rules or
not remains to be worked out.

Here, we point out a useful special case for cell complex
dynamics: if a graph can be locally embedded in d dimensions
(i.e., in d dimensional manifolds withRd as the usual case) in such
a way that it becomes a Voronoi diagram or a power diagram
(weighted Voronoi diagram), then its label set can be augmented
by the resulting node positions, and, more importantly, there is a
dual d-dimensional cell complex consisting of the boundaries at
equal distance (in the Voronoi case) from two or more graph
node positions, together with the d-dimensional single-node cells
they bound. Then, local graph grammar rewrite rules will
generically result in local updates to the embedding and the
dual cell complex, inducing local cell complex changes
describable as rewrite rules.

As a final point of discussion, in the Lie group theory, the Lie
algebra is related to the curvature tensor of a group-invariant
metric. Likewise, in differentiable manifolds, commutators of
covariant derivatives are related to the manifold curvature
tensor. The Lie algebras discussed here are generically in a
much higher dimension but, in some cases, may also relate to
geometric and/or topological structures.

4 DISCUSSION

4.1 Conclusion
We have computed the product and commutator for any two
stochastic parameterized graph rewrite rule operators in a
stochastic graph grammar possessing operator algebra
semantics, in structural (graph-expressed, combinatorial) form.
In this form, the product of the state-changing portions (off-
diagonal in the number basis) of two graph rewrite rule operators
is a sum, with nonnegative integer coefficients, of other such
operators. Non-negative real-valued rate multipliers are also
carried along expectedly. The product of the full-graph rewrite
rule operators and the commutator of off-diagonal or full-rule
operators are likewise expressed as a sum with integer-valued
weights of other full-graph rewrite rule operators. The algebra can
also be applied to rewrite rules that bear ordinary differential
equations for real-valued node parameters. The results are
expressed in Theorem 1 and its corollaries for the case of
semantics in which hanging edges are left behind and
Theorem 2 and its corollaries for the case in which they are
not. Proposition 1 demonstrates the application to the differential
equation bearing rules. The algebra can be computed explicitly.

There is also a computer-implementable constructive
mapping from the resulting graph rewrite rule algebra to
many elementary two-state creation/annihilation operators.
Because the algebra is expressed in the present work entirely
in terms of identities relating to graph rewrite rule operators (up
to equivalence) rather than more general expressions built from
the underlying elementary two-state creation/annihilation
operators, Theorems 1 and 2 are a substantial improvement in
utility and perspicuity over the corresponding Propositions 1 and
2 in Mjolsness (2019a). Here, the operator algebra of graph

rewrite rules is “lifted” from the concrete level of creation/
annihilation operators on elementary binary random variables
to the more abstract and structural level of well-formed labeled
graph rewrite rules.

As a clarifying test case, the resulting graph-grammar level
algebra was applied to an elementary example inspired by the
dynamics of cortical microtubules in plant cells, one of many
structure-changing dynamical systems in biophysics and other
sciences that could be amenable to modeling by stochastic
parameterized graph grammars.

4.2 Related Work
The present line of development for operator algebra semantics of
chemical reaction networks and graph grammars began with
expressivity studies (Mjolsness, 2005; Mjolsness and Yosiphon,
2006), including suitable measure spaces for a probabilistic
foundation, followed by a combined SPG and DGG
implementation (Yosiphon, 2009), which was applied to
growing plant root models with cell division (Mjolsness, 2013),
a direct graph semantics without object ID encoding (Mjolsness,
2010), a systematic derivation of stochastic simulation algorithms
including differential equations (Mjolsness, 2013), the existence
proof for rule product and commutator reduction in (Mjolsness,
2019a), and the calculations reported herein.

The larger context is diverse and includes L-systems (which
generate tree-structured graphs without loops) and their
generalizations, such as differential L-systems (Prusinkiewicz
et al., 1993) and stochastic L-systems (Eichhorst and Walter,
1990; Cieslak and Prusinkiewicz, 2019). The earlier reference
(Eichhorst and Walter, 1990) is related to Cieslak and
Prusinkiewicz (2019) in part by being applied to computer
science rather than biology and by projecting out stochastic
event waiting times as described, for example, in Mjolsness
and Yosiphon (2006) (Section 3.8), and by the Gillespie
algorithm of Cieslak and Prusinkiewicz (2019) is just one
possible sampling algorithm for an operator algebra semantics
as derived, for example, in Mjolsness (2013). Further context also
includes grammar-like “connectionist” models for biological
development (Mjolsness et al., 1991) and plant developmental
models incorporating cell division (Jönsson et al., 2006; Smith
et al., 2006). These include some kind of dynamic graph topology
as part of the dynamical system to be modeled. Investigation of
more formalized computer support for variable-structure
developmental models based on topological cell complexes is
shown in Spicher and Michel (2007) and Lane (2015).

Independently, cytoskeletal modeling simulators have been
developed, including algorithmic provision for changing topology
of filament networks due to, for example, dynamic crosslinking
and/or bundling of microtubule or actin fibers, which necessarily
change the graph topology that influences further biomechanical
dynamics in both microtubule and actin fibers (Nedelec and
Dietrich, 2007; Popov et al., 2016; Belmonte et al., 2017; Kim et al.,
2022). In such dynamic cytoskeleton codes, there comes a
moment when the structure of the graph changes, for
example, as a consequence of some molecular binding or
unbinding event. At that moment, the problem of
biomechanics changes locally but with potentially global
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consequences. So, it may be important to explore a more
systematic formalization, such as the present operator algebra,
of local structure-changing dynamics interacting with differential
equation dynamics. Improvements in both algorithms and
analyses may result.

There is an alternative category-theory-based approach to
graph grammar semantics based on single or double pushout
(DPO) commutative diagrams rather than operator algebras and
a collection of “independence” conditions for two successive rule
firings to have an order-independent result as explained by Ehrig
et al. (2006). In our operator algebra language, these conditions
would guarantee a zero commutator. The DPO approach was
applied to molecular complexes in Danos and Laneve (2004).
However, it requires the use of an abstract mathematical language
(category theory) that poses a substantial barrier to
understanding many biological modelers; direct use of the
operator algebra developed by Heisenberg, Von Neumann,
and others to formalize quantum mechanics in the 1920s is
substantially more accessible, especially when, as in our case, it
concerns probability distributions rather than quantum
amplitudes.

Behr et al. (2016) and Behr et al. (2019) combined and
connected both double-pushout and Master Equation
semantics, using a restricted subset of the operator
algebra implied by Propositions 1 or 2 in Mjolsness
(2019a) or the more powerful Theorems 1 and 2 of this
work. Commutators were introduced to this approach in
Behr et al. (2016), but, apparently, without computing the
explicit combinatorial result in Eq. 16, treating only the
special case in which one of the operators, an “observable,” is
diagonal in the number basis, a case which is potentially
quite useful for pursuing moment closure approximation
methods. They did not address the possibility in Proposition
1 of continuous parameters in the graph node labels or
differential equation dynamics on those parameters. This
approach has not been applied to the scientific domain of
cell- or tissue-level morphodynamics in biological
development.

Further discussion of the likely yet unproven relationship
between our operator algebra semantics (Section 2.2) and the
DPO semantics is provided in Mjolsness (2019a)
(Supplementary Section S7.2.10).

Another work that associates a Lie algebra with a graph
grammar is Marcoli and Port (2015). In this case, the basis
Fock space over which the Lie algebra operators are defined is
a space of labeled graphs G, rather than labeled graph grammar
rules Gin → Gout, so it is a different and smaller operator Lie
algebra than ours. It seems closely related to a subalgebra of
“graph insertions,” comprising rules whose left-hand side graph is
a single node.

A hypergraph variant of graph grammars has recently been
used as the starting part for a dark-horse attempt to find a fully
discrete-mathematical route to fundamental physical theory
(Wolfram, 2020). Many evocative examples are given and
visualized as evolving graphs embedded in low-dimensional
visualization space. Our operator algebra formulation,
including Theorems 1 and 2, does not appear, nor is there

an integration (e.g., Proposition 1) with continuous-time
differential processes we require for efficient simulation of
emergent, non-fundamental processes.

4.3 Domain of Applicability
The present line of research began as an approach to multicellular
models of biological development that include cell birth, death,
and geometry-induced changes in topology (Mjolsness et al.,
1991; Jönsson et al., 2006; Mjolsness and Yosiphon, 2006).
The graph grammar operator algebra was defined implicitly
(by mapping to unique object IDs) in Mjolsness and Yosiphon
(2006), a method used to implement general dynamical graph
grammar models in Yosiphon (2009), and defined explicitly in
Mjolsness (2010).

As discussed in Mjolsness (2019a), operator commutators
provide an analytic tool when used with perturbation series
expansions such as the Baker–Campbell–Hausdorff (BCH)
theorem (as suggested for stochastic chemical reaction
networks in Hellander et al. (2014) and rewrite operator
algebras in Mjolsness and Yosiphon (2006) and Behr et al.
(2019)) underlying operator splitting methods (Jahnke and
Altıntan, 2010; MacNamara and Strang, 2016) or the Time-
Ordered Product Expansion for Feynman diagrams underlying
the Gillespie Stochastic Simulation Algorithm (SSA) and some of
its generalizations, including integration with differential
equations (Mjolsness, 2013), by which to derive both general
and model-specific simulation algorithms and approximations
and bound or estimate their errors from the perturbation series
remainder terms. For example, operator splitting algorithms,
including the exploitation of analytically solvable submodels
(Jahnke and Altıntan, 2010) can be formulated and have their
errors analyzed by way of commutation relations using BCH. If,
for example, two rule firings are simulated out of order for
algorithmic efficiency, their commutator (which could be zero)
quantifies the error introduced. Operator commutators are also
fundamental, of course, for understanding the causal structure of
a dynamical model. For example, in the Wightman axioms for
quantum field theory in the Minkowski metric, the “Locality”
axiom specifies the commutation (or anti-commutation) of
operators that act at points separated by spacelike
displacements (Glimm and Jaffe, 1981).

Potential applications of dynamical graph grammars
(including stochastic parameterized graph grammars) are
legion, particularly in multiscale modeling. We claim they
comprise a third major scientific computing paradigm on the
same level of generality and applicability as 1) partial
differential equations (PDEs) or 2) particle methods. These
are the two most relevant parallel computing “design
patterns” identified for high-performance computing
(HPC) in the survey of Asanovic et al. (2009). The same
source identifies graph algorithms as a design pattern
ubiquitous across parallel computing fields, excluding HPC.
This exclusion can now be removed. Dynamical graphs and
their operators, optionally expressed by dynamical graph
grammars, in principle, bring a third paradigm major into
play for generic mathematical and algorithmic tools for
computational science.
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Examples and categories of examples that would be suitable
for DGG description include the following:

• Cytoskeleton: application to plant cortical microtubule
dynamics has been described already in Mjolsness
(2019a) and will be a running example for Section 3.7.1
and Supplementary Material SB.1. An additional
analogous example is the dynamic actin filament network
in synapses during learning.

• The originally intended domain for DGGs was multicellular
models of biological development that include cell birth, death,
and geometry-induced changes in the topology of networks of
cells whose adjacency relationships form a graph (Mjolsness
et al., 1991), including topology-changing models of plant
development in the Arabidopsis shoot apical meristems as
in Jönsson et al. (2006). An explicit one-dimensional DGG (in
textual OID form) for pattern formation and growth in the
Arabidopsis root apical meristems is presented in Yosiphon
(2009) and Mjolsness (2013). DGGs for dynamic
developmental topologies such as abstract cell complexes
and stratified spaces, via graph slice categories, are discussed
in Mjolsness (2019a).

• Physical applications may include the dynamics of
topological dislocations, defects, and fractures in
materials, treated as sparse extended objects in
communication with the dense extended object(s)
comprising the material [e.g., in “dislocation dynamics”
(Devincre et al., 2008; Vattré et al., 2014)].

• Axonal and dendritic arbor growth and retraction in
microscope imagery of animal development, under the
regulatory influence of key genes such as DSCAM
(Santos et al., 2018), comprise a dynamic spatially
embedded graph.

• Agent-based systems running on interaction graphs are
widely used models in epidemiology (Venkatramanan
et al., 2018), social science (Klein et al., 2018), and
multiscale biological modeling (Letort et al., 2019). When
agent-based systems take agent–agent connectivity to be not
only a factor affecting the dynamics of particle-like state-
bearing agents but also a time-varying component of the
system state governed by its own dynamics, then the
underlying mathematics may be well described by the
local graph dynamics of DGG rule operators and DGGs
are a candidate mathematical formalism (at a higher level of
abstraction than computer code) for expressing such
models.

• Approximate solution algorithms for partial differential
equations frequently proceed by way of spatial discretization
first, resulting in a grid ormesh of dynamic variables connected
to neighbors that appear on the right-hand sides of a local
ordinary differential equation (dynamical system) description.
Time is then discretized inside the solution algorithm for the
resulting differential equations. If the grid graph is adaptive by
local rules, the approximation can be described by a dynamical
graph grammar.

• Hypergraphmodels can also be represented via the standard
mapping of (labeled) hypergraphs to (labeled) bipartite

graphs that connect hypervertex-flavored vertices to
hyperedge-flavored vertices and vice versa.

• There could be methodological connections to loop
quantum gravity.

Most of these applications have in common some form of model
reduction from a finer-scale description that does not need
dynamical graph description. The standard model of fundamental
physics encompasses intertwined particles and fields but not
dynamical graphs. On the other hand, coarse-graining or
upscaling often introduces dynamical connectivity descriptions
suitable for dynamical graphs, so any modeling framework that is
to be universal for or invariant under a broad class of model
reductions needs something like the rule operators of DGGs.

Universality undermodel reduction is even better served if DGGs
can also encompass partial differential equations (PDEs). As
suggested above, DDGs, as described here, can express a wide
variety of approximations to PDEs for spatial models, including
approximations to continuummodels described by PDEs. However,
what is missing is the formalization entirely within DGGs of a graph
limit that approaches continuous geometries, such as manifolds, cell
complexes, and stratified spaces, as discussed in Mjolsness (2019a).
Furthermore, a definition of graph limit based on the preservation of
graph diffusion across scales was proposed by Scott and Mjolsness
(2021). Graph diffusion has the advantage [over, e.g., graphons
(Lovász, 2012)] that it is closely related tometric structure in the case
of manifolds.
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The Anabaena genus is a model organism of filamentous cyanobacteria whose

vegetative cells can differentiate under nitrogen-limited conditions into a type

of cell called a heterocyst. These heterocysts lose the possibility to divide and

are necessary for the filament because they can fix and share environmental

nitrogen. In order to distribute the nitrogen efficiently, heterocysts are arranged

to form a quasi-regular pattern whose features are maintained as the filament

grows. Recent efforts have allowed advances in the understanding of the

interactions and genetic mechanisms underlying this dynamic pattern. Here,

we present a systematic review of the existing theoretical models of nitrogen-

fixing cell differentiation in filamentous cyanobacteria. These filaments

constitute one of the simplest forms of multicellular organization, and this

allows for several modeling scales of this emergent pattern. The system has

been approached at three different levels. From bigger to smaller scale, the

system has been considered as follows: at the population level, by defining a

mean-field simplified system to study the ratio of heterocysts and vegetative

cells; at the filament level, with a continuous simplification as a reaction-

diffusion system; and at the cellular level, by studying the genetic regulation

that produces the patterning for each cell. In this review, we compare these

different approaches noting both the virtues and shortcomings of each one

of them.

KEYWORDS

pattern formation, cyanobacteria, heterocyst differentiation, nitrogen fixation, gene
regulatory networks, activator-inhibitor, reaction-diffusion

1 Introduction

Pattern formation is extremely relevant in embryonic development because it allows

for precise periodic spatial differentiation of certain cells or groups of cells. An important

question is how a pattern, and, therefore, heterogeneity, is produced from a homogeneous

state, given that embryos develop from a single cell. Another intriguing feature is that

patterning must be robust enough to ensure reliability, given that embryo development is

a highly reproducible process. Additionally, the widespread action of pattern formation in
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all organisms and different levels of development seems to point

to the existence of simple intrinsic mechanisms capable of acting

with widely different elements.

The reaction-diffusion system, presented by Turing in his

seminal work (Turing, 1952), constitutes a simple model capable

of forming spatial patterns starting from a homogeneous state.

Turing considers a ring of equivalent cells that generate a couple

of diffusible morphogens whose production depends on the

concentrations of both of them. He realized, through a linear

perturbation analysis, that, while the system starts homogeneous,

slight perturbations in the diffusion of morphogens are

reinforced and create “waves” of morphogens in the cell ring.

This reinforcement is caused because when a cell sends more

inhibitor to its neighboring cells than what it receives, the

neighboring cells produce less inhibitor. This further reduces

the flux of inhibitor that enters the cell, which, in turn, increases

inhibitor production and its flux to the neighboring cells. This

feedback loop produces waves of morphogens that can drive the

system to a heterogeneous state if system parameters are capable

of sustaining the perturbation out of the linear regime.

Furthermore, if there are more than two diffusible

morphogens, the heterogeneous state can be oscillatory. The

general condition that allows these instabilities to form is the

combination of an activator and a more diffusible inhibitor. The

particular ratio between the diffusion rates is highly dependent

on the reaction system that regulates these morphogens (Gierer

and Meinhardt, 1972). This fine-tuning required for the pattern

fixation questions the biological feasibility of this mechanism

because it makes the system susceptible to small changes in

parameter values that would greatly alter its behavior.

These types of biological pattern–forming systems were

further extensively studied by Meinhardt (2008) and fully

theoretically fledged out by Murray (2003). A state-of-the-art

discussion on Turing’s ideas, their development, and some

system examples can be found in a research study on this

same Special Topic issue (Lacalli, 2022). Subsequently,

Murray’s analysis has been expanded by considering reaction-

diffusion systems in continuous growing domains, observing that

depending on the characteristics of the growth, it can produce

more robust pattern formation or add difficulties to it (Crampin

et al., 1999; Barrass et al., 2006). Finally, the limiting case in which

the activator does not diffuse cannot create a stable stationary

pattern; therefore, the emergent patterns are always of a

dynamical nature (Marciniak-Czochra et al., 2017). The

incorporation of mechano-chemical feedback can mediate the

reinforcement and consequent fixation of the pattern through a

morphological change that affects the diffusion of the inhibitory

morphogen (Brinkmann et al., 2018).

When talking about these reaction-diffusion systems, it is

important to remember that the insights from linear stability

analysis, usually invoked to determine whether a system can form

a stable pattern or not, can be deceiving: the dispersion relation

close to a homogeneous fixed point can sometimes be very

helpful, but also deceiving once full nonlinearities kick in. For

this reason, classical rules for pattern formation based on linear

analysis are better understood as applying to pattern inception,

given that the study of linear perturbations and the stabilization

of a final pattern is a process where nonlinearities cannot, in

general, be neglected (Smith and Dalchau, 2018). For instance,

against classical thinking, systems with equally diffusing signals

can make stable patterns (Marcon et al., 2016). In this

framework, it is clear that events such as domain growth

(Raspopovic et al., 2014), discrete nature of the system

(Nakamasu et al., 2009), or separation of timescales for the

action of different molecular species can all play a role to

shape the formation and maintenance of patterns.

All these characteristics are relevant for the study of pattern

formation in the filamentous cyanobacterium Anabaena

(Figure 1). The cells of the filament exchange nutrients and

react as a whole to environmental changes. One could argue that,

while each cell is still a unicellular organism, the filament is

located close to the transition to multicellular organization. This

is especially evident when the filament is placed in conditions of

nitrogen deprivation. Under these conditions, the filament

undergoes a dynamical differentiation process that

differentiates roughly one in every ten cells into nitrogen-

fixing heterocysts in a quasi-regular pattern that is maintained

as the filament keeps growing (Flores and Herrero, 2010). This

patterned differentiation constitutes an example of

specialization, cooperation, and distribution of labor because,

while the vegetative cells keep producing carbon through

photosynthesis, the heterocysts fix environmental nitrogen

into organic forms that can be assimilated by all cells. Thus,

for the filament to subsist, both end products must be shared and

diffused through the filament to the cells that are not capable of

synthesizing them. While previous reviews have already

FIGURE 1
(A) Wild type Anabaena PCC 7120 filament grown in
conditions of nitrogen deprivation showing vegetative cells and
heterocysts. (B) Florescence images characterize the
differentiation stage of each cell. The purple florescence is
associated with the thylakoid membranes (and therefore with the
photosynthesis), while the yellow florescence marks
NsiR1 expression, which is described as an early marker of
differentiation in Muro-Pastor (2014). Intermediate stages of
developing heterocysts are indicated by polygonal shapes. Images
are courtesy of Alicia Muro-Pastor.
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compiled the current theories about heterocyst pattern formation

(Flores and Herrero, 2010; Herrero et al., 2016; Harish and Seth,

2020; Zeng and Zhang, 2022), in this review, we systematically

discuss the different mathematical and computational

frameworks that have been used to model the physics of cell

differentiation and pattern formation in this system.

2 Diffusion models of an inhibitor
exported from heterocysts

First, we present research works that attempted to model the

patterned distribution of heterocysts without any explicit genetic

regulation. With this aim, these models only considered

gradients in nitrogen concentration or some inhibitory signal

originating from heterocysts.

An early attempt of modeling the patterning of heterocyst

differentiation in cyanobacteria filaments came at a time when,

while the biological role of heterocysts was not well-defined (Fay

et al., 1968), it was already stated that heterocysts seemed to

inhibit the formation of new ones (Wolk, 1967). The model

presented by Baker and Herman (1972) consisted of an integer

linear cell array simulator which allowed cell-to-cell diffusion of

an inhibitory product and division of vegetative cells. Due to

computational limitations at the time, concentrations were

modeled as integer numbers, setting a discrete minimum

change in concentration as a result. This model was used to

test the hypothesis that cell division and differentiation are two

competing processes in which, at the end of each cell cycle

(quantified by a countdown), cells have to choose a fate

depending on the inhibitor concentration. This simple model

could obtain feasible distributions for heterocyst placement, but

the code was heavily limited by having to work with integer

concentrations. The model predicted a low threshold of the

inhibitor to avoid differentiation, causing integer rounding to

be comparable with concentration values. This low threshold was

probably caused by the unrealistic assumption of an equal rate for

cell–cell and cell–media diffusion, which impeded the formation

of a well-defined inhibitory gradient in the filament.

Just a year after this first study, the group responsible for one

of the initial experimental studies (Wolk, 1967) also presented

theoretical results using a simulation code (Wolk, 1975). The

authors considered that heterocyst placement was defined by a

diffusible inhibitor whose concentration dynamics was

expressed as:

zC x, t( )
zt

� D
z2C x, t( )

zx2
− k · C x, t( ). (1)

Here, C (x, t) is the concentration of the diffusible inhibitor at the

point x in the time t, D is the diffusion constant, and k is the

decay rate.

From this equation, the authors obtained an inhibitor

diffusion root mean square distance for the closed (k = 0) and

general systems by considering a discrete approximation with

cells as distance units and the inhibitor generated from a point

source. These two distances were used as alternative ways to

define the range of inhibition that a heterocyst has over

neighboring cells in the simulation. This simulation was a

sequential random pick of non-inhibited vegetative cells that

continued until all cells were inhibited or heterocysts. The

solution for the general system agreed with the experimental

distribution of distances between heterocysts better than the

closed system. However, the closed system produced a slightly

more uniform distribution, while presenting much longer

intervals than the experimental data. This led the authors to

propose two diffusion-based spacing mechanisms in which a

heterocyst would appear on a cell sufficiently distant from

preexisting heterocysts so that it has a concentration of the

activator higher than some critical level. At the heart of this

work was the initial idea that heterocyst differentiation is a purely

stochastically driven process. Thus, control is only exerted

through desensitization that protects the cells that are close to

existent heterocysts against differentiation.

The same diffusive Eq. 1 was studied by De Koster and

Lindenmayer (1987), obtaining two different analytical solutions

(one continuous and another discrete). These solutions were

compared with an improved version of the integer linear cell

array simulator discussed previously. This version avoids some

problems faced in the study by Baker and Herman (1972) by

storing the concentration as a floating-point variable and

eliminating the environment with the initialization of the

filament already in equilibrium with two heterocysts in the

extremes. Through this comparison, two biologically

reasonable estimations were made: D = 0.14–0.39 μm2/s for

the inhibitor diffusion constant, and k = 2.7–7.5 · 10–4 s−1 for

the degradation rate, and an inaccurate estimation for the cell

cycle, 7.25 h, which is known to be around 24 h.

Much later, Allard et al. (2007) proposed a series of models.

While the first three models are discussed here, the last one is

considered in the following section as it includes some genetic

interactions. The initial work (Allard et al., 2007) compares the

distribution of heterocysts obtained through random placement

with one obtained with a model of nitrogen propagating over a

filament with a continuous periplasm. In this model, vegetative

cells consume nitrogen to grow, while heterocysts produce

nitrogen that diffuses through the filament. When the

nitrogen level of a vegetative cell reaches 0, the cell

irreversibly commits to differentiation. Additionally, the cells

grow at a constant rate and divide at a certain fixed division time

for each cell. The model is initialized with a couple of heterocysts

at the ends of the filaments and a randomly distributed growth

rate for each cell. For this model to be able to reproduce the

experimental distributions, the authors have to consider an

immediate release of nitrogen after commitment in order to

avoid the formation of multiple heterocysts. This work presents

an opposing paradigm to the earlier ideas by Wolk (1967): while
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in the oldest work, there was a deterministic system of inhibition

with a stochastic initiation of differentiation, this work includes a

deterministic drive that starts the differentiation to explain de

novo heterocyst formation. Nevertheless, the need to include a

sizable immediate release of nitrogen once a cell is committed to

differentiation to avoid the formation of clusters of heterocysts

shows that some level of stochasticity is necessary. This

stochasticity is represented here by the random distribution of

growth rates along the filament. The heterogeneity of growth

rates will decide which one of the cells, located in a nitrogen-

deprived area, will consume faster its reserves and therefore

become a heterocyst. This interplay between deterministic

dynamics on a random heterogeneous system seems necessary

to recover the observed experimental heterocyst spacing

distributions and will be a common trait of most of the

models presented below.

This model was expanded by Brown and Rutenberg (2012a)

and Brown and Rutenberg (2012b) with the addition of a

coupling between the growth and the available nitrogen in the

cell and the possibility of nitrogen leakage into the media.

Additionally, the commitment condition is also modified, and

cells have to remain in complete nitrogen deprivation for a set

time before they differentiate into heterocysts. This model is

capable of reproducing the experimental placement of

heterocysts (with a commitment time of 8 h) considerably

better than a random placement and a partially random one

where positions adjacent to heterocysts cannot differentiate.

Nevertheless, the assumption that a heterocyst is capable of

releasing a sizable amount of fixed nitrogen right after

commitment is not biologically feasible, and would be

substituted by genetic regulation in later research work

(Brown and Rutenberg, 2014) (described in Section 3). The

authors also obtained a relationship between filament growth

rate and heterocyst frequency and found that growth rate

presents a maximum for a certain value of heterocyst

frequency (Brown and Rutenberg, 2012a). This maximal

growth is similar for different placement strategies if nitrogen

leakage is not considered in the model. However, if leakage over

1% is considered, the differences in the growth rate between

strategies are relevant; the strategy of differentiation by nitrogen-

starved cells, that produced the most realistic heterocyst

distributions, is also the one that produces maximal growth

(Brown and Rutenberg, 2012a).

Alternatively, Ishihara et al. (2015) considered a paracrine

inhibitory signal that originated from the heterocysts instead of

considering the nitrogen dynamics of the filament. Experimental

data obtained from a mutant strain harboring a PhetR::gfp reporter

cassette (Asai et al., 2009) present delayed heterocyst differentiation,

observing the first heterocysts at 63–65 h after nitrogen deprivation

instead of the typical 18–24 h (Flores and Herrero, 2010), indicating

that the differentiation process is somehow altered in this strain. In

their model, the authors continued the idea, first presented by Baker

and Herman (1972), that cell division and heterocyst differentiation

are two competing mechanisms. They proposed a cellular

automaton model where cells have the capacity of aging,

dividing, and differentiating into heterocysts (that are

immediately functional), and dynamics are simulated with a

Gillespie algorithm (Gillespie, 1976). The division and

differentiation probabilities are represented by sigmoidal Hill

functions of the cell age. Additionally, the differentiation rate is

affected by a lateral inhibition produced by existent heterocysts. This

effect decreases as the number of vegetative cells to the source

heterocysts increases. The initial condition for the simulation is a

filament of a random number of cells with random ages flanked by

two heterocysts. The model reproduces the experimental

distribution of segments between heterocysts but not the age

distribution of the cells that differentiate. However, it is worth

noting that the filaments in which all vegetative cells differentiate

into heterocysts before the filament has grown up to 5,000 cells are

discarded. The model predicts that most cells differentiate at an

older age, while experimentally, the differentiation happens at a

younger age. From this, it is inferred that the model does not

properly capture early pattern formation. To solve this

disagreement, hetR transcription was studied, observing that it

was not immediately perturbed by cell division and remained

active at the early stage, concluding that hetR activity should be

considered independent of cell age. Following this, a model was

presented, where differentiation is independent of cell age, obtaining

a more realistic age distribution of the commitment time. Finally,

both early (defined as 63–65 h after nitrogen deprivation) and late

(more than 69 h after nitrogen deprivation) differentiation could be

explained with the same kinetic parameters by altering the

differentiation dependency with cellular age. Given that the

commitment time to differentiation is around 7–8 h (Yoon and

Golden, 2001; Muro-Pastor and Hess, 2012), it is evident that the

reporter strain used introduces artifacts, and any conclusion based

on its observation has to be taken with extreme caution.

All the models discussed up to this point are remarkably

capable of reproducing the overall experimental interval length

distribution of heterocysts; however, they fail to capture the early

pattern formation in the filament. In addition, the initial

conditions for almost all these studies are filaments with

functional heterocysts in the extremes. Therefore, since

inhibitors will only reach the cells close to a heterocyst, only

the regions far from these heterocysts, if long enough filaments

are considered, would properly reflect de novo pattern formation.

Additionally, all these models only consider an inhibitory signal

originating from the heterocysts without including the well-

known competitive lateral inhibition between vegetative cells

through PatS (Yoon and Golden, 2001; Corrales-Guerrero et al.,

2013; Du et al., 2020). Given that the only selection mechanism

acting over the vegetative cells during the first round of

differentiation is the initial heterogeneity, the authors are

forced to add arbitrary mechanisms to avoid the excessive

simultaneous differentiation of contiguous cells. In the studies

by Allard et al. (2007) and Brown and Rutenberg (2012a,b), the
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mechanism is an immediate big release of nitrogen from the

heterocysts that stops the differentiation of the close neighbors of

committed cells. Alternatively, in the study by Ishihara et al.

(2015), the model is fitted with a strain with an apparent

differentiation impairment in which the first round of

differentiation appears almost three times later than the

typical appearance time.

As a result of these limitations, it seems necessary to include

an inhibitory signal originating from vegetative cells in order to

fix the heterocyst pattern. Thus, once this initial pattern is

formed, an inhibitory signal originating from the heterocysts,

which could be due to the fixed nitrogen (Fogg, 1949; Water and

Simon, 1982), to a paracrine inhibitor identified as HetN in

Callahan and Buikema (2001) or to a combination of both, could

be enough to maintain the preexisting pattern.

3 Genetic regulatory models

The role of the main genes involved in heterocyst

differentiation is depicted in Figure 2. The differentiation

mechanism is initiated by the upregulation of ntcA in

nitrogen deficiency conditions. This increase of ntcA causes an

increase of hetR that initiates the production of patS. This gene

codifies a lateral inhibitor that avoids the differentiation of

several contiguous cells into heterocysts. Once the cell has

already differentiated, it starts producing both fixed nitrogen

and hetN, which is another inhibitor of heterocyst formation.

hetR is the master regulator of the process: in its absence, there is

no heterocyst differentiation, consistent with observations in

Cylindrospermopsis, which is the only Nostocal that lost the

ability to develop heterocysts and fix nitrogen.

In the study by Gerdtzen et al. (2009), a deterministic

compartmental model was introduced with three genes

represented by a vector, with values in the interval [0, 1], that

interact between them through an interaction matrix. The genes

considered are ntcA and hetR, and patS and ntcA are considered

to be activated by nitrogen depletion (Vega-Palas et al., 1992)

and, in turn, activate hetR (Muro-Pastor et al., 2002). hetR is

considered to activate both itself and patS (Huang et al., 2004).

Finally, patS inhibits hetR production (Yoon and Golden, 1998).

All these interactions are considered to have the same relative

strength, except the hetR activation of patS which is defined to

have half of this strength. An explicative diagram of the model is

included in Figure 3.

This model also includes a proxy for patS and fixed nitrogen

diffusion through a multiplicative factor Dn (D < 1). This factor

reduces the inhibitory effect of patS over the hetR expression of a

cell located n cells away from the patS source. The inhibitory

FIGURE 2
Progress of heterocyst differentiation. The scheme
represents the process of differentiation of a filament of
heterocyst-forming cyanobacteria with the roles of the main
genes involved. Darker green means more fixed nitrogen in a
cell. Low nitrogen induces NtcA expression, which, in turn,
activates HetR, the master regulator of heterocyst differentiation.
Yellow is a cell committing to differentiation and producing a
gradient of PatS inhibiting the action of HetR in neighboring cells.
Orange is a differentiated cell, a heterocyst, producing fixed
nitrogen and a gradient of the inhibitor HetN and receiving carbon
from vegetative cells. Reproduced fromDi Patti et al. (2018), CC BY
4.0 license.

FIGURE 3
Diagram of the network considered in the study by Gerdtzen
et al. (2009). Cells are organized in a cyclical manner. Direct
interactions are represented by solid lines and, indirect
interactions are represented by dashed lines. Arrow heads
indicate activation, and vertical lines indicate inhibition. Numbers
indicate the strength of the interactions considered among the
elements of the network. Reproduced from Gerdtzen et al. (2009),
CC BY 2.0 license.
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effect of ntcA through fixed nitrogen is characterized as an

inhibition from hetR expression, given that the cells with hetR

= 1 will be considered heterocysts.

The simulation is initialized from random conditions,

and then state transitions are considered to occur

asynchronously, with one gene state on a given cell being

updated using the interaction matrix at a time in random

order for the whole array of cells. After a certain time, the

system converges to a patterned filament, where LH, the

average interval between heterocysts (cells expressing all

genes in the model at the maximum possible level, 1)

depends on the value of the diffusion constant D.

Increments of D up to a critical value of 0.7 produce an

almost linear increase in LH due to the creation of fewer

heterocysts. However, from this point onward, the behavior

of LH stops being linear, and the system saturates to a state

without any heterocyst for D ≥ 0.92.

The authors set the value of D that produced an LH � 10 ± 2

cells, which is similar to the experimental value observed by

Yoon and Golden (1998) to study the system. They presented

the histograms for intervals between heterocysts in the case

of the wild type, the patS deletion mutant, and the hetR over-

expressed condition. These results show that, while the means

LH are compatible with the experimental data, the simulation

produces histograms much more skewed towards larger

intervals for both the wild type and the over-expression of

hetR, and a strictly decreasing distribution of interval length

for the patSmutant. The first discrepancy could be caused due

to the reinterpretation of the fixed nitrogen inhibition of ntcA

through hetR. This change would produce an additional

inhibitory signal originating from developing cells instead

of only from mature heterocysts as it should be. On the

other hand, the discrepancy in the patS mutant could be

just a problem of interpretation. Given that the expression

of the variable patS is never shut off, one could argue that this

variable is a joint representation of the two main inhibitory

genes, patS and hetN. Then the deletion of this variable should

result in the complete differentiation observed in the double

ΔpatSΔhetN mutant (Borthakur et al., 2005), but with the

additional artificial inhibition of hetR described earlier. This

inhibition partially rescues this mutant because it fulfills the

same dual role. The rescue is not full because it targets ntcA

instead of hetR, which reduces its efficiency.

A continuous representation of a linearly growing one-

dimensional filament was presented in Zhu et al. (2010). The

system of equations that defines its dynamics is as follows:

dr

dt
� αr + βrF r, s( ) + G r, s, n( ) − κrr (2)

ds

dt
� αs + βsF r, s( ) +Ds

z2s

zx2
− κss (3)

dn

dt
� βnF r, s( ) +Dn

z2n

zx2
− κnn, (4)

where r is the concentration of HetR, s of PatS, and n of HetN.

The spatial domain, that is, the filament length L, grows at a

constant rate ρ:

dL

dt
� ρL. (5)

This model considers linear degradation rates (κr, κs, κn) for

all the proteins and diffusion of the two inhibitors with rates Ds

and Dn. Regarding protein production, the authors considered

basal production for both HetR (αr) and PatS (αs) and regulated

production for all genes through the function

F r, s( ) ≡ r2

Ks + s( ) K2
r + r2( ), (6)

and an additional production term for hetR.

G r, s, n( ) ≡ re − r( )2 nc − n − ηs( ). (7)

Both Eqs 6 and 7 include the HetR homodimer formation

described in Huang et al. (2004) through a quadratic hetR

variable. Eq. 6 models activation of HetR, PatS, and HetN by

HetR dimers and inhibition by PatS. Eq. (7) is a

phenomenological term affecting HetR: its strength depends

on the difference between HetR concentration and an ad hoc

level re, and its sign is set by the parameter nc: when the

combination of HetN and Pats concentrations given by n + ηs

is larger than nc, functionG(r, s, n) has the effect of a degradation;

otherwise, it promotes the production of HetR. Through this

term, low levels of inhibitors have the effect of an extra activation

that disappears only when the concentration of HetR is re. With

this model, the goal is to study pattern maintenance; due to this,

the initial condition simulates the presence of heterocysts in the

borders of the system. This condition is translated into a uniform

initial distribution of both HetR and PatS, set to their equilibrium

concentration based only on the constitutive production and

degradation terms; in the heterocysts, the concentration of HetR

is set to the equilibrium value re. HetN is initially set to a

diffusion-mediated “bowl-shaped” distribution, with the

maxima at the heterocysts. In a way akin to Turing patterning

(Turing, 1952), the apparition of only one heterocyst in the

middle is heavily conditioned by the difference in the two

inhibitors’ diffusive rates. Particularly, the diffusion of HetN

should be lower than the filament growth rate so that there can be

HetN depletion in the middle of the filament to induce HetR

production. The diffusive rate of PatS must be higher than the

one of HetN to reduce the length of the induced region. With

these conditions, the model properly reflects the rise of HetR in

the middle of the filament that is hypothesized to originate from

the new heterocyst (Black et al., 1993) and the reported inhibitory

gradients produced by it (Risser and Callahan, 2009).

Low robustness of the pattern to modification of the diffusion

parameters is characteristic of Turing-like continuous models. It

stems from the requirement that the pattern is an equilibrium
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state of the overall regulatory system, and consequently, the

interplay of the two inhibitors must be tuned in such a way that

the range of the inhibitors is different enough to create steady

spatial differences in gene expression that originate the pattern.

However, discrete systems such as Anabaena filaments can fixate

an unstable pattern through the irreversible commitment of a cell

that presents a sustained high expression of a given gene, even if

that expression is transient and would be reversed without the

differentiation. For this reason, in Anabaena dynamical stability

of the pattern is much less relevant than its establishment.

Brown and Rutenberg (2014) presented the last model of the

series discussed in the previous section on diffusion models. In

this study, we incorporate a mechanism of genetic inhibition into

the nitrogen diffusion model presented by Brown and Rutenberg

(2012a). This lateral inhibition through patS and hetN substitutes

the immediate release of nitrogen and allows a more biologically

realistic maturation of the heterocysts. Both genes are modeled as

Boolean variables that directly prevent the commitment to

differentiation of a fixed range of contiguous cells. To

replicate the experimental observations, this range is set to

five cells. The expression of both patS and hetN is, in turn,

modeled as deterministic switches.

On the one hand, patS inhibition starts right after

commitment until the complete maturation of the heterocyst

(10 h after commitment), and a time τS (set to 1 h) after this

point, the heterocyst starts producing fixed nitrogen. On the

other hand, hetN inhibition starts a certain time τN (also set to

1 h) after commitment and is never shut off.

The initial condition considered is a lonely cell, which grows

for over 7 days in nitrogen-rich conditions in order to get a

heterogeneous filament, which will be put under nitrogen-

deprived conditions. The model properly reproduces the

vegetative interval histograms tendencies for all the mutants

but with less noise and without the experimental preference

for even-numbered vegetative intervals. Additionally, the authors

observe that younger cells are more likely to differentiate,

especially on the first round of differentiation (24 h),

suggesting an indirect effect of the cell cycle on heterocyst

commitment. This work shows that a deterministic model

whose only random variable is the growth rate can reproduce

some pattern features observed experimentally.

While the Boolean switch-like genetic model is able to

reproduce the experimental mutant behaviors, it does it

artificially with an immediate complete inhibition over a fixed

range. This is arguably hard to justify experimentally. Despite

incorporating both patS and hetN in the model, their roles are

completely equivalent to the immediate release of nitrogen presented

in their previous works (Allard et al., 2007; Brown and Rutenberg,

2012a,b). Instead of having distinct roles in the pattern formation,

one in the pattern formation and the other in its maintenance, as

hypothesized by Callahan and Buikema (2001), they are modeled

with the same function (which is to avoid the formation of multiple

heterocysts). Additionally, the design of the switch-like dynamics

forces themutant phenotype by providing a window of a duration τS
(after the cell commitment) and τN (after patS deactivation) in which

there is no inhibition of differentiation in the system for themutants

ΔpatS and the ΔhetN.
A year after this work, a model was presented that used the

systems biology framework to study both the stable states of a

unicellular system and the pattern formation in a filament

(Torres-Sánchez et al., 2015). This model incorporates the

nitrogen sensing module of the genetic network with the

inclusion of the nctA dependence of the GS/GOAT cycle

(Muro-Pastor et al., 2001) and patS-mediated inhibition.

Particularly, ntcA production is increased by both HetR and

NtcA and inhibited by fixed nitrogen. hetR transcription has the

same regulation as ntcA plus the inhibition from patS. In

FIGURE 4
States of a cyanobacterium when subjected to different
conditions of nitrogen and diffusion in the model in the study by
Torres-Sánchez et al. (2015). When combined nitrogen (cN) is
provided to the cell, there is only one stable fixed point (A),
which corresponds to a state in which the production of both HetR
and PatS is minimum (vegetative state). When subjected to
nitrogen deprivation, there are two stable fixed points (B and C).
The first point (B) is a vegetative state in which there exists an
equilibrium between a small production of HetR, PatS, and cN. The
same kind of equilibrium is present in the second fixed point (C)
but in this case, the production of all transcription factors and cN is
high (heterocyst steady state). When the cell is exposed to nitrogen
stress, its trajectory evolves from (A) to the steady state (B) and,
thus, it remains vegetative. Assuming some diffusion of cN and
PatS from the cell, the only stable state (D) corresponds to a
heterocyst state with high levels of production of HetR, cN, and
PatS, being the latter transported to the surroundings of the cell.
Adapted from Torres-Sánchez et al. (2015), CC BY 4.0 license.
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addition, both patS and fixed nitrogen are positively regulated by

HetR. This model considers the dynamics of fixed nitrogen,

NtcA, HetR, and PatS concentrations. The authors use both

the biological information of the genetic network and statistical

mechanics analysis to obtain the regulatory equations of the

system. After obtaining a set of parameters that reproduces

heterocyst differentiation, the authors assume that there are

two temporal scales: one fast, formed by HetR and ntcA,

which relaxes to its steady-state much earlier than the slow

one, which is due to the dynamics of PatS and fixed nitrogen.

Assuming this, one can use an adiabatic argument and consider

that the fast variables are in equilibrium when considering the

dynamics of the slow ones. Bifurcation analysis for this reduced

system is presented: for nitrogen-rich conditions, the system only

presents one stable solution, which corresponds to the vegetative

state (Figure 4A: low expression of both hetR and patS). On the

other hand, for nitrogen-deprived conditions, the system

presents bistability, with a vegetative stage (Figure 4B: with

equivalent expressions of hetR and patS, but higher expression

than in nitrogen-rich conditions) and a heterocyst stage

(Figure 4C: with high expressions of hetR, patS, and fixed

nitrogen). Additionally, the system presents hysteresis, so after

nitrogen deprivation, the system will stay in the vegetative state

unless a perturbation pushes it into the heterocyst state. Such a

perturbation occurs when considering the diffusion of fixed

nitrogen and PatS, which is enough to destabilize the

vegetative state and push the dynamics to the heterocyst state

(Figure 4D). The study is later expanded to a discrete filament of

cells to show that by adding uniform white noise and diffusion of

both PatS and fixed nitrogen, the model is capable of forming a

patterned differentiation. It is also stated that the appearance of

differentiation is considered a pure stochastic event and also that

the biological parameters of the model can be tuned to observe

the same pattern with different amplitudes of the white noise.

The high dependency on the noise to differentiate seems to

contradict previous works that considered deterministic models

of nitrogen-mediated inhibition (Brown and Rutenberg, 2012a,

2014) or even the same regulatory network (Gerdtzen et al.,

2009). Those models produced a comparable agreement with the

experimental data with much lower relevance of the noise; the

stochasticity is only present in the initial conditions of the

systems and not in their dynamics. In our opinion, this

discrepancy can be attributed to the overlapping of the roles

of both PatS and fixed nitrogen which saturates the system with

inhibitors that stop the increase in HetR production. Particularly,

given that the filament model is able to produce fixed nitrogen at

a low level once HetR concentration rises in vegetative cells, there

is no need for a transition to the high nitrogen production

cellular state (heterocyst). Instead, the biological system is not

capable of fixing nitrogen until the transition has already

occurred, given that nitrogen fixation cannot coexist with

photosynthesis. Therefore, the activation of hetR transcription

FIGURE 5
Mechanistic model in the study by Casanova-Ferrer et al. (2022). The vegetative cells are represented with a soft green background, while the
heterocyst has a soft yellow background and a thicker cell wall. The reactions in the vegetative cell represent all the potential reactions in the model
irrespective of the cell’s position: in most cells, only a subset of these reactions will be taking place at a given time. This subset is defined by the
concentration of the inhibitor Inhb. Genes are represented in rectangles and proteins with circles. Dimers are represented with two attached
circles and can be inactivated (green), activated (brown), and activated and inhibited (brownwith two purple inhibitors attached). Solid lines represent
production (with only one simple arrowhead), transformations (with a simple arrowhead on both ends), and interactions (with a double arrowhead).
Dashed lines represent intercellular traffic, and dashed–dotted lines represent a transformation when exported to a neighboring cell. The figure does
not represent the high expression of hetR in heterocysts (as presented by Corrales-Guerrero et al., 2015; Bornikoel et al., 2017; Arbel-Goren et al.,
2018): since these cells have already differentiated and HetR localization is restricted to the cells where it is produced, the concentration of HetR in
heterocysts is irrelevant for the model’s purposes.
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through ntcA cannot be shut off until nitrogen is provided to the

system. Due to this, the system is forced to maintain the

individually unstable state of high expression of both hetR and

patS until a heterocyst is formed in the filament. Additionally,

recent experimental works (Higa et al., 2012; Corrales-Guerrero

et al., 2013; Rivers et al., 2014, 2018) seem to indicate that both

patS and hetN require a post-translational modification to

produce the inhibitory peptide. It has been suggested

(Corrales-Guerrero et al., 2014b; Rivers et al., 2018) that this

transformation occurs at the cell membrane during cell-to-cell

trafficking. This would avoid self-inhibition from the patS and

hetN produced in a given cell and, therefore, would make

impossible a unicellular stability study.

A similar systems biology approach was considered in the

study by Muñoz-García and Ares (2016), where an alternative

three-gene minimal model was presented. This model also

included both hetR as the main non-diffusive regulator of the

system and patS as an inhibitor of HetR-mediated activation.

Instead of the nitrogen sensing module, the model included hetN

as an inhibitor produced in the heterocysts. Under such a

condition, hetR activates both patS and its own expression,

while patS and hetN (which are produced at a basal level in

the heterocysts) inhibit this activation. Fixed nitrogen is included

as a direct inhibitor of HetR regulation. As a substitute for the

ntcA role as the trigger of hetR expression, the model includes a

low basal expression of hetR. Using mass-action kinetics, the

authors obtained a deterministic set of differential equations

from the mechanistic information of these interactions. The

model considers that, while HetR needs to form a homodimer

to promote expression, this activation can also be inhibited with

the attachment of just one inhibitor. The stochastic nature of

gene expression was considered by adding noise to the equations

using Langevin dynamics (Gillespie, 2000). This genetic model

was introduced in a agent based simulation of a filament with

inhibitor diffusion where each cell has its own noisy dynamical

variables, growth rate, and thresholds for both differentiation and

cell division. The model was able to reproduce the experimental

distribution of vegetative intervals between heterocysts up to the

third moment of the distribution for both the wild type and the

ΔpatS mutant, and gave a reasonable prediction for the ΔhetN
mutant for which it made no comparison with experimental data.

The phenotypical reproduction by the model of the deletion

mutants reinforces the role of the two inhibitory genes proposed

in the study by Callahan and Buikema (2001). This model also

provides additional insight into the interplay between cell

division and heterocyst differentiation. Due to the similar

timescale between these two processes, the noise on the cell

division defines the overall behavior of the filament. If there is

low noise and cells divide in a quasi-synchronous way, the

filament pattern has an oscillatory behavior with an

enlargement and posterior shortening of the mean distance

between heterocysts. In this low noise regime, the model also

recovers the larger appearance of even-numbered vegetative cell

intervals characteristic of heterocyst patterns (Meeks and Elhai,

2002). Instead, for a noisier cell division, the percentage of even

intervals always remains close to 50%, and the oscillatory

behavior of the mean vegetative cells interval disappears.

A recent follow-up on this model (Casanova-Ferrer et al.,

2022) includes the requirement of maturation of HetR in order to

act as a transcription factor: HetF is necessary for this maturation

(Risser and Callahan, 2008), and PatA enhances it (Figure 5). The

product of PatS and HetN modification in the cell membrane is,

for simplicity, treated as the same inhibitor (Inhb in Figure 5) that

can be transported to neighboring cells irrespective of their

nature, although only inhibition of mature HetR action in

vegetative cells is explicitly modeled. This work focuses

especially on the phenotype of the deletion mutant of patA.

This mutant does not present patterning, and the appearance of

heterocysts seems to be purely stochastic, with a huge preference

for presenting heterocysts in the filament ends. The model is

capable of reproducing this phenotype and predicts a

homogenization of the HetR concentration in the filament

when PatA is absent due to a reduction in the activation rate

of HetR. This homogenization prevents the formation of a

pattern and, therefore, internal heterocysts are formed

exclusively due to random fluctuations of production rates,

inhibitor diffusion, or decision mechanisms. However, if one

considers some kind of leak of inhibitor through the filament

ends together with the fact that the terminal cells only receive

inhibitor from one neighboring cell, terminal cells present a

much higher probability to differentiate than internal cells.

This analysis of the patA mutant is especially relevant

because it is a clear example that one can disrupt the

formation of the pattern by affecting the intensity of the

feedback loops controlled by HetR. As patA is hypothesized to

have a supporting role to hetF, one could expect that the overall

behavior of the network should not be that affected. However,

given that without patA, the fraction of HetR that gets activated is

reduced with respect to the wild type, this mutant seems to lose

the compounding effect that allowed the formation of the

pattern. This mutant is much less susceptible to sudden spikes

of HetR production, and, therefore, most of the stochastic

fluctuations get buffered without affecting the overall

homogeneity of the filament.

Following the Turing-like characterization, Huang et al.

(2004) and Di Patti et al. (2018) present the same three-gene

system (hetR as an activator and both patS and hetN as diffusible

inhibitors), but, in this case, the inhibitory effect is produced

through degradation of HetR dimers mediated by PatS and HetN.

The model assumes a basal production in all cells and a linear

degradation for the three genes, and an increase in the

production of both HetR and PatS activated by HetR. As the

model does not enforce any distinction between vegetative and

heterocyst cells, all cells actively produce both inhibitors

simultaneously. Thus, it does not reflect the temporal

differences in the onset of production of PatS and HetN. A
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bit surprisingly, the same work presents very nice experimental

evidence of this difference through GFP reporters of

transcription.

With this set of interactions, the authors obtain a set of

differential equations through the van Kampen expansion.

Initially, the authors study the linear stability around the

homogeneous fixed point of the mean field approximation.

Through this analysis, the authors located a set of parameters

that allow the formation of instabilities that could originate a

pattern in the mean field conditions. As already mentioned

during the analysis of Huang et al. (2004), the most relevant

parameters are the diffusion constants for both inhibitors. The

smaller the ratio DS
DN

is, the narrower is the instability region.

Subsequently, the authors introduce the same interactions in a

Gillespie algorithm with the same set of parameters to check how

stochasticity affects pattern formation. The authors show that the

presence of noise promotes the spontaneous selection of a leading

wavelength in the emerging pattern. Due to this the parameter

region where the system presents instabilities and, therefore,

pattern seeding is considerably larger in the noisy system. The

addition of filament growth (cellular division) to the model

increases the amount of available unstable modes of the

system. Despite this similarity, the patterning is much more

stable in the system with deterministic growth than in the noisy

one. Without noise, a new high HetR expression region

(heterocyst) appears in the midsection of the existing pattern

when the filament elongates enough. On the other hand, the

addition of growth to the noisy system destabilizes the patterning

and allows for the transition between the different unstable

modes that arise with the filament growth. This implies that

while the pattern formation is enhanced by the addition of noise

to the system, its maintenance in a growing domain requires an

irreversible fixation of the heterocyst state. Additionally, this

model shows that it is possible to form the pattern through the

regulation of protein degradation instead of the previously

studied regulator inhibition. Nevertheless, it should be tested

if this alternative inhibition through HetR degradation

reproduces the experimental data for a model with a more

realistic temporal separation between the two inhibitors.

After this systematic analysis of the existent genetic models,

one can extract some common key ideas. First, the realization

that several different configurations of a minimal three-gene

network with an activator, hetR, and a couple of inhibitors, patS

and typically hetN, but it could also be the fixed nitrogen through

ntcA regulation, as in Gerdtzen et al. (2009), are capable of

reproducing the wild type behavior. Due to this, it seems

indispensable to consider other conditions, especially the

deletion ones, in order to properly evaluate the regulatory

mechanisms proposed. There must be a certain temporal

separation between the inhibitory effects in order to originate

a pattern. This difference could be either produced due to the

relationship between the diffusion coefficients (Zhu et al., 2010;

Di Patti et al., 2018), directly imposed (Brown and Rutenberg,

2014) and also (Muñoz-García and Ares, 2016; Casanova-Ferrer

et al., 2022) (where hetN is exclusively produced in heterocysts),

or in the case of fixed nitrogen (Gerdtzen et al., 2009; Torres-

Sánchez et al., 2015) acting indirectly through ntcA and,

therefore, presenting a certain delay.

4 Cyanobacteria population models

An alternative point of view to the study of spatial pattern

formation is to consider the cyanobacteria culture as a population

problem where the percentage of each cell type is defined by

external conditions.

This approach is used in the study by Hense and Beckmann

(2006), presenting a deterministic model of the life cycle of

cyanobacteria dependent on energy, mainly in the form of

light and nitrogen availability. In this formulation, the

heterocyst would be the stage with high energy (abundant

light) and low nitrogen availability. The model is capable of

reproducing the seasonal changes in the cyanobacteria

population composition and infers a correlation between

summer blooms and cycle velocity, where previous summer

conditions strongly affect the possibility of explosive growth.

The scope of this work is mostly ecological and does not provide

an extensive insight into the mechanisms controlling the

vegetative-heterocyst transition.

FIGURE 6
Three-gene simplified regulatory system and expected
protein concentration dynamics for the emergence of a new
intercalary heterocyst in a fully deterministic system. The
heterocysts are represented as peaks of HetR that produce
HetN. The dashed profiles represent the state right before the
transition to a heterocyst.
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Alternatively, Pinzon and Ju (2006) take the same culture

level population approach but with a more biomolecular focus on

the cellular processes that modulate the transition from a

vegetative cell to a heterocyst. The deterministic model

proposed includes photosynthetic growth of vegetative cells,

heterocyst differentiation, self-shading effect on light

penetration, and nitrogen fixation. The authors hypothesize

that heterocyst differentiation is driven by the difference

between the required fixed nitrogen to support maximal

growth and the available nitrogen. The model describes

experimental profiles well and gives reasonable predictions

even for the transition from growth over external nitrogen

sources to self-sustained growth.

This population point of view was taken again later by Grover

et al. (2019). In this work, the authors present a deterministic

model where the transition between vegetative and heterocyst

cells is controlled by the relationship between the processed and

free concentration of both nitrogen and phosphorus in the cells.

The model predicts a relationship between the heterocyst to

vegetative ratio with the nitrogen to phosphorus ratio of the

environment. The authors use this to discuss an evolutionary

reason for the regulation of heterocyst differentiation. Given that

phosphorus-limited habitats are much more common than

nitrogen-limited ones, the costly investments in nitrogen

fixation are tightly regulated.

As one can see, this kind of mean-field point of view is more

useful for an ecological and evolutionary perspective but does not

provide much insight into the regulation of heterocyst

differentiation. The patterned differentiation of heterocysts

seems relevant to the mechanism controlling the

differentiation decision; therefore, the population point of

view is less optimal because the pattern information is lost.

5 Conclusion

In the section on inhibitor diffusion models, we have

discussed examples of models where just a diffusible

FIGURE 7
Gene regulatory network of heterocyst differentiation. Themain elements and their interactions are depicted schematically, together with other
relevant elements with either more dubious (in light red background) or oversimplified roles (in light blue background) in the scheme. AHetR stands
for the active form of HetR. The ellipse represents the differentiation into a heterocyst. Arrows with solid lines represent interactions between
elements. Arrows with dashed–dotted lines represent post-transcriptional changes. Regular and bold formatted references indicate
phenotypically inferred and observed molecular interactions, respectively. Discussing all the references contained in this figure, which describe
experimental results, is out of the scope of this work. For this reason, a number of them are not cited in the text.
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inhibitory signal produced in the heterocysts is enough to

maintain an existing pattern in a filament. If one considers

the genetic regulatory system (Figure 2), it is easy to see that

the role of this inhibitory signal originating from the heterocysts

would be taken by HetN and fixed nitrogen. HetN acts directly

over HetR and fixed nitrogen indirectly through ntcA. With this

minimal structure a new heterocyst would arise in the space

between heterocysts roughly when the interval doubles its length.

Then, as observed when discussing genetic regulatory models, if

one also considers patS, which is a lateral inhibitor expressed in

vegetative cells, the system is capable for creating de novo pattern

formation. This regulatory system (Figure 6) would be coupled

with a switch-like genetic mechanism that initiates

differentiation when the HetR concentration is higher than a

certain threshold. The three-gene system of an activator and two

inhibitors could seem like a Turing pattern, but it presents a key

difference, one of the inhibitors hetN has its production restricted

to the heterocysts. Moreover, this differentiation to heterocysts

entails a morphological change and, therefore, is irreversible.

This ensures the stability of the pattern that would not be possible

in a Turing system.

Different strategies to model these three genes can simulate a

heterocyst pattern, so more biological information is necessary to

properly define the differentiation mechanism. A powerful tool is

constraining models by comparison with different genetic

backgrounds. Figure 7 shows a simplified regulatory network

of heterocyst differentiation obtained from surveying

experimental literature. From this, it is evident that the

mechanism controlling heterocyst differentiation is quite more

complex than any model discussed in this work. Therefore,

incorporating more genes into the models would, on the one

hand, deepen the understanding of the regulatory network and,

on the other hand, open the possibility to compare with a wider

range of genetic backgrounds. Therefore, the way forward is to

incorporate into models genes that still have dubious roles,

represented in light red rectangles in Figure 7. The research

on those genes is still quite brief, and there is not enough

information to justify their inclusion in models. There is

evidence that both hetC and patN are connected to patA

regulation, but there is not enough information to assign a

proper role to them. On the other hand, the function of hetL

seems quite clear: it appears to be involved with HetR activation,

but there is no clear link to hetF and other genes in the system

other than hetR. Also, with an apparently clear function but

without a clear relation with the other genes are both hetP and

hetZ, which are heavily linked to the heterocyst commitment but

without a clear explanation on how they affect the commitment.

This patched information is natural given that usually, the first

experimental evidence is the effects of the knock-out mutants

over the known network. Posterior studies that provide

experimental information regarding protein translation, such

as studies by Corrales-Guerrero et al. (2015) and Di Patti

et al. (2018), could be really useful to properly include the

gene in a model of the regulatory network. Modeling of

putative mechanisms for these genes could be a useful

source of predictions, helping to focus on what experiments

should look for. An example is the prediction of inhibitor

leakage at the filament extremes as necessary to explain the

patA phenotype (Casanova-Ferrer et al., 2022). This

expansion of the genetic scope of the models would bridge

the gap that now exists between this kind of reduced model

focusing on heterocyst differentiation and the more general

genome-scale frameworks, such as the study by Malatinszky

et al. (2017), which model the full metabolism of the

Anabaena cell and how it changes after the differentiation

into a heterocyst.
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Agent-based models in cellular
systems
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Freiburg Center for Data Analysis and Modeling (FDM), University of Freiburg, Freiburg im Breisgau,
Germany

This mini-review discusses agent-based models as modeling techniques for

studying pattern formation of multi-cellular systems in biology. We introduce

and compare different agent-based model frameworks with respect to spatial

representation, microenvironment, intracellular and extracellular reactions,

cellular properties, implementation, and practical use. The guiding criteria

for the considered selection of agent-based model frameworks are that they

are actively maintained, well documented, and provide a model development

workflow.
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1 Introduction

Interacting cellular biological systems, such as bacterial communities, tissues,

organoids, exhibit a plethora of phenomena, which are often not easy to understand

intuitively. To explore and analyse cellular systems mathematical equations and/or

computer simulations can be powerful tools. Because the fundamental building blocks

or units of biological systems are cells, agent-based models with cells as the individual

agents are natural simulation tools to study such systems. Pattern formation in cellular

systems requires interactions between cells, the exchange of information, and, in case of

self-organisation, that cells respond in a sufficiently non-linear manner, including

feedback loops [1, 2]. Exchange of information can occur in a multitude of different

ways and on different length scales: (short range) mechanical forces [3] and cellular

junctions [4], (medium range) diffusing chemicals [5], and (long range) hormones [6].

Due to the individual cell based perspective agent-based models make it easy to

implement these interactions and also the signal processing and response of the cells.

In this mini-review we consider agent-based software frameworks with individual cells as

agents, which are actively maintained and developed, provide documentation beyond a

minimum, and provide a model development workflow1.

Traditionally, pattern formation in biology is studied using Partial Differential

Equations (PDEs) that model continuous distribution of cells [7–10]. There is a

wealth of literature onhow to solve coupled non-linear PDEs, estimate the parameters
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from data, and how to explore their behavior, e.g., sensitivity

analysis, bifurcation analysis, see, e.g., [11–16]. PDEs are

powerful tools, however, in a PDE cells have no spatial

extension, ignoring the underlying cellular spatial structure.

Although it is possible in a PDE to distinguish between the

inside of the cells and their micro-environment, there is no

unique or canonical way to handle, e.g., cell proliferation,

differentiation, internal cell structure and other properties of

the cells, which may be relevant for the questions at hand. This

problem can be solved by cellular Automata (CA) [17] which

consist of a regular grid with a finite number of states at each grid

point and rules, determining how to update them accordingly. A

further development of CA introduced ABMs [18–20] where the

modeling approach is to handle cells as individual agents with

rules, potentially with an internal structure and/or moving in

space. By using coarse-graining or homogenization techniques

one could derive a system of coupled PDEs from an ABM; there

is, however, no unique way to go from a PDE to an ABM [21].

2 Agent-based models

An ABM is a collection of autonomous agents with a

predefined set of rules, which depend on the existing state of

the agent and external factors [22–25]. The rules can be discrete

following logical if-else statements, continuous, i.e., Ordinary

Differential Equations (ODEs) for intra-cellular reactions or a

combination of both. Also, graphs, neural networks and other

intricate algorithms can be implemented [26]. Nevertheless, one

usually strives to employ the most simple set of rules sufficient to

accurately describe the complexity of the desired system.

Compared to macroscopic PDE models, ABMs are considered

microscopic modeling, since they deal with agents directly and

are thus more common in a bottom-up approach [27]. ABMs

should not be seen as a technologically distinct toolset but rather

as a mindset for researchers by modeling complex systems from

the perspective of individual constituents.

Historically, precursors to ABMs were cellular Automata,

which were developed by [17]. They reached widespread

recognition even in the general public with the introduction

of Conway’s “Game of Life” [28, 29]. Not long after, the first

ABMs were being envisioned to study a biological system [18].

Up until the break of the century, ABMs were used in many fields

of research such as modeling human crowd stampedes [30], bird

flocks [19] or the prediction of financial markets [31]. With the

rapidly growing accessibility and power of modern computer

hardware, the popularity of ABMs kept on increasing, where

tools such as NanoHUB [32] or the Systems Biology Markup

Language (SBML) [33] further helped to share computational

models between researchers. In order to study complex

phenomena such as pattern formation ABMs must be able to

capture cell-cell communication and cellular response

mechanisms [10, 34–37]. In the next section we will compare

the available ABM frameworks and discuss how they cover

different cellular properties.

2.1 Comparison of ABMs

The effort of writing efficient solving algorithms and data

structures in a usable fashion is considerable. Therefore, agent-

based model frameworks (ABMFs) have emerged that define a

certain workflow and implement a set of features, so that users of

the frameworks can focus on their research question instead of

having to spend a significant amount of time for design and

implementation.

The majority of cell-agent-based model frameworks

(CABMFs) evolved as generalizations of solutions to specific

problems. BSim [38] was specifically designed to model bacterial

populations and has been used to study gene regulatory control

[39] and bacterial biofilms [40]. Chaste2 was designed as a

Cancer, Heart and Soft Tissue Environment [41] and has been

used in studying growth of epithelial monolayers [42].

CompuCell3D [43] originated from CompuCell [44], which

was one of the first frameworks created and originally used to

model only simple reaction-diffusion (RD) systems but was since

extended considerably to cover a wider range of topics such as

angiogenesis [45], cancer [46] and tissue engineering [47].

EPISIM was used to understand how varying proportions of

T Cells emerge in different vertebrate taxa [48]. Morpheus [49]

was applied to self-organization in neural stem cell divisions in

adult zebrafish [50] and polarization of the multiciliated

planarian epidermis [51]. MultiCellSim [52] resulted from the

in-depth analysis of cell-cell communication and was since

applied to Immuno-Oncology [53]. PhysiCell [54] is mainly

used modeling cancer and tumor dynamics [55, 56]. TiSim/

CellSys [57] was applied to liver regeneration processes [58].

VirtualLeaf [59] was specifically designed for modeling plants

and emphasizes intercellular connections and details of the

mechanical properties of the cell wall. Table 1 displays general

characteristics of these modeling frameworks.

2.1.1 Spatial representation
A key distinction between ABMs is given by the difference of

the spatial representation of cells and chemicals. ABMs can be

separated into lattice-based and lattice-free, the former meaning

that cells can only migrate between predefined lattice nodes,

while the later permits free movement of cells in a given domain.

Frameworks such as Chaste, PhysiCell, TiSim/CellSys and

VirtualLeaf utilize off-lattice motion. Chaste3, CompuCell3D

2 We only consider here the cell-based part of the chaste software
environment.

3 Cell-based Chaste supports off-lattice as well as on-lattice
representations.
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and Morpheus utilize lattice-based methods for cell-migration.

This also means that no particular cellular shape is modeled

explicitly, but rather cells follow rules (often potentials) to

determine their respective quantity on lattice points. The

disadvantage of the lattice-based approach is that it is limited

in the spatial resolution, but in turn as an advantage it can yield

considerable performance improvements. Off-lattice models

often take a cell centre [60] approach meaning, a cell is

defined by a single location vector and a shape (such as

sphere, ellipsoid or cylinder) that governs interactions. BSim

additionally has the ability to represent microbes as meshed

objects thus offering a much higher resolution at micro-scale

although at increased computational cost. Another less common

modeling choice is to use a vertex model [61, 62] that represents

each cell by a polygon, determined by a number of vertices, which

can be subject to external forces, pressure, friction, adhesion,

chemotaxis and other external and internal contributing factors.

Lattice-bound models can utilize different discretizations such as

regular Cartesian meshes, hexagonal or triangulated ones. Most

of the presented frameworks in Table 1 can be used to simulate

two-dimensional (2D) as well as three-dimensional (3D)

scenarios. The Cellular Potts Model, also known as Glazier-

Graner-Hogeweg (GGH) model [63, 64], is a common choice

for many frameworks. Typically, in a Cellular Potts Model a

Hamiltonian is formulated which describes the

phenomenological “energy” of a given configuration of the

system on a Euclidean lattice. Subsequently, the systems is

evolved by minimizing the energy. LBIBCell modifies the

classical Cellular Potts Model (CPM) approach by

representing cells as evolving polygons with the immersed

boundary method and thus obtains off-lattice cellular

representations [65, 66].

2.1.2 External microenvironment
Transport processes of chemicals typically involve

numerically solving (convection-) diffusion equations (67) and

(68) with cell to extracellular matrix interaction nodes at the

positions of the cellular agents on a (often euclidean) mesh. One

exception is presented by VirtualLeaf where intracellular

compartments are connected via membranes to adjacent cells

and model transport through membrane-potentials [59]. Many

ABMs utilize PDEs to model intracellular or extracellular

transport processes such as convection and diffusion and

allow for custom forms of reactions either via well-defined

user-interfaces like Morpheus [49] or direct implementation

into the source code.

2.1.3 Cellular processes
In an agent-based approach the processes occuring inside

a cell can naturally be described by giving the agents the

required set of functions. Each framework mentioned in

Table 1 implements proliferation and cell-death

mechanisms as key components. However, predefined and

detailed cell-cycle routines such as utilized in PhysiCell [54]

are less common, but are important to consider if, e.g.,

external factors such as growth hormones affect the cell-

cycle [69]. In addition, internal chemicals may be released

upon cell death. In order to model developmental processes

such as embryogenesis, the framework needs to support cell-

differentiation with dynamic modifications of the phenotype.

TABLE 1 Comparison of CABMFs in alphabetical order with respect to implementations of spatial representation, dimension, intra- and extracellular processes
and cell-cell forces (Supplementary Table S1).

Framework Spatial representation and
dimension

Intracellular Extracellular Cell-cell forces

BSim off-lattice, Arbitrary Meshes 3D ODEs PDEs, Molecule-Agents Micro-Scale Meshing and
Collision Detection

Chaste CPM, off-lattice, CA, Vertex-Model
2D + 3D

ODEs, SBML RD PDEs, SBML custom force laws

CompuCell3D CPM on regular lattice 2D + 3D ODEs, SBML, PBPK s RD PDEs, SBML, PBPK s force terms via CPM
Hamiltonian

EPISIM Off-lattice, hexagonal 2D + 3D ODEs, SBML SBML spherical cell potentials

Morpheus CPM on regular lattice 2D + 3D ODEs, SBML RD PDEs, CA lattice ODEs, finite
state gradient-based

force terms via CPM
Hamiltonian

MultiCellSim CA + Brownian motion Secretion and uptake RD PDEs –

PhysiCell Off-lattice 2D + 3D SBML, Boolean Networks, Diffusion
Flux Balance Analysis

BioFVM Reaction Kinetics Spheres with Potential

TiSim/CellSys Off-lattice 2D + 3D ODEs, SBML diffusion + advection frictional, elastic and
stochastic force terms

VirtualLeaf Vertex model 2D ODEs – polygonal finite elements
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Cell polarity can play an important role in many phenomena

such as in ciliary rootlets in planarian epidermis [51]. Many

frameworks like CompuCell3D, Chaste, Morpheus,

VirtualLeaf support this feature. The geometry of the cell

includes its spatial representation together with mechanical

features such as adhesion and repulsion. PhysiCell utilize

spheroid/ellipsoid cellular geometries, meaning each cell is

represented by a sphere or ellipsoid and a corresponding

potential. Further, adhesion plays an important role in cell-

cell interactions and communication. Lattice-free frameworks

often model it by choosing a particular form of interaction

potential. One sophisticated example is the experimental

Johnson-Kendall-Roberts (JKR) potential [70], which was

derived from the Hertz contact model [71]. It also models

cell separation and is implemented by CellSys. Other

frameworks that implement a CPM treat adhesion via

interaction terms in its Hamiltonian Formulation [72]. In

the context of vertex models, force potentials can also be

utilized although the implementation is often more complex.

All of the above ABMs are able to model stochastic cell

migration, excluding VirtualLeaf since almost all plant cells

are non-motile. Collectively arising forces and friction which

can play an important role in early embryonic development

[73] may be harder to simulate if the geometry of the cells is

solely implemented as spheroid/ellipsoid. For frameworks

such as PhysiCell and TiSim/CellSys who additionally do

not support polarity, modeling of force-mitigated spatial

effects is difficult. Chemotaxis is a key concept in cell-

sorting [74] and can be implemented by any framework

that supports migration and can calculate reactant

gradients. All of the presented frameworks can capture

intracellular reactions by using ODEs ignoring the internal

spatial structure of the cells; different reaction compartments

can be easily introduced by coupling of ODEs. Some (e.g.,

Chaste, EPISIM) can also handle intracellular stochastic

reactions, using the Gillespie algorithm [75].

2.2 Implementational details

2.2.1 Development, standards and features
Development and design of efficient algorithms and their

implementation require knowledge in software engineering and

in writing maintainable code, as these frameworks are usually

developed by teams rather than by individuals and consist of

many thousands of lines of code. The Chaste framework was one

of the first projects to follow agile coding principles and other

best-practice workflows such as rigorous unit-testing [76]. All

presented CABMFs are written in C++ which together with the C

and Fortran language have historically served as the de facto

languages for high-performance software development. In

addition to CABMFs, researchers have over the last two

decades developed internationally recognized formats to

seamlessly share model details (e.g., SMBL). This is utilized in

Chaste, CompuCell3D, Morpheus and PhysiCell4 and allows for

rapid model development, implementation and comparison to

classical ODE and PDE solvers. CompuCell3D is also able to

model physiologically based pharmacokinetics (PBPKs).

Additionally, many frameworks come with dedicated

[sometimes graphical user interfaces (GUIs)] tools for

configuration, analysis, batch-processing, visualization and

other workflow-aiding features which are valuable additions.

In this regard, EPISIM is special as it utilizes the popular

COPASI [77] and Mason [78] software and plugins for the

eclipse code editor [79] to build the application.

3 Studying pattern formation with
agent-based models

3.1 Applications

Pattern formation in cellular biological systems can occur via

self-assembly or self-organization and ABMs have been applied

to investigate both aspects. Chaste was used to study cell

migration in the crypt [80]. Furthermore, CompuCell3D

provided examples for self-organization in work on

polarization [81] and studies of physical forces [82] in

migrating cells. Morpheus was used to describe pattern

formations in the telencephalon of adult zebrafish [83] and

was also used to study growth of the Drosophila wing via cell

recruitment [84]. PhysiCell recently provided insights to

formation of patterns in tumour spheroids [56]. Pattern

formation in dicot leaves was modeled using VirtualLeaf [85].

ABMs allow researchers to examine complicated models which

would otherwise be hard to study and interpret with classical

PDEs.

Figure 1 shows results of a multi-scale model using PhysiCell

[54]. We can observe that the pattern changes as the number of

patterning cells (type I) increases. This simple example shows,

how to readily formulate and explore models in an ABMmindset

- by increasing the cell number in this case. Constructing a

corresponding PDE model is much harder and not uniquely

defined.

3.2 Techniques and challenges

CABMFs allow researchers to investigate biological systems

on the cellular level with the option to implement many details,

with the downside of substantial computational cost. To combat

this issue, all presented frameworks are of multi-scale nature.

4 Via an addon libroadrunner and only for intracellular reactions.
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The relevant time- and length-scales are identified and the

corresponding sub-processes are modeled and updated

according to their scales. This can greatly improve

performance as for example diffusion-driven processes tend to

be much faster than cell migrational or phenotypical processes

[86]. Other techniques to improve performance are efficient

O(Ncells) implementations of algorithms [87] to calculate

direct cell-cell interaction partners [], spreading the

computational load over multiple processes via

multiprocessing (for example via OpenMP [88]) or on

specialized devices such as solving PDEs on a graphics

processing unit (GPU) [89]. Due to the stochastic nature of

the ABM simulations, appropriate statistical methods need to be

applied, which is often challenged by the fact that transient

developmental processes are studied not necessarily reaching a

stationary state. Analysis of the simulation and comparison with

experimental data requires the definition of precise features

which are extracted from the simulation results. It is

important to define clear goals and questions upfront, as this

will guide the process of feature extraction and dimensional

reduction. To this end machine learning techniques are

becoming more and more popular for analysis of ABM results

FIGURE 1
We implemented a RD system (see also Supplementary Equation SB1-SB4–Equations) in an ABM to showcase results. The simulation contains
two distinct cell types, which are bothmotile and initially randomly distributed. Cell type I (blue-shaded, white border) obey reaction equations given
by a substrate-depletion system [36] and are colored by their internal concentration of the activator. Cell type II (orange) is smaller than cell type I and
is chemotactically attracted by the activator which is secreted by cell type I. The background displays the density profile of the secreted activator
molecule (yellow: high density, blue: low density). The number of cells I is increased from (A–D) (256, 484, 1,024, 2,025), while the number of cells II
remains fixed to 3,000. Cell death reduces the overall number of agents. The pictures show the final state of the simulation after reaching (up to
statistical fluctuations) a steady-state. The variations in cell number alone lead to different emerging patterns. While these results may be obtainable
by a modified purely PDE-based approach, they are much easier to interpret and develop in an ABM. The simulations were carried out using
PhysiCell [54].
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[90, 91]. Given current advancements in machine learning,

researchers are hopeful that image classification of patterns

and self-organizing systems can get more automated in the

future [90, 92]. The authors of TiSim/CellSys have explicitly

suggested an image-to-model workflow [93]. Neural networks

showed promise in partly replacing analysis procedures [94].

Other machine learning techniques can also be used to determine

rules for agents and calibrate the model [95]. Auto encoders [96]

may provide a way to obtain a dimensionally reduced

representation of complex ABM simulation results. Due to the

mechanistic and “law-driven” nature of ABMs, often multiple

unknown parameters need to be determined or estimated from

data. Parameters can be estimated by comparing features

extracted from experimental data and from simulation results,

which is already a substantial effort. However, this process will

usually yield uncertainties, which need to be quantified, as it is

not sufficient to evaluate the model locally in parameter space

using a sometimes arbitrarily chosen parameter set. In order to

focus on the relevant parameters, sensitivity analysis is an

important tool, which can also be used for model reduction

[15]. Due to highly integrated nature of ABMs sensitivity analysis

is demanding and incorporates substantial computational costs

[97]. Consequently, it is often only possible to arrive at qualitative

statements for complex ABM simulations.

4 Discussion

This review introduced the concepts of agent-based models

in cellular systems. We compared different frameworks with

respect to their conceptual and implementational differences.

To date, a large number of different agent-based model

frameworks with different strengths and weaknesses exist

and are openly available. The multitude of options is a clear

indication for the overall interest in the subject. ABMs provide a

unique tool to integrate combinations of processes and study

their respective dynamics. Even for the exploration of systems

that lack sufficient data, ABMs can be used as they can be

developed initially with rather simplified rule sets, by means of

which researchers can generate hypotheses, which can in turn

guide the design of laboratory experiments. By this cycle of

experimental and computational methods, the model and the

experiments can be improved and finally increase the

conceptual knowledge about the system. Due to this, it is

important to understand the challenges of ABMs and their

limitations. ABMs can be seen as a mapping of specific rules to

spatial configurations. This mapping is non-unique, and the

question arises, how the results of the ABM depend on the set of

rules and the used parameters. How are the values (or distributions)

of the parameters estimated? How does the uncertainty in the

system parameters affect the predictions of the simulations? In

particular, when analyzing the (often stochastic) results of a

simulation, one needs to quantify the influence of the parameter

uncertainty which is a considerable challenge. Besides these

questions and challenges it can be expected that ABMs are

quickly becoming mainstream tools in biology.
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Patterns in biology can be considered as predetermined or arising from a self-

organizing instability. Variability in the pattern can, thus, be interpreted as a trace

of instability, growing out from noise. Studying this variability can, thus, hint

toward an underlying morphogenetic mechanism. Here, we present the

variability of the gastrovascular system of the jellyfish Aurelia. In this

variability emerges a typical biased reconnection between canals and time-

correlated reconnections. Both phenomena can be interpreted as traces of

mechanistic effects, the swimming contractions on the tissue surrounding the

gastrovascular canals, and the mean fluid pressure inside them. This reveals the

gastrovascular network as a model system to study the morphogenesis of

circulation networks and the morphogenetic mechanisms at play.

KEYWORDS

morphogenesis, gastrovascular, network, jellyfish, instabilities, variability, mechanical
constraints

1 Introduction

Morphogenesis remains an important question in biology. Independently of how the

phenotype can be selected through natural selection, it remains essential to understand

how it can appear, develop from its original fertilized egg, and get its own shape. Since

humans observe nature, they classify similar shapes into species. Within one species, the

shape is robustly perpetuated across generations. So, biological shapes are constrained

enough within one species. Even with the discovery of many genes and produced

molecules and their important role in morphogenesis, how these constraints are

applied to guarantee a given result is not completely clarified. In particular, how a

complex shape can appear while being constrained remains obscure [1]. A complex shape

would need much information to be described, thus many regulations to achieve it.

However, the unfolding in time of instability can lead to a regulated complex shape from a

simple mechanism [2].
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In his pioneering work, Alan Turing proposed that even if

some morphogenesis can be implemented through the various

concentrations of some chemical products, the pattern they

present is created by a spatial instability [3]. This means that

even if the original distribution of chemicals is homogeneous,

this state will be unstable and spontaneously goes into patches of

different concentrations. Also, the pattern is spontaneously

created, not controlled: only its global characteristics, such as

wavelength, which depends on the reactions and diffusion

characteristics of the chemicals are set, not its particular position.

This view may seem contradictory with the constrained

production of a stereotyped shape. However, many examples

of fluctuating shapes can give the intuition of an underlying

instability. In this study, this is the case we present for the

formation of the gastrovascular network of the jellyfish

Aurelia. Jellyfishes are very old life-forms that appeared before

the “vertebrate” revolution but already present a complex

vascular structure. This vascular structure is an open circuit,

perfusing the whole body from the open mouth to the stomach

pouches and back [4, 5]. The flow in this circuit is due both to the

effect of the whole contraction of the body and to the action of

many cilia on the internal epithelium. These canals, in a body

plan which is basal in the animal tree, can be seen as an early

simple model of a network of tubes with a transport function as

the later evolved closed vascular networks such as the blood

vascular network.

This gastrovascular canal network develops while the jellyfish

grows from its first ephyra stage. This ephyra stage emerges from

a sessile polyp [5, 6]. During the transformation of the polyp into

jellyfish (a process called strobilation), this polyp is subjected to

instability that creates many disks along its axial body, each disk

being unstable in the radial direction and forming arms (lobes

with two marginal lappets), of typical 8-fold symmetry. One after

the other, the top disk further transforms and detaches, resulting

in a free swimming jellyfish larva, the ephyra. This way of

generation ensures that a series of jellyfish appears from a

very same polyp, so they are clones. The development of the

gastrovascular canal can be followed while the jellyfish goes from

a star-like shape ephyra of a few mm diameters to a juvenile

jellyfish of approximately 10 mm, which has just reached the

circular shape of adult medusa to a mature jellyfish of about

100 mm.

We will focus on the growth of the pattern from juvenile,

with few rather stereotyped canals, to adult, with many canals.

The formation of the network before the juvenile stage has

complex but more regular steps [5] and is not considered in

this study. Subsequent growth happens with the sprouting of new

canals and their reconnection with the rest of the system. There is

a strong tendency for a sprouting canal to reconnect to the

younger neighbor, leading in an ideal case to a particular fractal

pattern. However, this bias is not absolute, and there are many

variations. With the observation of these dynamics and their

results of complex and varying shapes, we can get closer to the

origin of the morphogenetic process. More precisely, the

question of which phenomena can be responsible for the

development of these shapes can be studied. In the following,

we will present two possible phenomena with both some interests

and limitations.

2 Canal network morphogenesis

2.1 Stereotypical morphology

The gastrovascular canal network in juvenile jellyfish can

be presented with a stereotypical structure (see Figure 1A). In

1/8th of the jellyfish (an octant), there is radially one gastric

pouch of the stomach (or the junction between two pouches)

near the center, and a marginal ring canal, circling around the

whole rim of the jellyfish. Radially, there are two canals, rather

straight and unbranched, joining the side of the pouches to the

marginal ring canal, the adradial canals. Between such two

straight canals, there is a canal joining the gastric pouch

(interradial canal) or directly in the mouth opening at the

pouch junction (perradial canal) to the marginal ring canal

and a rhopalium (a sensory organ that can be caricatured as an

“eye”). These canals present, in the juvenile stage, two

secondary side branches connecting the main inter or

perradial canal with the ring canal, forming a trifurcation.

There is no apparent difference between interradial and

perradial morphologies. We will, thus, simply call them

“trifurcate” canals (in contrast we can call the adradial

canals the “straight” canals). In juveniles, new canals

mainly sprout from the marginal ring canal and connect to

one of the surrounding already existing radial canals.

After growth, for adult jellyfishes, it is tempting to present

its shape as a regular, fractal one. Although a perfect one is

rare, it can be sometimes observed in small jellyfish (we found

occurrences in nature or in the Cherbourg Aquarium

culture). The best way to understand it is, as for fractals,

to describe its construction, step by step, with canals

connecting to each other in a well-defined and precise

order (Figure 1B). In the juvenile stage (Figure 1A) at the

ring canal, the trifurcation cut the interval between the two

straight canals in four. Roughly four new canals sprout from

the ring canal, grow in these intervals, and connect either left

or right to the two younger side canals of the fork. The next

generation of eight canals would also connect to the last

previous generation, leading to a distinctive tree shape

(Figure 1B).

There is a strong tendency, around 80% of the cases

(Figure 1C and Supplementary Material), for the new

sprouting canals to connect to the younger radial canal at

proximity. If we look at the distribution of “false”

connections, that is, canals not connecting to the younger

canal at proximity, per octant, we find the very asymmetric
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distribution of Figure 1C. This indicates that it is a real bias and

that the false connections accumulate independently, making it

more probable to have only few false connections (but rare to

have none) and rarer to have more false connections. The

essential question arising from this structure and its

development is to understand why new canals would connect

to the younger previous ones.

2.2 Differential contraction

To understand this differential connection of the sprouting

canal to the youngest close one, a first observation on the

morphology and appearance of the canal itself is helpful. The

canals, consisting of a canal wall with a monolayer of dense

canal cells around a lumen, are situated inside a monolayer cell

FIGURE 1
Structure andmorphogenesis of the canal network of the gastrovascular system of the jellyfish Aurelia. (A) Picture of a juvenile jellyfish showing
the structure of the gastrovascular system. There are typically four stomach pouches (sp), eight sensory organs, or rhopalium (r). At the periphery of
the jellyfish there is a ring canal (RC in blue). Connecting this ring canal, from the sides of the stomach pouches, there are typically eight straight
adradial canals (AC in red). Between these adradial canals, other canals connect either the stomach pouch, the perradial canal (PC in green), or
the junction between two stomach pouches, the interradial canal (IC in orange), to the rhopalia. New canal sprouts (CS) sprout from the ring canal
(arrows). (B) Picture of two octants of a later developmental stage (original in Supplementary Figure S2). The sprouting canals have reconnected to
older ones, forming branched perradial and interradial canal systems (rhopalia, yellow dashed circles; adradial canals, and red; original trifurcate
canals, blue). The sprouting canals have the tendency to reconnect to the youngest side canal (white circles), leading in theory to a specific fractal
tree shape. The four (green) canals sprouting in the two intervals between the fork and the two intervals near the side straight canals (red) would
connect to side branches of the original (blue) fork. The next eight canals (yellow) would connect to the previous one (green). Also, the next
generation (orange) would connect to the previous one (yellow). Some connections do not follow this pattern and either reconnect to older ones
(dashed red circles) or even directly to the stomach pouch (red disk). Some irregular growth is also visible on the left (perradial canals), leading to
mixing of generations, as some fourth (orange) canals have already appeared, and even connected, while some third order (yellow) generations have
not appeared yet or reconnected. (C) Histogram of the percentage of “false” connections (i.e., canal connections not made to the closest younger
canal) inmidsize jellyfish as in B, per octant (seven jellyfishwith eight octants and onewith nine octants n= 65 octants). There are, for instance, 10% of
octants present between 32% and 40% of false connections. The median value (dashed line) is 20%.

FIGURE 2
Anatomical position of the canals in the jellyfish Aurelia. The canals are surrounded by an endodermal layer positioned just above the lower
epidermis with muscles. (A) Schematic representation. (B) Optical view of a histological 4 μm thick microtome slice of a fixed jellyfish.
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sheet with largely spread endodermal cells (see Figure 2). We have

observed that the canal sprouts are growing in the endodermal sheet

with cell proliferation around the tip of the canal [7].

The second important point for a possible morphogenetic

mechanism is that these canals are growing while the jellyfish is

growing, and it is growing while being, since the beginning, actively

contracting, to swim and gather food. These contractions from a

nearly flat state to a bell shape are done by amuscle sheet contracting

and reducing the periphery perimeter. Thesemovements then induce

a considerable mechanical deformation to the endodermal layer,

containing the canals, which is just above thismuscle layer (Figure 2).

A proposed mechanism for the bias in connections is that

the mechanical response to the contraction during swimming

is different for different parts of the tissues. We propose that

the endodermal cells which are not part of canals are

submitted to a high mechanical stress as they are nearly

incompressible, being held by the incompressible, but soft,

upper and lower mesoglea [8]. On the contrary, canals are not

flat; they enclose a lumen which protrudes out from the

endodermal sheet (Figure 2B). Measurements during

contractions show that the older the canal, the more

deformable it is (Figures 3A,B). We propose this property

as the cause of the bias leading growing canals to connect more

frequently to younger canals than to older ones.

2.3 Simulating contraction

To see the effect of the differential contractibility of the

canals, we analyzed the distribution of the stress in the

jellyfish during muscle contractions. To do so, we build a

mechanical model of the endoderm and of the canals of the

jellyfish. The effects of the mesoglea elasticity and muscle

contractions are injected through the boundary conditions.

The model geometry is limited to a slice of the endoderm

near the ring canal. The endoderm slice is represented by a ring at

the edge of a circular disk (Figure 4A), extending 1/5 of the

jellyfish radius. We neglect the local convexity of the endoderm,

approximating it with a plane surface. During swimming, the

umbrella reduces its radius, increasing the convexity, but we

assume it remains flat. The geometry of the canals and sprout

were chosen to be coherent with our observations in a juvenile

jellyfish of 1 cm diameter (see Supplementary Figure S7A).

The model follows the law of mechanics: ρ z2u
zt2 − div(σ(ϵ)) � 0,

where ρ is the density of the endoderm (assumed to be similar to that

of water), u is the displacement of the material, ε =  u is the relative

displacements of the material (strain), and σ(ε) is its stress–strain

relationship. To close the model, we further use the Hooke’s law of

elasticity to express the stress as a function of the strain. Since we are

not interested in the global bell shape of the jellyfish and its change

during the muscle contractions and spring back mediated by the

mesoglea elasticity [8], we neglect the stress components in the

direction normal to the (flat) endoderm surface, that is,

σz � 0, σxz � 0, and σyz � 0. As a consequence, our model is a

2D model and Hooke’s law reduces to

σx � E

1 − ]2
ϵxx + ]ϵyy( ),

σy � E

1 − ]2
ϵyy + ]ϵxx( ),

FIGURE 3
Relative contraction of canals during jellyfish swimming contraction. (A) A sequence of pictures showing a young and an older canal pictured
during a contraction (with also a canal sprout in between). Canal width measurement during the resting phase and the maximum contraction allows
measuring the relative contraction of the canals. (B) The pairwise measurement shows that the contraction of a young canal is significantly smaller
than the one for older canals (p < 0.01, one-way repeated measures Anova, followed by a Student–Newman–Keuls test for a pairwise multiple
comparison).
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σz � 0,

σxy � E

1 + ]
ϵxy,

σxz � 0,

σxz � 0,

with E being Young’s modulus and ν Poisson’s ratio. The

observed difference of deformability (Figure 3) was translated

into plausible elastic Young’s moduli and Poisson ratio. We

assume the endoderm as a flat rigid nearly incompressible

elastic sheet. The near incompressibility in the plane is given

by Poisson’s ratio ]en = 0.49 and the rigidity by Young’s modulus

Een = 100 Pa. We modeled the canals in 2D by a compressible

elastic membrane, with a lower Young’s moduli than the

endoderm. The chosen Poisson’s ratio of the canals of 0.3 (]yc
= ]oc = 0.3; νyc being the Poisson’s ratio for the young canal and

νoc the Poisson’s ratio for the old canal), allows for compression

in the plane, translating the vertical expansion of the canals. The

Young’s modulus of the young canal is assumed to be stiffer with

Eyc = 30 Pa than the old canal, for which Eoc = 10 Pa.

The muscular orthoradial contraction is mimicked via the

boundary conditions as shown in the Supplementary Figure S7B.

To simplify, instead of compressing the whole two radial borders

of the slice, we only reduce the radial position of the outer circular

boundary. Following our observations, we typically reduce it by

200 μm in one second. The sides of the ring slice can only slip

along the radial axis, and the inner circular boundary is free to

move (σ(ϵ).n � 0, with n the outer normal of the boundary). As a

result, the whole slice compresses after one second. At the end of

the contraction, the circular deformation is 4% at the outer edge

(top of ring canal) and 5% at the inner edge. With these

characteristics, the simulation can be performed quasi-

statically. The model of contraction was studied with a

numerical simulation based on finite elements.

The results show an accumulation of stress at the tip of a new

canal (the stress is partly released at the sprouting canal, and all

the residual stress around focuses on the tip), and the stress is

slightly different in the two surrounding canals of different age/

stiffness (Figure 4A). At the tip, the stress shows two lobes,

toward both side canals, the one toward the younger canal being

larger and more intense (Figure 4B). The quantitative result is

that the maximum of stress is shifting toward the younger stiffer

canal (Figure 4C). Based on these observations, we propose that

high stress will guide the canal sprout to grow toward the younger

stiffer radial side canal.

3 Variability

Since the connection of the sprouting canal to a younger close

one is only a strong bias, there are many variations of patterns

and only rarely a perfect one. Looking more generally at Aurelia

jellyfish from different origins and growth conditions (see

Section 6) also reveals variable patterns. The observed patterns

display more variability than what we would expect from the

previously described process based on successive sprouting of

new canals from the rim and connection to the youngest

neighboring canal.

FIGURE 4
Stress distribution predicted by numerical simulations (A): Finite element simulationwith stiffer young canal (left) and softer old canal (right). The
contraction is reproduced by reducing the radial distance with a constant angle, thus reducing the orthoradial one. The log of the mechanical stress
(colored scale) is smaller (blue-green) in the soft right canal, and reduced around the sprouting canal (light blue), but concentrated at its tip (red spot).
(B): A zoom of the stress around the tip. Level lines, circling away the red spot reveal two lobes, one forward left to the young canal, one right to
the old canal. Lines drawn at fixed distances are drawn with each its color code, to measure the stress along them. The two stress maximums and
minimum along these successive lines are indicated by black full and dotted lines, respectively. (C): The stress measured along these lines, centered
on the axial position of the tip and rescaled from beginning to end, with their colors, and the distance to the finger indicated. Horizontal dotted lines
show that the left maximum toward the young canal is always higher. This will turn the propagation of the new canal sprout toward the younger,
stiffer one.
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Figure 5 shows four cases giving an indication of the large

variety of patterns. As a source of variability, one can observe

that, even after reconnecting, the side canals would keep

growing toward the stomach (pink ovals in Figure 5A).

Another variation is the presence of meandering canals that

are potential sites for the growth of new canals. Both modes of

growth induce the formation of loops on large (old) jellyfish,

transforming the gastrovascular network into a foam-like

pattern (Figure 5D). This creates patterns much more

difficult to analyze.

An interesting point is that since there is a variability in these

patterns, one can study where these variations originate from. In

the case of ephyrae coming from a single polyp, which means

they are clones and grown together, thus in identical conditions,

one can look at resulting patterns. Here, we present three such

clones grown together (Figure 6). One can observe a similar type

of pattern but still differences. This shows that, even for

genetically identical jellyfish and an identical environment,

there is no strict control of the pattern. This suggests a self-

organized pattern formation, relying on instability, amplifying

the noise.

4 Canal breakthrough

A particular type of deviation from the stereotypical

development is interesting to see dynamically. During

development, one can observe that some canal sprouts do not

FIGURE 5
Four Aurelia specimens of around the same size, from Cherbourg. The rhopalia are surrounded by yellow-dashed circles, and the adradial
canals are drawn in red. In A, the continuation of canals after connecting to the central one is indicated by pink ellipses. In (A–C), some
interconnection between canals, forming loops, is indicated (orange ellipses). In B, some side canals never reconnect to the central one and connect
directly to the stomach pouch (light blue ellipses). In (C,D), some rhopalia are not connected to canals (green ellipses). In D, there are many
meandering canals and reconnections making many loops, in particular reconnections with straight adradial canals (violet ellipses). Scale bar 5 mm.

FIGURE 6
Three clones from the same polyp. (A–C) The pattern has been interpreted for easier comparison. As in Figure 1B, the adradial canals are drawn
in red; the central canal, and the first side canals forming the trifurcation are drawn in blue; the second generation in green; the third in yellow. One
can observe many irregularities as in Figure 5: side canals not reconnecting to the central one, reaching (or going to reach) the stomach pouch,
interconnections to straight canals [violet, in (B)] and to other radial canals (black) making loops. All these irregularities, although similar in the
three clones, are in detail different.
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reconnect with the more central canals. Instead, they grow

straight toward the stomach, independently from the other

canals. It happens for the first-generation canals that sprout

between the fork and the side adradial canals (see Figure 1B,

Figure 5B), around 17% of the time (see Supplementary

Material). Interestingly, in such a case, the next generation of

side canals keeps growing independently too as long as the

longest canal sprout did not reach the stomach pouch (see

Figure 7A). However, as soon as the longest canal sprout

reaches the stomach, it is observed that the smaller sprouts

connect to the long canal that just got connected to the

stomach (Figure 7B).

5 Discussion

When a pattern is constant, it is difficult to describe its origin

and what controls it. On the contrary, variability helps get closer

to the mechanisms producing these patterns. Here, we see that

the pattern can be very variable, even in clonal jellyfish. That

points to instabilities being at the origin of the pattern. Since

Turing, we understand that instabilities mean that a

homogeneous state is unstable, so that tiny inhomogeneities

will grow to create a pattern. In this sense, instability starts

with the amplification of noise. This first step results in a noisy

pattern, which is a source of variability.

The further growth of the instability is often regulated by

long-range interactions and global constraints (such as gradient

of pressure). This leads to the growth of a regular pattern with a

fixed wavelength for instance. This is how regular and

reproducible patterns can appear, even if originating from an

initial noise. In practice, this noise origin is often overlooked, and

only regular patterns are studied theoretically. The most unstable

regular pattern will be searched for, as it is the one most growing.

Then, after a further restabilization, it will be the one finally

observed. However, in some cases, the system keeps growing and

being unstable, with no means of reorganization. This happens in

physical systems, as in the Saffman–Taylor instability in circular

geometry [9] or in biological growth, as in the lungs [10]. In such

cases, the noise keeps being amplified, and variability can persist.

This seems to be the case with the gastrovascular network of

jellyfish.

There is still some regularity: the gastrovascular network can,

under some growth conditions, follow a typical asymmetry (bias)

and sometimes converge toward a stereotypical pattern. This

comes from the interactions between canals, allowing

regularization. However, we could guess that not following the

bias comes from the presence of more noise, for instance, on the

distance between canals, canal growth, and canal stiffness or

resistivity. Such noise is well visible on Figure 1B, left, where

successive generations of canals appear irregularly. This noise

could blur the asymmetry and sometimes allows the sprouting

canal to follow the second stress lobe (Figure 4), leading to a non-

stereotypical connection. The fact that noise is the origin of these

connections escaping the bias can be seen in the asymmetry of

the distribution of Figure 1C. Noise leads to independent

FIGURE 7
Two successive images of a jellyfish octant. (A)At day 9 of observation, secondary (green) side canals did not connect to the central ones and are
reaching toward the stomach pouches. Similarly, there are two younger (yellow) canals growing aside of them without connecting either. (B) 3 days
after, the side canals have reached the stomach pouch and connected (orange disks), and in the same period, the younger canals have also
connected to these side canals (dashed white circles).
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misconnections, resulting into stereotypical octants with few

mistakes but rarer octants with more numerous ones.

The sprouting of new canals from the circular ring canal also

reveals instability of this ring that would be similar to the curving

in the meandering canals, leading to local sprouting and later to

other reconnections, forming small loops shunting the canals.

The fact that canals reconnect to each other is a particularly

interesting phenomenon. The gastrovascular network is a tree

structure connected to a ring canal. One would first imagine that

it forms as a tree expanding with successive dichotomies of tips or

side branching, and finally connecting to the ring canal. Here, we

see a reverse growth: the branches appear from the ring canal,

separated from each other, and reconnect only later. The

reconnection between the canals leads to the formation of

loops. The sprouting from other canals than the ring canal

that further connect forms even more loops. This is

interesting since the usual branching formation of trees, as in

Laplacian growth [2], often forbids reconnection, hence the

formation of loops [11]. Such reconnection is thus a

particular phenomenon that deserves exploration.

This formation of loops by the reconnection of branches has

to be differentiated from the case of stabilization and coarsening

of loops. As for vascular remodeling from a capillary plexus [12],

these systems start from homogeneously connected foam and

particular dynamical evolution leads to the stabilization of large

hierarchical loops [13–15]. Here, for the formation of loops by

reconnection, the first mechanism proposed relates to cracks,

which are known to reconnect [16], being related to two-

dimensional stress [17], and leading to 2D-reticulated patterns

[18, 19]. In this way, canals can be seen as the propagation of

cracks in the endoderm. Stress accumulates at the tip of a new

crack, and it is guided by the stress around it [16]. Here, too high

stress at the tip of a sprout could induce the proliferation of cells

[20, 21] and/or their transformation in canals cells, open the

canals, and release the stress. The global stress field guides the

movement of the tip of a new canal/crack. This relation to stress

also explains the observed bias, that the crack is attracted to the

larger stress, thus to the still stiff younger canal.

The second mechanism, even if related to Saffman–Taylor

and Laplacian growth, would happen in the special case of

resistive fingers [22]. This resistance creates gradients of

pressure within the fingers. It allows connection of side

fingers to a longer one when its pressure is locally lower. This

particularly happens when the pressure in the longer one globally

drops because of a connection to an outlet (breakthrough). This

could explain the coincidence of a canal breaking through the

stomach pouch and the reconnection of a side canal to it.

For the jellyfish canals, this would happen with the liquid

pressure inside the growing canal sprouts during the muscle

contractions in the orthoradial direction. However, when one

canal sprout, in analogy with the Saffman–Taylor finger,

reconnects directly to the stomach, then this transient high

pressure at its tip drops to reach the pressure at the outlet,

the stomach pouch. This dropping of pressure happens all along

the canal, so that the lateral canal sprout can now perceive a place

on the side with low pressure and be attracted to it.

These two mechanisms could be happening in the jellyfish or

just be mechanical analogies of other phenomena. However, even

from amechanical point of view, they are not incompatible, being

driven by the stress in the endodermal layer and the pressure in

the canals, which are complementary parts of the mechanics of

the network.

The source of large variability of the patterns, as shown in

Figure 5, should also be investigated. Is it due to different growth

conditions, growth histories, or also to different strains, revealing

a different sensibility to mechanical constraints for instance?

Globally, these first observations show that the gastrovascular

network results from a spontaneous organization, or, in other

words, that it appears from instabilities, enhancing noise, so that

two growths never produce the same result even with settings as

close as possible (clones from a single polyp grown together in the

same conditions). We consider that blood vascular networks in

vertebrates [23–25] and venation in plant leaves [17] could result

from similar spontaneous organization, however, with different

detailed processes. Here, we show that there are clues that the

morphogenesis of the gastrovascular pattern in the jellyfish could

be related to mechanical processes, since it grows while the

jellyfish is swimming with repetitive contractions. These

contractions have clearly a mechanical effect on the tissue

either by direct contraction or by a secondary effect on the

flow inside the already existing canals.

6 Materials and methods

6.1 Jellyfish culture

Jellyfish Aurelia aurita were reared in the laboratory, at room

temperature, in artificial seawater, produced by diluting 35 g or

28 g of synthetic sea salt (Instant Ocean; Spectrum Brands,

Madison, WI) per liter of osmosis water (osmolarity

1,100 mOsm). Polyps of the Roscoff strain [26] were obtained

by courtesy of Konstantin Khalturin from the Marine Genomics

Unit, Okinawa Institute of Science and Technology Graduate

University, Onna, Okinawa, Japan. Strobilation in polyps was

induced by a lowering the temperature down to 10°C [27]. The

newborn ephyrae were bred to adult stage. The measurements

were performed on jellyfish at different sizes of juvenile jellyfish.

Juvenile jellyfish had just reached the circular shape of adult

medusas with a diameter of ~1 cm. Juveniles grow out into adult

jellyfishes with fully developed stomach pouches.

Juvenile jellyfish (~1 cm in diameter) were obtained from the

“Jellyfish Concept” in Cherbourg from their culture. The original

polyps are extracted from the North Sea around Cherbourg.

Juvenile jellyfish were bred to adults while growing. In the

manuscript, we refer to these jellyfish as ‘Cherbourg jellyfish’
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when they originate from the Roscoff strain, we do not specify it

in the manuscript.

6.2 Imaging of the gastrovascular canal
network

The gastrovascular network of the jellyfish was observed

using a Leica macro zoom (MACROFLUO LEICA Z16 APO

S/No: 5763648) and a Photron Fastcam SA3 camera or directly

using a Nikon D3300 camera with macro lens AF-S DX Micro

NIKKOR 40 mm f/2.8G. Jellyfish were caught from the aquarium

approximately 3 h after feeding with artemia when the

gastrovascular canals were colored orange from the digested

artemia. When they reach about 2.5 cm in diameter, jellyfish

were anesthetized with magnesium chloride dissolved in water

having the same salinity as the artificial seawater in which they

are swimming. To anesthetize the jellyfish, the volume of the

jellyfish with seawater was doubled with the magnesium chloride

solution. Then, they are placed in a Petri dish in shallow seawater

with the sub umbrella facing up. The images are taken by

transillumination.

6.3 Histology

The histological section shown in Figure 2B was made for

a preparation of observations with transmission electron

microscopy. In short, whole juvenile jellyfish are fixed with

a 5% glutaraldehyde solution in a 0.1 mol/L cacodylate

solution overnight at 4°C [28]. After rinsing with 0.5 mol/L

cacodylate solution (overnight at 4°C), the solution is

replaced gradually by ethanol 95% after which it is

transferred to 95% ethanol containing eosin, in order to

stain the jellyfish. Then, the samples are placed in 100%

ethanol which is subsequently gradually replaced by a pure

molten wax solution. These samples are then cut by a

microtome into thin lamellae of about 4 μm thickness.

Longitudinal sections of juvenile jellyfish were sliced,

starting the sections from the edge of the umbrella, and

advancing towards the center of the jellyfish. Figure 2B

shows a longitudinal section through a canal and the

endoderm of a juvenile jellyfish of approximately 1 cm

diameter. The section was visualized under a light

microscope (Leica DMI-3000 B), a ×20 magnification

objective, and a CCD camera (Andor, iXon3 885).

6.4 Canal diameter deformation
measurements

Juvenile jellyfish (n = 7) of about 1 cm in diameter were

filmed (30 frames per second) using a Leica inverse microscope

(LEICA DMI-3000 B) with a ×20 objective (HCX PL Fluotar

L ×20/0.40). The jellyfish were lying flat with the subumbrella

facing down. In this position, jellyfish slightly contract

occasionally. Two canals were filmed simultaneously. The

older and younger canals were identified by looking at the

canal network pattern. Off line, diameters were measured

before and during contraction at three different positions

along the canal and were averaged. Deformation of the canal

was calculated by the ratio of the difference in diameter before

and during contraction and the diameter before contraction,

multiplied by 100. We used one-way repeated measures Anova,

followed by a Student–Newman–Keuls test for pairwise multiple

comparison to show the statistical difference between the

deformation of the older canals versus the younger canals

(SigmaPlot 12.5).

6.5 Numerical simulation

Numerical simulations were performed with finite elements

toolbox COMSOL Multiphysics 3.5a [29]. We approximated the

endoderm and the canals as 2D surface elements with different

stiffness.

The simulations were performed on a small piece of a ring

at the edge of a circular disk with a radius of 5 mm, with a

radial length of 1 mm and with a 12° angle. The geometry of

the canals and sprout were chosen to be coherent with our

observations in a juvenile jellyfish of 1 cm diameter. The

geometry with the simulation mesh is shown in the

Supplementary Figure S7A.

We assume the endoderm as a flat rigid incompressible

elastic sheet with Young’s modulus Een = 100 Pa. The

incompressibility of a material corresponds to a Poisson’s

ratio of 0.5. However, Hooke’s law is only valid for Poisson’s

ratio <0.5. Hence, in our model, we approximate the

incompressibility of the endoderm by setting its Poisson’s

ratio ]en = 0.49. The simulations in 2D imply the absence of

out of plane buckling. This assumption is justified for small

juveniles at the onset of contraction since the endoderm is held in

plane by the mesoglea located above and below.

We modeled the canals in 2D by a slightly compressible

elastic membrane, with lower Young’s moduli than the

endoderm. The young’s modulus of the young canal is

assumed to be stiffer with Eyc = 30 Pa than the old canal, Eoc
= 10 Pa. The Poisson’s ratio of the canals equals 0.3 (]yc = ]oc =
0.3), which allows for compression. It should be noted that the

distribution of these stresses does not depend on the values of the

Young modulus of the endoderm and the canals but only on the

ratio of these values.

We observed that by choosing the elastic modulus of the

canals 10 times lower than the endoderm, we obtained rates of

reduction of the diameter of the ducts close to those observed in

vivo (Figure 2B).
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To simulate the muscular orthoradial contraction, we

impose a reduction of the radial position of the outer

circular boundary (at the ring canal). The sides of the ring

slice can slip along the radial axis only, and the inner circular

boundary is free to move (σ(ϵ).n � 0, with n being the outer

normal of the boundary).

The simulation was performed quasi-statically, meaning

that each simulation step is in a dynamic equilibrium. The

relative influence of inertia and elasticity on the system can

be determined by computing the Cauchy dimensionless

number C � ρV2

E , with ρ the density of the tissues and V

local flow velocity. In our model, V ≈ 200 μm/s, ρ =

1,000 kg/m3 and E ranges from 10 to 100 Pa. Thus, C<<1
and the acceleration term ρ z2u

zt2 is always negligible relatively

to the elasticity term div(σ(ϵ)). As a consequence, we can

perform a quasi-static analysis: we solve the static equation

div(σ(ϵ)) � 0 with a maximal displacement of 200 μm of the

outer circular boundary. Then, we reconstruct the time

dynamics, thanks to the linearity of the equation relatively

to the condition at this boundary.

We selected the mesh size so that a refinement of the mesh

did not improve significantly the quality of the results. The mesh

consisted in 7,563 triangular elements. The computation time

was less than 1 s on an 3.7 GHz 2 Ghz Intel Xeon Gold 6,138.

The different values of the Young’s and Poisson’s moduli

of the different elements under compression results in a

distribution of stresses (σx, σy, σxy) which are accumulated

at the tip of the sprout. The von Mises stresses (σvm), obtained

by combining these different stresses [29], give a satisfactory

scalar representation of the stress distribution in the

endoderm:

σvm �
���������������������
σx2 − σxσy + σy2 + 3σxy2.
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