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Editorial on the Research Topic

Big data and artificial intelligence in ophthalmology

BigData andArtificial Intelligence (AI) are rapidly transformingmodern healthcare. The

combination of these technologies allows for the collection, analysis, and utilization of large

amounts of healthcare data in ways that were previously not possible. While there are several

challenges to overcome, the potential benefits of using these technologies are significant and

include improved patient outcomes, efficient and effective healthcare delivery, and potential

of improving access and affordability of healthcare interventions. Ophthalmology is a field

that generates a large amount of healthcare data, including images of the retina, cornea, and

other eye structures (1). The widespread use of electronic health records has also led to an

increase in the amount of patient data available for analysis (2, 3). Thus, ophthalmology is a

great medical subspeciality for applications that can utilize big data and AI.

This Research Topic focuses on the utility and the potential of big data and AI in

ophthalmology. Authors from a broad spectrum of vision science and ophthalmology

associated specialties from several countries, have contributed to this Research Topic. They

have highlighted novel uses of large datasets, introduced new perspectives, and have reported

AI algorithms with immense translational potential. In this editorial we provide a thematic

overview of the exciting and diverse content covered under this Research Topic.

1. Publication trends

Yang et al. have performed a bibliometric analysis of the publication trends in AI in retina

from 2012 to 2022 and report interesting findings. Countries like US and China have been

leading the research output with maximum number of publications (US:171, China: 149),

citations (US:2466, China: 1401), and H-index (US:28, China: 20). However, several issues

such as lack of real-world testing of algorithms, meaningful economic impact assessment,

use of multimodal imaging data for algorithm development and ethical, regulatory, and

legal complexities associated with dataset curation need to be addressed by the researchers.

Additionally, adequate representation of different populations in training datasets and

algorithm generalizability are other areas of concern that need attention.
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2. Anterior segment

In this Research Topic we observe the utility of big data to

answer perplexing clinical problems. Kwak et al. used the KNHIS-

Senior database (n = 558,147) to demonstrate that the rate or risk

of surgical complications of cataract surgery did not change with

tamsulosin use in the Korean elderly population. These findings

contradict conventional understanding that intraoperative floppy

iris syndrome (IFIS) is frequent in patients taking tamsulosin and

can cause significant perioperative or postoperative complications

during cataract surgery (4). Though the authors were cautious in

interpreting their findings and attributed their results to careful

surgeon’s effort to respond to perioperative complications and

advances in surgical equipment, the big data driven approach

of the study shows how conventional observational “wisdom”

may sometimes not hold true when tested against benchmarks

of real world “evidence.” Another study by Ahn et al. (a)

demonstrated the value of big data by showing that surgically

induced astigmatism (SIA) was higher in the femtosecond assisted

cataract surgery+ arcuate keratotomy group than the conventional

phacoemulsification group (0.886 vs. 0.631 p < 0.001). The

overcorrection ratios were also higher in the in the femtosecond

group (58.9%) vs. the conventional group (48.8%). Though the

femtosecond laser was effective when target induced astigmatism

(TIA) values are greater than 0.75 D, overcorrection in patients

with a lower degree of astigmatism and the angle of error in

patients with higher astigmatism may lead to higher postoperative

corneal astigmatism. Further research is thus needed to understand

the factors that affect astigmatism in femtosecond laser assisted

cataract surgery.

Ahn et al. (b) also demonstrated that multi-source ASOCT

images can be used for estimating preoperative best corrected visual

acuity (BCVA). This AI biomarker can be used as a surrogate

for cataract grade as well. The authors also reported that in the

subgroup which had an absolute error (AE) ≥ 0.1, subjects had

significant vision impairing disease like macular disease/glaucoma

or another optic neuropathy. Thus, a more intuitive approach

would be to use both anterior and posterior segment imaging to

formulate an algorithm that provides an estimate of both pre and

postoperative BCVA. Surgeons and patients would then be able to

effectively manage expectations and deliver satisfying outcomes.

Qian et al. showed that anterior chamber depth (ACD) can

be predicted using smartphone captured images of the anterior

segment. The MAE reported by the authors was 0.16 ± 0.13mm,

and R2 between the predicted and measured ACD was 0.40.

The central corneal region was highlighted in the saliency maps

indicating that the predicted ACDwas correlated with the clinically

used site for ACD measurement. Such algorithms that utilize easily

available consumer technology for image capture and subsequently

can predict important ocular biomarkers have potential for rapid

deployment in the real world.

Ahn et al. (c) also demonstrated the possibility of automating

hospital workflows by predicting pupil dilation based on medical

interview and basic eye examinations data. Using a large well-

curated dataset of 56,811 patients over a period of 3 years, the

authors demonstrated a sensitivity of 94.2–75.7% and specificity

of 96.2–96% for predicting the need of a pupil dilation test only

based on basic clinical information. The authors identified that

asymptomatic lesions however led to reduced performance of

the model, though it is still interesting to see how big data and

innovative AI algorithms may improve and automate hospital and

clinic workflows.

3. Posterior segment

Lin et al. showed that OCT images could be used to infer

VA information using a deep learning algorithm in patients with

diabetic macular edema (DME). Traditionally VA is documented

using chart based methods that are prone to subjectivity and

depend on chart quality and illumination. AI based methods

for VA estimation can be thus used for subjects with poor

cooperation and provide surrogate functional vision endpoints

for monitoring.

Lu et al. demonstrated prediction of axial length classes

using choroidal thickness measures from 2D OCT images.

The model however requires 6 point choroidal thickness

measurement and variables like age, gender, height, and

weight for axial length classification. Development of future

AI models that can predict axial length without additional

demographic information can be explored using larger and

multimodal datasets.

Wang et al. demonstrate a deep learning model

for DME classification with AUC range of 98.1–95.2%,

sensitivity of 96.4–87.4%, and specificity of 90.2–90.1% in

three large datasets. The model is novel as it can localize

hard exudates along with anatomical landmarks. Diabetic

retinopathy (DR) and its associated complications offer

several opportunities for AI based algorithm development

and potential use due to ease of retinal image capture using

portable fundus cameras, well-defined disease labels and high

disease prevalence.

In another study using big data from the Korean NHIS-Senior

database, Kim et al. showed that in elderly patients with retinal

diseases, the vitrectomy group showed the lower mortality from

pulmonary causes when compared to those without vitrectomy.

The associations were different based on underlying vitreoretinal

disease: higher risk of all-cause mortality and vascular causes in

patient subgroup with retinal vascular diseases and lower risk

of all-cause mortality, vascular causes, and pulmonary causes

in those with macular diseases. Such serendipitous results are

difficult to explain as in this study a greater proportion of

the patients with macular diseases who underwent vitrectomy

were current or ex-smokers who regularly consumed alcohol.

However, such results inspire discussion and future research

into the impact of surgical interventions for ocular disease on

patient mortality.

4. APPRAISE survey

Gunasekeran et al. conducted the Acceptance and Perception

of Artificial Intelligence Usability in Eye Care (APPRAISE) survey

to evaluate the global perspective of ophthalmologists (n =

1176) regarding AI, focusing on four major eye conditions,

namely DR, age related macular degeneration, glaucoma, and
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cataract. This survey highlighted that most respondents (80.9%)

believed that the pandemic had played an important role

in the willingness to adopt AI tools due to global focus

on teleophthalmology and digital solutions for patient care

while lockdowns were being implemented. While the goal of

AI developers is to provide comprehensive AI solutions for

patient care, ophthalmologists are more willing to use AI

as clinical assistive tools (88.1%), when compared to clinical

decision support tools (78.8%) or diagnostic tools (64.5%).

The survey also highlighted the perceived advantages of AI

based tools in patient screening (94.5%), improved access

(84.7%), affordability (61.9%), quality (69.4%), targeted referrals

(87.1%), and reduction of monotonous work (82.7%). Some

potential disadvantages of AI like concerns over medical liability

for errors (72.5%) and data security/privacy concerns (64.9%)

were also mentioned. While AI is often mentioned as a

threat to jobs in mainstream media, most survey responders

were confident their roles will not be replaced (68.2%). The

survey thus provides a comprehensive insight into the current

perspective of ophthalmologists regarding AI based tools. The

results can be utilized by all stakeholders to facilitate effective

communication and formulate targeted interventions to address

barriers that hamper development, adoption, and use of AI tools

in ophthalmology.

5. Myopia and future trends

Zhang X. et al. report alarming projections of myopia

affecting 8.57 million children (7–12 years) and 15.77 million

adolescents (13–18 years) by the year 2050 in eastern China.

Simple low cost interventions like outdoor activities, frame glasses

and eye exercises have high utilization prevalence and can

significantly reduce the burden of myopia. AI can also be used

as a tool for myopia detection, monitoring and management.

In their review Zhang C. et al., highlighted the potential uses

of AI in addressing myopia holistically. With the advent of

virtual reality (VR) and augmented reality (AR) into consumer

realm, there are also opportunities to also develop intelligent

digital tools that can aid in behavioral interventions for myopia

control. However early detection of myopia and its complications

followed by timely therapeutic interventions remain critical for

myopia management.

6. Conclusion

This Research Topic has a diverse array of publications that

cover a spectrum of topics dealing with the use of big data and

applications of AI in ophthalmology. The ideas, algorithms and

perspectives discussed and published by the researchers in this

topic have potential for considerable impact on shaping the future

landscape of ophthalmology. Collaborative efforts built on these

foundations can help in translating these innovations across the

frontiers of ophthalmology and medicine for effective patient care

and welfare.
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With the continuous development of computer technology, big data acquisition and

imaging methods, the application of artificial intelligence (AI) in medical fields is

expanding. The use of machine learning and deep learning in the diagnosis and treatment

of ophthalmic diseases is becoming more widespread. As one of the main causes of

visual impairment, myopia has a high global prevalence. Early screening or diagnosis

of myopia, combined with other effective therapeutic interventions, is very important

to maintain a patient’s visual function and quality of life. Through the training of fundus

photography, optical coherence tomography, and slit lamp images and through platforms

provided by telemedicine, AI shows great application potential in the detection, diagnosis,

progression prediction and treatment of myopia. In addition, AI models and wearable

devices based on other forms of data also perform well in the behavioral intervention of

myopia patients. Admittedly, there are still some challenges in the practical application of

AI in myopia, such as the standardization of datasets; acceptance attitudes of users;

and ethical, legal and regulatory issues. This paper reviews the clinical application

status, potential challenges and future directions of AI in myopia and proposes that the

establishment of an AI-integrated telemedicine platform will be a new direction for myopia

management in the post-COVID-19 period.
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INTRODUCTION

With the continuous development of computer technology, big data acquisition and imaging
methods, the application of artificial intelligence (AI) in medical fields is expanding. Recently,
a large number of AI-related studies have been carried out in many disciplines, such as
ophthalmology, radiology, cardiovascularology, and oncology (1–4). Thanks to the development
of multimodal imaging, fundus photography and optical coherence tomography (OCT) have
provided rich datasets for the development of AI models and have made it possible for AI to
flourish in the field of ophthalmology. The study of diseases has expanded from initial diabetic
retinopathy (5–8), age-related macular degeneration (9–11), and glaucoma (12–15) to anterior
segment diseases, such as refractive error (16–18).
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Refractive error, represented by myopia, is becoming a
key public health issue. As any degree of myopia will
increase the risk of adverse changes in eye tissue, high
myopia and pathological myopia (PM) significantly increase
the risk of irreversible visual impairment [e.g., glaucoma,
retinal detachment, myopic macular degeneration (MMD), and
macular choroidal neovascularization] or blindness (19). Early
identification of high-risk groups of myopia and regular and
repeated follow-up to document the progression of myopia
and complications are essential for eye care providers to plan
interventions. However, current healthcare systems may not
be able to cope with the growing burden. In particular, the
COVID-19 pandemic demonstrates the need for remote testing
and monitoring. Fortunately, AI technology combined with
telemedicine can bridge this gap. To date, studies have integrated
AI into all stages of clinical practice of myopia and have achieved
positive application effects. This paper introduces the concepts
of AI, summarizes the clinical application status, discusses
potential challenges and future directions of AI in myopia, and
proposes that the establishment of an AI-integrated telemedicine
platform will be a new direction of myopia healthcare to provide
personalized management throughout the whole process for
myopia patients in the post-COVID-19 period.

AI, MACHINE LEARNING, AND DEEP
LEARNING

The concept of AI was first proposed by John McCarthy
in 1956. Its definition simulates human intelligence through
machines (20). Machine learning (ML) is a branch of AI and
mainly uses computer system programming to perform tasks or
predict results (21). ML has great potential in clinical practice
and machine translation (22). Traditional ML algorithms use
variables selected by experts as input and usually do not involve
large neural networks. They include algorithms such as linear
regression, logistic regression, support vector machine, decision
tree, and random forest algorithms (23). Deep learning (DL) is a
subset of ML.Without special programming, it can automatically
extract the rules from known data for the judgment of unknown
data; hence, DL can process more complex data (24). DL
algorithms usually involve the use of large-scale neural networks,
such as artificial neural networks (ANNs), convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) (23).
Since 2012, the introduction of CNNs has allowed for major
breakthroughs in DL in imaging-based applications (e.g., object
recognition, image segmentation, and disease classification) (24).
VGG, ResNet, Inception and Inception-ResNet are some of the
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popular CNNs used for classification and are now widely used in
medical image recognition (23). Deep CNNs can learn the feature
representation from data without human knowledge and have the
power to process large training data with high dimensionality.
Studies have shown that the accuracy of medical image analysis
systems based on DL in disease detection is equal to or even
better than that of clinicians or trained personnel (25, 26).
Moreover, other studies have proven the potential and feasibility
of applying DL algorithms to disease screening and detection
(27, 28). The diagnosis of many ophthalmic diseases requires
not only symptom evaluation but also imaging information. This
feature leads to the widespread use of AI technology represented
by DL in clinical ophthalmology (1).

The indexes used to evaluate the quality of an AI model
are accuracy, sensitivity and specificity, which are calculated
by using four quantitative indexes: true positive, false positive,
true negative and false negative (Table 1). A receiver operating
characteristic curve (ROC) can be drawn with the false positive
rate (FPR) as the X-axis and the true positive rate (TPR) as the Y-
axis. The area under the curve (AUC) is defined as the area under
the ROC curve and generally ranges from 0.5 (for a model with
no predictive value) to 1 (for a perfect model) (29) (Figure 1).

GLOBAL BURDEN OF MYOPIA

Myopia is one of the most common ophthalmic diseases in
the world. It mainly occurs in childhood and early adulthood
(30). According to the work of Holden and his coworkers, the
global prevalence of myopia is close to 28.3% (2 billion) of the
world’s population, of which 4.0% (277 million) suffer from high
myopia. The “myopia epidemic” is estimated to affect 49.8%
(4.758 billion) of the world’s population by 2050, with 9.8% (938
million) suffering from high myopia (≤-5.00 D). Of note, Holden
et al. standardized to a spherical equivalent of 5.00 D or less
for high myopia because it is widely used to identify people
at higher risk of pathologic myopia (31). Nature (genetics and
heredity) and nurture (environment and lifestyle) are all factors
leading to myopia (19). For most people with myopia, the most
critical risk factor is likely to be related to modern lifestyles,
which include long periods of close-eye activity. The outbreak

TABLE 1 | Common terminologies used to evaluate AI model performance.

Predicted outcome

Disease No disease

Actual outcome
Disease True positive

(TP)

False negative

(FN)

No disease False positive

(FP)

True negative

(TN)

Remark

Accuracy = (TP+TN)/(TP+FN+FP+TN)

Sensitivity = TP/(TP+TN)

Specificity = TN/(TN+FP)

True positive rate (TPR) = Sensitivity

False positive rate (FPR) = 1-Specificity
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FIGURE 1 | Three examples of ROC curve are illustrated. (A) AUC=1: A

“perfect” classifier; (B) 0.5<AUC<1: A real-world classifier, better than

random guess; (C) AUC=0.5: Like random guess (e.g., coin tossing), models

have no predictive value.

of COVID-19 at the end of 2019 undoubtedly exacerbated the
above phenomenon. Research shows that during the COVID-
19 pandemic, the reduced time spent outdoors and increased
exposure to electronic screens have led to a further increase in
the risk of myopia in children (32, 33).

Most cases of myopia are associated with excessive axial
growth (19). Retinal damage caused by excessive axial growth
is irreversible. Irreversible visual impairments caused by
myopia (e.g., glaucoma, retinal detachment, MMD and macular
choroidal neovascularization) or blindness not only increase
medical costs but also reduce the quality of life of patients,
which has caused a global medical and economic burden.
Therefore, it is of great significance to comprehensively carry out
myopia healthcare services, including the detection, diagnosis,
progression prediction and treatment of myopia, as well as the
management and prevention of ocular complications and visual
impairment in patients with high myopia.

AI IN THE DETECTION AND DIAGNOSIS
OF MYOPIA

Refractive Error Assessment
To evaluate refractive error, traditional visual acuity
examinations are not only time consuming and laborious
but also rely on expensive machines and experienced doctors
and technicians. People with expression difficulties (e.g., young
children, the elderly, and patients with verbal communication
disabilities) have particular difficulties cooperating during an
examination (34). In developing countries or impoverished

areas, the lack of doctors and medical equipment makes it
difficult to accurately evaluate refractive error, and patients
are likely to miss the optimal treatment window, resulting
in an irreversible loss of vision. Thus, providing timely and
high-quality refraction services that are accepted by the general
population is extremely needed.

While it is generally difficult for ophthalmologists to evaluate
refractive error from a retinal fundus photograph, DL techniques
are capable of predicting them fairly accurately. Varadarajan
et al. (16) trained a DL algorithm to predict refractive error
from retinal fundus photographs. By analyzing attention maps to
determine the parts of a photographmost relevant for prediction,
they concluded that attention maps consistently highlighted the
fovea as a feature that was important for prediction. Tan et
al. (35) also reported that by using color fundus photographs,
a system consisting of a CNN pretrained with the XGBoost
algorithm was able to evaluate refractive error with a high degree
of accuracy. Yang et al. (17) trained a DL system to detect
myopia automatically from ocular appearance images, and the
system obtained an AUC of 0.9270. The research demonstrated
the possibility of screening and monitoring refractive status in
children with myopia in remote areas.

The Diagnosis of Pathologic Myopia and
Complications
PM is accompanied by degenerative changes in the retina, which,
if left untreated, can lead to irrecoverable vision loss. It is essential
for ophthalmologists to have a sustainable method of monitoring
eyes with PM to reduce blinding complications, especially given
that many PM patients are young or middle aged. However, the
diagnosis of PM, defined as peripapillary atrophy and myopic
maculopathy, generally requires a complete examination that
includes an assessment of the visual acuity and color fundus
photograph acquisition tasks that are labor intensive and skill-
dependent (36).

Tan et al. (37) introduced a method to automatically
detect PM via peripapillary atrophy features by means of
variational level sets from fundus photographs. To improve
prediction accuracy, Zhang et al. (38) proposed a computer-aided
framework based on anML algorithm for the detection of PM. By
analyzing demographic and clinical information, retinal fundus
photograph data and genotyping data from 2,258 subjects,
this method achieved an AUC of 0.888 and outperformed
the detection results obtained from the use of demographic
and clinical information (an AUC of 0.607), imaging data (an
AUC of 0.852) or genotyping data (an AUC of 0.774) alone,
with increases of 46.3%, p < 0.005; 4.2%, p = 0.19; and
14.7%, P < 0.005, respectively. Recently, Hemelings et al. (39)
developed a successful approach based on a DL algorithm for the
simultaneous detection of PM, with an AUC of 0.9867, and the
segmentation of myopia-induced lesions. Other similar studies
have also been reported, such as those identifying the different
types of lesions of myopic maculopathy automatically from
fundus photographs with DL models (40, 41). In addition, OCT
macular images were used for the development of CNN models
to identify vision-threatening conditions, such as retinoschisis,
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macular holes and retinal detachment, in adults with high
myopia, and the models obtained good sensitivity and AUC
scores (42, 43).

AI IN THE PREDICTION OF MYOPIA
PROGRESSION

Considering the potential irreversible disease burden during
adulthood, concerns from parents, clinicians and policy makers
include the potential progression rate and risk of developing
high or even pathological myopia from childhood myopia (44).
Thus, predicting myopia progression can provide evidence for
transforming clinical practice, health policy-making, and precise
individualized interventions regarding the practical control of
school-aged myopia.

Lin et al. (45) identified myopia development rules and
predicted the onset of myopia and its progression for children
and teenagers from clinical measures using a random forest ML
model, which had good predictive performance (the AUC ranged
from 0.801 to 0.837) for up to 8 years in the future. Yang et al. (46)
developed a prediction model to predict myopia in adolescents
based on both measurement and behavior data of primary school
students, and the model achieved reasonable performance and
accuracy. Further research is still required for interpopulation
validation to allow these models to be generalized.

AI IN REFRACTIVE SURGERY FOR MYOPIA

The aim of refractive surgery is to correct refractive error
in adults with stable myopia and reduce their dependence
on corrective aids. Keratorefractive procedures and intraocular
procedures are two main forms of refractive surgery. At
present, keratorefractive procedures include laser epithelial
keratomileusis (LASEK), laser in situ keratomileusis (LASIK)
and small incision lenticular extraction (SMILE). Intraocular
procedures include phakic intraocular lens (PIOL) implantation
and cataract surgery (19). To achieve the goal of optimal visual
and refractive outcomes and tominimize the risk of postoperative
complications, researchers have creatively applied AI to various
stages of refractive surgery and achieved ideal results, particularly
in the preoperative screening for risk of ectasia following LASIK,
guiding the formulation of surgical plans and intraocular lens
(IOL) power calculations.

Preoperative Screening
In 1998, Seiler et al. (47) published the first reports of iatrogenic
progressive ectasia after LASIK, also known as iatrogenic
ectasia. This complication can cause postoperative refraction
regression and seriously affect the operation effect. Ectasia
occurs due to biomechanical decompensation of the stroma,
which may be related to pre-existing biomechanical weakening
(e.g., keratoconus, subclinical keratoconus, and forme fruste
keratoconus) or a severe impact on the corneal structure (e.g.,
an attempted treatment for high myopia) (48). Screening before
refractive surgeries is extremely important to identify candidates
at high risk of iatrogenic ectasia. Xie et al. (49) combined

a DL algorithm with corneal tomographic scans to develop
the Pentacam InceptionResNetV2 Screening System to screen
potential candidates for refractive surgery. They reported a
sensitivity of 80% for identifying ectasia suspects, 90% for
diagnosing early keratoconus, and an overall diagnostic accuracy
of 95% with an AUC of 0.99. To train and develop more accurate
AI-based algorithms for identifying candidates at high risk of
iatrogenic ectasia, it is necessary to have a longitudinal follow-
up and collect more clinical data to train and validate the
AI models.

Guiding the Formulation of a Surgical Plan
AI technology can guide a surgeon in selecting the best
corneal refractive surgery method to perform on a specific
patient. Yoo et al. (50) developed an expert-level multiclass
ML model for selecting refractive surgery options for patients.
They classified patients into LASEK, LASIK, SMILE and
contraindication groups. Using data from 18,480 subjects
who intended to undergo refractive surgery, the model was
trained to select the optimal refractive surgery type for
patients with accuracies of 81 and 78.9% on the internal
and external validation datasets, respectively. Cui et al. (51)
developed an ML model to recommend a nomogram for
SMILE surgery to achieve the optimal postoperative visual
outcome. They reported that the efficacy index in the ML
group (1.48 ± 1.08) was significantly higher than that in
the surgeon group (1.3 ± 0.27) (t = −2.17, P < 0.05).
For high myopia patients who intend to undergo PIOL
surgery, which involves the insertion of an additional lens in
the anterior segment, it is essential to have correct anterior
chamber depth (ACD) measurement (52). ACD measurement is
usually obtained with conventional A-scan ultrasound. However,
these machines are expensive and cumbersome and may not
be available in remote areas. Chen et al. (53) developed a
new method for predicting central ACD using a portable
smartphone slit lamp device aided by ML. This novel device
may provide a new perspective to increase the convenience of
ACD measurement.

IOL Power Calculation Related to Myopia
For patients who intend to undergo PIOL implantation or
cataract surgery to correct refractive error, accurate IOL power
is the key to improving their postoperative visual quality.
Ongoing developments in IOL power calculation incorporate
new technology and data science to improve the accuracy of IOL
selection (54). Compared with the second- and third-generation
formulas, fourth-generation formulas, such as the Olsen formula
(based on ray tracing) and Barrett Universal II (BUII), show
good accuracy and fewer refractive accidents (55). A recent
study developed a new XGBoost ML-based calculator for highly
myopic eyes, which incorporated the BUII formula results and
showed a significant improvement in the percentage of eyes
achieving ±0.25 D of the prediction error compared with the
BUII formula alone (18). To date, for high axial myopia, AI-based
IOL formulas seem to demonstrate higher levels of accuracy,
including the Hill-radial basis function (RBF) calculator and
the Kane formula (56–59). The Hill-RBF calculator uses AI
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and regression analysis with a very large database of actual
postsurgical refractive outcomes to predict IOL power (59). Hill-
RBF is based mainly on empirical data; thus, its accuracy is
limited by the type of data and eye characteristics from which
it is derived (54). To overcome this limitation, Hill-RBF 2.0
expanded the database and improved IOL power prediction for
a wider range of eye characteristics, such as high axial myopia,
by continuously collecting various eye characteristics and surgical
results (57). In September 2020, Hill-RBF 3.0 was released. With
the expansion of the Hill-RBF database, the calculator is more
likely to obtain a better accuracy in IOL power prediction. The
other promising method for IOL calculation is the Kane formula,
which incorporates AI with theoretical optics to predict IOL
power (54). Studies have shown that the Kane formula has a
smaller absolute error than the BUII, Olsen, and Hill-RBF 2.0
formulas (60, 61). In a study of 10,930 eyes in Britain, the Kane
formula had the lowest mean absolute prediction error for all
ranges of ALs and obtained the smallest absolute error for long
eyes (AL>26.0mm) (60).

AI AND MONITORING DEVICES IN THE
BEHAVIORAL INTERVENTION OF MYOPIA

Effective behavioral intervention is as important as early
detection to prevent myopia or limit myopia progression. To
understand behaviors related to myopic onset and progression,
a wearable device named Vivior Monitor (Vivior AG, Zurich,
Switzerland) was developed to investigate the visual behavior
of children with myopia (6–16 years old) (62). Using ML
algorithms, Vivior Monitor identified types of visual activities,
such as viewing handheld media, desktop work, and computer
work. This research reported that older children spent less time
viewing objects at distances, more time using a computer and
less time engaging in physical movement. There is no doubt
that outdoor activity is the main protective factor against myopia
(63, 64). Wearable devices in combination with internet or social
network apps aimed at encouraging children to spend more time
outdoors are now being developed. The Singapore Eye Research
Institute developed a novel wearable fitness tracker (FitSight),
which comprises a smartwatch (Sony Smartwatch 3; Sony Corp.,
Minato, Tokyo, Japan) with a light sensor and an accompanying
smartphone app that logs time spent outdoors and sends
feedback to parents and children (65). In addition, excessive near-
work behavior is one of the most commonly known unhealthy
visual behaviors related to myopia, and many studies have shown
that it can speed the occurrence and development of myopia
(66, 67). Clouclip (Glasson Technology Co. Ltd., Hangzhou,
China), a cloud-based sensor device that attaches to the sides
of spectacles, can objectively and dynamically monitor the
wearer’s near-work distance and duration (68, 69). This device
can provide a vibration alert when it detects risky near-work-
related behaviors, such as particularly short viewing distances
or prolonged continuous near-work behavior. Cao et al. (68)
collected data from 67 subjects who were assigned to wear
Clouclip all day (except for bathing and sleeping) during the
experiment; they found that the device can significantly modify

near-work behaviors in school-age children and that its effects
can last a certain period of time.

AI IN MYOPIA GENETICS

The mechanism of myopia is extremely complex. Nature
(genetics and heredity) and nurture (environment and lifestyle)
are all factors leading to myopia (19). In recent years, studies
on the genetics of myopia have also received considerable
attention. By linkage analysis, candidate gene analysis, genome-
wide association study (GWAS) and next-generation sequencing
(NGS), more than 100 genes and over 20 chromosomal loci
have been identified to be associated with myopia or related
quantitative traits (70–72). However, the current knowledge
about the genetic contributions of the loci and genes to myopia
remains limited (73).

To date, studies using big data for genetic analysis and
phenotyping correlation have achieved significant progress in
variousmedical fields (74, 75). Genomic readouts, combinedwith
advanced AI, could be a powerful approach for risk prediction in
multifactorial diseases such as myopia. At present, both CNNs
and RNNs have shown considerable potential in a variety of
clinical genomics applications, such as variant calling, genome
annotation, and functional impact prediction (76). Given the
diversity of myopia with regard to its environmental burden,
geographic patterns, and affiliations with different ethnicities and
cultural groups worldwide (73), further AI research with larger
multiethnic genetic samples from various research institutes will
be essential to drive the discovery of new insights into the
genetic aspects of myopia and advance AI-genomic applications
in managing childhood myopia (77).

NEW MODEL FOR MYOPIA
MANAGEMENT: TELEMEDICINE

Telemedicine is a new service model in the medical field that
aims to solve the problem of healthcare for people in remote
and underdeveloped areas by providing remote medical services
(78). The global COVID-19 pandemic is bringing telemedicine
to the forefront of ophthalmic medical services (79, 80). With
the development of AI technology and the expansion of 5G
communication network coverage, AI-integrated telemedicine
platforms will gradually become the new normal of post-COVID-
19 ophthalmic care. In the clinical application of myopia,
AI-integrated telemedicine platforms should mainly focus on
the following aspects: reducing the manpower requirements of
ophthalmic clinics, reducing the risk of direct physical contact
between patients and doctors, and personalizing management
throughout the whole process.

Devices based on AI enable non-ophthalmologist health
care workers, such as optometrists, nurses and technicians, to
perform several tasks, such as assessments of refractive error and
measurements of ACDs, individually instead of patients moving
through a number of different clinical staff, each performing a
specific task. In addition, telemedicine can not only reduce the
direct physical contact between patients and doctors but also
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prolong the distance of ophthalmic examination. For example,
the portable slit lamp examination distance has increased from
18 cm to 55 cm. The examination distance increased from 5 cm
for the direct ophthalmoscope to 47 cm for the Glasgow Retinal
Imaging Adaptor (Medical Devices Unit, NHS Greater Glasgow
& Clyde, UK) (81). These changes can not only satisfy the need
for regular and repeated follow-up to monitor and document
the refractive status of myopia with high efficiency but also limit
exposure risks.

To provide personalized management for myopia patients
throughout the whole process, we first need to realize the
integration of hospital-community-family health management.
Recently, Wu et al. (82) proposed an AI-integrated telemedicine
platform to screen and refer patients with cataracts. According to
the authors, this telemedicine platform involves self-monitoring
at home, primary healthcare and specialized hospital services.
Inspired by this platform, we propose a new management model
for myopia (Figure 2). First, considering that myopia develops
primarily during childhood and early adulthood, large-scale
refractive error screening of the target population will be carried
out regularly with portable devices and technologies based on
AI, and the examination data will be stored and documented on
telemedicine platforms. Second, AI analysis will be conducted
on the collected clinical data, images and potential genomic
data to classify the risk of myopia progression in clinically
identified individuals and formulate personalized management
plans, including visual behavioral interventions for patients
with wearable devices (77). Third, home monitoring (using
ocular appearance images taken by family members with cell
phones and visual acuity tests) can be implemented for patients
without myopia-related complications. Home monitoring and
community-based primary healthcare institutions (where retinal
fundus photographs or OCT scans are captured and used in
the telemedicine platform with AI analysis) can be used by
myopia patients with non-blinding myopia complications. If
the above patients develop pathological myopia or myopia with
blinding complications, they can be referred to the specialized
hospital via a fast tract notification system. Patients initially
diagnosed with pathological myopia or blinding complications
should be directly transferred to tertiary medical institutions.
After treatment, the patient returned home and continued home
monitoring. Fourth, for patients requiring surgical treatment, AI-
integrated telemedicine can be applied to preoperative screening
to determine the risk of ectasia following LASIK and guide the
formulation of a surgical plan and IOL power calculation.

CURRENT CHALLENGES AND FUTURE
DIRECTIONS

Despite the reported successful clinical applications of AI in
myopia, challenges and hurdles are still present. Critical technical
and clinical limitations must be surmounted prior to the
widespread implementation of AI in myopia.

Standardization of Datasets
Image-based AI technology has made some progress in the
application of refractive error assessment, screening, diagnosis

and treatment of myopia. However, image-based AI requires
large, standardized, labeled data, and ophthalmic open datasets
are very small compared to ImageNet’s tens of millions of
images (13). Obtaining large-scale and high-quality images in
a real clinical environment is a great challenge. Technically,
more advanced data enhancement methods should be utilized,
such as programming simulated lesions to be integrated
into normal image data (83) or incorporating real lesions
into other locations in normal or abnormal images (84).
Recent studies have proposed alternative training methods
that can learn from less data. For example, some studies
synthesize a large number of random and diverse medical
images by generative adversarial networks and report that
these images can be used as CNN training datasets in
the future (85–87). However, these new methods have not
achieved significant success thus far, and their effectiveness
needs to be further proven (88). In addition to the amount
of data, the quality of images also plays a great part
in the performance of AI models (5, 89). Research has
reported that poor-quality fundus images that were not
removed from the dataset were found to decrease the AUC
by 0.1 (90). To surmount this challenge, Wu et al. (23)
proposed a quality assessment system for images to select
high-quality images. The feasibility of this method needs
further study.

Attitude Toward AI
As DL is an end-to-end learning method, that is, inputting
original data and outputting results directly without manual
coding, DL lacks the ability to explain the detection results
and cannot provide an exact judgment basis for the results;
this is called the “black box phenomenon.” This could reduce
the acceptance of test results by ophthalmologists and patients
(91). With the development of DL, several approaches are
currently available to help improve the interpretability of
the results, including occlusion tests (92) and saliency maps
(93). However, there is no consensus on which saliency
map generation method is most appropriate for ophthalmic
imaging data (93). In addition, it is unclear how one
should interpret non-traditional features identified by saliency
analysis, that is, whether they should be treated as novel
biomarkers or erroneous correlations “learned” during training.
Processes need to be in place to address such disagreements,
such as an independent third party from a multidisciplinary
team, as would occur where there is clinical uncertainty
(36). Apart from that, education on the implementation and
appraisal of AI systems should be included in medical school
programs and hospital training to prepare for its adoption
when the technology reaches maturation for ophthalmology
clinical practice.

Ethical, Legal, and Regulatory Issues
With the increasing use of AI, security and privacy have become
issues of concern and involve ethical, legal and regulatory
issues (94). For example, an AI algorithm, similar to a human
ophthalmologist, is definitely prone to errors. Who is responsible
for bearing the legal consequences of an undesirable outcome due
to an erroneous judgment made by an AI algorithm? Is it the
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FIGURE 2 | The workflow of AI-integrated telemedicine platform for myopia. (A) is the workflow of initial grouping, including myopia screening, files establishing, AI

analysis and progression risk stratification for myopia patients. (B) is the workflow of continuous management involving self-monitoring at home, primary healthcare

and specialized hospital services.

company that develops the algorithm, the individual physician
who utilizes the algorithm, or the healthcare organization under
which the physician is employed (95)? In addition, protocols and
laws aimed at guaranteeing training data and testing data security
in AI need to be continually established and improved.

CONCLUSIONS

Given the rapid increases in the prevalence of all levels of
myopia in the past three decades and the non-linear rapid

COVID-19 disease expansion, there is a need to revolutionize
healthcare systems worldwide. Three main areas are the targets
for such revolutions: improving efficiency, limiting exposure
risk, and providing individualized management for myopic
patients. AI is among the most promising solutions to address
these issues. Prior to the mass adoption of AI in myopia,
AI models need to be further optimized to improve their
interpretability, human–machine interactions, generalization
abilities, and robustness. It is also necessary to develop relevant
clinical standards, integrate large-scale clinical datasets, and
develop a standard evaluation framework for AI models in
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clinical practice. Moreover, relevant laws and regulations need to
be constantly improved to achieve comprehensive supervision of
practical applications.
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Diabetic Macular Edema Detection
Using End-to-End Deep Fusion
Model and Anatomical Landmark
Visualization on an Edge Computing
Device
Ting-Yuan Wang 1, Yi-Hao Chen 2, Jiann-Torng Chen 2, Jung-Tzu Liu 1, Po-Yi Wu 1†,

Sung-Yen Chang 1†, Ya-Wen Lee 1†, Kuo-Chen Su 3 and Ching-Long Chen 2*

1 Information and Communications Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan,
2Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, 3Department

of Optometry, Chung Shan Medical University, Taichung, Taiwan

Purpose: Diabetic macular edema (DME) is a common cause of vision impairment and

blindness in patients with diabetes. However, vision loss can be prevented by regular eye

examinations during primary care. This study aimed to design an artificial intelligence (AI)

system to facilitate ophthalmology referrals by physicians.

Methods: We developed an end-to-end deep fusion model for DME classification and

hard exudate (HE) detection. Based on the architecture of fusionmodel, we also applied a

dual model which included an independent classifier and object detector to perform these

two tasks separately. We used 35,001 annotated fundus images from three hospitals

between 2007 and 2018 in Taiwan to create a private dataset. The Private dataset,

Messidor-1 and Messidor-2 were used to assess the performance of the fusion model

for DME classification and HE detection. A second object detector was trained to identify

anatomical landmarks (optic disc and macula). We integrated the fusion model and the

anatomical landmark detector, and evaluated their performance on an edge device, a

device with limited compute resources.

Results: For DME classification of our private testing dataset, Messidor-1 and

Messidor-2, the area under the receiver operating characteristic curve (AUC) for the fusion

model had values of 98.1, 95.2, and 95.8%, the sensitivities were 96.4, 88.7, and 87.4%,

the specificities were 90.1, 90.2, and 90.2%, and the accuracies were 90.8, 90.0, and

89.9%, respectively. In addition, the AUC was not significantly different for the fusion

and dual models for the three datasets (p = 0.743, 0.942, and 0.114, respectively).

For HE detection, the fusion model achieved a sensitivity of 79.5%, a specificity of

87.7%, and an accuracy of 86.3% using our private testing dataset. The sensitivity of

the fusion model was higher than that of the dual model (p = 0.048). For optic disc and

macula detection, the second object detector achieved accuracies of 98.4% (optic disc)

and 99.3% (macula). The fusion model and the anatomical landmark detector can be

deployed on a portable edge device.
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Conclusion: This portable AI system exhibited excellent performance for the

classification of DME, and the visualization of HE and anatomical locations. It facilitates

interpretability and can serve as a clinical reference for physicians. Clinically, this system

could be applied to diabetic eye screening to improve the interpretation of fundus imaging

in patients with DME.

Keywords: diabetic macular edema, hard exudate, optic disc and macula, deep learning, visualization

INTRODUCTION

Diabetes is a prevalent disease that affects ∼476 million people
worldwide (1). Diabetic macular edema (DME), characterized

by the accumulation of extracellular fluid that leaks from blood
vessels in the macula (2), is one of the complications of diabetes

mellitus. DME can appear at any stage of diabetic retinopathy
(DR) and is the leading cause of severe vision loss in working-age
adults with diabetic mellitus (3). The Early Treatment of Diabetic
Retinopathy Study (ETDRS) defined the criteria for DME and
demonstrated the benefits of laser photocoagulation therapy (4).
Currently, with the revolutionary development of intraocular
medication, intravitreal injections of anti-vascular endothelial
growth factor (anti-VEGF) and steroid agents are the first-line
treatment as alternatives to traditional laser photocoagulation
as they provide better vision recovery in patients with center-
involved macular edema (5–7).

Early diagnosis plays an important role in DME treatment.
Moreover, early management such as intensive diabetes control
may reduce the risk of progressive retinopathy (8). Early
diagnosis and preemptive treatment are facilitated by frequent
diabetic eye screening, which reduces the risk of progression to
blindness, and the associated socioeconomic burden. To date,
owing to developments in the field of ophthalmic imaging, the
detection of DME using optical coherence tomography (OCT)
imaging is the gold standard in the decision-making process
for DME treatment (9). However, limited by various factors,
such as the requirements of expensive equipment and highly
specialized technicians, OCT imaging is typically readily available
in high-income countries. In contrast, retinal photography
examination is feasible and affordable in low-income countries
and remote areas (10). However, the number of people with
diabetes worldwide is increasing yearly and is estimated to reach
571 million by 2025 (1). The rapid growth of diabetic patients is
expected to increase the diagnostic burden associated with DME
detection. As such, an efficacious and accurate automatic fundus
imaging interpretation system is urgently needed.

In the past decade, several studies have focused on DME
detection using feature engineering techniques, which extract
features by selecting or transforming raw data. Among them,
Siddalingaswamy et al. (11) identified DME by detecting hard
exudates (HE) and the macula. Subsequently, decisions were
made based on the distance between the HE and the macula.
Machine learning algorithms have also been applied in several
studies for feature extraction in DME classification (12–15).
The advantage of feature engineering is that it utilizes a
smaller training dataset to achieve satisfactory performance.

However, the identification of salient and useful features depends
on the experience of clinicians and is thus subjective and
limited. In contrast to feature engineering techniques, deep
learning, particularly convolutional neural networks (CNNs),
is gaining popularity and has achieved significant success in
medical imaging applications. This approach can automatically
learn feature extraction by using a backbone network mainly
comprising convolutional and pooling layers. Several studies
have shown that various architectures of CNN can be used
to effectively extract features in fundus images for subsequent
classification of DR or DME (16–21).

Moreover, given that deep learning models lack
interpretability and are viewed as black boxes (22), visualization
of the lesion in fundus images is an important issue. Lesion
visualization can improve the interpretability of non-
ophthalmologist physicians. In addition, visualization is
useful to physicians during an initial assessment before a patient
is referred to an ophthalmologist for further evaluation, thereby
substantially increasing the screening rate and reducing the
workload of ophthalmologists. In addition, lesion visualization
could help physicians to monitor the status and progression of
the disease.

Generally, deep learning models are implemented in cloud
computing environments or high-end computers, which provide
more computing power and memory space. However, this is
usually expensive and requires considerable network resources.
These factors limit the application of deep learning models
for medical image analysis in remote or resource-limited areas.
Thus, an edge device is potentially suitable for the application of
deep learning models for medical image analysis in these areas.
Previous studies have demonstrated the feasibility of deploying
deep learning models for medical image analysis on edge devices
(23–25). However, a system with multiple models for disease
classification and visualization requires more computing power
and memory. Thus, the implementation of such a system on an
edge device is challenging.

In this study, we designed an end-to-end deep fusion
network model to perform two deep learning tasks, one for the
classification of DME and the other for the visualization of HE
lesions. We used a private dataset and two open datasets to
evaluate the performance of this fusion model. We also added
a second object detector model to identify anatomical landmarks
(optic disc and macula). These models were deployed on an edge
device. The private dataset was used to assess the performance
of the models. Overall, this system could be used for diabetic eye
screening by non-specialist physicians or in remote or resource-
limited areas to improve the early diagnosis of DME. As a
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FIGURE 1 | The flowchart of our private dataset.

result, diabetic patients may be referred for early assessment and
appropriate treatment, which should lead to better outcomes.

MATERIALS AND METHODS

Private Dataset
We enrolled patients who had a diagnosis of diabetic mellitus
according to the ICD-9 codes 250.xx or ICD-10 codes E10-E14
between 2007 and 2018 from three medical centers in Taiwan.
Patients younger than 20 years of age and with unknown sex
were excluded. The retinal photographs were acquired from
ZEISS (VISUCAM 200), Nidek (AFC-330), and Canon (CF-1,
CR-DGI, CR2, or CR2-AF) fundus cameras with a 45◦ field-of-
view (FOV) and anonymized owing to the retrospective nature
of the study. We collected 347,042 fundus images from 79,151
diabetic patients. For the present study, we included image
with optic disc and macula to develop models. Blurred fundus
image, vitreous hemorrhage, vitreous opacity, image without
entire optic disc, image without entire macula, image without
optic disc and macula, other retinal diseases, and low-quality

image were excluded, and 101,145 fundus images from 51,042
diabetic patients were left for random sampling and annotations.
Finally, 35,001 fundus images from 15,607 patients formed our
private dataset for model development (The flowchart shown
in Figure 1). On our private dataset, the mean age of patients
was 57.6 ± 11.8 years and 54.5% were males and 45.5% were
females. Eight thousand four hundred and ninety-six patients
took only one image and 7,111 patients took more than one
image from each eye. The original dimension of the images were
522,728 pixels (724 × 722) to 12,212,224 pixels (4,288 × 2,848).
All images were the JPG image format.

Ethical Considerations
The study was reviewed and approved by the institutional review
board (IRB) of the three medical centers: Tri-Service General
Hospital (IRB: 1-107-05-039), Chung Shan Medical University
Hospital (IRB: CSH: CS18087), and China Medical Hospital
(IRB: CMUH10FREC3-062). Given that the identities of all
patients in three medical centers were encrypted before fundus
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TABLE 1 | Dataset profile for the classification task in the private dataset.

Training set Validation set Testing set

Class Number of

images

Number of

patients

Number of

images

Number of

patients

Number of

images

Number of

patients

Non-DME 18,921

(57.89%)

10,313 1,140

(90.05%)

1,140 939

(89.51%)

939

DME 13,765

(42.11%)

5,955 126

(9.95%)

126 110

(10.49%)

110

Total 32,686

(100.00%)

16,268 1,266

(100.00%)

1,266 1,049

(100.00%)

1,049

FIGURE 2 | The strategy to obtain a ground truth image. (A) The two boxes were annotated by first ophthalmologist. (B) The three boxes were annotated by second

ophthalmologist. In step 1, the IoU of the top two bounding boxes in (A,B) were larger than 0.15, then two larger areas were taken as the GT. In step 2, the IoU of

bottom boxes in (A,B) were <0.15, the area annotated by the second ophthalmologist was retained as the GT. After step 1 and 2, we obtained a GT image (C).

images were released, the requirement for signed informed
consent of the included patients was waived.

Annotations of Private Dataset
Annotating DME Classification for Fundus Image
We recruited 38 ophthalmologists to annotate the fundus
images. Each fundus image was annotated by a group of three
ophthalmologists. According to the criteria of ETDRS, DME was
defined as anyHE at or within 1 disc diameter (1DD) of the center
of the macula (4). Each ophthalmologist annotated images by
using our annotation tool. We used the majority decision of the
three ophthalmologists as the ground truth (GT) of the fundus
images. Further, the dataset was split into training, validation,
and testing sets by patient level to prevent the same patient
in different sets (Figure 1). Eight thousand four hundred and
ninety-six of 15,607 patients took only one image and were
randomly sampled to validation set (1,266 patients, 1,266 images)
and testing set (1,049 patients, 1,049 images). The rest of these
patients and 7,111 of 15,607 patients were reserved as a training
set (13,292 patients, 32,686 images). Table 1 lists the DME and
non-DME profiles of these three subsets.

Annotating HE Lesions in Fundus Image
The HE lesions in each fundus image were also annotated
by a group of three ophthalmologists (randomly chosen from
38 ophthalmologists) using a bounding box format. However,
three resulting annotations may be different from each other in
the number, size, and location of the boxes. We adopted the
following procedure to obtain a final GT image for training

purposes: (Step 1) The bounding boxes for the image labeled
by two ophthalmologists were compared. If an HE lesion was
annotated and the intersection over union (IoU) > 0.15, then
a larger annotated area was taken as the GT; (Step 2) The
bounding boxes of an image labeled by two ophthalmologists
were compared. If the HE lesion was annotated and the IoU
≤ 0.15, then both bounding boxes were retained as the GT.
After step 1 and 2, we obtained the first GT image as shown
in Figure 2. Step 3: First GT image was compared with the
image labeled by the third ophthalmologist according to the
same method in steps 1 and 2. Then, we obtained the final
GT image. In this study, ophthalmologists used bounding
boxes to annotate HE lesions in fundus image. The size of
the annotated bounding boxes in original images were 9–
5,196,672 pixels (9,791.57 ± 36,966.28 pixels). After resized the
image, the size of the annotated bounding boxes in model’s
input images were 1.50–190,008.85 pixels (1,002.99 ± 2,719.79
pixels). However, the annotated bounding boxes only indicated
whether existed HE lesions and location, not represented the
true size of HE lesions. Therefore, the size of the bounding
boxes was usually larger than the true size of the HE lesions. In
addition, the profiles of HE labels of the three subsets are shown
in Table 2.

Open Datasets
Two open datasets were used to evaluate the performance
and ability of the proposed model to adapt to
different datasets.
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TABLE 2 | The number of images were annotated HE lesions by ophthalmologists

in the private dataset.

Training set Validation set Testing set

Number of images with HE 22,108 583 365

Total 32,686 1,266 1,049

Messidor-1
TheMessidor-1 (26) dataset contained 1,200 fundus images from
three ophthalmologic departments in France and was annotated
with DR and the risk of DME. All images were acquired using
a Topcon TRC NW6 non-mydriatic retinal camera with a 45◦

FOV. Our grading scheme was slightly different from that
of Messidor-1, in which DME was graded according to three
categories, with 0, 1, 2 representing “no visible HE,” “HE presence
at least 1DD away from the macula,” and “HE presence within
1DD from the macula,” respectively. As previously indicated,
HE that occurs within 1DD of the center of the macula can
serve as a proxy for detecting DME; hence, grades 0 and 1 are
equivalent to non-DME and grade 2 is equivalent to DME in our
classification scheme.

Messidor-2
The Messidor-2 (26, 27) dataset, as an extension of the Messidor-
1 dataset, contained 1,748 (1,744 annotated as gradable) fundus
images. In this study, we used 1,744 graded fundus images from
the annotated Messidor-2 dataset by Krause et al. (28).

Deep Learning Models
Fusion Model Network
We use EfficientDet-d1 (29) as the object detector because
of its great balance between performance and resource usage.
Because EfficientDet-d1 employs the feature extraction part
of EfficientNet-b1 (30), we can readily use this aspect as the
backbone in the fusionmodel. Lesion detection was implemented
using bi-directional feature pyramid network (BiFPN). The
classification module consisted of three layers and included a
convolutional layer, a global average pooling layer, and a fully
connected (FC) layer. The architecture of the fusion model is
shown in Figure 3.

The fusion model is computationally efficient, as only one
convolution layer is needed to extract higher-level features
based on the output features obtained from the EfficientDet-d1
backbone. We denote Eob as the loss function of EfficientDet-
d1, Ecl as the loss function of the classification module, and the
loss function for the fusion model is given by Equation (1), where
ωob > 0 and ωcl > 0, which are hyperparameters used to linearly
combine the loss functions of the object detector and classifier.

Eloss = ωob × Eob + ωcl × Ecl

= ωob × Eob − ωcl[α(1− pt)
γ log(pt)] (1)

First, we use the equal weights for ωob and ωcl in the initial
training. Then analyzing the loss value obtained from the object
detection model and the classification model. Second, we use

the weighting factor (ωob and ωcl) that is inversely proportional
to the loss value of the classifier or object detector to balance
the loss, respectively. Finally, we retrain the fusion model using
ωob (= 0.5) and ωcl (= 100) to balance the loss obtained from
both models, and avoid overfitting in the classification model or
the object detection model. Our results showed that the setting
ωob =0.5 and ωcl =100 achieved a satisfactory balance. The
parameters α ≥ 0 and γ ≥ 0 were also heuristically set to address
the large class imbalance encountered during training. In general,
α, the weight assigned to the rare class, should be slightly reduced
as γ is increased (31). Here we used γ = 2, α = 0.25 as a default
setting. The variable pt is defined in Equation (2), where p is the
estimated probability for the binary classification.

pt =

{

p if DME is the class label
1− p otherwise

(2)

Dual Model Approach
For comparison with the fusion model, we implemented a dual
model, which consisted of two separate models including an
image classifier and an object detector. The two separate models
were trained and inferred separately. We used EfficientNet-b1
and EfficientDet-d1 as the image classifier and object detector,
respectively, in our dual model for a fair comparison. EfficientNet
stacked basic fixed modules and adjusted some hyperparameters
such as the number of layers, number of channels, and input
image resolution, using a neural architecture search. In addition,
EfficientNet achieved state-of-the-art performance on ImageNet
without using additional data.

Device and Hyperparameters
All images of private dataset, Messidor-1, and Messidor-2
dataset were preprocessed before feeding our model. Each image
was cropped to the fundus image with minimal black region
(Supplementary Figure 1) and saved in the JPG image format.
These cropped images were resized to input image sizes of 640
× 640 pixels. For image augmentation, we randomly flipped the
images of private dataset vertically or horizontally. We trained
and tested the model on an Intel Xeon E5-2660 v4 computer with
396 GB DRAM and NVIDIA Tesla V100 GPU using PyTorch
with an initial learning rate of 0.0001, a dropout rate of 0.2
and a batch size of 16, for both the fusion and dual models.
AdamW optimizer was used in the fusion model and dual model
(EfficientDet-d1). Adam optimizer was used in the dual model
(EfficientNet-b1). Values of weight decay of the fusion model,
dual model (EfficientNet-b1), and dual model (EfficientDet-d1)
were 0.01, 0.00001, and 0.01, respectively. Based on the setting of
dropout and weight decay in the fusion model and dual model
(EfficientNet-b1), the loss curves showed without overfitting in
training and validation loss (Supplementary Figure 2).

To validate the feasibility of deploying our fusion model on an
edge device, it was implemented on NVIDIA Jetson Xavier NX
with 8GB of memory using PyTorch.

Statistical Analyses
For the evaluation of performance in DME classification, we used
metrics of sensitivity, specificity, accuracy, and area under the
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FIGURE 3 | The architecture of the proposed end-to-end deep fusion model. The red arrow denotes the classification path, which forms the same architecture as

EfficientNet-b1. The blue arrow denotes the lesion detection path, which has the same architecture as EfficientDet-d1. The number (640, 320, 160, …) near each

feature map denotes its resolution.

receiver operating characteristic curve (AUC). All metrics were
listed with 95% confidence intervals (CIs). Receiver operating
characteristic (ROC) curves were used to illustrate the overall
performance using different cutoffs to distinguish between non-
DME and DME. A two-proportion z-test was used to compare
the two observed proportions obtained from the two models.
The DeLong test (32) was used to compare the AUCs. Statistical
significance was set at p < 0.05. In addition, we evaluated the
performance of lesion detection according to Tseng et al. (20).

RESULTS

We trained the fusion model and dual model using the private
dataset, and the performance was compared in three aspects:
memory usage and execution time, DME classification, and
HE detection.

Memory Usage and Execution Time
We investigated the demand for memory and the execution time
of the fusion and dual models to process one image from the
private testing dataset. We used a command-line utility tool
(Nvidia-smi) to evaluate the requirement of memory usage of the
fusion model and the dual model to process one fundus image.
In addition, the required time of processing one fundus image
was calculated by using Python code “time.time()”.Table 3 shows
that the fusion model required 1.6 GB of memory, whereas the
dual model required 3.6 GB of memory. The mean required time
of the fusion and dual model were 2.8 ± 1.5 s and 4.5 ± 1.8 s,
respectively. This was averaged over the full testing dataset. These
results show that the fusion model reduced the requirement

TABLE 3 | The data of memory usage and execution time for the fusion and the

dual models to process one image of the private testing dataset.

Resource consumption Fusion Model Dual model

Memory (RAM) 1.6 GB 3.6 GB

Time (mean ± standard deviation) 2.8 ± 1.5 s 4.5 ± 1.8 s

for memory usage and execution time compared to the
dual model.

DME Classification
The distribution of DME in a private dataset and two
open datasets (Messidor-1 and Messidor-2) are shown in
Figure 4. In Table 4, the performance of the fusion and dual
models was evaluated using the AUC, sensitivity, specificity,
and accuracy. The AUCs of both models were compared
using the DeLong test for the three datasets. The result
showed that there was no statistically significant difference
between the models (p-values of 0.743, 0.942, and 0.114
for the private testing dataset, Messidor-1, and Messidor-2,
respectively). Correspondingly, Figure 5 shows the results of
the receiver operating characteristic curves (ROC) of both
models for the three datasets. This result demonstrates that
the performance of the fusion model is similar to that of the
dual model.

HE Lesion Detection
We used fusion and dual models to detect HE lesions on our
private testing dataset. We evaluated the performance of these
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FIGURE 4 | Distribution of three testing datasets. (A) private testing dataset, (B) Messidor-1, and (C) Messidor-2, used to evaluate classification performance.

TABLE 4 | Performance of dual and fusion model for the three datasets.

Dataset AUC (%)

(95% CI)

Sensitivity (%)

(95% CI)

Specificity (%)

(95% CI)

Accuracy (%)

(95% CI)

Fusion model Private testing dataset 98.1

(97.3, 98.9)

96.4

(92.9, 99.9)

90.1

(88.2, 92.0)

90.8

(89.1, 92.5)

Messidor-1 95.2

(93.3, 97.1)

88.7

(83.7, 93.7)

90.2

(88.4, 92.0)

90.0

(88.3, 91.7)

Messidor-2 95.8

(94.5, 97.1)

87.4

(82.1, 92.7)

90.2

(88.7, 91.7)

89.9

(88.5, 91.3)

Dual model Private testing dataset 98.0

(97.2, 98.8)

96.4

(92.9, 99.9)

91.8

(90.0, 93.6)

92.3

(90.7, 93.9)

(EfficientNet-b1) Messidor-1 95.2

(93.2, 97.2)

85.4

(79.8, 91.0)

91.7

(90.0, 93.4)

90.9

(89.3, 92.5)

Messidor-2 95.1

(93.5, 96.7)

80.8

(74.5, 87.1)

92.7

(91.4, 94.0)

91.7

(90.4, 93.0)

FIGURE 5 | Receiver operating characteristic curves of fusion and dual model for the three datasets. (A) private testing dataset, (B) Messidor-1, and (C) Messidor-2.

models by using true positive, false positive, true negative, and
false negative to calculate the accuracy, sensitivity, and specificity.
Note that in the HE lesion detection, a true positive image
is defined as one of the predicted HE area having an IoU
> 0.15 compared to the GT location (as shown in Figure 6);
a true negative image is defined as both GT and prediction
without any lesion detection; a false positive image is defined
as GT without any lesion detection but with prediction; and
a false negative image is defined as GT with at least one
location but no prediction or any prediction location having

an IoU ≤ 0.15. In Table 5, the results of our private testing
dataset revealed that the sensitivity of the fusion model was
higher than that of the dual model, and the difference was
statistically significant (p = 0.048). In addition, the specificity
and accuracy of both models were not significantly different
(p = 0.433 and p = 0.998, respectively). This result indicated
that the fusion model could detect images with HE lesions more
accurately. Furthermore, for lesion visualization, our models
could output fundus image with the annotated HE lesion, as
shown in Figure 7.
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FIGURE 6 | An example image with predicted and GT bounding boxes. The

light blue boxes are the prediction result and the dark blue boxes are the GT

result. Examples of IoU > 0.15 are marked in image.

TABLE 5 | The performance of HE detection in dual and fusion models.

Sensitivity (%)

(95% CI)

Specificity (%)

(95% CI)

Accuracy (%)

(95% CI)

Fusion model 79.5

(75.4, 83.6)

87.7

(85.2, 90.2)

86.3

(84.2, 88.4)

Dual model

(EfficientDet-d1)

73.0

(68.4, 77.6)

89.2

(86.9, 91.5)

86.4

(84.3, 88.5)

Optic Disc and Macula Detection
Based on the preceding results, we established a novel
end-to-end fusion model that can simultaneously facilitate
disease classification and lesion detection. Clinically, anatomical
landmarks such as the optic disc and the macula are examined
by physicians to determine if there are HE lesions within 1DD
from the center of the macula. Thus, we constructed an object
detector to detect anatomical landmarks to facilitate advanced
visualization. We trained an object detector using YOLOv3
(33) to detect the optic disc and macula. The details of the
training process are provided in the Supplementary Material.
The accuracy of the object detector for the detection of the optic
disc and macula was 98.4 and 99.3%, respectively. Furthermore,
the object detector could identify the optic disc using a white
bounding box and an area within 1DD from the center of
the macula using a white circle. These outlined boxes and
circles can be integrated into the image results as shown in
Figure 7. Figure 8 shows that physicians can instantly ascertain
the presence of HE lesions within 1DD from the center of the
macula, thereby enabling them to more reliably diagnose DME.
Taken together, the results show that lesion visualization can
more readily account for the result of DME classification when
using the fusion model.

Implementation on an Edge Device
To verify the feasibility of implementing the entire workflow on
an edge device, we tested our fusion model and the anatomical
landmark detector on NVIDIA Jetson Xavier NX with 8 GB

FIGURE 7 | The fusion and dual model annotate HE lesions of two fundus

images from the private testing dataset. A fundus image was annotated by

fusion model (A) and dual model (B). A second fundus image was annotated

by fusion model (C) and dual model (D). HE lesions are identified using blue

bounding boxes.

FIGURE 8 | The integration of the visualization of the optic disc and the

macula in two fundus images with annotated HE lesions. (A) Fundus image

from Figure 7A annotated with optic disc and macula. (B) Fundus image from

Figure 7C annotated with optic disc and macula. HE lesions are represented

as blue bounding boxes. The white circle represents 1DD from the macula

center. The white bounding box represents the optic disc.

of memory. The fusion model and the anatomical landmark
detector required 7.4 ± 0.02 GB of memory and took 2.53
± 0.72 s to infer a single fundus image on average. However,
the combination of a dual model and an anatomical landmark
detector cannot be implemented on edge devices owing to their
memory constraints. In addition, we also tested the fusion model
on DME classification of the three datasets and HE lesion
detection using the NVIDIA Jetson Xavier NX with 8GB of
memory. The performance for DME classification and HE lesion
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FIGURE 9 | Overview of the proposed approach for implementing a system on an edge device that integrates DME classification, HE detection, and optic disc and

macula detection to assist in the interpretation of fundus image by physicians.

detection using the NVIDIA Jetson Xavier NX 8GB of memory
was the same as that of the Intel Xeon E5-2660 v4 computer, as
shown in Tables 4, 5, respectively.

DISCUSSION

In this study, we proposed a novel end-to-end fusion model
to simultaneously facilitate DME classification and HE lesion
detection. The performance of the fusion model for DME
classification was similar to that of the dual model. The sensitivity
of the fusion model for the detection of HE lesions was
higher than that of the dual model. We further integrated the
detection outputs from the fusion model and the anatomical
landmark detector to improve lesion visualization. In addition,
we implemented these two models on an edge device to facilitate
portability and affordability in remote or resource-limited areas.
As shown in Figure 9, we report for the first time the integration
of the fusion model and a second object detector on an edge
device for DME classification, HE detection, and optic disc
and macula detection, for lesion visualization and improved
interpretability of the AI model. This system allowed physicians
not only to obtain the results of DME classification but also to
observe the location of HE lesions related to the macula. This
might assist physicians in assessing the necessity of referring
diabetic patients to ophthalmologists for further examination
and treatment.

Recently, several studies have used AI to classify DR with
DME or DME only in the Messidor-1 and Messidor-2 datasets
(16–19, 34–37). In Messidor-1, Sahlsten et al. (18) proposed an
approach based on the ensemble of CNNs with AUC of 95.3%,
Sensitivity of 57.5%, Specificity of 99.5%, and Accuracy of 91.6%
to detect referable DME. Singh et al. (19) used a hierarchical
two-stage ensemble CNN with Sensitivity of 94.7%, Specificity
of 97.2%, and Accuracy of 95.5% to grade severity of DME.
Ramachandran et al. (34) used a deep neural network software
to detect referable DR (moderate DR or DME) achieving AUC
of 98.0%, Sensitivity of 96.0%, and Specificity of 90.0%. Li et al.
(35) used a cross-disease attention network with AUC of 92.4%,
Sensitivity of 70.8%, and Accuracy of 91.2% to jointly grade DR

and DME. In Messidor-2, Gulshan et al. (17) used inception-
v3 architecture with AUC of 99.0%, Sensitivity of 87.0%, and
Specificity of 98.5%. to detect referable DR. Abramoff et al. (16)
used the IDx-DR 2.1 device to screen referable DR achieving
AUC of 98.0%, Sensitivity of 96.8%, and Specificity of 87.0%.
Yaqoob et al. (36) modified ResNet-50 architecture to screen
referable DME achieving Accuracy of 96.0%. In 2021, Li et al.
(37) used an improved inception-v4 with AUC of 91.7% to detect
referable DME. Compared to the performances of above studies
in the Messidor-1 and Messidor-2 datasets, the performance of
fusion model was AUC of 95.2 and 95.8%, Sensitivity of 88.7 and
87.4%, Specificity of 90.2 and 90.2%, and Accuracy of 90.0% and
89.9% in the Messidor-1 and Messidor-2 datasets. In this study,
the classifier of the fusion model was constructed by integrating
the EfficientDet-d1 backbone and a classification module. This
classifier had the same architecture as EfficientNet-b1. It was
determined that the performance of DME classification was
similar to that of the original EfficientNet-b1 in the dual model.

In fundus imaging, the determination of the presence and
location of HE is useful for physicians in the diagnosis of DME.
Several studies have used deep learning to detect HE lesions.
Son et al. (38) used a class activation map (CAM) to generate a
heatmap to identify the areas that contributedmost to themodel’s
decision in classifying DR and other ocular abnormalities.
Lam et al. (39) used a sliding window to scan images and a
CNN to detect whether HE lesions were present. In addition,
Kurilová et al. (40) used the object detector of Faster-RCNN to
detect HE lesions in fundus images. In this study, the object
detector of our fusion model was modified from EfficientDet-
d1, in which the backbone was co-used with the classification
module during both the training and inference phases. We
found that the performance of EfficientDet-d1 had significantly
higher sensitivity for the detection of HEs compared to the
original EfficientDet-d1 in the dual model. The higher sensitivity
might be because the classification and object detection tasks are
complementary in our system.

Typical deep learning models usually lack interpretability,
whereas visualization is useful for physicians to assess the
result of DME classification by AI. To resolve this problem, we
trained another object detector, YOLOv3, to detect anatomical
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FIGURE 10 | Three fundus images from the open dataset were classified as DME in our system. (A) Fundus image from Messidor-1 dataset. (B,C) Two fundus

images from the Messidor-2 dataset. Our system labeled HE lesions, optic disc, and 1DD from the macula center. The blue bounding box represents the HE. The

white circle represents 1DD from the macula center. The white bounding box represents the optic disc.

landmarks (optic disc and macula). Our system integrated the
fusion model and another object detector to achieve visualization
and increase the interpretability of the AI. We also applied
this system to fundus images obtained from open datasets to
examine its effect. As shown in Figure 10, three fundus images
were classified as DME by our system, and it was possible to
detect and annotate HE lesions, the optic disc, and 1DD from
the macula center. These output fundus images can increase the
interpretability of AI results for physicians.

Deep learning models often require large memory usage and
computing power. It is difficult to deploy deep learning models
on high-end computers in remote areas where resources are
limited. Typically, edge devices or cloud computing is utilized to
address this issue. However, cloud computing requires network
resources. In some remote areas, there was no well-internet
service to support cloud computing. Beede et al. (41) discovered
that 2 h were required to screen ten diabetic patients using
their cloud eye-screening system deployed in Thailand due to
sluggish Internet service. Although the edge device is portable
and does not require network connections, its small memory
size and limited computing power are the primary hindrances.
Singh and Kolekar (42) reduced the model size to resolve the
storage issue associated with edge devices to classify COVID-19
using computed tomography scans of the chest. In our fusion
model, the classifier and object detector co-used the backbone
of the object detector. This design reduced the demand for
memory usage and the execution time, as shown in Table 3. This
fusion model is computationally efficient and can be deployed
on an edge device with an anatomical landmark detector. In
addition, due to traditional fundus camera without appropriate
hardware (at least equipped with NVIDIA GeForce GTX 1070
8GB memory), one model to process the data on an edge device
could resolve this issue. Therefore, this is the reason why we
need to design a deep learning model to process the data in an
edge device. Nonetheless, if the computer associated with the
fundus camera has appropriate hardware, our model also could
integrate into the computer system of camera without needing
on an independent edge device.

Our study has several strengths. First, we used a large
number of fundus images to train the model. Second, our model
yielded satisfactory results for private and open datasets. The

model could be implemented on fundus images for different
ethnicities. Third, this system facilitates DME classification and
the visualization of HE lesions, optic disc, and the macula.
Therefore, it is expected that non-ophthalmologist physicians
would havemore confidence in DME diagnosis determined using
AI. Fourth, this system can be deployed on an edge device. This
device is portable and affordable. Thus, the proposed system
could be applied to diabetic patients in remote or resource-
limited areas.

This study has several limitations. First, drusen and the
partial features of silicone oil retention are similar to those
of HEs. These types of features were not well-trained in our
system owing to limited data. This could lead to a false-
positive result for DME. Second, we did not integrate the
fusion model and anatomical landmark detector into one fusion
model. Third, some diseases, such as myelinated fiber layer
and optic disc edema, presented blurred boundaries of the
optic disc. These diseases could influence the detection of the
optic disc and cause inaccurate visualization of 1DD from the
macula center.

Based on the obtained results, our future work will involve the
application of the proposed system to other object detectors with
a backbone that was originally a CNN image classifier, followed
by the integration of the fusion model and the anatomical
landmark detector into one fusion model on an edge device.
Furthermore, we will also train this system to classify the grade
of DR and annotate the locations of hard exudates, hemorrhages,
soft exudates, microaneurysms, the optic disc, and the macula.
This system will grade DR and DME, as well as provide lesion
visualization to increase the interpretability of the AI results
for physicians.

In conclusion, our system combines a novel end-to-end
fusion model with a second object detector to perform DME
classification, HE detection, and anatomical localization. It can
identify DME and elucidate the relationship between HE and the
macula. The entire system can facilitate higher interpretability
and serve as a clinical reference for physicians. In addition, it
can be implemented on a portable edge device. Clinically, this
AI system can be used during the regular examination of DR
to improve the interpretation of fundus imaging in patients
with DME.
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Purpose: To determine the all-cause and cause-specific mortality in elderly patients with

vitreoretinal diseases based on vitrectomy status.

Methods: Elderly patients (aged ≥ 60 years) diagnosed with vitreoretinal diseases

between 2003 and 2012 using the Korean National Health Insurance Service-Senior

cohort (2002–2015) were included in this nationwide population-based retrospective

cohort study. The exposure of interest was vitrectomy, and information on mortality

from patient inclusion until December 2015 was obtained. Cox regression modeling

was used to assess the association between vitrectomy and mortality. An additional

subgroup analysis was performed to investigate the effects of the underlying retinal

disease characteristics and comorbidities on mortality.

Results: The study cohort included 152,283 patients (3,313 and 148,970 in the

vitrectomy and non-vitrectomy groups, respectively). The adjusted model showed

vitrectomy was associated with a decreased risk of pulmonary-cause mortality [hazard

ratio (HR), 0.51; P< 0.001]; however, no association was observed for all-causemortality

(HR, 0.93; P= 0.325). Vitrectomy was associated with increased mortality risk (all-cause:

HR, 1.26; P < 0.001 and vascular causes: HR, 1.41; P = 0.003) among patients with

retinal vascular diseases and decreased mortality risk (all-cause: HR, 0.64; P < 0.001

and pulmonary causes: HR, 0.35; P = 0.011) among patients with macular diseases.

There were significant interactions between age and vitrectomy with respect to all-cause

mortality among patients with either vitreoretinal disease.

Conclusions: In elderly patients with retinal diseases, the vitrectomy group showed the

lower mortality from pulmonary causes with no association for all-cause mortality.

Keywords: vitrectomy, nationwide cohort study, cause specific mortality, all-cause mortality, vitreoretinal disease
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INTRODUCTION

In the last few decades, the clinical efficacy and safety of
vitrectomy have significantly improved owing to advancements
in surgical instruments and equipment (1, 2). In addition, patient
discomfort during the postoperative period has also decreased.
Accordingly, while vitrectomy was initially only performed for
severe cases, such as retinal detachment with large retinal breaks
or proliferative vitreous retinopathy, the indications for surgery
have been expanding (3). An increasing number of patients
worldwide are undergoing surgery, particularly the elderly (4).
Therefore, it is worthwhile to analyze whether there is a difference
in mortality rates depending on the performance of vitrectomy in
the elderly population.

Various previous studies have evaluated the association
between ocular surgeries and long-term mortality, particularly
between cataract surgery and mortality (5–7). Additionally, some
cohort studies have evaluated the survival rates after vitrectomy
in patients with proliferative diabetic retinopathy, reporting a
5-year survival rate between 68 and 96% (8, 9) and a 10-year
survival rate of 49% (10). However, those studies in relation to
vitrectomy included small sample sizes of people from a single
group and no comparisons with a non-surgical group. To the
best of our knowledge, no previous study has comparedmortality
rates according to vitrectomy status, particularly in a population-
based cohort. Hence, we aimed to evaluate and compare the
all-cause and cause-specific mortality of the elderly Korean
population based on vitrectomy status. We used data from the
Korean National Health Insurance Service Senior cohort (NHIS-
Senior) database, which is a nationwide database that covers
the entire older-adult Korean population (11). In addition, a
subgroup analysis was performed to determine whether the
mortality rate differed according to the two main subtypes of
vitreoretinal disease (retinal vascular and macular diseases).

METHODS

Study Setting
For this population-based retrospective cohort study, data
was obtained from the Korean NHIS-Senior database (2002–
2015). As previously described, the Korean NHIS is a national
health insurance database that includes all patient data related
to healthcare and long-term care services (11). The senior
cohort data covers 558,147 individuals randomly sampled from
10% of the approximate 5.5 million Koreans aged ≥ 60
years. All participants included in the NHIS-Senior database
were followed until 2015 unless they were disqualified for
health coverage. The NHIS-Senior database comprises patient
data, including age, sex, national health screening, healthcare
utilization, disease diagnoses, vitrectomy status, procedures, and
prescribed medications, as well as mortality-related information.
The patients’ healthcare records were not duplicated because
all Korean residents receive a unique identification number at
birth. The Korean NHIS uses the Korean Standard Classification
of Diseases, Seventh Edition (KCD-7) codes and the Korean
Electronic Data Interchange (KEDI) codes (12). This database

FIGURE 1 | Flow-chart illustrating the study design.

can be used for national healthcare evidence-based analyses that
accurately represent the entire elderly population in Korea.

All data in the NHIS-Senior database were de-identified and
encrypted to protect the privacy of the participants before use.
As the NHIS-Senior database comprises data that are open to the
public, the Institutional Review Board (IRB) of the Asan Medical
Center waived the requirement for a review of this study (AMC
IRB No. 2019-1630).

Study Population
Our target population was Korean older adults who were
included in the NHIS-Senior database between January 1, 2002
and December 31, 2015 (n = 558,147) (Figure 1). The inclusion
criteria were as follows: aged ≥ 60 years, with at least one
NHIS record between January 1, 2002 and December 31, 2012
(n = 176,234) with a KCD-7 code for a vitreoretinal disease
(Supplementary Table 1). In addition, we included a wash-out
period between January 1, 2002 and December 31, 2002 to
reduce the potential impact of surveillance bias (n = 152,283).
Patients with the following characteristics were excluded: those
with KCD-7 codes for congenital or hereditary vitreoretinal
diseases, a ruptured globe, intraocular foreign body, or other
retinal/choroidal malignancy.

Exposure
The exposure of interest was a vitrectomy. The eligible subjects
were classified into two groups based on whether they underwent
a vitrectomy between January 1, 2003 and December 30, 2015
(Figure 1). The vitrectomy group comprised all participants with
the KEDI code for vitrectomy. Vitrectomy was defined as a
total vitrectomy (KEDI code S5121). The non-vitrectomy group
was the unexposed group, and comprised all participants with
diagnostic codes for vitreoretinal diseases, but with no KEDI code
for vitrectomy. The patients in both groups were followed up
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starting at the earliest date the diagnostic code for vitreoretinal
diseases was assigned.

Outcomes
The primary outcomes of interest were all-cause and cause-
specific mortality for the period from patient inclusion to
December 31, 2015. Mortality was determined based on an
indicator variable in the NHIS-Senior database, which contains
information on all-cause and cause-specific mortality. In this
study, the causes of death were grouped as cancer, accident-
related, vascular, pulmonary, neurologic, infectious, or trauma-
related deaths (Supplementary Table 2).

We performed a time-dependent analysis to prevent an
immortal time bias (13). For the non-vitrectomy group, the
time-to-death was calculated as the number of days from the
vitreoretinal disease diagnosis to death. For the vitrectomy
group, the period between the diagnosis and vitrectomy was
considered the follow-up period for vitreoretinal diseases, and
the period after surgery was considered the follow-up period for
vitrectomy. Therefore, the person-days of follow up before the
surgery were classified as the non-surgery group until the surgery
day definition was met, and as the surgery group thereafter.
Participants who did not have a record of death were followed
up until the last known date or December 31, 2015.

Covariates
The collected demographic data included patients’ age at the
time of vitreoretinal disease diagnosis, sex, area of residence,
and income level. The areas of residence were grouped as either
metropolitan or provincial areas according to the administrative
unit of Korea. Household income was categorized as below or
above the twentieth percentile.

Both systemic and ocular comorbidities were included as
covariates in this study. The systemic comorbidities were assessed
at the time of vitreoretinal disease diagnosis. The Charlson
comorbidity index (CCI) score was used as a covariate to
represent patients’ overall systemic health (14). The CCI is a
weighted index of systemic disease burden based on the presence
or absence of 17 systemic comorbidities, with a higher CCI score
indicating a higher burden of systemic disease. Based on their
systemic disease profiles, patients were assigned a CCI score
between 0 and 6 that could be used to predict the 1-year mortality
risk (6). In addition, data from a self-reported questionnaire
(smoking status, alcohol consumption, and regular exercise) was
obtained for a subset of patients who underwent a national health
screening program, medical check-ups provided every 2 years.

Other ocular comorbidities, including glaucoma (KCD-7
codes H40 andH42) and severe cataract (KCD-7 codes H25.2 and
H25.1), were examined. Since objective visual acuity data were
not available, patients with diagnostic codes for Morgagnian-type
senile cataract and senile nuclear cataract were considered to have
severe cataract subtypes. Determining the presence of systemic
and ocular comorbidities was based on the availability of KCD-7
codes for these conditions (Supplementary Table 3).

Statistical Analysis
The primary objective of this study was to examine the differences
in all-cause and cause-specific mortality among patients
diagnosed with vitreoretinal diseases between the vitrectomy
and non-vitrectomy groups. We used absolute standardized
differences (ASD) to compare the baseline characteristics (15).
ASD, calculated as differences in the means or proportions
divided by a pooled estimate of the standard deviation (SD),
is not as sensitive to sample size when compared with the
traditional significance testing; hence, it is useful for identifying
clinically meaningful differences. An ASD > 0.1 is considered
clinically meaningful (16). Cox regression models based on
the time-varying covariate vitrectomy status (exposure) were
used to determine the covariate-adjusted associations between
vitrectomy and time to death from any cause or death attributed
to cancer and vascular, pulmonary, neurologic, infectious, or
traumatic conditions. We used two models with adjustments for
potential confounding factors at baseline. Model 1 was adjusted
for age and sex. Model 2 was further adjusted for systemic
disease burden as measured using income, area of residence,
CCI, and ocular comorbidities. In addition, the adjusted HR of
each covariate was used to investigate the effects of age, sex,
area of residence, income level, CCI score, glaucoma, and severe
cataracts on vitrectomy-related overall mortality. Moreover,
subgroup analyses were performed to investigate differences
in mortality according to the underlying retinal disease type.
The Statistical Analysis System (SAS) program version 9.4 (SAS
Institute, Cary, NC, United States) was used for all statistical
analyses, and statistical significance was set to a two-sided p
< 0.05.

RESULTS

Baseline Characteristics
The study cohort included 152,283 patients (mean age, 72.3 ±

6.2 years), with 3,313 and 148,970 in the vitrectomy and non-
vitrectomy groups, respectively. The baseline characteristics of
the study cohort are summarized in Supplementary Table 4.
Most of the patients in both groups were diagnosed with
vitreoretinal diseases when aged< 70 years. The older population
(≥ 75 years) were not likely to undergo vitrectomy (ASD
= 0.4047). More patients who underwent vitrectomy lived in
metropolitan areas than in provincial areas (ASD = 0.1085)
and had higher incomes (ASD = 0.1214). The remaining
demographic factors, including the CCI, were similar between
the groups (all ASD < 0.1). A greater proportion of patients
had glaucoma in the vitrectomy group (49.4 and 38.5% in the
vitrectomy and non-vitrectomy groups, respectively; ASD =

0.2403). The fasting plasma glucose concentration was higher in
the vitrectomy group (ASD= 0.1170), but other parameters were
not different between the groups (all ASD > 0.1).

Mortality Rate
Table 1 shows the mortality rates of the elderly patients with
vitreoretinal diseases stratified by vitrectomy status. The crude
mortality at any time during the study period was 2.89 deaths
per 100 person-years in the vitrectomy group and 3.36 deaths per
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TABLE 1 | Mortality rates of elderly patients with vitreoretinal disease stratified by

vitrectomy status.

Mortality rate, No. of deaths (incidence per

100 person-years; 95% CI)

Cause of mortality Vitrectomy group Non-vitrectomy group

All-cause 538 (2.89; 2.66–3.15) 36,627 (3.36; 3.33–3.40)

Cancer 143 (0.77; 0.65–0.91) 9,903 (0.91; 0.89–0.93)

Vascular 143 (0.77; 0.65–0.91) 9,008 (0.83; 0.81–0.84)

Pulmonary 27 (0.15; 0.10–0.21) 3,577 (0.33; 0.32–0.34)

Neurologic 10 (0.05; 0.03–0.10) 1,057 (0.10;0.09–0.10)

Infectious 8 (0.04; 0.02–0.09) 980 (0.09; 0.08–0.10)

Accident or trauma 37 (0.20; 0.14–0.28) 2,366 (0.22; 0.21–0.23)

CI, confidence interval.

Total person-years were 18,589 for the vitrectomy group and 1,090,111 for the non-

vitrectomy group.

Poisson regression model with vitreoretinal vitrectomy status as the

time-varying covariate.

100 person-years in the non-vitrectomy group. The unadjusted
model showed a significant difference in the hazard ratios (HRs)
for all-cause and cause-specific mortality between the groups
(Table 2). Vitrectomywas associated with a lower risk of all-cause
mortality [HR, 0.81; 95% confidence interval (CI), 0.74–0.88, P <

0.001] and mortality from malignant causes (HR, 0.83; 95% CI,
0.70–0.97, P= 0.023), pulmonary causes (HR, 0.40; 95%CI, 0.27–
0.58, P < 0.001), neurologic causes (HR, 0.46; 95% CI, 0.25–0.86,
P= 0.014), and infectious causes (HR, 0.44; 95% CI, 0.22–0.88, P
= 0.021). After adjusting for other variables, the decreased risk
of mortality from pulmonary causes present in the vitrectomy
group persisted in Model 1 (HR, 0.50; 95% CI, 0.34–0.73, P <

0.001) and Model 2 (HR, 0.51; 95% CI, 0.35–0.74, P < 0.001).
However, the adjusted model showed no association between
vitrectomy and all-cause and other cause-specific mortality (P
> 0.05). Based on this analysis, Kaplan–Meier survival curves
were calculated to describe all-cause mortality according to the
vitrectomy status (Figure 2).

To assess the factors affecting these differences in all-cause
mortality between the groups, fully adjusted models were used.
A significant interaction between age and vitrectomy-related
mortality was found (P < 0.001) (Supplementary Table 5). The
HR in the vitrectomy group was higher for patients < 70 years
of age; however, in the vitrectomy group, all-cause mortality
decreased in patients aged ≥ 75 years. The lowest mortality in
the vitrectomy group was observed for patients aged ≥ 85 years,
with a 56% lower HR than that in the non-vitrectomy group (HR,
0.44; 95% CI, 0.25–0.78, P = 0.005). The other factors were not
associated with mortality rates stratified by vitrectomy status.

Subgroup Analysis
Subgroup analyses were performed based on the etiology of
the retinal disease (i.e., retinal vascular or macular diseases)
(Supplementary Tables 6, 7). For retinal vascular diseases
(Table 3), the fully adjusted model showed that vitrectomy was
associated with a higher risk of mortality from all causes (HR,
1.26; 95% CI, 1.11–1.42, P < 0.001) and vascular causes (HR,

1.41; 95% CI, 1.12–1.78, P = 0.021). Conversely, for macular
diseases (Table 4), the fully unadjusted model showed that
vitrectomy was associated with a lower risk of mortality from all
causes (HR, 0.64; 95% CI, 0.53–0.78, P < 0.001), vascular causes
(HR, 0.69; 95% CI, 0.48–1.00, P = 0.052), and pulmonary causes
(HR, 0.35; 95% CI, 0.16–1.79, P = 0.011). In both subgroups,
considerable interactions between age and vitrectomy-related
mortalities were found (Supplementary Tables 8, 9).

DISCUSSION

Using the NHIS database, the present study aimed to examine
mortality rates according to vitrectomy status in elderly patients
diagnosed with vitreoretinal diseases. The overall mortality rate
of patients with retinal diseases did not differ according to
vitrectomy status; however, the cause-specific mortality was
different between groups. Specifically, the risk of mortality owing
to pulmonary causes was significantly lower in the vitrectomy
group. In addition, the adjusted all-cause and cause-specific
mortality in the vitrectomy group were different according to
the underlying retinal disease. A strength of this study is that
it demonstrates the characteristics and patterns of mortality of
patients undergoing vitrectomy and evaluates the associations
between vitrectomy and socio-demographic factors.

The association between vitrectomy and mortality was
modified by the effects of age in patients with vitreoretinal
diseases. Patients who underwent vitrectomy were significantly
younger, indicating that younger patients (≤ 70 years) often
choose surgical treatment. Meanwhile, patients aged ≥ 85 years
showed the lowest mortality risk associated with vitrectomy. In
particular, the analysis of the vitreoretinal diseases overall were
found to be associated with a decreased risk of pulmonary-
related deaths. Though no studies have evaluated the association
between vitrectomy and mortality from pulmonary causes, we
suggest that patients who undergo vitrectomy have lower rates
of mortality from pulmonary causes, possibly since their general
state of health is good, meaning they can ambulate independently
and receive routine medical care. The other possibility is that
vision recovery after surgery is associated with an increase in
physical activity, which results in fewer complications and a
higher long-term survival rate. Further studies are necessary to
better clarify the mechanisms underlying the association between
vitrectomy and mortality from pulmonary causes.

Interestingly, the association of mortality and vitrectomy
among the patients with vitreoretinal diseases differed from
those of mortality and cataract or glaucoma surgery in patients
with cataract or glaucoma. While mortality due to pulmonary
causes was decreased following vitrectomy, according to our
previous studies examining mortality after cataract surgery and
glaucoma surgery (17, 18), all-cause mortality and mortality
due to vascular and neurologic causes decreased in the cataract
surgery group. On the other hand, all-cause mortality and, in
particular, mortality from neurologic causes, increased in the
glaucoma surgery group. These differences might be caused by
the differences in the characteristics of the ophthalmic diseases
and the indications for surgical decisions.
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TABLE 2 | Hazard ratios for all-cause and cause-specific mortality in elderly patients with vitreoretinal disease stratified by vitrectomy status.

Cause of mortality Unadjusted Cox model a Adjusted Cox model 1 a,b Adjusted Cox model 2 a,c

(No. of participants) Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value Hazard ratio (95% CI)b,c P-value

All-cause 0.81 (0.74–0.88) <0.001 0.94 (0.86–1.02) 0.142 0.96 (0.88–1.04) 0.325

Cancer 0.83 (0.70–0.97) 0.023 0.87 (0.74–1.03) 0.103 0.88 (0.75–1.04) 0.143

Vascular 0.86 (0.73–1.02) 0.083 1.04 (0.88–1.23) 0.623 1.07 (0.91–1.26) 0.422

Pulmonary 0.40 (0.27–0.58) <0.001 0.50 (0.34–0.73) <0.001 0.51 (0.35–0.74) <0.001

Neurologic 0.46 (0.25–0.86) 0.014 0.58 (0.31–1.08) 0.088 0.58 (0.31–1.08) 0.088

Infectious 0.44 (0.22–0.88) 0.021 0.53 (0.26–1.06) 0.075 0.53 (0.26–1.06) 0.074

Accident or trauma 0.89 (0.65–1.24) 0.496 0.97 (0.70–1.34) 0.849 0.98 (0.71–1.36) 0.909

CI, confidence interval.
aCox model with vitreoretinal vitrectomy status as the time-varying covariate.
bAdjusted for age and sex.
cAdjusted for age, sex, income, area of residence, Charlson comorbidity index (0, 1, 2, 3, 4, ≥ 5), glaucoma, and cataract severity.

FIGURE 2 | Kaplan–Meier graphs to describe all-cause mortality between the vitrectomy and non-vitrectomy groups.

To analyze the differences in mortality in the vitrectomy
group according to the underlying retinal disease etiology,
patients were categorized into two subgroups, which accounted
for more than half of all vitreoretinal diseases. When patients
with retinal vascular disease and macular disease were examined
separately, different associations were observed. As expected, our
results showed that patients in the older adult population with
retinal vascular diseases who underwent vitrectomy had a higher
CCI score and systemic vascular risk and, consequently, had
a higher risk of mortality from all causes and vascular causes
owing to the cardiovascular risk after adjusting for demographic
characteristics and systemic and ocular comorbidities. Consistent
with our results, a recently published study suggested that the

severity of diabetic retinopathy may provide valuable insights
into patients’ risk of mortality from all causes and vascular causes
(19). This tendency was particularly evident in the younger
patient group (aged 60–69), and it can be speculated that
older adults often choose surgery when vascular risk factors are
relatively well controlled.

Furthermore, we demonstrated decreased mortality in the
vitrectomy group from all causes and pulmonary causes for
patients with macular diseases after adjusting for demographic
characteristics and systemic and ocular comorbidities. In
addition, a decline in the mortality rate following vitrectomy was
observed, especially in the elderly. This is a rather contradictory
result, considering that a greater proportion of the patients with
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TABLE 3 | Hazard ratios for all-cause and cause-specific mortality in elderly patients with retinal vascular diseases stratified by vitrectomy status.

Cause of mortality Unadjusted Cox model a Adjusted Cox model 1 a,b Adjusted Cox model 2 a,c

(No. of participants) Hazard ratio (95% CI)a P-value Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

All-cause 1.04 (0.92–1.16) 0.561 1.19 (1.06–1.34) 0.004 1.26 (1.11–1.42) <0.001

Cancer 0.90 (0.69–1.16) 0.408 0.94 (0.72–1.22) 0.624 0.99 (0.76–1.29) 0.960

Vascular 1.12 (0.89–1.41) 0.317 1.35 (1.07–1.69) 0.010 1.41 (1.12–1.78) 0.003

Pulmonary 0.60 (0.36–1.00) 0.052 0.75 (0.45–1.26) 0.278 0.78 (0.47–1.31) 0.356

Neurologic 0.37 (0.12–1.17) 0.090 0.48 (0.15–1.49) 0.204 0.48 (0.15–1.51) 0.209

Infectious 0.54 (0.20–1.46) 0.227 0.65 (0.24–1.75) 0.398 0.68 (0.25–1.82) 0.439

Accident or trauma 0.79 (0.45–1.39) 0.413 0.84 (0.48–1.48) 0.547 0.88 (0.50–1.55) 0.653

CI, confidence interval.
aCox model with vitreoretinal vitrectomy status as the time-varying covariate.
bAdjusted for age and sex.
cAdjusted for age, sex, income, area of residence, Charlson comorbidity index (0, 1, 2, 3, 4, ≥ 5), glaucoma, and cataract severity.

TABLE 4 | Hazard ratios for all-cause and cause-specific mortality in elderly patients with macular diseases stratified by vitrectomy status.

Cause of mortality Unadjusted Cox model a Adjusted Cox model 1 a,b Adjusted Cox model 2 a,c

(No. of participants) Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

All-cause 0.46 (0.38–0.56) <0.001 0.65 (0.54–0.79) <0.001 0.64 (0.53–0.78) <0.001

Cancer 0.62 (0.44–0.87) <0.001 0.74 (0.53–1.04) 0.083 0.73 (0.52–1.02) 0.069

Vascular 0.48 (0.33–0.69) <0.001 0.70 (0.48–1.01) 0.059 0.69 (0.48–1.00) 0.052

Pulmonary 0.23 (0.10–0.51) <0.001 0.36 (0.16–0.81) 0.014 0.35 (0.16–0.79) 0.011

Neurologic 0.25 (0.06–1.00) 0.050 0.38 (0.09–1.52) 0.172 0.36 (0.09–1.46) 0.153

Infectious 0.46 (0.15–1.42) 0.174 0.64 (0.20–1.99) 0.439 0.62 (0.20–1.92) 0.403

Accident or trauma 0.94 (0.54–1.64) 0.838 1.20 (0.69–2.08) 0.525 1.21 (0.70–2.11) 0.492

CI, confidence interval.
aCox model with vitreoretinal vitrectomy status as the time-varying covariate.
bModel 1: adjusted for age and sex.
cModel 2: adjusted for age, sex, income, area of residence, Charlson comorbidity index (0, 1, 2, 3, 4, ≥ 5), glaucoma, and cataract severity.

macular diseases who underwent vitrectomy were current or
ex-smokers who regularly consumed alcohol. The main aim of
surgical treatment for patients with macular disease is to facilitate
better vision in most cases. Older patients who underwent
vitrectomy to restore their vision may have been in good general
health and thus had lower mortality rates from and vascular
causes. Taken together, vitreoretinal surgeons should focus more
on improving visual restoration with macular diseases.

This study has some limitations. The main limitation was
the observational nature of the study. Though an association
between vitrectomy and mortality was observed, it was difficult
to determine the extent to which the diagnosis of retinal
disease or the performance of vitrectomy contributed to the
outcomes. Second, various factors, including surgeons’ and
patients’ preferences and disease severity, must be considered
when interpreting our results, however, these are unavoidable
limitations to using claims data. In addition, the NHIS-
Senior database does not provide information on visual acuity
measurements, preoperative retinal status, or the postoperative
clinical course. Therefore, we could not determine if the
difference between the long-term survival rates in the vitrectomy
group was directly associated with the ocular changes following
vitrectomy. Third, several variables could be confirmed only for a

subset of patients who underwent the national health screening
program and approximately 50% of these data were missing.
Fourth, we did not consider the number of surgeries in our
analysis. Patients with severe diseases are more likely to need
more surgeries, whichmay be related tomortality rates. However,
since we included only the time point of the first surgery in
the analysis without considering the number of surgeries and
the overall course, these aspects should be considered when
interpreting the study results. Lastly, we focused only on residents
of South Korea; therefore, the observed findings cannot be
generalized to other ethnic groups. Despite these limitations, this
study is valuable. This was the first study to report a significant
association between vitrectomy and long-term survival based
on all-cause and cause-specific mortality in older adults using a
nationwide population-based database. This study also included
a large sample; the data were obtained from the NHIS-Senior
database, and selection bias was relatively low because Korea has
a single public insurance system that covers the entire population
(20, 21).

This nationwide cohort study showed that the vitrectomy
group had the lower mortality from pulmonary causes with
no association for all-cause mortality. In addition, associations
varied according to two types of vitreoretinal disease: higher risk
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of all-cause mortality and vascular causes in the patients with
retinal vascular diseases and lower risk of all-cause mortality,
vascular causes, and pulmonary causes in those with macular
diseases. Though causality requires further study and analysis,
the effect of vitrectomy on the mortality rates of patients can
be inferred from the current observations. Further, the expected
direction of changes of the future could be predicted based on the
different mortality rate after vitrectomy in macular and retinal
vascular disease.
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Purpose: To investigate an artificial intelligence (AI) model performance using

multi-source anterior segment optical coherence tomographic (OCT) images in

estimating the preoperative best-corrected visual acuity (BCVA) in patients with

senile cataract.

Design: Retrospective, cross-instrument validation study.

Subjects: A total of 2,332 anterior segment images obtained using swept-source OCT,

optical biometry for intraocular lens calculation, and a femtosecond laser platform in

patients with senile cataract and postoperative BCVA ≥ 0.0 logMAR were included in

the training/validation dataset. A total of 1,002 images obtained using optical biometry

and another femtosecond laser platform in patients who underwent cataract surgery in

2021 were used for the test dataset.

Methods: AI modeling was based on an ensemble model of Inception-v4 and

ResNet. The BCVA training/validation dataset was used for model training. The model

performance was evaluated using the test dataset. Analysis of absolute error (AE) was

performed by comparing the difference between true preoperative BCVA and estimated

preoperative BCVA, as ≥0.1 logMAR (AE≥0.1) or <0.1 logMAR (AE<0.1). AE≥0.1 was

classified into underestimation and overestimation groups based on the logMAR scale.

OutcomeMeasurements: Mean absolute error (MAE), root mean square error (RMSE),

mean percentage error (MPE), and correlation coefficient between true preoperative

BCVA and estimated preoperative BCVA.

Results: The test dataset MAE, RMSE, and MPE were 0.050 ± 0.130 logMAR,

0.140 ± 0.134 logMAR, and 1.3 ± 13.9%, respectively. The correlation coefficient was

0.969 (p < 0.001). The percentage of cases with AE≥0.1 was 8.4%. The incidence of

postoperative BCVA > 0.1 was 21.4% in the AE≥0.1 group, of which 88.9% were in the

underestimation group. The incidence of vision-impairing disease in the underestimation

group was 95.7%. Preoperative corneal astigmatism and lens thickness were higher, and

nucleus cataract was more severe (p < 0.001, 0.007, and 0.024, respectively) in AE≥0.1
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than that in AE<0.1. The longer the axial length and the more severe the cortical/posterior

subcapsular opacity, the better the estimated BCVA than the true BCVA.

Conclusions: The AI model achieved high-level visual acuity estimation in patients with

senile cataract. This quantification method encompassed both visual acuity and cataract

severity of OCT image, which are the main indications for cataract surgery, showing the

potential to objectively evaluate cataract severity.

Keywords: artificial intelligence, cataract, convolutional neural network, optical coherence tomography, visual

acuity

INTRODUCTION

Cataract is the leading cause of blindness, with ∼12.6 million
cases of cataract worldwide (1). The visual impairment caused
by cataract can be treated with advanced cataract surgery, which
can ensure a progressively better quality of vision and fewer
complications than in the past (2–5). The most important
indications for cataract surgery are preoperative visual acuity
and cataract grading, and advances in surgical technology have
expanded the scope of the surgery to even include less severe
cataracts (5).

Although the cataract grading system shows a good
correlation with surgical difficulty, indicating that the surgery
becomesmore challenging as the cataract grading increases (6, 7),
it shows limitations in reflecting the patient’s visual symptoms,
especially in cases with nuclear cataract and cortical opacity
(8). Cataract grading depends on the subjective competence
of the investigator (9). However, visual acuity reflects the
patient’s symptoms and influences surgical difficulty; therefore,
the surgery becomes more challenging also as the visual acuity
decreases (10, 11). Moreover, preoperative visual acuity can serve
as an important predictor of postoperative vision in various
diseases (12–14).

Artificial intelligence (AI) is being increasingly used in
medicine, and ophthalmology is one of the most active fields
for its clinical application (15). Recent studies have attempted to
use AI for cataract grading with various methods, including slit-
lamp photography, fundus photography, and optical coherence
tomography (OCT) (16–22), and the results suggest that AI-
based cataract grading shows acceptable performance with 70–
90% accuracy. However, an AI-based approach for evaluation
of visual acuity in patients with cataracts is still lacking.
An approach linking objective image data with the subjective
symptoms represented by visual acuity is particularly relevant,
since the resultant method would encompass both visual acuity
and cataract grade, which are the main indications for cataract
surgery. Therefore, we attempted to implement an AI model that
can evaluate cataract severity based on visual acuity by using
multi-source OCT data and to assess the applicability of this AI
model in actual clinical practice.

Abbreviations: AE, absolute error; AI, artificial intelligence; BCVA, best-

corrected visual acuity; CNN, convolutional neural network; LOCS, Lens Opacities

Classification System; MAE, mean absolute error; MPE, mean percentage error;

OCT, optical coherence tomography; RMSE, root mean square error.

METHODS

The study was conducted at the Department of Ophthalmology,
Severance Hospital, Yonsei University College of Medicine in
accordance with the ethical standards of the Declaration of
Helsinki, and institutional review board approval was obtained
for the study protocol (4-2021-1697). The institutional review
boards waived the need for informed consent because of the
retrospective and de-identified nature of the study.

Participants and Dataset
All medical records of patients who underwent cataract surgery
between January 2019 and December 2021 were reviewed. The
demographic and clinical information of the patients, including
age, sex, and clinical history, was collected. We defined distinct
inclusion criteria for the training/validation and test datasets.
For the training/validation dataset, we collected 2,332 anterior
segment OCT images of 2,332 eyes in 2,332 patients with
senile cataract alone whose 1-month postoperative best-corrected
visual acuity (BCVA) was 0.0 logMAR or better; the images
were obtained between January 2019 and December 2020 by
using swept-source OCT (ANTERION R© swept-source OCT;
Heidelberg Engineering, Heidelberg, Germany), optical biometry
for intraocular lens calculation (IOLMaster R© 700; Carl Zeiss
Meditec AG, Jena, Germany), and a femtosecond laser platform
(LenSx R© laser system; Alcon Laboratories, Inc., Fort Worth,
TX, USA). Through this process, we aimed to develop a pure
cataract analyzer. In the test dataset, to evaluate the application
of the analyzer in actual clinical practice, we collected 1,002
anterior segment OCT images of 1,002 eyes of 1,002 patients
who underwent cataract surgery between January 2021 and
December 2021; the images were obtained using optical biometry
(IOLMaster R© 700) and another femtosecond laser platform
(CATALYSTM Precision Laser System; Johnson & Johnson Inc.,
New Brunswick, NJ, USA). When multi-axial images were
obtained from one device, a vertical image was selected. When
multi-source anterior segment OCT images of a patient were
available, a study image was selected randomly using Python
version 3.8. When data for both eyes of a patient were available,
a study eye was selected randomly. In the training/validation
and test datasets, the patients with no anterior segment OCT
images of the crystalline lens, not obtained due to corneal
opacity or other reasons, were excluded. All OCT images in
the training/validation and test datasets were labeled with the
preoperative BCVA (Figure 1).

Frontiers in Medicine | www.frontiersin.org 2 May 2022 | Volume 9 | Article 87138239

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Ahn et al. Visual-Acuity Estimating AI Using as-OCT

FIGURE 1 | Study flow diagram. For the training/validation dataset, we collected 2,332 anterior segment OCT images of 2,332 eyes in as many patients with isolated

senile cataract, whose 1-month postoperative best-corrected visual acuity (BCVA) was 0.0 logMAR or better. The images were obtained between January 2019 and

December 2020 using swept-source OCT (ANTERION®), optical biometry for intraocular lens calculation (IOLMaster® 700), and a femtosecond laser platform

(LenSx® Laser System). With this process, we aimed to develop a pure cataract analyzer. For the test dataset, we collected 1,002 anterior segment OCT images of

1,002 eyes in as many patients who underwent cataract surgery between January 2021 and December 2021 to evaluate the application of the analyzer in actual

clinical practice. The images were obtained using optical biometry (IOLMaster® 700) and a different femtosecond laser platform (CATALYSTM Precision Laser System).

The multi-source OCT images varied in size, contour, and direction; an image augmentation method (ImageDataGenerator from the Keras library) was used for the

training dataset. The AI modeling was based on an ensemble of the Inception-v4 convolutional neural network (CNN) and ResNet via the stacking technique. The

mean absolute error, root mean square error, mean percentage error, and correlation coefficient between the actual and predicted preoperative BCVA were calculated

to evaluate the model performance.

Artificial Intelligence Modeling
In this study, to improve the model performance and to analyze
the technical error, we manipulated the AI modeling through
reduction of input image size, use of image augmentation in the
training dataset, and modification of the model architecture. The

image size was reduced from 100 to 1% in 1% increments while
maintaining the same height-to-width ratio. The multi-source
OCT images varied in size, contour, and direction; the image
augmentation method using ImageDataGenerator from Keras
library was used for the training dataset. Finally, AI modeling
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was based on an ensemble of the Inception-v4 convolutional
neural network (CNN) and ResNet via the stacking technique
(23, 24). In the high-resolution and large-scale images, such as
the OCT images in this study, a very deep CNN architecture can
be expected to perform well until a certain level (25). However,
exploding calculation and gradient vanishing are problems
associated with very deep CNNs. To overcome these problems,
architectures, such as the Inception network and ResNet, can be
considered (23, 24). Ensemblemodeling of the Inception network
and ResNet was implemented using an aggregating method with
a weighted average, and the hyperparameters of the model were
modified to ensure that the model performed flexibly according
to the proportion of the input image shape.

Clinical Assessments
Clinical assessments were used to evaluate AI performance
and perform error analysis in the medical approach. All
patients underwent detailed preoperative examinations,
including slit-lamp biomicroscopy, non-contact tonometry,
ophthalmoscopy, and manifest refraction for BCVA. The mean
corneal power and corneal astigmatism were measured using
autokeratometry (Topcon KR-800A; Topcon Corporation,
Tokyo, Japan). Intraocular lens calculation was performed
using the IOLMaster R© 700, and axial length and lens thickness
were measured. An A-scan ultrasound biometry was used
for intraocular lens calculation when the IOLMaster R© 700
was unavailable. Cataract grading was performed using the
Lens Opacities Classification System (LOCS) III by an expert
surgeon (T.K.) who evaluated the opacity of the cortex, nucleus,
and posterior subcapsular portion of the crystalline lens (26).
Postoperative examinations, BCVA, slit-lamp examination,

and pupil-dilation were conducted 1 month after the cataract
surgery. Vision-impairing disease was defined as a clearly
diagnosed disease in the detailed pre- and postoperative
examinations that satisfied all of the following criteria: (1)
postoperative BCVA > 0.1 logMAR, (2) persistent disease (that
leaves an irreversible visual sequelae), (3) existing before cataract
surgery, and (4) not a complication of cataract surgery.

Model Performance
To evaluate the model performance, the mean absolute error
(MAE), root mean square error (RMSE, which is influenced by
large errors), and mean percentage error (MPE, which shows
in percentage how much the forecasts of a model differ from
the actual values) between the actual preoperative BCVA and
predicted preoperative BCVA were calculated as follows:

MAE =
6
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∣ y − ŷ
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n

RMSE =

√

6

(
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)2

n

MPE =

∑
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)

n
× 100 (%)

y: true preoperative BCVA
ŷ: estimated preoperative BCVA
n: number of images in the test dataset

TABLE 1 | Demographics and characteristics of the training/validation dataset and test dataset.

Training/validation dataset

(n = 2,332)

Test dataset

(n = 1,002)

OCT image source ANTERION® (n = 580)

IOL-master® 700 (n = 1166)

LenSx® laser system (n = 586)

IOL-master® 700 (n = 621)

CATALYSTM laser system (n = 381)

Underlying disease Senile cataract only Senile cataract and/or other

vision-impairing condition

Age (years, mean ± SD) 67.5 ± 9.1 69.1 ± 7.9

Sex (% of female) 64.5 63.9

Preoperative BCVA (logMAR, mean ± SD) 0.22 ± 0.15 0.20 ± 0.51

Postoperative BCVA (logMAR, mean ± SD) 0.00 ± 0.00 0.08 ± 0.12

Axial length (mm, mean ± SD)* 24.3 ± 1.2

(n = 2,186)

24.4 ± 1.3

(n = 948)

Lens thickness (mm, mean ± SD)* 4.3 ± 0.6

(n = 2,186)

4.3 ± 0.7

(n = 948)

LOCS III cataract grade

Cortical (mean ± SD) 2.9 ± 1.3 3.0 ± 1.0

Nucleus (mean ± SD) 3.0 ± 0.6 3.0 ± 0.5

Posterior subcapsule (mean ± SD) 0.9 ± 1.5 1.0 ± 1.3

BCVA, best corrected visual acuity; LOCS III, Lens Opacities Classification System III; logMAR, logarithm of the minimum angle of resolution; OCT, optical coherence tomography; SD,

standard deviation.

*Considered the values of optical biometry.
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A correlation analysis was conducted between the
true and estimated preoperative BCVAs with Pearson
correlation coefficient.

Error Analysis
The participants were initially classified into two groups based
on the absolute error (AE) between true preoperative BCVA
and estimated preoperative BCVA, one with an AE of at
least 0.1 logMAR (AE≥0.1), and the other with AE under
0.1 logMAR (AE<0.1). Next, the AE≥0.1 group was further
divided into the underestimation group, in which the estimated

TABLE 2 | Performance of the artificial intelligence model for prediction of

preoperative best corrected visual acuity in patients with senile cataract.

Performance parameter Value

MAE (logMAR, mean ± SD) 0.050 ± 0.130

RMSE (logMAR, mean ± SD) 0.140 ± 0.134

MPE (%, mean ± SD) 1.3 ± 13.9

Correlation coefficient (R) 0.969 (p < 0.001)

logMAR, logarithm of the minimum angle of resolution; MAE, mean absolute error; MPE,

mean percentage error; RMSE, root mean square error; SD, standard deviation.

preoperative BCVA was lower than the true preoperative
BCVA, and the overestimation group, in which the estimated
preoperative BCVA was higher than the true preoperative BCVA.
Ordinal interference was considered if the clinical and statistical
sequences were consistent.

Statistical Analysis
Comparative analyses of clinical assessments were conducted
between the groups and between the subgroups with independent
t-tests for continuous variables and Fisher’s exact tests for
categorical variables. The values from the A-scan ultrasound
biometry were excluded in the comparisons of axial length and
lens thickness. Statistical significance was set at p < 0.05.

RESULTS

Table 1 shows the overall demographics and characteristics of the
training/validation and test datasets. Although the OCT image
source and underlying disease differed between the datasets, no
remarkable differences were observed in age, sex, preoperative
BCVA, axial length, lens thickness, and LOCS III cataract
grade. The postoperative BCVA differed between the datasets
(p < 0.001).

FIGURE 2 | Scatter plot between true preoperative BCVA and estimated preoperative BCVA. The solid black line shows that the true and estimated preoperative

BCVAs were equal. The black dotted line shows the absolute error (AE) of the true and estimated preoperative BCVAs of 0.1 logMAR. The red dotted line describes

the Pearson correlation coefficient. In the test dataset, 91.6% of cases had AE under 0.1 logMAR.
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In the test dataset, the MAE, RMSE, and MPE of the
model performance were 0.050 ± 0.130 logMAR, 0.140 ±

0.134 logMAR, and 1.3 ± 13.9%, respectively (Table 2). The
correlation coefficient (R) between the true preoperative BCVA
and estimated preoperative BCVA was 0.969 (p < 0.001)
(Figure 2). The percentage of cases in the AE ≥ 0.1 group was
8.4%, and 1.9% had AE ≥ 0.2.

The preoperative BCVA values were significantly different
between the AE≥0.1 and AE<0.1 groups (0.30 ± 0.08 vs. 0.12
± 0.10, respectively; p < 0.001), and corneal astigmatism, lens
thickness, and nucleus cataract in the LOCS III grading were
significantly different (p< 0.001,<0.001, and 0.024, respectively)
(Table 3). Postoperative BCVA in the AE≥0.1 group was worse
than that in the AE<0.1 group (p < 0.001). In the AE≥0.1 group,
the incidence of postoperative BCVA > 0.1 was 21.4%, which
was higher than that in the AE<0.1 group, and the proportion
of vision-impairing disease was also higher than in the AE<0.1

group. The percentage of cases with vision-impairing diseases
was significantly higher in the AE≥0.1 group than in the AE<0.1

group (54.8 vs. 12.9%; p < 0.001).
The AE≥0.1 group was further divided into underestimation

and overestimation groups (Table 4). Pre- and postoperative
BCVAs were significantly worse in the underestimation group
(0.39 ± 0.10 vs. 0.15 ± 0.09 in overestimation, and 0.10 ± 0.15
vs. 0.01 ± 0.05; p < 0.001 and p < 0.001, respectively). The
proportion of cases with postoperative BCVA> 0.1 was higher in
the underestimation group (p < 0.001). The proportion of cases
with vision-impairing disease was 95.7% in the underestimation

group. Axial length was longer, and cortical opacity and posterior
subcapsular opacity were more severe in the underestimation
group (p < 0.001, 0.045, and 0.002, respectively).

Error analysis for model performance was conducted by
performing comparative analyses between the AE≥0.1 and AE<0.1

groups and between the underestimation and overestimation
subgroups of the AE≥0.1 group (Table 5). Preoperative corneal
astigmatism, lens thickness, and nuclear opacity in the LOCS
III grading were higher in the AE≥0.1 group. Increased BCVA
and vision-impairing disease were more significant in the
underestimation subgroup. Axial length was longer, and the
cortical/posterior subcapsular opacity was more severe in the
overestimation subgroup than in the underestimation subgroup.

In the AI modeling process, reducing the original image
decreased the model performance, and the neural network
could not estimate the BCVA when the area was reduced
by ∼≥90% (32% of width and height) (Figure 3A). Image
augmentation increased the model performance in terms of the
MAE (Figure 3B). The ensemble model had the lowest MAE, and
Inception-v4 and ResNet were almost similar in terms of MAE
(Figure 3C).

DISCUSSION

With the test dataset of this study, over 90% of cases could be
estimated in their BCVA under 0.1 logMAR of AE. Most of the
underestimation errors were caused by vision-impairing disease,
and about half of the decreased model performance could be

TABLE 3 | Comparison of the patients showing absolute error of BCVA of 0.1 and over (AE≥0.1) with those showing absolute error under 0.1 (AE<0.1) in the test dataset.

AE≥0.1 (n = 84) AE<0.1(n = 918) p-value

OCT image source (% of CATALYSTM laser system)‡ 35.7 35.9 0.966*

Mean age (years, mean ± SD)§ 70.5 ± 8.2 69.0 ± 7.9 0.180

Sex (% of female)‡ 64.3 63.8 0.934

Preoperative BCVA (logMAR, mean ± SD)§ 0.30 ± 0.08 0.12 ± 0.10 <0.001*

Preoperative corneal power (D, mean ±SD)§ 43.9 ± 1.6 43.9 ± 1.2 1.000

Preoperative corneal astigmatism (D, mean ± SD)§ 1.2 ± 1.1 0.8 ± 0.5 <0.001*

Axial length (mm, mean ±SD)†§ 24.6 ± 0.9 (n = 75) 24.4 ± 1.4 (n = 873) 0.225

Lens thickness (mm, mean ± SD)†§ 4.6 ± 0.2 (n = 75) 4.3 ± 0.7 (n = 873) <0.001*

LOCS III cataract grade

Cortical (mean ± SD)§ 2.9 ± 1.1 3.0 ± 1.0 0.436

Nucleus (mean ± SD)§ 3.1 ± 0.3 3.0 ± 0.3 0.024*

Posterior subcapsule (mean ± SD)§ 0.9 ± 1.6 1.0 ± 1.3 0.491

Postoperative BCVA (logMAR, mean ± SD)§ 0.07 ± 0.05 0.01 ± 0.09 <0.001*

Postoperative BCVA > 0.1 (%)‡ 21.4 6.8 <0.001*

Vision-impairing disease (%)‡ 54.8 12.9 <0.001*

Corneal disease, central (%)‡ 4.8 0.0 <0.001*

Macular disease (%)‡ 26.2 7.2 <0.001*

Glaucoma and other optic neuropathy (%)‡ 28.6 6.3 <0.001*

*p-value < 0.05.
†Considered the values of optical biometry only.
‡Analyzed by Fisher’s exact test.
§Analyzed by independent t-test.

BCVA, best corrected visual acuity; D, diopter; LOCS III, Lens Opacities Classification System III; logMAR, logarithm of the minimum angle of resolution; SD, standard deviation.
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TABLE 4 | Comparison of the overestimation and underestimation groups among patients showing an absolute error of 0.1 and over (AE≥0.1) in BCVA.

Underestimation (n = 46) Overestimation(n = 38) p-value

OCT image source (% of CATALYSTM laser system)‡ 37.0 34.0 0.794

Mean age (years, mean ± SD)§ 69.6 ± 7.5 71.8 ± 8.2 0.203

Sex (% of females)‡ 65.2 63.2 1.000

Preoperative BCVA (logMAR, mean ± SD)§ 0.39 ± 0.10 0.15 ± 0.09 <0.001*

Preoperative corneal power (D, mean ± SD)§ 43.8 ± 1.4 44.2 ± 1.7 0.240

Preoperative corneal astigmatism (D, mean ± SD)§ 1.2 ± 1.1 1.1 ± 1.0 0.677

Axial length (mm, mean ± SD)† 25.1 ± 1.0 (n = 37) 24.2 ± 0.8 <0.001*

Lens thickness (mm, mean ± SD)† 4.5 ± 0.2 (n = 37) 4.6 ± 0.2 <0.034*

LOCS III cataract grade

Cortical (mean ± SD)§ 3.3 ± 1.0 2.6 ± 1.0 >0.045*

Nucleus (mean ± SD)§ 3.0 ± 0.5 3.1 ± 0.2 0.775

Posterior subcapsule (mean ± SD)§ 1.5 ± 1.6 0.3 ± 0.6 >0.002*

Postoperative BCVA (logMAR, mean ± SD)§ 0.10 ± 0.15 0.01 ± 0.05 <0.001*

Postoperative BCVA >0.1 [% of each group, (% of AE≥0.1)]
‡ 34.8 (88.9) 5.3 (11.1) <0.001*

Vision-impairing disease [% of each group, (% of AE≥0.1)]
‡ 95.7 (95.7) 5.3 (4.3) <0.001*

*p-value < 0.05.
†Considered the values of optical biometry only.
‡Analyzed by Fisher’s exact test.
§ Analyzed by independent t-test.

BCVA, best corrected visual acuity; D, diopter; LOCS III, Lens Opacities Classification System III; SD, standard deviation.

TABLE 5 | Error analysis of model performance in clinical practice.

Characteristics AE≥0.1] vs. AE<0.1 Estimation group

Under AE<0.1 (fair) Over

OCT image source – – – –

Age – – – –

Sex – – – –

Preoperative BCVA + + – –

Preoperative corneal astigmatism + + – +

Postoperative BCVA + + – –

Postoperative BCVA over 0.1 + + – –

Vision-impairing disease + + – –

Axial length† – +longer +intermediate +shorter

Lens thickness‡ + + – +

LOCS III grade

Cortex† – +higher +intermediate +lower

Nucleus + + – +

Posterior subcapsule† – +higher +intermediate +lower

†Ordinal interference.
‡Statistically different between the underestimation and overestimation groups but failed to list in order of lens thickness.

explained by a clinical approach. The technical issues, image
resolution, diversity of image forms in the training dataset, and
model architecture also affected the model performance.

Objective clinical assessment for estimation of the
subjective visual symptoms represented by visual acuity,
which is considered the ultimate goal of ophthalmologic
interventions, can be utilized in various ways from clinical to
experimental; however, this is very difficult for clinicians due
to confounding factors (27). AI is expected to help human

evaluators perform difficult tasks (28). This study suggested that
cataract severity can be quantified as visual acuity via AI using
OCT images.

In this study, cross-instrument validation was performed
using different combinations of anterior segment OCT image
sources for the training/validation dataset and the test dataset.
To enhance the model performance, the OCT images used in
the training/validation dataset were obtained from three devices
with different detection methods, image resolutions, and image
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FIGURE 3 | Mean absolute error (MAE) of the model performance in the AI training process. As the size of the OCT image reduced, MAE increased (A), and image

augmentation using the image generator showed a lower MAE (B). The ensemble model of Inception-v4 and ResNet showed the lowest MAE compared to the

individual architecture (C).

FIGURE 4 | Example of heatmap analysis of the Artificial Intelligence (AI) attention area. Original OCT image (A) and Heatmap image (B). The preoperative

best-corrected visual acuity (BCVA) of this 67-year-old patient, who showed a senile cataract with grade 3 cortical opacity and grade 2 nuclear opacity in the Lens

Opacities Classification System III, was 0.50 logMAR, and the AI-estimated BCVA was 0.52 logMAR.

directions. The test dataset was constructed to evaluate the
practical application of the AI model in real-world scenarios
by including all patients within a certain period and using
commonly available OCT images in the process of cataract
surgery and its preparation.

Model performance and error analysis were conducted from
both clinical and engineering perspectives. Although medical
issues have rarely been mentioned in previous AI research,
for clinical application of medical AI, error analysis from the
clinical perspective is indispensable (29, 30). The results suggest
that the predisposing disease and the conditions, such as high
values of corneal astigmatism, axial length, lens thickness, and
severity of each cataract subtype, which are well known to cause
visual impairment, were the main factors underlying errors in
the medical approach (8, 31–34). For engineering issues, this
study suggested that low-resolution images led to the degradation
of the model performance (see Figure 3A), and highlighted
the importance of high-resolution images in analyzing precise
medical observations (35). Multi-source images were used,
and the transformation for direction and size through image
augmentation in the training dataset was shown to yield better
model performance (36). Although the AI model using a unified
material may show a different performance from that using

multi-sources materials, we focused on the versatility of the AI
model by using OCT images acquired with multiple instruments.

The primary goal of cataract surgery is to restore the best
possible vision as well as remove the natural crystalline lens
(37). Thus, postoperative visual acuity is the target indicator
of cataract surgery. Wei et al. reported the use of AI with
fundus OCT for predicting postoperative visual acuity in patients
with high myopia (38), and the result showed the lowest MAE
of 0.16 logMAR and RMSE of 0.24 logMAR. However, this
performance level was still insufficient for clinical application,
and the findings implied that visual acuity was not determined by
a single defined etiology. Clinicians frequently encounter patients
with visual impairment without a specific pathologic lesion. This
phenomenon may be caused by medical issues and unknown
predisposing factors, including developmental problems, such
as amblyopia, an extraocular disease, such as brain lesion, or a
temporary problem, such as dry eye disease. Thus, approaches
based on a single etiological factor showed limited ability to
predict the postoperative BCVA. Since multiple factors, including
the presence of both cataract and comorbid disease, can influence
the accuracy of prediction of postoperative BCVA with AI based
on the preoperative BCVA, our study could serve as the basis for
future studies. Future studies should aim to predict postoperative
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visual acuity using a combination of preoperative visual acuity,
anterior segment OCT, and other examinations.

Similar to previous medical AI research (16, 39–41), this
study did not completely overcome the limitations in interpreting
the neural network. In this study, the attention areas of the
AI model were analyzed using heatmap analysis (Figure 4),
and we tried to analyze the relationships between the attention
areas and the error analysis in the medical approach. Although
model training was conducted using patients with only a clinical
diagnosis of cataract, the AI also recognized the cornea that was
laid on the visual axis and the angle in the anterior chamber.
Thus, some factors affecting the corneal shape (e.g., corneal
refractive surgery), anterior chamber angle (e.g., glaucoma), and
lens thickness may be related.

The strengths of this study were not limited to the excellent
performance of the AI model. Our attempt to prove the
importance of clinical approach in model performance was
successful and our findings suggest that the addition of various
clinical information in AI modeling is crucial for improving
model performance.

In conclusion, the AI developed using OCT images from
multiple sources showed excellent performance in estimating
visual acuity in patients with senile cataracts. This quantification
method encompasses both visual acuity and cataract severity of
the OCT images, which are the main indications for cataract
surgery, and has the potential to allow objective evaluation
of cataract severity. This AI model can be used when it is
difficult to express or measure the subjective visual acuity
due to various causes, such as an inability to communicate.

Additionally, we would like to emphasize that this was a
preliminary study to expand the prediction of visual acuity
after cataract surgery in patients with other diseases, possibly
accompanied by visual impairment.
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Relationship Between Tamsulosin
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Cataract Surgery in Elderly Patients:
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Jiehoon Kwak, Jung Yeob Han, Su Young Moon, Sanghyu Nam, Jae Yong Kim*,

Hungwon Tchah and Hun Lee*

Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea

Purpose: Although several previous studies have investigated the relationship between

tamsulosin use and surgical complications of cataract surgery, no population-based

cohort study has been conducted for the Asian population. We aimed to investigate

the relationship between tamsulosin use and surgical complications of cataract surgery

in the Korean elderly population.

Methods: This nationwide population-based retrospective cohort study included elderly

patients (≥60 years) who had undergone cataract surgery in the period from 2003 to

2015. Baseline characteristics were age, sex, income, residence, and systemic, and

ocular comorbidities (glaucoma, myopia, eye trauma, diabetes mellitus with ophthalmic

manifestations, severe cataract, age-related macular degeneration). The exposure of

interest was tamsulosin use within 1 year before cataract surgery. Logistic regression

model was used to evaluate the relationship of tamsulosin use with surgical complications

of cataract surgery.

Results: The rate of surgical complications of cataract surgery was 0.88% (375/42,539)

in the non-tamsulosin group and 0.83% (71/8,510) in the tamsulosin group. The

groups showed no significant difference in the risk of surgical complications of

cataract surgery in the unadjusted model [odds ratio (OR) = 0.946; 95% confidence

interval (CI):0.733–1.220; P = 0.669]. Additionally, tamsulosin use was not significantly

associated with surgical complications of cataract surgery in the fully adjusted model

accounting for age, income, residence, and systemic and ocular comorbidities (OR =

0.997; 95% CI: 0.749–1.325; P = 0.981).

Conclusions: The rate or risk of surgical complications of cataract surgery does not

change with tamsulosin use. We suggest that better surgical techniques and surgeons’

cognizance of the patient’s tamsulosin use could improve surgical outcomes, without

increasing surgical complications.

Keywords: cataract surgery, tamsulosin, surgical complication, KNHIS-Senior cohort, cataract (senile)
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INTRODUCTION

Tamsulosin is a subtype-selective alpha (1A and 1D)
adrenoceptor antagonist that induces relaxation of smooth
muscles in the prostate and bladder (1). It is commonly used
to treat symptomatic benign prostate hyperplasia (BPH) and
kidney stones and was approved for use in the United States in
1997 and in South Korea in 2006. It has been prescribed globally
to treat acute urinary retention caused by BPH, and systemic side
effects, e.g., hypotension, have been relatively uncommon (1).

Intraoperative floppy iris syndrome (IFIS), which comprises
intraoperative progressive miosis, iris prolapse, and iris
billowing, is frequent in patients taking tamsulosin (2–4). The
prevalence of IFIS is 2%, and most cases are related to tamsulosin
use (5, 6). In addition, patients who are administered with
tamsulosin preoperatively tend to develop miotic pupils, iris
prolapse at the incision margin, and hypotonic iris during
cataract surgery (2, 7, 8). Such anatomical or functional changes
induced by tamsulosin increase the difficulty of cataract surgery,
which could lead to perioperative or postoperative complications
(2, 8, 9). Nonetheless, owing to the surgeon’s effort to respond
to the risk posed by tamsulosin use and advances in surgical
equipment, surgical outcomes of cataract surgery improved in
patients taking tamsulosin (9–12).

Previous studies evaluated surgical complications of cataract
surgery associated with tamsulosin use (2, 6). A recent
population-based study on yearly cataract surgical complication
rates of patients taking tamsulosin demonstrated that the risk
of cataract surgical complications decreased with time with or
without tamsulosin use (13). However, it is unclear whether
those findings are generalizable to the Korean elderly population,
and no population-based cohort study has been conducted for
the Asian population. Therefore, the aim of the present study
was to investigate the relationship between tamsulosin use and
surgical complications of cataract surgery in the Korean elderly
population using the Korean National Health Insurance Service-
Senior cohort (NHIS-Senior) database.

METHODS

Study Design and Data Source
This was a population-based retrospective cohort study
conducted using the KNHIS-Senior database. The health
insurance system in South Korea is a nationwide universal
single-payer system managed by the KNHIS. The KNHIS-
Senior database is provided by the KNHIS. It includes the data
of 558,147 individuals randomly sampled from 10% of the
approximate 5.5 million South Korean people aged ≥60 years,
including information on age, sex, general health examinations,
hospital and pharmacy visits, disease diagnoses and status,
procedures, and prescribed medications (14, 15). All participants
included in the NHIS-Senior database were followed-up until
2015 unless they were disqualified for health coverage reasons,
such as death or emigration.

The KNHIS uses Korean Electronic Data Interchange (KEDI)
and Korean Standard Classification of Diseases (KCD) codes,
a system similar to the International Classification of Diseases

(16). As the NHIS-Senior database comprises publicly accessible
data, the Institutional Review Board of Asan Medical Center
(University of Ulsan College of Medicine) instead of approved
the waiver of reviewing this study (2020-1194). This study was
conducted according to the ethical principles outlined in the
Declaration of Helsinki. The requirement for obtaining informed
consent was waived because anonymized and de-identified data
were used for analyses.

Study Population
We selected the target population among those who were
included in the NHIS-Senior database from 1 January 2002
to 31 December 2015 (n = 558,147). Initially, we applied
the wash-out period of between 1 January and 31 December
2002 to reduce the potential risk of surveillance bias. The
inclusion criterion was the presence of at least one NHIS record
from 1 January 2003 to 15 December 2015 with the following
conditions (n = 54,236): a KEDI code for cataract surgery
and men aged ≥60 years in this period. Eligible subjects were
classified into tamsulosin and non-tamsulosin groups according
to tamsulosin use within 1 year before cataract surgery. Patients
with the following characteristics were excluded: age < 60 years;
procedures combined with vitrectomy or glaucoma surgery;
and prior ocular procedures, including intraocular surgery or
intravitreal injections within 1 year before cataract surgery; or
retinal laser procedures within 5 years before cataract surgery.
Patients who underwent simultaneous bilateral cataract surgery
were excluded to avoid confounding.

The exposure of interest was tamsulosin use within 1 year
before cataract surgery, except for tamsulosin medication on
the same day. The tamsulosin group (n = 8,510) comprised
participants with a KEDI code for cataract surgery and
tamsulosin use within 1 year before cataract surgery. For each
patient, cataract surgery was defined as the simultaneous claim of
extracapsular or intracapsular extraction (KEDI code: S5111) or
phacoemulsification (KEDI code: S5119) and primary intraocular
lens implantation (KEDI code: S5117) on the same day (KEDI
codes: S5111 + S5117 and S5119 + S5117). The non-tamsulosin
group (n = 42,539) comprised participants with a KEDI code
for cataract surgery but without tamsulosin use within 1 year
before cataract surgery. Additionally, to investigate relationship
between the use of alpha antagonist and surgical complications of
cataract surgery in the Korean elderly population, we performed
the comparison analysis between alpha antagonist (terazosin,
alfuzosin, doxazosin, silodosin, and tamsulosin) group and non-
alpha antagonist group.

Surgical Complication Events as the
Outcome Measure
Surgical complications of cataract surgery, which is associated
with tamsulosin use, included posterior capsule rupture (PCR),
dropped lens fragments, retinal detachment, and suspected
endophthalmitis (13). The use of anterior vitrectomy for
intraoperative PCR was documented if the KEDI code S5122
was reported between the cataract surgery day and 2 weeks after
cataract surgery. The use of total vitrectomy for intraoperative
PCR, dropped lens fragments, or suspected endophthalmitis was
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documented if the KEDI code S5121 was reported between 1 day
and 2 weeks after cataract surgery. Similarly, the use of retinal
detachment operation for retinal detachment was documented
if the KEDI code S5130 was reported between 1 day and 2
weeks after cataract surgery. Even though KEDI codes S5122 and
S5122 have been also indicated in other vitreoretinal diseases,
we made an assumption that vitrectomy within 2 weeks after
cataract surgery is highly related with secondary surgery which is
associated with surgical complication from cataract surgery. Only
the first event was included in cases of multiple complications.

Covariates
Demographics included age at the time of cataract surgery, sex,
residence, and income level; the residential area was divided

into metropolitan (Seoul and large cities) and provincial regions
(small cities and rural areas) according to the administrative
unit of Korea. Household income was categorized as below or
above 20% of the income. Both systemic and ocular comorbidities
were included as covariates and assessed at the time of cataract
surgery. Systemic comorbidities included diabetes (KCD codes:
E10–E14), hypertension (KCD codes: I10–I15), BPH (KCD code:
N40), and vascular disease (KCD codes: I20–I25, I61, I63–I66,
I67.2, I67.8, I69, I70, I73, and I74). Ocular comorbidities included
glaucoma (KCD codes: H40 and H42), myopia (KCD codes:
H52.1 and H44), eye trauma (KCD code: S05), diabetes mellitus
(DM) with ophthalmic manifestations (KCD codes: E10.3, E11.3,
E12.3, E13.3, and E14.3), severe cataract (KCD codes: H25.2
and H25.1), and age-related macular degeneration (KCD codes:

TABLE 1 | Baseline characteristics of subjects who underwent cataract surgery according to tamsulosin use in the Korean elderly population.

Variable Non-tamsulosin group (n = 42,539) Tamsulosin group (n = 8,510) P-value ASDa

Age (years) 0.3289

<70 8,348 (19.62) 760 (8.93) <0.001

70–80 26,242 (61.69) 5,550 (65.22) <0.001

80–90 7,541 (17.73) 2,103 (24.71) <0.001

≥90 408 (0.96) 97 (1.14) <0.001

Mean ± SD 74.44 ± 5.78 76.19 ± 5.34 <0.001 0.3160

Residence 0.047 0.0235

Metropolitan 16,798 (39.48) 3,458 (40.63)

Provincial 25,741 (60.51) 5,052 (59.36)

Income 0.140 0.0175

Below 20 percentiles 8,568 (20.14) 1,774 (20.84)

Above 20 percentiles 33,971 (79.86) 6,736 (79.15)

Diabetes 23,002 (54.07) 5,759 (67.67) <0.001 0.2814

Hypertension 29,911 (70.31) 7,017 (82.46) <0.001 0.2888

BPH 16,989 (39.94) 8,410 (98.82) <0.001 1.6607

Vascular disease 24,931 (58.61) 6,536 (76.8) <0.001 0.3967

Glaucoma 280 (0.66) 93 (1.09) <0.001 0.0467

Myopia 6,470 (15.21) 1,513 (17.78) <0.001 0.0693

Eye trauma 1,537 (3.61) 375 (4.41) <0.001 0.0404

DM with ophthalmic manifestations 1,299 (3.05) 350 (4.11) <0.001 0.0570

Severe cataract 14,513 (34.12) 3,186 (37.44) <0.001 0.0693

Age-related macular degeneration 1,541 (3.62) 511 (6.0) <0.001 0.1115

Event of complication 375 (0.88) 71 (0.83) 0.669 0.0051

SD, standard deviation; BPH, Benign prostatic hyperplasia; DM, diabetes mellitus.

Data are expressed as the mean ± SD, or n (%).
aASD of > 0.1 is considered meaningful imbalances.

TABLE 2 | Odds Ratio of complication event of cataract surgery in the Korean elderly population with cataract surgery according to tamsulosin use.

Non-tamsulosin vs. tamsulosin Odds ratio 95% CI P-value

Crude (no adjustment) 0.946 0.733–1.220 0.669

Adjusted for age 0.950 0.735–1.228 0.694

Adjusted for age, income, residence, systemic, and ocular comorbiditiesa 0.997 0.749–1.325 0.981

CI, confidence interval.
aDiabetes, hypertension, benign prostatic hyperplasia, vascular disease, glaucoma, myopia, eye trauma, DM with ophthalmic manifestations, severe cataract, and age-related

macular degeneration.
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H35.30, H35.31, andH35.39). The presence of severe cataract was
recognized as an indicator of poor vision because visual acuity
data were not available (17, 18). Patients with diagnostic codes for
brunescent cataract and morgagnian cataract were considered to
have severe cataract (17, 18).

Statistical Analysis
A logistic regression model was used to evaluate the relationship
between tamsulosin use and surgical complications of
cataract surgery. We used two models of adjustment to
account for potential confounding factors. Model 1 was
adjusted for age (<70, 70–80, 80–90, and ≥90 years).
Model 2 was further adjusted for income, residence, and
systemic and ocular comorbidities. All statistical analyses
were conducted using SAS software, version 9.4 (SAS
Institute, Cary, NC, United States). Statistical significance
was considered at a two-sided p-value < 0.05. The absolute
standardized difference (ASD) was used to compare baseline
characteristics. An ASD > 0.1 was considered to be clinically
meaningful (19).

RESULTS

Table 1 summarizes baseline characteristics. The study cohort
included 51,049 patients, 42,539 of whom were in the non-
tamsulosin group whereas 8,510 in the tamsulosin group.
The largest proportion of patients in both groups was 70–
80 years old at the time of cataract surgery (61.69 and
65.22%). Compared to patients in the non-tamsulosin group,
those in the tamsulosin group were slightly older (ASD =

0.3289) and had a significantly higher proportion of systemic
diseases, such as diabetes, hypertension, and vascular disease
(ASD = 0.2814, 0.2888, and 0.3967, respectively). In terms
of ocular comorbidity, the tamsulosin group had a higher
proportion of age-related macular degeneration (ASD= 0.1115).
The development of surgical complications of cataract surgery
did not differ significantly between tamsulosin and non-
tamsulosin groups [71 (0.83%) cases in the tamsulosin group
and 375 (0.88%) cases in the non-tamsulosin group; ASD
= 0.0051]. In addition, the rate of surgical complications
of cataract surgery did not differ between alpha antagonist
(terazosin, alfuzosin, doxazosin, silodosin, and tamsulosin)
group and non-alpha antagonist group (ASD = 0.0174;
Supplementary Table 1).

Table 2 shows the odds ratio (OR) of surgical complications
in the Korean elderly population with cataract surgery according
to tamsulosin use. There was no significant difference in OR
of surgical complication events between tamsulosin and non-
tamsulosin groups in the unadjusted model [OR = 0.946;
95% confidence interval (CI): 0.733–1.220; P = 0.669]. Even
after adjusting for age, OR of surgical complication events did
not differ significantly between tamsulosin and non-tamsulosin
groups (OR = 0.950; 95% CI: 0.735–1.228; P = 0.694).
Additionally, tamsulosin use was not significantly associated with
surgical complications of cataract surgery in the fully adjusted
model accounting for age, income, residence, systemic and ocular
comorbidities (OR = 0.997; 95% CI: 0.749–1.325; P = 0.981).

TABLE 3 | Effects of Calendar Year and Covariates on complication event of

cataract surgery in the tamsulosin group.

Tamsulosin group (n = 8,510) Odds ratio 95% CI P-value

Calendar year (per additional year) 0.985 0.907–1.07 0.719

Patient–level effects (vs. age < 70)

Age 70–80 yrs 1.556 0.538–4.502 0.415

Age 80–90 yrs 1.653 0.535–5.105 0.382

Age ≥ 90 yrs 3.805 0.661–21.891 0.135

Diabetes 1.270 0.739–2.185 0.387

Hypertension 0.869 0.459–1.645 0.667

Vascular disease 1.100 0.598–2.025 0.760

Glaucoma <0.001 0.986

Myopia 0.419 0.180–0.971 0.043

Eye trauma 0.303 0.042–2.198 0.238

DM with ophthalmic manifestations 0.646 0.156–2.673 0.546

Severe cataract 1.115 0.689–1.803 0.659

Age–related macular degeneration 1.839 0.811–4.168 0.144

CI, confidence interval; DM, diabetes mellitus.

TABLE 4 | Effects of Calendar Year and Covariates on complication event of

cataract surgery in the non-tamsulosin group.

Non-tamsulosin group (n = 42,539) Odds ratio 95% CI P-value

Calendar year (per additional year) 1.017 0.982–1.052 0.342

Patient-level effects (vs. age < 70)

Age 70–80 yrs 0.783 0.592–1.036 0.087

Age 80–90 yrs 0.938 0.667–1.318 0.712

Age ≥ 90 yrs 1.186 0.474–2.969 0.715

Diabetes 0.941 0.755–1.172 0.586

Hypertension 0.862 0.68–1.094 0.222

Vascular disease 0.967 0.766–1.221 0.778

Glaucoma 0.842 0.208–3.402 0.809

Myopia 0.786 0.577–1.069 0.124

Eye trauma 1.849 1.215–2.814 0.004

DM with ophthalmic manifestations 0.750 0.368–1.526 0.427

Severe cataract 1.335 1.083–1.645 0.007

Age-related macular degeneration 1.022 0.589–1.771 0.939

CI, confidence interval; DM, diabetes mellitus.

Furthermore, the use of alpha antagonist was not associated with
surgical complications of cataract surgery in the fully adjusted
model accounting for age, income, residence, systemic and ocular
comorbidities (OR = 0.813; 95% CI: 0.624–1.059; P = 0.130;
Supplementary Table 2).

In the tamsulosin group, myopia was associated with
decreased surgical complications of cataract surgery (OR
= 0.419; 95% CI: 0.180–0.971; P = 0.043; Table 3). Both
eye trauma (OR = 1.849; 95% CI: 1.215–2.814; P =

0.004) and severe cataract (OR = 1.335; 95% CI: 1.083–
1.645; P = 0.007) were associated with increased surgical
complications of cataract surgery in the non-tamsulosin
group (Table 4).
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DISCUSSION

This nationwide population-based cohort study demonstrated
that surgical complications of cataract surgery were not
significantly affected by tamsulosin use, although there was a
trend of increasing rate of surgical complications of cataract
surgery after adjusting for demographics and systemic and ocular
comorbidities. In patients with tamsulosin use within 1 year
preceding cataract surgery, no specific risk factor was associated
with the surgical complication event during cataract surgery.

IFIS and other surgical complications have been reported
since the worldwide use of tamsulosin began for acute urinary
retention in the old age group, which is the most common
age group undergoing cataract surgery. Previous studies on
surgical complications of cataract surgery in patients taking
tamsulosin demonstrated that IFIS occurred in 2% of cataract
surgeries, and adjunctive measures for pupil dilation were
ineffective compared to non-tamsulosin users (5). Cataract
surgical complications, including retinal detachment, loss of
lens fragment, and endophthalmitis, were significantly more
prevalent (OR = 2.33; CI: 1.22–4.43) in tamsulosin users
(2). A previous study demonstrated that doxazosin (an alpha
blocker for BPH) was related to higher risks of PCR and
vitreous loss (OR = 1.51; CI: 1.09–2.07; adjusted model) (20).
However, unlike those previous results, a recent large population
study from Canada and our large cohort study showed that
tamsulosin use was not associated with increased cataract surgical
complications (13).

In a recently published population-based study, Campbell
et al. showed that the risk of surgical complications of
cataract surgery, such as PCR, dropped lens fragments,
retinal detachment, and suspected endophthalmitis, significantly
decreased with time from 2003 to 2013 in patients with
tamsulosin use within 1 year preceding cataract surgery (OR
= 0.95/year; 95% CI: 0.91–0.99/year; P = 0.010) (13). The risk
also decreased in patients without tamsulosin use within 1 year
preceding cataract surgery. However, those results did not reflect
direct comparison results between patients with and without
tamsulosin use. In our study, there was no significant difference
in the risk of surgical complications of cataract surgery between
tamsulosin and non-tamsulosin groups in the unadjusted model
(OR = 0.946; 95% CI: 0.733–1.220; P = 0.669). In addition,
tamsulosin use was not significantly associated with surgical
complications of cataract surgery in the fully adjusted model
accounting for age, income, residence, and systemic and ocular
comorbidities (OR = 0.997; 95% CI: 0.749–1.325; P = 0.981).
Nevertheless, surgeons should devote efforts to avoid adverse
surgical events, including PCR and dropped lens fragments.
Considering that IFIS increases surgical difficulties, which might
lead to PCR and vitreous prolapse, we included partial anterior
vitrectomy on the day of cataract surgery to manage such surgical
complications, which can be considered to be our novelty.

After the introduction of IFIS caused by tamsulosin and
cognizance of significant risks posed by tamsulosin use, several
surgical techniques were introduced worldwide (10, 11, 21).
Although our study lacks the usage of adjunctive measures,
such as drugs or device during cataract surgery, we suggest

that comparable results between tamsulosin and non-tamsulosin
groups can be attributed to efforts to respond to the risk posed
by tamsulosin use using sophisticated surgical instruments or an
intraoperative epinephrine injection into the anterior chamber.
Particularly, viscoadaptive ophthalmic viscosurgical devices,
fluidic parameter optimization, mechanical pupil expansion
devices, and intensive pharmacologic pupil dilation can be
applied to increase the efficiency and safety of cataract surgery
in patients with tamsulosin use (22–24). Recently introduced
femtosecond laser-assisted cataract surgery (FLACS) can be
helpful for safe cataract surgery in eyes with a small pupil due
to tamsulosin use (25, 26). Conrad-Hengerer et al. demonstrated
that surgically dilating small pupils before femtosecond laser
using intracameral epinephrine, viscomydriasis, and pupil
expander can assist safe anterior capsulotomy and nuclear
fragmentation (25). Although our cohort data did not include
FLACS as a variable in cataract surgery, such a cutting-edge
technique can improve surgical outcomes. Moreover, surgeons’
recognition of the perioperative risk during cataract surgery in
patients with tamsulosin use could decrease the complication
rate (9).

Our study included various variables related to cataract
surgery: age, socioeconomic state, systemic disease (DM,
hypertension, BPH, and vascular disease), and ocular
comorbidities (glaucoma, myopia, eye trauma, DM with
ophthalmic manifestations, severe cataract, and age-related
macular degeneration). The presence of ocular trauma, severity
of cataract, presence of myopia, and DM increase surgical
complications of cataract surgery. Among them, ocular trauma
is associated with anatomical deformities of the iris, zonules, and
lens, which can subsequently lead to surgical difficulties during
cataract surgery and increased surgical complications (20, 27).
Similarly, severe cataract could make phacoemulsification
difficult and be more vulnerable to surgical complications
(20). Lacking of information in cataract grading with slit lamp
examination which is based on the LOCS grading system is the
limitation of our study. Thus, we hypothesized that including
the severe cataract as covariates can be meaningful after defining
the severe cataract using the KCD codes (H25.1 and H25.2)
in order to investigate the effect of severity of cataract on the
relationship between tamsulosin use and surgical complications
of cataract surgery. However, in the tamsulosin group, no
significant risk factor was associated with surgical complications
of cataract surgery. Protective association was noted between
surgical complications and myopia in the tamsulosin group. In
contrast, in the non-tamsulosin group, both eye trauma and
severe cataract were associated with surgical complications of
cataract surgery. We assumed that surgeons’ recognition of
possible intraoperative complications related to tamsulosin
use can lead to use careful surgical maneuver and supportive
techniques, which eventually decrease surgical complications in
patients with ocular trauma and severe cataract.

Our study had some limitations. First, this study was
mainly limited by its observational nature. Second, as this
study was based on data from a medical insurance claims
database, identification of patients with cataract surgery and
diagnostic accuracy of systemic and ocular comorbidities
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might be inaccurate compared to information obtained from
medical charts. Moreover, the NHIS-Senior database cannot
provide information on cataract grading, objective visual
acuity, axial length, presence of pseudoexfoliation syndrome,
or postoperative inflammation grade. In addition, there was
a lack of availability of certain covariates including surgeons’
experience, metabolic profiles, body mass index, alcohol intake,
smoking status, and physical activity, thereby proposing the
need for further studies including various covariates. Third,
among various types of alpha antagonist, including tamsulosin,
terazosin, silodosin, doxazosin, etc., only the use of tamsulosin
was included in the current study because the tamsulosin
is the most commonly prescribed medication among them
for treating BPH in South Korea (Supplementary Table 1).
When interpreting the results, clinicians should be in cautious
since it may lead to a bias and overall results cannot be
generalized to patients taking medication other than tamsulosin.
Nevertheless, the rate of surgical complications of cataract
surgery did not differ between alpha antagonist group and non-
alpha antagonist group (Supplementary Tables 1–4). Fourth,
the primary outcome of surgical complications was defined as
secondary vitrectomy surgery within 14 postoperative days. The
NHIS-Senior database lacks information on cataract surgery-
related minor anatomical and/or functional complications, such
as iris prolapse, iris atrophy, and pupil abnormality. Therefore,
our study had a limitation of overlooking cataract surgery-
relatedminor anatomical and/or functional complications, which
are not indications for the secondary operation. Therefore,
overall surgical complication rates (0.87%) might have been
underestimated. Delayed onset complications, such as delayed
endophthalmitis and intraocular lens dislocation, were possibly
excluded. Additionally, glaucoma filtering surgery due to
increased intraocular pressure or intraocular lens sulcus insertion
due to posterior capsular rupture might be possibly excluded.
We counted the first adverse event after cataract surgery, so
additional surgical procedures for complicationsmight have been
missed. Finally, we focused only on South Korean residents.
Therefore, observed findings cannot be generalized to other
ethnic groups.

Within these limitations, this is the first report on the
relationship between oral tamsulosin use and surgical
complications of cataract surgery in the elderly South Korean
patients using a nationwide, general population-based database.
Moreover, this study used a large sample size of the NHIS-Senior
database. Selection bias was relatively low because the entire
Korean population was enrolled in the same insurance system.

In summary, despite concerns regarding perioperative
and postoperative complications in cataract surgery related
to tamsulosin use, our study demonstrated no statistically
significant difference in surgical complication events of cataract
surgery between tamsulosin and non-tamsulosin groups. Better
techniques to manage a difficult cataract surgery and surgeons’
cognizance of tamsulosin use could improve surgical outcomes.
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Smartphone-Acquired Anterior
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Prediction of Anterior Chamber
Depth: A Proof-of-Concept Study
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Yih-Chung Tham 1,4,5, Xinxing Xu 3, Yong Liu 3, Jun Li 6, Hua Zhong 2 and

Ching-Yu Cheng 1,4,5*

1 Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore, 2Department of Ophthalmology,

The First Affiliated Hospital of Kunming Medical University, Kunming, China, 3 Institute of High Performance Computing,

Agency for Science, Technology and Research (A∗Star), Singapore, Singapore, 4Department of Ophthalmology, Yong Loo

Lin School of Medicine, National University of Singapore, Singapore, Singapore, 5Ophthalmology and Visual Sciences

Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore, 6Department of Ophthalmology,

The Second People’s Hospital of Yunnan Province, Kunming, China

Purpose: To develop a deep learning (DL) algorithm for predicting anterior chamber

depth (ACD) from smartphone-acquired anterior segment photographs.

Methods: For algorithm development, we included 4,157 eyes from 2,084 Chinese

primary school students (aged 11–15 years) from Mojiang Myopia Progression Study

(MMPS). All participants had with ACD measurement measured with Lenstar (LS 900)

and anterior segment photographs acquired from a smartphone (iPhone Xs), which was

mounted on slit lamp and under diffuses lighting. The anterior segment photographs were

randomly selected by person into training (80%, no. of eyes = 3,326) and testing (20%,

no. of eyes = 831) dataset. We excluded participants with intraocular surgery history

or pronounced corneal haze. A convolutional neural network was developed to predict

ACD based on these anterior segment photographs. To determine the accuracy of our

algorithm, we measured the mean absolute error (MAE) and coefficient of determination

(R2) were evaluated. Bland Altman plot was used to illustrate the agreement between

DL-predicted and measured ACD values.

Results: In the test set of 831 eyes, the mean measured ACD was 3.06 ± 0.25mm,

and the mean DL-predicted ACD was 3.10 ± 0.20mm. The MAE was 0.16 ± 0.13mm,

and R2 was 0.40 between the predicted and measured ACD. The overall mean

difference was −0.04 ± 0.20mm, with 95% limits of agreement ranging between

−0.43 and 0.34mm. The generated saliency maps showed that the algorithm mainly

utilized central corneal region (i.e., the site where ACD is clinically measured typically)

in making its prediction, providing further plausibility to the algorithm’s prediction.
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Conclusions: We developed a DL algorithm to estimate ACD based on smartphone-

acquired anterior segment photographs. Upon further validation, our algorithm may be

further refined for use as a ACD screening tool in rural localities where means of assessing

ocular biometry is not readily available. This is particularly important in China where the

risk of primary angle closure disease is high and often undetected.

Keywords: primary angle-closure glaucoma, glaucoma, anterior chamber depth, smartphone, deep learning

INTRODUCTION

Primary angle-closure glaucoma (PACG) is a significant cause of
vision loss in Asia. It was estimated that the number of people
aged 40–80 years with PACG worldwide was 23.36 million in
2020, of which Asia accounted for 76.8% of cases (1). Bilateral
blindness affected 5.3 million people with PACG in 2020, the
majority of whom were from Asian regions (2). Thus, screening
for people with high risks of PACG is important to provide timely
interventions, particularly in Asian countries (3).

Anterior chamber depth (ACD), the distance from corneal
endothelium to the anterior crystalline lens capsule, is an
important biometric dimension to assess the risk of angle closure
development. A population-based study reported that ACD was
a significant risk factor for angle closure amongst Mongolia
and Chinese (4). Another population-based longitudinal study
in China demonstrated that shallow ACD was independently
associated with angle closure development over a 6-year period
(5). Anterior chamber depth alone may provide a simple and
effective way to distinguish eyes with angle closure from those
with open angles (6), and has been suggested as a quick screening
tool for detecting primary angle closure disease (PACD) (7, 8).

Currently, the methods used for ACD measurement include
A-Scan ultrasound, slit-lamp biomicroscopy, non-contact partial
coherence interferometry [e.g., IOLMaster (Carl Zeiss AG,
Oberkochen, Germany), Lenstar (Lenstar LS 900 R©, Haag-
Streit AG, Switzerland), Pentacam (Oculus System, Wetzlar,
Germany)], and anterior segment optical coherence tomography
(AS-OCT) (6, 9). However, the need for technical expertise,
along with the cost and lack of portability, limit their usage in
community screening (8, 9). The advent of artificial intelligence
has made tremendous breakthroughs in ophthalmic imaging
and shown great capabilities in disease diagnosis and screening
(10). In recent times, Chen et al. developed a machine learning
algorithm to predict ACD from images captured by a smartphone
mounted with a portable slit lamp (n = 66) (11). In brief, the
portable slit lamp was placed in front of the eye parallel to
the cornea. The slit beam focused on the mid-peripheral iris
surface, not too center nor too peripheral. Multiple images were
captured in ∼1mm steps from nasal to temporal. Although
their algorithm-predicted ACD showed moderate correlation
with the measured ACD measurements, the need for manual
maneuvering across the cornea with a 1mm slit was subjective
and time-consuming.

The availability of portable smartphones with cameras has
become a tool for ophthalmologists in clinics (11–13). Using
smartphones to take anterior segment photographs provide good

reproducibility (12), and could provide clinicians with a simple
and quick way to obtain anterior segment photographs for
evaluation in rural or less-resourced areas.

In the present study, we aimed to develop and validate a
DL algorithm for quantitative prediction of ACD from anterior
segment photographs that were captured by a smartphone. This
approach may provide clinicians with a mean to obtain ACD
measurements in settings where biometers and advanced imaging
tools are not readily available.

METHODS

Study Population
The Mojiang Myopia Progression Study (MMPS) is a
longitudinal school-based study that evaluates the onset and
progression of myopia in school-aged children in rural China.
Details of the methodology have been described previously
(14–17). In brief, this study was conducted in Mojiang, a small
country in Yunnan Province in the Southwestern part of China.
A total of 2,432 elementary students (response rate 90.2%) and
2,346 middle school students (response rate 93.5%) were enrolled
in theMMPS. The baseline examinations were conducted in 2016
and the MMPS participants were followed annually. The data
used for the present study were from 2,195 elementary students
participated in the 5-year follow up visit in 2020 (response
rate 99.1%).

All study procedures were performed in accordance with
the tenets of the Declaration of Helsinki. Ethics approval
was obtained from the institutional review board of Kunming
Medical University. Written informed consent was obtained
from at least one parent or legal guardian of each participant.

Anterior Chamber Depth and Ocular
Biometry Measurements
Anterior chamber depth (ACD), from corneal endothelium
to lens surface, was obtained using the Lenstar LS 900
(Lenstar LS 900 R©, Haag-Streit AG, Switzerland), a non-invasive,
non-contact optical low-coherence reflectometry biometer.
Other ocular biometry measurements including central corneal
thickness (CCT), lens thickness (LT), axial length (AL),
keratometry readings of flattest and steepest meridian (K1 and
K2) were also recorded simultaneously. Refractive error was
measured before and after cycloplegia using an autorefractor
(RM-8000, Topcon Co., Tokyo, Japan). Supplementary Figure 1

shows the diagram of the human eye and the details of ocular
biometry measurements.

Frontiers in Medicine | www.frontiersin.org 2 June 2022 | Volume 9 | Article 91221456

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Qian et al. ACD Prediction Based on Smartphone-Acquired Images

FIGURE 1 | Smartphone mounted on slit lamp in use. Anterior segment

photographs were captured on study eyes using a smartphone (iPhone Xs,

Apple Inc, CA, USA) attached to a slit lamp. The smartphone was fixed on the

eyepiece with an adapter (Celestron 81035, Celestron Acquisition LLC, CA,

USA), making the camara lens in line with the eyepiece. We used the default

mode of iPhone camara with a minimal magnification (1 X) to take

photographs. A Bluetooth trigger for a one-tap image capture was fixed on the

joystick making the procedure of taking photographs quickly and stably.

Diffuse illumination of slit-lamp was used at 45-degree angle, with

magnification set at 16X.

Anterior Segment Photographs Acquisition
Anterior segment photographs were captured on study eyes
before cycloplegia using a smartphone (iPhone Xs, Apple Inc,
CA, USA) attached to a slit lamp (Figure 1). The smartphone was
fixed on the eyepiece with an adapter (Celestron 81035, Celestron
Acquisition LLC, CA, USA), making the camara lens in line with
the eyepiece. In this study, we captured the anterior segment
photographs with the light source from the slit lamp always to the
left of the pupil. We used the default mode of iPhone camara with
a minimal magnification (1 X) to take photographs. A Bluetooth
trigger for a one-tap image capture was fixed on the joystick
making the procedure of taking photographs quickly and stably.
Diffuse illumination of slit-lamp was used at 45-degree angle,
with magnification set at 16 X.

Inclusion and Exclusion Criteria
The MMPS participants who had both anterior segment
photographs and ACD measurements were included in this
study. Participants who had pronounced opacities of the central
cornea, and/or history of intraocular surgery were excluded.

Development of the Deep Learning
Algorithm
Neural Network Architecture
Residual Network 34 (ResNet-34) architecture was adopted
in this project (18). Several modifications were introduced to
ResNet-34 to finetune the model for ACD prediction. Firstly, the

fully connected layer was replaced by a linear layer with an output
channel of one for the regression task. No activation function was
added after the linear layer. Then, the first convolutional layer
was changed to one which takes in 4-channel images. Finally, the
adopted ResNet-34 ended with one fully connected layer.

Data Preprocessing and Augmentation
Preprocessing of images was done to clean image data for
model input (19). It decreases model training time and increases
the model’s inference speed. This process will not significantly
affect the model’s performance. OpenCV was used for image
pre-processing in the present study. The first step for image
pre-processing was cropping images to regions of interest
(ROI). The original color photographs were first converted into
grayscale ones and binarized using simple thresholding. Then the
bounding rectangle of foreground was identified and used as ROI
for the original color photographs. The images were resized to
(200,200,3) after cropping, and the brightness was increased by
20%. Histogram equalization was then used to balance the RGB
values of an image to enhance the contrast of images, followed
by a change of color space from 3-channel to 4-channel. The last
step was image normalization which scales the pixel values to zero
means and unit variances. Consequently, the final input to the
neural network is of size (200, 200, 4).

Image augmentation is a process to create new training
examples out of the existing training data (20). This helps to
adjust the current training data to generalize to other situations
which allows the model to learn from a wider array of situations.
To mitigate overfitting, data augmentation was used during
training stage. Specifically, random rotation from −35 to 35
degrees, randomly horizontal flip with a probability of 0.5 and
vertical flip with a probability of 0.1 were used.

Training Details and Evaluation Metrics
The dataset was randomly split into a training set and a test
set with a ratio of 4:1. The batch size used is 16. Random
shuffling was used for the training set. Pytorch (21), an open-
source software library for DL, was used in the training and
evaluation of the models. The model was trained on TITAN XP
powered GPU server. Transfer learning was adopted, the ResNet-
34 was loaded with a pretrained model which was trained on
the ImageNet dataset which consists of 1,000 classes of objects.
The modifications discussed in the architecture part were applied
after loading the pre-trained weights. Adam optimizer with a
learning rate of 4e-4 was used to train the model for 200 epochs
(22). Mean absolute error (MAE) was used as the loss function.

Heat Map Generation
In order to further interpreting how theDL algorithmworked, we
generated heat maps using Gradient-weighted Class Activation
Mapping (Grad-CAM) algorithm (23, 24). Highlighting the
important regions in hotter color, heat maps help visualization
of the regions that the algorithm uses for its prediction. After
normalizing the heat maps for individual images to [0, 1],
we obtained the averaged heat maps across all images for an
aggregated visualization.
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TABLE 1 | Demographic and clinical characteristics of the eyes in this study.

Training samples Testing samples Total

Number of individuals 1,667 417 2,084

Numbers of eyes 3,326 831 4,157

Age (years) 11.6 ± 0.53 11.7 ± 0.67 11.6 ± 0.56

Gender, % Female 46% 46% 46%

Anterior chamber

depth, mm

3.05 ± 0.25 3.06 ± 0.25 3.06 ± 0.26

Central corneal

thickness, mm

536.41 ± 30.91 536.61 ± 33.09 536.44 ± 31.34

Lens thickness, mm 3.45 ± 0.19 3.47 ± 0.19 3.45 ± 0.19

Axial length, mm 23.48 ± 0.93 23.57 ± 1.01 23.49 ± 0.94

Keratometry readings

of flattest meridian

42.79 ± 1.41 42.70 ± 1.46 42.77 ± 1.42

Keratometry readings

of steepest meridian

43.88 ±1.56 43.77 ± 1.59 43.86 ± 1.57

Data presented as mean ± SD.

Statistical Analysis
The Pearson’s correlation coefficient (r) was used to evaluate the
correlation between predicted and measured ACD values. The
MAE and coefficient of determination (R2) were used to evaluate
the accuracy of prediction from the algorithm. Bland-Altman
plot was used to illustrate the agreement between predicted and
measured ACD values.

RESULTS

Of the 4,390 eyes of the MMPS 2,195 participants, we excluded
233 eyes (118 without ACD values, 115 eyes without anterior
segment photographs or with poor image quality), and 4,157
eyes from 2,084 participants with both ACD values and anterior
segment photographs were used to build our DL algorithm. The
anterior segment photographs from these eyes were randomly
distributed into a training set (3,326 photographs) and test set
(831 photographs) based on a 4:1 ratio at individual level. The
demographic and clinical characteristics of the eyes are presented
in Table 1. The mean actual ACD in the training and test set were
3.05± 0.25mm and 3.06± 0.25mm, respectively.

The scatter plot presented in Figure 2 shows there was a good
correlation (r = 0.63, P < 0.001) between ACD predictions from
the DL algorithm and actual Lenstar measurements in the test set
of 831 eyes. Themean difference was−0.04± 0.20mm, andMAE
was 0.16 ± 0.13mm. If we set measurements less than 2.80mm
as shallow ACD (25, 26), the MAE of eyes with shallow ACD was
0.26 ± 0.16mm (n = 134), and the MAE of eyes with ACD ≥

2.80mm was 0.14± 0.11mm (n= 697).
Figure 3 shows the Bland-Altman plot evaluation of the

agreement between predicted and measured ACD in the test
samples (n = 831). The overall mean difference was −0.04 ±

0.20mm, with 95% limits of agreement ranging between −0.43
and 0.34mm. Nevertheless, there was a mild but statistically
significant proportional bias (r = 0.27, P < 0.001), suggesting
that at smaller range of ACD the predictions tend to give higher

FIGURE 2 | Scatterplot illustrating the relationship between deep

learning-predicted and actual anterior chamber depth (ACD) measurements

from Lenstar (n = 831, r = 0.63, P < 0.001).

FIGURE 3 | Bland-Altman plots illustrating agreement between deep

learning-predicted and actual anterior chamber depth (ACD) measurements

from Lenstar (n = 831).

values than measured ACD, while at larger range of ACD, the
predictions trend to give lower values than measured ACD.

Figure 4 shows examples of smartphone-obtained anterior
segment photograph, the corresponding heatmap of the present
neural network and the averaged heatmap crossed all images (n
= 831). The averaged heatmap shows that the algorithm utilized
regions of the central cornea in making its prediction.

DISCUSSION

In this study, we developed a novel DL algorithm to
quantitatively predict ACD through smartphone-acquired
anterior segment photographs. The predicted ACD showed

Frontiers in Medicine | www.frontiersin.org 4 June 2022 | Volume 9 | Article 91221458

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Qian et al. ACD Prediction Based on Smartphone-Acquired Images

FIGURE 4 | Averaged heatmap shows the regions of the anterior segment photograph that were most important for the deep learning algorithm predictions in test

set. Hotter colors (reds) indicate higher activity while cooler colors (blues) represent lower activity. (A) an example of original anterior segment photograph (right eye)

obtained by iPhone Xs; (B) the heatmap of the corresponding photograph; (C) an example of original anterior segment photograph (left eye); (D) the heatmap of the

corresponding photograph; (E) averaged heat map crossed all images (n = 831).

good agreement with the measured ACD values. To our
knowledge, this may be the first investigation to demonstrate
that a DL algorithm can potentially predict the ACD through
smartphone-acquired anterior segment photographs.

Our novel DL algorithm successfully predicted ACD through
smartphone captured anterior segment photographs. The MAE
of the predictions in test set was only 0.16 ± 0.13mm (RMSE =

0.20mm). The MAE of eyes with shallow ACD was bigger than
the MAE of eyes with ACD ≥ 2.80mm. That may be because
of the number of eyes with ACD < 2.80mm in training set
is only 498, much less than the number of eyes with ACD ≥

2.80mm (n = 2,828). The average difference of measured and
predicated ACD was −0.04 ± 0.20mm (P = 0.000). However,
this difference was significant statistically but not clinically
as the difference was small. We captured two photographs
for 50 eyes for assessing repeatability and reproducibility. For
group one, the MAE of predicted ACD was 0.14 ± 0.09mm,
with 95% limits of agreement ranging between −0.36 and
0.16mm, repeatability coefficient was 0.33mm. For group two,
the MAE was 0.14 ± 0.10mm, with 95% limits of agreement
ranging between −0.34 and 0.07mm, repeatability coefficient
was 0.33mm. The MAE and repeatability coefficient were similar
when ACD were predicted using two different photographs.
Supplementary Figure 2 showed the Bland-Altman plot of
the predicted ACD from group one and group two. The
mean difference was −0.04 ± 0.09mm, with 95% limits of
agreement ranging between −0.20 and 0.13mm. For the 50
eyes photographed twice, the distribution of predicted ACD was
showed in Supplementary Figure 3.

A previous study that utilized machine learning to predict
ACD from slit lamp images captured with a smartphone also
reported a RMSE of 0.20mm (11). However, in that study,
the images used for prediction required manual maneuvering
of a narrow slit (0.1mm) which was subjective and time-
consuming. In contrast, our study involved the development
of a deep-learning algorithm that was trained on a much
larger dataset and without manual maneuvering. Furthermore,
our anterior segment photographs were captured under diffuse
illumination, which suggested a two-dimensional image without
slit illumination can be used to predict a third dimensional
parameter, the ACD.

The overall mean difference between measured and predicted
ACD in test set was −0.04 ± 0.20mm, with 95% limits

of agreement of −0.43 to 0.34mm. Study focused on the
repeatability of Lenstar showed that for ACD measurement,
mean standard deviation between three consecutives
measurements was 0.029, coefficient of variation was 1.06%
and intraclass correlation coefficient was 0.991 (27). A previous
study evaluated the agreement of ACD (ACD measurement
were all from corneal epithelium to the anterior crystalline lens)
measured by different instruments, including partial coherence
laser interferometry (IOLMaster), scanning peripheral anterior
chamber analyzer (SPAC) and anterior segment OCT (AS-OCT)
(28). The 95% limits-of-agreement was: AS-OCT vs SPAC,−0.44
to 0.51mm; AS-OCT vs. IOLMaster: −0.37 to 0.25mm; SPAC
vs. IOLMaster:−0.57 to 0.50mm (28). Another study found that
the 95% limits of agreement of ACD between Lenstar and IOL
Master in eyes with cataract was −0.12 to 0.38mm, in eyes with
clear lens was −0.33 to 0.63mm (29). The extent of agreements
reported by the authors was similar to ours. Therefore, the mean
difference between measured and predicted ACD is unlikely to
be clinically significant. Although there was a proportional bias
of our results, similar trends were observed between different
methods for ACD measurement (28).

The generated saliency maps showed that the algorithm
mainly utilized central corneal region in making its prediction,
which was similar to another DL algorithm that predicted shallow
ACD (binary classification) from Scheimpflug images (30). The
hottest region was congruent with the actual measurement site of
ACD which is centered on the cornea, along the visual axis from
the corneal endothelium to the anterior crystalline lens capsule.
Iris also played a role in making predictions. We speculate that
iris was an important panel for the algorithm, like clinicians
evaluate the anterior chamber in real world. The upper and
right side of the iris were less used by the algorithm, that was
because of the eyelid and reflex of the light make these parts less
important. Randomly selected heatmaps with MAE ≤ 0.2mm
are presented in Supplementary Figure 4. We also investigated
those images with poor predictions. The poor predictions were
mainly attributed to dilated pupils. Randomly selected heatmaps
with MAE > 0.2mm are presented in Supplementary Figure 5.
In the present study, we only excluded those participants
with pronounced opacities of the central cornea, and/or with
intraocular surgery history. Images with small eyelids, obscured
by eyelashes, and dilated pupils were all included, to make the
dataset closer to the real-word dataset, and to make the algorithm
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more generalizable. The MAE of the predictions with dilated
pupil (n = 47) and un-dilated pupil (n = 784) was 0.22 ±

0.15mm and 0.15± 0.12mm, respectively.
Anterior chamber depth has been demonstrated to be a

screening tool for angle closure glaucoma (6–8). Devereux et al.
reported that, using a screening cutoff of < 2.22mm, ACD got a
sensitivity of 85% and specificity of 84% for detecting occludable
angles (8). A recent study presented a higher sensitivity of
90.2% and specificity of 85.2% using the same cutoff value
for distinguishing PACD from normal eyes (6). Angle closure
glaucoma is an important public health problem in Asians
due to its higher rate of visual morbidity. Most patients with
PACG are asymptomatic, up to 64.7% of PACG cases are
undetected in Asia (31). China accounts for 48% of angle closure
glaucoma worldwide (2), and 90% of the cases with primary angle
closure in rural China are undiagnosed (32). Gonioscopy is the
current gold standard of anterior chamber angle examination.
However, gonioscopy is time consuming and requires technical
expertise, which limits its feasibility in large-scale population-
based screening (33). ASOCT and ultrasound biomicroscopy
(UBM) can help to assess the anterior chamber angle, but they are
bulky, expensive and need experienced technicians. The flashlight
test and van Herick’s test are simple to operate. However, these
two methods were reported to be of limited use as screening tests
for detecting occludable angles (34).

Smartphones are increasingly used in clinical settings to
provide high quality images (35, 36). Coupled with DL
algorithms, smartphones may be used for detecting ocular
diseases. For example, smartphone based anterior segment
photographs and retinal images for cataract grading, glaucoma
and diabetic retinopathy detection have been reported (12, 36,
37). There are plenty of advantages for smartphones used in
clinics. Since smartphones are widely available, they provide
a low-cost and universally accessible method to capture high
resolution ocular images. Smartphones usually have a large
data storage capacity and do not require extra computers for
image storage or processing. In addition, the images captured by
smartphones can be easily transmitted wirelessly for consultation
in real time. These advantages make smartphone a useful tool
in clinics and can bring great benefits for tele-consultation
or screenings in remote areas. A previous study successfully
developed a machine learning system using anterior segment
images captured by digital camera under visible wavelength
to diagnose anterior segment eye abnormalities (38). It is
conceivable that eye images captured under nature light by
smartphone without extra equipment could provide many useful
information for ophthalmologist with the help of artificial
intelligence. As such it may be used by a wide potential audience
and locations, especially in rural area and developing countries.

There are several strengths in the present proof-of-concept
study. First, this may be the first study to use DL to quantitatively
predict ACD through smartphone-acquired anterior segment
photographs. The generated saliency maps showed that the
algorithm mainly utilized central corneal region in making its
prediction, which was congruent with the actual measurement
site of ACD. Secondly, by usingmerely a smartphone we obtained
high quality of anterior segment photographs. Simple instrument
makes more cost effective and sustainable. These images were

captured under diffuse illumination without slit beam, which
makes the procedure much easier and reproduceable.

There are also some limitations in our study. Participants were
all from a school-based cohort study aged 11–15 years old, and
there were no PACD patient included. Hence, further training of
the algorithm involving eyes of older participants, and PACD eyes
are needed. Nevertheless, the present study is a proof-of-concept
study, which demonstrated that smartphone-acquired anterior
segment images can potentially be used to estimate ACD via DL.

CONCLUSION

In conclusion, we developed a novel method to estimate ACD
using DL algorithm based on smartphone-acquired anterior
segment photographs. Further refinement and training involving
older participants PACD eyes are still needed, followed up further
external validations. This is particularly important in China
where the risk of PACG is high and often undetected, leading to
increased risk of vision impairment.
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Purpose: We formulated and tested ensemble learning models to classify axial length
(AXL) from choroidal thickness (CT) as indicated on fovea-centered, 2D single optical
coherence tomography (OCT) images.

Design: Retrospective cross-sectional study.

Participants: We analyzed 710 OCT images from 355 eyes of 188 patients. Each eye
had 2 OCT images.

Methods: The CT was estimated from 3 points of each image. We used five machine-
learning base algorithms to construct the classifiers. This study trained and validated the
models to classify the AXLs eyes based on binary (AXL < or > 26 mm) and multiclass
(AXL < 22 mm, between 22 and 26 mm, and > 26 mm) classifications.

Results: No features were redundant or duplicated after an analysis using Pearson’s
correlation coefficient, LASSO-Pattern search algorithm, and variance inflation factors.
Among the positions, CT at the nasal side had the highest correlation with AXL followed
by the central area. In binary classification, our classifiers obtained high accuracy, as
indicated by accuracy, recall, positive predictive value (PPV), negative predictive value
(NPV), F1 score, and area under ROC curve (AUC) values of 94.37, 100, 90.91, 100,
86.67, and 95.61%, respectively. In multiclass classification, our classifiers were also
highly accurate, as indicated by accuracy, weighted recall, weighted PPV, weighted
NPV, weighted F1 score, and macro AUC of 88.73, 88.73, 91.21, 85.83, 87.42, and
93.42%, respectively.

Conclusions: Our binary and multiclass classifiers classify AXL well from CT, as
indicated on OCT images. We demonstrated the effectiveness of the proposed
classifiers and provided an assistance tool for physicians.

Keywords: high myopia, choroidal thickness, axial length, machine learning, ensemble learning, optical
coherence tomography (OCT)
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INTRODUCTION

Myopia is a common disease among Asian people, and its
incidence has increased worldwide. Holden et al. (1) estimated
that the global prevalence of myopia would reach 49.8% in 2050
along with 9.8% for high myopia, and the myopia rate in East Asia
would increase from 51.6 to 65.3%, the highest in the world, in
the next 3 decades. Among Taiwanese schoolchildren evaluated
between 1983 and 2017, the myopia rate quintupled from 5.37
to 25.41% for 7-year-olds and more than doubled (from 30.66 to
76.67%) for 12-year-olds (2).

Eyes with a spherical equivalence (SE) of less than -6.00 D were
defined as having high myopia, and high myopia is correlated
with axial length longer than 26.0 mm (3, 4). High myopia
is associated with increased risks of cataract, glaucoma, retinal
detachment, and maculopathy (5). These ocular complications of
high myopia become more common with advanced age and may
eventually lead to blindness (5, 6). Morgan et al. (6) suggested
that the elongated AXL is the underlying mechanism of myopia
development and progression. Choroid, located at the exterior
of the retina and which provides blood supply to the outer
portion of the retina, has been reported to be thinner in myopic
than emmetropic eyes and is related to AXL elongation (7).
Choroid thinning not only correlates with myopia progression
but is also related to other complications, such as staphyloma
and chorioretinal atrophy in high myopia (7–14). In addition to
longer AXL, CT is also lower in older adults and in women (15).

Artificial intelligence (AI) is being used in medicine. In
ophthalmology, color fundus images are commonly used for
machine training in disease diagnosis, such as for diabetic
retinopathy (DR), (16, 17) age-related macular disease (AMD),
(18, 19) and glaucoma (20). Asaoka et al. (21) classified open-
angle glaucoma and healthy eyes using deep learning algorithm
trained on color fundus images from 159 patients (including 51
with glaucoma). Hemelings et al. identified pathologic myopia
from color fundus images by means of Convolutional Neural
Network (CNN) (22). Optical coherence tomography (OCT)
has become one of the most effective imaging modalities in
the diagnosis of various retinal conditions by providing high-
resolution, cross-sectional images of the entire retina and choroid
(23). The long wavelength (870 nm) used for scanning in spectral-
domain OCT (SD-OCT) enables better penetration and ensures
high-resolution retina and choroid images. Machine learning and
deep learning have been successfully applied in OCT images for
biomarker identification in AMD (24). Since myopia is a rising
problem in ophthalmology, OCT images have been used for AI
prediction in myopic eyes recently (25–27).

In this study, we focused on the relationship between
CT and AXL. Since OCT is a common exam in clinics for
patients with retinal diseases, glaucoma, and cataract surgery,
it is meaningful to access more information from the existed
exam images. With SD-OCT images from eyes with different
refraction status and AXL, we investigated the utility of machine
learning algorithms for predicting AXL and proposed a multiclass
classifier of AXL by means of the CTs (28). In this study, five
machine learning base algorithms [3 layers backpropagation
neural network (BPN), support vector machine (SVM), random

forest (RF), adaptive boosting (AdaBoost), extreme gradient
boosting (XGBoost)] are used to construct classifiers for binary
and multiclass classifications. The proposed classifiers can quickly
and accurately predict the axial length by means of the choroid
thickness (CT) and help us to understand the contribution of
choroidal change in the etiology of myopia.

MATERIALS AND METHODS

This retrospective cohort study adhered to the tenets of the
Declaration of Helsinki. This study was approved by the
Institutional Review Board of Fu Jen Catholic University
Hospital (FJUH).

DATA SETS

Participants
Patients with OCT image findings taken from and who
underwent AXL evaluation in CY Tsai’s and CJ Huang’s clinics
in the ophthalmology department at FJUH at any period from
Sep. 2017 to Dec. 2019 were included in this study. We collected
comprehensive information for participants’ sex, age, body
height, body weight, and best-corrected visual acuity (29, 30).
Patients with incomplete data or retinopathies, such as diabetic
retinopathy, age-related macular degeneration, and history of
previous photodynamic therapy, were excluded from the study.

Optical Coherence Tomography Machine and
Scanning Settings
Spectralis SD-OCT equipment (Heidelberg Engineering,
Heidelberg, Germany) was used to evaluate CT in both eyes;
OCT was performed in the daytime. Cross-sectional and
longitudinal scanning was performed in each eye (Figure 1).
The SD-OCT uses a super luminescence diode with an average
wavelength of 870 nm as a light source, an 8-um axial resolution,
and a 10-µm transverse resolution in tissue. The position of fovea
was defined as the anatomical depression of macula. The CT
was measured at 6 points: central fovea, 3 mm nasal, and 3 mm
temporal to the fovea at cross-sectional image and central fovea,
3 mm superior, and 3 mm inferior to the fovea at longitudinal
image (Figure 2). Each image was measured by 2 investigators
independently and rechecked by a third investigator.

AXL Measurement
The AXL of the eyes was evaluated by a non-contact technique
by using a Lenstar LS 900 platform (HAAG-Streit, Mason,
OH, United States).

Features
This data set had 11 features (Table 1), which were (1)
participants’ gender, age, height, and weight; (2) 3 cross-sectional
CTs; (3) 3 longitudinal CTs; and (4) AXL. The pairwise scatter
plots of all features with binary and multiclass classifications are
shown in Figures 3, 4, respectively. Figures 3, 4 clearly show that
the relationships of all pairs of two features are almost non-linear.
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FIGURE 1 | Cross-sectional (A) and longitudinal (B) choroidal images from SD-OCT.

FIGURE 2 | Three positions at which choroid thicknesses was indicated in OCT images.

Binary and Multiclass Classification of Axial Length
This study trained and validated the classifiers, which predicted
the class of AXL of each eye using binary and multiclass
classifications. In binary classification, we classified eyes into AXL
< 26 mm and AXL> 26 mm; in multiclass classification, we
classified eyes into AXL < 22 mm, 22 mm> AXL < 26 mm,
and AXL > 26 mm (31–34).

Development of Classifiers by Machine
Learning Algorithms
Algorithm Selection
In this study, we analyzed 710 OCT images from 355 eyes
of 188 patients. However, 710 images are quite low for a
CNN algorithm. An appropriate number of samples depends
on the specific problem, and it should be tested for each case
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TABLE 1 | Features in this study.

No. Feature name Description Data type

1. Gender 0 for male and 1 for female. Nominal

2. Age The age of subject. Continuous

3. Height The height of subject (cm). Continuous

4. Weight The weight of subject (kg). Continuous

5. Choroid-LU Up thicknesses of longitudinal choroid. Continuous

6. Choroid-LM Middle thicknesses of longitudinal choroid. Continuous

7. Choroid-LD Down thicknesses of longitudinal choroid. Continuous

8. Choroid-CT Temporal thicknesses of cross sections choroid. Continuous

9. Choroid-CM Middle thicknesses of cross sections choroid. Continuous

10. Choroid-CN Nasal thicknesses of cross sections choroid. Continuous

11. AXL Axial length of eyes Continuous

individually. But a rough rule of thumb is to train a CNN
algorithm with a data set larger than 5,000 samples for effective
generalization of the problem. Our previous study used data
augmentation to increase this study’s image samples and utilized
a CNN algorithm to construct the image classifier through OCT
images. However, the image classifier obtains a low accuracy.
For obtaining satisfactory results, this research does not use
simple algorithms to construct the linear classifier and selects
state-of-the-art or strong algorithms to construct the non-linear
classifier. Therefore, the selected algorithms are BNN, SVM, RF,
AdaBoost, and XGBoost. RF, AdaBoost, and XGBoost are also the
ensemble learning.

Essentially, ensemble learning algorithms feature the
combination of several weak classifiers to form a strong one
with bagging or boosting approaches. The bagging approach
trains many individual models in a parallel way, and each model
is trained by a random subset of the data. Boosting approach
trains a bunch of individual models in a sequential manner,
and each individual model learns from mistakes made by the
previous model. The Ensemble learning algorithms obtain less
bias, less variance, and better results than traditional machine
learning in general. Friedman et al. (35) indicated that boosting
approach results in dramatic performance improvements and no
additional requirements for the dataset and classifiers.

The RF, AdaBoost, and XGBoost are based on the bagging,
boosting, and hybrid bagging and boosting approaches.
AdaBoost, one of the first boosting algorithms adapted to solve
practical problems, uses multiple iterations to create a strong
learner by iteratively adding weak learners. Gradient boosting,
a generalization of AdaBoost, is one of the most powerful
techniques for building predictive models. The main objective
of gradient boosting is to minimize the loss function by adding
weak learners using a gradient descent algorithm. XGBoost
is an extension of gradient-boosted decision trees and has
the following advantages: regularized learning, gradient tree
boosting, and shrinkage with column subsampling. Since the
used ensemble learning algorithms in this study always have the
hyperparameter—n_estimators (the number of estimators), the
n_estimators means the number of the individual model will
be performed. Therefore, ensemble learning algorithms always
spend much more time than BNN and SVM calculation time.

Classifiers Construction Process
The processes of this study are exhibited in Figure 5: process
1 (preprocess) and process 2 (primary processes for each
algorithm). Before we constructed the classifiers, the data set
was preprocessed by using process 1. This study utilized 5
algorithms (BNN, SVM, RF, AdaBoost, and XGBoost) to predict
myopia by means of the CTs. We constructed 2 classifiers for
binary and multiclass classifications for each algorithm. Without
loss of generality, all models constructed by each algorithm
were executed by process 2. Finally, this study obtained the
appropriate features, suggesting resample methods, and the
appropriate values of hyperparameters for each algorithm with
the target classifications. The details of gray steps exhibited in
Figure 5 are described in subsections feature standardization,
data splitting, feature selection, hyperparameter Optimization, and
Oversampling of Imbalanced Data.

Feature Standardization
To reduce the training phase’s processing time, we standardized
numerical features by removing their means and scaling to unit
variance through the formula as follows.

Feature with normalization = (feature – feature’s
mean)/feature’s standard deviation.

Data Splitting
The 355 tuples in this imbalanced data were collected from
188 patients with 355 eyes. Each tuple represented a completely
eyeball’s six choroidal thicknesses based on cross-sectional
and longitudinal scanning images. Table 4 indicates that the
proportion of AXL < 26 mm to AXL > 26 mm was 0.7944:0.2056
in binary classification. In multiclass classification, the proportion
of AXL < 22 mm, between 22 and 26 mm, and > 26 mm was
0.0394:0.7549:0.2056. We split the imbalanced data into training
and test sets based on a uniform random distribution, and the
percentage ratio of training and test sets followed 80 and 20%
with patient level (no patient across both training and test sets),
where each set shared a similar proportion of all categories.
The training set was used in feature selection, hyperparameter
optimization, and oversampling. Finally, the test set was used
to evaluate all metrics of each set {algorithm, hyperparameters
search method, oversampling method} in Evaluation step of
process 2 in Figure 2 and the comparisons of AXL class
prediction between humans and classifiers.

Feature Selection
This study used 3 methods: Pearson’s correlation coefficient
(Pearson), variance inflation factor (VIF), and least absolute
shrinkage and selection operator (Lasso) to evaluate and select
the appropriate features based on the training set. In the training
set, one tuple only contained one eye’s features. Therefore, the
feature selection can purely evaluate the relationships of the
features within one eye. The three feature selection methods
were performed sequentially independently, and any feature
detected as redundant or useless by any method will be
removed in this step.

Pearson’s r indicated the linear relationship between a given
feature and class label. The VIF measured how substantially

Frontiers in Medicine | www.frontiersin.org 4 June 2022 | Volume 9 | Article 85028466

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-850284 June 22, 2022 Time: 14:27 # 5

Lu et al. Predicting AXL From CT on OCT

FIGURE 3 | Pairwise scatter plots of all features with binary classification.

the variance of an independent feature was influenced by other
independent features. If the VIF of the target feature was >
10, we eliminated the target feature. Lasso performs covariate
selection by forcing the sum of the absolute value of the regression
coefficients to be less than a fixed value, which forced certain
coefficients to be 0. The order of importance of input features
made the fitted model more interpretable. LASSO utilized the L1
penalty to select the most feature at once based on a given lambda
value. Compared with LASSO, Elastic net used a penalty mixed
L1 and L2 norms, and Elastic net is hard to obtain the clear order
of importance input features.

Finally, 100 different lambda values (1.00, 0.99,. . ., 0.01) with
descending order were used in LASSO, and we only kept the
lambda values that LASSO selection an additional new significant
feature in S Table 5.

Hyperparameter Optimization
Each algorithm had its hyperparameters that need to be
tuned because the appropriate hyperparameters were very
different for the algorithm applied in a different dataset.
That is, different hyperparameters will most influence
the performances of an algorithm. The search scopes for
consideration of hyperparameters for all algorithms in this
study (BNN, SVM, RF, AdaBoost, XGBoost) were listed
in Supplementary Appendix-I. Since the combinations of
hyperparameters for each algorithm were numerous, this study
used three search methods [grid search, random search, and
Hyperopt search proposed by Bergstra et al. (36)] to search the
appropriate hyperparameters. Each search method searched and
evaluated the possible hyperparameters among the scopes in
Supplementary Appendix-I, and the search method obtained
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FIGURE 4 | Pairwise scatter plots of all features with multiclass classification.

the best hyperparameters of the algorithm with the target training
set by the main matric—F1-score. Finally, each algorithm will
pick the best hyperparameters among the three search methods.

Grid search searched the performances with all combinations
of hyperparameters with the specific fixed values in their scopes.
Random and Hyperopt searches selected the hyperparameters’
with the possible real numbers from the specific intervals;
therefore, random search and Hyperopt search selected more
floating values for the hyperparameters that were not listed
in the grid search. The numbers of grid search and random
search were the same. The speed of Hyperopt search was much
slower than grid search and random search because Hyperopt
analyzes and improves the values of hyperparameters after each
iteration; therefore, the search number of Hyperopt was 1/2

that of grid search. In Supplementary Appendix-I, the search
numbers of {grid search, random search, and Hyperopt} for BNN,
SVM, RF, AdaBoost, and XGBoost are {162, 162, 81}, {20,100,
20,100, 10,050}, {15,000, 15,000, 7,500}, {24,000, 24,000, 12,000},
and {25,920, 25,920, 12,960}, respectively. Therefore, there were
212,955 searches for binary classification, and the total number
of searches in this study is 425,910 for both binary and multiclass
classifications.

For each search in the three search methods, stratified fivefold
cross-validation (CV) was used to evaluate the performance of
the current hyperparameters. Although the fivefold CV will take
a 5-times validation time than the holdout method, the trained
model will not be easy to overfit for a specific validation set and
reduce the bias and variance of the performance estimate.
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TABLE 2 | Size of original data sets and oversampled data sets.

Oversampling
Set

None ROS/SMOTE/ADASYN

Training(80%) Test(20%) Total Training Test Total

Binary AXL < 26 mm 226 56 282 226 56 282

AXL > 26 mm 58 15 73 226 15 241

Sum 284 71 355 452 71 523

Multiclass AXL < 22 mm 11 3 14 215 3 218

22 mm>AXL < 26 mm 215 53 268 215 53 268

AXL> 26 mm 58 15 73 215 15 230

Sum 284 71 355 645 71 716

Oversampling for Imbalanced Data
For each split of fivefold CV, we oversampled the training
fold to avoid the imbalanced issue. The use of this technique
increased the number of samples of the smaller-sized categories

FIGURE 5 | Flowchart of this study.

for the sample sizes to be consistent among all categories. The
oversampled samples of smaller-sized categorized of the training
fold appeared only in the training fold. This study used three
oversampling techniques as follows.

Random oversampling (ROS): Randomly sample the tuples in
the categories of smaller sample sizes.

Synthetic minority oversampling technique (SMOTE): For
the categories of smaller sample sizes, find a sample x and its
k-nearest neighbor samples xj(j = 1, ..., k). Select one individual
x′j from xj and create a new sample based on the linear
combination of xi and x′j .

Adaptive synthetic sampling (ADASYN): ADASYN is a
technique based on the SMOTE algorithm for generating
synthetic data. The difference between ADASYN and SMOTE
is that ADASYN implements a methodology that detects those
samples of the minority class found in spaces dominated by the
majority class to generate samples in the lower density areas of
the minority class. ADASYN focuses on those samples of the
minority class that are difficult to classify because they are in a
low-density area.

Finally, the numbers of training and validation folds with the
three oversampling techniques and original data set are presented
in Table 2.

Algorithm Evaluation and Statistical
Analysis
Evaluating Metrics
Because the data set in this study was imbalanced and had
many classes, accuracy alone was not sufficient to indicate the
classifiers’ performance. Therefore, accuracy, recall (sensitivity),
PPV (precision), NPV, F1 score, Specificity, and AUC were
used for binary classification. For multiclass classification, this
study used accuracy, weighted recall (sensitivity), weighted
PPV, weighted NPV, weighted F1 score, weighted Specificity,
and macro AUC where macro AUC is the macro average
of multiple one-vs-rest AUCs. Five algorithms (BPN, SVM,
AdaBoost, XGBoost, RF), three hyperparameter optimizations
(Grid Search, Random Search, Hyperopt), and four oversampling
techniques (None, ROS, SMOTE, and ADASYN) were used
to construct classifiers with training set based on the best
hyperparameters obtained in Hyperparameter Optimization for
binary and multiclass classifications. The numbers of training
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and test sets with the three oversampling techniques and original
data set are presented in Table 2. In total, 120 experiment
results with test set are reported for binary and multiclass
classification. The details of the experiment results of binary and
multiclass classifications are listed in Supplementary Appendix-
II,III respectively.

AXL Prediction
For evaluation of AXL prediction from human eyes, 2
ophthalmologists and two medical students were asked to predict
AXL of the eyes by the 10 features (age, sex, height, weight,
choroidal thickness from the 6 points). They were blind to
the AXL during prediction, and the results were checked and
compared with the results from AI algorithm with t-test by
another person in our group.

RESULTS

Demographics
In this study, 710 OCT images of 355 eyes (172 left and 183
right) of 188 patients were collected. All patients had complete
sex, age, body height, and body weight data in their medical
records. In total, 87 (46.28%) men and 101 (53.72%) women
participated. The average age was 66.49 ± 9.73 years, average
body height was 159.8 ± 8.72 cm, and average body weight was
64.8 ± 12.1 kg (Table 3). The average AXL was 24.55 ± 2.26 mm
at the right eye and 24.61 ± 2.21 mm at the left eye. The average
CT at the central fovea, 3 mm nasal, and 3 mm temporal to
the fovea on cross-sectional image was 161.46 ± 75.17 mm,
137.88 ± 69.29 mm, and 170.01 ± 65.56 mm at the right
eye, respectively; 162.48 ± 72.16 mm, 139.58 ± 67.30 mm,
175.86 ± 66.50 mm at the left eye, respectively. The average
CTs at the central fovea, 3 mm superior, and 3 mm inferior to
the fovea on longitudinal image were 161.56 ± 74.9, 172.67
± 71.56, and 158.16 ± 66.01 mm at the right eye, respectively;
162.64 ± 71.03, 161.24 ± 69.22, and 175.32 ± 62.97 mm at
the left eye, respectively. In our binary classification, there were
282 (79.44%) eyes with AXL < 26 mm and 73 (20.56%) eyes
with AXL ≥ 26 mm; in the multiclass classification, there were
14 (3.94%) eyes with AXL < 22 mm, 268 (75.49%) between 22
and 26 mm, and 73 (20.56%) eyes with AXL ≥ 26 mm (Table 4).

Results of Pearson, VIF, and LASSO
The Pearson results of all eyes revealed that the 10 features
were substantially correlated with the AXL (all P < 0.05). Age
had the strongest correlation, followed by height, Choroid-CN,
Choroid-LM, Choroid-CM, Choroid-LU, Choroid-LD, Choroid-
CT, gender, and weight. Height and weight had positive
correlations with AXL, and men had longer AXL, but the other
features had negative correlation with AXL (Supplementary
Tables 1, 2). Regarding the CT between the left and right
eye, Choroid-CM and Choroid-CN had symmetric properties
between the left and right eye because their r coefficients
were higher than others. However, the others were asymmetric
(Supplementary Table 3). The results of VIF revealed that the 10

features exhibited no multicollinearity because no feature’s VIF
was > 10 (Supplementary Table 4).

The sequence of the features’ coefficient becoming non-zero
under Lasso with decreasing α is listed as follows: age, Choroid-
CN, Choroid-LM, Height, Choroid-CM, Choroid-LU, weight,
Choroid-CT, Choroid-LD, and gender. Height and male gender
are positively correlated with AXL. Among the 6 CTs, Choroid-
CT and Choroid-LD features were positively correlated to AXL,
compared with other features. However, based on the Lasso with
α = 0.01, the coefficients of gender, choroid-LD, and weight were
relatively small (Supplementary Table 5). After the Pearson, VIF,
and Lasso analyses were conducted, all of the 10 features were
found to be non-redundant. Therefore, all 10 of the features were
used for constructing the classifiers.

Results of Proposed Classifiers
Classifier 3 obtained the best PPV and Specificity of 90.91 and
98.25%. Classifier 4 obtains the best PPV and Specificity of
92.21 and 93.37%. Tables 6, 7 list some classifiers with the best
metrics for binary and multiclass classifications, respectively.
All metrics in Tables 6, 7 are calculated from an independent
test set described in the Data Splitting. Classifier 1 (SVM with
random search and ROS oversampling), Classifier 2 (AdaBoost
with random search and ADASYN oversampling), and Classifier
3 (AdaBoost with Hyperopt search and ROS oversampling)
have different best metrics for binary classification. Classifier 1
obtains the best recall, NPV, and AUC of 100, 100, and 95.61%,
respectively. Classifier 2 obtains the best accuracy and F1-score
of 94.37 and 86.67%. Classifier 3 obtained the best PPV and
Specificity of 90.91 and 98.25%.

For multiclass classification, Classifier 4 (SVM with grid
random and SMOTE oversampling), Classifier 5 (AdaBoost
with grid search and ROS oversampling), Classifier 6 (XGBoost
with grid search and SMOTE oversampling), and Classifier 7
(XGBoost with random search and ROS oversampling) have
different best metrics. Classifier 4 obtains the best PPV and
Specificity of 92.21 and 93.37%. Classifier 5 obtains the best
accuracy, weighted recall, and weighted F1 score of 88.73, 88.73,
and 87.43%, respectively. Classifier 6 and Classifier 7 obtain the
best macro AUC (93.51%) and weighted NPC, respectively.

Among all metrics, F1-score is the main metric in this
study because F1-score seeks the balance of Recall and PPV
for the imbalanced dataset. In clinical application, it can help
doctors utilize the ensemble learning with the balance of positive
prediction and effective medical resource use. However, assessing
a model with the best F1-score and poor other metrics is
inappropriate. It is still very important to comprehensively
consider all metrics. Based on Tables 6, 7, the proposed
Classifiers 2 and 5 are excellent models for detecting myopia
with binary and multiclass classifications. It is possible to classify
AXL > or < 26 mm by CTs with the proposed Classifier 2
because Classifier 2 has no low performances of all metrics.
AXL < 22 mm, between 22 and 26 mm,≥ 26 mm can be classified
based on CTs with the proposed Classifier 5 because Classifier 5
has good performances for all metrics.

Based on Table 6, Classifier 1 (SVM) has the best recall, NPV,
and AUC but a poor PPV. Classifier 2 (AdaBoost) obtains the
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TABLE 3 | Characteristics of participants.

Feature Number (%) Feature Number (%)

Gender Height (cm, mean = 159.8, SD = 8.72)
Male 87 (46.3%) <150 24 (12.8%)
Female 101 (53.7%) 150–159.9 67 (35.6%)
Age (mean = 66.5, SD = 9.73) 160–169.9 65 (34.6%)
<40 3 (1.6%) 170–179.9 29 (15.4%)
40–49 10 (5.3%) >179.9 3 (1.6%)
50–59 19 (10.1%) Weight (kg, mean = 64.8, SD = 12.1)
60–69 85 (45.2%) <50 14 (7.4%)
70–79 58 (30.9%) 50–59.9 54 (28.7%)
>79 13 (6.9%) 60–69.9 55 (29.3%)

70–79.9 45 (23.9%)
80–89.9 12 (6.4%)
>89.9 8 (4.3%)

best accuracy and F1-score, and it also has the second-best recall,
PPV, NPV, F1-score, and specificity. Additional, the gaps of recall,
NPV, and AUC between Classifier 1 and Classifier 2 are small.
Because Classifier 2 is more stable than Classifiers 1 and 3 and has
no low performances of all metrics, Classifier 2 is recommended
to classify AXL > or < 26 mm by CTs.

Based on Table 7, Classifier 4 (SVM) has the best the best PPV
(weighted) and specificity (weighted) but very poor accuracy,
recall (weighted), and NPV (weighted). Classifier 6 (XGBoost)
and Classifier 7 (XGBoost) respectively, have the best AUC
(macro) and NPV (weighted) but medium remaining metrics.
Classifier 5 (AdaBoost) obtains the best Accuracy, recall, and
F1-score, and it also has the second-best PPV (weighted), NPV
(weighted), specificity (weighted), and AUC (macro). Because
Classifier 5 is excellent and stable than other three Classifiers (4,
6, and 7), Classifier 5 can be used to classify AXL < 22 mm, AXL
between 22 and 26 mm, and AXL ≥ 26 mm by CTs.

The appropriate values of hyperparameters of classifiers in
Tables 5, 6 are obtained by Hyperparameter Optimization,
and the details of values of hyperparameters are listed in
Supplementary Appendix-IV.

The AXL Prediction
To compare the results of AXL prediction based on the 10
features between the proposed classifiers and ophthalmologists,
we recruited 2 ophthalmologists and 2 medical students to
predict AXL in binary and multiclass classification based on
the same 10 features. In the results, the accuracy was 48.61–
69.44%, PPV (weighted) was 61.50–76.08%, Recall (weighted)
was 48.61–69.44%, F1 score (weighted) was 54.29–71.92%, NPV
(weighted) was 38.77–53.71%, and AUC (macro) was 49.07–
63.03%. The results were considerably less accurate than those
from our developed classifiers in Tables 5, 6.

The Comparisons of AXL Class
Prediction Between Humans and
Classifiers
To compare the AXL class prediction between the
proposed classifiers and ophthalmologists, we recruited two
ophthalmologists (OPHs) and two medical students to compare
binary and multiclass classification based on the same test set
with ten features (without AXL feature). Since the test set size

is over 30, this study used the test of proportion to verify the
performance of results. The null and alternative hypotheses
are H0 : pHuman ≥ pAI and H1 : pHuman < pAI, where pHuman
and pAI are the metrics of human performances and proposed
classifiers, respectively. The comparison and test results are listed
in Tables 7, 8.

In Tables 7, 8, the human performances’ results of accuracy,
recall, PPV, NPV, F1-score, specificity, and AUC, respectively, are
47.89–80.28%, 6.67–67.61%, 5.56–72.85%, 38.91–90.38%, 6.06–
69.04%, 36.98–85.71%, and 38.15–75.30%. Compared with the
same metrics of proposed classifiers 2 and 5 in Tables 6, 7, all tests
of proportion rejected H0. It demonstrated that the proposed
classifiers outperform the human performances.

DISCUSSION

In this study, we proposed that Classifiers 1–6 can predict
AXL by means of patients’ age, sex, height, weight, and CT
measured from OCT images. Studies have reported that CT is
negatively correlated with AXL, and people with high myopia
tend to have a thinner choroid (7–11). However, few studies
have assessed the prediction of AXL by means of CT. In the
proposed classifiers, the binary prediction has accuracy, recall,
PPV > 90%, and NPV > 85%; multiclass prediction has accuracy,
recall, PPV, and NPV > 80%, which is substantially better than
prediction by ophthalmologists in this study. The 10 selected
features were correlated with AXL, and the correlation was
confirmed by the Pearson, VIF, and Lasso analyses. In the Pearson
and Lasso analyses, age had the highest negative correlation
with AXL. This observation may result from the difference in

TABLE 4 | Class label criteria in terms of AXL.

Binary classification

Class Rule Number (%)

0 AXL < 26 mm 282 (79.44%)

1 AXL ≥ 26 mm 73 (20.56%)

Class Multiclass ClassificationRule Number (%)

0 AXL < 22 mm 14 (3.94%)

1 22 mm ≤ AXL < 26 mm 268 (75.49%)

2 AXL ≥ 26 mm 73 (20.56%)
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prevalence of myopia among various age groups. Studies have
reported that from 1983 to 2017, the prevalence of myopia in
the same age group substantially increased in Taiwan, (2) which
leads to more incidence of myopic eyes in younger patients in
our cohort. Another possible reason for this correlation is that
whereas older patients could have various conditions that require
ophthalmic clinic follow-up, younger patients seldom have severe
eye disease that requires clinic visits and image studies, except
for those patients with myopia or high myopia who were at
risk of retinal complications. Among the six choroid locations,
CT at the nasal side in cross-section (Choroid-CN) was the
thinnest. This result is compatible with those of El-Shalzly et.al.

(9) and Gupta et al. (13) which have demonstrated that CT at the
nasal side was thinner in patients with myopia and emmetropia.
Furthermore, CT at the nasal side also has the highest negative
correlation with AXL both in Pearson and Lasso analyses.
Although the exact mechanism requires further investigation,
this result demonstrated that CT at the nasal side is essential for
AXL prediction and possibly essential in myopia development.

Regarding myopia prediction, Varadarajan et al. (37)
developed a model to predict SE from color fundus images. Shi
et al. used CNN to predict myopia with absolute mean error of
1.115 D in SE from a color fundus image (38). We chose AXL
classifications as our prediction. Our patients’ average age was ≈

TABLE 5 | Superior performance in binary classification.

Classifier Algorithm Hyper. Opt. Over sampling Accuracy Recall PPV NPV F1-score Specificity AUC

1 SVM Random ROS 92.96% 100% 73.68% 100% 84.85% 91.22% 95.61%

2 AdaBoost Random ADASYN 94.37% 92.86% 81.25% 98.18% 86.67% 94.73% 93.80%

3 AdaBoost Hyperopt ROS 92.30% 71.43% 90.91% 93.33% 80.00% 98.25% 84.84%

TABLE 6 | Superior performances in multiclass classification.

Classifier Algorithm Hyper. Opt. Over
sampling

Accuracy Recall
(weighted)

PPV
(weighted)

NPV
(weighted)

F1-score
(weighted)

Specificity
(weighted)

AUC
(macro)

4 SVM Random SMOTE 78.87% 78,87% 92.21% 62.56% 83.17% 93.37% 88.71%

5 AdaBoost Grid ROS 88.73% 88.73% 86.16% 82.28% 87.43% 74.75% 93.06%

6 XGBoost Grid SMOTE 85.92% 85.92% 83.06% 78.89% 84.32% 65.07% 93.42%

7 XGBoost Random ROS 87.32% 87.32% 84.96% 85.83% 85.78% 68.27% 84.64%

TABLE 7 | The comparison and test results in binary classification.

Item Accuracy Recall PPV NPV F1-score Specificity AUC

Student 1 Metric 80.28% 66.67% 52.63% 90.38% 58.82% 83.93% 75.30%

p-value 0.006** 0.000*** 0.000*** 0.023* 0.000*** 0.019* 0.001**

Student 2 Metric 56.34% 6.67% 5.56% 73.58% 6.06% 69.64% 38.15%

p-value 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000 ***

OPH 1 Metric 77.46% 60.00% 47.37% 88.46% 52.94% 82.14% 71.07%

p-value 0.002** 0.000*** 0.000*** 0.010* 0.000*** 0.010* 0.000***

OPH 2 Metric 80.28% 60.00% 52.94% 88.89% 56.25% 85.71% 72.86%

p-value 0.006** 0.000*** 0.000*** 0.012* 0.000*** 0.035* 0.000***

p value: * < 0.05, ** < 0.01, *** < 0.001.

TABLE 8 | The comparison and test results in multiclass classification.

Item Accuracy Recall (weighted) PPV (weighted) NPV (weighted) F1-score (weighted) Specificity (weighted) AUC (macro)

Student 1 Metric 67.61% 67.61% 70.60% 41.54% 64.92% 36.98% 52.29%

p-value 0.001** 0.001** 0.012* 0.000*** 0.001** 0.000*** 0.000***

Student 2 Metric 47.89% 47.89% 60.86% 38.91% 53.59% 50.25% 49.07%

p-value 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.001** 0.000***

OPH 1 Metric 53.52% 53.52% 63.76% 41.16% 57.21% 53.00% 53.26%

p-value 0.000*** 0.000*** 0.001** 0.000*** 0.000*** 0.003** 0.000***

OPH 2 Metric 66.20% 66.20% 72.85% 50.61% 69.04% 59.85% 63.03%

p-value 0.001** 0.001** 0.025* 0.000 *** 0.004** 0.029* 0.000***

p value: * < 0.05, ** < 0.01, *** < 0.001.
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66 years, and most of our participants had various severities of
cataract; many of the participants had received cataract surgery.
Because SE may be influenced by lens condition and cylinder,
which are not directly related to retinal or choroidal condition,
we considered AXL as a more accurate feature to reflect a
patient’s myopic condition. Because some of our patients had
retinal disease, such as AMD, DME, retinoschisis, or myopic
CNV, the retinal condition may vary between patients and even
among multiple visits for the same patient. Thus, we recorded
the CT to avoid the potential variation of retinal condition. Dong
et al. (38) predicted AXL and subfoveal CT from a color fundus
image with high accuracy (39). In their heat map analysis, they
demonstrated that different areas of the macula on the fundus
image were used to predict various AXL. The entire macular
region, foveal region, and extrafoveal region were used to predict
AXL < 22 mm, from 22 to 26 mm, and > 26 mm, respectively.
In our study, we measured the CT at fovea and perifovea, and
predicted AXL from the features. Among all of the CTs at various
positions, the nasal side had the highest correlation with AXL,
followed by the central part, and the result was unanimous in
binary and multiclass classifications. Compatible with that of
Dong et al. our results also demonstrated that the CT at the fovea
and perifoveal region can predict AXL in various classifications.

In classifier construction, feature scaling is an essential
preprocessing step in AI. Before one evaluates and selects the
features, all features must be standardized to prevent redundancy
or duplication. We used Pearson, VIF, and Lasso analyses to select
the proper features. Pearson’s r indicates the linear relationship
between a given feature and class label. The p value indicates
the probability that a feature is uncorrelated with the class
label, per the method of Kowalski (40). The VIF measures how
substantially the variance of an independent feature is influenced
by other independent features. If the VIF of the target feature
was > 10, we eliminated the target feature. The Lasso method
was proposed by Santosa and Symes (41) and popularized by
Tibshirani (42). Lasso performs covariate selection by forcing the
sum of the absolute value of the regression coefficients to be less
than a fixed value, which forces certain coefficients to be 0.

In hyperparameter optimization, Random Search is more
effective than Grid Search for a fixed search number; (36)
Hyperopt obtains superior values of hyperparameters within the
same executing time (43). Our data set was imbalanced both
in binary and multiclass classifications, and the use of such
imbalanced data to train the model may yield a biased result.
The method we used, oversampling, is a popular technique for
treating imbalanced data to avoid the aforementioned problems.

The ensemble-learning approach has also been used in
ophthalmology to diagnose DR and interpret OCT imaging
(44, 45). In our study, we used 5 algorithms (BNN, SVM, RF,
AdaBoost, and XGBoost) to construct the classifiers of axial
length through CTs. The classifiers constructed by ensemble
approach (RF, AdaBoost, and XGBoost) outperformed those
constructed by single machine learning approach (BNN and
SVM). Those constructed by AdaBoost (Classifiers 1, 2, 4, and
5) and XGBoost (Classifiers 3 and 6) had the most optimal
performance. Essentially, AdaBoost and XGBoost features the
combination of several weak classifiers to form a strong one
with a boosting approach. For the 2 algorithms (AdaBoost and

XGBoost), the boosting approach plays a crucial role in dealing
with the bias-variance tradeoff, and the boosting approach is
considered more effective.

In this study, we successfully conducted AXL classification
at the accuracies of 94.34 and 88.73% for binary and multiclass
classifications by hyperparameter optimization, oversampling,
and boosting algorithms. The high prediction accuracy in our
binary and multiclass classification could be attributed to two
main reasons. First, all of our imputed CT were repeated
measured and rechecked by an ophthalmologist familiar with
OCT images to ensure the accuracy of each measurement and
avoid segmentation errors. Second, the seven final classifiers
were chosen from 8,518,200 candidates [from 425,910 searches,
each went through 20 (4 oversampling and five cross-validation)
complete experiments], thus enabled our model to have
high accuracies.

This study has several limitations. First, our sample size was
relatively small, especially those with AXL < 22 mm or > 26 mm;
the distribution of AXLs is also relatively imbalanced. Second,
the process of collecting the 10 features was time consuming.
Considerable time and effort were required to measure the
thickness of the choroid of 6 positions from 2 OCT images of
each eye and to collect data on sex, age, weight, and height of
each of the participants. Among the features we recorded, AXL
did not increase with age after adulthood, and weight may change
without change of AXL; these potentially induced bias in our
results. Third, the manual measurement of CT may cause bias
or inconsistency. Future studies should address these limitations,
and we expect to conduct more investigations using a larger data
set on the classification and diagnosis of eye diseases which may
be revealed by SD-OCT.

We demonstrated the effectiveness of the proposed classifiers
in classification prediction from medical data and provided an
assistance tool for physicians.
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Femtosecond laser-assisted
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Purpose: To assess the effects of femtosecond laser arcuate keratotomy with

femtosecond laser-assisted cataract surgery in the management of corneal

astigmatism, compared with conventional phacoemulsification cataract

surgery.

Design: Retrospective comparative interventional case series.

Methods: A total of 2,498 eyes of consecutive patients who presented with

3.00 diopters (D) or under of astigmatism were included. The patients were

treated with conventional phacoemulsification cataract surgery (conventional

group) and femtosecond laser arcuate keratotomy with femtosecond laser-

assisted cataract surgery (femtosecond group).

Results: Surgically induced astigmatism (SIA) was higher in the femtosecond

group than the conventional group (0.215, p < 0.001). Difference vector (DV)

was lower in the femtosecond group (-0.136, p < 0.001). The cut-off value of

the overcorrection in the femtosecond group was 0.752 D of target induced

astigmatism (TIA). For patients with TIA 0.75 D or under, DV and the value of

index of success (TIA into DV) were significantly higher in the femtosecond

group (p = 0.022 and < 0.001). The overcorrection ratios were 48.8% in the

conventional and 58.9% in the femtosecond group. (p < 0.001). For patients

with TIA over 0.75 D, SIA and correction index (TIA into SIA) was higher in

femtosecond group (0.310 and 0.250, p < 0.001 and < 0.001, respectively).

Absolute angle of error was 20.612 ± 18.497 in the femtosecond group and

higher than the conventional group (2.778, p = 0.010).

Conclusion: Femtosecond laser arcuate keratotomy in cataract surgery was

effective in SIA between 0.75 to 3.00 D of corneal astigmatism. However,
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the overcorrection in the lower astigmatism and angle of error in the

higher astigmatism were due to the postoperative corneal astigmatism not

decreasing as much as SIA. Overcoming these challenges will lead to better

management of corneal astigmatism.

KEYWORDS

arcuate keratotomy, corneal astigmatism, cataract surgery, femtosecond (fs) laser,
keratotomy

Introduction

Cataract is the leading cause of blindness worldwide (1),
and cataract surgery is among the most common procedures
performed in the United States, with more than 30 million
patients undergoing surgery each year (2). Phacoemulsification
surgery is currently the standard method of treatment for
patients with cataracts (1); however, advanced techniques
involving the use of multifocal/toric intraocular lenses and other
technologies, such as femtosecond laser-assisted cataract surgery
(FLACS), have recently become commercially available (3–5).

Corneal astigmatism is a common consideration in cataract
surgery, with approximately 40% of patients having astigmatism
of more than 1.0 diopter (D) (6). Research has indicated
that correction of corneal astigmatism yields better refractive
outcomes following cataract surgery (7). Typically, surgical
correction of corneal astigmatism involves toric intraocular lens
implantation and the creation of corneal arcuate/limbal relaxing
incisions, which can be performed either manually or using a
femtosecond laser (i.e., FLACS) (4, 8, 9).

Although most previous studies have demonstrated that
femtosecond laser-assisted arcuate keratotomy (FL-AK) is
effective for correcting corneal astigmatism, there have been
several inconsistencies in their results (Supplementary Table 1).
Moreover, these studies had insufficient cohorts to conduct
a detailed analysis of group differences or determine the
factors influencing these differences. As the small sample sizes
resulted in a comparative analysis without adjustment for
confounders (i.e., independent t-test), discrepancies between
the results of these previous studies and the effects of corneal
astigmatism reduction during FL-AK observed in actual clinical
settings are possible.

To overcome these limitations, we performed a
detailed and well-controlled analysis using a massive

Abbreviations: absAE, absolute value of angle of error; AE, angle of error;
ATR, against-the-rule astigmatism; CI, correction index; D, diopters; DV,
difference vector; FLACS, femtosecond laser-assisted cataract surgery;
FL-AK, femtosecond laser-assisted arcuate keratotomy; IOS, index of
success; MofE, magnitude of error; OBL, oblique astigmatism; SIA,
surgically induced astigmatism; TIA, target induced astigmatism; WTR,
with-the-rule astigmatism.

real-world dataset and a statistical method that
considered relevant confounders. In this study, we
aimed to (a) assess the effectiveness of FL-AK for the
management of corneal astigmatism in patients undergoing
cataract surgery when compared with conventional
phacoemulsification cataract surgery, (b) determine the
degrees of preoperative corneal astigmatism for which FL-
AK is indicated, and (c) identify the factors related to the
effectiveness of FL-AK.

Materials and methods

Study design

This retrospective study was performed at Severance
Hospital, Yonsei University College of Medicine, between
January 2018 and June 2021. The Severance Hospital Clinical
Research Ethics Committee approved the protocol of the study
(IRB protocol number-4-2021-0525), which was conducted in
accordance with the tenets of the Declaration of Helsinki.

Participants

The study included 2,498 eyes of 1,767 consecutive
patients aged ≥ 45 years diagnosed with age-related
cataracts and corneal astigmatism ≤ 3.00 D. The surgical
method was determined by the patient’s decision-making
after the consent of the surgery. Among them, 1,325
eyes of 922 patients were treated with conventional
phacoemulsification cataract surgery (conventional
group), while 1,173 eyes of 845 patients were treated
with FLACS combined with FL-AK (femtosecond
group). Patients exhibiting poor compliance during
examination and eyes with irregular corneal astigmatism,
corneal opacities, previous corneal surgery (including
corneal refractive surgery), acute or chronic ophthalmic
diseases of the anterior segment, or intraoperative
complications were excluded.
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Measurements

All patients underwent a detailed preoperative
ophthalmological evaluation, including slit-lamp and fundus
examinations. Calculations of intraocular lens power were
performed using optical biometry results (IOLMaster 700 R©;
Carl Zeiss Meditec AG, Jena, Germany). Corneal measurements
and planning of the arcuate keratotomy procedure were based
on autokeratometry (Topcon KR-800A; Topcon Corporation,
Tokyo, Japan) and Scheimpflug topography (Pentacam R©;
Oculus Inc., Wetzlar, Germany) findings within 2 weeks before
surgery. Patients exhibiting a more than 0.3-D difference in
mean preoperative corneal astigmatism and those exhibiting
axis measurements with differences of 5◦ or more between
autokeratometry and Scheimpflug topography were excluded.
Corneal astigmatism was measured via autokeratometry 3
months after surgery to assess postoperative outcomes.

Vector analysis

Vector analysis for corneal astigmatism was conducted
using the results of autokeratometry, in accordance with
the Alpins method (10). Considering the changes in the
astigmatic axis, three vectors were measured: the target-
induced astigmatism vector (TIA), defined the astigmatic
change that the surgery was intended to induce; the surgically
induced astigmatism vector (SIA), defined as the geographic
change in corneal astigmatism actually induced by the surgery;
and the difference vector (DV), defined as the induced
astigmatic change that would enable the initial surgery to
achieve its intended target. The magnitude of error (MofE;
SIA minus TIA), angle of error (AE, the degree of angle
between the TIA and SIA vectors), absolute value of AE
(absAE), correction index (CI, SIA divided by TIA), and
index of success (IOS; DV divided by TIA) were also
measured. The CI > 1 means that the SIA is greater
than the TIA, overcorrection. The IOS > 1 means that
the corneal astigmatism is increased after surgery, compared
to before surgery.

The preoperative corneal astigmatism axis was converted to
a range of 0–90 degrees (Axis90) and used to classify eyes into
three groups: with-the-rule (WTR) astigmatism (0–30 degrees),
oblique (OBL) astigmatism (30–60 degrees), and against-the-
rule (ATR) astigmatism (60–90 degrees).

Femtosecond laser system and surgical
technique

In the femtosecond group, FLACS and FL-AK were
performed using the LenSx R© femtosecond system (Alcon
laboratory, Inc., Texas, United States). Intra-operative

alignment of the corneal astigmatism axis was performed
using a corneal topography system (Verion R© image guide
system; Alcon laboratory, Inc.; Texas, United States)
immediately before surgery. A single arcuate keratotomy
incision was paired in the opposite meridian. The depth
of the astigmatic keratotomy was set at 80% corneal
thickness according to a modified Donnenfeld limbal
relaxing nomogram (11–14). The diameter of the optical
zone was set to 8.0 mm. For FLACS, the laser was also
used to perform a 5.0–5.3-mm capsulotomy and lens
fragmentation. The femtosecond system was not used
to make the main phacoemulsification incision or the
peripheral incision.

In both groups, the clear corneal incision at the temporal
side was created using a 2.80-mm keratome, and the
anterior capsule button was removed. In the conventional
group, capsulotomy was performed using forceps or a
capsulotomy needle. Phacoemulsification was performed
under local anesthesia in both groups using an Infiniti R©

system (Alcon laboratory, Inc.; Texas, United States). All
operations were performed by an experienced surgeon
(T.I.K). Patients were instructed to perform 1 month
of postoperative care, which included instillation of eye
drops, in accordance with the standard protocol for
cataract surgery. Patients who did not follow the surgical
instructions were excluded.

Statistical analysis

The data were analyzed using descriptive statistics, and
the mean values and standard deviations were computed for

TABLE 1 Characteristics of patients in the conventional and
femtosecond groups.

Conventional
group (n = 1,325)

Femtosecond
group (n = 1,173)

p

Age 66.47± 10.94 66.71± 12.78 0.623

Sex (female) 824 (62.2%) 769 (65.6%) 0.087

Laterality (right, %) 674 (50.9%) 599 (51.1%) 0.936

Preoperative corneal
refractive power
(Km, D)

44.14± 1.88 44.20± 1.75 0.328

Preoperative corneal
astigmatism

0.85± 0.58 0.85± 0.58 0.983

Preoperative corneal
astigmatism axis
(Axis90)

43.45± 31.78 45.49± 31.90 0.085

Preoperative corneal
astigmatism group

0.404

Against-the-rule 580 (43.8%) 487 (41.5%) –

Oblique 228 (17.2%) 198 (16.9%) –

With-the-rule 517 (39.0%) 488 (41.6%) –
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each variable. Differences between the groups were initially
assessed using independent t-tests, which were adjusted for
age, sex, laterality, preoperative corneal refractive power
(Km), preoperative corneal astigmatism axis, and TIA. Linear
regression analyses were used examine the association between
TIA and SIA in each group. Using the cut-off value for

overcorrection (i.e., SIA > TIA) identified in the linear
regression analysis, stratified analyses were conducted for
patients in the femtosecond group. Lower and higher TIA
were defined as TIA values under and over the cut-
off value, respectively. P-values < 0.05 were considered
statistically significant.

TABLE 2 Vector analysis of postoperative corneal astigmatism.

A. Overall.

Conventional (n = 1,325) Femtosecond (n = 1,173) Adjusted† Adjusted†

Mean SD Mean SD Diff p Diff p

TIA 0.845 0.579 0.846 0.578 0.001 0.983 - -

SIA 0.631 0.494 0.886 0.819 0.254 <0.001* 0.215 <0.001*

DV 0.913 0.823 0.803 0.772 -0.110 <0.001* -0.136 <0.001*

AE 0.434 27.771 1.063 30.158 0.628 0.596 0.192 0.903

absAE 21.041 18.120 22.673 19.903 1.632 0.036* 1.634 0.033*

MofE -0.135 0.777 0.041 0.862 0.175 <0.001* 0.215 <0.001*

CI 0.748 0.823 1.037 1.075 0.289 <0.001* 0.319 <0.001*

IOS 1.082 1.052 0.951 1.012 -0.131 0.002* -0.047 0.668

B. Preoperative astigmatism ≤ 0.75 D.

Conventional (n = 813) Femtosecond (n = 693) Adjusted† Adjusted†

Mean SD Mean SD Diff p Diff p

TIA 0.486 0.214 0.485 0.219 –0.001 0.998 – –

SIA 0.607 0.658 0.728 0.688 0.121 0.001* 0.234 <0.001*

DV 0.700 0.676 0.713 0.638 0.012 0.719 0.099 0.022*

AE 1.021 30.733 0.229 31.790 –0.792 0.623 –1.209 0.311

absAE 24.356 18.961 24.098 20.714 –0.258 0.378 –0.864 0.534

MofE 0.122 0.684 0.266 0.702 0.145 <0.001* 0.234 <0.001*

CI 1.418 1.685 1.776 2.018 0.358 <0.001* 0.316 <0.001*

IOS 1.598 1.685 1.744 1.965 0.146 0.132 0.249 <0.001*

C. Preoperative astigmatism > 0.75 D.

Conventional (n = 512) Femtosecond (n = 480) Adjusted† Adjusted†

Mean SD Mean SD Diff p Diff p

TIA 1.395 0.420 1.400 0.461 –0.004 0.879 – –

SIA 0.790 0.591 1.114 0.932 0.324 <0.001* 0.310 <0.001*

DV 1.170 0.631 0.933 0.842 –0.237 <0.001* -0.203 <0.001*

AE 0.242 24.321 2.268 27.618 2.026 0.133 0.954 0.670

absAE 18.224 16.087 20.612 18.497 2.388 0.016* 2.778 0.010*

MofE –0.608 0.993 –0.286 0.963 –0.322 <0.001* –0.310 <0.001*

CI 0.596 0.462 0.840 0.761 0.244 0.001* 0.250 <0.001*

IOS 0.848 0.442 0.668 0.599 –0.182 <0.001* –0.186 <0.001*

*Statistically significant.
†Adjusted for age, sex, laterality, surgeon, Km, preoperative corneal astigmatism axis, and TIA.
absAE, absolute angle of error; AE, angle of error; CI, correction index; DV, difference vector; IOS, index of success; MofE, magnitude of error; SIA, surgically induced astigmatism; TIA,
target induced astigmatism.
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Results

The two groups exhibited no significant differences in
baseline demographic or ophthalmological characteristics,
including age, sex, laterality distribution, preoperative corneal
refractive power (Km), preoperative corneal astigmatism, and
axis (Table 1).

TIA was 0.845 ± 0.579 D in the conventional
group and 0.846 ± 0.578 D in the femtosecond group
(p = 0.983). However, SIA was significantly higher in
the femtosecond group than in the conventional group
(adjusted difference = 0.215, p < 0.001), whereas DV was
significantly lower in the femtosecond group (adjusted
difference = -0.136, p < 0.001). IOS did not significantly
differ between the groups (adjusted difference = -0.047,
p = 0.668) (Table 2A).

The cut-off TIA value for overcorrection in the femtosecond
group was 0.752 (95% confidence interval: 0.512–0.992).
The linear regression Equation between SIA and TIA in the
femtosecond group was as follows (Supplementary Image 1):

SIA = 0.457+ 0.392 TIA (R = 0.272, p < 0.001)

SIA and CI values were higher in the femtosecond group
than in the conventional group among patients with both lower
and higher TIA (all p < 0.001). In patients with lower TIA,
the mean DV value was higher in the femtosecond group
than in the conventional group (adjusted difference = 0.099,
p = 0.022). The MofE values were 0.122 ± 0.684 D and
0.266 ± 0.702 D in the conventional and femtosecond groups,
respectively (adjusted difference = 0.145, p < 0.001) (Table 2B).
In patients with higher TIA, the DV value was significantly
lower in the femtosecond group than in the conventional group

(adjusted difference = -0.203, p < 0.001). The femtosecond
group also had higher absolute AE values than the conventional
group (adjusted difference = 2.778, p = 0.010) and an IOS of
0.668± 0.599 (Table 2C).

For both patients with lower and higher TIA, the
overcorrection ratio was significantly higher in the femtosecond
group than in the conventional group (p < 0.001 and < 0.001,
respectively) (Table 3A). However, the overcorrection ratio
did not significantly differ among the preoperative corneal
astigmatism axis subgroups (ATR vs. OBL vs. WTR) when the
analysis was restricted to patients of the femtosecond group with
lower TIA (p = 0.643) (Table 3B).

A linear regression analysis adjusted for TIA and SIA
indicated that absolute AE was significantly associated with
DV among patients in the femtosecond group with higher
TIA [B = 0.014 (95% confidence interval: 0.011–0.018),
p < 0.001] (Table 4).

Overall, 72.0% of the patients in the femtosecond group
exhibited decreased corneal astigmatism postoperatively. When
compared with the preoperative values, 8.4% exhibited a
decrease of more than 75%, while 22.9% exhibited a decrease of
more than 50% (Supplementary Image 2). This Venn diagram
shows the distribution of DV by TIA, SIA, and AE. Depending
on AE, even with sufficient SIA compared to TIA, DV cannot
reach TIA, and can even be greater than TIA.

Discussion

In this study, we investigated the effect of FL-AK in
managing corneal astigmatism during cataract surgery using
real-world data for 2,498 eyes. In the overall cohort, our
findings indicate that the femtosecond group had higher SIA but

TABLE 3 Overcorrection ratio in stratified analyses for target induced astigmatism ≤ 0.75 diopters.

A. Treatment groups.

Conventional Femtosecond Total

Overcorrection 397 (48.8%) 408 (58.9%) 805 (53.5%)

No overcorrection 416 (51.2%) 285 (41.1%) 701 (46.5%)

Total 813 (54.0%) 693 (46.0%) 1,506 (100%)

p < 0.001*

B. Femtosecond subgroups based on preoperative corneal astigmatism axis.

With-the-rule Oblique Against-the-rule Total

Overcorrection 98 (40.2%) 58 (38.4%) 108 (36.2%) 285 (41.4%)

No overcorrection 146 (59.8%) 93 (61.6%) 190 (63.8%) 408 (58.9%)

Total 244 (35.2%) 151 (21.8%) 298 (43.0%) 693 (100%)

p = 0.643

*Statistically significant.
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TABLE 4 Linear regression analysis of the difference vector in patients
of the femtosecond group with target induced astigmatism over 0.75
D (adjusted R2 = 0.406, p < 0.001*).

95% Confidence Interval

B ß Lower Upper P VIF

(Constant) –0.054 – –0.263 0.154 0.609 –

absAE 0.014 0.315 0.011 0.018 <0.001* 1.011

SIA 0.461 0.510 0.397 0.525 <0.001* 1.035

TIA 0.340 0.186 0.210 0.470 <0.001* 1.046

*Statistically significant.
absAE, absolute angle of error; SIA, surgically induced astigmatism; TIA, target induced
astigmatism.

lower postoperative corneal astigmatism than the conventional
group. However, the MofE (TIA subtracted from SIA) was
positive, and the CI value (SIA divided by TIA) was over 1,
indicating that overcorrection was common in the femtosecond
group. The difference in SIA between the conventional and
femtosecond groups was 0.254, but the absolute difference
in postoperative corneal astigmatism (0.110. SIA) was higher
in the femtosecond group; however, this effect was not fully
reflected in the degree of postoperative corneal astigmatism.
Linear regression analysis between TIA and SIA also indicated
that the TIA cut-off value for overcorrection was 0.752

D, which is within the range reported in previous studies
(15, 16).

In patients with TIA values of 0.75 D or under, FL-AK
induced significant overcorrection and reductions in corneal
astigmatism when compared with the conventional method. In
a previous study that also included patients with relatively lower
preoperative corneal astigmatism, overcorrection was related to
the preoperative corneal astigmatism axis (17), as observed in
the current study. However, the overcorrection rates did not
significantly differ between the groups (p = 0.643). In another
study, the authors reported that, in patients with a relatively
lower degree of corneal astigmatism, FL-AK outcomes were
influenced by preoperative corneal astigmatism and uncorrected
visual acuity (18). The authors of that study utilized a novel
formula to reduce the corneal incision arc by 20–30%, and the
novel formula was more effective in correcting low astigmatism
than the pre-existing method. Thus, reducing the corneal
incision arc indicated by the existing formula may aid in
lowering preoperative astigmatism in these patients.

In patients with TIA values > 0.75 D, the goal indicated by
the FL-AK nomogram was 70–80% correction of preoperative
corneal astigmatism, and SIA values indicated that 84%
correction had been achieved. However, approximately 67% of
preoperative corneal astigmatism remained in the FL-AK group,
similar to findings reported in previous studies (0.47–0.71)

FIGURE 1

Angle of error between conventional group and femtosecond group in target induced astigmatism over 0.75 D.
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(11, 15, 19, 20). IOS reflects the amount postoperative corneal
astigmatism remaining when compared with the preoperative
state. We focused on IOS because we assumed it to underlie
the central conflict between the effects of FL-AK reported
in previous studies (which focused on SIA) and the actual
clinical situation. In the current study, postoperative corneal
astigmatism was not defined based on the arithmetic difference
between preoperative corneal astigmatism and SIA (21). Our
findings suggest that AE (i.e., the angle between TIA and
SIA) was the primary cause of these discrepancies (Figure 1).
The absAE in the femtosecond group was 20.6, which is
within the range of 17.5–25.1 reported in previous studies (9,
15). Considering the relationships among the vectors (TIA,
SIA, and DV), the evidence indicates that AE is among the
major factors influencing postoperative corneal astigmatism in
patients treated with FL-AK during cataract surgery (10, 21).

In previous studies, torque was regarded as an ineffective
component of the SIA vector (21–23), and the direction of
SIA was tilted to the induced direction. Moreover, several
studies have highlighted the importance of the reference axis
in arcuate keratotomy (24, 25). Further studies are required to
determine the precise factors affecting AE and to develop a novel
nomogram incorporating AE, as this will help to improve the
effectiveness of FL-AK in patients undergoing FLACS.

In conclusion, our findings indicate that cataract surgery
with FL-AK resulted in significantly increased SIA but that it was
effective in correcting preoperative corneal astigmatism > 0.75
D when compared with conventional phacoemulsification
cataract surgery. However, overcorrection in patients with a
lower degree of astigmatism and the angle of error in patients
with higher astigmatism may have inhibited improvements in
postoperative corneal astigmatism. Future studies should aim to
overcome these challenges to achieve better efficacy in managing
corneal astigmatism.
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Purpose: To evaluate the value of artificial intelligence (AI) for

recommendation of pupil dilation test using medical interview and basic

ophthalmologic examinations.

Design: Retrospective, cross-sectional study.

Subjects: Medical records of 56,811 patients who visited our outpatient clinic

for the first time between 2017 and 2020 were included in the training dataset.

Patients who visited the clinic in 2021 were included in the test dataset. Among

these, 3,885 asymptomatic patients, including eye check-up patients, were

initially included in test dataset I. Subsequently, 14,199 symptomatic patients

who visited the clinic in 2021 were included in test dataset II.

Methods: All patients underwent a medical interview and basic

ophthalmologic examinations such as uncorrected distance visual acuity,

corrected distance visual acuity, non-contact tonometry, auto-keratometry,

slit-lamp examination, dilated pupil test, and fundus examination. A clinically

significant lesion in the lens, vitreous, and funduswas defined by subspecialists,

and the need for a pupil dilation test was determined when the participants

had one or more clinically significant lesions in any eye. Input variables of

AI consisted of a medical interview and basic ophthalmologic examinations,

and the AI was evaluated with predictive performance for the need of a pupil

dilation test.

Main outcome measures: Accuracy, sensitivity, specificity, and positive

predictive value.

Results: Clinically significant lesions were present in 26.5 and 59.1% of

patients in test datasets I and II, respectively. In test dataset I, the model

performances were as follows: accuracy, 0.908 (95% confidence interval (CI):

0.880–0.936); sensitivity, 0.757 (95% CI: 0.713–0.801); specificity, 0.962 (95%

CI: 0.947–0.977); positive predictive value, 0.878 (95% CI: 0.834–0.922); and

F1 score, 0.813. In test dataset II, the model had an accuracy of 0.949 (95%

CI: 0.934–0.964), a sensitivity of 0.942 (95% CI: 0.928–956), a specificity of

0.960 (95% CI: 0.927–0.993), a positive predictive value of 0.971 (95% CI:

0.957–0.985), and a F1 score of 0.956.
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Conclusion: The AI model performing a medical interview and basic

ophthalmologic examinations to determine the need for a pupil dilation test

had good sensitivity and specificity for symptomatic patients, although there

was a limitation in identifying asymptomatic patients.

KEYWORDS

artificial intelligence, machine learning, medical interview, ophthalmologic

examination, pupil dilation test

Introduction

In today’s era, artificial intelligence (AI) is one of the

hottest topics in all fields worldwide. Digital device, marketing,

education, and AI itself are the target of AI development

(1–4). The medical field also cannot escape from this trend.

However, only very specific settings in clinical practice,

such as the detection of arterial fibrillation, epilepsy seizure,

and hypoglycemia, or the diagnosis of disease based on

histopathological examination or medical imaging benefit

from the application of medical AI (5). Recent research in

ophthalmology showed that AIs with deep learning algorithms

had an acceptable performance in ophthalmic imaging data,

such as fundus photography and topography (6). However, there

are various challenges in the application of AI in actual clinical

practice, even with AI with good performance for imaging

analysis (7). Considering the flow of medical services from

patients to doctors (Figure 1), tremendous applications of AI

are possible.

Patient visit time for outpatient clinic is one of the key

issues to address in order to improve not only the quality of

medical services but also the clinic efficiency (8). Minimizing the

medical process reduces the patient’s waiting time and medical

costs while improving the satisfaction of service providers and

beneficiaries. Pupil dilation test and fundus examination is

performed to differentiate between intraocular diseases. The

majority of anterior segment diseases are diagnosed using

slit-lamp biomicroscopic examination. In contrast, diseases in

the lens, optic nerve, vitreous, and chorio-retina are basically

diagnosed using pupil dilation test (9). However, after pupil

dilation, some important examinations such as near vision

test, pupillary light reflex, and visual field examination have

a limitation or bias. Moreover, considering the dilation time

after discontinuing mydriatics, fundus examination is a turning

point in the process of medical service in ophthalmology, from

visit to treatment (10). Pupil dilation test can be performed

for a patient with symptoms and signs that suggest the

Abbreviations: AI, artificial intelligence; CI, confidence interval; ICD-10,

International Statistical Classification of Diseases and Related Health

Problems, 10th revision; IOP, intraocular pressure; IRB, institutional

review board.

possibility of an intraocular disease after a medical interview and

basic ophthalmologic examinations. However, in many cases,

because these processes have a limitation to presume some

intraocular diseases, this test is performed after an additional

process that an ophthalmologist conducts directly, such as slit-

lamp biomicroscopy. Moreover, many intraocular diseases are

asymptomatic and are detected incidentally (11–13).

We considered using AI to simplify the medical service

process through the automatic determination of pupil dilation

test. There is no study on AI that recommends pupil dilation

test. This study aimed to determine whether AI can recommend

pupil dilation test appropriately when only basic ophthalmologic

information is provided, as in our clinical situation.

Materials and methods

The study was conducted in accordance with the tenets

of the Declaration of Helsinki, and ethical approval for each

follow-up was obtained from the institutional review board

(IRB) of Yonsei University College of Medicine. All participants

for prospective validation provided written informed consent

before participating. For retrospective data, patient consent was

waived after IRB approval (Protocol number 4-2022-0326).

Participants

The study was conducted at Severance Hospital, Yonsei

University College of Medicine, Republic of Korea. Medical

records from 2017 to 2021 were analyzed. All patients who

visited the outpatient clinic of Severance Eye hospital for the first

time were included the study. The medical service process of the

first visiting outpatient is presented in the flowchart in Figure 1.

The key inclusion criteria were as follows: (1) completed

medical interview and basic ophthalmologic examinations such

as slit-lamp biomicroscopy, pupil dilation test, and fundus

examination, (2) communicated directly (for children, including

parents), and (3) medical records confirmed by a subspecialist.

Patients who did not complete all examinations were excluded.

The diagnosis, treatment, and follow-up plan were confirmed to

exclude unspecified disease.

Frontiers inMedicine 02 frontiersin.org

85

https://doi.org/10.3389/fmed.2022.967710
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ahn et al. 10.3389/fmed.2022.967710

FIGURE 1

The flow of medical services from to doctors in this study.

Basic protocol for first-visiting patients

Medical interview and basic ophthalmologic
examinations

Patients who visited the outpatient clinic for the first time

were interviewed by ophthalmologists and experienced

paramedics who had been trained for at least 2 years

with confirmed hospital protocols. In the interview, chief

complaint, comorbid symptoms, duration, systemic/ophthalmic

history, and familial history were collected (see also

Supplementary material 1). Systemic and ophthalmic diseases

were categorized by the International Statistical Classification of

Diseases and Related Health Problems, tenth revision (ICD-10)

classification. After themedical interview, all patients underwent

basic ophthalmologic examinations such as uncorrected

distance visual acuity, corrected distance visual acuity if

wearing glasses and contact lenses, autokeratometry, corrected

distance visual acuity with autokeratometry, and intraocular

pressure (IOP) with non-contact tonometry. When the IOP

was under 7 mmHg or over 21 mmHg, the measurements were

repeated twice. When the initial measurement of refraction

or keratometric power by autokeratometry failed, a repeat

measurement was performed.

Pupil dilation test and fundus examination

All new patients who visited our clinic were required to

undergo a pupil dilation test and fundus examination.

Further processes

After medical interview and basic ophthalmologic

examination, all new patients underwent additional

examinations, or treatments after referral to subspecialist.

All the contents of the medical processes were saved in the

electronic medical record.

AI modeling

The overall process of AI modeling is described in Figure 2.

AI modeling was constructed based on the electronic medical

record by Python 3.8 program.

Training dataset

Prior to AI modeling, patients who first visited the

outpatient clinic between 2017 and 2020 were included in the

training dataset.

Test dataset

Patients who first visited the clinic in 2021 were included

in the test dataset. First, patients who underwent an eye

screening test for their systemic disease and treatment, as well as

asymptomatic patients including consultation cases from other

medical parts, were included in test dataset I. Subsequently, test

patients that were not included in test dataset I, were included in

test dataset II.

Input variables

The input variables were as follows: (1) General patient

information, including age, sex, systemic/ophthalmologic

history, and family history, (2) symptoms and events, and

(3) results of the basic ophthalmologic examination (see

also Supplementary material 1). Patients’ symptoms were

sorted based on the list in the website of American Academy of

Ophthalmology and our previous study (14, 15). Characteristics,

duration, time aspect, related events, and other purposes of

visiting (i.e., health check-up and screening ophthalmic

complications of systemic diseases and treatments) were also

interpreted (see also Supplementary material 1). For model

training, training dataset was split into training and validation

data in a 3: 7 ratios. Standard scaler was used for visual acuities,

IOP, and the values of autokeratometry.

Output variables

The output variable was set to the binary value of the need

for a pupil dilation test (yes or no). The need for a pupil dilation

test was determined when there were clinically significant lesions

in any of the eyes. A clinically significant lesion for the pupil
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FIGURE 2

The process used in this study and artificial intelligence modeling for recommending pupil dilation test.

dilation test was defined as a lesion in the lens, vitreous, retina,

and optic disc area. It was confirmed by each subspecialist

when one or more of the following criteria were met: (1)

clearly explained patient’s subjective symptoms, (2) required

additional follow-up with the possibility of exacerbation of

disease and/or intervention within 3 months, and (3) required

additional detailed examinations for treatment plan (see also

Supplementary material 2). Lesions such as asymptomatic mild

macular drusen, lattice degeneration without retinal break or

vitreous traction, simple retinal pigmentation and chronic scars,

low-risk glaucoma suspect with long-term follow-up over 6

months, and non-vision impairing cataract were not deemed

clinically significant by subspecialists (16–19). Functional

disorders and extraocular disorders that did not require a pupil

dilation test were also not deemed clinically significant.

Model construction

AI modeling was conducted with fully connected deep

neural network. The activation function for hidden layers was

rectified linear (ReLU) function. Adam optimization was used.

Accuracy was used as ametric. The depth of the hidden layer and

the nodes in each hidden layer were automatically modulated

with network topology. Batch and epoch size were automatically

modulated. Dropout 0.5 and L2 regularization were used to

prevent overfitting. Performance and loss were surveilled to

prevent underfitting. The early stopping method was used.

Statistical analysis

Statistical analysis was conducted with Python 3.8 program.

Model performance was evaluated with accuracy, sensitivity

(also called recall), specificity, and positive predictive value (also

called precision); 95% confidence intervals (CIs) were used.

The false-positive and false-negative cases in each test dataset

were descriptively analyzed with the location of the lesion based

on the ICD-10 classification. If the locations overlapped, all

locations were considered.

Results

In the training dataset, 56,811 patients were enrolled, with

women accounting for 54.1%. The mean age of the patients

was 57.5 ± 18.9 years. The clinically significant lesions for

pupil dilation test were present in 65.1% of the patients. Of the

clinically significant lesions, 28.9% were in the lens, 7.8% in the

vitreous, 38.6% in the macular area, 12.6% in the peripheral

retina, and 20.1% in the optic disc. A total of 3,885 patients were

enrolled in test dataset I, and 14,199 patients were enrolled in

test dataset II. The clinically significant lesions were present in

26.5% of patients in test dataset I and 59.1% of patients in test

dataset II (Table 1).

In test datasets I and II, the AI recommendation for pupil

dilation test had an accuracy of 0.908 (95% CI: 0.880–0.936)

and 0.949 (95% CI: 0.934–0.964), respectively. The sensitivity,
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TABLE 1 Characteristics of study patients in training dataset and test dataset I and II.

Characteristics Training (N = 56,811) Test I (N = 3,885) Test II (N = 14,199)

Age (years, mean±SD) 57.5± 18.9 48.5± 22.3 60.0± 17.8

Sex (proportion of female, %) 54.1 60.2 54.2

Uncorrected distance visual acuity (logMAR, mean±SD) 0.57± 0.51 0.48± 0.52 0.57± 0.50

Corrected distance visual acuity (logMAR, mean±SD)y 0.19± 0.27 0.07± 0.08 0.19± 0.29

Intraocular pressure (mmHg, mean±SD)z 15.3± 3.5 14.7± 3.4 15.2± 3.3

Spherical equivalent (diopters, mean±SD)y −1.65± 3.06 −1.68± 2.81 −1.60± 3.45

Corneal power (diopters, mean±SD)y 43.33± 2.02 42.19± 3.75 43.30± 2.02

Clinically significant lesion (% of eyes) 65.1 26.5 59.1

Lens (% of clinically significant lesion) 28.9 35.3 23.5

Vitreous (% of clinically significant lesion) 7.8 2.5 7.0

Macula (% of clinically significant lesion) 38.6 14.8 40.5

Peripheral retina (% of clinically significant lesion) 12.6 30.0 15.3

Optic disc (% of clinically significant lesion) 20.1 25.5 19.7

yMeasured by auto-keratometry.
zMeasured by non-contact tonometry.

TABLE 2 The performance of AI for recommendation pupil dilation test in test dataset I and II.

Test dataset I (n = 3,885) Test dataset II (n = 14,199)

Estimate 95% CI Estimate 95% CI

Accuracy 0.908 0.880–0.936 0.949 0.934–0.964

Sensitivity (Recall) 0.757 0.713–0.801 0.942 0.928–0.956

Specificity 0.962 0.947–0.977 0.960 0.927–0.993

Positive predictive value (Precision) 0.878 0.834–0.922 0.971 0.957–0.985

F1 score 0.813 - 0.956 -

specificity, and positive predictive value in test dataset I were

0.757 (95% CI: 0.713–0.801), 0.962 (95% CI: 0.947–0.977), and

0.878 (95% CI: 0.834–0.922), respectively, and those in test

dataset II were 0.942 (95% CI: 0.928–0.956), 0.960 (95% CI:

0.927–0.993), and 0.971 (95% CI: 0.957–0.985), respectively

(Table 2). F1 score was 0.813 in test dataset I and 0.956 in test

dataset II.

Table 3 shows the proportion of the locations of the

clinically significant lesions in the false-negative and false-

positive categories in the entire test dataset. In the false-negative

category, 37% of the lesions were in the macular area, 28.1%

in the optic disc, 20.1% in the peripheral retina, 10.3% in the

lens, and 5.3% in the vitreous. In the false-positive category,

73% of the lesions were in the anterior segment, including the

cornea and anterior chamber, and 10.7% were in the eyelid and

extra-orbital area. Further, 17% of the false-positive cases had

non-ophthalmologic causes.

Discussion

The performance of the AI in recommending pupil dilation

test using a medical interview and basic ophthalmologic

TABLE 3 Locations of clinically significant lesions in false-negative

and false-positive categories with overall test dataset.

Locations Proportions (%)

False-negative

Lens 10.3

Vitreous 5.3

Macula 37.2

Peripheral retina 20.1

Optic disc 28.1

False-positive

Cornea and Anterior chamber 73.1%

Eyelid and Extra-orbital area 10.7%

Non-ophthalmologic 17.3%

examinations was good, with ∼95% accuracy in symptomatic

patients. However the AI had a limitation in detecting

asymptomatic lesions in the lens, vitreous, chorio-retina, and
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optic nerve, and the sensitivity and positive predictive value of

test dataset I was∼76 and 88%.

In the ophthalmologic service process, examination of

vision and IOP are generally recommended at a visiting eye

clinic (10). Ophthalmologists select additional differential and

detailed examinations based on the information obtained from

a medical interview and basic ophthalmologic examinations. AI

automation is expected to improve the efficiency of the medical

process (20). We aimed to develop a decision-making AI for

ophthalmologic examinations as a type of AI that will help to

reduce the time and cost of medical services.

Because the characteristics of study population in test dataset

II were more similar to those in training dataset than in

test dataset I, this AI model might perform better in test

dataset II than in test dataset I. This study was conducted

at a tertiary medical service institution, and the number

of asymptomatic patients was smaller than the number of

symptomatic patients as confirmed by the sample size of test

dataset I which was smaller than the sample size of test dataset

II. Analyzing AI model performance in detail, test dataset

I had lower sensitivity and positive predictive value, which

was attributed to the lower true positive ratio. According to

previous studies, fundus examination is important to detect

asymptomatic diseases (16). Glaucoma, diabetic retinopathy,

and age-related macular degeneration are well-known diseases

that are asymptomatic in the early phase (21–23). Ocular

symptoms are not the only reason for a pupil dilation test;

the patient’s ophthalmologic history, systemic disease, and

familial history are also considered (24–27). The importance

of pupil dilation test and fundus examination in asymptomatic

patients is a contrary evidence that the investigator cannot

predict the disease of the posterior segment of the eye from

symptoms alone. Moreover, the past history and familial history

of the patient may be unclear or unrevealed. These problems

were also reflected in the results of our study, especially in

asymptomatic patients.

In this study, information obtained from the medical

interview and basic ophthalmologic examinations used as the

input dataset were limited in determining whether to conduct

a pupil dilation test. The performance of the AI can be improved

by changing the AI model or using a large sample size (28). We

used several methods to overcome the technical problem. First,

the hyperparameters, especially the number of hidden layers,

nodes, batch size, and epochs were modulated automatically

with surveillance of overfitting and underfitting. Increasing

the number of hyperparameters does not always increase the

performance of AI (29, 30). In this study, because there was

no continuous performance improvement with the additional

training process, and the plateau phenomenon was detected

in all of the sequences with hyperparameter modulation,

the possibility of underfitting was carefully estimated to be

minimized. Second, we evaluated the performance with two

validation datasets. We tried to determine whether the lower

performance was due to a technical issue or a limitation of

clinical factor. The results of this study suggest that insufficient

performance in test dataset I of the AI model was caused by

asymptomatic lesions, limitation of clinical factor, and aleatoric

uncertainty. In order to improve the performance of the AI

in cases with asymptomatic lesions, completely new input

information is needed rather than simply increasing the sample

size or changing the AI model.

This study has some limitations. First, the dataset was

collected from a tertiary care hospital. The proportion of patients

with clinically significant lesions in tertiary care hospitals is

different from that in a primary care service. The performance

of AI may vary in a primary care setting, depending on the

application area, such as telemedicine. Prospective applicable

research in various clinical settings is needed. Second, the result

of this study is applicable only for patients visiting the clinic

for the time. AI in patients with previous visiting history is

different, and it could be considered with other AI models

such as recurrent neural network. Third, the patients’ symptoms

were interpreted by medical personnel and did not directly

reflect the patients’ expression. This study did not evaluate the

use of AI by patients. An advanced AI using dataset directly

expressed by patients in ways such as speech or writing is now

being planned. Finally, the definition of “need for pupil dilation

test” was determined by each subspecialist in our hospital. The

definition might be clinically acceptable and the controversial

cases between subspecialists which were <0.1% in this study

were excluded in this study. However, bias from individual cases

could not be completely excluded. Perhaps this issue depends on

the protocol guidelines within hospital or group.

In conclusion, the AI recommending pupil

dilation test had a good performance with only basic

ophthalmologic information for symptomatic lesions,

although there was a limitation of the performance for

asymptomatic lesions.
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Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, 14Center
for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan

Purpose: Diabetic macular edema (DME) is one of the leading causes of visual

impairment in diabetic retinopathy (DR). Physicians rely on optical coherence

tomography (OCT) and baseline visual acuity (VA) to tailor therapeutic

regimen. However, best-corrected visual acuity (BCVA) from chart-based

examinations may not wholly reflect DME status. Chart-based examinations

are subjected findings dependent on the patient’s recognition functions and

are often confounded by concurrent corneal, lens, retinal, optic nerve, or

extraocular disorders. The ability to infer VA from objective optical coherence

tomography (OCT) images provides the predicted VA from objective macular

structures directly and a better understanding of diabetic macular health.

Deviations from chart-based and artificial intelligence (AI) image-based VA will

prompt physicians to assess other ocular abnormalities affecting the patients

VA and whether pursuing anti-VEGF treatment will likely yield increment in VA.

Materials and methods: We enrolled a retrospective cohort of 251 DME

patients from Big Data Center (BDC) of Taipei Veteran General Hospital (TVGH)

from February 2011 and August 2019. A total of 3,920 OCT images, labeled

as “visually impaired” or “adequate” according to baseline VA, were grouped

into training (2,826), validation (779), and testing cohort (315). We applied

confusion matrix and receiver operating characteristic (ROC) curve to evaluate

the performance.
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Results: We developed an OCT-based convolutional neuronal network (CNN)

model that could classify two VA classes by the threshold of 0.50 (decimal

notation) with an accuracy of 75.9%, a sensitivity of 78.9%, and an area under

the ROC curve of 80.1% on the testing cohort.

Conclusion: This study demonstrated the feasibility of inferring VA from

routine objective retinal images.

Translational relevance: Serves as a pilot study to encourage further use

of deep learning in deriving functional outcomes and secondary surrogate

endpoints for retinal diseases.

KEYWORDS

treatment response, diabetic macular edema (DME), medical image, visual acuity,
deep learning

Introduction

The best-corrected visual acuity (BCVA) exam is the most
popular test to reflect the condition of the central fovea and the
severity of many ocular diseases. Introduced in 1862 by Herman
Snellen, the visual chart remained the gold standard for visual
acuity (VA) clinical measurement. Visual charts rely on the
ability of the patient to identify rows of letters at a fixed distance
as each row (line) appears increasingly smaller in size. Although
the chart performance depends on the subjective nature of the
human response, chances in the correct guessing, or human
learning from routine follow-up, the chart remained the basis
for VA assessment in clinics and clinical trials. Traditional
examinations such as the Early Treatment Diabetic Retinopathy
Study (ETDRS) grading scale are usually considered more
preferential than other modalities as ETDRS is associated with
an escalated risk for vision-threatening retinopathy and serves
as a grading scale for retinopathy (1). However, the clinical
relevance of the ETDRS grading scale of diabetic retinopathy
and other chart-based examinations has been challenged by
the difficulty to implement in real-world settings and the
technological advances in image acquisition. Thus, the ability
to easily derive VA surrogate from routine image modalities
provides significant clinical insights throughout the clinical
trajectory of macular diseases.

Since the introduction of intravitreal injections (IVI) anti-
VEGF, physicians are able to treat exudative macular diseases
and recover VA (2–5). In clinical practice, ophthalmologists rely
on multiple information, accumulated experience, and intuitive
predictions to predict diabetic macular edema (DME) treatment
response and whether the treatment is worth pursuing based
on an individual’s response (6, 7). In daily clinical practice,
clinicians often encounter DME patients with concurrent ocular
diseases (Figure 1) . Therefore, traditional VA examinations
based on charts may not wholly reflect DME status or be

accurately quantified. For this reason, we aimed to provide
surrogate VA based on optical coherence tomography (OCT)
that depict macular structural health directly.

Optical coherence tomography is routinely used to screen
patients with macular disease where the technology depicts the
structural retinal health via scans of retinal cross layers (8–
10). Besides, the popularity of OCT across medical settings
(i.e., optic glass store, non-ophthalmic clinics) makes the utility
practical for disease screening and earlier referral. The wealth
of information generated via non-invasive retinal scans makes
the technology ideal to distinguish baseline status and treatment
response (11–14). The ability to infer surrogate VA from
OCT and by assisting physicians in detecting OCT-VA and
chart-based VA mismatch will allow the physician to derive
treatment strategies taking account of concurrent ocular disease
to maximize VA recovery.

To evaluate the potential of deep learning in predicting
VA outcomes from structural and functional assessments in
the early stages of the diagnosis, we built an SD-OCT-based
deep learning model using real-world data to infer the VA cut-
off value of 0.50, consistent with the minimal requirement for
referral by the AAO (15). To our knowledge, this is the first study
to implement deep learning in inferring VA from OCT images
in DME patients.

Methods and materials

Ethical approval and data source

This study was approved by the Institutional Review Board
(IRB) of Taipei Veterans General Hospital (TVGH) and written
informed consent was signed. This study does not include
minors, or minorities. Optical coherence tomography (SD-
OCT) B-Scans were selected as the primary input information
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FIGURE 1

Ocular diseases that influence visual acuity (VA). Diseases impact the visual axis, such as corneal lesions caused by degeneration, clouded lens
by cataract, floaters by uveitis, choroidal neovascularization due to age-related macular degeneration (AMD); and optic nerve neuropathy by
glaucoma. Such impact obscures diabetic macular edema’s (DME) involvement in the functional outcome of treatment response, and the need
for DME treatment. Diagram (A) presents concurrent ocular disorders that impact VA measurement, while (B) demonstrates the VA directly
measures macular health when isolate DME is present. Black arrow denotes the visual axis.

to establish the computer-assisted visual acuity diagnosis system.
All OCT images and subjective, objective, assessment, and plan
(SOAP) notes between February 2011 and August 2019 were
retrieved from the databank in the big data center (BDC)
of TVGH. This dataset consists of de-identified secondary
data released for retrospective research purposes. In addition,
the OCT images were collected from the patients diagnosed
with diabetic macular edema (DME) who sought medical help
in the TVGH’s Department of Ophthalmology and received
an ophthalmology image inspection using the RTVue XR
AngioVue OCT device (Optovue Inc., Fremont, CA, USA).

Study participants

Patients were enrolled based on the following inclusion
criteria: (1) age above 20 years old, (2) diagnosis of diabetes
mellitus (I or II), (3) diagnosis of DME with available baseline

OCT image and VA, (4) BCVA measured by Snellen chart
from 0.05 to 1.50 (decimal), (5) central-involved macular
edema defined by the retinal thickness of >250 µm in the
central subfield based on Optovue’s automated quantification
and the presence of intraretinal fluid (IRF) and subretinal fluid
(SRF) seen on SD-OCT, Exclusion criteria were as follows: the
presence of cataract or clouded lens, without cataract surgery
records. The ocular conditions were obtained from the clinical
charts documented by ophthalmologists on the same day when
OCT images were taken. In addition, patient charts were
reviewed for demographic data, hemoglobin A1C (HbA1C)
values, and BCVA.

Clinical labeling

Best-corrected visual acuity of both eyes was measured
on the same day when OCT images were acquired in the
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Department of Ophthalmology, TVGH. Physicians obtained
each OCT scan with a ground truth BCVA and documented
it on chart review in each visit. We excluded patients with
unspecified BCVA or profound visual impairment defined
by the International Classification of Diseases, 11th Revision
(ICD-11) as BCVA of decimal notation less than 0.05. Our
study employed the cut-off value of 0.50, consistent with the
minimal requirement for referral by the American Association
of Opthalmology (AAO) (15). We defined BCVA values greater
than or equal to 0.50 labeled as "adequate" and those less than
0.50 as “impaired” (Figures 2, 3). The same 0.50 thresholds to
discriminate against patients with adequate and impaired vision
is consistently used in the literature (16–18).

Datasets and image pre-processing

All participants in this retrospective study were selected
based on a comprehensive ophthalmic examination. OCT is
accessed via the Big Data Center where reports containing
horizontal scan and vertical scan of mid-foveal position is

uploaded as PDF reports by Optometrist to the institutions
medical image storage PACS (Picture archiving communication
system). We cropped the region of interest (ROI) from both
vertical and horizontal scans and saved the image in png format
(resolution 1960 × 645, bit depth 8) for subsequent model
development. The ROI is extractracted from the middle one
third of scan areas and downsized them to 224 × 224 pixels
resolution by bicubic interpolation. The images were divided
into training, validation, and testing groups (Figures 2, 3).
First, 70% of the images were incorporated into the training
group to train and generate the model parameters. Then, the
model’s performance was checked by evaluating an independent
validation group (20%). The model that generated the smallest
error was designated as the final model. Finally, the test group
was composed of the remaining dataset (10%) independent of
the training. This group was used to appraise the accuracy rate
of the final model. To improve deep learning DL efficiency,
we conducted data augmentation by horizontal and vertical
translation, zooming, Gaussian blurring of the additional noise,
horizontal flipping, and random rotation within 30◦ translation,
zooming, Gaussian blurring of the additional noise, horizontal

FIGURE 2

Schematic diagram showing the flow of this study. We included patients diagnosed with DME with the best- BCVA between 0.05 and 1.50 and
collected the optical coherence tomography (OCT) dataset. The dataset was labeled accordingly with BCVA obtained and DME OCT features by
experienced ophthalmologists. The pre-processed OCT database trained the convolutional neural network, so the artificial intelligence
algorithm could predict VA and guide therapeutic strategy.
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FIGURE 3

Flowchart showing the selection of optical coherence tomography (OCT) images and their analysis. OCT images and patient clinical
information were de-identified secondary data released for retrospective research purposes (N = 4,265). The OCT images were collected from
the patients diagnosed with DME with clear lens (N = 912) or artificial intraocular lens (N = 3,353), best-corrected visual acuity (BCVA) measured
from 0.05 to 1.5 (decimal), excluding those with lower than 0.05 (N = 3,920). Afterimage preprocessing, the dataset was categorized into
training (N = 2,926), validation (N = 779), and test (N = 315) for the establishment of the AI platform.

flipping, and random rotation within 30◦. The augmented
dataset was used only for training and not validation or testing.
The resized or augmented images then underwent pixel-wise
min-max normalization, linear mapping of pixel intensities to
the range [−1, 1]. We then used the F1-score, accuracy, and area
under the curve (AUC) to evaluate the AI model’s performance.
F1-score evaluates the test’s accuracy calculated from the test’s
precision and recall (sensitivity) (Figure 2).

Establishing the artificial intelligence
models

An efficient recognition algorithm, convolutional neural
network (CNN), is frequently used in image processing

TABLE 1 The details of the final trained models.

Parameters Setting

Architecture EfficientNet

Optimizer SGD

Loss function Binary cross-entropy

Learning rate 1e-4 and 1e-5

Batch size 32

Total number of epochs run during training 310

The final model parameters showed the most superior performance where we also
compared transfer learning models of the different network architectures, VGG11,
VGG16, and ResNet34.

and pattern recognition (19, 20). We used EfficientNet-B0
deep neural network architecture to classify OCT images in
this study (21). Employing transfer learning, we compared
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EfficientNet-B0 with models of different network architectures,
VGG11, VGG16, and ResNet34, which were pre-trained for
different tasks, converged them for considerably faster steady
value, and reduced training time. Furthermore, the AI models
were established using the Google cloud platform with two-core
vCPU, 7.5 GB RAM and an NVIDIA Tesla K80 GPU card; the
software used was CentOS7 with Keras 2.2.4 and TensorFlow-
GPU 1.6.0 for training and validation. Because of the retina’s
size and shape variations, a stochastic gradient descent (SGD)
algorithm trained the computational layers with a relatively
small batch size (32 images). The total training iteration was
310 epochs; the learning rate was le-4 in the first ten epochs,
and the learning rate was downgraded to le-5 in the successive
epochs. The training for all categories was performed for 310
epochs, and the loss was calculated using the binary cross-
entropy loss function.

To prevent overestimating and overfitting our model’s
performance, we ensured that both the previous train-test split
and the subdivision of the training set were done “patient-
dependent” to ensure that no images from a single patient
could appear in training corresponding validation sets. The final
model parameters, listed in Table 1, were selected based on the
validation set’s accuracy (Figure 4) and used for the testing set.

Final test and clinical evaluation

To evaluate the final AI model’s performance, we used the
confusion matrix and the receiver operating characteristic curve
(ROC curve) (22, 23). The confusion matrix, comprising four
parameters such as true positive (TP), true negative (TN), false
positive (FP), and false-negative (FN), was used to evaluate
the accuracy, precision, recall (sensitivity), and F1-score. The
ROC curve evaluated the false-negative performance with both
continuous and ordinal scales (24). Negatives were summarized
with a graphical plot of 1-specificity against the sensitivity and
the area under the ROC curve (AUC). Attempting to fathom
which pathognomy features were critical in associating with
BCVA, we used the Grad-CAM technique to visualize the heat
map of AI’s recognitions (25–27).

Results

Image collection

A total of 259 patients with DME were recruited, and eight
patients with visual acuity of decimal notation less than 0.05
were excluded. The participants were mostly over 60 years
old, with an average age of 63 years. The ratio of males was
130 (51.8%). While 17.5% of patients had clear lenses, the
remaining 82.5% had undergone intraocular lens (IOL) surgery.
The database contained 3,920 images. Images from 24 randomly

selected patients (9.6% of 251 patients) were preserved as
the final test set, and the rest of the images constituted the
training and validation sets. A total of 182 and 45 patients have
been assigned to training and validation datasets, respectively.
Therefore, a total of 1,431 OCT images labeled as “impaired
vision” and 1,395 OCT images labeled as “adequate vision”
constituted the training set (70% of all enrolled images), the
validation dataset (20% of all enrolled images) contained 386
OCT images with “impaired vision” label and 393 OCT images
with “adequate vision” label. The test dataset (10% of all enrolled
images) was composed of 315 OCT images, which contained
162 images with an “adequate vision” label and 153 images
with an “impaired vision label,” as shown in Table 2. Besides,
BCVA values of the impaired and adequate groups dataset were
similar in each dataset (the visual acuity of the impaired group
and adequate group in each dataset was close to 0.22 and 0.68,
respectively) (Table 2).

Model development

The CNN model EfficientNet achieved superior
performance during the training process and was selected
as the final model for subsequent verifications. The training
process’s detailed learning curve revealed that iterations
attained lower loss and higher accuracy as the model underwent
successive iterations (Figure 4). Finally, the validation accuracy
curve achieved a testable level, and the training accuracy was
higher than the validation accuracy, which meant that the
training process was finished. The 232nd epoch represented the
best performance of the validation accuracy (76.1%). Hence,
this trained AI model has been selected as the final model to
execute the final test.

The final test of the trained artificial
intelligence model

Finally, the final trained AI model was verified by the final
test dataset to evaluate its realistic performance. The test dataset
contained 162 images with the “adequate vision” label and
153 images with the “impaired vision” label. Our AI model’s
accuracy, precision, recall, and F1-score were 75.9, 68.6, 78.9,
and 73.4%, respectively (Figure 5A). As was calculated from
the receiver operator characteristic (ROC) curve, the area under
the curve (AUC) was 0.801, with the confidence interval (CI)
from 0.751 to 0.851 (Figure 5B). Furthermore, we applied heat
map visualization to identify OCT image areas recognized by
the AI to discriminate between BCVA classes (Figure 6). The
heat maps highlighted a more extensive area covering nearly the
entire retinal layer instead of specific smaller lesions in some
cases. The more extensive coverage of heat maps identified by
AI to be critical for the determination of BCVA could be related
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FIGURE 4

The deep learning model training curve. The CNN model EfficientNet training process revealed that iterations attained lower loss (A) and higher
accuracy (B) as the model underwent successive iterations with the 252nd epoch representing the best performance.

TABLE 2 The details of the training, validation, and final test datasets list the numbers of allocated patients and optical coherence tomography
(OCT) images and average BCVA values of patients.

Dataset Training Validation Final test

Number of patients 182 45 24

Number of images 2,826 (1,431 impaired, 1,395 normal) 779 (386 impaired, 393 normal) 315 (153 impaireds, 162 normal)

BCVA (SD) Impaired 0.22 (0.12) Impaired 0.23 (0.13) Impaired 0.22 (0.14)

Normal 0.68 (0.17) Normal 0.69 (0.20) Normal 0.66 (0.14)

BCVA, best-corrected visual acuity; SD, standard deviation.

to the multiple microstructural changes and the thickness of the
retina.

Discussion

Artificial intelligence in DR screening and referral decisions
has achieved clinical reality. The first FDA-approved AI system
(2018), IDx-DR (Iowa, USA), can analyze the digital fundus
photograph (FP) in DR screening to provide referral suggestions
(23). Apart from using the FP-based AI model, researchers have
also developed an OCT-based algorithm, Notal OCT analyzer
(NOATM, Notal Vision, Israel), which uses deep learning
algorithms to detect the retinal fluid in AMD patients (24).
However, up-to-date, in our literature review, there is no study
focusing on an AI-based model to evaluate visual acuity in
DR nor DME. Thus, our study developed an OCT-based AI
model that could infer the binary VA status separated by the
threshold of 0.5 (decimal notation) and attained an accuracy of
75.9%, a sensitivity of 78.9% with AUC = 80.1% based on OCT
images only (Figure 4). Furthermore, to verify that our deep
learning model indeed analyzed the exacted structural features
of DME, we applied the heat map visualization to graphically

show the different weighted values in pixel matrices of OCT
images (Figure 6).

While visual acuity is a clinical measurement of changes in
visual function as a primary endpoint, FDA recommends that
retinal imaging technologies help determine anatomic markers
for clinical progression of the disease. With the advent of
imaging technologies such as the color fundus, angiography,
and OCT, clinicians can observe the structural health of the
neurosensory retina and generate new endpoints not previously
accessible. For example, current technologies can identify onset,
or progressions before symptom occurrence, leading to smaller
marginal changes for earlier intervention and better visual
outcomes. The use of OCT images was therefore incorporated
into the work routine of the ophthalmologist to quantify the
structural changes in individual patients’ retinal pathological
and topographic profiles (28). In addition, the ease of use and
adoption into routine clinical practice makes the technology
powerful to derive surrogate endpoints that change along with
clinical endpoints and represent the disease status.

There are several limitations to our study. Rather than
inferring the continuous VA variable, we only employed a binary
classification of “impaired” and “normal” VA. Some may argue
that the grade of impairment is essential as we may evaluate
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FIGURE 5

The final test of the trained AI model. (A) Confusion matrix demonstrating the accuracy of prediction of two visual acuity classes based on the
validation dataset of OCT images. (B) Receiver operating characteristic (ROC) curve showing the accuracy of prediction with the area under the
curve (AUC) = 0.801.

FIGURE 6

The heat map visualization of representative six (A–F) OCT images recognized by our AI model as predictors of best-corrected visual acuity
(BCVA)-defined impaired vision. Top panel: original input images from the final test dataset. Bottom panel: heat map visualization of areas used
by our AI model to discriminate between BCVA classes.

whether the patient is close to the treatment threshold or far
away. Linear regression was not performed as we face small
sample size that does not follow the assumption of normality,
constant variance, and independent sampling, to construct a
robust model in predicting visual function status at the decimal-
level. Besides, our small sample size coupled with real-world
heterogeneity caused our standard deviation of VA relatively
large and BCVA measurements in the clinic may not be recorded
as vigorously in controlled trials with EDTRS logmar standard.
Our deep learning model may assist in evidence-based assistance
to the physician, alleviating their burden in determining those
with impaired vision (less than 0.5 baseline VA). Moreover,
we only excluded patients with cataract diagnoses without
cataract surgery. To achieve a better yield, we ideally have to
impose exclusion criteria such as (1) prior history of choroidal
neovascularization due to AMD, retinal vein occlusion, uveitis,
or any other inflammatory disease, (2) presence of cataract

or clouded lens, (3) glaucoma or any other neuropathy, (4)
epiretinal membrane, vitreomacular traction disease, or any
other maculopathy, and (5) corneal disease or degeneration. By
only excluding cataracts, we obtain broader inclusion criteria
that allow this AI model to closely imitate real-world settings
and be expanded to accommodate most DME patients. Our
AI model may be extended to serve a wider population by
not excluding patients who underwent previous treatment and
can be used for screening, referral, and monitoring. Finally,
our model is constructed with horizontal and vertical scans
of the mid-foveal position and not OCT volume. Therefore,
we cannot analyze the concordance of the binary outcome
of several OCT slices of the same patient and quantify their
contradicting outcomes.

In the future, inferring VA based on imaging may
be considered as quasi-functional surrogate endpoints for
interventional clinical trials. By doing so, clinical trials can
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enroll a larger set of patients that resemble those in the real
world and provide treatment recommendations that can be
implemented in the clinic (29–31). Furthermore, DME results
in loss of visual function long before visual acuity is impaired
as central acuity is not always affected. Herein, only a subgroup
of DME fits the standard. Clinically significant macular edema
(CSME) is defined as a lesion within 500 µm of the foveal
center and center involved macular edema as central subfield
retinal thickness of >250 µm in central 1 mm ETDRS grid
(foveal thickness). Much macular retinal health recovery is
not reflected in visual acuity. Visual acuity measured by visual
charts (EDTRS, Snellen test) measures the photopic function of
the central retina and is not reflective or sensitive to gain of
retinal health or therapeutic benefits. Therefore, it is proposed
that patient-reported outcome measures assess impairment
of visual function in more detail. Redefine investigation of
treatment effects superior to standard visual acuity testing
without the need for extensive psychophysical examination. The
European Medicines Agency (EMA) and FDA now demand the
employment of patient-reported outcome measure (PROM) as
functional endpoints in clinical trials (NEI-VFQ-25) are now
routinely used as a valid and reliable measure of patients’ vision-
related quality of life. However, these tests are time-consuming,
demanding for the elderly patient, and present significant
inter-interpreter variability. In addition, rather than inferring
function in a cross-sectional time manner for baseline VA,
another interesting aspect is to predict VA in the future – what
are the estimated letter gains after IVI-VEGF for my disease
status? These algorithms inform patients about treatment
prognosis and give patients the power to self-assess the cost-
benefit of pursuing the IVI-VEGF. Overall, sensitive and robust
outcome measures of retinal function are pivotal for measuring
the clinical trial primary endpoint of VA and reinforce patient
autonomy in the decision-making process.

Conclusion

This study built an OCT-based deep learning model that
inferred VA status based on OCT and was correlated with
the concurrent BCVA measured by standard visual charts. We
achieved an accuracy of 75.9%, sensitivity of 78.9%, and a ROC
AUC of 80.1%. This demonstrated the feasibility of predicting
the functional outcome VA from routine ophthalmic images and
served as a pilot study to develop further surrogate markers that
can better represent the disease.
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Background: Many artificial intelligence (AI) studies have focused on development of

AI models, novel techniques, and reporting guidelines. However, little is understood

about clinicians’ perspectives of AI applications in medical fields including ophthalmology,

particularly in light of recent regulatory guidelines. The aim for this study was to evaluate

the perspectives of ophthalmologists regarding AI in 4 major eye conditions: diabetic

retinopathy (DR), glaucoma, age-related macular degeneration (AMD) and cataract.
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Methods: This was a multi-national survey of ophthalmologists between March 1st,

2020 to February 29th, 2021 disseminated via the major global ophthalmology societies.

The survey was designed based on microsystem, mesosystem and macrosystem

questions, and the software as a medical device (SaMD) regulatory framework

chaired by the Food and Drug Administration (FDA). Factors associated with AI

adoption for ophthalmology analyzed with multivariable logistic regression random forest

machine learning.

Results: One thousand one hundred seventy-six ophthalmologists from 70 countries

participated with a response rate ranging from 78.8 to 85.8% per question.

Ophthalmologists were more willing to use AI as clinical assistive tools (88.1%,

n = 890/1,010) especially those with over 20 years’ experience (OR 3.70, 95% CI:

1.10–12.5, p = 0.035), as compared to clinical decision support tools (78.8%, n

= 796/1,010) or diagnostic tools (64.5%, n = 651). A majority of Ophthalmologists

felt that AI is most relevant to DR (78.2%), followed by glaucoma (70.7%), AMD

(66.8%), and cataract (51.4%) detection. Many participants were confident their roles

will not be replaced (68.2%, n = 632/927), and felt COVID-19 catalyzed willingness to

adopt AI (80.9%, n = 750/927). Common barriers to implementation include medical

liability from errors (72.5%, n = 672/927) whereas enablers include improving access

(94.5%, n= 876/927). Machine learning modeling predicted acceptance from participant

demographics with moderate to high accuracy, and area under the receiver operating

curves of 0.63–0.83.

Conclusion: Ophthalmologists are receptive to adopting AI as assistive tools for

DR, glaucoma, and AMD. Furthermore, ML is a useful method that can be applied

to evaluate predictive factors on clinical qualitative questionnaires. This study outlines

actionable insights for future research and facilitation interventions to drive adoption and

operationalization of AI tools for Ophthalmology.

Keywords: ophthalmology, artificial intelligence (AI), regulation, implementation, translation

INTRODUCTION

Aging populations are fueling an exponential growth in the
demand for eye care and insufficient capacity of eye care services
in many health systems (1–3). This has created mounting
pressure to develop solutions that optimize existing resources,
facilitate the triage of patients, and expand the surge capacity
of health systems (4, 5). These constraints were heightened by
clinical service disruptions during the coronavirus disease 2019
(COVID-19) outbreak, ranging from operational reorganization
for pandemic responses as well as a mounting backlog of
postponed elective services (5, 6). In response, the medical
community has identified artificial intelligence (AI) as a potential
solution to mitigate these pressures. A mature implementable
AI digital solution could provide scalable automation, alleviate
resource bottlenecks and expedite treatment process. This is
particularly relevant for Ophthalmology, where extensive use
of digital sensors and image-acquisition technologies provide a
strong foundation for AI deployment (7).

Currently, AI for automated classification in ophthalmic
imaging has been validated with clinically acceptable

performance and evaluated in many studies (8–15), including
clinical trials (7, 16), health economic analyses (17), reporting
standards such as CONSORT-AI, SPIRIT-AI, and STARD-AI

(18–22), AI ethics, trust, reproducibility, and explainability

(23, 24). However, expert consensus for the acceptable forms

of clinical AI applications have not been established. In recent

clinical AI implementation studies, a range of barriers were

reported to hinder successful clinical translation, for example

lack of trust amongst stakeholders, organizational lack of
capacity, and system limitations in necessary supporting
infrastructure (25).

Earlier studies have surveyed general perceptions of AI

among different users (e.g., medical students, radiologists) (26–

28), although sample sizes were relatively small and limited to

specific society or geographical location. Furthermore, none have
evaluated the entire healthcare ecosystem from the microsystem
(e.g., individual practitioners) (29, 30), to mesosystem (e.g.,

specific organizations) and macrosystem (e.g., system-level

policies and population screening services) (31). These are crucial

steps to determine practical requirements for effective clinical
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implementation at each level of the health system, and to inform
initiatives to facilitate sustained adoption (32). The objective
of this study is to evaluate the acceptance and perception of
AI applications among ophthalmologists for the leading causes
of preventable blindness including diabetic retinopathy (DR),
glaucoma, age-related macular degeneration (AMD), and/or
cataract, using the United States Food and Drug Administration
(US FDA) software as medical device (SaMD) guideline as a
reference framework.

METHODS

This was an expert survey investigation of eye care practitioners
regarding their perspectives for clinical artificial intelligence (AI)
solutions in Ophthalmology. Responses from ophthalmologists
to this anonymous web-based electronic survey are investigated
in partnership with professional associations through convenient
selection to reflect the spectrum of geographical regions and
subspecialties across the Ophthalmology medical field. The
temporal proximity of the study period (1 March 2020–1 March
2021) to the COVID-19 outbreak (declared a pandemic by the
World Health Organization on 11 March 2020) also enabled
collection of data regarding its impact on provider perspectives
of AI applications. This research adhered to the tenets of the
declaration of Helsinki, and Singhealth Institutional Review
Board (IRB) approval was obtained with waiver of the need for
informed consent (CIRB Ref 2020/2219).

Survey Development
The study survey was iteratively refined through literature review
to develop semi-structured dichotomous and Likert questions
(Appendix 1). This was followed by a pilot exercise with 6
clinical and academic Ophthalmology experts in Singapore,
China, and Australia who have extensive experience in the
conduct of AI-related research and recently published an AI-
related peer-reviewed manuscript. Based on the results of
the pilot exercise, the survey was finalized with optional
responses programmed for individual qualitative questions. This
was to avoid forced responses in the event a question was
irrelevant for a given participants’ practice setting [e.g., for
Supplementary Tables 1A–C, regions with a lack of trained allied
primary eye care services (PECS) or primary care provider
(PCP) with eye care services]. Research was conducted remotely
during the COVID-19 pandemic. It was hosted on an online
survey platform (SurveyMonkey, San Mateo, USA) and designed
to assess ophthalmologists’ perspectives regarding their own
organizations willingness to adopt AI as well as their own
professional acceptance of various clinical AI applications for
eye care.

First, professional acceptance of various clinical AI
applications for eye care services was evaluated based on
the regulatory guidance outlined in the SAMD document
prepared by the International Medical Device Regulators Forum
(IMDRF) working group chaired by the US FDA (33). A risk-
based approach is applied accordingly, with ophthalmologists
responding about their acceptance of AI applications in a matrix
questionnaire based on the intended user, clinical context,

and significance of the information provided to the healthcare
decision based on the SaMD framework.

Intended users included ophthalmologists, primary eye care
providers (PECPs, such as optometrists and opticians) and
primary care providers (PCPs) with eye care services. Clinical
contexts evaluated include the detection of common eye diseases
DR, glaucoma, AMD and/or cataract.

Significance of information provided to the healthcare
decision were classified based on the SaMD framework for
intended uses to inform clinical management, drive clinical
management, or diagnose eye diseases, as assistive tool, clinical
decision support (CDS) tool or diagnostic tool, respectively
(33). Applications of AI as assistive tools to inform clinical
management include highlighting areas of interest in ophthalmic
images for the practitioners’ consideration to arrive at a diagnosis
and treatment plan. Applications of AI as CDS tools to drive
clinical management include providing possible provisional
diagnoses based on areas of interest in ophthalmic images for
the practitioners’ consideration to develop a treatment plan.
Applications of AI as diagnostic tools include providing a clinical
diagnosis including stage of disease based on ophthalmic images,
with or without management recommendations.

Next, Ophthalmologists’ views on factors contributing to AI
acceptance were evaluated considering all levels of the healthcare
ecosystem from the microsystem to the macrosystem. First, the
factors contributing to technology acceptance at the level of
the healthcare microsystem including professional acceptance
of clinical AI applications, acceptable level of error, perceived
impact on professional roles, and potential barriers/enablers for
adoption were explored (31). Second, factors contributing to
technology acceptance at the level of the healthcare mesosystem
were explored, including perceived willingness to adopt AI
for clinical services within the organizations they practice
in, anticipated organizational impact of clinical AI adoption,
and likelihood of organizational facilitation of its adoption.
At the mesosystem level, participants were also asked about
the perceived willingness of their organizations to adopt AI
for screening or diagnosis of the four major contributors
to avoidable blindness, namely, diabetic retinopathy (DR),
glaucoma, age-related macular degeneration (AMD) or cataract
(34). Furthermore, participants were asked to report any
anticipated organizational impact of the adoption of clinical AI
for eye care services. Third, participants were asked to report
their perspectives on the potential value of AI at the level of the
macrosystem for eye care services. Finally, given the proximity of
survey dissemination with the onset of the coronavirus disease
2019 (COVID-19) pandemic, participants were also surveyed
about their perceptions regarding its impact acting at the level of
the healthcare macrosystem, on future meso- and micro-system
priorities for adoption.

Survey Dissemination
The web-based survey was disseminated through snow-
ball sampling of professional Ophthalmology associations.
Collaborating associations were selected to represent participants
from a breadth of clinical Ophthalmology and imaging
subspecialties as well as geographical regions of practice
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FIGURE 1 | Geographical origin of participants to the APPRAISE survey.

(Acknowledgment). Study recruitment was conducted using
standardized invitations sent by the associations via their
official established channels with all actively enrolled members.
Recruitment was led by a study teammember that was a member
in good standing in each participating professional association.

The initial invitation to participate was sent to all actively
enrolled members within each association. All invitations were
sent by email and supplemented by regional practices based
on the societies established channels with their members, such
as WeChat in China. Invitations included the unique uniform
resource locator (URL) of the web-based survey, that was
programmed to restrict entries to one per participant-device to
avoid duplication of entries from providers enrolled in multiple
associations and/or receiving invites from multiple channels.
Invitations were followed by 3 reminders at ∼2-week intervals,
coordinated by the study team members.

Statistical Analysis
Responses were described with valid percentages for categorical
variables as well as mean and standard deviation (SD) for
continuous variables, with response rate tabulated for each
question. The geographical origin of participants is classified
based on the World Bank (WB) classification for 7 global regions
(35). The economic background of participants is categorized
using the 2017 International Council of Ophthalmology (ICO)
classifications for low/intermediate and high resource settings,
whereby countries grouped under resource-constrained settings
were those classified by the WB as low- to upper-middle- income
economies, and countries under resource-abundant settings were
those classified by the WB as high-income economies (35,
36).

Quantitative analysis of any associations between provider
acceptance and demographic information are reported.
Multivariable logistic regression was performed to investigate
any linear associations between provider acceptance of AI
application in Ophthalmology and demographic information
including age, gender, country (region of practice), economic
background, experience, and self-rated understanding of AI for
participants. To obtain a 95% confidence interval with 5% for
the margin of error and 50% response distribution, a minimum

TABLE 1 | Demographics of participants.

Question Responses N (%)

Gender Female 430 (36.6)

Male 597 (50.8)

Prefer not to say 149 (12.7)

Age (years) Mean, Standard

deviation (SD)

46.84,

10.936

Clinical practice experience in eye

care services (eye screening,

optometry, ophthalmology, etc)

Not practicing in eye

care

13 (1.1)

Currently in training

(students in

Ophthalmology and/or

Optometry)

28 (2.4)

<5 years clinical

practice experience

73 (6.2)

5–10 years clinical

practice experience

183 (15.6)

10–20 years clinical

practice experience

323 (27.5)

20–30 years clinical

practice experience

337 (28.7)

>30 years clinical

practice experience

219 (18.6)

Participant region of practice using

world bank classification (All:

Missing 2)

East Asia & Pacific 870 (74.0)

Europe & Central Asia 51 (4.3)

Latin America & the

Caribbean

87 (7.4)

Middle East & North

Africa

20 (1.7)

North America 13 (1.1)

South Asia 128 (10.9)

Sub-Saharan Africa 7 (0.6)

How would you rate your

understanding about deep

learning, machine learning, and AI?

Excellent 66 (5.6)

Above average 226 (19.2)

Average 639 (54.3)

Below average 196 (16.7)

Very poor 49 (4.2)

sample size of 385 was calculated for the outcome of willingness
to adopt AI in the next 5 years. Statistical significance was set at a
p-value of 0.05. Analysis was performed using SPSS (IBM, SPSS
Inc, USA).

In addition, machine learning (ML) analysis of survey
responses was conducted using six selected input variables
(clinical practice experience, World Bank geographical region,
2017 ICO classification for resource availability, gender, age,
and self-reported AI understanding), to predict a total of 15
outcomes (output variables). An independent random forest
model was trained to predict each outcome from the input
variables in an exploratory analysis to assess for any non-linear
associations between provider acceptance of AI and demographic
information. The training dataset was randomly divided into
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1,000 subjects for training, and 176 subjects for validation.
To train each random forest model, five-fold cross-validation
was first performed on the training dataset, to optimize four
hyperparameters: the entropy criterion, the maximum depth of
the random forest trees, the maximum number of features, and
the number of tree estimators. The optimal hyperparameters
thus found were then used on train the final model on the
full training dataset, and subsequently applied to the validation
dataset to evaluate the area under the receiver operating
curve (AUC).

The Breiman-Cutler permutation importance measure was
used to determine the most important input variable(s) in
predicting each outcome (37). The permutation importance
measure was computed by permuting the column values of
a single input variable, and calculating the drop in overall
accuracy caused by the permutation. For the outcome variables
with six initial options (Strongly Agree, Agree, Neutral,
Disagree, Strongly Disagree, Unsure), Strongly Agree and
Agree were grouped together as positive outcomes, with the
remaining options considered negative outcomes. For the
outcome variables with three initial options (Yes, No, Unsure),
Yes was considered a positive outcome, and No/Unsure as
negative outcomes.

RESULTS

A total of 1,176 ophthalmologists from 70 countries responded
to the survey with representation from all 7 world bank
geographical regions (Figure 1), although a majority practice
in the East Asia & Pacific (74.0%), South Asia (10.9%) and
Latin America & Caribbean (7.4%) regions. Participants had a
mean age of 46.7 +/– 10.9 years. There was a slightly increased
number of 597 male (50.8%) compared to 430 female (36.6%)
participants, whereby 149 (12.7%) participants opted not to
disclose their gender.

Participants reported a spectrum of clinical experience mostly
between 10 and 30 years, whereby 323 participants had 10–
20 years (27.5%) and 337 participants 20–30 years (28.7%)
of experience. When asked to rate their understanding about
machine learning (ML), deep learning (DL), and artificial
intelligence (AI), a majority self-rated their understanding as
average (54.3%, n = 639/1,176). Participant demographics are
detailed in Table 1.

Microsystem—Professional Acceptance of
Clinical AI Applications for Eye Care
Participants were asked about their acceptance of various
applications of AI for eye care services based on the
solutions’ intended user and clinical application in accordance
with the SaMD regulatory framework. Assistive tools to
inform clinical management were the most acceptable
form of clinical AI application in ophthalmology, with
applications designed for use by ophthalmologists (89.2%,
n = 901/1,010) receiving higher acceptance than those
intended for use by Primary Eye Care Providers (88.1%, n
= 890/1,010). Professional acceptance of AI applications

as CDS tools to drive clinical management received
lower acceptance. Diagnostic tools intended for use
by ophthalmologists received the lowest (59.1%, n =

597/1,010) acceptance among the 6 categories (Figure 2A,
Supplementary Table 1A).

Multivariate analysis was also conducted for the professional
acceptance of clinical AI applications based on their intended
users with demographic factors included for adjustment
(Table 2). In this model, the odds of professional acceptance of
AI applications for PECPs as assistive tools was lower among
participants practicing in Latin America and the Caribbean (OR
0.42, 95% CI: 0.19–0.90, p = 0.025) than those practicing in
East Asia and the Pacific. However, acceptance of AI applications
for PECPs as diagnostic tools was relatively higher among
participants that self-rated their understanding of AI as average
(OR 1.06, 95% CI: 0.01–0.84, p = 0.033) or above average (OR
1.21, 95% CI: 0.02–0.95, p= 0.044).

On the other hand, the odds of professional acceptance of AI
applications for ophthalmologists as assistive tools was relatively
higher among those with clinical experience of 20 or more years
(OR 3.70, 95% CI: 1.10–12.5, p = 0.035). Similarly, acceptance
of AI applications for ophthalmologists as diagnostic tools was
relatively higher among participants with increasing age (OR
1.03, 95% CI: 1.00–1.05, p = 0.019), male gender (OR 1.40, 95%
CI: 1.02–1.91, p= 0.037), and participants practicing in the Latin
America and the Caribbean region (OR 2.20, 95% CI: 1.14–4.24,
p = 0.019), although it was lower among resource-abundant
practice settings (OR 1.36, 95% CI: 0.37–0.80, p = 0.002). No
demographic variables had statistically significant associations
with professional acceptance of AI applications as CDS tools for
either group of intended users.

Next, participants reported the acceptable level of error
for the various applications of AI for eye care services
based on the intended user and application, when level
of error was benchmarked against various practitioners
(PECPs, general practitioners, general, and subspecialty-
trained ophthalmologists). Overall, participants had greater
expectations for the performance of clinical AI applications
intended for use by ophthalmologists as opposed to that
for use by PECPs (Figure 2B, Supplementary Table 1B).
Specifically, the acceptable levels of error for Assistive and
CDS applications of AI that were reported most frequently
was the level of error equivalent to the intended user (whether
PECP or ophthalmologist). On the other hand, the acceptable
level of error for AI applications as diagnostic tools varied
based on the intended user. The acceptable level of error
for diagnostic tool applications of AI intended to be used
by PECPs that was most frequently reported was a level of
error equivalent to a general ophthalmologist (38.5%, n =

389/1,010). Participants were divided about the acceptable
level of error for diagnostic tool applications of AI intended
to be used by ophthalmologists, with equivalent to a general
ophthalmologist (35.5%, n = 359/1,010) or subspecialty-trained
ophthalmologist (36.0%, n = 364/1,010) being the most
frequent responses.

Next, participants were surveyed about the potential impact
of clinical AI on their professional roles and responsibilities
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FIGURE 2 | Ophthalmologists acceptance of artificial intelligence (AI) based on the software as a medical device (SaMD) regulatory framework. (A) Acceptance of

clinical AI based on significance of information and intended user. (B) Acceptable level of error based on significance of information and intended user. (C) Anticipated

impact of clinical AI on professional roles.

at the level of the healthcare microsystem. The majority of
participants that responded indicated that the eye care roles
of ophthalmologists are not likely to be replaced (68.2%, n =

632/927), although those of others may be partially replaced
including allied primary eye care service (PECS) providers
(57.6%, n = 534/927) and primary care providers (PCP) with
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TABLE 2 | Multivariate analysis for professional acceptance of artificial intelligence (AI) applications in Ophthalmology.

Assistive tool

for PECPs

CDS tool for

PECPs

Diagnostic tool

for PECPs

Assertive tool

for

ophthalmologists

CDS tool for

ophthalmologists

Diagnostic tool

for

ophthalmologists

OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value

Age 0.982 0.953 1.012 0.236 1.002 0.977 1.027 0.884 1.020 0.999 1.042 0.065 1.002 0.971 1.035 0.892 1.017 0.992 1.044 0.188 1.026 1.004 1.049 0.019

Gender Female Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

Male 1.253 0.794 1.976 0.332 1.191 0.830 1.711 0.343 1.089 0.798 1.486 0.590 1.316 0.817 2.121 0.259 1.434 0.991 2.076 0.056 1.398 1.020 1.914 0.037

Clinical

experience

Currently in

training

Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

<20 years 2.158 0.674 6.910 0.195 0.806 0.287 2.263 0.683 1.018 0.446 2.323 0.966 2.450 0.956 6.280 0.062 0.951 0.389 2.325 0.912 0.747 0.328 1.700 0.487

>20 years 1.676 0.437 6.423 0.451 0.700 0.214 2.291 0.556 1.007 0.382 2.654 0.988 3.702 1.096 12.510 0.035 1.165 0.395 3.436 0.782 1.037 0.394 2.727 0.941

Geographical

region

East Asia and

Pacific

Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

Europe and

Central Asia

1.200 0.450 3.204 0.716 1.000 0.475 2.103 0.999 1.334 0.700 2.543 0.380 0.638 0.274 1.486 0.298 1.292 0.574 2.908 0.536 1.068 0.565 2.018 0.840

Latin America

& the

Caribbean

0.415 0.192 0.898 0.025 0.722 0.381 1.369 0.318 1.010 0.568 1.797 0.973 3.595 0.809 15.987 0.093 1.297 0.599 2.809 0.509 2.195 1.137 4.236 0.019

Middle east

and North

Africa

0.578 0.153 2.187 0.419 0.832 0.254 2.721 0.761 0.833 0.290 2.393 0.735 1.793 0.224 14.323 0.582 0.996 0.266 3.728 0.995 0.740 0.250 2.188 0.586

North

America

1.000 2.965 0.372 23.658 0.305 1.869 0.488 7.160 0.361 1.174 0.145 9.542 0.881 0.983 0.205 4.703 0.983 2.210 0.567 8.615 0.253

South Asia 0.874 0.381 2.006 0.751 1.008 0.552 1.840 0.980 0.987 0.595 1.637 0.960 0.598 0.287 1.249 0.171 0.785 0.432 1.428 0.428 0.604 0.364 1.000 0.050

Sub-Saharan

Africa

0.455 0.049 4.244 0.490 0.480 0.083 2.777 0.413 0.661 0.107 4.090 0.656 1.000 0.554 0.095 3.245 0.513 2.061 0.222 19.089 0.524

Income level Resource-

constrained

Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

Resource-

abundant

0.630 0.345 1.150 0.132 0.914 0.583 1.434 0.696 0.738 0.501 1.086 0.124 0.776 0.422 1.428 0.416 0.799 0.502 1.270 0.342 0.543 0.367 0.805 0.002

Self-rated

understanding

of AI

Very poor Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

Below

average

0.713 0.078 6.553 0.765 1.286 0.315 5.261 0.726 0.418 0.050 3.489 0.420 0.611 0.070 5.293 0.655 1.058 0.295 3.798 0.931 0.851 0.210 3.450 0.821

Average 0.587 0.073 4.714 0.616 0.840 0.226 3.125 0.795 0.107 0.014 0.837 0.033 0.608 0.076 4.865 0.639 1.499 0.441 5.094 0.517 0.325 0.086 1.226 0.097

Above

average

0.575 0.071 4.632 0.603 1.061 0.284 3.968 0.930 0.121 0.016 0.949 0.044 0.670 0.083 5.379 0.706 1.712 0.502 5.842 0.391 0.324 0.086 1.223 0.096

Excellent 0.620 0.069 5.557 0.669 1.196 0.284 5.030 0.807 0.137 0.017 1.124 0.064 0.643 0.072 5.766 0.693 1.525 0.400 5.814 0.537 0.418 0.102 1.709 0.225

*Wherein “ref” denotes the reference category.

The color values are added to draw attention of readers to analyses for which p-value was < 0.05.
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eye care services (59.3%, n = 553/927). Detailed responses are
included in Figure 2C and Supplementary Table 1C.

Finally, participants were surveyed about their perceptions
of potential advantages and disadvantages of clinical AI for
Ophthalmology to identify potential barriers and enablers for
clinical AI adoption. Overall, the perceived advantages of clinical
AI for Ophthalmology that were most frequently reported
include improved patient access to disease screening (94.5%, n
= 876/927), more targeted referrals to specialist care (87.1%,
n = 807/927), and reduced time spent by specialists on
monotonous tasks (82.7%, n = 767/927). The disadvantages
of clinical AI for Ophthalmology that were most frequently
reported include concerns over medical liability due to machine
error (72.5%, n = 672/927), data security & privacy concerns
(64.9%, n = 602/927), and concerns over the divestment of
healthcare to large technology and data companies (64.1%, n =

594/927). Further detailed responses are depicted in Figure 3 and
Supplementary Tables 1D,E.

Mesosystem—Organizational Adoption of
AI for Clinical and Eye Care Services
Participants were asked about the willingness to adopt clinical
artificial intelligence (AI) in their organizations. Six hundred
four participants (51.4%) reported that their organizations were
willing to adopt AI for clinical practice in general within the next
5 years. A multivariate logistic regression model was applied to
evaluate associations with participant demographics.

In this model, the odds of participants indicating
organizational willingness to adopt AI within 5 years was
higher among ophthalmologists of male gender (OR 1.58, 95%
CI: 1.18–2.10) and those practicing in the North American
region (OR 8.54, 95% CI: 1.86–39.5, p = 0.006) compared to the
East Asia and Pacific region. However, the odds of organizational
willingness to adopt AI was lower among participants from
resource-abundant regions (OR 0.39, 95% CI: 0.27–0.56, p <

0.001). There were no significant associations between the odds
of organizational willingness to adopt AI and the remaining
demographic factors, including age, clinical experience, and
self-rated understanding of AI (Table 3A).

Next, participants were asked about the perceived willingness
of their organizations to adopt AI for leading validated
applications in eye care services (Figure 4A). For screening
applications of AI, most participants indicated organizational
willingness to adopt AI including 920 participants for DR
screening (78.2%), 832 for glaucoma screening (70.7%), 786 for
AMD screening (66.8%), and 604 for cataract screening (51.4%).
A multivariate logistic regression model was applied to evaluate
associations between willingness to adopt AI for screening
applications reported by participants, with their demographic
factors (Table 3B).

In this model, the odds of organizational willingness to
adopt AI being reported by ophthalmologists practicing in South
Asia was relatively higher for DR screening (OR 2.07, 95% CI:
1.04–4.13, p = 0.039) compared to East Asia and the Pacific.
On the other hand, that for glaucoma screening reported by

FIGURE 3 | Perceptions regarding advantages and disadvantages of artificial

intelligence (AI) of ophthalmologists.
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TABLE 3A | Organizational willingness to adopt AI for general eye practice.

Odds ratio 95% confidence interval P-value

Age 1.007923 0.9889255 1.027285 0.416

Gender Female Ref Ref Ref Ref

Male 1.575258 1.181954 2.099436 0.002

Years of clinical experience Student Ref Ref Ref Ref

<20 years 0.7718551 0.3476733 1.713564 0.525

20 or more years 0.7120689 0.2867984 1.767939 0.464

Geographical region East Asia and Pacific Ref Ref Ref Ref

Europe and Central Asia 1.471252 0.8191418 2.642501 0.196

Latin America & the Caribbean 1.220085 0.7132367 2.087116 0.468

Middle east and North Africa 0.6701729 0.252713 1.77724 0.421

North America 8.540024 1.84594 39.50941 0.006

South Asia 1.586754 0.9715878 2.591415 0.065

Sub-Saharan Africa 0.4363696 0.0930749 2.045863 0.293

Income level Resource-constrained Ref Ref Ref Ref

Resource-abundant 0.390912 0.2737758 0.5581654 <0.001

Participant self-rated understanding of

artificial intelligence (AI)

Very Poor Ref Ref Ref Ref

Below Average 1.105834 0.3658182 3.342835 0.859

Average 0.8993603 0.3182563 2.541501 0.841

Above Average 0.6707563 0.2368241 1.899781 0.452

Excellent 0.7322512 0.2382404 2.250634 0.586

*Wherein “ref” denotes the reference category.

The color values are added to draw attention of readers to analyses for which p-value was < 0.05.

ophthalmologists in the Middle east and North Africa was
relatively lower for glaucoma screening (OR 0.365, 95% CI: 1.04–
4.13, p = 0.033) compared to East Asia and the Pacific. Finally,
the odds of organizational willingness to adopt AI for cataract
screening being reported by ophthalmologists of older age was
higher (OR 1.02, 95% CI: 1.00–1.04, p = 0.030), while that by
ophthalmologists of male gender was lower (OR 0.67, 95% CI:
0.50–0.88, p = 0.04). That for cataract screening was similarly
lower among those practicing in the Europe and Central Asia
region (OR 0.44, 95% CI: 0.24–0.84, p = 0.012) and North
American region (OR 0.174, 95% CI: 0.04–0.81, p= 0.026).

Notably, the perception of organizational willingness
to adopt diagnostic applications of AI was lower than
screening applications (Figure 4A). Fewer participants
indicated organizational willingness to adopt AI for diagnostic
applications: positive responses were recorded from 638
participants for DR (54.3%), 490 for glaucoma (41.7%), 497
for AMD (42.3%) and 435 for cataract diagnosis (37.0%). A
multivariate logistic regression model was applied to evaluate
associations between willingness to adopt AI for diagnostic
applications reported by participants, with their demographic
factors (Table 3C).

In this model, the odds of organizational willingness to adopt
AI being reported for DR diagnosis was higher for participants
of older age (OR 1.02, 95% CI: 1.00–1.04, p = 0.020). That for
DR diagnosis was also higher among participants practicing in
the Latin America & the Caribbean region (OR 1.80, 95% CI:
1.04–3.11, p = 0.035) as well as the South Asian region (OR
1.69, 95% CI: 1.05–2.72, p = 0.032) relative to the East Asia and

Pacific region. Similarly, the odds of organizational willingness
to adopt AI being reported for Glaucoma diagnosis was higher
for participants of older age (OR 1.04, 95% CI: 1.02–1.06, p <

0.001) and male gender (OR 1.53, 95% CI: 1.15–2.03, p = 0.004).
However, that for Glaucoma diagnosis was lower for participants
in the Middle east and North African region (OR 0.31, 95% CI:
0.10–0.95, p= 0.040).

Furthermore, the odds of organizational willingness to adopt
AI being reported for AMD diagnosis was higher for participants
of older age (OR 1.02, 95% CI: 1.00–1.04, p = 0.029) and male
gender (OR 1.40, 95% CI: 1.06–1.87, p= 0.020). In addition, that
for AMD diagnosis was also higher for participants practicing
in the Latin America and the Caribbean region (OR 1.83, 95%
CI: 1.08–3.11, p = 0.026) compared to the East Asia and the
Pacific. On the other hand, the odds of organizational willingness
to adopt AI being reported for Cataract screening were lower
for participants practicing in the Europe and Central Asia region
(OR 0.486, 95% CI: 0.24–1.00, p = 0.049) compared to the East
Asia and the Pacific region.

Next, participants were asked about the anticipated
organizational impact of the adoption of clinical AI for eye
care services (Figure 4B, Supplemental Table 2A). Interestingly,
some 55 participants indicated AI was already adopted for
eye care services in their organizations (4.7%). Most of these
participants had self-rated their understanding of clinical AI as
excellent (16.4%, 9/55) or above average (27.3%, 15/55). These
included 17 of the participants from the South Asian region
(13.3%), 2 of the participants from Europe and central Asia
region (3.9%), 33 of the participants from the East Asia and
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FIGURE 4 | Meso-system—Organizational adoption of clinical artificial intelligence (AI). (A) Organizational willingness to adopt AI for specific eye care services. (B)

Anticipated organizational impact from adoption. (C) Perceived likelihood of organizational facilitation of adoption.

Pacific region (3.8%), and 3 of the participants from the Latin
America and the Caribbean region (3.4%).

Despite the current progress in validation and implementation
of AI for eye care services, less than half of all participants in this
survey felt that AI would be regularly used in clinical practice
within the next 5 years (47.4%, n = 558/1,176). Furthermore,
participants had mixed views regarding the impact of AI
on ophthalmology clinical workload, with some anticipating
reduced workload (48.6%, n = 572/1,176) and others instead

anticipating increased workload (28.2%, n = 332/1,176). When
asked if trainee numbers should be increased, decreased or kept
the same, most participants indicated that ophthalmology trainee
numbers should not be adjusted (44.8%, n= 527/1,176), although
some indicated allied health eye care trainee numbers should be
increased (37.0%, n= 435/1,176).

With respect to their organizational willingness to facilitate
adoption of AI tools for eye care services, study participants
were optimistic overall. Many participants indicated that their
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TABLE 3B | Organizational willingness to adopt applications of AI in Screening for eye diseases.

Diabetic retinopathy (DR) Glaucoma Age related macular

degeneration (AMD)

Cataract

OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value

Age 1.023 0.999 1.047 0.056 1.020 0.999 1.041 0.066 1.018 0.998 1.039 0.075 1.021 1.002 1.041 0.03

Gender Female Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

Male 1.080 0.765 1.525 0.66 1.015 0.743 1.387 0.923 1.023 0.759 1.378 0.883 0.667 0.505 0.882 0.004

Clinical

experience

Currently in

training

Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

<20 years 1.237 0.511 2.998 0.637 1.150 0.519 2.550 0.73 1.068 0.485 2.351 0.871 0.724 0.329 1.593 0.422

>20 years 0.972 0.349 2.709 0.957 1.172 0.463 2.971 0.737 1.047 0.419 2.613 0.922 0.748 0.303 1.846 0.529

Geographical

region

East Asia and

Pacific

Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

Europe and

Central Asia

1.669 0.757 3.676 0.204 0.559 0.306 1.021 0.058 1.495 0.758 2.948 0.246 0.444 0.236 0.836 0.012

Latin America &

the Caribbean

1.631 0.767 3.470 0.204 1.695 0.899 3.195 0.103 1.691 0.931 3.073 0.085 0.863 0.515 1.446 0.576

Middle east and

North Africa

0.515 0.188 1.413 0.198 0.365 0.144 0.922 0.033 0.570 0.224 1.450 0.238 0.644 0.254 1.635 0.355

North America 1.471 0.314 6.889 0.624 0.333 0.106 1.046 0.06 2.095 0.451 9.736 0.346 0.174 0.037 0.812 0.026

South Asia 2.068 1.037 4.125 0.039 1.719 0.998 2.960 0.051 1.207 0.737 1.976 0.455 1.249 0.784 1.992 0.35

Africa 1.180 0.137 10.176 0.88 2.248 0.263 19.214 0.459 0.373 0.080 1.732 0.208 1.597 0.296 8.615 0.586

Income level Resource-

constrained

Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

Resource-

abundant

0.729 0.472 1.126 0.154 1.205 0.821 1.769 0.34 1.193 0.825 1.726 0.349 0.755 0.533 1.069 0.113

Self-rated

understanding of

AI

Very poor ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref ref

Below average 0.927 0.235 3.659 0.914 1.201 0.371 3.887 0.759 0.842 0.263 2.694 0.772 1.778 0.594 5.317 0.303

Average 1.151 0.313 4.240 0.832 1.274 0.422 3.846 0.668 1.038 0.344 3.130 0.948 1.224 0.442 3.388 0.698

Above average 0.859 0.234 3.156 0.818 1.090 0.361 3.295 0.878 0.855 0.283 2.582 0.782 1.126 0.406 3.123 0.82

Excellent 0.539 0.137 2.127 0.378 0.658 0.202 2.141 0.486 0.718 0.220 2.340 0.583 1.129 0.376 3.389 0.828

*Wherein “ref” denotes the reference category.

The color values are added to draw attention of readers to analyses for which p-value was < 0.05.
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TABLE 3C | Organizational willingness to adopt applications of AI for Diagnosis of eye diseases.

Diabetic retinopathy (DR) Glaucoma Age related macular

degeneration (AMD)

Cataract

OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value

Age 1.023 1.004 1.042 0.02 1.036 1.016 1.056 0 1.021 1.002 1.041 0.029 1.018 0.998 1.038 0.072

Gender Female Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

Male 1.158 0.877 1.529 0.301 1.527 1.148 2.031 0.004 1.403 1.055 1.865 0.02 0.828 0.619 1.107 0.202

Clinical

experience

Currently in

training

Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

<20 years 1.369 0.628 2.982 0.429 1.143 0.493 2.651 0.755 1.667 0.705 3.944 0.245 0.771 0.343 1.732 0.528

>20 years 1.221 0.501 2.976 0.66 0.860 0.334 2.212 0.754 1.904 0.729 4.972 0.188 0.936 0.372 2.357 0.888

Geographical

region

East Asia and

Pacific

Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

Europe and

Central Asia

1.245 0.693 2.234 0.464 0.968 0.528 1.775 0.916 1.656 0.915 2.996 0.095 0.486 0.237 0.997 0.049

Latin America &

the Caribbean

1.801 1.043 3.109 0.035 1.242 0.735 2.098 0.418 1.829 1.077 3.106 0.026 0.737 0.427 1.272 0.273

Middle east and

North Africa

0.721 0.288 1.806 0.485 0.306 0.099 0.948 0.04 0.530 0.185 1.521 0.238 0.347 0.099 1.221 0.099

North America 0.734 0.237 2.277 0.593 0.633 0.196 2.046 0.445 0.809 0.252 2.594 0.722 0.307 0.066 1.433 0.133

South Asia 1.688 1.046 2.724 0.032 1.102 0.687 1.766 0.687 1.295 0.810 2.071 0.28 1.118 0.697 1.794 0.643

Africa 1.733 0.324 9.272 0.521 2.734 0.504 14.826 0.243 0.453 0.084 2.454 0.358 3.202 0.594 17.247 0.176

Income level Resource-

constrained

Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

Resource-

abundant

0.772 0.545 1.095 0.147 0.864 0.604 1.236 0.423 0.712 0.498 1.018 0.063 0.723 0.502 1.040 0.08

Self-rated

understanding of

AI

Very poor Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref

Below average 0.669 0.210 2.129 0.497 0.924 0.307 2.781 0.889 0.706 0.233 2.139 0.538 1.507 0.494 4.598 0.471

Average 0.535 0.179 1.600 0.263 0.637 0.226 1.793 0.393 0.508 0.179 1.442 0.203 0.985 0.344 2.818 0.978

Above average 0.436 0.145 1.305 0.138 0.573 0.203 1.618 0.293 0.475 0.167 1.351 0.163 1.028 0.359 2.948 0.959

Excellent 0.628 0.194 2.030 0.437 0.656 0.215 2.001 0.458 0.755 0.246 2.322 0.624 1.214 0.391 3.763 0.737

*Wherein “ref” denotes the reference category.

The color values are added to draw attention of readers to analyses for which p-value was < 0.05.
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organizations were very likely or somewhat likely to specifically
train healthcare workers in the use and understanding of AI
(72.3%, n = 730/1,010), invest resources for implementation
(54.5%, n = 550/1,010), and actively educate the public
regarding the use of AI in Ophthalmology (65.3%, n =

660/1,010). Detailed responses are included in Figure 4C and
Supplemental Table 2B.

Macrosystem—Value of Clinical AI
Applications for Eye Care Across the
Health System
Many participants indicated that they strongly agree or agree that
clinical AI will facilitate improvements in accessibility (84.7%,
n = 785/927), affordability (61.9%, n = 574/927), and quality
(69.4%, n = 643/927) in eye care services. Detailed responses
are depicted in Figure 5A and Supplemental Table 3A. Next,
participants were surveyed about their perceptions regarding
the impact of COVID-19 acting at the level of the healthcare
macrosystem (Figure 5B, Supplemental Table 3B). Notably,
many participants were optimistic regarding the potential for
AI to reduce non-essential contact between providers and
patients (80.9%, n= 750/927). However, participants were closely
divided regarding whether COVID-19 increased the likelihood
of organizational AI adoption (50.2%, n = 465/927) as well as
organizational facilitation. Participants remained divided when
the likelihood of organizational facilitation was explored in
greater detail in terms of investing resources to implement AI
(51.1%, n = 474/927), training healthcare workers in AI (52.4%,
n = 486/927), and educating the public regarding AI (54.2%, n
= 502/927).

Machine Learning Analysis for Clustering
of Survey Responses
On analysis of the survey responses using machine learning
(ML) models, predictive AUCs of between 0.52 and 0.83 were
obtained in predicting binary outcomes with corresponding
permutation importance depicted in Appendix 2. The outcome
variable predicted with the highest AUC of 0.83 was on whether
AI could be an acceptable assistive tool for ophthalmologists,
whereas the AUC for predicting the application of AI as a
diagnostic tool for ophthalmologists had relatively low values
of 0.59 or below. Finally, the model achieved an AUC of 0.65
in predicting organizational willingness to adopt AI in clinical
practice in 5 years, whereby the variables that had the greatest
predictive value were those for self-reported AI understanding
and resource availability, with clinical practice experience having
low predictive value. Detailed results are demonstrated in the
Appendix 2.

DISCUSSION

To our knowledge, this is the first study providing an in-depth
evaluation of ophthalmologists acceptance of clinical AI for
Ophthalmology that incorporates the relevant medical device
regulatory framework. Provider perspectives on professional
and organizational acceptance of clinical AI tools for eye care
services are evaluated in this study involving participants

from a spectrum of geographies and clinical subspecialties. A
machine learning (ML) approach was applied to highlight the
clustering of responses, illustrating the relevance of individual
demographic and attitude variables on professional acceptance
and likelihood of adoption. Overall, participants indicated
high levels of professional and organizational acceptance of
AI for eye care services. Potential important barriers and
enablers for the implementation of these tools in clinical
practice were also highlighted. Furthermore, the impact
of COVID-19 on clinical AI adoption in Ophthalmology
was assessed.

Healthcare Micro-System Considerations
for the Implementation of Clinical AI
The results of this study suggest several considerations for
facilitating adoption of clinical AI at the level of healthcare
microsystems. Participants were more accepting of clinical AI
applications as assistive tools rather than CDS or diagnostic tools,
based on the software as a medical device (SaMD) regulatory
framework for clinical intended uses of AI technology to inform
clinical management by highlighting areas of interest, drive
clinical management by initiating referrals, or diagnose eye
diseases to recommend management, respectively. The process
of forming a clinical diagnosis is a fundamental role of healthcare
practitioners. It is a complexed art based on probabilistic, causal
or deterministic reasoning, often without the availability of
complete information (38). The practitioner has to identify
patterns in clinical information about each individual patient in
the context of their prior medical and contextual knowledge to
form an impression, then validate it through trial of treatment or
investigations (39). This may explain why assistive tools received
the greatest acceptance as opposed to CDS or diagnostic tools that
suggest or provide a diagnosis, given the inability to incorporate
additional contextual and non-verbal information in AI for a
holistic approach to evaluating patients (Figure 2A).

The perceived enablers of improved accessibility and
optimized referrals from screening as well as acceptance of these
tools when designed for used by allied PECPs also suggests
avenues to optimize solution development and deployment.
Applying design considerations to facilitate operationalising
clinical AI used by PECPs within the community to filter out
patients with advanced illness requiring tertiary care are more
acceptable to stakeholders. This may require embedded systems
to facilitate referrals to ophthalmologists using the sorting
conveyor or pyramid operational models where required (31).

Most ophthalmologists were not concerned about the threat
of being replaced by AI (Figure 2C). The views of participants
in this study are consistent with that from studies in other
fields including Pathology and Radiology, 2 other medical fields
with leading applications of AI for classification of medical
imaging (11, 40). Many Diagnostic Pathologists in recent study
reported that a negative impact of clinical AI on their professional
compensation was unlikely (65.6%) and displacement or negative
career impacts were limited (38.0%). They instead anticipated
an increase in employment prospects (42.4%) (28). Similarly,
among European Radiologist participants, most anticipated an
increase in job opportunities (58%), with increased clinical roles
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FIGURE 5 | Macrosystem—Ophthalmologists perceptions about artificial intelligence (AI) and the impact of the pandemic on adoption within health systems. (A) Value

of clinical artificial intelligence (AI) perceived by Ophthalmologists. (B) Impact of the coronavirus disease 2019 (COVID-19) on health system adoption.

(54%) and decreased administrative roles such as reporting (75%)
(27), in keeping with the advantage of reduced monotonous tasks
perceived by participants.

Therefore, we find that participants are confident in their
clinical roles and do not perceive AI to be a major threat
to professional roles. This is consistent with the lower
agreement reported for relevant potential disadvantages of AI
(Figure 3), such as decreased reliance of medical specialists for
diagnosis and treatment advice. These results are also consistent
with an acceptance survey conducted across 22 provinces in
China, whereby few healthcare workers anticipate replacement
of clinical activities with AI (6.0%), while being receptive

to applications that assist diagnosis (40.0%) and treatment
(39.2%) (41).

Themajor disadvantages of clinical AI that participants agreed
upon include potential medical liability from machine error,
data security, privacy, and potential divestment of healthcare to
corporate entities (Figure 3). Yet, despite these limitations, it has
been successfully trained and validated for classification tasks
of medical imaging for screening and diagnosis with clinically
acceptable performance (42). The progress in this technology is
reflected in the high rates of provider acceptance for the various
abovementioned clinical applications. Furthermore, participants
largely agreed on the advantages of AI (Figure 3), including

Frontiers in Medicine | www.frontiersin.org 14 October 2022 | Volume 9 | Article 875242115

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Gunasekeran et al. APPRAISE Study: AI in Ophthalmology

improved patient access to disease screening, targeted referrals
to specialist medical care, and reduce time spent on monotonous
tasks. Decentralized and improved access to screening has
increased relevance today given widespread fear of viral exposure
within hospitals that has prompted many patients to post-pone
regular eye screening and monitoring (43, 44). However, fewer
participants agreed that AI would improve care by making it
more personalized, cost-effective, or predictive to pre-empt the
clinical needs of patients.

These findings highlight the need for greater stakeholder
engagement to emphasize advantages of AI in tandem with
research to address disadvantages perceived by experts (31, 45).
For example, participants flagged up lack of trust and confidence
in the “black-box” diagnosis inherent with existing solutions,
which could be addressed by emerging solutions such as saliency
maps to improve algorithmic transparency. More pragmatic and
qualitative investigations of AI implementation to address these
potential barriers and enablers of adoption are needed to facilitate
successful implementation of clinical AI in practice (46).

Healthcare Meso-System Considerations
for the Implementation of Clinical AI
The analysis of healthcare meso-system considerations for
clinical AI implementation highlight several trends in
receptiveness to the adoption of clinical AI at the level of
specific eye care services and within healthcare organizations.
Overall, participants reported greater likelihood of organizational
willingness to adopt screening applications rather than diagnostic
applications. There was greater acceptance of applications for
detection of DR, particularly in South Asia, and lower acceptance
of applications for detection of Cataract, particularly in
Europe and Central Asia (Tables 3B,C). This may relate to the
importance of symptoms in the clinical evaluation of Cataracts,
whereby screening models that incorporate AI screening or
diagnostic applications within telemedicine platforms may
facilitate real-world operational adoption (47).

Interestingly, the odds of reporting organizational willingness
to adopt AI for certain applications were higher among
participants with advanced age, including applications for
detection of DR, glaucoma and AMD, as well as screening for
cataracts (Tables 3B,C). This is congruent with the results of
prior studies that have suggested increasing age may not be
negatively correlated with health technology acceptance (41, 48).
Furthermore, the odds of reporting organizational willingness to
adopt AI were higher among participants with male gender for
detection of glaucoma and AMD, although they were lower for
cataract. These findings for AI adoption reflect the facilitating
conditions, subjective norm, and social influence factors required
for successful technology adoption from established theoretical
models such as the technology acceptance model (TAM) and
unified theory of acceptance and use of technology (UTAUT)
(49, 50).

Yet, despite all the progress in the field of AI for
ophthalmology, less than half of participants felt that AI is likely
to be implemented in the next 5 years nor likely to reduce
clinical workload (Figure 4). It follows that participants felt

ophthalmology trainee numbers should not be adjusted (44.8%,
n = 527/1,176). In ophthalmology, confidence in professional
responsibilities likely stems from the procedural and surgical
roles of professionals that cannot be replaced by AI. This
interventional workload will likely increase with enhanced
detection of eye diseases through the use of clinical AI to scale-
up screening services, as reflected in the advantages of clinical
AI anticipated by participants (Figure 3) including improved
patient access to eye screening (94.5%) and targeted referrals to
specialists (87.1%).

Furthermore, current evidence supports the improved cost-
effectiveness of AI for eye care when applied in semi-autonomous
models due to lower false positive referrals (17), highlighting
that AI applied in partnership with healthcare practitioners
will likely result in superior outcomes. In addition, apart
from interventions, provision of clinical care also requires
considerable management of technology for operational and
administrative requirements. Earlier studies have highlighted
that implementation of new technology such as electronic
medical records (EMRs) can lead to delays and reduced efficiency
in eye care services (51), requiring added time to review and
interpret information (52). This highlights the need for design
thinking approaches in the development of these tools, to
streamline the aggregation and visualization of clinically relevant
information from AI that can be conveniently interpreted by
practitioners and applied in clinical practice (30).

Notably, most participants reported that their organizations
are currently likely to facilitate adoption (Figure 4) through
training healthcare workers in AI, investing resources for
implementation, and actively educating the public. Based
on the disadvantages reported in this study (Figure 3),
remaining barriers that need to be addressed for adoption
include potential medical liability arising from machine error
(72.5%), data security & privacy (64.9%), as well as potential
divestment of healthcare to large technology and data companies
(64.1%). These can be addressed through the engagement of
relevant stakeholders to develop medicolegal and cybersecurity
guidelines, as well as co-development of these tools with the
concerted involvement of relevant clinical participants (7, 16).
Enablers to facilitate adoption include improving access to eye
screening (94.5%), optimizing the flow of patients within eye care
services for more targeted referrals to specialists (87.1%), and
reducing the need for specialists to spend time on monotonous
tasks (82.7%), that can be targeted as operational outcomes or
goals during health services research and product development.

Health Macro-System Considerations and
Impact of COVID-19 on Clinical AI
Implementation
Finally, factors affecting AI adoption at the level of the healthcare
macrosystem were evaluated including perceptions regarding
value of clinical AI and the impact of the pandemic on the
likelihood of adoption. Participants were generally positive
regarding the value of clinical AI. Most agreed that clinical
AI for eye care services will improve the accessibility of
eye care services (84.7%), although they were less certain
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regarding improvements in affordability (61.9%) and quality
(69.4%). Moreover, having experienced the macrosystem changes
brought about by the coronavirus disease 2019 (COVID-19)
pandemic, participants were optimistic about the potential value
of clinical AI to minimize non-essential patient contact (80.9%).
However, participants were divided regarding whether COVID-
19 increased the likelihood of organizational AI adoption
(50.2%) and facilitation through investment (51.1%), training of
healthcare workers (52.4%), and educating the public (54.2%).
This suggests that ophthalmologists are unsure about the impact
of the pandemic at the macrosystem level on influencing the
willingness to implement clinical AI among service providers and
organizations within the health system.

Machine Learning Analysis for Clustering
of Survey Responses
Feature permutation importance estimates were obtained to
estimate the contribution of each feature, within the random
forest model trained to predict each question outcome.
For example, for the question “Will your organization be
willing to adopt AI in clinical practice in 5 years,” the
features corresponding to one’s understanding of DL/ML, and
ICO2017 income, were significantly more important than the
others. Feature permutation importance involves randomly
shuffling the values for a particular feature, and observing the
decrease in model performance due to this shuffling. If the
performance decreases appreciably, the feature is regarded as
relatively predictive.

The AUCs of between 0.52 and 0.83 obtained in predicting
binary outcomes with corresponding permutation importance
suggest that eye care professionals’ acceptance of AI and
perceived likelihood of implementation can be anticipated from
their demographics and attitudes toward AI to an extent
(Appendix 2). The outcome variable predicted with the highest
AUC of 0.83 was on whether AI could be an acceptable
assistive tool for ophthalmologists, for which World Bank
geographical region was the relatively most important predictor
by permutation importance value. On the other hand, the AUC
for the model in predicting acceptance for the application of AI
as a diagnostic tool for ophthalmologists had relatively low values
of 0.59 or below, which suggests the input variables in this study
were not able to accurately predict ophthalmologists’ acceptance
of this application.

Responses to the APPRAISE survey indicated that participants
were optimistic about the deployments of AI applications that
reduce non-essential contact between patients and providers,
thereby minimizing the risk of infectious disease transmission.
This highlights the public health importance for further research
and capacity building in this critical field to rapidly scale-up
eye care services to meet the growing needs for eye screening
in aging populations. Ophthalmologists will need to work
closely with computer scientists to ensure that AI solutions
for healthcare are appropriately designed to assimilate into
clinical workflows and incorporate relevant considerations such
as professional acceptance for specific AI applications based
on the intended users for the given solution. Interestingly,

participants from resource abundant settings reported potential
barriers to adoption including lower odds of organizational
willingness to adopt AI as well as lower acceptance of specific AI
applications, including diagnostic tools for ophthalmologists that
would need to be considered in developing specific applications.
Although professional acceptance for AI solutions was relatively
greater in resource-constrained settings, potential challenges
with infrastructural availability such as intermittent electricity or
internet access will need to be considered in the design of these
solutions (7, 25).

Limitations and Strengths
Limitations of this study include that a majority of participants
originated from Asia Pacific, with less representation of
participants from the West. Although the timing of survey
dissemination facilitated evaluation of professional perspectives
on AI adoption during an ongoing public health emergency,
regions with higher official burden of COVID-19 at the time of
survey dissemination had less representation in our results, as
ophthalmologists may have been occupied with related public
health initiatives at the time. Moreover, statistical assessment of
the survey was not conducted and responses for all qualitative
questions were not made compulsory, whereby non-response
rates are indicated in the study tables. Therefore, description
and analysis was conducted based on the valid responses with
non-responses programmed as “missing.”

In addition, limitations of the snowball sampling method
used for the purpose of hypothesis-generation in this study
include the exclusion of other stakeholders such as primary care
providers (PCPs). Furthermore, specific response rate calculation
for different regions and channels for recruitment were not
possible given privacy restrictions of the professional associations
and inability to deconflict participants with membership in
multiple associations. Although the survey was programmed to
restrict one response per participant to avoid duplicate responses,
there is potential selection bias for stakeholders that are more
actively engaged in professional associations. These limitations
may limit the generalisability of findings from this study. Future
studies can address these limitations through survey validation
for reliability and reproducibility, multiple testing correction for
future hypothesis-testing research, probability sampling methods
with inclusion of PCPs, stratified response rate tabulation
based on individual channels of recruitment, and increased
representation of participants from the West.

Finally, another limitation consistent with earlier survey
investigations is the use of a logistic regression analytic approach
to investigate associations between independent variables such as
demographics and dependent variables such as acceptance, which
assumes a linear relationship between them. However, unlike
earlier investigations, one strength of this study is the use of
a decision-tree based machine learning (ML) analytic approach
called random forests to analyse responses in tandem with
traditional logistic regression. The main distinction between the
two analytic approaches rests in the transparency and underlying
assumptions, whereby the flexibility of ML has allowed it to
outperform the predictive accuracy of logistic regression in large
empirical evaluations (53).
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For logistic regression, a linear regression model on the
input variables is transformed using the logistic function. It is
therefore readily interpretable in terms of these input variables,
assuming linearity of the input variables and log odds. However,
logistic regression therefore remains a linear classifier, and
non-linear relationships are not well-accounted for by the model.
In contrast, the random forests ML classifier is able to model
non-linear relationships in the data, with the trade-off of being
less interpretable. This allows evaluation of a broader variety of
potential relationships between the variables.

Additional strengths of this study include the consolidation
of perspectives from a large and diverse spectrum of
Ophthalmologists on the timely topic of clinical AI applications.
The survey was also disseminated with close time-proximity
to the COVID-19 outbreak, allowing assessment of the
impact of a public health emergency on provider perspectives
regarding clinical AI adoption. Finally, this study provides an
in-depth investigation of professional acceptance of clinical
AI solutions for automated classification of medical imaging
in ophthalmology, incorporating a systematic approach to
address factors affecting adoption at all levels from the micro-,
meso-, and macrosystem. Furthermore, the intricacies of the
latest regulatory guidance were applied in the evaluation of
AI applications based on the intended user, significance of the
information to the healthcare decision, and clinical context.

CONCLUSION

Artificial Intelligence (AI) has been established as a tool for
health systems to improve the right-siting of patients. This
study outlines several key considerations that inform future
research, communication and facilitation interventions to drive
effective adoption and operationalization of these tools in
clinical practice. Actionable insights to facilitate AI adoption are
also highlighted, including engagement of relevant stakeholders
and operationalization based on the enablers of AI adoption
identified in this study, as well as addressing perceived barriers
through development of the technology and guidelines in
collaboration with ophthalmologists.
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Purpose: Artificial intelligence (AI) has been applied in the field of retina. The

purpose of this study was to analyze the study trends within AI in retina

by reporting on publication trends, to identify journals, countries, authors,

international collaborations, and keywords involved in AI in retina.

Materials and methods: A cross-sectional study. Bibliometric methods were

used to evaluate global production and development trends in AI in retina

since 2012 using Web of Science Core Collection.

Results: A total of 599 publications were retrieved ultimately. We found that

AI in retina is a very attractive topic in scientific and medical community.

No journal was found to specialize in AI in retina. The USA, China, and

India were the three most productive countries. Authors from Austria,

Singapore, and England also had worldwide academic influence. China has

shown the greatest rapid increase in publication numbers. International

collaboration could increase influence in this field. Keywords revealed that

diabetic retinopathy, optical coherence tomography on multiple diseases,

algorithm were three popular topics in the field. Most of top journals and

top publication on AI in retina were mainly focused on engineering and

computing, rather than medicine.

Conclusion: These results helped clarify the current status and future trends in

researches of AI in retina. This study may be useful for clinicians and scientists

to have a general overview of this field, and better understand the main

actors in this field (including authors, journals, and countries). Researches are

supposed to focus on more retinal diseases, multiple modal imaging, and

performance of AI models in real-world clinical application. Collaboration

among countries and institutions is common in current research of AI in retina.
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Introduction

The application of artificial intelligence (AI) in retinal
images has shown reliable performance as well as or better
than human clinicians at some key medical care tasks, such
as analysis of images, diagnosis, and prediction of prognosis
(1). Currently ophthalmologists begin to embrace an age of
AI-assistant ophthalmology. However, how to evaluating and
applying AI technique in retina and to integrate AI technique
into ophthalmic profession remain challenging. Analyzing
previous works is helpful to identify current research situation
in AI in retina.

Due to these issues, a comprehensive review of the
publications in AI in retina is urgently needed. Bibliometric
analyses are helpful to address these problems by describing
distribution patterns of publications, geographical distribution
of research, latest evolution in the field of AI in retina. Therefore,
bibliometrics is helpful in understanding of a specific field
and in governing policymaking (2). Bibliometric analysis is a
sort of original studies and not a systematic review or meta-
analysis. However, to our knowledge, no similar studies which
focused on AI in retina have been specifically conducted.
Consequently, there is a lack of knowledge about the research
situation in the field of AI in retina. In this study, we investigated
the frontier researches of and the trends within the fields of
AI in retina across the international scientific literature. We
also tried to predict trends for the next few years, noting
that the increase of the amount of AI researches in retina is
expected to lead to a better application of AI technique in
real-world settings.

Materials and methods

Search methods

Web of Science (WOS) Core Collection is regarded as
the most suitable database for bibliometric analysis. The
search for papers to be included in the current study was
carried on July 4, 2022, and all the included publications
were published from January 1, 2012 to July 1, 2022.
The search strategy was “(TS = artificial intelligence OR
TS = deep learning) AND (TS = retina OR TS = vitreous
OR TS = choroid)”. 622 literatures were identified. 77
publications were excluded except articles and review
articles according to the document type, and 6 non-English
publications were also excluded. 599 publications were
included ultimately.

Abbreviations: AI, artificial intelligence; HDI, Human development index;
OCT, optical coherence tomography; RRI, Relative research interest;
WOS: web of science.

Data collection

All the data were extracted and downloaded from
WOS databases, including metrics of publication numbers,
countries and regions, authors, citations, and H-indexes.
The classification of countries and regions were defined
according to the default classification in Web of Science.
The literatures from Hong Kong were part of the literatures
from People’s Republic of China (China). We also investigated
the relationship between global productivity of AI in retina
and Human development index (HDI), which measures
the level of human development based on knowledge, life
expectancy, and income per capita indicators, rather than
economic growth alone. Human development report 2020
was published by United Nations Development Programme
(3). Countries and areas were divided into four categories
based on HDI, including very high human development,
high human development, medium human development,
and low human development. The countries and regions
classification system for Human development index, which
were come up with by United Nations, were converted to the
classification in Web of Science. Prism 9, R (R. app GUI 1.79),
VOSviewer 1.6.18, and SPSS 26 were used to input and analyze
data.

Bibliometric analysis

The descriptive indexes were extracted from WOS and
calculated by SPSS. The co-occurrence networks of keywords,
authors, and countries/regions were constructed by VOSviewer.
The keywords were extracted from titles and abstracts.
Frequencies over 20 was the criteria of the inclusion for
analyses. Average appearing year was used to assess the
novelty of keywords. For creating the wordcloud of keywords,
Biblioshiny, an R tool, was used to generate wordcloud map
of keywords. Frequencies over 20 was also the criteria of the
inclusion for analyses. H-indexes were collected from WOS
database, and can partially reflect the impact of researchers.
Relative research interest (RRI) was defined as the number
of publications in a specific field per year divided by all
publications in all fields per year (formula in Supplementary
Table). The value of this metric reflects the global attention
and study interest in a specific field. A higher value of RRI
for AI in retina represents more research interest and more
research hotspots in this field. The third order polynomial
method was used in the prediction model using Prism.
In order to analyze the increasing trend of publication
numbers, we calculated the average growth rate, compound
average growth rate, relative growth rate, and doubling
time (formulas in Supplementary Table). For investigating
the degree of international collaboration, the degree of
collaboration was calculated (formula in Supplementary Table),
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and Pearson’s correlation of publication numbers among
countries was calculated.

Results

Productivity and collaboration
between countries and regions

A total of 599 publications were analyzed. From 2012
to 2022, USA contributed to the most publications (171,
28.5%), followed by China (149, 24.9%) (Figure 1A). More
than half publications were contributed by USA and China.
Except USA and China, no countries published more than
100 publications. The total number of publications on AI in
retina has maintained steady growth over the past 10 years,
especially in the past 5 years (Figure 1C). USA and China
were also the countries with highest H-index, and the top 5
counties with most publications also had the highest H-index.
USA also published the most papers per year from 2012
until now, and published 45 papers. Additionally, RRI of AI
in retina also increased from < 0.001% in 2012 to 0.008%
in 2021 (Figure 1C), indicating that the research interest
of AI in retina keep increasing worldwide over the past
decade. According to the HDI category, we noticed that
most publications were from very high human development
countries or areas, and the numbers of publications of AI in
retina were consistent with HDI classification on the whole
(Figure 1D).

We analyzed the co-occurrence of 32 countries and regions
(Supplementary Figure 1); the analysis suggested 6 clusters: 1.
USA, and Taiwan, China; 2. China, and South Africa; 3. India,
Suadi Arabia, Pakistan, U Arab Emirates, Egypt, Bangladesh,
Poland, and Russia; 4. South Korea, Japan, France, Malaysia, and
Vietnam; 5. England, Spain, Germany, Iran, Brazil, Italy, Turkey,
and Israel; and 6. Australia, Singapore, Canada, Switzerland, and
Austria, Netherlands.

The top 10 countries/regions of high degree of collaboration
were Singapore (95.2%), England (87.1%), Germany (85.7%),
Saudi Arabia (84.4%), Switzerland (84.2%), Pakistan (79.2%),
Australia (75.0%), Canada (68.0%), South Korea (67.4%), and
USA (63.7%). Although China contributed a large number of
publications, the degree of collaboration of China was only
39.6%. We further investigated the correlation among countries
and regions, and found no significant correlation was detected
between countries (all P value > 0.1).

The publication rate of papers on AI in retina has continued
to increase over the past 10 years; predictions for next 5 years
show this increase continuing (Figure 2). China has shown the
greatest rapid increase in publication numbers since 2012. USA
is projected to maintain its leading position and steady growth,
but has the possibility to publish less papers than China and
India in 2025.

For global publication number from 2012 to 2021, the
average growth rate was 79.4%, compound average growth
rate was 67.9%, relative growth rate was 81.2%, and doubling
time was 1.3 years.

Citations and H-index

WOS citation reports revealed a total of 6445 citations
without self-citations of the 7267 relevant citations since 2012.
Each paper was cited an average of 12.13 times. USA contributed
to the most citations (2466 citations, 2366 without self-citations)
and H-index (28) (Figure 1A) from 2012. China ranked second
in both citations and H-index (1401 citations, 1339 without
self-citations, H-index 20).

The most cited publication has been cited for a total of 481
times (Figure 1B). We divided these publications into three
groups according to the frequencies, including high frequency
(more than 100 citations), medium frequency (more than
50 citations and < 100 citations), and low frequency (< 50
citations). Most of the publications were in low frequency group,
24 papers were cited with a medium frequency and only 7 papers
were cited with a high frequency.

To further explore the distribution of citation number
in each year, we supplemented the heatmaps of each group
of citation frequency (Supplementary Figures 2B–D). Every
row in the heatmap represents a publication, the x axis
means year, and the color represents the citation number.
The time span of high frequency and medium frequency
is similar, and is longer than that of most publications
in low frequency group. Besides, we also analyzed the
distribution of publication year of each group (Supplementary
Figure 2A). Most of the publications in low frequency group
were published in recent years, and that could possibly due
to less citations.

The leading institutions, journals and
authors

We examined the top institutions in this field and found
that the University of College London (30, 5.01%), and the
Moorfields Eye Hospital NHS Foundation Trust (27, 4.51%) in
England published the most papers on AI in retina since 2012.
University of California system (22, 3.67%), Johns Hopkins
University (16, 2.67%), and Chinese Academy of Sciences (16,
2.67%) ranked third and fourth (Figure 3A).

About half (287, 47.91%) of the papers on AI in retina
were published in 27 journals, including IEEE Access, which
published the most relevant publications (45). Translational
Vision Science Technology and British Journal of Ophthalmology
and published the second- and third-most with both 21
publications (Figure 3B).
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FIGURE 1

(A) Top 20 countries/regions in the publications of artificial intelligence in retina. The green bar shows the number of publications, the blue bar
shows the sum of citations in total (actual value multiply by 0.05), and the orange bar shows the H-index (actual value multiply by 5). (B) The
relative frequency (percentage) distribution of publications in various citation number. The publications were divided into three groups
according to the total citation frequency, including high citation frequency (more than 100 citations) group, medium frequency (more than 50
citations and < 100 citations) group, and low frequency (<50 citations) group. (C) The proportion of publications of USA, China, India, England,
and other countries/regions and relative research interest (RRI) in each year on the field of artificial intelligence in retina. (D) The number of
publications of artificial intelligence in retina in countries or areas of various levels of human development. Very high human development
countries or areas contributed to most publications.

The 10 papers with the most citations in total are displayed
in Table 1. The most cited paper was published in IEEE
Transactions on Medical Imaging, a classic and authoritative
medical imaging periodical, and is called Segmenting Retinal
Blood Vessels With Deep Neural Networks. The corresponding
author was Pawel Liskowski. Most publications of AI in
retina were published in journals focusing on engineering and
computing (Table 2).

The top 10 authors in this field are listed in Table 3
according to the number of publications and citations,
as well as their position in author orders. The works of
Ursula Schmidt-Erfurth from Medical University of Vienna
were published the most since 2012, with 9 papers and 458
citations (449 without self-citations). Hrvoje Bogunoviæ,
also from Medical University of Vienna, ranked second
with 8 publications and 464 citations (460 without self-
citations). Pearse A. Keane also ranked third with 8
publications and 368 citations (364 without self-citations)
(Table 3).

We also analyzed cooperation between investigators
(Supplementary Figure 3); the node size within a collaboration
network indicates the strength of the connections between
every author. Several authors, including David Alonso-Caneiro,
Michael J. Collins, Scott A Read, and Ursula Schmidt-Erfurth
had close cooperation to other researchers and teams. The
researchers in the figure usually lead large-scale research
teams and maintain close connections to others in the field
of AI in retina.

Research hotspots in artificial
intelligence in retina

Keywords analysis defined the most frequently used words
and their linkage within the field of AI in retina research.
We analyzed the keywords that appeared over 20 times
across the included publications. Merging repeated words
excluded meaningless ones resulted in 41 total keywords
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FIGURE 2

The publication trends and prediction curve of global and countries which had the most publications since 2012. (A) Global. (B) USA. (C) China.
(D) India. (E) England. (F) South Korea.

that can be divided into three primary clusters by co-
occurrence frequency, including diabetic retinopathy-related
cluster (in red), optical coherence tomography (OCT) on
multiple diseases-related cluster (in green), algorithm-related
cluster (in blue) (Figure 4A).

We also color-coded the keywords by average time of
appearance, and found that these keywords appeared in a short
period (Figure 4B). And the words “retinal images” and “deep
learning” were the most frequent words (Figure 4C).

Discussion

The current study aims to conduct a bibliometric analysis
related to AI in retina. We found that the increasing trends in
AI in retina since 2012. USA has published the most publications
(45 publications), the most citations (1976 citations in total) and
the highest H-index (24). China shows the greatest potential
on publications in this field. The authors who published
most on AI in retina come from Austria, England, USA,
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FIGURE 3

(A) Top institutions, ranked by the percentage of their publications in the total number of publications of artificial intelligence in retina. (B) Top
journals, ranked by the percentage of their publications in the total number of publications of artificial intelligence in retina.

Singapore, South Korea, and China. By analyzing keywords, we
summarized previous hotspots and predicted future hotspots.
We found that AI algorithm studies, diabetic retinopathy-
related AI studies, OCT-related AI studies, and other application
studies of AI on retina are the current hotspots in the field of
AI in retina. The average years of appearance for keywords are
concentrated over a relatively short period, which suggests that
AI in retina is an attractive topic in science. These results suggest
the rapid progress made in AI in retina research, which might
guide the research directions of future studies.

In the current study, we searched publications in the
last decade, which were published since 2012. The current
mainstream of artificial intelligence network was deep learning
network (4), which was found to be most suitable for imaging
data and replaced classic machine learning (1). Gulshan
et al. and Ting et al. reported the application of deep
learning network on detection of diabetic retinopathy based on
fundus photographs achieved high sensitivity and specificity,
respectively (5, 6). From then on, more and more papers
focused on deep learning network on retina were published,
which was accord with our results. The deep learning networks
presented satisfied outcomes and potential to revolutionize how

ophthalmology is practiced in the future (7). Various deep
learning technologies have been applied in this field, such
as generative adversarial networks and automated machine
learning (8, 9). Current AI models mainly rely on cloud
computing, which usually requires high bandwidth and low
latency. With the development of communication technology,
such as 5G, local edge models or offline AI models that could
run on compact low power devices and do not require a
continuous internet connection could help alleviate some of
application challenges, and improve the quality of healthcare in
underdeveloped areas (10–12). The trend of rapid development
of AI in retina occurs in recent years. Therefore, we included
publications in the latest decade (from only 2 publications
in 2012 to 212 publications in 2021), rather than much
earlier studies, whose methods might not suitable for current
medical imaging tasks in most settings. And we used deep
learning as topic words rather than other AI methods to
search studies. Moreover, as this scientific research field is
extremely dynamic (13), in order to include most recent
publications, we included 138 publications in the first half
of 2022, just before we wrote the manuscript. Therefore,
considering the development of the field of AI in retina and its
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TABLE 1 The top 10 papers with the most citations relevant to artificial intelligence in retina.

Title Corresponding authors Journal Publication year Total citations

Segmenting retinal blood vessels with deep neural
networks

Liskowski, P IEEE T MED IMAGING 2016 481

A reconfigurable on-line learning spiking
neuromorphic processor comprising 256 neurons
and 128K synapses

Indiveri, G FRONT NEUROSCI-SWITZ 2015 328

Artificial intelligence and deep learning in
ophthalmology

Ting, DSW BRIT J OPHTHALMOL 2019 323

Artificial intelligence in retina Schmidt-Erfurth, U PROG RETIN EYE RES 2018 247

Real-time classification and sensor fusion with a
spiking deep belief network

Pfeiffer, M FRONT NEUROSCI-SWITZ 2013 247

Retinal vessel segmentation based on fully
convolutional neural networks

Oliveira, A; Silva, CA EXPERT SYST APPL 2018 118

Using a deep learning algorithm and integrated
gradients explanation to assist grading for diabetic
retinopathy

Peng, L OPHTHALMOLOGY 2019 106

Multi-categorical deep learning neural network to
classify retinal images: A pilot study employing
small database

Yoo, TK; Rim, TH PLOS ONE 2017 97

A deep learning ensemble approach for diabetic
retinopathy detection

Shamshirband, S IEEE ACCESS 2019 88

Choroid segmentation from optical coherence
tomography with graph edge weights learned from
deep convolutional neural networks

Zheng, YJ NEUROCOMPUTING 2017 85

TABLE 2 Top 10 Web of Science categories of journals on artificial
intelligence in retina research.

Web of Science categories No. of publications (%)

Ophthalmology 133 (22.20)

Engineering Electrical Electronic 123 (20.53)

Computer Science Information Systems 93 (15.53)

Computer Science Artificial Intelligence 70 (11.69)

Radiology Nuclear Medicine Medical Imaging 60 (10.02)

Computer Science Interdisciplinary Applications 59 (9.85)

Telecommunications 56 (9.35)

Engineering Biomedical 53 (8.85)

Mathematical Computational Biology 41 (6.85)

Multidisciplinary Sciences 35 (5.84)

rapid progress, we included relevant publications only published
in the latest decade.

In the field of AI in retina, the metric of RRI has maintained
growth over the last 10 years from < 0.001% in 2001 to 0.004%
in 2021, and the number of publications also increased rapidly.
These indicate great interest in AI in retina on the part of the
scientific and medical community. It is noticed that the number
of publications in AI in retina grew more and more sharply
after 2016 (total number of publications was more than 98%
in the present study). In the year when Google published its
influential work of AI in detection of diabetic retinopathy (5),
Microsoft announced that 2016 would be the year of AI (14).

This shows that the current wave of interest in AI covers many
fields beyond ophthalmology. However, the current percentage
of articles related to AI in retina published in the same journals
which published most relevant papers was not high, and these
papers were scattered in a great number of journals (more
than 100 journals). The lack of a specialized journal could
lead to difficulties for researchers to track latest developments
in AI in retina.

When analyzing countries and authors, we found that the
countries which published most papers were not consistent
with the countries which had most influential authors. For
example, USA (171 publications) and China (149 publications)
contributed to the greatest number of publications, but only 1
author in the top 5 authors with greatest number of citations
came from USA. On the contrary, authors from Austria and
Singapore had the top worldwide influence according to the
number of citations. On one hand, except benefiting from the
bonus of number of researchers, the analysis of co-occurrence
of countries and regions revealed that researchers in USA
and China tend to collaborate with researchers from other
countries (Supplementary Figure 1). On the other hand,
this position of Singapore and Austria could be explained
not only by the production of local institutions, such as
National University of Singapore (14 publications) and Medical
University of Vienna in Austria (14 publications), but also
by the willing of collaboration (13, 15). Another possible
reason is that researchers in small countries have much more
cooperation partners outside of their countries than partners in
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TABLE 3 Top 10 authors who published most and cited most in the field of artificial intelligence in retina.

Author Country Latest Affiliation No. of publications No. of citations

Schmidt-Erfurth U Austria Medical University of Vienna 9 455

Bogunovic H Austria Medical University of Vienna 8 464

Keane PA England Moorfields Eye Hospital NHS Foundation Trust 8 368

Balaskas K England Moorfields Eye Hospital NHS Foundation Trust 7 75

Gerendas BS Austria Medical University of Vienna 7 383

Lee AY USA University of Washington 7 410

Wong, Tien Y Singapore National University of Singapore 6 401

Yoo TK South Korea Aerosp Med Ctr 6 124

Cheung Carol Y China Chinese University of Hong Kong 6 99

Huang TJ China Peking University 6 63

FIGURE 4

Keywords analysis by VOSviewer and R. (A) Co-occurrence map of keywords in titles and abstracts. Keywords were classified into three clusters
by co-occurrence frequency, including diabetic retinopathy-related cluster (in red), optical coherence tomography on multiple diseases-related
cluster (in green), algorithm-related cluster (in blue). (B) Color-coded map of keywords by the average time of appearance. Blue keywords
appeared earlier, while yellow keywords appeared more recently. (C) The wordcloud map the most frequent keywords.

their countries (16). International collaboration on AI-related
studies has shown its advantages on offering opportunities to
countries regardless of country area (17). Furthermore, we
applied a classification system based on HDI, and found that
most of the top countries (8 of top 10 countries)and top
authors (8 of top 10 authors) belongs to the level of very
high human development countries. Therefore, cooperation
and collaboration between countries and areas of various

levels of human development are needed to promote the
popularity of AI technique. However, the unavoidable filling
of collaboration agreements and negotiation on intellectual
property issues with partners on an institutional level might
cause loss of interest and risk of postponing cooperation due
to prolonged preparation before onset of AI researches (18).
Researchers might need to investigate a new rapid pattern for
international collaboration.
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Besides the effort from medical researchers and AI
engineers, a concerted effort from all stakeholders, including
administrations, patients, and insurances, is needed. Sustainable
models of AI applications in real world worth further
investigation, taking the benefit of the patient, the health care
provider, and the payer into consideration (18). Ethical and
legal regulations for AI researches, which usually involve data of
patient privacy (19), are also needed to cover the full workflow
of AI studies and clinical trials.

We analyzed the top journals which published most papers
and top articles which were most cited, and found that most
publications of AI in retina are technical researches related to
technology, engineering, and computing (6 of top 10 journals),
not related to clinical practice. Similar to most AI researches in
the category of ophthalmology, researches of AI in retina mainly
focus on technical methods (7 of top 10 publications) (13). The
analysis revealed that this research field involves more scientists
rather than clinicians. In the future, more efforts are supposed to
be paid on translation of the AI technique into a powerful tool
in clinical practice on screening, triage, and decision-making
process (20).

Based on the analysis of keywords in the current studies,
most studies of AI in retina are correlated with diabetic
retinopathy (200 relevant publications in the current study) (5,
6), followed by optical coherence tomography and associated
technology (172 relevant publications). AI has also been used
in diagnosing age-related macular degeneration (60 relevant
publications) (21, 22), glaucoma (57 relevant publications) (23),
and retinopathy of prematurity (15 relevant publications) (24).
However, the technique of AI could be used for assistance for
screening and triage of more retinal diseases, such as retinal
detachment (14 relevant publications) and retinal vein occlusion
(8 relevant publications), which are also vision-threatening
diseases. More studies are needed for diagnosis of multiple
retinal diseases simultaneously, and even general conditions
(25), which meets the current clinical needs (26).

Moreover, multimodal imaging method rather than single
modal imaging method is currently mainstream in real-world
settings. However, most AI studies used single modal images
of fundus photography or optical coherence tomography as
training data, and the performance of trained models usually
cannot overcome the challenges from numerous variabilities
in reality, including field of view, image magnification, image
quality, and race origin (7). Only limited researches investigated
the application of multimodal imaging in AI researches, which
not only improved the diagnostic performance, but also a more
precise definition (27). Considering the growing demand of
healthcare and limited number of retinal specialists, particularly
in rural areas, the application of AI on more retinal diseases
and multimodal imaging could help enhance medical care for
multiethnic populations in real-world clinical practice.

We analyzed the keywords and abstracts of current studies
of AI in retina, and found that most studies focused on imaging

analysis (436 relevant publications), such as segmentation and
detection of lesions, and diagnosis. Recently, Ting et al. found
that using AI system as an assistive tool to screen for diabetic
retinopathy is an economical method in real-world settings
(28). The technique of AI could also be used for guidance of
therapy with automated detection of lesion activity, quantitative
analysis of therapeutic effects, and determination of recurrence
(1). However, most studies of AI in retina were conducted in a
well-prepared setting with selected data, and the performance of
AI models in real world might showed unexpected outcomes.
A team from Google used a deep learning system in clinics
for detection of diabetic retinopathy (29), and failure to
reproduce the performance they published in 2016 due to socio-
environmental factors (5). Moreover, increase the diversity of
dataset by applying training data from various sources helps
enhance the generalization ability of AI models, and helps bring
AI models to clinical practice (30). Therefore, the validation of
application of AI technique in real world is an important topic
in future researches.

Although studies of AI in retina is broad, it mainly focuses
on detecting structures and lesions and diagnosing diseases
from fundus photography and optical coherence tomography
images through deep learning algorithms currently, trying to
achieve expert-level performance in well-prepared experiment
environment. Enhancing the performance of detecting retinal
diseases in real world in encouraged (29). Firstly, additional
structured clinic data (including but not limited to, age,
sex, ethnicity, other examination results, medical history,
clinical diagnosis, comorbidities, or genetic indicators, etc.) or
multimodal images could be collected together. This would
be helpful to build datasets with diversity and further to
cover more application scene and more populations, such
as screening and clinical diagnosis in countries and regions
of various development levels. Secondly, more application
requirements from clinical practice were put up with, including
earlier detection and referral, personalized treatment based
on guidelines and the reality of each patient and prediction
of prognosis, covering more diseases for global automated
screening, resulting in lower economic burden and better life
quality for patients. AI has the potential to provide direct patient
care after combining with mobile devices and communication
technology, especially in under-resourced areas (31). However,
there is a lot of work to be done to make this a reality, and
the application of AI models in clinical practice needs clinical
validation and regulatory requirements. Moreover, AI models
are supposed to progress in parallel with the advance of new
management strategies.

Our study has several limitations. The nature of selection
bias existed in the methods, including in favor of English-
language journal and only papers published on authoritative and
influential journals which were listed in WOS Core Collection
were included in our analysis. Although most high-quality
papers are included by most databases, the results might be
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partially affected. Moreover, using different searching method
in WOS Core Collection could lead to different results,
and the method we used did not include publications
that were assigned same keywords by other databases,
which would not result in unrepeatable searching results.
Therefore, the total number of included publications
using forementioned methods might be less than
some other methods.

In summary, this study comprehensively analyzed most
published researches on AI in retina, and presents a current
view of mainstream studies on AI in retina. AI in retina
is a very attractive topic in researches, and the relevant
technique developed rapidly, although no journal specializes
in AI in retina. International collaboration is important in
conduction of influential researches. Researches are supposed
to focus on more retinal diseases, multiple modal imaging,
and performance of AI models in real world. This study may
help clinicians, but also scientists understand the current trend
of publications of AI in retina, know the main actors in
the field, and predict and guide the future developments in
this research field.
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SUPPLEMENTARY FIGURE 1

The co-occurrence map of 32 countries and regions, which showed the
international collaboration among countries/regions.

SUPPLEMENTARY FIGURE 2

(A) The distribution of publication year for publications of various
citation frequency. (B–D) The heatmaps of high citation frequency
(more than 100 citations) group, medium frequency (more than 50
citations and < 100 citations) group, and low frequency (<50 citations)
group, respectively. Every row in the heatmap represents a publication.
The color represents the total citation number in each year (x axis).

SUPPLEMENTARY FIGURE 3

The co-occurrence map of scholars who published papers of artificial
intelligence in retina, which showed the cooperation
among researchers.
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Purpose: First, to investigate the utilization rate and effect of proven myopic

interventions. Second, to predict the prevalence of myopia and high myopia,

as well as Years Lived with Disability (YLD) caused by an uncorrected refractive

error in children and teens in Eastern China from 2010 to 2050 under different

interventions.

Methods: (1) The surveillance of common diseases among children and

adolescents in Jiangsu Province from 2010 to 2021 provides the database

for myopia screening and intervention utilization surveys. (2) The National

Bureau of Statistics and the Global Burden of Disease Study 2016 (GBD2016)

are the foundation for the estimated myopes and YLD. (3) A systematic review

provides the strong or weak impact of intervention in the prediction model. (4)

The trend of screening myopia from 2010 to 2050 under various treatments

is predicted using a GM (1,1) model.

Results: By the year 2050, myopia is expected to affect 8,568,305 (7–12 years

old) and 15,766,863 (13–18 years old) children and adolescents, respectively

(95% CI: 8,398,977–8,737,633). The utilization prevalence of myopia-proven

interventions for myopic children included outdoor activities, orthokeratology

lenses, atropine treatment, contact lenses, frame glasses, and eye exercises,

with respective rates of 31.9–33.1, 2.1–2.3, 6.0–7.5, 2.2–2.7, 60.4–62.2, and

64.7–72.5%. All interventions have substantial effects on myopia after parental

myopia and behavior pattern adjustment, including physical activity, near

work, dietary pattern, and sleep. Under strong intervention, the estimated

reduced myopia prevalence by the year 2050 is 1,259,086 (95% CI: 1,089,758–

1,428,414) for children aged 7–12, and 584,785 (95% CI: 562,748–606,823) for

children aged 13–18, respectively.
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Conclusion: Among myopic Chinese children and adolescents, the use

rates and effects of proven myopia interventions vary. Under the present

intervention strategy, the prevalence of myopia and high myopia will increase

from 2010 to 2050. The overall number of myopic people can be greatly

decreased by implementing timely, steady, comprehensive interventions.

KEYWORDS

myopia, prevalence trend, interventions, children and adolescents, Eastern China

Introduction

Myopia occurs because the cornea or lens is too powerful
or because the eyeball is longer than normal (1). Uncorrected
refractive error is the most common cause of distance vision
impairment and the second most common cause of blindness
(2). In myopia, distant objects are focused in front of the retina
instead of on it, as occurs in non-myopic individuals. Holden
estimated that by 2050, there will be 4,758 million people with
myopia (49.8% of the world population) and 938 million people
with high myopia (9.8% of the world population) (3).

The prevalence of myopia is severe in China, and visual
impairment occurs with complications of high myopia, such
as retinal detachment, cataracts, glaucoma, and blindness (4–
7). Anhui province, Fujian province, Jiangsu province, Jiangxi
province, Shandong province, Shanghai city, and Zhejiang
province are the seven provinces that make up the eastern
mainland of China (also known as Eastern China). An area of
798,300 km2 in Eastern China is home to approximately 30% of
the country’s population and 40% of its GDP (8). The prevalence
of myopia and vision impairment is high among school students
in Eastern China, and the greater prevalence rate of myopia
in Eastern China is significantly influenced by the increased
academic load on students at younger ages (5, 9, 10).

The effects of myopia interventions on children and
adolescents have been extensively studied worldwide.
Pharmaceuticals, optical devices, and lifestyle changes
are among the interventions that had proven effects (11).
Increasing the amount of time that children spent outdoors at
school resulted in statistically significant reductions in incident
myopia and myopic shift, as shown by the previous studies (12).
A study of 571 students aged 7–11 years in Taiwan reported
a 1-year reduction in the incidence rate of myopia of 8.4% in
the intervention group vs. 17.7% in the control group (13).
In most cases, wearing quality eyeglasses at the correct time
and properly could easily correct children’s vision problems
(14). Recent surveys conducted in rural China indicate that
among myopic students, less than one-third of myopic students
reported the use of glasses, and more than two-third of myopic
students denied wearing them. The mean (SD) spherical
equivalent refractive error of participants was −2.16 (1.12) D

(range, −0.625 to −4.0 D) in the right eye. In three schools,
the proportion of children with myopia (both eyes’ spherical
equivalent ≤ −0.5 D) ranged from 25 to 58%, whereas the
proportion wearing glasses at the time of examination was
between 8 and 30% (15). According to the results of a study
by Yi et al., only one-sixth of myopic students in rural China
used eyeglasses (16). Orthokeratology was becoming more and
more popular especially in the Asia-Pacific region to control the
progression of myopia in young children (17). Orthokeratology
is defined as the “reduction, modification, or elimination of a
refractive error by programmed application of contact lenses
(18).” Also, previous reviews, meta-analyses, and clinical trials
suggested that atropine eye drops conferred the best efficacy
among all myopia prevention methods (19, 20).

The two main goals of this investigation are as follows:
First, based on a repeated cross-sectional survey in 2019,
2020, and 2021, to examine the usage rate of myopia
interventions (such as outdoor activities, orthokeratology
lenses, atropine treatment, contact lenses, frame glasses,
and eye exercises) among an annual random sampling of
Chinese children and adolescents. To calculate the odd-
ratio effects of interventions that have been modified for
parental myopia and behaviors (such as physical activity,
near work, dietary pattern, and sleep). Second, to predict the
estimated myopia population, high myopia population, reduced
myopia population, and Years Lived with Disability (YLD) of
refraction and accommodation disorders (such as severe vision
impairment due to uncorrected refractive error, moderate vision
impairment due to uncorrected refractive error, and blindness
due to uncorrected refractive error) under various intervention
strategies (current intervention situation, strong intervention,
and weak intervention) among children and adolescents from
2010 to 2050 in Eastern China.

Materials and methods

Profile of Eastern China

With seven provinces and cities, including Shanghai,
Shandong, Jiangsu, Anhui, Jiangxi, Zhejiang, and Fujian,
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East China is one of the most developed regions in China
(Supplementary Figure 1). According to a 2010 National
Bureau of Statistics report, this region is home to approximately
400 million people or almost one-third of all Chinese citizens.
Supplementary Figure 2 provides comprehensive data for
children aged 7–18 years.

Definition

Definition of screening Myopia (21, 22): (1) For children
aged 7–12 years, the screening myopia is defined as
uncorrected visual acuity (UCVA) < 0.5, as well as non-
cycloplegic auto refraction (NCAR) < −0.50 D. (2) For
children aged 13–18 years, the screening myopia is defined
as UCVA < 0.5.

Years Lived with Disability: Long-term disability due to a
given cause including blindness, moderate vision impairment
and severe vision impairment (23).

Gray model GM (1,1) (24): The model is established
based on the Gray System Theory using a time-series
prediction realm. The Gray prediction model includes
the classic univariate gray prediction model [GM (1,1)
model] and the multi-variable gray prediction model
[GM (1,N) model]. A group of new data series with the
obvious trend is generated by accumulating a certain
original data series, and the growth trend of the new
data series is used to establish a model for prediction,
and then the reverse calculation is performed by
accumulating the new data series to recover the original
data series, and finally, the prediction results are obtained.

GM (1,1) equation:

∧
x 0(k+ 1) =

∧
x 1(k+ 1)−

∧
x 1(k)

= (1− e
∧
a)[x0(1)−

∧
u
∧
a
]e−

∧
a k

Physical examination measurements

Myopia screening: In Jiangsu Province, a myopia screening
was carried out since 2010. With no cycloplegia, an auto-
refractor (Topcon KR-800; Topcon Co., Tokyo, Japan) was used.
Children without myopia and the absence of any other major
eye conditions, Chinese Han students, and parents or guardians
who could give informed consent were the inclusion criteria
for our subjects.

Utilization and effectiveness of
interventions

Students were requested to complete a questionnaire
about myopic information during 2019, 2020, and 2021
as part of an intervention usage study. Generalized
linear model (GLM) regression analysis: GLM analysis is
performed, and a log odds ratio with 95% CI is computed
to assess the effect of intervention adjusted by parental
myopia, physical activity, near work, dietary pattern, and
sleep, and dependent variable are classified as non-myopia
(P1), low myopia (SE more than −3.00D,P2), medium

TABLE 1 The demographic characteristics of the study participants from 2010 to 2021 aged 7–18 years.

Number of survey
population

Male/Female
(P = 0.223)

Age-standardized
height (cm)
(P < 0.001)

Age-standardized
weight (kg)
(P < 0.001)

Age-standardized
vision

(P < 0.001)

Year 7–18 7–18 7–12 13–18 7–12 13–18 7–12 13–18

2010 12,000 50.0/50.0 141.5± 11.8 165.7± 8.3 35.4± 10.3 58.7± 12.2 4.81± 0.29 4.54± 0.39

2011 12,000 50.0/50.0 141.6± 12.3 166.0± 8.5 36.8± 11.0 57.1± 11.8 4.89± 0.30 4.48± 0.38

2012 48,295 52.4/47.6 146.6± 15.0 165.4± 8.7 40.3± 13.5 57.7± 12.4 4.81± 0.38 4.44± 0.39

2013 57,500 52.6/47.4 141.2± 13.1 166.2± 9.1 36.7± 11.9 57.9± 12.9 4.72± 1.15 4.35± 0.90

2014 71,650 53.5/46.5 141.5± 12.4 166.5± 8.5 37.6± 11.7 58.4± 12.4 4.84± 0.31 4.52± 0.36

2015 73,687 52.6/47.4 140.7± 12.1 165.9± 8.7 36.4± 11.2 57.8± 12.0 4.88± 0.29 4.50± 0.36

2016 60,857 53.7/46.3 143.7± 10.6 166.2± 8.6 40.3± 9.8 58.3± 12.0 4.86± 0.29 4.48± 0.35

2017 30,067 50.9/49.1 141.4± 12.2 165.2± 8.5 37.9± 12.0 59.9± 12.8 4.85± 0.30 4.47± 0.38

2018 52,694 53.1/46.9 141.1± 12.4 165.3± 8.8 38.3± 12.5 60.2± 13.7 4.79± 0.32 4.39± 0.40

2019 48,649 52.7/47.3 141.8± 12.5 166.2± 8.4 38.1± 12.8 61.3± 14.3 4.79± 0.33 4.41± 0.39

2020 48,288 52.7/47.3 142.0± 12.6 166.3± 8.4 39.3± 13.2 62.0± 14.3 4.78± 0.31 4.41± 0.38

2021 47,498 52.4/47.6 141.9± 12.6 166.4± 8.3 39.2± 13.0 62.9± 14.9 4.76± 0.33 4.42± 0.38
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myopia (SE more than −6.00D,P3), and high myopia (SE
less than −6.00D,P4). The regression equation is listed as
follows:

GLM(P1,P2,P3,P4) = β0 + βmain−effect1(Intervention1)X1

+ βmain−effect2(Intervention2)X2 + βmain−effect3(Intervention3)X3

+ βmain−effect4(Intervention4)X4 + βmain−effect5(Intervention5)X5

+ βmain−effect6(Intervention6)X6 + βadjusted−parentmyopiaX7

+ βadjusted−physicalactivityX8 + βadjusted−nearworkX9

+ βadjusted−dietarypatternX10 + βadjusted−sleepX11

GM (1,1) model predicting the trend of
screening myopia from 2010 to 2050
under current interventions

Data are used from 2010 to 2021 as the original data to
establish a GM (1, 1) model (25) and to predict the number of
myopic students from 2022 to 2050. Related parameters are
obtained from: (1) surveillance of common diseases among
students in Jiangsu Province from 2010 to 2021; (2) Global
Burden of Disease Study 2016 (GBD2016) (26) and National
Bureau of Statistics; and (3) a systematical review. Details on
these parameters can be found in Supplementary Table 1. In
this study, we also predict a reduced myopia population under
weak intervention (R: 0 to 0.25 D/year, more outdoor activities,
MOA, 0.14 D/year) and strong weak intervention [R: >0.50
D/year, high-dose atropine (1 or 0.5%), ATRH, 0.7 D/year] (27).
(4) Projected demographic changes in the relevant age groups
are shown in Supplementary Figure 2.

Statistical analysis

Continuous variable trend analysis is a one-way variance
trend analysis, with mean ± SD as the description. For
discontinuous variables, chi-square is used for trend analysis
and percentage as the description. Indicators including weight,
height, vision, and spherical equivalent (SE) were standardized
using age. The standardization makes the proportion of the
population per age as 1:1.

All data are analyzed using office software and SPSS
V.20.0 software.

Ethics statement

The Institutional Review Board approved the Ethics
Committee of Jiangsu Province CDC’s study protocol. The
students and their parents are informed about the survey’s

aim, and teachers obtained participants’ and their parents’ oral
and written consent. Detailed information can be found in the
previous article (28–30).

Results

Characteristics of the study
participants from 2010 to 2021

A total of 563,185 students participated in this study from
2010 to 2021. The adjusted distribution of sex is not significant
(P > 0.05). Age-standardized weight and height show upward
trends, while age-standardized vision shows downward trends
(trend P < 0.01) (Table 1). Changes in spherical equivalent
(SE, D) from 2018 to 2021 are not significant (trend P > 0.05)
(Figure 1).

Current myopic intervention situation

The utilization rate of interventions (outdoor
activities/atropine treatment) reveals a decreasing trend
from 2019 to 2021 (trend P < 0.01). Orthokeratology has the
lowest utilization rate (2.1–2.3%) and eye exercises the highest
(64.7–72.5%) (Table 2). Effects of all interventions on myopia
adjusted by parental myopia and behavior pattern (including
physical activity, near work, dietary pattern, and sleep) are
significant. The odds ratio value for frame glass of <0.70
indicates a medium effect on the progression of myopia. While
orthokeratology, atropine treatment, and contact lenses took
up a relatively low utilization rate; protective effects on myopia
could still be observed. Outdoor activities and eye exercise
showed a weak protective effect on primary and middle/high
school students, respectively (Figure 2).

Estimated population of myopia, high
myopia, and YLD from 2010 to 2050
under the current situation

By the year 2050, the estimated population of myopia will
be 8,568,305 (95% CI: 8,398,977–8,737,633) for 7–12 years old
and 15,766,863 (95% CI: 15,744,826–15,788,900) for 13–18 years
old, respectively. The number of high myopia cases is 205,639
(95% CI: 201,575–209,703) for 7–12 years old and 2,395,613
(95% CI: 2,392,264–2,398,961) for 13–18 years old, respectively.
The prevalence of myopia will be 62.1% for 7–12 years old
and 99.7% for 13–18 years old, respectively. The prevalence of
high myopia will be 1.5% for 7–12 years old and 15.2% for 13–
18 years old, respectively. The estimated YLD/1,000 person-year
(blindness due to uncorrected refractive error) is 151.3 (95% CI:
100.3–210.4) among children and adolescents (Figure 3).
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FIGURE 1

Spherical equivalent (SE, D) distribution of right/left eyes stratified by age from 2018 to 2021.

TABLE 2 Current myopic intervention utilization among myopic Chinese children and adolescents based on surveys from 2019, 2020, and 2021.

2019 2020 2021 Absolute
increase

P-value for trend

Intervention 1: Outdoor activities > 2 h/d

Primary/middle and high school 38.7/31.3 39.4/30.7 39.0/29.4 −1.2 0.003

Male/female 37.0/29.1 36.1/29.5 35.3/28.5

Urban/rural 34.0/31.8 32.8/33.0 32.4/31.3

33.1 32.9 31.9

Intervention 2: Orthokeratology

Primary/middle and high school 2.5/2.0 2.3/2.2 2.6/2.2 0.2 0.227

Male/female 2.1/2.1 2.2/2.2 2.3/2.2

Urban/rural 2.2/2.0 2.5/1.8 2.6/1.8

2.1 2.2 2.3

Intervention 3: Atropine treatment

Primary/middle and high school 10.2/5.9 10.7/6.7 9.4/5.1 −0.8 0.001

Male/female 6.6/7.0 7.2/7.9 6.0/6.0

Urban/rural 6.6/7.0 7.8/7.2 6.4/5.5

6.8 7.5 6.0

Intervention 4: Contact lens

Primary/middle and high school 1.5/3.0 1.2/2.5 1.0/2.9 −0.2 0.114

Male/female 1.8/3.6 1.4/3.1 1.5/3.5

Urban/rural 3.3/1.8 2.7/1.6 3.1/1.6

2.7 2.2 2.5

Intervention 5: Frame glasses

Primary/middle and high school 40.9/65.3 44.2/66.9 45.1/67.1 1.7 0.000

Male/female 56.3/64.5 57.4/67.1 57.7/66.5

Urban/rural 61.7/58.4 63.3/60.6 63.5/60.1

60.4 62.2 62.1

Intervention 6: Eye exercise

Primary/middle and high school 94.9/65.4 88.3/56.7 95.2/64.3 0.0 0.941

Male/female 71.9/73.2 64.7/64.7 72.0/73.0

Urban/rural 66.7/81.1 58.0/74.7 65.6/82.4

72.5 64.7 72.5
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FIGURE 2

Effect of intervention on myopia adjusted by parental myopia
and behavior pattern among children and adolescents based on
survey in 2019, 2020, and 2021. (A) Effect of intervention on
myopia classified by study period. (B) Effect of intervention on
myopia classified by gender. (C) Effect of intervention on
myopia classified by year.

Internal validation: The regressive performance of the GM
(1,1) model is presented in Supplementary Figure 3, and the R2

values are >0.900.

Estimation of the reduced number of
the myopes with strong/weak
intervention

(1) Weak effect intervention (MOV): By the year 2050, the
estimated reduced population of myopia is 13,295 (95% CI: 0–
182,623) for 7–12 years old and 41,731 (95% CI: 19,694–63,768)

for 13–18 years old, respectively. For 7–12 years old, the reduced
population of high myopia was 319 (95% CI: 0–4,383) and for
13–18 years old, it was 6,341 (95% CI: 2,992–9,689). (2) Strong
effect intervention (ATRH): The estimated reduced population
of myopia by 2050 is 1,259,086 (95% CI: 1,089,758–1,428,414)
for 7–12 years old and 584,785 (95% CI: 562,748–606,823) for
13–18 years old. The population of high myopia is 30,218 (95%
CI: 26,154–34,282) for 7–12 years old and 88,852 (95% CI:
85,504–92,200) for 13–18 years old, respectively (Figure 4).

Discussion

According to our study, there will be roughly 24.3 and
2.6 million children and adolescents in Eastern China between
the ages of 7 and 18 who have myopia or high myopia,
respectively. Among myopic Chinese children and adolescents,
varying percentages of effective myopia interventions (such
as orthokeratology lenses, atropine therapy, contacts, glasses
frames, and outdoor activities) were used. By 2050, myopia
and high myopia are predicted to be reduced by nearly
55,027–1,843,872 and 6,660–119,070, respectively, according
to estimates of weak or strong intervention effects. These
have essential implications for myopia interventions, such as
population-level and personal preventive strategies.

What are the main factors affecting our projects? First,
lifestyle factors such as physical activity and close work have
significantly impacted the onset and progression of myopia
(31). High-pressure educational systems in Eastern China can
be listed as a crucial factor (32). The human environment
in this area supports culture and fosters education, and since
ancient times education has received significant attention
in this region. For instance, Confucius, who was born in
the Eastern Chinese province of Shandong, is revered as
a representative of Chinese culture and thinkers. Myopia
growth may be influenced by "culture-gene." Jiangsu Province
has been considered a representative area in Eastern China
from the perspective of economic, educational, and cultural
levels. Economic, educational, and cultural levels are highly
correlated with myopia. Jiangsu Province is used in this study
to approximate the myopia level in Eastern China. Japan,
Singapore, and Hong Kong (China), which are part of the "Circle
of Confucius-Culture" and share a lot of the same values, social
structures, and cultural traditions, may be also impacted by
this phenomenon.

Second, the effect of myopia controls the interventions. The
prevalence of myopia is rapidly increasing globally, and this
phenomenon has driven investment into myopia prevention
and control (33). In this study, interventions include exhibited
significant effects after adjusting parental myopia and behavior
patterns among students sorted by age and gender. However,
utilization rates of proven myopic interventions are still
relatively low. Interventions that sufficiently slow down or delay
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FIGURE 3

Graph depicting the estimated number of children and adolescents with myopia, high myopia, and Years Lived with Disability (YLD) from 2010
to 2050 under the current intervention situation. *YLD per 10 million (Blindness: Blindness due to uncorrected refractive error per 10 million
children and adolescents); YLD per 10 million (Moderate vision impairment: Moderate vision impairment due to uncorrected refractive error per
10 million children and adolescents); YLD per 10 million (Severe vision impairment: Severe vision impairment due to uncorrected refractive error
per 10 million children and adolescents).

myopia can potentially prevent an individual from developing
high myopia provided treatment is started early enough (3). We
estimated the reduced number of myopia, high myopia, and
related YLD after strong/weak interventions. This indicated that
a concerted effort by the government, education, and health
systems should be undertaken to control myopia.

Different interventions have been attempted to reduce
myopic progression, including increasing outdoor time (12),
optical methods [orthokeratology (34, 35), contact lens (36,
37), and eyeglasses], and pharmacological methods including
atropine eye drops (38). Spending 10–14 h per week in
outdoor activities (MOA) as compared to “engaging in
outdoor activities” only 0–5 h per week was associated
with approximately half the risk of developing myopia (39).
Atropine treatment shared a relatively lower usage rate in
Eastern China. High-dose atropine (0.5–1%) is the most
effective, but it has significant trade-offs with respect to
the rebound of myopia on discontinuation and side effects.
Low doses of atropine have been trialed and show a
dose-dependent efficacy (40). Students receiving interventions
(orthokeratology lenses, atropine treatment, contact lenses,
and frame glasses) were more likely to have a higher
level of myopia than those not receiving interventions
(Supplementary Table 2). As explained in the introduction
section, due to specific differences in the cognitive level of
myopia, parents pay more attention to myopia intervention
for children with high myopia. In contrast, parents ignore
children with low myopia, leading to such a phenomenon
in single-factor analysis. In the multivariate analysis, the

addition of correction variables reduces the occurrence of
such bias. Age, gender, level of myopia, family type, parent,
region economic level, and active medical treatment record
significantly impacted intervention utilization among Chinese
children (Supplementary Table 3).

Our study design has some potential limitations. (1)
The population predicted comes from the general education
group, and the population’s myopia from education diversion
is not considered. (2) The definition of screening myopia
was based on our previous studies; in 2018, we randomly
selected 36 primary and secondary schools in 12 counties
of Jiangsu Province and conducted myopia diagnosis and
myopia screening for 7,441 students aged 7–18 years. We
suggested that under the condition of non-mydriasis and
large populations, we recommend that the myopia screening
strategy for students aged 7–12 was UCVA < 0.5 and
NCAR < −0.50D, and the myopia screening strategy for
students aged 13–18 was UCVA < 0.5. Myopia screening
data are utilized, but changes in optical refraction before and
after cyclic events are not considered. This could lead to an
overestimation of myopic individuals in future. (3) Frame
glasses and contact lenses, such as single and defocus, with
different myopia control effects, were not differentiated in
the study, which may yield bias on utilization and effect of
intervention estimation.

Strengths can be listed as follows: (1) From 2010 to
2022, Eastern China’s ongoing large-sample size surveillance
of myopia screening can correctly describe the health trends
of children and adolescents. (2) Considering the influence of
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FIGURE 4

Estimates for 2022–2050 after MOV (weak effect) and ATRH (strong effect) are 100% covered: the number of myopia reductions, the number of
high myopia reductions, and the rate of Years Lived with Disability (YLD) (blindness) reductions.

myopia control interventions and a thorough prediction of the
decrease in myopes among children and adolescents, this study
provides a research foundation for the burden of myopia disease
in Eastern China.

In conclusion, our research offers predictions for myopia,
high myopia, and YLD of refraction and accommodation
disorders through various interventions by 2050. The usage
and effects of myopia interventions (such as outdoor activities,
orthokeratology lenses, atropine treatment, contact lenses,
frame glasses, and eye exercises) vary among Chinese children
and adolescents. The total number of children and adolescents
with myopia in East China declined from 2010 to 2050
under the current intervention status, while the prevalence
of myopia significantly increased. Myopia prevalence can
be significantly decreased by increasing strong and weak
interventions. A concerted campaign by the government,
schools, and health systems should be made to prevent myopia,
as Eastern China has long placed a high value on education.
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